

CIHM/ICMH Microfiche Series.

1,

Q

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

Technicel and Bibliographic Notes/Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Feetures of this copy which may be bibliographicelly unique, which may alter any of the images in the reproduction, or which may significantly chenge the usual method of filming, are checked below.

45

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modificetion dens la méthode normale de filmage sont indiqués ci-dessous.

	Coloured covers/		Coloured manage (
	Couverture do couleur		Coloured pages/ Peges de couleur	
			reges de couleur	
	Covers demaged/		Design de la designe	Or
	Couverture endommagée		Pages demaged/	be
	and a substantia gee		Peges endommagées	the
				sio
	Covers restored and/or lamineted/		Pages restored and/or laminated/	oth
	Couverture resteurée et/ou pelliculée		Peges restaurées et/ou pelliculées	firs
				sio
	Cover title missing/		Pages discoloured, stained or foxed/	01
	Le titre de couverture manque		Pages décolorées, tachetées ou piquées	
			ages decolorees, tachetees ou piquées	
	Coloured maps/			
	Cartes géogrephiques en couleur		Pages detached/	
	anice goographindres an conlant		Pages détachées	Th
				The
	Coloured ink (i.e. other than blue or black)/		Showthrough/	sha
	Encre de couleur (i.e. eutre que bleue ou noire)		Transparence	TIN
				wh
	Coloured plates and/or Illustrations/		Quality of print works (
	Planches et/ou illustrations en couleur		Quelity of print varies/	Ma
			Quellté inégale de l'impression	diff
	Bound with other materiel/			ent
	Rellé avec d'eutres documents		Includes supplementary material/	beg
	itene avec a eutres documents		Comprend du matériel supplémentaire	rigl
				-
	Tight binding mey ceuse shedows or distortion		Only edition evailable/	req
	along interior margin/		Seule édition disponible	ine
	La reliura serrée peut causer de l'ombre ou de la		Sedie edition dispenible	
	distorsion le long de le merge intérieure			
			Fages wholly or partially obscured by errata	
-	Blank leaves added during restoration may		slips, tissues, etc., have been refilmed to	
	appear within the text. Whenever possible, these		ensure the best possible image/	
	have been omitted from filming/		Les pages totalement ou partiellement	
	Il se peut que certaines pages blanches ajoutées		obscurcies par un feuillet d'errata, une pelure	
	lors d'une restauration appareissent dens le texte,		stc., ont été filmées à nouveau de facon à	
	mais, lorsque cele était possible, ces pages n'ont		obtenir la meilleure image possible.	
	pes été filmées.		• • • • • • • • • • • • • • • • • • • •	
	Additional comments:/			
	Commentaires supplémenteires:			

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Th

Th po of ire détails es du modifier er une filmage

85

errata to

pelure, n à

32 X

The copy filmed here has been reproduced thanks to tha ganerosity of:

Library of tha Public Archives of Canada

The images appaaring hara ara tha best quailty possibia considering tha condition and lagibility of the original copy and in kaaping with tha filming contract spacifications.

Original copies in printed papar covers ara filmad baginning with the front cover and ending on tha last paga with a printed or illustrated impression, or tha back cover whan appropriata. Ali othar original copias are filmed baginning on tha first paga with a printad or illustrated imprassion, and ending on tha last paga with a printad or illustratad Imprassion.

Tha last recorded frama on aach microficha shali contain tha symbol \longrightarrow (maaning "CON-TINUED"), or tha symbol ∇ (meaning "END"), whichavar applies.

Maps, platas, charts, atc., may be filmed at diffarant reduction ratios. Thosa too larga to ba antiraly includad in ona axposura ara filmad baginning in the uppar laft hand corner, left to right and top to bottom, as many frames as raquired. The following diagrams illustrate the imathod:

L'axempiaire filmé fut reproduit grâce à la générosité de:

La bibliothèqua das Archives publiquas du Canada

Les imagas sulvantes ont été reproduites avac ia plus grand soln, compta tanu da la condition at da la natteté da l'exemplaira filmé, at en conformité avec las conditions du contrat da filmaga.

Les exempialres originaux dont la couvartura an papier ast impriméa sont filmés an commançant par la premier piat et an tarminant soit par la dernière paga qui comports une ampreinta d'imprassion ou d'iliustration, soit par la second plat, saion le cas. Tous las autras examplairas originaux sont filmés an commençant par la première paga qui comporta une emprainta d'imprassion ou d'iliustration at an terminant par la darnière paga qui comporte una telle empreinta.

Un das symbolas suivants apparaîtra sur la darnièra Image da chaque microficha, salon la cas: la symbola → signifie "A SUIVRE", la symbola ▼ signifia "FIN".

Les cartes, pianchas, tablaaux, etc., pauvant êtra filmés à das taux da réduction différants. Lorsqua le documant ast trop grand pour êtra raproduit an un saui cliché, il est filmé à partir da l'angla supériaur gaucha, da gaucha à droita, at da haut an bas, en pranant la nombra d'images nécassaire. Las diagrammes suivants illustrant la méthode.

1	2	3
4	5	6

Canadian Society of Civil Engineers. INCORPORATED 1887.

ADVANCE PROOF-(Subject to revision).

N.B.—This Society, as a body, does not hold itself responsible for the facts and opinions stated in any of its publications.

RESULTS OF EXPERIMENTS ON THE STRENGTH OF WHITE PINE, RED PINE, HEMLOCK AND SPRUCE.

By Prof. H. T. BOVEY, LL.D., D.C.L.

To be read Thursday, 11th November, 1897.

(Read before Section G, British Association, Toronto, August, 1897.)

In a paper read before the Cauadian Society of Civil Engineers in 1895, the results were given of a number of experiments on the transverse strength of timber beams; but in the calculations it was assumed that the distortion, or diminution of depth, at the bearing surface was sufficiently small to be disregarded. It often happens, however, and especially when the timber contains a large amount of moisture; that the change in depth due to compression is excessive, producing a corresponding increase in the skin-stress.

This increase is theoretically $2 \frac{f}{d} \Delta d$, f being the intensity of the skin-stress, d the depth, and Δd the change in depth.

The method of conducting these experiments was fully described in the Paper referred to, and therefore the following points only are noted :----

All the transverse tests were made with the Wick-teed machine. The middle of the beam was supported on a hardwood bearing of 44 inst diameter. The two ends were forced down by rams under hydraulic pressure, which can be gradually increased at any required rate or can be maintained constant for any given time.

The end-pressures were kept normal to the surface of the beam by means of spherical joints which allow the end bearings to revolve.

The elasticity coefficients have been calculated from the following formula:

(a) Coefficients from direct tensile and compressive experiments;

$$E = \frac{L}{A} \cdot \frac{\Delta}{\Delta} \frac{W}{L}$$

L being the length of the specianen, A its sectional area and ΔW the increment of force producing a change ΔL in the length.

(b) Coefficients from transverse experiments;

$$E = \frac{L^3 \Delta W}{b d^s \Delta D}$$

L being the length, b the breadth, d the depth and ΔW the increment of force producing an increment ΔD in the deflection.

An error Δd in the depth theoretically corresponds to an error in E, which is a proximately measured by $3\frac{E}{d}\Delta d$.

In previous experiments, the wire used in observing the deflections was found to be somewhat coarse, and a special wire was there-

fore drawn of .002-ineh diameter.

The skin-stresses have been calculated by means of the ordinary flexure formula,

$$f = \frac{3Ly}{bd^3} (W_1 + \frac{1}{2} W_2)$$

 W_1 being the total load on the beam, W_2 the weight of the boam, and y the distance of the skin from the noutral surface.

The flexure theory is admittedly unsatisfactory, and frequently gives results which are coutrary to experieuce. Possibly, when a certain limit has been passed there is a tendoney towards equalization of stress, and the so-called neutral surface may be unoved towards that portion of the beam which is best able to bear the stress. It may indeed be more correct to assume that the distances of this surface from the tension and compression faces nro in the ratio of the ultimate tensile and compressive strengths of tho beam. This assumption, at all ovents seems to give results which are more in accordance with practice. For example, in the case of a cast-iron Tee bar, tested in the University Laboratory, the tensile skin-stress should be 22,030-lbs. per sq. in., and the compressive skin-stress 102,050-lbs. per sq. in., whereas the ordinary theory gave 33,000-lbs, per sq. in. as the tensile and 20,800 lbs, per sq. in, as the compressive skin-stress.

The tables on the following pages give the breaking weights, skinstresses, (transverse) coefficients of elasticity and specific weights of a number of air-dried, saturated, frozen and kilu-dried beaus, and also the breaking weights, tonsile and compressive strengths per square inch, (direct) coefficients of clasticity and specific weights of specimens prepared from these beams.

Character of failure.	Rt. end. Criphed. Longitudinal ehear. 13.21 Congitudinal ehear. 27.274 Crippled.		Teneile. Crippled. Tensile. Teneile.
Per et. of weight lost when dried at 212° F. at	Left end. 12. ×9 27.014		Tensile. Crippled. Tensile.
	Centre. 17.29 28.262		
Sp. wt. in I.s. per cub. ft date of test.	36.43 35.64 27 121 27.983 23.794	r TABLE H. WHTE PINE dried at 212° F.	22.007 22.105 20.674 22.648
Coefficient of elasticity in lb- per sq. in.	$\begin{array}{c} E\\ E\\ 1.296,950\\ 1,359,050\\ 1,678,230\\ 1,368,500\\ 1,625,220\\ 1,625,220\\ \end{array}$	1,245,780 1,272,440 1,282,770 1,171,240	
	Mean 4589 1210 5342 5342 5342	TABLE II HITE PINE dried	2182 5740 9392 8542
Skin stress (f) in lbs. per sq. in.	An. 2123 2123 2123 2123 2123 2123	H	2164 5569 9217 7091
	Max. 5025 4774 41774 4103 5025 5025 5025 5031 5031 5031)	2201 5911 9538 9992
Breaking weight in fls.	23.850 22.690 39,000 16.000 5,200		5,000 8,000 23,000
	1 15.2 15.25 15.23 15.23 5.9		11.925 5.925 5.9
No. of Dimensions in inches. Ream.	6. 225 6. 32 9. 1 5. 725		5.95 2.965 5.7 6.05
Dimene	- 222222		150 150 150
No. of Beam.	22584		36 38 42 42

Beams 15 and 16 were sawn out of trees felled at Keewatin in 1894, and were received into e Laboratory on the 13th of December, their weights being 415,75-lbs, and 457,78-lbs, respectively. They were both tested on the 2nd of February, 1895, when it was found that beam 15 had lost 30.69-lbs. or S.S p.c. of its weight, and that

LABLE I.

beam 16 had lost 46.59-lbs, or 10.2 p.e. of its weight. When the beams were sawn through after the test they were still found to be completely seturated with water excepting for a depth of 1 inch from the surface. The beams were from the central portions of the trees, the heart running from end to end.

of

ю

ie Ie

8

e.

r-

۱.,

1e 30

in-

' a

so

re

ns

in er, hey ind hat Beams 28 to 43 were sawn from trees folled in the water 1893-94 in Quinzo Lake Co., P.Q. They remained in water one year, and were received into the Laboratory on October the 4th, 1895. They were all first quality timber, and, generally speaking, straight in grain and free from knots and shakes.

In order to determine the excess of moisture in the timber, three slabs, one near the middle and one at each each, were sawn out of the beams immediately after they had been tested and were at once placed in a chamber kept at a temperature of 212° F. by means of steam-pipes. The moisture was also removed from the whole beams by drying them in the same chamber.

Beam 36 failed suddenly under a very small load, the fracture commencing at a knot in the tension surface. On examination it was also found that the grain on the face was oblique to the neutral surface, while there were shakes running from end to end in the neighbourhood of the heart which, on the average, was below the middle of the depth of the beam. The results of this test should be discarded, as the beam was not of fair average quality.

Beam 3S was cut out of beam 36 in such manner that the grain was straight.

Beam 43 failed under a breaking load of 23,000-lbs., but a somewhat long continued and slowly increasing deflection under a load of 22,000-lbs, seemed to indicate that at this point the beam failed in compression, although there were no apparent signs of erippling.

1

		Tension Tests.	sts.			Con	Compression Tests.				Sli	Shearing Tests.	fests.	
	Coefficients of	Spec. Coefficients of clasticity in this, Tensile Sp. Mt. per Si. m. per Si. M. Strongton 10 the Spec.	Tensile strength in ths per	in the	pec.	Coefficients of elasticity in this (compress sp. wt. strength in the size strength in the strength in the strength in the	dasticity in 10s. 4. in.	(ompres- sive strength	Sp. wt. in lis. per	Spee.	Shearing strength in lbs. per	Sp. wt in lis. per	Spec.	
	Forward.	Keturn.	н т	cub. ft		Forward.	keturn.	sq in.	cub. ft.		flats.	eub. II	1	rounds.
5000000	1,749,520 1,659,770 1,933,560 1,933,680 1,934,680 1,940,370 1,940,370 1,940,370 1,940,370 1,9423,860	1,7(2,5)00 1,956(220) 1,951(120)	10, 100 11, 111 13, 218 13, 218 12, 686 14, 103	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	$\frac{1.572}{1.571,000} \times \frac{1.572}{1.000}$	1,516,320 1,565,300 1,716,320	2916 2916 2916 2915	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	295.64 28.529 m, 117.26 27.522 m, 555.27 26.022 m, 255.27 19.28 09.2 m, 227.81 27.561 0 382.58 27.173 p, 382.58 27.173 p, 315.24 20.123 215.24 20.123	25,529 m 26,752 m 26,752 m 26,752 m 28,419 m 28,419 m 28,419 m 26,655 m 26,755 m 27,755 m 27,755 m 27,755 m 26,755 m 27,755 m 27,755 m 27,755 m 27,755 m 27,	222202	516.6 505.7 561.7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 7 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 567.7 5 5 57.7 5 5 57.7 5 5 5 5 5 5 5 5 5

ar and allim noda snawda

Remarks.—The values of E for specimens a_i , b_i c and d have been calculated from the first series of roadings only, and are consequently smaller than if repeated readings had been taken.

The mean direct tensile strength is 2.68 times greater than the calculated mean skin stress of the beam and 3.7 times greater than the mean compressive strength of the timber.

Specimens e1 and e2 contain the heart and show the least compressive strength. The ratios of length to least transverse dimensions in the compression specimens varied from 6.47 to 9.46, and the failure in each ease was due to direct crushing.

The shearing strength of the round specimens is 1,42 times greater than that of the flat specimens.

The several specimens had lost considerably in weight during the interval of their preparation from the beam and the date of test.

Tension specimen b, after the first series of readings, was entirely relieved of load and was allowed to rest for two hours.

Between the two series of readings, compression specimen f_2 remained under the load of 50,000 lbs. for sixteen hours, the final reading varying from .01117 to .01172.

i	Ĩ	Tension Tests.				Con	Compression Tests.				Shea	Shearing Tests.	ź	
Spec.	Coefficients of per s	Coefficients of elasticity in lis. per sq. in.	Tensile Sp. wt.	Sp. wt. 11 lbs.	Dett	Coefficients of elasticity In Ibs. Compress Sp. wt.	lasticity in lbs. q. in.	Compres-	Sp. wt. in ths		Shearing	Sp. wt.		Shearing strength
	Forward.	Return.	sq. in,	eub. ft.		Forward.	Return,	strengtn in lbs. per cub. ft. sq. in.	per cub. ft.	. bec	Spec. In lbs. per In trs. Spec. sq. in. of per fats.	per cub. ft.	Spec.	
	1,626,330 1,843,820 } 1,843,170 }	1.563,510	9,777 10,021		16	1,945 550	1,912 950 1,690 900	3978 2850	32.75		321.90 105.40		2 2	552.95 636.74
	1,445,900		5,772		5.4 ~	1,455,090 1,571,990	029,611		26.461	1	204.81	26.534	8 H	689.113 557.15
	2,245,130 1.652,480	2,295,170	11,902		~~~	1.560,010	1,535,620		27-102	* 0		26.072		
								*7.67	34.10	2.0	342.80	26.581		
										L 60	410.45	26.540		
										*	352.98	27.513		

111

4

een ntly

calthe

the ach

ter

the

ely

ied ryThe mean direct tensile strength is 2.21 times greater than the calculated mean skin-stress of the beam and 27 times greater than the mean compressive strength of the timber,

Specimens i_1 , i_2 , i_3 , contain the heart, and the heart also passes along one side of specimens g_1 , g_2 , g_3 . These specimens show the least strength. The ratio of length to least transverse dimensions was 37.1 for g_1 , 23.73 for g_2 , 34.157 for g_3 , 24.56 for h, 27.03 for i_1 and 28.88 for i_2 .

The mean shearing strength of the round specimens is 1.76 times greater than that of the flat specimens.

The several specimens had lost considerably in weight in the interval between their preparation from the beam and the dato of test.

Tension specimen b was entirely relieved of load after the first series of readings, and was allowed to rest for 16 hours.

		f oef	oefficients of e	roefficients of elasticity.		-		
7.					etwometh 1	Sp. wt. in lbs.	Store	
strength per per sq. in cub. ft	unde Tu		Forward.	rd. Return.		cub. ft.	-	Compres- Sp. wt.
6.659 24.			-					Compres Sp. wt. sive in De. strength per in Des. per cub. ft. Spec.
		-	_	_	3673	24.591	ΰ	Compres Sp. wt. strengto in bs. in bs. per st. in, per st. in, per st. in, f. Spec. 367,5 24.591 cf.
					3675	24.591	₹ ¹ 7 ¹ 7	Compress Sp. wt. in Tax, in the second market in the spectrum of the spectrum
2001 00 202					3673 1515 1815	24.591 25.096 26.129	\$1 \$2 \$2	Compress Sp. wt. arrange mills. arrange mill
		1211 - 1211 10 - 1293 11 - 1293 12 - 1293 12 - 1293			3675 3151 3151 3151	24.591 25.096 26.129 24.004	5-5-5-5-5	Compress Si, wt. in Tax, in Tax, in the strength per in Tax, per i
8,402 23.03					3675 3151 3151 3151 3151	24.591 25.096 26.129 24.004	1 6 9 4 6 F	Compress Sp. wt. Compress Sp. wt. m 18. in the sp. in the sp.
						24.591 25.096 24.001		Compress Sp. wt. attragtal mus. attragtal mu
SPECIMENS KILN-DRIED AT 212°					3671 3151 3151 4783 4783	24.591 25.095 25.129 24.004	1 2 2 2 2 2	Compress Sp. wt. arranged branching strength branching strength branching branching spectrum and spectrum an
100.01	11 10 12 12 12 12 12 12 12 12 12 12 12 12 12	10 1.274 11 1.590 12 1.590 12 1.596	271.300 1. 293.370 1. 293.370 1. 396.700 1.	000 11.211,500 010 11.225,500 010 11.225,500 11.225,620 11.225,620 11.225,620	25,630 3675 24 18,200 3151 25 18,210 3151 25 25,630 4,283 24 25,630 4,283 24 25,630 4,283 24 1,283 24 25,630 14,283 24 1,283 24 25,630 14,283 24 24,530 14,500 14,5000 14,500 14,5000 14,5000 14,5000 14,50		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Compress Sp. wt. arrendon m Tax. arrendon m Tax. arren
7 377 92 349	TED A.	1 1251 1 1250 1 1290 1 1290 1 1290 1 1290 1 1 201 1 201 1 201 1 201 1 201 1 201 1 201 1 201 1 200 1 1 200 1	251,300 1. 203,370 1. 203,650 1. 236,650 1. 236,650 1.	000 1.21.500 000 1.225.600 000 1.225.600 000 1.225.630 1.225.630 1.225.630 1.225.630	11,500 3673 24 98,500 3151 25 98,500 3151 25 3157 20 25,530 4253 24 25,530 4253 24 25,530 4253 24 25,530 4253 24 24,750 10 111TE PINE BEAM		3° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1° 1°	Compress Sp. wt. Compress Sp. wt. in the strength per in the strength per in the spect in the s
	20 A. 12 20 20 20 20 20 20 20 20 20 20 20 20 20	10 1.271, 11 1.290, 12 1.280, 1.280, 1.280, 1.381, 20 1.331, 1.33	251,300 11. 290,370 11. 290,500 11. 290,600 11. 290,600 11. 29 F. FROM 1	FROM WIITE	11,500 3675 24 98,260 3151 25 98,260 3151 25 3157 25 25,630 4,283 24 25,630 4,283 24 111TE PINE BEAA 111,750 6618 23 241,570 6618 23		030	Compress Sp. wt. arteratel in Tax. arteratel in T
6.966 23.261	22 [ED A	1 1.274 1 1.274 1 1.200 1 1.200 1 1.200 1 1.200 1 1.200 1 1.200 1 1.301 2 1 1.301 1 2 2 1 1 2 2 2 1 1 2 2 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	22:1,300 11. 22:1,300 11. 22:1,500 11. 22:1,500 11. 22: F. FROM 1 23:1,510 1	FIGURE 1.221,500 FIGURE 1.225,630 FIGURE 1.225,630 FIGURE 1.211,550 FIGURE 1.211	11,500 3673 24 98,200 3151 25 98,200 3151 25 25,530 4283 24 25,530 4283 24 25,530 4283 24 25,530 4283 24 25,530 415 12 24,1500 8119 23		54555	Compress No. w(1) Compress No. w(1) in the start in the
	LED A	0 1 1 2011 1 1 1 1 2011 1 1 1 1 2001 1 1 2001 1 1 2001 1 1 2001 1 2001 1 2011 1 2011	22:1,200 11 200,200 11 200,200 11 200,200 11 200,200 11 200,200 11 200,200 11 255,000 11 255,000 11 255,000 11	000 11.211,200 000 11.215,600 000 11.215,610 000 11.215,610 000 11.215,610 000 11.211,100 000 11.211,100 000 11.221,100 000 000 11.221,100 000 000 11.221,100 000 000 11.221,100 000 000 11.221,100 000 000 11.221,100 000 000 11.221,100 000 11.221,100 00000000000000000000000000000000	11,200 3673 24 98,200 3131 25 98,200 3131 25 35,530 4,283 24 25,530 4,283 24 25,530 4,283 24 25,530 4,531 24 25,230 6518 23 331,230 811 22 332,230 811 22		5005	Compress Sp. wt. arreaded brack and the spectra of
9,3×5	22.5 2 2 4 11 0 4 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1	0 1 201 1 20	2° F. FROM 1 200,700 11 200,700 11 200,700 11 200,700 11 201,000 11 200,000 11 201,000 11 201,0000 11000 1100000000000000000000000	FROM WIITE FROM WIITE FROM WIITE FROM WIITE FROM WIITE FROM WIITE F33,100 1,232,220 1,231,000 1,232,220 1,231,100 1,232,220 1,232,220 1,232,220 1,232,220 1,232,220 1,232,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,220 1,235,235,230 1,235,235,230 1,235,235,230 1,235,235,235,235,235,235,235,235,235,235	11,500 3673 24 25,630 3673 357 25,630 3151 25 25,630 3151 25 3151 25 25,630 3151 25 3151 25 25,630 3151 25 25,630 35 21,100 565 15 21,100 565 15 20,100 565 1520,100 565 15 20,100 565 15 20,100 565 1520,100 565		55055	Compress his with miles the strategy multi-strategy
1.560	22122222222222222222222222222222222222	D AT 212° F	F. F. FROM	FROM WILTE FROM WILTE FROM WILTE FROM WILTE FROM WILTE 1,255,630 1,255,655,650 1,255,650 1,255,650 1,	11,500 3673 24 98,200 3151 25 98,200 3151 25 3151 25 25,530 4253 24 25,530 4253 24 25,530 815 25 21,000 5654 22 314,000 8119 24 21,000 5654 22 36,5150 6108 24 26 108		52552 8205843	Compress No. w(1) Compress No. w(1) In the strate in the strate in th

Remarks.—The mean direct tensile strength of the mir-dried specimens was 1.9 times greater than the calculated mean skin-stress of the Ream and 2.19 times greater than the mean compressive strength.

By the kiln-drying, the mean co-efficients of clasticity were increased and the mean compressive strength was also increased more than 79 per cent. The mean shearing strength was reduced more than 32 per cent., and there was a slight diminution in the mean tensile strength.

The ratios of the lengths of the compression specimens to the least transverse dimension varied between 6.49 and 7.43, and the failure was in every ease due to direct crushing.

AIR DRIED SPECIMENS FROM WHITE PINE BEAM

æ,

The difference between the specific weights of the air and kiln-dried specimeus was not great. The specific weight of the beam was 3 or 4 lbs. per cubic foot greater than that of the specimens.

Compression specimen 20, after the first series of readings, was left under 5000 ibs, for 42 hours, the final reading varying from .00137 to .00084.

Remarks.—The mean direct tensile strength of the air-dried specimens was 2,99 times the mean compressive strength and 1.9 times the calculated mean skin-stress of tho beam.

By the kiln-drying, the coefficients of elasticity were increased and the mean compressive strength was increased more than 33.6 p. c. There was also a slight increase in the mean tensile strength, but the shearing strength was diminished more than 19.1 p. c.

The ratio of the length of the compression specimens to the least transverse dimension varied between 2.02 and 10.1, and the failure was in every case due to direct erushing, excepting in the case of specimen h, in mich the ratio was 20 and the failure was partly due to bending.

The injured portion was removed from specimen g, which was then re-tested after it had lost in weight 1.08 lb, per cubic foot. Its compressive strength was found to be 6733 lbs. per square inch, or 1.86 times as great as in the first test. 4

11

The difference between the specific weights of the air and kiln-dried specimens was not great. The specific weight of the beam was from 2 to 4 ibs, per cubic foot greater than that of the specimens.

Te	Fension Tests.				(.om	Compression Tests.		***** *** ***	1.	Shearing Tests.	12
 Coefficients	Coefficients of elasticity.	Tensie	Sp. wt.		Coefficients	Coefficients of elasticity.	('ompres-	Sp. w1	1	Shearing Sp. wt.	Sp. wf.
Forward.	Return.	in the per	The R.	·	Forward.	Return.	in the per	per per cub. fi	· ·	Mr. In. of	rub. ft.
 1,105,780 1,408,190 1,278,014 1,228,214 1,228,570 1,445,450 1,445,450 1,445,450 1,278,730	1,105,750 1,411,440 1,286,560 1,286,560 1,286,560 1,256,550 1,251,470 1,256,550 1,256,550	6236 21.960 (574 21.985 (574 21.985 (574 21.985 (574 21.966 (1914 22.206 (1914 22.206 (1914 22.206)	221.260	ちょうんよう	1,551,040 1,506,5 80 1,506,5 80 1,556,380 1,941,200 1,441,200 1,441,200	1,273,840 1,540,259 1,355,166 1,355,166 1,355,10 1,550,200 1,550,200	11-55 5-644 5-644 5-544 5-555 5-555 6-613	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	RETERSOOD CLASS	235, 10 235, 10 235, 10 255, 12 254, 13 254, 1	

.

Remarks.—The co-efficients of elasticity, tensile and compressive strength of this kiln-dried beam are all small, possibly on account of the obliquity of the grain in the timber.

The compressive strength, however, is again much greater and the shearing strength much less than the corresponding strengths in similar air dried specimens.

Owing to some inherent weakness which could not be determined, specimen c fuiled under an abnormally low load, and before the extensometer had been taken off.

cithe nd c,

the

ast vas ien nd-

1eu 911-,86

		Character of failure.	Cripplet. Cripplet. Cripplet. Cripplet. Cripplet. Longitulinal shear.		Longitudinal shear. Tensile. Longitudinal shear.
		for et. of weight hot when drived at 212° F. at	C. Ltr. Leftend, Rt end IT.S. 16.9 12.94		Longita Tensile.
	ary stack.	No. WL. In the, per cub, th. at dete of test.	32,279 11,111 11,111 11,111		30.972 30.952 31.055
LABLE III.	Rep Prive from endmary stock.	 v. w. in v. ficient of cub, it. at clasticity. date of level. 	1,272,700 1,251,2550 1,351,2550 2,515,6250 1,655,6250 1,655,6250	TABLE IV. Ret: Pixe dried at 212	2,049,430 2,261,520 2,219,530
	Reis Prv	1 / j 122	Mean. 1125 1527 1527 7634 9952 9952	T Rate Pro	6656 9522 3674
		Shirestress (1) in	NN - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		2863 9472 3617 3617
		Shin.	Max. 1531 1530 1550 1550 1550 1550 1550 1550		6160 1572 1772
		Breaking weight 14 Rs.	21,356 21,556 23,460 23,460 23,460 23,560		21,000 >,>(0) >,>(0) 20,000
		us in inches.	6.15 15 2 5.75 15 0 5.975 12 2 6.025 6.025 5.75 11.925		5.75 11.875 5.85 5 925 5.85 11.785 5.85 11.785
		Dimensie	~17771		120
		No. of beaus	54724		H44

Remerks.—Beams 17 and 18, containing the heart, were out from trees felled at Keewatin in 1894, and were ordinary 1st quality timber. There were shakes in Beam 17, reaching the heart at points. The grain on the lower half of the beam was straight, but ran crosswise on the tension surface. From the time the beam was received into the Laboratory to the date of the test, a period of 57 days, the beam lost 13 p.e. of its weight. After the test a 3-inch slab was cut out, and the wight of this slab on Feb. 15th, 1897, by which time the natural drying can be considered to have been completed, was found to be 28,037 lbs, per cubic flot.

Beam 18 was tested after remaining in the Laboratory 42 days, in which time it was found to have lost 8.79 p.c. of its weight. It failed by erippling and longitudinal shear, simultaneously. The grain for about 10 inches on each side of the centre was clear, straight and free from knots,

The logs from which Beams 31 to 49 were sawn were felled in the Bonnechère district in the winter of 1894-95, and remained in the water for six months. They all contained the heart, and were ordinary 1st-quality timber.

Beam 32 lailed by longitudinal shear along a shake in the neighbourhood of the neutral surface, but there were indications that this had been immediately preceded by a slight crippling.

8

Beam 41 was straight grained, but contained large shakes on the sides and on the compression surface due to seasoning and drying.

Heam 44 was straight grained and comparatively free from knots, but contained shakes which apparently extended from the heart outward to the sides. After remaining in the Laboratory 255 days it had lost 22.4 p.c. of its weight. A 1-luch slab cut from one end of the beam weighed, after being dried at 212°F., 30.31 lbs. per cub. ft.

Beam 45 was a dense timber of excellent quality with shakes occurring intermittently. A constantly increasing deflection indicated that erippling had taken place under a load of 7600 lbs., although the crippling was not apparent until the load was 8000 lbs,

Heam 49 was straight-grained, with a few intermittent shakes.

	Ten	Tension Tests.			2	Compression Tests.	ţs.		e 54800	shearing Tests.	erts.
	Coefficients of clasticity.	of clasticity.	Tensile		Coefficients of elasticity.	of elasticity.		Str wt in	6.	Shearinz	5
ads	Forward,	ketura.	in Ibs. per sq. in.	ds	Forward.	Return.	strength in lbs. per sq. in.	lbs. per cub. ft.	m16	Ber per sq. in. of flats.	in the. per cub. ft.
-	1.469,430)	1,475,130	1.23	a,	1.835,160	1,536,776	6-1-2	32.24	4	12.062	29.64
	2,124,670	2,132,6>0	13,253	a.,					• •	the tra	601 Le
	2,273,150	2.264,000	12.505	01	1,222,660	1,218,430	2.6~4			519.918	30.2.76
	2,131,060	2,1×0,250		2	*****	•••••	2,696	26.66	2ndt	263.25	32 69
-	1,-21,060	1,724,650	>1114	J	1,245,440		4,421	241.3394	-	4-4.60	23,00.5
	010.001.1	1,462,670	1.1.2		-				5	376.33	21 21
-	0.0,0.1	1,543,150	I (h, SHH)								Tage of the
	1,331,320	1.12.17.1	5,143						-	103 23	The he
6	2,094,130	2,144,610	12,015						-	12.10	
	2,017,040	2,041,620	0.460						-	2.74 6.1	3- 61-

Remarks .- The mean direct tensile strength is 2.12 times greater than the calculated mean skin-stress of the beam and 2.66 times greater than the mean compressive strength.

Specimens b_1 and b_2 contain the heart, and shew the least compres sive strength. The ratios of length to least transverse dimensions in the compression specimens were 8.62 for a_1 , 8.82 for a_2^* ; 5.78 for a_3 ; 11.98 for b1, 6.2 for b2; and 5.84 for c. The failure was in each case due to direct crushing.

The average specific weight of the specimens was about 2 lbs per cubic foot less than the specific weight of the beam.

Tension specimen 6, after the first series of readings, was left under 1600 lbs. for 21 hours, and during this interval the final reading varied from .01065 to .0111.

t from imber. The ise on to the in lost nd the atural to be

ivs. in failed n for d fiee

in the n the linary

neighat this

		Tension Tests.				(⁰)	"ompression Tests.	ests.			42	Shearing Tests.	si.	
	Coefficients	Coefficients of clasticity.	Tensile Sp. wt.	Sp. wt.	•66°	Coefficients of clasticity. Compres-	of clasticity.	Compres- sive	Sp. wt.	.99	Shearing	Snut	1	Suearing
- 1	Forward.	Return.	in lbs. per s-1. in.	euh ft.	ls	Forward.	Keturn.	in lbs, per c	per cuo. ft.	ds	in list per in list, per sq. in. of cub. ft.	In Ibe, per cub. ft.	dg	in lbs. per sq. in. of rounds.
	1 966,970		14,154	-	-					2	427.41	31.982	24	614.71
	000,000,1			:::::::::::::::::::::::::::::::::::::::	=	936,987	942,214			Ξ	439.93	33.394	5	621 6
	1.1261271			:	2	[,2×[,×]0	1,295,800	3,631	35.039	:2	362.66	33.631	26	138.2
	1 801 600 1	1 -04 -20	8,661	8,661						2	327 95	35.418	12	619.43
	0116110	6 Ar-1 42.0 . 41	11 010	•							344.01	33.641	22	671.4
	0.22 61.4		261 11	:						<u>r</u> :	380.20	32.627	23	6.27.6
	2,397,640		144							<u>v</u>	323,413	901		
•••	2,080,060		16,609			-				95	02.236	54.4/4		
• •	2,01×,1×0		13,362							ន	293.77	34.221		
										3	369.61	32.427		

Remetcks.—The mean direct tensile strength is 2,84 times greater than the calendated mean skin stress of the beam and 3,93 times greater than the mean direct compressive strength.

Specimen 11 contained the heart and shews the least $\operatorname{compressive}$ strength.

The ratios of length to least transverse dimension were 6.43 for specimen 11, and 6.71 for specimen 12. In each case the failure was due to direct erushing.

The coefficients of elasticity for specimens 1, 2, 3, 4, 6, 7, 8, 9, were calculated from the first series of readings only, and are consequently smaller than if repeated readings had been taken.

The shearing strength of the round specimens is 1.79 times the mean shearing strength of the flat specimens.

The timber of the beam in question was unusually dense, and the mean specific weight of the beam does not seen to have been much greater than the mean specific weights of the compression and shearing specimens.

Tension specimen 4, after the first series of readings, was entirely relieved of load for 16 hours.

eater eate**r**

ssive

3 for was

were ently

nean l the auch ring

irely

S18.	Sp. wt.	cub. ft.	32.265 33.946 33.575 33.577	30.553 30.502 32.021
Shearing Tests.	Shearing Sp. wt.	sq. in. of flats.	341.68 32.265 103.15 33.946 145.94 33.575 145.43 35.577 125.43 35.577	222.94 261.04 300.86 313.10
ŝ	•99		·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·
	Sp. wt.	cub. 1t.	36.33 34.902 34.902 35.24 33.119 33.119	AM 31.
	Compres-	in list per sq. in.	6,337 6,337 6,337	INE BEA 6,098 11,726
Compression Tests.		Return.	2,121,590	OM RED P1
seadmo,)	Gettleients of clasticity.	Forward.	2.102,750 2.102,750 2.125,500 2.121,590	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
		ds.		
	Sp. wt.	r per tub. ft	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	NS KILN-DRIE 10,170 32.996
	Tensile Sp. wt.	in lbs. per	12,212 12,210 12,210 12,62 13,613 13,613	NS KIL.
Tensile Tests.	of elasticity.	Return.	2,192,170 2,353,650 2,357,330 2,192,110 2,292,290	SPECIME 2,677,030
I	"oefficients of elasticity.	Forward.	2,179,100 2,387,050 2,337,200 2,337,200 2,337,200 2,361,020	2,529,930
	.0.	HIS	50000	2

Remarks.—The mean direct tensile strength is 1.65 times greater than the calculated mean skin-stress of the beam and 1.55 times greater than the mean direct compressive strength. ŗ.

By the kiln-drying the tensile strength was diminished, the compressive strength was largely increased, and the shearing strength was diminished by 24.1 p.e.

The ratios of the length to the least transverse dimension in the compression specimens varied from 5 to 10, and in each case the failure was due to direct eruslung.

Specimens h_1 and h_2 contain the heart and shew the least compressive strength in the air and kilu-dried conditions, respectively. The loss of weight in kilu-drying varied from 1.344 lbs, to 3.003 lbs, per enbie ft.

2 . 2

	Cliaracter of fallure.	Crippled. Crippled. Tensile.		Longitudinal shear.		Tensile. 57, 42 Cripled.
	Per ct. of weight lost when dried at 212° F.	50. 13 39.93 17.85 Crippled. 31.6 Trensile.				
	t, of we dried a	66				49.75
		50.13		1,379,860 31.346		51.07
ry stock.	Sp. wt. in Ibs. per cub. ft.	53.025 36.533 36.235	13. F.	31.346	rozen.	38.69 45.23 50.707
llentock from ordinary stock.	Coefficients of clasticity.	1,455,540 1,498,640 883,291	TABLE VI. HenLork dried at 212° F.	E BI	BLE VII. turated and f	1,174,700 1,242,150 1,633,050
FMLOCK	in Bs.	Mean. 5063 6493 1096	Т. Немьо	6500	TA LOUE EN	52×0 3466 7071
=	Skin-stress (/) in lbs. per sq. in.	Min. 1995 6371 1058		5054 6500	-6	5166 3450 6960
		Max. 5132 6615 1133		1916		5393 3482 7188
1	Breaking weight in lbs.	13,000 20,000 20,040		3,5(1)		30,800 21,000 22,000
	binensions in Inches.	$b d \\ 8.81510.1 \\ 8.97510.015 \\ 9.85 11.95 \\ 9.85 11.95$		1.925		9.0 11.875 9.025 11.9 9.175 10.05
	Isions			87 4.35		9.02 9.17
	Dime			17		138 138 190
	No. of Beau	ទំនួន		2		2222

Remarks.—Beams 22, 23 and 35, containing the heart, had lain in the water for a considerable time, and were completely water-soaked. When tested, Beams 22 and 35 were found to be hard frozen. Beam 23 was also frozen, but not throughout, as was shewn when the beam was cut in two at the centre. Beam 22 was straight-grained, free from knots, and failed with a sudden sharp fracture. Ineipient decay had commenced near the heart of Beam 23, which, however, was regarded as a fair-specimen of ordinary commercial quality. It was full of large knots and the grain was enred from end to end. Beam 35 was straightgrained, clear, comparatively free from knots and of exceptionally good quality; beam 40 was eut out of beam 35 after the latter had been tested.

Beams 25, 26 and 29 all contained the heart. Beam 25 was a good specimen, and was completely water-soaked. Beam 26 was saturated throughout, excepting for a depth of $1\frac{1}{2}$ inches from surface, and, although an apparently poor specimen, was considered to be of ordinary commercial quality. It was full of knots and its grain was curved.

TABLE V.

١

57.42 Crirpled. 51.07 49.75 1,633,050 50.707 130 3.16.10.05 22,000 7188 6960 7074 ? in in aked. m 23 was uots, comas a nots ightgood sted. good ated ind, ary

Remarks.—The mean direct tensile strength is 1.43 times greater than the calculated mean skin-stress of the beam and 2.31 times greater than the mean direct compressive strength. The shearing strength of the round specimen is 1.52 times greater than the mean shearing strength of the flat specimens. The ratios of length to least transverse dimension in the compression specimens varied between 5.3 and 7.27, and the failure was in each case due to direct crushing.

The compression specimens had the appearance of being frozen, but the frost in the tension and shearing specimens had thawed, although they still remained very cold and water-soaked. In fact, the specific weight of several of the specimens was even greater than the mean specific weight of the frozen beam. AIR-DRIED SPECIMENS FROM HEMLOCK BEAM 25.

	Te	Tension Tests.				Ű	Compression Tests.	*			x	Shearing Tests.	615.	
· Sure		Coefficients of Elasticity.	Tensile strength	Sp. wt.		('oefficients	Coefficients of Elasticity.	Compres-	Shurt		Shearing			Shearing
	Forward.	Return	in Ibs. per sq. inch.	in lbs. per lu lbs. per sq. inch. cubic foot	ofec.	Forward.	Return.	strength in 1bs. per sq. inch.		Spec.	strength in lits, per sq. m. of flats.	by. wt. m by. per cub. ft.	Spec.	strength in the per sq. in. of rounus
-	1,345,310	1,367,250	0~9.7		2	1.011.030	1.000.1.10	101.6	51 11	-	000 0004			
	1,585,850	1,607,759	10,553	41.34	d_2	1,177.400 1	1,465,030	331	51.515	11.0	06.255		5.	537.37
: -	1 896 190	0.0,116,1	1985	27.62		1,517,810 5	1,507.750]					4-T-	81	10.070
e1 .	2,034,780	2,091,950	13.514	10.00	• •	1 576 700	002,11-1			5	369.92	15.58	2.2	619.28
12	1,706,210	1.733,400	9,409	20.01	-	10.60.061	1,001, 200		11.01	5	61-101	47.37	16	663.7×
5	1,668,330	1,708, 110	13,000	39.39	5	1,430,650 1	1, 124,860 1	3112	53,013	a 3	21.12	52.547	32	10. 26
	1 0107 1-0 0					1,392,550)	1,107,390 {	-		-		774.00	5	0.0.34
5	2,019,900	2.052.410	11,721	× *	4	1,472,160	1,168,570	3420	54.754	42	396.79	49 172		670.33
ŝ	1,906,590	1.946,310	14.501	58.43	·7	0.0.21	1 1-1 000			2	123.81	44.208	2	606.67
z	1,704,500	1.732.610	67.11			0111	1 400 000	2 :	11.1	21	111.02	45.47	57	630.67
60	2,096,270	2.113.630	13 61 9	101		1 200 000	102, 101, 1	111	600.00	18	120.98	51.213	13	623. 3.3
			-		-	one cont	1,000,000,1	1112	200.10	8° :-	361.48	50.3××		637.80
				•	ľ					1,	121.20	38.38		556.29
:								:		-	428.80	167.65		
:										111	105.09	46.268	:	
:										u2	411.95	616.01		
	:									L,	362.48	56.402		
-											90.4 1.9			

Remarks.—The mean direct tensile strength is 2.1 times greater than the calculated mean skin-stress of the beam and 3.33 times greater than the mean compressive strength. The mean shearing strength of the round specimens is 1.59 times greater than the mean shearing strength of the flat specimens.

The ratios of the length to the least transverse dimension varied between 6.08 and 9.86, and the failure was in each case due to direct erushing. The results indicate that the tassile and shearing strengths are greatest in those specimens of the greatest specific weight.

Several of the specimeus had a greater specific weight than the mean specific weight of the b cam.

Tension specimen b^1 , after the first series of readings, was left under 400 lbs., for 17 hours, the final reading varying from .00033 to .00017.

Compression specimen g, after the first series of readings, was wholly relieved of load for 11 hours.

Compression specimen d_2 , after the list series of readings, was helly relieved of load for 15 hours.

	Spee: Randon Spee: Spee	Nr. wr. II Coefficients of Elasticity. Compression Stream	Su	Tension Results.				("onl	Compression Results.	s.		7.	Shearing Results.	ts.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Name Nam Name Name	255, 30 255, 30 255	roefficients of Elasticity.	1.11.0.11.00		Sp. wt. in		Coefficients o	of Flasticity.	Compres-	sp. ut. in		Shearing straneth in	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25, 10 25, 10 25, 10 25, 10 25, 10 25, 15 25, 15 25, 15 25, 15 25, 10 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	25, 10 25, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	keturn.		Hs. Jer Sq. in.		L'HIC	Forward.	keturn	m liss per	for. per cub. ft.		lis. per sq. in. of flats.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	233.47 233.22 233.22 235.29 235.69 235.69 24 24 25.69 216 20 216 20 216 20 216 20 216 20 216 20 216 20 216 20 216 20 216 20 216 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	23, 47 23, 47 23, 25 23, 25 23, 25 23, 25 24, 26 24, 2624, 26 24, 26 24, 26 24, 26 24, 26 24, 2624, 26 24, 26 24, 26 24, 2625, 26 24, 26 24, 2626, 26 24, 26 24, 2626, 26 24, 26 24, 2627, 26 24, 26 24, 2627, 26 24, 26, 26 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26	1.935,760		1,021	30.79 28,635	k 1			3673	31 02 35.73	и 1 и 2	334.06	38.01 38.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1,277,750		4,610	28.622	ш			1116	37.67	¹ 2	363.47	31.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2017 2017 2017 2017 2017 2017 2017 2017	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_	-	1,636	29.993	u			3305	40.933	s, "	393.20	32.90
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74 . 366 50 371-00 316 - 30			- "	E 69	11.617	00	1,312,190	1,336,450	2021	22.31× 34.016	2.4	356.30	83 E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	871.00 16 - 00 10 - 00	99.79 99.79 99.79	1.755.440				03	1,736.0.0	1,754,540	4020	31.735		306.60	34.11
31.205 Pi 1.455.900 1.459.400 1.251.200 4538 35.759 <				=	797		¹ ⁿ	1,457,030	1,461,250	2703	32.294		371.00	32.06
30.653 1,133,500 1,133,500 1,133,700 1,133 25.663 7 1,631,750 1,433,700 1173 7 7 1,210,4560 1,211,250 4538 1 1,210,450 1,211,250 4538 1 1,210,450 1,211,250 4538 1 256,920 1,221,270 4538 1 226,920 1,226,920 3538	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,191,380 10 1,314,280 8	Ξœ	552	31.395	Ed .	1,475,920 [1,469,460		61¢ 68			
2x.665 q 1,631,750 1173 7 7 1,210,450 1,211,250 1050 7 1,210,450 1,211,250 6338 1050 7 1,210,450 1,211,250 6338 1050 7 1,220,450 1,221,270 6338 1050 7 1,220,490 1,221,000 1338 1050	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			505	30.653		1,433,830	1,435,360)					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MEN KILN.DRIED AT 212° F. FROM HEMLOCK BEAM 20.		-	.12	2×, 665	22	1,631,750	1,634,750	4173 4050	22.22 22.22			
3838 1,226,9220 1,222,028 3838	* 1,220,220 1,220,220 1,220,220 1,220,200 35,826 36,826 36,826 36,826 36,826 36,826 36,826 36,826 36,826	MEN KILN-DRIED AT 212° F. FROM HEMLOCK BEAM 20.						1,210,850	1,221,270	4538	35.789			
	MEN KILN.DRIED AT 212° F. FROM HEMLOCK BEAM 26.	MEN KILN-DRIED AT 212° F. FROM HEMLOCK BEAM 20.					~ ~	1,226,920	f 000 \$22.1		35.826			

Remarks .--- The mean direct tensile strength was more than 2,36 times as great as the calculated mean skin-stress of the Beam and 3.6 times greater than the mean compressive strength. The kiln-dried specimen shewed a compressive strength more than double the mean compressive strength of the air-dried specimens.

The ratios of the length to the least transverse dimensionsin the compression members varied from 2.5 to 7.8, and the failure was in each ease due to direct crushing.

Between the first and second series of readings, b remained under 400 lbs. for 16 hours, the final reading varying from .00457 to .00372.

Between the second and last series of readings the specimen was left under 400 lbs. for 471 hours. The realing varied from .001 to .00398 in the first two hours, and the extensioneter was then reset at zero. During the next hour it varied from zero to .001; and the final reading before recommencing the test was .00082. The average time occupied in each observation was about cae minute. The variation in the value of the coefficient of elasticity was due to the gradua drying of the specimen, and also to the varying hygrometric condition of the atmosphere.

AIR-DRIED SPECIMENS FROM HEMLOCK BEAM

than ater ngth ring

ried irect **zth**s

ican nder to Specimen f was loft under the load of 400 lbs, for 17 hours after the first series of readings, the final reading varying from .0033 to .01064. After the second test it was left under 400 lbs, for 23 hours, the final reading varying from .00281 to .00995. Between the third and fourth series of readings the specimon was left under 400 lbs for 5 heurs, the final reading varying from .00163 to .00284. The variation of the reading was due to the gradual drying of the specimen and to the changing hygrometric condition of the atmosphere.

Between the two series of readings for specimen j there was an interval of 90 hours.

The small tensilo strength of the specimen was chiefly due to the fact that the grain of the specimen was slightly oblique to the axis.

The compression specimen p_3 was left under a load of 5,000 lbs. after the first series of readings for 42 hours, the final reading varying from .03081 to .00398. After the second series of readings it remained under 5,000 lbs for 48 hours, the final reading only varying from .00401 to .00398.

The compression specimen s was left under 5,000 lbs, for 18 hours after the first series of readings, the final reading varying from .0026 to .00268. After the second series of readings it was left under 5,000 lbs, for $4\frac{1}{2}$ hours, the final reading varying from .00278 to .002805.

After specimen p_2 had been tested the injured portion was removed and the remainder retested when it had lost 2.4 lbs, per cubic foot of its weight. Its compressive strength was 4,097 lbs, per square inch.

urs after the 3 to .01064. urs, the final e third and 00 lbs for 5 The variabeeimen and

ere was an

to the fact is. 0 lbs. after rying from

remained ying from

r 18 hours rom .0026 nder 5.000 02805.

s removed bio foot of nre inch.

255.57 + 21.71 ;≋

Remarks,-The mean direct tensile strength is less than the calculated mean skin-stress of the boam and only 1.24 times as great as the mean comprossive strength. This result is doubtless duo to the fact that the timber was of vory poor quality and full of knots and shakes.

By kiln-drying, the coefficients of elasticity were increased, the tensile strength was doubled, the compressive strength was increased by 18 per cent., und the mean shearing strength was diminished by 9.9 per cent.

The ratios of length to least transverse dimension in the compression members varied from 2.14 to 10.52, and the failure in each case was due to direct crushing, excepting in the case of k in which the ratio was 19.6 and which partly failed by bending,

In the case of a2, the interval botween the two series of readings, during which the specimen was loft under a load of 100 lbs, was 1 hour, and the final reading varied from .00054 to .00059.

After k had been tested the injured portion was removed and the uninjured portion of the specimen was re-tested, when it failed by direct crushing under 4122 lbs. per square inch, the specific weight being 28.4 lbs. per cubic foot, and the ratio of the length to the least transverse dimension 5.2.

-		Tension Tests.				ů	Compression Tests.				Shearing Tests.	ert.
	Coefficients	Coefficients of clasticity.	Tensile	Sp. Wt. in	1	(joefficients	l'vellicients of clasticity.		sp. wt. In	1	shearing strength s	Sp. wt. in
Spec.	Forward.	keturn.	in lbs. per sp. inch.	lbs. per cub. fr	sher.	Forward.	ketaru.	strengtu in Ibs. per sq. in.	ibs. per cub. ft.	ade	sq hu of flats.	the. let cub. ft.
1 53	1,145,590	1,147,450	1192	40.306 43.822	14	1,454,480	1,119,300	1119 3961	49.45	44	132.76 399.43	18.142
	1,562,710	1,566,269	99811.	36.029	1 s	11120	-2-0.10	1352	29.125	22	191.92	45.32
	1,245,610	1,250,450		48. 892	5.5.2	1,214,060	1,222,700	198	52.416	13	531.24	51.156 19.161
-	1,735,500	1.738,940	11725	4×.109	5	1,114,000	0106111-1			11/2	517.25	52.2× 49.×06
-	1,772,310	1,501,440	9066	56.917						^F M	127.35	45.635
		SPEC	IMENS F	ALLN-DRI	A Ud	T 212° F. FI	SPECIMENS KILN-DRIED AT 212° F. FROM HEMLOCK BEAM	OCK BE/	AM 35.			
-	0.01126.6	2.277.990	4613	26.901	41	1.566.450	008.555.1	6645	25.95	k.	310.24	26,29
	1,5×2,8:0	1,585,130	1011	27.198	ц: -	1,929,030	1,925,350	SIGS	27.106 25.81	k,	191.87	26.801
-	2.080.120	2,088,170	2612	122.52	2.2	1,178,510	1,173,020	12	25.70	12	356.49	20.402
3. 7	016;586,1	1,602,350	5903	21.210		1,479,560	1 151,200			- °	361.45	107.62
	1,621,920	1,626,520	0595	25.135	12	1,496,420	1,492,730	2316	121-22	211	258.23	28, 153 28, 448
10	1 615 080	0.6 0.6 1	1204	1.56 26		1,404,100	1.506,690			i		

17

Remarks.—The mean direct tensilo strength of the cold and watersoaked specimens is 1.4 times greater than the calculated mean skinstress of the beam and 2.82 times greater than the mean direct compressive strength.

By the kiln-drying the tensile strength was diminished, the compressive strength lnereased more than 87 p.e., and the shearing strength diminished more than 33 per cent. The coefficients of elasticity were also increased.

The ratios of the length to the least transverse dimension in the compression specimens varied between 4.43 and 5.57, and in each case the failure was due to direct erushing.

After h_2 had been tested, the injured portion was removed, and the specimen was dried at $212 \circ F$, and re-tested with the following results : —coefficient of clasticity=1,511,000 (forward), 1,517,830 (return); compressive strength = 1107.8 lbs, per square inch; specific weight= 27.017 lbs, per cubic foot.

After h₂ had been tested the injured portion was removed and the specimen was allowed to dry gradually in the laboratory for about a month. It was then re-tested, with the following results :--coofficient of clasticity = 1,526,200 (forward), 1,521,590 (return); compressive strength = 3636.3 lbs. per square inch; specific weight = 38.07 lbs. per cubic foot.

After j had been tested the injured portion was removed and the specimen was immediately re-tested, with the following results: coefficient of elusticity = 1,008,500 (forward), 1,615,300 (return); compressive strength = 3592.5 lbs. per square inch; specific weight = 52.02 lbs. per cubic foot.

The injured portion was removed, and the specimen dried at $212 \circ F$, when it was re-tested, with the following results —co-efficient of clasticity=1,662,500 (forward), 1,657,900 (return); compressive strength = 6246 lbs. per square inch; specific weight = 25.33 lbs. per cubic foot.

In the case of specimen j_{r}

After 1st series of readings it was left nuder 20,000 lbs. for 18½ hours, the final reading varying from .00755 to .00766.

After 2nd series of readings it was left nucler 20,000 lbs, for $47\frac{1}{2}$ hours, the final reading varying from .00678 to .00741.

After 3rd series of readings it was left under 20,000 lbs., for 3½ hours, the final reading varying from .00723 to .00726.

After 4th series of readings it was left under 100 lbs, for 17, hours, the final reading varying from .00149 to .0018.

After 5th series of readings it was left under 100 lbs. for 34 hours, the final reading varying from .00176 to .00188.

After j_i had been tested the injured portion was removed and the specimen immediately re-tested, with the following results:—coefficient of elasticity = 1,284,450 (forward), 1,278,860 (return); compressive strength = 34,328 lbs, per square inch; specific weight = 16.61 lbs, per cubic foot.

The injured portion was removed and the specimen dried at $212 \circ F$, and re-tested, with the following results :----

From 1st series of readings, coefficient of elasticity = 1,493,940 (forward), 1,503,930 (return).

From 2nd series of readings, coefficient of elasticity == 1,465,810 (forward), 1,459,920 (return).

From 3rd series of readings, coefficient of elasticity = 1,471,140 (forward), 1,473.230 (return); the compressive strength = 7021.6 [hs, per cubic foot; the specific weight = 24.66 [hs, per cubic foot; Between the 1st and 2nd readings the specimen remained under 100 [hs, for about $\frac{1}{2}$ hour, the final reading varying from .00043 to .00021. Between the 2nd and 3rd readings the specimen remained under 100 [hs, for about 1 heur, the final reading varying from .0007 to .00056.

water-1 skint com-

mpresrongth y were

in tho ch caso

and the esults : turn) ; eight=

and the about a efficient pressive .07 lbs.

and the ults : eturn) ; weight TABLE VIII.

12 ° F. of clastrength r cubic

or 18<u>1</u>

for 471

for 3]

hours,

hours,

and the --coefli-) ; comeight =

с,

212 ° F.

496,940

465,810

471,140 = 7021.6 ie foot. ider 100 9.00021. ider 100 9.00056.

lignarks.—Beam 24 was wet, but was in good condition and comparatively free from knots. Beam 27 was of ordinary commercial quality, with fairly straight grain and [a large number of small knots. Beam 30 was of ordinary commercial (quality, but with large shakes running from end to end and dividing the beam practically into four sections. Beam 33 was water-soaked and hard frozen when tested. It was of exceptionally good quality, free from shakes and had clear, straight grain. Beam 39 was cut out of Beam 33 after the latter had been tested. AIR-DRIED SPECIMENS FROM SPRUCE BEAM 24

is. shearing Results.	Compressive Sp. wt. Shearing Sp. wt. Shearing strength in julies, Saco in the area gth	st. in. per	275-1.72 22.475 // 252.46 20.13 2212-147 21.296 // 252.41 20.237 2212-141 31.25 and 22.221 2212-141 31.25 and 22.25 2212-141 31.25 and 22.25 2212-15 02 31.156 and 24.23 2212-15 02 31.156 and 24.23 2225 33.166 and 24.23 2202.55 33.156 and 24.23 24.25 36 31.266 and 24.25 25.263 31.266 and 24.25 26.26 31.266 and 24.25 27.266 and 24.25
Compression Results.	Coefficients of elasticity.	Forward, Keturn,	1.278,940 1.239,420 1.298,130 1.299,530 1.217,390 1.271,360 1.517,390 1.271,360 1.507,390 1.201,991 1.268,200 1.201,991 1.268,200 1.272,010 1.223,210 1.221,010
	Tensile Sp. wt	list, per per aper stat. Sq. in. cub. ft.	$\begin{array}{c} 11, 463, 7\\ 11, 183, 2\\ 11, 183, 2\\ 12, 106, 6\\ 12, 106, 6\\ 13, 104, 2\\ 11, 280, 3\\ 11, 280, 3\\ 11, 280, 3\\ 11, 280, 3\\ 11, 280, 3\\ 11, 280, 3\\ 11, 281, 1\\ 11, 12, 1\\ 11, $
Tension Results.	Coefficients of clasticity.	Forward, Return.	2,161,000 2,151,220 1,978,540 1,944,740 2,011,120 2,045,740 2,011,120 2,045,740 1,920,180 1,996,900 1,920,180 2,117,920 2,182,020 2,117,920 1,872,190 1,769,720 1,719,720 1,719,720 1,872,190 1,719,720 1,872,190 1,719,720

Remarks,—The mean diaget tensile strength was more than double the calculated mean skin-stress and 4,21 times the mean direct compressive strength.

The mean shearing strength of the round specimens was 1.86 times the mean shearing strength of the flat specimens,

Tension specimen a_{2i} after the first sories of readings, was left under the load of 1600 lbs, for 43^{+}_{2} hours, the final reading varying from .01243 to .01707.

The ratios of length to least transverse dimension in the compression specimens varied between 6.81 and 8.9, and the failure was in each case due to direct crushing.

Between the first and second series of readings g_1 was entirely relieved of load for 17 hours. After two repetitions of loading and relieving from load, specimen f_n was left under 5,000 lbs, for $1\frac{1}{2}$ hours, and during this interval the reading varied from .00099 to .00092.

double t com-

4 334.28 31.987

6 times

t under ig from

ression ch case

entirely ng and hours, 092.

Results-	Shearing Sh. ut. strength in lbs. n lbs. per nor	sel. in. cub. ft.	410.72 30.865	30 27.80									
Shearing Resum-							-	394.73	_				
	Since.			12								:	
	Sp. al	cal. ft.	10.11			-	28.393	27.031	26. 29-		. Li		26.152
Is.	⁴ ompressive SP. wt. strength in he.	He. per	3805.9		0212	3429.8	3471.9	4277.6	3741.1	4373.0	E BEAM	1.7065	64:30.2
Compression Results.	Control of clasticity.	Rotaria.			1.427.070	1,109,703 }	2,000,220	1,674,440	2,011,200		SPECIMENS KILN-DRIED AT 212' F. FROM SPRUCE BEAM 27.	1,562,120	BCO.X.X.
Con	Coefficients	Forward,			1.477,850	1,106,850	2.001 680	1,679,500	1,845,250		T 212' F. FI	1,765.270	1.475,380
	State		- :	+ 17,	-+ C	5	4	12	17.12	6)	IED A	S.	- p
	Sp. wt. m lbs.	cub. ft.	30.377	210.02		26.03	31.811	26.69		-	T.N.DI		208-02
	Tensile strength in	lhs. per sq. in.	6035.8	966 FL	9.46.2	10,797.	1724.	12,370			IMENS KI	6182	10.362
Teusion Results.	f elasticity.	Retorn.	1,381,220	1,963,630 (2,007,050 (1,918,340	1,198,190	2,1<0,770			SPEC	1,511,120	1.552,130
ř	Coefficients of elasticity.	Forward.	1,383,460	1,953,260	1,991,550	1,909,530	1.194.130	2,169,940				1,525,080	1,547,430
				4 71	-		410	19			-	a,	0.1

Alf DRIED SPECIMENS PROM SPRUCE BEAM 27.

Remarks.—The mean tensile strength of the air-dried specimens was more than double the calculated mean skin-stress of the Beam, and 2.67 times the direct mean compressive strength. By kilu-drying the tensile strength was diminished, and the mean compressive strength was increased more than 65 per cent.

Specimen 3, after the first series of readings, was left under 400 lbs, for 46 hours, and during this interval the final reading only varied from .00258 to .00260.

Specimen a_i , after the first series of readings, was left under 400 lbs, for 22 hours, and during this interval the final reading varied from .00378 to .00567.

The ratios of the length to the least transverse dimensions in the compression members varied between 4.23 and 8.89, and in each case the failure was due to direct ernshing, excepting in the cases of specimens 5 and 6, in which the ratios were 18.76 and 14.32 respectively, which failed to some extent from bending.

Specimen c_{θ} between the two sets of readings, was left nucler 5,000 lbs. for 41 hours, the final reading varying from .00049 to .00103.

Specimen d_2 , between the two sets of readings, was left under 5,000 lbs. for 41 hours, the final reading varying from .00128 to .00079.

After compression specimen 2 had been tested, the injured portion was removed and the remainder re-tested, when its specific weight was 25,965 lbs, per cubic foot and its compressive strength 4849 lbs, per square inch.

The injured portion was removed from this last, and the remainder again tested, when its weight was 26,024 ibs, per cubic foot and its compressive strength 6621.2 lbs, per square inch.

Specimens 3, e_0 , e_3 , e_4 , e_5 , all contain the heart and shew the least compressive atrength.

Remarks.—The mean direct tensile strength of the air deice or mens was 3.9 times the calculated mean skin-stress of the beam, and 2.35 times the mean direct compressive strength.

By the kiln-drying, the mean tensile strength seems to have been increased, but specimen c_i , failed under an abnormally small load, probably because of some inherent weakness. The compressive strength was increased 77 per cent., and the mean shearing strength originished more than 22 per cent.

The ratio of the length of d to its least transverse dimension was 20.925.

The ratios of the length to the least transverse dimension in the remainder of the compression members varied between 2,06 and 10.1, and in each case the failure was due to direct crushing. WET AND FROZEN SPECIMENS FROM SPRI'CE BEAM 23.

1

ιu

ιđ,

ve th

as

he

.1,

1. 1 (. fram
2017/2010 [10,000] mm.845 20167/2010 [2,115 00.029 2,2067/2010 [2,015 00.029 2,2067/2010 [2,016 00.029 1,561/2100 [2,066 [38, 206 1,561/2100 [2,066 [38, 206 2,007/2100 [2,086 [38, 206 2,010/2100 [2,086 [38, 207 2,017 [2,09 [38, 207 2,017 [2,09 [38, 207 2,017 [2,09 [38, 207 2,017 [2,09 [38, 207 2,017 [2,00 [12, 206 2,017 [2,00 [12, 206] 2,017 [2,00 [12, 206] 2,00 [12, 2

Remarks.—The mean direct tensile strength of the saturated specimens was nearly double the calculated mean skin-stress of the beam and 3.88 times the mean compressive strength.

By the kiln-drying, the tensile strength scens to have been slightly increased, the compressive strength was increased 80 per cent, and the shearing strength was diminished more than 12 per cent. The coefficients of elasticity were also increased.

The ratios of the length to the least transverse dimension in the compression members varied from 4.07 to 5.85, and failure was in each case due to direct ernshing.

After compression specimen 1 had been tested the injured portion was removed and the remainder re-tested, when its specific weight was 37.457 lbs. per enbie foot, its coefficient of electicity 1,627,590 (forward) and 1,631,960 (return), and its compressive strength 3700 lbs, per square inch. The injured portion was removed from this last, and the remainder was dried at $212 \degree$ F, and then tested with the following results:—

Coefficient of elasticity from 1st series of readings = 2,402,710 (forward), 2,400,340 (return). Coefficient of elasticity from 2nd series of readings = 2,415,620 (forward), 2,411,810 (return). Coefficient of elasticity from 3rd series of readings = 2,419,940 (forward), 2,421,360 (return).

23

Between the first and second readings the specimen was under 100 lbs. for 3 hours, the final reading varying from -.00005 to +.00002. Between the second and third readings the specimen was left under 100 lbs. for 25 minutes, the reading varying from -.00005 to +.05002. The specific weight of the dried specimen was 32.559 lbs. per cubic fot.

After f_{ij} , had been tested the injured portion was removed and the remainder retested, with the following results :---

Coefficient of custicity = 1,972.390 (forward). 1,562,020 (return); compressive strength = 3521.4 lbs, per square inch; specific weight = 36.777 lbs, per cubic foot.

After 2 had been tested the injured portion was removed and the remainder re-tested, with the following results :---

Coefficient of clasticity = 1.733,480 (forward), 1.727,000 (return); compressive strength = 3736,7 lbs, per square inch : specific weight = 37,602 lbs, per cubic foot.

The injured portion was removed from the last and the remainder dried 1.3 212 $^\circ$ F., when it was tested, with the following results :---

Coefficient of classify = 2,690,130 (forward), 2,699,970 (return); compressive strength = 8465 lbs, per square inch; specific weight = 30.253 lbs, per cubic ft.

Specimen 2 contained the heart, and shews the least compressive strength.

Remarks on E.—It may be observed that the coefficient of elasticity and strength often differ widely in value, even in the case of specimens which were in the same alignment in the original beam, and which had been treated, as far as practicable, in a precisely similar manner. This may be due to a number of uncontrollable causes, as, for example, an inherent weakness or a want of parallelism in the grain, but it is certainly largely due to the proportion of moisture present in the specimen and perhaps to some but a much smaller extent, to a variation in the temperature.

Again the difference between the means of the forward and return observations diminishes as the moisture is eliminated, and as the material approaches the normal state, that is, the state in which it contains the greatest amount of moisture consistent with the hygrometric condition of the surrounding atmosphere. The same is true also of kiln-dried specimeus, but the latter, on account of their small section, rapidly absorb moisture until the normal state is reached. The rate of loading was kept as uniform as possible, the average time per reading heim j_2 minute for tension and j_4 minute for compression specimens. The following examples will serve as illustrations :—

A,-SPECIMEN OF WHITE PINE MARKED I. (KILN-DRIED).

This specimen was taken out of the kiln on March the 2sth, 1895, and allowed to cool in the Laboratory during the night. Its sectional area = .5288 square inches, and its specific weight = 21.588 lbs, per cubic fort.

Date.	No, of readings.	Mean forward reading,	Mean return reading.	Temp. (Falm) . ol Laboratory.	Mean pressure of vapour,	Mean relative humidity.	Dew Jedut
- Mar. 29	96	691,702	698 572	25 5 to 30 1		··· ·	~~~
Mari 20 30	30	699.113	699,267	45 3 to 46 8	.2	1	:
. 30	54	705.453	704,163	68 1 to 68°3	. 2152	<u>`</u> 3	36.2
· · 31	10	688.342	688.175	67 4 10 681	.1793		
Apr. U	50	673.958	673.6	33 to 37.5	.1052	\$7.3	41.5
- Gr. 5	30	686.5	6-6.066	65° to 68	.470	83.0	19.7
	20	685.111	685.3	64.5	.1173	93.7	30.3
	(20	670.65	670.25	1315103781		7	22
·· 1	26	669.5	6621.5	33 to 35 3 } ;	.1202	511	22.2
.4 7	30	682.5	682.	64 10 16 5	.1557	-9	28.3
0 8	30	678,857	678.228	65 2	.1498	56	27.3
11	34	666.469	666.147	35	.13-2	50	15.3
6 9	15	676.643	676,143	61°5		71.7	1010

Tensile strength of specimen = 12,294 lbs, per sq. inch.

24

Specimen 14 Specimen 19

Date.

 $\underset{\scriptscriptstyle O}{\overset{\rm M.nr.}{\underset{\scriptscriptstyle O}}} \overset{\rm 2S}{\underset{\scriptscriptstyle O}}_{}$

.. 29

* 30 Mar. 27

. 28

B. SPECIMENS OF RED PINE MARKED GI. (KILN-DRIED).

SPECIMEN 1.—Seet. area = .6874 sq. ins.; sp. wt. = 30.9 lbs. per cub. ft.; (ensile strength = 14,620 lbs. per sq. in.
 SPECIMEN 2.—Sect. area = .71775 sq. ins.; sp. wt. = 33.17 lbs. per cub. ft.; tensile strength = 12,023 lbs. per sq. in.

Date,	No, of readings.	Mean forward readlog.	Mean return reading.	Temp. (Fabr.) of Laboratory,	Mena pressure of valuar.	Mean relative humidity	Dew point
Mar. 28 	11 48 25	$ \begin{array}{c} 654 & 3/4 \\ 649 & 28 \\ 650 & 32 \end{array} $	654 3/7 649.56 650.	55' to 64' 28' to 30' 25' 5 to 27	.0945	\$3.0	17.0
·· 30	2.)	120.02	450,	2.5 5 10 41	.2152	\$5.3	36.1
			SPEC	CIMEN 2.			
Mar. 27	$\frac{22}{42}$	605.9 600.625 617.65	64.72 600.309 616.95	$ \begin{array}{c} 33^{\circ} \\ 27 5 \\ 65 \end{array} $	0.082 0.0945	86.5 85.0	13. 17.

SPECIMEN 1.

Again, a kilu-dried tension specimen, with a sectional area of .058 square inches, was placed in the testing machine on April the 10th, 1896, and was subjected to a load which was gradually increased up to 1600 lbs. Under this load, the extension during the first day was at the rate of 6.1 hundred-thousandths of an inch per hour. On every succeeding day this rate diminished, but irregularly, until the test piece had reached its normal state. At this point, the slightest change in the humidity produced a corresponding change of length in test piece. The maximum amount of extension, viz., .00708 incb, occurred on the 11th of May.

The greatest observed rates of extension and recovery per hour were 7 and 8 one hundred-thousandbhs of an inch, respectively. On the 16th of May the load was reduced to 200 lbs., when the extension was also reduced to .0024 inch. One hour later the reading had fallen to .0023 inch, but an increase in the hundity then caused a corresponding increase in the extension of .00017 inch.

In the transverse experiments the greatest possible care was taken to increase the load at the same uniform rate, the average time occupied in adding each increment and in taking the corresponding reading being slightly greater than 1 minute. In many cases the beam was loaded, then relieved of load, and reloaded again, the readings in all evers being earefully noted. This operation was sometimes repeated more than once. Whenever a beam or a specimen under tension or compression was subjected to repeated loadings, the first series of readings were almost invariably discarded as the increments of deflection, and changes of length were found to be more uniform *after* the preliminary loading. The initial loading seems to eliminate certain inequalities of resistance.

In Beam 15 there was an increment of .401 in, in the deflection, corresponding to an increment of 7,000 lbs, in the load. On reducing the load to 500 lbs, there was an apparent set of .006 in, which would have undoubtedly disappeared in a very short time. Upon re-loading the beam the increment of deflection for the same increment of load was.

In Beam 17 the increments of deflection under the first and second loadings were exactly the same, viz., .415 inch for an increment of 7,060 lbs, in the load. When the load, after the first series of readings, was reduced to 500 lbs, there was an apparent set of .005 inch, which would have certainly disappeared had the beam been allowed to rest for a lew minutes.

In Beam 24 (Spruce) for an increment of 6,000 lbs, in the load, the increment of deflection was 1.04 in. in the first loading and 1.031 in. 25

e cool in er cubic

Dew point, 36,2 4 31,5 19,7 30,3 22 22,2 22,3 27,3 25,3 25,3 in the second. Upon being entirely relieved of load, there was an apparent, but evidently only apparent, set of .01 in.

In Beam 25 (Hemlock), for an increment of 6,000 lbs. in the load, the increment of deflection was 1,165 in. in the first loading and 1,155inch in the second, the apparent set when entirely relieved of load being .01 inch.

In Beam 27 (Spruce), after being loaded and then entirely relieved of load, there was an apparent set of .005, which in two hours had failen to .002 inch.

In Beam 26 (Hemlock), after being loaded and then entirely relieved of load, there was an apparent set of ,004 inch which had entirely disappeared after an interval of about two hours.

In the case of Beam 28 (White Pine) there were three sets of loadings, the increments of deflection corresponding to an increment of 12,000 bis, in the load being :-

.238 in. and .234 iu. for the first set,

.237 in. and .232 in. for the second set,

.237 in. and .232 in. and .232 in. for the third set,

When the Beam was entirely relieved of load after the first set, there was an apparent set of .002 in., which had entirely disappeared in 25 minutes. The second set of loadings commenced after an interval of 18 hours. The mean increment of deflection = .2344 in.; the mean compression = .0327 inch, and, using the ordinary formula, the corresponding value of E = 1,066,980 lbs.

The increments of deflection for repeated loadings corresponding to an increment of 6,000 lbs, in the load were :--

.675 in., .660 in., .650 in. for Beam 29 (Hemloek),

.335 in., .330 iu., .337 in, for Beam 30 (Spruce),

.492 in., .485 in., .487 in. for Beam 31 (Red Pine),

.675 in., .655 in., .653 in. for Beam 32 (White Pine),

.313 in., .308 in., .305 in., .306 in. for Beam 49 (Red Pine).

The increments of deflection for repented loadings, corresponding to an increment of 7,000 lbs. in the load, were :--- Teoq.

72.5

 $\frac{73}{71} \frac{5}{8}$

 $\frac{73}{15'0}$ $\frac{1}{71}$ $\frac{4}{4}$

73 0

71.9

Temp

76 9

75 0

.625 in., .620 in., .620 in., .625 in. for Beam 33 (Sprace).

The increments of deflection for repeated loadings, corresponding to an increment of 5000 lbs. in the load, were :---

.590 in., .556 in., .555 in. for Beam 35 (Hemlock).

,420 in., .400 in., .405 in., .405 in., .405 in. for Beam 36 (White Pine) and an increment of 6,000 lbs,

.178 in., .173 in., .173 in. for Beam 37 (Red Pine) and an increment of 4,000 lbs.

.039 in., .042 in., .040 in., .040 in. for Beam 38 (White Pine) and an increment of 300 lbs.

.048 in., .048 in., .048 in., .0.49 in. for Beam 39 (Spruce) and an increment of 300 lbs.

.071 in., .070 in., .070 iu., .070 in. for Beam 40 (Hemlock) and an increment of 300 lbs.

.363 in., .358 in., .358 in., .363 in. for Beam 41 (Red Pine) and an increment of 1,200 lbs.

.669 in., .672 in., .675 in. for Beam 42 (White Pine) and an in grement of 1,200 lbs.

.411 in., .416 in., .408 in., 402 in. for Beam 43 (White Pine) and an increment of 6,000 lbs.

243 in., 240 in., 238 in., 241 in. for Beam 44 (Red Pine) and an increment of 6,000 lbs.

(a) The increment of deflection diminishes and therefore the co-efficient of elasticity increases with the elimination of the moisture from the beam.

(b) The increments of deflection are much more uniform in amount in the case of kilu-dried beams.

It is, of course, impossible to maintain a bram in a kiln-dried state. As soon as it is exposed to the atmosphere, it at once commences to absorb moisture, and the absorption continues until there is an equilibrium between the hygrometric conditions of the beam and atmosphere. The beam is then in its normal state, and the experiments indicate that the increments of deflection, corresponding to this state, are approximately uniform. The rate of absorption depends essentially upon the nature of the timber, and proceeds more slowly as the density increases. The weight of a central 2 inch slab of beam 30 (sprace) increased 3.6 per cent. in 24 days and 8.5 per cent. in 47 days.

The influence of moisture on the deflection of a beam was well illustrated in the case of 15 inch x 6 inch Donglas fir beam on 186 inch centres. On June 15th, 1895, it was placed in position and was loaded with a weight of 1000 hs, at the centre, producing a deflection of .071 inch. The daily observations, extending over several months, showed a continually increasing deflection, until, by the evaporation of the moisture, the beam had attained its normal state. The average deflection now remained constant, varying, for example, hetween .09 inch on August 24th, and .082 inch on September 2nd, the greater deflection of course corresponding to an increase of moisture in the atmosphere. On the 4th of September, the load was increased to 2000 bs, which produced a deflection of .127 inch. This load remained on the beam until January 8th, 1896, the deflection during the same period varying between .129 inch and .114 inch.

0

e

5 if

n

ie

0

to

0

ed te 'e-

an an an in nd an ho ffiom Changes of temperature produced no appreciable effect upon the deflection, but its sensitiveness to the presence of meisture is shown by the following table of daily observations, taken at 12 p.m., from August to December.

UNDER A	LOAD	\mathbf{OF}	1,000	LBS.	DURING	AUGUST.
---------	------	---------------	-------	------	--------	---------

Тенар.	per.	Remarks.	Temp.	Def.	Remarks.	Temp,	Def.	Remarks.
72.5	.080		7.5°3	.089	Cloudy and show-	$70^{\circ}4$.085	Duil, cold and showery.
73.5	.080		71°9	.088	ery. Cloudy.	$70^{\circ}6$		Continuous rain.
71 5	.051		74.0	.088		72°2	.089	Showery, then fine.
73-0	.053		7.5°9	.088	**	72°5	.089	Fine.
75'0	.083		76.7	.086	16	73°8	.089	
74.1	. 0	*	76'4	088	Stormy.	74.6	.089	
73.0	. 9-7		75'3	1.088	6.6	71/3	.059	Dull and cool.
75.0	.087		73'5	.086	"	75°5	.082	Fine.
75 ~	057		72.0	056	Fine and showery	71.9	.086	Showery.
71.9	h		70 8	.085				

UNDER A LOAD OF 2,000 LBS, DURING SEPTEMBER.

Temps	Def,	Remarks.	Temp.	Def.	Remarks.	Temp.	Def,	Remarks.
$\begin{array}{c} 17 & 3 \\ 16 & 9 \\ 56 & 2 \\ 171 & 0 \\ 157 & 8 \\ 157 & 3 \\ 157 & 0 \\ 157 & 0 \end{array}$.126	Clondy. Rain. Fine and stormy. Stormy. Clondy.	71 0 68'75 58°0 69 5 66'0 69'4 69'0	$ \begin{array}{c} .129 \\ .129 \\ .125 \\ .126 \\ .124 \\ .121 \\ .125 \end{array} $	Cloudy and cold. Pine and warm. Fine and cold. Fine and warm. G	71°3 71°5 71°5 71°6 70°0 67°1 65°8	$ \begin{array}{r} .126 \\ .128 \\ .126 \\ .128 \end{array} $	Fine and warm. Fine, but cooler, Wet and stormy Fine,

27

UNDER A LOAD OF 2000 LBS. DURING OCTOBER.

Temp.	Def.	Remarks,	Tem p.	Def.	Ren	narke.	Temp.	Def.	Ren	urks
65°0	.127	Dull, cold and	75°0	.123			6 <u>8</u> °0	.118	Fine and	l cold.
68°0 68°5 66° 2	.125 .125 .125 .125	showery. Fine and warm.	65°8 64°3 66°0	.126	Stormy "Fine at		68°0 61°8 63°5	.116 .119 .116	Gamp a Fine and dry,	11 ml cold. l cold and
66-0 65`0 70`0	.125 .125 .125		66° 1 67° 0 65 '8	.120 .122 .123	6+ 16 61	6 6 6 6 • •	65°0 65°0 68°0	.114 .115 .115		16 66 66
67 '0	.125	Laby, heated. Dull and cold. Laby, heated.	68-5 60°0 65°0 66°2	.120 .120 .120 .120	64 66 64	•6 •• ••	69°0	.111		*6

UNDER 2000 LBS. DURING NOVEMBER.

65 .115 Rain. 70°0 .114 Cloudy and cold. 55°6 .114 Fine and cold. 65°0 .115 """"""""""""""""""""""""""""""""""""	62°5 69°0 70°3 63°7 66°0 67°5 68°0 59°0	.119 .119 .119 .119 .120 .120	Cloudy and cold. Grand cold. Rain. Fine and warm. Fine. Dull and wet. Rain and warm. Cloudy and warm. Snow and cold.	66°0 57°8 60°0 67°5 69°7 69°0 69°3	.118 .118	Cold. Laby, heated. Snow, ⁶⁶ ⁶⁶ Snow, Rain and warm. Cloudy & warm. Fine and warm. Fine and warm. Fine and cold.
--	--	--	--	--	--------------	---

UNDER 2000 LBS. DURING DECEMBER.

Temp.	Det.	Remarks,	Temp.	Def,	Remarks.	Temp.	Def.	Remarks.
60° 62°5 64°5 61°0 62°5 61°5 61°5 61°5 61°5 61°5	.115 .115 .114 .115 .115 .115 .115 .115	Fine and cold. Snowstorm. Fine and cold. """" Snow and milder. ""fine. Fine and cold.	62°6 62°5 65°3 54°0 67°0 67°0 67°4 67°9	.115 .114 .114 .114 .114 .115 .115 .115	Fine and cold. ct ct warm and rain. ct ct warm and fain. Warm and fine.	$\begin{array}{c} 56^2 5\\ 66^2 0\\ 59^1 8\\ 64^2 0\\ 64^2 5\\ 63^2 0\\ 64^2 5\\ 65^2 0\end{array}$	$\begin{array}{c} .115\\ .115\\ .120\\ .120\\ .120\\ .120\\ .120\\ .120\\ .120\\ .120\end{array}$	Warm and dull. fine Dull and cooler a a a a a a a a a a a a a a a a a a a

Remarks on f._It will be observed that of the 20 non-kiln dried beams, 11 failed by crippling on the compression side, 6 failed by longitudinal shear, and 3 hemlock beams only failed by the fracture on the tension side. The experiments on the direct tensile and compressive strength of the timbers show that this is precisely what might be expected to take place. In every ease the direct tensile strength is very much greater than the direct compressive strength, and failure by erippling is likely to take place under a load much less than the material could bear in tension. Under all circumstances, therefore, in practice, it is advisable to place a beam so that the portion of the timber which is strongest and in the best condition should be in compression. Again, the experiments conclusively show that kiln-drying enormonsly increases the direct compressive strength, but greatly diminishes the shearing strength, while the direct tensile strength does not appear to be much affected, although in the majority of eases it was diminished, and sometimes considerably.

The large increase of strength in compression due to kiln-drying might have been naturally expected, as in the process of drying the walls of the cells are stiffened and hardened, and thus become better able to resist a compressive force. The walls, however, are at the same time much more brittle, and it is possible that a sudden blow might cause the failure of a kiln-dried column, which would have remained uniquired had the moisture not been eliminated. It may also be of interest to note that in the re-tests of specimens after the injured portion had been removed, the compressive strength was, almost without exception, increased. temarks and cold.

p and cold. and cold and . 14 • • " •4

Laby, heated. ۲. and warm. dy & warm. and warm.

and cold.

Remarks. m and dull. fior and cooler. 66 warm. 61

64

t 5 1 3 1 • 4g y 28 it

ıg 1e er 10 ht ed oť

)**1'**ut

.

;

Honce, by kiln-drying a beam its compressive strongth is made to approximate more closely to its tensile strength, and its transverse strength is consequently sometimes considerably increased. It must be remembered, however, that this kiln-drying invariably largely diminishes the shearing strength, and thorefore proportionately increases the tendency to shear longitudinally. Thus, of the nine kiln-dried beams in the preceding tables, only one failed by crippling while four failed by fracture on the tensile side and four failed by longitudinal shear. Indeed, generally speaking, kiin-dried beams will fail either by a tensile fracture or by a longitudinal shear, and this result has been further verified by experiments subsequent to those referred to in the present Paper.

In practice, of course, beams cannot be maintained in a kiln-dried state, but they rapidly pass into the normal state. The question of how far it is desirable to eliminate the moisture depends essentially on the balance to be maintained between the tensile, shearing and compressive strengths, and a beam should always be placed so as to exert its relative strengths to the best advantage. Kiln-drying, unless some special method of prevention is adopted, develops shakes in the timber and causes existing shakes to become more prononneed. Some of these shakes often extend to a great depth and run the whole length of the beam, so that it not infrequently happens that only a slight layer is left to hold the beam together. Such a beam, although otherwise sound and clear, offers very little resistance to longitudinal shear, and might more justly be regarded as being made up of two or more superposed beams.

