IMAGE EVALUATION

 TEST TARGET (NTT-3)

Photographic Sciences

CIHM/ICMH Microfiche Series.

Canadian Institute for Historical Microreproductions / Institut canadien da microreproductions historiques
(C)

1

?

The Institute has ettempted to obtaln the best original copy avallable for filming. Features of this copy which may be bibllographically unique. which may alter any of the Images in the raproduction, or which may significantly change the usual mathod of filming, are checked below.

Coloured covers/
Couverture de couleur
Covars damaged/
Couvarture endommagbe
Covars rastored and/or laminated/
Couverture restaurte at/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (I.e. other than blue or bleck)/
Encre de coulaur (I.e. autre que bleue ou noire)
Coioured plates and/or lllustretions/
Planches at/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along Interior margin/
La reliure serrée peut causer de l'ombre ou de le distortion le iong de la marge intériaure

Blank leaves added during restoration may
appear within the text. Whanever possible, these have been omitted from filming/
II se peut que cartaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte, mais, lorsque ceia ótait possible, ces pages n'ont pas óté filmbes.

L'Institut a microfilms ie meilleur exemplaira qu'll lui a ót' ponalble de se procurar. Les dótalis de cot exemplairs qui sont peut-ótre uniques du point de vue bibliographique, qui peuvent modifier une image reprodulte, ou qui peuvant exiger une modification dans la méthode normale de filmage sont Indiquess ci-dessous.

Coloured pages/
Pages de couleur
Pages dameged/
Pages andommages
Pages reatored and/or laminated/
Pages restaurbes et/ou pelliculbes

Pages discoloured, stained or foxed/
Pages decolorbes, techotbes ou piques
Pages detached/
Pages dútachbes
Showthrough/
TransparenceQuality of print varies/
Qualité inćgale de l'impression
Includes supplomentery material/
Comprend du matériel supplémentaire
Only edition avellable/
Seule edition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ansure the bast possible image/
Les pages totalemant ou partiellement obscurcles par un feuillet d'errata, une pelure. otc., ont ótó filmbes à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmb́ au taux de reduction indlqued ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \longrightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la genérozité de:

Bibliothèque nationale du Cunada

Les images suivantes ont été ruproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'sxemplaire filme, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés on commençant par la premiàre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernlére image de cheque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'engle supérieur gauche, de gauche à droite, st de haut en bas, en prenant le nombre d'images nócessaire. Les diagrammes suivants illustrent la méthode.

EXISTENCE AND DEITY

Illustrated and Explained;

R○BERTSHAW, M.A.,
eor many yeabs a diligent and unbiabed btudint of the setbject of deity and of cheated rexistenct.

> In Two Parts.

PART FIRST.

Ifloutreal;
PRINTED FOR THE AU'THOR.
1872.

Entered according to Act of the Parlizment of Canada in the year one thousand eirht hundred and seventy tivo, by Robert Shaw, in the Office of the Minister of Agriculture.

INTRODUCTION.

TIIE principal object of this book,-although this is not the only purpose it answers, for it conveys to the reader a vast amount of information the most interesting and important,-is to simplify matters with respect to the subject of Deity. This being the chief end in view in its production this book is different from any that has preceded it, and, therefore, fills a place not supplied by any other. There is no substitute for this book in any language spoken on the earth. The subject of the Creator and that of Creation are intimately connected, and in this book the one is made to illustrate the other. The works already in print upon the subject of Deity or Theology are for the most part merely systems of ideas elaborated from the mind or imagination of the authors, and popularly called systems of 'Ihcology, or Bodies of Divinity, doubtless consisting of some truth, but mixed with much that is erroncous ; considered in the light of works of fiction some of them speak well indeed for the inventive genius of their authors. This book deals with the subject of an omnipresent Deity, his character being illustrated by his works of creation and by the various objects and scenes of existence ; but though omnipresent yet he is shown to be infinite as existenec, and being infinite not conceivable by the mind of man, much less to be seen by his cye.

I'lis is especially the case in Part First of the work, which treats of existence in its various conditions, phases, and aspects,-Plyysical, Spiritual and Moral,-and illustrates variously the suhject of creation and the character of the omnipresent and infinite Deity.

In using the sciences for illustration of existence in Part First of the work, more especially the science of Astronomy, we found it both necessary and most to the purpose to set forth the science itself with its deductions and discoveries hitherto, which will be much more beneficial, and satisfactory to the readers than the statement of isolated facts and ideas derived from that science, its deductions and discoverics. Besides, we have treated of the Scenery of the heavens as viewed from the Planets and their Satellites which makes the subject of Astronomy, as here presented, far more interesting than as set forth in the common treatises on that science ; and exhibits the power, wisdom, and glory of the Deity, as set forth in the seenes of existence, in a peculiarly interesting light.

The especial object kept in view in Part Second of the work is to remove erroncous opinions which have hitherto prevailed with respect to Creation, Redemption, and the subject of Deity generally, as derived from a partial misunderstanding of the Old and the New Testaments of our Bible, or from other sources ; to remove crror superstition and idolatry from the universal Christian Church; to disenthral the minds of mankind from the bondage of superstition and ignorance, to liberalise and enlighten them; and to teach human beings, as they are also taught in Part First, that they are really free and responsible agents, who may, if they will, be and do good rather than evil ; and that their duty is, with respect to adoration, to worship the invisible and omnipresent Deity alone, with the peech and with the understanding, in spirit and in truth.
The subject of Deity, infinite existence and of Creation, is varionsly illusirated in Part First ; Mystery, the prolific mother of superstition, is removed in Part Second; the true light now shinos, and men to whom this book may come shall no longer have any excuse for their errors of superstition and idolatry and for their evil practices, all which wo trust the will fo: the honor of their righteous and holy God henceforth discar: mid eschew.

We has bserved throughout in its preparation the strictest impartiality : . regard to religions, especially when treating of tho Christian religion as te is : migin, and in the application of the civil and religious history of the c"urstian nations to the fulfilnent of the Scriptual prophecies in Part Second of the work. Our whole aim was to set forth the truth in plain and molerate language with respect to the Christian establishments and their history, or the establishments of Church and State of the Christian nations, there being no deviation from the line of truth on any consideration of sect. When, therefore, the Catholic of the Greek or Roman Church reads concerning the fulfilment of the prophecy in the history of the Church and State establishments of Constantinople and Rome, or of the East and West, let him remember that he has before him only a fair and impartial representation of the subject, - a subject which, it is very plain, we could have no object to misrepresent,-and let such read on carefully and patiently, and before he has got through reading the history of the Protestant branch of the Catholic Christian Church, as applied to the fulfilment of prophecy, he may perhaps conclude that the scale is pretty equally balanced and that there his been no impartiality used, and no misrepresentation made by the author. On the other hand, when the Protestant reads the history of the Greek and Roman Churches as applied to the fulfilinent of prophecy, let him not be disposed to be captious or to glory in the failings of men, but bethink himself that he is reading the history of his own ancestors in common with those of his brethren of the Greek and Roman Churches, and keep in mind that in reading the
history of his own branch of the Church he will observe that like failings characterised its founders of the Reformation and onwards, as he has seen to have characterised the old heads and leaders of the Greek and Roman branches of the Catholic Church, though in the main not to so great an extent. He will observe that this varied display of humau character in every age and nation is simply the outworking of the principles inherent in human nature; that each human being in any or in every ago or nation may, if he will, be and do good rather than evil, that when one thinketh he standeth he should take heed lest he fall, and should always be a living, active power for godliness in the world, which is the only safeguard against being and doing evil.

To such as might be disposed to look upon this work with an eye of criticism, as only the learned and competent could be supposed to do, we may remark that the work, consisting of Two Parts, is one of design, neither part being complete without the other, and that the whole needs to be read through carefully in order for the idea and design to be completely understood. It is better, however, for all to read it with a sober and a prayerful spirit than with an eye of criticism and captiousness, and thas to profit by the information and experience which it affords.
The authors we have consulted and from whom wo have quoted in the the preparation of this work, both in its First and Second Parts, are, in their several departments, regarded by the learned as the highest standards for veracity and style.

Wo have also added to the Second Part of the work several brief discourses explanatory of the prominent doctrines of Christianity, which will not only be useful and interesting to Christian ministers in the future prosecution of their work, but also to the general readers. And, thus, we submit our work to a public, which we trust will appreciate it (as we believe they will,) in firm and humble reliance on God who has suggested and assisted its production, that it may result in the enlightenment and happiness of all, and so answer the purpose for which it is designed.

The Autior.

ERRATA.

On page 35, in line 15 th from the top, for syatem read aystem:
On page 69, in line 1 t th from the bottom, for Mardonus read Mardonius.
On page 73, in line 16th from the botton, for Permark rend Vermak.
On puge 97, in line 17th from the hottom, for lucome read breame.
The work from which that quotation le, which begins at the bottom of page 102 andends on page 104, is entited "China and the United Stater," by Dr. Wm. Speer, a miesionary of the American Preshyteriaa Bond.

On page 128 , in the 17 th line from the botom, the gemicolon (;) properiy comes after the word " name."

On puge 132, in ling 14th trom the top, for rominy read rodring.
On page ese, in line 14th from the top, the proper order of the colors is red, oranye, yellow. de., as seen in the ligure on the same page.

On page 243 , in line 10 th from the top, for their rend thin.
On page 267, in line 8 th from the top, for incemercimetile rend ineomsiterable.
The ninnexed figure represents a harge spot on the Sim to which No. 103 on page 384 refers.

Un page 28; in tine toth from the tol, for firntir prad fuculir.
On page 287 , in line lith from the bentom. fior revedie tread resalied.
 Il th from the bottom, fire "hifo" reand "bijo : 2 ."
On page 331 , in the botom line, for " 16 th" rem! "..in th"
On page 335, in ine send from the britom, lior dian read plane.
Un puge 349 , in line 11 th from the boltom, fin ": t_{2} th" rend "th."
Un page 3ti2, in line "th trom the top, for "1874" read " 1744. ."
On page 400 , in line ard from the top, after the word fhases suphly the words as the ., mom; nni in line 10th from: the top, for Coperniens real Copernian.

On page 425 , in lue "al from the bottom, for "Fou" real "Foë."
On puge 437, in line lith from the hotom, for receptible read receptuele.

On puge 498, the phrase Remarks on the preceding phaced nearest the bottom is merely a repetition and means nothing.
On page 510, in line 8 th from the top, after the word accomplishment supply of the purposes.
On page 537, in the 11th line from the botion, for Remarks on the I'receliny-substituto
On the Transtigurution.
On page 6.11, in the bottom line, for Jesus read Jers.

On page 731, in the 9 th line from the top, for rules read rulers.
On page 764, in the 2nil line from the bottom, for eref read were.
On page 796, for Doxent send Docent, and fur Anabrotists read Amabaptistis.
On pnge 801, in the 7 th line from the bottom, for instituing read justifying.
On rage 809 at the bottom, for Eecles. Resenrches rend Hist. of Chs. V.
Un page 825 , in the $12 t h$ line from the top, for ascent read assent.
On page $83:$, in the 6 th line from the bottom, for smoe rend some.
On page 834 , in the 17 th line from the bot'om, for adopted read developed.
On page 875 , in the ith line from the bottom, for them read their.
On page 880, in the $1: 2$ tha line from the bottum, for glorifying read glorying.

CONTENTS

PART FILST.

Pade.9-143
143-187
A contemplation of other secues and objects of natureintended to further enlighten us, and to exalt our conceptions and ideas concerning the Deity, under which head is illustrated the in- finity of ideas whieh existed eternally in the Creator's mind from a consideration of the diversified display of ereated objects in the animal, vegetable, and mineral kingdoms of the earth 187-210
On Crystalilization 210-21 7
On Ligirt, the prism, the spectrum, speetral analysis, \&c., the rain- bow 217-239
On Colors, und other effects of light, complementary eolors, \&c.. 2:39-253
On Astronomy, preliminary explanations, proofs of the earth's rotundity, diurnal motion ; eircles, degrees, \&e. ; the horizon, eclipses, conjunction and opposition, annual motion, pheno- mena arising from the earth's motion 253-282
The Sun 282-2:9
Thn Planet Vuloin. 289-290
The Planet Mercury ; appearance of the Heavens as viewed from Mercury. 290-292
Tue Planet Venus; celestial phenomena, as viewed from Venus. 292-298
Tile Eartif. 298-306
The Moon; appearance of the Heavens as viewed from the Moon. 306-319
The Planet Mars; seenery of the Heavens as viewed from Mars. 319-322
Tile Minor Planetn or Asterodes ; the Heavens as viewed from the Minor Planets.
page. 322-325
Tie Planet Jupiter and his Sateliften; the Ileavens as viewed from the Satellites and from Jupiter, 325-330
Tie Planet Saturn, his Satrliates ani Rinae; some pheno- mena of the Satcllites as viewed from the surfice of Saturn. Description of the lings, and scenery of the Heavens as viewed from Saturn, his Satellites and Rings 330-342
Tie Planet Uranus and hes Satelidtes; the Heavens as they appear from Uranus. 342-346
Tie Planet Nebtune 346-3.49
Tue Attraction of Gravitation exphined 340-350
Kepler, the discoverer of the proper motions of Existence, and his Laws 350-353
Sir Isaac Newron, the diseoverer of the modes of Existence, and his Deductions. 353-356
The Tines explained 356-359
on Comets 350-366
Shooting Stars; Meteorites 366-372
Tua Aurora Borealis or Nortiern Ligits 372-373
Time Marineis's Libits 373
Tue Fixed Stars; double Stars; colored and variable Sturs-as to the mode of classification of the Stars into magnitudes, \&s., as to the motions and position in space of the Sun and the Solar System-temporary Stars 373-385
Clisters and Nenula, Variablu Nebula. 385-393
The Nehllar Ifypotuesis 393
Sketch of the Instory of Astronomy 593-405
Conclesion of Pabt First 405-408

EXISTENCE AND DEITY.

PARTI.

WHBN we speak of the Cueator we mean that Being whose presence is everywhere, who has created all things that have been created in the physieal miverse, and in whom we live and move. When we speak of the Creator being everywhere present, which means in every conceivable or inconceivable place in the miverse, wo to not mean to say that He is visible to the eye or can be conceivod* by the mind of man. 'Ihe Creator is infinite, and an Infinite Being cannot be conceived by the mind, mueh less seen hy the eye of seuse. True, we see creation around us, hat we are to remember that creation stands in the same relation to the Creator as the effect does to the cause which produces it. And we shall show further on how that we could not distingnish one object from another were it not for the intervention of the colors of light ; and, we are aware, we could not see anything at all were it not for light itself. Also, when we speak of the Creator being infinite, and everywhere present, we mean that there exists but one such Being, for more than one Omnipresent Being there cannot be. But, though the Creator camnot be seen by the eye nor conceived by the mind, yet, since His agency produces all the effects that are produced in the natural world, His character may be understood and apprecinted from a consideration of tlis works, just as the character of an artificer can be judged of from a consideration of the work he executes, or the strength of an animal from the power it exerts.

By the word Cueation \dagger we mean change of what already exists into other forms. The changes which we shall have principally to illustrate in

[^0]this part of our work are of two kinds: irst, that unceasing change which we see ordinarily take place in nature by growth and decay, and which we may also term transírmation of matter; and, secondly, change of place by motion, as that effected by the, earth in its journey round the sun. The first kind of change or transformation of matter, according to the ordinary operations of nature, is that only which we denominate creation, being effected by the Crator; the second kind of change, or change of place 'y motion, althougin effected by the Creator, yet is not creation, since it effecis no transformation of matter, but only a presentation of the sarne thing in a different place, or after a certain period in the same place again. Chauge of place by motion will be fully illustrated when we come to speak on astronomy. There are yet other kinds of change which pertain especially to man as a free, intelligent actor, and which we shall also illustrate in their proper place, when speaking of the moral world, or that world which exists with special reference to man as an intelligent and free aetor.

Cifange by transformation of matter may be illustrated from numberless sourees by ordinary observation. Thus, a flower which begins to grow in the spring, and blooms in the summer, since it did not exist before, is a ereation. The species of vegetable to which the flower belongs had before existed; the seed from which the flower sprung had previously existed ; the flower is the effect of change of matter ; it had not existed before as a flower ; it is created. And it may be here observed that no change or combination of matter could produce that flower, or any other particular plant, except the seed of that flower or plant existed before to give it birth. Take, for illustration of the property of seeds, the grain of wheat ; it puts forth the blade in the Fall or Spring, whish gradually grows IT it comes to maturity as a full ear in the Autumn. This ear of corn did $n^{n t}$ exist befure; the species of vegetable to which it belongs existed hefore ; the kerne! in which it was germinated and which gave it birth previously existed ; (and wo may remark in pe. sing that the young plant exists in embryo in the seed, and that the process of sprouting takes place in the seed itself, independently of the aid of the earth, as may be observed in the ease of barley or other grain sprouting when moistened and subjected to heat for some time in the process of malting) this ear of wheat, we say, since itself did not exist before, ir a creation. The seed, therefore, must exist before the plant, and every seed brings forth after its own kind. If a secd of wheat is sown an ear of wheat will result from it, if anything do result, and not ca car of rye or of any other species of grain ; and an oak tree is sure to result, if any thing do grow, from the acorn.

This property of seeds is true of all animals as well as plants. When a child is born, or the young of any animal is brought forth, it is a creation. Thais organized bring has not before existed, though its substance
and life have never not existed. When the trunk of a fellen tree or the body of a dead animal becomes mineralized or petrified, this mineral or petrifaction is a creation, the component parts of the original form combining with certain other clementary substances, a new form or species of matter is produced.

Also, if it be understood that the earth assumed or was given its present form from the matter composing it having previously existed in another form, say in an æriform or nebular state, then that change of the matter into the form of the earth would be properly termed a creation, although of such a creation we may say there is nc satisfactory evidence.

It is seen that on the surface of the earth, and for a short distance below it, all things are continually changing; one form of matter is continually taking the place of another in existences animate and inanimate. Animal and vegetable remains are changed into clay, and rocks and water ; and these again enter into the production and support, and compose the solid framework of the organic structures of vegetables and animals. When the living or animate body dies it does notcease to exist, for there is no such thing as non-existence. True, if it be a human being that dies, that human being ceases to exist as an organised consci)us agent, but the body retains the principlo of life, which descends in it to the tomb. Death is only a sleep or state of unconsciousness of the boly previous to its change into other organic or organised existeres. Thus, the chrysalis state of the caterpillar, in which that creature remins to all appearance dead, has been often and aptly compared to the state of the dead of the human race. But what happens to the caterpillar? At the end of a nonth he comes forth from lis tomb having gorgeously tinted wings, and soars on high, a beautiful butterfly. We have yet to learn whether in his new and exalted state of existence he remembers his former humble condition of a caterpillar. We may, however, presume that he does not.

The animate body dies because some ono or some of its organs oi faculties cease to perform their ordinary functions, just as a mill ceases to operate when a whecl or a cog is broken, or any of the internal machinery is deranged or out of gear. And, as the mill ceases to operate when deprived of sufficient motive power, as wind, water or steam, so does a human being dic when he has not a sufficiency of air to breathe, of water to drink, or of food to eat. A man will also die if he have only a limited quantity of air to breathe, and this impregnated with noxious gases, as was the case with that great number that perished from suffocation in the "Black Hole of Calcutta" in 1756, and is the case with hundreds who are suffocated in coal mines, in our own time.

The wind-mill, when in working order, depends upon the same agencies to enable it to operate as a man does who has a sound constitution; they
both depend upon the atmosphere ; and reason, assisted by the atmospheric agent, directs the operations of tho mill in both cases. In like manner a water-mill depends upon the same ageney to enable it to operate as a man does, both, as before being supposed sound in their internal machinery, depend upon a sufficiency of water being furnished them; if this be not in sufficient quantity to turn the large water-wheel, the mill ceases to grind ; and if chere be not a sufficient quantity of water for the requirements of the animal system, or if, as in the case of noxious air, the quantity that is in supply be deleterious, the man's body consumes and he dies. Here we may remark that water enters largely not only into the support, but inio the constitution of the human body, seventy-five per cent. of all the flesly parts being water.

Also the steam mill is analogons to the human body, both, being sound in their internal parts, depending son a suficient quantity of steam being generated to enable them to perform their functions. Tho body, as the mill, bas a farnace, the stomach, to which a sufficient amount 'of fuel, food, needs to be supplied, in order to keep up a sufficient degree of heat to sustain the combustion and decomposition which are continually going on in it ; for by combustion and decomposition in the body there is a continual decay and waste of animal tissue, which docey and waste must be as constantly supplied by the generation of new chemical compounds in it. The human body, therefore, is truly a kind of laboratory in which a chemical process is continually taking place, of decomposition or decay, of recomposition for the supply of animal tissue ; and, as it is said that no two persons see the same rainbow, so it may, with equal truth, be said that no human being has exactly the same body two daysin succession.

And the human body is further, as is plainly perceived, analogous to the steam-mill, having its furnace, boilers, and complex machinery for generating heat and steam; for heat has to be generated in the body, and consequently steam in order that its functions may continue to be performed. In breathing out of doors on a cold frosty worning, one can sce from the condenserion of his breath as compared with the surrounding uir at every exhalation what an amount of steam one, generates.

If the human body therefore, as has been shown, is in every part continually undergoing change during life, is it ary wonder or any ground of apprehension that there shall be a more radical and permanent change effected in it by death; a change from which a new and nobler creation may arise? Death, as we have before intimated, is only a loss of consciousness, and a cessation of action in the intellectual and sentient being. It is not a loss of life, for the body retains in every part the priaciple of life ; it is not a loss of existence, for not a particle of the human system ceases to exist, but it is a change which the body must needs underga previous to its being created anew into other corms of existence.

THERE IS NO DEATH.

There is no death! The stars go down To rise upon some faiter shore,
And bright in heaven's jewelled crown They shine for evermore.

There is no death! The dust we tread Shall change beneath the summer showers,
The golden grain or mellow fruit, Or rainbow-tinted fowers.

The granite ${ }^{\text {recks }}$ disorganize, And feed the hungry moss they bear;
The forest leaves driak dady life
From out the viewless air.
There is no denth! The leaves may fall, And flowers may fide and pass awayThey only wat through wintry hours The coming of May day.

There is no death! An angel form Walks o'er the earth with silent tread,
And bears our best loved things away, And then we call them "dead!"

He leaves our hearts all desolate; Ite plucks our fairest, sweetest tlowers;
Trunsplante? into bliss they now Adorn immortal bowers.

The birdlike roice, whose joyous tones Made glad these scenes of sin end s rife,
Sings now an everlasting song Around the tree of life.

Where'er he sees a smile too bright, Or heart too pare for taint and vice, He bears it to the world of light To dweil in paradise.

Born to that undying life, They leave us but to come again ;
With joy we welcomed them the same, Except their sin and pain.

And ever near us, though unseen, The dear, immortal spirits tread;
For all the boundless universe Is life-there is no denth!

Lord Littos.

The principle of life is inherent in all mattor and in every particle of it ; and at this juncture of our discourse it may be well for us to state that there is nothing but matter in the universe. The life seems latent in rocks, earths, minerals, and such like, but a microscopic inspection of them will show that it is not entirely so. Every part of matter, even the solid rocks, the carth, the waters and the air, when examinod with the microscope, in
found to teem with living and sensitive existences. This instrument discovers to view myriads of little animals in a drop of stagnant water, some of them so minute that when viewed with a glass which magnifies one hundred thousand times, they severally do not appear larger than a visible point. And yet each one of these is a distinct being. If a microscope of high magnifying power be directed to the atmosphere on a calm, clear day in summer, shoals of animalcules may be seen in its undulations. But according to our statement above, the existence of life in matter does not depend upon its containing organised, sensitive beings, and the fact of its existence there may be illustrated by many and potent considerations.

All vegetables derive their nourishment from the earth assisted by the atmosphere and the sun. From these, animals derive their nourishment. It is true that the carth eannot bring forth vegetables or animals spontaneously; if it did, then we might say that they derived their existence immediately from the earth; these must spring from their peculiar sceds; but having been originated in that way, the earth and its accompaniments, the atmosphere and the sun, afford them increase of life and nourishment, which if matter did not contain it could not impart. All vegetables and their seeds return to the earth whence they sprung, bringing their principles of life and vegetation with them, and become earthy matter. Also the bodies of all animals return to the earth, bringing their principles of life and generation with them, and become part of the earth. These very principles of vegetation, generation, and life, again enter into the production and support of other living beings, animate and inanimate. It is, therefore, seen that the same principle of lifo which exists in all living beings, animate $a^{י n d}$ inanimate, exists in the earth, the atmosphere and t' e sun.

And not only is the principle of life inherent in all matter but also that of intelligence. This principle is perceived, as it were, in its germ in the lowest orders of animals, and is brought to a fair degree of perfection in highly civilized and cultivated man. Between these two extremes there exist different grades and degrees of intelligence, but the fact of the existence of this principle in all animate beings is certain, and it needs only to be educed in order that it become apparent. But how is it to be educed in the case of the lowest orders of animals, microscopic animalcules? It need not necessarily be educed in their case, for they naturally exhibit it unmistakeably to obscrration. The following extract from Mr. Baker, a celebrated naturalist, in his description of the hair-like animalcules will help to illustrate this. "A small quantity of the matter containing these animalcules having been put into a jar of water, it so happened that one part went down immediately to the bottom while the other continued floating on the top. When things had remained for some time in this condition each of these swarms of animalcules began to grow
weary of its situation and had a mind to change its quarters. Both armies, therefore, set out at the same time, the one proceeding upward, the other dornward, so that after some time they met in the middle. A desire of knowing how they would behave on this occasion engaged the observer to watch them carefully, and, to his great surprise, he saw the army that was marching upward open to the right and left to make room for those that were descending. Thus, without confusion or intermixture, each held on its way; the army that was ascending marching in two columns to the top, and the other proceeding in one column to the bottom, as if each had been under the direction of wise leaders." Here we have unmistakeable evidence of voluntary motion and of a considerable degree of intelligence in these exceedingly minute animals.

The ancient Romans appear to have been aware of the inherent existence of the principle of intelligence from their use of the word educare, to educate, which means to draw out or develop that which already exists in principle within. Many of the inferior animals, when taught, display a remarkable degree of sagacity, and, although we need not necessarily believe what Cicero says as to Orpheus taming the wild beasts of the forest by playing to them on his lyre, yet we now-a-days have abundant experience of what the domesticated animals, such as horses and dogs, and many of the wild animals, such as lions and tigers, can be taught to do. As the rough, unshapen block of granite or ma:ble from the quarry may be formed into the stately and beautiful sculpture, so resembling the living and animate being as to deceive us if not assisted by the sense of touch; as the rough block of iron ore may, by being put through a certain process of fusing, hardening, malling, etc., be reduced to the form of the sharpedged instrument, the sword, the knife or the razor; as the telescope which so wonderfully opens up to us the distant regions of the universe, and enables us to contemplate far distant worlds, as if they were nigh; and the microscope which enables us to investigate the r, es of animated beings, invisible to the naked eye, which exist in the earth, in the air, and in all matter, are made chiefly of such earthy substance-as sand and ashes; even so may the intelligence of all the inferior animals which are capable of being taught be brought to a much higher degree of development than that which it has yet attained ;-even so may the intelligence of uncivilized human beings be brought to that state of development to which civilized man has already attained ; and that of civilized man he brought to a degree indefinitely higher than that which we know of man to have yet attained. It is an old saying, and gererally a true one, that what is in will come out; but it is more positively true that what is not in cannot come out; therefore, if the principles of life and intelligence were not inherent in matter there could be no life or intelligence developed from matter ; but, since life and intelligence do exist and are developed amid such complex and
multiplex changes of matter, it is plain that the principles of life and intelligence do exist, though in different degrees, in all matter, and that in proper circumstances they become apparent, and by proper development they become more apparent; but that the fact of their non-apparency in certain states and conditions of matter to an intelligent being does not alter the fact of their existence there in a latent state.
Uneducated persons are apt to suppose that the air they breathe is the principle of life ; some, that it is the soul. This seems to have been the conception of it entertained by the ancient Hebrews; for the Nephesh Hayya of the book of Genesis is translated into our language the "breath of life " or the " soul of life," but the truth is, the air only helps to sustain the animate being in life; it performs its part in supporting life, as food, the proluction of the earth, and water,-which two elements are quite as necessary for animal supports,-perform theirs. Air is the element which terrestrial animals breathe by means of lungs, just as water is the element which aquatic animals breathe by means of gills; alter the conditions of these two great classes of animate beings and they could not exist as animals; submerge a land animal in water and it will very soon be suffocated ; clevate a marine animal to the land, and he will as soon die. All these animals are produced by their kind, but, having been introduced to the world they are supported by the elements to which they are naturally adapted. Not less than all these elements are necessary for their sustenance. The various tribes of aquatic animals are supported by different kinds of food which they find in the waters and on the bottom of the ocean, lakes, and rivers, on rocks, ete. Many of these tribes, which correspond to the carnivorous species of the land, subsist by preying on other tribes; but water is the element in which they all live, which they breathe, and from which mainly they derivo their support,-for sea animals do not depend for support upon the land, their own realm supplying all their wants. We may remark here that a very small quantity of air pervades all water, and a small quantity of water in the shape of vapor pervades the atmosphere ; and both these elements seem mutually to assist each other in the support of living beings, and to be adapted to each other's co-existence.

A man or any land animal may be in the enjoyment of an abundance of pure air and wholesome food, but, if he have not a sufficient supply of water for his animal wants, he will die. Also, he may have an abundance of pure air and water, and, if he have not a sufficient supply of wholesomo food, he will die. And, further, he may be furnished with a plenary abundance of both wholesome food and water, and, if he have not a copious supply of pure atmospheric air, he will languish and die. All these are indispensably necessary for kis animal existence ; but, with all these, his life would still be a peculiarly wretehed one, if he could at all be supposed
to exist, without the light of the sun. If the sun never shone upon our terrestrial sphere, the earth would be a dark, desolate wilderness ; no vegetables could grow on it, and no animals now existing on its surface could live on it. Solar light and heat are necessary to the existence and growth of vegetables, and the vegetable kinglom, together with air and water, are necessary to the support of animal life. And can any one now say to which he is most indebted for the necessaries and comforts of life, whether to the products of the earth, to the air, the water, or the solar light and heat? Can any one now tell to which of these ho owes most, or whether he is a debtor to any one or all of them? They all, it is scen, are mutually necessary for the support and existence of man. The answer will doubtless be that they are all necessary and good ; that this world is admirably constituted for the maintenance and accommodation of animate and intellectual beings ; that, in short, if the means and privileges which this world affords were rightly distributed among mankind, and used without abuse, our earth would be a terrestrial paradise, worthy the name of heaven below; all would be happiness and peace among men; no one would covet or wrongfully seek what did not belong to him ; all would be equally interested for the good of others as for their own; but, since no one is res. ponsible for having been born into the world, one does not consider himself peeuliarly indebted to it for the gifts and privileges it affords him, provided he has obtained and uses them aright.

It will be seen that the principles of life and intelligence are in .erent in all matter not only from the preceding illustrations but from those that follow. In the processes of change earth becomes rocks and minerals, and rosks and minerals become again crumbled into earth. The earth produces the vegetables, vegetables become incorporated in animals from being their food, and animal and vegetable substances become inccrporated in man from being his food. The vegetable and animal substances are earthy matter, including common clay, mineral, and metal, now temporarily in different states from that in which they exist in the solid earthy substances. But these animal and vegetable substances are continually undergoing change, and destined soon to return to the earth again, where they will still be undergoing change ; and one animal or vegetable body, say for example the body of any animal whatever, or a tree, when deposited in the earth, may give birth to thousands, yea, tons of millions of living beings ; and these countless beings ceasing to exist in their turn, their substances become earthy, which may give birth to other living beings or go to the production and support of plants and animals.

But vegetables and animals do not consist altogether of earthy matter, properly so called; the largest part of their substances is made up of water, another species of matter; and also the atmosphere, light and heat, enter into their production and substance. But water, as we have
intimated, is a material substance, and so is the atmosphere ; and light as well as heat is an everywhero present element, even in the dark and in the cold, only requiring the action of certain material agencies, or rather that matter be in certain conditions, in order that we become sensible of their presence. Light and heat fre merely phenomena or effects attendant upon certain states or conditions of matter. All existence, therefore, is material, and nothing exists but what is of matter. Others may substitute another name for it instead of matter, if they conceive of a more suitable one, as the names of all objects are arbitrarily given. The animal body is precisely of the same material as are the medie in which it exists. The intelligent, rational being is conscious that his system is mado up of such like materials as carth, rocks, minerals, metals, water, air, light and heat; and it may perhaps be said, all circumstances being considered, that man is an epitome (here we will say) of material existenco.

To illustrate that tho air is a material substance such things as the following might be considered : when a person runs against tho wind he feels a force pressing him backwards, and the faster he runs the more is he sensible of its resistance. Though he is unable to see anything around him, yet he is sensible that something exists to press him back, for he experiences its effects. But a better illustration of its materiality is the following: that it exeludes all other bolies from the space it oceupies. Thus, if over a cork, floating on a vessel full of water, we invert a glass jar having a wide mouth, it will be seen that but a very small quantity of water can get into the jar, because the air of which the jar is full keeps the water out ; otherwise if it were emptied of every material substance the water would rush in and completely fill the jar. The cork, still floating on the surface, will show how far the water rises in the jar. On this principle the diver's bell has been constructed, an instrument in the shape of a bell, the use of which enables men to walk about on the bottom of the the sea with as much safety as upon the land. The head of the diver being within this bell-shaped instrument, which comes down in ordinary cases nearly to his shoulders, is separated from the water, for the water cannot enter the bell except for a very short distance while the bell is filled with air. Fresh air is constantly supplied to the diver by means of an air-pump, situated on the land or on the deck of a vessel, and a tube which connects it with the diver's bell. In most cases there is a large diver's bell in which the divers descend, which connects directly with the air-pump by a tube, and in which a supply of air is kept for the divers, who have during their submarine explorations the small bells which they use connected by a tube with the reservoir of air in the large bell. Such an arrangement is necessary, for if air were not supplied the diver in sufficient quantity he could not remain below for a.y length of time, as the air contained in the bell which he uses becoming
light as and in - rather sible of tendant ofore, is bstituto suitable body is 4. The of such d heat ; at man as the ind he more is around for he is the cupies. a glass atity of keeps stance oating n this shape of the diver linary water ell is ans of tube is a irect. ir is tions ir of were for ning
very dense by the pressure of the water and vitiated by his own breathing would become poisonous, and he would die.

And again, if we take a pair of common bellows, and, after having opened them, if we shut up the nozzle and valve-hole, and try to bring the boards together again we shall find it impossible. There is something included which prevents the bellows from coming together in the same manner as if it were filled with flax or wool ; but on opening the nozzle we can easily shut them by expelling this something from within, which will issue with considerable force, and impel anything that lies in its way. This something is atmospheric air.

Also, air is not only material but wonderfully expansive and elast:c. Thus, if a bottle, being put under the receiver of an air-pump, is entirely emptied of its air, and in this condition being tightly corked is again introduced to tho receiver, when the air is admitted to the receiver the bottle will bo broken to pieces by the pressure of the air upon its outside, since there is nothing within the bottle to resist its pressure. Also, if a bottle full of air, and hermetically sealed, be put in the exhausted receiver of an air-pump, the air within the bottle expands, and, there being nothing on the outside of the bottle to resist its outward pressure, breaks the bottlo to pieces. All which shows that air is a material substanco and capable of expansion when in a vacuum or rarer medium. And that it is susceptible of compression when acted upon by a denser body is proved by the fact of the water having ascended a short distance in tho jar and the diver's bell, although they were full of air; for no water could have entered them if the air they contained wore as dense as the water. Air is so elastic that a quantity of it, as it exists at the earth's surface, can be expanded into nearly fourteen thousand times its original bulk; and the fact that it is elastic shows it also to bo compressible, for whatever is el. stic is capable of being compressed into a smaller space. Air is capablo of being compressed into a small space compared with that which it naturally possesses.
There can be no difficulty, we think, in any one conceiving how that water is a material substancc. Like air it is capable of great expansion. A cubic inch of water, when reduced to steam, occupies a cubic foot or over seventeen hundred times its original bulk. But it is with difficulty that water can be compressed into a space less than that which it naturally occupies. It is one of the first principles of natural science, that no two bodies can be made to occupy the same space at the same time ; therefore, air is a body and so is water, just as much material bodies as stone or iron is. Fill a vessel full of water, and immerse in it any convenient solid and a quantity of water will flow out of the vessel, exactly in proportion to the bulk of the body immersed. When a vacuum or empty space is made by the removal of any body, solid or fluid, the air rushes in from
all sides instantaneously to fill up the vacuum, just as water rushes in from all sides to fill up the vacuum which is made by tho taking of a pail of water from a reservoir, and as the vacuum which is made by the rolling of a wavo on the surface of the ocean is instantly filled up by another wave rolling into its place, which undulatory activity is continued until the air becomes calm and the water level. The partial vacuum which is made at any place on the earth's surface by the expansion of the air by heat is instantly filled by the denser air from all sides rushing in to effect equilibrium. Such is the way in which wints are caused ; the air at certain parts of the earth becoming rarified by heat, the denser air from other parts comes in rapid motion to fill up tha partial vacuum thus mado. Thus, we beve, during a good part of the ycar, strong north-east and south-west winds, which are caused by tho colder and denser air of the north and south polar regions coming in rapid motion to fill up the partial vacua which have been caused by the rarefaction of the air by heat in the equatorial regions. A vacuum is a place from which all the air has been withdrawn; a partial vacuum a place from which part of the air has been taken. A vacuum camot exist m the universo except it be an artificial one, such as that in the upper end of a barometer, called the Toricellian vacum, from Toricelli, the inventor of that instrument, which is considered the most perfect vacuum, and that in the exhausted receiver of an air pump.

All tho spaces intervening between the heavenly bodies are occupied with air of a greater or less density. In some places it is dense as at the surface of the carth, where, as we have said before, a quantity of it can be expanded into fourteen thousiand times its original bulk; and in some places it is rare, as on the tops of high mountains and in the upper regions of our atmosphere. In the spaces intermediate of the heavenly bodies it is reduced to an exceedingly thin fluid called ether; but in no place is it wanting in sufficient weight and density to counterbalanco its surrounding elements, for all existing things are naturally in equilibrium, and when there is any disturbance, as by a vacuum, they tend to equilibrium.
Thus, the atmosphere within the sphere of the earth's attraction is attracted to the earth's surface, and revolves with it round the sun, just as all the other bodies on the earth's surface are drawn towards its centre, and revolve with it in its diurnal and annual journey. The atmosphere, which is beyond the sphere of the earth's attraction, is either attracted by others of the heavenly bodies within whose spheres of attraction it lies, or it exists in the intermediate spaces in the form of ether, where it is not subject to any sensible attraction from any of the heavenly spheres.

The atmosphere which surrounds the earth is analogous to the ocean of water which covers three-fourths of its surface ; which atmospheric ocean, king of by the up by atinued acuum of the hing in the air ir from made. st and of the partial in the b been s been tificial cellian s coniver of cupied at the it can some upper venly in no co its rium, equi-
on is
, just

ntre,

here,

d by
lies,
not
n of ean,
as the ocean of water, revolves with the earth, and in the bottom of which, we, with the beasts and birds, exist, as do the aquatic animals in their own element.

The expansibility of the air and water by heat is exceedingly great; and not only these fluids but the densest and solidest substances, such as rocks, and iron, gold, platina, and iridium, the densest and heaviest metals with which man is acruainted, can be reduced to a gaseous or aeriform state by thie application of sufficient heat. Heat has the power of penetrating all bodies, and the greater the amount of heat enters any body the more the body will be expanded. Thus, a certain degree of heat will reduce ice to water, and a certain adilitional amount will reduce the water to stean, which is an invisible gas. Fill a bladler about half full with air and bring it close to the firo, and the heat entering the bladder will expand the air until it bursts the bladder. Fill the bladder about quarter full or put a still less amount of air in it, and leave it for a sufficient length of time before the fire, and the air will expand as before and burst the blad 'er. A like result also would happen to acronants if they should be carried so far from the surface of the earth as that the air in their bodies would be much denser than that by which they were surrounded ; the air inside their bodies would expand, seeking equilibrium, and burst their boties. Yet this will scarcely ever happen, we think, for the hydrogen gas with which balloons are filled, thongh lighter than the air at the earth's surface and for some miles above it, will not ever suffer the balloon to ascend into a very rare medium. The air contained in an apple can be expanded by heat to such a degree as that it will fill a space more than forty-eight times the dimensions of the apple. Take an iron bar whose end when cold fits exaetly into a hole, and when you have heated it red hot you will find it too large to enter the hole. Heat it more intensely and you will reduce it to the state of a fluid, and apply a sufficient additional heat and you will reduce the iron to the state of a gas. You may take a similar process with gold or platina, iridium or any other solid substance in the earth, and attain the same result. This process of the reduction of solits to gases applies to all bodies in the earth ; they are all ultimately reducible to a gascous or acriform state by the application of sufficient heat. It is therefore theoretically though not practically true that the whole earth is of a substance reducible to the form of gas or air. If it were practically true, which does not appear to be the case, we might not be sorry if there should be a residuum after the reduction of our sphere to an aeriform state, which we, had we the good fortune of being removed to other scenes of existence, might use as material for making telescopes and microscopes to open up to our view the still distant regions of the universe. But gas means air, and air means spirit, and spirit means breath or that which we breathe; the whole earth, therefore, on which we dwell, with all that is connected
with it, is spirit in a condensed form. In fact all the heavenly apheres, as we shall make plain hereafter, are of the same character, namely, condensed spirit, and the greater the amount of spirit condensed in a given sphere the greater is its power of attraction, just as the greater and stronger the mind of a man is, provided he uses it aright, the greater is his power to govern the minds of others.
There is a natural constitution and order of things in general, a state in which they tend to remaia if not aeted on by forces external to nature, none of which exist, or hy the art of man. 'Thus, the atmosphere will remain in its natural or normal state, and so will the sen and the solid land, if not operated on artificially by man. The extent of his operations on these elements is, however, very limited. He may reduce water and some solid substances to air, and he may reduce air, as carbonic acid gas, to a solid form ; but all these will ultimately return to their natural condition, and the general condition of the atmosphere, the waters and the earth, will remain the same notwithstanding all tho change which man can effect in them. When therefore things are altered from their natural state by man's art, the process may be explained upon the principle of excess and deficiency of spirit. For example, water : n its natural state occupies a given space, but being reduced to the form of a gas, or stean, it occupies a much greater space. But how has this great expansion been effected? By the penctration inte the substance of the water of an additional substance called heat, which expands it or assimilates it to itself; for although heat, as light and electricity, is an everywhere present substance, yet in its objective action it has to proceed from certain centres. The water in its natural state had its proper amount of heat, but in the steam or gaseous form it has heat in excess. Also, a piece of iron, or any other metal or solid, when in its natural state has its proper amount of heat, but when reduced to an aeriform state it has heat in excess. And, conversely, when iron or any other solid is subjected tc intense cold it contracts, because of the abstraction of some of its normal heat by the surrounding clements; in this state it possesses heat in deficiency of its natural amount. All substances are expanded by heat, and all substances except water are contracted by cold. Water expands by freczing about one-seventh of its natural bulk, because the particles of the water crystallize, and the polyhedral crystals, we know, take up more room than the globular particles of the water in its natural state. Every one knows how his body and limbs swell, how his veins puff out, when he is much heated by severe exercise. One may also observe how his body and limbs contract, how the veins disappear, and how lank and meagre he is in comparison, when he is subjected to severe cold. In the one case he has heat in excess of his natural amount, in the other he has it in deficiency.
But things as naturally constituted may also be explained on the same
heres, , congiven ronger power tate in ature, re will 1 land, ons on 1 some s , to a dition, th, will feet in ate by iss and pies a cupies ected? litional If; for stance, e water sascous r solid, aced to or any raction it posanded Wator so tho know, atural is puff oserve lank In er he
principle of excess and deficiency of spirit, only by way of comparison. The air, the waters, and the earth tend, as wo have before aaid, to remain in their natural state. The more solid or dense a booly is the more matter or spirit, which here mean the same thing, does it contain. 'Ihe solid earth then, with its internal contents, minerals and metals, is evidently denser than water, and water is evidently denser than the atmosphore, and the atmosphere which surromeds the earth is denser than the ether which lies in the spaces intermediate of tho heaveuly bodies. The ghobe of the earth therefore, land and water, in the given space which it occupies, comprises much more matter thm the atmosphere does in the space which it ocenpies as compared with that occupied by the earth; and the earth's atmosphere may he said to comprise more matter than does the ether in any part of the universe, taking space for space. 'Thus, the solid parts of the earth may he said by comparison to have matter in excess of the fluid parts, taking egual spaces, and the waters to have matter in excess of the atmosphere, taking efual spaces; and the atmosphere to have matter in excess of the ether, taking equal spaces. And, eonversely, the ether may he said, in like mamer, to have matter in deficiency of the atmosphere, the ntmosphere in deficieney of the waters, and the waters in deffciency of the solid parts of the earth. The earth, therefore, is the great concentration of spisit to which all things else tend that are within the range of its attraction. It is denser towards and at its centre than near or on its surfice, and all things on its surface and its atmosphere are attracted towards its centre. And it contains in itself that power by which it moves, but it is confined to a certaia courso by the attraction of a weightier body, the sun, and hy other heavenly hodies.

The same power of penetration belongs to electricity and light as to heat. Light, hoat, and electricity aro all the same substance, under different modes of action and manifestation, or, rather, we may eall electricity the element of which light and heat are preculiar phenomena or modes of action. They are always found together when means are employed sufficiently sensitive or delicate to detect them, and all threo are capable of producing a number of effects of precisely the same character in every respect. 'lhey are all three capable of penetrating all other bodies with which man is acquainted; they are all threo capable of dispersion by means of conduction or radiation ; and they may all be accumulated and concentrated or intensified in their action. Thus electricity is capable of being diffused by means of light, and also by means of heat; that is, if electricity be accumulated or intensified in its action at any point, and light and heat only be given off from that point, it is found that the electricity is dispersed, although no current of electricity proper has flowed from the point. And, again, if light or heat, either or both, be applied to any point, a current of electricity can be educed from it ; all of which
goes to show that light, heat, and electricity are one and the same substance under different modes of action and manifestation.

Science has hitherto discovered 62 or 63 natural elements, which enter into the composition of our earth and atmosphere, which it denominates simple or uncompounded, and which it thus elassifies. Three permanent gases, oxygen, hydrogen and nitrogen ; four elements having many similar characteristics, chlorine, bromine, iodine, and fluorine ; five solids not possessing the ustal metallic properties, such as metallic opacity and lustre, carbon, boron, selenium, sulphur and phosphorus; fifty metals, only one of which is a liquid, namely, mercury or quieksilver, all the other metals being solid. Of these it is generally considered that all known things are constituted, and the names given to these simple substanees, on account perhaps of their peenliar properties, distinguish them from me auother. But it may not be necessary to understand any more than two elunents in nature which we may call by the old names, electricity and carbon, the latter substance representing the solid parts of existence, the former the fluid or gascous ; and the time will come, and perhaps is not far distant, when scientific men will conclude that there is no necessity of understamling any more than one substance to be in existence, which we shall call spirit, or leave unnamed, and of which all the varieties and diversities met with in nature are but modifications and phe-nomena. Nor may they think it necessary te limit the number of these modifications to sixty-three, or to put any limit whatever to their number; for the number of modifications in nature, as existence itself, is infinite.

But let it be remembered that, though all these so-called simple substances are but modifications of the same general substance, yet the knowledge and classification of them, after such a manuer as has been in vogue by scientific men, may not be without its use. If it may be employed in the arts for the abridgement of human labor, for the prevention of human suffering, or for the supply of human wants and necessitics, conveniences or comforts, then it is useful ; but, if it be employed in the arts which minister to the detrimest of human beings, so far it would be better not known nor practised. There are no men who should be more candil, more interested in the welfare of mankind, or more active and industrious for the amelioration of the condition of human beings, than learned and scientific enen. They are in the possession of that of which the great mass of mankind are destitute, which, if they use aright, wili doubtless prove a blessing to their race, but, if they abuse or neglect, will prove a detriment and injustice. Such men should remember that they have a trust committed to them, for the proper use of which they are responsible to their Creator, but for the abuse of which they will suffer the consequences in their own experience. Men feel all the happier for being good and doing good, yea, all the good they rossibly can. Let each one of our readers remember this. the knowin vogue ployed in of human veniences rets which hetter not did, more trious for scientific s of mana blessing and injusIt to them, or, but for wn expeoa, all the this.

But the great mass of mankind, although unacquainted with chemical science or natural philosophy, have yet enough of common sense and sound judgment to guide them in their use of natural objects. Nature is a good guide, if they will but give sufficient attention to it, observe its laws, and live according to its dictates. Surely most men know that matter is continually changing, undergoing new modifications, and entering into new combinations; and that a material substance which in one state would be healthful in another stato would be a rank poison. No man in the use of his senses and reason would choose to live in a place surrounded by unwholesome air and nexious gases in preference to a healthy place where there is an abundance of pure air, yet we find thousands in the rural districts, and even in large towns and cities, who erect their anouses on the edge of marshes, and in the bottom of valleys, environed by hills, where they are surrounded with pestilential offluvia, carbonic acid gas and other gases, instead of on the brow or sumnit of a hill, where they will have the advantage of wholesome air. Neither would he choose to drink unwholesome pool water in preference to the limpid water of the running brook or the springing well; nor, in preference to this last would he consent to use such productions of art as champagne or claret, whiskey or rum, gin, ale, beer, porter, and such like intoxicating drinks, although a great many who, in other respcets, seem to uso right reason are weak and silly enough to make uso of such beverages. If a man who sleeps in an ill-ventilated room does not know scientifically the cause that is producing the weakness of his system, it may interest him to be told that, in breathing the confined air during the night his system has absorbed its nutritive propertic3, and has left only that part of it which is not fit to be breathed, which is technically called carbonic acid gas, and which, if it continues to be breaihed, will canse suffocation and will ultimately cause death,-he,then, will be likely to conclude, whether scientifically or not, that he needs a constant supply of fresh air in his sleeping apartment. But there aro few men so stupid as not to know, even though they may not be acquainted with one of the first principles of chemical science, that they stand in need, day and night, of a constant supply of fresh air. Without any knowledge of chemistry, the coal miner knows that he needs a constant supply of fresh air in the mine or that he cannot work there (and here it is proper for us to remark, since the vital interests of a large class of human beings are at stake, that it is the duty of the proprietors of coal mines, and of other mineral mines, to provide that the mines be supplied with a copious supply of fresh air, and otherwise kept as safe as possible, and that there ought to be superintendents of mines appointed by government whose care it should be that these things be done). Coal mines are usually supposed to have two shafts reaching from the surface of the earth to the bottom of the mine, inte one of which air is impelled by means of an air-pump, which
air traverscs the whole length and breadth of the mine, penetrating all its departments and recesses, and enabling the men and animals there to prosecute their employments. At the bottom of the other shaft a fire is kept burning, which rarifies the air now vitiated and impregnated with noxious gases after traversing the mine, and causes it continually to ascend through this shaft. It will be remembered that air rarified by heat always ascends. In some of the coal mines of Pennsylvania, in which such appalling accidents have happened of late, we have learned, whether it be true or not, there are some that 1 now, that there was only one shaft used for the access and escape of air to and from the mine.

Experience will teach men, if they will but observe, that the air in deep wells, in cellars, in close rooms, in caverns, in marshes and low places, as well as in the upper regions of our atmosphere, is unfit to breathe and detrimental to health; and how bracing and wholesome is the air upon the elevated surface of the earth, and in all places to which it has free access, or which are kept well ventilated; how the air inside a building which inas become vitiatc 1 by the breathing for a long time of a large assembly of people is not by any means as wholesome to breathe as the pure out-of-door air; how that the water contained in marshes and stagnant pools is not fit to drink, and how that contained in the running brook or springing weil is wholesome and refreshing; how that the piece of flesh or other article of food which when fresh would be wholesome and nutritious, when undergoing decay would be a rauk poison.

The hungry man does not stop to enquire whether the loaf of bread he receives is a compound of a number of simple substances, or whether it is but one substance. IIe takes it for granted that it is wholesome, and docs not suspect that it contains any noxious properties. The use of a similar substance before has given him experience to know that it is just what he wants to satisfy his appetite. He knows, very probably, that it is made up of flour, water, yeast and salt; and it may not interest him to learn that the component salt is itself a compound of chlorine and hydrogen ; that the yeast is composed of carbon, oxygen, hydrogen and nitrogen ; that the wattr is composed of oxyen and hydrogen; and that the flour is the product of the albumen of the wheat or other grain, which is itself made up of carbon, oxygen, hydrogen, nitrogen, sulphur, phosphorus, \&c., and that the whole loaf, if he can spare it, may be reduced to the state of a gas or air by the application to it of sufficient heat. He, probably, in his hungry state is not interested to know whether the egg he receives is but one simple substance, or that science has determined it to be made up of 55 parts carbon, 16 parts nitrogen, 7 parts hydrogen, and the remaining 22 parts, out of a hundred into which the egg is supposed to be divided chemically, are made up of exygen, phosphorus, sulphur, \&c., and that. it, as the loaf, can be reduced to the form of an invisible gas by heat.

But if he "eceived that loaf or egg in a mouldy or decayed state, his reason or common sense would at once suggest to him that it would be injurious to his system if he ate it. He prubably does not know, nor is interested to learn, whether the piece of flesh he receives is one simple substance, or whether it may be compounded of many simple substances, as earbon, hydrogen, nitrogen, oxygen, sulphur, phosphorus, \&c., which chemical science determines it to be. He takes and uses these without hesitation, knowing from past experience and daily observation, that they are just such food as he needs. But if he receives these in a decayed state he would not use them, experience also telling him that in such a state they would do him hurt. Good common sense, therefore, accurate observation of the operations of nature, and the experience which is derived from the varied seenes and associations of life, seem most of the knowledge that is necessary for men to be possessed of, provided they use them rationally, in order to their well-being. It is, however, desirable that men should become possessed of all the knowledge they ean, whether in relation to seience, or art, or the affairs of lifo or any other branch of knowledge which may administer to their happiness and well-being. But even here common sense and reason should guide them in the selection of the branches of knowledge which they should pursue; those should be seleeted which are most necessary, and undertaken and pursued with a good and useful end and object in view. Time, for example, spent in the study of some of the dead languages and of some other branches which are never reduced to practieal use, if these studies be not pursued merely as a discipline for the mind whereby some gond may be derived from them in that sense, is time lost. That time might be well and usefully spent in a practieal way, or in the study of those branches which could be redueed to a practical use for the benefit and well-being of the person's self and of mankind. And not ouly the person's own benefit tut that of mankind also should be kept in view, in the selection and pursuit of any branch of study. The knowledge of chemistry, we allow, may be made of great use to mankind, if employed by those who become possessed of it for the benefit and highest good of mankind, and not, as in many cases it is, for their detriment. What shall we say of all these poisonous luxuries that adorn the tables of the rich, and which owe their existence to ehemistry? Or of gunpowder, which chemistry informs us is made up of nitrate of potassa, earbon and sulphur, in specific quantities?

That that which we denominate matter has always existed is certain, and is not doubted by any of the learned that we are aware of. That change has always taken place in matter, that the earth and the heavenly bodies have always been as to their substarice and motion the same as they art now, that mankind has always existed as to general form and appearance much as he in general exists now, that the universe has always
presented to the eye of man, in general, the same phenomena as it does now, that it has always been to him a present thing,-a thing, we say, so far as it came within his view or could be conceived by his mind ; but as to its being wholly conceived by his mind, nothing; of all this, although we do not necessarily assert the positive, preferring to leave people to judgo for themselves concerning these matters from the arguments which we shall afterwards adduce, we may assert that there is no valid evidence to the contrary. (*)
The only conceptions which the mind of man can form are of objects or things. Objects or things are limited or bounded, they all have a beginning and an end, a linit in every direction. But the universe being infinite, that is, without beginning or end, or any conceivable possible limit in any direction whatever, is no thing, no object; it is nothing. This may be better understood from on illustration. Take a line, (which is necessarily an imaginary one,) and begimming at any given point, say the centre of the table before you, conceivs of it as extended upward toward the zenith, or straight above your head; or right downwards toward the Nadir, straight beneath your feet ; or towards the East, West, North or South, or in any other direction whatever, toward any point of the celestial sphere ; conceive of this line as extended for any length of time, say for a thousand millions of centuries, and at any rate of rapidity of extension, say ten thousand millions of miles per second; let it be conceived of as extended for any length of time, and at any rate of rapidity whatever, and it can never be conceived of as coming to a termination in any one direction, so that it cannot be conceived of as being capable of being extended further. It is as near such a termination in any direction where it ceases to be extended, as it is at the central point of the table from whence it began to be exteuded. And that central point, too, of the table, which we have used for convenience of illustration, we do not conceive of as having either beginning or end ; it is infinite and nothing. Here then is the idea or the noidea; the universe infinite and nothing; a point infinite and nothing.

The human mind, as we have stated, can conceive ouly of objects or things. A man is an object, a trec is an object, the earth is an object, the moon is an object, the sun is an object, the planets and stars are objects ; and everything that has or can be conceived of as havirg a beginning and an end, a bound in every direction in space, and everything that has or can be conceived of as having a beginning and an end in time. is an object or thing. In fact the universe, so far as it can be conceived by the mind, is an object or thing ; but considered as infinite it is nothing.
(*) See examination and comparison of the accounts of the Creation in the book of Genesis in the begiuning of Part Second of this book.

This illustration of infinit.de and finitude will throw some light upon the statements we have made in the opening page of this book, as to the Creator and Creation. Is it not very plain that our omnipotent and glorious Creator, that is infinite, cannot be conceived by the mind, much less seen by the eye? And yet men are so unreasonable, so presumptuous as to set up material objects as representations of Him, and worship them ; and invent systems of ideas which they call systems, or "bodies" of divinity, and set them up and worship them instead of Him. For how is it possible to conceive of an Infinite Being? The mind can form no idea of Him, and how absurd and blasphemous that men should worship objects and things such as the sun, moon and stars, idols of wood and of stone, and men living and dead of their own race! It appears so absurd and blasphemous as scarcely to be tolerable. And yet we are sensible of the presence of our great Creator, and can see His character reflected in every natural object. How important it is that men should be good and do good, and maintain an humble and devout spirit in His prosence?

It is plain that the distinction between objects and things and nothing or, in other words, beiween the finite and the infinite, arises from the different states and conditions of matter as to density and rarity,-an idea which, perhaps, will be understood from the explanation we have already given of it, and may be more clearly understood from what follows: If all the matter in our globe and in all the other bodies in space were reduced to a gaseous or aeriform state, all of the same density, which reduction we have shown to be theoretically possible, there could be no object or thing in the universe; nothing but space which we can now conceive of would exist. We might conceive of space to no end, but there would be no proper object to be conceived by the mind. Matter corssdered in the form of our earth or of any other globe, or even of Saturn's ring or of any other form, is an object or thing, and the condition of its being a definite object depends upon its existing in that condensed form to distinguish it from other forms of matter. Hence partly arises the numberless objects which are in and on the carth, -partly we say, for some objects are distinguishable from others by their difference of density, some by their difference in form, and some by their difference of color, etc.; for there is such a diversity in all these, and in other respects, that scarcely any two objects in all nature are exactly alike in every respect. This will be better understood from illustrations which ve design to give further on. Hence it may truly be said that the earth exists out of nothing, also the sun, moon and stars, and each of the other heavenly bodies which do exist in the universe ; each of these bodies, however large, is a definite object or thing, and each of them may be said to exist out of nothing; and, if al. were reduced to an aeriform state of the same density throughout, they would cease to be definite objects or things,
and would vanish into nothing. Hence, too, may have arisen the notion entertained by the ancients, of the earth and the heavens having been created or caused to exist out of nothing in six days-a notion which has descended to our time, which has been stoutly and confidently declared from the pulpits, but which, of late, since the researehes of geologists have shed a glimmer of light upon the Hebrew writings, has begun to be understood differently by many, understood in such a way that the six days are made to represent six long periods of time. And what do we guess the next step will be which theologians will take in respect to this subject? Why they will fully understand, and be happy to confess, that the earth in its essence and present general form has never not existed. And, if the earth, so the heavenly bodies in their present general form and aspect in relation to the earth; even thus they generally believe now. 'Ihere are some men who require considerable time to come to a full knowledge of any particular truth, but the truth once arrived at mankind is not benefited by having it concealed from them. The doctrine of the creation of the earth out of nothing, as it has been taught and believed, has beca the cause of a great deal of superstition, and inde a a particular inconvenience, and impediment to progress in the right direction. Not the old creation of Genesis, but the new creation of Joha, should be held forth as of any importance for men to believe in ; not a creed of miracles which were never performed, or of tradition, which to every candid reader are self-contradictory, should be held forth as of importance for men to aecept by the teachers of mank:id. They should teach men to be good and to do good individually; to live lives of self-denial, of holiness and righteousness, of charity and of honest industry; they should teach men to depend for happiness and peace upon their own godly living, and not to depend for immunity for their own misspent lives, their lives of impurity, of vice and of wickedness, upon the virtues of any other which will not avail them. They should F :actise this doctrine of the regeneration themselves, and let their lives of humility, of industry and of godliness be conspicuous examples for those they teach to imitate. They should not teach men to expect the millenium, except men themselves, by their godly living, bring it in; and they should do all in their power in the state, in their own narrower sphere, and in the improvement of individual life, to introduce and perpetuate that glorious era.

That the earth has always existed as to matter and motion much as it now exists, there is, as we have stated, no valid evidence to the contrary. There are abundant illustrations that tend to prove that it did so exist, and, if our readers have patience, we shall present to their view some of these illustrations in this place and, further on, some more. One of the simplest and most striking of these is its uniform daily and annual orbitual motion, a motion which it has performed with such regularity and precision during the last three thousand years, or within the records of Astronomy, as not
to deviate in time or space a single second or inch. Although Astronomy was cultivated by the ancient Eastern nations, especially the Babylonians and Egyptians, for thousands of years before the Christian era, yet Thales, a Miles in, whose date is 610 B.C. was the first we know of to have recorded an eclipse ; and astronomers of the present day, tracing backward the eclipses to his time, have determined his record to be correct. And, if the earth has been so regular and precise in the performance of its motions for such a long period of time, it is fair to conclude that it performed them with the same regularity and precision during the three thousand years preceding these, and then during the three thousand years preceding them, and so, backwards, until there can be no time found for the beginning of its existence and motion, for it has moved as long as it has existed. And, not only the earth, but the moon and planets, and all the heavenly bodies with which the telescope has made us acquainted, have performed their motions with a like undeviating regularity and precision, during the period of which we have astronomical records. Therefore, tracing backwards in the same manner, we may fairly infer that they have always performed their motions with the same regularity and exactness as they now do. The compound ring of the planet Saturn is a body of such immense dimensions that it is computed to contain an area of more than one hondred times that of our globe, and to revolve around that planet at an exceedingly rapid rate of motion, namely, 900 miles a minute. It is found to be not exactly concentric with the body of Saturn, and, thereiore, must subsist about that planet in a state of unstable equilibrium. "The observed oscillation, " says Sir J. Herschell, an eminent astronomer, lately deceased, " of the centres of the rings about that of the planet is, in itself, the evidence of a perpetual contest between conservative and destructive powers, both extremely feeble, but so antamnistic to one another as to prevent the latter from ever acquiring an uncontroliable ascendancy and rushing to a catastrophe. The smallest difference of velocity bet veen the body of the planet and the rings must infallibly precipitate the latter on the former, never more to separate ; consequently their motion in their common orbit round the sun must have been adjusted to each other by an external power with the minutest precision, or the rings must have been formed about the planet, while subject to their common orbitual motion, and under the full free influence of all the acting powers." Such is the complexity of the system of Saturn : the immense globe of the planet, itself a thousand times larger than the earth, in rapid motion, and surrounded with a compound ring of such immense dimensions, as we have mentioned above, and with eight moons, all in rapid motion around the body of the planet, and with the planet in space around the sum, as well as the doctrine of gravitation,-as all forbid the idea of these bodies having been formed at all or their motions adjusted to each other when in rapid motion in space, and subject to all the acting forces.

But the main question which will suggest itself in the case before us doubtless is: If the earth as to its substance and motion has not always existed as it does now, how has it come to exist thus? One of the first ideas that strike the mind when investigating this subject is that of the gradual condensation of matter from all sides towards a common centro. This probably led some to suppose that the earth and all the selestial bodies are the results of a gradual condensation or closing in of the matter of which they are composed towards their several common centres. But such a thought, or theory, is inconsistent with the rogularity and precision of the motions of these spheres, as well as with the character and constitution of the earth as to solid, liquid and gaseous. All things on the earth's surface, and for a certain distance in a perpendicular direction fiom its surface, tend or are attracted toward its centre. If an earthly body, solid or liquid, is rarified sufficiently by heat, it ascends from its surface, but, becoming condensed again in the atmosphere it returns to the earth's surface again. You can reduce water to the form of a gas as steam, but it becomes vapor in the atmosphere, accumulates into clouds and descends to tho earth again in the form of water or rain. Also, if any earthly substance, or mineral or metal be reduced to a gas, every particle of it will soon find its way to the earth again in some form or in different forms, for the atmosphere is so constituted as to be sufficient in itself to answer the purpose which it is adapted to fulfil. Water is also so constituted as to be a stable element, sufficient in itself to fulfil the purpose for which it is adapted ; there is always exactly the same quantity of it in the earth, and belonging to the earth, in the atmosphere, in the form of vapor. The solid parts of the earth also are so constituted as to be a stable element, sufficient in itself to fulfil the purpose for which it is adapted; for, as we have stated, if an earthy substance or mineral be reduced to an aeriform state, every particle of it will find its way to the earth again : the atmosphere does not want it, having enough of its own, and whilst it remains there it is a foreign in the midst of a native element. Also, if any part of the dry land by earthquakes, the action of the waves on coasts, or any occurrence in nature, be submerged, an equal extent will be freed from the dominion of the waters in some other place ; and men bringing their land plants and animals with them, they will all be propagated upon this new land to supply the place of those vegetables and animals which were lost by submergence. There is no sufficient reason to believe that more than small portions of land are lost at any time by the water, or that more than small portions are set free when compared with the whole extent of the dry land.

The solids of the earth, the waters, and the atmosphere always retain their natural or nominal bulk, if not expanded by the admission to them of an excess of heat, or contracted by the abstraction of some of the
fore us always 10 first of the entro. bodies tter of it such sion of itution 's surrface, liquid, oming again. comes to the y subit will ns, for ver the as to which in the prm of be a 2 it is ral be to the own, ment. waves t will
men ropaand on to y the with
heat that naturally belongs to them. A certain quantity of heat, as we have before said, belongs to all bodies, and so long as they possess just that amount and no more, or no less, they are said to be in their natural or normal state. And the doctrines of natural science prove as clearly as anything can be provod, the stability of fluids if allowed to remain in their natural state. It is proved by hydrostatics and pneumatics that fluids press equally in all directions. For example: fill a square measure full of water, and put on the lid air-tight, the pressure upwards against the lid of the vessel will be the same as that do wnwards against its bottom, and the pressure against either of its sides will be equal to the upward or downward pressure ; there is, in short, an equal pressure upon each of the six sides of the vessel outwards. Let the same squaro vessel be filled with atmospheric air, and exactly the same results will follow, the upward, downward, and lateral pressure upon the inside of the vessel will be equal. This is seen more clearly in the case of a globe-shaped vessel filled with water or air; the pressure outwards upon every point of the inside of the sphere will be equal ; and the fluid is said to be in stable equilibrium. Let it be remembered that the fluid in both of these cases needs to be in its natural state; for if either water or atwospheric air be possessed of more than its natural amount of heat its tendency is to ascend, and, therefore, the pressure upwards against the lid of the vessel would be greater than that downward or in any other direction. Heated water is seen to ascend in the shape of steam, and the air heated in the fire place makes its way up the chimney, carrying with it the unconsumed particles of charcoal, in which condition it is called smoke.

The fact of air and water or any other body, expanded by heat, aseending porpendicularly rather than going in any other direction from the earth's surface, needs explanation. Thus it will be remembered that the earth is round like a ball, and is continually revolving round an imaginary line, passing from its north to its south poles or points, and called the earth's axis. It revolves round its circumference in the space of about twenty-four hours, producing in that length of time the succession of day and night. When it is noonday with us in the northern hemisphere, it is midnight with those residing in the soutaern hemisphere, and during the interval of twelve hours, between twelve o'clock night and twelve o'clock noon, the earth has travelled round half her circumference, or over 12,000 miles; and during the interval of twelve hours more, between twelve o'clock noon and twelve o'clock night, the earth has travelled over 12,000 miles more, or the other half of her circumference ; for the whole circumference of the earth is nearly 25,000 miles. It will be readily understood, therefore, that the inhabitants of the southern hemisphere have the soles of their feet directly opposite to those of ours, and their heads pointing in contrary directions to our heads. Hence in the day-time, when we consic r ourselves looking up into the
heavens and contemplating the sun, they must necessarily be looking downwards, or in the contrary direction, when viewing the stars; and in the night-time, when we consider ourselves looking up into the hoavens and contemplating the moon, the stars and the milky way, it being their daytime, they must be looking downwards, or in the contrary direction, when viewing the sun. And, conversely, during their day-time, which is our night, when they imagine thenselves looking up toward the sun and the shining heavens, we must necessarily be looking downwards, or in the contrary direction, while gazing on the moon, the stars and the milky way; and during their night-time, which is our day, when they imagine themselves looking up toward the heavens at the stars, the moon and the milky way, we must necessarily be looking downwards, or in the contrary direction, while contemplating the sun in his brightness passing the meridian. Hence, as in natural science it is proved that equal and opposite forces acting on the same plane produce a negative result, so it is here as evidently proved that there is neither ap nor down as regards the universe, or', speaking otherwise, as regards infinite, spiritual or material existence. This subject may be more clearly illustrated by the use of an artificial globe, such as are used in schools. Thus, the earth being round like a ball, when a body is expanded by heat into a gas at any point of its surface it will take a directi, a perpendicular to the place where it begins to be expanded in separating itself from the earth's surface. Hence, if the whole earth underwent a gradual expansion at the same time, the expanding matter going in directions perpendicular to every point of the earth's surface, we may conceive that the earth, provided it became reduced into fluid all of the same density, would be expanded into an immense gascous globe, perhaps fifty or one hundred thousand times its present dimensions, though still retaining its globular form. This we have shown before to be theoretically probable,* though it is not practically so, for as long as the material elements, solid, liquid, and gascous, of which our earth and atmosphere are composed have neither more nor less heat than what naturally belongs to them, they will remain in their natural state.

Also, the uniform globular figure of the earth and of all other heavenly bodies is proof of their eternity. To this spherical form of the heavenly bodies there is no exception but one, namsly, Saturn's compound ring, among the tens of thousiands of those bodies which the telescope has enabled us to explore. And if all these bodies were formed by the gradual settling in of their matter toward their centres, how does it happen that none of them except Saturn's ring is of any other than a globular form? why are not some of them in the form of squares, or pentagons, or hexagons, or in some other polyhedral form? or why did Saturn's compound ring

[^1]assume the form it has? The evidences that the earth is a globe are complete and irresistible; and every one who has the use of his eyes knows by observation that the sun and moon are round. The telescope enables us to contemplate the planets of the solar system from a nearer standpoint than that at which we survey the moon without its aid. All these planets are of globular shape, each performing its motions in space as the earth is. Telescopes of high magnifying power, such as that of Herschell and Earl Rosse, also virtually transport us to the regions of the fixed stars, regions so immensely distant that any conceivable agent, travelliug at the rate of twelve millions of miles a minute, would take seores, yea hundreds, and from some of them thousands of years, to reach our earth. Although the distances of those stars are so inmensely great that none of them have yet been closely contemplated, still there is evidence, judging from the cones of light which they send forth, to show them to be of globular figure.

The great nebular system, so many of which have been brought into view by the telescope, are found when closely scrutinized by teleseopes of great space-penetrating power to consist of systems of stars, each star of which it is reasonably conjectured is the centre sun of a planetary system, and each star and planet of which is most probably of the globular form. Over 3600 of these systems of nebula have been discovered in the northern and southern hemispheres. The nebule which were known to astronomers before the great telescopes were invented had given rise to various theories, and, among them, this, to which the assent of many minds was given, that the formation of the celestial spheres took place from the gradual condensation of celestial vapor, such as these nebule appeared to them then to be. Sir Wm. IIerschell's great telescope first dispelled this idea by showing that many of the nebula, so regarded as vapor, were really clusters of stars; but at the same time by its space-penetrating power it revealed new nebule before unknown and beyond its resolving power. The construction of Earl Rosse's great telescope next contributed a new and vastly increased resolving power, and again showed that nebula unresolved before consisted of star-clusters only still more remote, but at the same time it added to our knowledge the existence of other nebula before unknown, and, in turn, beyond its power of resolution. "Thus," says IIumboldt, " by increasing optical power, resolution of old and discovery of new would follow each other in endless succession ; so that it may be fairly asked whether wo can with probability assume both such a state of the universe and such a degree of improvement in optical instruments that in the whole firmament there shall not remain one unresolved nebula." When the phenomena which gave rise to the theory of gradual condensation had vanished one would think that the false impression to which the theory gave rise should vanish also. It is not, however, necessary for any one to conclude that all the bodies existing in
space, as our earth is, are of globular form, for, although all those we can see with our eyes and all the telescope has brought within our view are of that form, yet, the universe being infinite, there may still remain bodies existing in it of great diversity of form.

Also, the laws of gravitation, by which all things on or near the earth's surface are drawn towards its centre with a force proportional to their weight, are further proof of the earth's etermal existence. Although the laws of gravitation act universally, yet that which wo have to speak of concerning thom here relates to the earth and its neighbor globes of the solur system. We have before endeavoured to illustrate that the earth is round like a ball ; and as we know by obsorvation and experience that all things on the side of the earth on which we are tend towards its centre, even so all things on the side of the earth opposite to us are attracted toward the the same centre, but in a contrary direction. Every point on the earth's surface has a point situated directly opposite to it in another hemisphere of the earth: thus, we and all around us are attracted toward the earch's centre, while those in Australia, directly opposite to us, are attracted toward the same centre in a contrary direction. Those also in Central Asia are attracted toward the earth's centre in a direction contrary to that in which the people of Brazil are attracted toward the same centre ; and those living in Northern Africa and Europe are attracted in a direction contrary to that in which the Now Zealanders are attracted. Thus we see all bodies, wherever they are sitnated on the earth's surface, are attracted towards its centre. The force of this attraction is found to be the se:ne at all points on the earth's surface, with the exception of an exceecingrly slight variation at the North and South Poles. This being so there are equal and opposite forces in operation at all points on the earth's surface, which proluces a negation; for equal and opposite forces acting on the same plane, produce a negative result. Now, as every point on the earth's surface has a corresponding point directly opposite to it on the other side of the earth, and as there are two forces comecting these two points respectively with the earth's centro which are equal and acting direetly opposite to each other, these forces may be conceived to meet on opposite sides of a plane, situated at right angles to their direction, and to produce a negative result, that is, no result. These two forces represent any two equal and opposite forces, or any number of equal and opposite forces acting toward the earth's centre. It may, therefore, truly be said that there are no forces of attraction connecting the surface of tho earth with its centre except that by which lighter bodies have to yied to heavier ones. This, however, is a definite force, well-known, and acting uniformly and universally. The earth's elements, and consequently itself, are so constituted as to be in equilibrium ; and the reason why bodies in its atmosphere tend toward its surface, and those on its surface toward its
centre is bocause their specific gravity is greater than the medium in which they are; and becauso the interior and centre of the earth are made up of weightior materias than its exterior parts. l'ut a piece of iron into water, an dit sinks to the bottom; put a pioce of wood in, and it floats on the top ; because the weight, that is, the specific gravity of the iron, is grenter than its own bulk of water, and that of the wood lighter. Elevate a solid body of muy kind in the air, and having nothing to support it, it fulls to the earth, because its weight is greater than that of its own bolk of air. In one sense, therefore, gravity moans the sanne as woight, and the word gravity is the Latin for the English word weight. It may seem strange to some that the earth, being round like a ball, should have the faculty of drawing bodies towards itself at every point of its surface; for, if a solid body bo olevated in the air at a point of the earth direetly opposite to that which we occupy, the body falls to its surface, as with us; and if iron or wood be there thrown into water the one will sink and the other float, as with us. Now it is known beyond all doubt, that all bodies possess the power of attraction in proportion to the quantity of matter they contain. Some bodies, as the loadstone, possess it in even a greater degree. It is plain, therefore, that the earth, being so much larger than any body on or near its surface, possesses the power of attracting them to itself at every point on its surface. 'Ilhis power, ho nover', is not limited in its action by the earth's surface, but extends into the atmosphere and far into space. It is the earth's attraction which retains the moon in its orbit round the earth; and it is the sun's attraction which retains the earth and moon in their orbit round the sun; and, conversely, it is the attraction of the earth and moon and all the planets which retains the sun in his position and orbit in space. The attraction, therefore, is mutual between all bodies in space, and aets in proportion to their soveral weights. Bodies, however small, at or near the earth's surface, attract the earth in proportion to their weight; but the earth being so much weightier than any of these, their attraction is as nothing compared with the earth's, and, therefore, all those small forces yield to the attraction of the earth. The earch, also, being nearly fifty times larger than the moon, exerts on the latter a proportional attraction, and thus retains it in its orbit round the earth, and prevents it from flying off into space in a tangential direction, which that body, as all other globes in space, has a tendency to do if not counteracted by tho superior weight of other bodies. And the sun being over 1,300,000 times larger than the earth, and considerably larger than all the known planets of his systom taken together, exerts a balancing power over all these bodies. It is plain, therefore, that all these bodies are in equilibrium, and that the principle of attraction may ive resolvod into that of the maintenance of equilibrium, and of the stability of order. The universe, though it may be considered as one great whole, is constituted of different parts, and these
parts of different clements, all of the same gencral substance, but in different degrees of density and rarity. The earth, though composed of three clements, solid, liquid and aeriform, each of which fills its own place and perffrms its own functions in the earth's economy, may be called a unit; and each of these constituent parts may be called a unit in relation to the constitution of the earth; but yet the earth is only a member of universal existence, filling its own place, and performing its own functions, as the other members are.

We have mentioned before with what regularity the earth and the heavenly bodies move. This regularity and precison is not greater than that which governs bodies falling towards the earth's surface. Small bodies will not fall to the earth unless they be within the sphere of the earth's attraction. By this we mean that there are parts of space in which the earth's attraction is nothing. The sun, moon, and each of the planets has a sphere of attraction of its own. But then, there are the spaces internediate of these bodies, which do not come within their spheres of attraction in any sensible degree. There, as we have before remarked, the ether is in equilibrium. Not that the attraction of each of these bodies is not exerted on each of the others, but that their contrary attractions, counteracting each other, produce equilibrium in certain parts of space intermediate of these bodies.
The attraction of gravity, and the dispersion of light, are analogous in their operation. 'i'he intensity of both decreases as the squares of their distances from their centres of action increase. Here we remark that the principle of gravitation acts in a manner analogous to the principle of light and heat. The force of all these decreases with the square of the distance from the centre of action. Suppose you are reading at a certain distance from a candle, and that you receive a certain quantity of lighi oa your book, if you remove to double that distance from the candle you will eajoy four times less light than you had before: here, then, though you have but doubled your distance, you have diminished your light fourfold, because four is the square of two. If, instead of doubling your distance from the candle, you remove to three, four, five, or six times the distance from it, you will then receive at these different distances, nine, sixteen, twenty five, or thirty-six times less light than you did at first, for these, respectively, are the squares of the numbers three, four, five, six. The same is applicable to the heat imparted by a fire, at a distance of two yards from which a person will enjoy four times less heat than one who sits at one yard from it, and at three yards distance nine times less heat, and so on decreasing with the square of the distance from the fire. And if a body is removed to double the distance from the centre of gravity, the attraction exerted on it is one-fourth; if to three times the distance, it is one-ninth ; if to four times, the distance is onc-sixteenth, and so on decreasing as the squares of the distances increase. pheres arked, f these attracrarts of

gous ins

 of their hat the of light of the certain ff ligh lle you though it fourg your nes the s, nine, rst, for re, six. of two ne who s heat,And ravity, tance, so on

All bodies have their centres of gravity or points about which ali their parts are balanced. The earth's centre of gravity is its centre. The differences of the power of the earth's attraction are not discernible at short distances from its surface, owing to the distance of the latter from the centre of gravity. But it is determined that, could we ascend 4,000 miles from its surface, or double the distance of the surface from the centre, we should there find the attractive force to be one-fourth of what it is here; or, for example, that a body, which at the earth's suvface weighs one pound, would, at 4,000 miles above the earth, weigh but a quarter of a pound. By the most accurate observations the moon is found to be obedient to the same laws of attraction as other heavy bodies are. Its mean distance is elearly ascertained to be about 240,000 miles, or equal to about sixty semi-diameters of the earth, and, of course, the earth's attraction on the moon ought to diminish in the proportion of the square of this distance, that is, it ought to be sixty times sixty, or 3,600 times less at the moon than it is at the earth's surface. This is found to be the case by the measure of the deviation of its course from a right linc. Bodies near the earth's surface, when left free to descend, fall at the rate of sixteen feet in the first second of time; but, as the attraction of gravitation is continually acting, so the body continues to fall with an increasing, or, as it is usually called, an accelerating velocity. It has been determined by the most accurate experiments that a body falling from a considerable height, by the force of gravity falls sixteen feet in the first second ; three times sixteen feet in the next; five times sixteen feet in the third ; seven times sixteen fect in the fourth, and so on, constantly increasing according to the odd numbers, one, three, five, seven, nine, etc. The true distance fallen in our latitude in the first second is $16 \mathrm{\eta}^{1}$ f feet, but by reason of the centrifugal force, that is, the force which impels the earth in its orbit, the distance varies a little in different latitudes.

The following rule holds in all cases as to falling bodies: that the spaces they describe when falling freely from a state of rest increase as the squares of the times increase. Or, the following formule with respect to falling bodies will convey a clearer idea of the uniformity with which this law acts:

Seconds.	Space passed over in a second.	Velocity at end of second.	Total space passed over to end of second.
1	1	2	$1=1^{2}$
2	3	4	$4=2^{2}$
3	5	6	$9=3^{2}$
4	7	8	$16=4^{2}$
5	9	10	$25=5^{2}$
6	11	12	$46=6^{2}$
7	13	14	

If, after the demonstration of the uniformity of the action of gravity, any one should be puzzled to understand how it is that, while the earth is continually rolling round like a ball, it retains all things in connection with it to its surface, they should remember that we constantly meet with illustrations of this force. A can, filled with water, may be swung round the head without a drop being spilt. When the can is at its highest point, and therefore has its mouth downwards, the water is attracted towards the earth; but this attraction is more than overcome by the centrifugal force, or the force of the hand by which the can is swung, and hence it remains in the can as if it were solid. It does not lose a particle of its water. Some persons are worried because they say they cannot understand this with regard to the earth, but the same persons hardly ever consider how it is that flies and other insects walk upon a perpendicular pane of glass, or upon the ciling over their heads. Does not this seem as inexplicable as the others?

But something, at least, has been adduced to prove that the earth has always existed, constituted in general as to its elements and motions as it is now. No valid proof that it has not so existed can be brought forward; and if any one attempted to prove such a position, he would have to prove how it came into existence, how it attained its prosent form and constitution, how it was given its motion and maintained in it; where, in short, it came from, and, as we may suppose such a one would hold the doctrine of its final destruction, where it is going to.

We have shown heretofore that matter and spirit are the same thing * in different states as to density and rarity; that the most solid substances can be reduced to an aeriform state, and it is of the same essence in the gaseous form as it is in the solid. In the one case it is condensed, in the other expanded; in the one case it is the solid, tangible substance, in the other the intangible. invisible gas. Spirit, from the Latin word spirare, to breathe, from which our words inspire, expire, etc., are derived, means that which we breathe, or breath: The Greek word for the same thing is $\pi \nu e v \mu a$, wind, or breath, from which our technical word pneumatics is derived, meaning the science which treats of wind or air. Also, the Hebrew word translated into our language spirit means air or wind ; as for instance in the second verse of the first chapter of Genesis, it says the spirit of God moved upon the face of the waters, which equals, the wind of God moved upon the face of the waters. The difference between spirit and matter, then, is only one of degree of density and rarity of substance; it is the same substance in two different states; in the one state in a form

[^2]to be breathed, in the other in a form too dense to be breathed. Wo do not mean to say that air derived from the reduction of any and every solid substance to a gascous form would be fit to be breathed by human beings and all the animal creation ; we mean only that it would be air or wind (for wind is air in a state of motion) just as much air as is the atmosphere which surrounds us. We do not mean to say that the solid parts of the earth, or even water, are intended to be reduced to air and breathed ; indeed their very constitution, and the purposes they fulfil in the production and support of animals and vegetables, indicate different. The atmosphere is that one constituent element of our terrestrial system, which is intended to be breathed. Each of the three constituent elements of our system has its own purpose to fulfil, and yet they are all three mutually helpful to each other. The atmosphere and water may be called the servants of the solid earth. The earth needs air and water as well as the solar iight in order to the production and support of vegetables and animals. The earth also supplies oxygen to the atinosphere, and absorbs the impurities with which that element becomes impregnated. This operation is performed by the leaves or lungs of vegetables, which absorb the carbonic acid, (${ }^{*}$) from the air, retain its earbon to increase the solid tissue of their plants, and expire or reject its oxygen, which is the vital principe of the air we breathe. The atmosphere, as a sponge, sucks up the water from the surface of the ocean of lakes and rivers and lets it down upon the thirsty earth again in the form ('rain. This process of imbibing water by the atmosphere is called evaporaticu. These three elements are, as we have before remarked, modifications of the same general substanee, each so constituted that nothing can be added to or taken from it; but they are all three mutually dependent on each other, as the parts of the human or other animal body are dependent on each other. When water is evaporated from the surface of thi ocean, of lakes, and of rivers, it is not lost,-not a particle of it goos beyond the sphere of the earth's attraction; but, having descended to the earth again as rain, snow, ete., it in the time finds its way into the rivers again, and thence to the oceai. When a tree decays part of it becomes water, part carbonic acid, and part humus or clay. When any vegetable or animal body goes to decay its component parts return eventually to their original elements, earth, water, and air. These three elements in the constitution of the terrestrial system form an individual or unit, just as the parts and members of the human body form an individual or unit.

Matter is defined in general terms to be everything which is an object of our senses, and ineludes the ideas of extension, solidity, inactivity, and mobility. The theory with respect to the constitution of matter hitherto

[^3]is: that all matter is made up of infiniteiy small particles, called atoms, that is, parts so minute as to be incapable of further division; and that these atoms or ultimate particles are unchangeable and indestructible, unless the power which gave them existence so effects it. The most minute particles, which even the microscope can ouly just discern, may contain millions of these atoms, so that they must be infinitely beyond the reach of the recognition of our senses. A molecule (a little mass), which may be called the secondary atom, is the smallest particle capable of existing by itself. This, though it may contain millions of atoms, and be undiscernible by the naked eye, is considered the ultimate particle of a compound body. For a long time the theory supposed these molecules to be round solid paiticles, bui the expansion and contraction of budies under the influence of light, heat and electricity had never been satisfactorily accounted for on this hypothesis, nor how solid bodies become liquid, and solid and liquid bodies become gasiform. The theory, therefore, has for some time supposed that the molecules of matter are not solid, but are filled with electricity, as the soap bubble is with air, and are, like it, capable of great elastic expansion and contraction, and that they are only round like the soap bubble when taken singly, but are polyhedral or manysided over all their surfaces of contact, when like the soap bubbles in connection with each otlecr, or in clusters. This theory shows how electricity, which undoubtedly pervades all bodies, may be contained within the molecules; and also how electricity, which is unloubtedly capable of expandiag all bodies, can expand them ; and, further, how molecules, which, from extreme contraction are hard, and solid, and opaque, may, by extreme expansion and rarefaction, become fluil, gaseous, diaphanous, and transparent. It also satisfies the cinemical requirement of definite atoms for proportional admixtures of different elements and their concurrent expansion aud contraction within definite limits in the compounds they form.

But let us see from the following illustrations what these molecules are which are conceived to be filled with electricity, by this also seeing the extent to which matter is capable of being subdivided.

Onc hundred cubic inches of a solution of common salt will be rendered milky, by adding to it a cube of silver, each side of which measures the $\operatorname{Tr}^{3} \overline{0}$ of an inch, dissolved in nitric acid. The atoms of silver have found their way into every particle of water, and there with the salt formed the white chloride of silver, which rendered the solution milky; that is, the small cube of silver has divided itsel' into at least one hundred millions of parts, a number which the seconds pendulum of a clock would beat in 31,688 years; and even yet we are not sure that we have approached the measure of an atom of silver, we have only ranched the limits of our power of subdivision. A single grain of gold san be spread into a leaf containing 50 square inches, and this leaf aay be
atoms, ad that uctible, minute contain e reach ch may existing lisenennpound 3 round ler the actorily id, and has for re filled pable of and like ed over on with , which ecules; ding all extreme pansion nt. It ortional ud con-
readily divided into 500,000 parts, each of which is visible to the naked ege ; and, by the help of a microseope which magnifies the area of a surface 100 times, the 100th part of each of these becomes visible; that is the 50 millionth part of a grain of gold will be visible, or a single grain of that metal may be divided into fifty millions of visible parts. But the gold which covers the silver wire used in making gold lace is spread over a much larger surface, yet it preserves, if examined by a mieroscope, a uniform appearance. It has been calculated that a single grain of gold under these circumstances would cover a surface r : nearly thirty square yards.

If a bar of silver be gilded and then drawn ont into a wire, the thread may be so fine that the gold covering one foot weighs less than the rimo of a grain ; an inch of this wire will contain the $\operatorname{raj}_{2} \mathrm{~m}_{0}$ th of a grain ; this may we divided into 100 parts, each visible to the eye, and being covered by the
 Under a microseope magnifying 500 times each of these pieces may be subdivided by the cye into 500 parts, the gold retaining its original appearance, and showing no signs of dividing into its separate atoms ; and yet the particle visible to the eye, that which covers the upper part of the wire,

If a pound of silver wire, which contains 5,760 grains, and a single grain of gold be melted together, the gold will be equally diffused through the whole silver, insomuch that if one grain of the mass be dissolved in aquafortis, the gold will fall to the bottom. By this experiment it is evident that a grain of gold may be divided into 5,761 visible parts, for only the 5,761 st part of the gold is contained in a single grain of the mass.

The diffusibility of parts of natural bodies is still more surprising. Odoriferous bodies, such as camphor, musk, and asafoetida are perceived to have a wonderful subtilty of parts; for though they are perpetually filling a considerable space with odoriferous particles, yet these bodies are found not to lose any sensible part of their weight in a great length of time.
Again, it is said by those who have examined the subject with the best glasses, and n'lose accuracy of observation is not questioned, that there are more animals in the milt or a single codfish, than there are men on the whole earth, and that a single grain of sand is larger than four millions of those animals. Now if it be admitted that these little animals are possessed of organised parts, such as a heart, stomach, muscles, veins, arteries, etc., and that they are possessed of a complete system of circulating fluids, similar to what is found in larger animals, we evidently approach the idea of the infinite reducibiiity of matter. It has indeed been calculated that a particle of the blood of one of these animalculx is as much smaller than a globe one tenth of an inch in diameter as that globe is smaller than the whole earth.

Captain Scoresby, in his account of the Greenland Scas, states that, in July, 1818 , his vessel sailed for several leagues in water of a very uncommon appearance. The surface was variegated with large patches of a yellowish-green color. It was found to be produced by animalcula, and microscopes were applied to examine them. In a single drop of the water examined by a fower of $28,22 \pm$ (magnified superficies) thero were fifty in number on an average in each scuare of the micrometer glass of sidth of an inch in diameter; and as the drop occupied a circle on a plate of glass containing 529 of these squares there must have been in this single drop of water taken at random out of the sea, and in a place not the most discolored, about 26,450 animalcule. How inconccivably minute must the vessels, organs, and fluids of these animals be! A whale requires a sea to sport in; a hundred and fifty millions of these would have ample scope for their evolutions in a cup of water! We might adduce many more instances of a like kind, but these we doubt not will be sufficient to illustrate into what exceedingly minute ,arts matter is capable of being subdivided; parts so infinitely minute that they are evidently a rare fluid or gas, reiucible doubtless to as rare a gas as the air we breathe.
And since that all existing things are of a substance reducible to a fluid of the same density throughout, it remains to give a name to that existence. We have begun this illustration with the proposition that there is nothing existing in the universe but spirit, in different states of deasity and rarity. This, according to the literal meaning of the word spirit, and the considerativii that all existing things are of a substance reducible to a state of air, scems an appropriate term. Others, however, may conccive of a more appropriate term to be applied to universal existence, and the more appropriate the term the more worthy of being applied and universally adopted. Nor do we think it proper or just to deprive scientific men of their atomic theory, proviled it holds these ult mate particles to have never not existed, since they regard it as expediert for their purposes.

Affinity, in the language of chemistry, is that force in virtue of which two or more subsiances combine to form a compound body. This body exhibits properties different from those of the combining elements, and is calleid a chemical compound. Some substances display a greater affinity for each other than others do. For example, if we take a piece of chalk, and put it in a glass of water, in due time it will become softened, and if the water be stirred, the chalk will render it milky, but no change has taken place, for if it be let stand the chalk will sink to the bottom, or, if the water be evaporated, the chalk may be recovered unaltered. But had a little nitric acid been added to the water, bubbles of gas would have arisen to the surface, and the water would have become clear. The chalk was composed of lime and carbonic acid. The nitric acid having been added
that, in a very patches nalculæ, p of tho ro wero er glass cle on a been in a placo iccivably A whale ic would c might ; not will natter is they are s as the to a fluid xistence. nothing sity and and the ible to a conceive and the l miverscientific ticles to urposes. of which dy exhiis calleil for each and put d if the
is taken
r, if the
t had a
c arisen
alk was
n added
a combination of it takes place with the chalk, by which carbonic acid gas is set free, and escapes in bubbles from the surface of the water. If now the water be evaporated, chalk will no longer be found, but a transparent crystallised substance, called the nitrate of lime, very different from the lime or the nitric acid of which it is composed. Here then is an illustration of chemical affinity, and of chemical combination. Chemical action always evolves heat. The action which took place when the nitric acid came into contact with the chalk was analogons to that which takes place whien a stick of wood is thrown on the fire, in which case heat and flame result, and the component parts of the wool enter into new combinations. This phenomenon of chemical affuity very plainly depends upon the priuciple of electrical attraction. We have before explained that electricity, light, and heat, are the same substance urder different modes of action and manifestation ; or rather that electricity might be regarded as the element of which light and heat are peculiar manifestations. 'This element pervades all bodies, which only require to be properly acted upon in order that it be made apparent in heat, or light, or both. Before the invention of lucifer matches the blacksmith, in order to kindle his fire, battered a nail on his anvil until it became red hot. Also, the savage who has no access to the means omployed by civilized people for making a fire, educes that element by rubbing together two sticks of wood. Even water is pervaded by the active principle of combustion, and if thrown on a blazing fire in insufficient cuantity tends not to quench but to strengthen the flame. All bodies in their natural condition are supposed to contain a certain amount of this electric fluid, and if they possess mo mere and no less than this natural amount they tend to remain in the same electric state. But if a body coutains more than its natural amount it is said to be positively electrified, if less it is said to be negatively electrified. When a positively clectrified boly is brought near or in contact with a negatively electrified one, attraction takes place between them, and the former discharges its surplus fluid into the latter to make up for its deficiency. Thus thunder is caused by a positively electrified cloud coming near a negatively electrified one, which it attracts, and disc'arging into it its surp lus electricity; and the lightning is merely a manifestation of tho electric fluid itself. But what causes the noise, it will be asked, which seares the children? The noise is caused by the electric discharge rushing through the air, and in its course displacing its own volume of the latter, thus causing a vacuum which the air from all sides rushes in to fill up. This combination of causes produces the thunder, but principally the air in rushing in to fill up the vacuum. When two bodies having more than their natural share of clectricity come near or in contact with each other they tend to repel each other. This principle of clectrical attraction and repulsion satisfactorily explains why some substances have a strong inclination to combine
with each other chemically, while others exhibit little or no desire to do so. Now, in the example beforo us, the nitric acid and the chalk attract each other, one of the two containing a less amount of electricity than the other; and thus combining with each other heat is evolved, and consequently gas is set free, and a chemical compound results. But the whole process of chemical combination is explainable on the principles of equilibrial diffusion of electricity, and the change and recombination of matter.

We have already endeavoured to illustrate how that not only lifo but intelligence* is inherent in all matter. Now that we have resolved all matter into spirit it will not be difficult to understand that proposition. The mind readily conceives of the principle of life as existing in all spirit, though it may not conceive of it so readily as existing in all matter. This, we think, arises in the main from the mind being habituated to think in a certain way conceruing matter and spirit, and from a certain meaning which has been given to the word spirit in the ancient world, and especially in the Christian world, a meaning not original or literal, but collateral; not essential, but only attributive. For instance the word spinit is commonly used to express the disposition, inclinations, state of heart or temper of a human being, although it is not often thought that the air the individual breathes is the literal spirit, or that the human being himself is a real, though not in his present state a literal, spirit. Also, the Deity is especially spoken of as a spirit invisible and everywhere existing, which is very true, for an infinite being eannot be conceived by the mind, much less seen; and if a being be infinite he must be everywhere present; confessed as a being he camot be nowhere. But as we know that we exist and as we seo the works of the Creator in nature all round us we know that He exists and exists everywhere. But the Deity, as everywhere existing, speaking both from a physical and moral point of view, must include bad as well as good, false as well as true God. What we have said hitherto with respect to the Creator we mean also of the Deity, for the Creator and the Deity we understand as synonymons terms for the same Being. The Deity, then, though unseen, must comprehend in Himself all that is seen to exist, and to be perpetuated in existence, in the two opposite aspects of evil and good in which it is seen by us, for the physieal as well as the moral world presents existence in these tiwo contrary aspects.

In the physieal world we have the frigidly cold elimates of the north and south polar regions,-the regions of eternal snow and ice, in which animal life cannot exist, and where if human beings try to live for a short season they must suffer the effects of intense, biting cold, and be every moment in danger of being frozen to death. We have also the parching torrid zone for twenty degrees immediately North and South of the equator, where men and animals suffer almost as much from the effects of the burn-

* See pages 14, 15, etc.
ing heat of a vertical sun, as in the polar regions from the effects of the intolerable cold. In contrast with these we have the mild climates of .., temperato zones, where men enjoy the most delightful and refreshing breezes; the most beautiful sconery, and magnificent and sublime prospects of creation, the most lavish abundance of the good and useful productions of the earth, both animal and vegetable; where nature with benignant smile and outstretched hand seems to anticipate the various wants of man, and offer him in luxuriant abundarce even more than his heart desires.

Certain parts of the earth are subject periodically to violent storms and tempests, hurricanes and tornadoes, which often render men lifeless or homeless, and cause a great deal of terror, inconvenience, and damage to the inhabitants of the districts where they prevail. The hurricane snd tornado are destructive winds that prevail upon tho American Continent, and in the West India Islands, causing terror and often death both to men and the inferior animals. Then there are the poisonous winds, the terrible harmattan, and sirocco, and samiel, and simoom, which prevail upon the Continent of Africa, and in the south-western countrics of Asia, causing tho imhabitants of these countries to quake and hide their heads, as well as often causing much destruction to life and property. In contrast with these we have the mild and gentle breezes of our temperate climates, which are favorable to vegetation and to animal health; and, also, the trade-winds and monsoons which enable our seafaring men to navigate every sea and ocean, and to waft the products of the carth and of the arts from land to land.
In the animal kinglom we can contemplate the character and disposition displayed by the wild carnivorous animals of the lant, the lion, the tiger, the hyena, the wolf, the bear, the jackal, the wild-cat, eic.; and the monstrous carnivora of the ocean, as the shark, the whale, the porpoise, and others innumerable about which wo know nothing. And among the reptile tribes we can contemplate the boa constrictor, the rattle-snake, the adder, the alligator, the crocodile, the anaconda, etc.; and also among ravenous birds, the eagle, the ostrich, the vulture, the hawk, the raven, etc. And on the other hand we can contemplate the character and disposition of the gentle and uscful domesticated animals, the sheep, the cow, the horse, the goat, the deer, the camel, the dromedary, the tamed elephant, the ass, the dog, the eat, the pig; also, among birls, the pigeon, the hen, the goose, the duck, the guinea-hen, etc.

In the vegetable kingdom we are presented with two varietics, noxious and innoxious plants. Poisonous plants are numerous indeed, they are to be found in most of the species, but some species contain many more than others. The order Ramunculacece, for example, of flowering plants, are almost all poisonous, and in some cases the poison is so virulent, that death
speedily results from swallowing a very minute portion of the fruit. More than one poisonous principle abomuls in this tribe ; lint of these the alkali termed by chemists aconitum is the most violent. It is a white substance somothing like flowr to look at, and so frightfilly poisomons that the twentien part of a grain or even less is a liatal dose. Of all the various species of aconitum, that termed aconitum firor is the most damgorons. I'lhis phant grows in the Ilimalaya momentans, and was on one oceasion made use of by the matives to rid themselves of their sulijugators, the English. A few leaves of this phant having heen thrown into a well so poisoned the water, that men or beasts drimking it were almost infallibly killed. Also, the P'oppy tribe, especially cultivated in Iulin, is that which supplies the opium which is doing so much to prison the Chinese and the Hindoos. Plants belonging to the order Rammenlacee are supplied with a watery, acrid, poisonous juice ; but in plants of the Popy tribe the juice is milky, from which milky juice the luxury, opium, is expressed. Also, the great matural order Umbellifiere, or nembrella-hearing plants, are of a dangerously doubtful character. Their chemical chamateristics may bo said to depend on the prestace cill.er of an cherens, velatile cil, or of a poisonous matter. Everybody knows how agrecalily odorons is caraway seed, and most people are aware of the pwisonoms nature of the hemboek, and of the noxions character of the fools' parsley. 'The alvantago when one is in an unknown country of being a practical botanist, so as to be able to refer a plant to a harmless or noxions kind, is considerable. It is related that when, during Anson's voyage, his erews disembarked in mbnown places, the surgeon, fearful of jwison, would not allow them to partake of any vegetables, except grasses, notwithstanling the scurvy was making great ravages among them.
The greater number, if not all the members of the order Cuenrlitace, or cucumbertribe, contain a bitter poisonous principle, presenting many degrees of intensity. In the colocynth it attains its maximum. In the ordinary cucumber the possonous bitter principle is usually but little teveloped, never to the extent of being daugerons, although frequently enough to be disagrecable. In the melon sugar is the principal secretion, nevertheless, the bitter principhe so prevalent in the family is present in a small degree ; it exists in the outside rind of the fruit, and to a still greater degree in the roots, which are violently emetic. Bryonia, another species, is still more violent in its poisonous action than the colocynth. Also, noarly all, if not all the members of the order Solunecece, or Night-shado tribe, contain a poison of a narcotic kiml. To this order belong the common night-shade, henbane, tobaceo, stramonium, and the mandrako plant. It is a lighly dangerous family of plants, although one that ministers to our sustenance in the potatoc. Even this is not entirely free from poison ; the fruits are notoriously poisonous, and even the juice of raw potatocs is
lighly ingurions. 'The mutritive properties of the potutere aise liom the stareh nul gluten which it contains being mingled with sa little of the poisonons principle, that the latter is ilestroyod liy the cooking process to which the potatoes are sulijected bolore enten. The egreplant and tomato belong to this family; the former is oecaviomally eaten, the latter frefluently and momost miversally by the Spmiands, and now hy the Americans. We may here remark that the vegetable sulbstmee, starch, is largely diffused thronghont many poisonoms phats, yet when separated from them it is invariably harmess. Of this we have a remarkable example in tapinea, which is mothing else than the haked stareh extracterl from the tronk of a tree, the jatrophamihot. The juice of this tree is so poismons that they poison arrows with it ; nevertheless tapinea is a deli-
 grows in shady places, and is an elegant thongh dangerons-lowking phat. We may here romark that, ns a gencral male, most plants having darkgreen foliage and darkecolomed flowers are poisonoms. I'lae bellatomat bears a cherry like finit, which is sometimes incuntionsly oaten by children, and tow often with a fatal result. In $179!3$ some orphans lnonght up in the llospice de lat Piélé at l'ais were emplayed in weeding a butanieal garken. They happened to be attracted by the tempting-looking fruit of a bellatoma plant, of which they nte a consilerable phantity. Fourteen of these mfortmate children died in eonserpence only a few hours afterwards. 'This lamentable eatastrophe justifies the generic mame atropa, from atropos, one of the fites who was supposed to ent the thead of life. The speceific mane belladoma signifies beantiful lady, and is dependent on the circomstance that the Italian halies used the distilled water of this plant as a cosmetie. They foolishly imagine that it improves their complexions. The manhake is a species very nearly allied to the helladoma, It grows in the South of Linropo, and in hark phaces. 'I'his pant, known and celebrated from times of great autifuity, was employed ly the soreerers of ancient days to prodnce narcotism, and disordered vision. Its roots are lage, often two-pronged, whence its lancied resemblance to the limbs of a man. 'Ihis phant has from very early periods of history been regarded with much sugerstitions dreal, which has probably arisen partly from its poisonous properties, and partly from its large and irregularly shaped roots, which at times approximate to the meouth form of a man. Shakespeare writes: " Λ nul slorieks the mandrakes torn out of the earth, that living mortals hearing them rim mad." The notion that prevailed in days gone by regarding the someds of complaint uttered ly the mandrake when being rooted up appears to have been widely entertained by the ignorant. Misfortume of the direst kind was believed to be tho portion of any one bold or rash enough to engage in disturbing the mandrake in his enthbed. An ohd English proverb says: "IIe who gathereth the mandrake shall
die ; blood for blood is his destinie." It is supposed that the mandrakes mentioned in some parts of the Old Testament were not the same as the plant known to us by this name, but that under this term reference is inad to the fragrant but insipid fruit of the Cucumis Dudaim, a plant which is cultivated in the gardens of the East for the odor it exhales. The mandrake is also confounded with the sleep-apple, a mossy excrescence on the wild rose, which when laid under the pillow was supposed not to allow any one to awake until it was taken away. 'Ihis property of stupofying doubtloss arose from its narcotic properties.

Henbane is a European plant belonging to this genus under consideration. It is a biemial plant, and grows anidst the ruins of buildings, in the neighborhood of habiations. Its stem is studded with a cotton-like substance, and it constantly exhales a ropulsive odor. Its corolla is palish yellow, veined with purple. It owes its peculiar proportios to the presence of a peculiar alkali. Its action is far less powerful than that of belladoma; nevertheless it may cause death if eaten. A German physician relates that, on a certain occasion, the Benedictine monks of the convent of Rhinon were presented with a salad in which the root of chicory, as was thought, had been placed. Instead, however, being of chicory the reot was of henbane. Alter the repast the monks went to bed. Symptoms of poisoning soon commenced; the monks were all stupefied. The time for matins or morning prayers arrived, and one monk was so fast asleep that his fellows supposed him to be dying, and under this inpression alministered to him extreme-unction. The other monks went to chapel, but they had much better have stayed away ; some of them could not even open their eyes, much less read. The vision of others was so disordered that they thought insects were crawling on their books, and cmployed themselves in blowing and brushing the intruders off. Others instead of praying uttered nonsense. In the end all the monks got well, even the one supposed to be dead; but one poor individual, a tailor, could not thread his needle for a long time afterwards, so disordered was the state of his vision. Instead of one needle the tailor saw three, and as he could not tell the real needle from its ghostike duplicates, there was slight chance of his threading it. This aneedote illustrates better than any mere description the physiological action of henbane.

The stramonium is another plant of the Night-shade order. It was unknown to the ancient Greeks and Romans, bat is now commen in Europe, having been brought from Central Asia in the middle ages by the wandering gipsies. Its active principle is called daturine, which exists in the leaves and in the seeds. 'Ihis prineiple is a potent narcotic alkaloid, resembling in its quality and the effects it produces the alkaloids yielded by the henbane and belladonna. It is a deadly poison, and among the most striking of its properties may be named the effect it produces on the pupil

andrakes

 e as the eo is ind nt which s. The rescence d net to of stupo-nsideralings, in tton-like is palish resence adomna; rolates Rhinon hought, was of ouns of time for ep that dminisut they 011 open cil that themraying 10 onle thread of his fild not hance escrip-of the eyo, namely, that of causing it to dilate strongly. Nevertheless the stramonium, or the thorn-aple ths it is sometimes called, like many other poisonous plants, has its beneficial uses. In Cochin China a decoction made of its leaves is corsidered an effectual remedy for hydrophobia, the terrible malady resulting from the bite of a mal dog; but this by somo is considered very doubtful. In small quantities daturine is very useful as a pain soother or anolyne, and as an antispasmodic. Persons sufering from asthma have found relief from smoking the dried leaves of the plant, or inhaling an infusion mado by pouring boiling water on the seeds or leaves. Great eare, however, shoald be used less the patient take an overdose. Tobaceo is another plant belonging to this natural order, and the use or abuse of which is too well known to require comizent here.

The order Euphorbiacere, to which the castor oil plant belonga, is mainly made up of very dangerous plants. The greater number of its species contain a milky, acrid, and poisonons juice, whicin often holds dissolverl, in addition to other principles, a peculiar elastic substance, and occasionally a coloring matter. The species Euphorbie, the type of this natural order, present an aspect of great variety. The manchincel is a large tree of intertropical America, celebrated for its peculiarly poisonous quaiities. If accomnts are to be trusted it is certain death for an individual to sleep under the shate of one of this species; and even rain which tonches the skin after having fallen upon the leaves of this tree raises a blister. Tho manchineel tree also brars tempting-looking fruit, from which an agreeablo dod is exhated, but even a small portion if eaten produces certain death.

The order called Loganiacece is also largely represented by poisonous plants. The sub-family strychos contains the most remarkable species of this natural order. The greater number possess in their bark and seeds two alkaline principles, termed respectively strychnine and brucine. Tho action of these on the animal organism is extremely violent. The Strychos-tiente is a climbing plant of the Javanese forests, with the juice of which the natives poison their arrows. It is the famous upas and is often confounded with another Javanese vegetable poison, obtained from tho Antiaris Toxicaria, a tree belonging to the natural family Artocarpere. The ourari, or wourali, is also a poison furnished by another momber of the same natural family, the stryelnos toxifera, a native of Guiana. Tho Indians who dwell on the banks of the Orinoco, the Ipura and the Rio Negro, employ this substance as a poison for their arrows. Tho nuxvomica tree, or koochla tree of India, is perlaps the most valuable of this tribe, furnishing an alkaloid, strychmine, very poisonous, but of great use in medicine.

The natural order Apocynacea, which name Greek scholars will recognise, and is significant of the dog-killing power of certain of its species, is also a dangerous tribe. The plants belonging to this order are
usually trees or shrubs, seldom herbs, and for the most part containing a milky juice. This natural order is rather frequent in tropical climates, but the number of species is very inconsiderable in our latitudes. The milky, acrid and bitter juice which flows from many of these plants imparts to the family an emetic and purgative tendeney which in some species is deleterious. The bark of many of the dog-banes contains a bitter astringent principle; in other species a tinctorial matter predominates. The seeds of many genera are poisonous. Many species of the genus cerbera, as well Asiatic as American, possess nareotic acrid seeds, sometimes poisonous, but useful as a remedy for the bites of serpents. The cerbera ahouai secretes an exceedingly poisonous juice, which is employed in Brazil for the purpose of stupefying fish. The poisonous tanghin is a native of Madagascar, about thirty feet ia height, yielding a dropaceous fruit which coutains an oily seed, and is employed by the natives judicially in the trials by poison. The accuser makes his complaint to the judge, who refers it to an official denominated the ampananghin, and whose office is the double one of priest and executoner. If sufficient presumptive evidence of crime is fortheoming, the tanghin is administered and the guilt or innocence of the accused is judged by the result. If he recover from the effeets of the poison he is declared imocent. If he die he is considered guilty and his goods are forfeited. Even the natural order of endogenous plants to which the grasses and cereals belong is not without its poisonous species. The darnel grass is strongly poisonous owing to the presence of the chem: ana prineiple loline. Festuea quadredentata, a species which grows abundantly in Peru, is mortal to cattle which graze upon it. Another species, balmogrostis, is juiceless, and, when swallowed by animals, injures their throats, rather on account of the finty matter with which it is profusely coated than because of any poisonous principle it contains. The orders here mentioned contain each many genera, species, and varieties, and what we have adduced as to poisonous vegetables gives only a very general idea of their number and varieties, in the vegetable kingdom.

Having taken a glance at the noxious portion of the vegetable world, it will be proper, for the purpose of contrast, to give a passing notice to the innoxions portion of it. With this part of the vegetable kingdom people are better aecquainted than they are with the other. In this part are contained the plants which furnish the food for the human raco and for the inferior orders of animals. It will not be necessary, therefore, to give any extended description of it ; for what every body knows to some extent, or may know extensively by a little observation, they need not be told about in detail in such a treatise as this.

All seed-learing plants are classed by botanists under the two general natural divisions of exogenous plants, or those which grow or increase by external depositions of their substance; and endogenous plants, or tho se
which grow or increase by internal depositions of their substance. Of the former class the oak, the elm, and most large trees are specinens; of tho latter the palm tree, the bamboo, the sugar cane, and a stalk of wheat, rye or oats may serve as specimens. Most of the vegetables which minister to our sustenance belong to the endogenous division. Thus, all the species of grasses are endogenous. The smaller species clothe our fields with verlure ard afford nourishment to cattle ; the larger species furnish us with bread and sugar, for the reader may remember that not only the species commonly called grass which the eattle graze upon, but wheat, barley, riee, maize, oats, rye, and even the sugar-cane, the banboo, and the palm-tree, are, botanieally considereel, grasses. Is it not wonderful that mankind subsists chiefly on grass ! Limneus, the celebratel Swedish naturalist, has remarked that the cow eats 270 species of plants, and rejects 218 ; the goat eats 449 , and rejects 126 ; the sheep eats 347 , and 1. jeets 141 ; the horse eats 262 , and rejects 212 ; and the hog, more nice in its taste than any of the rest, eats but 72 and rejects all the rest. Whether these animals reject certain plants on aecount of certain poisonons principles whieh they possess, or simply because of a peculiar nicety of taste in themselves, we shall leave to be determined by others.

Grasses are not excluded from any quarter of the globe, but the number of individuals, though not of species, is greatest in the northern temperate regions; also, they have become so transported from one region of the earth to another, that it seems now quite impossible to deteruine with certainty the native regions of many species. Oats and rye are mostly cultivated towarls the no:th; barley and wheat in more temperate regions; maize is a staple product of America, and riee of Asia. The seed or rather the fruit of these afford sustenance to the greater portions of the human race. The analogy of the chemical composition of grasses as well as their external characters indieates their mutual affinities, pointing out the whole family as essentially nutritive vegetables. The grain or seed contains starch or gluten in abundance, mixed with a certain quantity of sugar, the amount of which increases toward the period of germination ; they also contain a little fixed oil and various saline matters. Innocuity and the presence of nutritive prineiples are the grand characteristics of grasses physiologically considered. The Sugar-cane is supposed to be a native of South-eastern Asia. It was unknown to the ancient Greeks and Romans, as also was Sugar. From South-enstern Asia the cane was introduced into Arabia, and it thence was introduced into Egypt, Asia-Minor, Sicily, Italy and Spain. From the latter country it was transported to St. Domingo and the mainland of America. It is cultivated to a considerably large extent and furnishes much to the benefit of the human race. The corn-bearing grasses are appropriately denominated cercals, or plants of Ceres, tho goddess of corn, among the ancient

Greeks and Romans. Amongst these wheat takes the first rank. It is moro nutritive than any of the others, and is adapted to climes and tracts of greator diversity of character. Rice may be correctly described as a tropical watergrass, the conditions nccessary to its growth being a hot atmosphere, and a swampy soil. These conditions exist in Asia, where rice is cultivated to a large extent, and in the southern temperate and tropical climates of America. The conditions necessary to the growth of rice are unfavorable to the health of man. The palm tree is a plant which furnishes a number of useful products, such as oil, wine, dates, cocoa, nuts, hemp, astringent matter, sugar, and spirit ; also an excellent fruit is furnished by the banana, a species of palm tree. The maple tree affords a large amount of sugar to the people of the United States and Canada, who prepare and use that article to a great extent. The various species of apple tree furnish a fruit which is used in a variety of forms for human food. Also, the various species of peaches, plums, cherries, gooseberies, pruncs, apricots, pincapples, strawberries, raspberries, currants, grapes, ete, as well as the various species of wild fruits, too numerous indeed to mention here, and of a wholesome nature, all afford their stores of nutritive food for the sustenance of man. Also, if we enumerate the roots, bulls, and tubers, which are cultivated ly the farmer and gardener, such as parsnips, carrots, beets, turnips, rotatoes, etc., we shall find that a large store is furnished from this source, also, for the maintenance of man and beast.
If we enamerate the forest trees we have the various species of the oak, fir, pine, cedar, ash, larch, wall-nut, hickory, clm, birch, hemlock, etc. which all contribute to supply man's wants, if not in the way of food, yet in other important ways.
Then there are the various species of flowering plants which alorn the fields and gardens, which are not of a poisonous nature, and which add such varied and diversified beauties to the prospect before us. During the summer scason, when all nature is elothed with verdure, when the trees and plants are blooming with flowers and blossoms of varicd hue, when the birds are warbling their melodious notes, when the various species of corn are growing and ripening in the fields, when the various kinds of domestic animals are seen to gambol and frolic about the lawns, and nature seems to smile benignantly in bringing forth an abuudant supply for the wants of all her animate offispring, then does not our earth scem a present heaven!

If we take a survey of the various tribes of mankind we find a great variety of character and disposition displayed. The two extremes of evil and good are here comprised. Man is undoubtedly the most savage and brutal of all terrestrial animals, but is susceptible of becoming the most gentle, kind, and intelligent. In dealing with this part of our subject we shall first take a glance at the state of the uncivilized races of
mankind, and at those nations by whom terrible scenes of barbarity are wont to be enacted aud terr.ble deeds of atrocity are wont to be perpetrated, and then wo shall take a glance at the races called civilized, both of the past and present.
Contemplate with us the character and disposition of savage tribes, of the New Zealanders, the Sonth Sea Islanders, the Australian Bushmen, the Caffres, and numerous other African tribes; of the numerous nations of Indians of North and South Ameriea, of the ancient Mexicans, and of the Asiatic tribes of Huns, 'lartars, ete., and what a horrid and disgusting picture of human cruelty, brutality, barbarism, and savage malignaney will be presented to the mind. The most prominent feature which appears in the character of savage nations is their disposition for war, and to inflict revenge for real or supposed injuries. The dismal effects of the principle of hatred directed toward human beings, the disposition to be engaged in war continually, and the savage ferocity of the human mind when unrestrained by moral and prudential considerations, are nowhere more strikingly displayed than in the islands scattered through the wide expanse of the Pacific and Iudian oceans. Of the truth of those positions we have but too many melancholy examples, in the reports of missionaries and in the journals which have been published by navigators, from which we seleet a few. The first instance we shall adduce relates chiefly to the inhabitants of New Zealand. Captain Cook remarks, in relation to those islanders: "Their public contentions are frequent, or rather perpetual; for it appears, from their number of weapons and dexterity in using them, that war is their prineipal profession. The war-dance consists of a great variety of violent motions and hideous contortions of the limbs, during which the countenance also performs a part ; the tongue is frequently thrust out to an incredible length, and the eyelid so forcibly drawn up, that the white appears both above and below as well as on each side of the iris, so as to form a cirele around it ; nor is anything neglected so as to render the human shape frightful and deformed. 'lo such as have not been accustomed to such a practice they appear more like demons than men, and would almost chill the boldest with fear ; at the same time they brandish their spears, shake their darts, and cleave the air with their patoopatoos. To this succeeds a circumstance almost foretold in their fieree demeanor, horrid and disgraceful to human nature, which is cutting to pieces, even before being perfectly dead, the bodies of their enemies, and, after dressing them on a fire, devouring the flesh, not only without reluctance but with peculiar satisfaction." Ono cannot well conceive a more striking idea of the workings of pure malevolence, and of the rage ani fury of infernal fiends, than the picture here presented of those savage islanders. These people, so far as European power and civilization has not reached them, live under perpetual apprehension of being destroyed
by each other ; there being few of theso tribes who have not, as they believe, received wrong from some other tribe, which they are continually on the watch to avenge, and the desire of a good moal is no small incitement. "Many years will sometimes elapso before a favorable opportunity happens, bui the son never loses sight of an injury that has been dono his father. Their method of executing their horrible designs is by stealing upon the adverso party in the night, and if they find them unguarded, which is very sellom the case, they kill every one indiscriminately, not even sparing the women and children. When the massacre is completed they either feast and gorge themselves on the spot, or carry off as many of the dead bodies as they can, and devour them at home with atts of brutality too shocking to be described. If they are discovered before they execute their hoody purpose, they generally steal off again, and are sometimes pursued and attacked by the other party in their turn. To give quarter or to take prisoners make no part of their military law, so that the vanguished can save their lives only by flight. I'his perpetual state of var and destruetive method of conducting it, operates so strongly in producing halits of eireumspection, that one hardly ever finds a New Zealander of his guard, either by night or by day." The implacable hatred which these savages entertain for each other is illustrated in the following short narrative, also by Captain Cook. "Among our oceasiona! visitors was a chief called Kahoora, who, as I was informed, headed the party that cut off Captain Furneaus's peophe, and himself killed Mr. Rowe, the officer who commanded. To judge of the character of Kahoora from what I had head from many of his countrymen he seemed to be more feared than beloved among them. Not satisfied with telling me that he was a very bad man, some of them even importuned me to kill him, and I believe they were not a little surprised that I did not listen to them, for according, to their ideas of equity, this ought to have been done. But if I had followed the advice of all our pretended friends, I might have extinguished the whole race ; for the people of each villuge or lamlet by turns applied to me to destroy the others. One would have amost thought it impossible that so striking a proof of the divided state in which these people lived could have been assigned."

Similar dispositions are displayed by the inhabitants of almost all the other islands of the South Seas. The influene of Christianity does not as yet prevail very extensively among them. The following deseription is given by M. de la Perouse of the inhabitants of Maoma Orjolava, and the other islands in the Navigator's Arehipelago:-" 'lheir native ferocity of countenance always expresses either surprise or anger. The least dispute among them is followed by blows of sticks, clubs or paddles, and often, without doubt, costs the combatants their lives." With regard to the women he remarks:-"The gross effrontery of their conduct, the indecence y
of their motions, and the disgusting offers which they make of their favors rendered them fit mothers and wives for the ferocious beings that surroundeả us."

The natives of New Caledonia are a race of a similar description. Captain Cook describes thein as apparently a good-natured people, but subsequent navigators have found them to be the very reverse of what he described them, -as ferocious in the extreme, addicted to cannibalism, and to every barbarity shocking to humas nature. The French navigator, the Admiral D'Entrecasteaux, in his intercourse with these people received undoubted proof of their savage disposition, and of their being accustomed to eat human flesh. Speaking of one of the natives who had visited his ship, and had deseribed the various practices connected with c.nnibalism, he says: "It is difficult to depict the ferocious avidity with which he expressed to us in the flesh of their unfortunate victims was devoured by them after they had broiled it on the coals. This cannibal also let us know that the flesh of the arms and legs was cut into slices, and that they considered the most muscular parts a very agreeable dish. It was then easy for us to explain why they frequently felt our arms and legs, manifesting a violent longing ; they then uttered a faint whistling which they produced by closing their tecth, and applying to them the tip of the tongue; afterwards opening their mouth they smacked their lips several times in succession. The characters of the islanders now described may be considered as common tr, the inhabitants of the New Hebrides, the Friendly Islands, the Marquesas, the Sandwich Islands, New Guinea, New Britain, the Ladrones, and almost all the islands that are seattered through the vast expanse of the Pacific Ocean. Captain Cook, in deseribing the natives of New Zealand, again remarks : "The inhabitants of the other islands of the South Seas have not even the ideas of indecency with respect to any object or to any action." Of the natives of Otaheite he declares: "They are all arrant thieves, and can pick pockets with the dexterity of the most expert London blackguard." When describing the societics distinguished by the name of Arreoy he declares as a characteristic of the female part of the community: "If any of the women happens to be with child, which in this manner of life lappens less frequently than in ordinary cases, the poor infant is smothered the moment it is born, that it may be no incumbrance to the father, nor interrupt the mother in tho pleasures of her diabolical prostitution." Another circumstance mentioned by the same navigator exhibits their former moral character in a still moro shocking point of view. On the approach of war with any of the neighboring islands, or on other important occasions, human sacrifices were a universal practice. "When I described," says Captain Cook, " the Native at Tongabatoo, I mentioned that on the approaching sequel of that festival we had been told that ten
men were to be sacrified. This may give us an iler of the extent of tho religious massacres on that island. And, though we should suppose that never more than one person is sacrificed on any single occasion at Otaheite, it is more than probable that these oceasions happened so frequently as to make a shocking waste of the human race, for I counted no less than forty-nine skulls of former victims lying before the Morai, where we saw one more added to the number. And, as none of these skulls had as yet suffered any considerable change from the weather, it may be inferred that ro great length of time had clapsed since this considerable number of unhappy wretehes had been offered on the altar of hlood." He likewiso informs us that human sacrifices were more frecfuent in the Sandwich than in the other islands. "These horrid rites," says he, "are not only had recourse to upon the commencement of war and preceling great battles, and other signal enterprises, but the death of any considerable chief cails for the sacrifice of one or more tow-tows, that is, vulgar or low persons, according to his rank, and we were told that ten men were destined to suffer on the death of 'lerrecoboo, one of their great chicfs."

With respect to the North American Indians (who have now almost disappeared from the Eastern States and Canada) it is the uniform deseription given of them by all who have travelled or lived among them in their wild state that, if we except hunting, war is the only employment of the men, and every other concern is le't to the women. Their most common motivo for entering into war is either to revenge themselves for the death of some friend, or to aecuire prisoners who may assist them in their hunting, and whom they adopt into their society. In these wars they are savage and eruel to an incredible degree. They enter unawares the villages of their foes, and, while the flower of the nation are engaged in hunting, massacre all the ehildren, women, and helpless old men, or make prisoners of as many as they can manage. But, when the enemy is apposed of their design, and is coming on in arms against them they throw themselves flat on the ground among the withered herbs and leaves which their faces are pained to resemble. They then allow a part to pass unmolested, when all at once, with a tremendous shout, rising up from the ambush, they pour a storm of musket-balls on their foes. If the force on each side continues nearly equal, the fierce spirits of these savages, inflamed by the loss of friends, ean no longer be restrained. They abandon their distant war, they rush upon one another with clubs and tomahawks in their hands, magnifying their own courage and insulting their enemies. A crucl combat ensucs; death appears in a thousand hideous forms, wioch would congeal the blood of civilized people to behold, but which increases the fury of these savages. They trample, they insult over the dead bodies, tearing the scalp from the head, wallowing in their blood like wild beasts, and sometimes devouring their flesh. The flame of war rages on until it meets with

It of the pose that Otaheite, iently as less than o we saw all as yet arred that umber of likewiso wich than only had at battles, chief calls w persons, estined to

1ost disapescription their wild the men, on motive h of some ting, and and crucl foes, and, o all the many as sign, and e ground hin'ed to at once, storm of es nearly friends, hey rush gnifying ensucs ; ho blood of these ring tho d someets with
no resistance, then the prisoners are secured, who fate is a thousand times more dreadful than theirs who have died in the field. The conquerors set up a hideous howling to lament the frionds they have lost. They approach to their own village, the womon with frightful shrieks come out to mourn their dead brothers, or their husbands. An orator proclains aloud a circumstantial account of every particular of tho expelition, and, as ho mentions the names of those who have fallon, the shrieks of the women are redoubled. The last ceromony is the proclamation of victory; each individual thon forgotshis private inisfortune, and joins in the trimmph of his nation; all tears are wiped from their eyos; and, by a transition maccountable to us, thoy pass in a moment from the bitterness of sorrow to an extravagance of joy. As they feel nothing but revenge for tho enemies of their nation, their prisoners are treatod with extrene cruelty, The punishments inflicted on such prisoners as are doomed to death aro too shocking and horrible to bo exhibited in detail; ono plucks out the nails of the prisoner by the roots; another takes a finger into his month and tears off the flesh with his teeth; a, third thrusts the finger mangled as it is into the bowl of a pipe, made red hot, and smokes it as if it were tobacco; they then pound his tocs and fingers to pieces betweon two stones; they apply red hot iron to his mangled body ; they pull off his flesh, thus mangled and roasted, and devour it greedily; and thus thoy continuo for several hours, and sometimes for a wholo day, until they penctrate to the vital parts and complotely exhaust the spring of lifo. Evou the women, forgetting the human as well as the female nature, and transformed into something worse than the reputed Furies, frequeatly outdo tho men in this scene of horror, while the principal persons of the tribe sit round the stake to which the prisoner is fixed, smoking and looking on without betraying the least emotion. And, what is quite as remarkable, the prisoner himself endeavors to brave his torments with a stoical apathy: " I do not fear death," (he exclaims in the face of his tormentors,) " nor any kind of tortures; those that fear them are cowards, they are less than women. May my enemies bo confonnded with despair and rage! Oh! that I could devour them and drink their bloed to the last drop"! Such is a faint picture of the ferocious dispositions, which, with a few modifications, have characterized the Indians of North and South America, and which we have reason to believe yet characterize those who are beyond the reach or influence of the white races. We ourself, have some experience of the character of the Indians who live in the neighborhood of the whites; for happening occasionally to be whero they were, and obscrving their noisy conversation and their unruly gestures, we felt considerably alarmed for our own safeiy, and did not wish to be among them longer than our dutics required.

If we cross the Atlantic and land on the shores of Africa we shall find the inhabitants of that continent exhibiting dispositions no less cruel und forocions. Bosman relates tho following instances of cruelties practised by the Adomeso Negroes, inhabiting the banks of the Praa or Chamah liver: "Anqua, the king, having in an engagement taken five of his principal Antese enemies prisoners wounded them all over: after which with a more than brutal fury, he satiated, though not tired himself, by sucking their blood at the gaping wounds; but bearing a more than ordinary grudge against ono of them he caused him to bo laid bound at his feet, and his body to be pierced with hot irons, gathering the blood that issued from him in a vessel, one half of which he drank, and offered up the rest to his god. On another oceasion he put to death one of his wives and a slave, drinking their blood also, as was his usual practico with his enemies."* Dispositions and practices quite as abominable are exhibited in the Kingdom of Dahomey near the gulf of Guinea. An immolation of human victims for the purpose of watering the graves of the king's ancestors, and of supplying them with servants of various descriptions in the other world, takes place every y ar, at a grand festival which is held generally in April and May. The victims aro generally prisoners of war reserved for tho purpose, but should there be a lack of these, the number, between sixty and seventy, is made up from the most convenient of his own subjects. The immolation is not confined to this particular period ; for at any time, should it be necessary to send an account to his forefathers of any remarkable event, the king despatches a courier to the shades, by delivering a message to whomsoever may happen to be near him, and then ordering his head to be chopped off immediately. It is considered an honor when His Majesty personally condescends to become the executioner in these cases, an office in which the king prides himself in being expert. The governor was present on one occasion, when a poor fellow, whose fear of death outweighing the sense of the honor conferred upon him, on being desired to carry some message to his father declared on his knees that he was macc anted with the way, on which the tyrant vocifereted. "I'll show you the way," and with one blow made the head fly many yards from lis borly, highly indignant that there should have been the least expression of reluctance. \dagger On the thatched roofs of the guard-houses which surround the palace of this tyrant are ranged, on wooden stakes, numbers of human skulls; the top of the wall which encloses an area before it is stuck full of human jar-bones, and the path leading to the door is paved with skulls.

In the Kingdom of Ashantee similar practices miformly prevail. "When the king of this country," says Dupuis, "was about to open the

[^4] el .nd actised hamalı of his which elf, by ordinat his d that up the s and a ies." King an vics, and world, a April for tho n sixty s. Tho should arkable a mesing his en His cases, vernor th outired to unacyou the borly, relucnind the human full of culls. revail. on the
campaign in Gaman, he collected together his priests to invoke the Royal Fetische (idol) and perform the necessary orgies to ensure success. Theso ministers of superstition sacrificed thirty-two malo, and eighteen female victims, as an expiatory offering to the gods; but the answers from the priests being deemed by the council as still devoid of inspiration, the king was induced to makes a custom at the sepulchres of his ancestors, where many hundreds bled. 'Ihis, it is affirmed, propitiated the wrath of the adveren god." The same king when he returned from the campaign, having discovered a conspiracy, decreed that seventeen of his wives along with his own sistor should be strangled and beheaded. His sister's paramour, and all those of the same party, were doomed to the most cruel deaths, at the grave of the king's mother. While these butcheries were transacting the king prepared to enter the palace; and in the act of crossing the threshhold of the outer gate was met by several of his wives whose anxicty to embrace their sovereign lord impelled them thus to overstep the boundary of female decorum in Ashantee ; for it happened that the king was accompanied by a number of his captains, who aecordingly were compelled to cover their faces with both their hands, and fly from the spot. This is said to have enraged the monarch, though his resentment proceeded no further than words, and he returned the embraces of lis wives; butanother cause of anger soon after occurred, and he was inflamed to the highest pitel of indignation, and in a paroxysm of anger, caused these unhappy beings to be cut into pieces before his face, giving orders at the same time to cast the fragmenta into the forest to bo devoured by birds and beasts of prey, nor did the atonement rest hero; for six more unhappy females were impeached of inconstancy, and they also expiated their faults with their lives. Liko another Ulysses, II is Majesty then devoted himself to the purification of his pala e, when to sum up the whole horror of these bloody deeds, two thousand wretehes s lected fiom the Gaman prisoners of war, were slaughtered over the royal death-stool in honor of the shades of departed kings and heroes. We are not to imagine that such fiendish and malignant dispositions are confined to kings and the ruling order of society. Wherever such ferocious passions are displayed among barbarous chicftams, they pervade to a greater or less extent the great mass of tho people, and almost every one in proportion to the power with which he is invested perpetrates similar atrocities. The following instance, selected from Major Gray's "Travels in Africa in 1824," will corroborate this position, and also show for how many acts of cruelty and injustice the abettors of the infamous traffic in slaves are accountable. The Kaartan force which the Major accompanied had made 107 prisoners, chiefly women and children, in a predatory excursion into Bondoo, for the purpose of obtaining a supply of slaves. The following is an account of the mamer in which they were dragred
along: "The men were tied in pairs by the neeks, their hands secured behind their backs; the women by the neeks only, but their hands were not left free from any sense of fecling for them, but in order to onablo them to balance their immenso loads of corn or riee, which they were obliged to carry on their heads, and their children on their backs. I had an opportmity, says Major Gray, of witnessing, during this short march, the new-made slaves, and the sufferings to which they are subjected in their first state of bondage. They were hurried along, tied, at a pace little short of ruming, to eunble them to keep up with the horsemen, who drove them on as Sinithfiold drovers do fatigned bullocks. Many of the women were old, and by no means able to endure such treatment. One in particular would not have friled to excite the tenderest feelings in the breast of noy one, save a savage Λ frican. She was at least sixty years old, in the most miserable state of emaciation and debility, nearly donbled together, and with diffenty dragging her tottering limbs along. 'I'O crown the heart-rending pieture, she was naked save from her waist to about half way to the knees. All this did not prevent her inhman captor from making her carry a heary load of water, while with a rope about her neek he drove her before his horse; and whenever sho showed the least inelination to stop he beat her in the most mumereiful manner with a stick. The inhabitants of all the interior of Africa, and romed its northorn, eastern and western coasts, disphay in almost every tribo the most inhuman and. depraved dispositions. The Algerines are characterized as the most eruet and dangerous pirates, base, perfidious and rapacions, to the last degroo. No oaths or ties, human or divine, will avail to bind them, when their interest interferes. Whatever respeet they pretend to pay to their prophet Mahomet, gold is the only idol which they really worship. The omporors of Morocco are notorious as a set of rapacious and riod-thirsty tyrants, who have lised in a state of habitual warfare with Christian nations, and in the perpetration of deeds of injustice and eruelty. The Gallas, on the borders of Abyssinia, are a barbarous and warlike nation. They are hardy and of a ferocious disposition, tramed to the love of desporate achievements, taught to believe that conquest entitles them to the possession of whatever they desire, and to look upon death with the utmost contempt; and, therefore, in their wars they fight with the most determined resolution, and neither give nor expect any quarter. The inhabitants of Adel; too, are of a warlike disposition, and most frequently live in enmity with those around them. The Feloops are gloomy and unforgiving in their tempers, thirsting for vengeance, even in the hour of dissolution, and leaving to their children to avenge their quarrels. The inhabitants of the grain coast, especially the Mulattoes, are said to be a most abandoned set of people. The men are drunkards, lewl, thievish and treacherous, and
the women are the most abandund prostitutes, sacrificing themselves at all tines, and to all sorts of men, without the least dogree of restraint. *

The natives of Ansico, which borders on Angola, live by plundering all who happen to fill is their way, some of whom they kill and othors they keep slaves. The Boshemen are land pirates, who live without laws and withont discipline: who lurk in thickets to watch tho passage of travellers and shoot them with poisoned arrows, in order to seize their catt!c. "The natives of Congro," says M. de la Brosse in his "Iravels along the Coast of Angola,' 1793, are extremely treacherous and vindictive. 'Thoy daily demanded of us some brauly for the use of the king and tho chief men of the town. One day this reguest was denied, and we had soon reason to repent it; for all the linglish and French officers having gono to fish on a small lake near the sea-const, thoy erected a tont for the purpose of clrossing and enting the fish they had caught, whon amosing themselves alter the repast sevon or eight negroes, who were the chiefs of Loango, artived in Sedans, and presented their hands according to tho custon of the comitry. The negroes privately rubbed the hands of tho officers with a subslo poison, which acts instantancously, and accordingly five captains and threo surgeons died on the spot." 'Tho Moors are characterized by Mungo Park as having cruelty and low cunning dopicted on their countonances. Their treachery and malevolence are displayed in their plundering excursions againt the negro villages. Without the smallest provocation, and sometimes under the fairest professions of friendship, they will seize upon the cattle of the negroes, and sometimes upon the people themselves. 'The Bedouins are plunderers of the cultivated lands and highway robbors ; they watch every opportmity of taking vongeance on their enomios, and their amimosities are transmitted as an inheritanco from father to childron. Even the Egyptians, who are farther advanced in civilization than the tribes to which wo have alluded, are characterized by excessivo pride, vindictivo tempers, inordinato passions, and various specios of moral turpitude. 'There is a trait in the character of the women of this nation, adverted to by Sonini in his "Travels in Egypt," which is particularly odious and horriblo. On discovering any partiality in their husbands for other females, they aro transported into a most unbounded and jealous fury. Such are their deceit and vindictiveness on these occasions, that thoy instil into the blood of their faithless or suspected husbands a slow and mortal poison. They meditate their revenge in silence, and they enjoy the diabolical satisfactio.. of taking off an unhappy being by a lingoring death. It is said their own persons supply the horrid means of perpetrating their malicious designs on their husbands, and that they mix with their aliment a er tain portion of an ingredient of a poisonous nature, which infallibly induces a slow languor

[^5]and consumption, and in time brings the wretehed victims to the grave. The symptoms of the disease are droadful. The hody desiceates, the limbs become exceedingly woak, the gums rot, the teeth loosen, the hair falls off, and at length, having dragged out a miserable and tortured existence for a whole year or more, the unhappy being dies in the most excruciating torments.

If we pass from Afrien to the regions of Asia we shall fiud its imbabitants of a similarly depraved character, and practising similar principles in all the varions ranks of its population. Here tyranny in its most degrading and cruel forms reigns supreme and uncontrolled over a superstitions a degraded, and an idolatrons race of mankind. The following, in relation to a petty tyrant of Persia, may serve as a specimen of Λ siatic tyramy : " The governor, Kulfecea Khan, is pronounced to be a cruel and unprincipled tyrant ; unfortumately for the people he has the ear of the sovercign, and they have no resourco against his rapacity. He pays to the Crown 7000 tomaus * a year, but it is asserted that ho collects from the district 100,000 . His oppression was so grievous that the inhabitants, wearicd out, went in a body to the king to complain ; but His Majesty only referred them back to their tyrant, who, exasperated at their boldness, wreaked upon them a cruel vengeance. It is said that he maimed and put to death upward of a thousand of both sexes, cutting off the hamds, putting out the eyes, and otherwise mutilating the men ; and cutting of tho noses, ears and breasts of the women. The people, desponding and broken-hearted after this, paid in so far as they were ablo the rapacious demands of their oppressor, and the natural conseguence, ruin and desolation, has cusucd." \dagger
Sir John Chardin gives the following account of the iuhabitants of Mingrelia, particuiarly the women: "Ihe people are generally handsome, the men strong and well made, and the women very beautiful, but both sexes aro very vicious and debanched. The women, though lively, civil and affectionate, are very perfidious ; for there is no wickeducss which they will not perpetrate, in order to procure, to preserve, or to get rid of their gallants. The men likerrise possess many bad qualities. All of them are trained to robbery, which they study both as a business and as an amusement. With great satisfaction they relate the depradations they havo committed, and from this polluted source they derivo their greatest praise and honor. In Mingrelia fasehood, depredation, and theft are good actions; and whoredom, bigany, and incest, are esteemed as virtuous habits. The men marry two or three wives at a time, and keep as many concubines as they choose. 'lhey not only make a common practice of selling their

[^6]e grave. ites, the the hair red existhe most unbitants les in all egrading titious a relation yramy : 1 unprinvereign, - Crown from the abitants, sty only ooldness, med and o hands, itting off ling and apacious nid deso-

of Min-

 me, the haseres vil and ch they of their em are amusehavo praiso ctions ; The nes as theirchildreln, eithor for goll or in exchange for wares and provisions, but even murder them or bury them ative, when they find it dilfieult to hing them up."
'Ihe 'lartars, who ocenpy vast regions of the high table-lands of Eastern Asia, aro miformly described by travellers as a rude, plumbering, and uncultivated race of men. " There is something frightful," says Smellie, "in the comentenances of the Calumek Tarturs. All of them are wandering vagahonds, and live in tents male of eloth and skius. They eat the tlesh of horses, either raw or a little softened liy putrelying under their saddles. No marks of religion, or of nuy decency in their manners, are to be found amongst most of those triles. 'lhey are fierce, warlike, hardy, and brutally gross. I'liey are all rohlers, and the Tartars of Daghestan, who border on cevilized nations, have a great trade in slares, whom they carry off by force, and sell to the Persians and Turks." *
'lhe Arabinns, like the 'larturs, live in a state of wildness and lawless independency; their chiels authorize rape, theft, and robbery. Jhey hold virtne in no estimation, and ghory in almost every species of vico. They roan about in the desert, and attack carnvans and travellers, wherever they fall in with them, whom thoy frequently phunder of their property and murder. The Clinese, though muloubtedly more civilized than most of the tribes alrealy mentioned, nud though they merit prase for their industry, perseverance and ingennity, are as despicable in their moral chamacters, and as destitute of true benevolence, as ahmost nuy mation on the earth. Avarice is their leading passion, and in order to gratify it they practice every species of duplieity and fraud. They are not wont to be influenced by motives either of honesty or humanity ; and they surpass every other nation in private cheating. Captain Cook olserves that, the danger of being hanged for any crime being excepted, "there is nothing, however infinnous, which the Chinese will refuse to do for gain." In this declaration ino concurs with most writers on the Chinese, hoth ancient and modern. 'Tho Burmans are a lively inguisitive race, irrascible and inpatient ; while in peace, they give proof of a certain degree of gentleness and civilization ; in war, the y display the ferocity of savages. The Malays, though inhabiting a comutry beautiful and delightful in the extreme; where refres!ing gales and cooling streans assuage the heat; where the soil teems with delicions fruits; where the trees are chthed with a continual verdure, and the flowers breathe their fragrant odors, are a people remarkably ferocious in their manners. They go always arıned, exsept the slaves, and would think it a disgrace to go abroad withont their poiniarls. The inland inhabitants of Malacea, called linnucaboes, are a ba barous piople, delighting in doing continued mischief to their neigh-

[^7]bors, on which account, it is said, no grain is grown in Malacen, but what is in gardens enclosed with the thickest hedges, or doep ditches; for when the corn is grown on the open plain the Monucaboes never fail to set fire to it.

Chardin describes the Persians as warlike, vain, and nmbitions of praise, exceedingly voluptuous, prodigal, laxurious and adducted to gallantry. Althongh this country is regarded by tho Westorn nations as one of the most civilized in Asia, it is well known that the wars and the fiendish cruelties in which the despots of Persia havo been engaged, have changed many of the provinces of that comutry into scones of sterility and desolation; and much of the miscries of famine, which has recently been desolating that country, is owing to its misgovernment.

The Hindoos are effeminate, luxurious, and practisod in the arts of dissimulation. They ean caress those whom they hate, and behave with the atmost affability and kindness to those whom they intend to deprive of existence by the most sanguinary means. Though they soldom scold or wrangle, they often stab each other insidionsly, and without any public quarrel gratify a private revenge. The destruction of infints, the immolation of widows, the drowning of aged parents, which prevail among them, and the cruel and illolatrous rites which distinguish their religions services, are too well known to require description.

The Turks though grave, sedate, and rather hypoehondriac, yot when agitated by passion are furious, raging, and ungovernablo, dissimulativo, jealous, suspicions and vindictive. They are superstitious and obstinately tenacious in religions matters, and, until of late, did not ordinarily exereiso benevolence or even humanity towards those whose religion differed from theirs. Interest appears their supremo good, and, when that comes in competition, all ties of religion, consanguinity and friendship are, with the generality of them, speedily dissolved. They have deprived of their tiberty, and to a great extent of their wealth, those who havo been subjected to their iron seeptre, and have plunged them into the depths of moral and mental debasement. Their devastations and cruelties, and the deeds of injustice and horror which they have committed, are detailed r:non the pages of history, and the y are scarcely surpassed by the atrocities of the most savage hordes of mankind.

Such is a partial review of the moral state of the savago and semi-civilized races of mankind, and shall wo find a review of tho nations called civilized to present a favorable contrast to it? Shall wo find that the general moral goodness of the nations called civilized compares favorably with the radical and general moral badness of the nations we have passed in review? Each intelligent person can answer this for himself. What one nation can be pointed to as a good moral example for all other nations to follow? It will be much easier to
find an individual man whoso moral example would bo worthy of being imitated by all the inhabitants of his own nation and all mankind than it. would be to find a nation whose moral character, as a nation, would be worthy of being initated by all other nations.
In tho moral world, as well as in the physical,there are degrees of approximation to perfection. The physical universe, of course, always exists perfectly constituted, but within the range of our observation wo find changes continually taking placo in nature. There is first the blade, then the ear, after that the full corn in the ear. The moral world exists in relation to man, and so changes to suit his changeable nature that wo hear of moral badness as well as moral goolness. And then there aro legrees of approximation from a very bad to a very good moral character. 'lho word moral, derived from tho Latin word mos, morcs, meaning customs, manners, usages, etc., will clearly show the distinction between the physical and moral world, and that the moral world has special reference to rational beings. l'eople's morals are their manners, customs, usages, cte., in their intercourses which each other ; and the morals of an individual are his or her manners, customs, usages, practices, etc., in relation to one's self and to others. Hence, as the manners and customs of a people react in forming their permanent character, wo hear of a good or bad moral character, natioual as well as individual. As mankind has always existed, so mankind has always had, in somo sort, manners, customs, usages, ctc., and so the moral world is always co-existent with the physical. But the moral world exists especially in reference to man ; he may bo said to have created it for his own purposes; and if by any catastrophe, now unknown to us, the race of man should entircly perish from the earth, one world would perish with him, the moral world, which he has created for his own purposes. Tho original thinker in his first excursions is apt to suppose that that which goes by the name of moral world is not worthy of the name world. What, he says, have not all the lower orders of animals their peculiar habits as well as man; habits, which in the case of some of them, as the beaver, the \log, tho mole, and the bee, amount to what might be called manners and customs? Or, is the routine of mankind in their intercourses with each other, in accordance with established rules or laws, called social, political and religious, worthy of the name of world as compared with the physical world? But such an one should bethink himself that the term world (the Greek representative of which is cosmos, signifying order, or systematic arrangement,) involves the idea of system and order ; and the fundamental idea of truc morality is order. Thus, the law of Moses, contained in the Ten Commandments, is called the Moral Law, because it contains a system of rules which, if perfectly and universally observed, would ensure the preservation and continuance of order among all human beings.

Thas the distinetion is clenty seen lontwen the physinal mut mornt
 world would crase to ariat with them: but the physien werth winht still

 main, always ne floy mer du.

 But on the wher haml. we heliew that, na man has mbatye exisomb, su low

 will montions th wheng his moral syatem, modifying it, rementolling it,
 change its momal syand in part, ar may chame it in whote andial, puti-

 in the Fon commandmants is hore deaty rengnizat.

And men he ne havely mbine the stater of morat matacher if the nations callod divilized. Among the meionts the lireeks and Bumana

 ly whe modergatmatise. But what intomation do the wemede of hiadney
 Teathery and nprosan, and all sayta af rime comprise mast in it. In
 these nathoms cmased in wars. The war of the cimem Shates with There. an acomut of which we hare int the " liad" oi Homer, athoment it is

 geass comed in the duwhall of Trey; and, thongh wo have me coman
 mumbers said io have horen elgaged we hane the hass of life must haw
 fallon in the yar 1 sist before Christ. We mentem this wat to show what

 y corlings mal lilloning all theso there wrove onlless wars mal poplontions
between the petty Grecian States themselves, is which wero displayed the basest intrigue, perfidy, treachery, dishonesty and animosity. They made truces with each other only to break them when they got a fair opportunity ; nor did they lose any occasion which presented itself of inflicting damage on each other when at war, attacking each other at night, and murdering and robbing all they could. And it shou'd be borne in mind that the Greeks were a shrewd, cunning people ; they united the crinning and treachery of the fox with the boldness and ferocity of tho lion and the tiger; and in very numerous individual cases the wisdom of the sage with the courage of the warrior.

The opening history of the Romans also represonts that people as engaged in war. The founders of Rome are represented in mythical tradition as descended from the Trojans, who, after the fall of Troy, emigrated to Italy under the leadership of the Trojan chief, Eneas. Romulus and Remus, the descendants of Eneas on their mother's side, and who are represented as having the god Murs for their father, are said to have founded the city, Rome, about the year 753 B.C. In a dispute which arose between the two brothers, as to the name to be given to the new city, Romulns is said to have slain his brether Remus, and so the city was called Rome after the name Romulus. (This, as we have mentioned, is derived from tradition, and is not at all to be relied on as authentic history ; indeed there are reasons to believe the city, Rome, may have been an old city, before the time it is said to have been founded by Romulus and Remus.) But it gees on to say: Tho new city being well filled with men who flocked to it from all sides, but there being a scarcity of women, Romulus, in order to obtain wives for his citizen-subjects, is said to have made application to the neighboring communities, with that in view; but his proposal being treated with contempt, he resolved to obtain by stratagem what had been denied his honorable request. He invited certain tribes of the Sabines and Latins to come to Rome to witness certain festive games, and when they were assembled his Romans fell upon the daughters of their guests and carried them off by force. In consequenco of this Rome became involved in a war with the Sabines, which, however, was brought to an amicable conclusion by the intervention of the women, who threw themselves between the two armies and declared themselves willing to share the fate of their new husbands. After this Romulus is said to have waged successful war against Fidenæ and the Etruscan town of Veii, the latter of which he compelled to give up a portion of its territory. His reign is said to have extended over a period of thirty-eight years, 753-716 B.C., and his death was as marvellous as his birth; for while he was reviewing his peoplo his father, Mars, descended in a tempest and bore him up to heaven. Undor the namo of Quirinus he was afterwards worshipped as a god for a period of nearly eleven
h:ndred years, from the time he is said to have lived to the establishment of the Christian religion, in the empire, by Constantine, A.D. 330. The same honors were paid him as to his father Mars, and it was believed that he watched for the interest of the state he had founded. This may have been one cause of the invincibility of the Romans in battle, that they thought themselves watched over, favored, and assisted by the founder of their state. Men often believe a lie as if it were the truth ; but firmly, though blindly, beiieving it, it is as truth to them. Although this account, as that of the war of Troy, is mythical, it nevertheless shows us the warlike practices of these people in carly historic times, and as we find them to be at the very beginning of their history, so we may certainly conclude them to have been before.

From the reputed time of Romulus to that of the Sicilian and Carthaginian wars, for a period of between three and four hundruu ycars, the Romans were perpetaally engaged in contests with the Italian tribes. The Etruscans, the Latins, the Marsians, the Hernicans, the Equians, the Pelignians, the Umbrians, the Lucanians, and the Samnites, were all subjugated by Rome. She then proceeded to subdue the Grecian States of Southern Italy, and, after continuing the war for many years, during which time the Romans fought many and hard battles, especially with Pyrrhus, King of Epirus, who had come from Greece with an army to assist these Grecian colonics, Rome finally succeeded in conquering both Pyrrhus and all the Grecian States of Southern Italy, and in establishing her government over these States.

In more modern times we have a counterpart for Rome in the Ange. Saxon IIeptarchy; for after, by conquest or otherwise, the seven Saxori kingdoms were brought under the power of the king of Wessex, their forces being concentrated, they expanded by degrees on all sides, and, under a succession of Norman princes, brought into subjection the remaining parts of South Bitain, and eventually Ireland. Scotland was united to the govermment in after times, and by peaceful means. But as Rome did not ceaso to advance her conquests after she had subdued Italy and Sicily, neither did the Anglo.Saxons. when they had subdued Britain and Ireland; but they advanced .a all directions in enterprise and arms, until to-day the sun never sets upon the Anglo-Saxon race and language, and their influence in arts and arms is far more than commensurate with the , countries they inhabit. But the comparison in other respects stands thus,--if in the acquisition of territory England slew her thousands, Rome did her tens of thousands. It is to be hoped that, henceforth, England will take care that she add not largely to her cup of blood by war.

Carthage was originally a colony of Phoniciais who, about the year 800 B.C., settled on the northern coast of Africa. These colonists increased their dominions by inroads on the neighboring tribes, and, being
a naval power, by degrees became masters of almost every island in the Mediterranean. Thus Carthage may be truly said to have become great at the expense of her neighbors. Their efforts to conquer Sicily brought them into collision with the now formidable forees of Rome. The confliets between Rome and Carthage are distinguished in history by the name of the Punic Wars, Punic meaning Phoenician, for Carthage, as we have said, was a Phoenician colong. The first Punic war, beginning B.C. 264, lasted twenty-four years; the second seven, and the third four years and some months. In the last contest the city of Carthage was destroyed to its foundations by the Romans. It was delivered up by Scipio, the Roman general, to be plundered by the soldiers; its gold, silver, statues, and other treasures amounting to $4,470,000$ pounds weight of silver were carried to Rome ; its towers, ramparts, walls and all the works which the Carthaginians had raised in the course of many centuries, were levelled to the ground. Fires were set to the edifices of the once proud metropolis, which consumed them all; not a single house, it is said, escaped the fury of the flames. And although the fire began in all quarters, and burned with great violence, it continued for seventeen days before all the buildings were consumed. Thus perished a city which contained 700,000 inhabitants, and which had waged so many ferocious wars with neighboring nations-a terrible example of the destructive effects produced by malevolent passions in war, and of the retributive justice of the Governor of the universe. The destruction of human life in the wars which Rome waged with Carthage is beyond all specific computation. During the space of sixteen years Hannibal, the Carthaginian general, sacked no less than fourteen hundred towns, and destroyed three hundred thousand of his enemies, and we may safely reckon that nearly an equal number of his own men were eut off by the opposing Roman armies; so that several millions of human beings must have been sacrificed in these bloody and cruel wars.

The following is a summary statement of the number of human beings that were sacrificed in a few of the battles recorded in history, as fought for the most part by the Greeks and Romans against their enemies. In the battle of Issus, between Alexander the Great, at the head of the Greeks, and Darius the Persian, there are said to have been slain 110,000; in the battle of Arbela, two years afterwards, between the same two despots, 300,000 . In the siege of Jermsalem by Vespasian and Titus, according to Josephus, there were destroyed $1,110,000$. And there are said to have been slain in Jerusalem in the year 170 B.C., by Antiochus Epiphanes, celebrated for having compelled the Jews to worship his image, which he introduced to their temple, 40,000 . In the year 101, B.C., in an engagement had between the Romans under Caius Marius, their consul, and the German tribes of Cimbri and Teutons, in transalpine Gaul, there
are said to have been slain of these barbarians, aside from what fell on the Roman side, 200,000 men,-some historians say 290,000 ; and it is related that the inhabitants of these countries in which the battle occurred, made fences for vineyards out of the bones. In the ensuing year the Romans, under the command of the same consul, slaughtered 140,000 of the Cimbri, and took 60,000 prisoners. In the year 105 B.C. the Romans in a single battle with the Cimbri and Teutons lost upwards of 80,000 men. In the battle of Cannæ the Romans were surrounded by the forces of Hannibal and cut to pieces, after an engagement of only three hours; the carnage became so dreadful that even the Carthaginian general cried out to spare the conquered. Above 40,000 Romans lay dead on the field, and 6000 of the Carthaginians. What a horrible exhibition of the rage and fury of diabolical passions must have taken place on this occasion; and what a dreaful scene must this ficld of battle have presented, when we consider that, in the mode of warfare of those days, the slain were literally mangled and cut to pieces! In the battle between Scipio and Hasdrubal 40,000 are said to have fallen. At Cyrene there are said to have been slain of Romans and Greeks, by the Jews, 220,000 ; in Egypt and Cyprus in the reign of Trajan, 240,000; and in the reign of Hadrian, 580,000 Jews. After Julius Cessar had carried his arms into the territories of the Usipetes in Germany, he is said to have defeated them with such slaughter that 400,000 perished in one battle. (This most probably is exaggerated.) In the battle of Chalons, between the Huns, under Atilla, and the Romans, there perished about 300,000 . In the year 631 A.D. there are said to have been slain by the Saracens in Syria, 60,000 . In the invasion of Lombardy and Milan, by the Goths, no less than 300,000 . In A.D. 734 by the Saracens in Spain, 370,000. In the battle of Yermark; 150,000 . In the battle between Charles Martel and the Mahometans, 350,000 , at the least computation, are said to have been slain. In the battle of Muret, in A.D. 1213, between the Catholics and Albigenses, 32,000 , are said to have fallen. In the battle of Cressy, between the En ${ }_{-}$lish and French, in $1346,50,000$. In the battle of Halidon Hill, in 1333, 20,000. In the battle of Agincourt, in 1415, 20,000 . In the battle of Towton, in 1461, 37,000. In the battle of Lepanto, in 1571, 52,000. In the battle of Fontenoy, $100,000$.

I'be destruction of human life in the wars that accompanied and followed the invasions of the barbarous nations who overthrew the Roman Empire in the West is beyond all specific calculation. It forms an era in history extremely degrading to the human species. In the war which was waged in Africa, in the reign of the Emperor Justinian, Procopius remarks: "It is no exaggeration to say that five millions perished by the sword and famine and pestilence." The same author states that during the twenty years' war which this Emperor carried on with the Gothic conquerors of

Italy the loss of the Goths amounted to above fifteen millions; nor does this appear altogether incredible when we remember that in one campaign 50,000 laborers died of hunger.

About the beginning of the thirteenth century arose the very cruel and bloodthirty cyrant, Zingis Khan. With immense armies, some of them amounting to a million of men, ho overrun and subdued the Kingdom of Hya, in China, Tangut, Kitay, Turkistan, Karazum, Great Bucharia, Persia, and part of India, committ ${ }^{\circ}$ the ast itreadful crueltics and devastations. It is computed that cins last twenty-two years of his reign no less than $14,470,000$, scourge of mankind. He appeared to tho pea? of the East like an infernal fiend, breathing out destruction wherever he went, and the doctrine which he preached after conquest was utter extermination.
Alout the same time when this monster was ravaging the Eastern world those mad expeditions distinguished by the name of Crusades were going forward in the West. Six millions of infatuated mortals, raging with hatred and thirsting for blood, assumed the inage of the cross and marched in successive expedit: as, in tumultuous confusion, to the confines of Palestine, in order to recover the city of Jerusalem from the hands of the Mahonetans. In theae holy uars, as they were impiously called, mo"e than 850,000 Europeans are said to have been sacrified, before they obtained possession of Nice, Antiocth, and Edessa. At the capture of Jerusalcm in 1099, about 75,000 are said to have been slain ; and at the siege of Acre 300,000 . For nearly two hundred years these wild expeditions continued to go forward, and were urged on by proclamations issued from the papal and kingly thrones, and by fanatical sermons from the pulpit, until several millions of deluded wretches perished from the earth ; for the greater part of those who engaged in the crusades either died from hardships endured on the mareh or were slain or taken prisoners. At this period, and for many centuries before, the wide expanse of Europe and Asia exhibited little else than one great field of battle, in which nations were dashing against each other, conquerors ravaging kingdoms, tyrants exercising the most awful cruelties, superstition and revenge immolating their millions of victims, and tumults, insurrections, slaughter, and universal alarm, banishing peace and tranquility from the abodes of men, and subverting the moral order of society. The European states were distracted by the incessant disputes between the popes and the emperors; the interior of every European kingdom was torn in pieces by the contending ambition of the powerful barons; in the Mahometan Empire the caliphs, sultans, and emirs, waged continual war ; new sovereignties were daily rising and daily being destroyed, and amidst this universal slaughter and devastation the whole earth seemed in danger of being laid waste, and the human race to suffer an extermination. upaign

In the latter part of the 14th century arose Tamerlane, one of the successors of Zingis Khan. This ruthless conqueror followed in the footsteps of his predecessor, the cruel Zingis. Putting himself at the head of large armies he overran Persia, Turkestan, Kipzak, Russia and Hindostan, ravaging as he went, levelling cities with the dust, cruelly destroying their inhabitants, and committing the most horrible dopredations. He also conquered the Turks of Asia Minor and carried the Sultan Bajazet into captivity, as it is said, in ar iron cage. Whole nations were crushed under the iron heel of this conqueror. The historian Gibbon when speaking of him says: "The ground which had been occupied by flourishing cities, was often marked by his abominable trophies, by columns or pyramids of human heads; and perhaps his conscience would have been startled if a priest or a philosopher had dared to number the millions of victims, whom he sacrificed to the establishment of peace and order." " Such is the motive that invaders generally avow for their action-that they may establish order in the nations which they invade, but too often it happens that instead of bringing order and tranquility they bring to them ruin and devastation. By the Crimean War, carried on between France, England and Russia, there were killed 784,991. By the Italian war of 1859, 45,000. By the war with Schleswig-Holstein, 3,500. In the Ameriean civil war, of the Northern army there were killed 281,000 ; of the Southern army, 519,000 . In the war of 1866 between Prussia, Austria and Italy, 45,000 . In distant and various wars in Mexico, Cochin China, Morocco, St. Domingo, Paraguay, etc., 65,000 ; making a total of one million seven hundred and fifty thousand men swept off by war in the space of fourteen years, between 1853 and 1866 . And in carrying on these wars it is estimated there was spent at the least calculation nine thousand five hundred and sixty-five millions of dollars ; an amount of money which, if put to the use of benefiting humanity, might havo transformed the whole moral and social condition of civilized nations for tho better. It is said the entire loss of Germany in the late war it had with France was something like 180,000 men, rather more than one half of whom are invalided; and it is certain the loss on the part of France was not less but perhaps much greater; and this war also was carried on at a corresponding rate of expense.

It may be remembered that the instances we have adduced are only a few circumstances in the annals of warfare. And yet in a few of the instances last stated we are presented with a scene of horror which includes the destruction of between fifty and sixty millions of the human race, besides the other various kinds of suffering which war entails. Language can scarcely be found strong enough to express the emotions of the mind

[^8]when it seriously contemplates the horrible scene. And is it not melancholy to reflect that in the present age, which boasts of its improvements in science, in civilization and religion, neither reason, nor humanity, nor christianity, nor benevolence, has yet availed to stop the progress of destroying armies, and to set a mark of ignominy upon the nations that delight in war. To counteract this most irrational and deplorable propensity by every means which reason or humanity can suggest should bo the duty of every one who is desirous to promote the present and future benefit of his species.

For our review of the moral character of the civilized nations we have chosen Greece and Rome, and the nations immediately connected with them, as the most fit representatives of ancient times ; and in continuing this review we shall confine it to those nations which have arisen out of the Roman Empirc, as the fittest representatives of civilization in modern times. It would not answer to choose out any one of these nations as the fittest national representative of civilization in modern times, for each of them would be unvilling to be classed as less high in that respect than any of the others. It becomes our duty, therefore, to take a glance at each of them so far as our limits will allow, and see how they appear to stand with. respect to moral character.

We have given proof of the warlike dispositions which were displayed. in the Greek and Roman empires, and in a few instances of other nations also that waged war with them and on their borders; and now it will be well to slightly examine what dispositions are displayed by these modern natioris, while at the same time they may be considered in connection with their religious institutions. As to the dispositions displayed by these modern nations pride and selfishness are prominent characteristics in them all. All these nations are more or less addicted to war, and pride and selfishness are the prime movers to the wars which they wage.

Russia has proceeded in her carcer of self-aggrandizement for the last two centuries, absorbing one nation after amother against their will, until her dominions now extend acruss the whole continent of Asia from the China Sea to the Baltic ; and from Mount Caucasus and the frontiers of Tartary to the frozen ocean. Russia has to a large extent made herself great at the expense of her neighbors; starting from her northern deserts, in the time of Peter the Great, she has extended her dominions, until she is now equal in extent of territory to any other nation on the gloke. Her government is strictly despotic. Her religion is Christian of the Greek model, which we shall have occasion to speak of in the latter part of the book. The mass of her peoples, until lately serfs, are generally ignorant and of a servile spirit. Her penal laws are exccedingly severe ; the severest punishments are frequently inflicted for the most trivial offences. At the will of the emperor, and often for very slight offences, men are bound in
irons and transported to the frozen regions of Siberia, there to drag out a most miserable existence, until death or the term of their banishment puts an end to their sufferings. The knout is one of the most common instruments of punishment used in Russia. This instrument is a thong made of the skin of the elk or the wild ass, and so hard that a single stroke cuts the flesh to the bone. The following description is given by Olearius of the manner in which he saw the knout inflicted on eight men, and one woman, only for the crime of selling brandy and tobaceo without a license: "The executioner's man, after stripping them down to the waist, tied their feet, and took one at a time on his back. The executioner stood at three paces distance, and, springing forward with the knout in his hand, whenever he struck the blood gushed out at every blow. The men had each twentyfive or twenty-six lashes; the woman, though only sixteen, faintod away. After their backs were thus dreadfully mangled they were tied together two and two ; and those who sold tobacco having a little of it, and those who sold brandy a little bottle put about their necks. They w're then whipped through the city of Petersburgh, for about a mile and a half, and then brought back to the place of their punishment and dismissed." This is what is termed the moderate knout, for when it is administured with the utmost severity, the executioner, striking the flank and ribs, cuts the flesh to the bowels, and therefore many die of this merciless and inhuman punishment. The punishment of the pirates and robbers who infest the banks of the Volga is another act of savage eruelty peculiar to Russia. A float is built whereon a gallows is erectod, on which is fastened a number of iron hooks, and on these the wretched criminals are hung alive by the ribs. The float is then launched into the stream, and order's are given to all the towns and villages on the borders of the river, that $n c$ ne upon pain of death shall afford the least relief to any of these wretches. These criminals sometimes hang in this manner three, four, and even five days alive. The pain produces a raging fever, in which they utter the most horrid lamenta. tions, imploring the relief of water and other liquids. During the reign of Peter the Great the robbers who infested the various parts of his dominions, especially the banks of the Volga, were hung up in this manner by hundreds and thousands, and left to perish in the most dreadful manner. The boring of the tongue, and the cutting of it out, are practised yet in Russia as an inferior species of punishment. It is much to be hoped that the time will soon come when governments will see and admit the folly and injustice of such proceedings. Punishment administered beyond the desert of the offence can have no other tendency than to demoralize the minds of the people, to blunt their natural feelings, and to render criminal sharacters still more desparate ; and hence we need not wonder at what travellers affirm respecting the Russians, that they are very indifferent as to life or death, and undergo capital punishment with unparalleled apathy and
indolence. It matters little what the name of the religion is that is professed by a government which practices, or allows to be practised in its dominions, such tyranny, brutality and cruel barbarism. In order to show itself civilized and a worthy apostle of its faith to foreign peoples, Ω government should show itself exemplary at home by dealing righteously, benevolently, and beneficently with its own people.

Prussia and Russia may be said to have attained a conspicuous national existence at the same time. In the year 1701 Frederick, the Margrave or Count of Brandenburgh, deeming himself strong enough to make good his pretensions against the nations which might chense to oppose him, crowned him f king, and publicly announced that his name henceforth was not elector of Brandenburgh, but king of Prussia. At the same time Peter the Great was engaged in the work of building the City of St. Petersburgh, and of making Russia a naval power, after having a few years previously prepared himself for this task, by practising as a shipbuilder in an English dockyard. Both of these nations have since then under successive rulers made great advances to power. We have stated by what means Russia enlarged her dominions to such a great extent; and shall ve now inquire by what means Prussia has come by her power and attained to tho supremacy among the Germara States which she now enjoys? Was it by peaceable or by warlike measures? Mainly by war. True, Drussia owes much for her present eminency to the intelligence of her people; and this is, of course, owing to the system of education that is established and carried out in that country. Now the proper object of a system of educacation is to diffuse a knowledge of the sciences, the useful arts, and of any other branch of knowledge the acquisition of which may tend to the happiness and well-being of the people. But the system of education cstablished in Prussia includes the teaching of the military art as well as the other arts. And it may probably be argued that the art of war is a necessary and useful one. There is no necessity of it if men but keep the principles of pride and selfishness in their own nature in due subordination to the principles of godliness, which they can do by having right reason rule. Nor can the greatness that is derived from war be called true greatness. What, it may be asked, is a nation to look on inactively and see itself invaded, desolated, and absorbed by an enemy without offering any resistance? This sometimes would be the wisest policy for a nation in such circumstances. Some of those nations, for example, which have been absorbed by Prussia herself during her career of conquest and by Russia might have done better had they thus acted. Since they were not able effectually to repel, it would have been wiser for them to have submitted to the invader, without actively resisting him, by which course they would at least have saved the lives of those who fell, and perhaps obtained better terms from the aggressor. But if a strong nation is attacked what
course should it pursue? Intelligent non-resistance would in this case even be the best course to follow, and by peaceful measuros to obtain the best measures obtainable ; it is also by far the most praiseworthy. But each nation, when it feels itself greatly aggrieved by another, no matter how limited its resources for offence and defence are as compared with those of the other, is apt to feel itself equally strong, just as a smail weak man feels when he is provoked to combat by a large athletic one. Well, as there is no necessity of either of these men striking the other, nor of the one that may have been struck, striking in return, so there is not the slightest need of a nation, whether it may be powerful or weak, striking either in aggression or defenco. Intelligent on-resistance on the part of a nation, as of an individual, makes the aggressor feel ashamed of his conduct, and is the means of saving life and limb and proporty, and of securing the blessings of happiness and peace to many people who should otherwise suffer. But the question is often and very inconsiderately asked; who, when struck or insulted, can abstain from striking or insulting in his turn. Any one can abstain from it if he will but act considerately. If a man returns an insult he degrades himself to the level of him who insults him; but if ore try to kill him, he should endeavor to not be killed. Reason should always be allowed to govern ; passion or malevolence not for a moment. We have oursolf always acted on the principle of intelligent non-resistance, and mean to do so as long as we live. Tho principle of good-will to men, men of every character and temper, should bs cultivated by all, and no principle contrary to this should be allowed to occupy the breast for a single moment. If men are weal enough to strike or insult, they are so from ignorance or the depravity of their nature; such should be looked upon with compassion, and their good, not their evil and destruction, should by every means be sought ; when they como to fully understand what they are, and what they should be and do, they will be strikers and insulters no longer. Example is ever more powerful than procept, in the case of nations as well as individuals. But, as in the case of two men who are about to quarrel, the law holds that one accountable who strikes first, why may there not not be an international law established among the civilized nations, which no one nation will be allowed to transgress? But it may be said that transgression of that law would imply the use of compulsory means to enforee obedience to $i t$, and that this means might necessarily be war. If it were stipulated by the international law that all the nations agreeing to it should remain unarmed, that military principles should not be taught nor warlike implements manufactured or retained by these nations, then war could not be the means resorted to in such a case. But it may be said that when a nation would feel inelined to transgress or to secede from the international confederacy it might insidiously import arms and equipments of war from some other nations out-
side of the league, and so prepare itself to effectually accomplish its object. To prevent the occurrence of such a breach it would he wise for the confederacy to embrace within itself as many as possible of the nations of the earth, even thoso they would deem uncivilized; to bring all these if possible to live and abide by the stipulations of the international law; so that there might be no place left from whence to import the means and implements of war. Camnot such a state of things be brought about? It ean be effected, first by the civilized nations among themselves; then by their gradually bringing into their confeleracy all the other nations. The first step to be taken to this good end is the universal education of tho masses of the people high as well as low in every nation, in the principles of selfdenial, charity and true humility ; and to this end, the principlos of m:litary discipline should not be tanght in the seools, nor should anythiur be taught which would tend to foster or cultivate a warlike spirit. There should be no panegyrics delivered by the teachers nor found in tho schoolbooks upon the virtues of warriors of past ages or of the present; nor should an Alexander, a Casar, a Frederick, a Bomaparte, a Wellington, or even a Washington, so far as he was a warior, be held up to the admiration or the imitation of the students; only the sciences and the arts which tend to peace should be taught ; the principles of pride and selfishnoss should be not only suppressed but eradicated; and the principles of truo virtue, of honest industry, of charity, and intelligent humility, should be universally inculeated and exemplified to the youth. Such a state of thinge, then, as we have contemplated might be begme to be brought about by the univarsal education of the masses, commencing with all the youth of the present generation ; and, as the people would be continually advancing to a higher state of knowledge and civilization, the nations wonld become more peaceful, stable, and prosperons, would cultivate more the sciences and arts which tend to peace, and would become more closely mited to each other in the bonds of charity and mutual good-will. We have before explained how that man ereates the moral world, and that the great object of a moral system is to enable men to live in association with each other according to order and right. Now this being so that moral system is certainly imperfect, and mworthy of the name of world, which does not provide that men shall not kill each other by means of war. It implies not crder, but disorder, and all its train of evil conserpences. To the end that a beter system may be established, and that as universally as possibie, much may now be begun to be done by rulers and men of power and infiuence in all nations, yea and by every teacher, erery parent, and every individual both subjectively and objectively. This education, which as we have said is the first step towards the ininging in of a state of things for the better, permanently, must be as universally diffused as possible, and individually subjective as well as objective; for each one must educate of tho ossible t there ments can be y their ie first masses of selff m: ing be There schoolt ; nor gton, or uluina\% which should virtue, miverthings, t by tho 1 of the ing to a ne more cos and to each before object h other stem is oes not lies not nd thint ossibse, er and devery has we ings for le, and ducato
him or herself in the principles and practices of self-denial, humility and all tho kindred principles which pertain to golliness, as well as teach others, as far as one, can the ."me principles aul practices. Then would love be the motive power to action, instead of, as before, pride and selfishngess.
But to return to our main sulject, Prussia has to a great extent aggranilized herself, as Russia did, at the expense of her neighbors. It has subdued one nation after another by 'oree of arms; it has domineered over Austria; it has lhuniliated France, and by its conrse of war and bloodshed it has attained the supremacy in the German States; and in other respects also the moral character of the Prussians is not what it ought to be. It has long enforeed a very severe penal code. The following account, is given by a traveller who was in Berlin in 1819, of the execution of a man for murder, which shows that the execution of criminals in Prussia is frequently attended ly a species of cruelty worthy of the worst days of the Inguisition: " Λ millst the parale of executioners, officers of police, and other julicial authorities, the beating of drums, and the waving of flags and colors, the criminal mounted the scaffoll. No ministers of religion appeares to gild the horrors of eternity, and to soothe the agonies of the criminal ; and no supplicatory prayer closed his quivering lips." "Novor," says the narrator, "shall I forget the oine bitter look of imploring agony that he threw around him, as, immediately in stepping on the scaffold, his coat was rudely torn from his shoulders. He was then thrown down, the cords fixed around lis neek, which were drawn until strangulation alnost commenced. Another excentioner then approachen, bearing in lis hands a luge wheel, bound with iron, with which he violently struck the legs, arms, and chest, and lastly the head of the criminal. I was unfortunately near enongh to wituess his mangled and bleeding body still convulsed. It was then carried down for interment, and in less than a quarter of an hour from the begiming of his torture, the corpse was completely covered with earth. Several large stones which were thrown upon him hastened his last gasp; he was manyled into cternily." l'mishments, as we have before sail, should not be more than proportioned to the crimes for which they are inflieted, and in every case should be designed for the benefit of the criminal, or of soceiety, or of both. If the life of the criminal is to be taken, the olject of the punishment camnot be his benefit ; and no benefit can acerne to society from his being treated with a greater degrec of severity than his crime deserves. If the life of the criminald is not to be taken the object of the pumishment should be his monal improvenent, and the pumishuent should not be greater than he deserves. Au unduly severe criminal code in any comutry is proof that that nation has yet to advance some degrees before it can be callell civilized.
France is a nation which until very lately phayed an inportant part in the listory of Europe. From being one of the province of the Roman

Empire she was raised to the position of an independent state by Clovis in the 5th century, A. D. In the latter part of the 8th century she was raised to a greater height of power by the conuruests of Charlemagne ; she afterwarls lost a great part of the dominions which she acquired through him, and gained them again after along interval through the conquests of Napoleon Bonaparte, but only to retain them for a very short time. France, before called Gaul, has as long as wo have known her historically, been a nation aldicted to war. She has, however, not been remarkably successful in war, never having attained to a very great degree of power, except under the two conguerors just mamed. Charlemagne is said to have carricd on fifty-three campaigns. Ife was a remarkably ferocious and cruel man. On one vecasion, it is satd that he beheaded 4,500 Sason prisoners on the same spot, which may serve as a specimen of the butcheries of this ferocions warrior This was the man who was erowned by Pope Leo in the churel of St. Peter at Rome, in the last year of the 3th century; and who is also inseribed as a Saint of the Roman Churelı. In his the Roman Empire of the west was considered to have been revived after it had been overthrown and trampled uon for some centuries by the Gous, and Yiandals, and other northern mations; and from that time till the withdrawal of the French troons from Rome, in the time of Napoleon 1Lf, France has almost always been a zealous supporter of the Papacy. We need not here detail the wars of the Bonapartes, their rise, progress, and terminations; they are very generally known, and equal in cruelty and the destruction of human life the battles of ancient times. We shall relate only a few instanees of French barbarity in these wars. After the taking of Alexandria by Bonaparte, says the relater, "we were under the necessity of putting the whole of them to death at the breach. But the slanghter did mot cease with the resistance. The Turks and inhabitants fled to their mosulues, seekiug protection from God and their prophet; and then men and women, old and young, and infants at the breast, were slaughtered. This butchery continued for four i:ms, alter which the remaining part of the inhabitants were mueh asto shod at not having their throats cut." From what follows we can see that all this bloodshed was premeditated. "We might have spared the men whom we lost," says General Boyer, "by only summoning the town; but it was necessary to begin by confounding cur enemy," Alter the battle of the Pyramids, it is "emarked by an eye witness," tie whole way through the desert was tracked by bones and bodies of men and animals, who hat perished in these dreadful wastes. In order to warm themselves at night they gathered together the dry bons: and bothes of the dead, which the vultures had sparel, and it was by a fire composed of this fuel that Boaaparte lay down to sleep in the descrt."* Miot gives the following description of a scene

[^9]in the ised to wards 11, and poleon betore nation fiul in under icd on 1 man. on the s teroin the at who Roman d been s, ant withm IIL. We ss, and mul the relate taking er the But the bitants t ; and , were ch the having Mlshed " says ary to iids, it
at Jaffa: "The soldier abandons himself to all the fury which an assault authorizes. He strikes, he slays, nothing can impeds him. All the horrors which accompany the capture of a town by stom are repeated in every street, in every house. You hear the crics of violated females calling in vain for help to those relations whom they are butchering. No asylum is respected. The blool streams on every side; at every step you meet with human beings groaning and expiring, ete." Sir Robert Wilson, when describing the campaign in Polamd, relates, that " the ground between the woods and the Russian batteries, about a quarter of a mile, was a sheet of naked human bodies, which frienls and foes had during the night mutually strippel, not leaving the worst raro upon them, althourh numbers of these bodies still retained consciousness of their sitmation. It was a sight which the eye loathed, but from which it could not remove." In Labaume's "Narrative of the Campaign in Russia," we are presented with the most horrible details : palaces, churehes, and streets enveloped in flames; houses tumbling into ruins, hundreds of the blackened cascasses of the wretched inhabitants, whom the fire had consumed, blended with the fragments ; hospitals containing 20,000 wounded Russians on fire, and consuming the miserable vietims; numbers of half-burned wretehes crawling anong the smoking rums ; females violated, and massacred; parents and children half-maked, shivering with cold, flying in consternation with the remains of their half-consumed furniture ; horses falling in thousands, and writhing in the agonies of death; roads covered for miles with thousands of the dying and the dead, heaped one upon another, and swimming in blool, and these dreadful scenes rendered still more horrific by tho shrieks of young females, of mothers, and children, and the piercing cries of the wounded and the dying, invoking death to put an end to their agonies." It is probable that some of our readers have been so affected by the description alrealy given, that they have turned away their eyes in disgrust from such an appalling spectacle of suffering and horror, but these are only a few instances out of thousands which the authentic histories of the French war3 present before us. What untold sufferiugs have been caused by the wars which France has carried on in our own day! Wars with Russia, with Austria, with Prussia, and last the fratricidal war which was waged at Paris between its own citizens at the termination of the late war with Germany. Yet France has long been considered a leading civilized nation of Europe. The French nation have been characterized as a vain, immoral, and licentious people, in their social state, especially the inhabitants of their chief cities; and these their sins may have sometimes brought destruction upon that people ; but we are aware that the suffering and destruction of the many are often caused by the pride and selfishness of a few, very often by the will of an individual, as we believe that last war with Gemmany may have been which
humbled France to the dust, and caused such immense loss and suffering to her people.

The penal code in Franco has also been extremely severe. Tho execution of Damiens in 1757, for attempting to assassinate Louis XV., was accompanied with tortures, the description of which is enough to harrow the feelings of the most callors nature, tortures which could scarcely be exceeded in intensity, even thongh they were invented by an infernal fiend; and yet they were 'oeheld with a certain degree of apathy by a surrounding populace, and eyen counsellors and physicians could talk together deliberately about the best mode of tearing asunder the limbs of the wretched victim, with as much composure as if they had been dissecting a dead subject or carving a fowl.

France has also distinguished itself for its massacres on account of religion. Of these, that of the French Protestants, on the Feast of St. Bartholomew, August 24th, 1572 , was, perhaps, one of the most diabolical acts of perfidy and cruelty which have stained the character of that nation. Everything connected with this unexampled conspiracy and assassination was atrocious and horrible. Ties of the most sacred nature were violated; superstitious zeal was changed into an impious frenzy ; and filial piety degenerated into sanguinary fury. Under the direction of the infamous Duke of Guise, the soldiers and the populace, en masse, at the signal of the tolling of a bell, flew to arms, seizing every weapon that came in their way; and thus rushing in crowls to every quarter of the city of Paris, no sound was heard but the terrible ery, "Kill the IIuguenots!" Everyone distinguished for being attached to the morred faith, without any distinction of rank, age or sex, was incientimis...tely massaceed. The air resounded with the horrid cries and Whaphemous imprecations of the murderers, the piereing shrieks of the wounded and the groans of the dying. Headless tromks were every moment thrown into the court-yards or the streets, the gateways were choked up with the bodies of the dead and dying, and the streets presented a spectacle of mangled limbs and human beings dragged loy their butehers in order to be thrown into the Seine. Ilotels and public buildings were reeking with blood ; death and desolation reigned on every side, and in all quarters carts were seen loated with dead bodies, destined to be east into the river, Whose waters wim for several days polluted with tiles of human gore. The infuriated assaum, a"ced 0 '1 'y the cry that "it was the King's will that the very last of trin race of vipers should be crushed and killed," became still more frimit in tho slaughter; in prouf of which one Cruce, a jeweller, displayin! home: and biondy am, vaunted alond that he had cut the throats of msie chan fonr humbed linguenots in one day. Tho number of vietims that latughe el in the city of Paris amounted to above 6,000 ; anl, in the provimes of the same time, perished about 60,000
souls. The news of this massacre was weleomed at Rome with the most lively transports of joy. The Cardinal of Lorraine gave a large reward to the courier, and interrogated him in such a manner upon the subject as plainly to indieate that he hall been previously aware of the intended eatastrophe. Camons were firel, bonfires were kindled, and a solemn mass celebrated, at which Pope Gregory XIII. assisted, with all the splendor which the Papal Court was aceustomed to display on the happening of events the most significant and of the most important consequences.*

In the civil wars on account of religion in France, in the early part of the seventeenth centary, it is computed that about a million of men lost their lives; and nine eities, 400 villages, 2000 churches, and 10,000 houses were burned and destroyed during their continuance, besides the many thousands of men, women and children, which were cruelly butchered ; and $150,000,000$ livres were spent in carrying forward theso slaughters and devastations. It is said of Louis XIII., who prosecuted these wars, by one of his biographers and paneryrists, Madame de Motteville, that "what gave him the greatest pleasure was his thought of drivisg heretics out of the kingdom, and thereby purging the different religions which corrupt and infect the Church of God."

But France has distiuguished herself for a fanatical persecuting spirit as well in an atheistical as in a religious or superstitious point of view. The first revolution in France, in 1789, was a revolution not merely in politis and government, but in religion, in manners, and in the common feelings of human nature. It is stated on good authority that a little before this revolution a numerous assembly of French Literati being asked in turn at one of their meetings by their president, "whether there was any such thing as moral obligation, answered in every instance that therewas not." Soon after that revolution the great body of the French infidels who then ruled the nation not only denied all the obligations which bind us to truth, justice, and kinduess, but pitied and despised, as a contemptible wretch, that man who believed in their existence. Atheism was publiely preached and its doctrines disseminated among the mass of the people. A professor was even named by Chaumette to instruct the children of the state in the mystery of Atheism. De La Metheric, the author of a philosophical journal, when discussing the doctrine of erystallization, made the wild and monstrous assertion, " that the highest and most perfeet form of crystallization is that which is vulgarly called God. In the National Convention, Gobert, Archbishop of Paris, the Rector Vangirard, and several other priests, abjured the Romish religion, and for their abjuration they received applauses, and the fraternal kiss. The convention decreed that

[^10]all the churches and temples of religious worship, known to be in Paris, should be instantly shut up, and that every person requiring the opening of a church or temple should be put under arrest as a suspected person and an enemy of the State. The consequences of the universal operation of such principles, and such a high-handed course of procedure on tho part of those in authority, were such as might have been expected. They are written in characters of blood. A scene of inhumanity, cruelty, malig. nity and insatiable rapacity was presented to the world, which escited in the mind of every virtuous spectator amazement and horror. Savage atrocities were conmitted, which would have been shocking in the most barbarous and unenlightened age ; and perhaps at no time and in no country was there more licentious practices and moral degeneracy displayed. The ties of friendship were severed, the claims of consanguinity disre garded, and a cold-blooded selfishness pervaded the great mass of society. "The kingdom appeared to be changed into one great prison ; the inhabitants converted into felors, and the common doom of man commuted for the violence of the sword and the bayonet, and the stroke of the guillotine," Such was the rapacity with which destruction was carried on that, in the short space of ten years, not less thar three millions of human beings are supposed to have perished in that country, chicfly through the outworking of the malevolent principles of the human heart, and the seductions of a false philosophy. The following is a brief sketch of some of the seenes to which we allude, drawn by one who was an cye-witness and an actor in several purts of that horrible drama: "There were," says this writer, " multiplied cases of suicide, prisons crowded withimweent persons, permanent guillotines, perjuries of all classes, narental authority set at nought, debauchery encouraged by an allowance for those called unmarried mothers, and six thousand divorecs in the city of Paris within a little more than two years; in a word whatever is most obscene in vice and most dreadfel in ferocity." * Notwithstanding the incessant shouts of "liberty and equilty," and the boasted illmination of philosophy. the most cruel persecutions were carried on ogenist all those whose religious opinions differed from the system adoptel by tho \bar{b} thte. While infidelity was in power it wielded the sword ci vangemen wih brute ferocity against the priests of the Romish Church, who wi " hutehered wherever found, hunted as wild beasts, frequently burned slive, drowed in hundreds together, without accusation or trial. At Nantz, "60 prinsts are said to have been shot, and 460 drowned. In one night 8 were shat up in a barge, and drowned in the Loire, 992 rriests were massacred during the bloody scenes of the 10th August, and tae 2nd Sepiemier, 1792 ; and 1135 were guillotined under the government of the National Convention, from the month

[^11]of September, 1792 , until the end of 1795 ; besides vast num sers who, hunted by the infidel republicans like owls and partridges, perished in different ways throughout the provinces of France. The bloody scenes which have been enacted in Paris in our own day, when Darboy, the arehbishop, and several priests, besides thousands of other people, were killed by the Communists and Nationalists in their mutual struggle, correspond to the scenes we have just depicted. And the fact of these infidels or atheists, when they came into power, carrying on such violent persecutions plainly shows that the persecuting spirit is not confined to one sect, be they called papist or atheist, but is simply the working out of the evil principle in man. Men, however, are always inclined to leave the blame of their diabolical actions upon other things than themselves, often upon mere names or ideas. We gather also from the foregoing history of the reign of atheism in France, that, when a nation becomes too enlightened for its established religion or superstition, it is sometimes apt to diseard it altogether, and to adopt a system of principles the opposite to those of the old. sthe same thing takes place in the case of individuals. There is danger in such a course, and there hardly ever is any necessity of adopting extreme opinions upon one side or the other. Changes in the moral world as in the natural take place gradually. A plant does not come to maturity in a moment nor a child to manhood in a day. Time is required for the intelligent adoption of a creed both by an individual and a nation ; and the truth is best arrived at and maintained by preserving the mean between opposite extreme opinions. A national religion should not be discarded by the state until a better substitute can be made for it; and the newsystem if established should receive the moral support and protection of the government of the state ; if not established as in republics, where all religions are equally tolerated, but yet has become so generally prevalent as virtually to supplant the old, it should receive at least the moral support and protection of the government. Violent ehanges in any department of the moral world are productive of disorder ; and since, as we have said before, the fundamental idea of morality is order, when a change in any deparment of the moral system is required, not only the change itself but the best manner in which it can be brought about is to be considered by those who are to effect it. The cbject of government is not only to preserve order among the people but also to subserve and advance their interests and highest good ; and the necessity of the worship of the Deity being genewally recognized as conducive to the happiness and order of the people, governments may well give their moral support and protection to that system of religion which combines simplicity with truth, and which can be practised most intelligently by the masses of the people.

As corroborative of the idea advanced with respect to the licentions character of the French, especially the Parisians, we extract the following from Sir Walter Seott's visit to Paris in 1815.
"The Palais Royale, in whose saloons and porticoes vice has established a public and open school for gambling and licentiousness, should be levelled to the ground with all its accursed brothels, and gambling honses, rendezvous the more seductive to youth as being free from some of those dangers which would alarm timidity, in places of avowedly scandalous resort. In the Salon des Etrangers, the most celebrated haunt of this Dom-Daniel, which I had the curiosity to visit, the scene was decent and silent to a degree of solemnity. An immense hall was filled with gamesters and spect-tors. Those who kept the bank and managed the affairs of the establishment were diotinguished by the green shades they wore to preserve their eyes, by weir silent and grave demeanour, and by the paleness of their countenances exhausted by their constant vigils. There was no distinction of persons, nor any passport required for entrance save that of a decent exterior ; and on the long tables which were covered with gold, an artizan was at liberty to hazard his week's wages, or a noble his whole estate. Youth and age were equally welcome, and any one who chose to play within the limits of a trifling sum, had only to accuse his own weakness, the was drawn into deeper or more dangerous hazard. Everything appeared to be conducted with the most perfect fairness. The only advantage possessed by the bank, which is, however, enormons, is the extent of the funds by which it is enabled to sustain any reverse of fortune ; whereas most of the individuals who play against the bauk are in circumstances to be ruined by the first succession of ill luck : so that ultimately the small ventures merge in the stoek of the principal adventurers, as rivers run into the sea. The profits of the establishment must indeed be very large to support its expenses. Besides a variecy of attendants who distribute refreshments to the players gratis, there is an elegant entertainment with expensive wines, regularly prepared about three o'clock in the morning for those who ehoose to partake of it. With such temptations around him, and where the hazarding an insignificant sum seems at first venial or imnocent, it is no wonder that thousands feel themselves gradually involved in the vortex whose verge is so little distinguishable, until they are swallowed up with their time, talents, fortune, and frequently also both body and soul. This is vice with her fairest vizard ; but the same unhallowed precinct contains many a. secret cell for the most hideous and unheard of debaucheries; many an open rendezvons of infamy, and many a den of usury and treason ; the whole mixed with a vanity fair of shops for jewels, trinkets, and baubles, that bashfulness may not need a decent pretext for adventuring into the haunts of infamy. It was there that the preachers of revolution found, amidst gamblers, desperadoes and prostitutes, ready auditors of their doctrines, and active hands to labor in their vineyard. It was here that the plots of the Bonepartists were adjusted; and from hence the seduced soldiers, inflamed with many a bumper to the health
of the exile of Elba, under the mystic names of Jean do l'Epee, and Corporal Violet, were dismissed to spread the news of his approaching return. In short from this central pit of Acheron, in which are openly assembled and mingled those characters, and occupations, which in all other capitals are driven to hide themselves in separate and retired recesses; from this foens of vice and treason have flowed forth those waters of bitterness of which France has drank so deeply." Now if such a state of things as is here set forth existed at head quarters, right in the departments of the Royal Palace, what must we think existed in other and less public places in Paris, and in France? The great mass of a people are generally imitative, inelined to follow the example set them in high places.

We submit a statement of the affairs of the French capital for the year ending September 1803, given by the prefect of police to the Grand Judgo. During this year 490 men and 167 women committed suicide ; 81 men and 69 women were murdered, of whom 55 men and 52 women were foreigners; 664 divorees; 155 murderers executed; 1210 persons condemned to the galleys, ete.; 1626 persons to hard labor ; and 64 marked with hot irons; 12,076 public women were registered ; large sums were levied from those wretched creatures, who were made to pay from 25 to 50 dollars each monthly, according to their rank, beauty or fashion; 1552 kept mistresses were noted down by the police; and 380 brothels licensed by the prefect. From the number of divorees it appears that marriage was looked upon as a mere temporary connection from which the parties might extricate themselves when they pleased, and illegitimate ehildren, especially in Paris, are numerous beyond what they are in any other city. It seems hardly conceivable that a government should debase itself to authorize the practice of such licentiousness as is here represented. and to derive a large revenue from such infamous and polluted sources. No government which authorises or countenances such practices may expect to thrive or be perpetuated. Such practices enervate a penple, yea destroy them body and soul. They are sure to bring down upon the nation in which they exist, sooner or later, the retributive justice of the Governor of mankind. May it not truly be said that the humiliations to which France was subjected at the termination of the first empire and in the late war with Germany, when her whole armies were taken into captivity, which was sueceeded by the mutual slaughter of her own people at Paris, were so many visitations on this people for their wiekedness? They doubtless were. And not only that, but we fail to see that the sympathetic refinement, which is derived from a too free intercourse of the sexes with each other, while muarried, is worthy of the name of civilisation. It is altogether too contemptible and base for the name. Men and women should deny themselves if they cannot afford to live in honorable marriage. And men and women, be they young or old, should prefer to live
on the humblest fare, and clothed with the coarsest garments, oven though their means were sufficient to afford them a daintier kind, rather than practice luxurious living, or any species of licentiousness, or squander the time and talents which they possess in a too free intercourse with each other. Thus from the review we have been able to give of the moral character of the French, as indicated by their history, it is evident that though they are esteemed a civilized nation they are yet far behind true civilization, and that, is they ever attain a high national character for morality, they will have to alter radically and completely their present moral principles and practices.
In taking a review of the moral character of the Spaniards, as indicated by their history, we find it a good deal as we have found it in the case of the French. From the earliest historical records we have of Spain we find that country to have been the scene of savage warfare, on which tho most ferocious passions were displayed. There the Romans, the Goths, the Vandals, the Moors and the Arabs, fought and reigned at different periods. During certain periods of her history, Spain possessed great power as a nation, and, as France, she attained her power by war, and lost it in the same way. In the employment of war, and otherwise, the Spaniards have displayed the most savage ferocity, and the most brutal as well as the most refined and exquisite eruelty. Spain has always been a champion of the Romish religion, and in this country that diabolical tribunal of the Inquisition was firmly established and manipulated. Considering indeed the inhuman and refined cruelties which have been practised by Spain on account of religion or superstition, that country may, with propriety, be called the peculiar seat of Satan. In the Netherlands alone, from the time that the edict of Charles V. was promulgated against the reformers, more than 100,000 persons were hanged, beheaded, buried alive, or burned, on account of professing the reformed religion. The prisons were crowded with supposed heretics, and the gibbet, the scaffold and the stake filled every heart with terror. The duke of Alva, Spanish general to the Netherlands, and his bloodthirsty tribunal, spread universal consternation throughout the provinces; and, though the blood of 18,000 persons who in five years had been given up to execution for heresy, cried for vengeance on this persecutor, and his abettors, yet they gloried in their cruelty. Philip II., in whose reign these atrocities were committed, hearing one day that thirty persons had a little before been burned at an Auto da Fé (Act of Faith), required that a like execution should be performed in his presence ; and he beheld with joy forty vietims devoted to torments and to death. One of them, a man of distinction, requesting a pardon: "No," replied he coolly, " were it my own son I would give him up to the flames, if he obstinately persisted in heresy."

The strocities which the Spaniards committed on their concquests of some of the West Indian Islands, Mexico, and Peru, are almost beyond ceredib:lity that they should be performed by man, if wo did not otherwiso know the character of that people. The island of Hispania was their first settlement in the now world. They forced the inhabitants to labor as slaves for them, digging gold, and, when the object of their cupidity was exhausted, they exterminated them, and the other 1 . aves most barbarously. Of two millions of inhabitants which the island contained when discovered by Columbus in 1492 , scarcely 150 were alive in 1545 , only about fifty years afterwards. The conquest of Mexico by Cortes and his followers was marked with equal horrors. During their whole progress through that country the route of the Spaniards was marked with carnage, injustice, perfily and deeds of atrocious cruelty. On one occasion sixty caciques or chiefs of the Mexican Empire, and 400 nobles were burned alive with the utmost coolness, and deliberation; and, to complete the horrors of the scene, the children and relations of the wretehe i vietims were assembled and compelled to be spectators of their dying agonies. On another occasion when the inhabitants of the city of Mexico were celebrating a festival, and all the people, especially the nobles, were dressed in their richest decorations, under a pretence of a pretended conspiracy, the Spaniards, in order to seize upon their valuable ornaments fell upon them unsuspecting, and slaughtered 2,000 of the nobles. Every right was violated by the Spaniards, which is generally held saered by hostile nations. On every trivial occasion the natives were massacred in great numbers, their lands apportioned among the Spaniards, the inhabitants reduced to the condition of slaves, and foreed to labor, without payment, on all their public works, while the officers, distributed into different provinees, imitated all the excesses and barbarities of their avaricious commander.

In the siege of Mexico alone no less than 100,000 natives are said to have fallen by the sword, beside those who perished by famine and other causes connected with warcfare; hut, in their retreat from the capital, the Spaniards suffered a just retribution for their enormities, for numbers of them were butchered by the enraged Mexicans, and those who were taken alive were carried oft in triumph to the temples, and sacrificed, with all the cruelty which revenge could invent, to the god of war, while their companions at a distance heard their dismal screams and piteous lamentations.

Equal atrocities were committed in the expedition of Pizarro to Peru. In order that they might obtain the golden treasures of this country, they resorted to the basest treachery, and exercised the most cold-blooded cruclties. Under the fairest professions of amity they seized upon the Inca or Emperor of Peru, who had received them in a friendly manner and had commanded his attendants to offer the strangers no injury, and

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503

slaughtered, with deliberate and unrelenting fury, above 4000 of his atterdants, who never offered the least resistance, after which they passed thenight in the most extravagant exultation over the plunder they had aequired from the bodies of the slain. The Inea, in order to regain his liberty, promised them as many vessels of gold as would fill an apartment 22 feet long, 16 feet wide and 8 feet ligh, and, after having collected the promised treasure from all parts of his kingdom, and fulfilled his agreement, they not long after, under the most frivolous pretext, condemnod him to be burned alive. The booty they aequired by such atrocious means amounted to about ten millions of dollars in gold. The day appointed for the division of this prey was the festival of St . James, the patron saint of Spain; and, although assembled to divide the spoils of an unoffending people, obtained by treachery, eruelty and slaughter, they had the hypoerisy and audacity to commence the transaction with a solemn invocation of the name of God, as if they expected heaven's blessing to descend upon the wages of their iniquity. It would be difficult to conceive that any beings exist in any region of the universe of a worse moral character than these Spaniards proved themselves to be ; and it shows what an ineffably bad being man is capable of becoming when he chooses to work out the evil principles of his nature, and to give reins to his depraved passions and propensitics. Here, indeed, we find the one characteristic extreme, that of badness; let us see before we finish cur review of the nations called civilized whether we shall be able to find the other extreme that of goodness; for in the beginning of this review we stated that the two extremes exist in principle in man, either of which he may develope if he chooses, to an almost unlimited degree.

The cruel practice of bull-fighting has, until lately, been in vogue in Spain, almost every large town in that country having an arena set apart for the purpose. We shall give a concise description of a bull-fight in Madrid, from a traveller who was present at it in 1803: "The Spanish bull-fights," he says, "are certainly the most extraordinary exhibitions in Europe; we were present at one of them this morning. The places in the amphitheatre were nearls all filled at half-past nine, and at ten the corregidor came into his box, upon which the trumpet sounded, and the people rose and shouted from the delight that the show was to begin immediately. Four men in black gowns then came forward, and read a proclamation enjoining all persons to remain in their seats. On their going out of the arena, the six bulls that were to be fought this morning were driven across, led on by a cow with a bell round her neck. The two picadores (the men who were appointed to fight with the furious animals) now appeared, dressed in leathern gaiters, thick leathern breeches, silk jackets covered with spangles, and caps surmounted with broad-brimmed white hats; each rode a miserable hack, and carried in his hand a long pole, with a goad at the end. As soon as they were prepared a door was
opened, and the first bull rushed in. In the course of the contest I felt first alarmed for the men and then for the horses. Soon the accidents of the men withdrew my pity from the beasts; and, latterly, by a natural and dreadful operation of the mind, I began to look without horror on the calamities of both. The manner of the fight is this: The bull rushes in and makes an attack, severally, upon the picadores, who repulse him, he being always, upon these occasions, wounded in the neck; and, after a few rencontres, he becomes somowhat shy; but, at the same time, when he does rush on, he is doubly dangerous. He follows up the attack and frequently succeeds in overthrowing both horse and rider. As long as the horse has strength to bear the picadore he is obliged to ride him. This morning one of these wretched animals was forced to charge with his guts hanging in festoons between his legs. His belly was again ripped open by the bull, and he fell for dead; but the attendants obliged him to rise and crawl out! This seems the cruelest part of the business-for the men almost always escape, but the blood and sufferings of thirteen horses were exhibited in the short space of two hours; four men were hurt : one, who was entirely overturned with his horse upon him, was carried out like a corpse; but the spectators, totally disregarding this melaneloly sight, shouted for his companion to renew the attack. The bull, during his first rage and subsequent fury during many rounds, begins to feel weakness, and declines further attacks on the horsemen. Upon this a loud shout re-echoes through the theatre, and some of the attendants advancing stick his gored neek full of arrows, which cause him to writhe about in great torment. When the efforts he makes under these sufferings have considerably spent his strength, the corregidor makes a motion with his hand, and the trumpet sounds as a signal to the matador to despatch him. This is a service which requires great skill and bravery ; for the madness of the bull and the torture he endures prompt him to destroy every one around. The matador advances with a red cloak in one hand and a sword in the other. He enrages the bull with the cloak until, at length, getting opposite to him, he rushes forward and the sword pierces his spinal marrow, or, what is more common, is buried to the hilt in his neek; upon which he turns aside, at first moaning, but a torrent of blood gushes from his mouth, and he staggers round the arena and falls. The trumpets sound ; the mules, ornamented with ribhons and flags, appear to drag the wretched victims out by the horns, and the horsemen to prepare for the attack of a fresu :animal. In the evening a show began at half-past four, and ten bulls were brought forward. To tame them before the matador approached, a new expedient was resorted to, most infamously cruel, namely, the covering of the darts with sulphur and fireworks. The torments of these were so dreadful that the animals, whose strength was fresh, raged about terribly, so that the assistants were forced to use great agility to get from them. There were many hair-breadth escapes. One of the animals, in pursuit
of a man, leaped the barrier of the arena, which is about eight feet high. A second bull was still more furious, and made more tremendous attacks. In one of them he pinned the man and horse against the barrier, got his horns under the horse and lacerated him dreadfully; in a moment afterward he lifted him up and threw the man with such force through one of the apertures as to kill him on the spot. He was borne past the box in which we were, with his teeth set and his side covered with blood; the horse staggered out, spouting a stream of gore from his chest. The remaining pieadores renewed the charge, and another came in with shouts to take the dead man's place. One of these had his horse's skin dreadfully ripped of his side, and when he breathed the entrails swelled out of the hole; to prevent which the rider got off and stuffed in his pocket handkerchief.*

Another traveller adds: "I have seen oight or ten horses torn, and their bellies ripped open, fall and expire in the field of battle. Sometimes these horses, affecting models of patience, of courage, of docility, present a spectacle at which it may be allowable to shudder. You see them tread under their feet their own bloody entrails, hanging out of their open sides, and still obey for some time the hand that guides them. \dagger

Such are some of the amusements which were long practised in Spain, and which fascinated all classes from the prince to the peasant. It is said they were prohibited in 1805, to the deep regret of the most numercus part of the nation, and that another entertainment, an image of the bullfight, was substituted in their place, and is still in some places retained. The bull-fights may be said to havo represented the gladiatorial shows which were held at Rome, and in the principle cities of the Roman empire. for many centuries; in which gladiators (swordsmen) trained for the pur-pose-for the most part slaves or prisoners of war-fought with wild beasts for the entertainment of the people, who, in great numbers, surrounded the amphitheatre. These gladiatorial exhibitions were abolished by the Emperor Honorius, in A.D. 404.

The cruel practice of the bull-fight does not argue a high state of civilization for the nations that delight in it. Under an impression of his great superiority in the scale of being, over the brute creation, man has alvays been accustomed to treat the lower orders of animals with excessive cruolty. This, however, does not seem so much to be wondered at since he is so cruel to his own kind ; it is all the working out of the evil principle within him. We may assume with certainty that the sufferings of these bulls and horses, wounded and dying, were quite as intense and exquisite, as were those of the wounded and dying men. And these animals were enually worthy of pity, if not more so, since they were not the cause.

[^12]of their sufferings, which were altogether unnecessary, and could as well have been avoided, and since they could not speak to make their sufferings known. Men should remember that the lower orders of animals have feclings as they have themselves, and are susceptible in most cases, if not all, of as exquisite pain and suffering. We are often very much affected at secing animals, especially horses, treated with such inconsideration and cruelty. They are made to draw too heavy loads, to travel too fast, and to work too long hours, upon, perhaps, a scanty allowance of food by men who seem as thoughtless as they are themselves, and infinitely more cruel. We have been a short time ago in a large city where the practice is to a great extent to yoke but one horse to a hack, which in all other citics with which we are acquainted is accustomed to be drawn by two horses, and still this horse is made to travel equally fast up and down hill, and to draw equally heavy loads, (as many as they can get into the carriage,) as if there were two horses attached. When men come to know what they really are, and that all other animals have feelings as well as themselves, and are as susceptible of pain and suffering; that they are aivays under the Creator's eye, who is every where present to see and know what they do ; and that they are accountable for the mannor in which they treat these animals which He has entrusted to their care, which are also His creatures, they will then recognize the propriety, as well as necessity, of treating their animals more considerately and better than they have generally $\mathrm{l}:$:terto been accustomed to treat them.

The empire of Austria has long been a leading state in Europe. Until the ascendancy of Prussia in our day she had the pre-minence among the German states. Like Russia and Prussia, in later times, she made herself great at the expense of her neighbors, absorbing one naighboring state after another until she attained her present dimensions. She comprises in her dominions various nations and languages, and her people generally are less enlightened than are the other German nations. The prevailing religion in Austria is that of Rome, and this nation like France has always been a stout supporter of the Papacy. As that state rose out of part of the Roman Empire, and has always been under the influence of Rome, most that will be necessary to say here with regard to its moral character is that it partook of the character of the Roman Empire in its two aspects of civil and religious, and the character of the Roman Empire we shall have to speak of more fully in the latter part of this book. Savage warfare has always there been practised ; the principles of the Inquisition have there been carried out; and the Romish Church, as in other European states, has for many centuries there held sway both over the souls and bodies of men. So that in our review of the moral character of Rome, which will have especial reference to the doings of the Roman Church, we may have glimpses of that of Austria, as

Austria since her riso has always been a principal member of that Church.

The modern Kingdom of Italy has very lately been formed. From a comparatively limited extent of territory, comprised in the state of Sardinin, Victor Emmanuel, with tho assistance of somo able and talented statesmen, has extended his dominions over all Italy. He has even addod the Papal States to his dominions, and made the city Rome his national capital, He is a man who, (whatever his socret motives may lave been, thoy are best known to himself) for doing so well for his people and for humanity at large, in the circumstances in which he was placed, is entitled to the consideratic:- and respect of all civilized nations, and of all good people. Much fault has been found with him by Roman Catholics for having appropriated the Papal States ; but in appropriating the Papal dominions he only took away from the Popo what did not belong to the Pope, and what, according to the voice of the people, the Pope was misgoverning, and restorod to the Kingdom of Italy its ancient capital. The popes have been accustomed to claim the Papal States and the city Rome as their dominions by right of donation by Constantine, which donation they claimod to have been confirmed nearly five hundred years after by Charlemagne. But history goes to prove the said donation of Constantine to have been a fiction, most probably of the eight century, and its confirmation by Charlemagne to have been no better ; for although both Pepin, the father of Charlemagne, and Charlemagno himself had pretended to make gifts and promises to the Popes of theso dominions, yet Charlemagne at his death reckoned the city of Rome and the territories nonimally governed by the Pope as part of his dominions ; of this we may have occasion to speak again in the latter part of the work. The Pope, therefore, had no right to the dominion of Rome except the right of possession ; and the vote taken in the Papal dominions to ascertain the will of the people on the subject plainly proved that they wished the government transferred to the King of Italy. It was then a matter of duty as well as of right for him to assume the government of the Papal dominions. It is much to be hoped that he will proceed even farther in his laudable course, and, as he has been the liberator of Italy civilly, become also its liberator religiously from the shackles of Papish or Romish idolatry. The Italians only need to become more generally and liberally educated in order to fit them for this more perfect freedom. But to this universal education they need to be encouraged and assisted, and, as in Prussia, required to attend by the government. In time past in that country education was not only not permitted or encouraged, but positively interdicted. A royal Sardinian edict, published in 1825, "directs that henceforth no person shall learn to read or write, who cannot prove the possession of property above the value of 1500 livres, (about 300 dollars.) The qualification for a student is the pos- as those of the other European states, have too long been prevented from education, and kept enslaved, body and mind, by the diversified machinery of the civil and religious power of the Catholic church. But Italy, as the other European states, is a warlike power, and maintains a large standing army ; yet it is hoped that, in the process of time, when her peoplo have become enlightened by education and true religion, Italy, which has been the scene of so many conflicts, and has drunk the blood of so many myriads of the human race, shall become a peaceful nation ; her government joiaing heartely with the other civilized nations in disbanding their armies and police, and in inaugurating and maintaining a reign of peace and righteousness in the world. There is much to be done, and some time will be required, in bringing the people of Italy, as well as of the other European nations, to that degree of enlightenment and civilization which we wish they had now attained. The sooner the movement is made in the direction we have indicated, and persistently carried out, the sooner will this great end be attained. The present and future rulers of Italy and of each of the other European states may, if they but will, do much toward the enlightenment and highest good of their people.

England is a nation of great power and influence. If it be enquired by what means this nation has come by her dominions, it may be answered that it was mainly by foree of arms. The seven atates of the Saxon Heptarchy waged war among themselves. After they had become united, and their power became concentrated, England, under the Norman and other princes, carried on destructive wars with Scotland, Wales, Ireland, and France, in the last-named country of which she maintained her power for some centuries. Scotland, however, become united to England in more modern times and by peaceable means; and the rise of the English power to its present state has been mainly accomplished since the union of these two countries nearly three centuries ago, since when the united nation has been called Great Britain. By her conquests on sea she has secured the possession of extensive colonial territories, and by the maintenance of a great naval power she retains them. England's naval wars have been destructive of life, and very fertile in the increase of her power. Her wars with Fwance, with the Dutch, with her own colonies in America, with Russia, with India and China, have been ferociously carried on, and with great loss of life and property to the people of these countries as well as to herself. By savage warfare, then, England has attained and maintains her power and influence among the nations of the earth.

Without adverting to the oppressive landlord and tax system which is in practice in Great Britain and Ireland, by means of which the great mass of the people cannot do much more in the acquisition of wealth than obtain a bare subsistence, in order the better to illustrate the moral char-
acter of Great Britain as a nation, we shall bring forward one or two instances of the mauner in which she has accumulated her wealth.

In another ago it will perhaps scarcely bo believed, and in this age it is very littlo known, that Great Britain, distinguished for her zeal in propogating ehristianity throughout the heathen world, has for many years derived a revenue from the worship of the idol Juggernaut, and other idols of similar description at Gya, Allahabad, Trepetty, and other places in Hindostan. From the year 1813 to 1825, there was collected, by order of the British Government, from the jilgrims of Juggernaut alone about $1,360,000$ rupees or 8550,000 , a great part of which was given to the support and maintenance of the abominable worship of this idol. Dr. Buchanan, in his "Christian Researches," states, from official accounts, that the annual expense of the idol Juggernaut presented to tho British Government is as follows :-

Forty-three thousand five hundred and ten dollars, paid annually by the British Government for the support of one ilol, Juggornaut! Some of our readers will say they never expected that Britain, which has displayed so much zeal in the dissemination of Bibles and Testaments and Tracts and orthodox Christian doctrine, would be guilty of any such practice. In the item " wages of servants" is included the wages of the courtesans that are kept for the service of the temple.

Mr. Hunter, the colloctor of the pilgrim tax for 1806, told Mr. Buchanan that three state carriages were decorated that year at an expense of upwards of one thousand dollars, with English broadeloth and baizo. The following items show the gain of this association with idolatry at some of the principal idol stations in India :-
nupees.

549,279
A rupee, though generally considered to be only of the value of half a crown or about sixty cents, is said to be received in the case of the
pilgrims of India as equivalent in value to one pound sterling or five dollars to an inhabitant of England ; so that in this point of view rupees may be considered as equivalent to pounds sterling or five dollar pieces.

Mr. Hamilton, in his "description of Hindostan," as quoted by Mr. Peggs in his "Pilgrim Tax in India,;" states, with respect to the district of Tanjore, that "in almost every village there is a temple with a lefty gateway of massive architecture, where a great many Brahmins are maintained partly by an allowance from government. The Bralmins are here extremely loyal on account of the protection they receive, and also for an allowance granted them by the British Government, of 45,000 pagodas or 18,000 pounds annually, which is distributed for the support of the poorer temples." Ono can scarcely conceive of anything more inconsistent than the conduct of a nation, that professes itself to be Christian and will not allow that it is idolatrous, supporting a system of idolatry the most revolting, cruel, lascivious and profane? Yet a member of the British Parliament, C. Bullen, Esq., in his letter to the Court of Directors relative to Juggernaut in 1813, says: "I cannot see what possible objection there is to the continuance of an established tax, particularly when it is taken into consideration what large possessions in land and money are allowed by our government in all parts of the country for koeping up the religious institutions of the Hindoos, and the Mussulmans." From all parts of India multitudes of idol-worshipers or pilgrims annually travel many hundred miles to pay homage to the different idols alluded to above. A tax is levied on those pilgrims graduated according to the rank or circumstances of the pilgrim, and amounting from one to twenty or thirty rupees. Those travelling to Allahabad, for example, are taxed at the following rates; on every pilgrim on foot, one rupee; on every pilgrim with a horse or a palanquin, two rupees; on every pilgrim with an elephant, twenty rupees, etc. Vast numbers of deluded people flock to theso temples every year.

In 1825, the number that arrived at Juggernaut was estimated at 225,000 , and in some years they have been calculated to amount to more than a million. The deprivations and miseries endured by these people are almost inconceivable. Dr. Buchanan, who visited the temple of Juggernaut in 1806, gives the following statement: "Numbers of pilgrims die on the road, and their bodies generally lie unburied. On a plain near the pilgrim caravansera, one hundred wiles from Juggernaut, I saw more than one hundred skulls; the dogs, jackels, and vultures seem to live here on human prey. Wherever I turn my eyes I meet death in one shape orother. From the place where I now stand, I have a view of a host of people, like an army, encamped at an outer gate of the town of Juggernaut, where a guard of soldiers is posted to prevent them from enteringthe town until they have payed the tax. A pilgrim announced that he
was ready to offer himself a sacrifice to the idol. He laid himself down on the road before the car as it was moving along, with his arms stretehed forward. The multitude passed him leaving the space clear, and ho was crushed to death by the wheels. How much I wished that the proprietors of Indian stock would have attended the wheels of Juggernaut, and seen this poculiar source of their rovenne. I beheld a distrossing scene this morning in the place of skulls, a poor woman lying dead or nearly so with her two children by her, looking at the dogs and vultures, which were near. The peoplo passed by without noticing the children. I asked thom whero was their home, they said they had no home, but where their mother was. Oh, thero is no pity at Juggernaut. 'lhose who support his kinglom err, I trust from igmorance ; they know not what they do."
"The loss of life," says Colonel Plipps, "by this superstition probably exceeds that of any other. The aged, the weak, the sick, are persuaded to attempt this pilgrimage, as a remedy for all ovils. Tho number of women and children is also very great, and they leave their families and their occupations to travel immense distances with tho delusive hope of obtaining eternal bliss. Their means of subsistence on the road are scanty, and their light clothing and littlo bodily strength are little calculated to encounter the inclomency of the weather. When thoy approach the temple they find scarcely enough left to pay the tax to government, and to satisfy the rapacious Brahmins ; and, on leaving Juggernaut with a long journey before them, their means of support are often quite exhausted. The work of death then becomes rapid, and the route of the pilgrims may be traced by the bones left by the jackals and vultures, and the dead bodies may be seen in every direction." It may be sain, therefore, without any extravagance, that a cortain portion of the British nation luxuriate upon tho nicest dainties, and the choicest finery derived from the intolerable sufferings and the life's blood of the Hindoos! Do they? With regard to the number that perish on such occasions, Rev. Mr. Ward estimates that 4,000 pilgrims perish every year on the route to and at holy places, an estimate which is considered by others as far below the truth. Captain F- estimates those who died at Cuttack and Pooree, and between the two stations, at 5,000 . What a number of these deluded wretches must die before they reach their homes, many of them coming three, six or nine hundred miles! Mr. M——, the European collector of the tax at Pooree estimated the mortality at 20,000 .

Juggernant is the most celebrated station of idolatry in India. All the land within twenty miles is regarded as holy ; but the most sacred spot is enclosed by a wall 21 feet high, forming a square of about 65 feet. Within this area there are about fifty temples, but the most conspicuous building consists of one lofty stone tower 184 feet high, and $28 \frac{1}{2}$ feet square inside. The idol Juggernaut, his brother Bulbudra, and his sister

Subadra occupy this tower. The roofs are ornamented with representations of monsters ; the walls of the temple are covered with statues of stone representing Hindoo gods with their wives in attitudes grossly indecent. The three idols alluded to are wooden busts six feet high, having a resem blance of the human head, and are painted white, yollow and black, with frightfully grim and distorted countenances. They are clothed with spangled brondeloth furnished from the export warehouse of the British Government. The car on which Juggernaut is drawn measures $43 \frac{1}{2}$ feet high, has 16 wheels of $6 \pm$ feet diameter, and a platform $34 \pm$ feet square. The coremonies connected with this idolatrous worship are in many cases exceedingly rovolting and obscene. At Ranibut, in the Province of Gurwall, is a templo sacred to Rajah Ishwara, which is principally inhabited by dancing women. The initiation into this society is performed by anointing the head with oil taken from the lamp, I laced before the altar, by which act they make a formal abjuration of their parents and kindred, devoting their future lives to prostitution ; and tho Rritish government by giving annually 512 rupees to the religious mendicants who frefuent this temple, directly sanction this system of obzcenity and pollution? Many temples of impurity exist in other places in Mindostan. Tavernier mentions a village in which there is a pagoda to which all the Indian courtesans come to make their offerings. This pagoda is decorated with a great number of naked images. Girls of eleven and twelve years old, who have been bought and educated for the purpose, are sent by their mistresses to this pagoda to offer and surrender themselves to this idol. If, as we have scen, the French Government authorize prostitution at home, what do they more than the British Government does in India, only that they act a little more directly in the matter? Such an abominable practise is sure to bring its equivalent measure of punishment, sooner or later, upon the nation whose government allows or supports it.

In order to induce ignorant devotees to leave their homes, and coinmence pilgrimages to these scenes of impurity and idolatry a set of avaricious villains, termed pilgrim-hunters, are employed to traverse the councry, and by all manner of falsehoods to proelaim the greatness of Juggernaut and their idols. They declare, for example, that the idol has now so fully convinced his conquerors (the British) of his divinity, that they havo taken his temple under their own superintendency, and that they expend 60,000 rupees yearly to provide it with an attendance suitable to his dignity. These pilgrim-hunters are paid by the British Government. If one of them can march out 1,000 persons and persuade them to undertake the journey, he receives 1500 rupees if they be of the lower class, and 3000 rupees if they are persons belonging to the highest classes. And, what seems a very natural consequence, the procodure of the British Government in relation to this system has led many of the
natives to suppose that the British people approve of the idolatrous worship established in India. A Hindoo enquired of a missionary : "If Juggernaut be nothing what does the company take so much money from those who come to see him?" Mr. Lacy, a missionary, who went to succour the destitute on the road to Cuttack, during one of the festivals, relates the following incident: "You would have felt your heart moved to hear, as I did, the natives say :-'Your preaching is a lie, for, if your Saviour and your religion are thus merciful, how do you then tako away the money of the poor and suffer hinn to starve?' It is indeed no wonder that when the natives see a poor creature lying, about to die for want, they should reflect that the two rupees he has paid as a tax would have supported his life." Nor should it be a pleasing reflection to an English mind that these two rupees form precisely the differenco between life and death to many who have perished for want on their way home. Another missionary relates: "Passing one evening a large temple I caught a sight at one of the idols and exclaimed, sinful, sinful!! The native who was with me asked : 'Sir, is that sinful for which the company gives thousands?' A man said to me a few days ago, 'If the government does not forsake Juggernaut, how ean you expect that we should'?" In this way the efforts of the Christian missionaries to convert the Hindoos are in many instanees rendered of no avail. Could not the British nation endure to bo less wealthy, and refrain from increasing their stock of riches by the support and encouragement of such a polluted system of idolatry, attended with such an amount of suffering, deprivation and death to the people of Indio? But, doubtless, the great body of the British people are ignorant of any such practice being authorized or countenanced by their government. Or, do the British Government carry on this vile business illl now? People should prefer to live on herbs, and go clothed in the coarsest garments, rather than luxuriate on the most delicious fare, elothed in the finest and costliest garments, derived from such an unspeakably abominable and polluted source.

Another glaring instance of British moral or immoral character is found in their imposition by foree of the drug opium upon the Chinesc. We have stated before that opium is derived from the juice of the poppy plant, which is cultivated largely in India. We shall now state some facts in relation to this subject from the work of a late writer on China, a Christian missionary, who has lived among the Chinese for a number of years, and is fully conversant with this subject: "The profits of the opium trade to Great Britain are enormous not less than twenty to twenty-five millions of dollars a year. According to the estimate of an English newspaper, published in China, * the total profit from the time when the trade

- The North China IIerald of Shanghai.
began until the year 1854 were, in round numbers, three hundred and ten millions of dollars, and from that tine to the present it is three humdred and forty millions more. I'he total is about six huudred and fifty millions in sycee silver, that is, silver without alloy payed by weight. 'Ihis is the actual net profit to the produce upon a trade which amoments to from sixty to eighty thousand chests a year, which are worth in all from forty to sixty millions of dollars. The extent of the responsibility of the British government for the production and sale of opium I prefer,says the writer, to state in the words of one of its own subjects. The Calcutta correspondent of the London Times thus presents the case for the consideration of the readers of that influential paper: ' What,' says he, 'are the facts ? As to Bengal, I have gone through the poppy fields of Shahabad and have witnessed every detnil of the manipulation in the enormous go-downs of Patna. Under a severe contract law, twice as penal as any that has ever been proposed for ordinary agricultural purposes, and scouted by England, adrances of money are annually made to the peasants of Behar, Benares, and elsewhere. (It will be remembered that the opium is grown in British India, and is thence exported to China, and that the British government has, by means of war, compelled the Chinese government to admit it to their country in which its sale is now legalised, as is well known by the latter to the great detriment of the Chinese people.) The state lies out of these alvances for a year. Its establishment of highly-paid officials, and oppressive or colluding native subordinates, supervises every detail, the preparation of the fields, the sowing, the weeding, the scraping of the capsules, the collection of the crude juice, its transit to the state factory, and its sale in Calcutta. Yet, in spite of its establishments, sonuggling is the rule. 'The state of tho case is this: China will have opium just as England will have gin, and Scotland whisky. All facts go to show that the abuse of opium in China, though great, is by no means equal to that of alcohol in Europe. The moral question is, not whether China may be supplied with opium, but whether England as a nation, as the ruling power of India, ought, in its officiai and national character, to grow, manufacture and export the drug, the use of which has, after two or three wars, been legalized in China. Yet this is the position of England at this moment in relation to three-fourths of the opium imported from India ?' What is the effect of the opium trade upon Christian missions? The writer and every man who has been engaged in the work of preaching the gospel, healing the sick, instructing the young, and disseminating the word of God, knows that the incessant and bitter objection urged by all classes to his efforts is that it is impossible that nations which carry opium in the right hand can carry any boon of merey in the left. It (the opium traffic) is planting seeds of enervation, crime, and disease in the Chincse, who are coming to our shores, and creating correspond os
vexation and injury to us; it keeps the sword of war continually unsheathed and wot with blood, the torch of conflagration constantly burning, and every puff of hostile wind distributing its sparks amidst materials which are ever ready to burn hotly; it makes the benevolent efforts of the preacher of the Gospel of mercy and of the Christian physician and teacher appear like shallow and abominable hypocrisy, and the word of God itself something false and hateful when offered by hands imbrued with so stupendous a crime against humanity and justice, against the consoience of man, ani against the iaw of Heaven." Here we find a Christian nation itself the cause of the Gospel being virtually excluded from China, with its teeming population of four hundred millions of people. The same author says: "Would that it were possible to say that the hands of American merchants have not been stained by connivance with the crime of the opium trade in China! We are grateful to God that it it has not been made 'an official and national business to grow, manufacture and export the drug' by any other nation than Great Britain, and its Indian dependencies. But our ships have helped to convey and distribute the poison; our merchants have partaken to some extent of the profits of the work; and we have given it a garment of respectability by the deceitful pleas with which we have palliated its enormity." That unjust practice of forcing its commodities upon other nations against their will has of old been the policy of England. The reader may remember that the war which resulted in the independence of the United States, which, until then, were British colonies, arose from the British government having undertaken to compel the colonists to receive its cargoes of tea against their will. In the case of the Americans they did not succeed in their undertaking, but in that of the Chinese they did, after two or three wars, so that now the sale and use of the drug is legalised in that country. Great Britain, therefore, notwithstanding the progress she has made in the sciences and the arts, and the great efforts she has made in the dissemination of religious and other kind of knowledge, has yet much national injustice to answer 'sr, and scill far to advance before she has attained to true civilization, of which the practice of true Christian morality is the beginning and the ending: "Do unto others as you would have others do unto you."

Another unfavorable feature in the moral character of the British nation is the severity of its penal code. Among the variety of actions which men are daily liable to co: :nit no less than 160 have been declared by Act of Parliament to be felonies without benefit of clergy, or, in other words, to be worthy of instant death. Those who are found guilty of high treason are condemned by the law "to be hauged on a gallows for some minutes, then cut down while yet alive, the heart to be taken out and exposed to view, and the entrails burned." Though the most cruel part of this statute
is saic never to have been inflicted in modern times, yet its existence on the statute book (does it now exist?) is a disgrace to the British nation, a disgrace which should bo got rid of as quickly and as far as possible. Instead of diminishing the number of offenders experience teaches that crimes are almost uniformly inereased by an undue severity of punishment. This was strikingly exemplified in the reign of Henry VIII., remarkable indeed for the number of its crimes, which certainly does not seem to have arisen from mildness of punishment. In that roign alone, says his historian, 72,000 executions took place for robberies alone; exclusive of the reliyious murders, which are known to have been so numerous as to amount, on an average, to six executions a day, Sundays included, during the whole reign of that monarch. The design of the institution of government is, or ought to be, to subserve the benefit of the governed, to advance their highest interests ; but the government which will carry on such a wholesale slaughter among its people as that under the English monarchs did seems certainly to have another object in view, not the benefit, but the injury and destruction of its people.

If we enquire after the moral character of the United States as a nation, ve shall find that it, too, has been affected with many of those imperfections which we have seen so glaringly to be in the case of those we have reviewed. By war it attained its existence as a nation, and by the exercise of war it has maintained its independence and integrity, as well as extended its dominions. By the war of the revolution, ending in 1776, the iidependence was acheived, and by that of 1812 it was maintained. The United States has also carried on a war with Mexico, as a result of which the territories of the former have been extended westward to the Rio Grande and the Pacific Ocean, over Southern California. The States havt also carried on another great war with its own people, dark and fratricidal in its character, and which, though it may be thought to be productive of many good results, yet there are many reasons to deplore.
It appears that the wars which the first colonists carried on with the Indian tribes arose from their peculiar situation in relation to those tribes; but there are reasons to believe that the Indians were taken advantage of in too many cases by the white settlers of the Atlantic states. In their advance inland they drove the Indians before them, and gradually exterminated them as they advanced. If it be enquired what has become of all the Indian tribes which once inhabited the Northern, the Southern, and the Western states to the Missisippi River; what has become of all the Indians that three centuries ago inhabited the Continent of America now thickly inhabited by white people; the answer is plain; they have, in the main been exterminated hy the whites, gradually, by means ofwar, and secretly. Many strange but likely stories are told by some of the old settlers around the Great Lakes of the ways in which they
have known the Indians to be got rid of. And the means employed in one section of the country to get rid of them, or means equally effective, may have also been employed in other sections for the same purpose. Some of the Indians, doubtless, made their way into British America, still beyond the reach of the whites, and some of them are provided for by the United States Government in territories apportioned to them for a residence; but the greater part of the Indians must necessarily have suffered extermination by the whites in their gradual settlement of the country. Since the formation of the United States Government, nowever, the Indians that have submitted to it have been liberally death with, and a like liberal treatment has always been given by the British Government to the Indians settled within their North American possessions. And it may, perhaps, be considered that the Indians by their uncalled-for aggrossions on the new comers were, to a great extent, the cause of their own destruction. The two races might have lived together peaceably and prosperously if they had mutually cultivated and exercised toward each other the proper temper and spirit,-there was abundant room for all on the wide continent of Ainerica,-but they were mutually jealous, it appears, and suspicious of each other; either did not feel themselves safe in the neighbourhood of the other; and thus arose their mutual warfare. Heretofore, in the history of mankind, we cbserve that when two races, speaking different languages, and differing fron each other perhaps only trifingly in other respects, came face to face on the same soil, human barbarity has generally necessitated the gielding of the one to the other. Instead of the principle of benevolence, that of malevolence is usually practised in such eases. Cannot a new era, an era of benevolence, of self-denial, of humility and peaceful industry be inaugurated ? It car, if eaci one living will do their part towards it by always cultivating and exercising the right temper and spirit.

The existence of slavery so long in the United States was the greatest moral reproach to the nation. The way, also, in which it was got 1 id of is a reproach. The pride and haughtiness of certain individuals of the rival parties-slave and free-kindled the dame of war, which for four years w..ged with such destructive violence. The result of the war-the abolition of slavery-was great, but how much better it would have been had the same resuit been accomplished by peaceful measures and means. Slavery is an evil, which every one must conscientiously know to be an evil. But because an evil exists must an equal evil be perpetrated in order to get rid of it? Should the proud hearts of the leaders of the South and North not bend to an act of lemislation by which the slaves might be emancipated by means of an equitable purchase, and slavery abolished? The thing was not impracticable, for it had been done before by the British Government in the case of their West Indian slaves. Or, on the other
hand, should not those who held the slaves in bondage have acted benevolently coward them and set them free, and put them to work at a fair wages? It is time that such benevolence were exercised by human beings toward each other. It is said to be more blessed to give than to receive. Men have but a short time to live on this earchly scene, and though they be rich or poor, they will be all the happier and better for doing all the good that lies in their power, by acting benevolently and beneficently toward each other. There is no doubt of this. Let each one realize it for one's self. Your Creator is everywhero present, recognizes all your acts, and will be sure to reward the good acts, and, if you are unable to act, the good-will and intentions. You are also an accountable being, and will in yourself experience the consequences of your cril, whether of omission or of commission. A small moiety of the treasure which was expended in carrying on that atrocious war-the result of pride and selfishness in a few-might have been sufficient to have bought the slaves out at a fair price. And how many fathers, and husbands, and brothers, and sons, whom that war has laid low, would now be alive, a help and a comfort to their friends, and a blessing to their country! The emanci ${ }_{c}$ ated negroes would be equally well off,--perhaps better,--th.3 country much more prosperous, and the people much happier. America, both South and North, would thus have given proof of a higher state of civilizatien, and of a higher moral character, than it now can be ad aitted to have attained. How long before men come to realize that their duty is to deny self, to subdue and eradicate pride, and to act benevolently and charitably toward each other! May there not be less crime of a private and of a public nature committed in the United States? Wi'l not each individual, old and young, male and female, in the republic, leavo nothing undone which they can do to bring about the era of rightcousncss, and peace, when all shall enjoy and be satisfied with the fruits of their own integrity, industry, and strictly moral living? The country which has hitherto been the refuge of the poor and oppressed of all nations may thus be rendered of still greater benefit to mankind.

Heretofore in our rcview of the moral character of the civilized nations we have spoken of Rome and its empire with reference mainly to its civil aspect. Now we shall inquire what information history affords us as to the character and doings of the Catholic Church, whose head was the Pope. Hitherto we have not found that the nations callod civilized are exalted to a very great degree above those called uncivilized, in point of true morality, (although they are exalted in some degree,) so that our readers may ere this have begun to suppose that if the nations called civilized have much in their moral character to entitle them to the name civilized, it must be found in the religion they profess. We shall see.

The New Testament teaches us of the characters of the founders of thechristian chureh. They are all said to be men distinguished for self-denial, for humility, for charity, and for active industry in the cause wheh they espoused, and endeavoured to promote. During the early ages of Christianity a goodly portion of the same spirit was manifested by the greater number of those who enrolled themselves as the followers of Christ. Even in the midst of the reproaches and persecutions to which they were subjected during the two first centuries of the Cliristian era, a meek and forgiving disposition, and a spirit of benevolence toward one another, and toward all mankind, distinguished them from the heathen around and constrained even their enemies to exclaim: "Behold how these Christians love one another!" But no sooner was the ehurch combined with the state in the days of Constantine than its native purity began to be sullied, and Pagan maxims and wordly ambition began to be blended with the pure doctrines of Christianity. Many of its professed adherents, overlooking the grand practical bearings of the Christian system, began to indulge in vain speculations concerning its doctrines which they could not understand; to substitute a number of unmeaning rites and ceremonies in the place of love to God and man, and even to persecute, and destroy all those who refused to submit to their opinions and decisions. Pride and ambition usurped. the place of humility and meekness, and the foolish mummeries of monastic and aseetic superstition and austerity were substituted in the place of the aetive duties of justice and benevolence. Saints were deified; the power of the elergy was magnified; religious processions were appointed ; pilgrim. ages were performed to the tombs of the martyrs; monasteries and nunneries without number were ereeted ; prayers were offered up to the departed saints; the doctrine of the Trinity was instituted; the Virgin Mary was recognized as a species of inferior deity; the sign of the cross was regarded as capable of securing vietory in all kinds of trials and calamities, and as the surest protection against the influence of malignant spirits; the bishops aspired after wealth, magnificence, and splendour, which they have not yet ceased to do ; errors in religion were punished with civil penalties and bodily tortures ; and the most violent disputes and contentions disturbed every section of the Catholic Chureh; while the mild and beneficent virtues of the religion of Christ were either discarded or thrown into the shade. Of these and similar dispositions and practices we might give details which would fill many volumes, and which would convince every impartial mind that the true lustre of Christianity was sadly obscured, an:d its heavenly spirit almost extinguished, amidst the mass of superstitious observances, of vain speculations, and of angry feuds and contentions, which prevailed. Millot, in speaking of the state of the chureh in the days of Constantine and the succeeding emperors, justly rema: ks: "The disciples of Christ were inspired with mutual feuds, still more implacable and destructive than the
factions that were formed for or against different emperors. The spirit of contention condemned by St. Paul became almost universal. New sects sprung up incessantly and combatted each other. Each boasted its apostles, gave its sophisms fur divine oracles, pretended to be the depositary of the faith, and used every effort to draw the multitude to its standard. The church was filled with discord ; bishops anathematized bishops ; violence was called in to the aid of argument, and the folly of princes fanned the flame which spread with such destructive rage. They played the theologists, attempted to command opinions, and punished those whom they could not convinec. The laws against idolaters were soon extended to heretics; but what one emperor prescribed as heretical was to another sound doctrine. What was the consequence? The clergy, whose influence was already great at court, and still greater among the people,began to withdraw from the sovereign authority that respect which religion inspires. The popular ferments being heightened by the auimosities of the clergy, prince, country, law or duty were no longer regarded. Men were Arians, Donatists, Priscillianists, Nestorians, Eutychians, Monothelites, etc., but no longer citizens, or, rather, every man berame the mortal enemy of thoso citizens whose opimions he condemned. This unheard-of madness for irreconcilable quarrels on subjects which ought to have been referred to the judgment of the church, never abated amid the most dreadful disasters. Every sect formed a different party in the state, and their mutual animosities conspired to sap its foundations." *

At the pariod to which these observations refer two erroneous maxims appear to have generally prevailed, which tended to undermine the gospel system of morality, and which were productive of almost all the contentions, tumults, and massacres, which distinguish that era of the Christian church. These were, first, that religion consisted in the belief of certain abstract and incomprehensible dogmas, and in the performance of a multitude of external rites and ceremonies ; and, secon?, that all heresies or differences of opinion on religious points ought io be extirpated by the arm of the civil power. Than such maxims nothing can be more repugnant to reason or subversive of genuine morality, or more inconsistent with the genius and spirit of the true religion of Christ. And yet, to this time they are seted upon by four fifths of the Christian world, notwithstanding the numerous examples which history furnishes of their futility and erroneous tendency. We shall state only two or three instances referring to this period. The Emperor Theodosius came to the throne of the Roman empire in the year $379, \mathrm{~A}$. D. Bcing originally a pagan he was baptised into the Christian church in the second year of his reign, during a severe illness, which threatened his life, and on his recovery he professed great zeal for

[^13]that church. Soon after his baptism, he dictated the following ediet: "It is our pleasure that all the nations which are governed by our clemency and moderation should steadily adhere to the religion which was taught by St. Peter to the Romans, which faithful tradition has preserved, and which is now professed by the Pontiff Damasus, and by Peter, bishop of Alexandria, a man of apostolic holiness. According to the teaching of the apostles, and the doctrines of the Gospel let us believe the sole deity of the Fa ther, the Scn, and the Holy Spirit, under an equal majesty and a pious trinity. We authorise the followers of this doctrine to assume the name of Catholic Christians; and as we judge that all others are extravagant madmen, we brand them with the infamous name of heretics, and declare that their conventicles shall not longer usurp the respectable name of churches. Beside the condemnations of divine justice they must expect to suffer the extreme penalties which our authority, guided by heavenly wisdom, shall think proper to inflict upon them." *
Theodosius declared apostates and Manicheans incapable of making a will or receiving any legacy; and, having pronounced them worthy of death, the people thought they had a right to kill them as proseribed persons. He enacted a law condemuing to the flames cousins-german, who married without a special license from the emperor. He appointed inquisitions for the discovering of herolics. He drove the Manicheans from Rome as infamous persons, and on their death ordered their goods to be distributed among the people. In the space of ten years, he promulgated at least fifteen severe edicts against nonconformists and heretics, more especially those who rejected the doctrine of the Trinity which, under his reign, was established by law ; and to deprive them of every hope of escape he sternly enacted that if any laws or rescripts should be alleged in their favor, the judges should consider them as the illegal productions either of fraud or forgery. Leo, another emperor, "commanded every person to be baptised under pain of banishment, and made it a capital offence for any one to relapse into idolatry after the performance of that ceremony;" as if men could be made Christians by a foreed baptism or by a law of the state. Such edicts clearly showed that whatever zeal those princes or the clergy might inanifest in favor of the Christian religion, they were totally devoid of the true spirit, and ignorant of the means by which its benevolent objects were to be accomplished.

To illustrate the manner in which such edicts were carried into effect, the following instance may be stated: Hypatia, the daughter of Theon, the celebrated geometrician of Alexandria, exceeded her father in learning, and gave public lectures in philosophy with the greatest success; nor was she less admirable for the purity of her virtues, joined to an uncom-

- Gibbon's Rome.
mon beauty, and every accomplishment that could adorn human nature. But that excellent woman, because she would not accept of the established religion, and was supposed to be active against St. Cyril, the bishop, became an object of detestation to the Christian multitude. A set of monks and desperadoes, headed by a priest, seized her in the open street, hurried her into a church, where they stripped her naked, lacerated her body with whips, cut her in pieces, and publicly burned her mangled limbs in the market-plece." St. Cyril, who was suspected of having fomented this tragedy, had previously attacked the synagogues, and driven out the Jews ; their goods were pillaged, and several persons perished in the tumult. Such conduct plainly demonstrates the tendency of the human mind to abuse power, for the purpose of revenge and persecution; and illustrates, also, what the ideas of these persecutors were of their pretended religion.

About this time, and afterwards also, vain speculations about abstruse and incomprehensible subjects occupied the minds and the time of theologists, engendered religious quarrels and disputes, and burst asunder the bonds of affection and concord. A play upon words and vain subtleties were substituted for clear conceptions and substantial knowledge; which, instead of directing tine faculties of the human :aind to the proper objects, tended to obscure the light of reason, and to usher in the long night of ignorance, characterized as the Dark Ages. It was a prevailing madness with these early theologists, who were obstinately tenncious of their opinions, and it has been too much the case with certain modern theologists to dispute about doctrines which they claimed to be incomprehensible, to render them more obscure by their attempts to explain them, never giving the proper explanation, and perpetually to revive the most angry contentions.

The Arians rejected the divinity of Christ in order to maintain the unity of God; the Nestorians denied that Mary is the mother of God, and gave two persons to Jesus Christ to support the opinion of His having two natures. The Eutychians, in order to maintain the unity of the person, confounded the two natures in one. This sect became divided into ten or twelve branches, many of them, as the Gnostics of the Primitive Church, maintaining that Christ was merely a phantom or appearance of flesh, but not real flesh. The Monothelites maintained that Christ had only one will, as they could not conceive two free wills to exist in the same person. Another sect maintained that Christ's body was incorruptible, and that from the moment of His conception He was incapable of change and of suffering. This chimera the Emperor Justinian attempted to establish by an edict. He banished the patriarch Eutychius, and several other prelates

[^14]who opposed his sentiments, and was preparing to tyramize over the ennsciences of men with still more vinlence, when, atter a long reign, hath interposed, and remored hiun firm this carthly scone.

In such vain and prepostemus diaputes as these the minils of pmofesaed Christians were oecnpied, not withatanding the perils with which they were then encompassed ly the invasion of the harharians. Comeila were held to determine the orthodox side of a question: anathemas were hurled agninst those who reftused to acquiesee in their decisinns: prinees interposed their authority, and the civil power stood ready to compel men to profess what they did not believe and conld not understand, while the esaential truths of religion were overlooked, and its morality dispegarded. "Religion," says Millot, " inspires men with a contompt of earthly ranities. a detestation of viee, and indulgence for the fiaities of our neighows, invulnerable patience in misfortune and compasaion for the monaply: it inspires us with charity and heroie courage, and tends to sanctify every action in common and social life. How sublime and comforting the idea it gives of the Divinity ; what confidence in lis justice and intinite merer ; what encouragement for the exercise of every virtue: wherefore, then, such errors and excesses on religions pretences? It is hecanse heresy. starting up under a thousand different forms, incessantly startles the faith by subteties and sophistry, by which almost the whole energy of men's mind is absorbed in the contest. Disputes engender hatred; from hatred springs every excess ; and virtue, exhausted with words and cabals, hases her whole prower." How well it would be for the canse of gemine Christianity, and how promotive of the happiness of mankind, if the present and future generations would profit hy the experience of the past!

As we adrance in the history of the Christian Church throngh the Middle Ages the prospect beeomes still more dark and gloomy: the human mind at that period appears to have lost its wonted energy and power of determination; the light of reason seemed well nigh extinguished; sophisms and absurdities of all kinds were swallowed and left undigested, and superstition displayed itself in a thousand different forms ; morality was smothered up under a heap of ceremonies, and arhitrary ohecrrances obtained the name of devotion; relies, offerings, pilgrimages, and pions legacies were thought capable of opening the gate of heaven to the most wieked of men; the Virgin Mary and the souls of departed snints were invoked; splendid temples and shrines were ereeted to their honor, and their assistance was entreated with many fervent prayers ; an irresistible efficacy was attributed to the bones of martyrs, and to the figure of the cross, in defeating the temptations of Satan, in warding off all sorts of calamities, and in healing the diseases of the body and of the mind; works of piety and benevolence, as in Romish comntries at the present day, were viewed as consisting chiefly in building and embellishing
 relies of martyrs. in prowering the intercession of saints ly rich ohlations, in worahiping imagoa, in pilgrimuges to loly placos, in volutary nets uf murtifientim, in sulitary masaes, nul in n variety of similar services
 erimes : so that the worship of the invisible Deity, the Creator of all, was exchanged for the worship, of hair, homes, framents of fingers num toes, tattered raga, images of anints, and lits of rotten wood, supposed to ho the relies of the eross: the cmoniz: g of saints becmue the fruitful sanree of framls and ahmes throughout the Cluristimn world ; lying womers were invented, and fubulons histaries and legonds commoned to endehrate expluits that were never performed, and to glorify persoms that never hand " laing: mul alsolution firen the greatest crimes could be ensily ohtained either hy money or by peonace. During the eighth and ninth centuries, there were perpetnal contesta na to images, whethor or mot they shoula be worshiped; one emperor permitted, another prohihited, their worship. An emperor, in the hogiming of his reign, as Lee the Isaminm, bows down in abject homage to them, mind therely secures the finvor of the Pope and his prelates; in the latter part of his reign he breaks them to pieces, and therely olbtains their displeasure and active opmaition. I Ionce arnse the term Iconoclasts, or limge breakers, in comtrmbistinction to image. worshipers. 'The sect of the temochasts was suppurted by six Binperors, and the whole Catholic church was involved ia a moisy conllict between these two opposing parties for a period of one humbed and twenty years.
'The absurd principle that religion consista of' nets of ansterity produced the most extravagant behaviour in certhiin devotees and reputorl smints. 'Ihey lived among the wild bensts; they ran maked throngh the lonely desert, with a firions napect, and with all the perturbations of malness and frenzy ; they prolonged their wretehed lives by grass an: wild herbs; avoided the sight and conversation of men, nud remained ahost motionless for several years exposed to the rigor and inclemency of the seasons; and all this was considered as an acceptable method of worshiping the Deity, and of obtaning llis faror.

But of all the instances of superstitions fremzy which disgraced those times none was held in ligher veneration than that of a certain order of men ealled liillar Saints. These were persons of a most singular and extravagant turn of mind, who stood motionless on the top of pillars, expressly raised for this exercise of their patience, and remained there for several years the objects of the admiration and applanse of a stupid and wondering pepulace. This strange superstitions practice began in the sixth century, and contimed in the East for more than six hundred years. The name and genius of Simeon Stylytes have been immortalized by the invention of this acrial penance. At the age of thirteon years, the young

Syrim deserted the profession of a shepherd, and hrew himself into a monastery. After a long and painful novitiate, in which he was repeatedly saved from pious suicide, Simeon established his residence on a mountain, about thirty or forty miles to the bast of Autioch. Within tho space of a Mandra, or circle of stones, to which he had attached himself by a ponderous chain, he ascended acolumn, which was successively raised from the leight of nine to that of sixty feet, from the gromed. In this last and lofty station the Syrian monk resisted the heat of thirty summers, and the eold of as many winters. Habit and exercise instrueted him to maintain his dangerons situation without fear or giddiness, and successively to assume the different postures of devotion. He sometimes prayed in an ereet attitude with his arms outstretehed in the figure of a eross, but his most familiar practice was that of bending his meagre skeleton from the forelead to the feet; and a curious spectator, nfter numbering 12.4 repettions of this ate, at length desisted from the endless aceomut. The progress of an uleer in his leg might shorten, but it could not disturb this celestial life; and the patient monk expired withont descending from his colum. This voluntary martyrdom must have gradually destroyod the sensibility both of the mind and boly; nor can it be presumed that famaties who muecessarily tormen cinemselves are suseeptible of any lively impression for the rest of mankind. A eruel unfeeling temper has distinguished the monks of every age and comery; their stem indifference is intlamed by religious hatred, and their merciless zeal has strenuonsly administered the offiee of the Inquisition.

To the same irrational prineiple are to be attributed the revolting practiees of the Flagellants, a sect of fanatics who chastised themselves with whips in public places. Numbers of persons of this description of all ages and sexes made processions, walking two by two, with their shoulders bare, which they whipped until the blood ran down in streamlets, in order to obtain the merey of God and appease his anger against thoir wickednoss. They held, among other things, that flagellation was of equal virtue with baptism and the other sacraments; that the pardon of all sins would be obtained by it, without the merits of Jesus Christ; that the old law of Christ was soon to be abolished, and that a new law, enjoining a baptism of blood to be administered by whipping, would be substituted in its place. The cnormous power that eame to be vested in the ecelesiastical rulors was another source of immorality, and of the greatest excesses. The Pope and the elergy reigned over the greatest part of the Catholic church without control, and made themselves masters of almost all the woalth in evory country in Europe. Many of then perpetrated crimes of the doepest dye, and the laity, thinking themselves able to purchase tho pardon of their sins for money, followed without scruple the example of thoir pastors. Every Christian country swarmed with lazy monks, and tho most violent conten-
tions, animosities and hatred reigned among their different orders, as well as between all ranks and orders of the clergy. "Instead of consocrating ecclosiastionl censures solely to spiritual purposes, they converted them into a weapon for defending their pricileges, and supporting their pretensions. 'The priesthood, which was principally designed to bless, was most frequently omployed in cursing. Excommunication was mado the instrument of damang mstend of saving souls, and was inflicted according to the dictates of policy or revengo." The great and powerfin, even kings and emperors, wero excommunicated when it was designod to rob or to enslave them; and this invisible engine, which they wielded with an effeetive and a sovereign hand, was used to stir up dissensions anong ":e nenrest relations, and to kindle the most blooly wars. The generality of priests and monks kept wives and concubines without shane or scruple, and even the papal throne was at some times the seat of debanchery and vice. The possessions of the chureh were either sold to the highest bidder or turned into a patronage for the bnstards of the incumbents. Marringe, wills, contracts, the interests of families and courts, tho state of the living and the dead wore all converted into instruments for promoting their credit and increasing thoir wealth. It was, thereforo, a nocessary consequence of such a state of things that vices of every description abounded, that bad morals prevailed, and the benevolenco of the divino law was trampled under foot.

Iho ignorance and superstition which tho corruptions of Christianity introduced were dexterously improved by the ccelesiastieal rulers to enrich themselves, and drain the purses of the deluded masses. Each rank and order of the clergy had its peculiar method of fleecing the peoplo and increasing its revenues. "The bishops," says Mosheim, "when they wanted monoy for thoir privato pleasures, granted to their flock the power of purchasing the remission of the penalties imposed upon transgressors by a sum of monoy, which was to bo applied to cortain religious purposes, or, in other words,they published indulgonces, which bocamo an inexhaustiblo source of opulence to the episcopal orders, and enabled them to form and execute the most difficult schemes for the enlargement of their authority, and to orect a multitude of sacred edificos, which augmented the external pomp and splendor of the church. The abbots and monks, equally covetous. and nmbitious, had recourse to other methods for enriching their convents. They enrried about the country carcases and relics of the saints in solemn procession, and permitted the multitudes to behold, touch, and embrace those sacred and lucrative remains, at certain fixed prices. By this raree-show, the monastic ordors often gained as much as the bishops did by their indulgences."* The Popo at length assumed the chicf power

[^15]

 asarios. and ly the mangation of the promgntire of the boity. 'Thia

 which all civilized mathons determined to bue wirlly if dontlo. All the

 religion.

 and to perecire the vitemess, impriety, mul fatase pretensinse of the evelo-
 states began to exchain lomdy ngainst the inspotic dominimon of the Popes, the frand, avarice, and inginstico that provailed in their emmoils, tho arrogance and extortion of the legates, nund the milurinled rapacity mall licentionsuess of the clergy and monka, mitil at length the l'rotestant

[^16]

 And thase Remmens thint nre within the lowse, minl linve mere time the enat

 " If these seventy millima in iluhlse drenta huil been apent in persecenting
 'These seventy milliens womld have been enongh to have everrmall Aain, mul, (which is of importance too.) the prinees would have comtributed as much more had they seen the I'opes more tenneions ngninst their kimbent, and more firee to the saldiers who were fighting for Chist.'"

[^17]The same author states that " Innocent X., to satisfy the fancy of a kinswoman, spent a hundred thousand crowns upon a fountain, yet with great difficulty could scarce find forty thousand to supply the emperor in his wars with the Protestants;" and "this good Pope would nevertheless leave to his cousin, to the house of Pamphylia, and other houses allied to that, above eight millions of crowns, with which sum they flourish in Rome to this very day." Again : "The Barbarini were in Rome at the same time, and enjoyed a rent of four hundred thousand crowns, and yet in a war of so much importance to the Catholic religion they could not find forty thousand. But Oh God! (I speak it with tears in my eyes) against the most Catholic princes of Italy whole millions were nothing ; they could turn the cross into the sword to revenge their particuiar injuries; but, in the relief of the emperor who was vindicating the Christian faith, they could not find so much as a few hundreds." "The infidels laugh, and the heretics rejoice to see the wealth of the Church so irreligiously devoured, while the poor Christian weeps at their merriment." "I'he heat and passion which the Popes show hourly for their Nephews to gain principalities for them, to bestow pension upon pension upon them, to build palace upon palace for them, and to fill their coffers with treasures to the brim is that which cools the resolution of the zcalousest prince, and exasperates the infidels in their wicked designs. A great shame it is indeed that the heretics shouid have more ground to accuse the Catholics than the Catholic has to impeach the heretic." And he adds the following apostrople in reference to this subject: "Oh God ! to what purpose will they keep so many jewels at Loretta, so much consecrated plate at Rorne, so many abbeys for their Nephews, so much wealth for the popes, if, abandoning their Commonwealth, and refusing it that humane supply that is necessary for the celestial glory, it be constrained to submit to the Ottoman power, which is threatening it now with the greatest effect? If the wealth of the Popes be devoured, the benefices of the cardinals given to the priest of Mahomet, the abbeys of the Nephews usurped by the Turks, the sacred vessels at Rome profaned by these infidels, and the seraglio adorned with the gems of the Loretta, God grant my eyes may never see that spectacle ! "" Thus it appears, from the testimony of Catholic writers, that the immense sums which were wrested from the people by every species of fraud and extortion, instead of being applied to the maintenance and defence of the Church, as was pretended, (which application, in the state in which the Church was then, would not have been an over-good one either), were wasted in luxury and extravagance by the Popes and their minions in selfish gratifications, in riot and debauchery, in accumulating wealth on the heads

[^18]of their relatives and favorites, most of whom were infidels and debauchees, in gratifying the pride and avarice of courtesans, and in the imost romantic and ambitious projects. The single structure of St. Peter's at Rome is said to have cost the enormous sum of sixty millions of dollars, and in our age and country would have cost, at least, three times that amount. What immense sums, then, must have been expended on similar objects intended merely for worldly ostentation by the Catholic hierarchy throughout the whole of christendom, besides the millions that were expended in their pursuits of tyranny, sensuality and debauchery. The mind, whenit reflects upon it, is almost overwhelmed at the thought that such saerilegious enormities should have been so long continued with impunity, and that such immense treasures should have been consecrated for so many ages to the support of the kingdom of darkness, while the true Christian church was allowed to pine away in poverty, and compelled to hide its head in dens and caves of the earth.

The Pope's revenues, as a temporal prince, at the beginning of this century, have been calculated to amount to at least a million of pounds sterling, or five millions of dollars a year, arising chiefly from the monopoly of corn, the duties on wine and other products. Over and above these, vast sums were continually flowing into the papal treasury from all the Roman Catholic countries for dispensations, indulgences, canonizations, annats, the pallia, the investitures of bishops and archbishops, and other resources. It is computed that the monks and regular clergy who were absolutely at the Pope's devotion did not amount to less than two millions of persons, dispersed through all the Roman Catholic countries, to assert his supremacy over princes, and to promote the interest of the Church. The revenues of these monks and priests did not fall short of two hundred millions of pounds sterling, or a thousand millions of dollars, besides the casual profits arising from offerings and the people's bounty to the church, who are taught that their salvation depends upon this kind of charity. In Spain alone the number of ecclesiastics, including the parochial clergy, monks, nuns, syndics, inquisitors, etc., amounted to 188,625 . The number of archbishops was eight, and of bishops forty-six. The archbishop of Toledo alone had a revenue, which, according to the most moderate computation, amounted to four hundred and fifty thousand dollars a year. In Portugal, in 1732, there were reckoned above 300,000 ecclesiastics out of a population of less than two millions. The patriarch of Lisbon had an annual revenue of one hundred and fifty thousand dollars, and the revenue of the patriarchal church above $\$ 570,000$. It is stated by Mr. Locke in the diary of his travels that the expense of the ecclesiastical establishment in France, at the time that he resided in that country, amounted to about twenty-four millions of pounds sterling, or one hundred and twenty millions of dollars. This may give some idea of what must have been the immense
treasures of wealth collected by the Roman Popes and bishops, prior to the Reformation, when the whole of the European nations were in subjection to them, and when the newly discovered countrics in the Western world werc plundered to augment their reyenues and to satiate their rapacity!

The theological speculations in which these ecclesiastics indulged corresponded to their degrading practices, and tended to withdraw the mind from the substantial realities both of science and virtue; sophisms and falsehoods were held forth as demonstrations. They attempted to argue after they had lost the rules of common sense. The cultivation of letters, as well as of the arts, was neglected ; eloquence consisted in futile declamations; and true philosophy was lost in the abyss of scholastic and sophistical theology. They endeavoured to render theology a subject of metaphysical speculation, and of endiess controversy. A false logic was introduced which subtilized upon words, but gave no ideas of things, which employ ?d itself in nice and refined distinctions concerning objects and operations, which lay beyond their limited understandings, and which could not be understood. The following are only a few instances out of many that might be brought forward of the questions and controversies which occupied the attention of bishops and scholarly doctors, and gave rise to furious contentions: Whether the conception of the Blessed Virgin was immaculate? Whether Mary should be denominated the mother of God or the mother of Christ? Whether the bread and wine used in the Eucharist were digested? In what manner the will of Christ operated; and witether He had one wili or two? Whether the Holy Spirit proceeded from the F'ather and the Son or only from the Father? Whether leavened or unleavened bread ought to be used in the Eucharist? Whether souls in their intermediate state see God or only the human nature of Christ? It was disputed between the Dominicans and Franciscans whether Christ had any property. The Pope pronounced the negative proposition to be a pestilential and blasphemous doctrine, subversive of the Catholic faith. Many councils were held at Constantinople to determine what sort of light it was which the disciples saw on mount Tabor. It was solemnly pronounced to 'se the eternal light with which God is encircled, and which may be termed his energy or operati:n, but is distinct from his nature or essence. The disputes respecting the presence of Christ in the Eucharist led to this absurd conclusion, which came to be universally admitted: "that the substance of the bread and wine used in that ordinance is changed into the real body and blood of Christ," and consequently when a man eats what has the appearance of a wafer, or a piece of bread, he really and truly eats the body and blood and soul of Christ ; and when he afterwards drinks what has the appearance of wine, he drinks the very same body and blood, and soul, which: perhaps not a minute before, he had wholly and entirely eaten!

At the period to which we now allude the authenticity of a suspected relic was proved by bulls. Councils assembled and decided upon the authority of forged acts with regard to the antiquity of a Saint, or the place where his body was deposited ; and a bold impostor needed but to open his mouth to persuade the multitude to believe whatever he pleased. To feed upon animals strangled or unclean, to eat flesh on Tuesday, eggs and cheese on Friday, to fast on Saturdar, or to use unleavened bread in the service of the mass, were by some considered as indispensable duties, ard by others as vile abominations. In short the history of the period is a reproach to the human understanding, an insult offered to reason, and a libel on the benevolent spirit which breathes through the true religion of Christ.

Nothing can be more directly opposed to the spirit which this religion inculcates, than the temper and conduct of many, if not all, of those who arrogated to themselves the character of being " God's vicegerents on earth," and who assumed to themselves the sole direction and control of the Christian church. In persons who laid claim to functions so sacred and divine it might have been expected that, at least, the appearance of piety, humility and benevolence would have been exhibited before the Christian world. But the history of the Popes and their satellites displays almost everything which is directly opposed to such heavenly virtues. Their avarice, extortion, and licentiousness became intolerable and excessive, even to a proverb. To extend their power over the kingdoms of the carth, to increase their wealth and revenues, to live in opuience and splendour, to humble earthly rulers, to alienate the affections of their subjects, and to riot in the lap of luxury, sensuality, and debauchery, seemed to be the great objects of their ambition. Instead of acting as the heralds of mercy, and the ministers of peace, they thundered anathemas against all who dared to call in question their authority ; kindled the flames of discord and civil wars, armed subjects against their rulers, led forth hostile armies to the battle, and filled Europe with confusion, devastation, and carnage. Instead of applying the mild precepts of Christianity and interposing their authority for reconciling enemies, and subduing the jealousies of rival monarchs, they on many occasions delighted to widen the breach of friendship and to fan the flame of animosity and discord. Dr. Robertson, when adverting to the personal jealousies of Francis I, and Charles V, remarks: " If it had been in the power of the Pope to engage them in hostilities, without rendering Lombardy the theatre of war, nothing would have been more agreeable to him than"to see them waste each other's strength in endless quarrels. *

Some of our readers may have ere this become inpatient and digusted with the characters which have been drawn of those ghostly leaders of the

[^19]people. They may, however, remember that these are but a few of the facts of a similar kind which history presents before us, and that they are not exaggerated. The Son of Man comes into the world not to destroy men's lives but to save them ; but in such instances we behold his pretended vicars preparing and arranging the elements of discord, laying a train for the destruction of thousands, and tens of thousands, and taking a diabolical delight in contemplating the feuds, the massacres, and the miseries, which their infernal policy had created. The decrees from the papal throne, instead of breathing the mildness and benevolence of the gospel, became thundering curses and sanguinary laws, and a set of fanatic enthusiasts or a lawless banditti were frequently appointed to carry them into effect. Not resting satisfied with the insurrections and the desolations they had caused among the European nations, they planned an expedition for the purpose of suidduing Western Asia, and consequently of massacring its inhabitants. Urban II, about A. D., 1095 travelled from province to province levying troops, even without the consent of their princes, preaching the doctrine of "destruction to the infidels," and commanding the people in the name of God to join in the holy war. Peter the Hermit, represented by historians as a man of a hideous figure and aspect, coverel with rags, walking barefooted and speaking as a prophet, inspired the people everywhere with an enthusiasm similar to his own. St. Bernard ran from town to town haranging the populace, performing pretended miracles, and inducing all ranks, from the emperor to the peasant, to enroll themseives under the banner of the cross. Thousands of wicked and abandoned debauchees were thus collected; and bishops, priests, monks, women and children were all enrolled in the holy arny. A plenary absolution of all their sins was promised, and if they died in the contest they were assured of a crown of martyrdom in the world to come. With hearts burning with fury and revenge this army of banditti, without discipline, or a sufficiency of provisions, marched in wild confusion through the Eastern parts of Europe, : ad at every step of their progress committed the most horrible outrages. So inveterate was their hatred of the Jews wherever they found them that many of these unfortunate beings, both men and women, murdered their own children in the midst of the despair to which they had been driven by those infuriated madmen ; and when they had arrive? at Jerusalem, and had taken the city by assault, they made a universal slaughter of the infidels. Such was the way in which the successors of the apostles and the vicars of Christ displayed their §eneral benevolence, and their love to the souls and bodies of men.

The establishment of the Inquisition is another mode in which the tyranny and cruelty of the church of Rome have been displayed. The office of inquisitors of the faith was first instituted under Theodosius, and was, doubtless, retained and exercised to a greater or less extent in all the ages
subsequent to him. But the Court of the Inquisition, which became so terribly notorious, was founded in the Twelfth Century, by Father Dominic and his followerq, who were sent by Pope Innocent III, in order to excite the Catholic princes to extirpate heresy, and was, some time after, put into execution in Spain with awful effect. It is scarcely possible to conceive of any institution more diamctrically opposed to the dictates of justice and humanity, and to the genius of the religion of the Gospel, than is this infernal tribunal. The proceedings against the unhappy victims of that court were conducted with the greatest secrecy. The person granted them as counsel was not permitted to converse with them, except in the presence of the inquisitors ; and when they communicated the evidence to the accused persons they carefully concealed from them the name of the authors. The prisoners were confined for a long time until they themselves by the application of the torture became their own accusers; for they were neither told their crime nor confronted with witnesses. When there was no shadow of proof against the accused person, he was discharged after suffering the most cruel tortures, a tedious and dreadful imprisonment, and the loss of the greatest part of his effects. When he was convicted and condemned, he was led in procession with other unfortunate victims on the festival of the "Auto da fé" (Act of Faith) to the place of execution. He was there clothed with a garment painted with flames, and with his own figure surrounded with those of dogs, serpents, and devils, all open-mouthed, as if ready to devour him. Let the reader for a moment imagine himself in this situation, at the mercy of these fiendish men, simply because he could not conscientiously confess his belief of their absurd doctrines; he will thus the better realize the position of these victims. Such of the prisoners as declared that they died in communion of the church of Rome were first strangled, and then burned to ashes. Those who died in any other faith were burned alive. The priests told them that they left them to the devil, who was standing at their elbow to receive their souls, and carry them with him into the flames of hell ; as if there could possibly be any more real devil than these priests themselves, or any more real flames than those to which they subjected their victims. Flaming fuzees fastened to long poles were then thrust against their faces, until their faces were burned to a coal, which was said to be accomplished with the loudest acclamations of joy among the thousands of spectators. At last, fire was set to the furze at the bottom of the stake over which the criminals were chained so high, that the top of the flame seldom reached higher than the seat they sat on; so that they were roasted rather than burned. There could not be a more lamentable spectacle; the sufferers continually crying out while they were able: "Pity for the love of God" etc.; yet it is said to have been beheld by people of all sexos and ages, with transports of joy and satisfaction; and even the monarch, surrounded
with his courtieis, has sometimes graced the scene with his presence, imagining in his wicked ignorance that he was performing an act highly acceptable to God. "And yet there are amongst us Protestants, calling themselves "High Churchmen" and what not else, who are really Papists and Jesuits except in name. How long before the cause of truth and humanity is asserted? How long before the preachers of deceit and falsehood are left to starve, to preach to the walls or to the winds? And what were the crimes for which those dreadful inquisitorial punishments were inflicted? Perhaps nothing more than reading a book which had been condemned as heretical by the holy office; assuming the title of a freemason; irritating a priest, or mendicant friar ; uttering the language of a free thinker; declaiming against the celibacy of the clergy; insinuating hints or suspicions respecting their amours or debaucheries; or throwing out a joke to the dishonor of the Virgin Mary or, at most, holding the sentiments of a Mahometan, or a Jew, or of the followers of Luther or Calvin.

In the year 1725, the inquisitors discovered a family of Moors at Granada in Spain, peaceably employed in manufacturing silks, and possessing superior skill in the exercise of this profession. The ancient laws supposed to have fallen into disuse were enforced in all their rigor, and the wretched family was burned alive. \dagger

On the entry of the French into Toledo during the peninsular war, Gen. Lasalle visited the place of the linquisition. The great number of instruments of torture, especially those for stretching the limbs, and the dropbaths which cause a lingering death, excited horror even in the minds of soldiers, hardened in the field of battle. One of these instruments, singular in :ts kind for refined torture, and disgraceful to humanity and the name of religion, deserves particular description. In a subterraneous vault adjoining the audience chamber stood in a recess in the wall a wooden statue made by the hands of monks, representing the Virgin Mary. A gilded glory beamed round her head, and she held a standard in her right hand. Notwithstanding the ample folds of the silk garments that fell from her shoulders on both sides, it appears that she wore a breastplate, and upon a close examination it was found that the whole surface of the body was covered with extremely sharp nails, and small daggers or blades of knives, with the points projecting outwards. The arms and hands had joints and their motions were directed by machinery, placed behind the partition. One of the servants of the Inquisition was ordered to make the machinery maneuvre. As the statue extended its arms and gradually drew them back, as if she would affectionately embrace and press some one

[^20]to her heart, the well-filled krapsack of a Polish grenadior supplied for this time the place of the poor vietim. The statue pressed it closer and closer ; and when the director of the machinery made it open its arms and return to its first position, the knapsack was found pierced two or thrce inches deep, and remained hanging on the nails and daggers of the murdercus instrument.

This infamous tribunal of the Inquisition is said, between the years 1481 and 1759 , to have caused 34,658 human beings to be burned alive ; and between 1481 and 1808 to have sentenced 288,214 to * the galleys or to perpetual imprisonment. In the Auto of Toledo in February 1501, sixtyseven women wero delivered over to the flames for Jewish practices. This tribunal was exceedingly severe in its action against the Jews, who suffered in great numbers, and, as the heretics, they were condemned for very slight offences. A priest, who did not put up for being a zealot, wrote thus of the Jews: "This accursed race were either unwilling to bring their children to be baptised, or if they did they washed arway the stain on returning home. They dressed their stows and other dishes with oil instead of larl ; abstained from pork; kept the Passover ; ate meat in Lent; and sent oil to replenish tho lamps of their synagogues, with many other abominable ceremonies of their religion. They entertained no respect for monastic life ; and frequently profaned the sanctify of religious houses by the violation or seduction of their inmates. They were an exceedingly politic and ambitious people, engrossing the most lucrative municipal offices, and prepared to gain their livelihood by traffic, in which they made exorbitant gains, rather than by manual labor or mechanical arts. They considered themselves in the hands of the Egyptians, whom it was a merit to deceive and pilfer. By their wicked contrivances they amassed great wealth, and thus were often able to ally themselves by marriage with noble Christian families." The Inquisition entertained accusations against high and low, both Jews and Christians, upon pretexts the most frivolus as well as grave; and condemned by punishments, varying from dearh by fire to simple penance, delinquents who could not say they believed what to their mind was a lie. It accepted evidence, which even in its own day would not have been admitted in a civil Court of law ; and the pretexts upon which condemnation frequently proceeded were such as to make them marvellous even in a barbaric age. Tortures of the most exquisite and excruciating kind were practised on the accused to make them confess or to induce them to accuse others ; and the hateful system of espionage and secret prison-houses were adopted by the Inquisition at every place where its courts were established. The evidence on

[^21]which Jews were condemned would be simply ludicrous had it not beer. so terrible in its effects. An author of high standing remarks on this subject. "It was considered good evidence of the fact, i. e., Judaism, if the prisoner wore better clothes, or cleaner linen on the Jewish Sabbath than on the other days of the week; if he had no fire in his house the preeeding evening; if he sat at table with Jews, or ate the flesh of certain animals, or drank a certain beverage held much in estimation by them; if he washed a corpse in warm water, or when one was dying turned one's face to the wall; ur, finally, if he gave Hebrew names to his children, a provision most whimsically cruel, since, by a law of Henry II, he was prevented under severe penalties, from giving them Christian names." Such testimony being accepted the number of the condemned must, of course, be legion; and in the interval between the beginning of January and the beginning of November, 1481, the first year in which the Inquisition was put into terribly active force, in Spain, there had perished by fire in Seville no less than 298 persons. Notwithstanding the plague which in this year visited Seville, sweeping of 15,000 of the inhabitants, the Inquisition still continued its fiendish work; so that by the end of the year, or up to the ensuing first of January, 2000 persons, many of them the most. learned and respectable of the day, had perished at the stake in the province of Audalusia. Twice that number having managed to escape were burned in effigy, and 17,000 were condemned to lesser punishnents ; of which the least must have been a terrible infliction. Some few years after this when one Deza came into power as Inquisitor-General in Spain, in the first eight years he presided at Seville, he caused 2,592 persons to be burned alive, to say nothing about 35,000 condemned to various other punishments, short of death, but illustrating that the tender mercies of the wicked are cruel. When the Reformation began to be proclaimed the work of the inquisitors increased and several hundreds of persons wer 3 annually burned alive in various parts of Spain, as the consequence. But not only in Spain did the Inquisition carry on its work so devilishly : in her colonies, especially in South America and Mexico, the cruel office was set up, and the Indians who escaped the cruelties of the colonists as civil governors, experienced the rigorous punishment of them as religionists, and destroyed themselves in large numbers rather than fall into their hands.It is wonderful that there was no actual rebellion against the Inquisition in Spain which continued for three centuries doing its terrible work of human destruction. Yet there was no uprising against it. Men hated but feared a tribunal, whose spies were all around, even in the bosom of the family, and which dealt its blows so secretly and suddenly, and with such awful effects. Nine hundred females were burned alive in the Dutchy of Lorraine in France for being witches, by one inquisitor. Under this accusa-
tion it is said that upward of 30,000 women have perished by the hands of the inquisitors*.

Torquemada, that infernal arch-inquisitor of Spain, brought into the Inquisition, in the space of fourteen years, no less than 80,000 persons, of whom 6,000 were condemned to the flames and burned alive with the greatest pomp and exultation; and of that vast number there was not, perhaps, a single person who was not more pure in religion and morals than their fiendish persecutors. \dagger

Does the Deity, then, whom the Inquisition professes to serve, take such intense delight in the sufferings of human beings? Has that Being, whose sun cheers the habitations of the wicked as well as the good, $\cdot \mathrm{m}$ manded such blood-thirsty monsters to aet as his ministers of vengeance, to torment and destroy his rational creatures? Does the doctrine of the Gospel, which they profess to believe, inculcate such practices? The very thought is absurd and blasphemous. If they would do as God requires of them, to do good and be good, live godly lives, no such institution as the Inquisition would ever exist, nor any other evil work. But it is men themselves, of their own free will, who inflict these sufferings upon their fellows. Man is the author, the agent, as he is the object of the cruelty. But some, perhaps, will suppose that the devil hardens man's heart, and prompts him to the perpetration of such infamous crimes as that of roasting his fellow-man over a slow fire. Well, that is a very true supposition in a certain sense. But who or what is the devil? Why, he is the man himself, who acts according to his own will and practices such unspeakable wickednesses. Yes, my readers, man himself is that evil being, by whatever name he may be called; of which fact you have partial evidence in the foregoing statements. Can anything be conceived of, as more intensely evil than a human being who will seize and subject his fellow-human beings to such unspeakable tortures as those peculiar to the Inquisition, and then roast them to death over slow fires, as we see these men to have done? The foregoing statements are of facts which we may believe to have occurred, just as if we were eye-witnesses of every one of them. The blood of these tens of thousands who have been so cruelly and mercilessly sacrificed, cries unto us from the ground, to tamper no longer with hypocrisy and deceit, to lay aside that old theory of a devil, or any Being leading men to do evil, oth or than themselves, and to make men stand on their own basis, and account them responsible for their conduct and acts. In a preceding part of this book we have shown that not only the earth on which we live is a concentration of spirit, but that man also is a spirit, and, behold, here we perceive in him the spirit of evil

[^22]developed, wo may say, to almost an infinite extent. Tho existence of cruelty m men evidences that the perpetrators of it are ignorant of tho true Gol. They have no true knowledge of him, for if they hat they would not be cruel. God is manifested in a human being patiently enduring for the truth, and for righteousness' sake amid all opposition from adverse intluences, visible and invisiblo. And the devil is manifested in him who iuflicts suffering undeservedly or wantonly upon the true and righteons man, or upon any human being. In short words God is manifested in the life and conversation of the truly good and righteous man; and tho devil is manifested in tho life and conversation of the evil and actively wieked man. And thus wo have found a proper application for the term God, which means ho that is good ; and also of the term dovil, which means he that is evil: and hence it is seen that the term Deity includes both of these, and intinitely more in its fullest extent, and as wo have used it in the begiming of this book. In tho New 'Testament tho apostle John, in his 1st Epistle, says that "God is love"; and in the same Epistle, as well as in his 2nd, that "love is the keeping of the commandments" ; and in another place of the New 'lestament it is said that "love is the fulfilling of the law" ; therefore it is quite evident that God is manifested in the human being that keeps the commandments, or fulfils the law, which means the same thing ; that is, in the man who truly is and does grool, lives a life of godliness. But in the ense before us, as wo have said, man is the suifi cer, and man inflicts tho suffering. Man is the author and agent as well as the object of the suffering. When a man commits an offence against the laws of his country, the law looks to the man himself for satisfaction for it. It looks not after an imaginary being, of whatever name, for all that is of an imaginary being is the name it looks after ; the real being, the direet perpetrator of the crime. The individual has com: itted an offence against mankind, and the latter looks to the individual himself for atonement for $i t$. He would not be listened to, if, when brought before the juige, he sought to justify himself by leaving the blame of his crime upon an inaginary being. Even so there is no necessity any longer of men blaming any other being than themselves for the evil they commit. The life of godliness implies a denial of pride and of self; and here we repeat the true God is manifested in the character and conduct of the man who, in his daily walk and conversation, during his lifo-long, evinces self-denial, long-suffering, and humility, and gentleness, meekness, truth and rightcousness, who, in short, cultivates and displays all the true Christian graces, suljectively and objectively. Men car be good if they will. They can also be evil if they will. Will men not henceforth uni;ersally choose to be good? How amiable the character of the man or woman who displays the spirit of charity and bene volence to all around, and to all mankind ! And many, many such wo have in the world in our time: Bat how unlovely the character of one who
displays the spirit of hatred and malignity to one's fellow-human beings to the extent we have seen it displayed in the case of the inquisitors, or to a far loss extent! The Deity is everywhere present, and though unscen, his character, as indicated by the beneficent operations of nature around us, and by the testimony of good men of tho past, condemns the hellish practices of the infamous agents of the Romish superstition, whose character wo have been reviewing.

The horrid practice of dragooning, which was used by the Romish church for converting supposed heretics, was another melancholy examplo of religious cruclties and fanaticism. In the reign of Louis XIV of France, his troops, soldiers, and dragoons, entered into the houses of the Protestants, where they marred and defaced their furniture, broke their looking-glasses; let their wines run about their cellars, threw about and trampled under foot their stock of provisions, turned their dining-rooms into stables for their horses, and treated the proprietors with the severest contumely and cruelty. They bound to posts mothers that gave suck, and allowed their sucking infants to lie languishing in their sight for: several days and nights, crying, and gasping for life. Some they bound before a great fire, and after they wero half roasted lot them go. Some they hung up by the hair and some by the fect in chimneys; smoked them with wisps of hay until they wero suffoeated. Women and maids wero hung up by their feet and by their armpits, and exposed stark-naked to public view. Some they cut and slashed with knives, and, aftor tripping them naked, "stuck their bodies with pins and needles from head to foot, and with red hot pincers took hold of them by the nose and other parts of the body, and dragged them about the room until they mado them promise to bo Catholics, or until the cries of the wretched victims, calling upon God for help, induced them to let them go. If any endeavoured to escape from those cruelties they pursued them into the fields and woods, where thoy shot at them as if they were will beasts; and they prohibitod them from leaving the kingdom on pain of the galleys, the lash, and perpetual imprisonment. On such seenes of desolation and horror the Romish clergy feasted their eyes, and made them a matter only of laughter and sport.* What fiendish crimes for those calling themselves civilized to perpetrate! Could an American savage or a new Zealander have devised more barbarous and exquisite cruclties.

In the island of Great Britain the flames of persecution havo sometimes raged with unrelenting fury. During the last two or three years of the short reign of Queen Mary, it is computed that 277 persons were committed to the flames, besides those who were punished by fines, confiscations, imprisonments, or otherwise. Among those who suffered by fire

[^23]there were five bishops, twenty-one clergymen, eight lay-gentlemen, and eighty-four tradesmen; one hundred husbandmen, fifty-nine women, and four children. Hunter, a young man of about nineteen years of age, was one of the unhappy victims of the zeal of Queen Mary for Popery. Havin. been inadvertently betrayed by a priest to dany the doctrine of transubstantion he absconded to keep out of harn's way. Bonner, that noto:ious popish executioner, thrsatenel ruin to the father if h : did not delivor up the son. Young Hunter, hearing of his father's imminent peril, presented himself, and was burned to death instead of being rewarded for his filial piety. A woman of the island of Guernsey was brought to the flames without regard to her advanced pregnancy, and she was delivered of a child in the midst of the flames. Ono of the guards snatched the infant from the flames to save it, but the magistrate who superintended the execution ordered it to be thrown back, being resolved, he said, that nothing should survive which sprung from a parent so obstinately heretical.* The Protestant reformers also did somewhat in the work of persecuting and burning those who opposed their tenets; but their doings we shall have necessarily to advert to in the latter part of this book.

When we consider on the one hand the purity of faith and morals which generally distinguished the victims of persecution; and on the other, the proud pampered priests, and prelates, abandoned without shame to every species of wickedness, we can scarcely find words sufficiently strong to express the indignation and horror which arise in the mind when it views the striking contrast, and contemplates such scenes of impiety and crime. C'ould a religion which breathes peace and good will to men be more basely misrepresentel; or do the aunals of the human race present a more stricking display of the perversity and moral badness of me kind than we have in the case of the Catholic hierarchy? To represent veiggion as consisting in the belief of certain incomprehensible dogmas, and then to undertake to compel men to believe these dogmas, which they could not possibly understand, and to inspire them to benevolence by racks and tortures and fire, is as absurd as it is impious and profane, and represents the Deity as delighting in the torment and death, rather than willing the life and salvation, of his creatures.

Wherever religion is viewed as consisting chiefly in the obscrvance of a number of absurd and unmeaning ceremonies, it is to be expected that the pure morality inculcated in the New Testament, and in the Ten Commandments, will seldom be exemplified in human conduct. This is strikingly the case in those countries, both of the Eastern and Western world, where the Catholic religion, both Greek and Romish, reigns supreme. Mr. Howison, in his "Foreign Scenes," when speaking of the priesthood in

[^24]tho island of Cuba, says: "The number of priests in Havana exceeds four hundred. With a fow exceptions thoy ueither deserve nor enjoy the respect of the community. However, no one dares openly to speak against them. In Havana the church is nearly omnipotent and overy one feels himself under its inmediate jurisdiction. Most persons, therefore, attend mas. rogularly, make confessions, uncover when passing a religious establishment of any kind, and stand still on the streets or stop their volantos, the moment the vesper bell begins ringing. But they go no farther, and the priests do not seem at all anxious that the practice of such inilividuals should correspond to their profession. The priests show by their external appearance that they do not practice these austerities, which are generally believed to be necessary concomitants of a monastic life. The sensual and unmeaning countenauces that encircle the altars of the churches, and the levity and indifference with which the most sacred parts of the service are hurried through, would shock and surpriso a Protestant were he to attend mass with the expectation of finding the monks those solemn and awe-inspiring persons which people who have never visited Catholic countries often imagine them to be." Ihis account of Mr. Howison we know to correspond with fact; for we have had a like account from a person who had resided in Cuba for some time. Of the city of Montreal in Canada the Roman Catholics number much the largest part of the population. The Church of Rome flourishes there, and its worship is carried out with great pomp and ceremony. We were present there one Sunday of late, June 11th 1871, when the Feast of Corpus Christi was colobrated with great eclat. A grand procession took place, which when moving extended nearly a mile and a half in length. There were the various orders of the nuns, the Gray, Black nuns, etc ; and of the clergy, Friars or Monks, each having (as we suppose) its appropriate place in the ranks. Hero and there at intervals in the long procession were schools of boys dressed noatly in black or gray suits, and schools of girls dressed in white with white, flowing veils. Some of these boys and girls, we learned, were wards of the church, attending school in the convents ; and they appeared intelligent and cheerful. Here and there were societies of men, who, as we were informed, belonged to "the T'emperance and other orders, and of women who did not appear to belong to any particular order, but were out displaying their zoal for tho church. At the head of each column or order was borne a silken flag variously figured, cach flag having inscribed upon it the motto of the order, mostly in French or Latin. At intervals they were chanting lustily the hymns of the occasion to time kept by some of the priests; and they sung in French or Latin. The sidewalks along the line of march and the avenues loading to it, as well as the windows and balconies, were crowded with spectators. When the canopy approached under which was borne the Corpus Christi,
and accompanying which the Bishop and other clerical dignitaries were supposed to be, arrayed in their gorgeous robes of office, the Catholies on both sides of the line of march uncovered their heads, and knelt down on the sidewalk or on the side of the street, or wherever they happened to be, until the canopy had passed. This operation of uncovering and kneeling was repeated at every point of the way along which the procession moved. It seems, indeed, strange that such absurd and gross idolatry should bo practised in British America, in the latter part of the 19th century. The practice of the Romish clergy, who, giving their whole attention to the subject of religion, must know better things, of imposing thers upon an ignorant and credulous populace, appears, to say the least, immoral.

The following extract is from a modern writer on Italy: "When Vesuvius thunders aloud, or when an eartliquake threatens them with destruction, when the fiery streams vomited from the rousing mouth of the volcano roll on, carrying desolation over the plain below, when the air is darkened by clouds of smoke and showers of ashes, the Neapolitans will fall on their knees, fast, do penance, and follow the procession barefooted ; but as soon as the roar has ceased, and the flame has disappeared, and the atmosphere has recovered its wonted serenity, they return to their wontel mode of life, they sink again to their former level, and the tinkling sounds of the tumberella call them again to the lascivious dance of the tarentella." As an evidence of the litigious character of the Neapolitans, the same author remarks: "That there is scarcely a landholder but has two or three cases pending before the courts ; that a lawyor and a suit are indispensable appendages of property; and that soms of the principal families have suits that have been carried on for a century ; and for which a certain sum is yearly appropriated, although the business never advances; and at last the expenses swallow up the whole capital." The infinite number of churches," says another late writer, "is one of the most efficient causes of the decline of the religion of Rome, whose maxims and practices are diametrically opposite to those of the Gospel. The Gospel is the friend of the people, the consoler of the poor. The religion of Ro:ae, on the contrary, considers all nations as great flocks, made to bo shorn or eaten according to the good pleasure of the shepherd; for her the eolden lever is the lever of Archimedes. The favors of the Church are oniy showered on those who pay; with money we may purchase the right to commit perjury and murder, and be the greatest villain at so much per crime, according to the famous tariff printed at Rome, entitled ''Taxes of the Apostolic Chancery." In a conversation which Bonaparte had with his friends at St. Helena, on the subject of religion, as related by Las Casas, in his journal, the Emperor said, among many other things: "How is it possible that conviction can find its way to our hearts, when we hear the ahsurd language, and witness the acts of iniquity of the
greatest number of those whose business it is to preach to us? I am surrounded with priests who preach incessantly that their reign is not of this world, and yet they lay hands on all they can ret. The Pope is the head of that religion from heaven, and he thinks only of this world, etc. The Emperor ended the conversation by desiring my son to bring him a New Testament, and taking it from the beginning he read as far as the conclusion of the speech of Jesus on the mountain. He expressed himself with the highest admiration at the purity, the sublimity, the beauty of the morality it contained, and we all experienced the same feeling." Had Napoleon, in his youth, taken that which he now heard road as the rule of his life, and lived according to it, what an amount of human suffering and destruction, which he caused, might have been spared, and how much a happier man he would have lived and died himself! Such facts as these we have adduced may give some idea of what the state of morality is in all Catholic countries, and what may be the height of civilization to which they have attained.

Now, if we take a cursory glance at the Protestant branch of the Catholic Church, we shall observe a similar spirit in operation in it, as we have seen prevailed in the early Church under the Christian Roman emperors. The Church was at that time split up into a number of sects, each distinguished from the other by its peculiar tenets. Protestant Christians are also divided into a great number of sects, each distinguished from the other by its peculiar tenets and opinions as to mode of worship, Church government, etc. The differences between these sects which, in time past, were wide, are now becoming much narrower. All these sects profess to believe the orthodox Catholic creeds, such as the Apostles' Creed, the Nicene Creed, and, some of them, the Athanasian Creed; and the two orthodox sacraments of Baptism and the Lord's Supper; but their belief in these creeds, etc., are very general, and they all differ from each other in many particulars.

The Protestant Church has been distinguished to a considerable extent by the spirit of persecution which raged with such unmitigating violence in the Romish Church. The Reformation had scarcely been begun in Germany and England, when a series of persecutions were begun against dissenters from the doctrines of the reformers; and it is of late that these persecutions have ceased. Luther and Calvin did their part in this work in the continental countries of Europe and notwithstanding the unjust and cruel punishments which English Protestants endured at the hands of Popish priests and princes, a short time only elapsed after they had themselves risen to power before they began in their turn to harrass their dissenting brethren with vexations, and persecutions, and fines, and imprisonments, until many of them were compelled to seek a dwelling place in a distant land. And shortly after the English independents had
established themselves in America, they, in turn, set on foot a persecution against the Quakers no less furious than that to which they had themselves been subjected in the country from which they had fled. They apprehended and imprisoned a number of thoso peaceably disposed and worthy persons, and seized upon the books they had brought out from England with them, and burned them. By a law which had been enacted against heretics in general, sentence of banishment was pronounced against them all; and another law punished with death all Quakers who should return into the jurisdiction after banishment; and it is a fact that four persons suffered death under this impolitic and unjust law.*

Nor did the reformed clergy in Scotland lose sight of that magisterial bearing, which was assumed by the Romish Clergy. Upon a representation in 1646 from the commission of the Church of Scotland, James Bell and Colin Campbell, bailiffs of Glasgow, were committed to prison by the Farliament, merely for having said that " kirkmen meddled too much in civil matters," \dagger And even so late as the middle of the last century, when Whitefield, Wesley and other earnest and pious men began to address the ignorant villagers of England upon the important subject of religion. "a multitude has rushed together, sliouting and howling, raving and cursing," and accompanying their ferocious cries and yells with loathsome or dangerous missiles, dragging or driving the preacher from his humble stand, forcing him and those who wished to hear him to run for their lives, sometimes not without scrious injury before they could escape. And these barbarous tumults have in many eases been well known to be instigated by persons, whoso advantages of superior condition in life, or express vocation as instructors of the people, has been infanously lent in defence of the perpetrators, against shame or remorse or legal punishment for the outrage. And there would be no exaggeration in affirming that since Wesley and Whitefield began , to conflict with the heathenism of that country, there have been in it hundreds of instances answering to this description. Yet the well-meaning and zealous men, who were thus set upen by a furious rabble of minny hundreds, the foremost of whom acting in direct violence, and the resi venting their savage delight in a hideous blending of ribaldry, and execration, of jibing and cursing, were taxed with a canting hypocrisy or a fanatical madness, for speaking of the prevailing ignorance in terms suitable to the state of the case.

But we need not go back over half a century in order to find instances of religious intolerance among the Protestant communities and churches ; our own times unhappily furnish examples of an intolerant and persecuting

[^25]spirit, though we aro happy to be able to say that this spirit is fast disappearing among Protestants. About fifty years have elapsed since the methodist chapel in Barbadocs was thrown down, and demolished by the " mob-gentry," and with the connivance of the public authorities of that island ; and Mr. Shrewsbury, a worthy missionary at that station, was obliged to flee for his life. Previous to this outrage he suffered insult, contumely, and reproach. He was abused as a villain, and hissed at on the streets, not by the mere rabble, but by the great vulgar, by merchants from their stores, and individuals in the garb of gentlemen. By such characters his chapel was surrounded and partly filled on Sundlay, during the hours of worship. Their glass bottles had been previously prepared and filled with a mixture of oil and asafoctida, and all on a sudden they wero thrown with great violence among the people, and one was aimed at the head of the preacher ; and during the whole time of worship, stones were rattling against the chapel from every quarter. On the next sabbath an immenso concourse of people assembled, breathings out theatenings and slaughter, and from twenty to thirty of the gentlemen mob planted theinselves around the pulpit, apparently ready to perpetrate any mischief. Men wearing masks, and having swords and pistols, came galloping down the street, and presenting their pistols fired them at the door; and it was originally designed to have fire-crackers among the females, to set their clothes on fire. At length on an ensuing sabbath this execrable mob, consisting of nearly two hundred gentlemen and others, again assembled with saws and hammers, axes, crowbar and every other instrument necessary to execute their infamous purpos, and in the course of a few hours, the lamps, benches, pews, pulpit, and even the walls, were completely demolished. They entered the dwelling-house of the preacher, broke the windows and doors, throw out the crockery-ware, chopped up the tables, chairs, and every article of furniture; tore the preacher's manuscripts and destroyed his library of mere than three hundred volumes. All this was done under the light of the full moon, in the presence of an immense crowd of spectators, without the least attempt being made either by the civil or military author. ities to check them, while the unfortunate preacher with his wife in an advanced state of pregnancy had to flee to a neighbouring island to save his life ! Such is the civilized and humane conduct of gentlemen of the 19th Century, gentlemen who would no doubt consider it very unhandsome were they compared to the Vandals or Tartars or to the rude and barbarous savages of Caffraria or New-Zealand. How utterly abominable is the pride, hypocrisy, and deceit of the human heart exhibiting. itself in such disgraceful and wicked proceedings ! And such emissaries, often weakminded and giddy-headed, in common parlance having no mind of their

[^26]own, are sometimes set on to their barbarous work, perhaps, by the sneering suggestion of others who are not so easy to bo discovered, and who if they are suspected and questioned about it, will not only pretend their total ignorance of it, but express their sympathy with the sufferer, although they are themselves the real and prime causes of the whole barbarity. Several instances of this kind have come under our own observation, one of which we shall relate. In the college which we were attending, we had a worthy man for our president, a man, wo had reason to believe, of a good christian temper, and of a sound missionary spirit. He was accustomed to teach certain branches of knowledge, and had a recitation room, as the professors, set apart for the purpose of teaching in. Into this recitation room, situated on the second story, and containing benches, chairs, fire apparatus, tables, books, etc., there was brought one night a full-grown cow ; and what must one think was the surprise of the president on his coming next morning to moet his class, at finding such a tenant occupying his recitation room, which last, indeed, was in an exceedingiy disordered and filthy state! Some of the giddy-brained students who were discovered to have done this disgraceful deed suffered such penalties as the president and faculty thought proper to impose ; but any careful observer who was present and knew the circumstances of the president in relation to some other influentials, would at once perceive that those who performed the wrongful transaction were not the prime causes of it, but were incited to it by perhaps the sneering suggestion or remark of another, who, were he earnestly asked about it afterwards, would promptly disclaim all knowledge or intention on his part concerning it before it happened, and would most likely pretend the deepest sympathy with the sufferer. Such is the deceit of the human heart ; and such are the devious ways of the old serpent. This worthy man was soon afterwards made a bishop, which office he holds now.

About the same time of that transaction which we have related as taking place in regard to the Methodist church at Barbadocs, the authorities of Demerara set on foot a persecution against Mr. Smith, a missionary from the London Society, under various pretexts; but his real crime in the eyes of his persecutors was his unwearied zeal in instructing the negroes in the knowledge of religion. He was condemned to death by a court-martial, in opposition to every principle of justice. He died in prison, was refused the privilege of Christian burial, and his friends were prohibited from erecting a stone to mark the spot where his body was laid. The whole details of this transaction present a scene of savage barbarity, scarcely to be surpassed in the history of Europe. The death of this missionary was that event which prepared for the overthrow of the slave system in the British West Indies. It called forth one of Lord Brougham's noblest speeches, and stirred the heart and conscience of the

English people. The blood of the martyrs is sometimes the seed of freedom as it is of the church; and the execution of John Brown, in Virginia, corresponded in its effects to the murder of this worthy missionary in the West Indies.*

In Switzerland, where formerly Protestantism had its stronghold, the demon of religious persecution has, even in the 19th century, raised its head. The council of state of the Pays de Vaud, at the instigation of the clergy, on January 15th, 1825, published a decree " prohibiting under the penalty of severe fines and imprisonments, all meetings for religious worship or instruction, other than those of the established church." And in the following May another dees ?e was issued, which denounced "fines, imprisonment, or banishment, upon the most private kind of religious assembly, or even the admission of a single visitor to family worship." In pursuance of these disgraceful laws several ministers and private Uhristians of high character for piety and learning were banished from the Canton, some for one, and some for two years, cut off from all means of subsistence, unless possessed of independent fortunes, or able to procure it by labor, and some of them perhaps left to starve and perish in foreign lands. If they returned before the expiration of their sentence, death was the penolty to be inflicted. One poor man, a schoolmaster, in the principality of Neufehatel, was condemued to ten years' banishment. He was brought out from prison, tied with cords, and compelled to kneel in the snow in the public square to hear his sentence read. His crime was that of gathering together a few fellow-Christians in his own house, to whom the Lord's Supper was there administered by a elergyman.

Nor has England been free from the spirit of persecution and intolerance in the 19th century. At Kenneridge, in Dorsetshire, a worthy and excellent individual belonging to the Wesleyan denomination had attended on a green where twenty or thirty persons were accustomed to congregate on Sunday afternoons to listen to the truths he thought it important to declare. The English charch clergyman of the parish approached with a retinue of servants and commanded him to desist. The preacher took no heed to the command and proceeded to read his text. The clergyman then commanded the tithing man to seize him, (which he had the power to do as a civil mocistrate, for the clergymen of the church of England very commonls fill the office of justive of the peace as well as that of a priest). IIe was directed to be conveyed to Wareham jail; and to every question the preacher put as to the ground of his being arrested, the reverend and worthy elergyman only replied by brandishing his walking-stick. Instances have occurred in which clergymen of this establishment have refused to

[^27]bury the dead. At Chidds Ereal, in Shropishire, the chind of a prove man was refused interment, and the father was obliged to earry it six miles before he could inter it in a cemetery. At Catsfield, in Sussex, in similar infamous act was committed. At the moment the hell had tolled, when the earth was about to fall upon the coffin, and when the relations standing by wanted all the consolation which religion can afford, at this moment the elergyman appeared, but advanced only to give pain to the monmers, and to agonize their heart by saying: "Now that you have waited an hour until it saited me to come I will not inter your child! I did not know that you were dissenters; take your ehild somewhere else, take it where you please, hut here it shall not lie in consecrated ground." Just as if all places on the surface of the earth were not equally consecrated; or, as if a cemetery or chureh-yard was a better and holier phace to inter a dead body than any other place a person might choose. It is certain that a eemetery or chureh yard, in the common acceptation of the term, has no superior sanctity over any other spot of gromen; its superiority in this respect is merely imaginary, delusive, and arises to the mind from the custom of mankind in all the ages of history being to bury their dend in certain places set apart for that purpose. In America, where many of the old superstitious notions have been given up, people very commonly, especially in New England, have each family their own burying ground on their own farm. This is as good a plan to follow as any other a person may choose with respect to the place of burial of the dean. Ihis English family, however, to which we have just alluded, were not allowed to bury their child in the chureh-yard, and had to carry it cieven miles from the abode of its yarents before they consigned it to its kindred dust in what they considered consecrated gromad.

At Meragissey, in Comwall, tho rector refused to allow the corpso of a dissenter to be brought within the chureh, and, therefore, read tho burial service in the open air. At Wellingborough a clergyman, in opposition to a custom which had been practiced for sisty years, issued orders that mo bell should toll when a dissenter expired. He ooldly avowed "that he would never allow the passing bell to be tolled for a marriage when the parties were dissenters." In reference to this case an appeal was made to the bishop of Peterborough, who wrote a long letter on tho subject, in which he defended the conduct of this Wellingborough rector. At Newport Pagnel two persons of decent appearance, teachers of Baptist societies, wero collecting subscriptions for the erection of a new place of worship. After arriving at the residence of the parish elergyman they were take: before a clerical magistrate, who upon the evidence which the other celergyman offered, that they were rogues and vagrants, committed them to Aylesbury jail, whero they were confined for three weeks, in common with the basest felons, among convieted thieves of the most aban-
doned character; may, more, they wero sentenced to the tread-mill, and kept at hard labor there, though during the whole time of their incarceration one of them was afllicted with spitting of blood. 'Their papers were seized upon, their moncy was taken from them, and by means of it the expence of sending them to prison was defrayed.

Since the time to which these instances refer the "Socicty for the Protection of Religious Liberty," has been formed, and has brought forth to public view many similar instances, some of them of a more barbarous nature. Aud were it not for the protection which this society afforls to the victims of religious intoleranco it is highly propable that vexation, persecutions, insults, fines and imprisonments on account of differences in religion would now be much more common than they are in Enghand. Were such individuals as these to whom we have allud 1 permitted by the law to earry their intolerant spirit to its utmost oxtent, dissenters would have no security oither for their lives or their property, and the fires of Smithfield might agnin be kiudled to consume the bodies of all who refused to conform to the dogmas of a national church.

The main history of the I'rotestant churches since the reformation, in which thore is much of a persecuting spinit displayed, we have purposely left untouchod in this review. There are certain sulbects wo have to deal with in the latter part of this book, which will require theso historical facts to which we now allude to illustrate them. By the time, therefore, the reader has advanced that far he will be able to learn much more as to the moral character of the reformod churches as represented in history. It would have given us pleasure in our reviow thas far to havo been able to present before the eye of the reader a more cheerfil pieture of the moral character of the civilized nations, and of the Christian church ; but facts are stubborn things, and there is no resisting the foree of the evidence which they adduce. We intend, however, to rolievo some of the dark shades of this pieture by exhibiting some faint radiations of truth and benevolence, which appear amid the surrounding gloom. 'lhe dawn of a brighter day has appeared to $\varepsilon^{\text {:id }}$ our horizon. The Pope's temporal power has been taken from liim, and his spiritual power and influence will continually heneeforward wane, to be consumed and destroyed gralually until its end. Some of the l'rotestant establishments also are falling, that of the Irish church having completely given way. Substantial knowledge is being more generally difiused among all classes of the peoplo; the shackles of despotism are bursting asunder; the darkness of superstition is gradually dispelling ; the spirit of persecution is borne down by the force of truth and of common sense ; and the rights of conscionce are being inore gonerally recognized. Philanthropic institutions of various descriptions have been establishod; missionary sociotios aro extending their labors to almost every land ; and now the far-off continents are to some extent coming under the influence of Christian civilization.

The light of science now shines with a greater lustre than at any previous period of which history informs us. The Telescope has opened up to us distant scenes of the universe, and has enabled us to calculato the distance, character, and motions of the moon and planets. The Microscopo has introduced us to the invisible worlds of matter far beyond the ken of the unassisted eyc. The electric T'elegraph enables us to communicate momentarily with all parts of the carth. The Magnetic needle directs our course around the globe or to any point beyond the seas. The power of steam has been greatly developed to the use and convenience of mankind. The progress of invention has tended greatly to abridge human labor. Agriculture is practised more skilfully and advantageously than in former times. The arts, both useful and ornamental, are extensively cultivated. The use of the art of printing puts substantial knowledge within the reach of all, even the poorest. Literature and practical science are the order of the day in our schools and academies, and the youth of a dozen of years, whose time has been well employed in study, possesses more definite science at his command than the aged man of five centuries ago. But here the question arises : is it possible, judging from what we know of the past history of mankind, to bring the inhabitants of this world to a general observance of the laws of benevolence, which is the truc index of high moral character and civilization? To such a question, wo have answered frequently before that man has it in his power to cultivate the spirit of benevolence or of malevolence, either of which he chooses; but in this connection we answer it thus; that whatever man has accomplished man may accomplish. Amidst the darkness, depravity, and wickedness with which the earth has been generally enveloped individuals have occasionally arisen who have shone as lights in the moral world, and exhibited bright patterns of true christian temper and of active benevolence. The founders of the Christian faith appear to have belonged to this class. The Apostle Paul had his mind imbued with a large portion of the spirit of philanthropy. He voluntarily undertook a tour of benevolence to the nations, and notwithstanding the persecutions, the reproaches, the stripes and imprisonments which he encountered; and notwithstanding the perils in the waters, perils of robbers, perils by his own countrynien, perils in the city and perils in the wilderness to which he was subjected; and in the face of death itself, he prosecuted with a noble heroism, his labor of love, purely for the sake of promoting the best interests of mankind. All who at the same time engaged in the same bene, olent undertaking sacrificed all private interest and selfish consideration in order to bring men tr a belief of the doctrine which they had themselves espoused.

In modern times many individuals have arisen and distinguished themselves and reflected honor on their race by the benevolence which they displayed. The name of John Howard is famiiiar to every one who is at.
all accuainted with the annals of philanthropy. This excellent man devoted his time, his strength, his genius, his literary acc:": ${ }^{\text {tions, his for- }}$ tune, and finally his life, to pursuits for the benefit of humnanity and to tho unwearied prosecution of active benevolence. He travelled over every country of Europe and into the adjacent regions of Asia, impelled by the spirit of true clristian love in order to survey the mansions of sorrow and pain, and to devise schemes for the relief of human wretchedness wherever it existed. And in the execution of this scheme of benevolence the energies of his mind were so completely absorbed, that he never suffered himself for a moment to be diverted from his purpose even by the most attractive of those objects, namely, the pleasures of music, which formerly possessed all their most powerful influence upon his curiosity and taste. Also, Walter Venning, who has been denominated by Prince Galitzin the Second Howard, followed the course of his illustrious predecessor, and with the most fervent christian zeal devoted his short but very uscful life to the alleviation of human misery, and to the promotion of the best interests of thousands of wretched individuals, who were all but lost. He withdrew from the ordinary routine of what is called genteel society in order that he might devote all the energies of his soul to benevolent occupations. H, commenced his philanthropic career by cooperating in the organization o: "the Society for the Improvement of Prison Discipline," which was founded in London in 1816 ; and he afterward visited the prisons in the cities of St. Petersbourg, Novgorod, Tver, Moscow, and other cities in Russia. The prisons, hospitals, workhouses, madhouses, houses of correction, and the abodes of misery of every description in St. Petersbourgh were visited by him day after day ; and many a prisoner bowed down with affliction and iron was cheered, instructed, comforted, and served by his ministrations ; for, it is said, that his philanthropy extended both to the bodies and souls of men. This truly benevolent person died in the city of St. Petersburgh in the year 1821, in the fortieth year of his age.
In our own day we have had a noble example of generosity and benevolence in George Peabody. An American by birth, having amassed a large fortune by the industries of trade and commerce in London, he liberally bestowed a goodly portion of it to provide shelter and comforts for the poor of that vast metropolis. In his native state he founded librarics for the instruction and enlightenment of the people, and his generous beneficence, and magnificent donations to worthy objects, Jusure to him the respect of mankind in after ages. Men, who have any pecuniary legacy to bequeath to mankind, should, like George Peabody, always keep the poor and the indigent prominently in view. As the poet Homer, for the honor of whose birth-place, we are told by Cicero, several rival cities disputed, so this worthy man had the honor of his burial amicably disputed by two great nations, England and America,

Many other examples might be adduced from the history of our times, and illustrious characters now living, both men and women, to demonstrate that a noble and disinterested benevolence is a principle capable of being developed and oxercised even in the present dogenerate state of mankind. We find parents sometimes displaying a high degree of benevolence toward their children ; and sacrificing their ease and their personal interests in order to securo their health, their happiness, and their future good. We find bosom friends as David and Jonathan, aul as Damon and Pythias, rejoicing in each other's welfare, and encountering difficulties and dangers in promoting the interests of the objects of their friendship. What then should hinder such dispositions from becoming universal? What should hinder them from being cultivated and exoreised by all rational beings? Would not the universal exercise of such dispositions be highly desirable? Would it not tend so banish war and discord from the world, and promote peace on the earth and good-will among men? Why then are such dispositions so rarely to be met with? Not because the universal exercise of them is a thing impossible, but because men, actuated by pride and selfishness, are unwilling to give full scope to the cultivation and exercise of the benevolent affections ; because they have never yet persisted in their endeavour to bring all these into full operation. If all the energies of the intellect, and all the treasures which have been expended in fostering malignant passions, and in promoting contentions and warfare, had been devoted to t. a great object of cultivating and exercising the principle of benevolence, and distributing happiness among men, the moral, yes, and natural, aspect of our globe would long ago have assumed a very different appearance from what it now presents to view.

We have examples before us not only of a few insulated individuals, but of societies where the principle of active benevolence to a greater or less degree pervades the whole mass. The people denominated Quakers have always ieen distinguished for their humane and peaceable dispositions, their probity and hospitality toward each other, their unostentatious jiberality to indigent and suffering humanity, the modest cheerfulness of their manners, their opposition to war, and the active zeal they have displayed in promoting the moral welfare of mankind. We give the following extract from a daily paper of February 25th, 1872: "M. Drouyn de Lhuys, in his capacity as President of the French Societé des Agriculteur, has written a letter which sets forth the help given to France by the English Quakers during the war. Those generous people have bestowed in the most unostentatious way aid to the extent of four millions of francs in the period named. The sum has been proved by regular accounts written by M. di Lhuys, kept with the exactitude of a commercial house. He expresses the gratitude of a Frenchman in manly and affectionate terms, not only for the help given, but for the delicate manner in which it
has been bestowed. There is something fine and touching in these friends, the professed advocates of peace, thus giving out of their moderate possessions to repair the ravages of war." Thus the spirit of benevolence has to make repairs for the damage done by the outworkings of the spirit of malevolence ; and it is quite as important that men should do the justice to themselves and to mankind of restraining and eradicating the spirit of malevolence, that delights in war and every evil work, as it is that they and all others should cultivate and exercise the spirit of benevolence, which delights in all that is good. 'Tho Quakers are also distinguishod for the simplicity and purity of the creed they profess. The Moravians are likewise distinguished for their affectionato intercourso with each other, the liberality of their dispositions, the peacoablenoss of their temper, the purity and simplicity of their lives, and their missionary efforts for converting the heathen to the truths of the Gospel. Would that the whole race of mankind were Quakers or Moravians (if they will not be more perfect), notwitistanding their peculiarities of opinion. With all their faults society would then present a more beautiful and alluring aspect than it has yet clone ; peace and industry would be promoted; the fires of persecution would never be kindlod; the seiences and the arts that tend to peace and order would be cultivated ; philanthropy would be exercised by the nations; and the people would cultivato the spirit of benevolence toward each other, and learn war no more.

After our review of the moral character of mankind in its two aspects of bad and good; and after having illustrated that man himself is the former of his own character and determines which of these it shall be ; we now think it proper, for the sake of digression, variety and information, to turn the attention of our readers to other things connected with our subject, which tend to illustratefurther the eternal existence of the earth, or of the order of nature and of man, in the main ns now existing.

First then we shall state, as wo have done before, that there is no evidence except what is derived from contradictory and metaphorical and consequently from unreliable narratives, which goes so prove the contrary of the earth's eternal existence, although, notwithstanding all this, there are some who may not believe in this eternal existence. * But having before

* It is easily seen, however, that the question of the eternal existence of the earth and of the heavenly bodies in the forms which they have now can be only of secondary importance When it is remembered that the substance of these bodies certainly existed eternally. \dagger if any one should undertake to say that these bodies assumed or were given their present forms and motions at some period of the past from their substance existing before in a nebular state, it wonld be well for such an one to say at what time that change took place, and how long their substance had existed in that supposed nebular state before it became into these globular forms, and in what state it existed before it became into the supposed nebular state. For if men allow themselves to launch out into the region of conjecture with respect to this subject there is no knowing where they will terminate their speculations and theories concerning it. That the earth and the heavenly bodies existed always in their present general form and aspect there is, as we have before stated, no evidnce to disprove.
\dagger See page 27 at the bottom.
brought forward facts which tended to illustrate this, the cternal existence of man, and of all other animals, and of plants, will not be difficult for the readers to conceive ; we mean, that they who conceive the one will easily conceive the other, and admit the earth and all the order of nature to bo an ever present thing; and they who do not conceive the one will not conceive the other, nor admit the earth and all the order of nature to be an ever present thing.

Solomon was a wise man and uttered the truth when he said that there is no new thing under the sun. Paul or any other was a wise man also, who said: If a man sow not neither shall he reap, and whatsoever a man soweth that shall he also reap. It is a fact known to all common obscrvers that all plants and animals bring forth after their own kind. The farmer does not expect to reap if he do not sow or plant, nor does he expect that a blade of rye will spring from a grain of wheat that he has sown, neither of barley or of buckwheat or any other than a blade of wheat; and he is never disappointed in this expectation. Nor does he expect that any of his domestic animals will bring forth other than young of their own species, unless he has crossed the species for the purpose of producing a hybrid, as, for example, a mule, the result of the crossing of the ass and horse species.

Of all the known species of plants--and there are reckoned as known, we believe, about ninety thousand species-there is not one that produces other than its own kind. Also, each of these species is distinguished by having varieties in it ; and each of these varieties brings forth after its own kind. For instance the species oak, of the genus quercus, is distinguished by such varicties as the white oak, red oak, etc., as alnost every one knows, and each of these varieties progagates after its own kind. The seed of the red oak will bring forth a red oak, that of the white oak a white oak, etc. Also, of the birch species thero are several varieties, and each of these brings forth its own kind. And so it is with all the other species of plants and their varieties, unless, as some say happens, a different variety may arise within the same genus from the pollen of a plant of one variety falling upon and fertilizing the seed of a plant of another variety of the same genus, whence a new variety, a cross between these two varieties of the same genus or species, might arise.

Of all the known species of anmals-and there are reckoned as known nearly as many as there are of plants, without reckoning the miscroscopic species-the general natural rule is that each species, as well as their several varieties, brings forth after its own kind. This they do permanently, unless, as we have said before, a hybrid is produced by the arbitrary government of man. Thus, in the animal kingdom propagations according to species and kind is the great rule; hybridism the very rare exception. But it is an absolute fact, to which there is no known exception,
that no plant or animal of any kind whatever can bo produced unless the seed exists before from whence it is to spring. So, then, not only are all plants and animals propagated in succession from their own kinds, but neither plants nor animals of any kind could exist had not their seed preexisted to give them birth. And conversely the seeds could not exist had not the plants and animals existed to produce then. The seeds, therefore, of all the plants and animals in the earth must have always existed, and consequently tho plants and animals themselves must have, always existed and been propagated, were they not prollaced from nonexistence at some past time in some way of which we have no experience.

Now propagation according to kind has taken place in all the periods of time of which we have historical records. These last go back in the case of Egypt and some other Eastern nations for a space of nearly 4000 years. This is the extent of time to which we have the written experience of mankind, (unless we receive the writings of the Hindoos and Chinese, which extend back for many thousand years before, and which aro doubtloss as authentic as the Egyptian records) and thus far may we profit from it. What has, then, existed and 'seen taking place with such undeviating regularity for such a length of time, and what we seo now existing and taking place, with no signs of its discontinuanee, we may conclude is permanent, always existing, always taking place, since no evidence exists to the contrary.

But Geology, or the knowledge which man has obtained of the nature and construction of the earth's crust, may have something to teach us concerning the earth. This knowledge is indeed very limited, since geology has only been parsued for a short time, but it has nevertheless already done something, as did astronomy a good deal, to the removal of erroneous and superstitious notions. The latter of these, which is a definite science, does away with the old Hebrew idea of creation from every mind that has made it a study. Geology, which cannot bo called a definite science, but only an accumulation of scraps and gleanings of knowledge derived from observation and examination of small parts of the earth's surface, has still so far effected as to show tho falsity of the old idea of the earth and all visible things having been mado to exist out of nothing in six literal days. Though the earth's centre is about four thousand miles from its surface yet geologists in their researches have not penetrated more than a mile or two of that disiance, and this only in certain detached spots; while the great extent of the earth's surface, and its whole interior, remain still unexplored. From this it need not be inforred that scientific men must necessarily be altogether ignorant of the approximate density and consequently weight of which the bodies must bo which go to make up the earth's interior and central regions; this knowledge they claim to come to, at least approximately, from a consideration of the earth's position in
space, and of the force of gravity which it exerts on the moon and planets situated at different distances from it. About three fourths of the earth's surface are covered with water. Take a small artificial globe, such as they use in schools, and bringing the south pole under your eye and then viewing it all round you will see the great disproportion of the extent of the dry land to that of the water upon the earth's surface. The bottoms of the seas, lakes, and oceans then, as well as most of the dry parts of the surface of the earth remain unexplored by geologists. Henee it is seen how little information, comparatively speaking, geology affords us concerning the earth. But it gives us some information. It proves, as well as does the common experience of mankind, that parts of the earth which are now dry and subject to cultivation were at certain periods of the past a prey to the waves. We have seen a house in one of the western counties of New York State built of such limestone as is mainly made up of water shells, some of the shells larger than our fist, and these stones are from the farm on which the house is built. A great part of this section of country, espeeially the valley parts, present a like geological formation, indicating that at some time it was covered with water. There are large lakes in the vicinity, and one might suppose, with respect to the particular section of country to which we allude, that at some time in the past the waters of lake Ontario extended to a considerable distance south of its present southern boundary, but that the gradual enlargement of the St. Lawrence river by the constant flow of the vater through it, by means of which a greater volume of water could pass through from the Great Lakes to the Atlantic, may have draimed it by degrees. There is, however no sufficient reason to believe that at any period of the past the waters at large covered a greater extent of the earth's surface than they do now, nor that more than comparatively small portions of land are at any time lost or set free by the water. People living near the sea shore have constant experience of the wearing effects of the action of the waves on the coasts. This is especially the case where the coast barrier is of a soft clayey character. When it is of hard and resisting substance, as rock, the wearing effect is not so noticeable during the lapse of two or three generations of men. But the effect on some coasts by the waters heaping up sand and othor material, is that land is made. This is noticeably the case around sume of the great lakes of North America; and some geologists go so far as to say that all the land between the Mohawk river and the Atlantic Ocean, comprising a large part of eastern New York and New England has been thus made, and by upheaval.

Also, at the mouths of rivers there is much land made by deposits from the waters. The delta of the Misssissippi is of this character, the extent of which is at least 12,300 square miles, and this is computed by Sir Charles Lyell to have been 33,500 years in the course of formation. The Ganges
performs even a greater work of depositing than this. In the four rainy months, at 500 miles from its mouth it was found to bear seawards 577 cubic feet of solid matter per second. Its annual discharge has been computed to be $6,368,077,440$ cubic feet ; an amount of water equal in weight to sixty great pyramids of Egypt, although the base of that immense pile covers eleven acres, and its apex is 500 feet above the level of the plain. Yet even this does not measure the depositions which are going on in the upper part of the Bay of Bengal ; for it is considered the Brahmapootra contributes as much as the Ganges does to the sedimentary accumulation. From this we may form some conception of what great extents of land there are constantly being made by the depositions of all the rivers in the world which empty inte the seas and oceans ; for every river bears down to the ocean an amount of matter in proportion to the volume of water it discharges, and the nature of the country which it drains.

An admirable illustration of this subjeet is offered to us in the lake of Geneva. The river Rhone passes through this lake. It enters the lake at the upper end, its waters discolored by the mud ; but on leaving the lake its waters are transparent blue, the mud having been deposited in the lake. As this has been going on for centuries we may expect to find some evidences of the work of the river. This is given us in the alluvial tract which stretches from the head of the lake for six or seven miles. It is a marshy plain, higher than the level of the water, and occupying what was once the bed of the lake. If this state of things continues the Rhone will eventually fill up the whole lake. The rate of the advance of the delta may be gathered from the fact that the Roman town Portus Valesia, which stood on the margin of the lake is now more than a mile and a half inland, the river having added to its delta this quantity in about cight centuries. By soundings it is found that the mud deposits reach some two miles from the river's mouth. On these alluvial tracts wild grasses are generally found growing, that is, species peculiar to the waters and to marshes, and these are often mixed with some of the cultivated grasses, the seeds and plants of which have been brought down and ueposited by the waters of the river.

Examples of the loss of land by the waters, especially by the action of the waves on coasts; are of frequent occurrence on the coasts of Britain. Thus, on the ceast of Yorkshire from Budlington to Spurm, a distance of 26 miles, it is computed that the waves eroded $2 \ddagger$ yards annually, so that the sea has encroaches' two miles within the last fifteen centuries. Many old maps of Yorkshire, indicate that villages once stood where now the waves hold undisputed sway, and ports mentioned in past history are no longer to be found. The same destruction is taking place on the coasts of Norfolk and Suffolk. The sea-port towns are being driven back by the encroaching waters. The sites they occupied in past years now form their
harbors. Between Cromer and Mundesley, according to the Ordnance survey of 1838 , the cliff has receded at the rate of fourteen feet a year. On the same coast, as in Yorkshire, many villages are only historical remembrances. The church-tower of Eecles is still seen rising out of the seasand, but all other remnants of the village have long since succumbed to the action of the waves, or have been covered with sand-hills which are dispersed along that coast. Dunwich, on the coast of Suffolk, offers anothor remarkable instance of the conquests of the sea. What is now a small village was once a large and flourishing seaport ; records of the town are preserved from Domesday book, from which we learn that the sea must have encroached on the land to the distance of several miles. Also, the Goodwin sands, which are from three to seven miles from the coast of Kent, nearly opposite to Ramsgate, tradition iuforms us were once the estates of the carl Godwin. England is, however, indebted to the sea for a recent gift of large tracts of land in Lincolnshire, and Cambridgeshire, and the 300 miles called the " Humber Warp." Other countries are far more indebted; Holland and Denmark are well-nigh wholly the products of the German ocean deposited in the most recent geological periods; and Tyre and Sidon,"celebrated sea-ports of Phonicia, mentioned in the Scriptures, are now several miles inland.

Changes corresponding to these are taking place on the coast of Italy, and to a greater or less extent on all other coasts. When any portion of land las been gained from the water man advances on it, bringing his plants and animals with him, and the water grasses being subdued these are propagated thercon. Or if for the course of ages there be no civilized men to occupy it, the seeds of vegetables from the old land become more or less scattered thereon, and the roots of vegetables, large and small, from the old land become gradually expanded thereon, so that if the soil be adapted to their growth these grow up, and in the course of ages all this new land may become covered with vegetables large and small, as the old land. The reader should remember the slowness with which these natural events take place, and in a low state of civilization man scarcely perceives them. The Irish and Danes, when they contemplate their peatbogs of such great extent, and some of them we suppose from 100 to 150 feet deep, may well bethink themselves on the millions on millions of years during which these vegetable deposits were being made, and should glorify their great Creator, who has arranged and superintended this whole process.

Another subject which it is proper to mention in this connection is that of earthquakes. At different periods of time portions of the earth's surface have been elevated above the general level by the action of internal forces, igneous or aqueous, or both of these combined in the production of steam, and corresponding portions have been depressed, in some cases
doubtless lost, by being submerged in water. Thus, the differences of level on the land surface of the earth have arisen cither from the hills and mountain ranges having been pushed up by internal forces, or from the land on both side. of theso having subsided. Elevation and depression have doubtless always been taking place on the earth's surfaco. The univorsal action of water is to level, and it is considored that should no other causo interfere with the degrading and filling up which is carried on by every rain-drop, river and ocean, the surface of the earth, after a requisite number of ages, would become level. This, however, ean never be the case, for there exists a force in the earth which constantly opposes the action of water. Here, as in every domain of nature, is a finely adjusted balance, the aqueous agency on the one hand and the igneous agency on the other, the one wearing down, the other elevating; the one filling up and making the surface even, the other disrupting and throwing existing arrangement into disorder. The igneous action is exerted in three ways; in volcanoes, in earthquakes, and in the gradual upheaving and subsiding of portions of the earth's crust.

Many facts go to prove that in the cartl's interior, and not far from its surface, there are vast accumulations of igneous matter. This sometimes finds vent in great quantities by means of volcanoes, of which there are known to be 225 active ones (or rather voleanocs which have been known to erupt within the last 150 years), besides a large number of inactive ones, on the earth's surface. I'hese accumulations of fire, as we have intimated, are in detached places of the interior, and the water percolating through the fissures in the rocks finds its way into these fiery places, and thus a large amount of steam is generated, which, in its efforts to escape, sometimes finds vent by the mouths of volcanoes, and sometimes produces the disturbances of the carth's surface, which are called earthquakes, sometimes causing the destruction of large cities and flourishing districts, and the clevation of certain parts of the earti's surface into hills and mountain ranges, and the consequent depression of other ecrresponding parts. If the whole interior of the earth were one mass of molten matter, as some geologists are wont to suppose, then, according to the laws of hydrostatics, the pressure exerted at one point by the expanding steam must be felt by the whole liquid mass; for liquids transmit pressures equally in all directions; hence, the same force which throws into action one volcano must also cause all the neighboring volcanoes to erupt; and the same force which throws into disturbance one portion of the earth's surface, transmits an equal disturbing agency to every other part. This argument finds a remarkable illustration in one of the Sandwich islands. Mauna Lon is a volcano, frequently active ; there is a crater near its summit, 10,000 feet above the occan level ; 6,000 feet upon one flank of this mountain is
another crater, Kilanea. It often happons that while Loa is in action, the lava in Kilauea is molten, yet undisturbed. It appears an inevitable consoquence, that if these craters both derive their lava from the same reservoir, the force which propels the molten matter to the highor orater must cause a jet of lava to be thrown from Kilanea to a similar height. That simultaneons disturbances would take place in each voleano, if their ducts led to the same reservoir, may be fairly inforred from the fact that we have nmmerous accounts of volcanic action oceuring at the same moment at many distant points. For example, a violent earthquake visited Chili in 1835; at the same moment the shock was felt over a wide area; the two volcanoes, Vautales and Osorno, burst into action; and at Juan Fornandez, $i 20$ miles distant, a submarine eruption took place. Thus, the commotion, in some deep-seated reservoir, atfected a tract of comitry 900 miles long and 600 broad ; and these examples show that some of the subterranean reservoirs are of greater extent than others ; and also determiues that the whole interior of the earth, reekoning at any distance from its surface, is not a mass of lipuid fire.

The ordinary cievation and deprossion of the earth's surface takos place freguently, when by the fluctuations of the temperature of the earth's crust the rocks expand or contract, in the former case of which an eleration takes place in the surfuce immediately above the locality which experiences the expansion; in the latter caso, especially when the contraction or cooling down takes place rapidly, fissures are made in the rocks, which admit the water to the igneons regions. When the shock takes place in the interior it is propagated on all sides from the centro of disturbance in a wave, which reaches the surface, and as it rolls wider and wider from its centro causes all tho phenomenn exhibited in an earthquake, gradually decreasing in its power until it becomos impercoptible. There may be earthquakes of which the igneons agoncy is the main causo; but it is a remarkable fact that all volcanoes, and ranges of voleanoes are in the neighborhood of seas and ocoans.

It would be much beyond the limits of our space to chronicle the destructions which the eruptions of volcanoes have brought on human beings; but it may bo permitted us to mention the effects of some remarkable earthquakes. The effects of somo of these were felt over vast regions of the globe. One occurred at Lisbon in Portugal, on the 1st of November, 1755 , the effects of which were felt ovor an aren fonr times as large as Europe. The shock was preceded by no promonitory symptoms, but with a tremondous roar, the city reeled and fell. It seems from observations made on scientific principles that the centro of disturbance was some eighty miles from Lisbon, out at sea. The actual secne of the gascous explosion must have been deep-seated, since its effects wero felt over such a large aren. The water rose suddenly twenty feet in the

West Indies. 'Ithe great lakes of North Ameriea felt the movement. In Scotlanil, Loch lamoial rose on one heach more than two foen, tho water not participating in the lureh of the laul. 'The waves of disturlance extended to the very moth of Burope. In six minutes, 60,000 people in lishon perished. Many had assemhled on tho wide expanse of the new mathle gin v out of the way of the fitling houses, when suldonly the guay with its living throng amk with many ships in the harhor, and mot a body, nor the splintor of a wreek, was ever known to rise from the watery ilepins. Wo can only suppose that a fissure opened beneath the harlor, and, after engulfing the whole, sudilonly closed in. In this earthyuake a remarkalile proof was offered of the fact that the carthruuke wave is more readily propagated in some formations than in others. 'The lower part of the eity which rested on bhe clay was most severely shattered, while that part of the eity which was limilt on limestone aud hasalt eseaped. Tho wavo movement pussed nlong the earth's surface at the rate of twenty miles an hour ; the sea wave which in such cascs usually follows the land wave at a much slower pace, rolled about four miles in the same time. 'The sea wave is generally the cause of as much loss of life as the actual violence of the alowek. This may he well understood from the fact that at Cadiz, the wave was sixty foet high. But the reason why the waters of Loch Lomomed did not participate in any pereeptible degree in the lureh which the land gave is that that lake is of so small an oxtent, and that the water wavo travels an much slower than the land wave.

Sonth Ameriea has for centuries heen the seeno of repentel earthquakes. A fow years aftor Lima was built, in 1582 the eity was mined, and since then the eatastrophe has hoon repented somo twonty times. In all the eities of that neighlorhood the ecelosiastical year is full of anniversaries eommemorating terrible overthrows or marvelions escapos. But none of these calamities neem eomparablo to that which has paralyzed that country some four years ago. On the 13 th and 16 th of Λ ugnast 1868 , two earthynake shocks passed over Pern and Lemador, ruining every town and eity, and leaving between two and three lumdred thonsand people dead to putrify in the tropical sum. Arica, a sea-port town was eompletely eovered with the wave. One who was present at tho catastrophe, and who survived it, states, that upon the first shock, at a guarter past five in the afternoon, ho with some others jumped upon a bargo, whon the great wave earriod them on its crest, complotely over the town, above the spire of the church, and landed them unharmed nearly a milo inland.

The chicf geological effeet of eartliquakes is shown in the permanent alteration of the lovel of the land. In 1822, the const of Chili was raised some two feet, whilo further inland the elevation was more than double this extent. In 1855, the const of Now Zealand, for ninety miles,
gave evidene ot a rise of mine foet. (Fow many other facts illuatrative of the alteration of level in all parts of the word as a consequence of intermal disturbanees, the reader may consult Lyell's l'gineiples of ceology, wol. 11.)

But there is fomd to be a gradual alteration of level taking phace on the earth's surface, wat attended with combulse movemonts, which is more ingurtant than those heal variations. Observers find it difliente to estahlish these facts, heramse there is no stambind which is not itaelf sumpeet. to alteration. ('areful investigations, howerer, of the conat of Swom has shown that most of the Semdinarian peminsula is rising at the rate of four feet a century. The enast is farmable fir the ohservation; there me no tides in the baltie, and the elifts which line the eomata deacomed perperndiculaty into the seas. liew other phaces present the same ndrmatage for observation. 'ithe water level has bero repeatedly marked, and the rise juiged lyy its change. It has also heom whaerved that the hod of the South lacifie Geran is simking in these ages. Some butge the from the fact that the beds of the comal formation are fomed bim holow the depth of twenty fathoms, below which, it has beom said, the eomal insect comid mut exist from the pressure of the water being tow great ; , inst ans if my man of same mind combld belicw that an inseet which exists moter the pressure of twenty fathoms of water wonld be prevented from existing at tive times that depth "hy its pressure." 'Jhere are donbless purtions of the hod of the Somthern Geam sinking to correspond with the clembions which are taking phace in the Northern hemisphere, fire, fir erery elevation there is a correspomding depression on the carthis surfice.

Ono well known proof of the repeated aseillations of the earth's ernat is that which is oftered by the temple of sempis near lazanti in the bay of Naples. The muins of this temple eonsist of three pillars of mathle, hewn out of solid blocks of more than forty feet high. The history of this remarkable temple appars to he as follow: lrom certan inseriptions diseovered in the ricinty, we learn that in the year 10.5 13. C. a temple dedicated to Serapis existed on the shonve. In 1828, the hamblame mosaic parement was diseovered five feet hemeath that from which tho pillars rise. 'Ihe existence of this paroment indieates that the lame most, have sunk, and the present fhoor have been raised above the loved of the water. In tho early part of tho Brod eentury, the tomple was repared and beantified hy the Emberor Alexmuler Soverns. At what time it was deserted, it is not known, but, in 1749, the following fiets were hromght to light by excavating: That when the soa broko in the salt water cansod a hot spring which exists to throw dows a dark calearoons doposit two foot thick. Ahove this a layer of volcanic tulia was found roposing, which must have been ejected by the neighboring voleano. Ihis doposit is not regular, varying from five to nine feet in thickness. 'The eruption seems to
linve formed "hmriner which kept out the waters of tho sea, an that th. hat guring eontinued to demasit its enthonate of lime, but without may marine almixture; thes abont trin feet we were aded to the matter which embed dend the hoitom of the collomin. Nore volemio tufit was how pheod unen the lime depusits, either by astorm or mother eruption, inaking a total depmait of cleven feot. All this time the land had been sinking. The sea now survouted the pillara, which thatly ank nine feet inore : thus half the height wis alwo the water, and of that which was heneath the surface, sleven theet was embedded, and nine expored to the wator; in this apmee the pillars were pereoptibly perforated by a bivalve "hithodumus. "Thus if we inchule the lower pavement, the lanit mast have anom 25 fout since the commenement if tho christimo ora, When tho unheaval hegnn, it has mut been ohserved, but it was known to be in progress in 1.331, ant in 1838 the pavement wis again above the aen lovel. The downwarl movement has agnin comanenced, at the rate of about me inch ammally. Here then we have evilence of a stracture which has undergome a subsidenee mil an mheaval of at least 20 lieet, anil still stumbs to attest the quietness mat regulnity of the movement. Athongh this sulyect of the alteration of level if the earth's surfite is n dillieult one o prove, from the peculiar circumatances of the case, yot, we masy safely infer that this oseillation is more general than is commonly supmased ; mul may finirly be bronght to neeonut fin the depression and mphaval neceasary for bringing the apheons roeks to form the surfine of continents. fior the reader may remember that tho rooks which imulerlie a great purt of the dry land, as woll as most of thase fomul in the firmution of lofty mentataing finmish mmiatakealile evitence of their having grown benenth the water. This too will partly aceomut for the finct of by far tho groatest part of the fissilized phats anil animuls whiel have beon fomml heing of a matic origin. In no other part of the worll, we believe han tho sulpject of geology been more pursued than in tho island of Britnin, and ns this island is so extromely amall in propurtion to the great extent ol the globe, and as only small pertions of it toe have been geologically examinel, it is the mure surprisiug that snoh a great mumher of fossil animals and plants, and other interesting fossils, have been disenvered thore. We would add a list of the fossil plants nul animals which have mitil recently been diseovered in all parts of the globe to show the proportion which they boar in respect to kind to those now existing, hat fir the fact that these proportions are continumlly varying by mems of the discovery of more fossils, and some now living speeies.
deologists remark that the remains of man are mostly fond in the nllu vial deposits of rivers and lakes. Theso deposits contain also skeletons of land animals together with fresh water shells, intermixed with silt and vegetabo drift earried down by the rivers. The reason thoy are found in
such places rather than in others is, first, that man must have ulways occupied the regions of the land as a residenoe ; and the remains of human beings found in sach places are doubtless for the most part of chose who have been drowned. in the waters of tho lakes, or in the rivers, and washod down with the debris whieh rivers usually carry to their mouths. We have ourself seen in an alluvial deposit in the State of Now York, a foseslized man of such dimensions that, when living, he must have measured about eleven feet in height, and was made in proportion. We had the opportunity of closely examining this fossil and it appeared to have once been a noble specimen of human kind, and not to have belonged to any of the tribes now inhabiting this continent. Its autiquity, as iudicated by its appearance, and the place in which it was found, must have been very great. Secondly, according to the evidence of geology and history, mankind has always been aceustomed to dispose of his dead by burial and otherwise. But besides the remains of hmman beings which have been discovered, many indications of their existence are brought to light in the form of warlike instruments, etc. These are in the shapo of knives, arrow and spear heads, hatchets and hammers, which indicate that the state of civilization of those using them was not high. The material and workmanship of these tools are considered by geologists to have marked the successivo periods and the successive stages of civilization through which man has passed. But is is evident that in any period of tho past, as at present, some tribes and nations may have boen more civilized and ingenious than others, and that while one tribe used instruments of one material, and of good workmanship, another may have used instruments of another matorial and of better workmanship. There are found instruments of stone, of brouze (an alloy of tin and copper) and of iron; and the ages in which they are said to have been used are termed respectively the stone ago, tho bronze age, and the iron age. In the stone instruments there is a variety played indicating a less or a greater degree of ingenuity or tact in their making. Some of them are mado of flint seemingly chipped into the required shape by hand. The regularity and proportion displayed in these arrow and spear heads are often remarkaidic. Although it may appear strange, it is said that the flint chips more easily, when chipped with another flint, than if an iron tool be used; so that we need not be surprised at the elever specimens of stone handicraft, proserved for us in theso deposits, and formed by men who, like the North American Indian of the past, were not acquainted with the use of iron. Some of these flint instruments appear as if they had been subjected to a process of grinding, and consequently exhibit more skilful workmanship. An ancient people who fabricated these instruments lived in the Northern parts of France, and in the South of Britain. In the river gravels of Abbeville and Amiens in France, M. Boucher de Perthes found in 1847 many specimens of their
handiwork. These bels of gravel vary in their dopth to tho prosent bottorn of tho valley from 20 to 200 foet. This depth indicates the annonut of scooping work the river has done since these ancient people oceupied its banks. These tools are usually bleached by long exposure to the air, or they are stained with the same yellow tinge which pervades the gravel bank, and sometimos crystalline incrustations of carbonato of limo appear upon their surface. Iheir edges are bluntod oithor by wear or by the rolling action of the water, and they aro usually found at depths of from fifteen to twenty feet from the surface. The fact that the Somme river has worn away more than 200 feet of valley since the peoplo of this stone age inhabited its banks may impress us with some notion of the time which has elapsed sinco that very remote period ; yet the position in which simiiar instruments are found in the South of England, carries our minds still farther back into the past. On the tops of the hills in South Hampshire, and in the North of tho Islo of Wight, masses of gravel are found. These dotached beds are believed to be remnants of a groat deposit of drift resting upon the Eocene 'Iortiary Strata. In this gravol are blocks of sandstone, some twenty feet in circumforonce, and to account for their prosence at some distanco from their native bods geologists have recourse to tho agency of the glaciers. It is in this gravel that numerous specimens of stone tools, precisely similar to those of the Somme valloy have been found. If the theory of the glacier agency with rospect to these rocks be truc (and it doos not seem altogether improbable when wo consider that glaciers of great extent exist in the Alpine districts in the centro of Europe at prosent), then, when these ancient poople inhabited Britain it was amid the ice and snow of the Artic regions, or, at least, in the proximity of glaciers and ice fields. And since the time of their existence the Southampton river, the Avon, and the Stour have begun their courso and giadually worn for themselves thoir present valloys And probably the Isle of Wight was then part of the mainland ; whether or not the strait of Dover then existed may be guessed or known. But not only have they passed away, but many of the animals then existing are now extinct. The bones of the mammoth, the woolly-haired rhinoceros, the reindeer and the Norwegian lemming all are associated with the flint instruments. These animals have all an Artic relation, and the two first have been known alive in historical times. The first of these is simply a large kind of Elephant, and the lemming is of the rat species. In the valley of the Somme the hippopotamus and the musk ox are also found, indicating a somewhat more genial climate. The reason why the remains of men are not in general found associated with these instruments, is, as will appear more clearly from information hereafter to be given, that mankind has always been accustomed to bury their dead in detached places, or to burn them.

For a long time geologists refused to entertain the idea that mankind was co-existing with the mammoth ; but now all doubt upon this subject toohas been removed, for even in the scanty researches thus far more than 3000 flint instruments belonging to the ancient stone age have been discovered in Europe. Throughout the whole of Scandinavia (Sweden and Norway), although quantities of flint instruments are found none of them are of the rude stone type found in the South of England, and in France; but all are ground and better shaped. This may indicate that they were of n later age than the stone weapons, or of the same or even an earlier age, and made and used by a more ingenious and civilized race of men. The thought will probably strike one, was not Scandinavia in these early times covered with ice, and how could it then be inhabited? An equal and an equally forcible consideration is this--that Denmark was certainly inhabited by the men of the stone period; and if this, being in such close proximity to the Scandinavian Peninsula, was inhabited, why should not the latter have been? Doubtless the Scandinavian geologists have given considerable attention to this subject and understand it.

Along the coasts of the Danish islands are mounds from three to ten feet high, and some of them as many as 1000 feet long. These mounds are termed kitchen middens, being found to contain some shells of mollusks, etc., upon which the people lived. Being in close proximity to their dwellings it is natural they should contain many remnants of their mode of life ; burnt bones of the animals they cooked, their stone knives, spears, etc. Sometimes bone and horn instruments are found in great numbers. The animals with which they were associated are still living in Europe, excepting the beaver. The dog alone, however, seems to have been domesticated by them. These facts, and fragments of rude pottery that are found, go to prove them to have been partially civilized.

These ancient people have reminiscences of their existence preserved to us in peat-bogs, and in Denmark successive stages of civilization are observed. In the lower beds of peat stone-weapons occur side by side with the roots of the Scotch pine, a tree which has never been known in Denmark in historical times. Higher up in the same bog bronze instruments are found; but here the pine has become extinct and the oak takes its place. Still nearer the surface iron instruments are found ; but during the bronze period the oak growth waxed and waned, and next the beach tree which now flourishes ins ${ }_{3}^{4}$ Denmark occupied the country. Let the long periods whici it must take for successive generations of forest trees to wear themselves out tell the years which measure these ages of stone, and bronze, and iron.

An interesting and singular repository of these ancient relics has lately been discovered in Switzerland. It seems that it was the custom of the ancient inhabitants of the Swiss valleys to construct their villages on piles,
driven into the botton of the lakes, where the water was not more than fifteen feet deep. No fewer than one hundred and fifty of these lake villages, have been already discovered. B sing surrounded with water the inhabitants were secure from the attacks of wild beasts, and in some measure from their human enemies. By dredging in the ooze great numbers of articles have been found. Some villages are characterized as of the stone age, others of the bronze, and others again give evidence of having been inhabited by people who used both the stone and bronze instruments. Among other things taken up from the villages characterized as of the stone age are charred corn, and bread. This proves that the people of that very ancient period cultivated corn. No corn has been discovered in the villages where the bronze instruments have been found, but the vessels occasionally bear the marks of the potter's wheel. Numerous animals were domesticated, and gold, amber, and glass were used for ornaments. From the size of the sword-handles and the bracelets it is concluded that the prople denominated as of the stone age were smaller than the present inhabitants of Northern Europe.

With respect to the disposition made of the dead the evidence is as follows. During the age of the stone weapons the mode of burial seems to have been in rude coffins of undressed stone. The skull is remarkably round and small, and this type is now most nearly approached in the Laplander. It is suggested that he may be the descendent of the men of the stone age, his ancestors having followed the ice northward. Daring the age of the bronze weapons the fashion of burial changed ; or, perhaps, we may say with equal propriety that the men characterized as of the bronze weapons disposed of their dead differently. No human remains understood to have belonged to that period have been found ; they burned their dead. When the age of iron came they again resorted to sepulchral burial, and now the skull appears larger and longer. The floors of caves have proved the richest storehouses of human remains; but owing to the fact that the cave may have been used as a burial place in comparatively recent times, it does not necessarily follow that human remains lying side by side with the bones of extinct animals belonged to human beings that lived contemporaneously with these animals. Out of the numerous fragments of skeletons which from time to time have been brought forth from such places Professor Duncan concludes that the lower jaw found in the cave of La Nautelle, the skull from the Engis cave, and the jaw of the Grotto des Fées are "the only examples of human bones which can bear criticism, and which can be referred to the mammoth age."

As we may have before intimated the stone, br nze, and iron instruments may have been used by the same nations and tribes for long successive ages, and may indicate the advances they made in civilization and art,or may have been used contemporaneously by different tribes and nations of different or
the same degrees of eivilization and art. The finding of the stone, bronze, and iron in suecer sive strata, as in Denmark or in any other place where a sufficiently extensive search had been made, might appear to substantiate the first supposition ; but the finding of these different kinds of instruments in neighbouring villages or in the same village, would indicate that the second supposition may be equally true. The Augustan age in Europo, characterized by a certain kind of arms and arts, may have been characterized by very different kinds of arms and arts in China, which it undoubtedly was. Also, the ages of the bow and arrow in Europe and Asia were different from the modern age of artillery : and the tribes of Indians or other tribes who use the bow and arrow contemporaneously with the use of artillery by their white neighbours, may differ somewhat in point of civilization and art from the whites; or there may be tribes on the earth who might be considered as equally advanced in many respects in regard to civilization with the whites who still use bows and arrows. And even neighbouring as well as distant tribes in prehistoric times may have differed in like manner, doubtless did. Each nation had then its own language, and differed from its neighbours in arts and characteristics even more than the nations differ now. We are to remember that the facts here adduced as to the discovery of human remains or of instruments indicating the existence of human beings in those very ancient times refer to Europe alone, and only to a small portion of that. But we have ocular evidence in the numerous tumuli of the Western States of the existence of men on the American continent in past ages, men who, as we have been informed by a man of sound judgment, who had inspected some of the remains, and handled some of the limbs, averaged 10 to 12 feet high (some of them much higher) and were made in proportion. This fact evidences as strong a slything can that different races of men have existed on this continent
 were in point of size to the men of the present day either white, black, or red, as the huge mammoth or mastodon would be to the elephant. The whole continent of America has been peopled in some of the past ages by these gigantic races. We have mentioned in another place the huge fossil man we inspected in Westeri. New York, which was casually happened upon by a man digging a well on his own farm. And we have been since told by a elergyman, who resides on the etsitern side of lake Erie, that he had reason to belie? that such huge fossils are not uncommon in the district in which he lives ; for that, when in Elgin county, in Canada, he handled a skull of one of these ancient giants, whose remains had been casually found in the neighbourhood, and that when tbrough curiosity to find how his head compared with it in size he inserted his head into the cavity of the mammoth skull, there was still more than enough of room left on each side for him to insert his two hands between the skull and his ears.

The whole continent of America presents innumerable evidences of an extinct civilization. 'lliese are of various kinds, including mounds, tumuli, fortifications of largo proportions, gardens, wells, artificial meadows, ruins of towns and cities onco wealthy and populous, which all, with many other monuments are to be found scattered throughout the continent, especially from the 48 th or 50 th parallel on the north to about the same latitude on the South of the Equator. The valleys of the Mississippi and the Ohio abound in ancient mounds, tumuli, extensive fortifications, and traces of wells, salt mines, and artificial meadows which speak unmistakeably of a long period of time during which a numerous and powerful peoplo of settled agricultural habits had made such considerable progress in civilization as to require large temples for their religious worship and extensive fortifications to protect them from their enemies. On the banks of the Blue river, the Black river and the St. Charles, near tho river Gila, and upon an alluvial soil which reposes upon basaltic rocks, the remains of ancient colonics are very numerous. Rows and piles of stones show the plan of houses, though nearly covered up by the accumulated soil of ages. Here is seen a ruined circular stone wall about 250 yards in circumference with an entrance on the eastern side, and containing in its centre the ruins of a dwelling in which no traces of wool exist ; three quarters of a mile distant the soil is strewn with enormous remuants of spacious edifices which contained rooms fifteen fect square. In most of those, fragmonts of painted pottery have been found and traces of decaying cedar wood. These houses are surrounded by a rampart 300 yards in longth. One writer obscrves in speaking of this locality: "Subterranean fires appear to have ruined all this country and converted it into a barren waste ; the country may also have been descrted in consequence of volcanic convulsions spreading death and miscry among the inhabitants." Judging from the walls, houses, and remains of pottery met at every step all this region of country scems to have been very populous in past ages. In the Apache territory near the Rio Grande is a copper mine which shows distinct traces of ancient working A little to the East of this an ancient fort of a square shape is erected with a tower at each corner. The walls are four feet thick and in a state of some preservation. The banks of the Rio Verde abound in ruins of stone dwellings and fortifications which appear to have belonged to a more civilized people than the Aztecs. They are found in the most fertile valleys, where tracos of former cultivation and of small canals for artificial irrigation are yet visible. The firmly built walls of these dwellings are twenty and thirty yards long to thirty or forty-five feet high, and from four feet thick at the base gradually taper to the top. The houses were four-storied, with small openings for doors, windows, and loopholes for defence against outside attacks. Excavations among these majestic ruins have yielded abundant fragments of
beautiful pottery black, yellow, red, striped and scoloped and ornamented with brilliantly colored paintings. Of the ruins in New Mexico the most modern are the pueblos or stone dwellings; they comprised usually a main portion and two receding wings at right angles to the main part, from the extremities of which extended a circular wall enclosing a large yard or court. They had the appearance of an immense barracks, being of four stories high, each receding from the preceding one like a series of terraces rising one above another. The outside wall had no openings in the first or lower stories, and each story was reached from the court or yard by ladders which could be drawn up after the inmates, thus giving no opportunity for the enemy to enter. The minor details of these structures indicate much ingenuity and art. Some of them appear in the distance like splendid mosaic work, being constructed of stones of various colors. They are built of small flat slabs, in some cases of fine granite sandstone, a material never used in any of the modern monuments of Mexico ; and the walls show no trace of cement, the intervals being neatly filled up with small colored pebbles incrusted in mortar made without lime, Remains of ancient towns are extremely numerous in the country of the Zunis, the Navagos, and Jemez. All these towns are so ancient that no Indian tradition makes any mention of them. Humboldt, speaking of these remains of the unknown past, in which may be included the ruins of populous cities possessed of much grandeur, the amazing signs of mechanical and architectural science which are manifest in the construction of the palaces of Tezcotzinco, the temple of Xochicalco, and the colossal stone calendar of Mexico, says; "Certain it is that they are the work of a great people, of an intelligent nation, whose civilization was far superior to that of the actual tribes." These ancients scem to have possessed a knowled ge of astronony, as all their structures had either four entrances or four corners or towers answering to the four cardinal points. Among the basses Grandes are met numerous ruins, among which is a tumulus surrounded by an earthen wall 100 yards in circumference. A little from this is a large round terrace 100 yards by 70 , supporting a pyramid 30 feet in height by 25 yards at its summit, commanding a view of a plair. extending north, east and west, on the left bank of the Gila. The Pim: Indians have a legend concerning these ruins which rums thus; They pretend that these odifices were constructed by the son of the most beautiful woman that ever existed and who formerly lived in the neighbouring mountains. Her extreme beauty caused her to be beloved by a multitude of suitors; but she refused to marry; when they visited her they paid her tribute, and by means of this resource she provided for the people during times of famine without provisions ever failing. At length one day she fell asleep, and from a dew-drop descending and falling upon her bosom she conceived and gave birth to a son who built these houses and many
others to the north and south-west. Among all these ruins are found beads and painted pottery, and perforated shells which antiguarians believe were used as coins or ornaments.

The valleys of the Ohio and Mississippi are rich in monuments of various kinds, dating from a period long anterior to the historical era. In Ohio alone, the number of ancient mounds, wells, ete., has been estimated at ten thousand. The American mounds have been divided by antiquarians, as follows: altars, tombs, temples, and tumuli of no determinate character. Out of one hundred examined, sixty had served as temples, twenty as tombs, and the rest were places of observation, or mounds, the uses of which could not be determined. Their plan and construction differ according to the situation. In the vicinity of the great lakes, and in the States of Wisconsin, Iowa, Miehigan, and the western territories, they are made of earth, of conical form or in the shape of animals, birds and reptiles, or even in that of man ; appearing like immense Bassi Relievi carved out on the soil by the hands of giants. In the interior of these monuments relics of art have been discovered belonging to a very ancient period, and consisting of personal ornaments, domestic utensils, and articles connected with religious worship, made of different metals and of Pietra dura, also polished stone and copper implements.

In the Ohio valley these earthworks are larger, more numerous, and of a more regular construction, in many instances surrounded by earthworks or strong walls; and give the best indication, from their number and style, of the greatness, or at least the multitude and superiority of the populations by which they were constructed. Advancing southward these antiquities are remarkable for the great regalarity of their structure and their extraordinary size, and in these southern parts only have traces of briekwork been detected in their construction. In Florida and 'Texas these mounds aro composed of several stories, somewhat resembling a Mexican Teocallis in their pyramidal form, dimensions, lofty passages, spacious terraces, and loag avenues; they are often surrounded by smaller ones placed at regular in tervals, some with paths winding around them from the base to the summit; others have gigantic steps, like slips in European fortifieations.

Enclosures are rare in Florida, but those of a military character have been diseovered in the Carolinas. Of the courts or amphitheatres that existed in the far South, the purpose seems to have been that of places for public amusement, as in the amphitheatres at Rome. The tetragonal terraces are apparently foundations for elevated fortifications, while the pyramidal hillocks are supposed to have served as observatories commanding a view of a wide extent of country. In Florida, frequent vestiges of extensive roads are met with, some running in a straight line for sixty to seventy-five miles. These highways were elevated above the surrounding
plains, and appear to have led to the great centres of population, traces of which still exist. After traversing ruins of towns and villages they terminated at the foot of one of those artificial teocalli, or high dwellings of the chiefs. Few American curiosities are more striking to the imagination than these great roads, and the magnificent scale on which they were eonstructed brings to the mind the great roads made by the Roman government through the provinces of the empire. The elovated structures, or mounds of Florida, were usually square-shaped, sloping on one side to the road, or reaclied by a series of wide steps leading to the summit of the monument. The Indian population, whom Columbus found here, had no knowledge of the origin or uses of these structures, which were covered equally with the surrounding country by forests of gigantic growth. We might mention also the immense gardens, of unknown origin, found scattered over various parts of the American continent, whoso size and state of preservation has produced, in the minds of observers, much astonishment. This perfect preservation is thought to be owing to the thick coats of prairie grass, which is so dense and abundant as to form a compact vegetable coating on the surface of the soil. This enables all their sinuosities to be easily traced, and has prevented their surface being overgrown with forest, as obtains in other ruins. They are square, or semi-circular, and are divided in parallel lines so as to form a series of ridges or beds, two or three yards in width, and are separated from each other by a number of very narrow paths. One of them is described by Domeneck, as above eight miles in extent. No light has been thrown upon the nature of the produce of those extensive fields laid out with so much regularity. The finest and best preserved have been found in Indiana, Michigan, the Western territories and 'Texas. Besides these gardens, artificial meadows, many of which were found situated on the borders of wood land or in the midst of forests, were also cultivated by the agricultural population which inhabited the western world previous to the tribes now existing. From the nature of the country, the configuration of the surface, as well as the agricultural implements of stone and brass found in those meadows, it is believed that in remote times these regions were covered with trees which must have been buined or torn up to make room for pasturage, etc., in the vicinity of human habitations. There aro many traces which make it appear proboble that the ancient inhabitants of the country worked the salt water springs in order to procure salt. These traces appear in Illinois, where, in a salt mine, there existed an extavation one hundred and thirty-five yards in circumference, in the middle of which a great pit had been dug at somo unknown period. A conduit also existed by which it is supposed the water was drained off. In Ohio the salt mines give evidence of having been worked, the ancient remains of vases used in the evaporation of water having been found near
the mines. In the salt-petre cave of Missouri hammers and axes similar to those found in the tumuli have been discovered. In the Lake Superior region are copper mines which bear unmistakeable traces of ancient mining. It appears that the ancients mado use of tools of tempercd copper, specimens of which have been found in the mines, as also evidences of the use of firo. The marks of such tools are traceable on the native copper.

Fortifications, of a singularly strategical character and of immense proportions, have been found existing in the vieinity of the Ohio and Mississippi rivers. With reference to these it has been said that, " of all tho great works left by the ancient American nations, none are more extraordinary or more worthy of study than those colossal fortifications and vast entrenched camps protecting and surrounding spaces so very considerable that, of necessity, they must have been the work of a large population." The epoch at which these were constructed is, of course, quite unknown, but it is evident that they must have been coeval with the most ancient mounds or tumuli, since they are often placed within, or in the immediate neighborhood of, the fortifications, and in many cases form part of the general plan of defence.

These fortifications are round to consist sometimes of earthworks thrown up in the form of an extensive entrenched camp, or in the stone walls which have been thrown across peninsulas formed by the conflux of two rivers, and around the declivities of elevated terraces; while in all cases it is observable that a careful choice had been made of the most suitable position, of which every advantage has been taken to construct defensive fortifications on a surprisingly gigantic scalc. On the delta formed between the Raccoon and Newark rivers in the county of Licking, Ohio, there exists an elevated table-land about 35 feet in height upon which are remains of military constructions of great extent. On the west side of the platform stood an octagonal fort enclosing an area of about forty acres, having stone walls of solid masonry about nine feet in height, and the same in width, at the base, each protected by a tumulus placed in the interior in front of the entrance. T'wo parallel walls lead to another circular fort at the southwest of the first, covering a space of 22 acres; further south is an elevated hillock or observatory which commands a view of the whole position, beneath which a secret passage leads to the opposite side of the river. A third fort of a circular form stands more to the right, enclosing about 62 acres ; there was an interior ditch in this, out of which earth had been taken to assist in the formation of the wall, which ranged from 25 to 30 feet high. Two other parallel walls run towards the north, gradually converging to another fort of quadrangular form, enclosing an extent of about twenty acres. These four different forts are connected by rather low walls, and in the centre of the enclosed area is a shallow pond covering 150 to

200 acres, smplosed to be artificial, and to have been required to afford water to the people and animals inhabiting the phene ; towers is foservation placed at each of the salient points complete the works at this point. At Marietta, near the month of the Mnskingm, some estraordinary ruins exist, among which are two square forts, the largest coveri... forty acres ; these have earth walls from three to six feet high, and videst at the hase ; sixteen openings exist at regolar intervals; at one side is a corered way formed by walls which are said to be 21 feet high, and 120 feet in length leading down to the river by a gentle slope. On the valley of the Paint Creek, near Chilicothe, is to be seen one of the most interesting of these fortifications; it is situated on a hill 300 feet high, and 130 acres in extent. The ascent is very steep and is accessible only on one side ; a stone wall extends romen this plateau of elevated ground. It is said that no engineer could have selected a more strategical position. On the Little Miami and its tributaries, and in Ohio several of these strongholds are said to have existed, in which the walls were disposed in a parallel manner. But enough has been said to show that the strongholds erected by these ancients were not of the meaner sort, - the earthworks seeming to be possessed of the greatest durability ; for they have been protected by a growth of forest or thick grass, while the stone structures have tumbled in most cases to a mass of ruins only intelligible to the penetrating glance of the antiquarian. The Indians know nothing about the origin of these struetures, nor about the people by whom they were erected; but they hold them in traditional veneration. The tumuli are massive and pyramidal in fom and some contain a vault within which are laid the remains of the dead; these vaults are usually built of stones placed one above another, withont any eement, sometimes of wood, or of both coubined. The mounds are of various dimensions, from three to ninety feet in height, and from 100 to 700 feet in circumference at the base. In the top there exist altars of baked clay or stone in the shape of large basins, varying from 19 inches to 17 yards in length; but the average is from 2 to 3 yards. A number of these were examined by Messrs. Squire and Daris and were usually found to contain ashes and remains of calcined hmman bones, with sometimes a few omaments; this leads to the belief that the ancient Americans sometimes bumed their dead. In the larger burial mounds the vaulted chamber usually contains a raised pedestal or altar, upon which is laid the human remains. These skeletons are ordinarily corered with sleets of mica, and carefully placed around them are found ornaments and utensils of various descriptions. One was discovered in Utah in which a polished silver breast-plate lay upon the skeleton; at each side of his head lay what appoared to have been two tapers extending upwards, while between the fect was found an earthen vessel of remote antiquity. Some of the rauits have a stone pavement floor while others are vaulted and floored with
what appears to have been a species of brick or fire clay. In the Sonthern States, limeral urns have often been found within tumnli of this kind ; also beds of charconl, from which it is inferred that fire was nsed in their fumeral rites. In these monuments also have been discovered ormaments of silver, brass, stono or bone, anl ormmental beads made of shells; also pieces of silex, quartz, garnet, and obsidian, points of arrows, copper tools, marine shells, senlptures of human heads or of different animals, fragments of benutiful pottery, ornamanted with brilliantly colorod paintings of butterflies, inuadrupeds and other things, indienting a knowledge of art.

Very valuable discoveries of this kind have been made in Now Granala, where arms, idols, and modals were found enclosed in tombs of people whose successors have disappenral for many centurica, and whose enormous wealth is reported by tradition. The archeologists of lamama declare these works of art to helong to very remoti anticuity, anl consider them to possess characteristics of beth Chinese and Egyptian art.

Domenech describes enclosures made of earth of ahout 300 yards in circumference and having but one entrance, situated on low flats of circular, elliptical, or quadrangnlar form, lunt in all cases of regular shape. Aside from these there are a multitude of small circles about fifty yards in circomference, near which are gronped mounds that appear to have served as altars. I'lie large circles extend over a surface of fifty acres, and are connected with rectangular enclosures by means of broad avenues, These walls are all made of earth. The religions feelings which actunted the anthors of these immense structures, it is thonght, can alone account for their erection. 'Ihe Abbe Domenech, writes of them in the so words: "If religion were out of the question it wonld be dillicult to ajeoment for the object of works like those of Newark, which extend with their avenues over a space of more than four square miles, and to which only the great temples of Abary and Stonehenge in England, and Cornac in Britany can be compared."

As to the probable age of these ruins we may observe that in the valleys of the Mississippi and Ohio, where the tumuli and ancient fortificacations are found in the greatest numbers, trees of enormous dinensions have gron.a upon them, the age of which form the surest data on which to form a judgment as to the period when these different structures were abandoned. In 1787, Dr. Cutler found trees of immense size in the ruins of Marietta. Many of those cut down were hollow, but ono in which decay had only just commenced showed 463 concentric rings; and as naturalists have conceded a year's growth to each ring this troo must have existed more than that number of years. On the ground lay huge decayed tronks measuring six yards in circumference; he then concludes that as these were not the first trees to grow on these ruins, they must have been abandoned nine hundred or a thousand years ago. Sir Charles Lyel.
relates that on the same spot he, in company with Dr. Hildreth, in 1842, saw a tree, which when sawn asundor numbered eight hundred rings of annual growth. Gen. Harrison, President of the United States, in 1841, who was well skilled in wood-craft, remarked in a memoir upon this subject : "Several generations of trees must have lived and died before the mounds could have been overspread with that variety of species which they supported when the white man first beheld them, for the number and kind of trees were precisely the same as those which distinguished the surrounding forest." "We may be sure," he observes, "that no trees were allowed to grow so long as the earthen works were in use, and when they were forsaken the ground, like all newly cleared land in Ohio, would for a time be monopolised by one or two species of trees, as the white poplar, the hickory, the yellow locust, and the black and white walnut. When these had died out, one after another, they would, in many cases, be succeeded, (by virtue of the law which makes rotation in crops profitable in agriculture,) by other kinds, till at last, after a great number of centuries, several thousand years perhaps, that remarkable diversity of species characteristic of North America, and far exceeding what is seen in European forests, would be established." Taking this in connection with the opinion of a celebrated naturalist, who assumes that the oak is five hundred years in growing, remains five hundred years in statu quo, and is another five hundred years in decaying, we get some idea of the great antiquity of the American tumuli on which enormous oaks are found growing amid the remains of other oaks reduced to dust by extreme old age.

Hieroglyphic inscriptions have also been discovered from time to time in the States of Georgia, Kentucky, Minnesota, Ohio, Connecticut and Rhode Island, while some, remarkably well-preserved, have been found in the islands of Lake Erie. The red pipe-stone quarries of the meadow hillocks in the Western States conceal numbers, while others are met with in New Mexico. The most important and significant of these is that of Dighton rock. This rock is situated at the East of the mouth of the Taunton river in Manchuctka; the width of the rock is about forty-four feet, and the height in use about five feet ; the surface is polished, either by water or by the hand of man. It was for a long time covered with moss, detritus and dirt, so that the inscription was not noticed until the middle of the last century, when it became a subject of much interest and scientific discussion. The characters entering into the composition of this inscription are decided to be hieroglyphic, kyriologic, and symbolical, and the strokes, roughly sculptured, appear to have been cut in the stone with a cylindrical instrument, the depth of the incision being about two lines. It has been attributed by M. Mathieu, a French writer to the Atlantides, about the year of the world 1902; and Messrs. Yates and

Moulton, in their History of New York, say it is of Phœenician origin. An inscription of much interest was also discovered in Grace Creek tumuli in Western Virginia. It was found buried with a skeleton in a mound containing two vaults; it is composed of twenty-two characters in three lines with a cross and a mask engraved on a dark hard stone of an elliptic shape, about two and a half inches long, two inches wide, and about five lines thick.

Learned men who have examined this inscription most carefully, neither agree as to its origin nor as to the nature of its characters, of which four, it was thought, had a resemblance to the Etruscan signs, four to the Thugga (African), five to the ancient Runic in Scandinavia, six to the Touarick, seven to tiie old characters found in Ireland, ten to the Phœenician, and fifteen to the Celtiberian, several resembling more than one kind of character. The divided state of opinion as to the relic only proves the uncertainty of its meaning, and causes one writer to ask the questions concerning it: Is it a sign, a motto, an ornament, or an historical remembrance.

There is another circumstance which is worthy of mention and is thought to le of great historical significance among the evidences of past civilization which are found to exist on this continent, namely, the marks of "fountain worship." The ancient peoples of Mexico and Peru have left traces, not only of the Phallic worship and its accompaniments, but also of that ancient material worship that believed the spiritual essences of things to be manifested in the expressions of life around them. Deity was perceived everywhere, and in everything, and thus they worshipped the sun, the moon, (which they supposed controlled the weather,) the stars, the earth, (which they called their mothor, the sun being their father,) the rivers and fountains. The Zunis, above all, not using artificial means to irrigate their fields, and whose crops, therefore, depended entirely upon the rain that fell, believe to this day if they neglect to make their annual offerings to the spirit of the fountains their harvests will be destroyed by drought. Thus, in Mexico, Ireland, Scotland, as in ancient Carthage, Persia, Chaldoea, India, China, and Arabia, holy wells are held in great reverence and veneration by the inhabitants, who repair to them every year to make their offerings to the spirit of the springs. In the country of the Zuni one of these is still found; it is seven or eight yards in circumference, and surrounded by a low circular wall. Once a year the water is withdrawn, when offerings of varnished pottery are placed upon the wall, there to remain until they fall by accident or time; hence there are to be seen here specimens of pottery of great antiquity. A tradition obtains among them that any one attempting to steal one of these offerings would be punished by instantaneous destruction. The worship of wells was practised in the East from times of the greatest antiquity, not only by the worship-
pers of Baal, by the Scythians and their descondants, but also by the Chinese, Hindoos, Moors, Persians, Arabians, Egyptians, Jows, and Celts of Ireland and Scotland, where these objects of the profound venoration of the Celtic people were usually situated in the most picturesque spots, on the slopes of hills and vencrable oaks, amidst rocks coverod with heaths, in retre its difficult of access, and, above all, in tho vicinity of an ancient oak or upright unhewn stone, and in dark and mysterious solitudes, where the breczes and the brooks murmur incessantly, and whore the voico of man finds a faithful echo always ready t, make nature resound with the song and praises inspired by wife we the peoplo. In England, it is said, the Druids practised this w....ipe and under tho reigns of Canute and Edgar edicts were promulgated a_{c} inded who venerated these secred wells ; while in the Scandinavian manuscrip x^{2} is rolated that in the tenth century, a schism arose among the Anericans, some of whom wore accused of despising the sacred well of Vagarscriebat. That a worship so ancient and so general in the Eastern hemisphere as that of the fountains and wells should have been found to exist in the Western Hemisphere, may appear to be a mark of no small significance. In those times, there were people who believed that spirits presided over these fountains and rivors; that these spirits were invisible, a ac. hovered around them, and roceived with pleasure the offerings made to them by mankind either as thanksgiving or propitiation.

Certain ilols, shells, pottery and ancient mumnics, have been found in the mounds and caves of Tenessee, which are thought by some writors to point to an Asiatic origin. In referenco to these remains, the Abbe Domenech writes: "A knowledge of conchology is by no means unimportant in the study of the origin of the first inhabitants of North America, since it appears that they employed large marine shells, for their personal use, and for their sacrifices." The tumu: found in the valleys of the great rivers and the ruins of ancient fortifications contain a great number of these shells, which have formed the subject of long discussions among ethnographers, who are not ageed as to the locality of their origin. The most curious perhaps of the idols which have been found in these ruins have been found in the state of Tenessec. One of these was found enclosed in a small shell of the species Cassis Flammea which is of tropical origin, the others are without shells and either seated on their heels or kneeling, the hands being placed upon the thighs or abdomen. They are naked and represent different sexes ; the largest are about four inches in length; they are cut in stone common to the country. One of the professors of the University of Tenessee expressed the opinion that all these idols were representations of the ancient Phallic worship and were similar to those exposed in the temples of Eleusis.

The existence of American mummies, swathed in the veritable manner of the ancient Egyptian mummies, excited considerable surprise and com-
ment at the time of their discovery. They happoned to be discovered only in the neighborhood of large rivers, where vessels could easily approach ; they evidently belong to a race anterior to the red Indian; and from their discovery, somo writers agree that the ancient inhabitunts of the continent were of Egyptian origin, or at least came from the shores of tho Mediterranean, while Dr. Mitchell endeavored to prove that the ancient inhabitants of America were of Malay origin, and resembled the natives of the islands of the Polynesia and Australasia. He foundod this opinion on the resemblance of the cloth in which these mummies were enveloped to that brought from the Sandwich and Figi Islands, which is similarly made of fine cord doubled and twisted by hand; and again on the fact that feather mantles are applied to a similar use by the islanders of the Southern Ocean. It may, however, appear strange to men of sobe: reflection that our modern ethnographers are not content to allon tho ancient inhabitauts of this continent to have had an Americ a origin without wearying themselves with investigating an origin for ${ }^{4}$, on other parts of the earth's surface.

The mummies were found in great numbers in the mammoth cave near Louisville in Kentucky. "his cave contains a large quantity of nitr ma the preservation of these mummies is attributed to its presence. Domenech describes one of these, that was found nine feet below the surface of the soil; it was placed between two large stones and covered by a flat slab, the knees wero drawn up to the ehest, the arms crossed, and the hands folded the one over the other at the height of the chin. The hands, nails, ears, hair, teeth, and all the features were in a state of porfect preservation. The skin resembled leather of a yellowish color, and no traces of an opening in the body could be detected. Though this nummy was of a person six feet in height, it was so dried up that it did not weigh more than fourteen pounds. This body was not surrounded either by bandages or by any bituminous or aromatic substance, but was wrapped in four coverings. The first or interior one was made of fine cord doubled and twisted in a peculiar manner, and of large feathers interwoven with great art ; the second wrapping was of the same stuff, but without feathers; the third consisted of a deer skin without hair ; and the fourth and external covering of another deer skin, but with hair. The bodies of a man and woman found in a saltpetre cave in Warren County, Tenessee, are also described by the same writer ; these were wrapped in deer skins, and in a cloth made of the fibres of the bark of trees and ornamented with feathers ; while in the hand of the female was a fan composed of turkey's feathers, and made to open and shut at pleasure. These relics of past ages have greatly occupied the attention of American antiquarians, but the race to which they belong, evidently anterior to the Indian, is not decided.

Naturalists have expressed the opinion that the horse is not a native of the Anerican contiment ; according to Limmens, it is a native of Europe and the East, while Goddsmith makes it to be a mative of A fricat ; aid yet, when the European first set foot upon this continent, vast herds of theso animals in a wild state were found roaming at largo over the immense prairies of the West. It has been suggested that these may be the des. cendents of the domesticated amimals, once used by the ancient agricultural population who were the former cultivaters of the soil. There are also herds of sheop in the north of Mexieo appearently quite widd. Of these are two varieties, one called the "Racky Momatain Sheep," fomen inhabiting the elevated regions between the 48° th and 60° th parallels of north latitude, and near the head waters of the Columbia, the country at the sources of the Marais, the Saskatchewan and Aethabaska rivers, bat less numerous on the eastern than on the western slope of the Rocky Mom. tains; and a second, bearing the name of the American Argali or Ovis l'ygargus, believed by some to be identical with the Ovis Ammon of Central Asia, Siberia and Kansehatka. Whe wild lison, of which the domestic ox is a variety, are also fond in large herds, and these, together with immense flocks of wild turkeys luxwiate at perfect liberty upon the rich pastures of the great prairies of the West.
'The turkey was supposed by some to be a mative of l'ern, South America, by others to be a native of the East Indies, or Japan, or probably some of the islands of the Ludian Oceam, whence it was brought to America by the ancient Malayan maratime adventurers. We see, however, no good reason why maturalists should seek an origin outsile of America for any tribe of animals found on this continont, when the modern white men first set foot on it; still not attempting to deny that somo of these tribes might have had an origin, if wo may speak of an origin in some other quarter of the globe, for it camot be said that there was no intercourse of men between these continents in the ages preceding the discovery of America by the modern Europeans, which undoubtedly there was.

Tropical plants and varictios of grasses common to other countries are found growing in the Western sections of the continent; among these are the maize and garden bean.

From the various relies which have been mentienel, and others to which we need not here refer, we gather that a great and powerful people, advanced in arts and agriculture, and acquainted with the uso of metals, held sway over this continent prior to the red Indians. Ruins of ancient pueblos, remarkable for their construction and immense size, some of which were erected on the opposite sides of rivers, and connected by iridges, are scattered over the country, south of tho great prairies of the West. The configuration of the surface, the existence of river beds where the water has long since ceased to flow, whose banks, once gay with a tropical
verdure, plar.ts, flowers and trees, havo now given place to doserts of sand, presenting everywhere a picture of desolation ; so that Domenech and others, who have explored those regions and writton upon them, believe that, at somo indefinite period of tho past, this whole torrisory was densely populated by n sottled agricultural poople, but who, by some great geological change, pernups voloanic, taking place in tho country, changing the soil from a rich and fertile country, well watered, into a dry, barren, sandy desert, wero compelled to seek a settlement olsewhere.

Domenech thinks that the great centres of this anciont civilization were near the great lakes in Ohio, and in Moxico, and Peru, whither the natives repaired to have commercial interchange with each other. This he deduces from the discovory of mica sheots from the Alleghanies, shells from the Gulf of Mexico and Florida, and obsidian from the mountains of Mexico, and coppor instruments, with specimens of ore, from Lake Superior, which are found buried, togother with ornaments of silver, brass, stone and bronze, in the ancient mounds of Ohio, and whoso origin and history seems as impenotrablo as the night of ages. In the history of the ancient American races are recognised in order by antiquarians tho age of rough stone iniplements, the age of polished stono implements, and the age of copper tools. The ages of brass and iron instruments and tools are later, and that in which we live.
Since thero exists such multitudinous relies of past civilization on this continent, it becomes a matter of interest to enquire whether, among the ancient traditions of America, or the records and mythologies of the Old World, any traces can be discovered of an acquaintance with this continent by the people of the other hemisphere. Inquirers of the greatest care and intelligence believe that communication between the two continents did exist at a very remote period. Evidences of this they discover in the ruins to which we havo referred, and in the traditions of ancient Anerica, as woll as in the traditions and myths of classical antiquity. 'lhe antiguitios of Mexico and Central America reveal religious devices, symbols, and ideas almost identical with those found in all countries of the Old World where cornmunities called Cushite formerly existed. They exhibit cvidences of the worship of the heavenly bodies, with its usual orphic and phallic accompaniments. Humboldt, when visiting America, observed theso remains of past civilization, and was convinced that communication between the two continents formerly existed. The Abbe Domenech, who traversed the desort wilds of America and Mexico, also proluced two volumos as the results of his discoveries, which abounded with evidences of an extinct civilization. Humboldt found evidences of it in the religious symbols, the hieroglyphics, the architecture, and the social customs, made manifest among the ruins, which he felt sure came
from across the seas, and in his view the date of this communication was older than the present division of Asia into Chinese, Mongols, Tartars and Hindoos.*

The high state of agriculture, mechanical art, commerce, the profusion of gold and copper, and the religious views and domestic manners which were found to exist among the long since extinct Aztec and Zezcucon peoples found in possession of the Eastern Shores of Moxico by the rapacious Spaniards, are indicative of a long period of peaceful possession and properity in that country, during which time they had succeeded in surrounding themselves with every imaginable kind of luxury; and there are traces of a superior civilization even beyond the Aztecs. They possessed a system of numerals, and divided their year into 18 months of 20 days each, five complementary days being added, as by the Egyptians, to make up the full number of 365 drys. They were also devoted to astrology, and their knowledge of astronomy is truly astonishing. They used the sundial to mark tho day, which was divided into 16 parts, commencing at sunrise. An immense circular block of carved stone, disinhumed in tho great square of Mexico, in 1790 , has supplied the means of establishing some interesting facts in regard to ancient Mexican science. This colossal fragment, on which the calendar is engraved, shows that they had the means of determining the hours of the day with precision, the periods of the solstices and the equinoxes, and of tho transit of the sun across the meridian of Mexico. It is hardly possible that a nation so far advanced as the Aztecs in mathematical science should not have made considerable progress in the mechanical arts. A degree of refincment is, indeed, shown by intelleetual progress of any kind, requiring as it does a certain cultivation of both useful and elegant art. Agriculture was in the same advanced state in Mexico as were the other arts of social life. Their chief productions consisted of beans, Indian corn or maize, the cacao, from which chocolate is derived, the vanilla, used for flavoring their food and drink. The gigantic stalks of the great staple Indian corn afforded them a saccharine matter which supplied the natives with sugar little inferior to that of the cane itself; but the most wonderful production of their soil was the great Mexican aloe, or Maquey tree, whose clustering pyramids of flowers, towering above their dark coronals of leaves, were seen sprinkled ever many broad acres of the table-land. Its bruised leaves afforded a paste, from which they manufactured paper ; its juice was fermented into an intoxicating beverage called pulque, of which they were excessively fond ; with its leaves the more humble dwellings were thatched; thread, of which coaire stuffs were manufactured, and strong cords, were mado

[^28]from its tough and twisted fibres; pins and needles were mado from the thorns on the extremity of its leaves; and the root, when subjected to a process of cooking, was converted into a palatable and nutritious food; it furnished, in short, meat, drink, clothing and writing material to the Azte :. A large variety of plants, many of them of great medicinal virtue, have been introduced into Europe from these regions. The Mexican flowers also are of tho most variegated and gaudy colors, and now form the greatest attraction of European greenhouses. Thoy wero well acquainted with the mineral as well as the vegetable treasures of their country. They drew silver, lead, and tin from the mines of Tasco; also copper from the mountains of Zacotollan, taken not only from the crude masses on tho surface, but also from veins wrought in the soind rock into which thoy opened extensive galleries. The gold which they found on tho surface and gleaned from the beds of rivers they cast into bars, in which state, or in the form of dust, it made part of the regular tribute. Iron existed in the soil, but they knew nothing of its uses. They found a substitute in an alloy of tin and copper, and with tools mado of this bronze thoy could cut not only metals, but it is said, with the aid of siliceous dust, the hardest substances, as basalt, porphyry, amethysts and emeralds. They fashioned these last, which were found very large, into many curious and fantastic forms. They also cast vessels of gold and silver, carving them with their metallic chisels in a very delicate manner. Some of the silver vases were so large that a man could not encircle them with his arms. Thoy imitated with great nicety the figures of animals ; and, what was extraordinary, could mix the metals in such a manner that the feathers of a bird or the scalo of a fish should be alternately of gold and silver. They used another metal, mado of obsidian, a dark transparent mineral, exceodingly hard, found in abundance in their mountains, which they manufactured into knives, razors, and serrated swords. It was said to take a keen edge, although it soon became blunted; and with it they wrought the various stones and alabasters used in the construction of their public works, and principal buildings. These ancient Mexicans made utensils of earthenware for their ordinery purposes of domestic life. They made cups and vases of lacquered or painted wood, impervious to wet and gaudily colored. Thoir dyes were obtained from both mineral and vegetable substances. Among these was the rich cochineal, the modern rival of the far famed Tyrian purple; with this they gave a brilliant color to the webs which were manufactured of every degree of fineness from the cotton plant, which grew in abundance in the southern paits vi the country. Thoy also employed the art of interweaving with these the delicate hair of rabbits and other animals, which made a cloth of great warmth, as well as beauty, and of a kind altogether peculiar to themselves; on this they often laid a rich embroidery of birds, flowers, or other fanciful devices.

But the art in which they most delighted was the plumage or feather work; and with this they could produce all the effect of a beautiful mosaic. The gorgeous plumage of the tropical birds, especially of the parrot tribe, afforded them every variety of color ; and the fine down of the hummingbird, which revelled in swarms among the honeysuckle bowers of Mexico, supplied them with soft aerial tints, which gave an exquisite finish to the picture. The feathers, pasted on a fine cotton web, were wrought iuto dresses for the wealthy, hangings for apartments, and ornaments for the temples. The profusion in which goll existed in Mexico and Peru, and the estimation in which it was held by these ancients, was best seen in tho mamer in which it was used in the liberal decoration of their temples, " which," one writer says, " shone resplendent by reason of the abundance in which it was used," and for the adornment and maguificence of their princes. Their palaces, gardens, fountains, and temples exceeded those of every other portion of the comitry, a detailed account of which is given by Prescott in his reference to the golden age of Tezcuco. Translations into the English and Spanish languages have been made of ancient manuscripts found in Mexico by the Spaniards at the time of their ennquest of that country : one especially contains the advice of an Aztec mother to her daughter on the occasion of her marriage, inculeating the precepts of monogamy, conjugal fidelity, the idea of a Supreme Being, to whom all are responsible, and who sees all our actions. This document also coniains an admonition to the bride to persevere in the practice of those graces and virtues which had distinguished her ancestors ; advice in fact altogether equal to what might be expected of a Christian mother at the present day. The Abbé Brasseur de Bourbourg shows that the symbols of phallic worship were described by Spanish writers at the time of their conquest ; that they were frequent in the countries of Central America, abounding in Colhuacan, a city on the gulf of California, and at Paunce (the former was at one tiwe a flourishing city, the capital of an important kingdom); here phallic institutions had existed from time immemorial. In the temples at Panuco phallic symbols abounded, and also on the public monuments. These, with the serpent devices, the suu-worship, the remarkable knowledge of astronomy acrmpanying them, shows a system of religion of which the 1 ' 'be says: "Asia appears to have bees its cradle, as that of the social institutions which it consecrated."

It is said that the traditions of the inhabitants of Mexico and Uentral America uniformly assert that the ancient American civilization came originally from the east "across the ocean." The Abbe de Bourbourg, speaking of the earliest civilization of the inhabitants of these countries, says: the native traditions generally attribute it to " bearded white men, who came across the ocean from the east," The history of Sahagun also states that, according to the traditions of the people of Yucatan, "the
original civilizers came in ships from the east." Montezuma, it is said, related a similar tradition to the Spaniards. There were in Central Ameriea threo classes of ancient i. habitants, first, the Chichimecs, who seem to have been the uncivilized aborigines of the country; the Colluas, who were the first civilizers and who were " the bearded white men " who came in the early times aeross the Atlantic, and who built Palenque and other cities, originated the oldest and finest monuments of the ancient civilization, and established the great kingdom of Kibalba celebrated in tradition and history ; it comprised Guatemala, Chiapas, Yucatan, and probably other countries. The third class of inhabitants mentioned are the Toltecs, a powerful race whom Humbolat, strangely enough, supposed to have derive their origin from the Huns, and who came much later as peaceable immigrauts, but, uniting with the uncivilized Chichimees, cansed a civil war and acquired the ascendancy over the land.

Desiri Charmay, in speaking of the ruins of the ancient city of Mitla, points out the most ancient arshitecture, paintings, mosaics and artistic designs as being in the highest style, showing marvellous workmaaship; while the later additions are in a much lower style, and seem to be the work of a people less advanced in culture and skill than the original founders of the city. The most remarkable and finest monuments found in those countries are believed to belong to the remains of the ancient kingdom of Kibalba. Other traditions point to an existing accuaintance with the country among the Chinese and Malays. The Abbe do Bourbourg relates that there was a constant tradition among the people who dwelt upon the Pacific Coast that people from distant countries across the Pacific formerly caune to trade at the ports of Coatulco and Pechngui, which belonged to the Kinglom of I'ehuantepec. Again, the traditions of Peru tell of people who came to that country by sea and landed on the Pacific Coast, thought probably to be the Malays of the great Malayan maratime empire that flourished in ancient days.

If we now turn to the ancient traditions, mythology, and reeords of the Eastern world, we shall find much that points directly to an acquaintance with the "Atlantic, or continent beyond the sea," which either appears to refer to America or to be utterly meaningless, which latter opinion does not seem to be eutertained by any antiquarians of the present day. In ancient mythology there is reference to a great continent beyond the Cronian Sea, meaning the Atlantic ; and it was in the Atlantadis of Homer and Horace, beyond the western waters, that the ancient poets placed their Elysian fields.

Theopompus, a learned historian and celebrated orator who lived in the days of Alexander the Great, relates, in his work entitled "' Ihaumasia," a very ancient dialogue which took place between inidas, King of Phrygia, and Silenus, in which the latter is made to say: "There is a continent
beyond the sea, the dimensions of which are immense, almost without limit, greater than Asia, Europe and Lybia, (Africa) together, and so fertile that animais of a prodigious size are to be seen there, as likewise a race of men calling themselves Meropes, whose stature is much greater than tliat of ordinary men, and who attain to an extreme old age ; that a great many large towns and cities were to be found on that continent, one of which contained above a million of inhabitants, and having different laws and customs from those of the people of Asia, Africa, and Europe ; and, finally, that gold and silver were found very common over all the surface of that vast continent. Another writer relates that these Meropes were so persuaded that there existed no continent but their own that out of curiosity alone some of them crossed the ocean and visited the hyperboreans. Another ancient witer, Diodorus of Sicily, in his fifth book, chapter 11, has an important passage concerning this continent, which is historical, in which he affirms that some Pbonicians were cast upon the shores of an exceedingly fertile island situated opporite to Africa. The passage referred to reads as follows: Over against Africa lies a very great island in the vast ocean, many days' sail from Lybia westward. The soil is very fruitful, it is diversified with mountains and pleasant vales, and the towns are adorned with stately buildings. Its shores are indented with countless navigable rivers; its fields are well cultivated and dotted with delicious gardens and with plants and trees of every sort ; finally he describes it as being the most beautiful country known, with inhabitants who live in spacious dwellings, possessing abundance of every kind. In regard to this the Abbe Domenech says: The recital made by Diodorus exactly correspends with that of the first Spaniards who landed in Mexico.

It is related of one Hanno, who lived before the foundation of Rome, that he made a voyage beyond the Fillars of Hercules (the straits of Gibraltar) and visited a strange coast, which he reached by keeping due west, after traversing the ocean for thirty days. The best authors suppose this coast to have been that of one of the West India islands, or of the mainland of America. Homer, Solon, and Horace speak of the Atlantides as being islands situated at a distance of ten thousand stadia (a stadium is 6063 English feet) west of Europe and Africa. Aristotle sjeaks of an island placed beyond the Straits of Hercules, in these words: It is said that the Carthaginians have diseovered beyond the Pillars of Hercules a very fertile island, but which is without inhabitants, yet full of forests, navigable rivers, and abounding in fruit ; it is estimated many days voyage from the mainland." Pluterch also has a passage quoted by Iumboldt, in which mention is made in unmistakeable terms of a great transatlantic continent, and of a mysterious stranger who came from that distant country to Carthage, about 300 B . C., where he lived many years. According to Cabrera the first Carthaginian emigration to this Western continent took
place during the first Punic war. According to Sandoval a succession of emigrations came from Ceylon, Java, and from Southern India to America, many centuries before Christopher Columbus. In support of this statement figures representing the god Boudha of Java, seated on a Siva's head, were found at Uxmal, in Yueatan. It is well established that a knowledge of the American continent existed in China and Japan long before the time of Columbus. M. de Guigies, relying upon the chronicles preserved in the Chinese work, Pran Y tien, attributes the I'cruvian civilization to emigrations proceeding from China, from Japan, and the East Indics; recent investigations, it is thought, confirm this opinion. M. Paravey, in the year 1844, proved that the province of Fu-Sang, described in the Chinese amals, was nothing less than Mexico, known to them in the fifth eentury; and the Abbe de Bourbourg says, in his introduction to the Popol-Vuh: "It has been known to scholars nearly a century that the Chinese were acquainted with the Amexican continent in the fifth century of our era ; their slips visited it; they called it Fu-Sang, and said it was situated at the distance of $20,000 \mathrm{li}$ (about 7000 miles) from Ta-IIan.
J. Hanly, the Chinese interpreter at San Francisco, has lately written an essay upon this subject, in which he makes the following statements, drawn from Chinese historians and geographers: Fourteen hundred years ago even America had been diseavered by the Chinese, and described by them. They stated that land to be about 20,000 Chinese miles distant from China. About 500 years after the birth of Christ Buddhist priests repaired thither and brought back the news that they had met with Buduhist idols and religious writings in the country already. Their deseriptions in many respects resemble those of the Spaniards a thousand years after. They called the country "Fu-Sang," after a tree which grew there, the Maquey tree, whose leaves resemble those of the bamboo, whose bark the natives made clothes and paper out of, and whose fruit they ate. These particulars correspond remarkably with those given by the historian Prescott about the Maquey tree in Mexico. The accounts given by the Chinese and Spaniards, although a thousand years apart, agree in stating that the natives did not possess any iron, but only copper ; that they made all their tools for working in stone and metals out of copper and tin ; and that they, in comparison with the nations of Europe and Asia, thought but little of the worth of silver and gold. The religious customs and forms of worslip presented the same characteristics to the Chinese fourteen hundred years ago. There is, moreover, said to be a remarkable resemblance between the religion of the Aztecs and the Buddhism of the Chinese, as weil as between the manners and customs of the Aztecs and those of the people of China. It is, however, remarkable, and may be thought confirmatory of the idea of emigration from China to America, at some remote period, that at the time that America was discovered by the

Spaniarls the hadian tribus on the coast of the Dacilie opprsite th China for the most part engered a state of culture of ancient growth, whild the imhahitants of the Athantic coast were fomed in a state of emiginal harbarism. The stome armoweads, hance-heads, hatehets and whalankes limm in Burpe. India, dapan, and America, are sn sumilar to each oher that it is often impussible to distiuguish them hy their form. It is remarkable that
 peoplo to be thander-hilts. The are called elforelta in seotland : and Pline spaks of them as cermoner: while in Clima and dapm the same aripin is ancribed to them.
 notice in the great dapanse Eacyelopedia, which enjogs the embems

 Chinese miles from 'lamankmek. Cireat stress is lain mom these reeords of the Chinese and dapanese, as they are perples that do not deal in mythes, but in actual facts and historical cevents.
lat ns maw furn wattention to the Athatic coasts, and empuive into tho carly commmication with this continos hy Burnpens, prine th Cohmbus. Following the chomologiol oder of events as the soem to have tramsimed here we tive refer to the cmigration of the lres. or people from lealant,
 The equinon of harned mene faniliar with the antiquities of the Westem work, is that as in the most ameient records of beeband the first inhahitants of that island are called " men come from the west by the sea." so we may comelud that lechand was mot colonized hy pood: noming direct from binnops but be lres who had returned from inmes who at an carly period had been transplated amb, who returned ten imginia and the enast of Carolina (ealled (ireat brelamel) wo sette in the island of lapar and the somth-astem coast of Jechand. In tho ancent docments presered in lechan acounts are given of (hristian lapas, or fathere whe returmed from (ireat lreland on the Wiest (America) to Iecland, to instruct the lechanders in the principhes of the Christim religion, ahout the year sol A. I). Acomonts are also given of persoms who having hem cast away in ships. lamded upen a western coast called "hnitra mama land" or the land of the white men. These stories are considered as authentic: "ad as an important proof in faror of the prevailing opinion that at a very caty perin of the Christian era bish colmies existed on the coast of the Carolinas and farther sonth. The Ahter hassemer do Bowbon: \% in she of his tramslation athe Popel-Vinh, says wh this
 passage of tas ine ato America, and their hahithal commmeation with that continent areny wat ins Whore Columbus was heand of.

An lrish saint mamed Vigile, who lived in tho righth century, was acensed by lope hachany uf having tanght heresies on the wnthect of the antipudes. Ho at first wrote to the logw in roply ta the darge, but afterwame went to lime to justily limself: and there he proved to the Pope that the lrish had long heen acenstommed to commonicete with a tramsatlantic worlh. 'These fincta are satil to be preserved in the recerde of tho Vatican. It is bus an hisarieal lace also that the northmen wailing from Iocham not mily disenvered Amoriea in the tenth eontury, hat alan estaWishod colomies on the enast of Now lingland, and preserved a commma-

 alperas from the seamlinavian manaseript, in which no to be limm the acemmis of the Nomman live vorages to Ameriea, that in ! 18.9 the colo-

 In !sti livie, sumamed the Red, estahliathal on theso shomes the first eolomy, composed of emigrants from lenlaml. Alterwath, in 11 al, a bishoprie
 In the year I 000 , Lidf, the mbest som of bric the Red, sailed with thirtyfive companions in seach of bew lisenveries, when loodiseoverod Nowfomi-
 sidnated betwoen Newfomadland amd ('imala, whiad he eatled Makland (now labralore): jarsuing his voyage farther sonth, ho banded on fun agreable eonst, where be fonnd an abmalanee of vines, which lon called Vinland (now Now bingland) ; bere he malle a sutthement, which llourished fin a lenght of time, aul was visited in 1121 by the first bishop of dreenland, Erie Upm, of hish origin, for the purpose of eonfiming the eolonists "f Vinland in the doetrines of ' Whistianity. In tho year 1002 annther expe-
 Boston, where the lember was killed in an encomere with the Espminaux In the year 100i, 'Ihorstein cmbarked on a similar oxpedition, hat was unsuccessfinl. 'Ihorfim, the most edehated of tho first oxphorers of' Amerien, landed in the yoar 1007 on the istand called Martha's Vineytarel, on the New bingland coast, and upent two wintors in the hay of Monnt Jl pe, close to Secom t. From this time to the middle of the lonrteenth centary, very litto ear be aseertaned concerning the Semmlanvian coloniod in America. In the twelfh contury, Norwegian colonises existed in Greenland. In $1: ? 0$ the Welsh prince Madog was quite errtain of tho existence of America, for, it is suid, ho sailed away westwarl, groines, south of I reland, to find a lamd of refinge from tho civil war which was raging mones his comutrymon. The Wolsh amais inform us that he fomm the land the songht, and having mado proparations for a settlement, he returned to Wites, seemed a larger company, that filled ten ships, fud then sailed away

'The pernil of time whish mast have dipase simes the ahamboment at

 boing the case wo are fold that thes mations slam an ambignty wheh to
 the present day appear to hase heon mato out to shan that the rath

 perimis of time for thei seromph mont, making its moments appear efor-
 heos showly rased ien thonsand fore nhove the heve of hoe som, and that so late in the womd's histoy as sine the hagiming of the fertiary perind?
 sumen which are found monments of ancient races abandoned seores of
 ita formation? What if it tolla na in most, mimiatakenhle langunge that

 fragment of grolngieal time. Or if we lisesure fiom it that the prent chanan, seven milos in length, throngh which the Niagarn river flews from

 and thmriahed (says Sir Charlow layell in his " Λ ges of bopasits in Nowth Amerien,") provinas th the grallail axenvation of that dewp lome chasm; for this ravine is mit mily postghacial but nsw fusterive in date to the matothotheming heots. Or, again, if the depression if the ferm foresta which mew form the emal herls of Nova Seotia towk dhee ot the rate of four foot in a exothry, there was renpired a perime

 a thonsand yeara, the dirt bode are the work of humbreds of emonarios. Ge if it Colls us that the dilta of tho Mississippi combld mily have hemen formed in many toma of thomands of yours (estimated hy sir Charles hyoll at
 and yet that it is ouly an a work of yesterday emplared to tho intand torraces of the Mississipgi river: hat skelotoms have herou disulbumed in this mame delta to which Dre. Dowler assigns an mutiguity of 10,000 years at least. Or, if, as Sir Charles layd nays, it be mhnitted that tho homan
 and Mogalonys, were foum in their prinative hed, then a bace of human heings mast have neomped that combry mere than a thousand centuries agn: and if a thomsam centuries, we may say, why mot tens of thumants of conturies; yea, a hergimingless suceession of emburies; for who will pith a begiming to the homan race other than it has mes? To many who
 womderfin, and yot they are the deductions the most harned amel pertome grologists have drawn from their permats of the haik of mathere. Wha, then will say that the pmet was out partly right who pemed that remarkable line: "Thou canst met tind me ant wherem nn city stmen."
liefore this continent was diseovered ly Cohmhas, buropenes geno. rally did not know that it existed, with ils races of men, its many lanernages,
and its great natural wonders ; but since that time, the progress of discovery has been rapid, and oach continent and island that has been discovered has exhibited its peculiar human inhabitants with their language, its flora and fauna. And while the Europeans and Asiatics, in their vain imagination, were setting up theory after theory as to the existonce and nature of the Deity, -yea, and adding one Deity to another in their assumed hierarchy of heaven; while they were expounding their doctrines of a literal creation of the earth in six literal days, of redemption, transubstantiation, total depravity, or predestination; while they were magnifying themselves in their own estimation by the invention of such systems, and the incuication of such dogmas, they wore all but totally ignorant of the earth on which they lived; much more of the Deity, in the immensity of his nature, whom they pretended to know. Alexander and the Romans both made great mistakes when they sat down under the impression that they had conquered the world. There remained vast continents on the earth which they had never seen, never dreamed of: and there remained even in their own hemisphere a far greater extent of land than that which they had conquered, and which they had never explored. There remained the vast continent of Africa, with its numerous tribes and languages; and equally vast Eastern and Northern Asia and Northern Europe. The Hindoos and the Chinese have literature which goes back for tens of thousands of years; but our European system-makers would place the beginning of the existence of the earth and of man at less than six thousand years ago. The ancient Pelasgians, inhabitants of Eastern Europe, including Greece and Italy, called themselves Autochthons, that is, " offsprings of the earth." This seems to have been their traditional belief of their origin. It was not, however, literally true, for no human being ever sprung from the earth as such. Nor did any real human being ever live that was not produced by his own kind, male and female.

Mr. Darwin, in his work on "the Descent of Man, and Selection in relation to Sex," makes the following statement as to the origin and descent of man: "The most ancient progenitors in the kingdom of the vertebrata, at which we are able to obtain an obscure glance, apparently consisted of a group of marine animals, resembling the larve of existing Ascidians. These animals probably gave rise to a group of fishes; these to the Samiada; the Samiada then branched off into the two great stems, the new world and the old world monkeys; and from the latter at a remote period, man, the wonder and glory of the universe, proceeded. Thus, we have given to man a pedigree of prodigious length, but not, it may be said, of noble quality." This is the theory which Mr. Darwin has propounded. In it we have five successive stages set forth in the descent of man from an insignificant salt-water animal to his present state. The first stage consists in a group of marinc animals resemiling the larvoe of
existiny Ascidians; (Greek hords, a leather bottle or wine skin, having two neeks), called Ascidians from the resemblance which these little saltwater animals bear to a two-necked jar or bottle. But according to the statement the progenitors of man only resembled the larve or spawn of these bottle-shaped animals. The second stage was probably a group of fishes; the third that of the Samiada; the fourth that of tho new world and old world monkeys; and the fifth his present stago as represented in mankind. The difficulty with us in this case is to conceivo how any man, supposing him of sane mind, could expound such a gross absurdity; how he could possibly conceive of the human race ever being derived from the larve of the lowest species of salt-water animals; how he could conceive of little animals, which, if they resembled the larve of Ascidians, must have been invertebrato, being changed into fishes, vertebrate animals, a thing utterly impossible ; how he could conceive of fishes being transmuted into Samiada, and these into monkeys, land animals; and of monkeys being transmuted into men !! Are men openly to degrade the Deity by representing him as having existed at any time, having no higher being to represent him in the earth than the larve of the lowest sea animals? Or are they going to deny that word of truth, which represents the Logos, the son, or man in whom the reason (and speech) is exhibited, as coexisting eternally with the Deity.* But this theory Mr. Darwin bases mainly upon geological discovery. He should bear in mind that the insignificant seratchings which geologists have done on exceedingly small spots of the earth's surface, amongst, for the most part, roeks of aquatic origin, are not by any means sufficient to base a theory upon which goes to assert absolute impossibilities with respect to any thing connected with the earth or to man. What do men know about the tens of thousands of genera and species of aquatic plants and animals which may now live on the beds of the mighty oceans of the earth? What do they know, but that most of the fossilized aquatic animals which geologists have discovered are now represented by living species in the oceans and seas, salt water and fresh ? Some species which existed in time past may have entirely passed away, and their place may be supplied by the multiplication of individuals in remaining species. But the discoveries of geology thus far do not afford any sufficient reason to believe that most of the species of plants and animals which existed in times past are not now represented in living species. These species may be modified in size, but they are of the same structure. Man of the past, of whatever size, and we know that his size has varied in different ages, is represented by man of the present. And so, we think, men will find with respect to most of the other species of animals, as well as of plants, if they'only take time to

[^29]make sufficient researeh, of if they ever can do it. By the time that oven the vast continents of South and North America, Australia, and all the Islands of the Paeific and Indian Oceans, as well as Asia, Afriea, and Europe, have been thoroughly explored by naturalists and geologists, then men will be better able to determine with respect to the land species of both plants and animals of the present and the past. It camnot be said with respect to geologieal discovery, as it is said with respect to the classes of things that what is true of one member of the class is true of the class in general. The geological discovery of Britain or France or of any other part of Europe may not be at all a fair representation of the geologieal discovery which may be made in 'lartary, China, Contral Africa, Brazil, or Utah. Geologists know very well how that alteration is continually taking place in the earth's surface by elevation and depression; how that their researches hitherto have been among rocks chicfly of aquatic origin; how that many parts that were once dry land, inhabited by man and land animals, are now submerged far beneath the surface of the seas and oceans; and how that they could not answer a question, even approximately, with respect to the relations of past and present species until they would have explored not only all the dry land, but even the beds of the seas and oceans, a thing they cannot accomplish. Even in places on the land surface where fossil remains existed during long ages of the past there may remain no traces of any now, from the fact that they have disappeared by decomposition or some chemical process. But to say that one species of animals or of plants has ever been changed into another entirely different species is saying a thing has been done which has never been done, and which is utterly impossible to take place. All the species of plants and animals have always and permanently sprung from their own seeds. The rose bush never sprung from the seed of the tamarack, the apple tree from the seed of the plum, the bean from the seed of wheat; nor did any one species of plants or animals ever spring from other than seeds of their own kind. Cross breeds of animals, such as mules, always exhibit characteristics unmistakeably different from either of the species that entered into their production; end it is by the appearance and characteristics that the different species are determined. With respect to Mr. Darwin's theory, we have but to add to what we have already said, that strange indeed is the course taken by some speculative minds! The great mass of mankind remain yet unenlightened; and when an individual arises who has become possessed of information which he wishes to impart to the rest, his object should be to instruct and enlighten them in the truth, and not to propound erroneous theories which will tend only to confuse the people's minds and render the truth more difficult to be attained.

Man stands at the head of the animal creation, and has ever occupied that place. He has ever in general propagated with his own species. This is illustrated by the fact that in all countries which have been discovered no order of animals exists as indicating a cross species between man and the lower orders of animals, The different species of apes, monkeys, baboons, etc., are distinct from man and appear to have always been so. They differ from him not only in their ar, uarance and habits, but in their bodily conformation also. 'I'wenty four alterations of structure at least, would be required for the transmutation of the body of a gorilla into that of a man, all these in the physical organization alone. And the difference in the mental capacity is still groater; for while the average capacity of the Anglo-Saxon skull, which perhaps inay be taken as nearly the average capacity of all human skulls, is 96 cubic inches ; that of the gorilla is only $34 \frac{1}{2}$; that of the Chimpanzee $27 \frac{1}{2}$; and that of the Orang 26 cubic inches. These are the highest of the ape tribes; they come nearest to man in the scale of being; and yet, what a gulf scparates those ord \lrcorner rs from mankind! But what eminently distinguishes man from all other orders of animals, is the capacity of mind which he possesses, the power of reasoning, which indeed gives rise to the power of speech; and without which speech, properly so called, could not exist. Some have ventured to enquire why the apes do not speak; (for it may be remembered that no animal but man exercises the faculty of speech,) as, say they, the organ of speech of the apes resembles that of man. Such enquirers do not consider that organs of speech must act according to the mind which employs them. Hence while man uses a glottis or vocal chords, which act in accordance with his reason, or logos, to form a language, the apes can but employ the same organs to produce a bark or a yell. Human beings in all parts of the world, however unenlightened they may be, know, as it were instinctively, the relation in which they stand to the lower orders of animals; and even in the regions of Africa, far away from the civilization and unacquainted with the ideas and habits of the white races, they prescrve their place, and regard the apes with superstitious horror! Even in the carliest periods of our race of which geology thus far furnishes us any information we find its members displaying a certain ingenuity and tact in the making of tomahawks, arrows, etc., and for all we know to the contrary, they may have displayed great ingenuity in the construction of innumerable other thinga, every trace of which has ages since passed away. There was doubtless in all ages a difference of degree existing in respect to civilization, as there is now, among the different tribes of mankind. And even in the carliest geological times, we find them exercising the care of burying their dead or of burning them, which will, in the main, account for the fossil remains of man not being found strewed as broadcast as those of the lower land animals. Man has always exercised a care over the dead of

his own species which none of the lower orders of animals were capable of exercising. This of itself is enough to show that he always possessed and exercised the power of reason, and speech. * Would that he had always used this faculty aright! Well and happy would it thus have been for him ! Even the Quadrumana, or Ape-tribe, which comes nearest to man in the scalc of being, do not evince to us that they have any conception of care for their dead. All the care which they exhibit and which they have in common with all others animals, even the lowest, is for their young, and to supply their own physical wants. All the Indian tribes of North and South America, even in their most wild and savage state, have always, since tho white men have become aequainted with them, given evidence of deep affection and care for their dead; and some of these tribes are accustomed to come periodically, bringing offerings and tears to their tombs! And every human being, possessing the ordinary mental faculties of a human being, of whatever nation or language, you may meet with, will, if you find him in circumstances favorablo for the intereommunication of ideas, give unmistakable evilence of his possessing reason, and of his having some thoughts as to right and wrong much as you have yourself. How long ere human beings exercise such kindness toward each other as their kindred relation calls for? How long before all men will cultivate and exercise only the principle of benerolence, to be gool and to do good? When that

[^30]time
time has come, they will know what we say to be true, and each one will realize for one's self the application of the name which has long ago been given of the Eternal Father.

A contemplation of other scenes and objects of Nature intended to further enlighten us and to exalt our conceptions and ideas concerning the Deity.

All the works of nature speak of their author in silent but emphatic language, and declare his wonderful perfections. But, although there is no speech nor language in which the voice of Deity is not heard, yet how gross and inadequate are the conceptions generally entertained of that Being in whom we live and move, and by whose power all events in nature are directed and controlled. The benevolence of the Deity is seen not only in the sunshine and the shower, but in the ample provision which is made on the earth for the wants of man and all other animals. Some fifty jears ago it had been ascertained that more than 60,000 species of animals inhabited the air, the earth, and the waters ; and it was supposed that many more thousand species existed, which had not, up to that time, come within the observation of the naturalist. Since then, naturalists may, by their diseoveries, have added largely to the number of known species, and they may still go on discovering, and be able only to make near approaches to the real number existing in the earth and in connection with it, a number which it does not seem they will ever be able definitely to learn. On the earth's surface there is not a patch of ground or a portion of water, a single shrub, tree, herb or plant, nor a single leaf of a tree or flower, but what teems with animated or sensitive beings. What countless millions even of visible animals have their dwellings in caves, in the elefts of rocks, in the bark of trees, in ditches and fences, in marshes, in the forests, the mountains and the valleys. What innumerable shoals of fishes, of various sizes and appearances, inhabit the occan and sport in the seas and rivers. What millions on millions of birds and flying insects, in endless variety, wing their flight through the atmosphere above and around us! Besides these there are innumerable multitudes of animated bei: ${ }^{\circ} \mathrm{g}$, invisible to the unassisted eye, and dispersed through every region of the carth, air, and seas. In a small stagnant pool which, in summer, appears sheeted over with a green scum, there are more mieroscopic animaleules than would outnumber all the human inhabitants of the earth. How immensely great then must be the collective number of these creatures throughout all the regions of tho earth and atmosphere! It utterly surpasses the limits of our conceptions. Now, it is a fact that, from the elephant to the mite, from the whale to the clam, and from the ostrich to the gnat or the mieroseopic animalcule, no animal can subsist witho t nourishment. The species, too, require various kinds of food; some live on grass, some on shrubs, some on flowers, and some on trees; some feed
only on the roots of regetables, some on the stalks or stems, some on the leaves, some on the fruit, some on the seed, some on the whole plant; and some, as we have shown before, from Linneus, with respect to quadrupeds, prefer one species of grass or vegetables, some another. Yet such is the boundless munificence of the Creator, that all these countless myriads of sentient beings are amply provided for in nature. The zyes of all these sentient beings look unto the Creator, and he openoth His hand, and satisfieth the desire of every living being. The world is so arranged that every place affords the proper food for all the living creatures with which it is inhabited. They are furnished with every organ and apparatus for the gathering, preparing, and digesting of their food, and are endowed with admirable sagacity in finding out and providing their nourishment, and enabling them to distinguish between what is salutary and what is pernicious. In the exercise of these faculties, and in all their motions, they appear to enjoy a happiness suitable to their nature. The young of all animals in the exercise of their incipient faculties, the fishes sporting in the water, the birds skimming through the air or warbling in the thickets, the gamesome cattle browsing in the pastures, the wild beasts bounding through the forests, the insects gliding through the air and crawling along the ground, and even the earth-worms wriggling in the dust, all proclaim, by the vivaeity of their movements and their various tones and gesticulations, that they are not without enjoyment in the exercise of their powers. In this boundless scene of animate existence we see a striking illustration of the truth of the statements, "Jehovah is good to all," the earth is full of His riches," and "His tender mercics are over all His works." Although such displays of adaptation in animate creatures to their circumstances, and in the arrangements for their wants and enjoyments, are obvious evidences of benevolence in the Deity to a reflecting mind, yet they are almost entirely overlooked by the bulk of mankind, owing to their ignorance of the facts of natural history, and the inconsiderateness with which they are accustomed to view the objects of the visible creation. Hence they are incapable of appreciating the beneficence of the character of the Deity, and the wealth of his munificence, and unable to feel those emotions of admiration which an enlightened contemplation of the scenes of nature are calculated to inspire.

Infinity of ideas and conceptions in the mind of the Creator.
As the conceptions existing in the mind of an artificer are known by the work he produces, or the cperations he performs, so the ideas which have eternally ${ }^{*}$ existed in the Creator's mind may be known from the objects

[^31]He cre conduc existing second same id cerning would n our vier of exact higher i every vi discover of the 0
It is imitation any true literally cannot b image or conceive represen world ex wil. repr

We re bishop \mathbf{B} demonstr:

[^32]IIe creates, the events He brings alou', and the operations IIe is incessantly conducting. The production of a single olject is an exhibition of the idea existing in the creativo mind of which it is a copy. The production of a second or third object exactly resembling the first would only exhibit the same idea a second or a third time without disclosing anything new concerning the producer ; and, consequently, our conceptions of his intelligenco would not be enlarged though millions of such objects were presented to our view, just as a hundred pairs of spectacles or a hundred microscopes of exactly the same pattern, constructed by the same artist, give us no higher idea of his skill and ingenuity than the construction of one. But every variety in the objects and arrangements of nature exhibits a new discovery of the contrivances, the intelligence, and the multiplicity of ideas of the Creator; and these varieties, as the Creator, are infinite.

It is proper here to state that the objects which man produces are all imitatious of objects already existing in nature, and that man cannot have any true conceptions but what are of existing things. The word idea means literally an image or picture of anything ; and as everybody knows there cannot be a true image or picture unless there cxists a thing of which the image or picture is a representation; so neithor can there be a true idea conceived in the mind unless a thing exists in the universe of which it is a representation. This will at once satisfy any thinking mind that a real world exists external to one's self in opposition to any false theory which wil. represent the world as consisting merely of ourc onceptions.

We remember once being in company with some rural friends, when bishop Berkeley's theory was mentioned, a theory which pretends to demonstrate that no external world exists, and that when one sees with his

[^33]eyes any olject, for example a tree, he does not see the tree but only a picture of it on his retina. This illustration of the theory being made, one of the company expressed himself as follows: "Well, I guess, if he bumped his head against it, he would find out whether it was a tree or only an idea." Even so the readers may always feel assured that a workd exists external to themselves in which they as creatures live and move. And each human being has his own ideas of and concerning the world. This external world you realize in every man and every object you behold. The martyr at the stake, or on the cross, realizes it in those who are cruclly depriving him of life. The convicted person in the court or on the seaffuld realizes it by all he sees around him. And both opposing partios in the terrible bayonet charge realize mutually this great fact. Let no one by sophistry or plausible talk impose upon you to such a degree as to cause you to believe that a shadow can exist without a substance; or that true ideas can exist in the mind without the real things existing of which they are the pictures,* even so the Deity is everywhere present, a great reality ; You can appreciate his presence and character in all the objects and operations of nature ; nor can sophistry or plausiblo words, spun out to any extent, make the Deity other than that great and omnipresent reality the Deity is. You should ever remember that your duty is to be good and to do good before him, worshipping him who is invisible alone in spirit and in truth.
The young (yea, and the old) should always remember, that while studying, either from books or from nature, it is very important to acquire full and distinct ideas in their minds of the subjects of their study ; for as true ideas cannot exist without the real things existing, of which they are but the pictures or shadows ; even so a proper and well connected discourse on any subject cannot be produced unless the distinct ideas exist in the mind before, of which the discourse is but a representation. Ideas are representations of things, and words are representations of ideas; and words spoken inconsiderately, and at random, which are not the representations of true and well defined ideas, are as chaff blown away by the wind ; they produce no proper effect, and are better left unspoken. The young and old should endeavour to have full, and true, and welldefined ideas of things, and having these they will acquire, with comparative ease, words to express them. First have full and accurate ideas on any subject, and a sufficiency of words to express those ideas will naturally and easily follow.

Now in the universe, we find all things constructed and arranged on the plan of boundless variety. In the animal kingdom, as we have already remarked, there had been ascertained some fifty years ago,

[^34]sixty enume suckle of bir reptile species thousa micros ronseq Wo ca in the be.

Wo consist endless membe the mic elephan of thei placed is so co to mov being n benovol and $c o$ take in them, turning some he as snai locket bectles several

[^35]sixty thousand different spocies of animate beings. These were onumerated as follows: Six hundred species of maminalia, or animals that suekle their young, most of which are quadrupeds; four thousandspecies of birds; threo thousantl species of fishes; seven hundred species of reptiles, and forty-four thousand species of insects; about three thousand species of shell-fish; and besides these there were perhaps one hundred thousand species of animaleules invisible to the naked eye, which tho microseope had brought to view, and new species daily discovering in consequence of the zeal and industry of the lovers of Natural History. We cannot set any definite limits to the number of animate beings existing in the eartb, which has never yet been thoroughly explored, and never can be.

Wo may next consider that the organized structure of each species consists of an immense number of parts, and that all the species are endlessly diversified, differing from each other in their forms, organs, members, faculties, and motions. They are of all shapes and sizes, from the mieroseopic animalculum, ten thousand times less than a mite, to the elephant and the whale. They are different in regard to the construction of their sensitive organs. In regard to the eye, some have that organ placed in front so as to look directly forward, as in man. The human eye is so constructed by means of muscular bands attached to it as to be able to move up or down, to the right side or to the left, without the head being moved. This, you see, is a very convenient arrangement indicating benovolent design in the Creator. Other animals, as birls, deer, hares, and conies, have this organ so placed toward the side of the head as to take in nearly a whole hemisphere. This is a convenient arrangement for them, as it enables them to see their pursuers behind theon, without turning the head. Some have this organ fixed and others moveable; some have two globes or balls, as man and quadrupeds; some have four, as snails, which are fixed in their horns; some have eight, set like a locket of diamonds, as spiders ; some have several hundreds, as flies and beetles; and others have over twenty thousand, as the dragon-fly, and several species of butterflies.*

[^36]In regard to the ear, some have it large, erect and open, as in man and the hare, so as to hear the least noise and avoid danger; in some it is covered to keep out noxious bodies; and in others, as the mole, it is lodged deep and backward in the head, fenced and guarded from external injuries. With regard to their elothing, some have their body covered with hair, as quadrupeds; some with feathers, as birds; wome with sca!es, as fishes; some with shells, as the tortoise; some only with skin, as some serpents and eels; some with stout and firm armor, as the rhinoceros and crocodile ; and others with prickles, as the hedghog and porcupine; all nicely adapted to the nature of the animal, and the element in which it lives. These coverings too are adorned with diversified beauties, as appears in the plumage of birls, the feathers of the peacock, the scales of fishes, the hair of quadrupeds, and the variegated polish and coloring of the tropical shell-fish, beauties which, in respect of symmetry, polish, text are, varioty and exquisite coloring, defeat every attempt of human art to imitato or to copy.
In regard to respiration, some breathe through the mouth by means of lungs, as men and quadrupeds; some by means of gills, as fishes; and some, during the early part of their lifo, as the frog, broathe by means of gills, und in a more advanced stage of it they aequire lungs and breathe by means of them ; and some breathe by organs placed in other parts of their bodies, as insects. In regard to the circulation of the blood, some have

[^37]but or anima systen the ble anothe of its are pl impuls

In motion dogs; some some c
but one ventriclo in the heart, some two, and others three. In some animals, as man, the heart propels the blood to the remotest part of the system; in some it throws it only into the respiratory organs; in others the blood is carried from the respiratory organs, by means of the veins, to another heart, and this second heart distributes the blood by the channels of its arteries to the several parts. In many insects a number of hearts are placed at intervals along the circulating course, and each renews the impulse of the former, so that a continual circulation is kept up.

In regard to the bodily movements, some are endowed with quick motions, others slow; some walk on two legs, as fowls; some on four, as dogs ; some on eight, as caterpillars ; some on a hundred, as scolopendra; some on fifteen hundred and twenty feet, as ono species of starfish; and some on two thousand fect, as certan species of echinus. (It is mentioned by Lyonet that these echini have 1300 horns, which thoy protrude and draw in at pleasure). Some glide along with a sinuous motion on scales, as snakes and serpents; some skim through the air, ono species on two wings, another on four; and some convey themselves in speed and safety by means of their webs, as spiders; while others glide with agility through the waters by the instrumentality of their tails and fins. Some animals are distinguished for having an internal bony skelet on, as man, beasts, birds, and fishes, thence called vertebrate ; some for having an external bony skeleton jointed at intervals as the lobster and insects, and thence called articulate ; some for living in horny houses, as shell-fish, turtles, and land snails, and thence called crustaceous, and molluscous. Some live fixed like plants at the bottom of the sea, as the hydra. This animal, for example, produces young not only from eggs in the ordinary way, but also by putting forth buds from its sides, which while attached to the parent develop mouths and arms, and then become separated ; and having become fixed in their turn they live for themselves. The animals called crinoids grow like plants in the seas of the Tropics. The sponge also is a plant animal which lives fixed at the bottom of the sea. These sponge-plant animals, are of various forms, some of them corresponding to our moorland moss-tufts; some to the most elegant types of flower form, and some resembling in miniature the great candelebra-formed berus of the Gila regions. Most people have seen and used the sponge sold in our stores, which is merely part of the skeleton of these plant-animals. The great coral islands of the Pacific Ocean are merely aggregatious of animal developments. The coral is the solid parts of the animal, composed of carbonate of lime, and corresponds, as does the sponge, to the bony skeleton in higher aumals. Corals are of different forms, sometimes having the form of trees and shrubs, and sometimes a round form, as the brain-stone. You have, therefore, in these plant-animals, which are developed in great variety and to vast extent in the seas and oceans, the connecting link between the animal and regetable, and mineral kingdoms.

But it would require volumes to enumerate and explain all the varieties and peculiarities which distinguish the different species of animated beings. Besides the varieties which distinguish the species from each other, there are not, perhaps, of all the hundreds of millions of individuals which compose any one species, two individuals exactly alike in every point of view in which they may be contemplated. As an example of the numerous parts and functions which enter into the construction of an animal frame, we may state that in the human body there are about 2.54 bones, each of them having about forty difforent intentions or adaptations; and 446 muscles, each having ten several intentions, so that the system of bones and muscles alone comprises about 14,620 varieties or different scopes and intentions. But, besides the bones and muscles, there are hundreds of tendons and ligaments for the purpose of conneeting them together; hundreds of nerves ramified over the whole body to convey sensation to all its parts. The nerves have their centres in the brain and spinal marrow, whence ramifications proceed to all parts of the body. Nerve is derived from the Latin, and means cord ; and the nerves, though infinitely fine cords, may, for the sako of illustration, be compared to telegraph-wires, which communicate their messages instantly to their centres, and thence to all parts of the system. The human boing has five senses, sight, hearing, touch or feeling, taste, and smell ; cach of these has its peculiar set of nerves; and not only that, but the nerves are so closely reticulated over the whole body that you cannot prick it in any place with the point of the fincst needle without affecting numbers of them. The senses, then, are the channels through which the sensitive or animate being communicates with the external world; by which the rational being knows that it exists, and that he exists. There are thousands of arteries to convey the blood to the remotest extremities of the system, and thousands of veins to bring it again to the heart; thousands of lacteal and lymphatic vessels to absorb nutriment from the food; thousands of glands to secrete humours from the blood, and of emunctories to throw them off from the system; and besides many other parts of this variegated system with which we are unacquainted, there are more than sixteen hundred millions of membranous cells, or vesicles, connected with the lungs; more than two hundred thousand millions of pores in the skin, through which the perspiration is incessantly flowing; and above a thousand millions of scales which, according to Leeuwenhoek, Baker, and others, compose the cuticle or outer covering of the body. We have also to take into account the compound organs of life, the numerous parts of which they consist, and the diversified functions they perform ; such as the brain, with its infinite number of fibres and numerous functions; the heart, with its ventricles and auricles; the stomach, with its muscular coats and juices; the Liver, with its lobes and glands; the spleen, with its infinity of cells and
mem:
kiduc
membranes; the pancreas, with its juice and numerous glands; the kilneys, with their fine eapillary tubes; the intestines, with all their windings and convolutions; the organs of sense, with their inultifurious connections; the messentery, gall bladder, the uretus, the pylorus, the duodenum, the blood, the bile, the lymph, the saliva, the chyle, the hair, the nails, and the numerous other parts and substances, every one of which has diversified functions to perform.

We may also take into consideration the number of ideas included in the connection and arrangement of all these parts, and of the manner in which the yare compacted into one system of small dimensions, so as to allow free scope for all the intended functions. If then, for the sake of illustration, we were to suppose, in addition to the 14,620 adaptations of the bones and muscles, as stated above, that there are 10,000 veins, great and small ; 10,000 arteries, 10,000 nerves, 1,000 ligaments, 4,000 lacteals and lymphatics, 100,000 glands, $1,600,000,000$ vesicles in the lungs, $1,000,000,000$ seales, and $200,000,000,000$ pores, the amount would be $202,600,149,460$ different parts and aday ations in the human body; and if all the other species were supposed to consist of a similar number of parts, though differently organised, this number multiplied by 300,000 , the supposed number of species, the product would amount to $60,780,044,838,000,000$, or above sixty thousand billions, the number of distinct ideas, conceptions or centrivances, in relation to the animal world, a number of which we can have no adequate conception, and to our minds seems to approximate to infinity; but the calculation is merely a rude approximation, and may serve to convey some idea of the endless multiplicity of conceptions which pervade the Eternal mind.

That many other tribes of animate beings have an organization no less complicated and diversified than that of man, will appear from the following statement of M. Lyonet. This celebrated naturalist wrote a treatise upon a single insect, the cossus caterpillar, which lives on the leaves of the willow, in which he has shown from the anatomy of that animal, that its structure is almost as complicated as that of the human body, and meny of the parts which enter into its organization even more numerous. He has found it necessary to employ twenty figures to explain the structure of the head, which contains 228 different muscles. There are 1647 muscles in the body, and 2066 in the intestinal tube, making in all 3941 muscles, or nearly nine times the number of muscles in the human body. There are 94 principal nerves, which divide into innumerable ramifications. There are two large tracheal arteries, one at the right and the other at the left side of the inseet, each of them communicating with the air by means of nine spiracula. Round each spiraculum the trachea pushes forth a great number of branches, which are again divided into smaller ones, and these subdivided and spread through the whole body of the
caterpillar; they are naturally of a silver color, and make a beautiful appearance. The principal tracheal vessels divide into 1326 different branches. All this complication of delicate mechanism, with numerous other parts and organs, are compressed into a bolly only two inches in length.

If we direct our attention to tho vegotable kingdom, we may contemplate a scene no less variegated and astonishing than what appears in the animal world. There have already been discoverod about ninety thousand species of plants, specimens of the greater part of which have been presorved in the musoum of Natural History at Paris. But it is said by naturalists that the actual number in the earth and waters cannot be reckoned at less than four or five hundred thousand species; indeed the truth is that as in the animal kingdom, they can put no definite limits to the number, for a great part of the earth they can nevor explore.
The observer who takes a survey of the various members of the vegetable kingdom becomes cognisant of at least one prominent distinction between them. He soon percoives that while certain vegetables have flowers, others have none; or, perhaps, more correctly speaking, if the second division really possess flowers they are imperceptible. This distinetion was first taken as a basis of elassification by Linnæus, the Swedish naturalist ; and to this extent the classification adopted by that great philosopher was strictly natural; beyond this his classification was artificial. Now taking advantage of this distinction, Linnæus termed the evident-flowering plants phoenogamous, from a Greek word signifying to appear ; and he designated the non-flowering or moro correctly speaking, the non-evident-flowering plants Cryptogamic, from a Greek word signi. fying concealed. In making this division of planis into flowering and non-lowering, one must greatly expand his common notions of a flower, and not restrict the appellation to those pretty floral ornaments, which become objects of attraction, and of which bouquets are made. On the contrary he must admit to the right of being regarded as a flower any floral part, however small, even though a microscope should prove necessary for its discovery. Thus, in common language we do not usually speak of the oak, the ash, the beech, the elm, etc., as being flower-bearing trees; but they are, nevertheless, and consequently belong to the first grand division of flowering, or phœenogamous, plants. The reader may remember as a rule, to which thero are no exceptions, that every member of the regetable world which bears a fruit, and consequently seeds, belongs to the phomogamous division. By following the indications of this rule, we restrict the cryptogamic, or non-flowering plants, to the seemingly narrow limits of ferns, mushrooms, mosses, and a few others, all of which are devoid of seeds, properly so called, but are furnished with a substitute for seeds termed sporules or spores. Sporules, then, the reader may
remember are, so to spean, the soeds of tlowerless and, therefore, seedless plants. We have before spoken of the vegetable kingdom as being divided into the two great branches of exogenous and endogenous plants. We may here state, however, that these two branches are ineluded within the one great division of flowering phants, and have nothing to do with the non-flowering division, which is itself confined to narrow limits of the lowest species of plants.

All plants, most probably, certainly all flowering plants, possess sexes. The flower and its appendages are the reproductive organs of the plants. Without flowers there could be no fruit ; without fruit there could be no seed; and without seed, properly so called, by far tho greater number of vegetables could not be multiplied. Both sexes, the male organ called stamen, upon which the pollen or fecundating dust is produced, and the female organ ealled pistil, in which the fortilizing takes place, are usually contained in the same plant, in the same flower of the plant. Occasionally, however, the two sexes are on different flowers of the same plant, and sometimes on different plants. We may, therefore, properly say that the greater number of flowers contain both sexes; but occasionally, on some plants, the sexes have Howers, each sex to itself; and occasionally again the males monopolise all the flowers on one plant, and the females all the flowers on another. When the two sexes reside in two sets of flowers on the same plant, then such a plant is said to be monocious, signifying "one house;" the plant, we suppose, being regarded as a house, and the flowers as chambers in the same, in which the ladies and gentlemen dwell. When, however, the males all reside in the flowers of one plant, and the females in the flowers of another, then such plants are said to be direcious, or "two-housed," the reason of which is obvious. The seeds or eggs of the plants are fertilized by the pollen, a yellowish powder, from the stamen, falling on the top of the pistil, causing it to expand, and finding its way into the ovary, or seed-case, situated at the bottom of the pistil ; and so the seeds are fertilized and prepared to produce when placed in proper circumstances. Sec figures on pages 201, 202, 203.

The function of seeds in the flowerless plants is, as we have said, performed by spores or sporules, from arbpos, the Greek word for scattered seeds. This class of plants is very small when compared with the flowering; and the spores are prepared for the most part in little receptacles called sporanges or theca; from whence when ripe they are scattered about by the winds; the old plants dying, new ones spring up from the spores to replace them. The best known species of this cryptogamic division, are the mosses, lichens, ferns, and fungi. The fungi are said by naturalists to be a mass of reproductive matter in themselves. In these non-flowering species may be recognized the lowest in the scale of plants; just as we have seen sponges, corals etc., to be the lowest in the
scale of animals. De not the fungı, sponges, etc., of the two kingdoms bear some resemblance to each other ?

If the reader wishes to know what the sporules are like let him take the well-ripe leaf of a fern, (which is not properly a leaf, but a frond) ; let him turn the under surface of the frond uppermost, and he will see thereon many rows of dark stripes. These are terned Sporidia, and they contain the spores or sporules of the plant ; which latter may be obtained by opening the sporidia. These sporules, when viewed with the naked eyc, look almost like dust ; when examined under a microscope, hewever, their outline is easily recognized. The difference between a sporidium or sporule and a real seed may be thus explained : a seed has only one part, the embryo or germ, from which the young plant can spring ; whereas a sporule does not refuse to sprout from any side which may present itself to the necessary conditions of earth aid moisture. Thus we see the resemblance of these minute seeds to the sponge, which is said to be a vast mass of reproductive matter. Although the sporules are thus casily discernible in the fern tribe, yet they are not found so casily in other members of the cryptogamic division; in various members of which not only does their position vary, but their presence is undiscoverable by any means we possess.

Now the members of the vegetable kingdom are of all sizes, from the invisible forests, which are seen by the aid of the microscope in a piece of moldiness, to the cocoa of Malabar, fifty feet in circumference, or the great dragon tree of Teneriffe, which is of such dimensions that ten full grown men joining hand to hand are scarcely sufficient to encircle its base. Each of them, great and small, is furnished with a complicated system of vessels for the circulation of its juices, the secretion of its odors, and other important functions, analogous to those in animals. Almost every vegetable consists of a root or an assemblage of roots, each of which is terminated by a number of rootlets or little tufts called spongioles, whicl, absorb the nourishment from the soil ; a tuber or bulb, a trunk or stem, branches, leaves, skin, bark, sap-vessels, or system of arteries and veins, glandules for perspiration ; flowers made up of sepals, petals, stanima, pistils, farina, ovary or seed-case, seed, fruit, sporss or sporules and various other parts; and these are different in their construction and appearance in the different species.

Some increase, or grow, as all exogenous plants, by external depositions of their woody mattc: and are distinguished, if cut in horizontal section of the trunk, by concencric rings increasing in dimensions from the centre to the outside. See, for illustration," a horizontal section of the trunk of the oak or elm. Others, as all enciogenous plants, grow by internal depositions of their woody matter, and are distinguished, if cut in horizontal section of their tiunk, by the absence of pith and concentric rings ; and
by the tissue, of which the stem is made up, appearing as long strings of woody fibre, and extending upwards. See, for illustration of this kind,

1. Horizonts' Section of an Exogen, 2. IIorizontal Section of an Endogen. 3. Dotted Vessels of the Clematis. 4. Dotted Vessels of the Melon. 5. Spiral Versels of the Melons, 6. Lactiferous Vessels of the Celandine. 7. Ovoid Cell. 8. Stelliform Cells. 9. Angular Cells.
the horizontal section of the palm tree of tropical climates, the sugar cane, the bamboo, and all the grasses.

Some regetables, as the oak, are distinguished for their strength and hardness; others, as the elm and fir, are tall and slender ; some are tall, and tapering upwards to a point, as the cedar ; while others never attain to any considerable height, as the thorn-shrub; some have a rough and uneven bark, while others, as the birch, the maple and the poplar, are smooth and fine; some are so slight and delicate, that the least wind may bend them; while others can resist the violence of the strongest blasts; some acquire their full growth in a few years; while others, as the dragontree, grow to a prodigious size, and stand the blasts of many centuries ; some have their branches close to the trunk; while others, as the banyan tree, shoot them out so as to cover five acres of land, and shelter a thousand men; some have leaves scarcely an inch in length and breadth, while others, as the tallipot of Ceylon, have leaves so large that one of them, it is said, will shelter fifteen or twenty men from the rain ; or as some of the
water lilies of Central America, whose leaves, being fifteen or eighteen feet in diar:'ter, a man may float on in safety, and whose flowers and ovary are proportional.g large. Some drop their leaves in Autumn, and remain for months like blighted trunks; while others, as the hemlock, the pine, and the holly, retain their verdure during the winter.

The variety in the vegetable kingdom as to flowers is apparent even to the most careless observer. Each species of flower differs from another in the form and hues which it exhibits. The carnation differs from the rose, the rose from tho tulip, the tulip from the primrose, the auricula from the lily, the lily from the daffodil, the narcissus from the ranunculus, and the butter-cur from the daisy ; while at the same time each narcissus, ranunculus, rose or daisy, has its own particular character and beauty; something peculiar to itself, and which distinguishes it from the others. In a bed of ranunculuses or tulips for example, we shall scarcely find two individuals that have precisely the same aspect, or present the same assemblage of colors. Some ticwers are of stately appearance and seem to reign over their feilows in the sams oarterre; others are lowly, and creep along the ground ; some exhibit the most dazzling colors ; others of less imposing appearance blush almost unseen ; some perfume the air with the most delightful fragrance, while others emit an unpleasant odor, and only please the sight with their beautiful tints. And not only do flowers differ in their forms and colors, but there is a great diversity in their perfu mes also. The smell of southernwood differs from that of thyme, that of bilm from that of peppermint, and that of the primrose from that of the daisy; which indicates a variety in their internal structure and in the juices which circulate within them.

As to the flower it is made up of different parts, as the calyx or under whorl, which is itself made up of severol parts, called sepals ; and the corolla or upper whorl, which is also made up of severals parts,called petals. The calyx and corolla taken together comprise what is called the perianth, or that which surrounds and protects the reproductive parts of the fluwer. It may be called a beautiful painted house, in which the gentlemen and ladies of the flower live.* Thus, in the concave apace enclosed by the perianth are found the reproductive parts of the plant; the stamens and pistils, or carpels, either or both. At the bottom of che pistil, or carpel, which means the same thing, is situated the ovary, or seed-case ; the point in which it terminates above is oalled the stigma, and the middle part of it, the style. Upon the stigma of the pistil falls the pollen from the stamen, which causes the ovary to expand, the fruit to ripen, and the seed to grow. Thus, while the roots, with their spongioles, are called the nutritive, the

[^38]flower vegeta

Hower and its appendages are called the reproductive parts of the vegetable. See annexed figures; also figures on pages 202 and 203.

10. Calyx of Ranunculus. 11. Corolla of Rananculus. 12. Stamen of Ranunculus. 13. Carpels of Ranuuculus. 14. Oulnquepartite Calyx of the Pimpernel. 15. Qulnquefid Calyx of the Gentian. 16. Irregular Calyx of the Dead Nettle. 17. Calyx of the Madder. 18. Adherent Calyx of the Sunflower. 19. Ca'yx of the Dandelion. 20. Calyx of the Centranthus. 21. Calycule of the Strawberry. 22. Aoorn and Cup. 23. Involuorum of the Chestnut.
The leaves of all vegetables, like the lungs and skin of the human body, are diversified with a multitude of extremely fine vessels, and an astonishing number of pores. The leaf itself consists of two flattened expansions of the epidermis, or the outer covering, called the cuticle, of the tree, the one above and the other below, enclosing between them nerves and veins, vascular and cellular tissue. The word vascular means consisting of, or containing, vessels ; and cellular means consisting of cells. By vascular tissue is meant those little pipes and tubes which run through vegetables, just like arteries and veins through animal bodies, and which serve the
purpose of conveying juices from one part of the plant to another. In plants, those pipes or tubes are so exceedingly small, that their tubular character is only recognized by the aid of a microscope or powerful lens, but their presence may be recognized in general by the naked eye. Cellu-

24. Crueiform Corolla of the Celandine. 25. Rosaceous Corolla of the Strawberry. 26. Caryophylate Corolla of the Lychnis. 27. Papillionaceous Corolla of the Pea. 28. Tubular Corolla, of the Corn Centaury. 29. Infundibuliform Corolla of the Bindweed. 30. Campanulate Corolla of the Campanula. 81. Labiate Corolla of the Dead Nettle. 32. Hypocrateriferm Corolla of the Periwinkle. 33. Rotate Corolla of the Plmpernel. 34. Anomalous Corolla of the Foxglove. 35. Per. sonate Corolla of the Snapdragon. 36. Ligulate Corolla of the Chrysanthomum.
lar tissue is,as its name indicates, an assemblage of little cells, the natural form of which is spheroidal or oval ; but imore frequently this form is modified from various causes, usually the mutual pressure of the cells against each other. Thus, the pith of trees, a portion of which is made up of cellular tissue, if examined under the microscope, will be found to be composed of cells, having the form of honeycumb cells, that is, hexagonal. Occasionally the cells assume a stellate or starlike form, which may be seen in a
sectio those lens is
section of the common bean, if examined under the microscope. Usually those vegetable cells are so very small that a mic.oscope or a poworful lens is necessary for observing them. In certain vegetables, however, they

37. Fome. 38. Drupe. 30. Achænium of the Ranunculus. 40. Caryopsis of the Buckwheat. 41. Follicie of the Columbine. 42. Capsuio of the Gentian. 43. Capsule of the Corn Poppy. 44. Legume nf the Lotus. 45. Capsuie of the Colcilicum. 46. Capsuie of the Iris. 47. Siliqua of the Ceiandine. 48. Siiicule of the Musiard Piant. 49. Samara of the Maple. 60. Nut of the Chestnut. 51. Berry of the Deadiy Nightshade. 62. Capsule of the Lychnis. 53. Pyxis of the Pimpernel. 54. Germination of the Bean. 55 . Germination of Indian Corn.
are of such dimensions as to admit being readily seen by the naked eye. For example, if the fruit of an orange be cut or pulled asunder, the cells will be readily apparent. And not only do the cells of this cellular tissue admit of being altered in form, but occasionally they give rise to parts
in the vegetable organization, which would not be suspected to consist of cells. The cuticle, or outer skin, of vegetables is nothing more than a layer of cells, firmly adherent; and the pith of exogenous plants, for example, the substance which makes up the densest part of the centre of the oak is nothing more nor less than closely compressed cellular tissue. In a former illustration we have stated that the air contained in an apple can be expanded into forty-eight times the bulk of the apple; and this is because the inside of the apple is made up of little cells, each of which is filled with closely-compressed air. We have also intimated that leaves perform for regetables the same functions in a manner as the lungs do for man and land animals, and the gills for fishes. But how is this performed? We have shown that the leaves, as well as the skin, are full of cells, and tubes, and pores, just as the lungs and the skin of an animal are ; but, they make use of that very kind of air which man and the animals refuse; they inhale caibonic acid, so much of which is generated on the surface of the earth by combustion, as well as otherwise, and in animal bodies; they retain the carbon, which the animals refuse, and reject the oxygen, which tho animals retain, and which supports their life. Carbonic acid is in itself poisonous to animals, but is thus the support and nourishment of vegetables; and the latter, by using it, perform the part of purifying the air. Hence it is seen how one part of nature is adapted to the other; how each element returns to its proper place, and all things to equilibrium. In a kind of box-tree, called Palm of Ceres, it has been observed that there are above 172,000 pores on one side of the leaf. The whole earth is covered with vegetable life in such profusion as astonishes the contemplative mind. Not only the fertile plains, but the rugged mountains, the most barren spots, and even the caverns of the ocean, are diversified with plants of various kinds ; and from the torrid to the frigid zone every soil and every climate has plants and flowers peculiar to itself. To attempt to estimate their number and variety whould be like attempting to dive into the depths of infinity ; and, therefore, we shall have to content ourself with merely giving this interesting part of nature a passing notice, so far at least as to show its analogy and relation to the animal kingdom. Yet every diversity in the species of plants, every variety in the form of individuals, and even every differenc: in the shade and combination of colors in flowers of the same species, exhibits a distinct conception which ever existed in the Eternal mind.

Linnæus adopted the following pithy designation for minerals, vegetables and animals. "Minerals," he said, " grow : plants grow and live; but animals grow, live, and feel." An expression which indeed, if insuffcient, is not unjust. We may say more distinctively, however, that animals are those living beings which derive their nutriment from an internal cavity, the stomach; and vegetables are those living beings which derive their nutriment from without.

If we should take a survey of the mineral kingdom we should also behold a striking expression of the manifold wislom and the power of Deity. It is true we cannot penetrate into the bowels of the earth so as to ascertain the substances which exist and the processes which are going on near its central regions. But within a short distance of its surface we find such an astonishing variety of mineral substances as clearly shows that its internal parts are constructed on the same plan of variety as characterizes the animal and veget ible kingdoms. In the classes of eartly, saline, inflammable, and metallic fossils, under which mineralogists have arranged the substances of the mineral kingdom, are contained an immense number of genera and species. Under the earthy class of fossils are comprehended diamonds, chrysolitos, menillites, garnets, zeolites, corundums, agates, jaspers, opals, pearl-stones, tripoli, clay-slate, basalt, lava, chalk, limestone, ceylanite, strontium, barytes, celestine, and various other substances. The saline class comprehends such substances as the following; natron or natural soda, rock-salt, nitre, alum, sal-amoniac, epsom-salts, etc. The class of inflammable substances comprehends sulphur, carbon, bitumen, coal, amber, charcoal, naphtha, petroleum, asphalt, caoutchouc, mineraltar, etc. The metallic class comprehends iridium, platina, gold, mercury, silver, iron, lead, tin, bismuth, zinc, antimony, cobalt, nickel, manganese, magnesium, molybdenum, arsenic, scheele: menachanite, uran, silvan, chromium, tungsten, uranium, titanium, tellurium, sodium, potassium, etc. All these mineral substances are distinguished by many species and varicties. There are reckoned eight genera of earthy fossils. One f f these genera, the flint, contains thirty-four species; and these species are distinguished by numerous varieties, such as chrysoberyls, topazes, agates, beryls, quartz, emery, diamond, spar, etc. Anothe: genus, the clay, contains thirty-two species, such as opal, pitch-stone, felspar, black-chalk, mica, horn-blende, etc. And another genus, the calc, contains twenty species, as limestone, chalk, slate, spar, fluor, marle, boracite, loam, etc. There are ten species of silver, five of mercury, seventeen of copper, fourteen of iron, ten of lead, six of antimony, three of bismuth, etc. All these mineral bodies present differences as to figure, transparency, hardness, lustre, ductility, malleability, texture, structure, sound, smell, taste, weight, and their magnetical and electrical properties ; and they exhibit almost eveiy variety of color. As to structure, a body may be brittle, sectile, or separating in layers, malleable, flexible and elastic. A mineral can only effect the taste which is soluble in the saliva, and is saline, alkaline, or astringent. Dependent upon light are five characteristics of minerals, color, lustre, diphaneity, refraction, and fluorescence. Color is either metallic or nonmetallic. Metallic lustre is that peculiar lustre which distinguishes the metals, although it does not belong exclusively to them; for graphite, which is carbon, and the scales of iodine both possess metallic lustre. Minerals
whose colour is non-metallio may be found of every hue, from the black onyx to the colorless diamond. The colors which distinguish all other objects are non-metallic. Ihe degrees of lustre are five ; splendent, shining, glistening, glimmering, dull, which expresses the absence of lustre. Tho degrees of diaphaneity are five ; transparent, semi-transparent, translucent, translucent on the edges, opaque, when no light passes through, etc. Somo of these substances are soft and pulverable, and serve as a bed for the nourishment of vegetables, as black earth, chalk, clay and marl. Some are solid, as iron and silver; and some are fluid, as mercury, sodium, and potassium. Some are brittle, as antimony and bismuth ; and somo aro malleable, as gold and zinc ; some aro subject to the attraction of the magnet; others are conductors of electricity; some are easily fusible by heat; others will resist the strongest heat of our common fires. Some are extremely ductile, as platina, which has been drawn out into wires less than the two-thousandth part of an inch in diameter ; and gold, the parts of which are so fine and expansible, that an ounce of it is sufficient to gild a silver wire more than 1300 miles long.

To have tho opportunity of acquiring the most ample and impressive idea of the mineral kingdom, one should risit an extensivo mineralogical museum, where he will have ocular evidence of the great beauty and the endless variety which this department of nature exhibits. Here it may also be remarked that not only the external aspect of minerals, but also the interior configuration of many of them presents innumerable beauties and varieties. A rough, dark-looking pebble, which to an incurious eye appears only like a fragment of common rock, when eut asunder and polished, presents an assemblage of the finest veins and most brilliant colors. Marble workers have daily experience of this in the rough blocks of California and other marble, as well as of granite and other stone, which they reduce to such smoothness and beauty by their art. If one goes into a lapidary's shop which is furnished on an extensive scalo, and takes a leisurely survey of his jaspers, topazes, cornelians, agates, garnets, and other stones, he cannot fail to be struck with admiration, not only at the exquisite polish and the delicate wavings which their surfaces present, but at the variety of coloring and design exhibited, even by individuals of the same species; the latent beauties and diversities of which require the aid of the microscope to discern, and are beyond the efforts of the most delicate pencil fully to imitate.

And not only in the objects which are visible to the naked eje is the characteristic of variety to be seen, but also in those which can only be discerned by the aid of the microscope. In the seales of fishes, for example, we perceive an infinite number of diversified specimens of the most curious productions. Some of these are of an extended form, some round, some triangular, some square, in short of all imaginable varieties of
shapes. Somo are furnished with sharp prickles, as in the perch and solo; some have smooth edges, as in the tench and cod fish; and even in tho same fish thore is a considerablo variety; for tho scales takon from the belly, the back, tho sides, the head, and other parts, are all different from each other. In the scale of a haddock we perceive one piece of delicate mechanism; in the scale of a perch another; and in the scale of a sole beauties different from both. Wo find some of them ornamented with a prodigious number of concentric flutings, too near each other, and too dolicate to be oasily enumerated. These flutings are frequently traversed by others diverging from the centre of the scale, and proceeding from thence in a straight lino to the circumference. On every fish there are many thousands of these varigated pieces of mechanism.

The hairs on the bodies of all animals are found by the microscope to be composed of a number of extremely minute tubes, each of which has a round bulbous root, by which it absorbs its proper nourishment from the adjacont huinours; and these are all different in different animals. Hairs taken from the head, the eyebrows, the beard, the nostrils, the hand, and other parts of the body, are unlike each other, both in the construction of the roots, and the hairs thomselvos, and appoar as varied as plants of th, same genus but of different species.

The parts of which the feathers of birds are composed present a beautiful diversity of the most exquisito workmanship. There is scarcely a feather but contains a million of distinct paris, every one of themof regular shape. In a small fibre of a goose quill more than 1200 downy branches, or small leaves, have been counted on each side; and each .appeared divided into sixteen or eighteen different joints. A very small part of the feather of a pea-cock, one-thirtieth of an inch in length, appears no less beautiful, when viewed through the microscope, than the whole feather does to the naked eye, exhibiting a multitudo of bright, shining parts, reflecting first one color and then another, in the mat vivid manner.

The wings of all kinds of insects ton present an astonishing variety, and no less captivating to the mind than pleasing to the eye. They appear strengthened and distended by the finest bones, and coverod with the thinnest menebranes. Some of them are adorned with neat and beautiful feathers, and many of them provided with the most symmetrical articulations and foldings for the wings when they are to be withdrawn and folded up in their cases. The thin membranes of the wings appear beautifully divaricated with thousands of little points like silver studs. The wings of some flies are filmy, as the dragon-ly ; others have them stuck over with short bristles, as the flesh-fy ; some have rows of feathers along their ridges, and borders round their edges, as in the gnats ; some have hairs, and others hooks, placed with the greatest regularity and order. In the wings of moths und butterfies there are millions of small feathers of dif-
ferent shapes, diversified with the greatest variety of bright and lively colors, each of them so small as to be altogether invisible to the naked eyc. The leaves of all plants and flowers, when examined by the microscope, are found to be full of innumerable ramifications, corresponding to the closely interwoven network of veins on the surface of the human body, whose office is to convey the perspirable juices to the pores, and to consist of the barenohymous, and ligneous fibres, interwoven in a curious and admirable manner. The smallest leaf, even one which is little more than visible to the naked eye, is found to be thus divaricated, and the variegations are different in the leaves of different vegetables. The way in which the leaves are veined is also another means, beside that of the horizontal sectional aspect of the trunk or stem, of determining the class of flowering vegetable to which their plants belong. If the veins run parallel to each other on the leaf, the plant belongs to the endogenous class; if they are reticulated, or, interlacing each other in all directions, it belongs to the exogenous. Thus, referring to the leaf of the iris, you find that it is of an endogenous, or within-growing, plant; and you know by the same kind of examination that tha melon is an exogenous, or without-growing, plant.
A transverse section of a plant not more than one fourth of an inch in diameter, when viewed through a powerful mieroscope, displays such beauties as cannot be conceived without ocular inspection. The number of pores of all sizes, amounting to hundreds of thousands, which are the vessels of the plant cut asunder, the beautiful curves they assume, and the radial and circular configurations they present in endogenous plants are truly astonishing; and not only the two great classes but every distinct species of plants exhibit a different configuration. There have been counted in a small section of a plant, of the size above stated, 5000 radial lines, each containing about 250 pores, great and small, which amount to one million two hundred and fifty thousand of these variegated apertures.
Even the particles of sand on the sea-shore, and on the river's banks, differ as to the size, form, and color of their grains; some being transparent, others opaque : some having rough, and others smooth surfaces; some are spherical or oval, and some pyramidal, conical, prismatical, or polyhedral. Mr. Hooke happening to view some grains of white sand through his microscope, hit incidentally upon one of the grains which was exactly shaped and wreathed like a shell, though it was no larger than the point of a pin. "It resembled", sayshe, " the shell of a small water-snail, and had twelve wreathings, all growing proportionately one less than another toward the middle or centre of the shell, where there was a very small, round, white spot." This gives evidence of the existence of shell-fish, which are invisible to the naked eye; and therefore smaller than a mite.
The variety of forms in which animal life appears, which the microscope enables us to explore, is indeed wonderful. Mieroscopic animals are so
differ
different from those of the larger kind, that scarcely any similarity seems to exist between them ; and from a limited knowledge of them, one would be almost tempted to suppose that they live in accordance with lar. directly opposite to those which proserve man and all other animals in existence. When we begin our explorations in this region of animate nature, we feel as if we were entering upon the confines of a now world, and surveying a new race of sentient existence. The number of these creatures exceeds all human calculation or concoption. Many hundreds of species, all differing in their forms, habits, and motions, have already been distinguished and described ; but wo know that by far the greater part of the system of the earth is unexplored, and doubtless forever hid urom the view of man. They are of all shapes and forins. Some of them appear like minute atoms ; some like spheres or sphoroids; some like hand-bells; some like wheels turning on an axis ; some like double-headed monsters; somo like cylinders; some have worm-like appearances ; some have horns; somo resemble eels ; some are like long hairs, $\mathbf{1 5 0}$ times as long as they are broad; some like spires and cupolas ; some like fishes ; and some like animated vegetables. Some of them are almost visible to the naked eye; and some so small that the breadth of a human hair would cover fifty or a hundred of them ; and others are so minute that millions on millions of them might be contained within the space of a square inch. In every pond and ditch, and in every puddle ; in the infusions of pepper, straw, grass, oats, hay, and other vegetables ; in paste and vinegar, and in water found in oysters ; on almost every plant, and flower ; and in the rivers, seas, and oceans, these creatures are found in such numbers and variety, as altogether exceed our conceptions. A class of these animals, called Meduse, has been found, so numerous as to discolor the ocean itself. Captain Scoresby found the number in the olive green sea to be immerse. A cubic inch contained sixty-four; and consequently a cubic mile would enntain $23,888,000,000,000,000$, or nearly 24 thousand billions; so that if one person could count a million in seven days, it would have required that 80,000 persons should have begun 6,000 years ago, in order to have completed the enumeration at the present time. Yet, all the minute animals to which we now allude, are furnished with numerous organs of life, as well as the larger kinds. Some of their internal movements are distinctly perceived ; their motions are evidently voluntary, and some of them appear to be possessed of a considerable degree of sagacity, and to be fond of each others' society. It may in short be unhesitatingly affirmed that the beauties and varieties which exist in those regions of the earth which are invisible to the unassisted eye are far more numerous than what app ar to a common observer in the visible domain of nature. How far this scene of creating power and intelligence may extend beyond the range of our microscopic instruments it is impossible for us to determine ; for the more:
perfect our glasses are, and the higher the magnifying power we apply, the more numerous and diversified are the objects which they discover to our view. And as the most perfect telescope is, and will ever be, insufficient to convey our view to the boundaries of the great universe, so wo may justly conclude that the most powerful microscope that has been, or ever will be, constructed, will be altogether insufficient to guide our view to the utmost limits of the descending scale of creation.

But the knowledge we already possess of these invisible and inexplorablo regions gives $u^{\text {u }}$ an amazing conception of the wisdom and intelligence of the Creator, of the immensity of His nature, and of the infinity of ideas which during all time existed in His all comprehensive mind. What an immense space in the scale of animal life intervenes betwoen an animal which appears only the size of a visible point, when magnified 500,000 times, and a whale a hundred feet long, and twenty broad ! The proportion of bulk between one of these beings and the other is nearly $34,560,000$, $000,000,000,000$ to 1 , or over thirify-four trillions and a half to one. Yet all the intermediate space is filled up with animated beings of every form and order.

A similar variety obtains in the vegetable kirgdom. It has been calculated that some plants which grow on rose leaves and other shrubs are so small that it would require nore than a thousand of them to equal in bulk a single plant of moss; and if we compare a stem of moss, which is generally not above one-sixtieth of an inch, with some of the large trees in Brazil and California, of twenty feet diameter, we shall find the bulk of the one to exceed that of the other, no less than $2,985,984,000,000$, which, multiplied by 1,000 , will produce $2,985,984,000,000,000$, or nearly three thousand billions of times, which the large tree exceeds the roseleaf plant in size. Yet this immense interval is filled up with plants and trees of every form and size. With good reason then may we repeat the language of the Psalmist, with reference to the Deity : "How manifold are thy works, 0 Lord! In wisdom hast thou made them all. Marvellous things doeth He , which we cannot comprehend."

On Crystallization.

The subject of crystallization is one which is also of great interest, and in which there is great variety of forms of matter displayed. When a mineral from any cause has been deprived of its cohesion, and its particles separated, if the particles are permitted to associate themselves again to form a solid, in such a way that they can follow their own inclination, the solid will indicate its being constructed according to certain laws; that is to say, the force of cohesion operating in the new formation does not act equally in all directions, but in the great majority of cases sets itself to construct regular geometrical solids, called crystals. For illustration, if any
ordinary salt, common salt, or salt-petre, or alum, be added to boiling water until the water will dissolve no more, and a bunch of threads be suspended in this solution, and allowed to stand all night, in the morning the string will bo found covered all over with crystals. If common salt be used the crystals will be cubes; if alum they will be four-sided pyramids, placed base to baso. The larger the quantity of solution, and the more slowly it cools, the larger will be the crystals; muddy solutions also increase their size. The presence of a substance which does not crystallize with the salts may modify the shape of the crystals; thus, if in the solution of common salt urea be present, the crystals will no longer be cubes, but, like those of alum, octahedra.
The peculiarities of crystallization are many. We might almost say that crystals in their formation exhibit signs of instinct. If a damaged crystal be suspended in a saturated solution of the salt which composes it the salt out of the solution will begin to repair the damago, so that in a little whilo the general coniour of the crystal will be restored. If in a solution thore bo small and largo crystals, and the solution by an alteration of temperature be mado alternately saturated and non-saturated, it will be found that the small crystals become entirely dissolved, while the large crystals grow. Crystals may also be obtained from a vapor condensing. Sulphur, arsenic, and iodine, afford examples of this, or from a liquid cooling. If, for example, six or eight pounds of sulphur of bismuth be melted and allowed to cool, if, when a crust has been formed on it, the crust be removed, and the yet liquid substance be poured out, the cavity of the vessel will be found lined with crystals; and often when a metal has been molten, and in its cooled state exhibits no signs of crystallization, yet the existence of the phenomenon may be shown if a weak solvent be applied to remove those particles which mask the formation. If a sheet of tin, while hot, be washed over with a weak solution of hydrichlorie acid, the crystals which make the tin moiree metallique (or crystallized tin plate), and which previously existed, will appear. A bar of nickel, placed in dilute nitric acid, becomes covered with tetrahedra, because the acid dissolves the intervening uncrystallized metal. But, perhaps, the tendency of particles to arrange themselves in some order of polarity is most strikingly illustrated in solids which are undergoing processes which move their particles. For example the axle, or the tire of the wheel, of a railway carriage, by constant vibration occasions the particles of which it is composed to take positions according to the polarity of their kind, and the consequence is that many axles or trees, when broken after years of service, exhibit throughout their mass crystals of iron.

Very few persons out of the great mass of mankind are aware that when they are walking on snow they are treading beneath their feet the most beautiful crystals. Snow is all composed of crystals in whieh, though a great diversity of figure is apparent, yet all the angles are equal, being those of an equilateral triangle, sixty degrees; and it is
 the angles which are the constants in crystallography; these never vary; but the faces of the same form of crystal are always equally inclined. When a flake of snow is examined by a magnifying glass, the whole of it will appear to be composed of fine shining specula, diverging like rays from a centre. Many of the snow crystals are of a regular figure, for the most part stars of six points, and are as perfect and transparent ice as any we see on a pond or river. Their forms present an almost endless variety, are often very regular and beautiful, and reflect with exceeding splendor the rays of the sun. This is the reason why snow appears white, the light being reflected from every angle and face of the infinite number of crystals. The crystals of snow vary from one-third to one thirty-fourth of an inch in diameter, in the natural size. Ice, as we have had oceasion to remark before, is crystallized water, just as snow is crystallized water from vapor in the air. See annexed figure.

A very slight acquaintance with crystals will assure the observer that those of the same mineral have a clese relationship to each other, whenever the same forms are studied. The law of symmetry is one of the principles upon which creation is carried on. It is observable in every organic structure that about a certain plane or certain planes the structure is built up. For example, a plane passing down through the centre of the human frame would divide the body into two similar halves. So with crystals they are all arranged symmetrically about imaginary lines; and according to the arrangement of these axes of symmetry crystals are divided into six classes or systems.

1st. The Monometric, Regular, Tessular, or Cubic, System has three axes of symmetry, all equal, and all at right angles to each other. About these axial lines the crystal is symmetrically built up, so that when heated it expands equally in all directions, and transmits light without refracting the rays. The primary figures of this system may be found by causing planes to pass perpendicularly through the extremities of the axis. This will produce the cube. The other prominent figure of the system, the octahedron, is formed by causing eight planes to pass through the three extremitios of the axes. The reader will
casily to eac combir crystal nation natura forms are ca forms promin minera

The C
The R
The si
The si:
easily conceive of two tetrahedral, or four-sided, pyramids, being joined to each other base to base, which is the form of this octahedron. By combining these two primary figures in various proportions a series of crystals may be produced. It is proner here to remark that this combination we speak of is only imaginary, for all the forms of crystals are natural, and that by this imaginary combining and modifying the prominent forms of each system a serics of crystals appear for each system, which are called secondary crystalline forms, which only means that they are forms which are scarce in the system as compared with the primary or prominent forms. The following are the forms of this system and the minerals which crystallize into it :

The tetrahedron, in which form grey copper crystallizes.

Figures $56,57,58$ represent the primary.

Figures $59,60,61,62,63,64,65,66,67,68$, the secondary forms of this system. See also figures on proceeding page.
mary It he
baryta repres
mary forms in this system are the rectangular prism, and the octahedron. It has also its secondary forms. Nitre, aragonite, topaz, sulphate of

baryta, sulphur, and stilbite crystallize in this system. Figures 75, 76, represent the principal forms of this system.
4th Class: The Monoclinic, or Oblique system. The axes of this system are unequal in length, like the last; but two of them intersect each other, not at right angles. The effect of this is that the base of the prism or octahedron, which are the principal forms of this system, is a parallelogram of unequal sides. Green vitriol, sulphate of soda, phosphate of soda, sulphur, crystallized from its melted state, and borax, crystallize in

this system. Figures 77, 78, 79 will give the idea of this system.
5th Class : The Triclinic, Doubly Oblique, or Anorthic system. This system has also three unequal axes, but none of them intersect at right angles. The prism and the octahedron are the primary forms, but these

are necessarily different in form from the preceding ; and there are secondary forms. But few minerals appear to orystallize, in this system. The most common are blue vitriol (sulphate of copper), labradorite, anorthite,
and aximite. Figures 80 and 81 show the octahedron and the prism of this system.

6th Class; The Hexagonal, and Rhombohedral System. The crystals of this system have four axes, three of them in the same plane, and intersecting at angles of sixty degrees, and all equal; the fourth perpendicular to these, and varying in length. By the supposed joining of the extremities of these axes a hoxagon is formed, which is the base of a prism (therefore six-sided,) and of a hoxagonal dodecahedron. These primary forms appear in snow crystals, beryl, tourmaline, and nitrate of soda, and the very common quartz crystals, which almost every one has seen, are generally six-sided prisms, terminated by six-sided pyramids. This system is also called the Rhombohedral, from the fact that the rhomb, so admirably shown in calc-spar, is the hemihedral form of the hexagonal dodecahedron; that is, if the alternate facess of the double, six-sided pyramid be supposed

84

produced, they will form a six-sided solid, which appears in figure 84 . Figures 82, 83, represent the principal forms of this system.

Almost all minerals crystallize into some one of these systems. For example, gold, silver, copper, and platina are found to crystallizo in the first or monometric system. A sublime display of crystallization is scen in some places on the earth's surface. A visit to the island of Staffa, in Scotland, and to the Gia:.i's Causeway, in Ireland, would be amply repaid to one who liked to inspect and contemplate such sublime natural wonders.

In order that some of the words which we have found it necessary to use in this short description of crystallization may be understood ty all our readers, we may explain that monometric signifies having one measure. ment, or equal measurement, the monometric system being distinguished by equality of axes. Dimetric signifies having two measurements, crystals in this system having one longer axis and two shorter ones, which latter tro are of the same length. Trimetric signifies having three measurements, the crystals of this system having three axes, all of which differ in length. Monoclinic signifies having one sloping axis, crystals of this system having one axis, which is not rectangular to the other tro. Triclinic signifies having three axes at obliquo angles to one another. Hexagonal signifies six-
sided
sided, or six-angled. Dodecahedral signifies having twelve sides. Rhombohedral signifies having its sides in the form of a rhombus, from a figure whose four sides ara equal, but its angles are not right angles.

ON LIGH'T.

But all this scene of beauty and all these natural wonders we have been contemplating need the agency of light to make them apparent. Light, as wo have before remarked, is essential not only to the existence and growth of plants and animals, but also to the phenomena of colors. It is a manifestation of a substance which is universally present, but needs to be in certain conditions of chemical action in order that the light be made manifest. It radiates from a luminous object in straight lines in all directions, and all objects are seen by its reflection from their surfaces. The reflection of the rays of light is that property by which, after striking the surfaces of bodies, they are driven back or repelled. It is, therefore, in consequence of this property that all the objects around us, and all the diversified landseapes on our globe are rendored visible. When light impinges or strikes upon a surface, -- say, for illustration, a polished surface, rather more than half of it is thrown back or reflected in a direction similar to that of its approaeh ; that is to say, if it fall perpendicularly upon a surface it will be perpendicularly reflected; but, if it fall obliquely, it will be reflected with the same olliquity. Henco the following fundamental law, regarding the refleetion of light has been deduced both from experiment and mathematical demonstration, namely, that the angle of reflection is, in all cases, exactly 'qual to the angle of incidence. * Thus if a ray of solar light be admitted into a dark room through a hole in the window-shutter, the ray will pass straigitt through to the opposite wall, and by its reflection from the wall throw a certain amount of light round the whole room. Thus the whole room is to a certain degree lighted, although not with the direct rays of the sun. Also, if the window be not situated directly opposite to the sun, the ray of light which enters must itself be a raly of light reflected from the atmosphere, or from some outside objects. This last ray, however, when almitted, passes through as a direct ray to

[^39]the opposite wall, and is again reflected. Thus it is seen that there is no end to the reflections of light, and the atmosphere during the day is one great illuminated ocean, from the fact that the solar image is reflected and refracted from every portion of it. You see your own image in a lookingglass, moreover, by the rays of light from your body being reflected; and by placing two plane mirrors in certain positions in relation to each other and to a luminous object, you can multiply the number of images of an 0^{1} ject indefinitely. In the case too of your image being reflected from a looking-glass, the angle of reflection is equal to that of incidence; for your image seems to form the same angle with the glass behind it, as you do before it ; and if you change your position it changes also, and maintains the same angle as you do in relation to the glass.

While light, when procceding from a luminous body, without being reflected from ary opaque substance, or inflected by passing near one, is invariably found to proceed in straight lines, without the least deviation, yet, if it pass obliquely from one medium to another, it always deviates from its original course, and takes a new one. This change of direction, or bending of the rays of light, is what is termed refraction, from the Latin word frangere, to break or to bend. The angle of refraction depends upon the obliquity of the rays falling upon the retracting surface, being

Let. A B, represent a mirror, and 0 C , a person looking into it. If we conceive a ray, proceeding from the forehead C E, it will be Fig. 88

reflected to the eye at 0 , agreeably to the angle of incidence and reflection; but, the mind puts CEO, into one line, and the forehead is seen at H, as if the lines $C E O$, had turned on a hinge at E. It is a peculiar faculty of the mind to put two oblique lines $C E$ and OE , into one straight line OH ; yet, it is seen every time we look at ourselves in a mirror. For the ray really strikes the mirror from O at E, and thence strikes the eye at O; and it is that journey which determines the distance of the object; and hence we see our image as far behind the mirror as we stand before it. Though a ray is here taken only from one.part of the face, it may be casily conceived that rays from every part of the face must produce a similar effect.
In every plane mirror, the image is always equal to the object, at what distance soever it may be placed; and as the mirror is only at half the distance of the image, from the eye, it will completely receive an image of tuice its own length. Ilence a man six feet in height may view himself completely from tip to toe in a looking-glass of three feet in length, and half his own breadth; and this will be the case at whatever distance he may stand from th s is shomn in figure 88.
almays such that the sino of the incident angle is to the sine of the refracted angle in a given proportion*. The incident angle is the angle made by a ray of light and a line drawn perpendicular to the refracting surface, at the point where the light onters the new medium. The refracted angle is the angle made by the ray in the refracting medium with the same perpendicular produced. The sine of the angle is a line which sc wes to measure the angle, being drawn from a point in one side perpendicular to the other.

[^40]On the principle of refi action. you may, by means of a multiplying glass, sec as many images of a luminous object as the glass has different surfaces. If ${ }^{-}$ the multiplying glass have twenty different surfaces, you see twenty differentimages; or, if the surfaces could be cut and polished so small that it has five hundred surfaces, then you see five hundred images of the samo luminous object. Thus, it is seen, the light of a given luminous object will be the more diffused, the" more surfaces there are for it to be refracted and reflected from. But if a luminous object be completely separated from you by the intervention of an opacque body, as is the sun from us during our night by the intervention of the body of the earth, then you have no light from the luminous object. Light passes through all transparent substances, such as the atmosphere, water, and glass; and in its passage through these substances of different densities it is refracted, as we have explained, according to certain laws. A body, ordinarily speaking, is said to be transparent when every part between its two surfaces is of the same density, and therefore the ray of light emerges on the opposite side. In the case of the looking-glass, the ray of light would pass through it, being refracted, but for the coating of quicksilver which it has on its back, which prevents it passing through, and causes it to be reflected. A body is said to be oparque when the parts between its two opposite surfaces are of different densities, and so the rays of light are destroyed by the many refractions and reflections, and do not emerge on the opposite side. All substances that are not transparent are opaque, though there are different degrees both of transparency and opacity. Light and heat usually accumpany each other, but light is not always manifested where strong heat is evolved. The heat accompanying the solar light is so great that when concentrated on double-convex lenses it will be sufficient to fuse the densest metals. Mr. Parker, of Fleet Street, London, once made a burning glass three feet in diameter, and when fixed in its frame it exposed a clear surface of Leore than two feet eight inches in diameter, and its focus, by means of another lens, was reduced to a diameter of half an inch. The heat produced by this lens was so great, that iron plates were melted in a few seconds; tiles and slate became red-hot in a moment, and were vitrified, or changed into glass. Sulphur, pitch, and other resinous bodies were melted under water; wool-ashes, and those of other vegetable substances, were turnel in a moment into transparent glass, even gold was rendered fluid in a few seconds ; and notwithstanding the intense heat at the focus, the finger might without the slightest injury be placed in the cone of rays within an inch of the focus. The force of the heat collected in the focus of the double-convex glass is to the common heat of the sun as the area of the glass is to that of the focus; it may, of course, be a hundred or even a thousand times greater in the one case than in the other. When a fire or a candle burns, or a horse strikes his shoe against a stone, light as well as
heat is evolved; but a stack of hay, or a pile of dry goods, if allowed to stand long enough in a damp condition, may bo heated to a high pitch without any light being evolved. Light is produced in many ways artificially, as by chemical action in tho combustion of solids, liquids, and gases; by percussion,as in the use of the fint and steel, which is called "striking fire," and by the electric light, which may be considered the most intense and brilliant of all artificial lights. This last is procured from the ignition of two points of charcoal through which the current of electricity from a powerful battery is passed. But all terrestrial modes of obtaining light, such as chemical action, friction, ignition of solids, phosphorescence, crystallization, and the electric light, sink into insignificance before the great natural s, iree of light, the sun, the centre of our planetary system, and the source both of light and heat to our world. Sir John Herschell has estimated that " the sun gives out as much light as 146 lime lights would do if each ball of lime were as large as the sun, and gave out light from all parts of its surface ; and that the heat evolved from every square yard of the sun's surface is as great as that which would bo produced by the burning of six tons of coal on it each hour."

Although it is said that light is emitted in straight lines from a luminous body it must not be understood that a given quantity of light goes on continuously in the same bulk or volume; it is continually expanding as it recedes from the point of emission. The areas of space filled with ii as it proceeds are to each other as the squares of their respective distances fromethe luminous point of emission; and consequently the intensity or illuminating power of the light is inversely as the areas. Thus luminous bodies give, at the respective distances of two, three, or four yards, a fourth, a ninth, and a sixteenth, respectively, of the light they give at one yard from them; the areas illuminated and filled with the diffusing light being, at these several distances, four, nine, and sixteen times as great as at one yard distance. It may, therefore, be said more correctly that light diffuses itself universally in expanding volumes, bounded as the volumes increase by straight diverging surfaces, which form the boundaries of areas whose relative magnitudes are as the square of their distances. *

[^41]The larger the luminous body is the more space it will enlighten; and it is plain that the enlightened space will correspond in form with the body which enlightens it. 'Ihus, the sun being of globular figure, -and, as wo may here, for illustration, suppose it, luminous all over its surface,-enlightens an area, however great in extent, of spherical shape ; the space nearest the sun being most enlightened, and the light becoming less as the distance from it becomes greater. The larger the luminous boly is, too, at tho greater distance will it be seen by the eyo; also, the larger it appears at a given place the more light it will diffuse at that place; for the larger will its image be to be reflected and refracted from all objects ; and, conversely, the smaller a luminous body appears from a given place the less light will it diffuse at that place, for the smaller will its image be to be reflected from all ohjects. When, therefore, a luminous body, of however great a size, is at so great a distance from a place as not to be perceivable by the eye, then it gives no light at that place, fiom the fact that there is no image of it to be reflected. Also, if one was situated beyond the range of our atmosphere, away out in the ethereal regions, it is determi ed he would experience no such flood of light as he does at the earth's surface, because of the absence of a reflecting medium. The denser and rougher in surface bodies are the better in general they reflect the light; for the image of the sun is reflected from one corner, face, or angle of rough surfaces to the other so as to make them more luminous than if they wero smooth, though of the same density as they are. But the ether which exists beyon the limits of our atmosphere being so excoedingly rare, does not reflect the image of the sun ; and the sun to an observer situated there would appear like a luminous globe placed in a black canopr, and surrounded on all sides with pitchy darkness. So the stars might appear like luminous points searcely distinguishable, in regions of the blackest darkness. The appearance of the earth would depend upon the distanco of the observer from it; the nearer he would be to the earth the more luminous would it appear, the light being reflected from its surface and atmosphere.

On the subject of light, two leading theories havo been propounded in the philosophic world. Sir Isaae Newton supposed that light was corpuscular, or composed of minute particles of a material nature, which aro

[^42]constantly emitted in all directions by luminous bodies. This hypothesis was adopted to a great extent, especially by British philosophers; but in later times it has given way to the theory of ILuygens, who assumed that all space is pervadel by an elastic ether, the undulatory motions of which, when it is disturbel, manifest themselves in light, just as motion in water gives waves, or sound in air gives vibrations. Noither of those theries, it was afterwarls thought, haviug fully explainel the pheno nena of light, another explanation was propounded, which correspomels very much with that of Huygens. This is that all space is fillod with electricity, the ela - tio ether of Huygens, which, as is known, penetrates all bodies; and that the great ocean of clectricity in free space, having nothing to compress it, yields freely in all directions, and only undulatos when passing throws'i othar media, such as the atmosphere, where it suffer' interruption, anl als), to a certain extent, absorption. Thus fur as to the theories. But the fact is that men will be ever changing their theories, rojecting ohd ones and substituting new ones, until they have come to a knowledge of the sulbject concerning whieh the theory is. No falso theory will fully satisfy the mind, or last permanently. The phenomenon of light does not depend upon the emission of luminons particles from luminous bodies; neither does it depend upon all spaco being filled with a particular substanco called other or electricity, or of any other name; but it consists simply in this, tho infinite multiplication of the image of the luminous objoct by refle -tion and refraction from the media on all sides of it, and to all visible distances from it. It depends simply upon this, that a luminous body exists, and is within visible distance ; and then the amount of light places possess will depend upon the adapteduess or unfitness for reflection of the media of these places. When a body is permanently luminous, as tho sun is, then the space which it illuminates is always illuminated, (unless parts of it which, during sertain intervals, are separated from the luminous body by the intervention of opaque bodies,) and so the light cannot be said to occupy any time in passing from one point of that space to another, or from the luminous body to any point of that space, as the common theories suppose, one of which has it to travel at the rate of nearly 200,000 miles a second. Ihis theory is based upon deductions which have been drawn from observations made upon the satellites of Jupiter, at the timo of their emergence from an eclipse. From these observations it was determined that it took the light a certain length of time to reach the earth from the satellites after their emergence from behind the body of the planet. But it appears quite evident that at the instant of their emergence, coming into the flood of solar light, they would be visible from the earth; and that no perceptible time might intervene between their emergence and their being seen by an observer on the earth. Light cannot be said to occupy any time in moving through a space in which it is constantly present. The reason

EXISTENCE AND DEITY,

why we do not always experience the light of the sun is because we are prevented from doing so by the intervention of the body of the earth between us and the sun during the night time, or by the intervention of some other object between us and the sun. But when the morning has come, and the side of the carth on which we live has come round to face the sun; or when any other body, which has shut out from us the light of the sun, has been removed, and that luminary shines with a clear face, we can see him just in the same time as it takes us to see our neighbor standing at our elbow. No perceptible time intervenes between our opening our eyes to see the sun and our secing him, although we are certainly separated from that luminary over ninety millions of miles. Nor does it take the light of any of the stars that are visible to us any length of time to travel from them to us. The light of the stars visible to us is always present to the earth, and we only need to be on the side of the earth facing those stars, on a clear aight, in order to see them instantly. The only condition necessary to our secing the star instantly is for the star to be visible, and we then may see it in the same length of time it takes us to see the sun when that luminary is visible; that is, when our eyes are opened and directed toward it, no time at all; although it may be more than a thousand millions of times the distance from us that the sun is. A lighted candle, it is said, can illuminate a space of four cubical miles; that is, a spherical space whose diameter is four miles, the candle being placed in the centre. This candle, therefore, would be seen by an observer placed at any point in that space, say any extremity of a radius; and neither would it take the light any time to reach his eye, nor would there necessarily be any luminous particles emitted by the candle toward his eyo. But the ir age of the candle is present in every point in the space, and is reflected from all the reflecting media. The nearer the observer is to the candle the larger it appears, and the more intense is its light; the farther he removes from it the smaller it appears, and the less intense the light becomes, until finally the candle vanishes entirely from his sight, and there is no perceptible light from it in the surrounding space. So it is evident that when, on their emergence from behind the body of the planet, a sufficiently large portion of the surface of Jupiter's satellites has become enlightened to render them visible to a telescopic observer at the earth, (for these satellites are not discernible by the naked eye,) no perceptible time need intervene until he sees them, provided no other body, as clouds, intervene to obstruct his view of them.

Nor is electricity found to occupy any perceptible time in travelling, by means of wires, to any distance on the earth's surface ; that is, the instant the message is sent by the telegraph operator, that same instant it is received at the other end of the wire, if the distance be over twelve thousand miles, or half the earth's circumferencc. The farthest point on the
earth's thousan

The which particle matter immedi body co Secondl of matt parent multiple mond, o light is multipli is conce manifes It is ev necessa to a gre mostly into act active not only most fav heat. stantly much 1 because it. The Decemb season t being t obliquel ocean o exhaust to every
The 1 and it h of scien ment is common and oth
earth's surface, reckoning from any given place, is somewhat over twelve thousand milos, or half the earth's circumference.

The reader will be likely to observe, himself, the absurdity of the theory which supposed light to be dependent upon the emission of luminous particles frol. a a luminous body; for, for example, not a particle of the matter of which the sun is composed can ever go beyond the range of his immediate attraction; that is, every particle of the matter of which that body consists always did and always will belong to him ; he cannot lose it. Secondly, he will see the absurdity of supposing that luminous particles of matter could penetrate through thick plates of glass or other transparent substances, which admit the light so freely, as windows, double or multiple; or the glass globes which surround our comnon lamps; or diamond, one of the hardest known substances. But, as we have said before, light is only a phenomenon, the image of the luminous object infinitely multiplied, as well as the object itself, as far as the manifestation of light is concerned; while, on the other hand, the substance of which light is a manifestation may be callod eloctricity, or any other name one pleases. It is everywhere present, and manifests the light when the conditions necessary for that manifestation exist. All bodies possess in themselves, to a greater or less extent, the principle of light and of heat. But it mostly exists in a latent state in torrestrial bodios, needing to be called into action in order that it become apparent. These principles exist in an active state in the sun; and, therefore, that luminary is the great source not only of light but of heat to the earth. That part of the earth situated most favorably towards him receives the greatest quantity of his light and heat. The space which is constantly filled with the solar light is as constantly filled with the solar heat, and the reason we do not experience as mueh light and heat at one soason of tho year as we do at anothor is because the situation of the earth in relation to the sun does not admit of it. The earth is more than three millions of miles nearer the sun in December than in June, yet we have less light and heat in the former season than in the latter, owing to the parts of the earth which we occupy being turned away from the sun, or, in other words, being situated more obliquely towards him. The earth is a dense body situated in the mighty ocean of the solar light, as a theatre upon which he may display his exhaustless power and energy, and give animation, beauty and sublimity, to every surrounding scene.

The Prism is the most important and instructive of all optical lenses, and it has enabled philosophers to add what may be called another branch of science, "Spectrum Analysis," to those already known. This instrument is triangular, and generally about three or four inches long. It is commonly made of white glass, as free as possible from veins, and bubbles, and other ह'nilar defects, and solid throuhgout. Its lateral faces and sides
aro perfectly plane and finely polished. Tho angle formed by the two faces, one receiving the ray of light that is refracted in the instrument, and the other giving it an issue on its return into the air, is called the refracting angle of the prism. By means of this triangular piece of glass we are enabled to decompose and analyze a ray of light, and, from the knowledge so obtained, to account for the phenomena of colors. If a ray of light, proceeding directly from the sun, be admitted through a circular hole, half an inch in diameter, into a room, the walls of which should be as dark as possible, or hung with black calico, and a prism intersect it near the window, the ray will cease to go forward in a straight line, being refracted, or bent a little upwards out of its original direction, and will be decomposed, and exhibit, on a white screen placed opposite to the window to receive it, a beautiful spectrum, consisting of seven colors, beginning below and extending upwards in the order of red, yellow, orange, green, blue, indigo, and violet. If the refracting angle of the prism ACB , in the figure,** be sixty-four degrees, and the distance of the white screen from the prism eighteen feet, the length of the image will be about ten inches, and tho breadth two inches. This oblong image is called the prismatic spectrum, and in it the red color is least, and the violet the most bent from the original direction of the solar beam. The sides of the spectrum are right lines, distinetly bounded; and the ends are semi-circular. This circumstance shews that it is still the image of the sun, but elongated by the refractive power of the prism. By an ordinary glass prism, such as those used for glass lustres, the margins of the colors are not clearly defined, but seem to melt or mix, the one into the other. If a hollow glass

[^43]Fig. 91

prism spectr interes of var that al light, they m howeve substan of thin stances media but it light.

Ligh of light are not of matt the cas cxamine them objects, certain sity ; b same, ol sourco

Wher a white different distinct. to each made to goes by
are now colored The dra the struc dispersi the exac repeate glass pri green 6 which th
prism filled with bisulqhide of earbon be used, the seven colors of the spectrum aro much more clearly defined. Sir Isase Newton mado this interesting and important discovery, that white light is a compound of rays of various kinds, having different colors, and indiees of refraction; and that all the substances whieh appear colored when illuminated with white light, derive their colors only from a kind of " natural selection," that is, they may reflect certain colored rays and absorb or transmit others. He, however, concluded, from various experiments on this subject, that every substance in nature, provided it be reduced to the requisite degree of thinness, is transparent. This is plain also, from the fact that all substances are of a nature reducible to an invisible gas. Many transparent media refleet one color and transmit another ; gold leaf reflects the yellow, but it transmits a sort of green color by holding it up against a strong light.

Light is said to be the source of all colors; but, if the principle of light is inherent in all substances, how can it be said that colors are not inherent in them? Light itself is, in every case, a manifestation of matter. The matter which gives rise to the light is sometimes, as in the case of carburetted hydrogen gas, itself invisible ; yet, when properly examined, the light proceeding from it displays all colors, and renders them apparent in all other objects. The colors displayed by different objects, owing to their peculiar adaptedness for absorbing or reflecting certain of the colors of light, are various, and of different degrees of intensity ; but the colors displayed by light in the prism are permanently the same, only, it may be, differing slightly in their intensity, according to the source whenee the light is derived.

When the solar spectrum, obtained as already described, is thrown upon a white screen, it is amusing to see the effect of different colored rays upon different pigments; and if slips of colored paper be used the results are very distinct. By passing the ray of white light through two prisms, inverted to each other, and filled with bisulphide of carbon, the spectrum may be made to stretch much farther across the screen, and the sunbeam undergoes by the double refraction a greater amount of dispersion. The colors are now more clearly separated, and the experiments with the slips of colored paper or other pigments, can be made with much greater facility. The drawing apart or separation of the colors is called dispersion, and thus the structure may be made shorter or ? Inger, by using prisms of different dispersive powers. Although it is ufficult for the best eyes to point out the exact boundaries of each color, Sir Isaac Newton concluded, after repeated experiments, that the lengths of the colors with the particular glass prism which he used were as follows : Red 45 , orange 27 , yellow 40 , green 60 , blue 60 , indigo 48 , violet 80 ; total number of equal spaces into which the spectrum was divided, 360°. By making a hole in the screen
opposite any one of the colors of the spectrom, and pacing the sereen in such a position as to allow that color only to pass, and ly letting the color thus separated fall upon a second prism, he found that each of the colors was alike refrangible, because the seeond prism eould not separate them into an oblong image, or into any other color. Hence he catled all tho seren colors simple or homogencons, in contradistinction to white light, which he called compound or heterngeneous. For he also ascertained that the colors could be brought togerthor, again recombined ; and that the resule was the recomposition of white light. 'This syuthesis of eolors is readily shown ly using a second prism placed in an inverted pesition to the other, and allowing the ry of light to pass though this ; or by allowing the colored rays to fall upon a double-convex lems, when they are hronght to a foens, and a spot of white light alone is risille. 'The experiment can be vatied by mixing seven different colored powders together, the colors being, of course, as near as possible to those of the solar spectrmm ; or these colors may be panted on a circular piece of cardboad, and when this is properly adjusted, and whirled round with suflicient relocity, the colors scem all blended together, and produce the near estimitation of white light.

If a smbeam is passed through a double-convex lens, whel represents a scrice of prisms ath their bases attached to each other, and their thimest edges outward, it is not to be woodered at that the dise of light obtained should be fringed with colors, because it has been shown that a 1 rism decomposes white light. If all the colors were of the same refrangilility there would be no fringes of eolors on the edges of hodies seen through a common teleseope or mieroscope; luat as the foens of the red ray is fomed further away from the lens than that of the blue ray, beeanse the latter is more retractive than the former, it follows that a separation of eolor must ocear, which is techmically termed chromatic ahervation. Newton, however, examined the ratio between the sines of incidence and refraction of the decompounded rays, and found that each of the seven primary colormaking rays had certain limits within which they were confined. 'Thus, let the sine of incidenee in glass be divided into 50 equal parts, the sime of refraction into air of the loast refrangible, and the most refrangible mays will contain respectively 77 and 78 such parts. The sines of refiaction of all the degrees of red will have the intermediate degrees of maguitude from 77 to 7 at ; orange from $77 \frac{1}{5}$ to $7 \pi \frac{1}{3}$; yellow from $75 \frac{1}{3}$ to $77 \frac{1}{3}$; green from
 77 is to 78 . From the foregoing statements it is evident, as has been shom above in the case of double-convex lenses, that as any portion of an optic glass bears a resemblance to the form of a prism, the component rays which pass through it must neecssarily be separated, and will consoquently paint or tinge the object with colors. The edges of every convex lens approximate to this form, and it is on this account that the edges of objects
viowed such 1 and will
The a nyou the "cenly cight inc cothers ol fieal dis When sul is viewe consery the red pints of matic ed in "wnill 'Io this camut long five: conistric was not gluss hai without , means anil thei gemivest? mull it caver")
a lens,
to ono
For alssu purpuses such as
courfirmo rays hav to havo itherease the grec green; to deter bodies a dark
viewed through them are fomul to be tinged with the prisuntic colors. In such a glass, therofire, the different colored rays will have different foci, anl will form their respeetive inngere nt different distnoues from the lens.

The anmout of diapersion of the colnod raya in eonvex lenges dopends "pow the fiem length of the ghass, tho space which the colored images werny being about the twenty-eighth pari. Thas, if the lens he twentyeight inches feend distance, the space between the red and the virlet colors of the spectrou will he ahout one inch; if it lo twenly ecight feet

 is viewed throwh an eyeghas, it will njpene to lom hut one image, and emsempently vary indistimet, mul frimend with varions colors ; and as the red colne is largest or seme miter the simatest maghe, the extrome
 matie colores will harmed within this red fringe, as is gemerally formed in common refracting trlesconma, ematrueted with a singhe wiject ghas.
 camut be much mproved without having reeomase to hensea of very
 constracted of 80,100 , anil 120 feet foent lengeh. Fint atill the imagn was nout formed an distinetly as desired, and the aberture of the objeetghass haul to he limiterl. This is a defect which was long regarmed as witheut a remedy, mid even Nowtom himself dospaired of diseovering, any mems liy when tho lefeets of refracting teleacopes might he remedied, and their imp: rement affecterl. Pint this thifliently has heen mest ingenionsly surmomited by combining lenses of monmal dispersive material; and it was Mr. Dollond wher proved in 1757 that hy combining at eoncaveconvex lens of tlint ghasa with a dombe-cenvex one of erown ghass a lens was ohbained which virtually refracta the varions collored rays to one forto, aml is, therefiere, celloromatic, that is, fres from color. For absolute achromatisun varims lenses are neeessary, hat for all fractical purposes two are foum to loe sulficient, provided their emryatures are such as to contine tho yellow and red mas.

It was originally olserved by Newton, and the fact has since beon confirmed by the experiments of Herachell, that the different coblored rays have not all the same illuminating power. The violes rayz appear to have tho least illuminating effect; the indige more; and the effect increnses in the order of the crlors, the green heing very great; hetween the greon anul yellow the greatest of all; the yollow the same as the green; hut the red less than the yellow. Herschell also endeavored to determine whether the power of the differently colored rays to heat bodies varied with their power to illuminate them. He introduced ints a dark room a beam of light which was decomposed by a prism, and
then exposed a very sensible thermometer to all the rays in suceession, and observed the heights to which it rose in a given time. He thus found that their power to heat increased from the violet to the red. The mereury in the thermometer rose higher when its bulb was placed in the indigo, than when it was placed in the violet; still higher in blue, and highest of all at red. Upon placing the bulb of the thermometer below the red, quite out of the speetrum, he was surprised to find that the mercury rose highest of all, and concluded that rays proceed from the sun, which have the power of heating, but not of illuminating bodies. These rays have been called invisible solar rays; they were about half an inch from the beginning of the red rays; at a greater distance from this point the heat began to diminish, but was quite pereeptible at a distance of one and a halfinches. He determined that the heating power of the red to that of the green rays was as 23 to 1 , and of red to violet as $3 \frac{1}{2}$ to 1 . He afterwards made experiments to collect these invisible caloric rays, and caused them to act independently of the light, from which he concluded that they are sufficient to account for all the effects produced by the solar rays in exciting heat; that they are capable of passing through glass, ând of being refracted and reflected, after they have been finally detached from the solar beam.

Mr. Ritter of Jena, Dr. Wollaston, Beckman and others have discovered that the rays of the spectrum are possessed of certain chemical properties; that beyond the least brilliant extremity of the spectrum, namely, a little beyond the violet ray, there are invisible rays which act chemically, while they have neither the power of heating nor of illuminating bodies. Muriate of silver exposed to the action of the red rays becomes blackish; a greater effect is produced by the yellow ; a still greater by the violet; and the greatest of all by the invisible rays beyond dhe violet. When phosphorus is exposed to the action of the invisible rays beyond the red, it emits white fumes, but the invisible rays beyond the violet extinguish them.
It has likewise been found that certain rays of the spectrum, particularly the violet, possess the property of communicating the magnetic influence. Morchini, of Rome, appears to have been the first who discovered that the violet rays of the spectrum had this property. The result of his experiments was, however, involved in doubt, but it was believed to be established by a series of experiments, carried out by Mrs. Somerville, a lady who is celebrated for her scientific pursuits. This lady, having corered half a sewing needle, of about an inch long, with paper, exposed the other half for two hours to the violet rays. The neodle had then acquired north polarity. The indigo rays produced nearly the same effect ; and the blue and green rays produced it in a still less degree. In the yollow, orange, red, and invisible rays, no magnctic influence was exhibited,
although same eff
or wrapt covered

Thoug
with ligh sun for t
behind it our whol
from the existing ; fact that stantly in is eviden ation bei colored \mathbf{r} dispersion effects, pc beyond th selves,' fr the sun different f ably infer a candle, solar ligh spectral some insi ignited pa
There vation of by perforn his sunbea the dark the spectr tant diseo circular aj year 1802 fine prism slit the t_{1} or twelve other in tl was not fol laston's o
although the experiment was continued for three successive days. The same effeets were produced by enclosing the needle in blue or green glass, or wrapping it in blue or green ribbon, one half of the needle being always covered with paper.

Though the whole space of tho solar system is constantly replenished with light and heat, yet the whole system is constantly dependant on the sun for them; and as a cendle when extinguished leaves darkness instantly behind it, so the sun, if by any means it were extinguished, would leave our whole system instantly in pitchy darkness. This we positively know from the fact that no image can exist without that of which it is an image existing; and that the sun exists in a luminous state we know from the fact that, when all things are prepazad for it, his luminous image is instantly impressed upon the spectrum. That it is the sun's elongated image is evident from the ends of the spectrum being ares of a cirele ; the elcagation being effected by the different refractive powers of the different colored rays. Now it seems quite evident that the different powers of dispersion, of illuminating, of heating, of producing chemical or magnetic effects, possessed by the different colored rays, and by the invisible rays beyond these, may arise, as the different degrees of light and heat themselves,'from the nature of the different combustible substances of which the sun is made up. That these substances are not in general very different from the substances which produce light in the earth, we reasonably infer from the consideration that any common artificial light, such as a candle, a gas, or a petroleum light, gives the same speetral colors as the solar light does; only the colors may vary slightly in intensity. The spectral bands, however, which we shall next consider, may give us some insight into the nature of the component substances of the sun's ignited parts.

There was one feature of the solar spectrum which escaped the observation of Newton, and it tends to show how much knowledge may be lost by performing an experiment in the least perfect manner. He allowed his sunbeam to pass through a circular hole to the prism, and thus missed the dark bands and fixed lines which cross the colors from end to end of the spectrum at right angles to its length. Dr. Wollaston made an importont discovery by admitting the light through a narrow slit, instead of a circular aperture, which is thus described by Sir David Brewster. In the year 1802, Dr. Wollaston announced that in the spectrum formed by a fine prism of flint glass, free from veins, when the luminous object was a slit the twentieth part of an inch wide, and viewed at the distance of ten or twelve feet, there were two fixed dark lines, one in the green and the other in the blue spaces. This discovery did not excite any attention, and was not followed out by its ingenious author." Without knowing of Wollaston's observations, Mr. Fraunhofer, of Munich, by viewing through a
telescope the specirum formed from a narrow line of solar light with the finest prism of flint glass, discovered that the surface of the spectrum was crossed throughout its whole length by dark lines of different breadths. None of these lines coincide with the boundaries of the colored spaces. They are nearly 600 in number. The largest of them subtends an angle of from five seconds to ten seconds. From their distinctness, and the facility with which they may be found five of these lines have been particularly distinguished by Fraunhofer. One oí the unportant practical results of this discovery is that those lines are fixed points in the spectrum, or rather that they have always the same position in the colored spaces in which they are found. Fraunhofer likewise discovered in the spectrum produced by the light of Venus, the same streaks as in the solar spectrum; in the spectrum of the light of the star Sirius he perceived three large streaks which,according to appearance, had no resemblance to those of the solar spectrum ; one of these was in the green, two in the bluc. The stars appear to differ from one another in their streaks. The electric light also is found to differ somewhat from the light of the sun, and that of a candle, in regard to the spentral streaks. When the spectrum is formed by the sun's rays, either direct or indirect, as from the sky, clouds, rainbow, moon or planets, the black bands are always found to be in the same parts of the spectrum, and under all circumstances to maintain the same relative position, breadth and intensitics.

A very convenient instrument has been invented by iMr. John Browning, called the "Miniature Spectroscope" by which, at any time, the solar specirum may be observed in all its beauty of color; and the dark lines are easily seen by properly adjusting the width of the slit. When this is widely opened, the spectrum is more brilliant, because more light is admitted to the series of prisms contained in the instrument, but the lines are not then visible. By reducing the size of the aperture, it presonts the appearance of striped ribbon, and is found to be crossed in the direction of its breadth by a number of dark lines. This instrument in the case measures four inches in length, and rather more than threc-fourths of an inch in diameter:; it is therefore easily portable in the pocket, and is thus keptready for any special use, such for instance as observing the bright bands of color emitted by ceriain flames, or intensely hot gaseous matter, similar to that coming from the furnaee in which the Bessemer process is carried on; and it is by the employment of the spectroscope that the exact moment of the completion of the process for making stecl or pure iron may be determined by a perein skilled in the use of this instrument.

In order to properly distinguish the spectral lines, it is necessary to classify the spectra obtained from the different sources of light. Thus, the light obtained from the incandescence of two graphite electrodes by the voltaic battery, and called the "electric light," will, provided the
graphite free frol that ligh such a ther it pure ba lamp, b platinum is now h srectros position is used,
exactly (D) lino chloride ed with are eigh All the in give brig in this wa

The fa bands in delicate where th By means of soda co the ten-th tion coil, and when and this i which is by the wi
There of hich spectra incandesc light is br source of on its wa. definite of of the sun by the e sodium, ti
graphite be middling pure, exhibit a continuous band of colors, perfectly free from all black lines. Such a spectrum teaches us nothing more than that light can he decomposed into seven colors. An observer looking at such a spectrum could not tell the exact source of the light, or say whether it was evolved by incandescent chareoal, lime, or platinum. Such a pure band of colors is called a spectrum of the first order. If a spirit lamp, burning pure and good spirit, is used as the source of heat, and a platinum wire, looped at the end, and dipped into a solution of common salt, is now held in the spirit flame, it changes yellow : and if the little hand spectroscope is directed towards it a yellow line is distinetly seen, whose position is toward the red end of the spectrum. When a more intense heat is used, such as the electric are, the sodium line is double, and is then exactly coincident with the dark, double solar line known as Framhofer's (D) line. If nitrate or chloride of strontium be used, and placed, like the chloride of sodium, upon the looped platinum wire in the flame, and observed with the spectroscope, the colored bands are more numerous. There are eight remarkable lines, one blue band, one orange, and six red. All the metals and the salts which can be converted into luminous gas give bright lines instead of dark ones; and the various spectra obtained in this way are called spectra of the second order.

The fact that metals and their salts will always give the same colured bands invariably in some particular part of the spectrum, affords a most delicate measure of quantitative andysiz, which is generally employed where the presence of a mirute quantity of some metallic salt is suspected. By means of spectral analysis, the three-millionth part of a millogramme of soda can be easily detected, of lithium the nine-millionth part, of calcium the ten-thousanth part of a milligramme. The spark from the great induction coil, when passed through the air, is always of a light-yellow color, and when examined by the spectroscope it gives the yellow line of sodium; and this is said to be supplied from the dust always floating in the air, which is continually supplied with particles of salt from the spray carried by the winds from the ocean.

There is but one more order to s. eak of; this is, spectra of the third order, of hich the best type is the solar. spectrum, crossed by black lines. "The spectre of this order," says Mr. Huggins, "consist of the spectra of incandescent, solid or liquid bodies, in which the continuity of the colored light is broken by dark lines. These dark spaces are not proluced by the source of the light. They tell us of vapors through which the light has passed on its way, and which have robbed the light, by abscrption of certain definite colors, or rates of motion. Such spectra are formed by the light of the sun and stars." If the light producing the yellow lincs in sodium by the electric arc be allowed to pass through the vapor of metallic sodium, the yellow lines change to black lines. The sodium vapor absorbs
the same kind of light as it emits ; and it was by this remarkable discovery that Kirchoff identified many of the dark lines in the solar spectrum, with the bright lines obtainable from terrestrial substances ; and ascertained that, in the solar atmosphere, there existed sodium, calcium, barium, magnesium, iron, chromium, nickel, copper, zinc, strontiun, cadmium, cobalt, and hydrogen. If the evidence depended only on the coincidence of one or two dark solar lines with the bright bands from the vapors of the terrestrial metals, it would be worth little or nothing; but in a complicated sories of sets of lines, such as would be produced by the abovo metals, all the lines coincile ; and in speaking of one of those motals, Kirchoff remarks: "The observations of the solar spectrum appear to me to prove the presence of iron-vapor in the solar atmosphere, with as great a degree of certainty as wo can attain in any question of natural science." Messrs. Huggins and Miller have continued observations with the planets, tho stars, the nebule, and the comets, and have added largely to our knowledge of the constitution of these distant heavenly bodies.

The Rainbow.

At certain times, when there is a shower, either around us, or at a distanco from us, in an opposite direction to that of the sun, wo seo a kind of arch or bow in the sky, adorned with all the primary colors of light. This phenomenon, which is one of the most beantiful meteors in nature, is named the rainbow. The rainbow was for ages considered as an unexplainable mystery, and by some nations it is said to have been adored as a deity. Even after the light of modern scienco had begun to dispel the ignorance from the minds of men, it was a considerable time before any discovery of importance was made as to the true causes which co-operate in the production of this phenomenon ; and it was not until Newton discocovered the different refrangibility of the rays of light, that a complete and satisfactory explanation could be given of all the circumstances connected with the rainbow. This most beautiful meteor never makes its appearance to the spectator but when he is situated between the sun and the shower ; and it is produced by the reflection and refraction of the rays of light from the falling drops of rain. It has been observed before that water is a transparent medium, and transmits the rays of light, refracting or bending them a little from the course they were pursuing beforo entering it ; but while it transmits some rays of light, refracting them, it reflects others, both from its surface and inside its surface. There are usually two bows seen at the same time, one a littic above the other, and encircling it ; the inside one is called the primary, the outside the secondary bow. The secondary bow is usually much fainter in its colors than the primary. Now these bows are formed by the drops of rain in a given circle acting like prisms, and separating the rays of light, by refraction
and refle violet his in the s men, wh that the tions of two refir of light e course, r it, and entered, entering the same the air, a

In the and is ref drop on surface surface of as in the medium ; emerging reflections
and reflection, into their prismatic colors; the red being lowest and the violet highest in the primary bow ; and the violet lowest and red highest in the secondary. It has been shown from the experiment: "scientific men, who possessed both the inclination and leisure for suen pursuits, that the first or primary bow is produced by one refloction and two refractions of the ray of light in the drop of rain; and the secondary bow by two refractions and two reflections in the drop. In the first ease, the ray of light enters the drop from above, and on entering a new melium is, of course, refracted ; it pursues its course in the drop, is reflected inside of it, and emerges from the samo hemisphere of the drop as that in which it entered, and in emerging is refracted. Thus, the ray is refracted in entering the drop, a new and denser medium; is reflectod in the drop, the same medium ; and is refracted again in emerging from the drop to the air, a different medium from the drop.

Fig. 92.-Calse of the phenomenon of the randiow.
In the second case the ray strikes the drop rather on the lower side, and is refracted on entering it ; pursues its course to the other side of the drop on the inside, and is reflected from the lower part of the inside surface of the drop; is reflected again from the inside of the upper surface of the drop ; and in emerging from the dro p is refracted. Thus, as in the first case, the ray is refracted in entering the drop, a new medium ; is reflected twice in the drop, the same medium ; and in emerging to the air is again refracted. Hence in consequence of the two reflections in the drop in the last case the ray must in its course have
deseribed a foursided figure, perhaps a sipuare or a paralledogram. 'The same thing happens in the given cirenlar space with respeet to a whoto shower as happens with respeet to one or two dreps; and liy the constant falling of the rain the imbige is preserved constant and perfeet. This subjeet may be partailly illustrated in this way; take cither a small sulid ghass globe or a small glass globe filled with water, and suspend it so high in the solar rays that the ohserver with his back to the sun can see the globe red; it it then 1 lowered slowly he will see itsorange, then yellow, then green, then blue, then indiges, and then violet ; so that the drep of rain, as this, at different heights shall present to the eye of the observer the seven prismatic colors in succession. It must not he thought that any pereeptible time is taken up in the refractions and reflections we speak of, as by which the rainbow is formed in the falling main-drops, or in the lowering glass globe ; the phenomenon is produced lyy the positions of the falling drops, or of the globe, in relation to our eyo and to the sum. Fig. 92 illustrates the canse that produces the rainbow; the lower drop, of series of drops, representing the primary bow, the upper the socomary. The raintow assumes a semi-circular apperame becanso it is only at certain angles that the refracted rays come to our eyes, as is evident from this experiment of the glass globe, which will reflect the different colored pays mily in a certain position. Thered rays make an angle of forty-two degrees two minutes: and the viole an angle of forty degrees and serenteen 1 . inutes. 'Thus if a line be drawn horizontally from the spectater's eye, it is phain that the angles formed with the line of a certain dimension in every direction will produco a cirele, as will appear ly attaching a cord of a certain length to a given point, around which, as round an axis, it may turn; and, in every point it will deseribe an angle with the horizontal line of a certain and determinate length. Now all tho drops of water within the differenee of these two angles, namely, one degree and forty-five minutes, (supposing the ray to proceed from the centre of the sum), will exhibit severally the colors of the prism and constitute the interior bow of the cloud. This holds good at whatever height the sun may happen to be in a shower of rain. If he be at a high altitude the rainbow will be low; if at a low elevation the rainbow must be high ; and if a shower happen in a vale when the observer is on a momtain he will sometimes see the bow in tho form of a complete eircle below him. The largest angle then, or circle, is formed by the red rays, the middle one the green, and the smallest the purple or violet. If the spectator alters his position, he will see a bow, but not the same as before; and if there be many spectators they will see each a different bow, though it appears to be the same. If there were no ground to intereept the rain and the view of the spectator, the rainbow would form a complete circle whose eentre is diametrically opposite to the sun. Sueh circles are often seen in the
spray of the sea or of a caseade, or from the tops of lofty inmmatain when the shower happens in the vale below. Ruinhows of various descriptions are frepucntly seen rising amid the spray amd oxhalations of waterfalls, and among the waves of the sea, whose tops are blown by the wind into small Irops. I'hero is ono regnlarly seen when the smen is shining, noll the observer in a proper position, at the Fitl of Stablback, in tho hosom of the Alis; one near Schalfhansen; one at the Coscale of Jauffen; and one at the Cataract of Niagara.

A more hemutiful one than any of these is sain to be seen at 'I'ornif, where the whole enrent of the river Velino, rushing from a steep precipice of nearly two humbed foet high, presents to the observer below a variegated cirelo, overreadhing the fall, and two other bows suddenly reflected on the right and left. I) Un Ullon, in the account of his travels in South America, relates that cirreiar raimbows are frequently seen on the monntains above Quito, in J'eru. Λ naval friend, says Mr. Bucke, informerl me that as he was one day watching the sun's effect upore the exhalations near Juan Formandea, ho saw upwarils of five-and-twenty ires marine animato the sea at the samo time. In those marine bows the concave sides were turued upward, the drops of water rising from below, and not falling from above, as in the instance of the acrinl arches. Rainbows are also oceasionally seen on the griss in the moming dow, and likewiso when the boar-frost is descending. Dr. Langwith once saw a how lying on the ground, the colors of which were almost as livoly as those of a common rainbow. It was not circular, but oblong, and was extended several hundred yarils. 'Ithe colors took up loss space and were much more vivid in thoso parts of tho bow which wero near him, than in those which were at a distance. When M. Labillardiero was on Monnt 'Teneriffe, he saw the contour of his body tracod on the elouds beneath him, in all the colors of the solar bow. Ito harl previously witnessed this phenomenon on the Kesrouan, in $\Lambda \operatorname{sia}$ Minor. 'Tio rainhows of Greenland aro said to be frequently of a palo white, fringed with a brownish yellow, arising from the rays of the sun being reflected from a frozen clome.

A rainbow may be produced at any time by artificial means, when the sun is shining, and not at too great an altitude alove the horizon. Ihis is effected by means of artificial fountains which are intended to throw up streams of water to a great height. These stroams, when they spread very wide and blend together in their upper parts, form, when falling, an artificial shower of rain. If then, when the fountain is playing, we move between it and the sun to a proper distance from the fountain, until our shadow point directly toward it, and look at the shower, we shall observe the colors of tho rainbow strong and lively; and what is especially noticeable, the bow appears, notwithstanding the nearness of the shower,
to be as large and as far off as the rainbow which we see in a natural shower of rain. The same experiment may be made with candle-light and with any instrument that will form an artificial shower.

The following is a summary of the prineipal facts which have beens ascertained respecting the rainbow. 1. The ordinary raiubow can only be seen when it rains, and in that part of the heavens opposite to the sum. 2. Both the primary and secondary bows are variegated with all the prismatic colors, the red being the highest color in the primary, or brightest bow ; and the violet the highest in the secourtary or exterior bow. 3. The primary rainbow can never be a greater are than a semicircle ; and when the sun is set no bow in ordinary circunstances can be seen. 4. 'The breadth of the inner or primary bow, supposing the sum but a point, is one degree and forty-five minutes; and the breadth of the exterior bow three degrees and twelve minutes, which is nearly twice as great as that of the other ; and the distanee between the bows is eight degrees and filty-five minutes. But since the body of the sun subtends an angle of about half a degree, by so much will each bow be increased, and their distance diminished ; and therefore, the breadth of the interior bow will be two degrees, fifteen minutes; and that of the exterior three degrees, fortytwo minutes ; and their distanco eight degrees, twenty-five minutes. The greatest semi-diameter of the interior bow, on the same grounds, will be forty-two degrees, seventeen minutes ; and the least of the exterior bow fifty degrees, forty-three minutes. 5 . When the sun is in the horizon, either in the morning or evening, the bows will appear complete semicircles. On the contrary, when the sun's altitude is equal to forty-two degrees, two minutes, or to fifty-four degrees, ten minutes, the summits of the bows will be depressed below the horizon. Hence during tho days of summer within a certain interval each day no visible rainbows can be formed, on account of the sun's high elevation above the horizon. 6. The altitude of the bows above the horizon, or surface of the earth, varies according to the elevation of the sun. The altitude at any time may be taken by a common quadrant or any other angle-measuring instrument; but if the sun's altitude at any particular time be known the height of the summit of any of the bows may be found by subtracting the sun's altitude from fortytwo degrees, two minutes, for the inner bow ; and from fifty-four degrees, ten minutes for the outer. Thus, if the sun's altitude be twenty-six degrees, the height of the primary bow would be sixteen degrees, two minutes ; and that of the secondary bow twenty-eight degrees, ten minutes. It follows that the height and the size of the bows diminish as the altitude of the sun increases. 7. If the sun's altitude be more than forty-iro degrees, and less than fifty-four, the exterior bow may be seen, though the interior one is invisible. Sometimes only a portion of an arch will be visible, while all the other parts of the bow are invisible. This happens
when the bow ; and be various by the rai

Lunar striking or such phen sidered hi distinet a distinct. position of be in lier direction o appearane Bible freq and glory as adorne cloud in t Jehovah." the Most was a rain emblem of there repr to by the praise Ili compasset the Most

ON
The comn light alone in somethi of heat co blaze, fron heat, elec manifestat all other we can ex things by and anima nors, and, however, although
when the rain does not occur in a space of sufficient extent to completo the bow ; and the appearances of the position, and even of the bow itself, will be various, according to the nature of the situation, and the space occupied by the rain.

Lunar rainbows are sometimes formed at night by the rays of the moon striking on a rair-cloud, especially when the moon is about at its full; but such phenoment are not often observed. Aristotle is said to have considered himself the first who saw a lunar rainbow. These bows appear distinct and weil-defined, but the prismatic colors are usually not very distinct. They may be all distinguishod by attending to the phases and position of the moon. If the moon be not visible above the horizon, if she be in her first or last quarter, or if an observed phenomenon is not in a direction opposite to the moon, we may conclude with certainty that whatever appearance is presented no lunar rainbow appeas. Tho writers of the Bible frequently allude to the rainbow as one of the emblems of the majosty and glory of the Deity. Ezekiel represents the throno of the Almighty as adorned with a brightness " like the appearance of a bow that is in tho cloud in the day of rain ; the appearance of the likeness of the glory of Jehovah." And in the visions recordel in the book of Revelation, where the Most High is represented as sitting on a throne, it is said ; " there was a rainbow round about the throno, in sight like unto an emerald," an emblem of his glory, and holiness, as well as of his propitious charactor, as there representod. In the aprocryphal book of Eeclesiasticus it is alluded to by the son of Sirach after this manner: "Look upon the rainbow, and praise Him that mado it ; very beautiful it is in the brightness thereof. It compasseth the heavens about with a glorious circle, and tho hands of the Most High have bended it."

ON COLORS ; AND OTHER EFFECTS OF LIGHT.

The common theory supposes or represents that colors aro inherent in light alone ; whereas it is evident light only makes manifest what exists in something or in everything else. The principles of light, of colors, and of heat co-exist in everything. Burn a stick of wood and you obtain a blaze, from which you can derive all the prismatic colors ; you derive light, heat, electricity, and colors, from the same bit of fuel. Light is that manifestation of matter which opens up to us the universe, displays to us all other objects, and is an object itself for us to experiment apon. Thus, we can experiment upon the properties of light, as well as upon all other things by means of light. It is essential to the existence of all vegetables and animals ; and this is a proof that the solar light has always existed as now, and, therefore, that all colors have always been displayed. It is, however, strictly true, that without light there would be no colors : although they existed in principle everywhere and in everything. All
colors, therefore, are dependent upon light. Of all the phenomena which vegetables exhibit, there are few that appear more extraordinary than the energy and constancy with which their stems incline toward the light. Most of the discous flowers follow the sun in his course. They attend him to his retreat in the evening, and meet his rising lustre in the morning, with the same unerring law. They unfold their petals on the approach of this luminary ; they follow his course by turning on their stems, and close them as soon as he disappears. Also, if a plant be shut up in a dark room, and a small hole be afterwards opened, by which the light of the sun may enter, the plant will turn toward that hole, and even alter its shape, in order to incline towards it ; so that, though it was straight before, it will in time become crooked, that it may get near the light. Vegetables placed in room where they receive light only from one direction always extend themselves in that direction. If they receive light from two directions, they incline rather toward that which is strongest. It seems to be rather the light than the heat of the sun which the plant thus covets; for though a fire be kept in the room capable of giving out a much stronger heat than the sun gives there, the plant will turn away from the fire, in order to enjoy the solar light: Trees growing in dense forests, where they receive most of their light from above, direet their shoots almost invariably upward, and, therefore, become much taller and less spreading than such as stand single ; the 7 are also more intensely green toward the tops. The green color of vegetables is found to depend upon the sun's light being allowed to shine on them; for without the influence of the solar light they are always of a whitish aspect. It is found by experiment that if a plant, which has been reared in darkness, is exposed to the light of the day, in two or three days it will acquire a green enlor, pereeptibly similar to that of plants which have grown in open daylight. If we expose to the light one part of the plant, whether leaf or branch, this part alone will become green. If we cover any part of a leaf with an opaque substance, this place will remain white, while the rest becomes green. The whiteness of the inner leaves of cabbages is a partial effect of the same cause ; and any one may produce many other examples of the same kind. M. Decandolle, who seems to have paid particular attention to this subject, makes the following remarks:"It is certain that between the white state of plants vegetating in darkness and complete greenness, every possible intermediate degree exists, determined by the intensity of the light. Of this, any one may easily satisfy himself by attending to the color of a plant exposed to the full daylight; it exhibits in succession all the degrees of verdure. I had already seen the samephenomenon in a particular manner, by exposing plants reared in darkness to the light of lamps. In these experiments, I not only saw the color come on gradually, according to the continuance of the exposure to light,
but I s gives t readily shelter leaves

It is diminis them. sun has been e. experin formly in whic found t maturit aromat climate propert expose vital ai does no by the the ope emissio occasio numero essentia in this betwee

It is
light ; certain When mixed proper When appear searce upon u Black reflect
but I satisfied myself that a certain intensity of permanent light never gives to a plant more than a certain degree of color. The same fact readily shows itself in nature, when we examine the plants that grow under shelter or in forests, or when we examine in suncession the state of the leaves that form the heads of cabbages." *

It is likewise found that the perspiration of vegetables is increased or diminished in a certain measure by the degree of light which falls upon them. M. Guetard informs us that a plant exposed to the rays of the sun has its perspiration increased to a much grcater degree that if it had been exposed to the same heat inside the shade. And, it is said, the experiments of Mr. P. Miller, and others, go to prove that plants uniformly perspire most in the forenoon, though the temperature of the air in which they are placed should be unvaried. Vegetables are likewise found to be indebted to light for their smell, taste, and combustibility, maturity, and the resinous principles which equally depend upon it. The aromatic substances, resins, and volatile oils, are the productions of Southern climates, where the light is more pure and intense. Another remarkable property of light on the vegetable kingdom is, that when vegetables are exposed to open daylight, or to the sun's rays, they emit oxygen gas, or vital air. It has been proved that in the production of this effect the sun does not act as a body that heats. The emission of the gas is determined by the light ; pure air is, therefore, separated by the action of light, and the operation is stronger as the light is more intense. By this continual emission, the atmosphere is continually purified, and the loss of pure air oceasioned by respiration, combustion, fermentation, putrefaction and numerous other proecsses which have a tendency to vitiate this fluid, so cssential to the maintenance and vigor of animal life, is repaired; so that in this way, by the agency of light, a due equilibrium is always maintained between the constituent parts of the atmosphere.

It is evident that colors exist but in principle, except for the agency of light; and it is owing to the surfaces of bodies being disposed to reflect certain colors rather than others that we have such a variety of colors. When the disposition is such that a body reflects every kind of ray in the mixed state in which it receives them, that body appears white to us, which, properly speaking, is no color, but rather the combination of all the colors. When a body absorbs nearly all the light which falls upon it that body appears black; it transmits to the eye so few reflected rays that it is scarce perceptible in itself, and its presence and form make no impression upon us unless as it interrupts the brightness of the surrounding space. Black is therefore the absence of all colors. If the body has a fitness to reflect one sort of rays more abundantly than others, by absorbing all the

[^44]others, it will appear of the color belonging to that species of rays. Thus, the grass is green because it absorbs all the colors except green. It is the green rays only which the grass, the foliage of the trees and shrubs, and all the other verdant parts of the landscape reflect to our sight, and which make them appear green. In the same manner the different flowers reflect their respective colors ; the rose the red rays ; the jonquil the yellow ; the marigold, the orange ; and every object, whether natural or artificial,appears of the color which its peculiar texture is adapted to riffect. A great number of bodies are fitted to reflect at once several kinds of rays, and consequently they appear under mixed colors. It often happens that of two bodies which are green, for example, one may roflect the green of light and the other the mixture of yellow and blue. This quality, which varies to infinity, occasions the different kinds of rays to unite in every possible manner, and every possible proportion; and hence the inexhaustible variety of shades and hues which is seen diffused over the scene of creation.

Every object is black or colorless in perfect darkness, and it only appears colored as soon as light renders it visible. This will become more plain from the following experiment. If we place a colored body in one of the colors of the spectrum which is formed by the prism it appears of the color of the rays in which it is placed. Take, for illustration, a red rose, and expose it first to the red rays, and it will appear of a more brilliant, ruddy hue ; hold it in the blue rays and it appears no longer red, but of a dingy blue color; and in like manner its color will appear different when exposed to all the other differently colored rays. This is the reason why the colors of objects are altered by the nature of the light in which they are seen. The colors of ribbons, of cloths, of silks, or woollen stuff, are not exactly the same when viewed by candle-light as in the day time. In the light of a lamp or of a candle blue sometimes appears green, and yellow objects assume a whitish aspect. The reason is that the light of a candle or of a lamp is not as pure a white as that of the sun, but has a yellowish tinge, and therefore, when refracted by the prism, the yellowish rays are found to predominate, and the superabundance of yellow rays gives to blue objects a greenish hue. The following experiment, as described by Sir D. Brewster, may further illustrate our subject: "Having obtained the means of illuminating any apartment with yellow light, let the exhibition be made in a room with furniture of various bright colors, and with oil or water-colored paintings on the wall. The party which is to witness the experiment should be dressed in a diversity of the gayest colors, and the brightest-colored flowers and highly-colored drawings should be placed on the tables. The room being at first lighted with ordinary lights the bright and gay colors of everything thatit contains will be finely displayed. If the white lights are now suddenly extinguished, and the yellow lamps
lighted, individua ture of tl The flow if they w scarlets, will all bc parties, t yellow, 'l will enve from the cadavero one of thr

From solar spec of naturc aspect, a behold. color fron thrown u in differe variety of of creatio appear to soon com and refle quently reflects t aspect, a copiously are at a change light has therefore of the obs long trac rays, the willillum the sung must pas clouds gr them of a Similar e
lighted, the most appalling metamorphosis will be exhibited. The astonished individuals will no longer be able to recognize each other. All the furniture of the room, an' all the objects it contains, will exhibit only one color. The flowers will loje their hues; the paintings and drawings will appear as if they were executed in Clina ink ; and the gayest dresses, the brightest scarlets, the purest lilacs, the richest blues, and the most vivid greens, will all be converted into one monotonous yellow. The complexions of the parties, too, will suffer a corresponding change. One pallid, death-like yellow, 'likethe unnatural hue whichAutumn paints upon the perished leaf,' will envelop the young and the old; and the sallow face will alone escape from the metamorphosis. Each individual derives merriment from the cadaverous appearance of his neighbor, without being sensible that he is one of the ghastly assemblage."

From such experiments we might conclude that were the colors of the solar spectrum different from what they are the colors which adorn the face of nature and embellish the landscape of the world would be of another aspect, and appear very different from what we are now accustomed to behold. Some of the distant stars appear to display light different in color from solar light; and hence some have concluded that the coloring thrown upon the different seenes of the universe may vary somewhat in different systems, and that, along with other arrangements, an infinite variety of coloring of scenery may be displayed throughout the immensity of creation. The different coloring, however, which these distant stars appear to exhibit may arise from complementary colors, which we shall soon coms to consider. The atmosphere, in consequence of its refractive and reflective powers, is the source of a diversity of colors which frequently embellish and adorn the aspect of our sky. The atmosphere reflects the blue rays most plentifully, which is the cause of its blue aspect, and must, therefore, transmit the red, orange, and yellow more copiously than the other rays. When the sun and other heavenly bodies are at an high altitude their light is transmitted without any perceptible change to the earth's surface; but when they are near the horizon their light has to pass through an extended tract of dense air, and must therefore, be considerably modified by reflection before it reaches the eye of the observer. If the light of the setting sun, by thus passing through a long tract of dense air, be divested of its green, blue, indigo, and violet rays, the remaining rays which are transmitted through the atmosphere willilluminate the western cloud j, first, with an orange color, and, then, as the sun gradually sinks below the horizon, the track through which the rays must pass becoming longer, the yellow and orange are reflected, and the clouds grow more deeply red, until at length the departure of the sun leaves them of a leaden hue, by the reflection of the blue light through the air. Similar changes may sometimes be seen on the eastern and western fronts
of white buildings. From such atmospherical refractions and reflections those beautiful and varied hues are produced with which our western sky is gilded by the setting sun, and the glowing red which tinges the morning and evening clouds, until their ruddy glare is tempered by the purple of twilight, and the reflected azure of the sky. When a direct spectrum is thrown upon colors darker than itself it mixes with them, as the yellow spectrum of the setting sun, thrown on the verdant grass, becomes a greener yellow. But when a direct spectrum is thrown on colors brighter than itself it becomes instantly changed into the reverse spectrum, whieh blends with these brighter colors. Thus, the yellow spectrum of the setting sun thrown on the luminous sky becomes blue and changes with the color or brightness of the elouds on which it appears. The red rays of light being capable of appearing through thick and resisting media which intercept all other colors is likewise the cause why the sun appears red when seen through a fog; why lamps at a distance, seen through the smoke of a large street, are red, while those near by are white. To the same cause it is owing that a diver at the bottom of the sea is surrounded with the red light which appears through the superincumbent fluid, while the blue light is reflected from the surface of the water.

COMPLENENTARY, OR ACCIDENTAL, COLORS.

When the cye is impressed with a brilliant light or color, after it has been removed, the retina of the eye remains for a short time impressed with a color which is usually complementary to the one first observed. Complementary colors mean any tro colors which will, when combined, form white light; in short, any two colors which contain red, yellow, and blue. Thus, a brilliant yellow light would leave upon the cye the impression of violet-colored light, composed of red and blue; a green would leave a reddish violet; a red a bluish green; a black a white; a white a black; an orange a blue; a blue an orange red ; indigo an orange yellow; and violet a yellow green. This can be illustrated by placing some strips, say of bright red paper, in the form of a cross on a sheet of white cardboard. If the oxyhydrogen light is projected from a lantern with condenser lenses on to the red cross, and the spectator directed to watch it steadily, on suddenly removing the card with the red cross, and having another white card behind it, it will usually be noticed that nearly all those who are watching the experiment will exclaim that they see a green cross, faint green of course, but still quite sufficiently defined to enable them t) determine that it is so. If instead of the red cross green be omployed, red remains visible, and black, as already stated, becomes white. These effects are described by Sir D. Brewster, under the name of "Accidental colors"; and he appears to regard them as synonymous with the term already explained, that is, complementary colors. He thus explains the phenomena :
" Whe the ret deaden fore bo red cr insensi and co rays in green cross." the ret protect parts o deaden white the reti reason for som color of necessa colored without

He si follow in hold bef remove body fo case, on one of t bly the effect m one bein light of

Mr. I
ments d ever to falling 0 light pas cribes t held bef ed and orange, interme
"When the eye has been for some time fixed on the red cross, the part of the retina occupied by the red image is strongly excited, or, as it were, deadened, by its continued action. The sensibility of red light will therefore be diminished; and, consequently, when the eye is turned from the red cross to the white card, the deadened portion of the retina will be insensibie to the reu rays which form part of the white light of the paper, and consequently will see the paper of that color which arises from all the rays in the white light of the paper, but the red; that is, of a bluish green color', which is therefore the true complementary color of the red cross." "When a black cross is placed on a white ground, the portion of the retina on which the black image falls in place of being deadened is protected, as it were, by the absence of light, while all the surrounding parts of the retina, being excited by the white light of the paper, will be deadened by its continual action. Hence when the eye is directed to the white card, it will see a white cross, corresponding to the black image on the retina; so that the accidental color of black is white." For the same reason if a white cross is placed on a black ground and viewed steadily for somo time, the eye will always see a black cross; so that the accidental color of white is black, The same author remarks: "It is not, however, necessary that the eye should be strongly impressed previously by some colored light, as the phenomena of accidental colore are sometimes seen without it."

IIe states that in order to see this class of phenomena, he found the following method the simplest and the best. "Having lighted two candles hold before one of them a piece of eolored glass, suppose bright red, and remove the other candle to such a distance, that the two shadows of any body formed upon a piece of white paper may be equally dark. In this case, one of the shadows will be red and the other green. With blue glass, one of them will be blue and the other orange-yellow, the one being invariably the accidental or complementary color of the other. The very same effect may be produced in daylight by two holes in a window-shutter ; the one being covered with colored glass, and the other transmitting the whito light of the sky."

Mr. Rose, in a paper on " Persistence," in which he describes experiments devised and carricd out by himself, shows that with no color whatever to look upon, and only gazing on a white card, while the starry light falling on it is gradually reduced and restored, the white appearance of light passes into the various gradations of colored light. Ho thus describes this very interesting experiment. "An intensely white card is held before the eye, whilst a strong light, falling on it, is gradually reduced and restored. As the light is reduced, the whiteness passes into yellow, orange, red, and sometimes thence into blue. Whilst at other times colors intermediate between the red and blue are apprehended, the gradual
roduction of the light brings up the color by successive steps, and in reverse order to whiteness. All eyes, as might bo expected, are not affected alike by these experiments; but all see whiteness passing into yellow, orange, and blue; and blue returning back in deep orange, yellow, and white. The restoration of the light is on the whole less satisfactory than its reduction, for when by reduction a deeply intense blue is obtained the light cannot, to some eyes, be restored slowly enough to prevent a sudden change to deep orange. The colors that succeed each other as the light is gradually, reduced have none of the accepted relations between any given eolor and its complement. The white is not succeeded by their blacknoss, the yellow by faint purple, or the orange invariably by blue: but the different hues do como up in an order that suggests the great probability that what we name colors is only the varions affection of the optic nerve by a greater or less quantity of light radiating from a focal point in an imperfect reflector." It is said the above experiment was the result of accident. Mr. Rose had been looking upon a white surface lying near a powerful gaslight, when, his arm having caught the tap and reduced the light, his attention was drawn to a sudden change from white to red color.

Another experiment of great beauty and interest was also suggested to him by an accidental circumstance. He was observing the effect of flashes of intermittent, artificial light on a revolving disc, having cwelve large circular black spaces, ranged equidistantly around the margin. It was broad day, and the window-shutters were closed to exclude the natural light. While the experiment was going on the shutter accidentally started open, and admitted a litt'e daylight, when the remarkable appearance was presented of twelve blue circular spaces, lying upon a zone of bright orange. Mr. Rose regarded this at the time as simply the presentation of a complementary color, under singular conditions which kept it permanently before the eye; but as leisure afforded him opportunity to repeat the experiment, he soon began to perceive that he had taken far too limited and narrow a view. The misconception arose out of a fact connected with the painting of the dises. He found that lampblack alone would not give the depth and intensity required in the devices, and to remedy the defect he added a little indigo. The circular spaces, to the eye, were certainly intense black,and nothing more ; but he considered that they had a tendency to blueness, and that under the rotation they were reduced to a lighter blue, and drew after them trains of complementary orange, in the same way that a black fly, walking across a pane of ground glass, backed by gray light, is seen to iraw a white spectrum after him.
But he dismissed this idea as soon as he found that absolute unmixed black produced the same effect, and that the nearer the artificial light approached to intensity of whiteness, the more decided and satisfactory
was the to say eye ; always is refled spaces intense negativ the ligl sentatio inner e blue at outer m spaces. light va orange. reasona Eight c persiste mixture manner rently s orange. cing the quality then un fied to b the flasl
was the result. But how is this effect to be explained ? Mr. Rose goes on to say: The diffused light of the zone is continually falling upon the oye ; but the intermittent flashes find the negations or black portions always in the same areas, and hence from the spaces no part of the flash is reflected, whilst it mingles with, and adds to, the diffused light in the spaces between the negations. Now the diffused light is, we assume, intense light reduced by distribution to blueness ; and in this blueness the negative spaces participate ; but in the rest of the zone the flash brings up the light in such quality in relation to space as is necessary for the prosentation of orange. Wo have more light from diffusion at the outer and inner edges than at the centre of the zone or ring, and hence tho light blue at the inner margin, and the light blue, passing into green, at the outer margin. This common quality of the zone is shown in the negative spaces. But from the intervals between them there comes the diffused light variously affected by the flash, and conveying the graduated tints of orange." Mr. Rose thinks this explanation of the subject will appear reasonabie, if tho conditions of the action are thoughtfully considered. Eight circular spaces of absolute blackness produce under rotation and by persistence a nebulous ring. "If, he says, this is to be viowed as a mixture of light and shadow, or of black and white, we cannot explain the manner of its affection by the intermittent light, which shows the apparently stationary negations as blue, and the remainder of the zone as orange. But if we regard the black spaces as utter absence of light, reducing the quantity of light for distribution over the zone, but giving it no quality by admixture, all difficulty is at an end. A quantity of light is then understood to be diffused over a certain space, whence it comes modified to blueness ; and when this reduced light receives tho impression of the flash, it is increased in relation to surface, and raised to orange."

In the " Edinburgh Journal of Science" Mr. Smith has described a very curious instance of the change of white light into complementary tints. In his directions for the performance of this experiment he tells the operator to hold a strip of white cardboard upright about twelve inches from the eyes. The card may be six inchos long, and a quarter of an inch wide. If the eyes are now fixed upon some object at a distance of ten or twelve feet behind it, so that the card becomes doubled, and a lighted candle is now placed close to the right eye, and shaded from the left one, the latter will see the white strip of card green, while the former will appreciate the complementary color or red. On changing the candle so that the light falls upon the left eye the phenomena are reversed. We shall conclude this part of our subject, on the persistence of vision and its illusions, by presenting a generai summary of the effects. 1. Persistence is the retention of an image by the eye not for an absolute instant, but for an interval,-an interval sufficiently long for an object to pass over a
succession of points, in all of which itwill be apprehen ded by the eye at the samo instant. For illustration, a lighted stick whirled round rapidly in a circle presents a ring of light, becauso the cye retains an impression of the light at any given point, until tho stick has returned to the samo point again. 2. Simple Persistence presents only illusions of tho simplest character, as the commingling of the elements of white light, the composition of color, etc. 3. Persistence under Conditions of Interrupted Vision offers an indefinite variety of illusions, depending upon the fact that a dise in rapid revolution, presenting the points in its circumference only for an instant to the eye, is virtually stationary ; and any objects ituated in these points is distinetly seen, because of its making no sensibl eadvance during the exceedingly brief interval of its apparitions. 4. Disc Action presents the illusions of vision under various arrangements, in which dises revolving with different degrees of velocity, and bearing multiform devices, impress the ege with a number of images at virtually the same instant. 5. Single Disc Action is tolerably well known in its application to ordinary optical instruments, and as the vehicie for the amusements presented in the thaumatrope, etc. The single action has this advantage in connection with the thammatrope and kindred devicos, that it shows true form, and does not make anamorphoses or distorted figures, in one point of view confused, in another exact and regular. 6. Double Disc Action produces, under certain arrangements, an almost unlimited varicty of illusions. Tho double dise movement, as arranged by Mr. Rose, consists of two wheels, ono of which receives a dise bearing the devices, and the other a black dise perforated with a number of slots or slits. The wheels revolve in contrary directions, and their relative velocities can be varied at pleasure within certain limitations. In these illusions the aim is at something higher than a mere optical toy ; the double dise action will be more estimable since it presents the most interesting illustrations of recondite optical principles, and also examples of compound motion, multiplication, involution and combinations of the most attraciive and pleasing character.
Color is that property of light to whieh the universe is indebted for the beauties and sublimities with which it is adorned. It is color, in all its diversified shades, which presents to the view of intelligent beings that almost infinito variety of aspect which the seenes of nature display, which directs the eye and the imagination, and gives a pleasing variety to every new landseape we behold. Every flower which adorns our fields and gardens presents its various hues; every landscape presents its shrubs and trees of different degrees of intensity of verdure ; and almost every mountain is covered with herbs and grass of different shades from those which are seen on the hills and plains surrounding it. In the rural districts during the summer nature is daily varying her appearance by the multitude and diversity of her hues and decorations, so that the eye rambles
with pl sides a scape, in the light po passing the gen by a th is cove is thus verdur

The colors. the gui the var the eye beauty. for not unshap ture of in the which t are to b quently which e aerial so and mo the hori shade of they ap briliant now the color di earth or cations spacious
with pleasure over objects continually diversified, and extending on all sides as far as the sight ean reach. In the flowers which deck every landscape, what an admirable assemblage o. colors, and what a wonderful art in the disposition of their shades does nature display. Here appoars a light peneilling of delicate tints; there they are blended in a manner surpassing the nicest rules of the most exquisite art. Although green is the general color which prevails over our earthly seene, yet it is diversified by a thousand different shades, so that every kind of tree, shrub, and herb, is covered with its own peculiar verdure. The dark green of the forests is thus easily distinguished from the lighter shades of corn-fields, and the verduro of the pastures.

The world of animated nature also displays a great variety of beautif.al colors. The plumage of birds ; tho brilliant feathers of the peacock, and the guinea-fowl, of the robin, the goldfinch, and the humming-bird, and the various embellishments of many species of the insect class, present to the cye in every region of the globe an interesting seene of diversified beauty. Nor is the mineral kingdom destitute of such beauties of color, for not only all crystals, and precious stones, but some of the roughest and unshapeliest stones and minerals, whon polished artificially, display a mixture of the most delieate and variogated colors. Now all these beauties in the scene around us are owing to that property in the rays of light by which they can be separated into their primary colors. To the same cause are to be attributed those beautiful and diversified appearances, which frequently adorn the face of the heavens, the yellow, orange and ruby hues which embellish the sky at the rising and setting of the sun ; and thoso aerial scenes so frequently beheld in tropical climes, where rivers, houses, and mountains are depicted as rolling over each other along the circle of the horizon. The clouds, particularly in some countries, reflect almost every shade of color in nature ; sometimes they are of a rossate hue; sometimes they appear like bands of deep vermilion : and sometimes like huge brilliant masses heaped one upon another and tinged with various hues: now they are white, like ivory ; now as yellow as native gold. In short color diversifies every scene with which we are acquainted, whether on the earth or in the heavens. It imparts beauty to the rainbow, to the coruscations of the Aurora Borealis, and gives a splendor and sublimity to the spacious vault of heaven.
But let us consider for a moment what the aspect of nature would be if instead of the beautiful diversity of ewbellishment which now appears on every side one uniform color were spread over the scenery of the universe. Conceive the whole of terrestrial nature to be covered with snow, so that no object on earth appeared of any other hue ; and that the vast expanse of the sky presented the same uniform aspect; what would be the condition of human beings, supposing them existing in such a world?

The light of the sun would be strongly reflected from cyery objeet within the bounds of our horizon, and would produce such illumination as wonld dazzle every eye. The day would ex'ibibit a greater brightness than it now does; and our eyes, having become accustomed to it,might be enabled freely to expatiate on the surrounding landscape; but everything, though eulightened, would appear confused, and particular objects would scarcely be distinguishable. A house or a tree near at hand might possibly be distinguished on accomnt of its elevation above the general level of the ground, and rivers, and valleys, and other hollow places, by reason of their being depressed below it. But we should be obliged rather to guess and conjecture as to the particular oljects wo wished to distinguish thim be able to arrive at any certain conclusion conecrning them; and if objects lay at a considerable distance from us it would be impossible for us with any degree of probability to distinguish ono object from another. Notwithstanding the universal brightness of the scene the miformity of color of every object would certainly prevent us from easily distinguishing them from one another. In such a condition human beings would be confounded, and friends and neighbors be at a loss to recognize each other:

The heavens, too, would wear a uniform abpect; neither the moon nor planets would be visible to the eye, nor those numberless stars which now shime with such brilliancy and adorn the nocturnal sky; for it is by the contrast produced by the white radiance of the stars, and the deep azure of the sky, that those distant bodies are rendered discernible. Were they depicted on a snow white ground they would not be distinguishable from that ground, and consequently would be invisible.

Of course, all that beautiful variety of aspect which now appears on our terrestrial scene,--the rich verdure of the fields, the dark green foliage of the stately forest trees, the rivers meandering through the valleys, and the splendid hues which variegate and adorn our gardens and meadows, the gay coloring of the morning and evening clouds, and all that variety which distinguishes the different seasons,- would not at all appear. As every landscape would exhibit nearly the same aspect, the poet, the philosopher, the antiquarian, the scholar, or the man of science, would have no inducement to visit distant countries to investigate the scenes of nature or the productions of art; and tours from one region of the earth to another would searcely be productive of enjoyment.
The prevalence of any other single color would be attended with nearly the same results. Were a deep red to be uniformly spread over the scene of nature, it would not only be disagreeable to the eye, but prevent all distinction of objects. Were a dark blue or a deep violet to prevail, similar effects would follow, and the scene of nature would present a dismal and gloomy appearance. Even if all nature were arrayed in a
robe of diversifie would be and the is that tho colors wh to discrin conld not they wou criminatir sense of numerous suljected objects b relative ing, with to spend wanted to cevery del from one would oce tain gues individua regular e must rem scenes an colors.

For the emabling as that o several re Creator! tools, our furts, are any perpl article w infallibly observati sity of co To those being, th are painte mountain
robe of green, which is a more pleasing color to the eye, were it not diversified with the different shades which it now exhibits, every object would be equally undistinguishable. Such would be the aspect of nature and the inconveniences to which human beings would be doomed, were it that the light which shone upon them was without that intermixture of colors which now appears over the face of all nature, and which serves to discriminato one object from another. Even our domestic apartments could not be decorated in the least dogree, and the articles with which they would be furnished would be almost undistiuguishable, so that in discriminating one object from another, we wouk be as much indebted to the sense of touch as to the sense of sight. But worst of all would be tho numerous delays, uneertainties, and perplexities to which we should be subjected, were we under the necessity every moment of distinguishing oljects by trains of reasoning, and by circumstances of time, place, and relative position. An artificer, when commencing his work in the morn. ing, with his numerous tools of nearly the same size and shapn. would have to spend a consideraise portion of his time before he could select those he wanted to use, or the ubjects to which he wanted to apply them ; and in every department of society, and in all intercourses of persons by travel from one place to another, similar inconveniences and perplexities would occur. People would have to spend ono half their time in uncertain guesses and perplexing reasonings respecting the real nature and individuality of objects, rather than in a consecutive train of thought, or a regular employment ; and after all the perplexities and conjectures they must remain in the utmost uncertainty and ignorance of the thousands of scenes and objects which are now obvious through the instrumentality of colors.

For the existing state of things in the visible universe, and for thus cmabling us to distinguish objects by such an easy and expeditious mode as that of color, which in a moment distinguishes every object and its several relations, we cannot but admire the wisdom and goodness of the C'reator! We rise in the morning to our respective employments, and our tools, our books, and whatever is necessary for our subsistence and comfurts, are at once discriminated. Without the least hesitation, and without any perplexing process of reasoning, we can lay our hands upon whatever article we require. Color clothes every object in its peculiar livery, and intallibly directs the hand in its movements, and the cye in its surreys and observations. But this is not the only end which is answered bev the diversity of colors. They minister largely to our pleasures as well as to our wants. 'To those favored with a refined taste, as well as to almost every human being, the exquisite coloring of flowers, the delicate tints with which they are painted, the varied shades of green with wheh the hills and dales, the mountains and valleys, are arrayed, and that beautiful variety which
appears on a bright summer's day on all the objects of universal nature, are sources of the purest enjoyment and delight. Color too, as well as magnituie, adds to the sublimity of objects. Were the canopy of heaven of one uniform color, it would not produce those lofty conceptions, and those delightful and trausporting emotions, which a contemplation of its august scenery never fails to inspire. The colors displayed in the solar light are common to all the globes which compese the solar system, and must necessarily be reflected in all their diversified hues from all objects on their surfaces. Some of the doublo stars appear to emit light of different hues, which is thought by some astronomers to arise from complementary colors. The larger star sometimes exhibits light of a ruddy or orange hue, and the smaller one a radianee whieh approaehes to blue or green. There may, therefore, be some reason to conclude that the objeets connected with tho planets which revolve around such stars, being occasionally enlightened with suns of different hues, display a more diversifiod and splendid scenery of coloring than is ever beheld in our world ; rud that one of the distinguishing charaeteristies of different worlds in rogard to their embellishments, may consist in the variety and splendor of colours with which the objects connected with them are adorned.

It need not be inferred from what has been said that we intend to convey the idea that the light, or colors which human beings have experienced in any past time were ever different from what we find them now to be. We believe on the contrary that light has always been what it is now, and that it has always displayed the same variety of colors. Moreover, light, with its inherent colors, is a creation in the same sense as any other object is; and in the same sense as any other natural objeet it is an eternally created thing; that is to say, it has always been and it will always be, created. It is a new manifestation or combination of matter, as a man, or trec, or any other natural object is a new manifestation or combination of matter. It is everywhere present in principle, and is always manifested whereever the conditions necessary for that manifostation exist. In this, as well as in many other arrangements in nature, we have a sensible proof of the presence and ageney of that Almighty Intelligence in whom we live, and move, and have our being. None but an infinitely wise and beneficent Being, intimately preseni in all places, could thus so regularly create in us by means of color those exquisite sensations which afford us so much delight, and which unite us, as it were, to everything around us. In the varicty of huv spread over the face of creation we have as real a display of the Divine presence as Moses may bave had at the burning bush. The only difference is that the one was out of the common order of Divine procedure, while the other is in accordance with those permanent laws which regulate the economy of the universe. In every color which we contemplate we have a sensible remembrencer of the presence and benevolence of
that Beir whose po that men derful wo good, an

The obje magnitud other fac that has effected i mind a m stand tha Boing wh and com

It will apparent to the for larly the toward th indefinite During tl phere is mountain vault of

[^45]that Boing whose spirit hath garnished the heavons and the earth, and by whose power and agency wo are every moment sustained in existence. Oh that men would, therefore, praise the Lord, for his goodness, for his wonderful works to tho children of men! II giveth rain to the evil and the good, and causeth his sun to shine upon the just and upon the unjust !

ON ASTRONOMY.

The object of the science of Astronomy is to explain the motions and magnitudes of the earth and the lenavenly bodies, their various aspects, and other facts which have been ascertained coneerning them. It is a science that has to do with our suljeet, since it illustrates tho changes of place offected in the earth and the heavenly bodies by their motions; gives the mind a moro expansive idea of the infinite Creator, and gives it to understand that it cannot possibly comprehend the mode of existence of that Being who is everywhere present in essonee, and power, amid such varied and complex changes and revolutions.
It will first be expedient for us to say a ferw words in rolation to tho apparent motions of the heavenly bodies during the day and night, and as to the form and motions of the earth, before proceeding to describe particularly the phenomenon of the other heavenly bodiés. When we look up toward the sky we perceive an apparent coneave hemisphere, placed at an indefinite distanco from us, and surrounding the earth on overy side. During the day the principal luminous object that appea"s in this hemisphere is the sun. In the morning wo see him rise beyond the distant mountains or the extremity of the ocean; ho gradually ascends the vault of heaven, and then declines and disappears in the opposite quartor

[^46]of the sky. In the northern parts of the globe, where we reside, if, abcut the 20 th of March, we place ourselves in an open plain at about six o'elock in the morning with our face toward the South, the sun will appear to rise on our left, or due East, and at about the same hour in the evening he will set on our right hand or due West. This time is called the vernal equinox, when day and night are equa. About the 21st of June he rises to our left, but somewhat behind us in the direction of the Northeast, reaehes a greater height at noon than on the 21st of March, and, after describing a large circuit of the heavens, sets on our right hand and still behind us, in the North-western quarter of the sky. This time is called the summer solstice, or the time when the sun appears to stand still a few days, and then begins to retrace his steps. At this time the day is longest and the night shortest. At about the 23 rd of September the sun again rises due East, and sets wue West, as on the 20th of March; and this is called the Autumnal Equinox, day and night being now again equal. At about the 21st of December, if we observe from the same position, we may see without turning our eyes the points at which he rises and sers. He rises in the South-east, aseends to a small elevation at noon, and sets in the South-wost, after having deseribed a very small are of the heavens. This time is called the Winter Solstice, when the sun seems to remain stationary for a short time, as it were, preparatory to his advancing to describe larger eireles of the heovens. The day is now shortest and the night longest. Each suceceding day after this he appears to rise a little farther toward the East, for the stars which are seen to the Eastward of him appear every succeeding day to be nearer to the place where he is seen. All these various and suceessive changes are accomplished within the period of three hundred and sixty-five days, six hours, in which time he appears to have made a complete revelution round the heavens from West to East, at the rate of about one dogree each day.

The moon is the next object in the heavens which naturally attraets our attention, and she goes through similar changes in the course of a month. When she first becomes visible at new moon, she appears in the Western part of the heavens, near where the sun went down, and she appears in the form of a crescent, having the horns pointed toward the East, the sun being now to the Westward of her. Every night she appears inereased in size and removel to a greater distance from the sun, until, after the lapse of about two weeks, she appears in the Eastern part of the horizon, just as the sun disappears in the Western, at which time sho presents a round, full, enlightened face, and is called full moon. After this she gradually moves farther and iarther Eastward, and her enligl.tened part gradually decreases, until at last she seems to approach the sun as nearly in the East as she did in the West, and rises only a little before
him in toward differen from tir Agai the Eas above t see the moved next mo Western find that above th same po a few de a similar that a eo cribe cir point cal which in and the z seems fix three de star is, these No times bel point ; tl distances circles is 4 second exaetly t

A pers after hav come the gone that lay of th an intelli that the s hemisphe return to apparent hemisphe by the m
hm in the morning, in the form of a crescent, having its horns pointed toward the West, the sun being now to the Eastward of her. All these different changes may be traced by attending to her apparent positions from time to time with respect to the fixed stars.

Again, if on a winter evening, abont six o'elock, we direct our view to the Eastern quarter of the sky, we shall perecive certain stars just risen above the horizon; if we observe the same stars at midnight, we shall see them at a considerable elevation in the Sonth, having apparently moved over a space equal to one-half of the whole hemisphere. On the next morning, about six o'clock, the same stars will be seen to set in the Western part of the sky. If we now look quite toward the South, we shall find that the stars there only describe very small ares, rising but a little above the horizon, and setting again, after a short time, not far from the same point; the highest altitude attained at any time not being more than a few degrees. If we turn our eyes toward the North, wo shall perceive a similar apparent motion of these twinkling orbs, but with this difference, that a considerable number of them neither rise nor set, but seem to describe circles of greater or less dianeter, round an apparently im:novable point called the North Pole. Near this point is situated the pole star, which in our latitude appears ele vate l about half way between the horizon, and the zenith, or point directly over our heads ; and to a common observer seems fixed; but is found by the telescope to describe circles of about three degrees in diameter around the north polar point, from which the star is, therefore, really distant about one and a-half degrees. Thus, these Northern stars never set to us, but seem sometimes above, sometimes below, and sometimes to the East or to the West of the north polar point ; the dimensions of the circles they describe depending upon their distances from the north pole; and the time they occupy in completing their circles is about 24 hours; or more accurately 23 hours, 50 minutes, and t seconds, that is, one day; and they all finish their revolutions in exactly the came period of time.

A person who has for the first time directed his attention to the heavens after having made such observations, will naturally enquire ; whenco come these stars that begin to appear in the East? Whither have those gone that have disappeared in the West? And what becomes during the day of the stars which are visible during the night? It occurs at once to an intelligent observer who is convinced of the roundness of the earth, that the stars which rise above the Eastern horizon come from another hemisphere, which we are apt to imagine below us, and when they set return to that hemisphere again ; and that the reason why stars are not apparent during the day-time is not because they are absent from our hemisphere, or have ceased to shine, but beeause their light is obscured by the more vivid splendor of the sun. The fact of their presence in our
hemisphere during the day is put beyond all doubt by the use of the telescope, which instrument, adapted to an equatorial motion, enables us to seo many of the stars even at noon-day. We ourself have seen with the naked eye one of the planets at a pretty high elevation in the NorthEastern part of the heavens, on the forenoon of a day when the sun was shining brightly ; its appearance at that time excited the attention of many others also. From such observations we are led to concludo that the carth on which we dwell exists in empty space surrounded on all sides by tho celestial vault, and that tho whole sphore of the heavons has an apparent motion round the earth every twenty-four hours. Whether this motion be real or only apparent is, however, determined hy other considerations.

Although such general views of the nosturnal heavens, which every common observer may take, have a tendency to expand the mind, and to elevate it to the contemplation of an invisible Power by which such movements are conducted; yet such is the apathy with which the greater portion of mankind gaze at the heavens, that there are thonsands who have

Fig. 93.-The constellation omon.
oscasionally viewed the stars for the space of fifty years, who are still ignorant of the fact that they perform an apparent diurnal revolution round our globe.

Again, of nights the stars we observ North or
distance, and the belt of 0 Southern relative a from one Great Be fixed star

- Figure Great Bear, figure repre Wain. Th largest star hand side o north pole, stars be co meet the fir part of the Great Bear position rel 10 o'clock i the pole sta wards towa year, the G sometimes positions a
A gain, if we contemplate the heavens with some attention for a number of nights in succession, we shall find that by far the greater number of the stars nover seem to alter their positions with respeet to each other. If we observe two stars at a certain apparent distance from each other either North or South, or in any other direction, they will appear at the same

Fig. 9.4.
distance, and in the same relative position, the next evening, the next month, and the next year. The stars, for instance, which form the sword and belt of Orion, (which constellation may bo seen during the winter in the Southern part of the heavens), present to our view the same figrure and relative aspect during the whole period they are visible in winter, and from one year to another. And the same is the case with the stars of tho Great Bear, situated in the Northern parts of the sky*, and with all the fixed stars in the heavens.

[^47]There is, however, another fact with respect to the general appearance o. the sky, which the observer can likewise verify for himself. Having fixed upon any brightstar, let him observe it earefully or"ary evening at the exact time of its passing the meridian, or of its disappearance behind some conspicuous object, say a tree, or a ehurch sterple. Let him observe it again on the following evening, and again afte: $\because=$ lapse of a few days more, and he will find that the star is a little oarlier every day in arriving at the place. Thus, if it be on the meridian, or in a line with the marking object, at nine o'clock, one day, it will be there about four minutes before nine on the next day, and so on. It is owing to this that we see different constellations at different seasons of the year. Many of those w! ieh shine brightly on a winter's night are above tho horizon in summer, during the day-time, and hence are invisible. In this way, we see by far the larger portion of the stars at some time or other of the year; but just as those stars within fifty degrees of the north pole never set to us, so those within a similar distance of the south pole, never rise at all in our latitudes. Among the most brilliant of the constellations thus hidden from usis thatealled the Southern Cross,and when travellers are going luward the southern hemisphere they anxiously await the first appearance of this constellation. As they approach the tropics and the equator the north poie star seems to sink lower and lower in the sky, and the number of star's which never set in our latitudes beeomes less and less, till, when they reach the erguator, the polo is in their horizon, and all the stars are seen rising in the East, remaining visible exactly twelve hours, and then setting in the Western horizon. They all appear here also to travel in straight lines instoad of in curves, as they appear to do in the north and south latitudes. By placing an artificial globe so that its axis is horizontal, and its pole in the horizon, one may obtain a representation of these phenomena.
But while the fixed stars never appear to alter their positions in relation to each other, we find, by a close inspection of the sky, another class of bodies, which regularly shift their positions; sometimes these appear to move toward the East, sometimes toward the West, and sometimes to remain stationary. These bodies have received the name of planets, or wandering stars, in opposition to those which do not altar their position and are hence ealled fived stars. In our latitudes the planets are most frequently seen in the Eastern and Western, or in the Soathern quarters of the heavens ; and they are situated, with the exception of a few of the minor ones, in a belt ealled the zodiac, extending for nine degrees on both sides, of the ecliptic ; (this is, the apparent path of the sun) ; and hence the planets are easily found by observers. More than one hundred of these planetary orbs have been diseovered, six of which were known in times of great antiquity ; and only about five are visible to the naked eye. By long con-
tinued astrono centre harmon with th descrip motion.

of the

of the 1 have be a spher so sligh of it. : cifferen or an i real dir greater 7899 m do not less, so in real followi ceive t convex or fou looking
tinued and careful observations of the aspocts and motions of theso planets, astronomers have determined that they all move round the sun as the centre of their motions, and form, along with the earth, one grand and harmonious system. This assemblago of heavenly bodies in connection with the carth is termed the solar system, of which we shall exhibit a bricf description after we shall have shown the ball of the earth to be in motion.
For a long time during the dark ages, and the infancy of science, the earth on which we live was considered the largest body in the universe. It was supposed to be animmense plane diversified with inequalities in tho shape of mountains and valleys, and stretching out to an unlimited extent on all sides, bounded by the sky. What was below this immense mass of land and water, and how it was supported, none ventured positiveiy to tell ; thongh some of the Christian fathers strenuously asserted that the earth was extended infinitely downward, and established er several foundations; a plain contradietion, for what is infinite cannot have a fuundation. According to the ideas of some of the ancients, however, Atlas bore up the world on his shoulders; and many of the IIindoos of the present day assert that it is supported by a serpent and a tortoise; but it is clear that these attempted solutions of the difficulty, as the foundations of tho Christian fathers, only remove it one step farther ; for we should have to seek some support for the man and the serpent. Such, however, were some of the absurd and foolish opinions of those who viewed the system of the universe through a false medium, and who were ignorant of the facts and principles of modern science. It is only within tho period of the last three centuries that the true figure and dimension: of the earth have been accurately ascertained. This figure is now fouls it to be that of a sphere or globe, deviating, however, from the perfect spherical form, only so slightly that it could not bo perceived in any model we could make of it. Suppose for instance, we made a globe of thirty inches diameter, tho difference between the polar and equatorial diameters would be only ${ }^{\frac{1}{0} \overline{0}}$ th or an inch, a difference too small for the keenest eye to detect. The real dimensions of the earth's diameters aro found to be as follows: The greater, or equatorial, diameter, $7925 \frac{1}{2}$ miles; the lesser, or polar, diameter $7809 \mathrm{~m}^{-1}$ es ; showing a difference of a little over twenty-six miles. We do not know but that further investigations will make this difference even less, so that the earth may be regarded as a perfect sphere. That this is in reality the form of the earth will aprear from such considerations as the following; when we stand by the sea shore on a calm day we easily perceive that the surface of the water is not quite plane, but somewhat convex or rounded; and if we are on the shore of an arm of the sea, three or four miles broad, placing our eyes near the level of the water, and looking along its surface toward the opposite shore, we plainly see the
water elevated about midway between our eycs and the opposite shore, so as to prevent us sceing the objects which aro near the elge of the water there. If we make the same experiment on a lake of three or four miles in extent, a small boat near the end of the lake may be seen by one who is at some height above the water ; butif we lay our cye near the surface the view of the boat will be intercepted by the convexity of the water, which proves the lake to be a small segment of a globe. On land, it is seldom a large tract of land can be chosen sufficiently level to answer the purpose of making such experiments, as even in largo planes there are frequently undulations which materially', alter the earth's natural convexity. Again, when wo view a ship departing from the coast in any direction, as it retires from our view we still see the masts and rigging of the vossel, when the hull has disappeared, and has sunk, as it were, beyond the boundaries of our sight. First we lose sight of the hull, then of the sails, and last of all of the topmast. On the other hand, when a ship is approaching the shore, the first part of it which is visible when at a considerable distance is the topmast ; as it approaches nearer the sails come into view; and last of all the hull gradually comes within the limits of our sight ; but the vessel will pass over several miles of the sea, from the time of our first perceiving the topmast, mutil the hull appears in sight. In order that such observations should be made with accuracy it is requisite that a telescope should be used.

Flg, 95.
Here only that part of the ship above the line $A C$ can be seen by the spectator A : the rest of the ship is hidden by the swell of the curve D E.
What is it then that prevents the hull of the ship, the largest part of it, from being seen when the topmasts are visible? It is evidently the round or convex surface of the water, bulging up, as it were, between our eye and the lower part of the ship. When the ship is at a certain distance

Fig. 90.
The dimimution of the size of a ship seen at sea, owing to the convexity of the earth and the distance of the observer, is also illustrated in fig. 31.
from us ; when the hull has just begun to disappear from a person standing on the surface of the ground, the whole will be visible to an observer on an olevated building; and if there be a lofty mountain near by the vessel
will be se beach. in fact, a way. Wo instance, exact dis ture of th on the mat we shall d As the he horizon this distat found that a distance from one them. 'Ill the propo eter of th which is n of ascerta we shall

Now as the water the face 0 face, or a of the ea earth, be standing surface ; ocean, wi of the ta the actua general s miles, an about 80 having a high ; or thinnest minute mountair carth is

On tl
appeara
will be seen from this after every portion of it is hilden from thoso on tho beach. I'lis proves without donbt that the earth's surface is round ; aul, in fact, a rough estimate of the size of the earth may be formod in this way. Wo have only to fix upon two elevations of equal height, as, for instance, marked places on the masts of two vessels, and ascertain the exact distance at which they are hiddea from each other by the eurvature of tho earth. We must also know the elevation of the marked places on the masts above tho level of the set, and then by a simple proportion we shall obtain the diameter of the earth. The grestion is stated thus : As the height of the station of observation is to the distanee of the visible horizon (which is half the distance between the two stations), so is this distance to the dianeter of the earth. By another calculation it is found that two places elevatel ten feet become hidden from one another at a distance a little short of eight miles; that is to say, a straight line drawn from one of these to the other would just tonch the earth midway botween them. The curvature then may be set down as ten feet in $3 \frac{7}{7}$ miles; and the proportion is as follows : As 10 fect : $3 \frac{7}{8}$ miles : : 37 miles : the diameter of the earth. 'This gives about 8000 miles for the earth's diameter, which is not far from correct. But the more aecurato and philosophical mode of ascertaining its dimensions is by measuring an are of the meridian, which we shall have occasion afterwards to explain.

Now as such appearances as those we have mentioned with respect to the water's surface and the ship, are observed on every sea and ocoan on the face of the earth, it follows that the ocean at large is a convex surface, or a portion of a globe; and the waters cover more than three-fourths of the earth's surface; and if the ocean, constituting three fourths of the carth, be globular, so also is the land, the remaining one-fourth, not withstanding that the hills and the mountains form a few inequalities on its surface; for the regions of the land are all nearly on a level with the ocean, with the exception of the ranges of elevated mountains. The height of the table-lands and mountain ranges bears such a small proportion to the actual diameter of the earth, that they in no way interfere with its general spherical outline. The greatest elevations are only about five miles, and there are but a few of these ; while the diameter of the earth is abont 8000 miles. If then we would accurately represent these on a globe having a diameter of 16 inches, we must mako them $\frac{1}{1}^{\frac{1}{6}}$ th of an inch high; or they might be well represented by very small grains of sand. The thinnest tissue-paper would fully represent the elevation of tablo-lands; and minute seratches, almost invisible without a microscope, would show the mountain gorges and valleys of rivers ; so that for all ordinary purposes the carth is considered as absolutely spherical.

On the other hand, were the surface of the sea a level plane the appearances would be very different. A straight line might be drawn
from an object, as a ship, upon it, from any distance out, to the shore. In this case any object on the earth or sea would be visible at any distance, which was not so great as to make its appearanco too small or faint to bo pereeived. An object would be visible at the same distance whether the eye were situated high or low. Sailors would not in such a case have to climb to the topmast in order to descry ships or other objects at a distance, for they could see them just as plain and at as great a distance from the deck, after the objects had come within visible distance. The largest and not the highest objects would to vasible at the greatest distance. The topmast of a ship wouk list r : ${ }_{t}$ pear, and the hull, as being the largest objeet, would be the lon $\quad \cdots l_{n}$; but this is contrary to all experience. The considerations alreal are, therefore, clear and decisive proofs that the earth is not an extern d plane, but a globular body ; and it seems truly wonderful that such a conclusion was not generally arrived at until a comparatively recent date.

Moreover, that the earth is round from east to west is clear from the fact that navigation has long been conducted on that principle with the greatest precision, and that navigators have repeatedly sailed around it from east to west. They have set sail from England, crossed tho Atlantic, rounded Cape "Jrn,sailed along the Pacific Ocean to the northern coasts of Australia, crossed the Indian Ocean, and, passing the Cape of Good Hope, have again arrived, by traversing the Atlantic, at the port whence they set sail. These experimes:is, therefore, show that the carth is round from east to west, but they do not prove that it is also round from north to south, for it has never been actually circumnavigated in that direction, owing to the obstruction caused to navigation by the immense masses of ice within the polar regions. Had we, therefore, no other proof of the earth's rotundity than this, we might be apt to suppose it somewhat resembling the shape of a cylinder; but that the earth is really round from north to south appears from the following considerations. When we travel a considerable distance from north to south, or from south to north, a number of new stars successively arise in the quarter of the heavens (whichever it may be) to which we are advancing, and many of those in the opposite quarter gradually disappear. For example, in sailing toward the south, when we approach the equator the brilliantconstellation called the Southern Cross, before mentioned, which is never seen in our northern latitudes, makes its appearance; and if we go farther south the constellations of the Great Bear, Cassiopeia, and other stars, visible in our northern sky, will entirely disappear, which could not happen if the earth were a plane in that direction; for in such a case all the stars of heaven would be visible in every point from the north to the south pole. Another corroborative proof of the carth's globularity is this. In excavating a canal of any length, in order to have the waters on a level, certain allowances recquire to be made
for the is abol increas surface water i
for the earth's convexity. The slope required to be made on this account is about eight inches in the mile, thirty-two inches in two miles, and so on, inereasing with the square of the distance. If the earth were a level surface no allowances of this kind would need to be made in order that the water in a long canal might stand on a level.

But another most evilent and conclusive proof of the earth's rotundity is that afforded in the shape of its shadow. The earth is an opaque body, shines by reflected light; and must, therefore, cast a dark shadow in the direction opposite to the sun ; but the shape of this shadow can only bo seen when there is some solid body on which it can be thrown. Now there is but one body which ever comes near enough to the earth to receive this, and this body is the moon. When, therefore, the lunar eclipse happens, if we watch the moon as it enters the shadow of "ie earth, and again as it emerges from it, we shall find that the dark l_{1}. : of the shadow on the moon's dise is always curved to an are of a revele The earth therefore must either be a globe or a flat circular dise, at first sight we might incline to the latter view, and imagine, with son \sim of the ancients, that we dwelt on a flat surface, like the top of a round taile. When, however, we ramember that in all cases and in every p. 'in of the earth and moon at the time of an eclipse the shadow is always curcular, we are assured that the earth must be globular, as no other figure could always cast a circular shadow.
It is to be presumed that after the sensible and undeniable demonstrations that have been given of the rotundity of the carth, none of our readers will have any doubts left that the earth in which we live is of globular form, but there may still be some who are not yet convinced that it moves round its axis, and with immense velocity, through the regions of space, in company with the other planets. On this sulject, therefore, we shall now offer a few considerations tending to show that the earth we inhabit, however steadfast it may appear to the eye of sense, is really a moving lody, and that it moves with a velocity far greater than we are accustomed to see around us. There are two different motions considered as connected with the earth ; one by which it is viewed as turning round its axis every twenty-four hours, and producing the succession of day and night ; and another by which it moves round the sun every year, bringing about the changes of the seasons.

We shall here chiefly illustrate those arguments by which its diurnal motion may be demonstrated, and its annual motion afterwards. In the first place then there is one thing of which we all are certain ; that is, that motion does actually exist, either in the earth or in all the heavenly bodies arouad the earth. We behold every day the sun apparently moving from the Eastern to the Western horizon. We observe also all the stars apparently moving in a body round the earth in the course of twenty-four
hours, and in tho mamer described above. Such ohservations, whieh everyone las it in their power to make, clearly show, that there is motion somewhere ; and the duestion is, is this only apparent with respect to the heavens, or is it the motion of the earth that produces this appearance? Let us suppose for a moment that it is the earth which moves; what will be the rate of its motion in turning round its axis to prodnce the apparent revolution of the heavens? For if the earth really revolves round its axis from West to East, the heavens will, of course, appear to revolve round us from East to West, just as when one is on hoard a steamboat on a river, and not notieing the motion of the vessel, he sees the trees and other objects on the bank, apparently moving in the opposite direction to that in which the vessel is really groing. The same kind of appearances often happen to a person sitting in a railroad car when in motion; one is apt to think the fields and fences, the wholo side of the comintry, to be moving in the contrary direction to that of the cars' motion. 'The rate of the earth's motion will depend upon its magnitude. Now we know that the earth is a globe somewhat more than twenty four thousand miles in circumference, aud conseruently in turning round every twenty-four hours some portions of its surface must move, at least, a thousand miles every hour. This is a motion far more rapilt than has ever been produced in the smallest bodies by human art ; and, therefore, it may appear incredible to some that such a motion can exist in a globe of such vast dimensions as the earth. But if such persons deny that the earth thus moves then they must admit that the heavens move. There is no alternative, for motion actually exists either in the one or in the uther. Now if the motion is to be considered as existing in the heavens, let us see what the raie of this motion must necessarily be. If a small globe of eighteen inches diameter globe of two thousand yards, or seventy-two thousand inches in diameter, to were supposed to perform a revolution round its axis in two seconds, and a finish a rotation in the same time, this large globe would move with a velocity four thousand times greater than the other. In the annexed figure, if $A B$ in
 the centre, represent the earth, then if the cirele $\mathrm{C} E$ revolve around it in a certain time, and the other two circles revolve round it in the same time, it is certain that the circle F II must revolve with a quicker motion than the circle C E ; and the circle I L with a still greater velocity, in proportion to its greater distance from the centre of motion A B. Wie shall consider then what would be the rate oi motion of seme of the heavenly
bodies to be so and, cor appears minety-so four mill minute, Uxanus hundred orbit is n this plan would bo hour, sev and ono seven mil to be wit and cons 125, 000 , that is, a a single s cluek tak hundreds would mo further re exceeding round our figure rep Uranus ; that in pro city of its
If, there earth beca ten hundro especially we have : which we than one m the fixed st in such a n incomprehe

The que which we h that of the
bodies whoso distances from the earth aro known. The sun is nseertained to be somewhat near ninety-five millions of mil., distant from the earth; and, consegliutly, wero he to move round the earth overy day, as he appears to do, he would move along a circumference of five hundred and ninety-seven millions of miles every day ; that is, at the rate of about twentyfour millions of miles an hour, four hundred and fourteen thousand miles a minute, and six thousand nine hundrod miles a seemul. Again the planet Uramus at its nearest point to the earth is moro than one thousand seven lumulred millions of miles distant ; and consequently the circumference of its orbit is more than ten thousand six humbred millions of miles. If, therefore, this planet were supposed to move round the carth every day, its motions would be at the rate of four hundred and forty five millions of miles in an hour, seven million four lundred and twenty thousand mites in a minute, and ono hundred and twenty-three thousand six hundred and seventyseven miles every second. Again the nearest fixed stars aro known not to be within $20,600,000,000,000$, or twenty billions of miles off the earth; and consequently their daily circuit roum our globe wonld measure $12 \tilde{5}, 000,000,000,000$, or one handred and twenty-t:c billions of miles; that is, at the rate of fourteen hundred millions of miles in the space of a siugle second, or the interval of time which the pendulum of a common clock takes in moving from one side to the other; stars at distanes houdreds of times greater, of which there are many in our firmament, would move with a rapidity of hundreds of times swifter ; and those still further removed from us in the depths of immensity with a velocity far exceeding human coneeption ; yet all the stars of heaven appear to move round our globe every twenty-four hours. If the circle C D E of the figure represent the supposed diurnal orbit of the sun ; F G II that of Uranus; and I K L M that of some of the fixed stars; then it is evident that in proportion to the distance of the body from the earth will the veloeity of its motion be, if it be supposed to move round the earth every day.
If, therefore, there be any reader disposed to reject the motion of the carth because it is inconceivablo he must necessarily admit of motions ten hundred thousand times greater and far more incomprehensible; more especially when it is considered that the bodies in the heavens to which we have alluded are incomparably greater than this globe of earth on which we live ; the planet Uranus being eighty times, and the sun more than one million three hundred thousand times larger than the earth, and the fixed stars on an average as large as the sun. Such a rate of motion in such a number of magnificent globes appears altogether overwhelming, incomprehensible, and incredible.
The question, then, that is to be decided is, which of the motions to which we have referred is the most probable,-the motion of the carth or that of the heavens? Is it really necessary that the whole universe, com-
posed of sun, mocn, planets, comets, stars, and nebule, should move round our globe with such astonishing velocitios in order to produce the alternate succession of day and night on the earth? Reason says that it is not. It would contradict all our ideas of the simple and reasonable operations of nature, and of the intelligence of the Deity. The succession of day and night can be accomplished by a simple rotation of the earth on its axis, which is found to completely account for all the apparent diurnal revolutions of the celestial bodies. This is found to be actually the case with the other planets of the solar system. The planet Jupiter is fourteen humdred times larger than the earth, and is said to move round its axis in less than ten hours, at the rate of 28,000 miles an hour, which is a velocity twenty-cight times greater than that of tho earth, supposing the latter to move round its axis. The planet Saturn is about a thousand times larger than our globe, and it is said to revolve round its axis in ten hours and ahalf, at the rate of 24,000 miles an hour in those places near its equator. To a spectator then, placed on these planets, the heavens would appear to revolvo around him every ten hours, as they appear to us to revolvo every twenty-four hours, but with an apparently more rapid motion; while he, himself, might suppose, as we are apt to do, that the planet on which he is is really at rest. The earth, therefore, must he considered as revolving round its axis, in accordance with the revolutions of the other planets of the system to which it belongs ; and to supposo otherwise would be in opposition to all the laws which govern the naterial universo, and would distort all our ideas of the harmony and order of the operations of nature.

Another consideration which demonstrates the diurnal motion of the earth is this; that such a rate of motion in the heavenly bodies as has now been stated would shatter the material universe to atoms. Were a ball of soft wood projected from a camon at the rate of 800 miles an hour, in a few moments it would be reduced to splinters; and hence the forage and other light substances projected from a piece of ordnance are instantly torn to pieces. What then might be supposod to be the consequence, were a body impelled through the ethereal regions with a velocity of a hundred thousand millions of miles in a minute, as multitudes of the stars behoved to be, were the earth at rest in the centre of the universe ? It would undoubtedly reduce to atoms the most solid bolics in existence, though they were composed of substances harder than adamant.

Another corroborative argament which astronomers bring forward in support of the motion of the earth is this: that there is no instance known in the universe of a larger body revolving round a smaller one. We do not find, say they, such planets as Jupiter and Saturn revolving round their satellites; but all these satellites, which are much smaller than their promaries, perform their revolutions around the latter as the centre of their motions. The carth, which is fifty times greater than the moon, does not
revolve
revolve rouml her, but that nocturnal luminary regularly revolves round the earth. The sun does not revolve round the planets Mercury or Venus, which are thousauls of times less than that luminary, but they invariably revolve around him as their centre of attraction, light, and heat. As the sun is over one million three humdred thousand times largee than the earth it camot, therefore, be supposed for a monent that such an enormous globe would revolve with such an inconceivably rapid motion round so inconeeivable a ball as the earth, and much less that the whole universe should revolve arotial it every day. Were the earth not revolving round its cireumference every day there would be an infraction of all the laws which are known to govern the system of universal nature ; anl, therefore, it is absolutely necessary to admit its motion in order to direct our views and to become fully convinced -" the systematic order and harmony of the operations of universal nature. What would be thought of a machine (if such could be concoived to be constructed) as large as the city of London, or any other large city, bearing a huge lanp near its centre, and revolving laily round a little ball of one inch in diamoter, suspended in empty space, meroly for the purpose of giving light and heat to the surface of this little ball, when, at the same time, a revolution of the ball round its axis wowt answer the same purpose? The designer and constructor of such a system, however ingenious ho might be thought by some for his great contrivance, would justly, by all wise men, be considered insane for having so disproportioned means to onds in the aecomplishment of his object. Such a scheme, however, absurd as it seoms, would not be half so prepostorous as to suppose tho vast universe to turn round so inconsiderable a ball as the earth to produce the alternate succession of day and night, when the sane object could be effected by the earth's simply revolving round its axis once in twenty-four hours. But the whole system of universal nature is proportionate as to its constituent parts, and their operations; none of its parts are unnecessary; none of its operations take place incousistently with infinite intelligence and wisdom ; and its operations all appear simple and reasonable when rightly consilered. Now, all these supposed inconsistencies and impossibilities, which we have been sonsitereng, are at once got rid of, and complete universal harmony and order restored, by the admission of tho rotation of the earth round its axis every day.

Circles, Degrees, etc., explained.
If we refer to an ordinary terrestrial globe, such for example as those used in seloools and colloges, wo shall find that there are several circles drawn upon it, and we shall also observe that these are of different sizes, these called parallels of latitude near the poles and the polar circles being much smaller than those nearer the circle called the equator. These circles are accordingly divided into two classes, called respectively great and
small circles. Great circles are those whose plane passes through the centre of the globe, so that they divide it into two equal portions; and, assuming the earth to be a perfect sphere, all these great circles will be exactly equal. All other circles are called samall circles. The most important of the great circles is the equator, which is an imaginary line drawn round the earth, equally distant from the north and south poles, and therefore dividing the globe into two equal halves, called the northern and southere hemispheres. If now we conceive the plane of this circle to be
 extended to the sky, we shall have a great circle of the heavens, known as the celestial equator, or more usially the equinoctial. This latter term is derived from two Latin words signifying " equal," and " night," and is applied to it because when the sun appears to be on this line it shines equally cu both hemispheres; and day and night are then of equal length in all parts of the earth, the sun being above the horizon at every place for about 12 hours, and below it for the same length of tine. The days on which this happens are the 20th of March and the 23 rd of September ; and by counting the days between these dates we shall find that in the northern hemisphere the summer is a few days longer than the winter; or , in other words, that the period during which the sun is north of the equator is a few days longer than that during which he is south of it.
The sun's apparent path is not, however, aloug the equinoctial, but in a great circle, inclined to it at the present time at an angle of about $23^{\circ} 27^{\prime}$ $30^{\prime \prime}$, and known as the ecliptic. Round this the sun appears to travel, performing the complete circuit of it in the space of one year. The space oxtending for 9° on both sides of the celiptic, and thus constituting a band or zone 18° wide, is known as the zodiac; and within this space, as we hare already explained, all the planets, with the exception of a few of the minor ones, are constantly found ; so that we can always tell somewhat of the position in which they are. The zodiae is divided into twelve equal por. tions, each containing 30°, and the stars in these spaces ars mapped out into the constellations known as the " signs of the zodiac," which we shall notice hereafter.

As we shall have frequent ocession to speak of degre ; it is well that it be clearly understood at onee what is meant by a degree, and the mode in which it is measured. It is evidently necessary for us to have some means of measuring the distances of the heavenly bodies from one another, and this can only be done by measuring the angle which imaginary lines, drawn from them to our eye, subtend. By a little consileration we shall find that it
in the around larger, larger in wor fraction is, if T ference sions to adjacen paper t? deal wit sures ab
in the same way we form our estimate of the dimensions of ordinary objects around us, and hence when we bring them noarer to our eye they appear larger, because the rays coming from their extremes to our cye contain a larger angle. Now we want so. יe means of measuring and expressing in words the angle thus contained, and this we do by means of degrees and fractions of a degree. A degree then is the 360th part of a circle ; that is, if we draw a large circle on paper, for example, and divide its circumference into 360 equal parts, and then draw strai ${ }_{j}$ ht lines from these divisions to the centre of the circle, the angle contained between any two adjacent lines will be just one derree. On any circle we can draw on paper these divisions will necessarily be very small ; when, however, we deal with a globe like the earth we find that a degree at the equator measures about 69 miles.

In a right angle there are, of course, ninety degrees, and if we can make a triangle with three equal sides, each angle will contain just sixty degrees. A degree is divided into sixty parts called minutes (minute parts); each of these is divided into sixty parts, called seconds ; and in more delicate and accurate observations each of these is again divided into sixty parts, called thirds. These divisions are usually expressed by the signs for degrees $\left({ }^{\circ}\right)$, minutes (${ }^{\prime}$), seconds ("), thirds (${ }^{\prime \prime \prime}$) ; thus 16° $37^{\prime} 5^{\prime \prime} 15^{\prime \prime \prime}$. As a general guide to us in estimating approximately the distances or dimensions of the heavenly bodies it will be expedient to remember that the apparent diameter of the sun or moon is about half a degree ; the distance between the pointers in the Great Bear is six degrees, and that between the pole star and the pointer nearest to it is about twentyfour degrees. By means of an accurately graduated semi-circle we can casily measure any angle, and ascertain the number of degrees it contains.

We have stated above that the inclination of the ecliptic to the equator, or, as it is termed the "obliquity of the ecliptic" is nearly $23 \frac{1}{2}$ degrees. This amount, however, is not constantly the same, but varies a little in the lapse of centuries. The rate of this variation is very slight, being less than 1^{\prime} in 100 years, and it is found that it can only take place within very narrow limits. At present it is decreasing, but before it can have deviated as much as a degree and a-half the causes producing it will have been so modified as to act in a contrary direction, and increase the inclination again. All through astronomy instances are met with of these slow and gradual variations; but all are confined within very narrow limits, and instead of tending to a total change in the status of the earth or the system to which itbelongs, they tend to the permaneney of the system.
Now sinco these two great circles are thus inclined there must be two points in which they intersect one another, and these are called the equinoctial points, or the vernal and autumnal equinoxes. One of these is the first degree in the sign Aries, and the other the first in Liira. The
first of these, or the vernal equinox, is the most important, as it is taken as the fixed point to be employed in measuring distances from, when we want to indicate the place of any body. We then take the equinoctial or equator as our base line, and first of all measure the distance of any star north or south of that. On a terrestrial globe parallels of latitude, (these are circles parallel to the ecliptic, having the poles of the ecliptic as their zentres,) are drawn at distances of ten degrees.* It must be remembered that when we speak of degrees of latitude what we really mean is the inclination, which a straight line drawn from the place to the earth's centre would have to the plane of the equator. A degree is a measure of an angle, and not of a distance. It is well that this point should be clearly understood, as mistakes often arise through want of understanding it. Some folks will say " a degree equals somewhat over sixty-nine miles," when what they really mean is that at the equator two lines meeting at the earth's centre, inclined to one another as this angle, would include between them a portion of the earth's surface of that length. OnJupiter, or any globe larger than the earth, the amount thus subtended at the equator would naturally be much greater ; and on the other hand, in any small circle which we may draw on a piece of paper there is still 360°; each degree, therefore, is very minute.

In astronomy, the distance north or south of the equinoctial is called the declination of a heavenly body. If now we draw another great circle passing through the poles, and also through the star, it will intersect the equator in two places, and the one of these on the same side as that on which the star is situated will furnish us with the other distance required.

If we examine the equinoctial on a celestial globe, we shall find that it is divided into degrees from 0° to 360°, reckoning from east to west, the starting point being the first point of Aries.

The great circles to which we have referred, as passing through the poles perpendicular to the equator, are called meridians, and any number

* In figure 98, the line $\mathbf{P} \mathbf{P}$ represents the earth's axis, that is, the diameter of the sphere passing through the poles P P , and the centre 0 . The great circle $E Q$ represents the cquator, the great circle S T the ecliptic ; the Foints R, and O, where it intersects the equator, are called the nodes, and also the equinoctial points; and the points S and T, its farthest points north and sonth of the equator,are called the solstices; respectively the summer and winter solstice. The two small circles M S, and T N, par. allel to the equator, are called the tropies, that to the north the tropic of Cancer; and that to the south the tropic of Capricorn. The two g^{-2} cireles MPQN PTE, and R P O P, (if the latte se conceived as a great circle at right angles with the other,) are called respectively the solstitial and equinoctial colures.
of them globe, termed tween of these the bras it over a We shal section ascensio the posi sion and place of globe, an above th look to th is 204°, as 50° when the
If we signifyin tion of th commenc The star assigned sign to th which w The poin usually t but are sl This was were sloy in one of point fron wards. I been adol the positi most care position of we soon b the annua nodes in r than 25,8
of them might be drawn; usually, however, twenty-four are drawn on the globe, their distance apart being fifteen degrees. They are then frequently termed hour lines, as the firmament seems to move just the interval between two of them in the space of an hour. We can obtain a clearer idea of these meridians by taking the globe out of its framework, and letting the brass meridian be free to turn round on its poles; we can then bring it over any star or place, and it will represent the meridian of that place. We shall likewise be able to see on the equator, the distance of its intersection from the first point in Aries. This distance is known as the right ascension, usually abbreviated thus, R. A. Thus, we see the way in which the position of a star is determined, the two measures being its right ascension and its declination. Suppose, for example, we wish to point out the place of a star in the tip of the tail of the Great Bear, we first find it on the globe, and bringing it to the brass meridian, we shall find that its elevation above the equinoctial is very nearly 50°, this is its declination. We now look to the equinoctial, and find the point of it directly under the meridian is 204°, or 13 hours, 36 minutes, from Aries ; and thus we assign its place as 50° north declination, and 204° right ascension. In a similar way when the right aseension and declination are given, the star can be found.

If we examine a celestial globe we shall find that though the mark r, signifying the commencement of the sign Aries, is placed at the intersection of the equinoctial and the ecliptic, yet the portion of the zodiae commencing at that sign is in reality occupied by the constellation Pisces. The stars forming Aries are moved 30° to the east, occupying the place assigned to Taurus, and all the other zodiacal constellations are moved one sign to the eastward. The cause of this is the precession of the equinoxes, which was first discovered by Hipparehus in the second century B.C. The points of intersection of the equator and the eeliptic, or as they are usually termed the nodes, do not remain constantly in the same place, but are slowly moving toward the west, that is in a retrograde direction. This was first observed by noticing that the right ascensions of all stars were slowly and uniformly increasing. This could only be accounted for in one of two ways; either they must all be slowly moving forwards, or the point from which we measure their right ascension must be moving backwards. The latter of these explanations, being by far the most simple, has been adopted. The rate of this motion is but slow, so that its effect on the position of the stars from year to year can only be ascertained by the most careful and delicate observations. When, however, we compare the position of a star with that assigned to it by observers a few centuries ago we soon become aware of the change. The most carcful observations fix the annual amount of this motion at $50^{\prime} 2^{\prime \prime}$; so that the time occupied by the nodes in making a complete circuit of the heavens would be a little more than 25,800 years. By reckoning backward it is found that the constel-
lations and the signs of the zodiac coinciled with one another about the year 370 , B.C. Besides this motion of which we have spoken, there is another of much smaller anount, which is known as nutation or the noding of the pole. It arises from the circumstance that the earth's distance from the sun varies at different times of the year, and thus the amount of precession varies slightly from day to day. The effect of this variation is to cause the pole to deseribe, in the course of about $18 \frac{1}{2}$ years, a very small ellipso, the longer axis being about $18 \frac{1^{\prime \prime}}{}$, and the shorter nearly $14^{\prime \prime}$. This motion, combined with the other, produces a vibratory or undulating movement of the pole ; it is only, however, in very accurate observations that this has to be taken into account. One important effeet of the precession of the equinoves is to change the pole-star. That at present known by this name is distant about $1 \frac{1}{2}^{\circ}$ from the true pole ; its distance is, however, gradually diminishing, so that in the course of years it will be within half a degree, and it will then commenee to recele from it. In about 12,000 years it is estimated the brilliant star Vega, in the constellation Lyres, will be very close to the pole, and serve as a pole star.

There are also two other points in the celiptic especially distinguishod, a^{n} nd known as the solstital poincs.* These are situated midway between the nodes, and are at the commencement of the signs Cancer and Capricornus. The term solstitial is derived from the Latin sol, the sun, and stare, to stand, and is applied to these points, because when tho sum reaches them it has attained its greatest north or south declination, and appears to stand for a few days before commeneing to retrace its s. ${ }^{\circ} \mathrm{ps}$. Two great cireles are drawn on the celestial globe, passing throagh the poles, the one passing through the equinoctial points, and the other through the solstitial points; and these are distinguisls is is the equinoctial and soistitial colures. They divide the eeliptic weo fou equal portions, and mark the divisions of the seasons of the year. 'the days on which the sun is at the solstices are the 21 st of June, and the 21 st of December; and these are respectively the longest and the shortest days.

Two small eircles, parallel to the equator, and passing through the solstitial points are called the Tropics, that to the north being distinguished as the tropic of Cancer, and that to the south as the tropic of Capricorn. These, however, are of more importance in the use of the terrestrial globe than in that of the celestial. There are \therefore 'so two circles situated at a similar distance from the poles which Dall the limits of the polar regions, from which the sum is sometimes hidden fios inore tian a complete day; that to the north is called the Aretic, ard tnat to the south the Antaretic, Circle.
[he russ :sual way of describing the position of any star in the heavens is an itw decliation and right ascension, as deseribed above, the (S-)ances being reckoned from the equinoctial. Sometimes, however, - Sul 'cunpud.t te ca prage $2 \pi n$.
these dit latitude ecliptic, be found centre of point Ar T'errestri or west. the eclip on the ed or south,

As wo us disting little con
another s
height w
this is cal
will appe
usually i
form, and
size of th
when a s
mast-hea
of the shi
very ext
selves at
of the mo
rational
cannot b
probabili
earth's
visible a
these distances are reckoned from the ecliptic, and are then called the latitude and longitude. Parallels of latitude, circles parallel to the ecliptie, are frequently drawn on celestial globes to enable the latitude to be found without difficulty ; the polo of the ecliptic is, of course, the centre of these cireles. Longitude, as right ascension, is reckoned from the point Aries, and like it is reekoned only in one direction from 0° to 360°. Terrestrial longitude, on the other hand, is reckoned from 0° to 180° east or west. Celestial longitude, therefore, measured from the point Aries on the ecliptic, corresponds to right ascension measured from the same point on the equinoctial; and celestial latitude measured from the ecliptic north or south, corresponds to declination measured from the equinoctial.

The Horizon.

As we shall have sometimes to speak of the horizon, it will be well for us distinctly to state what we understand by it, as sometimes there is a little confusion on this matter.

The rational or true horizon is an imaginary plano drawn through the centre of the earth, so that the line, where it cuts the surface, is everywhere equidistant from the observer. If we take an orange or an apple, and divide it into two equal portions, or place a ring round it, so as to be midway between the eye and the stalk, it will represent the horizon. In an ordinary celestial globe, if the poles be elevated to the latitude of the place, the situation of the wooden horizon will correspond with that of the rational horizon to the observer. Thus, it will be seen that if this plane be extended on all sides to the sky it will divide it into two exactly equal hemispheres, one of which will be visible to the observer. There is, however, another sense in which the word horizon is used. When we ascend any height we see a line all round us where the earth and sky appear to touch; this is called the sensible or visible horizon. At sen or on a level plain this will appear to be a perfect circle ; on land the elevations of the country usually interrupt the outline ; still we can perceive that it is of a cirev' is form, and that our point of observation is situated in the middle of it. 'I .ee size of this circle increases with our elevation above the earth. Hence when a sailor wants to know if any vessel is in sight, he aseends to the masthead, where his view is much more extersive than it is from the cleck of the ship. In the same way, if we aseend a high mountain, we gain a very extensive view of tine surrounding country. If we could place ourselves at a great distance from the earth, as for instance, on the surface of the moon, we should see just one half of the globe of the earth, and the rational and sensible horizon would then exactly coincide. This, of eourse, cannot be, and the highest elevation ever yet reached by man, or that in all probability ever will be attained, is so small when compared with the earth's diameter, that only a small portion of our globe has ever buen visible at onec.

The following general rule will enable us approximately to calculate the distance of the risible horizon when we know the height of the station of observation. Express the height in feet and increase it by a half ; then extract the square root, and this will give the distance in miles. Thus, if a building be 24 feet high, we then add 12 feet to it, making it 36 , the square root of whieh is 6 . The visible horizon is, therefore, distant six miles.

Eclipses explained.
A dark shadow is oceasionally seen to move across the face of the moon which obscures her light, and gives her the appearance of tarnished copper. Sorretimes this shadow covers only a small portion of her dise ; at other times it obscures the whole of it for an hour or two, and its margin always
 appears of the form of the segment of a circle. This phenomenon, which happens on an average about twice every year, is termed an eclipse of the moon. It is produced by the shadow of the earth falling upon the moon, when the sun, the earth, and the moon are in the same straight line; the earth being interposed between the sun and moon : and this can only happen at the time of full moon. Sometimes the moon appears to pess across the dise of the sun, when her dark side is turned toward the earth, covering his dise, either in whole or in part, and intercepting his light from a certain portion of the earth. This is called an cclipse of the sun, and can happen only at the time of new moon, when the moon is interposed between the sun and the earth. In a total eclipse of the sun, which seldom happens, the darkness is so striking that some of the planets, and occasionally the larger stars, are seen, and the inferior animals appear struck with terror.

The theory of lunar eclipses will readily bo understood by reference to the annexed figures. In figure $99, \mathrm{~S}$ represents the sun and E the earth, whose shadow is a long cone reaching into space. This dark shadow is called the umbra, and it gradually shades off into the penumbra, which is bounded by the lines BD,A F, and tapers toward the earth instead
of away in its jor for a tim beginning the first enters the invisible. be feebly eclipse of the moon times it period. duration,

Figure solar ecli as the sl A momen of the su the enlig that an ec moon. Tl full moon an angle below the shadow is

and hence at or near when the

The po: the rate o plete revo interval of to the sur Now it ha synodical and moon,
of away from it ; M represents the moon revolving round the earth, and in its journey it sometimes passes through the da..s cone and becomes for a time invisible. The commencement is marked by a faint shade, beginning to creep over the east side of the moon's dise. This is the first contact with the penumbra. As the moon travels onwards it enters the umbra, and the east side of its dise then becomes almost invisible. When fully immersed in the umbra, the moon may usually be feebly seen, and appears of a ruddy huc. The duration of a total eclipse of the moon may be as great as 1 hour 50 minutes. This is when the moon passes directly through the middle of the umbra. At other times it passes near the edre, and is then obscured for only a short period. When it passes through the centre of the shadow, the total duration, from the first contact to the last, may be $5 \frac{1}{2}$ hours.

Figure 100 shows at one view the phenomena of both lunar and solar eclipses. The solar celipse represented here is an annular one, as the shadow of the moon terminates at m before it reaches the earth. A moment's careful inspection of this diagram will show that an eclipse of the sun can only take place at the period of the new moon, as the enlightened hemisphere is turned away from the earth; and that an eclipse of the moon, on the other hand, can only occur at full moon. The reason why eclipses do not happen at every new and full moon is that the moon's orbit is inclined to the earth's orbit at an angle of $5^{\circ} 9^{\prime}$; so that during one half of its journey, the moon is below the plane of the ecliptic, and in the other above it. Now the earth's shadow is in the same plane as its orbit, and hence at the period of full
 moon the shadow may be above or below the moon, and in cither case no eclipse will occur. The points in which these planes intersect are known as the nodes, and hence there is an eclipse of the mons whenever a full moon happens at or near one of the nodes. In a similar way a solar celipse occurs when the moon is near one of the nodes at the time of new moon.
The position of the nodes of the moon's orbit is continually changing, at the rate of $19^{\circ} \quad 20 \quad 1-3$ minutes in a year ; so that they perform a complete revolution in a trifle less than 18 years and 219 days. After an interval of 346.62 days, they come again into the same position in regard to the sun; and this period is called a synodical revolution of the node. Now it happens that 19 of these periods are almost exactly equal to 223 synodical revolutions of the moon; so that after this interval the sun, earth, and moon, are again nlmost in the same relative positions and the same
series of eelipses is therefore repeated. This period of 6,585 days, or 18 years and 10 days, is called a cycle of the moon. It was known to the ancients and called the Saros, and by means of it eelipses were roughly calculated before any great progress had been made in the science of astronomy.

Conjunction and Opposition.

When a heavenly body is said to be in conjunction it is meant that the body is in a line with the sun and the earth, either between the earth and the sun, or having the sun interposed between it and the earth. When the bolly is between the earth and sun it is in its inferior conjunction; when on the other side of the sun from the earth it is in its superior conjunction. Wi. 1 a body is saill to be in opposition it is meant that it is in a line with the sun, and the earth, the earth being interposed between it and the sun. The planets whose orbits lie between the earth's orbit and the sun, Mercury and Venus, have each two conjunctions, one iuferior, or when either of them happens to be in a line between the earth and the sun; the other superior, or when they are in that part of their orbit that lies beyond the sun from the earth, in a line with the earth and sun ; but these have no opposition. The superior planets, or those whose orbits lie without that of the earth heve each one conjunction, the superior, and one opposition. The moon, whose movements are round the earth as a centre, and always accompanying the earth in its journey round the sun, has one conjunction, at new moon, the inferior ; and one opposition, at full moon.

Proofs of the Earth's Aunual Motion.

Now the amual motion of the earth and its position in the solar system are proved and illustrated by such considerations as the following: That if this motion did not exist, the motions of all the planets would present a seene of inextricable confusion, consisting of direct and retrograde movements, and looped curves so anomalous and irregular as to be altogether inconsistent with auything like harmony, order, or intelligence : That Mereury and Venus have two conjunctions with the sun, but no opposition, which could not happen did not the orbits of these planets lie within that of the earth: That Mars, Jupiter and all the other superior planets, have each their conjunctions with, and oppositions to the sun, which coיld not take place unless their orbits were exterior to that of the earth: That the greatest elongation (apparent distance) of Mercury from the Suu is only about 29°, and that of Venus 48°; but if the earth were the centre of their motions, as the Ptolmaic system, and some other systems supposed, they might sometimes be seen 180° from the sun, or in opposition to him, which never happens: That some of the planets appear much larger and brighter at some times than at others on account of their different distances from the earth ; but on the other hypothesis, their brillaney and apparent size would be always about the same: That Mercury and Venus in their superior
conjunct inferior like roun maic sys oppositio relation retrogra tion to t: are not s their mot with all system w cheer and and influo they are cerery pa the sun a would be be frozen

There and its p rior planc telescope orbits.
phase, so phere, wh centre of theirs.
torial tel in their t
book shov or the Na the balls, from the should the range of vens. Tl But it cal the naked it is some from one are more than eithc
conjunctions with the sun, are sometimes hid behind his body, and in their inferior conjunctions sometimes appear to pass across the dise of the sun like round black spots, which would bo impossible, according to the Ptolemaic system: And in short, that the times in which the conjunctions and oppositions, stations, (or when the planets are in that part of their orbit in relation to the earth and sun in which they appear to be stationary,) and retrogrations, (or when the planets are in that part of their orbits in relation to the sun and earth, in which they appear to go backward, happen are not such as they would be if the earth were at rest in the centre of their motions, but precisely such as would happen if the earth move along with all the other planets in the stations and periods assigned them in the system which has the sun for its centre. For as the sim is intended to cheer and irradiate surrounding worlds, it is most fit that those agencies and influences should proceed from the centre of the system from which they are communicated in an uniform and equable mode to the planets in every part of their orbits. Were the earth the centre of the system and the sun and planets revolving around it, the planets, when nearest the sum, would be scorched with excessive heat; and when farthest distant would be frozen with excessive cold.
There is another potent consideration by which the carth's revolution, and its position in the system, are demonstrated, and that is that the inferior planets Mercury and Venus, when viewed through moderately good telescopes, are found to assume different phases in different parts of their orbits. Sometimes they appear ai a crescent, sometimes with a gibbous phase, sometimes like a half moon, or having a full enlightened hemisphere, which could not happen if they revolved around the earth as their centre of motion, and if the earth were not situated in an orbit exterior to theirs. This can be illustrated with peculiar effect by means of an equatorial telescope and a planetarium. Having placed the Earth and Venus in their true positions on the planetarium by means ofan ephemeris, (a little book showing the positions, ete., of the planets for every day in the year,) or the Nautical Almanack, the observer should place his eye in a line with the balls representing these planets, and mark the phases of Venus as seen from the earth, whether a creseent, a half moon, or a gibbous phase. IIc should then aljust the equatorial teleseope tor Venus, if she be within the range of view, and he will see the planet with the same phase in the heavens. This exhibition never fails to gratify and convince the observer. But it can sellom be done if we must wait until the planet be visible to the naked eye, and capable of being viewed with a common teleseope; for it is sometimes invisible to the naked eye for nearly one half of its course from one coujunction to another. Beside, the phases of this planet are more distinetly marked in the day time, when it is near the meridian, than either in the morning or evening, when at a low elevation, in which
case it appears glaring and undefined on account of the brilliancy of its light, and the undulating vapors near the horizon through which it must then be viewed. With an equatorial telescope of a power of 60 or 80 times, most of the stars of the first magnitude and some of those of the second, can be seen even at noonday. Venus may be seen with this instrument in the day time during the space of 19 months, with the interruption of only about 13 days at the time of her superior conjunction, and 3 days at the time of her inferior ; so that the phase she exhibits may be seen almost every clear day.

Admitting then that the earth is of globular form, as doubtless all our readers are now prepared to do, it necessarily follows that it may be inhabited on every side, and consequently that those who live on opposite sides of the globe must have the soles of their feet pointing towards each other, and their heals pointing in opposite directions; and that if by any motive power acting from the carth's interior, they should be carried forward in the directions to which their heads point, and the power to be continued in operation they would never meet during all eternity. This would result from the gradual and equal expansion of the earth on all sides by the operation of some expanding force in the interior, of which supposed circumstance we have spoken before. It also follows, that could we suppose a hole bored through the earth's centre, commencing at the point where we now stand, and extending to the opposite side, it would terminate at our antipodes, and would measure nearly eight thousand miles. It likewise is most evident that this terraqueous globe is either at rest in empty space or is moving round its axis every day, and with immense velocity round the sun every year. If we suppose the earth in a quiescent state in empty space, we have presented to our view a globe containing two hundred and sixty-four millions of cubical miles and weighing at the least calculation $2,200,000,000,000,000,000,000$, or more than two thousand two hundred trillions of tons resting upon nothing, and surrounded with the immense bodies of the universe with no visible support to prevent it from sinking into the depths of infinity. If wo suppose it to be revolving round its axis and at the same time round the sun, a globe of the huge dimensions now stated, moving with a velocity of over a thousand miles an hour round its circumference, and of at least sixty-eight thousand miles an hour in its course round the sun, without ever intermitting its speed a single moment, we have presented to us a view sublime and astonishing indeed, but not anything more so than what we see in the case of other heavenly bodies of a thousand times larger dimensions, and a view a great deal more reasonable than that of supposing it at rest in space with all the huge bodies of the universe revolving round it as their centre. It is plain, however, that whichever of these suppositions we hold to be the truc one, an astonishing and sublime ider is conveyed to our mind.

First; if the earth revolve round the sun once every year, it is ovident that the sun will appear to make a revolution round the heavens in the same timo. In the figure let S represent the sun in the centre, and ABCD , the earth, in fom positions ; and let us suppose the earth to move in the order of the letters A BCD ;it is evident that when the earth is at A, the sum will appear in that part of tho heavens in which the stars at Gr are situated. When the earth has moved to B , the sun will appear to have moved to the stars opposite to II. And, in like manner, when the sarth has moved to C ,
 the sun will appear opposite to E. And when it has moved to D, the sun will appear at F. And when the earth has moved to A, the sun will again appear at G. And, as the earth revolves round the sun in the orbit A B © D, so the sum will appear to a spectator on the earth, to describe the circle in the heavens, E F G H. Hence it is that we see the sun gradually proceeding in his course round the concave of the sky from west to east, at the rate of nearly one degree cvery day, through the twelve sigas or constellations of the zodiac. And at the end of a year he returns to the same point from which he set ont. Hence, also, it follows that, if the plane of the earth's orbit be conceived to be extended to the heavens, it will cut the starry firmament in that very circle in which a spectator in the sun would see the earth revolve every year, while an inhabitant of the earth observes the sun to go through the same circle in the same space of time. This circle, then, is called the ecliptic, the apparent path of the sun, the real path of the carth through the heavens. And, although the pach of the sun, and the particular stars he is passing along. caunot be seen in the day-time, yet, by observing the stars which are directly opposite to him at night, we can tell at any time what particular stars the sun is passing along at every point of his course.

The inhabitants of all the other planets will perceive different motions in the sun as we observed, but performed in different periods of time, according to the times of their annual revolutions. An iuhabitant of the planet Mars, for example, would see the sun apparently revolving round him in the heavens in the space of about one year and ten months. The circle which the sun would appear to him to describe would not be very

IMAGE EVALUATION TEST TARGET (MT-3)

NIL25 114.

Photographic Sciences Corporation

23 WEST MAIN STREET WEASTER, N.Y. 14580
(716) 872-4503

different from that of the earth, as the inclination of his axis to the plane of his orbit is not very different from that of the earth to the plane of the ecliptic. Au inhabitant of the planet Jupiter wruld see the sun apparently revolving around lim, describing a circle in the heavens in the space of twelve years. This circle would not be exactly the same as our ecliptic, because the orbit of this planet is somewhat inclined to that of the carth; but it would pass very near it. In the space of one of our years the sun from Jupiter would appear to pass through only a twelfth part of the circumference of the heavens. The sun from Saturn will appear to move in another circle in twenty-nine and a half years; and from Uranus, in another circle, in about eighty-four years ; and a spectator in Venus will see the sun moving in a circle different from all these, with greater apparent rapidity, in the space of seven and a-half months. All these apparent motions of the sun arise from the real motions of the respective planets. Secondly; the annual motion of the earth slows why we behold one set of stars in our firmament at one season of the year, and another set of stars at a different scason. For example, the stars and constellations which, in our northern latitudes, are seen in the sonth during the winter months, are altogether different from those which are seen in summer: and those stars which surround the pole in the north, and which never set, if they are below the pole in winter, they will be seen as far above the pole in summer. At the equator, where all the stars north and south rise and set, the stars which are seen in the mildle of winter are all completely different from those that are seen at the same hour in the middle of summer. This is easily explainable by the preceding diagram, in which the earth, in four situations in its orbit, appears half enlightened and half in the dark, representing day and night. When it is at A the sun will appear at noon at G, and obscure all the stars in the hemisphere FCH ; when, as at midnight, the point of the heavens \mathbf{E} will be in the meridian, and all the stars in the other hemisphere, F E H, will be visible. Three months afterwards, when the earth comes to the situation R, the sun at noon will be seen at H , and all the heavens, G II E, will be day, illuminated by the sun; and over all the other half, E F G, the stars will shine at night; consequently, the stars in the quarter FG will now be visible, which, in the former position, were obscured by the sun ; and those in the quarter H E, formerly visible, will become obscured by daylight. In like manner when the earth is at C, the heavens II E F will be day, and F G H night, when all the stars which were obscured when the earth was at A, will now be visible. And, lastly, when the earth is at D, the stars and constellations in the hemisphere E F G will be obscured by the light of the sun, and those on G H E will be visible during the night. Hence all who are accustomed to observe the heavens will have seen that the bright constellation Orion, the brilliant star Sirius, which follows it, and the Pleiades, or Seven Stars, which are
visible are ne inating above torial
visible in the southern sky during the winter and the approach of apring, are never seen during the summer months, because the sun is then illuminating that portion of the firmament where they are situated; but, being above the horizon in the day-time, they may be seen by means of equa. torial telescones.

By observation of the starry heavens we find that the stars never alter their positions in relation to each other. Thoy apicar to move cound us in one compaet borly as the figures of the constellations do on a celestial globe, when that instrument is turned round its'axis; but the stars of one constellation neicer approaeh or move away from those of another. If, for example, we direct our attention to the stars 'of the Great Bear in the northern sky we shall find that at all hours of the day and night, and at every season of the year they present the samo definite figure, and maintain the same relative positions to each other, without any semsible variation of distance or magnitude ; and the same may be observed from one year to another. Hence, as before mentiored, they are usually denominated the "Fixed Stars." But when we examine the heavens with more care and minuteness we occasionally perceive a few bodies, having the appearance of stars, which when carefully watched for a few weeks or months, aro found shifting their positions with relation to the surrounding stars. In most eases their movements are toward the East, but not unfrequently toward the West; and at certain times no motion can be observed for a considerable number of days. The bodies which are thus perceived to change their positions among the stars are called planets, which word, as before mentioned, means "Wandering Stars." Until very recently there wero only ten bodies of this description known to astronotacrs, and the paths of these had been traced in the heavens, and their motions accurately ascertained. Nearly one hundred of these bodies, all of them of small dimensions, have lately been discovered in the spaco intervening between Mars and Jupiter. Five of the planets are visible to the naked eye, and these were known to the ancients, who gave them the following names, derived from the heathen mythology : Mercury, Vulus, Mars, Jupiter and Saturn ; and if we count the Earth in it makes six. By long and careful investigations of the phenomena and motions of these planets astronomers have aseertained that they all move round tho sun, as the centre of their motions; and along with the earth, the minor planets and the moons form one grand and harmonious system with which we are intimately connected, and which is called the solar system.

The following is a list of the principal bodies of this grous, in their order in space : First the Sun, the common centre around wnich the planets all revolve ; Vulcan, a planet very recently said to be discovered, but whose existence is as yet by some considered doubtful, Mercury, and Venus; which all are distinguished as the inferior planets, their orbits being
includod within that of the earth; the Earth, and the superior planets : Mars, the minor planets or asteroids, Jupiter, Saturn, Uranus, and Neptune. There aro also many sccondary planets or moons, as well as comets, which are reckoned as belonging to this system : besides there may be many other planctary bodies in it ; doubtless there are many that yet remain undiscovered.
As we enquire moro particularly into the movements of these bodies wo discover many striking points of similarity. They all move round the sun in the same direction, and in elliptical paths of no great eccentricity. They aro all opaque bodies, like the earth, shining only by reflected light; and all rotate on their axes, so as to produce the alternation of day and night. Their orbits, too, are all inclined to the plane of the ecliptic or earth's orbit. Tho following is a method by which we may obtain a tolerably correct idea of their comparative magnitudes and distances, and the relative dimensions of their orbits. Select a large, clear space, and ${ }_{\mathrm{F}}$ lace, nearly in the centre, a ball of about two feet in diameter to represent the sun : Vulcan will then, supposing such a body to be really existing, be represented by a small pin's head 27 feet from the globe ; Mercury by a mustard seed 82 feet distant ; Venus by a pea at a distance of 142 feet ; the earth by a pea of about the same size, or slightly larger, at a distance of 215 feet ; Mars by a large pin's head at a distance of 327 feet; the minor planets or Asteroids by very small grains of sand between 500 and 600 feet distant ; an orange of about $2 \frac{1}{2}$ inches diameter, and 1120 feet distant, will represent Jupiter ; one about 2 inches in diameter _nd distant two-fifthe nf a mile will stand for Saturn; a full-sized cherry, three quarters of a mile distant, for Uranus ; and a plum, a mile and a quarter off, for Neptune. On this scale the distance of the nearest fixed star is reckoned at 7,500 miles.

Tife Sun.

As the sun is by far the largest of these bodies we shall treat of him first ; and the question which at onee suggests itself is, what is the distance of this body? The accurate solution of this question is found to be one of the mostimportant problems in astronomy, as this distance is taken as the measure for determining the distances and magnitudes of the other heavenly bodies. There has always been great difficulty experieaced in determining the distance of the sun, owing to the fact that the earth's diameter, being so small compared with the sun's distance, did not afford a base line of sufficient length for a triangle by which the sun's parallax, and thence his distance, might be obtained. There has, however, been obtained what is considered as a near approximation to it, by means of observations taken of the transits of Venus. As a result of these observations, the sun's mean distance is determined to be about $91,430,000$
miles
miles
ments imatic
will ta
mean
e,000 ing its obtain his dis eight
requir
miles. Until recently the sun's distance has been taken at $9 \dot{j}, 000,000$ miles; but subsequent investigations have shown an error in these measurements. The numbers here given however are only given as approx imation ssubject to future correction. The next transit of Venus, which will take place in 1874, is anx:ously awaited to settle the question deci sively. It may be remembered too that the distance given above is the mean, the difference between the minimum and maximum being about $8,000,000$ miles. Having ascertained the distance of the sun, and knowing its apparent diameter to be about 32°, a little over half a degree, we obtain his real magnitude by a simple proportion ; and in this way we find his diameter to te, in miles, about 853,000 , or more than one hundred and cight times that of the earth. The sun's volume is so great that it would require over $1,300,000$ globes of the size of the earth to be rolled into one to equal it ; and it is computed to be 450 times as large as all the known planets which revolve around it taken together. Its surface contains more than 12,000 times the number of square miles on our globe. The reason why the sun appears so small to our eyes, although being a globe of such immense magnitude, is owing to its great distance from our world. This distance may be illustrated somewhat as follows: It would require a cannon ball, though flying continually with a velocity of 500 miles an hour, 21 years before it could reach the sun. Suppose a steam-carriage to set out from the carth in the direction of the sun, and to move without intermission at the rate of twenty miles an hour, it would require over 520 years before it had traversed the whole space which intervenes between us and that luminary. How wonderful then that the sun at such a distance should exert his attractive power upon the earth, raise the tidos in the oceans, and diffuse light, heat, color, and animation over all its regions! Some idea can be formed of its light and heat when we remember the enormous distance at which we are from its surface, and the degree, notwithstanding this, to which wo feel its power and influence. Its liglt is computed to be equal to that of 5,500 standard candles placed at a distance of a foot from the given surface to be illuminated. We naturally want to know something more about the physical properties of this wonderful and stupendous orb; but we are to a great extent baffled in this enquiry, just as we are in regard to the exact physical properties of the bodies which make up the earth's interior; though many great and important discoveries have been recently made by means of spectrum analysis. In this way, it has been ascertained that many of the metals present in the earth are also present in the sun.
When pieces of very dark glass are placed in front of the eyc-piece of a telescope, so as to screen the cye from the intense glare of the sun, its surface may be carefully examined, and is found to present an appearance by no means uniform. Many dark spots termed macula are found at times
to exist on its surfaco. See figures 102 and 103. The centre of these is usually of a very dark color, and is surrounded by a margin much lighter in appearence, which is known as tho penumbra. These spots are very irregular in shape, and frequently change in size or disappear altogether. This may in the main be accounted for by the rotation of the sun on his axis, by which different portions of his surface are presented to the earth in succession. The spots appear first on his eastern margin, at which time they appear narrow and somewhat obscure ; they move gradually onward to the centre of the dise, when they appear largest and most distinet; aiterward they proceed toward the western margin, where they again

Flgs. 103. and 203.
appear narrow and obscure : and after a period of about 13 days from their first appearance on the castern edge, they disappear from the western limb; and, in many cases, they again appear on the eastern limb, after the same period of 13 days. But they are frequently somewhat changed in their aspect before they reappear ; and, in numerous instances,
after viabl diver spot narro vio wis may b globe spots 2nd.! rotatio but ar appare of the theref miles
after disappearing from the sun's western boundary, they are never again visible in the same shape; but other spots at uncertain intervals, are seen divorsifying the solar dise ; though not unfrequently scarcely a singlo spot is to be seen on the whole surface of the sun. The spots appearing narrower and less distinct on the eastern and western limbs, is owing to o ir vio wing obliquely those parts of the sun's surface. The conclusions which may be deduced from these circumstances aro: 1st. That the sun is a globe and not a flat surface, as it appears to the naked eye ; otherwise the spots would appear equally large and distinct on every part of its surface: 2nd. That this luminary moves round his axis in the same direction as the rotation of the planets; for its spots do not alter their places on its disc, but are carried along with the whole boly of the sun. The time of the apparent rezolution of these spots is 27 days, 8 hours; but the real period of the sun's rotation on its axis is 25 days, 7 hours, and 48 minutes; and, therefore, the spaces about the sun's equator move at the rate of 4,407 miles an hour.*

The solar spots are of different sizes, and of different shapes. Their dimensions vary from the $-\frac{1}{0} \frac{1}{n}$ th to the $-\frac{1}{30}$ th of the sun's diameter. The smallest of these spots which can be distinetly seen are nearly 1,000 miles in diameter. Spots the ${ }_{-1}^{-1}-$ th part of the sun's diameter, which are frequently seen, are 17,600 miles in diameter, or more than double the diameter of the earth ; and if the spot be considered only as a plane, and some what circular, it will contain a considerably greater area than the whole terraqueousglobe, and sometimes a spot of this vast size disappears in a few weeks, not unfrequently in a few days. Sometimes no spot is to be seen on the solar dise, for weeks and even for months together ; at other times, over a hundred spots of different sizes are dispersed over its surface at one time. In such cases, there are generally five or six large spots such as that alluded to above, accompanied with ten, fifteen, or twenty smaller spots; but, after disappearing at the sun's western limb, it is seldom they come round again in the same order as beforc. Some appear to have been altogether dissipated, and others to have changed their shape and relative positions to surrounding spots in which they formerly appeared. Some of these spots of considerably larger dimensions than the earth, containing three or four hundred millions of square miles,occasionally appear and vanish in the space of 48 hours. The parts of the sun's surface where these spots most frequently appear, are those which lie adjacent to its equatorial regons; no spots being ever seen near its northern or southern poles. In some ycars these spots appear in

[^48]great numbers,and seldom a week passes without a few of them being seen; while in other years comparatively few are visible. Careful records have been kept of their appearance.

They are found to diminish in frequency for about five or five and a-half years, when the number is at a minimum, the surface being then free from them on more than half of the days of observation. They then inerease again in number for the next five and a half years; and thus their period appears to be about eleven years. A remarkable fact has been noted in comection with this, and that is that the daily variction of the rangetic needle is found to have a precisely similar period, and to increase or diminish with the inerease or diminution of the number of spots. Uther fhenomena seen further to show that there is an intimate relationship existing letween the movements of the magnetic needle and the sum. Future observations will doubtless reveal to us more of this natural bond, and new discoveries on the subject are frequently being made.

Beside the lark spots, which we have now described, there are spots which display a bright, and mottled appearanco, and which it is difficult in most cases to distinguish from the real boly of the sun. These are termel facultoe. They are chiefly to be seen when they first appear on the eastern margin of the sun, and when they approach near the western limb; but they are rarely seen near the middle of the dise. They are most gencrally seen in connection with clusters of dark spots, and when they are first seen near the eastern limb they frequently indicate that dark spots are about tr appear. They appear like luminous mountain ranges, plamly indicating that the sun is not a smooth surface, but is diversified with elevations and depressions, or in other words, with mountains and vales of stupendous dimensions; otherwise we could by no means perceive them at the immense distance at which they are placed from us.

Recent telescopic investigations, however, show that, besido the markings of which we have spoken, the whole surface of the sun has somewhat of a mottled appearance. According to Nasmyth it presents an appearance as if it were covered over with scattered filaments, shaped like willow-leaves. This whole question of the physical constitution of the sun is now engaging the attention of many astronomers. A total eclipse of that bodiy presents a good opportunity for the observation of many points, and among the most remarkable features in connectior vith these phenomena is the presence of dark flames or protuberances surrounding the dark body of the moon at the moment of total obscuration. These have recently been seen at other times also, and are believed by some to be connected with the solar atmosphere. They probably arise from certain portions of the sun being for the present more combustible, and in a state of more intense incandescence than others.

The
state of of chem while ॥ or asel
not a sin festation combinat the body is revolv tation in other che to the su atmosphe they eve them beit that the c may go tion with want of sequence such a na it may h hinders t been enli

The question will naturally suggest itself-if the sun is continually in"a state of combustion, will it not at some time be consuned? $\mathbf{\Lambda}$ knowledge of chemistry will go far towarlsanswering such a question as this. Bodien, while underging, combustion are also underoning chemical decomposition, or a separation of their component parts into their primary elements, bit

not a single particle of them is lost by the process. Light is only a manifestation which attends combustion, and is equally attendant upon the combination as upon the separation of chemical clements; the matter of the body undergoing combustion, unless what residuum there may be from it, is revolved into gaseous elements; which ascend to the level of their gravi. tation in their atmosphere, and there fivat, wutil, perhaps, recombining with other chemical elements for which they have an affinity, they thus return to the surface of their sphere again, it may be-as in the case of the earth's atmosphere they do-in the form of a meteor, but in some way or other they eventually return to the surface of their spheres, not a particle of them being lost by tho manifestation of light. By this, it is understood that the elements of the sun in connection with which light is manifested, may go on separating and recombining under the influence of combustion without any actual waste or exhaustion of matter, as long as the want of equilibrium between his elements makes combustion to be a conseguence of their contact. The constitution of the sun appears to be of such a nature, and such is the purpose which it answers in the system, that it may have ever existed and may ever exist luminous. Albeit, what hinders that during certain periods of the past our system may not have been enlightened by some other luminous body?

Acending to Sir Wim. Horsehell's estimato the atmospluere of tho amo is not less than 1810 and not more than gitio milow in depth. I'his be regreds as the ontermost conting of the amb, or his visiblo surface: mind umber this smperior stratum he conceived thore is mother, more dense mod highly veflective, which thews hach the light of the "pper regions, athe
 t'u dark centrol parts of the epots, we the melai, are part of the solid milter of which the sun's bobly is comperad. Acoording to such vious th 'ghole of the sum may he regarided as of comsiderable density, end nltugnther milike the carth and the other phancts, med wet a rery great pure tios at its surface, comparatively speaking, as boing in a state ut ombers. tion : and there is no improbability in supposing it fo be inhabited with somsi tive and intelligent beings having eonstitntions alapted firg their situation : and it may constitute the most ghorions hathitation commedor? with the shlar system. It is evident, howerer, whaterer may be the real natmo ame comstitution of this hminary, from the rapid min extionsive changes whiols are seron to take place in eombection with the spots on his surface that there are fores of prodisions pener in contimal aprotion there, probles ing the most astonishing effeets in short spaces of time. And sueh chamerne are dombthess neerssary for presurving the present state of the sum, har

 motions, amd contines thom all the thin proper pathes, so that bome eam

 our world: the hambes which : mhen the fee of nature womh mowhere he seen: the wabling of the bide womb mot be heand the foners

Fig. 105.
would mot be Bocked in their gay colore, hor shed their rich perfomes; oar earth would be a hideous chans. Can we retleet therefore
"190n th ficial ent to llim pilutions thou ann solar lis, llis mun

Wir roumel II (1)ncr, lin cury, fir poning flse that that of that son willimis lerod th rals, mu the sill ; never 川 Almont low int tra physicia ho hall anmomice la Vorri first he plysicia comvince called V be drawn was, how lution in jechured though a learned are dispe however seen on planet ro
upon tho grandene and magnitule of this lmminary, mil the manifild beno

 wolar light, as of all wher creatures, -mal to kive llim the ghey dae wo Ilis mumo.

'Ime lobanet Vmionn.

 anor, having very earelully exmaned the movements of the phane Mor-
 pesing that the masa of tho phanet Venus was incorrecely aseertninet, or clace that there was a planet revolving rombl the smen in inn whit within
 that some firthe light might be thrown int the mather. It mast bes remembered, howerar, that Muremry itsedf, which matil buw was s:onsi-
 vals, and thon with dillisulty, on meeount of its apporent proximity to the sun ; nut that, therelore, thlanet melin nemer th the sum womld never appar far emong removed from that borly to be elearly disermed. Almost the mily apmortmity of ohserving it then womld ber whon it shand le in transit. As soom as le Vervier had publishore hisastatement a lirench
 ho hail seen a small buily pass across the smm, lait hat mot liked to anmonee the linet before, in other observer having called attention to it. la Verrice at once saw him mul earefully enguired into the matter. At first he thought the whole affair was a delasion ; lant after questionin; the plysician, and engniring as to the apparatns he hud nsed, he becane comvinced that he hal indeed discovered a now planet, which was then ealled Vulean. From this one observation no very deeisive details could be drawn so as to caleulate its orbit acenately ; its distance from the wint was, lowever, set down at nbont $14,000,000$ miles, and its time of revolution in its orbit at a period of a little umber twenty days. It was emjectured that a second tramsit might bo observed in March 1860; but though a careful wateh was kept it was not seen; nor has it that we have learned been seen again up to the present time. Many on this necount are disposed to treat the whole affieir as a mistake. Instances have however been previously recorided of spots resembling planets being seen on the sun; and future observations will perhaps show, that the phanet really exists as well as some others in that luminous space,
and that these have heren transits. Astromomers, however, do mot prom monamendefinitely cither way as to the alloged planet, and are only awaiting the cresilts of histure insestigations coneerning it.

'Tus I'banet Mmemb.
This phane has lueon kurwn from the rartiest ages of aytowney if which we have any womeds. This speraks will fine the meserech of the matly antrommers: firs, owing to its small siza, and its proximity the the nim, it is very diftienth to whtuin a satisfarthey view of this plames. It is sain that the celdobateol Copernicus, mlthongh the greatest part of his life was deroted to the stinly of the heavens, never oner shered al in olitaining a virw of this wh. The greatest distance at which it can ever he from the smin is 9 ge, and sometimes its elongation hefore it lagins to rethem is not mown than lote. The mean distance of Merenry fow the sun is mearly $35,30,000$ mike. Its eceentricity, that is, the distmee from the centre of its orbit to the contre of the sm, being very great, (ahont seven millions of miles.) its distance varies between $28,000,000$ and $43,000,000$ miles. It performs its journcy round the sun in a trifle over 87 days, so that its year is less than a fourth the length of ours. Its speed in its orbit is far greater than that of any of the other known phanets; being computed to be at an average $10!, 800$ miles an hour, or 1,830 miles a minute ; hence in the ancient mythology Mercury was represented with wings to his feet; and his name is said to signify the "swif messenger." This planet is hut small, its diameter being reckoned at 2,960 miles, or rather more tham one-thind that of the earth. Hence its circumference, or a line extending quite romed it, would measure about 9,299 miles; and the number of squares miles on its surface would be nearly $27,025,040$. Its period of rotation round its axis is 24 hours it minutes, and thus it clearly resembes the earth as to the length of its day. A transit of this planet oceurs whenerer it is in one of the nodes, (that is, at the point where its orbit
whorsect mext time "if this !! tramsit il जry y" "tily whe" limenr ifn "Cocolin oll cortespois sili liow lu'ero whand luי10ns is plamet's in lomiliclews herowe ano hoight ex purulicula sever tim seron tim invelopeeil
'Ilown lants of millions o if being arro anil adore the

The sit from riseo to several respect to to move a of its axis near its heavens s a very gr correspon distribute will appes to the su very brill purpose o
 next time this will weenr will he on the bith of May, IA78. If the arhit of this planet were in the samere plane with that if the math it wrimb

 wen ita ondes, and when the marth is in the same homgitulo ; and this unenre ouly at intervils of several yoars. 'Thit planet "xhitits phases

 lurens is trmentent, or ent ofl ot the guint, ly which the prome of the

 surven times that which we meeciwe ; ant the sum will ajpura from Marenry

'Ihough diminutive in its uplearames, and sellonn seen by the inhatifunts of the enth, we ean seareely dombthat thome exist on Merenry millions of sentient and intelligent creatures, prohaps superine in sealo if being to man, with constitutions fitted for that yphere in which they are and with mental powers which 'prailily them to know, to hove, and th adore their great Creator.

The situation of this planet being sh mear the sum has provented ns from diseovering varions particulars which have been discovered in relation to several of the other phanets; and therefore not much can be said with respect to the seonery of its firmment. Ihe starry heavens will appear to meve aromen it avery 24 hours, as they do to us; but as the direction of its uxis of rotation is not knowa wo cannot tell what stars will appear near its equator or its poles. The sun will present a surface in the heavens seven times as large as he docs to us, and of course will present a very grand and splendid appearance in the sky, and will produce a corresponding brightness and viviluess of color on the objects which are distributed over the surface of the planet. Both Venus and the Barth will appear as superior planets; and when Venus is near its opposition to the sum, at which time it will rise when the sun sets, it will present a very brilliantappearance to the inhalitants of Merenry, and serve the purpose of a small moon to illuminate the evenings in the absence of the
sun. As Venus preseats a full collightened hemisphore at this time to the inhabitants of Mercury, it will exhibit a surface six or seven times larger than it does to us when it shines with its greatest brilliancy, and, therefore, will appear a very bright and conspicuous object in the firmament of this planet. At all other times it will appear at least two or three times larger than it ever does to us. It will generally appear round ; but at certain times it will exhibit a gibbous phase, as the planet Mars frequently does as seen from the earth. It will never appear to the inhabitants of Mercury in the form of a crescent or half moon, as it sometimes does through our telescopes. There is no celestial body within the range of this planet, of which we have any definite knowledge, which will exhibit either a half moon or a crescent phase, unless it be the stipposed planet Vulcan, and unless the planet itself be accompanied with a satellite. The earth is another object in the sky of Mercury which appears next in splendo: to Venus. The earth and Venus are nearly of an equal size; but the earth being nearly double the distance of Venus from Mercury its apparent size at the time of its opposition to the sun is only about half that of Venus. The earth, however, at this period will appear in the firmament of Mercury of a size and splendor three or four tines greater than Venus does to us at the time of its greatest brilliancy. Our moon myy also be seon, like a small star,accompanying the earth, sometimes approaching to or sometimes receding farther from the earth, and sometimes bidden from the view by passing across the disc of the earth, or through its shadow. It will probably appear about of the size and brightness of Mars, as seen from the earth. The earth, with its satellite, and Venus will be seen near the same point of the beavens at the end of every nincteen months, when they will appear for some time the most conspicuous objects in the sky, and diffuse a considerable portion of light in the absence of the sun. At other periods the one rises in the eastern horizon as the other sets in the western ; so that the inhabitants of Mercury are seldom without a conspicuous object in their nocturnal firmament, diffusing an illumination far superior to that of any other stars or planets. The earth is in opposition to the sun every four months, and Venus after a period of five months. The planets Mars, Jupiter, and Saturn will appear with a somewhat inferior degree of magnitude and brilliancy than they do to us, particularly in the case of Mars. The period of the annual revolution of Mercury being 88 days, the sun will appear to move from west to east through the circle of the heavens at a rate more than four times as great as his apparent motion through the signs of our zodiac.

The Planet Venus.

This planet is the next in order from the sun. It has been known from remote antiquity as the morning and the evening star, because in one part refore, of this larger certain ly does ercury gh our net, of : a half n, and earth is doi to te earth ent size Venus. Cercury 3 to us , like a netimes view by robably e earth. e point appear a conperiods ern ; so object io that A every s Mars, gree of case of days, of the motion ne part
of its course it makes its appearance in the West in the evening before any other star is visible, and in another part of its course it appears in the East in the morning, ushering in the dawn, and giving notice of the approach of the rising sun. So brightly indeed does it shine that it is visible at times to the naked eye duril:g the day, and casts a shadow at night. But its apparent size and brilliancy vary very greatly, as will be easily understood if we remember that when in its inferior conjunction it is within twenty-five millions of miles of the earth ; while when it is in superior eonjunction this distance is increased by the diameter of tho orhit of Venus, and becomes nearly one hundred and sixty millions of miles. The quantity of light which this planet reacise from the sum is netuly touble that which falls upon the earth, owing to its greater nearness to the source of light; so that the sun will appear from its surface twice at large as it does to us. When in the prort of its orbit directly betweeen the carth and sun, that is, in inferior conjunction, it is at its least distance from us, and hence would appear most brilliant if it were luminous. If indeed at this point its enlightened side were turned toward the earth it would present a surface 25 times larger than it generally does, and shine with the splendor of a small moon; but as its dark side is now turned toward the earth it is invisible just as the moon before new moon. Besides this, it appears so closo to the sun as to be lost in his brightness, unless it should happen to pass actos, the sun's dise, where it appears as a round black spot. This will be seen as at A in the figure where Sin the centre represents the sun, and the earth is conceived to be in a line with the sun and Venus on the dark side of the latter. As the planet now travels onwards towards B it gets further and further removed to the West of the sun, and thus rises earlier and carlier, being then known as Lacifer or the morning star. At the same time its bright hemisphere becomes partly turned toward the earth. When exactly half enlightened, asat B, it is atits greatest elongation from the sun, being distant

about 48°, Its period of greatest brilliancy is, however, a little before this when about one-third of its dise its illuminated. Having attained its
greatest elongation, it seems stationary for a short time and then appears to return toward the sun, an increasing portion of the dise being illuminated, though, on account of itsincreasing distance, it appears smaller. It is then lost again in the sun's rays for a time, and when it reappears to the East of the sun, it does not rise till after that luminary, and, therefore, is no longer the morning star. At this time, however, it remains visible for some time after sunset, and is kuown as Hesperus, or the evening star. After attaining its greatest eastern elongation at D it returns to \mathbf{A} to go through the same phases again. While travelling about half the distance between D and A , or that half next to D , it appears stationary; in the other half, or that nearest to A, it appears to retrograde ; and so while travelling half the distance from Λ to B , or that half nearest A , it appears still to retrograde, while in the other half, or that nearest to \mathbf{B}, it appears stationary. These phases are not visible to the naked eye, and hence the absence of them was adduced as an argument against the truth of the Copernican system. This was before the invention of the telescope. Galileo, howover, in 1610, on turning his newly-constructed telescope to the planet, at once discovered the fact of their existence. This is one of the strongest arguments adduced in proof of the system which has the sun as the centre of the planets' motions. 'i'he period which elapses between one inferior conjunction and another, or that is occupied in going through this cycle of changes is 584 days, and this is called its synodic period. The time, however, that is occupied in completing a circuit round the sun is only $2: 24$ dayó and 17 hours. A.t first sight these results appear inconsistent, but the apparent diserepaney vanishes when we recollect that the earth is itself in rapid motion, so that by the time Venus has completed a revolution round the sun, the earth has travelled round a large portion of its orbit, and Venus has to overtake it befc e another conjunction can take place.
The distance of Venus from the Sun is about $66,130,000$ miles; and its orbit is neaily circular, its eccentricity being less than half a million of miles, or about the 1-276th part of is diameter, so that its distance varies but slightly. When viewed through a good telescone this planet is a very beautiful object, especially when near its inferior conjunction, so as to appear in the form of a crescent; hut the brilliancy with which it shines is so grect that no distinct markings can be made out on its surface. The inncr edge is, however, considerably indented, indicating the presence of inequalities on its surfece; from this some observers have calculated that the height of its mountains is much greater than that of any on the carth. The height of such elevations is assertained from the lengths of their shadows. M. Schroter, a celebrated German astronomer, estimated the perperdicular height of one of these mountains to be ten and a-half English miles, and that of another no less than nineteen miles.

Althou globe, improb vations from must a afford, conceiv has an above t of obse 1761.
it was a shade, consider is not twenty-0 shorter t closely that the to resem many otl extendin miles on have see astronom roborate who obsc sive as t

案

Fig. 107. making an d

Although theso elevations so far surpass the highest mountains on our globe, yet, on this account, such estimates should not be considerod as improbable. For in nature, there is an endless variety, and nur observations on the moon and nearest planets show us that every planet differs from another in the peculiar features of its surface. Such lofty elevations must add to the sublimity of nature on the surface of Venus, and will afford, from their summits, prospects far more extensive than we can now conceive. M. Schroter also deduced from soveral observations that Venus las an atmosphere of considerable extent, the densest part of which is above three miles high. A similar conclusion was deduced by a number of observers in different places, when viewing the transit of this planet in 1761. At the time when the planet entered on the sun's dise, and when it was about to emerge from the eastern limb, a faint penumbra, or dusky shade, was seen surrounding the planet, which indicated an atmosphere of considerable height. The period of the rotation of this planet on its axis is not very different from that of the earth, being twenty-three hours twenty-one and a-half minutes; its day is, therefore, but thirty-five minutes shorter than ours. Its axis has an inclination of $73 \frac{1}{2}^{\circ}$. Its diameter also closely approaches in dimension that of the earth, being 7,510 miles; so that the planet which is nearest to us is found in many important respects to resemble the earth very closely; and analogy leads us to infer that in many other respects it may be a counterpart. Its circumference, or a line extending quite rou..d it, measures 23,593 miles, and the numier of square miles on its surface is $177,183,430$. Several observers assert that they have seen a satellite accompanying Venus. Observations of some able astronomers, who have given some attention to it, have as yet failed to corroborate these statements. The testimony of Mr. Montaigne, however, who observed it on several successive occasions, we consider to be decisive as to its c,istence.* But it is evident that this satellite would be

* Numbers 3, 4, 7, 11, in figure 107, mark the situations of the satellite, as seen by Mr. Montaigne, on May 3rd, 4th, 7th and 11th, 1760. On Nay 3rd he perceived, at 20^{\prime} distance from Venus, a small crescent, with the horns pointing the same way as those of Venus. Its diameter was one-fourth that of its primary; and a line drawn from Venus to the satellite, made below Venus, an angle with the vertical of about 20° toward the south, as seen in the figure, where Z N represents the vertical, and E C a parallel to the ecliptic, making then an angle with the vertical of 45°. On May 4th, at the same hour, he saw the same star, distant from Venus about one minute more than before, and making an angle with the vertical of 10° below, but on the north side, so that the satellice
difficult to detect, its diameter being so small as only one-fourth that of its primary It could not be seen at superior conjunction of the planet, for then it would be overpowered by the light of the sun ; nor would it be easily seen in any other part of the orbit, its enlightened part being so extremely small. The best time to see it would be at the time of the planet's greatest elongation, when it would appear about half enibghined. Observers should not despair of finding it, for the satellite exists, awaiting their discovery.
The last transit of Venus happened in 1769, when the British government sent out an expedition for the purpose of making observations. The next one will take place on Decembor 9th, 1874 ; then in 1882 ; and none will occur after that till June 8th, 2004.

This planet is doubtless well replenished with inhabitants, and may far surpass the world in which we dwell, not only in point of population but in sublimity of scenery. Its superficial area is nearly that of our globe; and it does not appear as if a very large portion of it is covered with water; otherwise it would not shine with such uniform brilliancy; the water not being as good a reflector of the light, as the solid, rough surface of the land. This beautiful planet, distinguished above all others by its great brilliancy, is occasionally alluded to by the writers of the Scriptures, as "the son of the morning," "the day star," and " the bright and morning star," emblematic of the enlightening and cheering effect of truth and godliness upon the minds and hearts of sinful men when the "day star" from on high hath risen in their hearts. When contemplating the bright 'uminaries of the sky, and especially the morning star, the placid influence they diffuse and the harmony with which all their movements are conducted, we can scarcely refrain from contrasting those scenes with the darkness and disorder which prevail in the moral world. While the sun diffuses his light by day, and the moon and the stars shed their mild radiance by night, it is still necessary to the well-being and happiness of mankind that intellectual light and sacred joy should be diffused in their minds and

[^49]hearts emble horizo of nigh mind i it, and former shine

To
nearly Venus the sun or thre when ir and an of sple the ear and sple to us at measure and will defined moon in in the h Jupiter earth's we poss variegat magnify islands, changes bility be surface o power. different parts of vient to t splendid purpose moon by inhabitan
hearts, of which the light of these luminaries has often served as an emblem. When the morning star makes its appearance near the castern horizon it is a sign that the sun will ere long arise, and that the darkness of night will soon be dispelled. When the day star arises in the benighted mind it intimates that now the light of Divine truth has begun to irradiate it, and to dispel the darkness, with all its miserable accompaniments, which formerly reigned in it; it is a sign that this light will still increase and shine more and more unto the perfect day.

Celestial Phenomena, as Viewed fram Venus.

To the inhabitants of this planet the firmament will present an aspect nearly similar to that of Mercury, with a few variations. Mercury is to Venus an inferior planet which never appears beyond 38° or 40° from the sun. It will appear in the evening after sunset for the space of two or three hours when near its elongation, and in the morning before sunrise when in the opposite part of its course ; and will be alternately a morning and an evening star to Venus, as that planet is to us, but with a less degree of splendor. The most splendid object in the nocturnal sky of Venus is the earth, when in opposition to the sun, when it appears with a magnitude and splendor five or six times greater than either Jupiter or Venus appear to us at the time of their greatest brilliancy. It will serve, in a great measure, the purpose of a moon to Venus, if this planet have no satellite ; and will cause the several objects on its surface to project distinct ard well defined shadows, as our moon does when she appears a crescent. Oar moon in her revolutions round the earth appears also a prominent object in the heavens of Venus, and probably appears about the same size that Jupiter does to us. Her occultations, eclipses, and transits aaross the earth's disc will be distinctly visible. With telescopes such as the best we possess, the earth would appear from Venus a much larger and more variegated object than any of the planets do to us when viewed with high magnifying powers. The forms of our different continents, seas, and islands, the different strata of clouds in our atmosphere, with their several changes and motions, and the earth's diurnal rotation, would in all probability be disti: . .ly perceived. Even the varieties which characterize the surface of our moon would be visible with telescopes of a high magnifying power. The circumstances now mentioned prove the connection of the different parts of the planetary system with one another ; and that the parts of it are so arranged that one world is, in a certain degree, subservient to the benefit of another. Thus the earth serves as a large and splendid moon to the lunar inhabitants; it serves in a certain degree the purpose of a smali moon to Mercury ; it serves the purpose of a larger moon by exhibiting a surface and a radiance four times greater to the inhabitants of Venus; and it serves as a morning and an evening star to
the planet Mars ; so that while we experience enjoyment in contemplating the moon walking in brightness, and hail with pleasure the morning star as the harbinger of day, and feel a delight in surveying those nocturnal luminaries through our telescopes, tho globe on which wo dwell affords similar enjoyments to the intellectual beings in neighboring worlds, who bohold our habitation from afar as a bright speck upon their firmament, diffusing amid the shades of night a mild and placid radiance. From Venus the planets Jupiter and Saturn will appear nearly as they do to us; but the planet Mars will appear considerably smaller. The sun to this planet will appear twice as large as he does in our sky, and will appear to make a revolution round the celestial sphere in the course of seven and half a months, which completes the year of Venus.

Tue Earth.

The next planet in order is the Earth, which we have hitherto considered as the base from which we made all our observations. It may still seem strange to some of our readers that this world on which we live should be considered a planetary orb; as at first view it does not appear to bear any resemblance to any of the luminaries that appear in our sky. The planets, as they are seen in the heavens by the naked eye, appear as only comparatively small points of light, whereas the earth, from whatever point we viers it, appears the largest body our eyes any where behold, and when we traverse its surface either by sea or land there appear no boundaries to its dimensions. We have explained before that the nearer a body is to the eye the larger it appears, for the larger the angle is which its extremities subtend in the eye; and on the other hand tho farther removed a body is the smaller it appears, for the smaller the angle it subtends in our eye. This is the reason why the planets, some of which are much larger than the earth, appear but as visible points in our sky; and why the moon, though sixty millions of times smaller than the sum, appears equal in bulk to that luminary. From the positions in which we can view any portion of the earth, even when we ascend several miles above its surface in balloons, it does not exhibit a luminous aspect, such as that which the celestial bodies present ; so that at first view we might be inclived to suppose that no similarity exists between our sublunary world and the orbs of heaven. Beside, the celestial orbs are apparently in rapid motion from one region to another, while the earth appears to be at rest in the centre of their motions. There is not, perhaps, one out of a thousand of the earth's present inhabitants who has the least conception that beside every other motion of which he is susceptible, he is carried along through the regions of space with the rapidity of thousands of miles every hour. Yet this is a fact which is not merely probable but
certair both
certain, and can be demonstrated to the conviction of every one who is both willing and qualified to enter into such investigations.

Could we stand on the surface of the moon we should behold the earth like a great globe in the firmament, appearing with a surface about 13 times larger than the moon does to us, and presenting its different sides to our view. Sometimes America and the Pacific Ocean; and at other tinnes Asia, Africa, Europe, and the Atlantic Ocean ; sometimes appearing like a large crescent, or half moon, and at other times with a full enlightened hemispbere. Could we take our station on the surface of Venus we should behold the globe on which wo live appearing in the azure sky like a large bright stai; and tho mon, which appeary so iarge in our fry ament, would be seen only like a very small star very near the earth and constantly moving around it. The earth would in general appear about of the same size that Venus does to us, but perhaps not quite so brilliant, owing to three-fourths of its surface being covered with water; at certain times, however, it would appear ten times larger than Venus does to us and like a small brilliant moon. (On the other hand, if the bright side of Venus were turned toward us at the time of her inferior conjunction, that planet would appear about 25 times as large as it usually does.) Were our situation on the planet Mars, which is much farther from the sun than Venus, the earth would appear alternately as a morning and evening star, exhibiting differest phases, as Venus does to us, but with a less degree of size and splendor. It might not, perhaps, shine with so much brilliancy as Venus, but it would probably appear of a lustre similar to that which Mars presents to us, or somewhat brighter. It need not be wondered at that the earth would appear as a luminous body from such distant positions; for we have demonstrative proof that Venus, Mars, and all the other planets, though they appear like shining orbs, are in reality dark bodies like the earth, and receive their light from the sun, the reflection of which from their surfaces makes them appear luminous to us; and it is only when the portions of their sides which are enlightened by the sun are turned toward us, that we see them in the heavens. On some occasions the dark side of Veaus is completely turned toward the earth, and then she is invisible ; and sometimes in this position is seen to pass, as a dark spot, across the dise of the sun. These and many other circumstances demonstrate that the planets are in themselves dark bodies, and shine only by reflection; and consequently that the earth,though a dark body, will appear luminous at a distance by reflecting the solar rays which fall upon it as the moon does to us. We have already proved that as a planet the earth turns round its axis every 24 hours, and also moves round the sun every year; this latter part of our position we will endeavor in the sequel to illustrate by a figure.

The earth's mean radins is $8,050 \mathrm{~d}$ English miles ; is mean diameter being 7,013 miles ; consequently its circumforence, or a line extending quite round it, measures 24,859 miles ; and the number of spuaro miles on its surfice is nearly $190,709,207$. Of this it is estimated that $149,000,0100$ square miles are oceupied hy the scas undocenns: thus leaving $\mathbf{4 7 , 0 0 0 , 0 0 0}$ square miles of dry land, or less than one-third of that ocenpied by the wnter. The mean diameter of the earth's orhit is nhout $182,862,000$ miles; and its approximate circumference about $57,7,709,000$ miles. 'The lineer eccentricity of the carth's orbit, being nhont one-sixtioth of its semiaxis major, or menn distance of the earth from tho sun, wo have $1,523,850$ miles for the distance hetween the centre of the earthis orlit and the centre of the sun, or the foens of that orlit. Comsepuently the earth is about double this distance, or $3,0-7,7, i 00$ miles nearer to the sum in winter than in summer. In the diagram the earth is representel in four different positions (momentary positions) in its orbit, namely, at mid-spring, mid-summer, mid-antumn, and mid-winter. In all these positions, as well as all romed in its orbit, the parallellism of its axis N.S. is preserved, that is, its axis is always directed to tho same pmints of the heavens. Some find it diflicult to moderstand how tho enrth's axis in all parts of an elliptical orhit can remain parallel to itself. 'lhey should remeniles that the diameter of the earth's orbit is as nothing in comparison with the distance of the fixed stars. If two parallel lines are drawn at the distance of thee or four yards from one nother they will pount directly to the moon, when she is in the horizon. I'hree or four yards are accounted as nothing in comparison of 240,000 miles, the distance of the moon from us. And perhaps three or four yards bear a greater proportion to 240,000 miles, than $182,862,000$ miles, the diameter of the earth's orbit, bear to our distance from the pole-star. 'Ihe earth's axis is inclined to the plane of its orlit at an anglo of $66^{\circ} 3^{\prime \prime}$, hence it makes an angle of $23^{\circ} 25^{\prime}$ with tho perpendienlar to the plane of its ortit : for the perpendicular, represented by the dotted line passing through the centre 0 , makes an angle of 90° with the plane of the orbit; and subtracting 60° from 90° leaves the romainder $23^{\circ} 28^{\prime}$, which is the angle included between the axis, N. S., and the perpendiculnr or dotted line. The true cause of the variation of the scasons consists in the inclination of the axis of the earth to the plane of its orbit, or, in other words, to the ecliptic. If its axis were perpendicular to the ecliptic, the equator and the orbit would coincide; and ns the sun is always in the plane of the ecliptic, it would in this case be always over the equator ; the two poles would be alrays enlightened, and there would be no diversity in the length of days and nights, and but one scason throughout the year. Because of the parallellism of the earth's axis it so happens that at mid-spring, or March 20th, this axis is perpendicular to a line drawn to the centre of the nely, at these its axis e points h's axis 'they thing in ines are hey will or full iles, the bear a liameter y earch's hence it ts orbit ; ough the subtracto angle ted line. nation of 3, to the ator and ne of the wo poles re length ecause of pring, or re of the
sun, and the sun being now directly vertical to the equator there is equal duy and night to all places on the earth, the poles being the boundarices of

light and darkness; thus there aro twelve hours of light and twelve hours of ilarkness to every spot on the earth's surfice for this lay. Honce this day is called the equinox (oqual night) of spring, or the vernal equinox. At this time the earth is in the sign Libra, and the sinn appears in the opposite sign Aries. As the earth travels onwards from March to June the northern hemisphere comes more into light; and on the 21st of that month the sun is vertical to the tropic of Cincer. I'he earth is now in Capricornus and the sun appears in the opposite sign of Cancer. At this time the half of the globe is illuminated from the circumference of the north polar circle at the distance of $23^{\circ} 28^{\prime}$ beyond the north pole N , to the circumference of the sonth polar circle, at the same distance from the sonth polo S. At this time thero is no day within tho south polar circle, but the night continnes twenty-four hours; and there is no night within the north polar circle, the day continuing for the same longth. As at this point the earth begins to return to a position similar to that of the vernal equinox, and the sun seems to be stationary for two or thiree days before and after this day, it is called the summer solstice (sun standing,) or the tropic (turning) of summer. As the earth now travels on from June to Septomber the sun shines less and less over the north pole, until on the 23 rd of that month wo find him again vertical to the equator. I'he days and nights are now again exactly equal all over the earth, or there are twelvo hours of light, and twelve hours of darkness to every spot on the earth's surface for this day. At this time, as at March 20th, the earth's axis is perpendicular to a line drawn to the sun's centre. It is now called the equinox of autumn, or autumnal
equinox ; the earth is in the sign Aries, the sun appoaring in the opposite sign Libra. Since it is summer to every part of the earth where the sum is vertical,(and we find it vertical to the equator twice in the vear,) we see the reason why those living near the equator have two harvests every year. Following the earth in its journey to December we find that when it has arrived in the sign Cancer, at the 21st of that month, the sun appears in the opposite sign of Capricorn, and is now vertical to that part of the earth called the tropic of Capricorn. The half of the globe is now illuminated from the circumference of the south polar circle at a distance of $23^{\circ} 28^{\prime}$ beyond the south pole, S , to the circumference of the north polar circle, at the same distance from the north pole, N. At this time there is no day within the north polar circle, the night continuing twentyfour hours; and there is no night within the south polar circle, the day continuing twenty-four hours.
In looking at the diagram, you seo at the vernal equinox, or March 20th, the whole of the illuminated hemisphere of the globe, because from the representation of its position it is turned in front both to the sun at F, and to you the spectator. At the summer solstice, or Juno 21st, you see only half the illuminated hemisphere of the globe, because it is turned in front to the sun at F , but sideways to you the spectator, you being supposed outside of the orbit. At the autumnal equinox, or September 23rd, you see none of the illuminated hemisphere of the globe, because it is turned in front to the sun at F, but its back is to you the spectator, you being outside of the orbit, and as it were behind the globe. And at the winter solstice, or December 21st, you again see half of the illuminated hemisphere of the globe, because it is turned in front to the sun at F, but only sideways to you the spectator, for the same reason as before. But were you placed in the middle of the orbit, at the point F, you would, by turning round and round to the different positions we have been describing, seo the whole of the illuminated hemisphere of the globe at each point of its course. In the course of this revolution the inhabitants of every clime experience, though at different times, a variety of seasons. Spring, summer, autumn, and winter follow each other in constant succession, diversifying the scenery of nature, and marking the different seasons of the year. In those countries which lie in the southern hemisphere of the globe November, December, and January are the summer months; while in the northern hemisphere, where we reside, these are our months of winter. In the northern and southern hemispheres the seasons are opposite to each other, so that when it is spring in the one it is autumn in the other; when it is winter in the one it is summer in the other. During six months, from March 20th to September 23rd, the sun shines without intermission on the north pole; so that there is no night there during all that interval, while the south pole is all this time enveloped in darkness.

During without during the sur inhabita rospecti pole the our win March equinox 21 st, or earth's portion the otho longer mer the Sagitari opposite sis nortl sun appe March passing 18 hours about 7 moves in another; through miles nea planet a through move slo sun in w apparent nearest t July, wh earth is f In Janua but in Ju difference The ea minutes, and is re

During six months, from September 23rd to March 20th, the sun shines without intermission on the south pole, so that there is no night there during all that interval, while the morth pole is, in its turn, deprived of the sum, and left in darkness. From $66 \frac{1}{2}^{\circ}$ uorth or sonth latitude the inhabitants of these two opposite clines enjoy a length of day during their respeetive summers varying from 24 hours to six months. The rearer the pole the longer is the day. Our summer is noarly eight days longor than our winter. By summer with us is ineant the timo which passes between March 20th and September 23ril, or between the vernal and antumnal equinoxes ; and by wiuter the time between September 23rd and March 21 st, or between the autumnal and vernal equinoxes. The portion of the earth's orbit that lies north of the equir notial contains 184°, while that portion which is south of tho equinoctial contains 176°; being 8° less than the other portion; which is the reason why the sun is noarly eight days longer on the north of the equator than on the south of it. In our"summer the earth's motion is through the six southern signs, Libra, Scorpio, Sagitarius, Capricornus, Aquarius, Pisces, while the sun appears in the opposite or northern signs ; and in the winter the earth moves through the six northern signs, Aries, 'Taurus, Gemini, Cancer, Leo, Virgo, while tho sun appears in the opposite or southorn signs. In the former case, from March 21st to September 23rd, the sun is about 186 days, 11 hours, in passing through the northern signs ; and in tho latter caso only 178 days 18 hours, in passing through the southern signs, the difference being about $\mathbf{7}$ days, 17 hours. The reason of this difference is that the earth moves in an elliptical orbit, one portion of which is nearer the sun than another; in consequence of which the earth's motion is faster while moving through the northern signs in winter,-it being over three millions of miles nearer to the sun then than in summer ; and the nearer the sun the planct approaches the quicker it moves:-and slower whilo passing through the southern signs in sumner; which makes the sun appear to move slower through the northern signs. That the earth is nearer the sun in winter than in summer, is ascertained from the variation of the apparent diameter of the sun. About the first of January, when he is nearest the earth, the apparent diameter is $32^{\prime}, 35^{\prime \prime}$; and on the first of July, when he is most distant, it is only $32^{\prime} 31^{\prime \prime}$. This proves that the earth is farther distant from the sun in one part of its orbit than in another. In January the earth's motion every hour is at the rate of 69,600 miles ; but in July its rate of motion per hour is only about 66,400 miles; a difference of more than 3,000 miles an hour.
The earth completes its revolution in its orbit in 365 days, 5 hours, 48 minutes, and 49 seconds. This period is called a solar, or tropical year, and is reckoned from the time of the aun's passing the equinoctical point till it again reaches the same spot. The siderial year is reckoned from
the time of the sun's passing any fixed star till its return to it again, and is $20^{\prime} 21^{\prime \prime}$ longer than the solar ; the reason of the difference being the retrograde motion of the equinoctical point (called the precession of the equinoxes, which is fifty seconds of a degree every year,) by which it travels as it were to meet the sun, so that he comes to it before he has quite completed his circuit. 'Ihese two periods may be stated thus ; solar year 365 days, 5 hours, 48 minutes, 49 seconds : siderial year 365 days, 6 hours, 9 minutes, 10 seconds. In early times the year was taken to consist of 365 days. As, however, the solar year is nearly $365 \$$ days, the date of the equinox soon became wrong; to remedy which Julius Cessar introduced an additional day into February of every fourth year, thus making that year contain 366 days. This arrangement was known as the Julian style, and continued in use until nearly the end of the sixteenth century ; but as the year is a few minutes shorter than $365 \pm$ days, the equinoxes had by this time fallen back as much as 10 days. Pope Gregory XIII corrected this error by ordering ten days to be left out of the year 1582 ; and then he modified the Julian style by the following rule. Every year divisible by 4 was to contain 366 days; the even hundreds, however, unless divisible by 400 , were to be considered as ordinary years of 365 days; thus 1800 and 1900 are ordinary years, whilo 2000 will be a leap-year. By this means the error is very nearly eliminated. This alteration, which is known as the Gregorian Calendar, was not adopted in England till 1752, and eleven days had then to be struck out of that year, to correct the error, which had increased one day in the 170 years.

In addition to its movement round the sum, by which the seasons are produced, the earth, as we have seen, has a rotation on its own axis, whereby are brought about the changes of day and night. The interval in which this diurnal rotation is completed, as ascertained by the passage of any star across the meridian on two successive days, is called a siderial day. It is in fact the time occupied by the heavens in making one apparent revolution. In this we have an invariable measure ; it is therefore frequently adopted in the observatories; but for practical purposes of everyday life it would not answer well, as it is 3 minutes, 55.91 seconds shorter than that determined by the sun ; and thus clocks regulated by it would gain that amount on the sun every day. The day, therefore, in ordinary use is that reckoned by the movements of the sun, and is known as the solar day, being the interval which elapses between two successive meridian passages of the sun. As, however, the distance of the earth from the sun varies in different parts of its orbit, and its diurnal rate of motion varies in like manner, this period is not uniform; its mean length is, therefore, ascertained and taken as the natural or mean solar day. Our clocks are all regulated so as to indicate mean solar time, and hence they are sometimes faster than the sun, and sometimes slower. The greatest dis-
crepa faster
crepancies are about February 10th, when the clock is fifteen minutes faster than true solar time, as indicated by a sun-dial ; and October 27 th, when it is sixteen minutes slower.

As the sun is further from us in summer than in winter some naturally enquire why wo experience the greatest heat in the former season. The following among other reasons may be assigned, which will partly account for this effect : 1. The sun rises to a much greater altitude above our horizon in summer than in winter, and consequently its rays falling more directly upon the earth the thickor and denser will they be, and so much the hotter, when no counteracting causes from local circumstances exist. 2. The greator length of the day in summer contributes to augment the heat ; for the earth and the atmosphere are heated by the sun in the daytime more than they are cooled in the night ; and, on this account, the heat will go on increasing in the summer ; and for the same reason will decrense in winter, when the nights are longer than the days. The main cause is that in summer when the sun rises to a great altitude his rays pass through a much smaller portion of the atmosphere, and are less weakened by it than when they come to the earth in an oblique direction, weakened by their passage through the dense vapors noar the horizon, and by many refractions and reflections of the atmosphore.

The cause of the changes of the seasons can be exhibitod with more elearness and precision by means of machinory than by verbal explanation; and therefore, those whose conceptions are not clear and well-defined on this subject should have recourse to planotariums, which exhibit the celestial motions by wheel-work. There has been some time ago a small instrument called a Tellurion, manufactured by Messrs. Jones, Holborn, London, which conveys a pretty clear idea of the motions and phases of the moon, the inclination of the earth's axis to the plane of its orbit, and the changes of the seasons. This instrument was sold at moderate prices according to the quantity of wheel-work, and doubtless it is yet obtainable.
The subject of the seasons and the variety of the phenomena they exhibit, have frequently been the theme of the poet and the philosopher, who have expatiated on the beauty of the arrangement, and the benignant effects they produce; and therefore they conclude that other planets experience the same vicissitudes and seasons similar to ours. This, however, by no means follows, for the causo of the changes of the seasons, as we have them, is owing to the degree of inclination which the earth's axis has to the plane of its orbit ; and every planet discovered in our system has a different degree of inclination in that respect, and, therefore, the seasons of each wil! be different from ours, though they may be analogous. But though in the present constitution of our globe there are many benign agencies and effects, which accompany the revolutions of the seasons, and contribute to the wants and happiness of the earth's inhabitants, yet how
few there are out of the great mass of mankind who properly appreciate them, and render to their (Yreator due praise for circumstances so good, and gifts so rare! Were the habitable parts of the earth generally well cultivated, its marshes drained, and its desolate parts reduced to order and vegetable beauty by the hand of art, and replenished with an industrious and enlightened population, there can be little doubt our seasons would be considerably meliorated, and many physical evils prevented with which we are now annoyed. And all this man has it in his power to accomplish provided he chooses to direct his wealth, and his physical, intellectual, and moral energies into this channel. We are highly favored, but we may to considerable extent improve our circumstances ; and God always assists every effort that is made in the right direction.

The Moon.

The earth in its journey round the sun is attended by a secondary planet, or satellite, the moon. This globe may almost be considered as a part of the earth, for in its revolution round the sun it is not the earth's centre that travels along the orbit, but the centre of gravity of the earth and moon taken together. As the moon is our nearest neighbor in space, and exerts a greater influence on the earth than any of the other heavenly bodies, with the exception of the sun, it has at all times attracted a large - share of attention. Its great apparent size and the phases it presents increase the interest. To the eye the moon appears very nearly as large as the sun. This, however, results entirely from its great proximity to us; it is in reality the smallest of the heavenly bodies which can be discerned by the nalad eye. Although its apparent size is nearly equal to that of the sun, yet it would require more than 63 millions of globes of the size of the moon to form a globe equal in magnitude to the sun. The moon's distance from us is easily learned from its horizontal parallax, which is sufficiently great to be accurately measured. This varies in different parts of its orbit, but its mean value is about $57^{\prime \prime}$, and thus the moon's distance is found to be 238,833 miles. We may here observe that the parallax of the moon or of any heavenly body is the difference in the apparent position of that body as viewed from two different stations on the earth's surface, which are the length of the earth's semi-diameter, about 4000 miles apart.*

[^50]This will be understood by reference to the subjoined figure and explanation at the bottom of the page. Knowing the moon's distance, and also the angle which its disc subtends to an observer, we easily ascertain its mean diameter to be 2,153 miles; its circumference 6,764 miles ; and conserquently its area $14,562,892$ square miles. This body revolves in its orbit round the earth, and completes its circuit, reckoning from the time of its passing any star till its return to the same star, in 27 days, 7 hours, and 43 minutes, 11.5 seconds, which period is known as a siderial revolution. The more usual plan, however, of reckoning its period is by reckoning from the time of one full moon to the next. This period is the greater, the reason of the difference being that the moon is full, when it is in the part of the heavens diametrically opposite to the sun. Now, if the earth were stationary this would always happen in the same part of the sky; but as the earth is moving in its orbit round the sun, carrying the moon
plane 100 feet in extent, and CB a tower whose height we wish 'to determine, and if with a quadrant we find the angle at A or C AB to be 44°, then bs an easy process in irigonometry : Radius : is to the tangent of A , or $44^{\circ}:$: as the side A B .100 fect : is to the height of the tower C B; which will give the answer.

It is on this general principle that the distances and magnitudes of the celestial budies are determined. But in a!l cases where we wish to ascertain the dimensions of the different parts of a triangle, the dimensions of at least one side must be given along with two angles; otherwise the length of the different sides of the triangle cannot be det-rmined. Now, in measuring the distance of a bearenly body, such as the moon, the diameter or semi-diameter of the cartl is the known side of the triangle by which such a distance is to be determined. In

Fig. 108. the annexed figure let $E C$, represent the earth; M the moon; and A Baportion of the slarry sky. If a spectator at the earth's surface at E , view the inoon in the horizon, he will see it in the line EM, mmong the stars at H. But if he riew it from the centre of the earth at C, or from the surfuce at D, which will be the same in effect, he will see it in the line C D M, among the stars at S . The difference of position in which the moon is seen as viewed from the surface of the earth E, and the centre C, is called the moon's horizontal

Fig. 109 parallax, or the are S II, which is subtended by the angle S M HI, which is equal to the angle E MC. In determining the distance of the moon, therefore, we must first find by observation the horizontal parallax, or in other words the angle $E H C$: and the side $E C$, or the semi-diameter of the earth, being k :oown to be about 4000 miles in extent, serves as the base line of the triangle EMC \mathbf{C}; and heace the other sides of the triangle $\mathbf{E M}$, and C M, or the distance of the who.1 from the earth, can be found by an easy calculation.

From what has been now stated it will appear that it is of great importance that we hare correctly ascertained the figure and niagnitude of the earth; for if the length of the base line which we take in our trigonometrical calculations of the moon, or any other celestial body, be incorectly stated, the whole calculation must be necessarily wrong, and the results false. In the foregoing explanation we have merely given the principle on which astronomers proceed in measuing the distance of the hearenly bodies, without entering into details.
with it, - liy the time, therefore, that the moon has emppleted its cirrint the earlh has travelled romed nemily one-thirtenth al its orhit, and the monn must wertake the earth by travelling an much forther. hefore it ngain comes יןpmaite to the sum. This may he illuatrated by the revolioions if the hour and minute hands of a watele we elock. Simpmor tho home-hame to prpresent the sme, and a complete mevolation of it ta represent a year :
 dial plate a month, it is evident that the mosn or minule hame mat po more than mund the cime whom it was hast combined with the sum or hom-haml. before it cam again overtake him. If, fir examplo, they are
 phetr monation, amb abow one-fwelth, hefore they ran meot again at a litho past 1: for the hom-ham, heing in motion, can never be wertaken by the minnte hamb at that point trom which they started at their hast conguction. This sumphe of motion wempies the menn 2 days, 6 homes.

 armage longth of this perind is 29 days, 12 hours, 11 mintes, and :s scombls. This interval is, therfors. termed a lumer month, and during it tha monn passes in sumeressinn throng all its phaseg. The sum always enlightems one half of the mon, amid sometimes the whole of this enlightenad side is burnod bwand the carth. when she appeas a round hminans wh: hat this happens mily at we point of her whit, namely, nt fill mom. At all wher parts of her course enly a portion of her enlightened side is

$\mathrm{Mg}_{\mathrm{g}}, 110$.
tumed toward the earth: and in one particular part of her orbit, just before new moon, her enlightened side is altogether invisible At this part of her course she is invisible, hoth beeause she is :n the same part of the heareus as the sum, and because the whole of her dark hemisphere is

Hen tmmed towned the earth. Aftor this it is gomerally two lays or moro before ming of her enlightenod sumfere is visible. Alout tho third Iny after tho chinge, that is, new mom, aho is soen in the wostorm aliy it no great diatmee from the print at which tho and set, and thon nppors in the lism of a alonder crescent, having tho horms printed townels the
 must be benaidered na sitnited comsiderably to the right wh the figner ; conempentiy the illominuted purt of the mon will always freo that way. Lis represents tho oarth, mul the menn is ropresenter in oight differont
 presents to us when in emeh of these pasitions. Whon at Λ, her enlightened hemisphere being wholly harned toward the suns. tho dark hemispilere is wholly thmed towned tho earth, anll tho moon is omsequently wholly invisible. As it travols onwarda in its orhit townols 13 , a small protion of its illmmimated hemiaphere comes into viow, preacoting, tho "ymanameo of n shonder cer cent, having ita horns puintol onstwad, tho anm loging now to tho wegt of her. At this time tho greatest prit of tho monn may anmotimes bo finintly discemed by the maked oyo. 'This is emand by tho light whioh is retheded from the earth on the moon or the birth-shine, na it is tormond. A lithe considerntion of the relative prasitions of the thron lortios will show
 the inhabitimete of the mom ; and it aprens of a aizo thirleon times ns harge as tho finll moon loes to nst fin the homisphore of onr ghone is Whiteon times lagere than that of the monn, and thas at this porion tho most powerfill light will be rellocted from tho oarth upon tho merge. When the inoon has arrived at 13 , sho prosents oxactly ono half hor illumimatod hemisphoro to the oarth, and this is callod hor firge pearter. Still contiming her oonso sho at length arrives at C, whore tho sim ant tho earth are on the sane side of hor, mid necordingly the illuninated heinis. phero is turned towneds the oarth, prosenting the ontiro dise of the full momi. When now, tho moon being at \mathbf{U}, it is full moon to ns, thodark sido of the curth is wholly thried toward the moon, and the oarth is consognently invisible to the imbuhitants of the moon. When the mon is in the inereases to ws the earth is decreasing in its illuminated surfice to the moon; and comversely, when the mom is in its decroaso to us the oarth is in its inerease to the limar inhabitants; so that the phases of tho oarth as seen from the moon aro exactly opposite to tho phases of the moon as suen from the earth. After passing \mathcal{C}, the moon goos throngh the same suries of changes, but in a roverso order ; this she presents, as first shown, a gibbous phase: at 1, half her enlightenod hemisphoro is turnod toward us, and it is called her liast qutreter ; sho thon prosents a slonder eroscent, having its ho:ns pointod towarl tho wost, tho sun being now rather to tho eastward
of her; and she finally arrives at A, to go through the samo series of changes again.

There is one remarkable circumstance in conneetion with the moon, which we shall see by-and-bye is not peculiar to her alone among the secondary planets; and that is, that the moon always presents the same side to the earth, so that we never see her opposite hemisphere. This proves that she turns round her circumference just once during her complete revolution round the earth. A great deal of fruitless controversy has frequently arisen upon the question as to whether the moon has an actual rotation or not. The fact that she always presents the one side to the earth is admitted by all. The only question is as to whether or not this motion can be called a rotation. A very little consideration will, however, make it clear that the moon docs really rotate ; for if the moon had no rotatory motion round her axis, we should see both her hemispheres in the course of every revolution she makes round the earth. This, wo are aware, does not at first view appear obvious to those who have never directed their attention to the subject. Anyone, however, may convince bimself of this fact by standing in the centre of a circle, and causing another person to carry round a terrestrial globe without turning it on its axis, when he will see every part of the surface of the globe in succession; and in order that one hemisphere only should be presented to his view, he will find that the globe will require to be gradually turned round its axis, so as to make a complete rotation in the time it is carriod round the circle. The earth may in this case he considered a fixed station for observation, inasmuch as it turns round its circumference twenty-nine times during one rotation of the moon ; and, therefore, the moon (its one hemisphere) is constantly seen by the iniabitants of the earth. Owing to the fact that the moon's axis is inclined $1^{\circ} 31^{\prime}$ to the plane of its orbit, (the orbit itself being inclined to the ecliptic 5 ? 9^{\prime},) we occasionally see a little beyond its north pole, and then a similar distance beyond its south pole. Also we sometimes observe the spots on her eastern margin which were formerly visible on the western margin again withdraw thenselves behind the limb, while the spots which became concealed behind the eastern margin again appear. These phenomena of the change of spots on the east and west limbs of the moon, as well as toward the north and south poles, sometimes occur for the space of about 3^{\prime} on the moon's dise, or about the eleventh part of her diameter. 'ihis is termed the libration of the moon ; the one, north and south, her libration in latitude; the other, her libration in longitude.

The moon's orbit is, as ine have stated, inclined to the ecliptic at an angle of $5^{\circ} 9^{\prime}$; so that in one part of her course that luminary is above, and in another below the level of the earth's orbit. It is owing to this circumstance that our satellite is not eclipsed at every full moon, and the
sun at every now moon, which would rogularly occur did the moon move in an orbit exactly coincident with thu plane of the ecliptic. The moon's orbit, of course, crosses the orbit of the earth in two opposite points called her nodes; and it is only when the new or full moon happens at or near these nodes that an eclipse of the sun or moon can take place; for it is only when she is in such a position that the sun, the moon, and the earth, are nearly in a straight line, and that the shadow of the one can fall upon the other. The shadow of the moon falling upon any part of the earth causes an echpse of the sun; and the shadow of the earth falling upon the moon causes an eclipse of the moon. An eclipse of the moon can only take place at full moon, when the earth is between the sun and the moon; and an eclipse of the sun can only occur at new moon, when the mnon comes between the sun and the earth. Lunar eclipses are visible at all places of the earth which have the moon above their horizon, and are everywhere of the same magnitude and duration; but a solar eclipse is never seen throughout the whole hemisphere of the carth where the sun is visible; as the moon's dise is too small to hide the whole or any part of the sun from the whol disc or hemisphere of the earth. Nor does ar celipse of the sun appear the same in all parts of the earth where it is visible, but when at one place it is total at another it is only partial.
The moon's orbit, like those of the planets, is an ellipse whose eccentricity is 12,960 miles, or the $1-37$ th part of its major axis. The moon is thercfore at different distances from the earth in different parta of her orbit. When at her greatest distance from the earth she is said to be in her apogee; when at her least distance in her perigee. The nearer the moon is to the periods of full or change, the greater is her velocity: and the nearer to the quadratures or the periods of half-moon, the slower she moves. When the earth is in her perihelion, or nearest the sun, the moon's periodical time is the greatest. The earth is at its perihelion in winter, and consequently at this time the moon will describe the largest circles about the earth, and her periodical time will be the longest; but when the earth is in its aphelion, or farthest from the sun, which happens in summer, she will describe a smaller circle, and her periodical time will be the least; all which circumstances are found to agree with observation. These and many other circumstances which our space does not allow us to particularize, arise from the attractive influence of the sun upon the moon in different circumstances and in different parts of its course, so as to produce different degrees of accellerated and retarded motion.
The peculiarities of the moon's motions have much and frequently puzzled astronomers and mathematicians, and they render the calculation of her true place in the heavens a considerably difficult task. No less than thirty equations require to be applied to the mean longitude in order to obtain the true, and about twenty-four equations for the obtain-
ment of her Intitude and parallax. These problems have, however, heen solved, and the monn's motions are mow filly miderstond.
'The moon's principal motion is, as has heon explained, one of revolution romul the earth ; but the carth is at the same time puraning her jombey romend the ann; and thas the combination of these two motions enuses if to deseribe a path, which is in reality a succession of curves. If a pencil were nttached to one of the apokes of a wheel, mol made to trace a line on a preed of paper, as the wheel travellad murards we whould obtain a rough lout somewhat true representation of this path. In her motion mond the earth every month the mism pursmes her eourse at the rate of 2.300 miles an hour, hut she moves at the same time with the earth in her courae momit the sum, so that her real motion in space is much more rapid than what has now heen stated-perhaps not hess than 70,000 miles an homr-fier while she acosmbanies the earth in her momul motion, which is at an average rate of 88,000 miles an homr, she also moves thirteen times romid the earth in the same peried, which is equal to a conrse of noarly twenty millinus of miles.

By means of a good teleseope a amsilemally distinet view may he obtained of the mom. A power of 1,000 l hinge ns, as it were, within $23: 9$ miles of its surface, and on very farmalle necasions a power even higher than this has heen applied; but though a power of 2000 times ecunt be used with distinethess it womld make the mewn appear no nearee to ne than 120 miles, at which distance a living heing, though a homdred feet high. Could not he seen; for with such a pureer a gpace on the mon's surfice of 183 feet in diameter comld ouly be pereefed as the smallest visible

Fig. 11 .
point. This perhaps is the reasen whe no trace of lunar inhabitauts has as ret been discorered. Beside, we onght to comsider that when we view abjects on the mem's surface, we do not view them in perspective, as we do objects on the surface of the earth, but only obtain a bird's-eye view
of then lutlown "1pont y aliunlile

Hr. ohserva allil thi प्रиıilı" the all Filions lailia n
 sill shit tion ol clevater the sulu the darl of tho surfthere. plainn su mumutai solitary nearly then the inter of these great ; : " walleol features the appe the viole convulsic

Fis. 11 hrilliant: quadrant
of them, ns we do of wheeta min the emthes anthee, which wo view from in batheon devated in the atmosphere: in which case, when wo look ilown
 shoulderes.

 mind that its anrface is more or less covroeri with a segetation mot very dissimilar to that of omer emth." Bum lo the maked rye the men presenta
 rations conflim this impresaion. On many parta ef its surface high monnbims wre neen to exist, mul the altitmben al many al these have beon alpoximately menamed hy ohsersing the shamlows cast hy them when the anm shine ablignoly. One peak, manel Newtm, is liment to have ma devation at womly 21,0100 find, mod suremal whers ure very lolty. The clevated summits of those hanar momatains enteh and refleot the rays of the sum lomg lirlore the phains momul them, and shine ont brilliantly againat the dark gromil. 'I'lo mast remmekhbe churneteristic fenture, howover,
 surface. 'I'hese resemble hupe volenie catars. In somo a apreions
 momatain-ringe. which nhmat or quite emeloses it. Not milrepmontly a

 the interior is so cxamsive that mombain chans rim aneross it. I'loe momber of these eavities, especially in the somthron hemisphore of the mom, is very great ; and some uf them are of such asize as to he butly designated "walled-plains." Diven will the most peworlin telesedpe the more mimate features of these mombin ranges are mable to be distimgishad thas fine ; the apparance of mathy of thom, howover, seems to indiente most atronyly the violent netion of volemic forees; mol alows that in past time great commaions of nuture have taken phace there.

Fig. 112.

Fig. 1111. Fig. 111 is a telescopic view of the moon. Fig. 112 is a view of the
brilliant :spot called Λ ristarchas, which is situated in the north-enst 'quadrant of the moon's surface, where the shadows of some of the circular
cavities, and also the shadows of the mountains may he pereoived. Fig. 11:3 is the spot called IIevelius, which contains an amular cavity and a broken elevation, somewhat zescmbling an egg. lig. 114 represents a cavity,

surroumbed by a cireular range of momenains, with two central mountains in the middle of the plain, in which the shadows of one side of the eirenlas range and of the central memutains may be seen. Fïg. 1tis shows another magnified portion of the moon's dise, exhibiting several circular phains; cavities, and other varieties of the lumar surfiee.

The telescope also brings to view many level plains on the moon's surfaee, which were formerly thought to be hunar seas, and which still retain the names that were then given them, though it now appoas erident that they are merely dry plains. The Ocean of Storms, the Sea of Clouds, and the Bay of Ranbows are some of these spots. Some astronomers now express the opinion that no water exists on the side of the moon that is tarned towards the earth, however it may be as to its existence on the other hemisphere. Some indeed have suppod that its centre of gravity is nearer to the other side, and that hence all the hir and water are accumulated there; but this is mernly conjecture.

The best time for making observations on the moon is at the time of the quadratures, as at the time of full moon the shadows of the mountains and peaks, which are hitherto conspicuous, disappear, the sum shining upon them vertieally. Accurate maps have ere now been drawn of the moon's surface on a large seale, and tho prineipal mountains have received names, usually those of eelebrated astronomers.

The following additional particulars respecting the moon may be stated. 1. The length of a lumar day is equal to nearly fifteen of our days, and the length of the night the same, so that a day and night in the moon equal twenty-nine and a half of our days and nights, or one lumar month. On the hemisphere facing the earih there is moonlight, earthshine, nearly all the time the sun is absent ; but in the other hemisphere in the absence of the sun there is no light but what proceeds from the stars and planets. Were a lunarian to keep travelling at the rate of ten miles an hour, in a airection at right angles to the moon's axis, he might keep pace with the
mon's of the that of sideral, though accorli phero, vapors ceivod of the t moon's at 5742 ished wi phero a peculiar form no intellige telescop mlars as cxisting whoso th in the wi

Althor companio ours. its variou subject o the lunar nearly a lunar surt view, so t imhabitant the earth, ney to the parts of th travel mor carth in t fixed and does not spectator s earth, the appears fix
moon's rotation, and be enabled to live in perpetual sumshine. .. 'The light of the moon has been computed to be 300,000 times less intense than that of the smo when shining in mu unclouled sky; yet its ntility is considerable; and when the full moon shines in its splendor it sheds a cheerful though mild radiance over the surrounting landseapo. 3. The moon is, according to the opinion of most astronomers, surromided by an atmosphere, but it is a vory limited one, and of great tenuity, and no clouds or vapors appear to exist in it. It is stated as having beon distinetly perceivod during the amular eclipse of 1836, when just before the ellges of the two bodies met, the light of the sun was seen to shoot through the moon's atmoxphere, mollified into twilight. Schroter calculated its hoight at $\mathbf{6 7 4 2}$ feet. They also gave it as their 0_{1} minion that the moon is replenished with inhabitants ; for althongh seas, and rivers, and a denso atmosphere are not found connected with the hunar orb, and some other of its peculiarities are different from those of tho earth, yet these circumstances form no valid objection to its being inhabited with a race of sentient and intelligent beings peenliar to itself, and adapted to their habitation. If telescopes of sufficient powers were in use to discloso to us the particulars as to the surface of the moon, there wonld, doubtless, he found water existing there, and a raoe of beings perhaps not very dissimilar to mankind, whose thoughts may sometimes be directed to the glorious orb oi the earth in the way of aloration.

Apprarance of the llaterns as viexul from the Moon.

Although the moon is the nearest boily to the earth, and its constant companion, yet its celestial seenery is in a variety of aspects different from ours. The earth appears the most splendid orb in its noeturnal sky, and its various phases and relative positions form, doubtless, an interesting subject of enuuiry and contemplation to its inhabitants. It appears in the lunar sky thirteen times larger than the moon docs to us, and sheds nearly a corresponding portion of light on the mountains and vales of the lunar surfice. As the moon always presents nearly the same side to our view, so the earth is visible from ouly one half of the lunar surface. The inhabitants of the opposite side of the moon, which is never turned toward the earth, will never see the earth in the sky unless they perform a journey to the opposite hemisphere; and those who dwell near the central parts of that hi aisphere, which is turned from our globo, will require to travel more than 1500 miles before they can behold the large globe of the earth in the sky. To all those to whom the earth is visible it appears fixed and immoveable in the same relative point of the sky; or, at least, does not appear to have any circular motion round the heavens. To a spectator situated in the middle of the moon's hemisphere visible from the earth, the carth appears directly in the zenith, or overhead, and always appears fixed very nearly in the same position. To a spectator placed in
the extreme parta of that hemisphere, or whint seem to us to be the margins of the mome the carth appeare atways nemely in the horizom: mend to speretators in intermediate pesitions the earth njpenes at a higher or lower ele vation ahove the horizon, neeording to their distance from the extreme or eentral parte of that hemisphare. But though the earth mpenes fixed nearly in the same part of the sky the slight variation of the moon, enlled the libuation, camses the earth mow and then to appear to shift its pusitiom a little ly a kind of vilusatory motion, so that those at the margins of the hemisplere who see the earth in the horizon sometimes see it dip a liftho below, and at other times rise a little ahove, their homizom. This vibuatory motion they are probauly dispased at first view to attribute to the carth. which they will maturally comsider as a body nearly nt rest, but subieet to a slight vibratory motion; whereas this apment vibration proceds form the aetmal vihation of the mom itwelt.

Although the earth seems fised in nearly the same position, its rotation romed its axis is distinetly prepeptible, and presents a varioty of different appeanaces. B mope, Asia, Africa, and Ameriea present themsolvesme after mother in ditheront shap's wearly as they are represented on onr terrestrial glohes; and aur pohar regions, which we have never yot heon able to explore. are distinctly kee by the lomamians, who will be emabled to determine whether they chietly comsist of land or water. When the lacific Ocean, which wermpies mearly half the gloke, is presented to view. the great body of the earth assmmes a dusky or sombre aspeet, exeept towad the north, the north-east, and morth-west: and the islands dispersed through this ocean will exhibit the appearanee of small lucid spots on a darkish gromd. But when the castern continent thris romed to view. especially its northern regions. the carth appears to shine with a greater degree of lnstre. These appea ances are diversitied hy the mumerons strata of clouds, which are continually wafted ly the winds over the different regions of the earth; and must occasionally intereept their view of eertain parts of the continents and seas, or render their appearance more obsenre at one time than at another.

The apparent diurnal motions of the sen. the planets, and the stars appear much slower and some what different in se;eral respeets from what they do to us. When the sme rises in their eastem horizon, his progress is so slow that it requires more than seven of our days to come to the meridian, and the same time before he has descended to the western horizon: for the days and nights on the moon, as before remarked, are nearly fifteen days each, and they are nearly of an equal length on all parts of its surface, as its axis is nearly perpendicular to the ecliptic, and consequently the sum never remores to any great distance from the equator. During the day the earth appears like a faint, eloudy orb, always in the same position; and during the night the stars and plancts are visible without interruption
for 1
for fifteen lays, mill are seen moving gradually during that time from the enstern to the western horizon. Though the earth will always bo seen in the aame puint of the aky hoth hy day mud night, yet it will nppear to be constmitly alifting its position with reapect to the planets nul the stars, which will mpear to he regularly moving from the enst to the west of it; mind some of them will necasiomally bo hidten or suffer an ocenltation for three or fome hours hehind its Imily. 'Tho sum, paneta, and fixed stars will appear of the ame mprurent mingnitude as thoy do from the ourth; hut as the poles of the mome mere directed to points of the heavens lifferent from those to which tho poles of the enth nro directed, the pule-stary in the lumar lirmmonen, anit the sturs which mark its equator and purallels, aro nll different from ours ; so that the atars in their apparent dinmal revolutions will mpear to deseribe ciroles difficrent from those which they appear to describo in our aky. 'The inforion planots, Morcury and Vonus, will generally be seen in the vicinity of the sin as they are seen from the earth : but they will be more distinctly pereeivenl, and are visible for a much longer time, altor sumset, than thoy nre from onr ghobe. This is owing, first, to the trangparency of the humar atmospicere, and to the absence of dense vapors near the horizon, which in our oase prevent any distinct observations of the heaveuly bolios, when at a low altitude ; anl, secondly, to the slow appurent diurmal revolution of Mercury and Venus. 'Tho superive phanets, which we are about to consider, will, as with ins, be seen in different parts of the heavens, and occasionally in opposition to the sun : but they appoar to he contimally slifting their positions in relation to the earth, and in the course of fifteen lays aro soen in the very opposite quarter of the honvons, and in other fittoon days are again soen in conjunction with the oarth; and nearly the same appoarances are olssorved in roferonco to the inforior planets, but the poriodic times of their comjunctions with the enrth, and their oppositions to it, are somewhat different, owing to the difference of their velucities in their anmal revolutions.

The eelipses of tho sum which happen to the lunar people are more striking, and total darkness is of mnch longer continuance than with us. When a total eelipso of the meon happens to us thero is a total eclipse of the smin to the lumarians. At that time the dark side of the earth is completely turned toward tho moon, and the sum is seon to pass gradually behind the earth mutil it entirely disappears. The time of the continuance of total darkness in central eelipses is nearly two hours; and, of course, a total eclipse of the sun must be a far more striking and impressive phenomema to the imhabitants of the moon than to us. Λ complete darkness onsues immediately aftor tho booly of tho sum is hidden, and the stars and planets appear as at midnight. When a partial eclipso of the moon happens to us, all that portion of the moon's surface, over which the earth's shadew passes, sulfers a total eclipse of the sun during
the time of its combinuance. On the other parts of the mones surfine there is a partial celipse of the smon; and to those who are beyom the range of the earth's shadow me celipse appeass. When an eelipse of the stun happens to us the hmarians see a dark spot, with a pemmbina or fainter shades aromed it, noving aeross the dise of the earth, whech then apmars a full enlightened hemisphere, exeppting the pats that is ohsemed ly the progress of the shadow. 'The inhahitants of the other hemisphere of the mben can never experience a solar celigse, as the earth ean never interpose hetween the smon and any part of that hemighlere ; so that they will only how of such phemomema hy report, mbens they perform a jonimery for the purpose of observing. 'The length of the lumar year is alost tho same as ours, hout different ns to the mumber of days, the homar year having
 length of their year, however, will he comsidembly dillient for the hunarians to determine. 'The stmdy of the heavens in the mom is more dillicult and complex than with us on the earth. The phemomena eahithited liy the earth is douhtless the most diftiente fier the humar peophe to mulerstand. They will be ngt to imagime at first view, that the earth is a quiesecont body in their firmament, becanse it appears contmally in the same paint of the shy, and that the other heavenly orts all revolve aromed it. On the other hand they enjey some adrantages in making eolestial ohservations which we do not possess. 'Those living on the side mext the earth, will be enabled to determine the longitude of places on the lunar surfine with as great facility as we find the hatitude of places on our ghobe. For. as the earth keeps constantly orer one meridian of the moon, or very nearly so, the east and west distances of phaces from that meridian may be readily fomd, by saking the altitude of the earth above their horizon, or its distance from the zenith, on the same prineiple as we ohtain the latitude of a place by taking the altitude of the probessar, or the height of the equator alove the horizon. The huar astromomers likevise possess a singular advantage over our terrestrial astronomers in the length of their nights, which gives them an opportnity of contemplating the heavenly bodies, especially Mereury and Venus, and tracing their motions and aspects for a long time without intermission. Sueh are some of the celestial phenomena as seen from the monn. However different these pheno. mena may appear from those which we are acenstomed to behold in our terrestrial firmament, they are all owing to the following circumstances: that the moon moves romen the earth as the more immediate centre of its motions: that it always turns the same side to the earth. These slight differenees in the motions and relative positions of the earth and moon are the principal causes of all the peculiar aspeets of the honar firmament. But we shall see, as we proced, that there is an indefinite variety of eelestial seenery throughont the miverse, so that wo one world, or system of worlds: presents the same scenery and phenomena as another.

'lime Planet Mithe.

We mew pass on tor untiec the superim planets, thant is, therse whese orthits lie without that of the enrth, concerning the nemere of which our infinmantion is mere complete than it is ahont the inferior phanets, ns the latter are usumlly tom much hidden by the hrightuess of the smin's raye to

 prome tow they are in perigee that is, at their lemat distance from the
 vation. 'Ithe nearest of these lowlies to ns is Mars, a mame which was given ly the meiente to this phact, mud signilying the "Gosd of War," which apmellation minears to have been given the phanet an acemont of its molly or fiery appenamee, and beemase the astrobugers befieved it to ho " promoter of war and bomished. 'The diameter of this phanet is $\mathbf{4 , 9 2 0}$

 phanets of our system, its bulk being about one eighth that of the carth. It
 owhit of eomsiderable cecentricily, the difference hotweon its greatest and
 sition, both it ant the earth are on the same side of the smin, annt the distance between them then is nbout $48,000,000$ miles. At this time the phanet shimes with a hrilliancy almost rivalling that of Jupiter or Vemes; this happons once in two yours and filty days, its symandic period being 780 days. When it happons to be in its perihelion at the same time its brilancy is still greater, and consequently this is the most favorable oflymintury fer teleseopic observations upon it. It acemplishes its periodical rovolי. tion romud the sun in 687 days, or about one yonr and ten inomeths, which so at the rate of about 54,000 miles an hour ; but as the Martian day is a little longer than ours there will not be quite this mumber of days in his year. Bat before it can return to the sane relative position in regard to the earth and sum, or, in other words, from one oppesition to anothor, it ocenpies a period ol 780 days, that is two years and tilty days, as above stated.

When examined at this period with a powerful teleseope, Mars is fomed to exhibit an appeameo similar to that which the earth would probally present to the inhabitants of that phanet. The surface is diversified with dark portions which represent water, and lighter parts which are the continents. 'Ihese markings are fomil to vary a litte at times, probably owing to the presence of harge masses of chouds in the phanet's ntmowhere ; the main features are, however, sutliciently prominent to emable maps to be constructed slowing the conliguration of its surfine. The amexed
figures give a general idea of the appeazance of the planet when seen through a large telescope. When its atmosphere is clear the land appears to be of a ruddy hue, while the water is somewhat greenish. Figure 116

Figs. 116, 117, and 118.
represents the southern and northern hemis ${ }^{\text {heres }}$ of the planet as drawn by Messrs. Beer and Mädler, who devoted many years to the examination of Mars; Figure 117 is tak . from the obervations of Leechi, the eminent Roman observer, at the opposition of 1858 . The following are the results of Sir John Herschell's observations on this planet made with a powerful reflecting teleseope. He states that on account of the clearness of its atmosphere he has been enabled to observe with perfeet distinctness the outlines of continents and oceans; that the land on its surface is distin-
guishe has wh the nak like th contem he obse own. becaus are dist coneluc extent, seas wh probabl somewh longer world owing t into the commor shall ha round i The ine greater resembl covered

From it prese rent mo To Mars Mars. as Venu since M Venus. half-moo enlighte enlighte, аррез: than 48° the earth milnight sun's dis
guished by a red hue, which imparts to the planet the ruddy appearance it has when viewed with ordinary telescopes, and which its light exhibits to the naked eye. This redness he ascribes to a quality in the prevailing soil like that which our red-sandstone districts would exhibit to an observer contemplating the earth from the surface of Mars. The seas of this planet, he observes, have a greenish hue, altogether resembling the color of our own. These, spots, however, are not always to be seen equally distinct, because of the varying transparency of the atmosphere; but when they are distinctly seen they always present the same appearance. Astronomers conclude that this planet is surrounded with an atmosphere of considerable extent, in which clouds at times exist; that the darker spots are water or seas which reflect a much less proportion of the solar light than land, and probably cover about one-third of its surface; that a variety of seasons somewhat similar to ours are experienced on this planet, but of a much longer duration; and that it bears a more striking resemblance to the world in which we dwell than any other planet in the solar system. It was owing to observations taken on this planet by Tycho Brahe having fallen into the hands of Kepler, that the three great laws of planetary motion, commonly termed "Kepler's laws," were discovered. These laws we shall have occasion to notice hereafter. The period of this planet's rotation round its axis has been ascertained to be 24 hours, 37 minutes, 23 seconds. The inclination of its axis to the plane of its orbit is $28^{\circ} 51^{\prime}$, or a little greater than that of the earth. This is a reason why its seasons should resemble ours to a considerable extent. No moon has as yet been discovered accompanying Mars.

The Scenery of the Heavens as viewed from Mars.

From this planet the earth will at certain periods be distinctly seen, but it presents a different aspect, both in its general appearance and its apparent motions, from what it does to the inhabitants of Mercury or Venus. To Mars the earth is an inferior planet, whose orbit is within the orbit of Mars. It will, therefore, be seen only as a morning and an evening star, as Venus appears to us; but with a less degree of magnitude and brilliancy, since Mars is at a greater distance from the earth than the latter is from Venus. It will present to Mars successively the form of a crescent, a half-moon, and a gibbous phase, but will seldom or never be seen as a full enlightened hemisphere, on account of its proximity to the sun, when its enlightes:d surface is fully turned toward the planet; nor does it ever apper: further removed from the sun, either in the mornings or evenings, than 48°, which is tho greatest elongation also of Venus as she appears to the earth, so that the earth never appears in the firmament of Mars about midnight. The earth will likewise be sometimes seen to pass across the sun's disc like a round black spot, as Mercury and Venus at certain periods
appear to us; but the planet Mercury will never be seen from Mars, on account of his smallness and nearness to the sun ; for at its greatest elongation it can appear only a few dogrees from the sun's margin, and is consequently immersed in his rays. The only time when it might happen to be detected is when it makes a transit across the sun's disc. Venus will be as seldom seen by the inhabitants of Mars as Mercury is by us. Our moon may likewise be seen from Mars as a small star accompanying the earth, but never at a greater distance from each other than ifteen minutes of a degree, or about half the apparent breadth of the moon; and with teleseopes such as we have all its phases and eclipses may be distinetly perceived. The planets Jupiter and Saturn will appear to Mars nearly as they do to us. At the time of Jupiter's opposition to the sun that planet will appear a slight degree larger, as Mars is then $50,000,000$ miles nearer it than we are ; but Saturn will not appear sensibly larger than to us ; and it is likely that the largest of the minor planets and the planet Uranus are not more distinguishable than they are from our globe. The point Aries on the ecliptic of Mars, one of the points where its celiptic and equator intersect each other, corresponds to $19^{\circ} 28^{\prime}$ of our sign Sagitarius. In consequence of this the poles of Mars are directed to points of the hearens considerably different from our polar points, and its equator passes through a different series of stars from that which marks our equator, which will cause the different stars and constellations, in their apparent diurnal revolutions, to present a different aspeet from what they do in their apparent morements round our globe.

Tie Minor Planets or Asteroids.

In the year 1778 Professor Bode, of Berlin, published a very remarkable law, relating to the distances of the planets from the sun, which, though it is said to have been discovered by Titius, is known as "Bode's Law." It was at first merely a bold conjecture, but has since attracted much attention, as it partly led to the discovery of the first of the minor planets or asteroids. Since, howereir, the dicovery of the last planet, Neptune, it has again fallen to the level of a conjecture. He observed that if we take the numbers 03612244896 , each of which, after the second, is duable that which precedes it, and add the number 4 to each of them we obtain the following list, which represents approximately the proportional distance of the planets named under them: Mercury, Venus, Earth, Mars, $^{16}{ }^{28}{ }^{52}{ }^{62}$ upiter, Saturn. Thus, if we take 10 to represent the distance of the earth, we shall find that 4 represents that of Mercury, 7 that of Venus, and so on. No planet was, however, known to occupy the space intervening between Mars and Jupiter, corresponding to the number 28. There was thus a gap left in the system, and Bode stated his conviction
that as the sky was more earefully watched, and better telescopes were employed, such a body would be discovered. Nor was his prediction long unfulfilled, for in the year 1800 six astronomers agreed to establish an association, of twenty-four observers, who should divide the zodiac between them, each taking fifteen degrees, and should search for the supposed pianet. This plan soon succeeded, for on January 1st, 1801, Piazzi, an Italian astronomer, discovered a moving body which he at first supposed to be a a comet, but which soon proved to be a planet afterward named Ceres, whose position corresponded very nearly with that pointed out by Bode's law. When this fact became generally known the search was discontinued, as the system appeared now to be complete. In the course of the following year, however, Dr. Olbers discovered a second planet revolving almost in the same period, and at almost the same distance as Ceres. This planet was named Pallas, and its discovery excited great attention among astronomers, such a thing having hitherto been quite unsuspected, as that there should be two planets revolving at almost the same distance from the sun. After some time Olbers ventured a conjecture that these two planets might be the remains of a single one that had by some means become slattered, and suggested that in this case other fragments might probably be discovered. The search was accordingly renewed, and two planets, which they respectively called Juno and Vesta, were discovered in 1804 and 1807. For many years no more were found ; accordingly it was believed that all had been discovered, and that these four, Ceres, Pallas, Juno and Vesta, were the four fragments of a large planet, which had once revolved in an orbit nearly resembling theirs.

At the end of the year 1845, the discovery of a new asteroid was announced by Hencke, and again drew the attertion of astronomers to the subject. Many more observers now undertook the task of trying to discover some more of those small bodies; and since that time few years have passed without some fresh names of planets being added to the list, which at present contains more than 100 , all of whose orbits are situated in the space between Mars and Jupiter. These generally do not present a welldefined dise in the telescope as the larger planets do, but appear like minute stars of about the twelfth magnitude, so that the only way of observing them is by accurately noting down all the stars visible in a given small portion of the heavens, and then carefully watching on successive evenings to ascertain if any of these appear to have changed their positions, or if any fresh points appear among them. Three only of these planets, it is said, have been seen by the naked eye, namely Vesta, Ceres, and Pallas, and it is only under very favorable circumstances that they can be seen. Nothing definite is yet given us as to the dimensions of these small planets, those mentioned as seen by the naked eye being accomnted the largest. Their distances from the sun vary considerably. Flora, the nearest of them,
being estimated to have a mean distance of $200,000,000$ miles, while the farthest is reckoned as distant about $313,000,000$ miles. Their times of revolution aro also fomed to bo very different, the two planots just named taking respectively 3,266 and 6,413 years to complete their rovolutions.

Owing to their small size and great distances very little is known as to the nature or charaeter of these small planets; traces of an atmosphere have, however, been diseoverod romed some of them, that surrounding liohas appoaring to have great density.

The theory of Olliers as to these small planets being fragments of a largo planet which had been shatterod ly the action of some internal feree was adopted hy some; while uthers held that they might have resulted from a planet haviuy, been shattered by collision with a comet; both of which theories to accome for the existence of planets, which are found to bo so widsly separated from each other, and to revolve round tho sun in such widely different periods in their respeetive orbits, seem as unrensonable as they are gromdless. The discovery of so many should, howover, be sutticient to meite astronomers to contimuo their researches for many others which yet remain mediscovered in our system.

The Heavens as seen from the Minor I'lunets.

To some of these planets, revolving as they do at noarly the same mean distance from the sun, the appearance of tho heavens will be very similar. The phanet Jupiter will be the most conspienons object i:a the firmanent of them all, and will appear to most of them at least of three or four times the size and splendor he does to us, so as to exhibit the appearance of a small brilliant moon. Saturn will appear somewhat larger and brighter than to us, but the difference in his appearanco will be ineonsiderable: nor will Liams be more distinctly visible than from the earth. At other times, as when near their congunction with the sum, theso planets will appear smaller than to us. Mars will sometimos appear as a morning and an evoning star, but he will always appear in the immediate neighborhood of the sun, and will present a surface much less in apparent size than he does to the earth. The earth will rarely be seen on aceount of its proximity to the sun : and Venus and Merenry will be altogether invisib!e in all of them unless they may happen to be seen when transiting the solar disc. It is likely that at certain times most or all of these planets will exhibit an uncommon, and oecasonally a brilliant, appearance in the firmament of each other. In their revolutions round the sun they may in parts of their orbits approach each other so as to be many times nearer each other in ono part of their orbits than in another. These different positions in which they may be placed in relation to each other will doubtless produce e great variety in the appearances they present in their respoctive firmaments : so
that at humbleed their or planets which eccentri much la
that at one time they may present in the visible firmament a surface a humbred or even two lumdred times greater than they do in other parts of their orbits. It is probable, thereffore, that the diversified aspeets of these planets in respeet to each other will form the most striking phemmema which diversily their metmonl hearens. In emsernence of the great eceentricity of the orlint of some of them, us liallas, the smen will appear much larger to them in one part of their eomerse than it thes in another.

The: leaneit Juither.

Beyoul this gromp of small phats which we have heen eonsidering lies the phot Jupiter, the hargest known body comected with onn syatem, the
 varionsly, but, taking the smallest amome we find lior his epmatorial dimmeter, this is 85,3900 miles, or more than sen timos as great as that of the earth. Its circumference, therelore, is 268,261 miles ; and its superficial area $22,900,801,790$ minure miles, ahont 117 times that of the earth. Aul as globes are to each other as the enhes of their diameters, and the enbe of Jupiter's dianeter is $62,(617,094,819,000$ milos; and the enbe of the earth's liancter is $495,176,997,497$, dividing the former hy the latter the guotient is 12:7 mearly, which shows that Jupitor as a solid globe is nearly twelve humbed and filty-seven times harger thau the earth. Conecive for yourself' a superficial area, ono humdred and seventeen times larger than that of our tertapueons globe ; and of twelve humbed and fifty-seven globes of the size of the earth haviug to be rolled into one in orter to make one of the sizo of Juniter ; its mass as compared with the sun's is estimated as 1 to 160,009.* The méan distunce of this phanet from the smin is $475,693,000$ miles; consequently from the earth $380,693,000$ miles; and it performs its orbitual journey round the sum in 4832.58 days, or a few weeks less than twolve of our years. It moves in its orbit at the rate of 29,000 miles an hour, a rate of spoed considerably less than half that of the earth. We always find, however, that the farther the planets are removed from the sun, the less is the rate of speed at which they move, and conversely. 'The axis of this planet being nearly perpendicular to the plane of its orbit, it camnot have the same varicty of seasons as the earth and Mars. Its inclination is, however, $3^{\circ} 5^{\prime}$, which will produce a slight elange of seasons both in the polar and equatorial regions. Hal the axis

[^51]been as much inclined to the orbit as the earth's axis is, the polar regions wouid respectively havo been deprived of the light of the sun for nearly six years without interruption, or one half of the year of Jupiter. A year on Jupiter corresponds nearly to a month with us. The plane of Jupiter's orbit is inclined very slightly to the piane of the ecliptic, or earth's orbit, and hence $\mathrm{i}:$ is diffecult to determine the exact point at which they intersect, and to ascertain in the usual way the length of its year. This, however, is readily overcome by ascertaining its synodic period, or the time which intervenes from one opposition of the planet to anuther, and calculating from this its siderial period.

When Jupiter is examined by means of a good telescope the most remarkable feature which strikes the observer is the number of almost parallel belts which characterize its surface, which may be slightly perceived in the accompanying view of the planet. Sometimes frequent and rapid changes take place in the number and appearance of these belts ; at other periods, they remain long almost unchanged. It has been a sulject of much speculation among astronomers as to the views which should be entertained respecting the nature of these belts, and the causes which operate in producing the changes which freçuently take place among them. Whatever opinion may be entertained on this point, it is pretty evident that the dark stripes, or belts, are the real body of the planet, and the bright spaces betveen them, or scattered among them, are clouds in its atmosphere, or clouly zones, liable to variation, which surround the body of the planet at a certain distance from its surface. Distinct markings or spots are sometimes risible on these belts, and remain constant sufficiently long to enable the time which the planet takes in rotation on its axis to be ascertained, which, as a result of many observations, has been determined to be 9 hours $55 \frac{1}{2}$ minutes. This is, as :ill be observed, less than half the time occupied by the earth, or any other of the planets, we have yet considered in their diurnal rotation, and is the more remarkable when we consider the vast size of Jupiter. The equatorial regions of the sur-
 face of this planet must thus move about 460 miles a minute, while the speed of the corresponding portions of the earth is only about 17 miles in the same time.

By observing the attractive influence of the planets on each other, astronomers are enabled to calculate approximately their respective densities; and thus they find the density of Jupiter to be lesst han a quarter that of the earth, or in other words that Jupiter, taken bulk for bulk, weighs less than a quarter as much as the earth does. The density of the earth is estimated at $5 \frac{1}{2}$ times that of water. Jupiter, therefore, has a density a little greater than water. Future observations may, however, give somewhat different results as to the time of axial rotation and tho density of this planet. The intensity of the solar light on Jupiter is 27 times less than on the earth ; this, however, will produce a large degree of illumination, if that planet has an atmosphere and surface anything like ours, to reflect the light. An observer situated on Jupiter would have no suspicion that such a globe as the earth has an existence in the universe; all its fancied grandeur and it proud inlabitants are as much unnoticed and unknown there, as is the smallest animalcule in the drop of water by the unaided eye.

The telescope also discloses to us the fact that Jupiter is accompanied by four satellites, or moons. Three of these were discovered by Galileo on January 7th, 1610, when he first directed his newly-invented teleseope toward the planet ; and the fourth a few evenings later. A comparatively low power, such as that afforded by an ordinary opera-glass, suffices to show them all distinctly. Three of these satellites revolve round Jupiter in orbits which are almost circular, and very slightly inclined to the plane of the planet's equator. Owing to this circumstance the three nearer ones to the planet are eelipsed every revolution, and the outer one in nearly every revolution, so that the phenomena of eelipses are far from rare to the inhabitants of Jupiter, there being about 4,500 lunar eelipses in one Jovian year, about twelve of our years. It has been deduced from the observations of Sir W. Herschell and others that the moons of Jupiter always present the same side toward the planet, and make one rotation on their axis during one revolution round their primary, which corresponds with what we find in the ease of our moon, which, is before shown, always prec ats the same hemisphere toward the earth, and makes one rotation on its axis while making one revolution round the earch. The eclipses and transits of these bodies are very interesting phenomena, and may be easily observed with an ordinary telescope. A full list of these is given in the "Nantical Almanac" for each year, and scarcely a day passes without some of them being observed. They are frequently used in determining the longitude of any station of observation at sea. When any of the satellites passes between the earth and the planet, it is soen in transit as a bright spot on its face; its shadow is also seen as a dark spot at a little distance from it, presenting the appearance of two satellites in transit.
 comeroming these matellites．

Natre							
		！In		，	11170	？？י＂，	tilum．
Bincリハ！		$\because \cdots$	1 ？	11	＂	2，14：41	＂
S为以リッ	1．78．76，	1	：	＂11	＂	$\therefore 1.16$	＂
（allisw．	1，1010	$1 i^{\prime \prime}$	16	：12	＂	2，12	1

 extent at smefoce on all the habiable parts of were ghowe．Whathess they are replenished with a large mumber of inhahiants for whimh they persas sueb ample coparify．The first satellite，it is sem．membes at a litho further distaner from the plamet than the mone dwes fiom the earth：fhe socom at mealy doulde hat distames the thim at watly frohe that distamer ：and the fomb at meally sime that distamer．

From his satollites．Jupiter will appear as a haree and roplemdent mon in their timament：sometimes appearing in the genith；sometimes in the horizon；ami in other pesitions．acoording to the positions the spertators wecupe on the surface of the satellites．From the tirst satellite the ghobe of dupiter will appear abont 1.000 times lagere than the mon does to $n s$ ，amd will axhibit in the comse of 21 homs all the diver． sitied phases of the moon，a ereseent，a gibbons phase，a half－monn，and a full embighened hemisphere．Besides，the appearanee of the other thre moons in its firmament will be highly interesting and smblime．At certain times one of these mons will come so near the first satellite as to appar three times larger than our moon does to us ：and at other times it will appear six times smaller than in its former position；and a variety of dher phenomena will be presented to it，from the complex motions of this system of borties，which it would be too tedions here to deseribe， all of which will present to vien ohjects of suppassing grandeur and sublimits，incomparably superior to what we are aceustomed to behold in our moctumal sky．What has heen now stated with reference

E
(a) the firat antollite will also mply in genomal the wher theree anterlites, with this differomer, that dnpiter will ngpenr of a difforent mannithile from abh antellite: ant the magnitmilea, motiona, and napeeta of the other satellitos will like.vise be senmewhat different. In rache satellite the great glowe of Jupiter, "preaming motionlesa in the sky, will be tho most eonapienoms whenet in thair fimmment. 'I'n the seernet this

 (1) the formth nout righty times the apmont aize of the firl mone. Binch satellite too will have a variety of wher phemomom peestiar to itself. 'I'o ach of them the acenltations of the other antellites liy the boily uf Jupitan :
 Jnpiter eansed liy his dimmal rotation; the almonse of tho matellites passing like dark apots newose his dise ; the trmaita al the satellites thenn selves like full moms crossing the orbof dupiter ; the diversilion pheme. mena of echpase, some uf them happoning when the satellite is like a erescent, or half-moom, null some of them whon it mpoara na a finll enlightomed hemisphere ; and seareely 1 single day will pass withont some of these phemmena, and many others being wherved. 'The length of tho dny, as has been shown, is dillerent in emeh atelellito.
'lhe only phanet which will be emapichons in the firmment of Jupiter is the planet Saturn, which will iphoar larger than either Jupiter or Vemednea to ns, especially at the time of ita opmaition to the sinn. 'I'he planet Uramas which is aenreely ristinguishable to our massiated sight, will wot be much more diatingniahble nt dupiter than with ns, oven at the time al' its "pposition. Mus will searoely be seon from Jupitor, hoth on aceome of ita smalluess, and of its proximity to the sun ; for at his groatest elongation ho can never be seen mure than 18° from that luminary. The earth alan will be invisible from Jupiter both on neomnt of its amall size, ita diatance, and its being in the immedinte vicinity of the sum, immerged in his mys. but althongh so few of the primary phanets are soen in the nocturnal aky of this plamet, yet his firmmment will present a romarkable nppoaranos hy the mumber of his own satelliten, especinlly as they nll ferform their journeys roumd the planet in such short periols of time, nu? hence their changes ocenr in rapid succession. I'hese four moons will exhibit many corions and sublime phenomena to the imhabitanta of Jupiter, ns they rin their nocturnal courses throngh his sky : sometimes they will be seen eclipsing each other; sometince oclipsing tho sum, and other timos the stars; sometimes two, three, and even the whole four will be seon shining in the henvens, in oue bright galnxy; one porhaps in the form of a crescent, ono with a gibbous phase, one like a half-moon, and the other with a full enlightened hemisphere. One will be seen moving comparatively slow, and another moving rapidly through the sky, and leaving all the rest bonind it.

One will be seen under an eclipse, another entering into it, and another emerging from it. One of the satellites will cast the shadows of objects toward the north, another toward the south, another toward the east, another toward the west, and in all directions upon the surface of Jupiter. These and many other celestial phenomena must be highly interesting to the astronomers and all others connected with this far distant world. On the whole, the planetJupiter, accomranied by his sateilites, presents to cur view an ohject of inexpressible grandeur and sublimity, when we contemplate the vast magnitude of this magnificent globe and the velocity with which it moves, accompanied by its moons, through the regions of space.

The Planet Saturn.

The intervals between the planets are now becoming widor and wider, and we have to pass nearly 400 millions of miles beyond the orbit of Jupiter before we reach that of Saturn. This planet may justly be considered as in almost every respect the most magnificent and interesting body within the limits of the planetary system, so far as yet discovered. Viewed in connection with its satellites and rings, it comprehends a greater extent of surface than even the system of Jupiter; and its majestic rings constitute the most singular and wondorful phenomena that have yet been discovered. The mean distance of this planet from the sun is $872,135,000$ miles ; but, owing to the eccentricity of his orbit, the real distance may be greater or less than this by nearly $50,000,000$ miles. His mean distance from the earth is $780,705,000$ miles, an interval which a cannon ball, flying with its utmost velocity without intermission, could not travel in less than 178 years, and a steam carriago, moving at the rate of twenty miles an hour, could not traverse in less than 4,448 years. Saturn accomplishes his orbitual journey round the sun in 10,729.2 days, or nearly $29 \frac{1}{2}$ of our years, its motion being over 20,000 miles an hour, or less than one third that of the earth. In point of size it is next to Jupiter in our system, having an equatorial diameter of $71,90 \pm$ miles. Here we may observe that astronomers determine the polar diameter of this planct, as well as that of Jupiter, the earth and others, to be somewhat shorter than the equatorial diameter. The difference, however, in any of these cases is very slight, in some of them scarcely at all noticeable. And even these differences are determined variously by different astronomers, and continued observations with more perfect instruments may eventually show all these bodies to be perfect spheres, or that their diameters are equal, excepting so far as they may differ on account of the natural elevations and depressions of the surfaces of the planets. The circumference of Saturn measures 225,893 miles, and its superficial area $16,242,610,272$, or over sixteen thousand millions
orsqua globe.

The other pl star it eastwar course o moves particula appear

Netwi when vi marnific and wer did appe motions Saturn, on accou planet, a earth.
telescope unfolded pere dise cent than telescopes seem brod ajpear su therefore, the globe

planet, but nut yet cle from the su
of square miles, an extent of surface over $82 \frac{1}{2}$ times that of our terraqucous globe.

The motion of this planet being slow as compared with that of the other planets, if it be onco recognized in the heavens near any large fixed star it will be found from yoar to year making a slow progress to the eastwards from that point. Its apparent mation in that dircetion in the course of a year is little more than twelve degrees, or less than the moon moves in twenty four hours. Hence if we perceive this planet in any particular point of the heavens this year, at the same time next year it wilt ajpear only about 12° farther to the east.

Netwithstanding tho dall appearules Saturn presents to the naked oye, when viewed through a powerful telescope, it presents a more regular and magnificent appearance than any other body connected with our system ; and werg it as near us as Mars, or even Jupiter, it would present a splendid appearance even to the naked oye. The ancients who first traced the motions of the planet could form no adequate idea of the grandeur of Saturn, and of the system of which it is the centre ; and their astrologers, on account of his pale leaden hue, accounted him a cheerles. impropitious planet, and as shedding a malign influenco upon the inhabitants of the earth. But after ages of darkness and superstition had rolled away the telescope was invented, and by the aid of this noble instrument, which has unfolded to us the wonders of the heavens, a system of revolving bodies were discovered connected with this planet, more wonderful and magnificent than any other object with which we are acquainted. With powerful telescopes four or five belts have been discovered on his surface, which scem broader and less strongly marked than those of Jupiter, and do not appear subject to the variations which are seen in Jupiter's belts, and, therefore, they are thought most probably to form permanent portions of the globe of Saturn, indicating that there is a diversity of surface on this

Fig. 120.
planet, but whether land or water, or any other particular suisstance, is nof yet clearly determined. The quantity of light this planet receives from the sun is only the $\frac{11}{9}$ th part of what we receive; fo: Saturn is about
$9 \frac{1}{2}$ times the distance from the sun that the earth is, the square of which is $90 t$, and the quantity of light the planets receive is in inverso proportion to the squares of their distances from the sun. But that quantity of light is estimated as equal in effect to the light which would bo reflected by a thousand full moons such as that connected with our earth. As wo have remarked before, however, upon the nature of the atmosphere which surrounds a planet, as woll as upon the naturo and character of its surface, much depends as to the degree of illumination which will be enjoyed on it. If the atmosphere of Saturn be as donse and its surface as rough as those of the earth that planot will enjoy a good degreo of light. The density of this planet is estimated as less than that of any other planet in our systom. The true period of Saturn's rotation on its axis has been difficult to determine ; it is, however, set down as at a fow seconds short of $10 \frac{1}{2}$ hours. It is remarkablo that La Placo, from physical considerations, had calculated the time of rotation of Saturn to be nearly that stated, before Sir W. Herschel, had determined it by direct observation. Future observations with improved instruments may probably disclose something different as to the time of its axial rotation and density. Tho eccontricity of Saturn's orbit is $49,000,000$ miles, which is about the $-\frac{1}{3}$ th part of the diameter of its orbit. Its inclination to the eeliptic is $2^{\circ} 29 \frac{1}{2}^{\prime}$.

Saturn is attendod with a more numerous train of satellites than any other planet in the solar system that has yot beon discovored. Eight large moons have been discovered moving around it in solemn grandeur, diffusing light over its surface in the absence of the sun, and greatly diversifying the scenery of its firmament. Two of these, the second and seventh, can only be seen with tho most powerful telescopes, and soveral of tho others require a good instrument in order to show thom well. Owing to their great distance and small sizes our information concerning them"is quite limited. The annexed table exhibits in a concise form the most important facts known concerning them. The diametors, howover, with the exception of that of the sixth, are doubtful :

$5{ }^{\text {a }}$	Mean distance from planet.		Siderlal Perlod.						Diameter.	
1st	120,800	miles	0	days	27	hotur3		minutes	1,000	miles
2nd	155,000		1		8	"	53		2	"
3 rd	191,000	"	1	"	21	"	18	"	500	"
4th	246,000	"	2	"	17	"	41	"	500	"
51 h	3.3,000	"	4	"	12	"	25	"	1,200	"
bith	796,000	"	15	"	22	"	41	"	3,300	
7 th	1,607,000	"	21	"	7	"	8	"	2	"
8th	2,314,000	"	79	"	7	"	55	${ }^{\prime}$	1,800	

Astronomers differ considerably as to the diameters of these satellites; and we incline to think them in general much larger bodies than the diameters given would indicate them to be. The orbits of the three first mentioned of these are much nearer to the planet than that of the moon s to the carth; that of the fourth is a little over that distance; that
of the fifth nearly $1 \frac{1}{1}$ times that distance ; that of the sixth some what over $3 \neq$ times that distance; that of the seventh four times, and of the eighth over nine times that distance. The orbits of the six interior satellites are fonnd to be nearly circular, and very nearly in the plane of the planet's ring, which we shall soon consider; that of the seventh approaches nearer in coincidence with the ecliptic.

Some phenomean uf the Sutellites as viewed from the surface of Suturn. Desseription of the rimys and scenery of the heavens as vicwed from Suturn his suttellites and rings.
These satellites, like those of Jupiter, undergo frequent eelipses; but on account of their great distance from the earth these eclipses are not often observed. It is evident that such a numerous assemblage of moons revolving round thir planet at different distances, and in different periods of time, will present a most beautiful diversified and sublime appearanco in the heavens of Saturn, especially when all the eight satellites appear at the same time above the horizon. Then oue will appear as a full moon, another as a creseent, another as a half-moon or with a gibbous phase; one entering into an eclipso, another emerging from it ; the inner satellites, on account of their proximity to the planet, presenting the largest dises and the most splendid appearance, and moving with great velocity in their orbits, rapidly passing the other satellites at diffurent rates of motion, and leaving them behind in their course.

On the surface of Saturn a curious effect will be produced, and a diversified scene prosented. 'The shadows of all objects will be projected in different directions by the different satellites, according to their varying positions in the heavens. One satellite will project the shadow of an clevated object towards the east, another toward the west, a third will cast it toward the north, a fourth toward the south, and the shadows will bo cast in a variety of directions according to the number of satellites above the horizon, and the positions they occupy in the firmament; and the swift motions of the first three satellites will cause the direct', n of their shadows rapidly to change. In addition to all this diversity of sublime scenery, there is the grand spectacle produced by the magnificent rings encircling the planet, which we shall now endeavor to describe.

This ring surrounding the planet being compound, that is, made up of two or more concentric rings, is the most remarkable peculiarity of Saturn, and, as before remarked, appears to be quite unique in the whole system. To the early obscrvers it caused considerable of curiosity and wonder. Galileo, when he first directed his telescope to the planet, observed that it was somewhat elongated, as if it were oval in snape instead of round, the power of the carly telescopes not being sufficient, nor their definitions good enough, to show the real cause of the appearance. After some time he advanced an opinion that the planet was really triple, having a small
satellite on each side of it. This theory obtained for some time, till gradually the ring began to be presented edgewise to the earth, and then disappeared altogether. This the astronomers of that time were unable to explain, and were, on that account, very much perplexed ; but, after the lapse of about half a century, Huygens discovered the real cause of these appearances, and announced that Saturn was surrounded with a slender flat ring, nowhere touching it. He also predicted the period when it would again become invisible, and proved to be very near correct in his dates. A.tyr a short time it was discovered that, instad of one ring, there were two concentric ones; and numerous recent observations go to show that these again are divided, so that we may look upon the whole as a compound or multiple ring, made up of several distinct and separate ones. Three of these are well marked, the innermost of which is commonly known as the dusky ring, and seems partially transparent, probably from an accumulation of water near its cilive. See figure 120.) From several phenomena which have been observed, there is thonght to be ground for supposing that one or more of these rings may be fluid rather than solid; and most probably they are partially fluid. The diameter of the outer bright ring is estimated at ncarly 170,000 miles, and its breadth at upwards of 10,000 . The interval between this and the inner bright ring is given by SirW. Kerschell at 2839 miles, which is 700 miles more than the diameter of our moon ; so that a body as large as our moon would have place to move between the rings. The breadth of the inner bright ring is 17,000 miles, and that of the dusky ring abnut half that amount, so that the united breadth of the whole would be about 36,000 miles. Their thickness is, however, but small, being variously estimated at from 40 to 250 miles. Astronomers differ somewhat as to the dimensions of these rings, some having them larger than as here given. The superficial contents of these rings, reekoning both their sides and edges, are computed at over 120 times the area of the woole earth; so that they possess ample space for the accommodation of vast numbers of inhabitants, with which, doubtless, they are abundantly replenished. From the observations of Sir W. Herschell, and others, it has been concluded that there are irregularitics on the surface of the rings analogous perhaps to mountains and vales of vast extent; and that the occasional disappearance of the ansae may possibly arise from a curvature in their surfaces. Herschell was also of the opinion that the edge of the exterior ring, (or that edge which he could observe best with his telescope,) is not flat but curved. This would lead us reasonably to infer that the rings may be inhabited on all their sides and edges, just as our globe is iuhabited on all its opposite sides. This astronomer considered, too, that the rings are not less solid than the body of the $\mathrm{Y}^{\text {lanet, }}$ which consideration was doubtless in the main correct, and which bespeaks a solid uneven surface, at least in part, for the rings.
ime, till and then e unable ut, after cause of 1 with a tod when et in his ne ring, tions go he whole separate 1 is comnt, probre 120.) ght to be id rather meter of 3 breadth ight ring 3 than the ave place is 17,000 that the thickness 50 miles. hgs, some of these 20 times e for the ess, they erschell, on the s of vast possibly e opinion observe lead us sides and iis astrobody of rect, and e rings

By means of several protuberant points connected with the rings Sir W. Herschell discovered that it has a swift rotation round the globe of Saturn, which it accomplishes in 10 hours $32 \frac{1}{2}$ minutes. Secchi, however, sets it down at 14 hours $23 \frac{1}{3}$ minutes. The ring is everywhere distant from the surface of the planet over 20,000 miles; so that two or three globes of the size of the earth might be interposed between them. This magnifcent appendage keers always the samo position with respect to the planet; is incessantly revolving round it; and at the same time moving along with the planet in its revolution round the sun. When viewed through a good telescope the appearance of the system of Saturn is very beautiful. At times the ring is presented with its edge toward us, and is then almost invisible, being just discernible as a threal of light along which some of the satellites appear to be moving. As the earth moves out of the plane of the planet's equator the ring opens out wider and wider, the projecting sides having the appearance of handles, whence their technical name anseue. The opening of the ring attained its maximum in August, 1869, and now arpears slowly closing up again. Its edge, therefore, will be directed toward the earth again about the close of the year 1876. The phenomenon of the disappearance of the rings takes place at intervals of fourteen years and nine months, and happens when the planet is in 170° and 350° of longitude, or in the 20 th degroe of Virgo, and the 20 h degree of Pisces. Sometimes the sun is on one side of the plan of the rings, and the earth on the othor. The dark side is then turned toward us, and the ring is invisible. In Figure 120 is a good view of the rings as seen in 1852 by Mr . Dawes.

Saturn and his rings would present a more splendid and interesting appearance through our telescopes could we view the rings not obliquely, but as at right aiogles to our linc of vision; but as we view them our eye is never more elevated than 30° above the plane of the rings. The sun shines on one side of this compound ring during a period of fifteen years, and the regions of Saturn which lie under the dark side suffer a solar eclipse under its shadow during this period. But doubtless this loss of light is amply compensated by the light of the satellites.

Recent observations reveal the fact that the planet is not situated exactly in the centre of the rings, one of the ansat being longer than the other ; another fact is that the dimensions of the rings appear to vary from day to day in a way that is explained by supposing the rings to bo elliptical, and that they would thus present this appearance in their rotation romed the planet. This oscillation of the rings about the planet is believed to be neeessary to the maintenance of permanent equilibrium in the system of Saturn; for astronomers demmstrate from physical considerations that were they mathematically perfect as to their circular form, and exactly concentric with the planet, " they would form a system in a
state of unstable equilibrium, which the slighest external power," (such as the attraction of the satellites,) " might completely subvert by preci. pitating them unbroken on the body of the planet." "The observed oscilation," says Sir J. Herschell, " of the centre of the rings about that of the planet is in itself the evidence of a perpetual contest hetween conservative and destructivelpowers, both extremely feehle, hut so antagonizing one another as to prevent the latter from ever gaining an uncontrollable aseendancy, and rushing to a eatastrophe." It appears, too, that the ring rotates on its"axis in exactly the same time that the phanet does, for he goes on to say: "'The smallest difference of velocity between the body and rings mustininallibly"precipitate the latter on the former, never more to separate; consequently, either their motion in their common orbit round the sum must have been adjusted to eneh other hy an external power with the minutest precision, or the rings must have heen formed abont the planet while subject to their common orbitnal motion, and monder the full, free inthence of all the acting forcee," At the rate of axial motion given to the planet and rings hy the Herselells, the parts about tho planet's equator must move 22,466 miles an hour, and the exterior circhuference of the onter ring 53,176 miles an hour, 886 miles a minute, or fifteen miles duringevery beat of the elock. We eannot, therefore, possibly conceive of any external power as adjusting their motions to each other in their common orbit round the sum "with the minutest precision," nor of the rings being formed about the planet "while subject to their common orbitual motion" with such a velocity, "and under the full, free influenee of all the acting forees," such as the centripetal and centrifugal forees of gravity, and the various forers of attraction from different directions in full operation. Such a thing, as we have had necasion to remark before, in a former part of this book, is altogether muresonable, ineonceivatle, and never has taken phace. That system is as etemal as the earth on which we live.

In consequence of the vast dimensions of these rings, and the large space they oecupy in the firmament of the planet, they will present a magnificent spectacle from the regions of Saturn which lie under their enlightened sides, especially those places which are situated not far from the phanet's equator. They will appear as vast shining arehes spaming the hearens from one side of the horizon to the other, and holding an invariable position among the stars. Toward the poles of the phanet the rings will be quite invisible on aceount of the convexity of the globe of Saturn interposing between them and the observer; hut near the polar regions a segment of the rings will appear, presenting a brilliant appearance in the horizon. Adrancing from those regions toward the equator they will appear to span the hearens, like brilliant arehes of diferent degrees of magnitude, mutil at the equator they will appear a complete semieicele.
(such proci. d osciltof the ruative ing one asecnrotates on to 1 rings parate ; the sim rith the planet ill, frec given to equator e of the of miles onceive in their of the common nence of "ces of tions in fore, in ple, and 1 which
e large esent a er their ar from hing the variable ngs will n intergions a 6 in the cy will rrees of ieitircle.

During the space of fourteen years and nine months, which is half of the year of this planet, tho sun shines on one side of these rings without intermission, and during a like period he shines on the other side. During nearly fifteen years, therefore, tho dwellers on ono side of the equator will be enlightened by the sun in the day-time and the rings by night, while those on the other hemisphere, who live under the dark side of the ring, suffer a total eelipse of fifteen years continuance, during which they never see the sun. As the sun ceases to shine upon one side of the ring aud is about to shine on the other, the rings will be invisible for a fow days or weeks to all the inhabitants of Saturn. The prominent parts of tho celestial scenery of Saturn may bo considered as belonging to his own system of rings and satellites, and the views which will oceasionally be opened of the firmament of the fixed stars, for hat fow of the other planets will appear in its sky. Jupiter will appear altornately as a morning and an evening star with about the sane degree of brilliancy it exhibits to us, but it will never be conspicuons except near the period of its groatest clongation, and it will never appear removed from the sun further than thirty-seven degrees, and consequently will not appear so conspicuous, or for such a length of time, as Venus does to us. Uranus is the only other planet which will be visible from Saturn, and it will be distinctly perceptible as a star of the third magnitude when near the time of its opposition to the sum. All the other planets, such as Mars, the Earth, Venis, Mercury, and our Moon, will be far removed from the view of the inhabitants of Saturn, being all in the immediato vicinity of tho sun, and immersed in his rays.
But notwithstauling all this the sky of Saturn will present a most diversified and interesting appearance. No pietorial representation, however ample the sealo, can convey even an approximato idea of the august and splendid objects which adorn his noeturnal firmament; for besiles the rings, which form the most striking and magnificent spectacle, there are the eight moons, three or four of which generally diversify his celestial hemisphere, "appearing in different positions and with different phases, and sometimes the whole eight satellites in one bright galaxy may be seen pursuing their difforent courses among the stars, and rapidly shifting their positions and aspects. Let us picture to ourselves one moon four times as large in apparent size as ours shining in the canopy of heaven ; another three times the apparent size of ours in anothor quarter of the sky ; a third apparently thrice as large ; a fourth about the apparent sizo of our moon ; and a fifth, sixth, seventh and eighth of different apparent magnitules ; some of them appearing as a crescent, somo with a gibbous phase, and others with a full oulightenod hemisphere ; some rising, some setting, one entering into an eclipso, and anothor omerging from it ; let us conceive such scenes as these, and we may aequire some general idea of the phenomena presented in the heavens of Saturn.

 and in wher pasitions in the shy, nocomting th the pexition whish the ope

 i) the hesams, and the phate all present to the inhahitants of the sher

 wili present samper siver times larger than the fill monn does in bur shy. Te will present all the phases of the mon in the eomese of tio home.
 remering farther foum or hoing nearev to the first satellio. The thind satellite will appas nemby half as lares, mit will present nearly the same

 8

 Pas a a

times crossing its dise with a rapid motion, like a circular shadow. Suppose these and many other diversified phenomona presenting themselves with inereasing variety in the canopy of heaven, and you will have some slight idea of the grandeur of the firmament as seen from some of the satellites of Saturn.

On the rings there will be a greater diversity of celestial scenery than any we have yet described. 'Ihere will be at least ten varictios of celestial seenery, accorting as the spectator is situated on different parts of the rings. Two opposite varieties of seenery will be exhibited from what appear to us the urper and lower sides of the rings ; one variety of sconery will be exhibited from the exterior elge of tho outer ring; another frow its interior elge; one varicty of seenery from the exterior edge of the secome ring, another from its interior edge : one variety of scenery will appear fron the exterior elge of the interior bright ring, another from its interior ellge ; one from the exterior edge of the dusky ring, another from its interior edge. By referring to ohe figure, the reader will perceive there are four rings distinetly marked. To describe all these varieties in minute detail would fill a large volume. We shall have to confine ourself to a brief description of one of these celestial views. Those who dwell oan the sides of the rings will behold the one half of the hemisphere of Saturn, which will fill perhaps the one-tifth or the one-sixth of their celestial hemisphere, while the other portions of the planet will be hidden by the interposition of the rings. Those who are near the interior and dusky rings are only some 25,000 miles from the surface of Saturn, and consequently the varieties on its surface will be perceived. Thoso near the outer edge of the exterior ring are about 60,000 miles from the surface of the planet, which will consequently appear to them four times less in size than to the former. But being only 18,000 miles from the first satellite at the time of its opposition to Saturn that satellite will appear more than $3 \overline{5} 0$ times larger than our moon, will rapidly assume different phases, and will be continually varying in its apparent magnitude ; and at its greatest distance beyond the opposite side of therings itwill appear at least 170 times less than when in the nearest point of its orbit ; and will exhibit all the intermediate varietics of aspect within a little over a day ; so that this satellite will be continually varying its apparent size from an object two or three times the apparent dimensions of our moon to one 350 times greater. The same may be said with respect to the other seven satellites, with this cxception, that they will appear of smaller magnitudes, and the periodic times of their phases and their changes in apparent magnitude will be different.

Another object which will diversify the firmament of those who are on one of the sides of the rings is the opposite portions of the rings themselves. These will appear rising up from each side of the planet like broad lumi- selves e some satel-
nous arches, oach of them somewhat less than a quadrant, and will fill a very large portion of the sky, so that tis inhabitants of the rings will behold a portion of their own habitation forming a very conspicuous part of their.fil ument, and, at first view, may imagine that it forms a celest:al ohject with which thoy have no immediate connection. Were they to journey to the opposite side of the ring they would see the habitation they had left suspended in the firmament without being aware that the place they had left forms a part of the phenomena they behold. As the rings rotate round the planet, and the planet rotates round its axis, the different parts of the surface of the planet will present a different aspect, and its varioty of scenery will be successively presented to the view. The eclipses of the sun and of the satellites by the interposition of the body of Saturn, and of the opposite sides of the rings, will produce a variety of striking phenomena, which will be diversified almost every hour.

From the dark sides of the rings which are turned away from the sun for fifteen years a great variety of interesting phenomena will likewiso bo presented; and during this period the aspect of the firmament will most probably be very varied and striking. This half of the rings will not be in total darkness during the absence of the sun, for some of the eight satellites will always be shining upon it; sometimes three, sometimes four, and sometimes all the eight in one bright assemblage. It is probable too that Saturn, like a large, slender crescent, will occasionally diffsso a mild light, and in the occasional absence of these the fixed stars will display their radiance in the heavens, which will be the principal opportunity afforded the astronomers of the rings for studying and contemplating those remote luminaries. Those who occupy the exterior rings will behold the interior rings and the opposite segments of their own like vast arches in the heavens; and although only 2,500 miles intervene between the two bright rings, that space is doubtless as impassible as the space which intervenes between us and the moon. The celestial scenery as viewed from these rings will afford a grand and diversified field for telescopic observations, surpassing in variety and sublimity whatever is beheld in any other region of the solar system, by which some of the objects could be contemplated, as if they were placed within the distance of forty or fifty miles.

Thus the planet itself, with all the moving bodies connected with it, presents to the mind a scene of surpassing grandeur and sublimity. Let us suppose ourselves stationed within a few thousand miles of this system; from such a position the globe of Saturn, the rings and moons would appear to fill the greater portion of the visible heavens. Let us conceive this planet nearly a thousand times larger than the earth, moving through space at the rate of over 20,000 miles an hour, accompanied by his stupendous rings 500,000 miles in circumference ; and these rings revolving round the planet, with a velocity of nine hundred miles every minute, and eight other
spacious globes, while in their rapid courses at different astances round the planet and his rings; let us endeavor to stretch our imagination to the utmost to represent to ourselves this scene as near as possible to the reality. Supposing ourselves spectators, how grand and terrific and almost overwhelming would be the amazing spectacle ! Annidst the emotions which such a sight would excite in "s we would exclaim: Who can understand the operations of the Lord? Great is the Lord; great is his power; and his wisdom is infinite! His power is irresistible; his wisdom is unsearchable; and his agency, as his presence, pervades immensity !

Tue Planet Ubancs.

Of the planets which have been diseovered beyond the orbit of Saturn comparatively little is known, owing to their great distance from us. The ncarest of these, Uranus, is only faintly visible to the naked oye. It was discovered on Mach 13th, 1781, by Sir W: Herschell, though it was some few months afterwards before its planetary nature was recognized. While engaged in examining some small stars, he was struck with the appearance of one in particular, and on applying higher powers he found that it seemed to increase in size and presented a faint dise ; it also exhibited a proper motion. Herschell accordingly considered it to be a comet, and announced its discovery as such, but it was soon found to be impossible to assign to the wanderer a parabolic orbit, which would account for its movements, and it was then ascertained to be a planet moving in an elliptical orbit at a mean distance from the sun of $1,753,851,000$ miles. Some time was spent in decidiug on a name for the stranger. The name of the discoverer was suggested. He himself, however, proposed to call it Georgium Sidus, the Georgian?Star, out of respect to his patron, George III; but as the names of other planets were derived from the Heathen Myihology, it was fiually decided to select a name from this source for it, and Uranus was at length fixed upon. The other names will, however, ke occasionally met with in astronomical writings. The diameter of Uranus is a trifle more than 33,000 miles ; consequently its circumference is over 103,672 miles ; and its superficial area more than $3,421,176,000$ square miles, or about $17 \frac{1}{2}$ times the land and water area of our globe. Its mass of matter is estimated at about twenty times greater as to bulk than what is contained in Mercury, Venus, the Earth, the Moon, Mars, Juno, Vesta, Ceres, and Pallas; and, if the mass of itssystem of satellites were counted in, it would be much greater. Its distance from the sun is about double that of Saturn; and to reach the nearest point of its orbit, a cannon ball flying from the earth thitherward with a velocity of 500 miles an hour would require a period of 389 years; and a steam carriage travelling at the rate of 20

miles

befor
miles an hour without intermission would require more than 9,730 years before it could reach the planet Uranus. The period of this planet's rotation on its axis is as yet unknown ; its great distance from the earth preventing us from observing any spots or changes on its surface by which this might be determined. La Place concludes from physical considerations that it rotates about an axis very little inclined to the ecliptic ; and that the time of its diurnal rotation cannot be much less than that of Jupiter and Sata:"י". It moves in its orbit round the sun in a little more than 84 of our years, its period being $30,686.82$ days, at the rate of 15,000 miles an hour.

One remarkable feature in connection with this member of our system is the great inclination of its equator to the plane of its orbit, the poles being very nearly in the plane. As a "esult of this the sun is al difierent times vertical to nearly all parts of the planet's surfacu. Itsorbit is inclined to the ecliptic at an angle of $46^{\prime} 2 i^{\prime \prime}$ so that it is never much more than $\frac{3}{4}$ ths of a degree from the ecliptic. This inclination is less than that of any of the " $\mathrm{r}^{\text {" er planet- }}$ ary orbits. The eccentricity of its ornit is $85,000,000$ of miles, which is aloout the $\frac{1}{4}$ nd part of its diameter. Its mean apparent diameter as seen from the earth is about $4^{\prime \prime}$. The quantity of light this planet receives from the sun is 360 times less than what the earth receives; for the quantity of light received on any planet is inversely proportional to the square of its distance from the sun. Uranus is about 19 times the distance of the earth from the sun, and the square of 19 is 361 , which is the number of times the quantity of light which he receives will be less than what we receive. But this quantity of light is estimated as equal to what we should have were 348 full moons all continually shining on our globe. If the atmosphere of that planet be has dense as ours, and its surface considerably rough, it will enjoy a good share of illumination. The sensible heat may not entirely depend upon the distance of a planetary body from the sun, but partly upon the nature of its atmosphere and the substances on its surface on which the rays of light and heat fall. Light and heat seem only to be required where there are sensitivo and intelligent beings existing, and we may rest assured that in all the regions of the universe the nature and constitutions of the inhabitants are adapted to their respective habitations. This immense globe is doubtless replenished with large numbers of sensitive and intelligent creatures.

Several satellites have been discovered revolving round Uranus; but the number that accompany that planet do not appear to be definitely ascertained. Sir W. Herschell stated that he discovered six, and two within these have been discovered by Lassell and Struve, so that the number is by many astronomers set down at eight, and their periods of rotation vary from $2 \frac{1}{2}$ to $10 \frac{1}{2}$ days. Lassell, however, expresses his belief that the total number yet discovered is only four. They all, instead of revolving, as the other planets do, from west to east, have their orbits nearly
at right angles to the ecliptic, and move in a direetion from east to west. It is reasonable to suppose, however, considoring tho immense distance and the prubable small size (their diametors are not yet ascertained) of these bodios, that the acutost astronomers may possibly maze mistakos in their observations of them, and therefore, it is botter to wait till future obsorva. tions confirm their statements, or reveal something difforent as to the motions of these satellites. If it be confirmod that this apparont anomaly do exist, as we may say almost at the confines of the Solar systom, it will indieate that in other systems different states of things exist as to the planets and their satellites bosides what we experienee in the system to which we belong.

We append a list of the satellites of Uranus. Those given here are numbered $1,2,4,6$ in the fuller list.

	Mcan Distance from Planet.	Siderlal Period.	Diameter.
1st.........................	123,000 miles.	$2 \mathrm{~d}, 12 \mathrm{~h} .28 \mathrm{~m}$.	?
2nd.........................	171,000 "	$4{ }^{\prime \prime}{ }^{\prime \prime} 27$?
3rd..........................	281,000 "	$8{ }^{\prime \prime} 16{ }^{\prime \prime} 25$	$?$
4th..........................	376,000 "	13"11" 6 "	$\stackrel{2}{2}$

The satellites of Uranus seldom are eclipsed; but as the plane in which they move must pass twice in the year through the sun there may be eclipses of thom at these times; but they can be pereeived only when the planet is near its opposition. Some eclipses wero seen in 1799 and 1818 when the satellites appeared to ascend through the shadow of the planet in a direction almost perpendicular to the plane of its orbit. All these satellites, with perhaps several others that revolve about this planet, will not only shed a flood of light on its surface, but exhibit a splendid and variegated appearance in its nocturnal firmament.

The Heavens as seen from Uranus.

The only one of the planets which will be distinctly visiblo from Uranus is Saturn, which will appear occasionally as a morning and an evening star, and will appear nearly of the same size as to us; but as it will always be seen near the sun it will only be visible at certain periods or intervals of fifteen years, and will appear about as near to the sun as Mercury does when seen from the earth. It is not probable that Jupiter will be at all visible to this planet on account of its proximity to the sun. If ever it be visible it will only be for a very short time at intervals of six or eight years. The most splendid and interesting phenomena in the firmament of this planet will be produced by the phases, eelipses, revolutions, and various aspects of his moons. Four of these are given in our list, but it is highly probable that several others are connected with this planet.
Let us suppose then one satellite presenting a surface in the sky eight or ten times larger than our moon; a second six times as large; a third
four ti as the of diffe differe five of zon, on toward firmam we sha heaven other p diversif
The dianete light it when vi well-kno only the light is end of be visib of light i as strike celestial enter int probably and, ther
four times as large ; a fourth tivice as large ; a fiftil about the same size as the moon ; a sixth somowhat smaller ; and, perhaps, two or three others of different apparent maguitudes; let us suppose two or three of those, of different phases, moving along the concave of the sky; at one time four or five of them displayed through the firmanent ; one rising above the horizon, one setting, one on the meridian, one toward the north, and another toward the south; let us suppose them at another time all shining in the firmament with full enlightened hemispheres, or with different phases; and we shall have a faint idea of the beauty, varicty, and sublimity of the heavens of Uranus. What is deficient in respect to the invisibility of the other planets is amply compensated by his assemblage of satellites, which diversify and illuminate its nocturnal sky.
The sun from this planet appears only about $2 \frac{1}{2}$ times the apparent dianeter of Jupiter* as seen from the earth; notwithstanding all this the light it receives is considerable, as is evident from the brightness it exhibits when viewed with a telescopo in the night time, and likewiso from the well-known phenomena, that whea the sun is eclipsed to us, so as to have only the $\frac{1}{1}$ th part of its disc left uncovered by the moon, the diminution of light is not very sensible; and it has been frequently noticed that at the end of the darkness in total eclipses, when the sun's wostern limb begins to be visible and seems no bigger than a thread of silwer wire, the increase of light is so considerable, and so quickly illurtrates all surrounding objects, as strikes the spectators with surprise.

The scenery of the heavens from the satellites of Uranus will bear a striking analogy to that observed from the moons of Jupiter ; but if there are six or a greater number of satellites comnected with this planet the firmament of each of its satellites will be more diversificd than that of any of the satellites of Jupiter. From its first satellite the globe of Uranus will appear nearly three hundred times larger than the moon appears to us, and consequently will appear a very grand and magnificent object in its sky, while all the other moons in different phases will serve both to illuminate its surface, and to diversify the scenery of its firmament. To the second satellite Uranus will appear about one hundred and eighty times as large as the moon to us; and to the other satellites it will present a smaller surface in proportion to their distance. Each of these satellites will have its own peculiar celestial phenomena; but after what has been said in the preceding descriptions, and especially with reference to the celestial phenomena from the satellites of Jupiter, it is unnecessary to enter into details with respect iv these. These satellites, however, probably move in contrary directions to those of Jupiter and the others; and, therefore, their celestial phenc wina will be exhibited differently.

* Jupiter's mean apparent diameter is 38°.

We may remark that in the preceding deseriptions the apparent magnitudes of Jupiter, Saturn, and Uranus, as seen from their satellites; and the apparent magnitudes of the satellites as seen from their primaries, and from each other, are only approximations to the truth, so as to convey a goneral idea of the scenes presented in their nocturnal firmaments ; perfect accuracy not being absolutely required in such descriptions. The variety of celestial phenomena in the firmaments of these bodies is much greater than we have described. Were we to enter into minute details in relation to such phenomena it would require a volume of considerable size to contain their varicties; for in the system of Saturn alone thero is inore diversity of phenomena than in all the other known parts of the planetary system. And were we to consider all the varieties of scenery which characterize the surfaces of all these distant worlds, since the colors exhibitod on all of them are the same as, or similar to, those exhibited on our globe, we should have a voluminous work.
The satellites of Jupiter, Saturn, and Uranus, of which we have endeavored to give a brief deseription in the preceding pages, form, as it were, so many planetary systems in connection with tho grand system of the sum. The same laws of motion and gravitation which apply to the primary planets are also applicable to the secondary planets or moons. The squares of their periodicel temes are in proportion to the cubes of their mean distances from their prinaries. They aro subject to the attraction of their primaries as all the primary planets are attracted by the sun; and as the sun in all probability with his whole system moves round some reciprocal centro of gravity, so the satellites move round their respective primaries, partly by the attractive influence of these planets, and partly by that of the great central liminary. Each of these secondary systems is far moro grand and extensive than tho whole planetary system was conceived to be in ancient times. Even the system of Saturn, including its rings and satellites, contains a mass or matter much more than a thousand times larger than the oarth and moon. The system of Jupiter comprises a mass of matter nearly fifteen hundred times as great as these two bodies; and even that of Uranus is more than eighty times the dimensions of our terraqueous globe.

Tine Planet Neptune.

The history of the discovery of this planet is one of the most remarkable pages in the whole history of astronomy. Uranus, as wo have seen, was discovered by accident, and some time elapsed before it was admitted to be a planet. With Neptune the case was very different. About half a century ago M. Bouvard attempted to calc alate accurately the movements
of Uranus, but foumd unexpected irregularities which he could not then account for. If the planet alone wore revolving round the sun its place could be easily assigned, but each of the other planets exerts an influence upon it, and these intluences are continually varying. All these, however, were allowed for, and yet thero remained some disturbing cause which drew it out of its assigned place. Accordingly, in the begiming of 1843, Mr. Adams began to investigate the matter for the purpose of ascertaining the place which the exterior planet (should there be one) ought to occupy, and its elements. After nearly two years of diligent encuiry he aunounced to the professor of Astronomy at Greenwich Observatory the results of his juvestigations. Nothing further was done at the tiine ; but soon after, Le Verrier, a French astronomer, independontl applied himself to the samo enquiry, and obtained results closely rescmbling those arrived at by Mr. Adrums. Upon this a search in the locality indicated was resolved upon, but some time was occupied in commencing it, as the star maps of that part of the zowine were only imperfect.

Le Verrier then publishod a revised computation, and on September 18th, 1846, M. Galle, of Berlin, directed his telescope to the spot thus indicated by Adams and Le Verrier. A small star, not mentioned on the maps, was at once seen, and on careful watching proved to be the suspeeted planet, which had thes by purely theoretical computations had its place marked oat among the stars. The problem thus solved almost simultaneously by two different astronomers in England and France was one of the greatest ever solved by ho human mind, and reflects honor on both astronomers.

Of the planet itself not much can be said. It revolves around the sun at the mean distance of $2,746,271,000$ miles, which is considerably less than that which would be assigned to it by Bode's law. It completes its journey round the sun in 60,126.7 days, or nearly 1643 ycars. The eccentricity of its orbit is but small. Its diameter is ascertained to be about 36,620 miles ; its circumference is, therefore, 115,045 miles, and its superficial contents $4,212,947,900$ square miles, or about $21 \frac{1}{2}$ times the area of our terraqueous globe.
One satellite has been discovered by Lassel revolving round Neptume in a period of 5 days, 21 hours, 8 minutes, at a distance from the primary of 200,000 miles. It is evident this satellite must be a body of very considerable size, otherwiso it could not be visible at such an immense distance. It is probably much larger than any of the satellites of Jupiter and Saturu, and may far excoed our globe in magnitude. It is not altogether improbable that some of these far distant planets may be surrounded with a ring similar or analogots to that of Saturn.
The discovery of this remote planet constitutes a new era in the progress of celestial science, and evinces the certainty and uniformity of these
physical laws by which the bodies of the planetary system are directed. The law enunciated by Newton, that "every particle of matter in the universe attracts every other particle with a force proportional to the quantity of matter in each, and decreasing inversely as the squares of their distances." has obtained here a new confirmation. This law is thus shown to be extensive in its influence, reaching far beyond what was once considered the boundaries of the solar system, and exerting its energies on every particle of matter throughout the boundless universe.
The first step in the exhibition of that law was the discovery made by Newton that the earth attracts the moon. The principle was also found to explain the revolutions of the planets round the sua; besides it was found that the revolutions of the secondary planets, or moons, round their nrimaries, were owing to the same cause. The application of this law also explained certain anomalies in the motions of the moon and planets which were otherwise difficult to account for. A great inequality in the movements of Jupiter and Saturn, which was long unaccounted for, was at length traceri to their reciprocal action on one another by the operation of this law. The effects of the attraction of planets that could be observed, and whose names were known, were thereby calculated. In respect to Neptune the mean distance and position of the planet, its mass, and the form of its orbit, were all unknown. But by its observed effects they were all so well determined as to guide the obsarver almost to the very point of the heavens where it was first descried. This fact stands almost alone in the records of astronomy ; there has been no discovery of the same kind before it in the annals of astronomy, and it may lead to other discoveries of a similar kind. Astronomers have now no reason to conclude that they have yet explored the utmost boundaries of the solar system, a body of so great magnitude having been ascertained to exist, and prosecute its journey round the sun at over three times the distance of Saturn. The observations of future years may bring to view many other orbs which have hitherto existed concealed from view in these distant regions, and in other regions, also, of our system. Thus, the Creator crowns with success the exertions of haman genius in the investigation of his dominions by opening up to our view a more expansive prospect of his boundless and eternal empire.

If we except the satellites of Uranus all the bodies of the solar system, so far as discovered, revolve in the same direction round the sun, and all move within a narrow belt. The planets, however, cannot strictly be said to revolve round the sun, but the sun and the planets revolve about the centre of gravity of the system, which, owing to the preponderating bulk of the sun, lies not far from his own centre. Some idea of the immense magnitude of the sun may be gathered from the fact that if he were a hollow shell, and the earth placed at the centre, there
would be sufficient room for the moon to revolve as she now does at 240,000 miles from the carth, and still there would be some 200,000 miles beyond the moon before the shell of the sun could be reached.

The Attruction of Gravitution expluined.

As the sun is called the centre of light and heat to all the bodies revolving around it, so it may also be called the centre of attraction; and the influences of light and heat are invariably distributed to all the planets in the same ratio as the power of attraction, which keeps them revolving in their orbits, that is, in the inverse ratio of the squares of their distances; or, to express it more clearly, the power of the attraction, the light, and heat of the sun on one planet is to that on another planet as the square of the distance of the latter from the sun is to the square of the distance of the former. But as some of our readers may not understand this from the bare statement of the fact we will endeavor to simplify the law of attraction by a familiar illustration.

Suppose two persons, A and B, sitting at the same distance from the fire, both in front of it, at least the one as much as the other ; it is plain they will both feel the same degree of heat; for whatever reason may be given to show that A receives more heat than B , the same reason might be assigned to show that B received more heat than A; therefore they must both reccive the same amount of heat each. Now suppose that B removes to double the distance from the fire that he was at when alongside of A, and that A remains in the same place; it might then be supposed that B would receive only half as much heat as he did before ; or that A would now enjoy double the heat which \mathbf{B} would receive in his new position. Such, however, is not the case, for the degree of heat does not diminish at the same rate as the distance increases, as one might expect at first thought ; but it diminishes at a much greater rate, and the question is, how much greater? Now well conducted and careful experiments in Na tural Philosophy have proved that the heat received at the distance of 2,3 , $t, 5,6,7,8,9$, etc., feet is not $\frac{1}{2}, \frac{1}{3}, \frac{1}{2} \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{5}, \frac{1}{3}$, etc., of the heat received
 received at one foot. Thus \mathbf{B} will receive at double the distance of Λ only one-fourth of the heat which A receives; at triple the distance only one-ninth; at four times the distance one-sixteenth, etc. The law of expansive progression is then as follows: Let the heat received at the distance of one foot be denoted by 1 ; then the heat received at the distance of 2 feet will be denoted by $\frac{1}{4}$, or 1 divided by 2 times 2 ; the heat received at the distance of 3 feet will be $\frac{1}{8}$, or 1 diviled by 3 times 3 ; the heat received at the distance of 4 feet will be $\mathrm{T}_{-1}^{\prime-}$ or 1 divided by 4 times 4 , and so on. Now dividing 1 by any number gives a result which
maticmatically is called the reciprocal or inverse of that number; and multiplying any number by itself gives a result which is likewise called the square of that number. But the numbers $1,4,9,16,25,36,49,64,81$, etc., are the squares of the numbers $1,2,3, \frac{1}{2}, 5,6,7,8,9$, ctc., because they are obtained by multiplying the latter numbers each by itself; and
 or inverses of the squares; and ratio means the rate at which anything increases or decreases; hence the force of the heat or amount of heat received from a common fire is in the ratio of the inverses of the squares of the distances ; or, more shortly, in the inverse ratio of the squares of the distances. This may be explained in still another way. Suppose A to be placed at 2 feet distance from the fire, and B at 3 feet distance; then \mathbf{B} will receive less heat than \mathbf{A}; not in the ratio of 2 to 3 , the numbers which represent their distances, but in the ratio of 2 times 2 to 3 times 3 , that is, of 4 to 9 ; in other werds, as 4 is received $2 \ddagger$ times in 9 , so A will receive $2 \ddagger$ times more heat than B; and this is what is really meant by the phrase the inverse ratio of the squares of the distances.

Thus, having explained the law of the influence of heat on two bodies, or on any number of bodies at different distances from the source of heat in the case of a common fire, we again observe that the law is equally true of the influence of light and of the influence of attraction, upon bodies at different distances from the source of light and of attraction. Thus, we feel and experience that the sun is the great source of light and of heat to this world in which we live ; and astronomy teaches us thatit is the great centre of attraction ; that power which operates upon the earth and the other planets, and causes them to revolve in elliptical orbits around that luminary as the centre of their motions. This power of the sun arises from his great preponderance in weight; for, as stated above, every particle of matter in the universe attracts every other particle with a force proportioned to the amount of matter they contain. This law, which by long and accurate observation is known to be true, at once conveys to the mind the idea of permanent equilibrium in the universe.

KEPLER AND HIS LAWS.

From the eariiest ages of astronomy up to the time of Kepler the planets were reckoned to be only six in number; and this number being mathematically perfect, that is, equal to the sum of all its factors $1,2,3$, it was imagined that no more planets existed, or might be expected to be found. Kepler, however, earnestly enquired why they should be only six in number; and from his long and careful observations on the motions of the planets deduced certain laws, which are considered as lying at the foundations of astronomical science, which have prepared the way for
many new discoveries, and did away with many old and incorrect theories and ideas. This famous astronomer was a pupil of Tycho Brahe, who lived in the lattor part of the 16th century. He acquired from his preceptor the habit of accurate observation, and was far more successful than he in the theories which he formed. He was naturally possessed of a quick and lively imagination. He commenced with careful observations, and then formed his theories in accordance with facts; and, proceeding thus, he soon made many and important discoveries. The task to which he devoted his time and energies was to discover the nature of the paths described by the planets. Starting with the hypothesis of the sun being in the centre of the system he began to watch attentively their places, and to simplify matters he confined himself at first to observing the motions of the planet Mars. He calculated the place it should occupy according to the theory of its revolving in a circular orbit, and soon found that the place it realyy occupied in the sky differed considerably from that assigned to it. This theory was thus at once shown to be incorrect, and he had, therefore, to form a new one by the combination of several circular movements; and again tie carefully calculated its position till, just as he seemed to be on the verge of success, the planet once more wandered from the path which he had assigned to it; and once more he had to commence his observations anew from the beginning. In this way he continued to try one hypothesis after another, submitting each to the test of most careful observation, till at length no ferver than nineteen different theories had been proposed, and the movements of the planets compared with those which were calculated by those theories; and still the true solution of the probem remained undiscovered. His perseverance, however, never failed, and he toiled on, though eight long years had been occupied in the task. One important negative result he had, however, arrived at, and this was that whatever was the nature of the curve the planets described, it was not a circle or a combination of circles. This was one great step toward the solution of the problem. From the earliest ages it had been assumed that, as the circle seemed the perfection of form, all the heavenly bodies must move in circles; but Kepler now untrammelled himself of this theory, and then applied limself afresh to the task. In looking at the greatness of his work we must remember that the difficulty is much increased by the fact that our station of observation is itself in rapid motion. Could we view the planets from the sun we should easily see their courses, but as we cannot do this allowance has to be made in every calculation for the motion of our standpoint ; and this motion was not then clearly understood.
\because Having discarded the theory of motion in circles Kepler now procceded to try other forms, testing them as before ; and the first that occurred to him was the ellipse. He accordingly went through the same series of calculations again, and this time the motion of the planet was found to
orrespo:d with that assigned to it by the theory. The great problem of the heavens was now solvei, and the joy with which Kepler enunciated the first of the laws vhich bear his name ean scarcely be imagined. This law may be stated as follows : 1. "That the planeis revolvo in elliptical orbits, situated in planes pawsing through the centre of the sun; the sun itself being in one of the foci of the ellipse." As to the foci: In every circle there is a point, called the centre, such that all straight lines drawn from it to the circuinference are equal. No such point is to be found in an ellipse ; but in the longest diameter, or the major axis as it is called, two points can be found so situated, that if straight lines he drawn from one to any point in the circumference, and thence to the other, the sum of these lines will always be eyual. These points are called the foci. Thus, in the figure, A B is the longest diameter, major axis, C D the shortest diameter, minor axis, and F^{\prime} and F are the focal points.
A second law enunciated by Kepler is :

Flg. 121. 2. "That the radius vector drawn from the centre of the planet to the centre of the sun passes over equal areas in equal times in every part of the orbit;" that is, whether the planet be in its aphelion or farthest from the sun, in its perihelion or nearest the sun, or at its mean distance from the sun. Thus, when in the month of December the earth is noarest the sun it is moving much faster than it moves in summer, when it is farthest from the sun; for the radius vector describes equal areas in equal times; and hence we find that the farther the planets are removed from the sun the slower they move, although their radii vectores may describe equal areas with those of the planets that are situated nearer the sun, and moving faster. Another law Kepler enunciated is as follows; 3rd. "That the squares of the periodic times of the planets, that is, of the times of a complete revolution in their orbits, are proportional to the cubes of their mean distances from the sun"; or, in other words, that the square of the periodic time of one planet is to the square of the periodic time of another planet, as the cube of the mean distanc: of the former from the sun is to the cube of the mean distance of the iatter from it. Thus, if we know the distance of a planet we can culculate approximately its time of revolution round the sun; and, on the other hand, if we know its periodic time we can ascertain its distance. As an illustration, the distances and yeriods of Venus and the Earth may be taken, which may be set down in round numbers as follows ;

Period
Venus 224 days, Earth 365 "

Distance from the sun. The proportion between the $68,000,000$
$95,000,000$ periods here is $\frac{2724}{36}$; And the proportion between the distances $\frac{6}{9} \frac{9}{5}$.
lem of ed tho is law orbits, n itself circle n from ! in an d, two om one sum of c foci.

If now we take the square of the former quantity, wo shall find it to be nearly equal to the cube of the latter. It will be noticed that the numbers here given for the purpose of illustration are merely approximations. These laws, deduced and proposed by Kepler, at the close of the sixteenth and in the beginning of the seventeenth century, and afterwards mathematically demoustrated by Sir Isaac Newton, are, together with Newton's law of gravitation, accounted the fundamental and invariable laws of the science of astronomy. It will, of course, be observed in what sense they are to be understood as laws; in the common acceptation of the term law has reference to man, and to the moral world ; but neither Kepler nor Newton made these laws; they are simply their deductions, from long observation and experiment, as to how nature is and acts unversally.

SIR ISAAC NEWTON AND HIS DISCOVERIES.

The name of Newton stands before Kepler as the discoverer of the law upon which all those of Kepler depend. Kepler seems to have suspected that some such law did exist, but failed to discover it. He seems likewise to have been aware of the fact that the tides were, in some way, influenced by the moon, and that the other heavenly bodies were in some way connected so as to influence each other ; but he did not discover what this mysterious bond of union was, and, therefore, it was with him a mere conjecture. But Newton applied himself strenuously to clear up this difficulty, and accomplished his task nobly. This great man was born in 1642, the same year in which Calileo died. It is said that his attention was first drawn to the subject of gravitation by observing an apple fall from a tree one day while sitting in a summer-housc in his garden. Thero was nothing remarkable in such a circumstance, for it was an event which might be seen every day. But it set hiin thinking, and he began to eaquire why the apple should fall downwards or towards the ground instead of upwards, or to one side. To most men such a question might have appeared vain and frivolous ; to him, however, it seemed an important event towards very great results; and such in reality it proved to be. After careful enquiry he found that all bodies are attracted towards the centre of the earth, and this attraction he called gravitation. The question then arose to him, whether this action was confined to the surface of the earth, or whether distant bodies were attracted in a similar way. The intensity of this force he also believed to diminish, with the square of the distance; but the difficulty presented itself, how this was to be tested. Even if a body could have been raised several miles from the earth's surface, this distance would have been so trifling when compared witin the earth's radius (4000 milcs) that no appreciable difference would have been manifested.

No way, therofore, appeared to him practivable of putting this theory to the test, till at last the idea occurred to him, why he should not use the moon as the falling body, and ascertain the distance through which it falls in any given time, say, for instance, in one minute. This idea, at first, appears absurd, but the annexed figure will enable our readers to understand it. It is known that the moon revolves round the earth in an orbit, almost circular, as G B D. Now, suppose the moon to be at D , its tendency at that moment is to move along in the tangent line DC, and in this direction it would go on moving did not some other force deflect it out of that course ; for every body tends to continue in the state in which it is if not

Fig. 122. acted upon by forees extermal to itself; if it is at rest it tends to remain at rest ; if in motion to go on continuously moving in a straight line. This foree, which aeted upon the moon so as to draw it out of that straight line and make it describe a curve, Newton supposery to be the attraction of the earth, and determined to ealeulate whether the amount it deviated from a straight line was such as would arise from the earta's attraetion. When the moon has moved into the position B, it is easily seen that the distance it has deviated from its true path is equal to A B. He aecordingly calculated what this distance would become after the lapse of one minute, that is, how far the moon would fall toward the earth in that time. He next computed the space through whieh a body removed to the distance of the moon ought to fall in the same period under the aetion of the earth's gravitation, and compared these results together. Though this calculation seems simple enough, it really oceupied him for many years; and when at length he had completed it, he found a considerable resemblance between the amounts, but not a sufficiently elose one to satisfy him, and he, therefore, laid the work aside for a time. After some time, however, he heard that a more accurate determination of the earth's diameter had been effected, and he accordingly repeated his calculations, substituting the new figures; and when at length he had completed his bewildering task, he found the result to agree most accurately. In order to fully satisfy himself of the accuracy of his theory, he went through the same calculations again in reference to some of the planets, and obtained like results ; he then announced his general fundamental law before mentioned, that " every particle of matter in the universe attracts every other particle with a force proportioned to the quantity of matter in each, and decreasing inversely as the squares of their distances."

The motion of the planets is thus seen to be compounded of two, the one the motion which the body has in a straight line continuously, the other that which arises from the attraction of the body around which they move.

Having attained this result Newton set himself one more task; and that was, to ascertain, on mathematical principles, the curve in which the planets ought, in these conditions, to movo. This was a calculation requiring the greatest amount of mathomatical skill. Newton, however, possessed this, and set about the work fully expecting that the curve inust be an ellipse. But he found when the work was completed one which represented not only this, but any of tho "Conic Sections," that is, of the curves which may be obtained by cutting a cons. These are the eircle, which is the curve obtained whon the coac is cut parallel to the base ; the cllipse when it is cut a little inclined to this; the parabola when the line passes parallel to one side of the cone; and the hyperbola when it passes parallel to the axis. In any ons of these curves then a planet may move under the influence of these general laws; the satellites of Saturn move in the first; the planets generally in the second, while the comets pursue their courses in parabolas and hyperbolas. This grand discovery of Newton seems to have completed our knowledge of the fundamental laws of motion of the worlds around us. By this we find that all their motions depend upon the two simple laws of inertia and mutual attraction, and that all their variations can be fully explained by these. And further, deeper investigations show us that though all the stars are in ceascless motion, yet their motions run through fixed and certain cyeles, so th it the very fluctuations of the heavenly bodies are certain indications of the stability of the universe.

Great as Newton's work was he did not live to accomplish all his task. Ile discovered the mutual attraction of the heavenly bodies for one another, but left it to succeeding astronomers to calculate the effects this attraction would produce on the movements of each. That this was a work involving some difficulty will readily be seen if we consider the case of only a single planet. For illustration, let us take Venus; suppose now for a moment that only that planet and the sun existed, we could then easily mark out the exact position of the planet for every moment, if we knew its mean distance and the eccentricity of its orbit. Now add the earth to the system, and we shall find that a disturbing influence is at once introduced by its attraction. As Venus comes into that part of its orbit nearest the carth, it is attracted by the latter, and thus drawn out of its path ; its motion is likewise accelerated as it approaches the earth, and retarded as it recedes from it ; and the calculation of the amount of this disturbance is rendered more difficult by the fact that the earth is itself moving with a velocity different from that of Venus. When we have made duc allowance for this disturbance we have to consider the effects produced by each of the other planets in turn, keeping in mind that they too are all in motion. We thus get some idea of the complication of the problem. It has, however, been completely worked out by modern astronomers, the
due allowance being mado for each of these disturbing forces; and this has been done with such wonderful accuracy that when certain minute irregularities were perceived in the motions of one of the planets, (Uranus), which could not be accounted for by the influence of any of the known ones, it was conjectured that another planet must exist beyond Uranus. Two astronomers accordingly, as we have seen, set about the calculation quite independently of each other, and determined the spot in which a planet should be, if it existed at all; and on turuing a telescope to that spot the plan't Neptune was discovered, though at no point of its orbit could it - ome within $130,000,000$ miles of tho planet whose course it had been disturbing by its attraction. One fact may be particularly noticed as the 1. oult of these investigations; and that is, the absolute stability of the uns\%\% al system, it being so equally balanced that all these perturbations exactly compensate for one another, and, after a cycle of prodigious length, all return to their original places.

THE TIDES.

Tue tides, as most readers know, are the alternate risings and fallings of the waters of the seas and oceans, and of bays, friths and rivers connected with them. This alternate rising and falling of the water is distinguished as the "flow" and "ebb" of the tides. They are caused by the attraction of the sun and moon upon the waters of the earth, but especially by that of the latter. Let us illustrate this by a figure. Suppose a $p l n$ to be the earth, c its centre of gravity ; let the dotted circle represent a mass of water covering the earth; let m be the moon in its orbit, and s the sun.
 Since the force of gravity diminishes, as the squares of the distances increase, it is evident that the waters will rise at d by the direct attraction of the moon m, and will rise at b by the centre of gravity c being drawn away from it, and leaving the waters on the opposite regions of the earth from the moon to accumulate in like manner in order to maintain equilibrum. Of course when the sun is on the side b of the earth its attraction tends to elevate it still more. It is evident, the quautity of water remaining the same, that a rise cannot take place at b and d without the parts at e and f being at the same time depressed. In this situation the waters of the earth may be considered in somewhat of an oval form. Were the earth and moon without motion, and the earth covered all over with water, the attraction of the moon would raise it up in a heap in that part of the ocean to which the moon would in such a case be vertical ; but by the rotation of the earth on its axis each part of its surface to which the moon $\$$ vertical is presented
twice produ would day n moro into hours minute ranus), n ones,
Two n quite planet pot the could it al been as the of the bations length,
llings of rs conr is discausel earth, figure.
twice in a little more than a day to the attraction of the moon ; and thus are produced two floods and two ebbs. If the moon were stationary there would be two tides in one day ; but because that body is proceeding every day more than 12° in her orbit from west to east, the earth mus make more than one rotation on its axis before the same meridian corr3, again into conjunction with the moon; and hence two tides take place in at. ut $2 t$ hours and fifty minutes. In the position of the earth and moon, as given in the figure, the waters are raised at d by the direct attraction of the moon, and a tide is accordingly produced ; but when by the earth's rotation a comes, in twelve hours afterwards, into the position of l, another tide is occasioned by the recoding of the waters there from the centre. In those parts of the earth to which the moon is vertical the tides rise highest; in all other parts, the effect is less, because the force of the attraction acts in a direction more oblique. Yos wi!! readily understand that the tides are dependent upon fixed and daer laws which are known; for if you refer to an Ephemeris, on .n A mac of a certain kind, you will see that the exact time of high tei at certain places, say at London Bridge, the port of New York, Nev O_{1} ant, or Canton, or any other place that may be mentioned in this cor "ection, on the morning and afternoon of every day in the year, is set de :..
'Ihose men who are accustomed to work in the harbors, and along the coasts, although they are generally ignorant of the causes which produce the tides, yet know by experience that the time of high water differs on each day about three quarters of an hour, or a iittle more or less; and, therefore, if it be high water to day at six o'clock, they will at a guess promptly tell you that to-morrow the water will not be up till a quarter to seven.
The attraction of the sun, owing to the immense distance at which he is placed from the earth, produces but a small effect in comparison with that produced by the attraction of the moon. Sir Isaac Newton computed that the attractive force of the moon raised the waters in the ocean ten feet, and that of the sun raised it only two fect. When the moon is in her first and last quarters, the attraction of one of these bodies raises the water while that of the other depresses it, and in order to learn the height to which the water now rises, the attractive force of the sun has to be subtracted from that of the moon; these tides consequently are the lowest, and are called Neap-tides. The tides which happen at new or full moon, owing to the direct attraction of the sun and moon, are highest, and are called Spring tides. The height of the tides at these times is found by adding together the attractions of the sun and moon. It is evident that at new moon the sun and moon attract the earth on the same side, and that the attractive force of the sun has to be added to that of the moon in order to find the height to which the waters now rise ; and the waters receding
from the centre to the side of the earth opposite to the sun and moon, has to heap up there equally in order that tho equilibrium of tho earth be mainthined. And at full moon the powerfinl attraction of tho moon draws the waters towards itself on the sido next to it ; in consequence of which, and to maintain equilibrim, the water neemmatates equally on the opposite side of the eath. 'The smon nowerting lis attraction on this latter side inereases the height of the water about one-lifth; and, of comso, in equal recession of the waters from the central regions of the earth have to take place towards the side nest the moon, in order to comerbalance mod to have the height of the waters on the opposite sides of the enth the same, or, at least, so that there will be equilibrinm. Consequeni,y, at the fill moon, as well as at the new, the height to which the fides riso is found by adding together the attractive forees of the san and moon.

The tides rise higher at some times than at others, owing to the fact that the monn revolves romel the earth in an elliptical orbit, or an orbit which is slightly elliptieal, and, therefore, appoaches nearer the earth in some parts of her comse than in others. When she is nearest the attraction is strongest, and, therefiore, the tides rise highest; and when she is farthest from the earth the attraction is the least, and the tides are lowest. They rise alse to different heights in different places; in the Meditervanean and black sea the thes are seareely pereeptible. At the month of the Imbus the water rises about 30 feet. 'ithe thdes are remarkably high on the coasts of Malay, in the Straits of Sumda, in the Red Sea, along the eonsts of China, Jupan, and in the Bay of Fimely, ete. In general the tilles rise highest and with greatest foree in those phaces which are namowest. When the stur and moon are both vertical to one equator, and the moon in preriger, then the thes are highest. Epeaking strietly, howerer, these tides do not happen at the equinoxes, but a little betore and after them; for in this, as in other eases, the actions do not produce the greatest effects when they are at the strongest, but some time afterwards. 'Ihus, the hottest time of the day is not when the sum is on the meridian, bat usmally between one and four oclock in the aftermom. Another ciremmstance is to be taken into aecount : the sun being nearer the earth in winter than in summer, it is of course nearer to it in Oetober and February than in September and Mareh; and therefore, all these things being considered, sutficient eanse may be found why the highest tides happen a little before the vernal and a litte after the autuman equinoxes. The moon's attraction having more effect upon the tides than that of the sun, their height varies with the distance of the moon from the earth; and as they are highest when she is in periafe, or nearest the earth, so they ate lowest when she is in apogee, or farthest from the earth. All these effects are, however, known, and their causes accounted for ; and the times of the tides and the heights to which they rise at certain piaces are calculated long before, so that all may, know these facts.

It is plain from what has bom said on this subject that the phenomena of the tides depenc. entirely upon two commteracting prineiples,- that of the attraction of the sun and mom disturbing, the waters, displacing the centre of gravity, and destroying the equilibrium of the globe of the earth-and tho tendency of the waters themselves to maintain equilibrium about their propor centre of gravity. All these effects are produced by His agency who is everywhere prosent, and in whom wo live mal move.

ON COMEA'S'

Tur phants and their satellites were for some time comsidered to be the only proper members of our system. This vicw, however, has been fomed to be erroneons, as many bunties called comets have had their orbits ealentated, and been fomen to revolve romed the sum in rogular periots. Comets have from the oarliest ages of their discovery attracted a large whare of attention from their great size and brilliancy, as well as from the suldemess with which they appenred, and the rapidity with which they extembed these long tails which nsually distinguish them. 'lhese vast streans of light sonatimes extend to the distance of eighty and a homitred millims of miles in length. In past agos and anong most peoples they have been objects of superstitious dread, their appearance being nsually considered as portentons of war, famine, pestilence, the death of monarcha, the sulbersion of kingloms, or other great ovils. On aceomet of this appelension the periods of their appeatanco have nsmally been carofully recorled, and in calculating their orbits considerahle assistance is at times derived from these ancient records. The appearance in the year 1066 of a brilliant comet having three tails was considered by many as a sign of the invasion and conquest of William of Normandy. In some of the ancient chronicles it is referred to as furnishing a proof of his divine right to the kinglom of England. But not only were comets considered as hartingers of evil, but fears were often entertained that they should in their course come into collision with the earth and theroby canse terrible results. This feeling still exists to a limited extent, considerable alarm having been manifested by many on the appearance of the comet in 1858 , which in one part of its course passed actoss the earth's orbit. The utter groundlessuess of these fears will be seen when people learn something of the physical constitution of these bodios. In ancient times comets were generally supposed to be meteors, or exhalations, generated by inflammable vapors in tho carth's atmosphere ; but now it is ascertained beyond a doubt, that comets move in regions far beyond the limits of our atmosphere, and form a nortion of the solar system. But they differ in many respects from the planetary bodies before described. The planets revolve round the sun in orbits of small eccentricity, which for the most part approach nearly to circles.

Comets, on the other hand, move in extremely elongated ellipses, parabolas or hyperbolas, the sum being situated almost at one extremity of their orbits; so that often, at their perihelion, they approach within less than a million of mites of it, and they swiftly dash away for a cousiderable period from his !light and heat. It is cluarly only those which move in elliptical orbits which can be periodical, as the parabola does not return again upon itself. About 300 comets have already had their orbits calculated, and of these more than one half are known to be parabolas ; so that no second return of these latter can occur, unless, by the attraction of other heavenly bodies, their orbits should be considerably altered. Ouly five or six have been found to move in hyperbolic orbits. The number of known periodic, elliptic, eemots, whose orbits and periods have been ascertained, is about 20 .

Flg. 123, Comet of 1811.
Elliptic orbits have, however, been assigned to many others, but no second returns of them have yet been seen, so as to verify the calculations. In by-gone days, before the invention of the telescope, but few comets were observed. But now scarcely a year passes without four or five being observed ; and frequently the number is greater. For the most part, however, they are so small as only to be visible by the aid of a good telescope. It is only at rare intervals that those large ones which are at once discerned by the naked eye become visible to us. The periods of these, likewise, are as a rule very much longer than those of the telescopic comets, so that the orbits of only a few of them have been determined. The first indication of a comet is usually a faint luminous speck visible with a telescope. This
ed to
selelon
appears gralually but slowly to iucrease, as tho comet approaehes the sun ; and soon a bright spot, known as the nuclens, is diseerned in it. This is usually of a circular form, and situated neasor to the side that is directed towards the sum. In teleseopic comets this nucleus is not ahways discernible. As the comet approaches the sun it becomes larger and brighter; the coma, or clonly mass aromad tho mutleus also becomes loss rogular; and soon a tail begins to be extemled on the side remote from the sum. It is this which forms the most remarkable feature in the appearance of a comet. The tail is usually more or less curved, and points away from the siln ; so that when receding from that body the comot travels with his tail foremost. The amesed figmre 123 representing the comet of 1811 , gives a good idea of the general appearance of these bodics, the nucleus, coma, and tail b, :ng all distinctly maked. A period of $3,060^{\circ}$ years was assign-

F'r. 12.

II (6, 125,

ed to this comet. On their return, after completing their orbits, comets seldom present the same appearanco as beforo; hence they cannot be

Flg. 120.
identificd by their form, but by the calculation of their orbits. According

Fig. 124 is a view of a coluet es seen on October 21st, 1807, by Schroeter ; figure 125 is a view of the same comet as seen on the following evening, October 22 . Figure 126 represents the tail of the splendid camet of 1744 , which was divided into six branches. Fig. 127 represents the comet of 1661 as by Hevelius ; the atmosphere or nebulosity surrounding the nucleus of this when viewed at ditferent times varied in its extent, as likewise the tail in the lengtla and breadth. Fig. 128 represents a class of comets which have their tails somewhat bent, which some suppose to be owing to the resistance of the ethereal fluids through which they move.
to many old illustrations some comets have presented very remarkable shapes, sometimes slosely resembling swords or sabres. But allowance should be made by us in such cases for the imagination of the artist, excited by the terror occasioned by the approach of the comet. A few comets that have been observed had more than one tail. One, that appeared at the end of 1823, had, in addition to the usual tail, a second one directed toward the sun. The comet of 1774 is, however, the most remarkable, as it is stated that when it approached the sun, the tail was divided into six distinct branches, all curved in the same direction and extending 30° or 40° in length.

That called Halley's comet is one that has attracted a greater degree of attention than almost any other, as it was the first whose orbit was calculated, and its period is the lengest of all those whose orbits are fully ascertained, and verified by subsequent returns. On its appearance in 1682, just after attention had been excited by the appcarance, two years before, of a brilliant one whose motions Newton had investigated, Halley carcfully examined its movements, so as to ascertain whether those of any which had previously been noted would in any way accord with them. He soon found that in sevcral respects it seemed to resemble those of 1531

Fig. $12 \overline{7}$.

Fig. 128.
by Dr.
rkable ,wance artist, A few peared nd one e most tail was ion and

degree

 bit was ure fully cance in wo years , Halley c of any lem. He of 1531fure 125 is a e 126 repreles. Fig. 127 ty surroundlikewise the ve their tails hereal fluids
and 1607 , and imagined that all threc might bo in reality appearances of the same body, its period being somewhere about seventy-five and a-half years. This conjecture proved to be correct, and Halley's comet is now $\mathrm{r} \cdot$ koned as one of the members of our system, revolving round the sun in a period of seventy-six to seventy-eight years, its greatest and loast distances from the sun being 3,200 and 50 millions of miles respectively. The return of this and all other comets is frequently retarded or accelerated by the attraction of the planets which happen to lie near their course. The period given above is, however, the mean period of Halley's comet; and on its last return, in 1835, the allowances to be made for the influences of the planets were so carefully calculated, that the date of its perihelion passage was predieted within four days. The next return of this body is to occur in the year 1912. By searching back through the list of comets which have been seen, very many appearances of this body can be traced ; one as far back as 11 B. C.; and the comet of 1066, already referred to, was, it is believed, an appearance of the same body. It made its appearance in 1450 with a very long tail, considerably curved; and an eclipse of the moon occurred when the comet was in close proximity to it, creating intense alarm.

The comet known as Donati's, which appeared in 1858, will perhaps be remembered ky some. It was first seen on the 2nd of June, at Florence,

Donatis Comet.
by Dr. Donati, after whom it was named. Its movements for thenext two months were very slow. Towards the end of August, faint traces of
a tail began to appear, and it soon became visible to the naked eye. It accomplished its passage round the sun on the 29 th of September, its tail vastly increasing in length, being on the 10th of Oetober upwards of $50,000,000$ miles long. On the 5th of Ontober the comet passed in front of the star Areturus, and though a porti on of the tail, at its densest part, having a thickness of several thousand miles, intervened between the observers and the star, its light was not so much enfeebled as it would have been by the faintest fog on the earth's surface. While the tail of this comet was being thrown out the nucl eus was watehed, and presented the appearance of a series of coverings being thrown off, and passing into the tail. As many as seven of these en relopes were distinctly observed. The tail appeared much brighter at the edges, and a dark band passed down the middle as if it consisted of a hollow eane. The observations on this comet were very numerous, aud there is little doubt but that it revolves in an elliptic orbit, completing its journey in about 2000 years. The comet that appeared in 1861, was also a very remarkable one from the suddenness with which it came to view. It was discovered in the Southera hemisphere about the middle of May; and in the latter part of

Comet of 1861.
June it was seen in the Northern hemisplere, only a portion of the tail being above the horizon. i: England, the 29th of this month. Its brightness was very ren arkalke, leing g. eater than that of the one seen in 1858 . Its tail, when at its greatest len; th, extended over nearly 80°, and was perfectly straight. It waz, however, scmewhat fan-like in shape. The
annexe if figure represents it, and shows the appearance of the nucleus when the tail was a throwing off. Mr. Hind states that it is probable that on the 30th of June, the earth actually passed through the tail of tho comet: and it is remarked in connection with this that on that day Mr. Lowe, and one or two other observers, noticed a peculiar phosphorescent glare in the sky.
M. Biela, in 1826 , discovered a comet which has since been known by his name, and has become remarkable. Observations made at different times soon showed that it moved in an elliptical orbit, and its period was found to be about $6 \frac{1}{2}$ years. Its return, in 1832, took place within a few hours of the predicted time. On its next visit to the sun it was invisible, owing to the position of the earth with respect to it and the sun being such that the comet was lost in the sun's light. 'Towards the close of 1845, when it again returned, a strange phenomenon wasseen. The comet, which at first appeared almost circular, gradually became lengthened out, and at length divided into two parts, which continued to travel separately until lost sight of. Both parts reappeared in 1852, the distance between them having somewhat increased in the meantine. In 1859 it was again in an unfavorable position for observation, and so was not seen ; and in 1866, from some unknown cause, it conld not be found. Whether it has been altogether thrown out of its course by the attraction of some planet near which it passed, or what has become of it is a matter that astronomers are at a loss to ascertain. There are several other comets which have a strange history ; but we can only refer to one, Encke's, which performs its revolution in a period of about $3 \pm$ years. More appearances of this comet have been carefully observed than of any other, and by a comparison of these different observations Encke fond that on each return it accomplished its passage round the sun in $2 \frac{1}{2}$ or 3 hours earlier than he expected. Its period thus appears to be diminisling by this amount, in each revolution. He conjectured that this might be accounted for by supposing that all space is occupied by an extremely rare medium, but yet oue sufficiently dense to retard the comet to this extent, and thus to cause it gradually to be falling in towards the sun. Other conjectures have been made, but the matter is still a moot point among astronomers.

Of the physical constitution of these bodies comparatively little is as yet known. They are believed to be self-luminous masses of vapor revolving round the sun. Some have supposed that in a few comets a solid nucleus exists ; but the evidence on this point does not appear to be very strong, and it one does exist it evilently is very small. The general opinion, however, is against its existence at all, and the great majority of comets are known to be devoid of one. That the mass of these bodies is extremely minute is seen by the way in which they are affected by many of the heavenly bodies which they approach. Lexell's comet, for instance, when approaching the sun in 1770 , passed so near to the planet Jupiter
that it was entangled for several menths among his satellites. Its orbit was completely changed by this contact, but no effect whatever could be discerned upon the satellites ; whereas, had the comet's mass been at all appreciable, their times of revolution might have been slightly modified. Su also the comets of 1858 and 1801, though they both passed near the earth, did not alter the length of our year by a single second. The fact that the light of even faint stars is scarcely at all diminished by passing through the tail of a comet has frequently been observed. It is known that the whole mass of a comet is so small that even though one should come into full collision with the earth no injurious effeets would follow from the blow. Several harge comets have at times passed so close to the sun as almost to graze his surface. The heat, therefore, to which they were exposed must have been extremely great, but they appeared not to be at all affected by it. The number of eomets conneeted with our system has hitherto been found impossible to enumerate. Some have imagined that it must, indeed, be very great. But this fact is certain that there may be many which from their position are altogether hidden from our view. The following is a list of the principal comets recognized as belonging to the solar system :

There are many others whose periods and dates have been calculatel, but some neel contirmation. As some of these latter closely agree in period it has been conjectured that they have originally formed part of one large comet, which divided in a similar way to Biela's.

Shooting Sturs: Meteorites.

We shall on a clear night be almost certain to see falling or shooting stars. These are much more common at certain seasons of the year than at others, but seareely a night passes without some being visible. For a leng period there appears to have been little or no notice taken of them by astronomers, it being believed that they owed their origin merely to gascous exhalations from the earth, which became ignited in the atmosphere. But it was fond that at some times the number seen was immensely greater than at others, and instances are recorded in which they outnumbered the ordinary stars, so that the display was termed a star or
meteoric shower. IIumboldt speaks of one of these which he witnessed on the 13th of November, 1709, when travelling in South America, and says: "Towards morning we witnessed a most extraordinary scene of shooting meteors. Thousands of bodies and falling stars succeeded each other during four hours. From the beginning of the phenomena there was not a space in the firmament equal in extent to three diameters of the moon, which was not filled every instant with bodies of falling stars." On the 13th of November, 1831, another grand meteoric shower was witnessed, which was followed by others on the same date in 1832 and 1833. The last of these seems to lave been the most brilliant and splendid that has been recorded. It was observed with peculiar effect in some of the cities of the United States. The wholo of the sky appeared to be on fire, and in many places the utmost terror and alarm was caused by the sight. Thus writes one of the papers of that date in tho Eastern States: "From a point in the heavens about 15° south-easterly from cur zenith the meteors darted to the horizon in every point of the compass. Their paths were clescribed in curve lines similar to those of the circles of longitude on an artificial globe. They were generally short in their course, resembling much an interrupted line - - - thus. They ceased to appear when within 10° of the horizon. I did not see a single meteor pass the meteoric pole I have described, nor one pass a horizontal direction. Several of them afforded as much light as faiut lightring. One in the north-east was heard to explode with a sound like that of the rush of the distant sky-rocket. Millions of these meteors must have been dartect in this shower. The singularity of this meteoric shower connted in the countless numbers of the celestial rockets, and more espuinlly in their constiant uniform divergence from near the zenith."

Fig. 129. The annexed cut represents the appearance of hese meteors for severl hours as ser at Boston, New York, Philadelphia, and other places in the casterri parts of the United States. It is copied from one of the periodicals published in th Eastern States about the time when these phenomena appeared.
Another observer wrote: "The scene was taly awful, for never did ruin fall much thicker than the meteors fell toward the earth." Many of the meteors were observed to leave behind them luminous trains, which were visible for a greater or lese period. These have obtained the names of the November metens, from the facs that at this period especially they fell in great numbers on threo consecutive years. One remarkable fact was observod during the shower, and this was, that all the shooting stars appeared to radiate from a single point in the constellation Leo. According
to the concurrent testimony of the observers this radiant point was stationary among the stars during the whole period of observation, that is, it did not move along with the earth in its diurnal revolution eastward but accompanied the stars in their apparent progress westward-which tends to show the elevation of the meteors to have been beyond our atmosphere. Continued observations have shown that in the month of November there is always a much greater display of these bodies than at other times of the year. By exanining likewise the records of these showers it was noticed that the grand displays seem to take place about every thirty-three years, sometimes being seen for two or three consecutive years. It was accordingly suggested that not improbably a brilliant display might be seen in 1806 ; and though the numbers seen were not nearly so great as in 1833 , the display was very grand and beautiful, so that those who watehed through the night felt amply repaid for their trouble. Nearly all, as in previous instances, appeared to radiate from the star in Leo, and close to this spot many faint ones were seen, some seeming just to appear and vanish again, without having changed their posit:or. perceptibly. These were evidently travelling directly towards the earth, and hence their trains were so foreshortened as to be invisible.
These then are the main facts in connection with the phenomena of these meteors; and our task now is to find what we are to learn from them as to the nature and movements of these bodies. As we have observed, several facts seem to show that they had their origin beyond the surface of the earth; and the annual periodicity, it is supposed, may indicate that in certain parts of its orbit the earth is passing through a portion of space which is especially crowded with them. By noting the position of the spot whence they appear to radiate we learn the direction rhence they are coming, and we find that the earth scems actually to be in the midst of a stream of them. There is an opinion now prevailing that there is a ring of those bodies revolving round the sun. This ring is about the dimension of the orbit of the earth; it is inclined to the plane of the ecliptic at an angle of about 17°, cutting it just in the part in which the earth is situated on the 13th of November, so that at this period the earth is just passing through the ring. When the earth then at this time meets the stream of meteors they will, of course, seem to radiate from one point. Their uneven distribution in the stream may account for their constant fluctuation in number, and at any period they will only be visible to that part of the earth which is directed toward them. This explanation is, however, not deemed sufficient to account for the star sbower being so much more brilliant one year than another, nor for the periodical interval of 33 years. It is thought moreover that, if we suppose that in one part of the ring they are clustered together more thickly than in the rest of it-that there is, in fact, in one part, a rich assemblage of

This
these bodies, and that this group revolves in its orbit in about eleven days less than the earth does,-the whole will be explained. This assemblage, it is thought, extends over some small portion of the ring, so that at times the earth may for two or three successive years lass through or near the dense portion. It gains about 12° annually, so that for some thirty years the earth only passes through the portion where they are less crowded.

Flg. 130,
Thus, in the figure, we suppose the doted lines to represent the zone of meteorites distributed uneverly, but still for the most part kept within narrow limits. These are moving along from left to right. About the 13 th of November the earth is moving along the part A B of its orbit in the direction indicated by the small arrows. It, therefore, meets the stream of meteors, which will, of course, all appear to radiate from one point. Their constant fluctuations in number will be accounted for by their uneven distribution in the ring; and at any period they will only be visible to that part of the carth which is directed toward them.

Besides the 13 th of November there are other periods at which large numbers of these bodies are seen. The 9th-11th of August is such a period; and though the numbers then seen are usually less than in November, the display is more certain and more uniform. There appear to be several of these rings of meteorites through which the earth passes at different periods; and a considerable number of radiant centres from which they diverge have been noted. Some astronomers suppose that the August and November meteors are parts of the same ring, which therefore cuts the earth's orbit in two points. The opinion that they are two separate rings is, however, more generilly received. M. Arago, the French astronomer, is of opinion that we camnot account for such extraordinary phenomena unless we suppose that beside the planetary bodies which revolve around the sun there are myriads of smaller bodies, which only become visible at the moment when they come within our atmosphere, and assume a meteoric appearance: and that they move in groups and also singly : all of which opinions are in support of the "ring theory." Dr. Olmsted, of Yale College, who partieularly investigated the meteoric
 distamed of the hody whenes they cmanated was nbont dedzs miles: that they butemed tho carth's atmosphere with a rolecity of fome miles per socond: shat some of the larger meteors ment have hem hodion of great size. not less than a mile in diamelere amd that they bomsisfed of protions of a mehmom body which mondres aromed the sum in lise days: all of "hich is in faver of the " ring theory."
 It is helieved, however, that they are for the most part amall soldithedies rowhing momd the sum as already doseribed. If they are moving in a

 that it hoomeshminoms and ultimately is contioly consmmed. 'Tho aromes height at which they heome visihle is serenty miles and their comes is ahmu thirty mikes. The weight of most of them is believed to be rey small. possilly mot more than a fow grains. Thew aro howerer, a fow whoh are much barger and wing to their size pass moonsmed themgh tho

 sthmes. acmsideritos. of piocos of meteonic irom. It is mot known whether these badies. like those ahorady deseribed, mow in olliptead ofhits, though it as beon whomed that they tow aro somblat periodical.

The fall of many of thes has hoon mondod, and in many matances the mases themselves are sarefilly proserm. Whem the hody has heon som of fall a hond repert has frogmely heon hand, acompanying it, and some-
 while folling the metonde exphodod. Mr. Bawham rolates that whon riding in damaica one ceming, he bebeld a hall of tive apparenty ahone the higness of a bomb swifty falling down with a grat haze. Ipprathing the phace where if foll he fonm the eromed strangely boken in, and phomethe and sevomb holes appeated of the higness of a manis head.
 capromed a strollse smoll of suphur.
 about forty minutes aftor smest. It passed with a rapid comse, at the mate of mot less than loio miles a mimber amd at last stowd oror the himatic Soa. It cossed all laly in its comrse, and hy compmation it was fome that it cond not hase been less than thirtyonght miles abowe the earths surface. Wherever it approached, the imhohitans betow could distinetly hear it with a hissing moise rosembling that of a firework. It was heat to go oft with a violent explosion. Its magnitude, when orer honomia, appeared trice as long as the mon one way and about as brod the other.

It was entimated to he a mile lome, and alont a half a milo hrond. Ono of the mest striking mad extmordinary of this kind of moteors mado its

 atioll was so great as totally to whliforato the stars. A ropurt was homal

 way, and were followed hy the appulaion of cight ahores. 'I'ho halla meomed tinted first with a pure bight light, thon fillownd a yollow mixed with azure, red mal groen, which, vith a cositions of haldor tinta, and a rolloe

 ball was reckoned at from seronty to mincty miles: its dimmoter was estimated at nearly two milow, ami its volonity at 1000 miles a minuto.
 aroming, another meteor apparad nearly of the namo deseription, hat nureh maller and of shorter diration. It was lisat peredived to the north. ward, as a stream of fire, like the eommon shooting atars, but lange: mul presently burst out inh that intensely bright hoish llame, which is peenliar to such meteors. It was matly glohmar, but beft bohind it a dasky rad atroak of tire. After moving ten degrees in this atate it hecame suldenly extinct withont any axphasion. Its height was eatimated at behveon forty and tifty milos. The velehrated (iasondi relater that a meteor fell at Vason, in limace, of the sizo and ahapo of the hamm heml ; it was mainly composed of iron. In April, 1803, a billiant firc-ball was soen in Nomanily, travelling very rapidly ; shortly nfter which a lond oxpleaion was hearil, and in great immber of pieces of stone fell to tho groame, mearly 3000 being eollected. When pieked \quad if som after thoy have latlon these bodies aro manally fonnd to bo intensely loot. On chomical examination no now elements have been diseovered in them. The groater
 tima: and nickel is nearly abwas fomal nssociated with it.
some of theso meteors, especially tho largo liery ones, lombtless owo their origin to gaseons oxhalations from tho earth, which, assming difforent forms in tho atmosphere, muder a varisty of combination, descend to tho earth again with the manilestation of light; and, as for tho rest, (tho star
showers), the theory of small bodies revolving round the sun in an orbit which intersects the plano of the earth's orbit, whence they would come within the sphere of the earth's attraction, does not appear unreasonable, and may be sufficient to account for their appoaranco. The idoa of any of the heavenly bodies, by explosive action of any internal or extermal foree, sending any of their constituent parts beyond their spheres of attraction, appears as unreasonable as it is impossible.

The Aurora Borcalis, or Northern Lights.

For beauty there is none of the luminous meteors that surpass the Aurora Borealis or Northern Lights. This is not unfrequently seen in our latitudes, but less frequently and with far less splendor than it appears in the polar regions. Its form varies greatly: when perfectly developod an arch of light appears to eross the sky a little way above the horizon, and from this quivering streamers dart upward continually towards the zenith, giving rise to the name of "the merry dancers," by which this phenomenon is sometimes known. Frequently several auroral arches arc seen at once, and the effeet is then very grand and sublime. At other times the

Fig. 131.-the aurora borealis or northern hohts.
streamers appear to shoot up from behind distant hills. It has also been known to assume the form of a huge curtain suspended in massive folds, which reflect various colors. The Aurora in our latitudes appears almost always far less distinct and perfect than any of these; at times its ruddy glow has been mistaken for that of a distant fire.
orbit come nable, of any termal ares of
uss the 1 in our ears in pod an on, and zenith, nenome. scen at mes the

Various hypotheses have been started to account for these appearances. The fluctuations of the magnetie needle, which occur during their continuance, indicate strongly an electrical origin ; and this is further confirmed by the fact that telographic messages have been interrupted and the alarms rung by the auroral currents. Earth currents are also mucls stronger during the continuance of the Aurora, and hence this phenomenon is nor generally attributed to the discharge of electricity in the upper regions of the air.

The Mariner's _ights.

The Mariner's Lights, sometimes called St.Elmo's Fire, is another of the electrical meteors. A bright flame-like light is seen at the top of the masts and sometimes at the ends of the spars. This flame often points towards an approaching cloud, increasing in length as the cloud pisses over it ; at times it has been seen as much as two or three feet long. The appearance is easiy accounted for, and a good illustration of the samo effect is seen by holding a sharp point near the conductor of an electrical machine. The electricity from the cloud, instead of passing off in the form of a flash of lightning, is in this way silently carried off by induction. In mountainous regions travellers have occasionally noticed a some what sinilar appearance at the end of their sticks or umbrellas, and a faint hissing sound usually accompanies it. The air in this case is highly electrical; and the pointed ends of the sticks have served to attract the fluil and discharge it. Both the Aurora and the Mariner's Lights are merely manifestations, as light, of a substance which we may call electricity.

THE FIXED STARS.

Let us now turn our attention for a little from the solar system to the fixed stars which appear in such vast profusion in the sky; and before we begin to contemplate these remote luminaries it may be well for the reader to form some idea of the distances at which they are from us, and as to the magnitudes of some of them. Great as the sun and his surrounding planets are they dwindle into a point when we wing our way to the regions of the stars. Before we could arrive at the nearest star that is visible from our globe we behooved to pass over a space of at least twenty billions of miles in extent, a space which a carnon ball flying with its utmost velocity would not pass over in less than four millions of years. Here every eye on a clear winter's night may behold a thousand shining orbs, most of them emitting their splendor from spaces immeasurably distant ; and bodies visible to us at such distances must necessarily be of immense magnitudes. There is reason to believe that the least twinkling

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

star which our eyes can discern is not less than the sun in magnitude and splendor; and that many of them are a hundred or even a thousand times superior in magnitu'e to that stupendous lumirary. Sir W. Herschell, when speaking in reference to Dr. Wollaston's photometrical experiments on the light of Sirius, (the brightest star), says, "Dr.Wollaston assuming, as we think he was perfectly justified in doing, a much lower limit of possible parallax in Sirius than we have adopted in the text, has concluded the intrinsic light of Sirius to be nearly that of fourteen suns." Sir W. Herschell informs us that with a magnifying power of 6450 , and by means of his new micrometer, he found the apparent diameter of Veya or a Lyrae to be $0^{\prime}, 355$; this will give the real diameter of the star about 38 times that of the sun, or $33,440,000$ miles, supposing its parallax to be one second. Were this its true estimate its solid contents would be $19,579,357$,$857,382,400,000,00 \mathrm{n}$, or above nineteen thousand, five hundred and seventy-nine trillions of cubic miles; which is fifty-four thousand, eight hundred and seventy-two times larger than the solid contents of the sun.

It is very difficult from mere inspection to form any estimate of the number of these bodies; it appears, however, from catalogues which have been compiled, that the total number of stars visilbe to the naked eye is about 6000 . One half of the sky only can be seen at one time, and the number visible on a clear night may therefore be set down approximately at 3000 . These stars vary greatly in brilliancy and apparent size, and have accordingly been divided into six classes, the brightest being classed as of the first magnitude, while the faintest visible to the naked eye are set down as of the sixth; the rest being divided into the intermediate four magnitudes. As a general ruleit is computed that stars of the first magnitude are about 100 times as brilliant as those of the sixth. The light of Sirius is estimated, however, to be equal to that of 324 of the latter. Though the number of stars seen by the naked eye is thus limited it must not be supposed that these are all that exist. If we direct a telescope to any part of the sky we shall at once perceive that the field 0_{-}^{c} view is covered with points of light, and the number of these telescopic stars is found to be infinitely greater than that of those visible to the naked eye. These telescopic stars are classed into magnitudes down to the fifteenth and sixteenth, or even lower, according to the power of the telescope employed for bringing them into view. The stars are especially numerous in the regions of the Milky Way, that starry belt that encircles the sky, with which every common observer is familiar. The ancients seem to have believed that the brightness of this zone was owing to a confluence of stars, for Ovid writes : "Its groundwork is of stars." Soon after the invention of the telescope, when astronomers were enabled to penetrate the stellar regions, they wers astonished at the number of stars that appeared in this shining zone of the heavens; and their numbers appeared to increase in
de and d times rschell, riments suming. limit of ncluded Sir W. y means a Lyra 38 times bo une 79,3:37,red and nd, eight te sun. te of the es which raked eye , and the oximately size, and g classed ye are sct diate four rst magnie light of he latter. ed it must escope to on view is ic stars is aked eye. eenth and employed ous in the rith which e believed stars, for vention of the stellar red in this ncrease in
proportion to the magnifying powers of their telescopes. It was not, however, till Sir W. IIerschell applied his powerful instruments to this region of the heavens that its profunditics were explored, and all its minute nebulous parts shown to consist of countless myriads of stars, of every apparent magnitude stretching ouward to infinity, until they appeared to be lost to the eye, even when it was assisted by the largest telescopes. In several fields of view of this zone, occupying a space not much more than twice the breadth of the moon, one perceives through a good telescope more of those twinkling luminaries than all the stars visible to the naked eye throughout the whole canopy of heaven. In certain places in it every slight motion of the telescope presents new groups and new configurations; and the diversified and wondrous scene is continued over many degreos in succession. The variety and the beautiful configurations of the stars strikes the observer with amazement, and makes him feel as if he were lost in penetrating the immensity of the universe. Sir W. Herschell explored this region of the heavens with a Newtonian reflecting telescope of twenty feet focal length, and an aperture of eighteen inches. He found that this telescope completely resolved all the whitish appearances into stars, which the telescopes he had formerly used had not light enough to do. The portiun he first observed was that about the hand and club of Orion; and he found in this space an astonishing number of stars, the number of which he endeavored to estimate by counting many fields; that is, the apparent spaces in the heavens he could see at once through his telescope, without moving it, and computing from a mean of these the number that may be contained in a given portion of the Milky Way. In the most vacant space to be met with in that region he found 63 stars; other six fields contained $100,60,70,90,70$, and 74 stars; a mean of all which gave 79 for the number of stars in each field; and then he found that, by all 1 wing 15^{\prime} for the diameter of his field of view, a belt of 15° long and 2° broad, which he had often seen pass through his telescope in an hour's time, could not contain less than 50,000 stars, large enough to be distinctly enumerated ; beside which he suspected twice as many more which he could see only now and then by faint glimpses for want of sufficient light. The reader may remember that these atars extended onwards to infinity, that is, that there is no end to them in that one or in any direction; and the small place occupied by those now mentioned is only the ${ }_{T 3} \boldsymbol{3}^{4}$ th part of.the visible cancpy of the heavens ; so that if every part of the firmament were equally rich in stars, there would be within the reach of such a telescope as Herschell's no less than sirty-eight millions, seven hundred and fifty thousand stars. And it may be further considered that it was only in the comparatively "vacant spaces" of this zone that the number of stars stated above were pereeived.

In exploring some other parts of this zone, Sir W. Herschell informs us that he descried a much greater number of theso luminaries in a similar extent of space. "In the most crowded parts of the Milky Way," he says, "I have had fields of view that contained no fewer than 588 stars, and these were continued for many minutes, so that in one quarter of an hour's time there passed no less than 116,000 stars through the field of view of my telescope." In order to understand this description, we are to understand the telescope to have been fixed in one position at the time of observation; and that, by the diurnal motion of the earth, or the apparent motion of the heavens, the first field of stars gradually passed out of view, and other fields appeared in succession; until, in the space of fifteen minutes of time, one hundred and sixteen thousand stars passed over the field of vision. Now the field of view taken in by tho teleseope was only 15^{\prime} of a degree less than the one-half of the apparent size of the meon. In this narrow field were seen about as many stars as observers generally behold throughout the whole firmament by the naked eye in a clear winter's night. At another time, this indefatigable astronomer perceived no less than 258,000 stars pass before his view in the course of forty-one minutes. In the space between β (Beta) and γ (Gamma) of the Swan the stars are found clustering with a kind of division between them, so that they may be considered as clustering toward two different regions. In this space, taking an average breadth of about 5°, he found from observation that it contains more than 331,000 stars, which gives above one hundred and sixty-five thousand for each clustering collection. If we suppose every part of this starry belt equally full of stars as this space now referred to, it will contain no less than $20,191,000$ stars ; for, supposing the Milky Way to be, on an average, 12° broad, the whole of it will contain an area of $4320^{\circ}=12^{\circ} \times$ 360°, for this belt extends clear round the heavens. Now if the space examined by Herschell between Beta and Gamma of the Swan be about 14° in length, and 5° in breadth, it will contain an area of 70°, which is some. what less than the - $\frac{1}{6}$ st part of the space occupied by the Milky Way. The whole visible heavens considered as a concave spherical plane contains an area of 41,253 degrees. Now could we suppose every portion of the firmament to be equally well replenished with stars as the Milky Way, there would be more than $195,000,000$, or more than one hundred and ninety-five millions of stars in the heavens discernible by such a teleseopo as that of Herschell; but as there are comparatively few other regions of the heavens which are open to our vievs so densely crowded with stars as tho Milky Zone, we must make a enrtain reduction from this estimate of discernible stars, though it is most probable there are more than one hundred millions of stars within the reach of our best telescope, were all the spaces of our firmament moderately well explored ; and future generations with more perfect instruments will probably add indefinitely to the number.
orms us similar e says, rrs, and a hour's view of ounderof obserit motion iew, and minutes o field of 15 ' of a In this ly behold r's night. less than rutes. In are found y be conce, taking it contains sixty-five art of this t will cony to be, on $0^{\circ}=12^{\circ} \times$ the space about 14° ch is some. filky Way. plane conportion of Iilky Way, andred and a telescope gions of the stars as the e of disecrhe hundred the spaces ations with ne number.

Had we taken the most srowded field of stars which Herschell perceived through his tolescope, namely, 588, as our standard for estimating their number, tho number of stars in the Milky Way would have been forty millions, and in the whole firmament three hundred and eighty-eight millions. In short, to use the words of Sir John Herschell: "This remarkable belt, when examined through powerful telescopes, is found (wonderful to relate!) to consist entirely of stars scattered by millions like glittering dust on the black ground of the general heavens." Now in regard to the distances of some of these discernible stars, we may easily conceive that they are immense, and far beyond our distinct comprehension. Sir W. Herschell, in endeavoring to determine a " sounding line," as he terms it, to fathom the depth of the stratum of stars in the Milky Way, undertakes to prove by pretty conclusive reasoning that his twenty-feet telescope penetrated to distances not less than 497 times the distance of Sirius; so that a stratum of stars amounting to 497 in thickness, each of them as far distant from each other in a direct line beyond Sirius as the star Sirius is distant from our sun, was within the reach of his vision, when looking through that telescope. Now the least distance at which we can conccive Sirius to be distant from the earth or sun is $20,000,000,000,000$ or twenty billions of miles, and consequently the most distant stars visiblo in his telescope must be four hundred and ninety-seven times this distance, that is, $9,940,000,000_{2}$ 000,000 , or nearly ten thousand billiors of miles. Such immense distances are already infinitely beyond the power of our conception ; a cannon ball moving at the rate of 500 miles an hour would occupy more than 2,267 ,$8: 5,068$, or two thousand two hundred and sixty-seven millions, eight hundred and fifty-five thousand years in traversing that amazing interval.
On our first excursions into the celestial regions we are alnost terrified at the idea of the distance of Saturn, which a cannon'ball projected from the earth and flying with its utmost velocity would not reach in 180 years. We are astonished at the size of such a globe as Jupiter, which could contain within its circumference over thirteen huadred globes of the size of the earth. We are justly amazed at the stupendous magnitude of the sun, which is more than a thousand times the size of Jupiter, and which illuminates with his splendor a sphere of more than five thousand millions of miles in circumference. But what are all such distances and dimensions, vast and amazing as they are, when compared with the astounding grandeur of the scene before us? They sink into comparative insignificance, and are almost lost sight of amidst the myriads of splendid suns which occupy the profundities of the Milky Way. What is one sun and one planetary system, in the presence of ten millions of suns, perhaps immensely more resplendent, and vastly more magnificent; and of hundreds of times this number of spacious worlds, which beyond all doubt revolve around them ! Yet this scene, stupendous as it is, is not the universe. It is indeed only a
 en to detest distances. her becanse the earth: nit inmense , Hersechell nstead of it his motion, ss the stars they were inary stars, ervers have 600 binary olution are will have to sidering the an only be
yrac, which o it appears power will s employed,
each of these components is in turn found to consist of two smiller ones. The lower pair, it is said, revolves in alout 2000 years, and the upper in about half that time, while the two couples take a very long period to revolve around their common centre of gravity. Seo the amexed figure. It is but lutely thut the attention of astronomers lus beon direeted to such ohservations; and on account of the very minute distances of the revolving stars from each other, and the slight variations in the angle of position which
 can be traced for a series of yenrs, an ago or two is requisite in order to determine with precision the degree of progress of their revolutionury movements. In the course of time, and by mems of inprovenent in optical instruments, we may believe many important discoveries will be made in reference to the boolios in question, and that what is at present doubtful and obseure will be rendered definite and precise. But na the most powerful instrements which can he invented can carry our view ouly a very small distance comparatively beyond the outward boundaries of those nighty visible heavens which surromul us, millions of those eystems may still exist in those remote regions which will forever remain inexplorable by the inhalitants of the earth.

Cohored Stars.

One remarkable feature in connection with those binary stars is the fact that in some instances the emmpnent atars are of different colors. In p Leporis, for example, one is white, while the other is deep red. In β Cygni again the colors are yellow and blue. And in r Ambromedio thoy are orange and green. "Many of the double stars," Sir Joln Iterschell remarks, "exhibit the beautiful and curigus phenomena of contrasted or complementary colors. In such instances the larger one is nstally of a ruddy or orange hue, white the smaller one appears bhe or green ; probably in virtue of that general law of optics which proviles that when the retina is under the influence of excitement by any bright colored light, feebler lights, which seen alone would produce no sensation but of whiteness shall for the time appear colored with the tint complementary to that of the brighter. Thus a yellow color predominating in the light of the brighter star, that of the less bright one in the same field of view will appear blue ; while if the tint of the brighter star verge to crimson, that of the other will exhibit a teadency to green, or even appear as a vivid green under favorable circumstances. The former contrast is beautifully exhibitod by Iota Cancri, the latter by Gamma Andromeda, both fine double stars. If, however, the colored star be much the less bright of the two it will not materially affect the other. Thus, for instance, Eta Cassiopeix exhibits
the heautiful combination of a large whito star and a small one of a rich ruddy purple. It is by no means, however, intended to say that in all such cases one of the colors is a mere effeet of contrast ; and it may be easier suggested in words than conceived in imagination what variety of illumination two suns, a red and a green, or a yellow and a blue one. must aftord a planet circulating ahout cither, and what charming contrasts and grateful vicissitudes, n red and green day, for instance, alternating with a white one and with darkness, might arise from the presene or nbsence of one or other or both ahove the horizon. Lusulated stars of a red color almost as deep as that of bood, oceur in many parts of the heavens, but no green or hlue star of any deeided hue has we believe ever been noticed unassociated with a companion brighter than itself." This variety of colors in the double stare arises doubtless for the most part, if not altogether, from complementary colors : and as to the stars that appear insulated, and exhihit a red color, we know there are different degrees of whiteness in light; the light of a candle, for example, or that which arises from the incandescence of some of the elementary substanses is not as clear a white as the solar light; and, further, when we come to uote the color of different stars, and compare it with former records, we find that in a few instances a change has tnken place. Thus, Sirius, which now shines with a pure hright light, is spoken of hy old ubservers as a roddy atar. There are also many others which exhibit changes in hrilliancy; and these changes sem in most cases to he periodical. The star on which this discovery was made is Omiron Ceti, called also Mira, or the wonderful star, a name that is very appropriately given to it. At the time of its greatest brightness it is usually of the first or second magnitude, it then decreases for two or three months till it becomes invisible, and remains so for about five months, its minimum brightness being about equal to that of a star of the twelth magnitude. It then again appears, nand the whole period oceupied in these changes is about 331 days. Algol or Befa Persei is another variable star, remarkahle for its short period and rapid changes. It ordinarily appears a star of the secend magnitude, but in a period of three and a-half hours it diminishes in brightness to the fourth magnitude, and after a few minutes begins again to increase, and attains its former brilliancy in another period of three and a half hours. At this it remains two days thirteen hours, and then the same series of changes recurs.

We have mentioned that the telescopic stars are classed into magnitudes, according to their apparent brightness through the telescope. The quetion naturally suggests itself whether these different degrees of brightmess result from differences in the size of the stars, or in their distances. To this it camot be answered with certainty, as there are only a few stars whose distances have been approximately measured. There appears,
a rictr : in all may be riety of e. must sts and g with n sence of ced color rens, but n nuticed of enlors together, nsulated. whiteness rises from ne clear note the nd that in now shines nddy star. ; and these ch this disderful star, ts greatest decreases lins so tor wal to that $\cdot s$, and the Algol or perioil and de, but in a
the fourth d attains its s. At this of changes
magnitudes,
The que-
f brightuess
tances. To
n few stars
re appears,
however, to be little dount that the difference is eliefly in their distances. The distanees of the stars nre aseertained in the same manner as those of the smand planets, that is, by parallas. Instead, however, of taking two stations at different parts of the earth's surface, and having the distance of the earth's"diameter or semi diameter as a base line between them, the diameter of the earth's urhit is taken ns a hase hase which is $183,000,000$ miles, the ohservations heing taken at intervals of six months, or when tho earth is in the two opposito points of her orbit. But even with this immense line the parallax is so small, that it ean only he detected by the nowst eareful olservations, and accurate instruments. lu no case has it heon found to begreater than $1^{\prime \prime}$, and if this be its value the distance of the star must he 2006,000 times as great as that of the sum. 'The pmrallax of about a dozen of stars is now believed to be ascertnined, and is foumd to vary between $0.919^{\prime \prime}$ and $0.046^{\prime \prime}$. The star Alpha Centauri is the nearest to the earth, and its distance is estimated at 20,$490 ; 000,000,000$, or twenty lillions four hundred and ninety-six thousand millions of miles: while the average distance of stars of the first magnitude is probably three or four times as great as this. These figures, however, fail to convey to the mind any definite idoa as to the real distances.

In studying the stars we need some mode of distinguishing them, and in this there is some little difficulty. The heavens were divided by the ancients into twelve constellations or assemblages of stars, which they designated by different names, as before mentioned; and many new ones have been added to this number in modern times, so as to mako in all 109. Several of theso aro, however, but small and unimportant, ant hence are rejected by some nstronomers. Special names, too, have been assignod to many of the most brilliant stars, but theso have a tendency to confuse. In 160.4 a Gerinan astronomer, named Bayer, pullished a celestial atlas, in which he designated the stars in each constellation by the letters of tho Greek alphabet, the brightest being called a, the next β, and so on. 'Hhis plan was found to answer so well that it hass been continued to the prosent time. In some constellations, however, the number of stars now catulogued is so great that more letters are required to denote them: the English alphabet, therefore, follows the Greek ; and if both prove insulficient the reauiuing stars are denoted by numbers. In a few instances in Bayer's catalogue the stars are not arrangeri quite in their order of brightness, either from waut of accuracy in Bayor's observations, or from a change in the light of tho star since his time ; bat it is considered better not to attempt to amend this, as it would only produse cenfusion. ' T ' e best plan for one to follow who wishes to becoms acquainted with the different cotistellations is to study the sky itself with the aid of some maps, or of a celestial globe. Soveral of the constellations, as the Pleiades, the V-shaped Hyades; and Orion, with the three stars in the belt, commonly known as
the Yard Mensure, also the Great and the Littlo Bear, and the Pole Star, are familiar to almost every oue: these will serve as a guide in determining others.

The stars are all of them bright, self-luminous bodies, like our sun, which, indeed, appears to other worlds to be ono of the stars. Delicate observations show that thoy have proper motions, but it is very difficult and requires long-continued observations to determine them, We can however, ascertain the motion of the sun by obsorving the rolative distances of the stars. The stars in one part of the sky aro seen gradually opening out, and getting further apart, whilo in the opposite quartor they are as gradually closing up; evidently showing that wo are moving towards the former part of the hoavens, just as when we are travelling in a forest the trees in front seem opening out, while those wo have passed appear to be getting closer together. Now Sir W. Herschell found that tho apparent proper motion of 44 stars out of 56 are very nearly in the direction which should result from a motion of the sun toward the constollation Hercules, or to a point of the heavens whose right ascension is $250^{\circ} 52 \mathbf{1}^{\prime}$, and north declination $49^{\circ} 38^{\prime}$. "No one," says Sir J. Herschell, "who reflects with due attention on the subject will be inclined to deny the high prob. ability, nay certainty, that the sun has a proper motion in some direction." If the sun then have a proper motion in space, as it is more than probableit has, all the planets with their satellites, along with the comets, must p artake of it ; so that beside their own proper motions around this luminary, they likewise move along with the sun through the depths of infinite space with a velocity perhaps approaching to that with which they move around in their orbits. The earth will, therefore, partake of three motions, one around her circumference, one round the sun, and another in the direction in which the sun is moving; and consequently it is probable we shall never again occupy that position in infinite space through which we are now passing.

The sun, with his system of planets, \&c., is found to occupy a position in a ncbule or cluster of stars, of which tho Milky Way forms the main part. This Milky Way in one part of its course round the celestial sphere divides
 into two branches, which after separating a a little way, and passing about a third round the sky, again b unite into one. This may be illustrated by taking a flat circular body, as, for example, a cheese, and splitting it in the centre of the circumference, by lassing a knife one third of the way through, the
le Star, otermin-
our sun, Delicate difficult We can ive disgradually rter they towards a forest appear to appasent ion which Hercules, and north 0 reflects aigh prob. lirection." a probable mets, must luminary, inite space be around otions, one - direction shall never wo are now
position in main part. here divides branches, separating way, and at a third sky, again one. This istrated by lat circular centre of rough, the
two parts being made to diverge a little as shown at $a b$ in the figure. The sun a is situated somewhere near the centre, and the split side canses the divided appearance of the Milky Way. Of course if the sun is moving through the regions of space, as beyond doubt it is, though at a slow rate of motion compared with tho orbitual motions of the planets, all the other stars of this nebular cluster are also moving relatively ; for the fixed stars

minIATURE MAF of the heaveng un mercatoh'b phoseution, bhowing the courae of the milef wat.
always maintain the same relative positions to each other. The sun with his system, doubtless, revolves in a cyclo to which thousands of years are as nothing, in an elliptical or circular orbit, round some reciprocal centre of gravity.

Temporary Stars.

Closely allied to the variable stars are the new or temporary stars which have at times attracted much attention. Several appearances of such stars have been recorded ; one of the most remarkable is that observed by Tycho Brahe, in November, 1572. This star seems to have burst forth very suddenly, as it is said the constellation Cassiopeia, in which it appeared, had been carefully observed by an astronomer only two days before the star was seen, and that then no trace of it was observed. Also, Tycho Brahe himself did not see it at half-past five when going from his house to his laboratory; but returning to his house about ten, he came to a crowd of country people who were staring at something behind him. Looking round he saw this wonderful object. It was so bright that his staff cast a shadow ; it was of a dazzling white, with a little of a bluish tinge. It had no hair or tail around it, similar to comets, but shone with the same kind of lustre as
the other fixed surs. It was even seen by those who had good eyes at noonday. Its phenomena, it is said, were so striking as to determine the celebrated Tycho Brahe to become an astronomer. This star continned visible for about sixteen months, gradually becoming fainter till it disappeared. In 945 and 1204 stars had appeared in the same constellation in a somewhat similar manner, and as the intervals between the three dates are alnost equal, it has been conjectured that thoy might be threo appoarances of the same object. If this be the case this star in the course of a fow years,(in 1891 or 1892, as thus its period would be about 319 years), may make its appearance again, and thus we might have an opportunity oi gazing upon this object, which in former times attracted so much attention. Another temporary star of considerable brilliancy appeared in the year 1604, and was also carefully obsorved by Brahe. Modern times, however, have furnished us with several instances of this kind. In 1848 Mr . Hind observed a new star in Ophiuncus. It increased in brilliancy to the fourth magnitude, but subsequently decreased to the 11 th or 12 th, at which it now remains. In 1866 a new star appeared in the Northern crown, and was very minutely examined. It had been previously noted as of the sixth magnitude, but it suddenly shone out as a star of the second magnitude; its light, however, diminished very rapidly for some time. Attention was at once directed to it, the spectroscope being now available for observation. This instrument exhibited, in addition to the ordinary spectrum of the star, a second spectrum of bright lines, prominent among which were those indicative of burning hydrogen ; so that it appears as if in this instance a sudder blaze was produced byincandescent hydrogen, and other substances.

When old star catalogues are compared with those of the present day, it is found that, in addition to many changes of magnitude, sevoral stars, whose places are there recorded, are now no longer to be seen; and, on the other hand, that some of those now known are not recorded in the old lists, although their brilliancy is considerable, and would probably have iusured their insertion had they been visible. In many other cases doultless the discrepancy may have arisen from errors in observation ; but there is no doubt that many stars have a'together disappeared, and it is not improbable that some of these may be variable stars, which, after a more or less prolonged absence, may again become visible. Difficrent explauations have been offered to account for these phenomena. Some imagine that it revolves in an immense orbit, and that when it is visible it is in the part of that orbit nearest the earth, gradually increasing in brilliancy as it approaches to its nearest point, and gradually diminishing as it departs from it, which is, at all a reasonable supposition in the case of the stars. Some imagine the star to rotate, and one part of its surface to be more luminous than another, which is a very reasonable supposition; others suppose that a planet of large dimensions may revolve around the star and thus eclipse its light, which may or not be a reasonable supposition; but urse of a years), tunity of attention. the jear however, Mr. Hind he fourth which it own, and the sixth agnitude ; untion was r observarum of the wero those instance a substances. esent day, veral stars, n ; and, on in the old bably have ases doubt; but there d it is not ter a more ent explanane imagine e it is in the lliancy as it s it departs of the stars. to be more others suphe star and bsition; but
ther ss no known instance to us of a larger body revolving roun a smi: ler one. If the telescope had been in uso in the time of Brahe, he mieght have learned more about the star which he saw. Astronomers now are only waiting, in the hope that future researches aided by the spectroscope and by more powerful and refined instruments may throw fresh light on the whole subject. All the variable stars are being closely watched with this object in viow.

Clusters and Nebulas.

lBesides the stars and planets wo easily distinguish in the sky various groups called clusters or nebule. These are usually divided into Irregular Groups, more or less visible to the naked eye ; Clusters, resolvable by good telescopes; and Nebulx, many of which on account of their immense listance are irresolvable with the most powerful telescopes yet made. There are many examples of the first class, among which may be mentioned Presepe or the Beehive, and the sword handle in Pe:scus, both of which are very beautiful telescopic cbjects Very many objects of the second class have also been noted. In ordinary telescopes they appear

Fig. 132. The Great Nibula in Orion.
for the most part as fain ${ }^{2}$ ekidy masses ; but as more powerful instruments are dirceted to them they begin to resolve into stars, apparently placed very close together. Every increase yet made in the power of the telescope has had the effect of resolving more of these clusters. As to shape and appearance these objects vary greatly, some being globular or elliptical masses, whilo others prosent very strange forms. The great nebula in Orion, and the Dumb-bell nebula in Vulpecula, are examples of this. Sce an illustration of the nebula in Orion in Figure 132: and of Dumb. bell ncbulæ, Figures 133 and 134. Many, however, can only be partially
resolved, parts of misty matter gradually tading nway in the dietarice being distinguiehable apart fiom the stars. No definite line ean indeed be drawn to distinguish between clusters and nebula. So great is the

Fig. 133.
number of chese objects that 8 e eatalogne of them compiled by Sir J. Herschell containe no less than $\mathbf{5 , 0 7 9}$. As to their character and distance

FKg. 14.
we may derive some information from the observations of Sir W. Hersehell. Most of the nebula yichledi o his Newtonian retleetor of twenty feet foeal distance, and twelve inches aperture, which phainly discovered them to be composed of stars, or at least to contain stars, and show every other indication of their consisting of them entirely. "Ithe nebula," says he, " are arranged into strata, and rom on to a great length; and sone of them I have been able to pursme, and to gness pretty well at their form and direetion. It is probable enough that they may surround the" whole starry sphere of the hearens, not mulike the Milky Way, which midoubtedly, is nothing but a stratum of fixed stars. And as this latter immenso starry bed is not of equal breadth or lustre in every part, nor runs on in
diatarice 1 indeed t is the
by Sir J . 1 distnuce

Herschell. foet foeal them to be ery other ," snys he, Id some of their form tho "whole h undoubtor immenso runs ou in
one alraght direction, but is corved and even divisted into two stremas along a very comsiderable purtion of it, we may likewise axpeet the grentest variety in the struta of the clustera of the stare nud netmione. Ono of these nebulous beds is so rich that in passing through a soes. tion of it in the time of only thirty-six minutes, I have dotected no less than thirty-me nehula, all distinctly visille upon n fine lhe sky. 'Their situation and shape, ns well na condition, seem to denoto tho greatest variety imaginable. In noother stratum, or perhnps a differente branch of the former, I have seen double and trehle nobinio variously arranged: large mes with smail scoming attemdants; marrow hut much axtended lueid nebulve, or bright dashes; nome of tho shape of n finn, resembling an electric brush issuing from a lucid point; othera of tho cometic shapo, with a seeming nuelous in the centre, or like elondy annrs surrommed with a nebulous atmosphero. A different sort agni:s contains a nebulesity of tho milky kind, like that wonderful, inexplienblo phenemenon about 'lhetn Orionis: while others ahine with a fainter mottled kind of light which denotes their being rasolvable into stars." "In my late ohservations on mebule," says Sir W. Horsehell, on another oconsion, "I huvo found that I generally detected them in cortain diveotions rathor than in others ; that the apneos preceding thom wore gonorally invito iloprived of their stare, so as ofen to afford many fiolds without a singlo star in it ; that the nebula ger crally appeared somo time after among stars of a considerablo size, and but seliom anong ve:y small stars ; and when I came to ano nebula I generally found severnl more in the neighbortood ; that anterurard a cousiderable time passenl before I ceine to another parcel. Theso events being ofton repented in different aititudes of my instrumont, nuld some of them at considerable distanoes from each other, it occurred to wo that the intormediate spaces between tho swoeps might also contnin nebulas, and fiudis: this to hold good moro than onee, I ventured to givo notice to my nssistant ist the clock that I found myself on nelulons grouml." The discoveries of the Herschells support the view that ull the sties in the miverse, so inr at least as discernible hy the teleseope, are arranged into syatems, which revolve round their respective centres; and that the stars are not disporsed at random in a kind of magnificent confusion through boundless apnee: nud may likowise oxist aystomatienlly in immense elusters throughont the regions of infinitude. Of conreso, wo may certninly believe that each of those atars that nppenr in spneco or in the far distme nebula liy the telescopo, is itself, as our sum, the centre of a planetary system. The very olijoet of a sim is to givo light and hent to surrounding works, ns well as to be their bond of nttraction. All apinco is replemished at certaiti intervals with opaque givhes, altiough thoy mny never appear to our maked cye, $n=$, yet happen within the viow of our tolescopes; the very iften of stable equilibrinm in the miverse tenches this; thece is not a globe too many in one region of space, nor a globo
less than enough in another region ; nor does the law of gravitation allow us to suppose that even the smallest amount of matter can be in excess or in deficiency in the systems of the universe without having the universal uider disarranged and the balance of equilibrium destroyed. Astronomers have descried the self-luminous globes, beoause they are of immense size and of great brilliancy; but the investigation of opaque globes which exist in infinite numbers and of various sizes throughout space, and on which the sensitive and rational creatures of God exist, presents a noble field of labor for their cternal employment.
'Ihe nebula have great variety of forms; some are comparatively bright, and others so obscure as to render it difficult to detect them in the field of view of the telescope, or to ascertain their shape. Some of them appear round, some oval, and others of a long elliptic shape; some exhibit an annular form like luminous rings, and others appear like an ellipsis with a dark space in the centre; but the greater number approximate to a roundish form. Of the 103 nebulæ inserted in Messer's catalogue eighteen were known at the time ${ }^{\circ} \mathrm{o}$ consist of small stars; but Sir W. Herschell afterward found twenty-six more of then to consist purely of clusters of stars, eighteen of small stars accompanied with nebulosity, and the remainder not resolvable into stars by the highest powers of his telescopes. But it is evident that these objects, though apparently small and obscure, must be systems of immense magnitude, when we take into consideration the vast distances at which they must be situated from our globe. As to this point

Fig. 135.
Sir W. Herschell speaks as follows: "My opinion of their sizo is grounded on the following observations: There are many round nebulæ of about five or six minutes in diameter, the stans of which I can see very distinctly;
and on comparing them with the visual ray calculated from some of my long gauges, I suppose by the appearances of the small stars in these gauges that the centres of these rounl nebule may be 600 times the distance of Sirius from us." He then goes on to show that the stars in such nebule are probably twice as much condensed as those of the cluster in which we are placed; otherwise the centre of it would not be less than 6000 times the distance of Sirius; and that it is possibly much underrated by supposing it only 600 times the distance of that star. "Some of these round nebulæ have others near them perfectly similar in form, color, and the distribution of stars, but of only half the diameter; and the stars in

Fig. 136.

These are Specimens of Nebule of various descriptions: Dtimb-bell nebula ; nebule resembling the cluster to which our system belongs ; diffused nebule; and nebulous stari.
them seem to be doubly crowded, and oniy at about half the distance from each other. They are indeed so small as not to be visible without the utmost attention. I suppose these miniature nebulæ to be at double the distance from the first. An instance equally remarkable and instructive, is a case where, in the neighborhood of two such nebulæ as have been mentioned, I met with a third similar resolvable, but much smaller and fainter, nebula. The stars of it are no longer to be perceived; but a resemblance of color to the former two, and its diminished size and light, may well permit us to place it at full twice the distance of the second, or about four or five times the distance of the first; and yet the nebulosity is not of the milky kind, nor is it so much as difficultly resolvable or colorless. Now, in a few of the extended nebulæ the light changes gradually, so as from the resolvable to approach the milky kind, which appears to me an indication that the milky light of nebule is owing to their much greater distanse. A nebula, therefore, whose light is perfectly milky, cannot well be supposed to be at less than six or eight thousand times the distance of Sirius; and though the numbers here assumed are not to be taken otherwise than as very coarse estimates, yet an extended nebula which, in an oblique situation where it is possibly foreshortened by one half, two-thirds, or three-fourths of its length, subtends a degree or more in diameter cannot be otherwise than of a wonderful magnitude, and may well outvie our Milky Way in grandeur." It seems to be a very natural conclusion that the nebulæ which are perfectly similar in form, color, and the distribution of stars, but of only half the diameter of the other, and the stars doubly crowded, are about double the distance from the first. And if the distance of the larger nebulæ, whose stars are distinetly seen, be at least 600 times the distance of Sirius, as there seems reason to believe, then the distance of those which are only half the diameter must be 1200 times the distance of that star, that is at the very least $24,000,000,000,000,000$, or twenty-four thousand billions of miles. But the nebulæ whose light is "perfectly milky," or so far removed from us that the stars of which they are composed cannot be separately distinguished, may ' reasonably considered as at seven thousand times the distance of Sirius, or in number $168,000,000,000$,000,000 , or one hundred and sixty-eight thousand billions of miles; a distance indeed of which we cannot by any means form a distinct conception. A cannon ball flying with its utmost velocity would require more than thirty-eight thousand millions of years before it could move over an equal space. Since the distances of these nebulæ are so immensely great, and since those that are nearcst us are found by actual observation to be composed of countless numbers of stars, leaving us no room to doubt that the most distant are also immense systems of the same character, how vast must be the magnitude, and how inexpressible the grandeur, of
from ut tho le the active, a been er and but a d light, ond, or bulosity or coloradually, pears to eir much y milky, times the not to be d nebula shortened subtends a wonderleur." It e perfectly half the double the liæ, whose Sirius, as h are only , that is at nd billions or so far cannot be at seven ,000,000,ff miles ; a istinct conald require pould move immensely observation om to doubt character, yrandeur, of
the numerous luminaries of which they are made up; and how immensely great the number of planetary bodies which revolve around them through boundless space!! From all the observations of Sir W. Herschell, he is of opinion that our Nebula, or the Milky Way, as it may be termed, is not the most considerable within the range of vision ; and he points out some very remarkable nebulæ, which in his opinion cannot be less, but are probably much larger, than that of which our sun and system form a part.

Some idea of the extreme faintness of some of the distant nebule may be formed from the estimate which has been made that their light varies
 The nebule, as has been seen, are not distributed by any means uniformly over the surface of the sky, the greater number of them being situated in a zone crossing at right angles the Milky Way. In the constellation Virgo there is the greatest aggregation of them, one portion of it being known as the nebulous region of Virgo; and in the southern hemisphere, not far distant from the pole, are two brilliant cloud-like patches, called the Magellanic clouds, or Nubeculæ. These, when examined by the telescope, are found to be composed of stars,clusters, and nebulæ, collected together seemingly, but most probably in their order of distance. In appearance they somewhat resemble a portion of the Milky Way; but they are quite distinct from it.

One of the most remarkable and extensive nebule in the heavens is that which is found in the constellation of Orion.* In looking at that constel'ation, which makes a splendid appearance in the southern sky during the winter months, the first object which arrests one's attention is the three brilliant stars equidistant from each other in a straight line, which is called the belt of Orion. Immediately below these, hanging down as it were from the middle of the belt, three small stars at nearly equal distances are perceived, which are termed the sword of Orion. On directing the naked eye to the middle star of these three, the observer perceives something which has the appearance of a small star, but not well defined; this is the great nebula of Orion, of which, however, one can form no definite conception without the aid of a good telescope. With a common pocket achromatic telescope, of a foot in length, the nebulosity may be plainly perceived; but the higher the magnifying power, and the larger the aperture of the object-glass, the more brilliant and distinct does this phenomena appear, along with a number of small stars connected with it, which are quite invisible to the unassisted eye. Huygens was the first to discover this phenomena, and he gives the following description. of it in his Systema Saturnium: "Astronomers place three stars close to each other in the sword of Orion; and when I viewed the middlemost with a telescope, in the year 1656, there appeared in the place of that one twelve other stars among these three, that almost touch each other, and four \therefore - See Fig on page 385.
more beside appeared twinkling as through a elond, so that the space about them seemed much brighter than tho rest of the heavens, which, appearing wholly blackish by reason of the fair weather, was seen as through a certain opening through which ono had a freo view into another region winich was more enlightened. I have frequently observed the same appearance in the same place withont any alteration; so that it is likely that this wonder, whatever it may be in itself, has been there from all time ; but I never took notiee to anything like it among the rest of the fixed stars." 'The reader will easily recognize the doseription in the fignre of this sebula hero presented which has been obtained, however, loy means of a more perfect telescope than any that were in nse in the time of iluygens. The following is Sir J. Herschell's description of this phenomenon: "I know not how to describe it better than by eom. paring it with a curdling liguid, or a surface strewed over with tlocks of wool, or the breaking up of a mackerel sky, when the elouds of which it consists begin to assume a curions appearance. It is not very unlike the mottling of the sun's dise, only, if I may so express mysolf, the grain is much coarser and the intervals darker, and the floculi, instead of being generally round, are drawn into tittle wisps. They present, however, an appearance of having been composed of stars, and their aspeet is altogether different from that of resolvable nebule. In the latter we fancy by glimpses that we see stars, or that could we strain our sight a little more we conld see them ; but the former suggests no inea of stars, but rather something quite distinct from them." It is caiculated that this wonderful nebula would fill a space twenty-nine millions of times larger than that contained within the orbit of Uranus ; so that compared with it the whole solar system is but an imperceptible point. It is also caiculated that there aro many nebule within the reach of the telescope which altogether surpass in extent, in grandenr, and magnificence the clustor to which our system belongs, or the Milky Way. And what of those that extend in cevery direction in endless succession !!

Viriable Nebule.

Some of the nebule, like some of the stars already referred to, are found to be variable. In Oetober, 1852 , Mr. Hind discovered a very small one with a star of the tenth magnitude near to it. This was afterwards observed, and its position noted, by other astronomers, but in 1861 it had entirely disappeared. Another nebula, which had frequently been observed as a well-defined compact cluster, was found in May, 1860, to be replaced by a seventh magnitude star. After a few weeks tho stellar appearance had ceased, and the cluster seemed to be resuming its usual form. The question as to the real constitution of the nebulte is one which has given riso
to much speculation. There is now lutlo or no donbt expressed as to many of them being stary systems somewhat resembling one own cluster, but immensely romoved finns? it. 'Ihis boliof rapiliy sained fromd ns one after another of the nebule was resolvol, liy tho npplication of moro powerfal tolesenpes; and it i, very penemally holioved that all the teles. eopie nebmise will ultinately ho thas resslved. The hypothesis provionsly mecived was that they comsiated merely of masees of chond-like matter. When the spectrosenge wist tirst direded th ong of thoso shjects, owing germaps to the hantuess of the light, no spotrom cond bo whtained, but merely a shart lamimos haml. A secomd and thad finter bats wero afferwad male ont, and these lines wrop fonme to correspond with those
 strongly to the comchasion that the light emanated from incandescent gascons mather.

The Nimular IIypothesis.

Beforo the invention of the teleseope, and for some time after its invention, while it was yot companatively inperfect, tho nobula were snpposed to bo vast, formbes masses of vaprey matter seatterod here and thero thronghont space. Henco arose the "nehmber hypurthesis," as it is termed, aceording to which the sum and one whole system of planets origrinally existed in the form of a mas of mothlons motter filling in space greatly execeding that contaned within the orhit of Unams. 'Ihis vast mass the theory supposed was set in rotation, and, as it gradnally cooled, becamo more and more comensed, motil at lengin wome part assmmed tho liguid form, and would then form a rinor smonnling the central mass. I'his ring would, of comise, be in rotation, and as it wonld scarcely be of uniform thickness thromghont would soon break un; the matter composing it would then be colleeted into a hall still rotating romed the centre, and at the same time revolving on its own axis. In this way the hyputhesis had it that all the planets were in then formed, and they by eentrifugal fore threw off their satellites and rings, till at length the system becamo com. plete, and the planets cooled down into solin masses.

Snoh is the " nebular hypothesis," and in it is seen what absurd and
 teleseopic nebnitu that have been resolved into stars, and with the fact patent that only distance prevents any of them from being thas resolved into stars and all other revolving bedies, men henceforth will have no need of forming such groundless theonies with respect to an origin for the visiblo world; nor, with all the light which is now afforded them of its etemal existence, will people have an excose for any more believing the groundless theories of hasty speculators with respeet to it.

Sketcil of the Mistory of Astronomy.

We think it proner here, and of interest to our readers, to give them a sketch of the history of astronomy. This science was cultivated in very early times. The question, however, as to what nations first cultivated this science, cannot be definitely answered. But it seems probable that the Chaldecans were the first who, within the range of history, made systematic observations of the stars. Tho path of the sun among the fixed stars was very early discovered, and these stars were arranged into the twelve constellations known as the Signs of the Zodiac, long beforo the historical era. Many of the other constellations were also named, but some were afterwards altered b_{y} the Greeks and Romans; and even in molern times, a few additions have been made, as, for instance, the Shield of Sobieski and tho Ifeart of Charles I. The zodiacal signs aro sometimes supposed to haro been connected with the rural occupations of the ancients. Thus, the eluster of stars through which the sun seemed to pass in spring, was called Aries, or the Ram. Leo, the lion, had been considered symbolical of the rays of the summer sun. Libra, the balance, tells of the period of equal day and night; Scorpio, the scorpion, of unhealthiness, of autumn; while Aquarius, the waterman, and Pisces, the fishes, betoken the rains and floods of winter. The names given to these zodiacal constellations in the order of the signs, are as follows: Aries, the ram ; Taurus, the bull ; Gemini, tho twins; Cancer, the crab; Leo, the lion; Virgo, the virgin: Libra, the balance; Scorpio, the scorpion; Sagittarius, the bowman; Capricornus, the goat's-horn, Aquarius, the waterman ; Pisces, the fishes. It must not be supposed that any resemblance can be traced between the shape marked out by the stars and the figures they are supposed to represent. The original idea seems to have been to map out the sky into convenient portions for examination, and at the same time to immortalize certain real or mythical heroes; but as the system became adopted universally, it has been retained to the present day, and serves as a ready means for distinguishing and registering the stars. Among the most noticeable of celestial phenomena are solar and lunar eclipses, and these, of course, attracted the attention of early astronomers, and at length the true cause of them was discovered. A careful record appears to have been kept of them, so that the Saros, or Chaldæan period was discovered. This is a period of 18 years and 11 days, or 223 lunar months, at the expiration of which the moon entors again upon its former track in the heavens, and thus the same eclipses are, as it were, repeated. The Egyptians seem to have made some progress in astronomy at as early a period as the Chaldæans. Their pyramids indicate their skill in practical astronomy, as they are all so situated that their several sides point very exactly to the four cardinal points, east, west, north, and south. The system adopted by the Egyptians was the following: 'Ihey conceived that the planets Mercury and Venus revolved
like satellites round the sun, their orbits being carried along with him in his rovolution round the earth. They supposed the earth immovable, as the centre of the system, and the other celestial bodies to turn round the same centre; first the moon; then the sum, about which they supposed Mercury and Venus to revolve ; next the planet Mars ; then Jupiter ; next Saturn; and lastly the sphere of the fixed stars.

The Chinese date their astronomical knowledge from Fohi, who they say was the first of their kings ; and supposed by some of the Doderns, erroneously enough, to be Noah, who, tradition says, jousneyed with his children in the direction of China, about the time of the building of Babel's tower.

The wonder and anxiety with which eclipses were witnessed by the Ancients, may be easily imagined, and when an astronomer ventured to predict an eelipse, and his prediction was verified, he must have been looked upon as little short of divine. The first instance we have on recorl in which this was actuaily done, was in the year 610 B . C., when Thales a Milesian, the father of astronomical science among the Greeks, foretold an eclipse of the sun. It is probable, however, that the same thing had been done repeatedly before by the Chaldeans and others. With Thaies the true history of astronomy begins. But the Greeks were not distinguished for any great profieiency in the natural sciences. We find here and there shrewd guesses and faint gleams of truth ; but it is generally mixed up with fanciful speculations, instead of being supported by careful observation and reasoning. 'lhey seem, for the most part, to hare started with ecrtain principles which had no existence but in their imagination ; as, for example, that the earth must be in the centre of the universe, and that, since the circle was the perfection of shape, all the motions of the heavenly bodics must be in circles. Observing the phenomena of the sky, and the apparent motions of the sun and stars, they formed cumbrous and complicated theoretical systems, endeavoring to reconcile these appearances with their theories. Hence we find all the involved mysteries of transparent wheels, revolving one within the other, and carrying with them the plancts and stars of cycles, and epicycles, and of crystal spheres in ceaseless rotation, which Plotemy and his followers were ever planning, and ever altering. We must, however, glance at a few of the names which stand prominently forward in the history of the science. Anaxagoras and Pythagoras wore two of the Greek philosophers who succeeded Thales, and they appear to have had much more accurate views than most of their day. They taught that the sun is in the centre of the universe ; that the earth is globular and moves round the sun ; that Venus is the moraing as well as the evening star; that the moon reflects the sun's rays and is inhabited; that the stars are worlds, and that comets are wandering stars. These celebrated philosophers flourished about 500 B. C., and their system is nearly the same that was adopted or restored by Coperni
 dedrimes doner appear th have herew at all generally resecived in their times. and were condemmed by thase in power ne being innlinus. Anamgorna wna

 fiow lif:

Hippatehna, hom at Nice in Bythinina, in the geomed contury B. C.,
 livand of astomomes. Ho gave up all athompat at foming a asatem fir

 apposimation to the true loneth of the year: and the neenvery ot his ohaervations is rery remarkathe whon we comsider the imperfertmess of the instruments her had to ses. He alan womed the ismegulatioes of the rate of the smos muthom, and determined in what part of its comsen ita apeod was preatest, and thena aciertained that if the mertion of the ann was mifinem the earth was mot situated in the sentwe of its mith.
Anwher thing for which the name of thiparelons is memorable, is a
 might he alde to detect any altoration in their pesition or mumber. Ito apposes to have heoll fed to mimerake this tash be the mperamene of a
 star was a woik reguining great lahor and pationer, he presereved and complisted a list whed comment lotit stars. In the progress of this work he made one wery important disentery. On somparing the place nasigned by him to a star in the constellation Virgo with that determined ly gome distingmished astmomers nearly two homired rears previnaly, he fimmid a differene of two deques in its homgitnde. We then made similar eomparisems, whew it was possible. with respeet thother stars, and foumd the same change in their position. It was then mident that all the stare must have moved forwand, or else that the points fiom which the measurements wew taken must haw mowed bachwaris. This phenomenom is known as the preesssion of the equimores; the reasm of it was disenvered by sir lasac Nentom.

Another bidea for which we are indebted to llipparchus was that of representing the stars on an artificial globe: and of marking the positioms of places on the tervestrial globe hy meang of lines of latitude and lonsitude.

Nicias, one of the followers of llipparchus, is said to have adramed further than his preceptor, and started an hypothesis that the apparent changes in the sky were eansed br a daily revolation of the earth. The idea "as. howerer, not supported by any argments, and was lost sight of for ages.
'Thuir sir time. yap wna Intoner ii ! !umen
$y \mathrm{ll} . \mathrm{C}$. if crove atem fint nowding quectilly ery Mose his , जhary hn instru(1) vate of proid was mifism Me, is a tromemers ber. Il rance of a fing each rewid and his work e asaigned 1 ly a mone - he fiomen nilar comfound the stare musi surements is known red by sir
as that of e pusitions cand honwhth. The ost sight of
"i'he only wher melent natromomer we shanl refer to in" "this aketeh, is

 is inmmenthe: in the "entre of the miveran, and the plameta mese vomid

 "prarent irregulatites in their mentions he intron. dhered what he termed mingulles, whielh will ho

 the planet alombld meve; but inatend on this he sumphased that there wna a mint 1 ' moving in this
 orthit, and that the phanet 1 ' moved roment this puint in a amall cirembur

 cated by the alterations intronduced by the suceessors of lumemy ; mill notwithatanding its alsomity, and its combrariety to the a momameos of
 of mure ham fimerteen centuries: or mutil tho beginning of thes sixteonth century. Daring this period a few individuals apmared when cultivated astrumber. as Almansor, Almanon and others amming the Arahinat; Ulugh Beigh, a pmince of 'lartary; Alhazen, min Arah, in Spmin: Aphomso X., king of Castile; Rager Hacon and several others; these all adoptel the I'colemaic system.
Ahont the year 1472, was born Nicholas Copernicns, who, leaving all the speculations of former observers, stmitiod for himself the motions of' the celestial bodies. He lirat examined all the ancient observations, and then commenced for himsolf to elosely and syatomatically exmmino tho hearens. He compared the actial phaces osengied by the ann null flanets with those which, aceording to former theories, thoy onght to deceny, and thas obtained a better knowledge of the inregnlaritios and variations than any astronomers before his time. Ite continued this conse for many years, and at length arrived at the conclusion that Merenry and Vems revolved aromil tho sme instoad of romen tho carth. Ito gradually extended his reasonings further, and at length
started his celelirated theory which regarded the sun as the centre of the eystem, with the earth and all the other planets all revolving in regular order around it. By this grand idea all the complicated and bewildering sehemes which had occupied and puzzled so many observers were at one stroke swept away. Instead of the cumbrous machinery of crystal spheres revolving one within the other the utmost simplicity is seen to characterize his system; order and regularity take the place of almost inextricable confusion ; and as the observer transfers his station of observation from the earth to the sum, the phants which had previonsly appeared to wader on in ever-varying directiona anong the atars, now retracing their steps, and then, after an interval of rest, starting again, ane seen to be steadily moving on in elliptic orbits aromen the central laminary of the system. 'lhe movements of the inferion phanets Mercury and Vemas; the reason why they were never seen very far removed from the sun ; the retrograde motions of the planets, and their irregular morements, were all clearly explained hy this grand yet simplo theory.

We can with diffieulty recognize the prejudice with which such a seheme Was received; the earth was ly it degraded from its central place, and redued to the rank of a planet ; and that which men had been aceustomed to regard as fixed and immovable was now deelared to be in rapid motion aromd the sum, and at the same time to he ever whirling romal its nwn axis. He secms to have himself forescen the effects of this prepulice, and hence he waited long hefore e fully aceepted the theory, and still longer betore he ventared to make it public. This system Copernicus muderstod to have been that of P'ythagoras, broached 500 years before the Christian era, and hence he wrote a treatise in confirmation of it, entitled "Astronomy restored, or the Revolution of the Heavenly Bodies." This system was at first violently opposed both hy the volgur, the dignitaries of the Romish Chureh, and pretembel philosophers, as coatrary both to semse, reason, and Scripture, and many of its abettors were subjected to violent persecutions. Coperniens himself seems to have had a great dogree of deference to the Chureh and consideration for the prejulices by which he was encompassed ; and the dedication of his work almost takes the form of an apology for routuring to suggest such views, and his ideas were put forwand mather in the shape of an hypothesis than of a definite sestem. It must not be supposed that Copernicus formed a complete system to aceonat for all the motions of the planets; his life was too short for the task. His work was to indicate the true theory of the miverse, leaving it for others to trace out more accurately the exact curves in which the planets moved, and to ascertain their various distances, magnitudes, and rates of motion. It was afterwards ably supported by the writings of Kepler, Galileo, Gassendi, Hevelius, Huygens, Cassini, and other distinguished astronomers by whom its principles were demonstrated, and established on a firm and stable basis. phlicity is 0 place of his station previously stars, nuw agin, ate 1 luminary reury and noved from gular movecory. tha scheme place, anil accustomed co in rapil irling romal ects of this the theory, this system mached 500 se in contirtion of the al both hy leid philoso. many of its msell scems nsileration lectication of f to suggest shape of an pposed that mutions of s to indiante c out more to aseertain was afterendi, Hereby whom its ble basis.

This system was especially demonstrated by Kepler, whom we have had oceasion to inention before, and who has sometimes been called the " legislator of the heavens," ns it was he who first discovered the laws by which the movement of the heavenly borlies aro governed.

Almost contemporary with Kopler there lived another great philosopher and astronomer named Gatileo, chiefly memorahle now as being the first to construct the astronomicul telescope, though his powers were such as wonld have ensured his mown even had this great discovery not been made hy him. He was corn in 15tit, and became a teacher of philosophy at lica. Here he soon rendered himself remarkalle by his stremunns opposition to some of the teachings of Aristotle, which he proved by experiment to be ineorrect. This brought upon him much odium, and eren persecution ; but thongh he thus opposed the received views on mochanical suhjects, he continued for some time a stickler for tho Ptolemaic system, and even refinsed to hear any explanations of the views and theories of Copernicns. After a while, however, ho saiv the folly of this, and eommumicated a eareful enquiry, the result of which was that he became an wollent supporter of the new system.

In the early part of the 17 th century, Gatileo heard of a discovery which had been mado by an instrument maker in Iolland, by which distant ahjects conld be made distinetly visible. He, therefore, made ev ry enguiry, and at last suceceded in making a teleseope which passessed a magnifying power of 89. This ho first directed toward the moon, and here he at once detected many points of resemblance to the earth: he perecived rugged momutainons parts, and lofty olevations; !evel plains likewise, which were at first ealled seas. He made a greater discovery, however, when, on the 7th of Jamuary, 1610, ho directed his magie tubo toward the planet Jupiter. Not only did it present to him a brilliant dise, streaked across with dark bands, but close to it he perceived three small stars almost in a straight line. These he at first supposed to bo merely fixed stars; on the following evening, however, when ho again directed the telescope to the μ lanet, he observed that they had moved along with it, and had also ehanged their positions with relation to each other. Hero, then, was evidently some new discovery ; and Galileo waited most anxiously the recurrence of n elear evening to enable him to decido the matter. The next view satisfied him that they were in reality moons accompanying the flanet; and further, he found that there were four of them.

Intense excitement was created among astronomers by this discovery, some urging the absurdity of increasing the number of the heavenly bodies begond the sacred numbor sevon, and others angry at the man who attempted to depose the earth from its position of dignity by asserting that Jupite: had four satollites, whilo the earth haid ouly ono. It is said that some even refused to look through the instrument, which made such unheard of revelations. But the followors of Copernicus welcomed the
discovery as presenting a miniature model of the solar system, and thus upholding their theory. The telescope soon made other discoverins. By its aid Galico found that Venus presented the same plases, appearing at times as a narrow crescent, and then gradually becoming more and more iiluminated, till at last it shone with an almost circular disc. It could not, however, be scen with a complete disc, as at such a time the earth must be in the part of its orbit exactly opposite to Venus, which would, therefore, appear in conjunction with the sun, and be lost in his brightness. This was a very important discovery, as it afforded a strong confirmation of the truth of the Copernicus system. In fact an objection had been raised against this system on the ground that these phases were not seen as they should be if the theory were true. The telescope, however, soon settied this difficulty, and silenced these objections. He made another discovery when he examined the planet Saturn. Instead of appearing with a circular dise, like the other heavenly bodies, he foum it to be elongated, as if handles were affixed to each side of it. Owing to the imperfections of his telescope, Galileo failed to discover that this appearance was caused by a large ring which completely encircled it, and he imagined that the planet was in reality composed of three smaller ones. Both these discoveries were, according to the practice of scientific men in those days, made known in anagrams, only intelligible to those who possessed the key. It is thus seen what an important instrument the telescope proved to be, for not only these, but almost all celestial discoveries since, have been made by its use, and now nearly all our astronomical instruments consist either wholly or in part of a telescope. It is thus seen also to what important results the accident of a child playing with two spectacle-glasses has led ; for such an accident, it is said, first originated the idea of the telescope.

The career of Galileo, though for the most part a splendid one, was somewhat marred near its close. The prominent position he had taken as an upholder and promulgator of the new doctrines had attracted the attention of the papal authorities, who regarded his views as heretical, and demanded of him a public recantation of his belief in the motion of the earth. This he reluctantly gave, though he is related to have said immediately afterwards: "It moves for all that." This was in several ways a sad scene! Not long after this, in 1642 , he died. In the same year was born the illustrious Sir Isaac Newton, a man more celebrated than either Galieo or Kepler, and whom we have taken occasion to speak of before. From this time onward we come across the names of so many prominent astronomers that we can but refer to a few of the more celebrated. About the year 1658 Huygens, a celebrated mathematician and astromer in Holland, using telescopes of a much larger size than those of Galileo, discovered that the phenomena connected with Saturn was in reality an immense ring surrounding that planet, and, as he thought, thirty thousand miles distant from every part of it. He at the same time discovered the
nd thus ns. By aring at d more yuld not, rth must d, thereightness. firmation en raised n as they ttled this ery when dise, like dles were pe,Galileo ing which ality comcording to rams, only what an these, but , and now in part of he accident a accident,
d one, was d taken as racted the etical, and tion of the said immecral ways a he year was than either k of before. prominent thed. About astromer in Galileo, disreality an ty thousand covered the
fourth satellite of Saturn; and in these and other observations he used telescopes of his own construction of 19,23 and even 100 feet in length. Napier had some forty years beiore this inverted logarithms ; end thus reduced the work of the weeks to days or even to hours; and a little later. reflecting telescopes were introduced by Gregory. Some time afterward Cassini, a French astronomer, discovered the first, second, third, and fifth sateilites of Saturn, and the periods of the rotation of Mars and Venus.
Flamsteaii was another celebrated astronomer, almost contemporary with Newton, and was the first that was called Astronomer Royal. The origin of the observatory of Greenwich, and of this post, was in the year 1675. Great inconvenience had been experienced in long voyages from the want of some netlod of determining the longitude in which a vessel was at any time, but at length a plan was preposed which was substantially the same as one that is in use at the present time. This consisted in noticing very acearately the position of the mu. $\quad t_{1}$ respect to neighboing fixed stars. As the earth moves on in its path this position seems to vary. If then we have an accurate list of these " lunar distances," as they are termed, calculated for any ziven meridian of longitude, we shall be able to tell by obser:ation what the time is at that moridian. We can then compare this with the local time of the pace where we are, and in this way ascertain the long:tude ; for since 100° of longitude make a difference of one hour in the time, we have caly io allow 15° for every hour of difference in tho times, and we shall at once tell the longitude. The method of solving this problem usually cmployed now is merely to compare a good chronometer, set to the time of the observatory, with the local time ; but it was not till a comparatively recent period that chיonometers were made accurate enough for this purpose, and even now it is a great advantage to be able to check them occasionally by means of lunar observations.
When this plan of ascertaining longitudes was proposed an objection was made to it on the ground that the tables of the positions of the moon and fixed stars which thca existed were not sufficiently accurate to de of any practical use for this pur iose. It was therefore decided that an observatory should be, built and sustained with this especial end in view, and Flamstead was appointed astronomer to the observatory. This observatory was erected, and the post established in 1675, and from that time to the present some of the ablest astronomers have resided in it, and an almost uninterrupted series of observations has veen maintained. These have constantly proved in many different ways to be of the greatest practical utility. On? main duty connected with this Observatory is the pre paration of the "Nautical Almanas." This is an almanac published three or four years in advance, and containing a large numbe of important astronomical tables. The position of the moon with respect to any of the fixed stars is shown for every third hour throughout the year. The posi-
tion of the various planets is also exhibited, as well as the eclipses and occultations of Juniter's satellites, and many similar tables which are useful to the navigator in ascertaining his position, as well as to the astronomer. The reason of its early publication is in order that captains about to set sail on long voyages may have it to take with them.

Though this observatory was thus founded by the British Government it was some time before it was provided with instruments worthy of the place ; Flamstead having to use his own for a considerable period. This astronomer was a very painstaking observer ; and it appears to have been to his accurate observations that Newton was greatly indebted in many of his investigations.

Halley succeeded Flamstead in his position at the Observatory. He was for some time an intimate friend of Newton, and made several long journeys in the interests of science. An expedition was fitted out under lis charge to observe and catalogue those stars in the southern hemisphere which are invisible with us ; and a list of nearly 400 was compiled. This, however, was by $n o$ means a complete one, as the station chosen for observation, St. Helena, was in many respects unfavorable. After Newton had made the discovery that bodies under the joint influence of a centrifugal force and the attraction of a central body might revolve in a hyperbola or parabola, as well as in an ellipse, the appearance of a comet was anxiously awaited in order that, if possible, it might be ascertained whether these bodies moved in fixed orbits of either of these forms, or whether they were merely stray wanderers dashing swiftly past oun system, and then forever lost in the deep abyss of space. In the year 1680, this desire was gratified by the appearance of a very remarkable comet, which attracted great attention, both by its brilliancy and the rapidity with which it travelled. Halley gave his carnest attention to the observation of this body; he accurately noticed and recorded its motion, and he discovered that a parabolic orbit could be constructed which would account for all its movements. Its eccentricity was, however, so great that a period of 600 years must elapse before it could again return to the sun.

After this comet had passed away Halley still devoted his attention to the subject, carefully enquiring into the recorded appearance of different comets, with a view to ascertain whether the intervals between the appearanees of any of the most noticeable ones appeared in any way uniform. Shortiy after this, in the year 1682, another large comet appeared, and Halley now with the information he alrealy acquired was in a better position to enquire into its motion. He accordingly did this, and after a time announced that he had calculated its orbit, and found that it moved in an ellipse, its aphelion distance being nearly $3,500,000,000$ miles ; also that its period was about seventy.five years. He then looked back through his list of comets, and found that he could distinctly trace it back for a considerable period. This so far confirmed his calculations that he distinctly
ipses and hich are the astroains about rnment it y of the od. This have been a many of
tory. He veral long out under remisphere led. This, for obserTewton had centrifugal perbola or s anxiously ther these they were an forever as gratified uted great t travelled. body; he that a paramovements. years must ettention to of different the appeary uniform. peared, and in a better and after a hat it moved miles; also ack through back for a he distinctly
foretold its reappearance aboat the close of the year 17 i88; and so convinced was he of th truth of this prediction that he requested, since he could not live to witness its return, that when it was fulfilled people might remember it was an Englishman who had first tracea the path and prophesied the return of a comet.
Long before the date assigned for the return of this comet, which began now to be known as Halley's, he himself had passed away. Astronomers were, however, on the wateh, and some French astronomers, in particular, investigated most carefully and industriously the retarding effect which would be produced on the comet by the attraction of the planets, and as a result of their erquiries announced that it would be slightly delayed by the action of Saturn and Jupiter, so that its perihelion passage might be expected on the 13th of April, 1759. Just at the close of the previous year, a wanderer was detected by an amateur, and as it approached nearer, it proved to be the very one, whose return had been for so long a time forctold, ad though its period of revolution was upwards of three quarters of a century, yet the observations and calculations were so accurate, that it actually passed the sun within less than three weeks of the predicted day. On the occasion of the next return of this comet, which took place in 1835, not only was the date, but the place of its appearance pointed out, and on a large telescope being turned to that spot, the comet was scen as a faint cloudy object. We see thus that Halley's comet was now to be reckoned as one of the members of our system, whose motions are fully understood. Its next return may be expected in the year 1912.

Bradley succeeded Halley as professor of astronomy at Greenwich. The great discovery which has rendered his name memorable, is that of the aberration of the fixed stars. The aberration of the stars is a small change of place in the heavens, which, in consequence of the earth's revolution in its orbit round the sun, they appear to describe in the course of a year, an ellipse or circle, the greatest diameter of which is about 40 ." These apparent changes of place, occasioned by the annual motion of the earth, are to a certain extent common to all the celestiak orbs, and are only the moro perceptible and striking in the case of the fixed stars. In consequence of this annual revolution of the earth round the sun, the stars appear, according as they are situated in the plane of the ecliptic or in its poles, or somewhere betreen them, in the first case, to deviate in a straight line to the right or left of their truo place ; in the sccond, to describe a circle or something nearly approaching to it around their true place ; and in the third, an ellipse about that point which observation determines to be their real situation. The angle contained between the axis of the telcscope and a line drawn to the true place of the star, which angle, in consequence of the carth's motion, must be continually changing, is what is called its angle of aberration. The aberration of the stars affords a sensible and direct proof of the motion of the earth in its
orbit round the sun. If the earth were not in motion, no such effect could take place. If the earth were at rest, the star would ije seen in the place in which it really is, never seeming to alter its position ; but the earth being in motion with its present velocity, the telescope is necossarily inclined a little in order to see the star, and it is the real annual orbitual motion of the earth that causes the apparent motion of the star, in describing such a figure in the course of our year.

Dr. Bradley, also, took an active part in the reform of the calendar, which had by this time raried a little from the true seasons; and, in order to rectify the error, joined in recommending that eleven days should be struck out of the month of September, 1752, so that tho day that would be the fourth of that month, was called the fourtoenth. This measure was very unpopular at the time, and Bradley same in for a large share of popular dislike on this account ; and his death, which occurred a few days afterwards, was, by many of the ignorant, regarded as a mark of Divine displeasure at his presumption in thus daring to interfere with the regular order of the calendar. This alteration has since been effected in nearly all countries, except Russia, where dates are still reckoned according to the old style, and are now thirteen days behind those used in the rest of Europe.

We may now just glance at the services which have been rendered to astronomy by another of those men whose names will ever stand foremost in its annals, Sir William Herschell. He was a man of some what humble origin, and unable to procure a telescope sufficiently powerful by which to understand some of the mysteries of the heavens. He had, however, an intense desire to do so, and having acquired a knowledge of the principles of the telescope set himself to construct one. In this, he succeeded well; and he is said to have ground altogether upwards of 500 specula for reflect. ing telescopes. In March, 1781, when he was examining the sky by the aid of one of these instruments, he came upon a small star, which as he examined it with higher powers seemed to exhibit a disc. He accordingly took an accurate note of its position so as to watch it again on another evening. When he again examined it, it was at once clear that it had changed its position. The idea, however, of a new planet does not appear at all to have entered into his mind, so accustomed had every one been to regard Saturn as the extreme planet of our system; accordingly, he set it down as a new and strange comet which he had discovered, and announced it as such. Its motions, however, soon showed that, unlike the comets, it moved in an orbit of but small eccentricity, and it was then found to be a planet revolving in an orbit outside of Saturn. This planet he named Georgium Sidus in honor of King George III., who had been his patron, but the name was afterwards altered to Herschell, and finally to Uranus, by which name it is now known.

Soon afterwards he constructed a much larger telescope, the speculum of but the essarily orbitual lescriblendar, in order ould be .t would ture was share of ew days f Divine regular n nearly ving to e rest of

dered to

 foremost thumble which to vever, an principles led well ; or reflectsy by the ieh as he cordingly a another t it had ot appear e been to he set it nnounced comets, it d to be a e named is patron, Uranus, culum ofwhich was four feet in diameter, and the tube forty feet long. The spacepenetrating power of this instzument was reckored at 194, that is, it could enable the observer to see into space 194 times as great a distance as could the unaided eye, With this ho discovered two more satellites of the planet Saturn; six out of the number that revolve around Uranus were also detected by him; so that he made a very large addition to the number of the heavenly bodies then known. But his most important discoveries were made about the stars and nebulx. A large number of double and triple stars were first observed by him and carefully noted, with a view of determining, if possible, whether any of them exhibited any sensible parallax. The Milky Way was also resolved by the power of his magnificent telescope, and thus some idea was formed of the size and character of the cluster of which our whole system forms but an insignificant fraction.

Sir John Herschell, the son of this distinguished man, who died receatly, displayed a similar love for astronomy. In conjunction with Sir J. South he produced a catalogue of 380 double stars, whose distances and angles of position they bad determined. Sir J. Herschell afterward produced a ist of upward of 3300 double and triple stars from his own solitary observations, accompanied with all the micrometrical measurements ; and he also undertook a journey to the Cape of Good Hope for the purpose of making observations in the southern hemisphere of the heavens, and made many interesting discoveries both of stars and nebule. Other astronomers we have named in the other places in corinection with certain discoveries, and there are still other distinguished ones which we would wish our space permitted us to mention. There is, however, an astronomical instrument which we may refer to before elosing this historical sketeh of the science, as having been found of great use in determining many difficult points. This is a reflecting telescope constructed by the late Earl Rosse, the speculum of which is six feet in diameter, and its focal length fifty four feet. Its higher powers, however, owing to the amount of moisture in the atmosphere can only be used at rare intervals. This instrument, though not so clear in its definitions as telescopes of lesser magnitude, such as the large one of Herschell, may still fairly be considered as one of the wonders of the age.

CONCLUSION OF PART FIRST.

From all the facts which the science we have now reviewed has revealed to us, both in relation to the world in which we dwell, and to all the other luminous and non-luminous worlds which surround us, in the heavens, on all sides, infinitely, it is evident that astronomy intimately and necessarily pertains to the demonstration of the subject which it is our endeavor to elucidate, the subject of Existence and Deity. Confined as man is to this terraqueous globe, and to only a limited portion of it, he could have no worthy idea of the great universe, or of the glorious worlds which surround him, did not the earth itself afford him the means, in the telescope, of
enlarging his viows with respect to them. This noble instrument, as well as the microscope, by which we become acquainted with the invisible world in the other direction, is made of what are rogardod as the hum'lest of earthly materials ; still, but for their use we might be to-day in the position in which the people of 1500 or 2000 years aro were, having no definite knowledge, and constantly changing our views and groundless theories, as to the system of the universe and Infinite oxistence.

There is nothing more evident than that man is of the saue "ature in every respect as the world in which he dwells, the media in which he lives and moves. He is in fact, as any other creature ${ }^{\text {f that }}$ exists in it, a part of it. It is quite as evident, from what astronomy and other sciences teach us, that the earth is of the same nature as are all those glorions worlds by which it is surrounded. It is, in fact, if we may so express it, a part of the universal whole. We see all these orbs, co-existent in space, in mutual dependence on each other, as are the members of the human body ; yea, and more so, for the human botly may lose one or more of it; members; but one of those heavenly bolies, a inember of the great universe, cannot be lost, not a particle of it. 'They all miversally obey the same laws procecding from that simple principle of gravitation, a principle which not only preserves their existence in the forms in which they ure, but also governs their motions, and confines them exactly to their own places. We see that the principles of light and heat and gravitation act exactly alike, and equally, with respect to them all. This efeot is abundantly sufficient to teach us that they are all of the same goderal substance ; but of this fact we have sensible evidence by bsing mate, as it were, intimately acquainted with the surfaces of those that are nearest us by means of the telcseope, and with the nature and constitution of those that are far distant from us by means of the colors of their light, and spectrum analysis. They are all the same general substance, the same spirit pervades the whole; they are all individual members of the infinite whole. When we walk abroad and see a laborer digging a ditch or a pit in the earth the thought sometimes strikes us, that the substance on which that laborer is operating is just the kind of substance of which we ourselves are compnsed, and to which we shall one day, perhaps, ere long return, as it has happened to an infinity of our predecessors of mankind: that substance appears humble, but wherein is our superiority to it. And yet how few there are of mankind to whom such a thought ever occurs in its proper sense. Men are accastomed to look upon such things as altogether beneath their notice; and not to allow such thoughts for a moment to occupy their mind. They look upon the earth as a dead thing, devoid of life; and yet it is full of the principle of life; there is not the minutest particle of lifeless matter in the whole earth, nor in the universe; yea the earth itself, as well as all worlds, is all existing in life. We who are present are accustomed to think of the earth as a dark, cheerless
abode, and to wish that our lot had been to live in some of those bright worlds we see surrounding us; but were we sitnated on the moon, or even on the planet Venus or Mars, we should behold what a glorions orb our earth appears from thence ; it partakes of that glory which we have seen to characterise the other heavenly orbs; being of the same nature it is no less intrinsically good and glorious than they. Why then should we be discontented with our abode? Why should wo wish to transfer our residence from it to other worlds which aro not superior to it in kind? Why should wo be afraid when we die to return to it, in hopes that we may again arise superior in scale of beiur to what we now are? We should always cherish the strongest faith and hope that wo shall live intelligently and happily after death. We should indeed live to be good and to do good. We should use the gifts and privileges which the world afforls us, as not abusing them ; we should obtain them and use them in the best possible maner; we should in fact live in such a way that we should never be afraid to die; and thus we should in reality find that our world would present to us a heavenly aspect, a delightful abode with which we should be contented, and whieh we should not be desirous of changing for another. We should endeavor to attain, while living here, the first resurrection, that is, the resurrection, or new birth, from the death of sin to the life of righteousness. We should crucify the natural man, with its affections and lusts; denying ourselves the inordinate pleasures of the world and all ungodliness we should live soberly, righteously, and honestly in this sphere of our existonce. We iuvite all to take this course, and wo promise them thus doing, thus living, they will experience a heavenly peace and happiness in themselves such as the followers of natural and worldly lusts shall not experience ; and they shall not be afraid to die when their time comes to dic. They will come to know God, and God will always support and comfort them ; and be a near and true friend to them, in whatever condition they may be in life; they will also be taught (Gol, and great shall be their peace !

Blessed and holy are they that have part in the first resurrection ; on such the second death shall have no power ; even the approach of their natural death they shall not fear; it will present no terrors to them; resting in the faithfulness and goolncss of the Lord, their minds are stayed in perfect peace ; they shall be priests unto Gorl, and shall reign as Clurist forever!

In conclusion of this first part we would remark that in treating of the system of the earth in the begiming of this book we have merely brought forward facts which tended to demonstrate and illustrate its cternal existence, or ilat of the orde" of nature and man in the main as now existing, without intending to impose upon others the belief of this eternal existence, unless the demonstrations which we have made, and will make in the second part, together with their reason, should lead them to believe

[^0]: - In our conceptions concerning the Creator we cannot conceive of llim as anylhing, although fe is present everywhere, in the earth and in ourselves, creating in us to will and to do of His good plensure. Being infinite IIe is not conceivable as any object or thing, but we can conceive of the ideas which have eternally existed in tho Creator's mind, from the endless diversity of created objects which present themselves to our view.
 \dagger This general idea of creation refers to all the objects created on and in the earth, on and in each of the heavenly bodies, or in any part of space, as well as to the earth and each of the heavenly bodies themselres, innsmuch as they, analogously to the buman body while living, are continually and wholly subject to chauge, and are iu this sense objecte of creation.

[^1]: * See page 21.

[^2]: (*) Mind as it relates to man is properly called a development from matter or from spirit ; but mind is really infinite and universal as is deity. The soul as applied to man means the living, conscious, rational human being, and in a wider sense the principle of life in man.

[^3]: (*) Carbonic acid is composed of Carbon and Oxygen.

[^4]: - Duphes, Jomral in Ashantec
 \dagger MeLeod's Vorage to Africa.

[^5]: * Cook's Universal Geography.

[^6]: * A tomanu equals about S3.02.
 \dagger Frazer's Journey to Khorazan.

[^7]: *Smellie's Philosophy: Natural History.

[^8]: * Gibbon's Rome.

[^9]: * Miot's Memuirs.

[^10]: - Memoirs of Henry the Great.

[^11]: * Gregoire.

[^12]: - Travela through Spain and Portugal in 1803.
 \dagger Bourgoing's Modern State of Spain.

[^13]: * Millot's Modern Hist. Vol. 1.

[^14]: * Millot's Modern History.

[^15]: Nosheim's Hist., 12 ll Cent.

[^16]: - Moshrimis IIist. 124 Cl Cull.
 $\dagger 11$.

[^17]:

[^18]: *See a volume in Italian entitled " Il Cardinalismo di Sancta Chiesa." Or the History of the Cardinals of the Roman Church.

[^19]: - Robertson's Charles V.

[^20]: - Bourgoing's Modern State of Spain. Enc. Brit, Art. Inquisition. $\dagger \mathrm{Id}$.

[^21]: * Histoire Abrégée de l'Inquisition.

[^22]: - Inquisition Unmasred.
 † Kaime's Sketches.

[^23]: * Enc. Brit. Art. Dragooning.

[^24]: - Kaime's Sketches.

[^25]: - Morse's American Geography.
 \dagger Kaime's sketches.

[^26]: Report of the Wesleyan Missionary Society for 1824, Debates in Parliament 1825.

[^27]: - Report of the Wesleyan Missionary Society, for 1824. Debates in Parliament 1825.
 - Cong. Magazine, June 1825.

[^28]: - See, ' Tesearches conceri ing the institutions and monuments of the ancient people o. America."

[^29]: - Sce Gospel of John, chapter I.

[^30]: - The consideration of the great development of language among the civilized nations, ancient as well as modern, would go fir to show man's true position in the scale of creation. This is especially so in the case of the Greek langunge, which is constructed with such mathemutical precision, and which has been cultivated after that manner in such un early age. Also, in the Latin, which npproaches the Greek in the benuty and the complexity of its construction, though net in the smoothuess of its sound, man's mental superiority over the sower adimals is no less appurent. Even in the contaruction of these two languages we see a very remarkable degree of skill dispiayed, aud in their use during the historic ages, a wonderful development of reasoning power. But because the language of a nation does not display a great number of words, this is not a sufficient indication that it is not ingenionsly constructed. Succinctness of expression gives power to language. The languages of all the Indian tribes of America, South and North, including the Esquimatix, though differingmuch from each other as to root and sound, are all constructed upon the polysinthetic principle; that is, root is so added on to root, that quite a number of ideas may be expressec by one conplex word. And these people do not give much attention to the niceties and the mathematical complexities of mood, and tense, und ense. For instance, one of the tribes, the Algonguins, are said by a missionary, who has been amongst them, to heve espressed the following number of ideas by oue word, "nalholineen;" "Come and fetch us across the river in a canoe." The Greek language, both as to its alphmbet and construction, must have been in use in very early times. This is evident from the perfection it displayed, as compared with other aucient languages, even so early as the age of Homer, the 12 th century B. C. It then had its several dialects of the Doric, Ionic, .Eolic, and Attic, which all after yielded in perfection to the perfected Attic. The Latin also, which, as the Attic, was the perfected product of many Itnlian dialects, must have had a rery early origin as to its characiers and construction. since that we meet with the construction of mood, and tense, and case, even in the earliest authors of this langunge, as in the Greek. The characters and constructions of these two languages are old, and the thought of their authors is old, and indicative of true human feeling.

[^31]: - That this infinity of ideas always existed in the Creator's, mind is necessarily certain from the fact of the infinite and eternal omnipresence of the Creator, which necessitates that these ideas could not arise to him from any other source than from himself. The

[^32]: Creator alo
 It cannot be from the thi which it is creator's mi the earth, or considered direction in heavenly bo around each has had a be and knowle and an end earth, we fin of another ir mineral depe earth may b object of cre contrary to reason may to its form a

[^33]: Creator alone is cternal ; all created things have a beginning and an end in time and space It camnot be snid that the iden or ideas implied in the created thing arose to the Creator from the thing created nay more than a picture can exist without an original existing of which it is a copy. All created things are merely copies of idens pre-existing in the crentor's mind. This general idea of created things refers to all the objects created on or in the earth, on or in any of the beavenly bodies, or in any part of space. That the earth, considered as a globe made up of solid, liquid and aeriform substances, has a limit in every direction in space cannot be doubted; and thas it is beyond all doubt with each of the heavenly bodies, for the earth and each of them perform motions and revolutions in space around each other ; but it camot he said with any exhibition of evidence that any of them has had a beginning or will have an end in time. It is in accordance with our experience and knowledge that all things created in the animal and vegetable world have a beginning and an end in time and space; and also in the mineral world, even in the bowels of the carth, we find change taking place, one form or species of matter frequently taking the place of another in mineral existences, and to the extent that this change takes place in the mincral department of existence, to this extent there is mineral creation. Indeed the whole carth may be said to be continually in a state of change, and so it may be said to be an object of creation. But while all these creative changes which we speak of take place it is contrary to our experience, nor is there any valid evidence to prove, whatever individual reason may have to say concerning it, that the earth or any one of the hearenly bodies as to its form and substance, ever existed otherwise than it exists now.

[^34]: - Ileas which do not represent real things are fictitious, creations of the imagination.

[^35]: - The e most adm correspon of vision. hemisphe lattice wo middle, e the differy 6236 in $t 1$ 8000 in 1 drone-fly

[^36]: - The eyes of beetles, silk-worms, llies, and several other kiuds of insects are among the most admirable productions of the Creator. Ou the head of a fly are two large protuberances, corresponding to the two cyes in other animals, one on each side; these constitute its orgar a of vision. The whole surface of these protuberances is covered with a multitude of small hemispheres, placed with the greatest regularity in rows, crossing each other in a kind of lattice work. These little hemispheres have cach a minute, tramsparent, convex lens in the middle, ench of which has a distinct branch of the optic nerve ministering to it; so that the different lenses may be considered as so many distinct eyes; Mr. Leeuwenhock counted 6236 in the two eyes of a silk-worm, when in its fly state; 3180 in each eye of a beetle; anl 8000 in the two eyes of the common Hy. Mr. Hooke reckoned 14,000 in the eyes of a drone-fly; aud in one of the eyes of a dragon-fly there have been reekoned 13,500 of these

[^37]: es, and consequently in both eyes 27,000 , every one of which ls capable of forming a ustinct image of any object, in the same mamer as a common convex glass; so that there are 27,000 images formed on the retina of this little auimal. Mr. Leenwenhoek, haring prepared the eye of a fy for that purpose, placed it a little tarther from his microscope than when he would examine an object, so as to have a proper focal distance between it and the lens of his microscope; and then looked throngh both, in the manner of a telescope, at the steeple of a church, which was 299 feet high, and 750 feet distunt, and could plainly see through every little lens the whole steeple, inverted, though not larger than the point of a fine needle; anil then directing it to a neigbouring house saw through many of the little hemispheres, not only the front of the honse, but also the doors and windows, and could discover distinctly whether the doors were open or shut; Such an exquisite piece of mechanism transceuds all human comprehension.

 The eges of a fly are very large when compared with the size of the head. If one of these compound eyes be examined under a glass with a linear magnifying pover of 100 the organ will be found to consist of many thousand tubes, each fixed in a six-sided case. Every one of these eylets appears to be a perfect simple eye, resembling in all essentials that of a man. Dr. Hooke gave the number of eyelets in each eye at 7,000, and Dr. Carpenter estimates them at 4000 . Thus at the lowest computation, a common house-fly jossesses 8000 separate organs of vision.

 The eyes of all insects are compound. The eye of a butterfly contains in reality about 17,000 eyelets giving to this gauly insect, 34,000 in all. Each eyelet ts a perfect orgun in itself, bexagonal, or six-sided, in shape, so that the whole collection resembles the cells in a large honeycomb. Some of these insects have also two simple eyes on the top of the head, so that we must confess ourselves to be altogether inferior in the matter of eyes to the gandy butterfly. It must not be supposed that when a butterfly looks upon a female of his own species he sees 34,000 flutering beauties before him. As the two human eyes do not duuble objects so the numerous lenses of the butter fy may combine to form but one image..

[^38]: - See page 197.

[^39]: * Let $A B$, represent a plane mirror, and $C D$, a line, or ray of light, perpendicular to it. Let E D, be the incident ray, from any object; then D F, will be the reflected ray, thrown back in the direction D F ; and it will make with the perpeudicular $C D$, the same angle which the incident ray $E D$ does with the same perpendicular ; that is, the ungle $F D C$, is equal to the angle $E D C$, in all cases of obliquity; the perpendicular ray being, of course,
 perpendicularly reflected. The way we see our taces and our persons iu a looking-glass, is illustrated by figure 87.

[^40]: * For illustration of refraction: T.et A D HI I, fig. 89, be a body of water, A D its surface, C a point ia which a ray of light, B C, enters from the air into the water. This ray, by the greater density of the water, instead of passing straight forward in its first direction to K , will be bent at the point C , and pass along in the direction C E , which is called the refracted ray. Let the line F G be drawn perpendicular to the surface of the water in \mathbf{C}; then it is evident that the ray BC , in passing out of the air, a rare medium, into a dense medium, as water, is refracted into a ray $C E$, which is nearer to the perpendicular C G than the incident ray BC; and, on the contrary, the ray E C passing out of a denser medium into a rarer, is refracted into C B, which is further from the perpendicular.

 The same thing may be otherwise illustrated, as follows :-Suppose a hole made in one of the sides of the ressel, as at A , and a lighted candle placed within two or three feet of it, when empty, so that its flame may be at L ; a ray of light proceeding from it will pass through the hole A in a straight line, L B C K, until it reach the bottom of the vessel at K, where it will form a small circle of light. Having put a mark at the point K, pour water into the ressel until it rise to the beight A D ; and the spot of light which was formerly at K will appear at E ; that is, the ray which went straight forward when the vessel was empty, to K , has been bent at the point \mathbf{C}, where it strikes the water, into the line C E. In this experiment it will be necessary that the front of the vessel be of glass, in order that the course of the ray may be seen; and if a little soap be mixed with the water, so as to give it a little mistiness, the ray C E will be distinctly perceived. If, instead of fresh water, we fill the vessel with salt water, it will be found that the ray B C is more bent at C.

 In like manner alcohol will refract the ray B C more than salt water, and oil moie than alcohol ; and a piece of solid glass, of the shape of the water, will refract the ray still mone than the oil. Further explanation: In this figure B C is the incident ray, F G the perpendicular, B F the sine of the angle of incidence $B C F$, and GE the sine of the angle of refraction G C E. Now, it is a proposition that the sine B F, of the angle of iacidence BC F, is either accurately, or very nearly, in pe piven proportion to the sine G E of the angle of refraction G C E. Tuis ratio of the sigas is as 4 to 3 when the refraction is made out of air into water; that is BF:GE:: $4: 3$. When the refraction is made out of air into glass, the

 Fig.女 =
 proportion is about as 31 to 20 , or nearly as 3 to 2 . If the refraction be out of air into diamond, it is as 5 to 2 , that is BF:GE::5:2. The denser the medium is the less is the angle and siue of refraction. If a ray of light, FG , were to pass from air into water, or empty space into air, in the direction C F perpendicular to the plane A D, which separates the two mediams, it would suffer no refraction, because one of the essentials to that effect is wanting, namely, the obliquity of the incidence.
 The refraction of the atmosphere produces an effect upon the heavenly bodies that their apparent positions are generally different from their real. In consequence of this the sun is seen before he comes to the horizon in the morning, and after he has sunk beneath it in the evening; and hence this luminary is never seen in the place in which it really is, except in places withiu the torrid zone, when it passes the zenith at noon. The sun is visible whes thirty-two minutes of a degree below the horizon, and when the opaque curvature of the earth is interposed between our eye and that orb.

[^41]: *This may be illustrated by the following figure. Suppose that light which flows from a candle A, and passes through a square hole B, is received upon a plane C, parallel to the plane of the bole; or let the figure C be cousidered as the sluadow of the plane B . When the distance of C is double of B the length and breadth of the shadow C will be each double of the length and breadth of the plane B, and treble when A D is treble of A B, and so on. Therefore the surface of the shadow \mathbf{C} at the distance A C, double of A B, is divisible into four squares, and at a treble distance into nine squares severally equal to the square B. The light theu which falls upon

[^42]: the plane B, being suffered to pass to double that distance, will be uniformly sprend orer four times the space, and eonsequently will be four times less intenae in every part of that space. And at treble distance it will be nine times thimer, and at a quadruple distance sixteen times thinner than it was at first. The quantities, therefore, of this rarified light receired upon a surface of any given size and slanpe, when remored snccessively to their several distances, will be but one-fourth, one-ninth, one-sixtenth of the whole quantity received by it at the first distance A B. This law holds good with respect to the quantity of light received by the planets at their respective distances from the sun.

[^43]: - The separation of a ray of white light into different colors, by refraction, may be more accurately understood as represented in figure 91, where a ray of light is admittel through an aperture F in a window shutter into a darkened chamber, and causing it to fall on the prism A B C. A ray, D, thius entering, and suffered to pass unobstructed, would form on a plane surface a circular dise of white light E ; but the prism being so placed that the ray may enter and quit it at equal augles, it will be refracted in such a manuer as to form on a sereen II N , properly placed, an oblong image, called the solar spectrum, and divided horizontally into seren colored spaces or bands of unequal extent. The angle ACB is the refracting angle of the prism. It is seen that the ends of the spectrum are semicircular.

[^44]: * Memoires de la Société d'Arencil.

[^45]: :" This diag the position Libra, Sco

[^46]: :'This diagram of the हeasons will tend to illustrate the subject more clearly. It shows the positionsen the signs of the Zodiac. Aries, Tau 1s, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricornus, Aquarius, Pisces.

[^47]: - Figure 93 represents the constellation Orion; 94 represents the constellations of the Great Bear, the Little Bear, aud the Pole Star. The seven sturs in the lower part of the figure represent Ursa Major, or the Great Bear, sometimes knowa as the I'low and Charles' Wuin. The seven stars in the upper part represent Ursa Minor, or the Little Bear, the largest star of which on the right hand side is the pole star. The two stars ou the right hand side of the Great Bear are called the l'ointers, because they point straight toward the norlh pole, and they are distant from each other about 5°. If a line connecting these two stars be considered as prolonged upwards to a considerable distance, ubout 29°, until it meet the first bright star, that star is the pole star, which is here represented at he highest part of the figure. About the beginning of November, at 6 or 70° clock in the evening, the Great Bear will nppear near the north, at a low elevation above the horizon, mearly in the position represented in the figure. Let an observation be made about the middle of A_{p},ril, at 10 o'clock in the evening, the Great Bear will appear nlmost directly over our heads, alyse the pole star ; and then we must conceive the line joining the two pointers as drawn downuarids toward the pole star. At different times of the night, and at diflerent seasons of the year, the Great Bear will mpenr to be in difierent positions with respect to the pole star sometimes below, sometimes above, and sometimes to the East or the West of it. But in all positions a line drawn through the pointers will direct the eye to the pole star.

[^48]: - This is obtained by dividing the sin's circumference $2,679,785$ miles by the number of hours in which the rotation is performed, namely 608; and the quotient is the rate of motion per hour.

[^49]: appeared to have described an are of about 30°, wiereof Venus was the centre, and the radius 20°. The two following nights being hazy, Venus could not be seen. But on May 7th, at the same hour as on the preceding days, he saw the satellite again, iat above Venus, and on the north side, as represented at 7 , between 25^{\prime} and 26^{\prime} upon a line which made an angle of 45°, with the vertical toward the right hand. On May 11th, at nine o'clock, p.m., the only night when the view of the planet was not obscured by moonlight, twilight or clouds, the satellite appeared nearly n^{t} t the same distance from Venus as before, making with the vertical an angle of 45° toward the south, and above its primary. The light of the satellite was always very weak; but it had always the same phase with its primary, whether viewed with it in the field of the telescope or alone by itself. He imagined that the reason why the satellite bas been looked for so often without success might be, that one part of its glohe was crusted over with spots, or otherwise unfit to reflect the rays of the sun with any degree of brilliancy, as is supposed to be the case with the fifth satellite of Saturn.

[^50]: * In order that the general reader may understand what is meant by the diameter or semi-diameter of the earth forming the base line of those triangles by which the diatances, etc., of the heavenly bodies are measured, we think it necessars to give the following explanation:

 In any triangle, as $A B C$, if the length of the side $A B$ be known, and likewise the quantity of the angles at A and B, or the number of degrees and minutes they subtend, be ascertained, we can find the length of the sides $A C$ and $B C$. If $A B$ represent a horizontal

[^51]: - The proportion of the ciremnference of' a circle to its diumeter is uearly as 22 to $7,-$ more accu ately as 3.1416 to 1 . Therefore if wo multiply the eiremumene by 7 , und divide the product by 22, we obtain the diameter nearly. And by multiplying the diumeter by 22 , and diviling the product by 7 , we obtuin the circumferphe. But we oblain the result more acenrately by multiplying the dianeter by 3.1416 in order to obtain the circumference ; and by dividing the circumberene by $3.1 / 16$ in order to obtain the diameter. And we ottain the superficinl urea, nearly, hy multiplying the square of the dianeter by $3,1: 116$: and the solid contents, nearly, by cubing the dimmeter.

