

Photographic
Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreprocuctions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Feetures of this copy which may be bibllographicelly unique. which may alter any of the images in the reproduction, or which may significantly chenge the usual method of fllming, are checked below.

Coloured covers/
Couverture do couleur
Covers demaged/
Couverture endommagéeCovers restored and/or lamineted/
Couverture resteurte et/ou pelliculíeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géogrephiques en souleurColoured ink (i.e. other than blue or black)/
Ences de couleur (i.e. eutre que bleue ou noire)
Coloured plates and/or lllustrations/
Planches et/ou illustretions en couleurBound with other materiel/
Rellí avec d'eutres documents
Tight binding mey ceuse shedows or distortion along interior margin/
La reliura serrée peut causer de l'ombre ou de la distorsion le long de le merge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutdes lors d'une restauration apparelssent dens le texte, mais, lorsque cele était possible, ces pages n'ont pes óté filr.iées.

Additionai comments:/
Commentaires supplémenteires:

L'Instltut a microfilmd te meilleur exemplaire qu'll lul a dété possible de se procurer. Les détails de cet exemolaire qul sont peut-dtre uniques du polnt de vue bibllographique, qui peuverit modifier une image reproduite, ou qui peuvent exiger une modificetion dens la méthode normale de filmage sont indlqués ci-dessous.

Coloured pages/
 Peges de couleur

Pages demaged/
Peges endommagées
Pages restored and/or laminated/
Peges restaurdes at/ou pelliculéss
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquees
Pages detached/
Pages d́́tachdes
Showthrough/
Transparence
Quelity of print varies/
Quellté inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only adition evailable/
Seule édition disponible
Fages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, stc., on: d́t́ filmdes à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratlo checked below/
Ce document est filmé au taux de réduction indiqué ci-dessour.

The copy filmed here has been reproduced thanks to tha ganerosity of:

> Library of tha Pubiic Archives of Canada

The images appaaring hara ara tha best quailty possibia considering tha condltion and laglbillty of the originai copy and In kaaping with tha filming contract spacificatlons.

OrigInai copies in printed papar covers ara filmad baginning with the front cover and ending on tha last paga with a printed or iiiustrated impres. sion, or tha back cover whan appropriata. Ali othar original coplas are filmed baginning on tha first paga with a printad or iilustrated imprassion, and ending on tha iast paga with a printad or iliustratad Imprassion.

Tha last recorded frama on aach microficha shali contain tha symbol \rightarrow (maaning "CONTINUED"), or tha symbol ∇ (meaning "END"), whichavar applies.

Maps, piatas, charts, atc., may be filmed at diffarant reduction ratios. Thosa too larga to ba antiraly includad in ona axposura ara tilmad baginning in the uppar laft hand corner, ieft to right and top to bottom, as many frames as raquired. The foliowing diagrams illustrate the inathod:

L'axempiaire fiimé fut reproduit grâce à la générosité de:

La bibiiothèqua das Archives pubiiquas du Canada

Les imagas sulvantes ont eté reproduites avac ia plus grand soln, compta tanu da ia condlion at da la natteté da l'exemplaira fllms, at en conformitté avec las conditions du contrat da filmaga.

Les exempialres orlginaux dont la couvartura an papier ast impriméa sont filmés an commançant par ia premier piat et an tarminant soit par la dernière paga qul comports une ampreinta d'imprassion ou d'lliustration, solt par la second plat, saion le cas. Tous las autras examplairas originaux sont fiimés an commençant par ia premidre paga qui comporta une emprainta d'imprassion ou d'ilustration at an terminant par la darnlère paga qul comporte una telie empreinta.

Un das symbolas suivants apparaîtra sur la darnièra Image da chaque microficha, salon la cas: la symbola \rightarrow slgnifie "A SUIVRE", la symboia ∇ signlfia "FIN".

Les cartes, planchas, tablaaux, etc., pauvant êtra fiimés à das taux da réduction différants. Lorsqua le documant ast trop grand pour êtra raproduit an un saui ciiché, il est flimé à pertir da l'angla supériaur gaucha, da gaucha à droita, at da haut an bas, on pranant la nombra t'images nécassaire. Las diagrammes suivants !!iustrant la méthode.

1	2	3
4	5	6

\$anadiar \$ociety of \$ioil engineers,
 iNCORPORATED 1887.
 ADVANCE PROOF-(Subject to revision).

N.B.-This Society, as a body, does not hold itself reaponsible for the facts and opinions etated in any of its publications.

RESULTG OF EXPERIMENTS ON THE STRENGTH OF WIITTE PINE, RED PINE, HEMLOCK AND SPRUCE:

By Prof. H. T. Bovey, LL.J., D.C.L.
To be read Thursday, 11th November, 1897.
(Read before Section G, British Association, Toronto, Angust, 1897.)
In a paper read beforo the Cauadian Socicty of Civil Engiueers in 1895, the results were given of a number of experiments on the transverse strength of timber beams; but in tho calculations it was assumed that the distortion, or dimination of depth, at the bearing surfaee was, snfficiently small to be disregarded. It often lappens, however, and copecially when the timber eontains a large mount of moisture, that the ehange iu depth due to eor pression is excessive, producing a corterponding inerease in the slin-stress.
This inereass is theoretically $2 \frac{f}{d}, \Delta d, f$ being the intensity of the skin-stress, d the depth, and Δd the ehange in depth.

The method of conducting these experiments was' fully deseribed in the Paper referred to, and therefore the following points only are noted:--

All the transverse tests were made with the Wicksteed machine. 'The middle of the bean was supported on a lamelwood bearing of 44 ius; diameter. The two ends were forced down by rams under hydraulic pressure, which can bo gradually inereased at any refuired rate or can be maintained eonstant for any given tiure.

Tho end-pres-utes were kept wormal to the surfaee of the beam by means of spherical joints which allow the end bearings to revolve.
Tho elasticity eoetficients have been caleulated from tho followiug formule:
(a) Cocfficients Prom direct tensile and compressive experiments;

$$
E=\frac{L}{A} \cdot \Delta W
$$

I being the length of the speeinen, A its sectional areat and $\Delta I V$ the inerement of force produeing a change ΔL in the length.
(b) Coeffieicuts from transverse experiments;

$$
E=\frac{L^{3}}{h} \Delta W
$$

L being the long th, ? the broaith, d tho depth and $\Delta \mathbb{W}$ the increment of force producing :in inerement ΔD in the defleet ion.

An etror Δl in the depth theoretically corresponds to an error in V, which is approximately measured by $3 \frac{R}{d} \Delta d$.

In previous experiment:, the wire used in observing the defteeticons was found to be souncwhat eoarse, aud a speeial wire was thercfere drawn of .002 -ineh diameter.

The shin-stresses have been ealculated by means. of the ordinary flexure formula,

$$
f=\frac{3 L y}{b d^{3}}\left(W_{1}+\frac{1}{2} W_{0}\right)
$$

W_{1} being the total load on the beam, W_{2} the weight of the boam, and y the distanco of the skin from the noutral surfice.

Tho flexure theory is admittedly unsatisfactory, and frequently gives results which aro coutrary to experieueg. Possibly, when a eertain
hiwit has been passed there is a tendoney towards equalization of stress, and the so-ealled neutral surface may be uoved towarls that portion of the beam which is best able to bear the stress. It may indeed be mote correct to assume that the distanees of this surface from the teusion and compreasion faces uro in the ratio of the ultimate teusile ind compressive streugths of tho beam. This assumption, at all ovents Nems to give resulss which are more in aceordance with practice. For example, in the case of a cast-iron I'ee bar, tented in tho University Laboratory, the tensileskin stress should bo 22,030 -lbs. per sq. in., :ad the compressive *kill-stress 102,050 lbs per sq. in., wherens the ordinary theory qave 33,000 fbs. per sif. in. as the tensile and 20,800 lis. per sq. in. as the eompressive skin-stress.

The tables on the following pages give the breaking weights, skinstrenses, (transverse) eoeffieients of elasticity and specifie weights of a number of air-dried, saturated, frozen and kiln-dried beaus, and aloo the breaking weights, tousile and compressive strengths per square inch, (direct) coctficients of elasticity and specitic weights of specimens prepared from these heams.

Beams 15 and 16 were sawn out of trees felled at Keewatin in 1894, and were received into e Laboratory on the 13 th of December, their weights being $415.75 \mathrm{l} / \mathrm{bs}$, and 457.78 lbs , respectively. They were both tested on the 2nd of February, 1895, wheu it was found that beam 15 hat lust 3 id .69 lbs or 8.8 p.c. of its weight, and that
beam 16 lind lost 46.59 - Ihs, or 10.2 p.c. of its weight. When tho beamis were sawn through after the test they were still found to be eomplet.ly s:'turated with water exceptines firr a depth of 1 iuch from the surface. It he beams were from the eentral purtions of the trees, the heart rinning from end to end.

Beams 28 to 43 were sawn from trees folled in the water 1803.94 in Quinge Take Co., P.Q. They remained in water one year, and were received into the daboratory on Oetober the th, 1895. They were all tirst quality timber, and, generally speaking, straight in grail ami firee from knots and slakes.

In order to determine the excess of moisture in the timber, three slabs, oue near the middte and one at each end, were sawn out of the beams immediately after they had been tested and were at onee placel in a chamber kept at a temperature of $22^{\circ} \mathrm{F}$. by unbans of steampines. The moisture was also removet from the whole beams by drying them in the same chamber.

Beam 36 failed suddenty under a ver, sumall hail, the frocture commencing at a knot in the tension surface. On examimation it was aho fonnd that the errain on the face was obligue to the nemtrat surfiece, while thero were shakes raming fromend to end in the neighborional of the heart which, on the average, was below the middle of the depth of tho beam. Tho results of this test should be disearded, as the beam was not of firir average quality.

Bean :38 was cut out of beam $3 t$ in sueh maner that the grain was straight.

Beam $\mathbf{4 3}$ friled muter a breaking load of 23,000 tbs., lint a somewhat long continued and slowly increasing deflection under a load of 22,000 -tbs. seemed to indieate thint at this peint tho beam failed in conapression, although there were no apparent signs of erippling.,

Remerks. - The values of E far specimens a_{y}, b, c and d have been caleulated from the first series of rondings only, and aro oonsequently smaller than if repented readings had been taken.
Tho mean direct tensile strenghth is 2.68 times greator than tho calculated mean winstress of the benm and 3.7 times greater than tho menn compressive strength of the timber.
Specimens r_{1} and e_{3} contain the heart and show tho least eompressive strength, The ratios of length to lenst trimsverse dimensions in the compression specimens varied from 6.47 to 9.46 , and the fialuro in ench ease way due to direct ernshing.

The shearing strength of the romed specimens is 1.42 times greater than that of the flat specimens.

The several specimens had lost consideralily in weight during tho interval of their preparation from the beam and the date of test.

Tension speeimen b, after the first series of readings, was entirely relieved of load and was allowed to rest fir two honrs.

Between the two series of readings, comprossion speeimen f_{2} remained under tho load of $50,000 \mathrm{lbs}$, for sixteen hours, the final reading varying from . 01117 to .01172.

Remarks.-The values of E for specimens a, c, d and f have been caleulated from the first serics of readings only, and are consequently smaller than if repeated readings lad been tiken.

The mean thicet tensile strength is 2.21 times greater than tho calculated mean skinstress of the be'm and 27 times greater than the moan compressive strength of tho timber,

Specimens i_{1}, i_{y}, i_{3}, contain the hoart, and the heart also passes along one wide of mpecimens $g 1, g_{2,} ;: 1$. Theso specinons show the least strength. The ratio of lenghto lo least ransverse dimensibis was 37.1 for $, 9,20.73$ for $g_{2}, 34.157$ for $91,24.56$ for $h, 27.03$ for i, and 28.88 for is.

The mean shearing strength of tho raund specimens is $\mathbf{1 . 7 6}$ times greater than that of the llat specimens.

Thas several sperimens hand lost ronsiderably in weight in the intersal between their preparition from the beam and the dato of test.

Tension specimen b wat entirely relieved of load after the tirst series of readings, and was allowed west for 16 homes.

Remuerlis.-The mean direct tensile strength of the nir-dried specimens was 1.9 times greater than the calculated mean skin-stress of the Rem and 2.i!! times greater than the mean compressive strength.

By the kiln-drying, the mean co-cfficients of elisticity were increased and the mean compressive strength was also increased more than 79 pre cent. The mean sliearing strength was reduced more than 32 per cent., and there was a slight diminution in the mean tensile strength.

The ratios of the leugths of the compression specimens to the least transverse dimension varied between 6.49 and 7.43 , and tho failuro was in every ease due to direet erushing.
'The rlifference betweon the specille wrighte of the nir mas kila drime Hpecimens was not greal. 'Itho sprecifle weight of the bemm was 3 or t Hos. per cabic fiot greater than that af the spreimens.

Compremsion specimen :30, ather the thrat seties of rearlinges, was heft uncer 5000 ibs , fire f^{2} homs, the finat tealling varying trom . $011: 3$ (1). 0008.4.

Remarks.-The meani direct tenile strength of the air-dried aprimens was 2.99 times the mean compressive strength and 1.9 times the ealenlited mean skin-stress of tho beam.

By the kiln-dryit:g, the coenticients of elasticity were increased and the mean compresive atrength wis increased more than $3: 3 \mathrm{~F}$ p.e. There was also a slight increase in the mein tensile strenght but the shearing strength was diminiheld more tham 19.1 p. c.
The ratio of the lenglh of the compression specimens to the least transverse dimension raried between 2.02 and 10.1, and the failnro was in every ease due to direct erushing, exeepting in the ease of epecimen h, int .atich the ratio was 29 and the failure was partly due to bentines.
The injurcal portion was removold from speeimen g, which was then re-testen after it had lost in weight 1.08 lb . per cubic foot. Its cmmpressive strength was found to bo 6733 lbs . per square inch, or 1.86 times as grent as in the first test.

The difference between the speifio weighte of the air und kila -tried xpecimens was not great. 'The spreifte weight of the beam was from 2 to 4 ibs ger cubie foot greater dhan that of the apreimenas.

Remarlis.-The co.flieents of elasticity, tensile and compressive strength of this kiln-dried bean are all small, possibly on necount of the obliquity of the grain in the timber.
The eompressive strength, however, is again much greater and the shearing strength much less than the eorrespoudiug strengths in similar air-dried speeimens.

Owing to some inherent weakuess which could not be determinod, specimen c failed under in aboormally low load, and before the extensom ter had been taken off.

Lemucks- Beams 16 and 18, montaining the haart, wero ent from trees felled at Kerwatin in 1894, and were ordinary lst quality timbrer. There were shakes in Bean 17, reaching the heart at points. The Erain on the lower half of the bean was atraight, but ran eroswwe on the tension surface. From the time the beam was receivel into the baboratory to the date of the tere, a perion of 57 days, the luam lant 13 pee, ol its weight. After the test at:-inch slabl) was cut ont, anel the "W ight of this slab on Fed. 15th, 1897, ly which time the matural diying can le emsidered to have beca enmpleted, was lound ta be 28.1136 lts. fer culic luot.

Beam 18 was tested after remainime in the baloratory te diys, in which time it was lount to have lust 8.09 p.e. of it weicht. It hialed ly cripling imil lomitudinal shear, smultmeously. The grain fir about 10 inehes on each side of the centre was elear, straight and fice from knots.
The logs from which Beams 31 to 49 were sawn were fellet in the Bomedare di-triet in the winter of $1804: 5$, and remained in the witer for six months. They all contained the heart, and were ordiniry 1st-qu. lity timber.

Beam 32 lailed by longitudinal shear along a .hake in the neighhourhool of the neutral surfite, but there were indications that this had been immediately preceded by a slight erippling.

Beain 41 was straight grained, but contained large ahakes on the siden and on the comprension nurfice due to seamoning and drying.

Heami 44 wanstraight grained and comparativoly freo froms hnots, but coutained whaken whieh apparently extended from the linart outward es the niden. After pemanining In the Laboratory 23.5 dayn it luat lowe 22.4 p.e. of iten weight. A 1 - Ineh mala cut from one ent of the beant weigheel, ufter being dried at $2120 \mathrm{~F} ., 30.31 \mathrm{llm}$. per enb, fe.

Beam 45 was a dense thimer of exeellent quality with dinkes oceurring inturuittuntly, A consantly linerensing defleotion indieated that erip. pling had taken place under a load of $\mathbf{7 6 0 0} 1 \mathrm{~lm}$., uthongh the eriphting wus not apparent mutil the load was 8000 lbw .
Heail 49 was straightegrnined, with a few intromitent shakes,

Remarks. - The mean direct tem-ile atrength is 2.12 times greater than the calculated mean skinstress of the hean and 2.66 times greater than the mean compressive strenpth.

Specimens l_{1} and b_{1} contain the heart, ind shew the least compres sive strength. The ratios of length to least umaverse dimensions in the compression specimens were 8.62 for $\mu_{1}, 8.82$ for $a_{2}^{\prime}: 5.58$ for a_{3}; 11.98 for $b_{1}, 6.2$ for b_{2}; and 5.84 for c. The failure was in cach case dur to direct crushing.

The average specific woight of the speciuens was about 2 lbs per cubie font less than the specitio weight of the beam.

Tension specimen 6, after the first series of readings, was left under 1610 lbs for $-\frac{1}{2}$ hours, and during this interval the final reating varied from . 01065 to . 0111 .

Remmiss, The mean direct tensile strength is 2.81 times greater than the calenated mean vin -tress of the beam and 3.93 times greater than the mean direet comprescive stronth.

Specimen 11 contaned the heart and shews the least compressive strength.

The ratios of lenuth to hast transverse dimension weas 6.43 for specimen 11, and ".il thr specimen 12. In weh case the failure was dar to lipect erashins.
The cocticients of elanticity for specimens $1,2,3,4,6,7,8,9$, were calenlated from the first ervies of vealings only, and are consequently -miller than if repeated realings had been taken.

The shearing strength of the romul speeimens is $\mathbf{1 . 7 9}$ times the mean hearing strength of the flat specimens.

The timber of' the beam in 'ptestion was unusually dense, and the mean specific weight of the bean does not seem to have been much yreater than the mean specific weights of the compression and sheinting specimens.

Teusion specimen 4, after the first series of readings, vas eatirely relieved of load for 16 hours,

Kemarhs.-'The mean direct tensile strength is 1.65 times greater than the ealenlated mean skin-stress of the bean and 1.55 times greater than the mean direct compressive strength.

By the biln-drying the tensile strength was diminished, the colue. pressive strength was largely increased, atod the shearing strength was dimmished by 24.1 p.e.

The ratios of the length to the least transverse dimension in the eompression specimens varied from 5 to 10 , and in each case the failure was due to direet ernshyg.

Specimens h_{1} and h_{2} contain the heart and sher the bast compressive strength in the air aut kilu-dried eonditions, respectively. The loss of weight in kiln-drying varied from 1.344 lbs , to 3.003 lbs . jer eubic ft.

Kommhs, Beams 92, 23 and 35, containing the heart, had lain in the water for a considerable time, and were conpletely water-soaked. When tested, Beams $2: 2$ and 35 were found to be hard frozen. Hean 23 was alon frozen, but not throughout, as was shewn when the beam was ent in two at the centre. Beam 22 was straight-grained, free from kuots, and failed with a sudden hamp fracture. Ineipient lecay had commenced near the heart of Beam 23, whieh, however, was reginded ats a fair -peeimen of ordinary commereial 'fuality. It was fall of large knots and the grain was eurved from end to end. Beam 35 was straightarained, clear, comparatively free from knots and of exeeptionally good "Inality; beam 411 was eut out of beam 35 after the latter had been testerl.
Beams 25, 26 and 29 all contained the heart. Beam 25 was a good pecimes, and was completely water-soaked. Bean 26 was saturated throughout, exeepting for a depth of $1 \frac{1}{2}$ inches from surfice, and, ilthough an apparently poor specimen, was considered to be of ordinary commereial qualits. It was full of knots and its grain was curvel.

Remariss.-.'The mean direet tensile strength is 1.43 times greater than the calculated mean skin-stress of the beam and 2.31 times greater than the mean direet compressive strength. The sheariug strengtir of the round specimen is 1.52 times areater than the mean shearing strength of the flat speemens. I'he matios of length to lenst transvereo dimension in the compression specimens raried between 5.3 and $\mathbf{7 . 2 4}$, and the failure was in cach ease due to direct erushing.

The eompression specimens had the apparame ol' being frosen, but the frost in the tension and shearing specimens hat thawed, although they still remained very cold and water-soaked. In faet, the specitis weight of several of the speemens was even greater than the mean spe-- itie weight of the l'rozen beam,

Remerks. -The mean direct tensife strength is 2.1 times greater than the caleulated mean skin-stress of the beam and 3.33 times greater than the meau coupressive strength. The mean shearing strength of the round specimens is 1.59 times greater than the mean shearing trength of the flat specimens.

The ratios of the leugth to the least transverse dimension varied between 6.08 and 9.86 , and the failure was in each case due to direet erushing. The results indieate that the thasile and shearing strengths are greatest in those specimens of the greatest speeifie weight.

Severul of the specimens had a greater specifie weight than the mean specifie weight of the bcam.

Iensiou specimen l^{1}, after the first series of readings, was left under 400 lbs., for 17 hours, the final reading varying from .00033 to .00017.

Compression specinen g, alter the first sories of readings, was wholly relieved of lond for $1 \frac{1}{2}$ hours.
Compression specimen d_{21} after tho llist sories of readinga, was wholly relicved of lond for 15 hours.

Remerlis.- The me:m direct tensile strength was unore than 2.di; times as great as the calculatel mean skin-stress of the Beam and 3.6 times greater than the mean eompressive strengeth. The kiln-dried epecimen shewed a compressive strength more than double the mean compressive strength of the air-dried speeimens.

The ratios of the length to the least tansverse dimensionsin the eompressiou members varied from 2.5 to 7.8 , an , the failure was in each ease due to direet crushing.

Between the first and second series of readings, b remained under 400 lbs . for 16 hours, the final reading varying from $.0015 \overline{6}$ to 00037 .

Between the second and last series of :midings the specimen was leit under 400 lbs . for $47 \frac{1}{2}$ hours. The res , ing varied from , 001 to .00398 in the first two hours, and the extensometer was then reset at zero. During tho next hour it varied from zero to .001; and the final reading before recommencing the test was .00082 . The average time occupied in each observation was about cae minute. The variation in the value of the eocfficient of elasticity was due to the gradua drying of the epecimen, and also to the varying liygromatric condition of the atmospliere.

Specimen f was loft under the load of 400 lbs . for 17 hours after the first series of readings, the final reading varying from . 0033 to .01064 , After tho seoond test it was left under 400 lbs , for 23 hours, the final reeding varying from .00281 to .00995 . Between the third and fourth scries of readings the specimon was lefi under 400 lbs for is lucurs, the final reading varying from .00163 to $\mathbf{0 0 0 2 8 4}$. Tho variation of the reading was duo to the gradual drying of the specimen and to the changing hygrometric condition of the atmosphere.
letween the two series of readings for specimen j there was an interval of $\mathbf{9 0}$ hours.

The small tensilo strength of the speciuen was chiefly duo to the fact that the grain of the specimen was slightly obliquo to the axis.

The compression specimen p_{3} was left under a load of $5,000 \mathrm{lbs}$, atter the first series of readings for 42 hours, tho final reading varying from .00081 to .00398 . After tho second series of readings it remained uncer 5,000 lbs for 48 toure, the final reading only varying from .00401 to .00398 .
Tho compression specimen 8 was left under $5,000 \mathrm{lb}$. for 18 hours after the first series of readings, the final reading varying from . 0026 to .00268 . After the socond series of readings it was left under 5,000 lbs. for $4 \frac{1}{2}$ hours, the final reading varying from .00278 to .002805 .

After specimen p_{2} had beeu tested tho injured portion was removed and the remainder retested when it had lost 2.4 lbs . per cubic foot of its weight. Its compressive strength was $4,097 \mathrm{lbs}$. per square inch.

urs after the 3 to . 01064 . irs, the final e third and 00 lbs for : The varia. ceimen and cre was an
to the fact is.

10 lbs. ntter rying from remained rying from

18 hours rom . 0026 nder 5,000 02805. s removed bio foot of are inch.

Remurks.-The meun direct tensile strength is less than the ealculated mean skin-stress of the boam and only 1.3 times as great as the mean comprossive strength. This result is doubtlens duo to the fact that the timber was of vory poor quality and full of knots and shakes.

By kiln-drying, the coefficieuts of elasticity were ineroased, the tensile strength was doubled, the eompressive streugth was increased by 18 per cent., und the mean shearing strength was diminished by 9.9 per cent.

The ratios of length to lenst transverse dimension in the eompression members varied from 2.14 to 10.52 , and the failuro in each ease was due to direet erushing, excepting in the ease of k in which the ratio was 19.6 und which partly finiled ly bending.
In the case of a_{3}, the interval botween the two series of realings, duriug which the speciuen was loft under a load of $100 \mathrm{lts}$. , was 1 hour, and the final reading vnried from . 0005 \& to . 00059.

After k had been tested the injured portion wav romoved and the uninjured portion of the specimen was re-tested, when it failed by direct eruwhing under 4120 lbs. per spuare inch, the vecifie weight being 98.4 Jbs . per eubie fioot, and the ratio of the lenglls to the least trannverse dimension 5.2.
Spechens fliom frozen hemlock berm 35 .

Remarks, -The mean direct tensilo strength of the coid und watersoaked spocimens is 1.4 times greater than tho calculated mean skinstress of the beam and 2.82 times greater than tho mean direct compressivo strengtl.

By the kiln-lrying the tensile strength was diminished, the compressive strength luereased more than 87 j.e., and the shearing strength diminishod moro than 33 per eent. The coefficients of elastieity were also inereased.
'The ratios of the length to tho least transverse dimonsion in the empression specimens varied between 4.43 and $\mathbf{5 . 5 7}$, and in each case the failure was dine to direct erushing.

After $h \cdot y$ hatd been tested, the injured portion was removed, and the specimen was dried at $212^{\circ} \mathrm{F}$. and re tested with the following resulte: -coefficient of clasticity $=1, \mathrm{all} 1,000$ (forward), $1,517,830$ (returı) ; empressive strengh $=8107.8$ lbs. ןer equare inch; specitic weight $=$ 27.017 ll N , per cubie foot.

After he had been tested the injured portion was removed and the *pecimen was allowed to dry gradually in the laboratory for abont " month. It was then re-tested, with the following results :-coofficient of clasticity $=1,526,200$ (forwurd) $1,521,590$ (retura) ; compressive - trength $=3630.3 \mathrm{lbs}$. per square inch; specific weight $=38.07 \mathrm{lbs}$. per cubio foot.

After, $;$ hat been tested the ingured portion was removed and the specimen was immediately re-tested, with the following results:r.effeicut of elusticity $=1,608,560$ (forward), $1,615,300$ (return); eompressive strength $=3502 . \overline{3} \mathrm{lbs}$. per square inch; spocitic weight $=50.02 \mathrm{lbs}$ per cubic toot.

Ihe injured portion was removed, and the specimen drich at $212^{\circ} \mathrm{F}$. when it was re-tested, with the following resnlts:-co-cfficient of clasticity $=1,662,500$ (forward), 1, tiă, 900 (return) ; compressive strength $=60+4$ lbs. per square inch; specific weight $=25.33 \mathrm{lbs}$. per cubic fint.

In the case of specimen j_{1}
After 1st series of readiugs it was left nuder $20,000 \mathrm{lbs}$. for $18 \frac{1}{2}$ hours, the final readiug varying from . 0075 to to 00766 .

Ifter 2nd serics of reading it wis left maler $20,000 \mathrm{lbs}$. for 47 lums, the final rending varying from .001;78 to .00741.

After Brd series of realing it was left noder $20,000 \mathrm{lbs}$, for $3 \frac{1}{2}$ hours, the final reading varying from 00723 to .00726 .

After ttlo series of readings it wa* left under 100 lbs for 17 it honrs. the finat roading raryine from 06149 to . 001 x .

Ifter bth series of realings, it was left muler 100 lbs , for $3+\frac{1}{4}$ hours, the final reading varying from .00176 to .00188 .
ifter i_{z} hatd been tested the injured protion was removed and the soncimen immedintely retesten, with the following recults:-eoellicient of elasticity $=1,284,450$ (forward), $1,278,860$ (return) ; compresive strength $=34,3: 38 \mathrm{lbs}$ per square inch; specific weight $=$ 16.61 lbs. per cubic foot.

The injured portion was reunved and the wecinen dried at $212=1$. and ro-tested, with the following results:-

From lst series of readings, coetticient of elasticity $=1,490,940$

From 2nd series of realings, coeflicicut of clasticity $=1,465,810$ (iorwarl), $1,4.99,920$ (retmrn).

From 3rol series of readings, coeticient of elasticity $=1,471,140$ (furwatl), $1,473.230$ (return); the compressive strength $=7021.6$ llw. per cubic font ; the specitic weight $=24.66$ lbs. per cubic fiont. Between the 1 st : In Ind reatings the specimen remained under 100 ibs, for about $\frac{1}{2}$ hour, the final reading varging from .00043 to .000021 . Between the Gud and Brol readings the specimen remained under 100 Ifs. for about 1 haur, the final reading varying from .0007 to .0005ti.

water-

 a skint colil-
mprex-

 rongth y were in tho ch case and the esults : turu) cight $=$und the bout ${ }^{11}$ fficient oressive 07 lln. and the nits:cturn) ; weight $12 \circ \mathrm{~F}$. of clavtrength r cubie
hours,
hours,
and the -coetli; conl right $=$ $12=\mathrm{F}$ ie fiont. der 100 $.000 \div 1$. nder 100 $.0005 t$ ti.

Ifmucris.-Beam e4 was wet, but was in good enudition and comparatively fice from knots, Hean 27 was of orlinary commereial fuality, with fairly straight grain anl [a large number of small kmis. Benm 30 was of ordinary commencial 'quality, but with large shakes running from end to end and dividiug the bean practice!ly into four sections. Beam 33 was water soaked ame hard frozen when tested. It was uf exceptionally qood quality, fice from shakes and had clear, straight grain. Beam 39 was cut out of Beam 38 after the latter had been tested.
ARIHIED SPECIMENS FIGOM SHRLCE BEAM 24.

	者	ジメ゙ーがが心
	\％	
	$\frac{1}{6}$	ーッ゙ージミット
		$\vdots \vdots \vdots \vdots \vdots \vdots \vdots \vdots$
	家	
		\rightarrow－

 the ealculated mean skinstress ami 1.21 times the mean direct com－ pressive strensth．

The mean shearing strenuth of the ronnd specinens was 1.86 times the mean shearing strength of the flat specimens．
＇Tension speeimen a_{s} ，after the first series of readings，was left undir the load of 1600 lbs ，for $13 \mathbf{'}^{\prime}=$ hours，the final reading varying from $.0124: 3$ to 01707.

The ratios of length to hast tramsverse dimension in the compression epecimens varied between 1.81 and 8.9 ，and the failure was in ench case dur to direct erushing．

Betseen the first and second series of rendings g_{1} was entirily relieved of load for 17 hours．After two repetitions of loading and relinevine from load，specimen f_{a} was left under $5,000 \mathrm{lbs}$ ，for $1 \frac{1}{2}$ hours， and during this interval the realing varied from 00009 to .00092.

Remorks-lhe mean tensile strength of the airdricd specimens was more than double the calenlated mean skinstress of the Beam, and $2.6 \sigma^{6}$ times the direet mean compressive strength. By kihn-lrying the tensile strength was diminished, and the mean compressive strength Was inereased more than 150 per eent.

Specimen 3, after the first series of readings, was left under tol lhs. fir 46 honss, thed dumg this interval the final rading only varied fiom . 0625 to .00200 .

Specitan a_{1}, aftor the first series of readings, was left umber 400 the. for 22 hours, and during this interval the final roading varied from .003 B to .0055 F .

The: ratios of the length to the least transverse dimensions in the enmpression members vatiod between $4.9: 3$ and 8.89 , and in each ease the failure was due to direet croshing, exeppting in the eaves of spere i mens 5 and 6 , in which the ratios were 18.76 and 14.32 respectively, which failed to some extent from bendin!.

Specimen co, between the two sets of readings, was left muder $\mathbf{j}, 000$ Ibs. for 41 hours, the final reading varying from .00049 to .0010 3,
Specimen de, between the two sets of readings, was left uthler 5,000 lbs. for 41 hours, the final reading varying from 00128 to 00079.

After coupression specimen 2 had been tested. the injured portion was removed and the remainder re-tested, when its specifie weight was
 mflare ineh.
The injured portion was removed fomen his last, and the remainibr ngain tested, when itw weight was gi, 02: ihs, per cubis foot and its enmpressive atrengeh $66=1.2$ tha. per suare inch.
 preavive atrength.

Rimurts.-Whe mean direet tensile strength of the air inden '4 i-
 23.3 times the mean direct compreswive streugth.

By the kilo-drying, the mean tensile strength seems to have hern increased, but specimen c_{1}, faited under an abnormally small loat, probably because of some inherent weakness. The cempressive strength was inereased 77 per cent, and the mean shearing streuyth wininished more than se per cent.
The matio of the lengh of d to its least transverse dimension was - 0.32.
'The ratios of the length to the least transverse dimension in the remaiuder of the compression members varied between 2.06 : mil 10.1 , and in each case the failure was due to direet erushing.

Rematid.-The uman direct tensile streneth of the satursted npecimens was nearly donble the calculated mean skin-stres of the beam and :3 88 times the nean eompresive strength.
By the kiln-drying. the tenside strength seme to have been shighty inereased, the comprossive strength was inereased 80 per cent. und the - baring strength was diminishad more dan lo per cent The ro(flecients of elasticity were alsu inereased.
The ratios of the length to the heat transvese dimension in the लिpression members varied trom 4.17 to $\mathbf{5 . 5 5}$, and failurn was in eah emse the toliteet emshing.

After compression specimen 1 had been tested the injured portinll was romoved and the remainder re-tested, when its speifie weight was
 ward) and 1,6:34,960 (retmro), and its compressive stretyth 3700 lb . pur subare inel. The ingured partion was removel tion thin last, and
 ing revilts:-

Cineflicient of olasticity from lat seriea of remdines

$$
==2,402,710 \text { (firw:ard), } 2,400,310 \text { (rentu). }
$$

Confficient of elasticity from 2 nd series of readings $=2,415,6 \div 0$ (forwari), $9,411,810$ (rotinti).
Cocfficient of elasticity from Brol series ot readinge $=2,419,040$ (forward). $\because, 1 \because 1,360$ (roturn).

Butween the first and seenurl readings the specimen was nuder 100 lbs . for 3 hours, the final reading varging frout -.00005 to +.00002 . Between the second und third readings the specimen was left moder 100 Ibs. for 25 minutes, the reidiug varying from - . 00003 to +.00002 . The speefie weight of the dried specimen was 32.559 lbs , per cubie foot.

Aftar f_{1}, hand been to-ted the injured portion was removed and the remainder retested, with the foliowing resmlts :--

Coefficient of elisticity $=1,972.390$ (firward). $1,662,020$ (rethrin) ; compressive stangth $=3521.4 \mathrm{Hs}$. per sumare inch; specitic weight $=36.767 \mathrm{lbs},{ }^{\mu} \cdot \mathbf{r r}$ cubic foot.

After 2 had been tested the injural portion was removed and the remainder re-tested, with the followine results:--

Cocflicient of elasticity $=1.733,4 \times 0$ (finward), 1,727,000 (return) ; compressive strength $=3735.7 \mathrm{lbs}$. per sinute inch : specifie wight $=37.602 \mathrm{lbs}$. per cubic toot.

The injured portion was removial from the last and the remainder drich $1 . \mathrm{i} 21^{\circ}$ F., when it was thetel, with the following wenles:-

 $=3025: 3$ lhs. per enbic ft.

Specimen 2 evonainel the hoart, and shews the leat eompressise strengh.

Remarks on E.-It maly lue oheerved that the conflieient of claticity and strength often liffer widely in value, even in the case of speeimens which were in the same aligment in the original beam, and which had been treated, as far as practienble, in a precisely similar mamer. This may be due to a number if uncontrollable eanses, ns, for example, an inherent weakness or a want of parallelism in the grain, but it is certandy largely due to the propurtion of woisture present in the speeimen and perhaps to some lant a much sualler extent, to a rariation in the temperature.

- Again the differenee between the me:ms of the forwarl and rehorn observations diministhes as the mosture is climinater, and as the material approaches the normal state, that is, the state in which it contiins the greatest amount of moisture consistent with the hygronetric condition of the surrounding atmosplace. The same is true alow of kiln-dried specimens, bit the later, on aceount if their small section, repidy absorb moisture matil the momal state is rearlien, The rate of loading was kept as uniferm as possible, the average time per readiug leeing $1 / 2$ minute for temsion and $3 / 4$ minute for compressinn specimens. The following examples will serve as illustrations:-

A, -SPECINEN OF WHITE PLNF MALKED I. (KILN-IRRED,

 the Lathoratory buring the nitht.
 fout.

Tensile strengh of specimun $=12.204 \mathrm{lhw}$. per sq. inelı.

B. SPECIMENS OF RRD PINE: MARKED GI (KILN-DRIED).

 14,620 lbs. per sq. in.
 12,02.3 lhs. per sq. in.
splecimen 1.

SPECIMEN 2.

Agrain, a kilu-dried tension specimen, with a seetional area of .6 ans square inehes, was placed in the testing machine on April the 10 th, 1896, and was subjected ta a load which was gradually increased up to 1000 ll s. Under this load, the extension during the first day was at the rate of 6.1 hundred-thonsandtha of an ineh per hour. In every succeeding day this rate diminished, bat irregularly, until the test piece hat reaehed its normal state. At this proint, the slightest change in the humidity produced a eorrespondiug change of length in test piece. The maximum amount of extension, viz., 00708 ineh, oceurred on the 11th of May.

The grentest observed rates of extension and reeovery per hour were 7 and 8 one hundred-thousamithos ol' inn ineh, respectively. On the 16 th of May the lom was redued to 200 lbs ., when the extension was also reduced to .0024 ineh. One hour later the rembing hat fallen to .00233 inch, hut an inereare in the humidity then eansed a corresponding inerease in the extension of . 00017 inch.

In the transverse experiments the greatest possible care was taken to inerease the load at the same uniform rate, the average time ocenpied in adding each inerement and in taking the eoresponding realine being slightly greater than 1 minute. In many eases the bean wat loaded, then relieved of load, aml reloaded again, the readings in alt ceres being earefully noted. This operation was sometimes repeated more than once. Whenever a bean or a specimen mader tension on compressiou was subjected to repeated loadings, the tirst series of reatings were alnost invariably disearded as the inercments of deflection. and ehanges of lensth were fount to be more uniform after the pres liminary loading. The intial loading seems to eliminate sertain inequalities of resistance.
lin Beam 15 there was in increment ol 40 I in. in the deffetion. corresponding to an inerement of $7,000 \mathrm{lbs}$. in the lont. On reducing the load to 500 lhs, thero was :n apparent set of .000 in ., which wonld have undonbtedly disappeared in a very short time. Cpon re-hading the bean the inerement of deflection for the same inerement ol load was .4 incl.

In liean 17 tho inerements of dellection muder the first and seeond loadings were exactly the same, viz., 41:\% inch for an increment of $\mathbf{7 , 0 0 0}$ lbss, in the load. When the load, after the lirst series of readings, was redneed to 500 lbs , thero was an apparent set of .005 inch, which would have eertainly disappeared had the beau been nllowed to rest for a lew minutes.
In Beam 24 (Spruce) for an inerement ol 6,000 lbs, in the loand, the inereuent of deflection was 1.04 fin . in the first louding and $1.0: 3 \mathrm{f}$ in.
in the second. Upon being entirely reheved of load, there was an ap. parent, but evidently only apparent, set of .01 in.

In Beam 25 (Hemlock), for an inerement of $6,000 \mathrm{lbs}$. in the load, the increment of deflection was 1.165 in . in the first loading and 1.155ineh in tho second, the apparont set when entirely relieved of load being 01 inch.

In Beam 27 (Spruce), after being luaded and then entirely relieved of load, there was an apparent set of .005 , which in two hours had fallen to .002 inch.

In Beam 26 (Hemlock), after being loaded and then entirely relieved of load, there was an apparent set of .004 inch whieh had entirely disaploared after an interval of abont two hours.

In the ease of Beam 98 (White Pine) there were three sets of londings, the incremente of deflection corresponding to an increuent of 12,000 lles, in the load heing:-
.298 in , ind $.23+\mathrm{iu}$. for the first set,
.237 in , and .232 in . for the second set,
.237 in. and .232 in. and .232 in. for the third set,
When the Beam was entirely relievel of had after the first set, there was an apprent set of . 002 in., which had eutirely disappeared in 25 minutes. The second sot of hadings emmencen after an interval of 18 hours. 'The mean inerement of deflection $=.23+4 \mathrm{in}$. ; the mean compression $=.03: 27$ ineh, and, wing the ordinary formula, the corresponding value of $E=1,066,980$ ibs.
The inerements of deflection for repeated loadings corresponding to an increment of $6,000 \mathrm{lls}$. in the load were :-
. 675 in ., . 660 in , . 650 in . for 13 cam 29 (ITemiloek),
.335 in., . 330 in., . 337 in. for Beam 30 (Spruec),
.492 in., 485 in., 487 in. for Beam 31 (Red Pine),
.675 in., .655 in., . 653 in. for Beam 32 (White Pine),
.313 in., 308 in., . 30 i in., 306 in . for Beam 49 (Red Pine).
The increments of deflection for repented loatings, eorresponding to ant increment of $\mathbf{7 , 0 0 0} \mathrm{lbs}$. in the lond, were:-
.625 in., 620 in., . 620 in., 625 in. for Bean 33 (Sprnce).
The inerements of deflection for repeated loadings, eorresponding to an inerement of 5000 lbs . in the loarl, wero:-
.590 in., . 526 in., 555 in. fin beam 85 (Hemlock).
For be:mis dried at $\because 1^{2} \mathrm{~F}$., the inerements of defleetion for repeated loadings were:-
$.420 \mathrm{in} ., .400 \mathrm{in} ., .405 \mathrm{in} ., 40 \mathrm{i}$ in., 405 in for Beam 36 (White Pine) and an inereuent of 6,000 ths.
.17 in., 173 in., 173 in, for lsemm 37 (Red Pine) and an inerement of $4,000 \mathrm{lbs}$.
$.0: 39$ in., 042 in., 040 in., 040 in. for Beam 38 (White Pine) and an iucrement ot :300 lis.
.04 in., 048 in., 048 in., . 0.49 in. for Beam 39 (Spruce) and an increment of 300 lbs .
$.071 \mathrm{in}, .070 \mathrm{in}, .070 \mathrm{in}, .070 \mathrm{in}$. for liomm 40 (Hemlock) and an increment of 300 lbs .
. 36.3 in., . $358 \mathrm{in}, . .35 \mathrm{~s}$ in., 363 in . for Bemm 41 (Red Pine) and an inerentent of $1,200 \mathrm{lbs}$.
.694 in., .672'in., . 675 in. for Beall 42 (White Pine) and an in crement of $1,200 \mathrm{lbs}$.
$.411 \mathrm{in} ., 416 \mathrm{in}$, , $408 \mathrm{in} ., 402 \mathrm{in}$. for Bean 43 (White Pine) and stu inerement of $6,000 \mathrm{lbs}$.
$.243 \mathrm{in} ., .240 \mathrm{in} ., 238 \mathrm{in} ., .241 \mathrm{in}$. for lieaun 44 (Red Pine) and an inerement of $6,000 \mathrm{lbs}$.
From these results and from the further observations up to tho point of fracture, the following inferences may be at onee drawn :-
(11) The increment of deflection diminishes and therefore the co-efficient of elasticity inereases with the elimination of the moisture from the beam.
(l) The increments of deflection are mueh more uniform in amount in the ease of kilu-dried beams.

It is, of course, impossiblo to maintain a bram in a kiln-driod state. As soon as it is exposed to the atmosphere, it at onoe commenecs to absorb moisture, nnd the absorption continues until thero is an equilibrium between the hygrometric comlitions of the boam and atmosphere. The bean is then in its normal state, and the experinents indicate that the incremonts of deflection, corresponding to this state, are approximately uniforin. The rate of absorption depends essentially upon tho nature of the timber, and proceeds more slowly as the density inereases. The weight of a central 2 incl slab of bealli 30 (spruce) inercased 3.6 per cent. in 24 days and 8.5 per cent. in 47 days.

The influence of moistores on the deflection of a beam was well illustrated in the case of 15 inch $\times 6$ inch Donurlas fir beam on 186 inclu eentres. On June $15 \mathrm{th}, 1895$, it was phaced in paxition and was loaded witha weight of 1000 ths. at the centre, producing a defleetion of .071 inch. The daily observations, extending ovar several months, showed a continually inereasing deflection, until, hy the cvaporation of the moisture, the heam had attancd its nomal state. The average deflection now remained comstan, varying, fir example, hetween .09 inch on Augnst 24th, and .082 ineh on Septemher End, the greater deflection of course corresponding to an increase of moisture in the atmosphere. On the the of Septemher, the load was increased to 2000 lbs , which produced a deflection of .127 inch. This had remained on the bean mutil Jannary 8th, 1896, the defleetion during the same period varying bet ween 129 ineh and .114 ineh.

Changes of temperature produced no appreciable effect upon the defleetion, but its sensitiveness to the presence of meisture is shown by the following table of daily observations, t.aken at $12 \mathrm{p} . \mathrm{m}$., from August to December.

UNDER A LOAD OF 1,000 LBS, DURING AUGIOTT.

17.101.	16.r.	Hemartis.	Temp.	1 mm	Hemarks.	т.пı!	inf.	litmarks.
73	.117		310	.12:	Clonly ant colis.	713	-126	Fine and warm.
-i 3	.124	('londy.	cis	.124		817	. 120	
in:	1.124	"	5-0	.120		-1"	-12،	Finc, lint eonler.
$\because 0$	- 12:	Rain.	695	-120	Fine and warm.	$\bigcirc 110$.12'	
7.58	.13010	F'ine aul storns	660	.194	Pun mad cald.	$7{ }^{11} 10$	-12-	Wret and atorm! Fine.
7.5\%	. 124	Storms.	bi! ${ }^{\text {a }}$.121	Fine and warm.	700 601 65^{-1}	.128	Fine.
7.50	. 129	Clomis.	fis 0	. 12.		6is 8	.126	"

UNDER A LOAD OF 2000 LBS．DURING OCTOHER．

UNDER 2000 LBS DURLNG NOVEMBER．

ITNDER 2000 LBS．DURING DECEMBER．

Temin．	bet．	Remarks．	Temp．	lef．	Liemarks．	＇remp．	Def．	Bromarli－
160	． 115	Fine and cold．	$162{ }^{\circ} \mathrm{i}$	． 115	Fine and eold．	3635	． 115	Warm and dall． 6 fiu＊
13：	． 115	Snowstorm．	1695	． 1111	$4 \begin{array}{ll}4 & \text {＊} \\ 4\end{array}$	16i60	.115 .120	Dull and cooler．
1．75	.115	Fine and cold．	$15 \% 3$ 500	：111	＂ 4	（i） 11	（120	Did am，eooler．
$11^{\circ} 11$.111	＂ 6	ぶ0	． 1114	Warm and roin．	615	.120	＂ 6
に゙0	． 115	＂${ }^{\text {＂}}$＂	$1 \%^{\circ} 0$ 600	． 115	Wirm and roin．	13．0	.120	＂warm．
103\％	． 115	Snow and litider．	$167{ }^{\circ} \mathrm{4}$	． 11.5	＂6＂	li．\％	． 120	${ }^{1}$
i1） $18: 0$	． 11.5	＊fine．	$17^{\circ} 9$	． 11.5	Warm und fine．	1850	.120	＂
（i） 2	． 115	Fine and cold．						

Remarks on f ．＿It will be observed thitt of the 20 non－kiln dried beams， 11 failed by erippling on the compression side， 6 fiiled by longitudinal shear，and 3 hemlock beams only failed by the fracture on the tension side．The experiments on the direet tensile and com－ pressive strength of the timbers show that this is precisely what might be expected to take place．In every ease the direet teusile strength is very much greater than the direet eompressive streneth，and failure by erippling is likely to take place muder a load much less than the material eonld benr in tension．Under all eireumstanees，therefore，in praetice，it is advisable to place a beam so that the portion of the tim－ ber whien is strongest and in the best coudition should be in compres． sion．Again，the experiments collclusively show that kilu－drying enormonsly inereases the direct compressive strength，but greatly diminislies the shearing strength，while the direet tensile strength does not appear to be much affected，although in the majority of eases it was diminisled，and sometimes considerably．

The targe inerease of strength in eompression due to kilu－drying might have been naturally expeeted，as in the process of drying the walls of the eells are stiffenet aud hardened，and thus become better able to resist a eompressivo forec．The walls，lowever，are at the same time mueh more brittle，and it is possible that a sudden blow might ease the failure of a kiln－dried column，whieh woutd have remained uninjured had the moisture not been elininated．It may also be of interest to note that in the re－tests of specimens ufter the injured por－ tion had been removed，the comprossive strength was，almost without exception，inereased．

Hence, by kiln-dyyiug il lam its eompressive strength is made to approximate more closely to its tensilo strength, and its transverse strength is conserperily son times considerably incrensed. It must be rememberel, however, that this kiln-drying invariably largely diminishes the shearing strength, and thorefore proportionately inereases tho tendency to shear longitudinally. Thus, of the nine kiln dried beaus in the preceding tables, only one failed by erippling while four failed by fracture on the tensile sido and four failed by longitudinal shenr. Indeed, acherally speaking, kian-dried beams will fail cither by a tensile fraemue or by a longitudinal shear, and this result has been further verifiel liy experiments subsequent to those referred to in the present Papir.

In practice, of course, beams cannot be minintained in a kiln-dried state, but they rapilly pass into the normal state. The question of how far it is desiriblo to eliminate the mosture depends csentially on the balance to be maintained between the tensile, shearing and compressive strengths, and it beam should always be plaeed so as to exert its relative strengrhs to the best advantage, Kiln-trying, unless some speeial method of prevention is adoptel, levelops shakes in the timber and canses cxisting shakes to become more prontminced. Some of these shakes often extend to a grent depti: and run the whole length of the beam, so that it not qufrequently happens that only a slight layer is left to liold the beam together. Such a benm, although otherwise sound ansl elear, offers very little resistance to longitudinal shear, and might wore jusily be regarded as being made up of two or more superposed beams.

$$
\nabla
$$

