IMAGE EVALUATION

Photographic Sciences Corporation

23 WEST MAIN STEEET WEBSTER, N.Y. 14580

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations on couleurBound with other material/
Rellé avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliura serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été pcssible de se procurer. Les details de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou peliiculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes

Pages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponiblePages wholly or partially obscured by errata slips. tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partidiemens obscurcies par un feuillet d'errata. une pelure. etc., ont été filmées à nouveau de facon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé su taux de réduction indiqué ci-dessous.

The copy fiimed here has been reproduced thanks to the generosity of:

Library of the Public Archlves of Canada

The images appearing here are the best quallty possible considering the condition and leglbility
of the original copy and In keeping with the filming contract specifications.

Original coples in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated Impression, or the back cover when approprlate. All other original coples are fllmed beginning on the first page with a printed or Illustrated Impresslon, and ending on the last page with a printed or illustrated Impression.

The last recorded frame on each microflche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applles.

Maps, plates, charts, etc., may be filmed at different reduction ratlos. Those too large to be entirely included In one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following dlagrams lllustrate the methoc:

L'exempialre filmé fut reproduit grâce à la génêrosité de:

La blbllothèque des Archives publlques du Canada

Les Images sulvantes ont été reprodultes avec le plus grand soln, compte tenu de la condition et de la netteté de l'exemplalre flimé, et en conformitté avec les conditions du contrat de flimage.

Les exemplalres originaux dont la couverture en papler est imprimée sont filmés en commençant par le premler plat ot en terminant soit par la dernlare page qui comporte une emprelnte d'Impresolon ou d'llustration, solt par le second plat, selon le cas. Tous les autres exemplaires origInaux sont filmés en commençant par la premlere page qui comporte une empreinte d'Impression ou d'llustratlon et en terminant par la dernière page qul comporte une telle empreinte.

Un des symboles sulvants apparaîtra sur la dernlère Image de chaque m/crofiche, selon le cas: le symbole \rightarrow signifle "A SUIVRE", le symbole ∇ signifle "FIN".

Les cartes, planches, tableaux, etc., peuyent être fllmés à des taux de réduction différents. Lorsque le document est trop grand pour etre reprodult en un seui cllché, il est filmé à partir de l'angle supérleur gauche, de gauche à drolte. et de haut en bas, en prenant le nombre d'images nécessalre. Les dlagrammes sulvants illustrent la méthode.

ADVANCE PROOF-(Subject to revision).
This proof is sent to you for discussion only; and on the express understanding that it is not to bo used for any other purpose what-ever.-(Nee Sec. 47 of the Conatitution).

eanadian \$oclety of ivil engineers.
 INCORPORATED 1887.
 TRANSACTIONS.

N.B-This Society, as a body, does not bold itself responsible for the facts and opinions stated in any of its publications.

A MICROMETER ATSACHMENT FOR THF TRANSIT INSTRUMENT, WITH EXAMPLES UF ITS USE IN SURVEYING, LEVELLING, ETC.

By W. T. Thompson, A.M.Can.Soc. C.E,

The accompanying photograph represents a 6 inch reiteration transit, with micrometer attachment, the lattor was constructed to my order by Mr. James Foster of Toronto, and in connection with the transit telescope affords the means of measuring with great accuracy small vertical angles betweon the limits of 0.8 and 3 .

It consists of a metal box firmly nttached to the vernier plate of transit in a plane at right augles to the horizontal axis of telescope, and containing a mierometer serow, with divided head and vernier, and two movable nuts \mathbf{N} and I , the former has 40 threads to the inch, and bears against the vertical clamping bar B being sept in close contact by the spring S.
The head of serew is divided into 100 parts, and is read by the vernier V to the $\frac{1}{100 \pi}$ th purt of a revolution, and an ench complete revolution moves tha nut N through $\frac{1}{4}$ the of an inch, the $\frac{1}{1000}$ th part will move it through the godog th of an inch, and as the longth of the clamping bar B front centre of nxis to point of contaet with nut N is $6 \frac{1}{2}$ inehes, this will nove the telescope through an anglo of 0.8 ," which is the smallest that ean be mensured with this mierometer.

The index nut I is for recording the number of revolutions made by the serew ; it has 20 thrends to tho inch, und the edge of box is divided into 20 parts to an inch, so that ench tuin of the scrow carries the inder nut through one division ; therefore, in muking any observation, the number of completo revolutions is rend oll from the scale, and any fractional part from the divided hend and vernier.

The clamping bur B consists of two parts so arranged that the telescope may bo moved in altitude either by the micrometer or by the ordinary tangent serew I', so that when desired the micrometer may be set at zero or any reading, and the telescope accurately set on any object by the tangent T.

In measuriug distances with this microneter, the writer has used for a base a light round rod 30 links in length, about 2 inches in diameter :t the bottom, tupering to 1 inch at tho top, and provided with a universal spirit lovel to ensure vertienlity, with 3 targets, one 5 links from the bottom, one 10 links nheve this, and one at top of rod, giving : clear distance of 25 links between the ontside targets. 'The targets were firmed of bright tin and bhack rubber tacked on tho rod, as shewn in tho margin.

The tin reflecting light nul the black rubber absorbing it, the division between them was very distinet.

The lower targets 10 links upart were only used in measuring short distances, the onter tirgets 25 links apart being used in all other cases.

If a distance of say $\mathbf{4 0}$ chains be mensured on a piece of level ground II upon the iee, bud the number of thres of the micrometer screw requiad to move the horizonal wiro of the telseope from one target to another be denmeeriny n, then ns the bise is very short as compared with distanees to be memsurd, it may be considered to represent tho

are which sibtends tho angle at tho instrument, and this angle will vary inversely with the radius or distarce. Therefore at one chain the number of turns of the sorew would be represented by $40 n=N$. If now the rod be held at any unknown distance denoted by \mathbf{X} ehnins, and the num. ber of turns of the serew is observed $=n^{\prime}$ then $X=n_{n}^{\prime}$ where the base subtending n^{\prime} is very smal! us compured with its distance from the instrument, and the effect of differential refration is assumed to be constant.

As, however. is different distanees from the instrument the differenee of lefraction of the targets will vary slightly, it is neeessary, in order to prepare an accurato table for relucing the observed readings to distances, to note the actual readings at eneh ehain of distance from 5 ehains up to 50 ehains, and interpolate the readings for differenees of 10 links. Tho distances corresponding to any observed readings ean then be at onee obtained by inspecticn. The condition of the atmosphere at the time should be noted, and on different days, if onc or two distances are ehained, and the observed readings comptred with those given by the table, we shall be able to apply correctiens to the tabular distanees due to different atmospheric combitions.

The horizontal wire of the telescop: Nhould be very fine and the objeet glass and eye-piece must be "ry earefutly focused. It is also important that the axis should he socured with noderate pressure in the Ys , and to obviate as far as possible the tendency to rise, the spring S must be slightiy bent so as to grip the stud against which it bears.

The teleseope used has an objeetive of 1.5 inches clear aperture and 10.5 inches focus, and the eye-pieec a manifying fower of' 32 diameters.

With this instrumren and the "5 link target rod ieseribed, distanees up to 40 chair say be measured, with an error seldom exeeeding $\frac{1}{2}$ link per ohain, and with a more powerful teleseope it is probable even eloser results could be obtained.

We shall now give some examples of the use of this attachment in surveying and eugineering operations.
I.

A method of traversing with the transit and mierometer attachment
In regard to traverse surveys, the Manual of Survey for I ominion Lands provides as follows:-
"The use of the mierometer 10 r sich work will be allowed, provided that the elosing error does not exceed one chmin in one bundred chains. The micromoter must be of an approved pattern, and must be submitted to the Surveyor General before being used on the survey."
Tho mierouseterattachment deseribe deomplies with the requirements, and in eonnection with the transit affords the means of making traverso surveys with great facility.

The method used by the writer is as follows: the instrument being set up on the shoro of a river or lako, and either on one of the survey lines or at a point fixed in position with referenee to tho same. It is

set up at the starting point of the survey, and earefully levelled, the direction of the line is fised by readings of the horizoutal cirele, the bubble of teleseope level brought to zero and reading of mierometer noted, then the lower target being adjusted to the height of the teleseope, the rod-man proeeeds along the line and holds the rod at all points where any marked ehanges of inelination oecur, the distance to each point being determined from readings on the targets, also the difference between the mierometer reading for level zero and the reading on the lower target gives the differenee of level by eonsulting our table.
We may also obtain the direetion, dist ince, and difference of level of points on eitler side of the line referred to the Instrumental Stations, and without planting any stakes exsept at these stations, collect the necessary data for preparing a plan, profile and eross sections of the line, from which in location can be decided on, which would then be ehiined, staked and levelled in the usual way.

are which subtends the angle at the instrument, and this angle will vary inversely with the radius or distance. Therefore at one chain the number of turns of the serew would be represented by $40 n=N$. If now the rod be held at any unknown distinee denoted by \mathbf{X} chains, and the num. ber of turns of the screw is observed $=n^{\prime}$ then $X=n_{n}^{\prime}$, where the base subtending n^{\prime} is very small as compared with its distance from the instrument, and the effect of differential refraction is assumed to be eonstant.

As, however, at different distanees from the instrument the difference of refraction of the targets will vary slightly, it is necessary, in order to prepare an aceurate table for reducing the observed readings to distances, to note the actual readings at each chain of distance from 5 chains up to 50 chains, and interpolate the readings for lifferences of 10 links. The distanees corresponding to any observed readings ean then be at onee obtained by inspection. The eondition of the atmosphere at the time should be noted, and on differeut days, if one or two distances are chained, and the obselved readings compared with those given by the table, we shall be able to apply corrections to the tabular distanees due to different atmospherie conditions.

The horizontal wire of the teleseops should be very fine and the objeet glass and eye-pieee must be very earefully focused. It is alsoiuportant that the axis should lee sceured with uoderate pressure in the Ys , and to obviate as far as possible the teudency to rise, the spring S musi be slightly bent so as to grip the stud against which it bears.

The telerepe used has an objuetive of 1.5 inches clear aperture and 10.5 inches focus, and the eye-pieee a magnifying power of 32 diameters.
With this instrument and the 25 link target rod deseribed, distances up to 40 ehains may be :ucasured, with an error setdom exceeding $\frac{1}{2}$ link per chain, and with a more powerful telescope it is probable even closer results could be obtained.

We shall now give some exanples of the nse of this attachment in surveying and eugineering operations.

I.

A method of traversing with the transit and micrometer attachment
In regard to traverse surveys, the Manual of Survey for Dominion Lands provides as follows:-
"The use of the micrometer for sueh work will be allowed, provided that the elosing error does not exeeed one chain in one hundred chains. The mierometer must be of an approved pattern, and must be submitted to the Surveyor General before being used on the survey."
The mierometerattachment aeseribe deomplies with the requirements, and in connection with the transit affords the means of making traverse surveys with great facility.

The method used by the writer is as follows: the instrument being set up on the shore of a river or lake, and either on one of the survey lines or at a point fized in position with reference to the same. It is
carefully levellod, at the horizontal eirele reading for the north point noted. Then the rod-man proceeding along the shore holds the rod at all points where marked deviations ocenr, the posiliou of each point being fixed in direetion and distine" from the instrunental station, by readings of the horizontal cirele and micrometer. at suitable points new stations ant taken and the survey continued in the same manner. The noteq are entured in the field book under the following headings, and written from the iettom upwards, the topography being shewn in margin If a repetition instrument is used, the two columns headed H.C.R. and H.C.R. on N are not required.

It is convenie:t to have rod-man travel uniformly from teft to right, viz., in the direction given by the hands of a wateh, and any topography will then be shewn in left hand margin.

If the initial station be called O, then the points fixed from it may be ennveniently designated O_{1}, O_{2}, O_{3}, etc., 0 to $1: 1_{1}, 1_{\overline{\#}}, 1_{1}$, ete. The reduced notes are plated in three eolumns, under the headings: Station, Azinuth, Distance, and from this data the points are ploted on a scale of 20 ethins to an incl, and the siore line defined by joining these points.

No matter how irregular the shore line may be, a perfect representation of it ean be obtained by this mothod, and in much less time than would be required by the system of survey lines and offsets.

Regarding the areas of the broken quarter seetions, it may bestated that as a water bomudary is a variable one, depending on variations of the water level, extreme aceuracy in determining these areas is not neecssary, and the planimeter or some graphical method will usuatly give sufficiently elose results.
II.

To determiue differences of level and establish grades on preliminary railway and other surveys.

The teleseope must be provided with a good spirit level, and the hozizontal wire adjusted to defiue a horizontal line when the bubble is at zero.

Then if we note the point on a rod at the distanee of say 500 feet where this line strikes, and turn the mierometer serew through one revolution, the distance between the two prints on the rod being measured, 1.5th of it is the rise or fall in 100 feet fir one turn of the screw, mad we ean now prepare a table giviug the number of turns requirel for various grades, also of the rise or tall in feet at different distanees, these ta h^{1} s should inelude the effect of eurvature and refraetion.

We also require a tirget rod eonsisting of two picees sliding upon each other, as shewn in margin, in order that the piece carrying the targets may be pushed up or down, so that the lower target can be set at the height of the teleseope above the ground, and elamped in position. The distance between the targets may be a or 6 feet, and a table for relueing observed micrometer readings to distances can be prepared in the manner already deseribed.

We are now prepared for surveying and obtaining the levels and distances along any preliminary line without the use of the chain or any other instrument.

The mote of proceding will be as follows: The instrument being set up at the starting point of the survey, and earefinly levelled, the direction of the tine is fised by readings of the horizoutal eirele, the bubble of teleseope level brought to zero and reading of mierometer uoted, then the lower target being adjusted to the height of the telescope, the rod-man proceeds along the line and holds tho rod at all points where any marked ehanges of inelination oecur, the distance to each point being determined from readings oin the targets, also the difference between the micrometer reading for level zero and the reading on the lower taryet gives the difference of level by consulting our table.

We may also obtain the direction, dist inee, and differenee of level of points on either side of the line referred to the Instrumental Stations, and without planting any stakes exeept at these stations, collect the neeessary data for preparing a plan, profile and cross sections of the line, from which a loeation cau be decided on, which would then be ehained, staked and levelled in the usual way,

III.

A very important use to which this attachment can be $\varepsilon_{i}^{p} p l i e d$ is the deternination of the latitude by measuring small differences of zenith distanee of North and South stars by a method somewhat similiar to tbat by tho zenith telescope.

For this purpose a very sensitive spirit level must be attaehed to the vertical clamping bar B in a plane at right angles to the horizontal axis of teleseope, and the bubblo should be adjusted to read zero when tho index nut I is at the eentre of the sealo ; this level should read to say 3 ," for one $m m$ space, so us to readily show a displacement of $!^{\prime \prime}$. The time, azimuth, and approximate latitude may be readily obtaiued from observations on Polaris and another star in the same vertical pline.

Then with the approsimate latitude or declination of the zenith point, we select from a Star Catulogue, sueh as the Berliner Jahrbueli, a pair of stars between the 2nd and 5th magnitudes, whieh eulminate as nearly as possible at equal distances to the north and south of the 2enith, and within say 30 degrees of it, differing not more than 2 degrees in zenith distanee, nor more than say 30 minutes in right ascension.
The observer shonld be supplied with a ehrononeter or wateh adjusted to sidereal time.
Shortly before the time of transit of the first star the telescope will be brought into the meridian plane by readings of the horizontal cirele, and the vertical finding circle set for the mean zenia distance of the two stars. The latitude level will then be brought to zero by turning the mierometer serew and reading of same noted; the serew will then be turned to the ripht or left, according as it is necessury to depress or elevate the telescope, to set it at the zenith distance of the star, and when it appears in the field, the horizontal wire will be set upon it, and a precise bisection made when it reaches the middle wire, the micrometer reading will then be noted, tho serew reversed and level again brought to zero, tho mierometer rcading again noted and mean of the two readings taken as the true reading for level zero at the instant of the star's transit. The instrument is then turned 180°, in Azimuth, and similar observations taken on the oher star.

With tiis mierometer, a right hand motion of the serew will increase the readings and zenith distances. If, therefore, we denote the reading on the star neurest the zenith by m and the reading for level zer for same stur by m_{0}, then the are measured by the mieroméer is represented by $m_{0}-m$; and if we denote similur readings foi the other star by m_{1} and m_{o}, then the are measured will be represented by $\mathrm{m}_{1}-\mathrm{m}_{c}$; and the sum will represent the total change of inclination of the telescope, or difference of upparent zenith distances $=m_{1}-m+m_{o}$ - m_{01} which mast be redueed to seconds of are by multiplying by R the number of seeonds in one revolution of the serew ; this will be determined from observations on Polaris near its elongation, or by measuring the difference of declination of close stars at their transit over the Meridian ; the value will vary slightly with the number of turns, and should be tabulated for different intervals. Then using the value eorresponding to the observed interval, we shall have for the apparent differenee of zenith distance $\left(m_{1}-m+m_{o l}-m_{0}\right) R^{\prime \prime}=\left(z-z^{\prime}\right)$, in seconds of are, where z denotes the zenith distance of southern and z^{\prime} of northern star.

In the diagram let P denote the North Pole, $/$ the Zeniti, EQ the Equator, S^{\prime} the Southern, and S^{\prime} the Northern Star ; $S^{\prime} E$ and $S^{\prime} E=$ S and S^{\prime} their declinations, Z S, and $Z S^{\prime}$, their true zenith distances $=\prime Z$ and Z^{\prime}, and r and r^{\prime} their refractions.
Then denoting the latitude ZE by ϕ. We lave $\phi=(S+Z)=$ ($\mathrm{S}^{\prime}-Z^{\prime}$). Therefore $2 \phi=\mathrm{S}+\mathrm{S}^{\prime}+\boldsymbol{\prime}+Z^{\prime}$, and sinee $\mathrm{Z}=\mathrm{Z}+\mathrm{Z}+$ and $Z^{\prime}=Z Z^{\prime}+1^{\prime}$, inserting these values, our formula becomes $\phi=\left(\frac{\mathrm{S}+\mathrm{S}^{\prime}+\mathrm{Z}}{2} \frac{-Z^{\circ}+r-r^{\prime}}{2}\right)=\left(\frac{\mathrm{S}+\mathrm{S}^{\prime}+r-r^{\prime}}{2}\right)$
$+\frac{Z-Z^{\prime}}{2}$ inserting the value of $Z-Z$, as measured by the mierometer, the final formula is $\phi=$
$\left(\frac{S+S^{\prime \prime}+r-r^{\prime \prime}}{2}\right)=\left(\frac{m_{1}-m+m_{0}-m_{01}}{2}\right) R^{\prime \prime}$ in
whieh the sign of the scoond term is the same as that of ($/\left(-Z^{\prime}\right.$), viz., if the southern star has the greater zenith distance it will have the + sign, and vice rersa.
By consulting a Star Catalogue it will be seen that in most latitudes several pairs of stars between the 2nd and 5th magnitudes, innd differing not more than 30 minutes in R, A, nor more than 2 degrees in deelination, would be available for observation with a good transit teleseope.
This method would be found useful in determining latitudes in exploratory surveys, in sonueetion with mieroneter work, and should give the latitude within $\mathbf{2}^{\prime \prime}$ or $3^{\prime \prime}$.

