Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparer e
Quality of print varies /
Qualité inégale de l'impression
includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.
\square Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below / Ce document est filmé au taux de réduction indiqué ci-dessous.

ARCTIC EXPEDITION.

RESULTS

DERIVED FROM THE

ARCTIC EXPEDITION,

1875-86.

I.-Physical Observations by Captain Sir George Nares, R.N., and Captain Feilden, \&c.
II.-Medical Report on the Eskimo Dog Disease, by Fleet Surgeon B. Ninnis, M.D.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLLAM SPOTTISWOODE, PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY. FOR HER MAJESTY'S STATIONERY OFFICE.
[C.-2176.] Price 5s. 8d.

CONTENTS.

[^0]II.-Medical Report on the Eskimo Dog Disease, by Fleet Surgeon B. Ninnis, M.D.

ARCTIC EXPEDITION.

I.

PHYSICAL OBSERVATIONS

AND

REPORTS.

The Thickness of the Salt-water Ice frozen during one Season, at Floeberg Beach, Discovery Bay, and other Positions in the Arctic Regions.

At Flocberg Beach, where the station was sheltered by heavy ice from tidal currents, the thickness of the newly frozen ice agrees well with the records of other observers, and especially. with that of Koldewey.

At Discovery Bay and Robeson Channel, where the ice was subject to a strong tidal current, it attained a considerably less thickness.

THICKNESS OF SALT-WATER ICE, IN INCHES.

Thickness of Salt-waten Ice, in inches-continued.

Solar Radiation, H.M.S. " Discovery," 1875-76.

The thermometers were fixed on the floe, suspended 4 feet above the ice and 35 feet from the ship.

Wherever the observations are in consecutive hours, the first observation of the daily series is the reading of the thermometer at the time denoted, and not the maximum temperature registered since the previous observation, which the heading would denote.

JULY 1875.

Date and llace of Observation,	Maximam Temperature registered since previous observation.		(c.) Temperature in Shade.	Difference.		Clouds.		Altitude of the Sun above the North and South horizons to the nearest degree.
	(a.) Black bulb in vacuo.	(b.) Bright bulb.		a and b.	a. and c.	Nature of.	Amount.	
	No. 41.	No. 43.						
Ritenbenk:	$101 \cdot 0^{\prime}$	69.0	50	32.0	49.0			
July 17 \|llllll	$101 \cdot 0$	$69^{\circ} 0$	$52 \cdot 0$	$32 \cdot 0$	$49 \cdot 0$	st.	1	41° South. $0^{\circ} 5^{\prime}$ North.
Noon	$105 \cdot 0$	$69 \cdot 0$	$49 \cdot 0$	$36 \cdot 0$	56.0	st.	1	
10 p.m.	107.5	$71 \cdot 0$	47.5	36.5	$60 \cdot 0$	st.	1	
20	$117 \cdot 0$	$74 \cdot 0$	$48 \cdot 0$	$43 \cdot 0$	69.0	st.	1	
30	103.5	81.5	$50 \cdot 0$	22.0	$53 \cdot 5$	st.	1	
40	$103 \cdot 0$	$76 \cdot 5$	$48 \cdot 5$	26.5	$54 \cdot 5$	st.	1	
50	96.5	$76 \cdot 0$	$47 \cdot 0$	20.5	$49 \cdot 5$	cir.	5	
Proven: July $21 \mid 130$ p.m.	104-2	$78 \cdot 0$	$46 \cdot 0$	$26 \cdot 2$	$58 \cdot 2$	cir.st.	2	38° South. 3° North.
At sea of Cape Farry: July $\quad 27 \mid$	$94 \cdot 0$	$60 \cdot 0$	$47 \cdot 0$	$34 \cdot 0$	$47 \cdot 0$	st.	2	32° South.
10 p.m.	$93 \cdot 0$	60.0	$48 \cdot 5$	$33 \cdot 0$	$44 \cdot 5$	cir.-st.	6	
20	$94 \cdot 0$	$60 \cdot 0$	50.0	$34 \cdot 0$	$44 \cdot 0$	cir.st.	6	
30	98.0	$62 \cdot 0$	$53 \cdot 0$	36.0	$45 \cdot 0$	cir.-st.	6	
40	$94 \cdot 0$	$57 \cdot 8$	51.0	$36^{\circ} 2$	$43 \cdot 0$	cir.-st.	6	\because

AUGUST 1875:

SEPTEMBER 1875.

		No. 41.	No. 43.						16° South.
Discovery Bay:									
Sept. 4	10 p.m.	$77 \cdot 0$	$44^{\prime} 0$	- 23.5	- 38.0	$33 \cdot 5$	cir.	8	
	20	$77 \cdot 2$	$45 \cdot 0$	24.1	$32 \cdot 2$	$53 \cdot 1$	cir.	8	
	30	$71 \cdot 0$	$42 \cdot 6$	$23 \cdot 6$	$28 \cdot 4$	$47 \cdot 4$	cir.	8	
	40	68.0	41.6	-	$26 \cdot 4$	-	cir.	8	
	50	$67 \cdot 0$	41.0	21.0	$26 \cdot 0$	$46^{\prime} 0$	cir,	8	
	60	$63 \cdot 0$	$39 \cdot 0$	$22 \cdot 0$	$24 * 0$	$41^{\circ} 0$	cir.	8	
	70	$56 \cdot 0$	$35 \cdot 0$	20.8	$21 \cdot 0$	$35 \cdot 2$	cir.	8	
1 5	$10 \mathrm{p} . \mathrm{m}$.	$74 \cdot 5$	39.5	$23 \cdot 2$	$35 \cdot 0$	51-3	Thick	fog.	
"	20	$74 \cdot 0$	$39 \cdot 6$	21.0	$34 \cdot 4$	$53 \cdot 0$	- Thick	tog.	
3211	Noon	$68 \cdot 6$	-	$16 \cdot 0$	-	$52 \cdot 6$	cir.	4	13° South.
	$10 \mathrm{p.m}$.	$69 \cdot 6$	$33 \cdot 8$	$17 \cdot 0$	$35 \cdot 2$	52.0	cir.	4	
	230	$65 \cdot 8$	$33 \cdot 2$	$17 \cdot 2$. $32 \cdot 6$	$48 \cdot 6$	cir.	2	
	40	$61 \cdot 2$	$32 \cdot 0$	$14 \cdot 8$	$29 \cdot 2$	$46 \cdot 4$	cir.	2	
	50	$58 \cdot 2$	$28 \cdot 0$	14.5	$30 \cdot 2$	43.7.	cir.	2	
\% 14	- - -	$74 \cdot 0$	$33 \cdot 5$	$29 \cdot 0$	$40 \cdot 5$	$45 \cdot 0$	st., cir.-st.	3 to 9	12° South.
" 15	- - -	$53 \cdot 0$	$39 \cdot 0$	34.0	$14 \cdot 0$	$19 \cdot 0$	st., cir.-st.	5 to 10	
" 22	- - -	$54 \cdot 0$	$23 \cdot 0$	$19 \cdot 0$	$31 \cdot 0$	$35 \cdot 0$	nim., st.	4 to 10	9° South.
" 23	- - -	$55 \cdot 0$	$30 \cdot 0$	$22 \cdot 0$	- $25 \cdot 0$	$38 \cdot 0$	st., nim.	4 to 7	
: 24	- - -	$49 \cdot 0$	$25 \cdot 5$	$17 \cdot 5$	$23 \cdot 5$	$31 \cdot 5$	8 t .	4 to 7	8° South.
" 25	- - -	$53 \cdot 0$	$24 \cdot 5$. $17 \cdot 0$	28.5	$36 \cdot 0$	st., cir.	4 to 6	
" 26	- - -	$19 \cdot 0$	11.0	$8 \cdot 0$	$8 \cdot 0$	$9 \cdot 0$	st., cir.	6 to 7.	7° South.
" 27	- - -	$27 \cdot 5$	$\because 15.0$	$13 \cdot 0$	$\therefore 12.5$	$14 \cdot 5$: st.	6 to 7	.
- 28	- - -	$37 \cdot 5$, 17.0	- $13 \cdot 0$	20.5	$\cdots 24.5$	st:, nim.	- 6 to 7	
" 29	- -	$25 \cdot 0$	16.0	, 13.0	$\therefore 9.0$	12.0	st.an nim.	$: 7$ to 10	6° South.
" 30	-* - -	$22 \cdot 0$	(14.0	. $13 \cdot 0$. 8.0	9.0	st.	6 to 7	

OCTOBER 1875.

After the 14th of Oetober the sun did not rise above the southern horizon.

MARCH 1876.

Discovery Bay:		No. 41.	No. 43.	No. 23%.	$38 \cdot 5$	$\begin{aligned} & 51 \cdot 5 \\ & 37 \cdot 5 \end{aligned}$	-cir.cir.	-	3°
March 3^{3}	110 am .	$+26 \cdot 5$	$-12 \cdot 0$	-25.0					
	Noon	+31.5	-7.5	-26.0	$39 \cdot 0$				
	$10 \mathrm{p.m}$.	+34.0	-6.5	$-26 \cdot 0$	$40 \cdot 5$	$60 \cdot 0$		4	
	20	$+30 \cdot 0$	-10.0	-26.0	$40 \cdot 0$	56.0		4	
" 24	$10 \quad 0 \mathrm{n} . \mathrm{m}$.	+16.0	-18.0	$-30 \cdot 0$	$34 \cdot 0$	46.0	cir.sst.	0 to 4	
	110	+28.0	-12.0	-28.0	$40 \cdot 0$	56.0	none	0	
	Noon	$+31.0$	-9.0	$-25 \cdot 5$	$40 \cdot 0$	56.5	none	0	10
	10 p.m.	$+34 \cdot 0$	-9.8	-27.0	43.8	61.0	none	0	
	20	$+33 \cdot 0$	-11.5	-27.0	44.5	$60 \cdot 0$	none	0	
	230	$\underline{+2} \cdot 0$	-11.5	-27.0	$39 \cdot 5$	$55 \cdot 0$	none	0	
	40	+25.2	-12.5	-26.0	$37 \cdot 7$	$51 \cdot 2$	none	0	
	50	$+10 \cdot 6$	$-18 \cdot 0$	-26.5	$28 \cdot 6$	37-1	st.	4	.
" 25	10 fla a.m.	$-1 \cdot 0$	$-25 \cdot 0$	$-33 \cdot 0$	24.0	$32 \cdot 0$	st., cir.	0 to 4	
	110	$+24 \cdot 0$	$-13 \cdot 0$	$-30 \cdot 5$	$37 \cdot 0$	$54 \cdot 5$	st.	2	
	Noon	+28.8	$-13 \cdot 0$	$-31 \cdot 0$	$41 \cdot 8$	59.8	st.	2	
	$10 \mathrm{p} . \mathrm{m}$.	$+33 \cdot 0$	- 9.0	$-29 \cdot 0$	42.0	$62 \cdot 0$	st.	4	
	20	$+32 \cdot 0$	$-5 \cdot 0$	-29.8	$37 \cdot 0$	61.8	st.	4	
	230	$+27.5$	$-12 \cdot 0$	-29.0	$39 \cdot 5$	56.5	st.	4	
	40	+27.0	$-11 \cdot 5$	$-30 \cdot 0$	$38 \cdot 5$	57.0	st.	4	
	50	+12.0	-17.5	$-23 \cdot 0$	$29 \cdot 5$	$35 \cdot 0$	st.	3	
" 26	110 a.m.	$+39 \cdot 0$	-4.0	-23.0	$43 \cdot 0$	62.0	none	0	11^{\prime}
		No. 41.	No. 43.	No. 237a.					
" 27	Noon	$+31 \cdot 5$	- 7.6	-2.50	$39 \cdot 1$	$56 \cdot 5$	st., cir.	2 to 4	11°
	$10 \mathrm{p.m}$.	$+38 \cdot 3$	$-4 \cdot 0$	-25.0	$42 \cdot 3$	63.3	st.	4	
	20	+39.0	$-4 \cdot 6$	-24.5	$43 \cdot 6$	63.5	st.	4	
	230	$+35 \cdot 5$	- $7 \cdot 0$	-24.5	42.5	60.0	st.	4	
	40	+34.0	-6.0	-23.0	$40 \cdot 0$	57.0	st.	4	
" 28	$\begin{array}{lll}10 & 0 & \text { a.m. }\end{array}$		$-5 \cdot 0$	-22.0	40.0	57.0		4 to 10	
	$11 \quad 0$	+32.5	$-5 \cdot 0$	-22.0	37.5	54.5	st.	4	
	Noon	$+40 \cdot 0$	$-4 \cdot 0$	-22.5	$44 \cdot 0$	62.5	st.	4	
	$10 \mathrm{p} . \mathrm{m}$.	$+39 \cdot 5$	-4.0	-24.0	43.5	63.5	cir.	3	
	20	$+35 \cdot 5$	-7.5	- 26.0	43.0	61.5	cir.	3	
	230	$+32 \cdot 5$	-8.5	-24.6	41.0	57.1	cir.	3	
	40	$+31 \cdot 5$	$-9 \cdot 0$	$-25 \cdot 0$	$40 \cdot 5$	$56 \cdot 5$	cir.	3	
	50	$+22.6$	$-9 \cdot 2$	-24.6	$31 \cdot 8$	$47 \cdot 2$	st.	3	
	60	$+12 \cdot 5$	$-13 \cdot 0$	-25.5	25.5	$38 \cdot 0$	st.	3	

MARCH 1876-continued.

Date and Place of Observation.		Maximum Temperature registered since previous observation.		(c.) Temperature in shade.	Difference.		Clouds.		Altitude of the Sun above the South horizon to the nearest degree.
		(a.) Black bulb in vacuo.	(b.) Bright bulb.		a. and b.	a. and c.	Nature of.	Amount.	
Discon Bay :		No. 41.	No. 43.	No. 237A.					
		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
March 29	10 0 a.m.	- 3.0	-16.5	-20.0	$13 \cdot 5$	$17 \cdot 0$	cir., nim.	3 to 10	
	110	- 1.5	-15.0	-18.5	$13 \cdot 5$	$17 \cdot 0$	nim.	10	
	Noon	$+1.5$	-13.5	-18.5	$15 \cdot 0$	$20 \cdot 0$	nim.	10	12°
	10 p.m.	$+7.0$	-12.0	-17.5	19.0	24.5	st.	4	
	20	+41.6	$+0.5$	-18.5	$41 \cdot 1$	$60 \cdot 1$	st.	4	Sun shining.
	230	+38. F	-3.5	-20.0	42. $=$	$58 \cdot 6$	st.	4	
	40	+37.0	- 2.5	-19.8	39,5	56.8	st.	4	
	50	+15.0	-11.0	-20.0	26.0	$35 \cdot 0$	cir.	4	
	10 0 a.m.	+20.5	-13.0	-35.0	$33 \cdot 5$	$55 \cdot 5$	nim., st.	3 to 10	
	110	+28.2	-15.0	-33.0	$43 \cdot 2$	61.2	st.	3	
	Noon	+34.5	-13.0	$-33 \cdot 0$	$47 \cdot 5$	67.5	st.	3	12°
	10 p.m.	+42.0	$-10 \cdot 0$	$-33 \cdot 0$	$52 \cdot 0$	$75 \cdot 0$	cir.	3	
	20	$+38.0$	-9.5	$-30 \cdot 5$	$47 \cdot 5$	68.5	cir.	3	
	230	+34.5	-11.0	-32.5	45.5	67.0	cir.	3	
	40	+30.6	-12.3	-30.0	$42 \cdot 9$	$60 \cdot 6$	cir.	3	
	50	+19.5	-16.5	$-30 \cdot 8$	38.0	$50 \cdot 3$	none	0	

APRIL 1876.

MAY 1876.

Date and Place of Observation.	Maximum of Radiation Thermometer between midnight and midnight.		$\underset{\text { Maximum }}{\text { (c.) }}$ Temperature in shade between midnight midnight.	Difference between		Clouds.		Altitude of the Sun above the North and South horizons nearust derree.	Ruading of Radiation Thermometer at midnight.		(c.)Tempe-rature inshadontmidnight.	Difference betwce:	
	(a.) Mhack bulb.	(b.) Bripht bulb.		a. and b. Black and bright bulbs.	a. and c. Black bulb and Teminerature in shade.	Nature of.	Amount.		(a.) Black bulb.	(b.) Bright bulb.		a. and b. Black and bright bulbs.	a. anit c. Black bull and Ternposhade.
	No. 40.	No. 92.	$4 \pm 2 \mathrm{~A}$.						No. 40.	No. 42.	422 A .		
May 1	$0 \cdot 0$	31.0	9.5	$6^{\circ} \mathrm{H} 0$	55.5	st., nim.	1 to 10	$7{ }^{\circ}$ North.	-0.5	-5.5	- 9.0	5.0	8\%
" 2	90.5	$30^{\circ} 10$	5.0	60.5	$35 \cdot 5$	st.	2 to 5	24° South.	$+90$	- 20	$-12 \cdot 0$	11.0	21.0
13	$9^{9} 0$	$29^{\circ} 0$	$4 \cdot 0$	61.0	86°	st.	0 to 1	-	+11.5	- 6.0	-14.0	$17 \cdot 5$	25%
" 4	$87^{\circ} 0$	98.5	$0 \cdot 5$	60.5	86.5	st., cir.	0 to 1	8° North.	+12.5	-2.0	-13.0	$14^{\prime} 5$	$25 \cdot$
" 5	S0.0	275	$0 \cdot 0$	$\cdot 5$	860	nonle.	0	25° South.	+6.5	-8.5	-16.0	15.0	22:
" 6	89°	30°	$5 \cdot 0$	50.0	84°	st.	0 to 3	-	+15.5	-2.5	-11.0	18.0	26.5
" 7	86^{5}	$\cdot 0$	-0	$55 \cdot 5$	80\%	st., cir	1 to 2	-	+36.0	+ 9.0	-2.3	$27 \cdot 0$	$38 \cdot 3$
, 8	935	$3 \cdot 0$	10.5	$50 \cdot 5$	83.0	st.	0103	9° North.	+19.0	+2.5	-4.0	$16 \cdot 5$	$23 \cdot 0$
" 9	985	$35 \cdot 0$	13.	61.5	55.5	nowe	0	28° South.	+14.0	+3.5	-1.0	10.5	150
, 10	100.0	42.0	$16 \cdot 5$	55^{50}	33.5	st.	0 to 3	-	+38.5	+18.0	+6.5	$22 \cdot 5$	32.0
" 11	105.5	$47 \cdot 8$	190	577	86.5	st., nim.	3 to 10	-	$25^{\circ} 0$	16.0	$11 \cdot 5$	$9 \cdot 0$	13\%
, 12	106\%	$45 \cdot 2$	180	$60 \cdot 8$	$83^{0} 0$	nim., st.	3 to 10	10° Nortb.	$22^{\circ} 0$	$6 \cdot 5$	1.5	$15 \cdot 5$	20.5
, 13	31.0	34.0	$15 \cdot 0$	470	66°	st., cir.	1 to 3	27° South.	50.5	23.6	4.6	$32 \cdot 9$	51.0
n 14	$115 \cdot 5$	47.0	14°	58.5	815	none.	0	-	-	-	-	-	-
" 15	090	44.0	$17 \cdot 0$	55%	$8{ }^{0} 0$	st.	0 to 2	-	61.5	240	0.0	37.5	615
, 16	1000	41.0	$13^{\circ} 0$	56.0	87%	none.	0	11° North.	$57 \cdot 5$	23.	$7 \cdot 0$	$34 \cdot 0$	50:\%
" 17	101.5	47.0	$20 \cdot$	54.5	$81 \cdot 5$	cir.	0 to 1	28° South.	61.0	23.0	13.8	33.0	$47 \cdot 2$
, 18	106:5	52.5	295	5.0	7%	cir.	0 to 1	-	36.0	21.0	15.0	15.0	21%
, 19	$110^{\circ} 0$	52.6	$31 \cdot 8$	57.	73.2	st., cir.	0 to 6	-	37.0	23.5	17.0	13.5	20.0
1, 20	116\%	550	$25 \cdot 3$	615	90%	st., nim.	C to 10	-	${ }^{3} \cdot 5$	24.5	21.0	10.0	13.5
, 21	69%	$3{ }^{3} 0$	24.0	31.0	450	st.	6 to 8	12° North.	$34 \% 0$	23.0	$17 \% 0$	$11 \cdot 0$	17.0
, 22	770	41	26%	350	51.0	nim.	6 to 10	29° South.	43.0	$27 \cdot 0$	19.0	$16^{\circ} 0$	24.0
" ${ }^{3}$	$110 \cdot 0$	59.0	± 3	$60^{\circ} 9$	93.7	none.	0	-	$61 \cdot 5$	26.5	$11 \cdot 2$	350	50.3
1 24	106.0	495	248	565	81.2	one.	0	-	60.5	$23^{5} 5$	11.0	$32 \cdot 0$	49.5
" 25	107\%	$52 \cdot 8$	$28 \cdot 5$	55°	78.5	st., cir.	2 to 7	-	31.5	21°	16.0	10.0	15%
" 26	$93 \cdot 5$	435	30.0	50.0	635	cir., st.	7 to 10	18° North.	41.5	290	$22 \cdot 5$	12.5	19.0
, 27	83.0	420	3-2	39.0	$50 \cdot 3$	st.	10	30° South.	39.0	275	220	11.5	$17 \cdot 0$
- 28	121'3	50.0	$33 \cdot 6$	713	$87 \cdot 7$	cir.	0 to 7	-	83.0	420	20.0	41.0	63.0
" 20	$112 \cdot 5$	5	\cdots	50%	86.0	cir.sst.	1 to 7	-	63.0	$23 \cdot 5$	95	$30 \cdot 5$	$58 \cdot 5$
, 30	108.0	51.0	30.7	57.0	773	st.	0 to 2	-	67%	29.5	$8 \cdot 0$	$37 \cdot 5$	59.0
1) 31	13.0	$44 \cdot 5$	240	$45 \cdot 5$	$69 \cdot 1$	st., cir.	0 to 10	-	40%	20.0	$19^{\circ} 0$	14.5	21\%

JUNE 1876.

	No. 40.	No. 42.	No. 422.						No. 40.	No. 42.	No. 422.		
June 1 - -	81.6	48.0	30.5	33.5	51.0	nim., st.	1 to 10	-	46.0	$32 \cdot 5$	27.0	18.5	19%
" 21.	91.5	51.0	38.0	$37 \cdot 5$	53.5	nim., cir.	7 to 10	14° North,	64.0	45.0	33.6	$9 \cdot 0$	$20 \cdot 1$
" 3	110.5	59.0	340	57.5	$82 \cdot 5$	nim., cir.	4 to 9	81° South.	48.0	31.5	$20^{\circ} 0$	10.5	10.0
" 4	120\%5	62.5	30.0	$60^{\circ} 0$	92.5	nim., cir.	0 to 10	-	740	$30^{\circ} 0$	20.0	35.0	54.0
" $6=$	$113^{\circ} 0$	$60^{\circ} 0$	$3 \mathrm{~F} \cdot 0$	53.0	790	none.	0	-	70.5	$35^{\circ} 0$	$10^{\circ} 0$	$35 \cdot 5$	51.5
" 0	128.0	68.0	$3+0$	60%		st., cir.	3 to 7	-	88.5	45.5	26.5	87.0	56.0
" 7	110.5	$62 \cdot 5$	$30^{\circ} 0$	50.0	76.5	st., cir.	0 to 7	-	77.0	43.0	27.0	34.0	50.0
" 8	1140	62.5	37.0	$51 \cdot 5$	$77^{\circ} 0$	none.	0	-	$62 \cdot 5$	-	-	-	-
" 0	97.0	54.0	37.0	43.0	60.0	st., cir.	0 to 10	-	$87^{\circ} 5$	52.5	$32^{\circ} 0$	35.0	55.5
, 10	1120	61.0	$32 \cdot 3$	51.0	51.0	st., cir.	0 to 7	-	42.5	340	$29^{\circ} 0$	8.6	$13 \cdot 5$
" 11	$6{ }^{6} 5$	4.0	$32 \cdot 3$	$33 \cdot 5$	± 3.5	nim.	10	-	$41^{\circ} 0$	$32 \cdot 5$	28.3	$8 \cdot 6$	12.7
, 12	105\%0	6\%*0	$30 \cdot 3$	43.0	68%	nim, cir.	7 to 10	15° North.	40.0	$32 \cdot 5$	20%	7.5	10.4
, 13	$101{ }^{\circ} 5$	59.0	37.5	4 SH	64*0	st., cir.	2 to 7	-	39.0	$20 \cdot 5$	25.5	9.5	13.5
\% 14	915	51.5	35.0	$10 \cdot 0$	$50 \cdot 5$	nim., cir.	2 to 10	-	$85 \cdot 0$	23.8	$24^{\circ} 0$	$8 \cdot 6$	11.0
" 15	105\%	60.0	356	$45 \cdot 0$	69.4	nim., cir.	4 to 10	-	76.0	43.0	27.0	33.0	49.0
, 20	$100^{\circ} 0$	590	35.0	$47^{\circ} 0$	71.0	nim., st., cir.	0 to 10	-	$41^{\circ} 0$	34.0	30.5	$7 * 0$	10.5
$\cdots 17$	91.5	51.5	38.0	40.0	53.5	nim., cir.	3 to 10	-	67.0	39.0	28.2	28.0	$38 \cdot 8$
$\cdots 18$	95.5	73.0	32.5	23.5	63.0	cir.	0 to 3	-	$73^{\circ} 0$	$41^{\circ} 0$	27.0	320	46.0
" 19	72.0	$41^{\circ} 0$	29.0	31.0	430	st.	10	-	30.0	31.6	28.0	7.6	11.0
\% 20	93.6	50.0	32.0	43.5	61.5	st.	3 to 10	31° South,	48.0 .	31.0	$23^{\prime} 5$	22.0	17.8
n 21	$60 \cdot 5$	43.0	34.5	23.5	320	nim., cir.	0 to 10	- -	$40^{\circ} 0$	$34 \cdot 4$	31.4	$5 \cdot 6$	$8 \cdot 6$
" 22	102.5	55.0	35.4	47.3	$67 \cdot 1$	cir.	2 to 7	-	73.0	46.6	34.6	26.5	38.5
" 23	$103 \cdot 5$	5130	$37 \cdot 5$	47.5	68.0	st.	2 to 5	-	$00^{6} 0$	440	32.0	23.0	35.0
, 94	$100 \cdot 4$	68.5	$30 \cdot 4$	47.0	67*0	st., cir.	4 to 7	-	7 F 0	40.0	36.2	\%0	34.8
" 25	103.0	58.0	41.0	$45 \cdot 0$	62.0	st., cir.	4 to 7	-	50.0	41.0	36.5	$0 \cdot 0$	13.5
" 26	105:5	160.5	$40^{\circ} 2$	$45 \cdot 0$	65.3	st., cir.	4 to 10	-	41.5	36.0	$34 \cdot 5$	$5 \cdot 5$	$7 \cdot 0$
"27 - -	$8: 5$	63.5	$39 \cdot 5$	30.0	16.0	nim., cir.st.	5 to 10	-	44.5	37.5	35.2	7.0	$9 \cdot 3$
" 28.	98.0	$60^{\circ} 5$	40.0	$41 \cdot 5$	58.0	cir.	6 to 7	-	.91.0	50.5	84.5	40.5	56.5
, $89{ }^{\circ}$ -	$100 \cdot 0$	50.0	35.5	45.0	1655	st., cir.	6 to 10	15° North.	77.0	440	31.5	38.0	45.6
$\cdots 30-$	78.0	450	$35 \cdot 3$	310	$42 \cdot 7$	st., cir.	7 to 10	31^{6} South.	88.0	34.0	$33^{\circ} 2$	40	4.8

JULY 1876.

Solar Radiation, H.M.S. "Alert," 1875-1876.

In the obscrvations for Solar Radiation, the date of the observation is expressed in civil time, and in that manner differs from the other Meteorological observations.

SEPTEMBER 1875.

Date and Place of Observation.	Maximum Temperature between $9.30 \mathrm{a} . \mathrm{m}$. and $3.30 \mathrm{p} . \mathrm{m}$.			Difference.		Clouds.		Altitude of the Sun above the South horizon to the nearest degree.
	(a.) Black bulb.	(b.) Bright bulb.	(c.) Temperature in shade.	a and b.	a and c.	Name.	Amount.	
Flocberg Beach :	No. 38.	No. 37.	No.421.					
		$7 \cdot 2$	${ }_{6}{ }^{\circ} 0$	$\stackrel{\circ}{7} \cdot 8$	$\stackrel{8}{9} \cdot 0$			
Sept. 26 - - $\#$ 27 - -	15.0 +23.5	7.2 $12 \cdot 2$	6.0 16.0	$7 * 8$ $11 \cdot 3$	$9 \cdot 0$ $7 \cdot 5$	$\xrightarrow{\text { st. }}$ cir.-st.	2 1	$6^{6}{ }^{\circ}$
" 28 - - -	$30 \cdot 0$	14.1	$10 \cdot 0$	$15 \cdot 9$	$20 \cdot 0$	misty	10	Occasional sunshine.
" 29 - - -	$12 \cdot 0$	$12 \cdot 2$	$12 \cdot 0$	-	-	st.	10	5°
" 30 - -	21.5	$15 \cdot 1$	$13 \cdot 5$	$6 \cdot 4$	$8 \cdot 0$	nim.	10	Occasional sunshine.

OCTOBER 1875.

The Sun did not rise above the Southern horizon after the 12th October.

MARCH 1876.

Date and Place of Observation.	Maximum Temperature between $9.0 \mathrm{a} . \mathrm{m}$. and $9.0 \mathrm{a} . \mathrm{m}$. of the previous day.			Difference.	Clouds.		Altitude of the Sun
	(a.) Black bulb.	(b.) Bright bulb.	(c.) Temperature in slade.	a. and b : ${ }^{\text {a }}$ a and c.	Name.	Amount.	horizon to the nearest degrec
Flocberg Beach :	No. 38.	No. 37.	No.421, 419				

The Sun appeared above the South horizon on the 1st March, but the mercury in the themometers

March 11	-	-9.8	Frozen	$-55 \cdot 5$	-	$45 \cdot 7$	cum.	0 to 2	4°
" 12	- - -	-6.0	Frozen	- $\overline{25} \cdot 0$	5.0	- 6	cum.	0 to 5	
,. 13	-	$-19 \cdot 5$	$-24 \cdot 5$	-25.0	$5 \cdot 0$	6.0	nim.	4 to 10	
" 14	- -	二	-	-	-	-	nim.	8 to 10	5°
" 15	-	$+30 \cdot 0$	-1.7	- $9 \cdot 5$	$\sqrt{1 \cdot 7}$	$\overline{-7}$	st., nim. cum., st.,	6 2 to 10 to 10	
, 16	- -	+30.0	$-1 \cdot 7$	- $9 \cdot 5$	$31 \cdot 7$	39-5	cum., ${ }^{\text {ctim. }}$ nim.	2 to 10	6°
, 17	- - -	+41.0	+5.3	$-8 \cdot 0$	$34 \cdot 7$	$49 \cdot 0$	cum.-st.	0 to 7	
" 18	- - -	-11.	-	$-11 \cdot 0$	-	-0	cir.-st., st.	0 to 6	
" 19	- - -	+11.0	-	-25.0	-	36.0	st.	0 to 3	$7{ }^{\circ}$
" 20	- - -	+12.4	-	-18.2	-	$30 \cdot 6$	cum.-st., st.	1 to 7	
" 21	- - -	$+31.8$	+17.1	$-30 \cdot 8$	$14 \cdot 7$	$62 \cdot 6$	oum.-st.,st.	1 to 7	8°
", 22	- - -	+35.0	-19.6	$-22 \cdot 6$	$54 \cdot 6$	57.6		2 to 10	
" 23	- - -	$+30 \cdot 0$	- 7.6	$-19 \cdot 8$	37.6	49.8	cum., cir.-st.	2 to 10	
" 24	- - -	+38.0	-6.7	-19.5	$44 \cdot 7$	57.5	cum., cir.	3 to 8	$9{ }^{\circ}$
", 25	- - -	+32.5	-16.6	-28.0	$49 \cdot 1$	$60 \cdot 5$	cir.-st., st.	0 to 7	
" 26	-	$+24.0$	$-17 \cdot 6$	-26.0	41.6	$50 \cdot 0$	cir.-st., st.	0 to 9	10°
" 27	-	+42.0	-9.6	-	$51 \cdot 6$	-	oir.-st., eum-st.	2 to 8	
" 28	- -	+37.0	- $7 \cdot 6$	-17.6	$44 \cdot 6$	$54 \cdot 6$	$\left\lvert\, \begin{gathered} \text { cir., com.-st. } \\ \text { nim. } \end{gathered}\right.$	2 to 10	
17 29		-	-	-	-	-	$\begin{gathered} \text { cum. } \begin{array}{c} \text { st., } \\ \text { nim. } \end{array} \end{gathered}$	4 to 10	11°
1, 30	- - -	+29.0	$-10 \cdot 6$	-22.2	39.6	$51 \cdot 2$	cum., nim.	3 to 10	
, 31	- - -	+40.0	- 9.4	$-17 \cdot 0$	$49 \cdot 4$	$57 \cdot 0$	cum., cir.-st.	0 to 4	12°

APRIL 1876.

MAY 1876.

JUNE 1876.

Date，Place，and Hour of Observation．			Maximam Temperature registered since previous observation．			Difference．		Clouds．		Altitade of the Sun above the North and South horizons to the nearest degree．
			（a．）	（b．）	（c．） Tempe－ rature in shade．	a and b ．	a．toc．	Name．	Amonnt．	
			No． 38.	No． 37.	No．419A．	26.8				
Floeberg Beach ：			－	\bigcirc	－					
June	1	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	63.4	${ }^{36 \cdot 6}$	27－8		$35 \cdot 6$	overcast	10	
＂	2	$\begin{array}{lll} 930 & \text { a.m. } \\ 830 & \text { p.m. } \end{array}$	$77 \cdot 4$	43．2	$\begin{aligned} & 35 \cdot 5 \\ & 34 \cdot 8 \end{aligned}$	－ 3 －2	$\overline{42 \cdot 6}$	－$\overline{\text { overcast }}$	10	
＂	3	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	$85 \cdot 8$ $92 \cdot 0$	$45 \cdot 7$ 48.0	$\begin{aligned} & 31 \cdot 2 \\ & 34 \cdot 8 \end{aligned}$	$40 \cdot 1$	$\begin{aligned} & 54 \cdot 6 \\ & 57 \cdot 2 \end{aligned}$	overcast st．	$\begin{gathered} 10 \\ 2 \text { to } 8 \end{gathered}$	
＂	4	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{array}{r} 78.0 \\ 103.0 \end{array}$	$\begin{aligned} & 42 \cdot 7 \\ & 52 \cdot 2 \end{aligned}$	$\begin{aligned} & 29 \cdot 5 \\ & 35.8 \end{aligned}$	$\begin{aligned} & 35 \cdot 3 \\ & 51 \cdot 8 \end{aligned}$	$\because \begin{aligned} & 48 \cdot 5 \\ & 67 \cdot 2 \end{aligned}$	$\begin{aligned} & \text { st. } \\ & \text { st. } \end{aligned}$	$\begin{gathered} 8 \\ 6 \text { to } 8 \end{gathered}$	
＂	5	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	97.8 105.0	$49 \cdot 2$ $47 \cdot 7$	$\begin{aligned} & 28.5 \\ & 23.6 \end{aligned}$	$\begin{aligned} & 48 \cdot 6 \\ & 57 \cdot 3 \end{aligned}$	$\begin{aligned} & 69 \cdot 3 \\ & 81 \cdot 4 \end{aligned}$	$\left\lvert\, \begin{gathered} \text { oum.-at._dr.-st. } \\ \text { cir.-st. } \end{gathered}\right.$	$\begin{aligned} & 2 \text { to } 7 \\ & 1 \\ & 1 \end{aligned}$	15° North． 30° South．
＂	6	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$105 \cdot 0$ 115.5	52．2	$\begin{aligned} & 24 \cdot 2 \\ & 25^{\circ} 0 \end{aligned}$	63．3	$\begin{aligned} & 80 \cdot 8 \\ & 90 \cdot 5 \end{aligned}$	cir．－st． cir．－st．	$\stackrel{2}{2}$	
＂	7	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$102 \cdot 8$ 107.0	$46 \cdot 7$ 48.2	$\begin{aligned} & 28 \cdot 0 \\ & 26 \cdot 0 \end{aligned}$	$\begin{aligned} & 56 \cdot 1 \\ & 58 \cdot 8 \end{aligned}$	$\begin{aligned} & 74 \cdot 8 \\ & 81 \cdot 0 \end{aligned}$	$\begin{gathered} \text { cir.-st. } \\ \text { cir.-st., st. } \end{gathered}$	$\stackrel{1}{1 \text { to } 8}$	
＂	8	$\begin{aligned} & 930 \text { n.m. } \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	89.0	$\stackrel{47 \cdot 2}{-}$	30.0	$41 \cdot 8$	59.0	st．	8 to 9	
＂	9	$\begin{aligned} & 930 \mathrm{a} . \mathrm{m} . \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	82.5	47－2	35．0	$\overline{35 \cdot 3}$	47．5	overcast	$\overline{10}$	
＂	10	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{aligned} & 92 \cdot 0 \\ & 95 \cdot 5 \end{aligned}$	$\begin{aligned} & 47 \cdot 2 \\ & 47 \cdot 7 \end{aligned}$	$\begin{aligned} & 35 \cdot 0 \\ & 27 \cdot 5 \end{aligned}$	$\begin{aligned} & 44 \cdot 8 \\ & 47 \cdot 8 \end{aligned}$	$\begin{aligned} & 57 \cdot 0 \\ & 68 \cdot 0 \end{aligned}$	st． st．	$\begin{gathered} 8 \text { to } 9 \\ 8 \text { to } 10 \end{gathered}$	
＂	11	$\begin{aligned} & 930 \text { n.m. } \\ & 830 \text { p.m. } \end{aligned}$	$70 \cdot 2$ 77.5	$40 \cdot 1$ $42 \cdot 0$	$\begin{aligned} & 28 \cdot 0 \\ & 33 \cdot 0 \end{aligned}$	$\begin{aligned} & 30 \cdot 1 \\ & 35 \cdot 5 \end{aligned}$	$\begin{aligned} & 42 \cdot 2 \\ & 44 \cdot 5 \end{aligned}$	$\underset{\text { misty }}{\text { st. }}$	$\begin{gathered} 8 \text { to } 10 \\ 10 \end{gathered}$	
＂	12	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{array}{r} 97 \cdot 5 \\ 102 \cdot 0 \end{array}$	$\begin{aligned} & 51 \cdot 2 \\ & 52 \cdot 2 \end{aligned}$	$\begin{aligned} & 36 \cdot 0 \\ & 38 \cdot 5 \end{aligned}$	$\begin{aligned} & 46 \cdot 3 \\ & 49 \cdot 8 \end{aligned}$	$\begin{aligned} & 61 \cdot 5 \\ & 63 \cdot 5 \end{aligned}$	overcast nim．，st．	$\begin{aligned} & 10 \\ & 8 \text { to } 10 \end{aligned}$	16° North． 31° South．
＂	13	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{aligned} & 107 \cdot 8 \\ & 129 \cdot 0 \end{aligned}$	$\begin{aligned} & 53 \cdot 0 \\ & 57 \cdot 0 \end{aligned}$	$\begin{aligned} & 33 \cdot 8 \\ & 40 \cdot 0 \end{aligned}$	$\begin{array}{r} 54 \cdot 8 \\ 72 \cdot 0 \end{array}$	$\begin{aligned} & 74 \cdot 0 \\ & 89 \cdot 0 \end{aligned}$	st．，cir．－cum． cir．cum．	$\begin{aligned} & 7 \text { to } 10 \\ & 5 \text { to } 8 \end{aligned}$	
＂	14	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	二	二	二	二	三－	－	－	
＂	15	$\begin{aligned} & 930 \mathrm{a} . \mathrm{m} . \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	－	二	二	二	二	二	二	
＂	16	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{aligned} & 113.0 \\ & 110.5 \end{aligned}$	$53 \cdot 7$ $67 \cdot 6$	$\begin{array}{r} 39 \cdot 9 \\ 38 \cdot 4 \end{array}$	$\begin{aligned} & 73 \cdot 1 \\ & 42 \cdot 9 \end{aligned}$	$\begin{aligned} & 73 \cdot 1 \\ & 72 \cdot 1 \end{aligned}$	$\begin{aligned} & \text { cir.-st. } \\ & \text { cir.-st. } \end{aligned}$	$\begin{aligned} & 1 \text { to } 2 \\ & 0 \text { to } 6 \end{aligned}$	
＂	17	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	83.0	${ }_{45 \cdot 2}$	$32 \cdot 0$	37－8	$51 \cdot 0$	$\begin{aligned} & \text { cir.-st., } \\ & \text { cit.-st., } \\ & \text { ct. } \end{aligned}$	$\begin{aligned} & 2 \text { to } 8 \\ & 2 \text { to } 8 \end{aligned}$	
＂	18	$\begin{aligned} & 930 \mathrm{a} . \mathrm{m} . \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	$104 \cdot 0$ 109.0	$52 \cdot 2$ $52 \cdot 7$	$\begin{aligned} & 39 \cdot 8 \\ & 28 \cdot 0 \end{aligned}$	$\begin{aligned} & 51 \cdot 8 \\ & 56.3 \end{aligned}$	$\begin{aligned} & 64 \cdot 7 \\ & 81 \cdot 0 \end{aligned}$	cir．－st． cir．－st．	$\begin{aligned} & 0 \text { to } 2 \\ & 2 \text { to } 3 \end{aligned}$	
＂	19	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{aligned} & 79.0 \\ & 77.5 \end{aligned}$	$\begin{aligned} & 38 \cdot 6 \\ & 41 \cdot 2 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 29.5 \end{aligned}$	$\begin{aligned} & 40 \cdot 4 \\ & 36 \cdot 3 \end{aligned}$	$\begin{aligned} & 52.5 \\ & 48.0 \end{aligned}$	st． st．	$\stackrel{9}{8} \text { to } 9$	
＂	20	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	116.5 114.5	$\begin{aligned} & 54 \cdot 2 \\ & 53 \cdot 7 \end{aligned}$	$\begin{aligned} & 35 \cdot 0 \\ & 31 \cdot 0 \end{aligned}$	$\begin{aligned} & 62 \cdot 3 \\ & 60 \cdot 8 \end{aligned}$	$\begin{aligned} & 81 \cdot 5 \\ & 83 \cdot 5 \end{aligned}$	$\underset{\text { cum. }}{\text { cur.-st., }} \text { st. }$	$\begin{aligned} & 3 \text { to } 8 \\ & 2 \text { to } 9 \end{aligned}$	
＂	21	$\begin{array}{lll} 930 & \mathrm{a} . \mathrm{m} . \\ 830 & \mathrm{p} . \mathrm{m} . \end{array}$	$\begin{aligned} & 114 \cdot 5 \\ & 128 \cdot 0 \end{aligned}$	$\begin{aligned} & 53 \cdot 2 \\ & 62 \cdot 1 \end{aligned}$	$\begin{aligned} & 29 \cdot 5 \\ & 40 \cdot 7 \end{aligned}$	$\begin{aligned} & 61 \cdot 3 \\ & 65 \cdot 9 \end{aligned}$	$\begin{aligned} & 85 \cdot 0 \\ & 87 \cdot 3 \end{aligned}$	st．，cir．－st． cir．－st．，st．	$\begin{aligned} & 4 \text { to } 9 \\ & 6 \text { to } 7 \end{aligned}$	$\text { 16 }{ }^{\circ} \text { North. }{ }^{31} 1^{\circ} \text { South. }$
＂	22	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{array}{r} 88 \cdot 0 \\ 102 \cdot 0 \end{array}$	$\begin{aligned} & 50 \cdot 2 \\ & 69 \cdot 1 \end{aligned}$	$\begin{aligned} & 39 \cdot 3 \\ & 39 \cdot 3 \end{aligned}$	$\begin{aligned} & 37 \cdot 8 \\ & 32 \cdot 9 \end{aligned}$	$\begin{aligned} & 48 \cdot 7 \\ & 62 \cdot 7 \end{aligned}$	st., cir.-cum.	$\begin{aligned} & 5 \text { to } 6 \\ & 2 \text { to } 5 \end{aligned}$	16° North． 31° South．
＂	23	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	$\begin{aligned} & 111.0 \\ & 113.0 \end{aligned}$	$\begin{aligned} & 59 \cdot 1 \\ & 60 \cdot 1 \end{aligned}$	$\begin{aligned} & 37 \cdot 4 \\ & 36 \cdot 9 \end{aligned}$	$\begin{array}{r} 51 \cdot 9 \\ -52 \cdot 9 \end{array}$	$\begin{aligned} & 73.6 \\ & 76.1 \end{aligned}$	$\begin{aligned} & \text { cir.-st. } \\ & \text { cir.-st. } \end{aligned}$	$\stackrel{2}{2}$	
＂	24	$\begin{aligned} & 930 \mathrm{am} . \mathrm{m} . \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	109.0	58．1	$39 \cdot 7$ $39 \cdot 7$	$50 \cdot 9$ -	$\stackrel{69.3}{-}$	cir．－st．	3 to 5	
＂	25	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	－	－	$39 \cdot 7$	－	二	－	－	
＂	26	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$		e	$\begin{aligned} & 40 \cdot 2 \\ & 89 \cdot 8 \end{aligned}$	二	－	－	－	
＂	27	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	－	－	$\begin{aligned} & 43 \cdot 2 \\ & 39 \cdot 7 \end{aligned}$	－	－	－	－	
＂	28	$\begin{aligned} & 930 \mathrm{a} . \mathrm{m} . \\ & 830 \mathrm{p} . \mathrm{m} . \end{aligned}$	98．5	52－2	$\begin{aligned} & 36 \cdot 9 \\ & 34 \cdot 0 \end{aligned}$	46．3	64．5	st．	$6 \overline{20} 8$	
＂	29	$\begin{aligned} & 930 \text { a.m. } \\ & 830 \text { p.m. } \end{aligned}$	$\begin{array}{r} 76.0 \\ 104.0 \end{array}$	$\begin{aligned} & 45 \cdot 2 \\ & 53 \cdot 7 \end{aligned}$	$\begin{aligned} & 33.0 \\ & 35 \cdot 0 \end{aligned}$	$\begin{aligned} & 30 \cdot 8 \\ & 30 \cdot 8 \end{aligned}$	$\begin{aligned} & 48 \cdot 0 \\ & 69.0 \end{aligned}$	st．，nim． st．，cir．－st．	$\begin{aligned} & 5 \text { to } 10 \\ & 1 \text { to } 8 \end{aligned}$	
＂	80	$\begin{aligned} & 930 \mathrm{a} . \mathrm{m} . \\ & 830 \text { p.m. } \end{aligned}$	$\begin{aligned} & 94 \cdot 5 \\ & 72 \cdot 0 \end{aligned}$	$\begin{aligned} & 49 \cdot 7 \\ & 45 \cdot 2 \end{aligned}$	$\begin{aligned} & 42 \cdot 2 \\ & 45 \cdot 7 \end{aligned}$	$\begin{array}{r} 44 \cdot 8 \\ .26 \cdot 8 \end{array}$	$\begin{aligned} & 52 \cdot 3 \\ & 26 \cdot 3 \end{aligned}$	$\begin{aligned} & \text { st. } \\ & \text { st. } \end{aligned}$	$\begin{aligned} & 8 \text { to } 8 \\ & 8 \text { to } 9 \end{aligned}$	16° North． 31° South．

JULY 1876.

AUGUST 1875.

Hours of Weather．	哭		8
	圽		\pm
	它宫		W
	$\dot{8}$		$\stackrel{8}{4}$
			ה
			0 0 0
	允		$\stackrel{0}{4}$
	安	$111111111111 \infty 11111$	$\stackrel{1}{\sim}$
	2	$11111 \underset{\sim}{1} 1111 \sim 1\|1\| 11 \infty$	9
	安		8
	∞		80
	年	$1111 * 11\|1\| 1\|1\| 1\|1\| 1 \mid 1 \pm 9111111$	¢
	＊	$1111 \pm 11 \mid \pm 1+11110$	운
	先		あ
	$\therefore \frac{2}{0}$	1®1＊	\％
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			1
$\begin{aligned} & \text { 彩 } \\ & \text { O} \end{aligned}$			1
	㟥		1
	㟥		－
			－
	$\stackrel{\dot{1}}{\underset{\lambda}{\boldsymbol{A}}}$		尔
	突		\＃ ¢ + +
	曷		0 0 0 + +
			\％

SEPTEMBER 1875.

Hours of Weather．	筞		\％
	安安	$1 \infty 1 \rightarrow 00 \infty 111111+111111111111111$	8
	产安宫		$\stackrel{9}{7}$
	$\stackrel{\circ}{\circ}$		\％
		＊ $1111111 \infty 1111 * 1111111 * 11111111$	\because
		（1）	0 3 N
	云		\because
	穴	$10 \rightarrow 111111 \infty * 1111111111 \leadsto+111111$	9
	$\stackrel{*}{ }$	$11 * 1 * 1 * 11 * 111111111111.1111111$	\pm
	$\stackrel{y}{8}$		\％
	$\dot{\sim}$		¢
	$\stackrel{4}{81}$	＊ $111111111111 * 1 * 11111111111111111111$	$\stackrel{\square}{6}$
	寝	$11 * * 1111 \infty 11111111111111111.11111$	$\stackrel{\square}{\square}$
	㓪		8
	宊		辰
（1）		＋＋onmal｜	1
$\begin{aligned} & \text { mig } \\ & \text { 亮 } \end{aligned}$	苞号		1
	宸		1
	唇		－
	家		－
	号		¢0¢0
	总		¢ ¢ + + +
	寝		+ + +
	品		¢ + + +
$\begin{gathered} \dot{\sharp} \\ \stackrel{\Delta}{g} \end{gathered}$			$\xrightarrow{\text { \％}}$

		宫	－¢ ¢	\pm
		官	1111111111111111111111111111111	1
				융
		$\stackrel{3}{5}$		莒
			1111111111111111111111111111111	1
		旡		0
	品	$\dot{4}$	$111 \pm 11111111111111111111111 \infty 111$	8
		完	${ }^{\infty} 11^{*} 1111^{\infty} 1^{*} 11^{\infty} 11^{+} 1111111^{+} 1111^{+1} 111$	\pm
		$\dot{8}$	$11111^{*} 11111111111111111111111111$	＋
		8	$11111111111^{*} 111^{*} 11111^{* * * 11111111}$	－
		∞	111111111111111111111111 \％ 11111	＋
		$\stackrel{\text { ® }}{\substack{\text { ¢ } \\ 0}}$	1111111111111.11111111111111111	1
		限	＊ $1111111^{*} 1111111111111111111111$	∞
		宽		\％
		宕		荌
	$\begin{array}{r} 50 \\ \stackrel{\circ}{0} \mathrm{~S} \\ 0 . \\ \hline \end{array}$			1
	$\begin{aligned} & \text { 采 } \\ & \text { 己⿱一⿱㇒⿴囗⿱一一寸 } \end{aligned}$	管○		1
		勆		1
	安	窇		\％
		츨		\％ ＋ ¢
		寝		－
		或		－
		家		－
		宸		¢
				榢宫

H 407.
NOVEMBFR 1875.

	寅寅		¢
	音		$\mathscr{\square}$
	容	$1111+1111111111111111111111111$	\checkmark
	它它茹	∞ 1 1	๕
	－		茳
		1111111111111111111111111111.11	1
			O
	文		$\stackrel{\square}{\sim}$
	安		＊
	$\stackrel{\rightharpoonup}{2}$	$11111111111111111 * 11111 * * 11110$	$\stackrel{9}{\square}$
	\％	111111111111111111111111111112	－
	$\dot{\sim}$	111111111111111111111111111110	\cdots
	\％	$11 * 0111.41111111111111111 * 11110$	$\stackrel{\text { A }}{ }$
	\cdots		\％
	安		$\stackrel{\sim}{-}$
	宫		－
$\begin{aligned} & 0.9 \\ & 0.0 \\ & 0.0 \\ & 0 \end{aligned}$			1
$\begin{aligned} & \dot{3} \\ & \text { 岂 } \end{aligned}$			1
	筲		1
	关		＋
	\dot{B}		F
	总		
	药		7 $\stackrel{7}{ \pm}$ 1
	霛		－
	家	 	\circ + +
䔍			$\overbrace{\text {－}}^{\text {¢ }}$

DECEABER 187 İ．

			䓂
	㫛	$11+\infty \mid \infty+\infty$ 1＋	잉
	通	$1111111111111111 * * 111 * 1111111$	$\stackrel{\square}{\square}$
			$\stackrel{\infty}{7}$
	－		吕
			$\stackrel{\text { ® }}{\sim}$
			－
Hours of Wind．	宏		哭
	完		$\stackrel{\text { g }}{\sim}$
	$\stackrel{*}{*}$	$11.11 .111 * 11.11011111$	∞
	0		∞
	\cdots		－
	家	$1: 1 * 1111111111.111: 1:$	＊
	A		\＆
	妥		＊
	雪		家：
		＊	1
$\begin{aligned} & \text { 品 } \\ & \text { 蓫 } \end{aligned}$			1
	誓		1
䔍	突		F ¢ ¢
	它		号
	兒		8 $\stackrel{8}{\circ}$ $\stackrel{\circ}{8}$
	刨		\＃ $\stackrel{3}{*}$ in
	品		－
			+ $\stackrel{+}{\circ}$ + +
		 	Fit

JANUARY 1876.

			每
	管		相
	\％	1111111111111111111111111111111	1
	产宮	$11 \infty \pm 1111 \infty \infty$	\％
	$\stackrel{-}{\circ}$		$\stackrel{\circ}{6}$
		1111111111111111111111111111111	1
			－
	$\dot{\sim}$		오자N
	安	$11111+11111111+111111+1+1101111$	जै
	$\stackrel{3}{ }$	11111111111111111	∞
	\％	11111111111111111111	1
	∞	11111111111111111	∞
		$111+11+11111111 \infty 1111111111 * 1111$	\＆
	ค＊	11111111111111111111111111111	1
	嵒	$11+\infty \infty 111111111+1111111111111+11$	¢
	咅		＊
$\begin{aligned} & 1 \\ & 0.0 \\ & 0.8 \\ & 08 \\ & 0 \\ & \hline \end{aligned}$			1
$\begin{aligned} & \text { 热 } \\ & \text { 亳 } \end{aligned}$	言宮		1
	断		1
	馬	寝芦	
	\％		Ј
	兑		哭
	菷	 	
	品		0 \％ i
	品		\circ 1 1
$\begin{aligned} & \text { ダ் } \\ & \text { 日̈ } \end{aligned}$			为宫

FEBRUARY 1876.

	苞㖴		\％
	厚		$\%$
		11111111111111111111111111111	1
	它菪㤟		鹵
	$\stackrel{-}{\square}$		8
	为	$11=1111111111111111111111111$	๕
			0 8 8
	宏		\％
	$\dot{8}$	$1 \infty \infty+1 』 11+*\|111 *\| 1 \mid 11 * 1 * 111+11$	品
	$\stackrel{0}{2}$	11000111111111110111111111111	
	\％	$11 \rightarrow 0 \sim 1 * 1111111111 * 11111 * 11+11$	สี
	\％	$111 \sim 1111.1 \geqslant 1111111111 \% 111.111$	∞
	稛	$1111111111111111111111 * 11+* 11$	$\underset{\sim}{\sim}$
		$111011+11111 * 11.11111111111111$	$\stackrel{\text { ® }}{ }$
	空		\＆
	䊙		2
\％		ω	1
$\begin{aligned} & \text { 咅 } \\ & \text { है } \end{aligned}$			1
	宸		1
$\begin{aligned} & \text { 偌 } \\ & \text { 䆠 } \end{aligned}$	䯽		＋
	号		$\stackrel{\stackrel{\circ}{4}}{\stackrel{8}{*}}$
	妾		呂
	島发	 	＋
	家		－
	断	－完	+ + +
遃		 	\％

MARCH 1876.

			$\underset{\sim}{\ddot{c}}$
	䓓		옷
	\％	1111111111111111111111111111111	1
			일
	$\stackrel{\dot{\circ}}{\stackrel{\circ}{\circ}}$		9
		1111111111111111111.11111111 1 1	＋
			－
	孚		\％
	家	$111 * * 1.1 * 111 * 11 * 111111111111.11$	\％
	$\stackrel{\rightharpoonup}{2}$	$1111111+11111111111111111111111$	\rightarrow
	\％	$111111111111 \infty 111111111111110 \times 11$	\pm
	$\dot{0}$		8
	－	$111111111111+\infty 11+11101111111 \infty 11$	$\stackrel{\sim}{\sim}$
	＊	1111111111111111111111111111111	1
	安	$1111 \infty 111111+1 \infty+\infty+111111\|1\| 1+11$	\＃．
	む		\％
$\begin{aligned} & 0 . \\ & \ddot{H}_{0}^{2} \\ & 0 \end{aligned}$			1
$\begin{aligned} & \text { 䓃 } \\ & \text { 己 } \end{aligned}$			1
	皆		1
范	昜		－
	雨		
	$\stackrel{\text { ¢ }}{\text { ¢ }}$		\％ $\stackrel{\circ}{8}$ $\stackrel{\circ}{\circ}$
	菷		－
	首		¢ $\stackrel{0}{2}$ i
	突		［108
ロ゙シ			

APRIL 1876.

MAY 1876.

	宫	111111111190111111＊1＊＊10さ11＊＝	N
	亩	1111111111111111111111111111111	1
	宮莒		$\stackrel{\square}{\square}$
	$\stackrel{5}{\circ}$		\％${ }_{\circ}^{\circ}$
		$111111111111 * 1111111 \infty 111111111$	\pm
		－	0 ∞
	安	$1 * 111111 \infty 1 \pm 10 \infty 11111 \infty 0111111111$	\because
	穴	1111111111111111111111111111111	1
	$\stackrel{\square}{2}$	$111111111111111 * 111111111111111$	＊
	$\underset{\infty}{\infty}$	$11 \infty 1111111111111111111111111111$	∞
	$\dot{\sim}$	$111111111111111111100 \pm 1111111$	\％
	家	$11 * \infty 1111111 * 1111111111111111+1$	สิ
	¢	$111111111111 * 1 \infty * 11111111111111$	$\stackrel{\square}{\sim}$
	药	$1 \infty 111111111111 \infty 111111111 \infty 11111$	＊
	\％		\％
$\begin{array}{lc} 0 . \\ 0.8 \\ 0 . \\ 0 & 0 \\ 0 \end{array}$		1111111111111111111111111111111	1
$\begin{aligned} & \text { 㤩 } \\ & \text { 首 } \end{aligned}$			1
	倠		1
	宮		$\underset{\text { ¢ }}{\text { ¢ }}$
	号		華
	离		－
	突		＋ + + +
	家		¢
	安	 	＋
: ジ		 	示管

JUNE 1876.

	最宫兑	$\infty+\infty$ 1 1 1 1 1 1	$\stackrel{\infty}{*}$
	苍安	11111111111111111111.1111111111	1
			$\stackrel{\circ}{-}$
	－		雩
			8
			0 0 0 0
	云	＊	\pm
	叐	$1 * 1111111111111111111111111111$	＊
	0	111111111111111111111111111111	1
	\％	$11111111111111111+\infty+\infty$	\pm
	$\dot{\infty}$		앙
	$\stackrel{18}{4}$	1111＊1111111111111＊｜＊＊1180＊＊	\pm
	¢	$111111111111111111111 * 11111 \infty 11$	\＄
	安	$1 \infty+11111$ ¢	8
	它		$\stackrel{\square}{7}$
－			1
$\begin{aligned} & \text { 药 } \\ & \text { 系 } \end{aligned}$	沯言		1
	䓓		1
	苞		a ¢ ¢
	家		＋
	㡙		＋
	䂞	 	8 8 en +
	呙	 	\square \vdots +
	覣		$\stackrel{8}{7}$ +
边		 	

JULY 1876.

	言耍		Φ
	－	$1111111111111 \infty \infty \mid 111111111111111$	\because
	它它耍		$\stackrel{\infty}{\circ}$
	$\stackrel{8}{-}$		8
	边		응
			－
	2	$11111111+1111111111111111111111$	\rightarrow
	害	$1111111111111111111111111 \infty 1+11$	\pm
	$\stackrel{\square}{0}$	$111111111 * 111.111+1111111111111$	$\stackrel{ }{\sim}$
	安		8
	is		음
	宊		8
	－	$1111+1 \rightarrow 1111111111111 * 1111111111$	$\stackrel{\text { 엑 }}{ }$
	$\stackrel{4}{4}$	1111111111111111111111110111111	\cdots
	$\begin{aligned} & \text { E } \\ & \text { E } \end{aligned}$		웅
			1
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		1111111111111111111111111111111	1
흘릉			1
	咟		1
它	麇		－
	㤩		年
	囩		
	豆		＋in
	首		+ ¢ + +
	号		$\stackrel{+}{+}$ + +
$\begin{aligned} & \text { sig } \\ & \stackrel{\Delta}{\Delta} \end{aligned}$		 	罭宫

Abstract of Daily Mean Temperature of the Air, 1875-1876.

FLOEBERG BEACH.-H.M.S. "ALERT."

Date.	$\begin{aligned} & \text { August } \\ & 1875 . \end{aligned}$	September.	October.	November.	December.	$\begin{array}{\|c\|} \hline \text { January } \\ 1876 . \end{array}$	February.	March.	April.	May.	Junc.	July.	August.
	-	\bigcirc	-	-	。							-	0
1	+35.60	+ $29 \cdot 56$	+8.82	-18.07	- $7 \cdot 29$	-27-08	-17.04	-66.68	$-30 \cdot 18$	+ 1.75	$+30 \cdot 03$	+38.58	+ $37 \cdot 91$
2	$34 \cdot 15$	11.36	11.55	$5 \cdot 33$	+ 1.56	$26 \cdot 62$	$12 \cdot 49$	68.86	$30 \cdot 22$	- 2.79	$31 \cdot 17$	$37 \cdot 23$	$35 \cdot 50$
3	$36 \cdot 02$	17-42	12.33	+ 8.85	+12.71	$24 \cdot 80$	$25 \cdot 35$	69.18	30.98	$7 \cdot 92$	$30 \cdot 79$	$35 \cdot 21$	35.25
4	$39 \cdot 30$	12.50	$9 \cdot 53$	11.41	-15.05	$18 \cdot 42$	$19 \cdot 71$	$62 \cdot 71$	$30 \cdot 91$	$4 \cdot 38$	$27 \cdot 22$	36-71	$34 \cdot 83$
5	38.73	$12 \cdot 19$	$12 \cdot 98$	$2 \cdot 75$	15.55	$24 \cdot 32$	$18 \cdot 31$	59•34	$29 \cdot 68$	- 2.01	$22 \cdot 63$	$35 \cdot 21$	$32 \cdot 00$
6	38.43	$13 \cdot 37$	12.47	6.92	3.75	$31 \cdot 45$	$24 \cdot 58$	$55 \cdot 62$	$32 \cdot 01$	+ $0 \cdot 47$	$25 \cdot 22$	39-29	31.83
7	$35 \cdot 10$	$17 \cdot 04$	14.44	13.89	$5 \cdot 56$	$24 \cdot 46$	$36 \cdot 18$	$47 \cdot 41$	24.87	$2 \cdot 72$	$29 \cdot 67$	$37 \cdot 08$	$36 \cdot 70$
8	34.35	17.73	+9.91	+ $0 \cdot 65$	12.61	$14 \cdot 50$	$41 \cdot 42$	49.96	$27 \cdot 15$	$2 \cdot 67$	$34 \cdot 25$	$42 \cdot 71$	$31 \cdot 40$
9	$32 \cdot 81$	$16 \cdot 78$	-12.40	-13.65	$25 \cdot 67$	$7 \cdot 35$	$44 \cdot 68$	55.35	26.91	$7 \cdot 07$	99•93	$43 \cdot 27$	31.48
10	31.42	$17 \cdot 46$	+ 6.87 +13.90	$27 \cdot 97$	1+11	$13 \cdot 15$	$47 \cdot 68$	56.47	$12 \cdot 08$	10.55	$28 \cdot 83$	$42 \cdot 00$	35.70
11	$34 \cdot 73$	$9 \cdot 32$	$13 \cdot 90$	$22 \cdot 83$	$10 \cdot 24$	$16 \cdot 70$	$46 \cdot 69$	$50 \cdot 03$	$7 \cdot 15$	$9 \cdot 27$	$31 \cdot 79$	$43 \cdot 83$	$35 \cdot 18$
12	$36 \cdot 32$	12.38	+6.99	11.23	$12 \cdot 21$	15.96	$43 \cdot 47$	$34 \cdot 26$	20.53	$5 \cdot 19$	$32 \cdot 50$	$44 \cdot 17$	$34 \cdot 96$
13	$36 \cdot 35$	$19 \cdot 48$	- 1.41	20.73	28.47	$22 \cdot 26$	$50 \cdot 00$	25.77	$20 \cdot 77$	$8 \cdot 36$	$33 \cdot 87$	38.3:	38.64
14	$34 \cdot 71$	24•69	11.52	$22 \cdot 78$	$25 \cdot 42$	$18 \cdot 92$	$48 \cdot 77$	$25 \cdot 82$	$23 \cdot 05$	$9 \cdot 74$	$34 \cdot 42$	36.37	$32 \cdot 96$
15	35.50	23.42	13.67	21.81	22.18	$33 \cdot 11$	$46 \cdot 01$	21.18	$29 \cdot 12$	$8 \cdot 27$	$34 \cdot 50$	34•79	34•21
16	$32 \cdot 52$	$27 \cdot 68$	$1 \cdot 14$	$27 \cdot 14$	$27 \cdot 84$	37-94	$53 \cdot 11$	$21 \cdot 33$	$26 \cdot 23$	$8 \cdot 97$	33.08	35.95	$35 \cdot 27$
17	$32 \cdot 04$	$32 \cdot 15$	$10 \cdot 18$	$28 \cdot 87$	31.57	$38 \cdot 81$	$57 \cdot 81$	26.76	22.39	$18 \cdot 25$	30•72	$36 \cdot 14$	$31 \cdot 62$
18	$31 \cdot 18$	18.04	$11 \cdot 11$	27.97	$23 \cdot 85$	34.01	$44 \cdot 22$	34.53	21.82	17-26	27-72	35.89	32.94
19	31.05	$16 \cdot 64$	$13 \cdot 33$	$26 \cdot 69$	36.61	$39 \cdot 50$	$43 \cdot 66$	26.98	$21 \cdot 76$	17-61	$30 \cdot 24$	36.58	34.83
20	$29 \cdot 75$	$19 \cdot 51$	$18 \cdot 41$	$31 \cdot 23$	$39 \cdot 39$	41.87	$52 \cdot 77$	$37 \cdot 28$	$13 \cdot 09$	19.81	$30 \cdot 60$	$37 \cdot 87$	32.62
21	26.83	7-26	$18 \cdot 97$	$36 \cdot 03$	33.94	$45 \cdot 91$	$54 \cdot 41$	31.76	$15 \cdot 60$	24-10	$33 \cdot 42$	38.46	$34 \cdot 93$
22	27-17	10.92	$17 \cdot 95$	$40 \cdot 04$	$37 \cdot 36$	$48 \cdot 20$	$36 \cdot 87$	$23 \cdot 42$	16.38	21.52	$34 \cdot 05$	37.08	39.50
23	$27 \cdot 20$	$22 \cdot 11$	$12 \cdot 32$	38.93	$37 \cdot 66$	56.25	$12 \cdot 17$	29.79	17.23	$17 \cdot 01$	$34 \cdot 17$	37•14	$35 \cdot 92$
24	$25 \cdot 00$	$6 \cdot 38$	$16 \cdot 10$	37-65	$32 \cdot 84$	$43 \cdot 38$	$17 \cdot 28$	$34 \cdot 65$	14.72	$15 \cdot 73$	$37 \cdot 00$	$38 \cdot 54$	36.44
25	$30 \cdot 59$	3-33	$13 \cdot 21$	$28 \cdot 84$	$34 \cdot 49$	53.78	$25 \cdot 09$	$37 \cdot 11$	$11 \cdot 17$	$19 \cdot 07$	38.59	35.87	34.71
26	$26 \cdot 52$	$3 \cdot 7$	15-18	$7 \cdot 36$	$39 \cdot 42$	$44 \cdot 09$	$23 \cdot 24$	$32 \cdot 61$	- $2 \cdot 63$	$22 \cdot 38$	$37 \cdot 92$	$38 \cdot 62$	$33 \cdot 10$
27	26.21	$8 \cdot 13$	$13 \cdot 57$	$15 \cdot 37$	31.93	$42 \cdot 68$	$40 \cdot 64$	$24 \cdot 90$	+ 3.20	21.43	37-36	$40 \cdot 33$	$33 \cdot 17$
28	27.98	6. 32	$19 \cdot 62$	$12 \cdot 62$	$25 \cdot 02$	$46 \cdot 79$	$54 \cdot 75$	$18 \cdot 48$	$3 \cdot 58$	18.60	34•75	$41 \cdot 61$	$32 \cdot 32$
29	27-94	$10 \cdot 42$	$20 \cdot 17$	$12 \cdot 87$	28.05	$43 \cdot 97$	$-62 \cdot 88$	$32 \cdot 62$	$7 \cdot 28$	13.03	38.96	37.46	$30 \cdot 11$
30	$27 \cdot 35$	+11-47	$12 \cdot 59$	-13.86	$22 \cdot 43$	$42 \cdot 08$	-	$39 \cdot 17$	$+5.66$	17.62	$+38 \cdot 25$	$37 \cdot 05$	$23 \cdot 39$
31	+27.59		-21.55	-	$-19 \cdot 32$	-42.02		-32.79	-	+26.23	-	+39.64	+29.95
	+31.95	+15.301	-4.987	$-16 \cdot 847$	-22.115	-32.916	$-37 \cdot 975$	-39 768	$-17 \cdot 963$	+11.212	$+32 \cdot 455$	+38.355	+33.690

Mean for 366 days, from 22nd August 1875 to 21st August $1876-3^{\circ} \cdot 473$.
Spring, $-15^{\circ} .506$; Summer, $+34^{\circ} \cdot 241$; Autumu, $-2^{\circ} \cdot 178$; Winter, $-31^{\circ} .002$.
DISCOVERY BAY.-H.M.S. "DISCOVERY."

Date.	$\begin{gathered} \text { August } \\ 1875 . \end{gathered}$	September.	October.	November.	December.	$\begin{gathered} \text { January } \\ 1876 . \end{gathered}$	February.	March.	April.	May.	June.	July.	August.
	-	-	-	-	-					-	-	-	c
1	+37.78	+31.50	+ 11.27	-17.58	- 9.00	-29.00	-22.08	-60.25	-35*25	- 2•20	+ $29 \cdot 25$	+36.58	+38.42
2	$36 \cdot 03$	$24 \cdot 67$	$13 \cdot 17$	$-13 \cdot 67$	$-10 \cdot 50$	$38 \cdot 80$	$16 \cdot 83$	$64 \cdot 38$	35•83	$3 \cdot 00$	$29 \cdot 08$	37-33	$38 \cdot 33$
3	$36 \cdot 05$	$23 \cdot 22$	$15 \cdot 97$	+ 1.58	+ $5 \cdot 92$	$32 \cdot 67$	12.20	$64 \cdot 00$	$31 \cdot 83$	$6 \cdot 80$	27.70	36.50	36.75
4	$40 \cdot 20$	$19 \cdot 86$	6.97	+ $5 \cdot 50$	- $5 \cdot 67$	$23 \cdot 50$	$7 \cdot 00$	$58 \cdot 13$	33.17	$9 \cdot 00$	25.58	35. 58	36.50
5	$39 \cdot 33$	$17 \cdot 00$	$10 \cdot 30$	-10.17	$15 \cdot 52$	32.58	16.70	$51 \cdot 00$	$35 \cdot 92$	$8 \cdot 50$	$23 \cdot 83$	$34 \cdot 83$	$36 \cdot 17$
6	$36 \cdot 92$	$18 \cdot 60$	13.22	$12 \cdot 50$	$4 \cdot 67$	$43 \cdot 05$	$22 \cdot 33$	$48 \cdot 68$	$33 \cdot 42$	$0 \cdot 70$	28.33	35.33	34.63
7	$33 \cdot 83$	18.08	$15 \cdot 33$	$-1 \cdot 17$	$3 \cdot 67$	$42 \cdot 42$	$28 \cdot 42$	$47 \cdot 83$	$22 \cdot 00$	- 1.00	31.50	35-92	$37 \cdot 33$
8	$35 \cdot 62$	$20 \cdot 08$	+11.92	+3.00	$5 \cdot 83$	44•78	$40 \cdot 67$	$45 \cdot 50$	$24 \cdot 75$	+3.90	$33 \cdot 00$	36-58	35.33
9	$35 \cdot 02$	$20 \cdot 42$	-10.17	-20.67	$18 \cdot 08$	$21 \cdot 10$	$44 \cdot 00$	$49 \cdot 83$	19.27	$5 \cdot 80$	$32 \cdot 33$	$39 \cdot 75$	36.58
10	31.82	$19 \cdot 60$	$0 \cdot 17$	$25 \cdot 50$	11.50	$20 \cdot 50$	$47 \cdot 83$	$50 \cdot 67$	$2 \cdot 62$	$8 \cdot 62$	30.83	$40 \cdot 42$	37.17
11	$34 \cdot 25$	12.43	$4 \cdot 17$	$27 \cdot 17$	11.83	37-92	$40 \cdot 38$	$45 \cdot 17$	$5 \cdot 25$	$13 \cdot 17$	30.83	$39 \cdot 75$	35.42
12	$37 \cdot 37$	13.25	14.83	$16 \cdot 08$	$8 \cdot 00$	$26 \cdot 50$	$42 \cdot 00$	$31 \cdot 18$	$16 \cdot 00$	$7 \cdot 75$	31.33	38.67	$35 \cdot 50$
13	34.80	22.42	$18 \cdot 58$	$22 \cdot 83$	$29 \cdot 00$	31.67	$46 \cdot 00$	29•02	$12 \cdot 00$	$6 \cdot 62$	$30 \cdot 25$	$37 \cdot 50$	$32 \cdot 33$
14	$34 \cdot 70$	26.62	17.92	$24 \cdot 08$	$29 \cdot 50$	$29 \cdot 60$	$45 \cdot 42$	$15 \cdot 50$	$18 \cdot 00$	$5 \cdot 2.5$	$31 \cdot 17$	$36 \cdot 17$	$32 \cdot 42$
15	35:33	26.97	17-67	16.25	$20 \cdot 67$	$38 \cdot 07$	$40 \cdot 00$	11.17	$25 \cdot 95$	$2 \cdot 50$	$35 \cdot 50$	$37 \cdot 33$	33.75
16	$32 \cdot 67$	31.78	$7 \cdot 83$	21-92	$26 \cdot 17$	$43 \cdot 75$	$46 \cdot 00$	$26 \cdot 33$	30.75	$7 \cdot 25$	$33 \cdot 67$	36*50	$33^{\circ} 42$
17	$32 \cdot 17$	33-22	$7 \cdot 50$	26.25	30.50	$48 \cdot 67$	$50 \cdot 42$	33.00	23.50	14.43	$34 \cdot 67$	36.50	31.75
18	31.50	$24 \cdot 47$	11.83	20.83	34-58	$50 \cdot 92$	41.00	$38 \cdot 17$	$27 \cdot 00$	$8 \cdot 43$	$31 \cdot 60$	34.33	$32 \cdot 17$
19	31.83	$21 \cdot 30$	$8 \cdot 50$	20.00	$47 \cdot 08$	$46 \cdot 50$	39.67	$28 \cdot 42$	$22 \cdot 87$	$19 \cdot 00$	$31 \cdot 60$	34.83	34.83
20	29.33	$22 \cdot 42$	19-25	$31 \cdot 30$	$46 \cdot 83$	44.50	$46 \cdot 16$	$35 \cdot 75$	$17 \cdot 50$	22.25	31.17	36.42	$31 \cdot 67$
21	$27 \cdot 88$	11.78	$25 \cdot 00$	$40 \cdot 00$	$45 \cdot 42$	$39 \cdot 33$	$51 \cdot 00$	$29 \cdot 00$	$16 \cdot 70$	$23 \cdot 25$	$33 \cdot 33$	$37 \cdot 50$	32.33
22	29-13	14.43	$15 \cdot 33$	$40 \cdot 00$	46.27	$44 \cdot 45$	$40 \cdot 60$	$22 \cdot 42$	13.42	$20 \cdot 75$	$36 \cdot 75$	$36 \cdot 00$	$40 \cdot 17$
23	$28 \cdot 80$	11.75	$21 \cdot 17$	38.08	42.17	56.75	34.67	$28 \cdot 92$	$15 \cdot 60$	$17 \cdot 50$	$34 \cdot 92$	$38 \cdot 17$	35.83
24	31.28	12.50	$32 \cdot 58$	$33 \cdot 08$	$40 \cdot 75$	58.35	$23 \cdot 00$	$30 \cdot 50$	$13 \cdot 00$	16.25	$37 \cdot 42$	37.58	36.17
25	$27 \cdot 42$	$8 \cdot 60$	$28 \cdot 75$	$22 \cdot 83$	40.50	$54 \cdot 50$	$13 \cdot 25$	30.25	$5 \cdot 90$	$21 \cdot 80$	$38 \cdot 50$	$36 \cdot 92$	33.00
26	$20 \cdot 15$	9•78	$26 \cdot 33$	$13 \cdot 83$	$43 \cdot 17$	$48 \cdot 75$	$19 \cdot 67$	$28 \cdot 25$	- $3 \cdot 20$	$20 \cdot 80$	37-42	36.83	$33 \cdot 17$
27	$28 \cdot 17$	$9 \cdot 08$	$23 \cdot 83$	$10 \cdot 33$	$40 \cdot 67$	$46 \cdot 75$	$33 \cdot 92$	$23 \cdot 38$	+ 3.00	$25 \cdot 60$	36.45	$38 \cdot 42$	32.83
28	$29 \cdot 33$	11.25	19.50	11.83	21.25	50.17	$49 \cdot 67$	$23 \cdot 50$	$6 \cdot 20$	$22 \cdot 60$	36.27	37.83	31.67
29	$29 \cdot 13$	8.58	$19 \cdot 67$	$14 \cdot 83$	$25 \cdot 83$	$50 \cdot 50$	$-54 \cdot 17$	$27 \cdot 08$	$6 \cdot 20$	$15 \cdot 50$	$34 \cdot 83$	$37 \cdot 83$	$29 \cdot 50$
30	$29 \cdot 13$	$+10 \cdot 00$	24.50	-9.67	$32 \cdot 33$	41-67	-	$36 \cdot 42$	$+7 \cdot 10$	$12 \cdot 10$	+35.83	$38 \cdot 83$	$23 \cdot 33$
31	$+29 \cdot 27$	-	-26.50	-	$-19 \cdot 67$	$-42 \cdot 25$	-	$-36 \cdot 67$	-	$+19 \cdot 80$	-	+40.67	+29.75
	+32.44	+ $18 \cdot 522$	$-9 \cdot 788$	$-18 \cdot 412$	-24.539	-40-644	-35.00	-37-109	-17.270	+9-414	+32.498	+37.206	+34.190

Mean Hourly Range of Temperature, 1875-1876.

FLOEBERG BEACH.-H.M.S. "ALERT."

Hour.	September 1875.	October.	Novernber.	$\begin{aligned} & \text { Decem- } \\ & \text { ber. } \end{aligned}$	$\begin{aligned} & \text { January } \\ & 1876 . \end{aligned}$	February.	March.	April.	May.	June.	July.	$\begin{array}{\|c} \text { Mean for } \\ 142 \text { days, } \\ \text { Sun } \\ \text { below } \\ \text { horizon. } \end{array}$
$\left.\begin{array}{c} \text { Minimum } \\ \text { hourly } \\ \text { mean } \end{array}\right\}$	-	$-5 \cdot 64$	$\stackrel{\circ}{\stackrel{\circ}{-17.84}}$	$-23 \cdot 17$	$-34 \cdot 25$	$-39 \cdot 29$	$\stackrel{\circ}{-42 \cdot 06}$	$-21 \cdot 38$	$\begin{array}{r} +8 \cdot 57 \end{array}$	$+31 \cdot 10$	$+37 \cdot 32$	$26 \cdot 06$
1 p.m.	-	-	0.08	0.61	- 0.61	1-77	4.41	-	-	-	-	0.48
2	-	1.56	0.27	0.76	$1 \cdot 68$	1-50	$4 \cdot 64$	6.53	$5 \cdot 15$	2-94	$2 \cdot 55$	$0 \cdot 67$
3	-	-	0.09	$0 \cdot 12$	$1 \cdot 27$	$0 \cdot 90$	$4 \cdot 55$	-	-	-	-	$0 \cdot 32$
4	-	1.76	coldest	0.18	coldest	$1 \cdot 37$	3.67	6.39	$4 \cdot 49$	$2 \cdot 91$	1.33	coldest
5	-	-	0.85	0.98	O. 15	$1 \cdot 11$	3.19	-	-	-	-	$0 \cdot 26$
6	-	$1 \cdot 69$	$0 \cdot 05$	$1 \cdot 04$	$0 \cdot 48$	$1 \cdot 00$	$2 \cdot 35$	$5 \cdot 04$	4.48	-	-	0.17
7	-	-	$1 \cdot 18$	$1 \cdot 84$	$1 \cdot 31$	$2 \cdot 38$	$2 \cdot 33$	-	-	-	-	$0 \cdot 80$
8	-	$1 \cdot 07$	1-79	$1 \cdot 75$	$0 \cdot 43$	2.64	$1 \cdot 67$	$3 \cdot 79$	$3 \cdot 96$	1.85	1.80	$0 \cdot 89$
9	-	-	$2 \cdot 15$	1.95	$1 \cdot 03$	$2 \cdot 65$	1.07	-	-	-	-	1.07
10	-	$0 \cdot 38$	1.97	1.80	1-29	$2 \cdot 40$	$0 \cdot 88$	-	$2 \cdot 11$	$0 \cdot 89$	0.41	$0 \cdot 95$
11	-	-	$1 \cdot 56$	$1 \cdot 60$ '	$1 \cdot 32$	$2 \cdot 15$	$1 \cdot 65$	-	-	-	-	0.88
Midnight	-	$0 \cdot 67$	1•89	$1 \cdot 06$	$1 \cdot 95$	$0 \cdot 59$	$1 \cdot 56$	$0 \cdot 55$	$0 \cdot 39$	$0 \cdot 50$	0.05	$0 \cdot 61$
1 a.m.	-	-	$1 \cdot 41$	$0 \cdot 71$	$1 \cdot 02$	$0 \cdot 88$	0.87	-	-	-	-	0.31
2	-	$0 \cdot 77$	$1 \cdot 01$	0.88	$1 \cdot 44$	0.77	0.44	-	coldest	coldest	0.05	$0 \cdot 35$
3	-	-	0.98	$0 \cdot 76$	$1 \cdot 70$	1.01	$0 \cdot 11$	-	-	-	-	0.34
4	-	coldest	$1 \cdot 06$	$1 \cdot 95$	$1 \cdot 94$	$1 \cdot 18$	coldest	coldest	$0 \cdot 46$	0.01	0.13	0.46
5	-	-	$1 \cdot 68$	$1 \cdot 95$	$1 \cdot 95$	$1 \cdot 54$	$1 \cdot 36$	-	-	-	-	$0 \cdot 83$
6	-	0.04	$1 \cdot 55$	$1 \cdot 99$	1-58	1-48	$1 \cdot 39$	0.84	$0 \cdot 86$	0.03	coldest	$0 \cdot 68$
7	-	-	$1 \cdot 43$	$1 \cdot 56$	$1 \cdot 55$	$0 \cdot 90$	$1 \cdot 75$	-	-	-	-	$0 \cdot 50$
8	-	$0 \cdot 18$	1.42	$1 \cdot 05$	$1 \cdot 16$	$0 \cdot 52$	1.96	2.78	1.78	$0 \cdot 73$	1.57	0.25
9	-	-	$0 \cdot 36$	$1 \cdot 08$	$1 \cdot 87$	coldest	$2 \cdot 84$	-	--	-	-	$0 \cdot 14$
10	-	$0 \cdot 37$	$0 \cdot 22$	$0 \cdot 70$	$1 \cdot 52$	$0 \cdot 65$	$4 \cdot 00$	-	$3 \cdot 40$	1.58	$1 \cdot 21$	$0 \cdot 14$
11	-	-	0.47	coldest	$1 \cdot 98$	$1 \cdot 20$	$4 \cdot 96$	-	-	-	-	$0 \cdot 24$
Noon	-	$0 \cdot 06$	$0 \cdot 60$	$0 \cdot 10$	-1.79	0.93	$5 \cdot 24$	$6 \cdot 70$	$4 \cdot 62$	$2 \cdot 54$	$2 \cdot 02$	$0 \cdot 28$
$\underset{\substack{\text { daily } \\ \text { range }}}{\text { Maximum }}\}$	-	$1 \cdot 76$	$2 \cdot 15$	1.99	1'98	$2 \cdot 65$	$5 \cdot 24$	6.70	$5 \cdot 15$	$2 \cdot 94$	$2 \cdot 55$	1.07

DISCOVERY BAY.-H.M.S. "DISCOVERY."

Hour.	$\begin{gathered} \text { Septem- } \\ \text { ber } \\ 1875 . \end{gathered}$	October.	Novem- ber.	December.	Janaary 1875.	Febraary.	March.	April.	May.	June.	July.	August.	Mean for Sun below horizon.
$\underset{\substack{\text { Mourimum } \\ \text { mean }}}{\underset{\text { mor }}{ }}\}$	$\begin{gathered} 0 \\ +17 \cdot 53 \end{gathered}$	$-9 \cdot 84$	$\left\|\begin{array}{c} 0 \\ -19 \cdot 20 \end{array}\right\|$	$-25 \cdot 32$	$\begin{gathered} 0 \\ -40.99 \end{gathered}$	$-35 \cdot 81$	$\left\lvert\, \begin{gathered} \circ \\ -39 \cdot 07 \end{gathered}\right.$	$-21 \cdot 09$	$\stackrel{\circ}{\circ}$	$+29 \cdot 96$	$+35 \cdot 42$	$+32.89$	-28.82
4 p.m.	$2 \cdot 06$	0.11	coldest	1.08	0.47	$0 \cdot 11$	3.04	-	-	4-21	3•14	2. 64	0.16
-	1.38	coldest	0.52	$0 \cdot 64$	coldest	0.20	$2 \cdot 26$	$3 \cdot 29$	-	$2 \cdot 96$	1.84	1.84	$0 \cdot 11$
Midnight	coldest	0.43	$1 \cdot 07$	0.14	0.15	coldest	$1 \cdot 04$	coldest	-	coldest	$0 \cdot 95$	0.29	coldest
4 a.m.	$0 \cdot 25$	0.36	1.47	coldest	0.41	$1 \cdot 40$	coldest	-	-	3.15	coldest	coldest	0.68
8	$0 \cdot 71$	0.02	$1 \cdot 13$	1.28	0.26	$1 \cdot 14$	1.23	$4 \cdot 63$	-	$4 \cdot 24$	1.35	0.92	0.56
Noon	$2 \cdot 02$	0.10	$0 \cdot 60$	$2 \cdot 51$	$0 \cdot 74$	$0 \cdot 74$	$4 \cdot 18$	$7 \cdot 43$	-	4*32	3.43	1.42	$0 \cdot 50$
$\left.\begin{array}{c} \text { Maximum } \\ \text { daily } \\ \text { range } \end{array}\right\}$	$2 \cdot 06$	0.48	$1 \cdot 47$	$2 \cdot 51$	$0 \cdot 74$	$1 \cdot 40$	$4 \cdot 18$	$7 \cdot 43$	-	$4 \cdot 32$	$3 \cdot 43$	$2 \cdot 64$	$0 \cdot 63$

Abstract of Daily Mean Atmospheric Pressure, 1875-1876.

FLOEBERG BEACH AND NORTH OF LATITUDE $80^{\circ} \mathrm{N}$.

Day.	$\begin{gathered} \Lambda \text { ugust } \\ 1875 . \end{gathered}$	September	Oetuber	Norember	December	January $18: 6$.	February	March.	April.	May	Junc.	July.	August.
	Inches.	Inches.	Inches.	Inclues.	Inches.								
1	29-499	$29 \cdot 482$	29-794	$30 \cdot 580$	30.061	29-530	$29 \cdot 505$	$30 \cdot 084$	$29 \cdot 844$	$30 \cdot 309$	$29 \cdot 435$	$29 \cdot 426$	29-347
2	- 562	$\cdot 453$	-37	$30 \cdot 348$	29-770	-300	$29 \cdot 873$	-132	30-004	-181	-601	-629	$\cdot 236$
3	- 574	-499	-906	$29 \cdot 839$	$29 \cdot 816$	-332	$30 \cdot 146$	$30 \cdot 080$	-055	$30 \cdot 064$	- 714	$\cdot 760$	-262
4	-603	$\cdot 736$	-914	30.067	$30 \cdot 245$	-230	$29 \cdot 406$	$29 \cdot 402$	-035	29.938	- S29	-815	-389
5	-488	- 712	$\cdot 915$	-146	-381	-420	${ }^{519}$	$99 \cdot 823$	-348	-864	-847	$\cdot 748$	-655
6	$29 \cdot 633$	$27 \cdot 663$	-930	-088	- 323	$\cdot 581$	-643	$30 \cdot 002$	-371	- 826	-870	$\cdot 726$	-960
7	$30 \cdot 016$	$30 \cdot 005$	-938	-090	- 361	-78.5	$\cdot 706$	-079	-242	-825	-826	$\cdot 755$	-871
8	29-879	$29 \cdot 869$	- 823	275	$30 \cdot 287$	-912	29-844	-230	-403	$29 \cdot 941$	-840	-758	-836
9	$30 \cdot 019$	-703	-546	481	$29 \cdot 935$	-349	$30 \cdot 020$	- 296	-521	$30 \cdot 013$	$29 \cdot 985$	$\cdot 768$	-617
10	$29 \cdot 986$	-635	-637	. 545	-415	- 73	-125	30•195	-353	-035	30.023	$\cdot 767$	$\cdot 787$
11	-763	-425	-824	-16	-079	-906	-089	$29 \cdot 920$	-342	-065	30-062	$\cdot 700$	-927
12	-858	383	$29 \cdot 927$	744	-364	-499	-112	779	-280	-226	$20 \cdot 978$	-565	-941
13	$29 \cdot 894$	-384	$30 \cdot 013$	540	729	- 516	-436	- 888	-137	-231	-843	-515	-774
14	$30 \cdot 013$	$\cdot \underline{-26}$	$30 \cdot 034$:30.131	-640	29.618	- 397	$29 \cdot 919$	-278	-214	-798	-614	-744
15	$30 \cdot 035$	-372	$29 \cdot 973$	$29 \cdot 935$	-367	30.016	-412	$30 \cdot 091$	-452	30.171	-814	-686	-730
16	29.783	. 567	-673	-835	-170	-138	-401	$\cdot 262$	-459	29.852	-905	$\cdot 786$	-615
17	- 767	$29 \cdot 663$	-692	981	- 340	30.040	$30 \cdot 046$	-355	-400	$\cdot 727$	-932	'78.5	-616
18	- 860	$30 \cdot 161$	-648	-892	-301	29.951	29.714	$30 \cdot 003$	-463	-815	-977	-723	-557
19	-650	-069	'730	- $\mathbf{6} 63$	$\cdot 275$	-819	-913	$29 \cdot 900$	-597	$\cdot 793$	-889	-611	-611
20	-468	$30 \cdot 085$	-843	$\cdot 913$	-246	-637	-938	$30 \cdot 047$	-613	-887	-647	-628	24.698
21	-714	$29 \cdot 832$	-88.	-933	-135	-629	$29 \cdot 807$	$29 \cdot 869$	- 43.5	$29 \cdot 997$	-692	$\cdot 274$	30.006
22	-820	-560	$\pm 9 \cdot 968$	$29 \cdot 861$	-323	-317	10-133	$30 \cdot 410$	-193	$30 \cdot 153$	-905	-146	29-961
23	-689	-600	$30 \cdot 048$	$30 \cdot 040$	-492	-051	$30 \cdot 19$!	-395	30.047	$29 \cdot 971$	-836	-123	-847
24	-587	-542	-226	-221	- 713	-139	$20 \cdot 927$	-247	$29 \cdot 034$	$\cdot 738$	-874	-265	-701
25	$29 \cdot 839$	-578	$\cdot 240$	$30 \cdot 050$	-890	-526	-672	- 380	$29 \cdot 959$	-692	-738	-279	$\cdot 767$
26	$30 \cdot 045$	- 876	-274	$99 \cdot 852$	-622	-613	29-980	- 155	$30 \cdot 083$	-668	-664	-561	-906
27	$29 \cdot 089$	- 893	- 205	$30 \cdot 106$	- 527	-465	$30 \cdot 215$	062	- 408	-662	$\cdot 753$	-763	$\cdot 760$
28	-791	-737	-1s1	- 382	-13	-803	-154	-212	- 587	-592	$\cdot 711$	-800	29-835
29	-687	-820	-171	-013	-178	-783	30-092	-281	-550	-70j	-613	-45i	30-026
30	- 811	29.846	-168	$30 \cdot 081$	$\cdot 467$	-52.5	-	$30 \cdot 094$	$30 \cdot 378$	-716	$29 \cdot 402$	-586	29.915
31	$29 \cdot 564$		$30 \cdot 405$	-	29-534	29-455	-	$29 \cdot 880$	-	$29 \cdot 488$	-	$29 \cdot 454$	29-655
Mean -	29-751	$29 \cdot 679$	29.948	-153	$29 \cdot 615$	29-606	29.981	30.096	$30 \cdot 299$	29-915	$29 \cdot 802$	29.599	29-734

Mean for one year of $\mathbf{3 6 6}$ days (from 22nd August 1875) - $29 \cdot 866$.

DISCOVERY BAY AND NORTH OF LATITUDE $80^{\circ} \mathrm{N}$.

1)ay.	August 18%	September	October.	November	December	$\begin{gathered} \text { January } \\ 1876 . \end{gathered}$	February	March.	April.	May.	${ }^{\text {I }}$ une.	Jaly.	August.
	Inches.	Inches,	Inches. ${ }^{\text {a }}$	Inches.	Ineches.								
1	29-470	29.504	$29 \cdot 819$	$30 \cdot 669$	$30 \cdot 076$	$29 \cdot 563$	29-544	$30 \cdot 089$	$29 \cdot 836$	30.281	$29 \cdot 437$	29•459	$29 \cdot 342$
2	- 563	$\cdot 431$	$\cdot 837$	$30 \cdot 423$	$29 \cdot 831$	- 521	-971	-12.5	$30 \cdot 018$	$\cdot 169$. 584	-632	-425
3	- 505	$\cdot 517$	-891	$29 \cdot 916$	$29 \cdot 875$	-381	-992	30.058	. 051	-000	-735	-746	-243
4	-594	-736	-919	$30 \cdot 214$	$30 \cdot 288$	-349	-269	29-8:6	-24!	30.088	-847	-828	-385
5	-489	-678	-962	$\cdots 16$	$\cdot 472$	-513	-611	-825	471	$29 \cdot 906$	-856	$\cdot 723$	-659
6	29-695	-651	- 963	-237	-386	-731	-596	29.969	-438	- 861	-880	$\cdot 738$	-955
7	$30 \cdot 028$	-995	-960	-204	- 369	29-968	-726	$30 \cdot 059$	- 252	-862	$\cdot 768$	-804	-812
8	29-902	-837	-806	-303	$30 \cdot 297$	30.134	$29 \cdot 892$	$\cdot 231$	-623	29.955	-814	$\cdot 762$	$\cdot 718$
9	30.028	-72	- 511	$\cdot 484$	29.837	29-632	$30 \cdot 014$	-298	-581	$30 \cdot 076$	-908	-794	-594
10	29-938	-738	744	- 559	- 422	29.863	- 128	$30 \cdot 159$	-305	-109	29.978	-811	$\cdot 785$
11	-812	- 412	$\underline{69} 894$	-782	- 067	30-039	-116	.29-938	-325	-987	$30 \cdot 019$	-701	-901
12	-861	- 4.5	$30 \cdot 023$	717	-437	29.555	-124	-795	-320	-157	$29 \cdot 949$	-572	$\cdot 931$
13	$29 \cdot 919$	- 33.5	-115	-500	-233	-6G0	-428	-986	-116	-250	-824	-481	$\cdot 791$
14	$30 \cdot 025 ;$	- +23	30.00:3	30.150	-636	$20 \cdot 6 \overline{y s}$	428	$29 \cdot 896$	-293	-275	-740	-571	-660
15	$30 \cdot 051$	4 S 1	29.904	$24 \cdot 615$	-403	$310 \cdot 034$	-410	30-102	$\cdot 519$	30-160	$\cdot 794$	-644	$\cdot 714$
16	$20 \cdot 801$	-6.58	$\cdot 702$	$29 \cdot 838$	-206	-162	-403	-330	-480	$29 \cdot 841$	-913	$\cdot 752$	-629
17	-774	29.691	'678	$30 \cdot 012$	$\cdot 383$	-110	80.059	30-345	$\cdot 450$	- 847	-959	$\cdot 742$	-626
18	-859	30-15s	-640	$24 \cdot 880$	$\cdot 411$	$30 \cdot 044$	29•743	$29 \cdot 927$	$\cdot 467$	-898	- 947	-692	-519
19	gi9	-0nt	-8i	$\cdot 904$	-29	$29 \cdot 828$	-932	-934	-579	- 325	-891	$\cdot 716$	-623
21	-478	$70 \cdot 058$	'819	-95\%	-236	-597	-999	-999	$\cdot 518$	$29 \cdot 94$	-641	-643	$\cdot 727$
21	- 226	20.95.)	$29 \cdot 941$	-934	-195	-591	29.861	29.895	-342	30-061	$\cdot 788$	-291	-997
22	-834	-520	$30 \cdot 017$	$20 \cdot 923$	-367	-304	30.255	30-434	-181	30-146	-867	-172	-988
23	-696	-630	'135	$30 \cdot 106$	-454	-129	$30 \cdot 277$	- 398	$30 \cdot 040$	$29 \cdot 898$	-934	$\cdot 153$	-827
24	-575	-539	-333	$\cdot 238$	-782	-282	$29 \cdot 975$	-300	29.050	$\cdot 729$	$\cdot 916$	-240	-699
25	$29 \cdot 865$	-582	-313	$30 \cdot 065$	-852	-601	$29 \cdot 662$	-406	29-998	-673	-804	-266	-765
26	$30 \cdot 086$	-871	-989	$29 \cdot 919$	-645	-568	30.023	- 122	30-131	-696	-779	-534	-847
27	29-983	-905	-191	30-243	-608	-535	$\cdot 150$	-092	-442	-674	$\cdot 728$	-769	-741
28	-784	-7.8	- 202	$\cdot 361$	157	-818	-157	-246	-690	-567	-668	-738	$29 \cdot 806$
29	-00	-842	-180	-062	245	-754	$30 \cdot 067$	-304	-601	-706	-591	-436	30.026
30	-813	29.784	-295	$30 \cdot 101$	562	. 532	-	30.132	30-454	704	29*470	. 615	$29 \cdot 913$
31	29-626	-	$30 \cdot 450$	-	29.574	$29 \cdot 463$		$29 \cdot 859$	-	29.518	-	29.454	29•657
Mean -	29.7763	29•7049	29.4807	30-1944	29•6467	20-6751	$29 \cdot 9935$	$30 \cdot 1000$	30-3270	$20 \cdot 9313$	$29 \cdot 8010$	29-5961	29•195

Mean Hourly Range of Atmospheric Pressure, 1875-1876.

FLOEbERG BEACH AND NORTH OF LATITUDE $80^{\circ} \mathrm{N}$.

Hoar.	$\left\lvert\, \begin{gathered} \text { Scptem- } \\ \text { ber. } \end{gathered}\right.$	October.	November.	December.	Jaunary.	February.	March.	Aprit.	May.	Junc.	July.	August.	Mean, November to March.	Mean, September to March.	$\begin{aligned} & \text { Mean } \\ & \text { of } \\ & \text { 12 } \\ & \text { months. } \end{aligned}$
Mini-	Inches.														
hourly $\}$	$29 \cdot 669$	$29 \cdot 335$	30•144	$29 \cdot 6025$	$29 \cdot 5944$	$29 \cdot 962$	$30 \cdot 085$	$30 \cdot 289$	$29 \cdot 906$	$29 \cdot 796$	$29 \cdot 594$	29•709	29-8825	$29 \cdot 864$	29-866
$1 \mathrm{p} . \mathrm{m}$.	-	-	0.017	0.025	$0 \cdot 000$	$0 \cdot 002$	$0 \cdot 000$	-	-	-	-	-	$0 \cdot 004$	-	-
2	$0 \cdot 000$	$0 \cdot 002$	$\cdot 016$	-02.5	-004	-000	-006	-	-	-	-	-	-005	$0 \cdot 000$	-
3	-	-	-018	-017	-010	-004	$\cdot 007$	-	-	-	-	-	-006	-	-
4	$\cdot 014$	- 010	- 010	-010	-015	-008	-004	$0 \cdot 006$	0.032	0.007	$0 \cdot 004$	$0 \cdot 003$	-004	$\cdot 001$	$0 \cdot 001$
5	-	-	-022.	-016	-020	-018	-013	-	-	-	-	-	-013	-	-
6	- 022	- 010	-021	-014	-019	-025	-012	-	-	-	-	-	-013	$\cdot 010$	-
7	-	-	-014	-010	-028	-024	-010	-	-	-	-	-	-012	-	-
8	$\cdot 013$	- 010	- 010	-001	-024	-029	-008	$\cdot 000$. 017	-003	-004	-000	-008	$\cdot 005$	-001
9	-	-	- 010	-006	-016	-024	-009	-	-	-	-	-	-008	-	-
10	$\cdot 017$	-018	- 012	-011	-014	-02.	-012	-	-	-	-	-	-009	-008	-
11	-	-	-011	-016	-010	-024	-014	-	-	-	--	-	-010	-	-
Midnight	-006	-017	- 014	- 016	-009	-024	-015	$\cdot 009$	-001	$\cdot 000$	-004	-003	- 010	$\cdot 007$	-001
$1 \mathrm{a} . \mathrm{m}$.	-	-	-005	-012	-009	-025	-014	-	-	-	-	-	-008	-	-
2	$\cdot 004$	-018	- 010	-003	-006	-022	-010	-	-	-	-	-	$\cdot 005$	$\cdot 003$	-
3	-	-	-015	-014	-008	-031	-013	-	-	-	-	-	-009	-	-
4	-006	-013	- 018	-011	-009	-023	-013	-	-	-	$\cdot 007$	-007	-010	-006	-
5	-	-	-015	-016	- 010	-024	-019	-	-	-	-	-	-012	-	-
6	$\cdot 014$	$\cdot 021$	-010	-017	-016	-020	-016	-	-	-	-	-	-011	$\cdot 009$	-
7	-	-	-008	-018	-017	-020	$\cdot 015$	-	-	-	-	-	$\cdot 011$	-	-
s	-013	-011	-008	-016	-014	-019	-015	$\cdot 016$. 000	$\cdot 008$	$\cdot 011$	- 016	-609	$\cdot 006$	-003
9	-	-	-009	-014	$\cdot 00 \mathrm{~s}$	-017	$\cdot 014$	-	-	-	-	-	$\cdot 00 \%$	-	-
10	$\cdot 017$	-017	-002	-012	-006	-020	-015	-	-	-	-	-	-006	$\cdot 005$	-
11	-	-	- 004	-005	-001	-021	-00\%	-	-	-	-	-	. 003	-	-
Noon	0.012	$0 \cdot 017$	$0 \cdot 000$	$0 \cdot 000$	0.001	$0 \cdot 021$	$0 \cdot 003$	$0 \cdot 015$	0.003	$0 \cdot 013$	$0 \cdot 000$	0.018	$10 \cdot 000$	$0 \cdot 000$	$0 \cdot 000$
$\left.\begin{array}{l} \text { Maxi- } \\ \text { mann } \\ \text { daily } \\ \text { range } \end{array}\right\}$	0.022	0.021	$0 \cdot 022$	$0 \cdot 025$	$0 \cdot 028$	$0 \cdot 025$	$0 \cdot 019$	$0 \cdot 016$	$0 \cdot 032$	$0 \cdot 013$	$0 \cdot 011$	$0 \cdot 018$	$0 \cdot 013$	0.010	$0 \cdot 003$

DISCOVERY BAY AND NORTH OF LATITUDE $80^{\circ} \mathrm{N}$.

Hour.	September.	October.	November.	$\begin{array}{\|c} \text { Decem- } \\ \text { ber. } \end{array}$	January.	February.	March.	April.	May.	June.	July.	August 1875 and 1870.	Menn of 5 montlis Nov. to March.	Mean of 7 months Sept. to March.	Mean of 12 months.
$\left.\begin{array}{c} \text { Mini- } \\ \text { mourly } \\ \text { houran } \\ \text { mean } \end{array}\right\}$	Inches. $29 \cdot 696$	Inches. $20 \cdot 957$	Inches. $30 \cdot 183$	Inches. 29•633	Inches. 29•662	Inches. $29 \cdot 987$	Inches. $30 \cdot 082$	Inches. $30 \cdot 324$	Inches. 29•912	Inches. 29•788	Inches. 29•588	Inches. 29-773	Inches. 29-914	$\left\|\begin{array}{l} \text { Inches. } \\ 29 \cdot 8025 \end{array}\right\|$	Inches. $29 \cdot 890$
4 p.m.	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 014$	0.023	0.013	$0 \cdot 003$	0.018	-	-	$0 \cdot 000$	0.003	$0 \cdot 038$	$0 \cdot 010$	$0 \cdot 0034$	-
8	-019	. 020	-028	- 023	-023	-015	. 023	$0 \cdot 000$	-	-004	-008	-014	-018	-0148	-
Midnight	-017	-005	- 012	-014	-011	-020	. 031	$\cdot 007$	0.025	-031	-016	-021	-013	-0087	$0 \cdot 010$
$4 \mathrm{a} . \mathrm{m}$.	-023	- 026	-011	-018	-000	-002	- 028	-	-	-012	-009	-030	- 0076	. 0088	-
8	-002	-024	-000	-000	-016	$\cdot 000$	-005	- 002	$0 \cdot 000$	-014	. 015	-013	-000	-0000	0.000
Noon	0.006	0.032	$0 \cdot 005$	$0 \cdot 005$	$0 \cdot 017$	$0 \cdot 002$	$0 \cdot 000$	0.003	-	0.014	$0 \cdot 000$	$0 \cdot 000$	$0 \cdot 0014$	$0 \cdot 0027$	-
$\left.\begin{array}{l} \text { Maxi- } \\ \text { mam } \\ \text { daily } \\ \text { range } \end{array}\right\}$	$0 \cdot 023$	$0 \cdot 032$	$0 \cdot 028$	$0 \cdot 023$	$0 \cdot 023$	0.020	0.031	$0 \cdot 007$	$0 \cdot 025$	$0 \cdot 031$	0.016	$0 \cdot 033$	0.018	0.0143	$0 \cdot 010$

Yearly Abstract，1875－1876．

H．M．S．＂DISCOVERY．＂

			苟	$\stackrel{4}{\square}$	
			离	7	\％
	容		굴	$\stackrel{\square}{\square}$	\％
	产蔵		菏	$\stackrel{+}{8}$	8
	－	－	－	\％	－
			－	$\stackrel{8}{\circ}$	－
			1	1	
	云		为	8	－
	云		宮	荌	
	$\hat{8}$	Oロサツ	$\underline{\square}$	$\stackrel{\square}{0}$	
	\％		雱	荌	
	$\dot{\sim}$		\％	$\stackrel{\circ}{\circ}$	
	－180		䂸	¢	
	9		：	哭	
	寿		\％	$\stackrel{3}{\circ}$	
	$\frac{5}{5}$		$\stackrel{9}{6}$	$\stackrel{\square}{\circ}$	
	茞	シัּ	－	1	
	覀		哭	1	
	$\begin{aligned} & \text { 震 } \\ & \text { 芸 } \\ & \hline \end{aligned}$		＋	1	
荡曾总	㝘	 	$\stackrel{\text { ¢ }}{\substack{\text { ¢ } \\ \text { í }}}$	1	
		P4000000006400 $++1$	$\stackrel{\infty}{\circ}$	1	
	$\begin{aligned} & \text { 首 } \\ & \text { 首 } \\ & \hline \end{aligned}$	0000000000000 	＋	1.	
ถี			－	＇	

Lower Deck Temperatures, H.M.S. "Alert."

'SGunctuadray gexirl nvan \qquad
maximum, minimum, and mean temperatures.

	宫			9
	宮		$111 \times \sim \mathrm{g} 111111111111111111111111$	\％
	彦它			\％
	$\stackrel{-}{i}$			$\stackrel{\infty}{\text { ส }}$
	为			Ξ
				－
	立			ส
	妾			匈
	E		の1＋11111111111001111111＊211き11	\％
	\％			
	\cdots		－111119111a11＊1 1 1 111111111ac｜	－
	㡙		$111111111011110011+\infty$	8
	午		111111111111111110111111111100	\bigcirc
	㓪		$1111111111111101111111 \times \infty 11011$	∞
	䂞			$\stackrel{\square}{\square}$
$\begin{array}{\|l\|l} \hline \frac{2}{2} \\ \frac{\partial}{0} \end{array}$	部品		$\begin{aligned} & 9000 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1
	䋰			1
				1
	总			
	家			帚
	著			尔
				1
	畄	$\begin{array}{\|l\|} \hline 4 \\ 0 \\ \hline \end{array}$		哭
	点	$\begin{aligned} & 4 \\ & 9 \\ & 9 \end{aligned}$		＋
	品	－	 	
券				发空

OCTOBER 1875.

	暮	\bigcirc	吕
	± 0		号
			$\stackrel{\infty}{8}$
	\bigcirc		9
		1111111111111111111111111111111	1
			n 0 0 0
$\begin{aligned} & \dot{3} \\ & \text { a } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	云		\％
	垵		芝
	$\stackrel{*}{*}$	$11100011101\|1\| 101001109+10$	\％
	\％	$\cdots 1111110+\infty$	$\stackrel{4}{7}$
	$\dot{\sim}$	$\rightarrow 11111111+0111111111111111111011$	\pm
	${ }_{4}^{4}$		\％
	ผ	1011110111111111111111111101111	\bigcirc
	穴	$111111101 \times 111111101111111101111$	∞
	5		菏
$\begin{aligned} & \text { 完 } \\ & \hline \end{aligned}$			1
	䔍		1
			1
	既		哭
	$\dot{\underline{E}}$		＋80¢
	突		哭
			1
	寅		｜cow
	高	 	－
	夽		$\stackrel{\text { ¢ }}{+}$
	ค゙		F

NOVEMBER 1875.

	旨苞品	$11111111111111111111+\infty$	品
	产	＊ $111110 \times \sim 1$ a om $11111 \sim 11111111111$	$\underset{\sim}{8}$
	安安		＊
	言㤟	$=1 \infty 0 \infty$ ¢	當
	$\stackrel{\circ}{\circ}$		\because
		$11 \infty 11+\infty 11111111111111111111111$	9
			－
	\dot{x}		\＃
	家		®
	\％		\％
	\％		\because
	$\dot{\sim}$	$1111102 \infty \times 11+1111-11111171101$	大
	安	$1 m \infty 11 \times 111111111111111111101101$	$\%$
	ค	$11111-1111111111111$	\cdots
	安	$1111 \rightarrow 1111111111111111111111111$	－
	䨞		合
$\begin{aligned} & \text { 㥯 } \\ & \text { O } \end{aligned}$	言宫		1
	宕		1
\％		（1）	1
密兑邑	宮		
	搨		$\stackrel{\text { ¢ }}{\substack{\text { a } \\ \text { ¢ }}}$
	总		\＃
		$\begin{aligned} \therefore \begin{aligned} \therefore \circ \\ + \\ + \end{aligned} 11 \\ \hline \end{aligned}$	1
	豆		
	空		$\stackrel{-}{1}$
	音		¢ a +
苂			－

DECEMBER 1875.

总品品		$111111111111111111 \pm+\infty \infty 11 \pm 0111$	\％
	言		9
	安		$\overrightarrow{6}$
	产		吕
	$\stackrel{-}{-}$		$\stackrel{\otimes}{\square}$
		1101111111111111111111111111111	\cdots
			$\xrightarrow{1-}$
	2		$\stackrel{\sim}{\circ}$
	完		$\stackrel{7}{\text { a }}$
	$\stackrel{\rightharpoonup}{2}$		4
			4
	\％		\％
	永	$1 \approx 11011110111111111101011111111$	－
	洔	1111111111111111111111111111111	1
	$\xrightarrow{\text { 砣 }}$	11111111111111111111111111111111	1
	先		8
$\begin{aligned} & \dot{3} \\ & \dot{\overrightarrow{0}} \\ & \text { 号 } \end{aligned}$	部宫		1
	完		1
			1
$\begin{aligned} & \text { 苞 } \\ & \text { 曾 } \\ & \text { 萹 } \end{aligned}$	窇		－
	兰		－
	离		骨
			1
	䓃		
	妾		－
	坔		－
号			景

$\begin{aligned} & \text { 总 } \\ & \text { 苞 } \\ & \hline \end{aligned}$			\％
	宮		8
	安	1111111111101111111101111111111	－
	发产产		7
	$\stackrel{-}{\circ}$		총
			4
		O－	$\stackrel{\circ}{\stackrel{\circ}{8}}$
	寝		范
	－		$\stackrel{\text { 釈 }}{ }$
	$\stackrel{1}{2}$		$\stackrel{8}{\square}$
	$\dot{\infty}$		5
	\sim		$\stackrel{1}{\circ}$
	宊	$111-1 \times 111101 \sim \infty 11111111101111111$	$\stackrel{1}{\sim}$
	${ }^{\wedge}$	$11111111-111011111111111111111$	∞
	界	$11111 \rightarrow 0 \rightarrow 111+11111-1111111011111$	F
	雨		ฐ
$\begin{aligned} & \text { 要 } \\ & \text { Di } \end{aligned}$			1
			1
$\begin{array}{r} \text { ©i } \\ \text { 若 } \\ 0.8 \\ \hline \end{array}$			1
灾曾M	哭		－
	品		冎
	妥		＋
			1
$\begin{aligned} & \text { 鬼 } \\ & \text { 曾 } \\ & \text { 总 } \\ & \text {. } \end{aligned}$	害		－
	震		等
	＂累：		4 + + +
	家	 	

FEBRUARY 1876.

			$\stackrel{\infty}{\infty}$
	关		${ }_{5}$
	－	$11110111111110111011111 \infty 1111$	\pm
	它宫		\％
	$\stackrel{-}{-}$		\％
			\％
关吉官荡荡			0 8
	隹	－111110ヶ玉が心11	8
	家		$\stackrel{\infty}{\circ}$
	$\stackrel{\rightharpoonup}{\circ}$		־
			\square
	\％	$1111 \sim 111111111111101110010$	$\stackrel{*}{\text { a }}$
	年	m 1 1 1 1 1 1 1 1 1－111111111m	\bullet
	ヘ		응
	$\stackrel{\text { A }}{\sim}$		\bullet
	雨		$\stackrel{\square}{\circ}$
$\begin{aligned} & \dot{8} \\ & \text { 总 } \end{aligned}$	或言		1
	皆		1
\％			1
	离		® $\stackrel{\text { ¢ }}{\text { a }}$
	安		茳
	总		$\stackrel{\infty}{+5}$
			1
密曾品	馬		
	曾		－
	获	宊荡	$\stackrel{\circ}{\text {－}}+$ +
ฝ゙ٌ			最品

MARCII 1876.

Date.	Thermometer.			$\left.\begin{array}{\|c\|} \text { Tempe- } \\ \text { rature of } \\ \text { LLand, } \\ 18 \text { inches } \\ \text { deep. } \end{array} \right\rvert\,$	Barometer.			$\begin{aligned} & \text { Ozone, } \\ & \text { o to } 10 . \end{aligned}$	Clouds.		Hours of Wind.									$\begin{gathered} \text { Max. } \\ \text { and } \\ \text { Min. } \\ \text { Force. } \end{gathered}$	Hours of Weather.					MercuryFrozen.
	Max.	Min.	Mean.		Max.	Min.	Mean.		Name.	Amount, 0 to 10.	Calm.	N.E.	E.	S.E.		w.	w.		N.		Strong Wind.	b. c.	Overcast.	Fog.	Snow.	
	4281 A.	416 A.	228 A.		Inches.	Inches.	Inche																			
Mar. 1	$-64 \cdot 3$	-69.4	-	-	30.	30	30	-	cum., cir	0 to 7	16	-	-	-	-	-	1	7	-	1 to 0	-	24	-	-	-	24
	65.9	71.6	68.86	$-19 \cdot 0^{*}$	-145	- 110	- 132	4 to 5	,	0	24	-					-	-	-	0	-	24	-	-	-	24
			$69 \cdot 18$. 120	30.050	30.08		cum.-st	0 to 3	18	-	1	-	-	-	-	3	2	2 to 0	-	24	-	-	-	24
	58.7	68.3	$62 \cdot 71$		30.000	29•797	29•902	3 to 5	m.-s	1 to	9	-	-	-	-	-	-	8	7	2 to 0	-	24	-	-	-	24
5	$57 \cdot 6$	$63 \cdot 3$	$59 \cdot 34$	-	$29 \cdot 94$. 785	$29 \cdot 823$	4 to 5	cum.-st, cir.	0 to	4	-			-	-	-	18	2	to		24	-		-	24
	54.6	57.7	$55 \cdot 62$	-	30.0	$29 \cdot 950$	30.002.	6 to 5	cum., cir.-st	0 to 7	-	-	-	-	-	-	8	16	-	to		24	-	-	-	24
" 7	41.0	$\cdot 3$	$47 \cdot 41$	-	-110	30.028	$\cdot 079$	0 to 5	cum.-st., ni	4	-			-	-	-	-	24	-	2 to		18	6	8	2	24
" 8	$44 \cdot 2$	57.4	$49 \cdot 96$	-	-330	- 105	-230	5 to 5	r.	to	13	-	-	-	1	-	-	10	-	3 to	-	24	-	-	-	24
" 9	$50 \cdot 8$	59.0	$55 \cdot 35$		55	-222	-296	6 to 3	m., ci	2 to	19		-	-	-	-	3	2	-	1 to		24	-	-	1	24
, 10	53.0	$60 \cdot 7$	56.47	-	-237	30.160	30. 195	5 to 0	-	0	21			-			-	2	1	to 0	-	24	-		-	24
" 11	25	58.5	50.03	-	30.160	29,569	$29 \cdot 920$	1 to 0	cum.st., nim.	0 to 10	18	-	-	2	-			4	-	2 to		22	2	4	-	21
"	$27 \cdot 4$	38.0	34.26	-	29	-569	$\cdot 779$	4 to	., nim	4 to 10	2	1	4	-		-	-	10	7	4 to 0	-	2	22	\%	11	
"	16.5	$39 \cdot 1$	25.	-	30.992	-795	88		nim.	10		-	1	3	3	13		-	-	to		-	24	-		
" 14	16.0	33.6	$25 \cdot 82$	-13.5	-032	$\cdot 76$	$29 \cdot 9$	-	im., st	6 to 10	4	3		-	-	2	-	12	3	8 to		3	21	3	8	
" 15	9.5	$37 \cdot 1$	$21 \cdot 18$	$13 \cdot 5$	165	29.994	30.091	7 to	nim., cum.-st.	2 to 10	1	5		-	-	13	-	4	-	6 to	2	18	6	4	1	
" 16	8.0	$39 \cdot 1$	21.33	$12 \cdot 5$	-394	30.160	- 262	6 to 5	cum.-st., e	0 to	7	-	1	3	2	8	2	-	1	to	-	24	-	-		
	$\cdot 0$	$36 \cdot 6$	$26 \cdot 76$	$12 \cdot 0$	-427	30.2	- 355	4 to 5	cir.-st	0 to 6	7	1	-	3		3		3	7	to 0		24				
"	26.0	$42 \cdot 1$	34.53	-	. 172	29•725	30.003	6 to	cum.-6	to 6	-	-	-	-				23	1							
" 19	18.0	$34 \cdot 6$	26.9	-	$\cdot 143$	-654	$29 \cdot 900$	6 to 0	cum.-st., cir.	1 to	${ }^{3}$	-	1	-		4		12	2	to			-			
" 20	30	44.1	37-28	-	$\cdot 148$	-875	30.047	6 to	cum., cir.-st.	0 to 7	10		-	-												
" 21	$23 \cdot 3$	$37 \cdot 0$	31.76	-	-164	29-719	$29 \cdot 869$	3 to 5	cum.-st., nim.	1 to 10				6	-		1	10	1				2			
" 22	19.8	$29 \cdot 2$	$23 \cdot 42$	-	- 524	30.194	30.410	4 to 5	cum.-st.	1 to	9		3	9		1	1						-		9	
\# 23	19.5	$39 \cdot 1$	29.79	-12.0	-527	-242	'39	6 to	m.-st., cir	to	10			2		-	-	10								
" 24	$26^{\circ} 0$	$41 \cdot 1$	$34 \cdot 65$	12.0	05	-187	-247	to		0 to 7	3	1	2	4	-			10	4							
" 25	28.	$45 \cdot 1$	$37 \cdot 1$	12.0	-424	-318	$\cdot 380$	6 to 0	cir.-st.	to 9	18	1	2	-	-		-		-			24				
"	$23 \cdot 3$	$41 \cdot 1$	$32 \cdot 61$	-	-305	30	-155	4 to 0	cir.-st., cum	Oto 6	8	-	-	$\overline{6}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	1	-	5	-	to		14	10	-	5	
"	18	31.	24.90	-	-194	29	$\cdot 062$	3 to	cir., cam.	9 col 10	${ }^{9}$	-	-	6	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	13	-	5	1	to 1	9	24	-	2		
	11.0	28.5	18.48	-	-300	30	$\cdot 212$	4 to 5		4107	-	1		-	3	1	-	9	5	3 to 0	-	17	7	2	2	-
" 29	14.	40.	$32 \cdot 62$	$-12 \cdot$	-435	30.097	-281		,	2 to 10		-	1						1	to		2	-	2		13
	$27 \cdot 4$	51.	$39 \cdot 1$	-	30.305	29-915	30-094	5 to 0	cum., cir	2 to 9	12	4	-	5	1		-	3	1			2.4	-	3		
\% 31	-22.0	-43.1	-32.79	$-12 \cdot 0$	29•945	30.844	$29 \cdot 880$	3 to 0	cum., cir.-st	2 to 9				3												
haurs.	-8.0	-73.75	$-39 \cdot 768$		30.527	29.569	$30^{\circ} 096$		-		263	17	22	50	26	59	22	237	48	0 to 8	20	644	100	37	46	285

APRIL 1876.

	魚言		$11 \infty 11 \infty 111111111111111111111111$	\bigcirc
	言		$111111111111111111111111110 \%$ \％	๘
	－		111111111111111111111111111111	1
				8
	－			名
			111111111111111111111111111111	1
				$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{1}{*}}$
	穴			$\stackrel{\infty}{\sim}$
	穴			¢
	$\stackrel{\sim}{2}$		$111111111111111111111 \infty 1111101$	$=$
	\％		111118111111111111111111111111	2
	$\dot{\sim}$			$\stackrel{\sim}{\square}$
	${ }_{6}^{6}$			¢
	－		111111011111111111111111111111	\cdots
	安		$11 \pm 11111111111111111111101110$	＊
	完			点
				1
	妾			1
				1
	歌			
	家			
	号			¢ $\stackrel{0}{\circ}$ $\stackrel{\circ}{8}$
				1
	突	立	 	－
	丣	$\stackrel{\dot{4}}{ \pm}$		\％
	券	－		i + +
$\stackrel{\ddot{E}}{\Xi}$			 	等皆

	音		$\stackrel{\text { 易 }}{ }$
	畄	1111111111111111111111111111111	1
	容䒼		翗
	$\stackrel{\text { ¢ }}{\stackrel{1}{*}}$		䓞
	$\begin{array}{\|c} \text { 気莍 } \\ \hline \end{array}$	$11 \times 11111 * 1111111111111111111110$	$\stackrel{ }{ }$
			－
	云		$\stackrel{\rightharpoonup}{*}$
	安		온
	$\stackrel{1}{2}$		$\stackrel{\infty}{8}$
	$\underset{i x}{i}$		ㅊสํ
	$\dot{\text { vi }}$	$11111+010$ ¢ 1	\％
	宊	1111111111111111111111111111111	1
	込	$1111 * 111111111111111111 * 1101111$	\pm
	帘	$1111111+111111111111110 \times 1111111$	∞
	－		昜
$\begin{aligned} & \text { 駡 } \\ & \text { O } \end{aligned}$	言宗		1
	免		i
$\begin{aligned} & \text { 䓂 } \\ & \text { 号 } \\ & 0 \end{aligned}$		（1）	1
苞曾鬲	県		－
	家		
	晏		曷
			1
	腎		$\xrightarrow{\stackrel{\text { ¢ }}{ \pm}}$
	号		$\stackrel{8}{3}$
	离		¢ in +
逼		 	＋

JUNE 1876.

ACGUST 1876.

	宮		菬
	䫆		$\stackrel{\circ}{\square}$
	范茹		\％
	\therefore		7
			1
			1
	$\dot{4}$		I
	垵		$\stackrel{\sim}{\sim}$
	$\stackrel{*}{2}$		\％
	$\underset{\sim i}{\dot{x}}$		$\stackrel{3}{3}$
	\cdots		$\stackrel{8}{8}$
	$\underset{\sim 1}{\text { Lix }}$		\pm
			动
	年		\pm
	\％		$\underset{\sim}{\infty}$
$\begin{aligned} & \text { 荡 } \\ & \text { 号 } \end{aligned}$	䓂こ	 	1
	害		1
		1111111111111111111111111111111	1
	㖴		
	家		
	离		을
		1111111111111111111111111111111	1
	砢		$\stackrel{8}{\circ}$ $\stackrel{\text { ¢ }}{+}$ +
	垵		
	畐		+ + + +
ジ		 	\＃

Daily Observations on the Atmospheric Pressure, H.M.S. " Discovery," 1875-1876.

(Barometer corrected.)

AUGUST 1875.						
Date	4 р.M.	8 r.ar.	Midnight	4 A.M.	8 A.M.	Noon.
1	29-561	29.523	$29 \cdot 448$	$29 \cdot 435$	29•403	29.453
2	- 538	-	-	-596	-	${ }^{5} 555$
3	- 593	- 593	- 599	-615	- 599	- 573
4	-605	-603	- 598	- 563	-595	-601
5	-541	-531	-491	- 433	$\cdot 448$	-491
6	-511	$29 \cdot 609$	$29 \cdot 663$	29-709	29-798	29.883
7	- 943	30.055	30.083	30.043	30.011	30.033
8	. 902	$29 \cdot 887$	29.885	29.877	29.925	$29 \cdot 935$
9	-945	29.959	30.017	30.055	30.073	30.121
10	-	30.065	30.021	29-973	29.880	29-750
11	$\cdot 750$	29.825	29-767	-919	-812	-800
12	$\cdot 787$	$\cdot 787$	-784	- 870	-955	-977
13	-965	29-953	29.903	$29 \cdot 863$	29-895	-935
14	$29 \cdot 965$	$30 \cdot 025$	30.032	30.053	30.049	-
15	30.099	30. 122	$30 \cdot 045$	30.059	30.035	-981
16	29-922	$29 \cdot 865$	$29 \cdot 803$	29-781	$29 \cdot 717$	$\cdot 717$
17	$\cdot 707$	- 704	$\cdot 747$	$\cdot 773$	-853	-859
18	-869	-899	-895	-845	- 861	-788
19	$\cdot 765$	-711	-703	-609	-528	-403
20	- 388	-365	- 390	- 505	-611	-613
21	-620	-695	-728	$\cdot 743$	-778	-795
22	-829	. 815	-835	-843	-853	- 832
23	-822	-757	$\cdot 719$	-681	- 595	-603
24	-547	- 547	-453	- 570	-643	-690
25	29-737	29.787	-854	-899	29-939	29.974
26	30.029	30.119	-	-	30.076.	30.098
27	$30 \cdot 045$	$30 \cdot 025$	-993	. 971	29-953	29.915
28	$29 \cdot 863$	$29 \cdot 825$	$\cdot 821$	$\cdot 761$	$\cdot 743$	-693
29	$\cdot 738$	-668	-671	$\cdot 703$	$\cdot 711$	-713
30	$\cdot 756$	-813	-836	-839	-801	- 835
31	29.694	29-711	$29 \cdot 649$	$29 \cdot 675$	29.552	$29 \cdot 476$

SEPTEMBER 1875.

OCTOBER 1875.						
Date	4 P.m.	8 r.m.	Midnight	4 A.Mr.	8 A.m.	Noon.
1	29.797	$29 \cdot 846$	29.823	29.813	29-777	$29 \cdot 803$
2	- 805	-882	-895	-885	-905	-890
3	- 901	- 903	-915	-870	- 863	-893
4	-903	$29 \cdot 920$	-943	-913	-896	-939
5	-964	30-014	29.939	-967	-954	29.936
6	-896	29.975	$30 \cdot 022$. 944	-908	$30 \cdot 035$
7	-995	-948	30.010	-933	-940	29.935
8	-943	-923	29-907	-813	-673	- 576
9	- 543	- 468	-476	-437	-525	-558
10	- 591	-699	$\cdot 748$	-799	-809	- 817
11	29.844	29.851	- 917	29.926	29-909	29-921
12	30.009	30.004	$29 \cdot 967$	30.039	30.042	30.079
13	-121	-114	30.117	-117	- 122	-102
14	-041	-024	-044	30.042	30.072	30.099
15	30-097	30.059	30.094	$29 \cdot 959$	29-922	29-837
16	29-694	29.749	$29 \cdot 756$	-711	- 665	-639
17	-672	-647	-642	$\cdot 729$	-724	-654
18	-650	-655	-657	-665	-642	-575
19	-689	-762	-739	$\cdot 784$	-824	- 861
20	- 849	-702	-832	. 837	$29 \cdot 850$	- 848
21	-847	29.912	29.918	$29 \cdot 972$	$30 \cdot 005$	29-991
22	$29 \cdot 866$	30.046	30.028	30.009	-078	30.076
23	$30 \cdot 002$	-066	-181	- 168	-	- 259
24	-289	$\cdot 297$	-359	-358	-336	-368
25	$\cdot 287$	-303	-336	-262	-356	-334
26	-341	-314	-289	-291	$\cdot 246$	- 254
27	- 209	$\cdot 219$	-196	-152	-186	- 183
28	$\cdot 179$	-189	-226	-202	-208	- 208
29	-203	-228	-213	-167	$\cdot 137$	- 131
30	-125	-177	- 197	-219	-319	- 313
31	30•307	$30 \cdot 400$	$30 \cdot 433$	$30 \cdot 489$	30-529	30-545

NOVEMBER 1875.

1	30.627	30.615	30.615	30.752	$30 \cdot 701$	$30 \cdot 705$
2	- 605	30.607	30.506	$30 \cdot 409$	$30 \cdot 244$	$\cdot 167$
3	-012	$29 \cdot 912$	$29 \cdot 807$	$29 \cdot 841$	$29 \cdot 913$	-015
4	-118	30.205	30.205	30.246	30.3:1	$\cdot 203$
5	-160	-170	$\cdot 198$	- 221	$\cdot 274$	$\cdot 274$
6	- 313	-293	-311	-197	-123	-186
7	$\cdot 171$	-193	-193	-183	$\cdot 246$	-241
8	-225	-245	$\cdot 263$	-295	-351	-443
9	-475	-475	-500	-476	$\cdot 479$	-500
10	-538	-568	- 501	- 559	- 574	-613
11	-646	-790	$\cdot 755$	$\cdot 781$	-846	-877
12	-746	-788	-763	-755	-636	-613
13	-626	-476	$\cdot 511$	-520	-464	30.407
14	30.347	$30 \cdot 221$	30.211	$30 \cdot 109$	30.039	29-973
15	29.948	29.968	$29 \cdot 898$	29-901	29-894	-881
16	- 860	-838	$29 \cdot 785$	29-789	29-861	$29 \cdot 898$
17	-935	-975	80.013	30-049	30.059	30.043
18	-918	-973	29.931	29-839	29.879	29•741
19	-803	29•892	-922	-913	-947	29-948
20	29-953	$30 \cdot 005$	-919	- 329	-924	30.011
21	30.031	$30 \cdot 006$	-948	-939	29.858	29.823
22	$29 \cdot 805$	$29 \cdot 868$	29.871	29-932	30.012	30.049
23	$30 \cdot 059$	30-109	30.127	30.100	-016	-229
24	-229	-309	$\cdot 301$	-245	-178	30.169
25	30. 104	30.091	30-111	30-129	30.028	29.931
26	29.948	29.919	29-903	$29 \cdot 921$	29.874	29:954
27	30.025	30•200	30.216	30•291	30.346	30.379
28	-386	- 402	-405	$30 \cdot 400$	30.323	-253
29	-293	-161	- 021	29-954	29.994	-013
30	30.056	30.051	30-148	30.156	30.121	30.099

DECEMBER 1885.						
Date	4 P..s.	8 8.m.	Midnight	$41 . \ldots$	8 8.s.s.	Noon.
1	${ }^{30} 0.058$	30.053	30.038	$30 \cdot 091$	30-124	30-091
2	30.033	29.856	$29 \cdot 841$	29-731	29.737	29-738
3	29.788	$29 \cdot \%$ ¢8	29-825	29.951	29.953	$29 \cdot 946$
4	29 -813	30.015	30-242	30-415	30.513	30.569
5	30.550	. 560	5se	$\cdot 453$	401	371
6	310	-327	349	399	432	-502
7	-479	462	-379	-340	274	5
8	$\cdot 276$	12	30-319	$30 \cdot 377$	9	30.207
${ }^{3}$	30-101	$30 \cdot 016$	29-873	29.796	$29 \cdot 649$	29-591
10	$29 \cdot 623$	29.573	476	$\cdot 352$. 257	252
11	$\cdot 172$	-102	$\cdot 039$	-052	28.995	. 042
12	$\cdot 102$	$\cdot 287$	$\cdot 411$	-493	29.617	707
13	$\cdot 775$	775	$\cdot 715$	$\cdot 717$	$\cdot 737$. 705
14	$\cdot 715$	707	-687	675	627	$\cdot 645$
15	-582	$\cdot 487$	$\cdot 386$	$\cdot 517$	237	$\cdot 211$
16	$\cdot 21$	-227	-187	$\cdot 157$	$\cdot 197$	$\cdot 257$
17	$\cdot 296$	- 336	-381	410	$\cdot 432$. 447
18	419	416	$\cdot 447$	-405	382	$\cdot 399$
19	$\cdot 361$	'294	-207	-262	-253	$\cdot 302$
20	-292	-164	-298	$\cdot 262$	$\cdot 295$	249
${ }^{2}$	$\cdot 223$	214	$\cdot 175$	$\cdot 195$	-118	249
22	-987	314	-367	-380	$\cdot 403$	${ }^{452}$
23	$\cdot 452$	389	$\stackrel{439}{ }$	$\cdot 462$	$\cdot 450$. 532
24	-597	-712	-732	-823	$\cdot 910$	$\cdot 916$
25	$\cdot 961$	938	$\cdot 899$	$\cdot 749$	-790	.77
26	$\cdot 735$	672	${ }^{650}$	-616	-598	602
27	- 852	7\%2	650	$\cdot 603$	-538	${ }^{432}$
28	$\cdot 314$	-262	. 154	. 057	-058	-098
29	-134	-182	202	$\cdot 245$	$\cdot 318$	${ }^{391}$
30	${ }^{471}$	526	584	600	-602	-591
31	29.623	$29 \cdot 596$	$29 \cdot 576$	29-599	29.518	29.534

JANUARY' 1876.

1	29.529	29.656	29.553	29.525	29.574	29.544
2	514	485	529	-436	548	12
3	537	449	447	449	$\cdot 163$	244
4	- 309	-311	347	335	$\cdot 372$	${ }^{424}$
5	${ }^{471}$	$\cdot 529$	497	500	572	539
6	557	639	709	29.757	. 843	29.880
7	29-859	$29 \cdot 881$	29.959	30.0	$29 \cdot 998$	109
s	30-137	$30 \cdot 209$	30.161	30.168	$30 \cdot 113$	30.017
9	29.919	29.762	$22 \cdot 605$	29.468	29-579	$29 \cdot 462$
10	29.490	-662	29:801	$29 \cdot 944$	30.070	30.214
11	30.216	30.246	30.151	30-002	$29 \cdot 9$	29•718
12	29-703	29-629	29.554	29.528	-495	511
13	- 544	-643	. 659	670	759	89
14	-661	-634	67	$29 \cdot 614$	29-709	${ }_{29} \cdot 723$
15	29:835	$29 \cdot 926$	$30 \cdot 026$	30-037	30.146	30.233
16	$30 \cdot 225$	30.253	$\cdot 207$	$\cdot 145$	-081	${ }^{064}$
17	-034	- 054	-107	$30 \cdot 18$	$30 \cdot 1$	30.189
18	30 179	30.145	-049	$29 \cdot 962$	29.984	29.949
19	29.859	29.862	$29 \cdot 844$	-833	-849	- 722
20	-725	-618	568	$\cdot 565$	-997	$\cdot 610$
21	620	. 602	620	-583	3	$\cdot 537$
22	475	$\cdot 465$	3 ± 2	-253	142	-167
${ }^{23}$	-132	-110	$\cdot 130$	101	$\cdot 161$	$\cdot 143$
24	26	$\cdot 242$	-270	-486	${ }^{296}$	40
25	$\cdot 387$	$\cdot 463$. 361	-640	754	-801
26	-580	-751	-602	. 50	$\cdot 463$	$\cdot 514$
27	$\cdot 471$	$\cdot 449$	${ }^{476}$	-457	620	$\cdot 741$
28	-805	-	-738	-854	. 859	-835
29	843	$\cdot 833$. 807	$\cdot 728$	$\cdot 682$	$\cdot 633$
30	34	611	519	17	440	-384
31	29	29-411	29-426	29-432	29	29-496

FEbRUARY 1876.

Date	4 r.as.	8 r.m.	Midnight	4 A.m.	8 A.M.	Noon.
1	29-529	29-5.5	29-484	29.532	29-588	29-579
2	29•634	29•783	29.928	30.016	30.184	30•283
3	30-314	30.279	30.17s	$29 \cdot 979$	$29 \cdot 695$	29-517
4	29-4;0	29-333	29.237	- 163	-156	$\cdot 258$
5	-378	-659	-589	-632	$\cdot 719$	-687
6	-651	-634	-628	- 557	$\cdot 569$	-537
7	- 587	-644	$\cdot 728$	$\cdot 789$	-801	-810
8	-948	- 863	29.841	29.891	29.908	29-901
9	29.921	29.998	30.019	$30 \cdot 035$	30.005	30•109
10	30.106	30.096	-128	-131	-155	151
11	30•164	$\cdot 131$	-144	-189	-043	-024
12	29-961	-038	- 067	-195	-194	-288
13	30-358	-311	-469	-436	-506	-490
14	-472	-462	$\cdot 467$	-388	-395	- 387
15	-380	-362	-422	-466	-422	-409
16	-476	-467	-415	30-404	30.359	30-299
17	30.224	-191	$30 \cdot 120$	29-994	29-929	29-901
18	29.921	-	$20 \cdot 744$	-658	-673	29-719
19	29•786	-836	23.949	-981	-999	30.042
20	30.089	30.089	30.012	-984	-941	29-879
21	$29 \cdot 803$	29-831	29.849	$29 \cdot 818$	$29 \cdot 959$	29-906
22	$30 \cdot 026$	30.141	$30 \cdot 224$	30.345	30-366	30.431
23	-429	-346	30.298	30-236	30.218	30.141
24	30.129	30.041	29.959	29-959	$29 \cdot 964$	29-801
25	29.721	29.736	29.698	20-552	-568	29-704
26	$29 \cdot 853$	30.057	30.109	30.023	$29 \cdot 994$	30•101
27	$30 \cdot 151$	- 123	- 201	$\cdot 184$	30-115	-129
28	$\cdot 158$	-183	-131	30-159	-174	-141
29	30.079	30.083	$30 \cdot 161$	29.995	30.036	30.049

MARCE 1876.

1	$30 \cdot 053$	$30 \cdot 094$	$30 \cdot 119$	$30 \cdot 088$	$30 \cdot 061$	$30 \cdot 124$
2	$\cdot 144$	$\cdot 103$	$\cdot 176$	$\cdot 149$	$\cdot 094$	$\cdot 084$
3	$30 \cdot 083$	$30 \cdot 097$	$30 \cdot 044$	$30 \cdot 061$	$30 \cdot 046$	$30 \cdot 118$
4	$29 \cdot 929$	$29 \cdot 964$	$29 \cdot 921$	$29 \cdot 845$	$29 \cdot 311$	$29 \cdot 789$
5	$\cdot 784$	$\cdot 784$	$\cdot 799$	$\cdot 824$	$\cdot 796$	$\cdot 967$
6	$29 \cdot 989$	$29 \cdot 934$	$29 \cdot 984$	$29 \cdot 966$	$29 \cdot 924$	$29 \cdot 929$
7	$30 \cdot 024$	$30 \cdot 041$	$30 \cdot 039$	$30 \cdot 081$	$30 \cdot 090$	$30 \cdot 082$
8	$\cdot 094$	$\cdot 184$	$\cdot 256$	$\cdot 242$	$\cdot 338$	$\cdot 276$
9	$\cdot 351$	$\cdot 354$	$\cdot 333$	$\cdot 296$	$\cdot 211$	$\cdot 244$
10	$\cdot 149$	$\cdot 211$	$30 \cdot 124$	$30 \cdot 200$	$30 \cdot 156$	$30 \cdot 114$
11	$30 \cdot 134$	$30 \cdot 099$	$29 \cdot 991$	$29 \cdot 953$	$29 \cdot 843$	$29 \cdot 611$
12	$29 \cdot 561$	$29 \cdot 711$	$29 \cdot 809$	$29 \cdot 828$	$\cdot 913$	$\cdot 949$
13	$\cdot 999$	$30 \cdot 024$	$30 \cdot 023$	$30 \cdot 009$	$\cdot 930$	$\cdot 931$
14	$29 \cdot 893$	$29 \cdot 838$	$29 \cdot 883$	$29 \cdot 909$	$29 \cdot 905$	$29 \cdot 948$
15	$30 \cdot 010$	$30 \cdot 059$	$30 \cdot 053$	$30 \cdot 127$	$30 \cdot 159$	$30 \cdot 209$
16	$\cdot 181$	$\cdot 274$	$\cdot 286$	$\cdot 309$	$\cdot 277$	$\cdot 474$
17	$\cdot 488$	$\cdot 463$	$\cdot 398$	$30 \cdot 339$	$30 \cdot 230$	$30 \cdot 153$
18	$30 \cdot 189$	$30 \cdot 051$	$30 \cdot 016$	$29 \cdot 919$	$29 \cdot 749$	$29 \cdot 641$
19	$29 \cdot 657$	$29 \cdot 789$	$29 \cdot 898$	$30 \cdot 019$	$30 \cdot 109$	$30 \cdot 136$
20	$30 \cdot 128$	$30 \cdot 077$	$30 \cdot 015$	$29 \cdot 967$	$29 \cdot 982$	$29 \cdot 829$
21	$29 \cdot 776$	$29 \cdot 766$	$29 \cdot 833$	$29 \cdot 849$	$29 \cdot 962$	$30 \cdot 183$
22	$30 \cdot 390$	$30 \cdot 358$	$30 \cdot 416$	$30 \cdot 536$	$30 \cdot 448$	$\cdot 456$
23	$\cdot 506$	$\cdot 512$	$\cdot 423$	$\cdot 399$	$\cdot 315$	$\cdot 237$
24	$\cdot 178$	$\cdot 286$	$\cdot 296$	$\cdot 264$	$\cdot 396$	$\cdot 380$
25	$\cdot 380$	$\cdot 410$	$\cdot 580$	$\cdot 386$	$\cdot 374$	$\cdot 310$
26	$\cdot 313$	$\cdot 129$	$30 \cdot 066$	$\cdot 139$	$\cdot 045$	$\cdot 041$
27	$\cdot 119$	$\cdot 016$	$29 \cdot 943$	$\cdot 131$	$\cdot 161$	$\cdot 181$
28	$\cdot 276$	$\cdot 341$	$30 \cdot 321$	$\cdot 204$	$\cdot 187$	$\cdot 149$
29	$\cdot 151$	$\cdot 147$	$\cdot 446$	$\cdot 428$	$\cdot 346$	$30 \cdot 306$
30	$30 \cdot 273$	$30 \cdot 221$	$30 \cdot 175$	$30 \cdot 095$	$30 \cdot 050$	$29 \cdot 979$
31	$29 \cdot 914$	$29 \cdot 894$	$29 \cdot 841$	$29 \cdot 843$	$29 \cdot 833$	$29 \cdot 829$

APRIL 1876.

Date	4 P.M.	8 r.m.	Midnight	4 ^.m.	8 A.m.	Noon.
1	29•769	29-759	29.801	29.832	$29 \cdot 898$	29-950
2	$29 \cdot 971$	29-997	$30 \cdot 044$	30.012	30.032	30-054
5	30-024	30.041	-071	. 038	-042	-091
4	-139	-144	-261	-300	-283	-365
5	-422	-415	-519	-450	-500	-515
6	- 507	-488	-500	30-441	-354	-338
7	\rightarrow	-251	-241	-	$\cdot 264$	-
8	-	-659	-632	-	-610	-590
9	-	-603	-608	-	-562	$\cdot 553$
10	-	-493	$\cdot 459$	-	-311	-318
11	-	-299	-314	-	-350	-337
12	-	-373	-364	-	-312	-233
13	-	-137	-127	-	-106	-095
14	-	-157	$\cdot 227$	-	-368	-421
15	-	-497	$\cdot 512$	-	$\cdot 514$	- 555
16	-	- 515	-497	-	-454	-454
17	-	-444	-501	-	$\cdot 426$	-429
18	-	-406	-334	-	$\cdot 554$. 573
19	-	-520	-570	-	-596	-631
20	$30 \cdot 579$	-628	- 598	-	-506	$\cdot 279$
21	-447	-407	-376	-	-268	-213
22	-215	-225	- 192	-	- 124	$\cdot 148$
23	30.078	30.068	30.012	-	30.018	30.026
24	29-995	$29 \cdot 978$	29•949	-	29.943	29.888
25	$29 \cdot 968$	29-958	30.002	-	30.013	$30 \cdot 048$
26	30-075	30•099	-129	-	-124	-231
27	- 289	-332	- 396	-	$\cdot 595$	-602
28	-666	-691	-651	-	$\cdot 729$	$\cdot 715$
29	-690	-686	-626	-	- 544	-461
30	30.646	30•446	30-425	-	30.387	$30 \cdot 365$

MAY 1876

1	30.350	30'337	30-277	-	$30 \cdot 226$	30.217
2	- 186	-178	-189	-	30.159	$30 \cdot 136$
3	-116	'081	-041	-	$29 \cdot 844$	29-921
4	30.111?	30.253?	30.255?	-	- 921	-901
5	29.888	$20 \cdot 862$	29-859	-	-970	. 954
6	. 939	-894	- 855	-	-818	-802
7	-829	-842	-857	-	29.888	29-897
8	25.319	29.919	29-907	-	30.003	30.027
9	30.061	30.066	30.089	-	-082	-086
10	- 109	-111	-134	-	$30 \cdot 082$	-
11	-	-	-001	-	$29 \cdot 920$	-041
12	-093	- 133	$\cdot 171$	-	30. 232	-
13	-	-268	-281	-	-238	30-239
14	30.246	-256	-265	-	-332	-
15	-	30. 234	30.184	-	30.062	-
16	-	29 ${ }^{876}$	29.769	-	29.878	-
17	-	-868	- 848	-	-827	-
18	-	-	-906	-	-879	$29 \cdot 911$
19	29-823	-818	-806	-	29-769	29.910
20	$29 \cdot 860$	-	29•898	-	30.031	30.000
21	30.018	-	$30 \cdot 035$	-	-031	- 163
22	-128	-	$30 \cdot 201$	-	$30 \cdot 156$	30. 101
23	30.128	-	29.950	-	29.761	29'753
24	29.757	-	$\cdot 772$	-	-679	-707.
25	-653	- 681	-704	-	-677	-651
26	-617	-719	-669	-	$\cdot 717$	-759
27	-745	-733	-645	-	-614	-635
28	- 516	-535	-563	\cdots	- 597	-626
29	-669	-679	- 207	-	:729	- 749
30	$\cdot 777$	-679	$\cdot 707$	-	-679	-679
31	$29 \cdot 611$	29-586	$29 \cdot 516$	-	29.467	29:411

JUNE 1876.						
Date	4 p.m.	8 P.m.	\|Miànigiti	$4 \mathrm{~A} . \mathrm{m}$.	8 A.s.	Noon.
1	29.395	$29 \cdot 425$	$29 \cdot 411$	-	29.463	29-490
2	- 530	-560	-583	-	-603	-643
3	-682	-717	$\cdot 714$	-	-772	-789
4	$\cdot 796$	-879	- 886	$20 \cdot 855$	-866	$\cdot 799$
5	-857	-858	-863	-833	-851	-872
6	-823	-807	-942	-931	-931	-846
7	-809	-766	$\cdot 757$	-747	-753	-778
8	$\cdot 765$	$\cdot 783$	-788	-829	-859	-859
9	-846	- 871	- 903	-891	-962	29.978
10	29.975	$29 \cdot 956$	29.973	29.971	29.991	30.006
11	$30 \cdot 019$	30.009	30.051	30.007	30.019	$30 \cdot 011$
12	29.999	29-983	29.971	$29 \cdot 932$	29-914	$29 \cdot 889$
13	-886	-889	-809	-774	$\cdot 784$	-804
14	$\cdot 746$	-744	$\cdot 748$	-738	- 739	$\cdot 726$
15	$\cdot 761$	$\cdot 781$	-789	-808	$\cdot 799$	-829
16	-823	-879	-919	-946	-951	-961
17	- 348	-953	-969	-971	-961	-951
18	-923	-	- 966	-944	-957	-947
19	- 967	$\cdot 979$	$\cdot 969$	-907	-851	-677
20	$\cdot 704$	-627	-631	-624	-624	-639
21	-679	-725	$29 \cdot 745$	-821	- 861	- 898
22	-633	$\cdot 773$	30.015	-946	-941	-893
. 23	-893	-903	$30 \cdot 015$	$\cdot 935$	-925	$\cdot 935$
24	- 944	-950	$29 \cdot 958$	-911	-891	-844
25	- 796	-810	-807	$\cdot 790$	-803	-817
26	-792	$\cdot 795$	- 787	$\cdot 775$	-771	$\cdot 755$
27	-755	$\cdot 745$	- 761	$\cdot 738$	-658	-711
28	-659	-661	-683	-669	-659	-677
29	-661	${ }^{6} \mathrm{6} 21$.	-612	-539	- 489	-627
30	29•587	29.379°	$29 \cdot 597$	$2 \mathrm{~S} \cdot 410$	$29 \cdot 419$	29.431

JULY 1876.

AUGUST 1876.

Daily Observations on the Atmospheric Pressure, 1875-1876.
H.M.S. "ALERT."-AUGUST 1875.

Date.	2 r.s.	$4 \mathrm{r} . \mathrm{M}$.	61% m.	SP.M.	10 1.m.	Midnight.	2 A.m.	41.3.	6 A.M.	8 A.M.	10 A.sr.	Noon.
1	29-589	29.584	29-524	$29 \cdot 536$	29.516	29.476	$29 \cdot 469$	-	$20 \cdot 427$	$29 \cdot 425$	-	29.448
2	-	-5,31	-541	-552	${ }^{5} 564$	-551	-561	29.588	-586	-581	-	-
3	. 55.5	-562	-585	-584	- 574	- 585	- 583	-593	-	- 597	$29 \cdot 570$	-559
4	-	-589	-584	-589	-589	-594	-605	-625	-627	-621	-612	-594
5	-	-555	-535	-528	- 595	29-497	$29 \cdot 457$	-455	-435	-453	$\cdot 458$	$\cdot 472$
6	-466	-510	29-552	29.543	-	-	-	$\cdot 712$	-	29-782	-	-870
7	$\cdot 930$	-970	$30 \cdot 610$	30.03n	-	30.080	30•101	-	-	$30 \cdot 067$	$\cdot 981$	-971
8	-	- 907	29.890	$29 \cdot 886$	-855	$29 \cdot 863$	$29 \cdot 857$	29.856	$29 \cdot 874$	-	-	29.921
9	$29 \cdot 907$	29-907	$20 \cdot 944$	$29 \cdot 980$	29-999	$30 \cdot 018$	$30 \cdot 035$	30.055	30.088	$30 \cdot 133$	-	$30 \cdot 143$
10	30-132	$30 \cdot 122$	30-105	30.068	$30 \cdot 052$	$30 \cdot 004$	29.992	29-970	29-926	$23 \cdot 888$	-818	29•758
11	29.752	29.727	29.718	49-722	29-752	$29 \cdot 755$	-777	-796	$\cdot 798$	-791	$\cdot 793$	-788
12	-	-775	$\cdot 782$	29-770	$\cdot 788$	-797	-	-885	-925	-930	-960	-965
13	-960	-957	-	-	29-908	$23 \cdot 880$	$29 \cdot 875$	29.878	$\cdot 29 \cdot 872$	$29 \cdot 876$	$29 \cdot 905$	29-938
14	29-944	29-960	$29 \cdot 963$	$30 \cdot 001$	$30 \cdot 003$	30.005	$30 \cdot 028$	30.044	$30 \cdot 060$	30.057	80.038	30.049
15	$30 \cdot 050$	30-076	30.076	$30 \cdot 060$	-	30.082	30.055	30.043	-	29.995	29.971	29.943
16	-	-	--	29.860	29-815	29.795	29-785	29.771	29-772	-745	-	-721
17	29•700	29-703	29•706	-717	-	-734	$\cdot 758$	-787	-	-848	-859	-854
18	-884	-886	-883	-889	-877.	- 863	-856	-856	-852	-849	-816	-806
19	$\cdot 788$	$\cdot 771$	${ }^{\cdot 763}$	-665	-	-629	-613	-686	-	. 508	-	-423
20	-371	-	-367	-375	-413	-417	-455	-477	-	-591	-604	-610
21	-607	- 630	-657	-705	-	-722	-722	-742	$\cdot 768$	-	-786	-805
22	-80\%	-805	- 809	-	-842	-786	-850	-832	-818	-	-	-824
23	-	-789	-789	$\cdot 754$	$\cdot 744$	-706	-674	-649	-613	$29 \cdot 599$	${ }^{-570}$	-
24	-	-544	-	- 544	-	-549	-584	$\cdot 580$	7	-	-658	$\cdot 703$
2	29-715	29-743	29.782	29.808	29•796	29.835	29.857	$29 \cdot 860$	29-882	-	29.973	29-982
26	$30 \cdot 000$	30.013	30.033	-	$30 \cdot 042$	$30 \cdot 037$.	30.045	30.063	30.065	$30 \cdot 055$	30.070	30.074
27	30.062	30.051	30.035	30-002	30.020	30.007	29•992	29.980	$29 \cdot 371$	$29 \cdot 946$	29.915	29.890
28	-	29-868	29-917	$29 \cdot 835$	-	-	-	-762	-771	$\cdot 746$	-727	-706
29	-	-680	-656	-656	-	$29 \cdot 672$	-685	-695	-692	$\cdot 713$	29•716	-726
30	-	-829	$\cdot 793$	$\cdot 794$	29.853	-838	-	- 826	-802	$\cdot 773$		-791
31	29-688	29.673	$29 \cdot 637$	29-598	29-5.58	29-558	29-588	29-495	29.476	$29 \cdot 481$	-"	29-502

FLOEBERG BEACH.-SEPTEMBER 1875.

Date.	2 p.M.	4 P.3.	6 р.м.	8 P.M.	10 P.m.	Midnight.	2 А.м.	4 A.m.	6 A.m.	8 A.M.	10 A.3\%	Noon.
1	-	$29 \cdot 571$	29.557	29.520	-	$29 \cdot 444$	29-349	20-349	29-327	29-338	-	29.431
2	29.436	$\cdot 457$	- 565	-474	29.467	-453	$\cdot 457$	-467	-432	-431	29.425	-405
3	-415	-425	-450	-	$\cdot 511$	-498	-524	-528	-555	-590	-	-
4	-	-661	-677	$\cdot 707$	$\cdot 741$	-735	-756	-763	-765	-771	$\cdot 765$	-758
5	-	$\cdot 729$	- 729	.730	$\cdot 710$	-708	-758	-723	-701	-699	-670	-669
6	-654	-640	-698	-652	39-650	29.630	29.613	29-627	$29 \cdot 675$	$29 \cdot 664$	29•755	29.800
7	29.835	29-903	-981	-960.	30.023	30.029	30.062	30.074	30.071	-	30.062.	30.050
8	30.031	30.024	-971	-954	-	$29 \cdot 856$	29.851	$29 \cdot 818$	29•793	$\cdot 774$	29•755	29*735
9	$29 \cdot 707$	29-708	-696	$\cdot 707$	29-707	-	-	-	-	-	$\cdot 715$	- 682
10	-683	-696	-707.	-697	-688	-670	-698	-626	-560	-596	-490	- 503
11	-511	-494	-595	- 506	-429	-394	-398	-309	- 373	-373	$\cdot 362$	-360
12	-842	-309	-313	-385	-423	-403	-402	$\bullet 422$	${ }^{4} 405$	-396	-373	-356
13	-360	-344	-379	$\cdot 406$	-380	-405	-408	-449	- 456	-404	-331	-284
14	$\cdot 261$	-250	$\cdot 211$	-211	-	-	-267	- 312	- 308	-	-311	$\cdot 357$
15	-377	-410	-415	-365	-336	-297	-321	- 323	-376	-	-439	-436
16	29-470	-530	$\cdot 553$	-541	-615	- 595	- 580	- 5665	- 578	-578	-597	-597
17	-	30.644	29.697	29.639	29.618	29-612	29-585	29-615	29.649	$29 \cdot 697$	29.747	29-802
18	-	$30 \cdot 007$	$30 \cdot 089$	30-122	30. 142	30.213	30-195	30.210	30.219	30. 208	30.192	30:179
19	$30 \cdot 142$	-138	$\cdot 138$	-138	-139	30.050	. 015	29-992	29-995	-011	30.032	30.039
20	80.052	30-084	30.052	30•094	30. 102	-	30.117	-	-	$30 \cdot 097$	-	-
21	-	-	-	-	-	-	-	-	-	$29 \cdot 848$	29.857	29-790
22	29-730	20.685	29-640	29•572	$29 \cdot 572$	$29 \cdot 502$	29-514	- 518	${ }^{\circ} 529$	$\cdot 421$	-515	$\cdot .515$
23	-511	-521	-	-582	-605	-631	-615	-636	-618	-621	-632	-626
24	-598	-597	-594	-571	-	-	- 464	-506	-551	-511	-511	-519
25	-497	- 502	-536	-528	-	- 510	- 569	- 594	-635	-657	-635	-691
26	-738	-751	-	-738	-856	-860	-937	-939	-926	-985	-973	-981
27	-930	-945	.875	-915	-910	-910	-786	-869	-904	-897	-926	- 854
28	-811	-861	$\cdot 752$	-	-698	$\cdot 710$	$\cdot 734$	- 729	-694	$\cdot 787$	-681	-701
29	$\cdot 711$	-748	$\cdot 755$	-815	-804	-838	-830	-830	-842	-864	-954	-858
30	29-928	29.848	29-831	29•835	29-831	$29 \cdot 823$	29-787	99.784	29.864	29.854	29.915	29.845

FLOEBERG BEACH.-OCTOBER 1875.

Date.	2 г.м.	4 P.m.	6 P.x.	8 P.M.	10 P.35.	Midnight.	2 А.3.	4 A.m.	6 A.sr.	8 A.m.	10 A.M.	Noon.
1	29•729	29-805	29•843	29.778	29-808	29•780	$29 \cdot 825$	29•827	29-837	29-826	29-755	29-768
2	-825	-848.	-789	-835	-878	-875	$\cdot 915$	$\cdot 921$	-926	-836	-911.	-888
3	- 888	-901	-894	-891	-916	-945	-875	-905	-919	-924	-891	-918
4	-905	-880	-934	-911	-938	-900	-925	-916	-915	-915	-915	-915
5	-919	-938	-945	. 945	29;912	$29 \cdot 913$	-891	-908	-892	:886	-910	-922
6	-921	-943	-810	-937	80•000	30.005	-918	-925	-934	-939	-903	-920
7	-922	-925	29.957	-990	29-988	$29 \cdot 923$	-943	-936	-916	-915	-920	-924
8	-994	-989	30.019	-909	-902	-848	-785	-743	-761	-72].	-648	-618
9	- 594	- 595	29:596	- 518	-490	- 518	-554	-526	-604	-516	- 520	-513
10	-505	-525	-585	-588	-618	-638	-623	-694	-716	$\cdot 710$	-712	-735
11	-794	-772	$\cdot 780$	-845	-818	-818	-798	-830	- 861	-855	-862	-859
12	-864	$29 \cdot 864$	29-899	29'902	29.883	29.891	29:953	29-961	29-963	$29 \cdot 970$	-986	29•994
13	29.977	30•001	30.029	30.001	30.012	30.034	30.033	30.039	80.008	30.025	29-986	30-005
14	30.043	-039	-004	-004	. 007	29-984	-037	30.034	30.052	30.043	30.067	30-089
15	30.084	30. 106	30.146	$30 \cdot 079$	30.014	30.037	30.003	29-948	$29 \cdot 880$	29.840	29.826	29-714
16	29•702	29.651	29.724	$29 \cdot 691$	29-691	29.691	$29 \cdot 599$	-631.	$\cdot 681$	-656	-696.	$\cdot 712$
17	- 656	-619	${ }^{7} 703$	-685	-684	$\cdot 721$	$\cdot 789$	-664	-724	-704	-701	-656
18	-694.	- 574	-535	-651	-638	-643	-615	-681	-689	- - 689	-703	-663
19	-663	-616	-694	$\because 698$	-699	. 722	-711	-644	-791	-805	- 803	-909
20	-829	-826	-851	-838	-914	$\because \quad .928$	-814	-817	-810	-824	-829	:833
21	-984	- 932	-806	-725	-831	-856	$29 \cdot 929$	29.932	-904	- 912	29-934	29-912
22	$29 \cdot 945$	29*998	29.902	29.977	29-970	29.936	80:006	30.015;	29.937	29:892	30.027	30-015
23	30.085	30.025	80,036	30. 062	80.067	30.060	-086	29.986 ${ }^{\text {' }}$	30.027	80.019	. 084	-084
24	$\bullet 181$	$\stackrel{201}{ }$	-224	- 264	-302.	-290	-287	30. 222	-207 ${ }^{\text {i }}$	-219	-179	!181
25	-241	-215	-232	-204	-220	-223	-225	-228	-270	-290	T292	-242
26	-285	-285	-288	$\because 299$	-292	-288	-275	-281	$\therefore \cdot 281$	-237	-247	!247
27	-214	. 220	. 222	- 217	$\therefore \quad 214$	$\therefore \quad .212$	-213	-181	$\bigcirc 199$	-199	$\cdot 177$.	:187
28	$\cdot 152$	$\cdot 152$	-153	-216	$\because 167$... - 168	-216	-219	-208	-186	$\because 159$	-222
29	-194	:224	-192	$\therefore \quad 179$	-199	$\therefore 199$	- 192	-184	-128	$\because 127$	-126	-118
80	¢ 131	127	-174	${ }^{\circ} 103$	-112	-114	-165	-178	$\therefore 193$	-212	-238	-248
31	. $80 \cdot 251$	$80 \cdot 253$	30:348	30:351	30:376	. 30.422	30-407	30.435	30.475	80.497	80. 513	30:588

㟥	
$\stackrel{\text { B }}{\underline{\text { a }}}$	
¢	
家	
－	
－	
$\stackrel{3}{6}$	
－	官安官官 官
$\stackrel{3}{3}$	
$\stackrel{3}{2}$	
－	
3	
商首	
$\ddot{6}$	
$\begin{aligned} & \dot{6} \\ & \underline{\theta} \end{aligned}$	
\％	
$\underset{\infty}{\substack{4 \\ \infty}}$	
$\xrightarrow{\text { ¢ }}$	
$\stackrel{3}{8}$	
$\stackrel{\square}{4}$	
$\stackrel{\text { ¢ }}{+}$	
$\stackrel{\text { B }}{\text { ¢ }}$	
$\stackrel{1}{4}$	
$\stackrel{1}{2}$	
号	

完	
$\stackrel{\square}{3}$	
－	
${ }_{6}^{4}$	
${ }_{\sim}^{4}$	
$\stackrel{4}{4}$	
¢	
4	
$\stackrel{1}{4}$	
$\stackrel{\text { a }}{\text { ¢ }}$	
\％	
$\stackrel{3}{3}$	
踥豆	
$\stackrel{\text { B }}{\underline{3}}$	
菖	
－	
$\stackrel{*}{3}$	
$\stackrel{\square}{8}$	
菖	
$\stackrel{4}{4}$	
茳	
$\stackrel{3}{2}$	
\％	

号	
$\stackrel{1}{3}$	
$\stackrel{3}{4}$	
－	
！	
${ }_{6}^{6}$	
$\stackrel{4}{3}$	
－	
$\stackrel{4}{*}$	
$\stackrel{\square}{\text { a }}$	
$\stackrel{4}{3}$	
$\stackrel{1}{4}$	
\％	
$\stackrel{\square}{6}$	
$\stackrel{\square}{8}$	
$\stackrel{\square}{2}$	
\％	
管	
先	
总	
完	
$\dot{\sim}$	
這	

FLOEBERG BEACH．－FEBRUARY 1876.

容	
$\stackrel{3}{3}$	
－	
\％	
$\stackrel{1}{\square}$	
${ }_{0}^{4}$	
$\stackrel{3}{4}$	
4	
－	
$\stackrel{1}{9}$	
$\stackrel{\square}{1}$	
家䓪	
$\stackrel{\square}{3}$	
茄	
$\stackrel{3}{4}$	
安	
号	
$\stackrel{4}{4}$	
\％	
范	
$\stackrel{3}{4}$	
家	
景	
宫	

FLOEBERG BEACH．－MARCH 1876.

褢	
$\stackrel{3}{3}$	
－	
$\stackrel{3}{6}$	
家	
－	
－	
$\stackrel{3}{4}$	
－	
$\stackrel{\text { ¢ }}{\substack{\circ}}$	
容	
$\stackrel{1}{2}$	
妾容	
$\begin{aligned} & \dot{a} \\ & \underline{u} \end{aligned}$	
$\begin{aligned} & \dot{4} \\ & \dot{d} \\ & \underline{e n} \end{aligned}$	
$\stackrel{\square}{\square}$	
$\stackrel{\square}{8}$	
$\stackrel{3}{2}$	
¢	
$\stackrel{i}{8}$	
$\stackrel{3}{2}$	
－	
$\stackrel{\square}{4}$	
：	
号	

FLOEBERG BEACH.-APRIL 1876.

Date.	2 P.M.	4 P.M.	6 P.m.	8 p.as.	10 r.m.	Midnight.	2 A.M.	4 A.M.	6 A.M.	8 А.m.	10 A.M.	Noon.
1	$29 \cdot 828$	29-808	29.818	29.802	$29 \cdot 810$	29.825	29.840	$29 \cdot 843$	29-858	29.855	$29 \cdot 915$	29.930
2	30.005	$29 \cdot 987$	29.954	29•984	30.012	30.035	30.027	30.030	30.010	30.002	30-002	$30 \cdot 005$
3	30.015	30.028	30.035	$30 \cdot 185$	30.042	-032	-	-	-	-028	- 135	-145
4	-	$\cdot 188$	-	$\cdot 200$	-	-238	-	-	-	$\cdot 275$	-	-285
5	-	-305	-	-331	-	-341	-	30.355	-	-862	-	- 392
6	-	-408	-	-422	-	-440	-	-	-	-305	-	-278
7.	-	-180	-	-192	-	-205	-	-	-	-308	-	- 325
8	-	-355	-	-352	-	-382	-	-	-	-422	-	- 502
9	-	-552	-	- 592	-	-592	-	-	-	-458	-	-411
10	-	-375	-	-350	-	-382	-	-	-	-320	-	- 340
11	-	-417	-	-320	-	-320	-	-	-	. 322	-	-332
12	-	-350	-	-330	-	-320	-	-	-	-250	-	- 150
13	-	-159	-	- 150	-	-122	-	-	-	- 122	-	-132
14	-	-152	-	$\cdot 200$	-	$\cdot 190$	-	-	-	-421	-	-425
15	-	-407	-	$\cdot 430$	-	$\cdot 442$	-	-	-	-482	-	- 500
16	-	-494	-	-459	-	-484	-	-	-	-440	-	-417
17	-	-897	-	-394	-	-412	-	-	-	-399	-	-399
18	-	-409	-	-422	-	-442	-	-	-	-517	-	- 527
19	-	-552	-	-597	-	-602	-	-	-	-612	-	-624
20	-	-642	-	-624	-	-609	-	-	-	-604	-	- 584
21	-	-547	-	-517	-	-464	-	-	-	-344	-	- 304
22	-	-264	-	'242	-	-194	-	-	-	30.144	-	30.122
23	-	30`099	-	30.084	-	30.062	-	-	-	29.994	-	29-994
24	-	29•959	-	$80 \cdot 989$	-	$29 \cdot 919$	-	- -	-	-930	-	-924
25	-	29.977	-	29.929	-	29.930	-	-	-	29.974	-	$29 \cdot 990$
26	-	30.024	-	30.047	-	30-107	-	-	-	-	-	30.155
27.	-	-209	-	'249	-	-363	-	-	-	80.639	-	- 572
28	-	-587	-	-563	-	-582	一	-	-	-649	-	- 556
29	-	-639	-	- 563	-	- 555	-	-	-	-	-	-444
30	-	30.392	-	30.372	-	30.370	-	-	-	30-877	-	80.380

FLOEBERG BEACH.-MAY 1876.

Date.	2 p.m.	4 P.M.	6 Р.m.	8 r.m.	10 P.M.	Midnight.	2 A.m.	4 A.M.	6 А.м.	8 A.m.	10 A.M.	Noon.
1	-	30-870	-	30-367	-	30-380	-	-	-	30-250	-	30.237
2	-	-224	-	-194	-	- 164	-	-	-	30-162	-	30-159
3	-	80.144	-	30.114	-	30.097	-	-	-	29-974	-	29-992
4	-	29.974	-	29-969	-	29-944	-	-	-	-914	-	-887
5	-	-867	-	- 867	-	-855	-	-	-	-867	-	-864
6	-	-887	-	-850	-	-840	-	-	-	-784	-	- 767
7	-	-824	-	$\cdot 767$	-	-734	-	-	-	-897	-	29.902
8	-	29:892	-	29-880	-	-942	-	-	-	29-980	-	80.010
9	-	80.027	-	50.080	-	29-978	-	-	-	$30 \cdot 015$	-	-095
10	-	-062	-	80.072	-	30-038	-	-	-	-002	-	-002
11.	-	-015	-	29.958	-	$29 \cdot 878$	-	-	-	-235	-	-238
12	-	-227	-	30.252	-	30-224	-	30-227	-	-222	-	-205
13.	-	-238	-	-238	-	-230	-	-	-	-227	-	- 222
14	-	-247	-	-144	-	- 2220	-	-	-	-230		-227
15	-	30-230	-	30-217	-	30.197	-	-	-	30.152	-	30.058
16.	-	29.938	-	$29 \cdot 867$	-	$29 \cdot 820$	-	-	-	29-862	-	29•775
17	\square	$\cdot 765$	-	- 728	-	$\cdot 717$	-	-	-	-698	-	-
18	-	-858	-	-.878	-	-908	-	-	-	-655	\cdots	-778
19	-	-837	-	- 810	-	-789	-	29-804	-	-755	-	-777
20	-	29-802	-	-850	-	-884	-	-	-	29:944	-	29-954
21°	-	30.004	-	29-964	-	29.976	-	29.954	-	30.022	-	80.060
22	-	-089	-	30-122	-	30.134	-	30.128	-	30.234	一	30.214
23	-	30-192	-	$30 \cdot 094$	-	29.967	-	-	-	29.807	-	29.794
24	-	29.777	-	29-770	-	-742	-	-	-	-698	-	:705
25	-	$\cdot 715$	-	- 725	-	- $\cdot 718$	-	-	-	-678	-	-625
26	-	-602	-	. 6615	-	- 6627	-	-	-	- 745	-	.752
27	-'	$\cdot 747$	-	$\cdot 734$	-	- 6669	-	-	-	- 598	-	- 567
28	-	-549	-	- 559	-	- $\cdot 552$	-	-	-	$\bigcirc 645$	-	-655
39	-	-677	-	- 695	-	:717	-	-	-	-. 719	-	:717
80	-	-714	-	- $\cdot 729$	-	$\cdot 712$	-	-	-	-715	-	$\bigcirc 712$
81	-	29-589	-	. $29 \cdot 564$	-	29:515	-	-:	-	-29-402	-	29-372

FLOEBERG BEACE.-JUNE 1876.

Date.	2 P.3.	4 r.m.	6 р.м.	8 r.m.	10 r.m.	Midnight.	2 A.M.	4 A.M.	6 A.M.	8 A.M.	10 A.m.	Noon.
1	-	29-397	-	29-394	-	29-409	-	-	-	29-492	-	29-499
2	-	-527	-	-554	-	-577	-	-	-	$\cdot 657$	-	-691
3	-	-693	-	-687	-	-689	-	\cdots	-	$\cdot 747$	-	-754
4	-	-807	-	-814	-	-820	-	-	-	-848	-	-855
5	-	-850	-	-847	-	-840	- :	-	-	-842	-	-858
6	-	- 868	-	-875	-	- 862	-	-	-	-875	-	-870
7	-	-852	-	-848	-	-828	-	-	-	-805	-	-798
8	-	$\cdot 798$	-	$\cdot 788$	-	-873	-	-	-	29.862	-	29.881
9	-	29.921	-	29.975	-	29.992	-	-	-	$30 \cdot 020$	-	30.015
10	-	30.022	-	$30 \cdot 015$	-	30.008	-	30.023	-	- 028	-	-040
11	-	. 044	-	-104	-	30.060	-	30.077	-	30•054	-	30.035
12	-	30.030	-	$30 \cdot 007$	-	29.987	-	29.970	-	29.932	-	$29 \cdot 940$
13	-	29.930	-	29-857	-	-835	-	-821	-	-810	-	-808
14	-	-798	-	$\cdot 798$	-	- 802	-	- 780	-	-	-	-812
15	-	-789	-	-799	一:	$\cdot 799$	-	-789	-	-844	-	-864
16	-	-858	-	-875	-	29.882	-	$29 \cdot 900$	-	-932	-	-985
17	-	. 990	-	-990	-.	30.000	-	30-002	-	- 987	-	-984
18	-	-979	-	-972	-	29-974	-	29.974	-	-984	-	-980
19	-	-960	-	-950	-	-927	-	-894	-	-820	-	-785
20	-	$\cdot 717$	-	-669	-	-637	-	-629	-	-615	-	-615
21	-	-604	-	-614	-	-647	-	-697	-	-784	-	-805
22		-	-	-892	-	-914	-	-917	-	-909	-	-894
28	-	- 848	-	-851	-	- 824	29.789.	-792	-	-831	$29 \cdot 861$	-891
24	-	-881	-	-889	-	-879	-879	- 869	29.854	-849	-	-889
25	-	- 882	-	- 848	-	- 718	29.721	- 721	$29 \cdot 676$	-666	-	-674
26	-	-684	-	-679	-	- 664	-	-644	-	- 638	-	-675
27	-	- 720	-	$\cdot 735$	-	- 747	- i	$\cdot 767$	一	-780	-	-767
28		-732	-	$\cdot 717$	-	- 692	- : ${ }^{\text {P }}$	-714	-	-718	-	-694
29		-692	-	-669	-	-619	-1	- 589	-	-589	-	- 522
30	-	$29 \cdot 417$	-	29.417	-	29-379	- :	29-385	-	29.407	-	$29 \cdot 405$

FLOEBERG BEACH.-JULY 1876.

Date.	2 P.M.	4 r,m.	6 P.M.	8 P.M.	10 P.M.	Miänight.	2 A.\%.	4 A.s.	6 А.м.	8 A.M.	10 А.m.	Noon.
1	-	$29 \cdot 407$	-	29-386	-	29.404	-	29-434	-	$29 \cdot 459$	-	$29 \cdot 469$
2	-	-497	-	-540	-	-599	-	-667	-	$\cdot 723$	-	$\cdot 751$
3	-	-750	-	-757	-	-767	-	-760	-	$\cdot 780$	-	$\cdot 780$
4	-	-778	-	-792	-	-800	-	-832	-	-890	-	-800
5	-	-780	-	-728	-	$\cdot 727$	-	-724	-	$\cdot 768$	-	-768
6	-	-768	-	-758	-	-737	- '	$\bullet 700$	-	-685	-	-708
7	-	-725	-	-737	-	-739	-	$\cdot 746$	-	$\cdot 787$	-	-794
8	-	-784	-	$\cdot 782$	-	-754	-	-742	-	-742	-	- 743
9	: -	-750	-	$\cdot 755$	-	-755	-	-777	-	-798	-	-774
10	-	-768	-	-779	-	$\cdot 761$	-	-774	-	$\cdot 769$	-	-748
11	-	$\cdot 745$	-	-725	-	-694	-	-700	-	-690	-	-648
12	-	-619	-	-597	-	-574	- ${ }^{\text {P }}$	-567	-	-524	-	-509
13	-	-480	-	-472	-	- 507	-	-515	-	-547	-	-567
14	-	- 580	-	- 597	-	-610	-	-630	-	-637	-	-633
15	-	-653	-	-665	-	- 682	-	-697	-	-699	-	-720
16	-	$\cdot 740$	-	-760	-	-798	-	- 810	-	-810	-	$\cdot 798$
17	-	$\cdot 788$	-	-785	-	-782	-	- 785	-	-785	-	-
18	-	-	-	-765	-	-738	-	-730	-	-695	-	-685
19	-	-665	-	-710	-	-720	-	-738	-	- 720	-	-712
20	-	-688	-	-673	-	-638	-	-605	-	-618	-	-548
21	-	-483	-	-360	-	-215	-	-287	-	-137	-	-210
22	-	-213	-	-215	-	- 199	-	-139	-	-109	-	-004
23	-	- 019	-	-017	-	- 084	-	-124	-	-227	-	-265
24	-	-305	- .	- 320	-	-815	-	- 317	-	-247	29-178	-171
25	$29 \cdot 167$	- 165	29-173	-203	$29 \cdot 227$	-245	29.299	- 327	$29 \cdot 357$	-381	-416	-889
26	-	$\cdot 472$	-516	-525	-561	-573	- 560	- $\cdot 561$	-579	-593	. 611	-620
27	- 639	-664	-687	- 748	$\cdot 752$	-772	-800	- 806	-813	-846	-854	-843
28	- 844	-869	- 828	-802	-	-821	$\cdots \cdot 764$	$\cdots \cdot 742$	$\cdot 730$	-	-	-
29	- 534	- 543	-500	-469	-446	-429	-499	-439	-419	-417	$29 \cdot 487$	-419
30	29.469	-499	29•560	- 588	-613	-632	-642	-649	-	-	-	-624
31	-	29-582	-	29-557	$29 \cdot 541$	29.472	$29 \cdot 435$	$29 \cdot 379$	20-877	29-377	-	29-365

H.M.S. "ALERT."-AUGUST 1876.

Date.	2 f.m.	$4 \text { р.м. }$	6 P.m.	8 р.м.	10 P.M.	Midnight.	$2 \text { A.M. }$	$4 \text { A.M. }$	$6 \text { A.M. }$	$8 \text { А..ан. }$	$10 \text { A.M. }$	Noon.
1	$29 \cdot 358$	$29 \cdot 339$	29-322	$29 \cdot 325$	29•322	29.322	29.335	29.345	$29 \cdot 377$	29.377	$29 \cdot 397$	-
2	-440	$\cdot 470$	- 480	- 468	-463	-438	- 440	-443	-415	-418	-395	$29 \cdot 377$
3	-365	-313	-310	-303	-263	-263	-223	-225	-203	-190	-237	-249
4	-259	-252	- 312	-855	-352	-873	-395	-407	-457	-482	-515	-515
5	-540	-550	- 570	-608	-628	-661	-	29.713	29-741	29:740	-	-804
6	-865	-903	-899	-988	.962	-968	-99b	30.008	30-012	30.029	- 986	-954
7	-	-918	-924	-918	-	-889	-821	$29 \cdot 816$	$29 \cdot 860$	-	-860	-830:
8	-833	-816	-831	-848	-844	-851	-836	-826	-826	29.822	- 842	-852
9	-	-	-582	-572	-580	-	$\cdot 617$	$\cdot 617$	-634	-631	-656	-666
10	-687	$\cdot 721$	-728	-789	-747	$\cdot 773$	-	-848	-	- 875	-883	-875
11	-887	-	-897	-904	-882	-920	-980	-945	-946	-961	-966	-964
12	-961	-961	-961	-961	-991	-991	-944	-	-924	-916	-894	-845
13	-847	-847	-785	-	-755	-755	-757	$\cdot 763$	-750	:748	\therefore-753	$\cdot 758$
14	-781	$\cdot 759$	-759	$\bullet 750$	-750	-755	-755	$\cdot 741$	-741	-741.	-723	$\cdot 723$
15	-715	-705	-	-729	-738	-741	- 748	-733	-781	; 731	- 732	$\because 728$
16	-685	-665	-	- '	-681	-601	-593	-606	-606	-606	- 590	- 580
17	-588	-581	-603	- 584	-600	-602	-620	-656	-629.	-649	-643	-636
18	-642	-636	-603	- 576	-553	-526	- 506	- 506	-	- 511	-	-513.
19	-538	-538	-546	:581	-581	-621	$\cdot 617$	-617,	$\cdot 673$	-680	: 675	- 675
20	$29 \cdot 687$	-685	29•667	-667	-657	-628	-617	:29.657	-29:687,	29-792	29-797	-839
21	-	-892	-	-..	-	-	-.	30.056	30-037	30.032	30:028	-990
22	30.018	-	30.043	-937	-937	-937	-930	29.892	29.962	29.970	$29 \cdot 972$	-973
23	29:928	- 948	$29 \cdot 988$	-905	-895	-847	-800	-802	- 895	-749	-744	-714
24	-	-794	-694	-686	-687	-680.	-719	$\cdot 724$	\cdots	-690	$\therefore 702$	-708
25	29-685	-694.	-717	$\cdot 737$	-798	-751	-765.	-789	$\therefore 818$	-820	-838	-848.
26	-888	-	-903	-902	- 897	-	-927	-924	-930	-907	-900	-879
27	-884	- 875	-825	29.795	-777.	-744	; 780	$\cdot 710$	-692	-696	$\cdot 690$	-697
28	-694	-	-759	-	-29-784	$29 \cdot 803$	29-851	$29 \cdot 842$	29-887	- 890	- - 912	-985
29	29-945	-978	-998	30.015	30-102	30.062	30.056	30.060	$30 \cdot 053$		-	-997
30		:975	-935	29;925	29-920	29.894	29.948	$29 \cdot 915$	29.929	-913	$29 \cdot 878$	-838
31	29-778	29-778	29-744	89-678	$29 \cdot 598$	$29 \cdot 575$	$29 \cdot 570$	$29 \cdot 567$	29.600	$29 \cdot 626$	-	-695
								-			- .	

Observations on the Temperature of the Earth.

FLOEBERG BEACH.

On the 26th September 1875, a thermometer five feet and a half in length, which had been specially prepared for such observations, was sunk into the ground with its bulb at a depth of 18 inches below the surface. On the 3rd January 1876; finding that a snow bank had collected near the thermometer, it was moved. The second position was on the brow of a hill, about 50 feet above the sea level, where the snow did not collect to any appreciable extent during the winter. When filling in the hole the earth was broken up and water puured over it to render it as nearly as possible the same as the natural ground.

On the 1st October the mean temperature of the earth at the depth stated was $+12^{\circ} \cdot 5$, the same as the mean temperature of the air at the time.
From that date it gradually fell throughout the autumn and winter until it registered a mean temperature of $-12^{\circ} \cdot 0$ during the whole of the month of March 1876, 28 degrees above the mean temperature of the air. On the 11th, when the mean temperature of the air for the previous 53 days was -44°, the difference between the temperature of the earth and that mean was 32 degrees.

Whenever the temperature of the air was below the freezing point of mercury, the mercury in the upper part of the tube was naturally affected; it must thus have been frozen on several occasions when that at the lower part remained liquid. Under these circumstances the register was evidently incorrect.

On the 10th April 1876, when the first decided rise in the temperature of the air occurred above -12°, the temperature of the earth commenced to rise, and continued to do so gradually during the spring. By the 3rd May it had risen to $+4^{\circ}$. After that date the temperature of the air was always higher than that of the earth.

In the month of June, when the earth was about $+6^{\circ}$, the mean temperature of the air was $+32^{\circ}$, a difference of 26 degrees, which agrees fairly with the mean difference during the winter.

On the 27th June, after the temperature of the air had been for 48 days above $+8^{\circ}$, that of the earth at the time, the warmth had evidently penetrated through the 18 inches of earth, for the thermometer suddenly registered a temperature of $+27^{\circ}$.

In July the temperature of the earth was $+30^{\circ}$, the highest degree recorded. When removing the thermometer on the 27th the ground was found to be frozen at a depth of 12 inches.

DISCOVERY BAY.

At Discovery Bay a thermometer five and a half feet in length was buried with its bulb at a depth of five feet on the 24th June 1876. The position was 20 feet above the sea leval and about 50 yards from the beach. The ground was a mixture of ice and gravel.

On the 1st July it registered a mean temperature of $+24^{\circ}$, rising gradually to $+27^{\circ}$ by the end of the month. It remained steady at this temperature until the 16 th August, when the "Discovery" left the neighbourhood. The thermometer was then so hardly frozen into the ground that it could not be removed without endangering its being broken; it was accordingly left in position.

Taking the mean temperature of the atmosphere during July as $+26^{\circ}$, there was a difference of 11 degrees between the mean temperature of the earth at a depth of five feet and the air.

Corrections for Meteorological Instruments, Remarks, and Meteorological Observations.

Corrections foz Thermometers.

H.M.S. " Alert."

Table I. represents the corrections of each thermometer as determined at Kew. At lower temperatures than -38° and at intermediate degrees between $+32^{\circ}$ and -38° the error was found by proportion.

Table II. Nine opportunities were taken to compare several spirit thermometers together at low temperatures. Their individual readings were then corrected by Table I., and the mean of the temperatures thus corrected was found. The difference between the reading of each instrument corrected for Kew and the mean thus obtained was then taken. These difference form Table II.

Table III. was then compiled, and represents the total difference between the temperature registered by each instrument and that of the mean of a number of thermometers corrected by Table I.

> H.M.S. " Discovery."

The observations taken on board the "Discovery" have been corrected with the Kew correction only. The error of the standard thermometer No. 415 was practically nil at -40°.

Corrections for Barometer Readings.
Each reading of the barometer has been corrected for temperature and error of instrument as determined at Kew.

TABLE 1.
Corrections for Thermomrtrrs calculated by the Emors determined at Kew.

TABLE I.
Difference between the Temperature negistham by each Therbometer corrected for Kew and the Mean of a number of Thrbmomaters．

TABLE III．
Cormection actually applied to the Temperature registrbed．

Tempera－ ture．	No． 416.	No． 417.	No． 418.	No． 228.	No． 421. Mercury．	No． 449. Mercary．	No． 38. Black bulb．	No． 37. Bright bulb．	No． 419.	No． 415. Discovery．
－	\bigcirc	－	\bigcirc	0.	－	0	－	\bigcirc	0.	0.
＋ 32	$0 \cdot 0$	$0 \cdot 0$	0.0	0.0		0.0		＋0．1	0.0	－＇．．
30	0.0	0.0	$0 \cdot 0$	$0 \cdot 0$		0.0		$0 \cdot 1$	－	－
20	$+0.1$	$+0.4$	-0.2	-0.3		－0．3		$0 \cdot 1$	＋0．1	耑
＋ 10	$0 \cdot 2$	$0 \cdot 7$	$0 \cdot 4$	$0 \cdot 5$		0.5		$0 \cdot 2$	$0 \cdot 2$	E
Zero	－	1＊1	$0 \cdot 6$	$0 \cdot 8$		＇0．8＇		$0 \cdot 3$	$0 \cdot 3$	－
-10	$0 \cdot 3$	1.4	0.8	$1 \cdot 0$	砍	$1 \cdot 0$	䔍	$0 \cdot 4$	0.4	${ }^{+}$
20	－	$1 \cdot 7$	1.0	$1 \cdot 3$	8	$1 \cdot 3$	¢	$0 \cdot 4$	$0 \cdot 5$	A品
30	$0 \cdot 4$	$2 \cdot 0$	$1 \cdot 3$	$1 \cdot 2$	\％	1.5	－	$0 \cdot 5$	$0 \cdot 6$	总唇
40	0.5	$2 \cdot 4$	$1 \cdot 8$	$1 \cdot 0$		-1.8	，	＋ 0.6	＋0．8	．${ }^{\text {F }}$
50	$0 \cdot 6$	$2 \cdot 7$	$2 \cdot 0$	－ 1.9		－	\therefore	－	－	容
60	$0 \cdot 7$	$2 \cdot 8$	$2 \cdot 2$	$2 \cdot 7$		－	－	－	－	9
－ 70	$+0.8$	$+2 \cdot 8$	$-2 \cdot 3$	$-3 \cdot 6$		－		－	－	\because
										AR

Corrections for Barometers by comparison with Standard at Kew．
H．M．S．＂Alert．＂

Instrument．	At $\mathbf{2 8}^{\circ} \mathrm{O}$ ．	At 28.5 ．	At 29.0	At 29.5.	At $80 \cdot 0$.	At 30.5 ．	At si． 0 ．
Adie，A． 890	－	－	$\cdots+001$	\because $+\quad+002$	＋ 003	－	－
		H．M．S．＂Disqouery．＂					
Adie，A． 417 ．	－．002	－．002	$\therefore-008$	－	－－003	－	－ 0

Comparison of Spirit Thermometers at Low Temperatures.

23rd Novkmber 1875.				
Thermo meter.	Reading.	Kew Error.	Corrected Reading.	Difference from Mean.
A. 225	$-46^{\circ} \cdot 0$	+ $2^{\circ} 7$	$-43^{\circ} \cdot 3$	$+0^{\circ}: 66$
A. 226	$38 \cdot 0$	-4.0	$42 \cdot 0$	-0.64
227	$49 \cdot 5$	+7.4	$42 \cdot 1$	-0.54
228	41.0	-2.0	$43 \cdot 0$	+0:36*
229	$48 \cdot 0$	$+5 \cdot 6$	$42 \cdot 4$	-0.24
230	$37 \cdot 0$	-3.6	$40 \cdot 6$	-2.04
- 231	$49 \cdot 5$ $-42 \cdot 5$		$\begin{array}{r}43.9 \\ -43.8 \\ \hline\end{array}$	$+1 \cdot 26$ +1.16
A. 418	- $42 \cdot 5$	$-1 \cdot 3$	-43.8	+1.16
			-341.1	
$\cdots \cdot$		Mean -	-42:64i	

* Adopted standard.

24th November 1875.

A. 225	-44.0	${ }^{\square}+2.6{ }^{4}$-41.4	+0.83
226	36.8	-3.9 40.7	+0.13
227	47.1	+71. 40%	-0.57
228	$39 \cdot 4$	-2.0 41.4	+0.83*
‘ 229	$46^{\circ} 0$	$+5.5: 40.5$	-0.07
230	$35 \cdot 2$	-3.5 38.7	-1.87
281	$47 \cdot 2$	+5.5 41.7	+1.13
A. 418	-89:0	-1.2 -40.2	-0.37
	!	-324.6	
		Mean - - 10.57	

* Adopted standard.

23rd Jantary 1876.

A. 225	-59.5	+3.1	$\cdots-86 \cdot 4$	+1.42
226	$49 \cdot 8$.	-4.8	$\therefore 54.6$	-0.38
-227	- 63.8	$+8 \cdot 7$	${ }^{55} \cdot 1$	+0.12
228	52:0.	-2.8:	$54 \cdot 3$	-0.68
229	$62 \cdot 0$	$+6 \cdot 6$	$55 \cdot 4$	+0.42
230	48.0	-4.1	$52 \cdot 1$	-2.88
231	64.0	$+6.7$	57.3.;	+2.88
A. 418	$\underline{-53 \cdot 2}$	-1.5	$-54.7{ }^{\prime}$	-0.28
			-438.9	
		Mean	-54,98:	

26tif January:1876:

A. 225	$-57 \cdot 8$	$+3 \cdot 0$	-54.8	1+1.48
226	$48 \cdot 0$	-4*7	52.7	-0.62
227	62.0	+8.5	$53 \cdot 5$	+0.18
228	50.5	$-2 \cdot 3$	$52 \cdot 8$	-0.52
829	$60 \cdot 2$	+6.4	$\because 58 \cdot 8$	$+0.48$
230	46.5	$-4 \cdot 0$. 50.5	- 2.82
231	62.5	$+6.6$	- $55 \cdot 9$	+2.58
A. 418	-51.0.	$-1 \cdot 6$	$\div 58.6$	$\because-0.72$
			-426.6	
		Mean	-53.32	

6th Febridary 1876.				
Thermo meter.	Reading.	Kew Emror.	Corrected Reading.	Difference from Mean.
A. 225	$-33^{\circ} 1$		$-30 \cdot 9$	$+8.7$
$\begin{aligned} & 226 \\ & 227 \end{aligned}$	26.2		$29 \cdot 6$	-0.6
		$+6 \cdot 3$	$29 \cdot 8$	-0.4
: 228	- 28.9	$-1 \cdot 7$	-30.6	$+0.4$
229	35.0	$+4 \cdot 7$	$30 \cdot 3$	$+0 \cdot 1$
a 230$\therefore 231$	$\mathbf{2 6 . 2}$$-\quad 85.8$	$-3 \cdot 0$	29.2	$\therefore-10$
		$+4 \cdot 7$	31.1	$+0.9$
- $\begin{array}{r}231 \\ \text { A. } 418\end{array}$	-29.0	-1.2	-30.2	-0.01
		Mean :	-241.7	
;			-30:21	:
	18ta Febriany 1876.			
A. 225	-60.5	+3.1	-57.4	+0.6-1.2
	$50 \cdot 8$$\therefore \quad 65.2$	-4.8+8.8	56.4	
$\because 227$				$0 \cdot 4$
228	655.2 -54.2	-2.4	56.6	$-0 \cdot 2$
229	64:0	$+6.7$	$57 \cdot 3$	$\begin{array}{r} +0.5 \\ -3.1 \end{array}$
230		-4.2	$53 \cdot 7$	
231		+6.8	$59 \cdot 2$	$+2 \cdot 4$$1 \cdot 3$
416	a66.058.060.0-55.0	-0.1	58.1	
417		$+3 \cdot 0$	57.0	$\begin{array}{r} +0 \cdot 2 \\ -0.1 \end{array}$
A. 418		-1.7	$-56 \cdot 7$	
			-568.0	-0.1
		Mean	-56.8	

29th. February 1876.

A. 225	-69.5	+3.5	-66.0	$+1 \cdot 6$
:- 226	58.0	-5.3	63.3	$-1 \cdot 1$
287 :	$75 \cdot 0$	$+9 \cdot 6$.. 65:4	$+1 \cdot 0$
$\because 228$	61.0	-2.6	$63 \cdot 6$	$-0 \cdot 8$
- 2229	$72 \cdot 5$	+7.8	$65 \cdot 3$	$+0.9$
230	56.0	-4.5	60.5	$-3 \cdot 9$
231	$75 \cdot 0$	$+78$: 67.7	$+3 \cdot 3$
416	$64 \cdot 6$	-0.2	. $64: 8$	$+0 \cdot 4$
417	$67 \cdot 0$	$+3 \cdot 2$	$63 \cdot 8$	-0.6
A. 418	-61.8	-1.8	-63:6	. -0.8
			-644.0	
		Mean	-64.4	

2ND March 1876.

2सb Marce 1876:'

Position of Thermometers.

On board the "Alert" the thermometers used for the hourly register were fixed in a thermometer screen secured to the ship's side under the conning bridge, where it was sheltered from the sun's rays.

The upper deck having been completely housed over, on the 29th October 1875, the screen and the instruments were removed to the ice, and fixed on a cask which formed a pedestal, raised $4 \frac{1}{2}$ feet above the ice, and at a distance of 23 feet from the ship.

Owing to the gradual accumulation of snow about the pedestal it was raised from time to time, but may be considered to have been always between three and four feet above the snow-floor.

On the 20 th April 1876 the screen and the instruments were removed to their former position on board the ship.

Maximum and Minimum Temperature of the Air.

On the 14th October 1875, the maximum and minimum thermometers were fixed in a large thermometer screen on the top of a floeberg, 22 feet above the ice level, and about 100 feet from the ship.

As the darkness by midday increased, this position was found inconvenient, and on the 3rd November the screen and the instruments were placed on the floe 6 feet above the mean level of the ice, aud 77 yards from the ship.

On the returning of midday light, on the 23rd January 1876, they were removed to the shore, and fixed about 30 feet above the sea level, and 400 yards from the ship, $4 \frac{1}{2}$ feet above the ground.

On the llth April their position was again changed, the instruments being fixed on a tripod 12 feet above the floe, and 40 feet distant from the ship.
Prior to the 14th October 1875, and after the 22nd July 1876, the temperatures recorded are the maximum and minimum registered by an ordinary thermometer during the day denoted.

On board the "Discovery," in September 1875, when the ship was frozen in, a thermometer screen, supplied for the purpose, was fixed on a boarding outside of the ship about four feet from the ship's side, and about 10 feet above the level of the ice. In this screen the thermometer used for registering the four-hourly observations was fixed.

A large thermometer screen was erected on shore, about 200 yards from the ship, in which the maximum and minimum thermometers were fixed.
The solar radiation thermometers were suspended four feet above the floe, and 35 yards from the ship.

In compiling the daily mean Temperature and Pressure of the atmosphere, astronomical time has been used; the mean of each observation, hourly or four-hourly, taken between noon of the day previous to that mentioned in column 1. and noon of that day.

On board the "Alert" the maximum and minimum temperature observations were registered at noon of the day mentioned.

On board the "Discovery" the maximum and minimum temperatures were registered at midnight, therefore the temperature recorded may on a few occasions have occurred on the following day.

The " Hours of wind" and " Hours of weather" are the relative number of hours for which the wind and weather lasted.

When four-hourly observations were registered, each observation has been considered as extending over that time, thus these observations can only be considered as proportional to each other.

In the column headed "strong winds" is recorded the number of hours the force of the wind reached to or exceeded force 6.

In the ozone observations, Negretti and Zambra's test paper was used, the shade ranging from 1 to 10 , the latter figure being the highest amount. On board the "Alert," an observation was taken once a day, the paper having been exposed to the outer air in a wire gauze (Davy) lamp for the previous 24 hours.

In compiling the mean yearly Temperature and Pressure of the Atmosphere, the totals of the daily means between 22nd August 1875 and the 21st August 1576 have been added together, and the sum divided by 366 , the number of intermediate days.

In obtaining the mean hourly range of Temperature and Pressure of the Atmosphere, where a few observations were not taken they have been interpolated, introducing exact means between the previous and succeeding observation. Where more than two or three blanks have occurred in one month under any particular hour, the observations for that hour have been discarded.

Daily Temperature Observations, H.M.S. "Alert," Floeberg Beach, 1875-1876.

H.M.S. "ALERT."-ATGGUST 1875.

FLOEBERG BEACH.-SEPTEMBER 1875.

Date.	2 r.m.	4 r.m.	$6 \mathrm{r} . \mathrm{m}$.	8 P.M.	$10 \mathrm{r} . \mathrm{m}$.	Milnight.	2 A.m.	4 A.M.	6 A.M.	8 A.m.	10 A.m.	Noon.
1	-	+29•2	$+30 \cdot 5$	$+31 \cdot 0$	-	$+30^{\circ} \cdot 0$	-	+30.0	$+31.5$	$+31.5$	\bigcirc	+22.8
2	+22.8	$22 \cdot 8$	$2 \mathrm{~L} \cdot \mathrm{~s}$	$21 \cdot 3$	+19\%	$18 \cdot 7$	+18.7	187	$17 \cdot 7$	17-7	+18.2	18.2
3	18.7	19*	$10^{\circ} 7$	-	$17 \cdot 7$	$18 \cdot 2$	$17 \cdot 7$	$15 \cdot 1$	$14 \cdot 6$	$14 \cdot 6$	-	$18 \cdot 7$
4	-	$18 \cdot 7$	16\%	14.6	$11 \cdot 6$	$9 \cdot 3$	8.7	$8 \cdot 0$	$10 \cdot 6$	$12 \cdot 1$	$13 \cdot 6$	13.6
5	-	-	18.7	$13 \cdot 6$	$13 \cdot 6$	$12 \cdot 6$	$10 \cdot 6$	$10 \cdot 6$	$8 \cdot 5$	$9 \cdot 5$	11.6	$12 \cdot 6$
6	$13 \cdot 1$	$13 \cdot 1$	$13 \cdot 6$	$12 \cdot 6$	12.1	$12 \cdot 1$	$12 \cdot 6$	$12 \cdot 6$	12.6	14.6	$15 \cdot 7$	$15 \cdot 7$
7	$15 \cdot 7$	$16 \cdot 2$	16%	18.2	16.7	15.2	15.2	$15 \cdot 7$	16.2	-	20.8	$20 \cdot 8$
8	20.8	$21 \cdot 8$	$20 \cdot 5$	15.2	-	16.7	16.7	$16 \cdot 7$	16%	16.7	$15 \cdot 7$	$15 \cdot 2$
9	15.2	1.1.2	16.7	16.7	16.7	-	17.7	19.7	17\%	$17 \cdot 7$	$14 \cdot 6$	16.7
10	$18 \cdot 7$	18.7	$20 \cdot 3$	17\%	17%	177	$15 \cdot 7$	$16 \cdot 7$	15%	$15 \cdot 7$	16.2	18.2
11	$15 \cdot 6$	1.16	$12 \cdot 6$	$14 \cdot 1$	10.0	9.5	6.4	$5 \cdot 4$	$5 \cdot 4$	$3 \cdot 3$	$5 \cdot 9$	8.0
12	$10 \cdot 6$	12.6	13.6	$13 \cdot 6$	12.6	$9 \cdot 5$	$7 \cdot 5$	$10 \cdot 6$	13.6	$15 \cdot 2$	$14 \cdot 6$	14.6
13	14.6	1.77	$16 \cdot 7$	$19^{\circ} 7$	$20 \cdot 8$	20.8	$20 \cdot 8$	$20 \cdot 8$	-	20.8	21.8	21.8
14	$22 \cdot 3$	22•8		-	-	-	24. ${ }^{\text {S }}$	$25 \cdot 4$	24'4	-	$30 \cdot 0$	24.9
15	$23 \cdot 8$	$21 \cdot 8$	$20 \cdot 8$	$20 \cdot 8$	$22 \cdot 8$	$23 \cdot 8$	23.8	23.8	-	-	$25 \cdot 4$	$27 \cdot 4$
16	$26 \cdot 9$	27.9	$29 \cdot 0$	$29 \cdot 5$	26.9	$30 \cdot 0$	$30 \cdot 0$	29.0	29.0	31.0	31.0	32.0
17	33.0)	$33 \cdot 5$	33.5	3.00	36.5	35.5	36.0	$32 \cdot 0$	30.0	$29 \cdot 0$	$27 \cdot 4$	24.4
18	-	18.7	18.7	16.2	16.7	$15 \cdot 7$	16.7	$16 \cdot 7$	$14 \cdot 1$	$14 \cdot 6$	$14 \cdot 6$	$15 \cdot 7$
19	16.7	16.\%	14.6	$12 \cdot 1$	11.6	17%	$14 \cdot 6$	15.7	$19 \cdot 2$	$19 \cdot 7$	$20 \cdot 8$	$20 \cdot 3$
20	$20 \cdot 6$	19%	19.7	$19 \cdot 7$	$10 \cdot 7$	-	$20 \cdot 8$	$18 \cdot 7$	-	17-2	-	-
21	-	-	$8 \cdot$	8:5	-	$4 \cdot 4$	-	-	-	-	6.4	$8 \cdot 5$
22	9.5	$9 \cdot 5$	$0 \cdot 5$	9.5	9.5	9.5	10.6	$12 \cdot 1$	12.6	11.6	$13 \cdot 6$	13.6
23	$19 \cdot 2$	$19 \cdot 2$	-	$21 \cdot 8$	21.8	23.8	$23 \cdot 8$	$24 \cdot 9$	21.8	$22 \cdot 8$	22.8	$21 \cdot 3$
24	$1: 7$	$12 \cdot 6$	$11 \cdot 6$	$11 \cdot 6$	-	-	$2 \cdot 3$	$2 \cdot 3$	0.2	1.2	$2 \cdot 2$	$8 \cdot 5$
25	$5 \cdot 4$	$2 \cdot 3$	$0 \times$	$5 \cdot 4$	$2 \cdot 3$	$2 \cdot 3$	-	-	$3 \cdot 3$	$3 \cdot 3$	$4 \cdot 4$	4.4
26	$3 \cdot 3$	$3 \cdot 3$	$2 \cdot 3$	$1 \cdot 3$	$2 \cdot 3$	$1 \cdot 3$	$4 \cdot 4$	$4 \cdot 4$	$4 \cdot 4$	$1 \cdot 3$	$7 \cdot 5$	9.5
27	$110 \cdot 6$	$10 \cdot 6$	$10 \cdot 6$	9-5	$8 \cdot 5$	$7 \cdot 5$	$5 \cdot 4$	$5 \cdot 4$	$3 \cdot 3$	-	9.5	$8 \cdot 5$
28	$6 \cdot 4$	$4 \cdot 4$	$5 \cdot 9$	-	$5 \cdot 4$	$6 \cdot 4$	$5 \cdot 9$	$5 \cdot 9$	$5 \cdot 9$	6.4	8.5	10.6
29	$10 \cdot 6$	$10 \cdot 1$	$10 \cdot 1$	$9 \cdot 6$	$8 \cdot 5$	9.6	$9 \cdot 6$	11.1	$11 \cdot 6$	$9 \cdot 5$	$12 \cdot 1$	$12 \cdot 6$
30	$+12 \cdot 6$	+12.1	$+11 \cdot 6$	+11.6	$+11 \cdot 6$	$+11 \cdot 6$	$+12 \cdot 6$	$+12 \cdot 1$	$+11 \cdot 6$	+11.1	$+10 \cdot 6$	$+8.5$

FLOEBERG BEACH.-OCTOBER 1875.

Date.	$2 \mathrm{P}, \mathrm{M}$.	4 p.m.	6 P.M.	8 r.m.	10 p.3n.	Midnight.	2 A.x.	4 A.M.	6 A.s.	8 A.35.	10 A.m.	Noon.
1	+8.9	$+\stackrel{8}{6} \cdot 4$	+ $9 \cdot 0$	$+10^{\circ} \cdot 6$	+ $+\stackrel{\circ}{9} 5$	+ 8.4	+ +7.5	+100.5	$+11 \cdot 4$	+9.8	+10.2	$+10^{\circ} \cdot 6$
2	$13 \cdot 6$	$12 \cdot 1$	10.6	$10 \cdot 6$	$10 \cdot 0$	$10 \cdot 6$	10.6	$10 \cdot 6$	11.6	11.6	$12 \cdot 1$	14.6
3	15%	16.7	$13 \cdot 6$	$14 \cdot 6$	$13 \cdot 6$	$13 \cdot 1$	9.5	$10 \cdot 0$	10.6	10.6	$10 \cdot 0$	10.0
4	$8 \cdot 5$	$7 \cdot 5$	6.4	$10 \cdot 6$	$7 \cdot 5$	$7 \cdot 5$	$8 \cdot 5$	8.5	11.6	$12 \cdot 6$	$12 \cdot 6$	12.6
5	$11 \cdot 6$	$12 \cdot 6$	$13 \cdot 1$	$12 \cdot 0$	$16 \cdot 7$	$12 \cdot 1$	14.6	13.1	11.6	$11 \cdot 6$	$11 \cdot 6$	14.6
6	$14 \cdot 1$	14.1	$13 \cdot 6$	$13 \cdot 6$	13.6	13.1	11.6	$12 \cdot 2$	$11 \cdot 6$	$10 \cdot 6$	$12 \cdot 1$	$9 \cdot 5$
7	$14 \cdot 6$	16.7	16.7	1.17	16.7	$15 \cdot 7$	16.7	$12 \cdot 6$	$12 \cdot 1$	$12 \cdot 1$	$12 \cdot 1$	$+11.6$
8	$+10 \cdot 6$	$+11 \cdot 6$	$+12 \cdot 6$	$+12 \cdot 6$	$+13 \cdot 1$	+12.6	$+12 \cdot 6$	$+13.6$	$+11.6$	$+10 \cdot 6$	$+1.2$	- 3.8
9	-8.9	-8.9	$-10 \cdot 0$	-12.0	$-13 \cdot 1$	$-11 \cdot 0$	-14.1	-11.0	$-12 \cdot 0$	-16.1	-16.1	$-15 \cdot 6$
10	-1.8	$+2 \cdot 3$	+ 5.4	+4.4	$+3 \cdot 3$	$+9.5$	+ 9.5	$+3.0$	$+8.5$	$+10 \cdot 6$	+11.1	$+10.6$
11	$+13 \cdot 6$	$14 \cdot 6$	$12 \cdot 1$	$15 \cdot 7$	14.6	14.6	$13 \cdot 6$	$14 \cdot 1$	$13 \cdot 6$	12.6	12.6	$15 \cdot 1$
12	14.6	$11 \cdot 1$	$10 \cdot 6$	11.6	$+11 \cdot 6$	+ 4.4	$+2 \cdot 3$	$+1.3$	$+1 \cdot 3$	$+2 \cdot 3$	+ 6.4	+ 6.4
13	+ $2 \cdot 3$	+3.3	$+2 \cdot 3$	$+1.3$	-1.3	-2.8	- 2.8	-3.8	- 0.8	- $2 \cdot 8$	- 5.4	-6.4
14	-6.4	-6.4	$-5 \cdot 4$	-11.0	$10 \cdot 5$	$12 \cdot 0$	$15 \cdot 1$	$15 \cdot 1$	$17 \cdot 2$	$17 \cdot 2$	11.0	11.0
15	$-15 \cdot 6$	-12.6	12.6	13.1	16.1	$16 \cdot 6$	-12.0	$12 \cdot 0$	$14 \cdot 1$	$13 \cdot 1$	$13 \cdot 1$	$13 \cdot 1$
16	+ 9.5	$+16.7$	6.4	$10 \cdot 0$	$8 \cdot 9$	6.9	+12.6	1.8	$4 \cdot 9$	$4 \cdot 9$	3.8	$4 \cdot 0$
17	- 7.9	-10.0	$8 \cdot 9$	$7 \cdot 9$	$11 \cdot 0$	$12 \cdot 0$	$-13 \cdot 1$	$10 \cdot 0$	$10 \cdot 0$	$9 \cdot 4$	$10 \cdot 0$	$12 \cdot 0$
18	$12 \cdot 0$	$12 \cdot 0$	$15 \cdot 1$	$13 \cdot 1$	$14 \cdot 1$	$14 \cdot 1$	$8 \cdot 9$	$9 \cdot 4$	$9 \cdot 4$	$8 \cdot 4$	8.9	7.9
19	$7 \cdot 9$	12.0	16.1	$15 \cdot 6$	$14 \cdot 1$	$15 \cdot 1$	$15 \cdot 1$	$15 \cdot 6$	12.0	$12 \cdot 0$	$12 \cdot 0$	$12 \cdot 5$
20	$15 \cdot 1$	$16 \cdot 1$	14.6	$16 \cdot 6$	18%	$19 \cdot 2$	$19 \cdot 2$	$20 \cdot 3$	$20 \cdot 8$	$20 \cdot 3$	$19 \cdot 2$	$20 \cdot 8$
21	$19 \cdot 7$	$20 \cdot 8$	17.2	18.2	$20 \cdot 3$	C.9	17\% 7	$19 \cdot 2$	$21 \cdot 3$	$20 \cdot 8$	$22 \cdot 3$	$23 \cdot 3$
22	$22 \cdot 3$	$23 \cdot 3$	22.3	$25 \cdot 4$	$26 \cdot 5$	1\% 2	$16 \cdot 1$	14•1	$13 \cdot 1$	11.0	11.0	$18 \cdot 1$
$\stackrel{3}{ }$	12.5	$13 \cdot 1$	14.6	12.0	12.0	11.0	12.5	$13 \cdot 1$	$11 \cdot 0$	$14 \cdot 1$	$10 \cdot 0$	$12 \cdot 0$
24	$15 \cdot 1$	$15 \cdot 1$	16.1	16.1	17.2	$17 \cdot 2$	16.3	$15 \cdot 6$	$17 \cdot 2$	$17 \cdot 7$	16.5	$13 \cdot 1$
25	14.6	$17 \cdot 2$	$9 \cdot 4$	$8 \cdot 9$	8.9	$12 \cdot 0$	14.6	$14 \cdot 6$	$16 \cdot 1$	$16 \cdot 1$	$12 \cdot 0$	$14 \cdot 1$
26	$15 \cdot 1$	$16 \cdot 1$	16.6	$15 \cdot 1$	$14 \cdot 1$	$12 \cdot 0$	$13 \cdot 1$	$18 \cdot 2$	$15 \cdot 1$	12.5	$17 \cdot 2$	$17 \cdot 2$
27	$19 \cdot 2$	16.6	$14 \cdot 1$	$13 \cdot 1$	10.0	11.0	11.0	$12 \cdot 0$	$14 \cdot 1$	$13 \cdot 1$	$18 \cdot 6$	$15 \cdot 1$
29	$17 \cdot 2$	16.6	18.2	$18 \cdot 7$	$20 \cdot 3$	$20 \cdot 3$	$22 \cdot 3$	$22 \cdot 3$	$21 \cdot 3$	$20 \cdot 3$	18.7	$19 \cdot 2$
29	$18 \cdot 7$	$19 \cdot 2$	$20 \cdot 3$	$21 \cdot 3$	24.4	$24 \cdot 4$	$24 \cdot 4$	$22 \cdot 8$	$18 \cdot 2$	16.1	16.1	16.1
30	14.1	$14 \cdot 1$	$13 \cdot 1$	$11 \cdot 0$	8.9	$10 \cdot 0$	11.0	$13 \cdot 1$	$13 \cdot 1$	$13 \cdot 1$	$15 \cdot 1$	$14 \cdot 1$
31	$-15 \cdot 1$	-16.1	$-16 \cdot 1$	-16^{6}	-22.8	-92.8	$-21 \cdot 3$	-26.4	-27.4	-27.4	-23.3	$-23 \cdot 8$

floeberg beach．－NOVEMBER 1875.

号	
a \square $=$	
\dot{n} 4 8	
－	
交	
－	
$\underset{\substack{\text { ¢ }}}{ }$	
－	
－	
永	
号	
商薷	
$\begin{aligned} & \dot{3} \\ & \underset{2}{2} \\ & \stackrel{\theta}{0} \end{aligned}$	
品	
$\underset{\sim}{\text { m }}$	
$\underset{\sim}{\text { E }}$	
À A 0	
$\underset{\sim}{\text { ¢9 }}$	
\％	
安	
－	
－	
密	

$\begin{gathered} \text { B } \\ \text { 8, } \end{gathered}$	
$\begin{aligned} & \dot{E} \\ & \bar{y} \end{aligned}$	
$\begin{aligned} & \dot{3} \\ & \stackrel{\rightharpoonup}{4} \\ & \underline{0} \end{aligned}$	
$\underset{\infty}{\vdots}$	
I.	
首	
$\underset{~}{\dot{j}}$	
$\underset{\sim}{\stackrel{\rightharpoonup}{\dot{~}}}$	
竜总	
$\begin{aligned} & \dot{\bar{E}} \\ & \bar{E} \end{aligned}$	
$\begin{aligned} & \dot{\hat{\lambda}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	
$\stackrel{\dot{\vdots}}{\stackrel{\dot{\rightharpoonup}}{ \pm}}$	
$\stackrel{\dot{\bar{i}}}{\stackrel{\dot{\omega}}{+}}$	
ה	
$\begin{gathered} \dot{B} \\ \underset{\sim 1}{x} \end{gathered}$	
$\begin{aligned} & \dot{\bar{i}} \\ & \dot{\sim} \end{aligned}$	
$\underset{\sim}{\text { ni }}$	
$\underset{\sim}{i}$	
$\stackrel{i}{\text { i }}$	
官	

言	
$\stackrel{1}{3}$	
$\stackrel{8}{2}$	
$\stackrel{+}{\square}$	
$\stackrel{\square}{\infty}$	
京	
－	
$\stackrel{3}{3}$	
$\stackrel{1}{4}$	
安	
$\stackrel{3}{3}$	
家	
产容曾	
$\stackrel{\text { a }}{3}$	
－	
家	
－	
$\stackrel{\square}{3}$	
足	
\pm	
$\stackrel{\text { ¢ }}{\substack{8 \\ \hline}}$	
$\stackrel{3}{3}$	
$\stackrel{\square}{2}$	
譪	

FLOEBERG BEACH．－FEBRUARY 1876.

寿	
$\begin{aligned} & \dot{\vdots} \\ & \dot{\vdots} \end{aligned}$	
$\stackrel{3}{3}$	
$\begin{aligned} & \dot{3} \\ & \stackrel{3}{3} \end{aligned}$	○号＂
$\underset{\infty}{\stackrel{1}{+}}$	呙三嵒
$\underset{\vdots}{2}$	
$\stackrel{\square}{\square}$	
$\stackrel{3}{3}$	
茹	
¢	
$\underset{\sim}{\dot{x}}$	
－	
言晏	
$\begin{aligned} & \dot{6} \\ & \underline{E} \end{aligned}$	
$\begin{aligned} & \dot{1} \\ & \vdots \\ & \hline \end{aligned}$	
$\stackrel{\stackrel{1}{』}}{\stackrel{\circ}{\square}}$	
$\stackrel{i}{\square}$	 －首 亲
$\stackrel{\rightharpoonup}{8}$	
$\stackrel{8}{8}$	
$\underset{\sim}{2}$	
$\stackrel{\dot{3}}{4}$	
号	

floeberg beach．－marcil 1876.

言	
$\stackrel{3}{3}$	
$\stackrel{3}{3}$	
－	
$\stackrel{\square}{\text { ¢ }}$	
$\underline{1}$	
交	
4	
首	
$\stackrel{\square}{4}$	
容	
$\stackrel{\square}{\square}$	
家㗊	
$\stackrel{\square}{2}$	
$\stackrel{*}{*}$	
$\stackrel{3}{2}$	
感	
$\stackrel{\Sigma}{*}$	
$\stackrel{\square}{*}$	
＊	
$\stackrel{3}{2}$	
岩	

FLOEBERG BEACH.-APRIL 1876.

Date.	2 P.M.	4 Br.			10 mm.	Midnight.	2×м.	4 Am.	6 ...m.	8 А.м.	10 ..st.	Noon.
1	$-26 \cdot 4$	-2.3 3	-38.4	$-30 \cdot 3$	-20.5	-2s.4	$-34 \cdot 1$	$-3 \cdot 1$	-34.1	-33.1	-31.2	$30 \cdot 3$
2	$26 \cdot 4$	$31 \cdot 5$	$31 \cdot 5$	31.5	$30 \cdot 5$	$31 \cdot 5$	30-5	31.5	31.5	80.5	$2 \cdot 9$	$28 \cdot 4$
3	$26 \cdot 4$	28.4	\$1-5	32.5	37.7	$41 \cdot 0$	-	$31 \cdot 5$	$30 \cdot 5$	$30 \cdot 5$	$27 \cdot 9$	$22 \cdot 8$
4	$22 \cdot 3$	2.8	$23 \cdot 3$	$33 \cdot 6$	$35 \cdot 6$	$39 \cdot 7$	-	$35 \cdot 6$	$33 \cdot 6$	$31 \cdot 5$	32.5	$29 \cdot 5$
5	24.4	$98 \cdot 4$	$28 \cdot 4$	$29 \cdot 5$	$29 \cdot 5$	310.5	:3.6	$36 \cdot 6$	35.6	29.5	26.4	$23 \cdot 8$
6	31.5	$30 \cdot 5$	$26 \cdot 4$	31.5	37.7	$42 \cdot 0$	-	$43 \cdot 1$	41.0	$28 \cdot 4$	$20 \cdot 3$	$19 \cdot 7$
7	$17 \cdot 2$	$\because 0 \cdot 3$	$21 \cdot 3$	$22 \cdot 3$	$27 \cdot 4$	$25 \cdot 4$	$26 \cdot 4$	$99 \cdot 5$	$29 \cdot 5$	$27 \cdot 4$	$27 \cdot 4$	24.4
3	23.8	$22 \cdot 8$	24.4	$96 \cdot 4$	30.5	$30 \cdot 5$	$30 \cdot 5$	81.5	30•5	$28 \cdot 4$	25.4	$21 \cdot 3$
9	$20 \cdot 3$	$19 \cdot 9$	$28 \cdot 4$	$\because 9.5$	26.4	$30 \cdot 5$	$31 \cdot 5$	$32 \cdot 5$	$30 \cdot 5$	$27 \cdot 4$	$25 \cdot 4$	$21 \cdot 3$
10	$-10 \cdot 0$	$-12 \cdot 0$	$16 \cdot 1$	$21 \cdot 3$	-	$20 \cdot 8$	$13 \cdot 1$	$16 \cdot 1$	$7 \cdot 9$	$10 \cdot 0$	$3 \cdot 8$	$1 \cdot 8$
11	+0.2	+ $0 \cdot 6$	$3 \cdot 8$	$8 \cdot 3$	11.0	$10 \cdot 0$	$6 \cdot 9$	$7 \cdot 3$	$7 \cdot 9$	$12 \cdot 0$	$8 \cdot 9$	$8 \cdot 9$
12	$-10 \cdot 0$	$-10 \cdot 0$	11.0	18.2	$20 \cdot 3$	$23 \cdot 3$	28.4	$29 \cdot 5$	$27 \cdot 4$	$26 \cdot 4$	-	21.3
13	$20 \cdot 3$	$10 \cdot 2$	20.3	$21 \cdot 3$	$22 \cdot 3$	$29 \cdot 3$	$22 \cdot 3$	$21 \cdot 3$	$21 \cdot 3$	$21 \cdot 3$	$18 \cdot 2$	17.2
14	1s.2	$19 \cdot 2$	$21 \cdot 3$	$21 \cdot 3$	22.3	$23 \cdot 3$	26.4	26.4	26.4	$25 \cdot 4$	$23 \cdot 3$	$23 \cdot 3$
15	22.8	$24 \cdot 6$	$23 \cdot 1$	$30 \cdot 5$	$30 \cdot 5$	30.5	$31 \cdot 5$	$30 \cdot 5$	29.5	31.5	30.5	$28 \cdot 4$
16	$20 \cdot 4$	2.54	$23 \cdot 3$	$24 \cdot 4$	$25 \cdot 9$	29.5	30.5	$30 \cdot 0$	28.4	$25 \cdot 4$	$23 \cdot 3$	$22 \cdot 3$
17	$22 \cdot 3$	21.8	$22 \cdot 3$	$22 \cdot 3$	$23 \cdot 3$	$24 \cdot 4$	$25 \cdot 4$	24.4	22.8	$29 \cdot 3$	$19 \cdot 2$	$18 \cdot 2$
18	$17 \cdot 2$	$12 \cdot 5$	$19 \cdot 2$	21.3	$22 \cdot 3$	$23 \cdot 8$	$23 \cdot 3$	25.4	26.4	$23 \cdot 3$	$23 \cdot 3$	$23 \cdot 9$
19	$24 \cdot 4$	$23 \cdot 8$	21.3	$20 \cdot 3$	$23 \cdot 3$	$25 \cdot 4$	$24 \cdot 4$	$23 \cdot 3$	25.4	20.3	$16 \cdot 1$	$13 \cdot 1$
20	$12 \cdot 0$	11.0	$16 \cdot 1$	11.0	$12 \cdot 0$	$13 \cdot 6$	$13 \cdot 6$	$15 \cdot 6$	12.0	11.0	$16 \cdot 1$	$13 \cdot 1$
21	13.1	$13 \cdot 1$	13.1	15.1	$19 \cdot 2$	$20 \cdot 3$	$15 \cdot 1$	$20 \cdot 3$	$17 \cdot 7$	$12 \cdot 0$	$13 \cdot 1$	15•1
22	$16 \cdot 1$	17\%	$18 \cdot 2$	$18 \cdot 7$	$18 \cdot 2$	$17 \cdot 2$	$16 \cdot 6$	$16 \cdot 1$	16.6	$16 \cdot 1$	$13 \cdot 1$	$12 \cdot 0$
23	$12 \cdot 0$	12.0	11.0	$10 \cdot 0$	16.1	20.8	$23 \cdot 3$	23.8	$23 \cdot 8$	$19 \cdot 2$	$18 \cdot 2$	$16 \cdot 1$
24	$15 \cdot 1$	$14 \cdot 1$	$13 \cdot 6$	14.1	$14 \cdot 6$	$15 \cdot 1$	$15 \cdot 6$	$15 \cdot 1$	$14 \cdot 1$	15.1	$15 \cdot 1$	$15 \cdot 1$
25	$12 \cdot 0$	$8 \cdot 9$	$6 \cdot 9$	$5 \cdot 9$	$12 \cdot 0$	14•1	15.1	$14 \cdot 1$	14.1	-13.1	-12.0	$-5 \cdot 9$
26	-4.0	-4.9	$-4 \cdot 3$	$-4 \cdot 3$	$-5 \cdot 9$	- $\quad 3.9$	-7.4	-6.9	-5.9	+ 1.8	$+3 \cdot 4$	$+13 \cdot 6$
27	+ 9.5	+ $7 \cdot 5$	+ $5 \cdot 4$	$+4 \cdot 4$	+ $3 \cdot 3$	+ 0.2	+0.2	+1.3	+ 0.2	1.8	$1 \cdot 3$	$3 \cdot 3$
28	$4 \cdot 4$	$3 \cdot 3$	$3 \cdot 3$	$5 \cdot 9$	$6 \cdot 9$	$2 \cdot 3$	$2 \cdot 8$	$2 \cdot 8$	- 0.8	$1 \cdot 3$	$4 \cdot 4$	6.4
29	6.9	$7 \cdot 5$	$9 \cdot 5$	$11 \cdot 1$	$9 \cdot 5$	$9 \cdot 3$	$6 \cdot 4$	$2 \cdot 8$	+ $4 \cdot 4$	$4 \cdot 4$	6.4	$9 \cdot 0$
30	+9.0	$+8.5$	+ $7 \cdot 5$	$1+6.9$	+ $5 \cdot 4$	+ 4.9	+ $4 \cdot 9$	$+4.4$	$+4 \cdot 4$	$+3.8$	$+3 \cdot 8$	$+4 \cdot 4$

FLOEBERG BEACH.-MAY 1876.

Date.	2 P.m.	4 1.m.	6 \%.m.	8 1.m.	10 prm .	Midnight.	2 A.s.	4 A.s.	6 A.M.	8 А.s.	10 A.s.	Noon.
1	$+3.8$	+ 33	- 11.8	-0.8	+ 0.2	+ 8.4	$+3 \cdot 3$	+ $8 \cdot 3$	$+2 \cdot 3$	+ 1.3	+ $0 \cdot 2$	-0.8
2	-1.8	-1.3	$1 \cdot 8$	$1 \cdot 8$	-2.3	- 2.8	- 2.8	- $2 \cdot 3$	$-3 \cdot 3$	-5.2	-3.8	$3 \cdot 8$
3	$4 \cdot 9$	$10 \cdot 1$	$6 \cdot!$	$8 \cdot 9$	- 11.0	$11 \cdot 5$	11.5	$10 \cdot 5$	$8 \cdot 4$	$4 \cdot 9$: $\cdot 9$	$4 \cdot 3$
4	$3 \cdot 3$	+•3	-0.5	+ $5 \cdot 4$	+1.3	$8 \cdot 9$	$11 \cdot 0$	10.5.	$10 \cdot 0$	$4 \cdot 9$	-3.8	-1.8
5	- $1 \cdot 8$	- 11.8	$+4.4$	6.4	- 2.8	$10 \cdot 0$	$7 \cdot 9$	$6 \cdot 9$	$4 \cdot 9$	$4 \cdot 9$	+1.3	$+3.8$
6	+ $5 \cdot 4$	$+103$	$3 \cdot 3$	$1 \cdot 3$	+ 0.8	4.9	3.4	$5 \cdot 4$	-5.4	$2 \cdot 8$	+ $4 \cdot 4$	9.5
7	$10 \cdot 6$	$6 \cdot 4$	$8 \cdot 5$	9•5	4.4	$2 \cdot 8$	$2 \cdot 8$	0.8	$+0 \cdot 2$	- 0.8	- 1.8	$2 \cdot 3$
8	+ $\cdot 4$	$\therefore \cdot 4$	8.5	7-5	$2 \cdot 3$	-1.8	-3.8	-3.8	-0.8	+ 1.3	+5.4	7.5
9	$9 \cdot \%$	(i.4	$6 \cdot 4$	6.4	$5 \cdot 4$	+ 4.4	$+1 \cdot 3$	$+6.4$	+6.9	$9 \cdot 5$	$10 \cdot 6$	11.6
10	14.6	16%	13.1	$8 \cdot 5$	$8 \cdot 0$	$7 \cdot 5$	$8 \cdot 5$	9.5	19.5	11.6	11.6	$7 \cdot 5$
11	7-5	11.6	13.6	11.6	$8 \cdot 5$	$9 \cdot 0$	$7 \cdot 5$	$8 \cdot 5$	$9 \cdot 0$	$7 \cdot 5$	$8 \cdot 5$	$8 \cdot 5$
12	$3 \cdot 5$	11.6	8%	$4 \cdot 4$	$2 \cdot 3$	0.8	0.8	$1 \cdot 8$	$3 \cdot 3$	$4 \cdot 4$	6.4	8.5
13	$9 \cdot 5$	$6 \cdot 4$	10.6	$10 \cdot 6$	$3 \cdot 3$	$9 \cdot 0$	$7 \cdot 5$	$6 \cdot 9$	6.4	$6 \cdot 9$	$8 \cdot 5$	$8 \cdot 5$
14	$9 \cdot 0$	9•\%	$8 \cdot 5$	$8 \cdot 0$	$7 \cdot 5$	$8 \cdot 0$	$8 \cdot 5$	$9 \cdot 5$	10.6	11.6	13.6	12.6
15	$14 \cdot 6$	i3.6	1:1.1	9.5	$9 \cdot 0$	7•5	6.4	$5 \cdot 4$	$5 \cdot 4$	$4 \cdot 9$	$4 \cdot 9$	$4 \cdot 9$
16	5.4	6.4	$7 \cdot 5$	7-5	$7 \cdot 5$	7-5	6.9	$8 \cdot 0$	$8 \cdot 0$	$11 \cdot 1$	$13 \cdot 6$	$18 \cdot 2$
17	25-9	19%	21.8	$28 \cdot 5$	16.7	$12 \cdot 6$	$13 \cdot 6$	$14 \cdot 6$	14.6	$14 \cdot 1$	16.7	$20 \cdot 2$
18	$20 \cdot 2$	$19 \cdot 8$	157	17.7	$10 \cdot 7$	14.6	15.1	14.6	14.6	16.7	$17 \cdot 7$	$17 \cdot 7$
19	$19 \cdot 7$	$19 \cdot 7$	19.2	$18 \cdot 7$	18.7	$15 \cdot 7$	14.6	$15 \cdot 7$	$16 \cdot 7$	15.7	$17 \cdot 7$	$19 \cdot 2$
20	$19 \cdot 7$	$18 \cdot 7$	$10 \cdot 7$	$19 \cdot 7$	18.7	17\%	18.7	$18 \cdot 2$	18.7	$20 \cdot 8$	$22 \cdot 8$	23.8
21	$25 \cdot 9$	$25 \cdot 9$	$24 \cdot 3$	$24 \cdot 3$	$24 \cdot 9$	24.9	$23 \cdot 8$	$21 \cdot 8$	$22 \cdot 8$	21.8	$23 \cdot 8$	23.8
22	$23 \cdot 8$	$23 \cdot 8$	$23 \cdot 8$	$23 \cdot 3$	$22 \cdot 8$	$20 \cdot 8$	19•7	$19 \cdot 2$	$20 \cdot 8$	18.7	$19 \cdot 7$	21.8
23	$18 \cdot 7$	$18 \cdot 2$	18.7	19.2	$17 \cdot 7$	16.7	18.7	14.6	$14 \cdot 6$	14.6	$15 \cdot 7$	16.7
24	19%	$18 \cdot 7$	18.7	18.7	$18 \cdot 2$	$14 \cdot 6$	$12 \cdot 6$	11.6	$12 \cdot 6$	11.6	13.6	$18 \cdot 2$
25	$21 \cdot 8$	$18 \cdot 7$	1:\%	15.7	15.7	17.7	16.7	$17 \cdot 7$	17.7	$19 \cdot 7$	$23 \cdot 8$	$25 \cdot 9$
26	26.4	$25 \cdot 4$	$23 \cdot 8$	$20 \cdot 8$	18.7	$18 \cdot 7$	$19 \cdot 7$	$22 \cdot 8$	$20 \cdot 8$	21.8	$28 \cdot 8$	$25 \cdot 9$
27	26.4	$24 \cdot 3$	$20 \cdot 8$	$: 9.7$	18.2	19•\%	$20 \cdot 2$	21.2	21.8	21.8	21.3	21.8
28	$21 \cdot 3$	$21 \cdot 8$	$20 \cdot 8$	$19 \cdot 7$	$18 \cdot 2$	18.7	18.7	18.7	$15 \cdot 7$	$15 \cdot 7$	16.7	$17 \cdot 2$
29	$18 \cdot 7$	$16 \cdot 2$	16.7	16.7	11.6	$8 \cdot 5$	6.4	7.5	$8 \cdot 5$	$13 \cdot 6$	16.9	$15 \cdot 7$
30	$16 \cdot 7$	$17 \cdot 7$	$15 \cdot 7$	13.6	13.6	16.2	16.2	17.7	$17 \cdot 7$	$20 \cdot 8$	21.8	$23 \cdot 8$
81	+28.4	+26.4	+27.9	+26.4	+26.9	$+24.4$	+24.9	+24.9	$+25 \cdot 9$	$+20 \cdot 9$	+25.9	$+25 \cdot 9$

FLOEBERG BEACH.-JUNE 1876.

Date.	2 T.M.	4 P.M.	6 Р.M.	8 P.M.	10 Prm.	Midnight.	2 А.,	4 A.M.	6 A.M.	8 A.m.	10 А.ल.	Noon.
1	+28.9	$+29^{\circ} \cdot 0$	+29.0	+29.0	$+30^{\circ} \cdot 0$	+30.0	$+31 \cdot 0$	$+31 \cdot 0$	$+31 \cdot 0$	$+32 \cdot 0$	$+31^{\circ} \cdot 0$	+ +89.5
2	31.0	31.0	$32 \cdot 0$	31.0	30.0	$30 \cdot 0$	30.0	31.0				
3	$32 \cdot 0$	31.0	$31 \cdot 0$	$30 \cdot 0$	$29 \cdot 5$	30.0	$30 \cdot 0$	31.0	$29 \cdot 0$	31.0	31.0	$34 \cdot 0$
4	31.0	$34 \cdot 5$	$35 \cdot 0$	$34 \cdot 0$	$27 \cdot 9$	$25 \cdot 9$	$24 \cdot 9$	$21 \cdot 8$	$22 \cdot 3$	$22 \cdot 8$	$22 \cdot 8$	$23 \cdot 8$
5	27.9	$25 \cdot 9$	24.9	$24 \cdot 3$	21.8	$20 \cdot 2$	$20 \cdot 8$	20.2	$20 \cdot 2$	$20 \cdot 8$	$21 \cdot 8$	$22 \cdot 8$
6	$25 \cdot 9$	$24 \cdot 9$	24.9	25.4	$25 \cdot 4$	$24 \cdot 9$	$24 \cdot 4$	$23 \cdot 8$	$23 \cdot 8$	$24 \cdot 4$	$26 \cdot 9$	27-9
7	31.0	$29 \cdot 0$	$29 \cdot 0$	$27 \cdot 9$	$27 \cdot 9$	$26 \cdot 9$	26.9	$29 \cdot 0$	29.5	31.0	$34 \cdot 0$	34*0
8	$34 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	36.0	$35 \cdot 0$	$35 \cdot 0$					
9	$35 \cdot 0$	$34 \cdot 5$	31.5	$31 \cdot 0$	$29 \cdot 5$	$27 \cdot 9$	26.9	$25 \cdot 9$	29.0	29.0	$29 \cdot 0$	$30 \cdot 0$
10	30.0	29.5	$29 \cdot 5$	28.5	27.9	$27 \cdot 9$	$26 \cdot 9$	$27 \cdot 9$	$27 \cdot 9$	$29 \cdot 0$	30.0	$31 \cdot 0$
11	31.5	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$30 \cdot 5$	31.0	$31 \cdot 5$	31.5	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 5$	$33 \cdot 0$
12	$37 \cdot 0$	33.0	$33 \cdot 0$	$32 \cdot 0$	31.0	31.0	31.0	$30 \cdot 0$	31.0	32.0	$34 \cdot 0$	$35 \cdot 0$
13	40.0	37.0	$35 \cdot 0$	3-5	$33 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$31 \cdot 0$	$31 \cdot 0$	$33 \cdot 0$	$36 \cdot 0$
14	37.0	$42 \cdot 0$	36.0	34*0	$34 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	33.0	$34 \cdot 0$	$34 \cdot 0$
15	35.0	$37 \cdot 0$	$38 \cdot 0$	39-5	36.0	34.0	$32 \cdot 0$	$32 \cdot 0$	81.5	30.0	33.0	86.0
16	$39 \cdot 0$	36.0	34.0	32.0	31.0	$31 \cdot 0$	$31 \cdot 0$	31.0	31.0	33.0	34.0	34.0
17	35.0	$35 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$	$30 \cdot 0$	$32 \cdot 0$	$29 \cdot 0$	$29 \cdot 5$	$27 \cdot 9$	26.9	$27 \cdot 9$	30.5
18	31.0	$31 \cdot 0$	$30 \cdot 0$	$27 \cdot 9$	26.9	$24 \cdot 9$	$25 \cdot 9$	$25 \cdot 9$	$26 \cdot 4$	26.9	$27 \cdot 9$	$27 \cdot 9$
19	$27 \cdot 9$	$29 \cdot 0$	$29 \cdot 0$	$29 \cdot 0$	30.0	$30 \cdot 0$	$30 \cdot 0$	$32 \cdot 0$	$30 \cdot 0$	31.0	$32 \cdot 0$	$33 \cdot 0$
20	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	31.5	$32 \cdot 0$	$32 \cdot 5$	$27 \cdot 9$	$26 \cdot 9$	$27 \cdot 9$	$30 \cdot 0$	31.0	$31 \cdot 5$
21	33.0	$33 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$	$82 \cdot 0$	$32 \cdot 0$	31.0	$35 \cdot 0$
22	-	-	$34 \cdot 0$	$34 \cdot 5$	$34 \cdot 0$	$34 \cdot 0$	33.0	$32 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	36.0	$37 \cdot 0$
23	$36 \cdot 5$	$36 \cdot 0$	36.0	36.0	$35 \cdot 0$	$33 \cdot 5$	$32 \cdot 0$	31.0	30.0	$34 \cdot 0$	$34 \cdot 0$	86.0
24	36.0	$37 \cdot 0$	-	$37 \cdot 0$	36.5	36.0	36.0	$35 \cdot 0$	$39 \cdot 0$	$38 \cdot 0$	$38 \cdot 0$	38.5
25	$39 \cdot 0$	$38 \cdot 5$	-	37.5	38.0	38.0	38.0	$38 \cdot 0$	$38 \cdot 5$	$39 \cdot 0$	$40 \cdot 0$	$40 \cdot 0$
26	$39 \cdot 0$	$38 \cdot 5$	$38 \cdot 5$	36.5	$35 \cdot 5$	$37 \cdot 0$	$37 \cdot 0$	$38 \cdot 0$	39.0	$39 \cdot 0$	$38 \cdot 5$	38.5
27	41.0	$42 \cdot 0$	-	37.0	$37 \cdot 0$	36.5	$37 \cdot 0$	$37 \cdot 0$	$35 \cdot 0$	36.0	$36 \cdot 0$	$36 \cdot 5$
28	$36 \cdot 5$	$36 \cdot 0$	36.0	36.0	$34 \cdot 0$	33.5	$33 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$	$36 \cdot 0$
29	$36 \cdot 0$	$37 \cdot 0$	$+38 \cdot 0$	41.0	40.0	$38 \cdot 5$	$\because 0$	$39 \cdot 0$	$39 \cdot 0$	$40 \cdot 0$	$41 \cdot 0$	$40 \cdot 0$
30	$+39 \cdot 0$	$+410$	-	$+37 \cdot 5$	$+36 \cdot 5$	$+36 \cdot 0$	$+36 \cdot 0$	$+37 \cdot 0$	$+38.0$	$+38 \cdot 0$	$+40 \cdot 0$	$+42 \cdot 0$

FLOEBERG BEACH.—JULY 1876.

Date.	2 p.m.	4 r.m.	6 P.m.	8 f.m.	10 P.x.	Midnight.	2 A.m.	4 A.M.	6 A.m.	8 A.m.	10 A.M.	Noon.
1	+42.0	+ $40 \cdot 0$	+ $39 \cdot 0$	+ 38.0	$+88^{\circ} \cdot 0$	$+3{ }^{\circ} \cdot 0$	$+38.0$	$+38 \cdot 0$	$+39 \cdot 0$	$+37 \cdot 0$	$+38 \cdot 0$	$+38.0$
2	$37 \cdot 0$	$37 \cdot 5$	-	$38 \cdot 5$	$37 \cdot 0$	$36 \cdot 0$	$36 \cdot 0$	$38 \cdot 0$	$38 \cdot 0$	$37 \cdot 0$	$37 \cdot 5$	$37 \cdot 0$
3	$38 \cdot 0$	37.5	$37 \cdot 0$	$37 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	$34 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	34.0	36.0	35.0
4	36.0	$87 \cdot 0$	$36 \cdot 5$	$36 \cdot 0$	35.0	$34 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	37.0	37.5	$38 \cdot 0$	$39 \cdot 0$
;	$38 \cdot 0$	$39 \cdot 0$	$38 \cdot n$	$36 \cdot 0$	$34 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$	33.0	$33 \cdot 0$	$35 \cdot 5$	$38 \cdot 0$
f	40.0	$42 \cdot 0$	44.0	$42 \cdot 0$	$39 \cdot 0$	36.0	$35 \cdot 0$	$37 \cdot 0$	$38 \cdot 0$	$40 \cdot 0$	$39 \cdot 5$	$39 \cdot 0$
7	$37 \cdot 0$	$34 \cdot 5$	$35 \cdot 0$	$35 \cdot 0$	$35 \cdot 5$	36.5	$37 \cdot 0$	$38 \cdot 0$	$89 \cdot 0$	39-0	$39 \cdot 0$	$39 \cdot 5$
8	$40 \cdot 0$	$43 \cdot 0$	42.0	$41 \cdot 5$	$43 \cdot 0$	$45 \cdot 0$	$45 \cdot 0$	$45 \cdot 0$	41.0	$42 \cdot 0$	$42 \cdot 0$	43.0
9	$44 \cdot 0$	$46 \cdot 0$	-	$46 \cdot 0$	42-0	40.5	41.0	$42 \cdot 0$	$42 \cdot 0$	$45 \cdot 0$	$43 \cdot 0$	44.5
10	$48 \cdot 0$	$43 \cdot 0$	$43 \cdot 0$	$43 \cdot 0$	$42 \cdot 5$	$43 \cdot 0$	$43 \cdot 0$	43.0	38.0	$38 \cdot 0$	$42 \cdot 0$	$42 \cdot 5$
11	$47 \cdot 5$	$48 \cdot 0$	46.0	$43 \cdot 0$	$43 \cdot 0$	41.0	$40 \cdot 0$	41.0	$42 \cdot 0$	$42 \cdot 0$	$45 \cdot 0$	$47 \cdot 5$
12	$48 \cdot 0$	50.0	$47 \cdot 0$	$44 \cdot 5$	42.0	$41 \cdot 0$	41.0	41.0	41.0	46.0	$42 \cdot 0$	46.5
13	47.5	$46 \cdot 0$	46.0	44.0	36.0	34.0	$34 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	34-0	$35 \cdot 0$	$36 \cdot 0$
14	$37 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	36.0	$37 \cdot 0$	$35 \cdot 0$	36.0	$35 \cdot 0$	36.0	$36 \cdot 5$	37.0
15	$39 \cdot 0$	38.0	$37 \cdot 0$	36.5	$35 \cdot 0$	31.0	$34 \cdot 0$	$34 \cdot 0$	$31 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$
16	$35 \cdot 0$	$35 \cdot 5$	-	36.0	36.0	-34.0	$34 \cdot 0$	36.0	36.0	$37 \cdot 0$	$38 \cdot 0$	38.0
17	$37 \cdot 0$	$37 \cdot 5$	$38 \cdot 0$	37.0	$38 \cdot 0$	36.5	36.0	36.0	36.0	$33 \cdot 0$	$32 \cdot 5$	-
18	-	-	-	$37 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	36.0	36.0	36.0	$36 \cdot 0$	37.0
19	$37 \cdot 0$	38.0	$37 \cdot 0$	$37 \cdot 0$	36.0	36.0	36.0	$35 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	$38 \cdot 0$	39.0
20	$39 \cdot 5$	$39 \cdot 0$	$\mathbf{3 8} 0$	$38 \cdot 0$	38.0	38.0	$38 \cdot 0$	$38 \cdot 0$	36.0	$37 \cdot 0$	$38 \cdot 0$	37.0
21	37.5	38.5	40.0	42.5	$39 \cdot 0$	41.0	41.0	36.0	36.0	36.0	$37 \cdot 0$	37.0
22°	$38 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	36.0	$34 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	$36 \cdot 0$	38.0	$39 \cdot 0$	$40 \cdot 0$	$40 \cdot 0$
23	41.0	39.5	-	$37 \cdot 0$	87.5	$37 \cdot 0$	$37 \cdot 0$	$34 \cdot 0$	35.0	$37 \cdot 0$	$37 \cdot 0$	$36 \cdot 5$
24	$39 \cdot 0$	$\mathbf{8 8 \cdot 0}$	40.0	$42 \cdot 0$	39-5	$38 \cdot 0$	$36 \cdot 0$	$38 \cdot 0$	$37 \cdot 0$	$38 \cdot 0$	$38 \cdot 0$	39.0
25	$35 \cdot 5$	36.5	36.0	$35 \cdot 0$	$33 \cdot 5$	$34 \cdot 0$	35.0	$35 \cdot 5$	36.0	$37 \cdot 0$	36.5	40.0
26	$40 \cdot 0$	38.0	36.0	39.0	$40 \cdot 0$	$39 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	38.5.	$40 \cdot 0$	42.0
27	$42 \cdot 0$	$41 \cdot 0$	$40 \cdot 0$	$42 \cdot 5$	39-0	37.0	$40 \cdot 0$	$39 \cdot 0$	$39 \cdot 5$	41.0	$42 \cdot 0$	41.0
28	44.0	$42 \cdot 0$	41.5	$40 \cdot 0$	-	$40 \cdot 0$	41.0	$42 \cdot 0$	41.0	$43 \cdot 0$	-	-
29	$43 \cdot 0$	$38 \cdot 5$	$37 \cdot 0$	$38 \cdot 0$	36-5	$37 \cdot 0$	$36 \cdot 0$	$35 \cdot 9$	$37 \cdot 0$	$37 \cdot 5$	$37 \cdot 0$	$37 \cdot 0$
30	$+37 \cdot 0$	$37 \cdot 0$	$36 \cdot 5$	$38 \cdot 0$	36.0	36.0	$35 \cdot 0$	$36 \cdot 0$	-	-	-	42.0
31	-	$+42 \cdot 0$	$+38 \cdot 0$	$+38 \cdot 0$	+37*0	+42.0	+42.0	$+42 \cdot 0$	$+42 \cdot 0$	$+37 \cdot 0$	+37.0	+39.0

H 407.
II.M.S. "ALERT."-AUGUST 1876.

Date.	2 1..3.	4 B .3.	6 1.M.	8 P.M.	10 P.M.	Miduight.	2 A.M.	4 A.m.	6 A.m.	8 A.m.	10 sim.	Noon.
	*	\checkmark	"	\bigcirc	く	\bigcirc	\bigcirc	\bigcirc	${ }^{\circ}$	\checkmark	\bigcirc	-
1	$+42 \cdot 0$	$+38 \cdot 0$	$+36 \cdot 0$	$+36.0$	$+36 \cdot 0$	$+36 \cdot 0$	+38.0	+37.0	+39.0	$+40 \cdot 0$	$+39 \cdot 0$	-
2	$38 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	36.0	$34 \cdot 0$	36.0	$34 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$	36.0	+36.0
3	$35 \cdot 0$	$36 \cdot 0$	$30 \cdot 0$	$36 \cdot 0$	36.0	$35 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	$34 \cdot 0$	$37 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$
4	35.0	35.0	$35 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	$34 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	36.0	$37 \cdot 0$	$38 \cdot 0$
5	$36 \cdot 0$	$36 \cdot 0$	$3 \mathrm{~B} \cdot 0$	$31 \cdot 0$	31.0	$31 \cdot 0$	-	$30 \cdot 0$	$30 \cdot 0$	$32 \cdot 0$	30.0	$30 \cdot 0$
G	$30 \cdot 0$	31.0	$30 \cdot 0$	$30 \cdot 0$	30.0	30.0	$31 \cdot 0$	$32 \cdot 0$	33.0	34.0	34.0	$37 \cdot 0$
7	-	41.0	$47 \cdot 0$	$39 \cdot 0$	-	37.0	$34 \cdot 0$	36.0	$33 \cdot 0$	$33 \cdot 0$	34.0	$36 \cdot 0$
8	35.0	$35 \cdot 0$	33.0	32.0	$30 \cdot 0$	28.0	$26 \cdot 9$	26.9	$30 \cdot 0$	$33 \cdot 0$	$34 \cdot 0$	$33 \cdot 0$
9	-	$32 \cdot 0$	31.0	$32 \cdot 0$	$27 \cdot 9$	-	$27 \cdot 9$	$30 \cdot 0$	32.0	$32 \cdot 0$	$34 \cdot 0$	$36 \cdot 0$
10	35.0	$37 \cdot 0$	$36 \cdot 0$	37.0	$35 \cdot 0$	$37 \cdot 0$	$34 \cdot 0$	-	-	$34 \cdot 0$	$35 \cdot 0$	$37 \cdot 0$
11	$35 \cdot 0$	-	$35 \cdot 0$	35.0	36.0	85.0	$34 \cdot 0$	34.0	34.0	$35 \cdot 0$	$37 \cdot 0$	37-0
12	$38 \cdot 0$	36.0	$37 \cdot 0$	35.0	$34 \cdot 0$	$33 \cdot 5$	$34 \cdot 0$	33.0	32.5	$35 \cdot 0$	36.0	35.3
13	$35 \cdot 5$	$35 \cdot 0$	$34 \cdot 5$	$34 \cdot 0$	$33 \cdot 0$	34.0	$38 \cdot 0$	$32 \cdot 5$	$32 \cdot 0$	$32 \cdot 2$	34.0	34.0
14	36.0	$32 \cdot 0$	$32 \cdot 5$	33.0	$32 \cdot 0$	38.0	$30 \cdot 0$	31.0	$32 \cdot 0$	$33 \cdot 0$	35.0	$36 \cdot 0$
15	35.0	$37 \cdot 0$	$36 \cdot 0$	$34 \cdot 5$	$33 \cdot 0$	33.0	$32 \cdot 0$	31.0	33.0	$36 \cdot 0$	36.0	$34 \cdot 0$
16	$37 \cdot 0$	$3 \mathrm{~S} \cdot 0$	$39 \cdot 0$	-	36.0	$35 \cdot 0$	$36 \cdot 0$	$33 \cdot 0$	34.0	$32 \cdot 0$	$33 \cdot 0$	$85 \cdot 0$
17	$35 \cdot 0$	$34 \cdot 0$	$33 \cdot 0$	33.0	29.5	28.5	28.0	28.5	$30 \cdot 0$	31.0	$35 \cdot 0$	34.0
18	36.5	$38 \cdot 0$	$35 \cdot 0$	$33 \cdot 5$	$32 \cdot 0$	31.5	31.0	30.0	-	$29 \cdot 0$	-	-
19	$32 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	33.0	35.0	$36 \cdot 0$	$35 \cdot 0$	34.0	36.0	39.0	39-0
20	34.0	36.0	$35 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$30 \cdot 0$	31.0	$30 \cdot 0$	30.0	31.0	37.0	38.5
21	-	$39 \cdot 0$	$35 \cdot 0$	36.0	-	-	-	$35 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	34.0	34.5
22	$35 \cdot 0$	40.0	$42 \cdot 0$	42.0	42.0	39.0	41.0	$41 \cdot 0$	$41 \cdot 0$	$40 \cdot 0$	36.0	$35 \cdot 0$
23	34.0	35.5	$34 \cdot 5$	$35 \cdot 0$	34.0	34.0	37.0	$36 \cdot 0$	$35 \cdot 0$	38.0	39.0	$39 \cdot 0$
24	-	36.0	36.0	$36 \cdot 0$	$36 \cdot 0$	38.0	-	36.0	-	$36 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$
25	38.0	$38 \cdot 0$	$39 \cdot 5$	$35 \cdot 0$	33.0	$32 \cdot 0$	$32 \cdot 0$	33.0	$33 \cdot 0$	33.0	$35 \cdot 0$	$35 \cdot 0$
26	36.0	-	$35 \cdot 0$	$34 \cdot 0$	$33 \cdot 0$	-	32.0	31.5	$32 \cdot 0$	$33 \cdot 0$	32.5	$32 \cdot 0$
27	34.0	$34 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$32 \cdot 5$	$32 \cdot 5$	$33 \cdot 0$	$33 \cdot 0$	$32 \cdot 5$	$32 \cdot 5$	34.0	$34 \cdot 0$
28	$34 \cdot 5$	$35 \cdot 0$	$32 \cdot 0$	-	31.5	31.0	31.0	$32 \cdot 0$	$31 \cdot 0$	31.5	$32 \cdot 0$	34.0
29	$36 \cdot 0$	$34 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$	$30 \cdot 0$	$27 \cdot 4$	-	$27 \cdot 9$	$25 \cdot 9$	26.9	-	$29 \cdot 0$
30	-	$30 \cdot 0$	$25 \cdot 9$	20.8	$20 \cdot 8$	19.2	$20 \cdot 8$	19.8	$22 \cdot 8$	24.9	$+25 \cdot 4$	$26 \cdot 9$
31	+29•5	+29.0	$+29 \cdot 0$	$+27 \cdot 9$	+29.5	$+30 \cdot 0$	$+30 \cdot 0$	$+31 \cdot 0$	+30.5	+31.0	-	+32.0

Daily Temperature Observations, H.M.S. " Discovery," 1875-1876.

AUGUST 1875.

Date	4 1.m.	8 P.M.	Midnight	4 A.M.	8 A.m.	Noon.
1	+38.1	$+38 \cdot 0$	$+37 \cdot 6$	$+3{ }^{\circ} \cdot 0$	$+38 \cdot 0$	$\begin{array}{r} \circ \\ +37 \cdot 0 \end{array}$
2	35-6	-	-	$37 \cdot 5$	-	$35 \cdot 0$
3	$36 \cdot 0$	35.0	34.5	33.0	$38 \cdot 8$	$39 \cdot 0$
4	42.0	41.0	$40 \cdot 0$	$41 \cdot 0$	$40 \cdot 0$	$37 \cdot 2$
5	$39 \cdot 0$	38.0	$37 \cdot 0$	38.0	41.0	$43 \cdot 0$
6	39.0	$34 \cdot 0$	$35 \cdot 5$	$35 \cdot 0$	$37 \cdot 0$	$41 \cdot 0$
7	$39 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	33.0	32•5	$32 \cdot 5$
8	34.0	36.2	$33 \cdot 0$	$33 \cdot 5$	$39 \cdot 0$	38.0
9	$37 \cdot 0$	$39 \cdot 0$	$85 \cdot 6$	32.0	$31 \cdot 5$	-
10	35.5	$32 \cdot 0$	$30 \cdot 4$	28.0	$32 \cdot 0$	$33 \cdot 0$
11	34-0	$34 \cdot 5$	$32 \cdot 0$	34.0	$37 \cdot 0$	$34 \cdot 0$
12	36.2	$42 \cdot 0$	$36 \cdot 0$	36.0	$39 \cdot 0$	$35 \cdot 0$
13	$37 \cdot 0$	36.5	$35 \cdot 8$	34.5	$33 \cdot 0$	$32 \cdot 0$
14	$34 \cdot 5$	$35 \cdot 0$	$33 \cdot 0$	-	$32 \cdot 0$	$39^{\circ} 0$
15	38.0	36.5	$35 \cdot 0$	$34 \cdot 0$	34-5	$3 \cdot 10$
16	$35 \cdot 0$	$34 \cdot 8$	$30 \cdot 2$	30.0	$33 \cdot 0$	$33 \cdot 0$
17	$31 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$	32.0	$32 \cdot 0$	$33 \cdot 0$
18	$33 \cdot 0$	31.0	$29 \cdot 5$	$29 \cdot 0$	$30 \cdot 0$	36.5
19	$32 \cdot 0$	29.0	$31 \cdot 0$	31.0	$33 \cdot 0$	35.0
20	$32 \cdot 5$	$31 \cdot 0$	$30 \cdot 0$	27.5	28.5	$26 \cdot 5$
21	2\%-8	28.5	$26 \cdot 5$	28.0	$27 \cdot 0$	$29 \cdot 5$
22	$30 \cdot 9$	$30 \cdot 0$	$29 \cdot 5$	28.5	$28 \cdot 0$	28.0
23	$29 \cdot 8$	29.0	$27 \cdot 0$	$28 \cdot 2$	28.0	$30 \cdot 8$
24	30.5	31.2	31.0	$30 \cdot 0$	$32 \cdot 0$	$38 \cdot 0$
25	31.0	34.0	$32 \cdot 0$	$34 \cdot 0$	-	33.5
26	$30 \cdot 0$	32.0	-	-	$30 \cdot 9$	$28 \cdot 0$
27	29.0	$28 \cdot 5$	28.0	$28 \cdot 0$	27.0	$28 \cdot 5$
28	$29 \cdot 2$	29.0	$29 \cdot 0$	$28 \cdot 8$	29.0	31.0
29	31.0	$28 \cdot 0$	$28 \cdot 0$	27.0	$29 \cdot 8$	$31 \cdot 0$
30	$31 \cdot 0$	$28 \cdot 8$	$28 \cdot 0$	$29 \cdot 0$	$28 \cdot 0$	$30 \cdot 0$
31	$+30 \cdot 0$	$+28 \cdot 0$	+26.0	$+29.6$	+31.0	$+31 \cdot 0$

SEPTEMBER 1875.

1	$+83^{\circ} \cdot 0$	$+3 i \cdot 0$	$+2 \stackrel{\circ}{9} \cdot 0$	$+31^{\circ} \cdot 0$	$+82^{\circ} \cdot 0$	$+83^{\circ} \cdot 0$
2	$27 \cdot 0$	28.0	23.0	$23 \cdot 0$	$23 \cdot 0$	$24 \cdot 0$
3	$23 \cdot 0$	$25 \cdot 5$	21.0	22.0	$24^{\circ} 0$	$23 \cdot 8$
A	$24 \cdot 0$	$19 \cdot 0$	$16 \cdot 9$	18.0	$19 \cdot 0$	$23 \cdot 2$
5	$20 \cdot 0$	17.5	$16 \cdot 5$	13.5	14.0	$20 \cdot 5$
6	$20 \cdot 0$	$19 \cdot 0$	17.0	17.5	$18 \cdot 8$	$20 \cdot 0$
7	19.0	18.0	$15 \cdot 0$	16.0	$18 \cdot 5$	$22 \cdot 0$
8	$19 \cdot 0$	21.0	20.5	$20 \cdot 0$	$20 \cdot 0$	$20 \cdot 0$
9	21.5	$22 \cdot 0$	19.0	$21 \cdot 5$	18.0	$20 \cdot 5$
10	$17 \cdot 0$	$12 \cdot 0$	20.0	20.0	21.0	$21 \cdot 0$
11	18.5	$12 \cdot 5$	11.0	$11 \cdot 5$	$10 \cdot 0$	10.5
12	$17 \cdot 0$	$9 \cdot 5$	$8 \cdot 5$	$12 \cdot 0$	$15 \cdot 0$	$17 \cdot 5$
13	$20 \cdot 0$	$21 \cdot 5$	21.0	$23 \cdot 2$	$23 \cdot 3$	$25 \cdot 5$
14	$24 \cdot 5$	$25 \cdot 0$	23.0	$27 \cdot 0$	30.2	$30 \cdot 0$
15	$31 \cdot 5$	27-5	27.0	$27 \cdot 5$	$29 \cdot 8$	80.5
16	$32 \cdot 0$	$31 \cdot 0$	81.8	$31 \cdot 2$	$33 \cdot 5$	81.2
17	$32 \cdot 8$	$35 \cdot 5$	$38 \cdot 5$	34.5	34.0	29.0
18	$25 \cdot 0$	$25 \cdot 0$	25.0	$24 \cdot 5$	$22 \cdot 5$	$24 \cdot 8$
19	$24 \cdot 0$	24.0	$17 \cdot 0$	$20 \cdot 5$	21.5	$20 \cdot 8$
20	$26 \cdot 0$	$24^{\circ} 0$	21.5	21.0	22.0	$20 \cdot 0$
21	$12 \cdot 0$	$16 \cdot 0$	$13 \cdot 2$	$10 \cdot 5$	$9 \cdot 0$	$10 \cdot 0$
22	$10 \cdot 5$	9.0	17'5	$16 \cdot 5$	$15 \cdot 0$	$18 \cdot 0$
23	$18 \cdot 0$	$11 \cdot 0$	$9 \cdot 0$	$9 \cdot 0$	11.0	$12 \cdot 5$
24	$16 \cdot 0$	$17 \cdot 0$	$11 \cdot 0$	$9 \cdot 0$	$9 \cdot 0$	$13 \cdot 0$
25	$9 \cdot 8$	$10 \cdot 8$	10.5	$7 \cdot 0$	$4 \cdot 0$	9.5
26	$7 \cdot 0$	$7 \cdot 0$	10:5	$10 \cdot 0$	$12 \cdot 0$	18.8
27	$13 \cdot 5$	$12 \cdot 5$	10.0	$7 \cdot 0$	$5 \cdot 0$	$6 \cdot 5$
28	$11 \cdot 0$	11.0	11.5	11.0	$11 \cdot 0$	-12.0
29	$5 \cdot 0$	$8 \cdot 5$	6.5	9.0	$10 \cdot 0$	$12 \cdot 5$
30	$+10 \cdot 0$	$+9 \cdot 0$	+ 9.5	$+9.0$	$+11 \cdot 0$	$+11 \cdot 5$

OCTOBER 1875.

Date	4 1.M.	8 1.m.	Midnight	4 A.M.	8 А....	Noon.
1	+ 8.5	+10.5	$+10^{\circ} \cdot 0$	$+1{ }^{\circ} \cdot 0$	$+1{ }^{\circ} \cdot 0$	+14.6
2	$9 \cdot 0$	13.0	$14 \cdot 0$	$13 \cdot 0$	$13 \cdot 5$	16.5
3	16.8	16.0	14.0	$15 \cdot 5$	$16 \cdot 0$	$17 \cdot 5$
4	9.0	$5 \cdot 0$	1.8	6.5	$8 \cdot 5$	11.0
5	$9 \cdot 5$	$10 \cdot 5$	$10 \cdot 0$	10.0	$9 \cdot 8$	$12 \cdot 0$
6	11.0	$12 \cdot 0$	$13 \cdot 0$	$8 \cdot 5$	$14 \cdot 8$	$20 \cdot 0$
7	$15 \cdot 5$	13.0	14.0	16.0	$17 \cdot 0$	16.5
8	14.0	$+13 \cdot 0$	+12.0	+10.5	+ 11.0	$+11 \cdot 0$
9	+5.0	- 9.0	-16.0	-10.0	$-15 \cdot 0$	$-16 \cdot 0$
10	$-5 \cdot 0$	$2 \cdot 0$	- 1.0	+ 1.0	+3.0	$+3.0$
11	+ 4.0	$5 \cdot 0$	+ 6.0	-8.0	-11.0	$-11 \cdot 0$
12	-12.0	16.0	-12.0	16.0	17.0	$16 \cdot 0$
13	18.5	18.0	18.0	$18 \cdot 0$	20.0	$19 \cdot 0$
14	$19 \cdot 0$	17.0	17.5	16.0	16.0	$22 \cdot 0$
15	21.0	$22 \cdot 0$	21.0	$15 \cdot 0$	$16 \cdot 0$	11.0
16	6.0	$4 \cdot 0$	5.0	$12 \cdot 0$	$12 \cdot 0$	$8 \cdot 0$
17	$10 \cdot 0$	$8 \cdot 0$	8.0	$3 \cdot 0$	$5 \cdot 0$	11.0
18	$16 \cdot 0$	$9 \cdot 0$	$7 \cdot 0$	$15 \cdot 0$	13.0	9.0
19	6.0	$6 \cdot 0$	6.0	$5 \cdot 0$	$10 \cdot 0$	18.0
20	18.0	19.0	$19 \cdot 0$	$20 \cdot 0$	$19 \cdot 5$	20.0
21	23.0	$23 \cdot 0$	30.0	$23 \cdot 0$	28.0	28.0
22	23.0	19.0	11.0	11.0	12.0	16.0
23	$19 \cdot 0$	$19 \cdot 0$	16.0	$22 \cdot 0$	$21 \cdot 0$	30.0
24	31.0	$32 \cdot 0$	31.0	$32 \cdot 0$	$35 \cdot 5$	34.0
25	$26 \cdot 5$	$22 \cdot 0$	20.0	$25 \cdot 0$	29.0	$30 \cdot 0$
26	28.0	$29 \cdot 0$	$29 \cdot 0$	28.0	$22 \cdot 0$	$22 \cdot 0$
27	21.0	$23 \cdot 0$	22.0	$25 \cdot 0$	25.0	$27 \cdot 0$
28	$27 \cdot 0$	$24 \cdot 0$	21.0	18.0	$14 \cdot 0$	13.0
29	$28 \cdot 0$	$24 \cdot 0$	23.0	11.0	16.0	16.0
30	19.0	21.0	26.0	27.0	$27 \cdot 0$	$27 \cdot 0$
31	$-27 \cdot 0$	$-27 \cdot 0$	-27.0	-26.0	$-27 \cdot 0$	$-25 \cdot 0$

NOVEMBER 1875.

1	-83.0	$-20 \cdot 0$	-22.0	-14.0	-8. 8	$-1{ }^{\circ} \cdot 0$
2	-21.0	-20.0	-20.0	- 6.0	-8.0	- $7 \cdot 0$
3	$-5 \cdot 0$	-2.0	-	$+5 \cdot 0$	+5.0	+5.0
4	+14.0	$+13 \cdot 0$	$+8.0$	+ $7 \cdot 0$	-3.0	-6.0
5	-11.0	-10.0	$-10 \cdot 0$	-8.0	$-10 \cdot 0$	$-12 \cdot 0$
6	$-17 \cdot 0$	-17.0	-12.0	-10.0	- 9.0	-10.0
7	-12.0	-6.0	-3.0	-	$+5 \cdot 0$	+8.0
8	$+11 \cdot 0$	+ $5 \cdot 0$	$+10.0$	$+4.0$	-3.0	-9.0
9	-16.0	$-20 \cdot 0$	$-23 \cdot 0$	-22.0	$24 \cdot 0$	$19 \cdot 0$
10	$17 \cdot 0$	$24 \cdot 0$	$27 \cdot 0$	- 29.0	$29 \cdot 0$	$27 \cdot 0$
11	30.0	$28 \cdot 0$	$30 \cdot 5$	26.5	$27 \cdot 0$	21.0
12	$19 \cdot 5$	$20 \cdot 0$	$15 \cdot 0$	13.0	$14 \cdot 0$	15.0
18	$16^{\circ} 0$	$19 \cdot 5$	$22 \cdot 0$	26.0	$25 \cdot 0$	28.5
14	25.0	25.0	$26 \cdot 0$	$26 \cdot 0$	21.5	21.0
15	22*0	$16 \cdot 0$	11.5	$12 \cdot 0$	14.5	21.5
16	$24 \cdot 5$	$23 \cdot 0$	$22 \cdot 0$	20.0	$22 \cdot 0$	20.0
17	$23 \cdot 0$	23.5	27.0	$28 \cdot 0$	29.0	$27 \cdot 0$
18	$23 \cdot 0$	$22 \cdot 0$	$19^{\circ} \mathrm{O}$	$24 \cdot 0$	18.0	$19 \cdot 0$
19	$14 \cdot 0$	13.0	$19 \cdot 0$	20.5	$25 \cdot 0$	$28 \cdot 5$
20	$33 \cdot 0$	$30 \cdot 0$	$27 \cdot 0$	28.0	31.0	$39 \cdot 0$
21	$89 \cdot 0$	$41 \cdot 5$	$36 \cdot 0$	$40 \cdot 0$	$39 \cdot 5$	44.0
22	$41 \cdot 0$	37.5	38.0	41.0	41.5	41.0
23	$40 \cdot 0$	38.0	$38 \cdot 0$	$38 \cdot 5$	88.0	86.5
24	34.0	$35 \cdot 5$	$34 \cdot 0$	32-0	$32 \cdot 0$	31.0
25	$28 \cdot 0$	$25 \cdot 0$	21.0	23.0	21.0	19.0
26	$19 \cdot 0$	$14 \cdot 0$	14.5	14.0	11.0	$10 \cdot 5$
27	$8 \cdot 5$	$13 \cdot 0$	$10 \cdot 0$	$13 \cdot 0$	$3 \cdot 5$	$8 \cdot 0$
28	$7 \cdot 0$	$7 \cdot 5$	$9 \cdot 0$	$13 \cdot 5$	16.0	18.0
29	$20 \cdot 5$	$17 \cdot 0$	$20 \cdot 0$	$12 \cdot 0$	11.5	$8 \cdot 0$
30	-12.0	-10.5	-7.0	- 9.0	-10.5	- 9.0

JANUARY 1876.

1	-25.0	-33.0	- $30 \cdot 0$	$-28 \cdot 0$	-28.0	$-30 \cdot 0$
2	$31 \cdot 8$	$33 \cdot 0$	$39 \cdot 0$	41.0	$44 \cdot 0$	$44 \cdot 0$
8	$46 \cdot 0$	$42 \cdot 0$	$36 \cdot 0$	$30 \cdot 0$	23.0	$20 \cdot 0$
4	$21 \cdot 0$	$24 \cdot 5$	23.0	$22 \cdot 0$	25.0	25.5
5	23.5	$26 \cdot 0$	32.0	$36 \cdot 0$	38.0	$40 \cdot 0$
6	$40 \cdot 8$	$42 \cdot 0$	$45 \cdot 0$	$43 \cdot 5$	$44 \cdot 0$	43.0
7	41.0	$42 \cdot 0$	42.5	$43 \cdot 0$	$45 \cdot 0$	41.0
8	$44 \cdot 0$	$44 \cdot 0$	$45 \cdot 1$	$47 \cdot 5$	$45 \cdot 0$	43.2
9	38.0	24.0	1.16	14.0	$19 \cdot 0$	$17 \cdot 0$
10	$14 \cdot 0$	21.0	16.0	$19 \cdot 0$	21.0	$32 \cdot 0$
11	$36 \cdot 0$	$38 \cdot 0$	$39 \cdot 5$	$41 \cdot 0$	38.0	$35 \cdot 0$
12	29.0	$27 \cdot 5$	31.0	$26 \cdot 5$	22.5	22.5
13	$23 \cdot 0$	$25 \cdot 0$	27.0	$34 \cdot 0$	$40 \cdot 0$	41.0
14	$41 \cdot 0$	$33 \cdot 0$	$27 \cdot 0$	$25 \cdot 0$	23.0	$29 \cdot 0$
15	31.0	$38 \cdot 0$	$37 \cdot 0$	$38 \cdot 4$	43.0	41.0
16	$39 \cdot 0$	44.0	41.0	$45 \cdot 0$	46.0	47.5
17	47-5	47.5	30.0	49.0	48.0	$50 \cdot 0$
18	$52 \cdot 0$	51.0	$50 \cdot 0$	51.0	51.0	$50 \cdot 5$
19	$49^{\circ} 0$	$48 \cdot 0$	$46 \cdot 5$	$46 \cdot 0$	45.0	44.5
20	$45 \cdot 0$	$49^{\circ} 0$	48.0	41.0	47.0	$37 \cdot 0$
21	$38 \cdot 0$	$38^{\circ} 0$	$38 \cdot 0$	$40 \cdot 0$	40.0	42.0
22	$43 \cdot 0$	$43 \cdot 2$	$42 \cdot 0$	$45 \cdot 0$	$46 \cdot 0$	47.5
23	53.0	56.0	$59 \cdot 0$	$57 \cdot 0$	58.0	57.5
24	$59 \cdot 0$	57.6	57.0	59.5	60.0	57.0
25	$56 \cdot 0$	56.0	59.0	54.0	52.0	$50 \cdot 0$
26	54.0	$49 \cdot 0$	$49 \cdot 0$	47.0	47.0	46.5
27	47.5	$49 \cdot 0$	49.0	$48 \cdot 0$	$42 \cdot 0$	$45 \cdot 0$
28	52.0	50.0	$54 \cdot 5$	$47 \cdot 5$	$49 \cdot 0$	48.0
29	$53 \cdot 0$	52.0	51.5	$49 \cdot 0$	$50 \cdot 0$	47.5
30	37.0	4.5	44.5	44.0	41.0	$39 \cdot 0$
31	$-46 \cdot 0$	-43.0	$-42 \cdot 5$	$-46 \cdot 0$	-42.0	$-34 \cdot 0$

FEBRUARY 1876.

Date	4 P.M.	'81.3.	Midnight	4 A.3.	8 A.m.	Noon.
1	-34.0	$-27 \cdot 0$	$-23 \cdot 0$	$-18 \cdot 0$	-15.5	-1400
2	12.0	$15 \cdot 0$	14.5	$15 \cdot 0$	21.0	23.5
3	27.0	$-26 \cdot 0$	36.0	6.0	1.0	$2 \cdot 0$
4	11.0	+2.0	$9 \cdot 5$	$3 \cdot 0$	6.0	11.5
5	$14 \cdot 0$	-18.0	18.0	18.0	21.0	26.0
6	$27 \cdot 0$	21.0	$20 \cdot 0$	$22 \cdot 0$	22.0	22.0
7	22.0	23.0	26.0	$29 \cdot 0$	34.5	36.0
8	40.0	$40 \cdot 0$	$43 \cdot 0$	41.0	39.0	41.0
9	$44 \cdot 0$	$45 \cdot 0$	$43 \cdot 0$	$44 \cdot 0$	44.0	$44^{\prime} 0$
10	$44 \cdot 0$	$48 \cdot 0$	$47 \cdot 0$	48.0	$49 \cdot 0$	51.0
11	$49 \cdot 8$	$48 \cdot 5$	41.0	31.0	36.0	36.0
12	41.0	$40 \cdot 5$	42.0	44.0	$42 \cdot 0$	$42 \cdot 5$
13	43.0	$43 \cdot 0$	$46 \cdot 0$	$40 \cdot 0$	$47 \cdot 0$	$48 \cdot 0$
14	$48 \cdot 5$	$47 \cdot 5$	$45 \cdot 5$	$39 \cdot 0$	$47 \cdot 0$	$43^{\prime} 0$
15	45.0	$39 \cdot 0$	$38 \cdot 5$	$39 \cdot 0$	$39 \cdot 5$	$39 \cdot 0$
16	38.0	$41 \cdot 5$	48.0	51.0	$49 \cdot 5$	48.0
17	$51 \cdot 5$	51.0	48.0	48.0	51.0	58.0
18	$49 \cdot 0$	48.0	44.0	49.0	34.0	32.0
19	33.0	34.0	36.0	$45 \cdot 0$	$45 \cdot 0$	$45 \cdot 0$
20	$46 \cdot 0$	$47 \cdot 0$	46.0	45.0	$47 \cdot 0$	46.0
21	49.0	50.0	51.5	$51 \cdot 0$	$52 \cdot 0$	$52 \cdot 5$
22.	51.0	$54 \cdot 6$	44.0	$48 \cdot 0$	$25 \cdot 0$	26.0
23	41.0	38.5	$33 \cdot 0$	$29 \cdot 0$	32.5	$34 \cdot 0$
24	27.0	24.0	22.0	$24 \cdot 0$	$23 \cdot 0$	18.0
25	12.5	$13 \cdot 0$	13.0	$12 \cdot 0$	14.0	$15 \cdot 0$
26	16.0	19.0	22.0	18.0	21.0	22.0
27	24.0	30.5	$35 \cdot 0$	$38 \cdot 0$	$38 \cdot 0$	38.0
28	42.0	48.0	50.0	53.0	54.0	51.0
29	$-53 \cdot 0$	$-54 \cdot 0$	$-53 \cdot 0$	$-55 \cdot 0$	$-55 \cdot 0$	$-55 \cdot 0$

MARCH 1876.

1	$-57 \cdot 0$	$-56 \cdot 0$	$-60^{\circ} \cdot 0$	-62.0	$-62 \cdot 0$	-6i.5
2	$63 \cdot 5$	64.0	$62 \cdot 0$	$65 \cdot 8$	66.0	65.0
3	$66^{\circ} \mathrm{O}$	$65 \cdot 5$	64.5	$65 \cdot 0$	$62 \cdot 0$	61.0
4	61.0	58.0	61.0	$59 \cdot 8$	$54 \cdot 0$	$55 \cdot 0$
5	$54 \cdot 5$	51.5	51.0	51.0	50.0	48.0
6	48.0	$48 \cdot 6$	48.5	$49 \cdot 0$	$48 \cdot 5$	$49 \cdot 5$
7	50.0	$52 \cdot 0$	51.0	46.0	46.0	$42 \cdot 0$
8	$42 \cdot 0$	$42 \cdot 0$	$46 \cdot 0$	$48 \cdot 0$	$48 \cdot 0$	$47 \cdot 0$
9	50.0	50.0	$52 \cdot 0$	51.0	$48 \cdot 0$	48.0
10	50.0	51.0	51.0	53.0	50.0	49.0
11	51.0	51.0	$50 \cdot 0$	$45 \cdot 0$	$47 \cdot 0$	27.0
12	27.8	28.0	85.8	34.5	31.0	80.0
18	$33 \cdot 0$	28.0	31.0	31.0	$28 \cdot 6$	22.5
14	20.0	17.5	$15 \cdot 0$	12.0	$15 \cdot 0$	18.5
15	14.0	12.0	11.0	21.0	$9 \cdot 0$	10.0
16	16.0	$19 \cdot 0$	$25 \cdot 0$	29.0	35.0	34.0
17	$34 \cdot 0$	$31 \cdot 0$	$30 \cdot 0$	36.0	$35 \cdot 0$	$32 \cdot 0$
18	$32 \cdot 0$	39.0	$40 \cdot 0$	$40 \cdot 0$	43.0	85.0
19	$27 \cdot 0$	$25 \cdot 5$	$26 \cdot 0$	30.0	$32 \cdot 0$	80:0
20	37.0	$37 \cdot 0$	$37 \cdot 5$	$33 \cdot 0$	$34 \cdot 5$	$29 \cdot 5$
21	28.0	30.0	$34 \cdot 0$	34.5	25.5	$22 \cdot 0$
22	19.0	$18 \cdot 5$	$20 \cdot 0$	28.0	29.0	$25 \cdot 0$
23	24.0	$25 \cdot 0$	$29 \cdot 0$	$33 \cdot 0$	84.0	28.5
24	26.5	$32 \cdot 0$	$33 \cdot 5$	35.0	31.0	25.0
25	27.5	$32 \cdot 0$	$34 \cdot 0$	34.0	29.0	$25 \cdot 0$
26	$27^{\circ} 0$	$29 \cdot 5$	$30 \cdot 0$	30.0	29.0	$24 \cdot 0$
27	23.0	$27 \cdot 0$	$23 \cdot 5$	23.0	$22 \cdot 0$	$22 \cdot 0$
28.	25.0	$28 \cdot 5$	20.0	28.5	$20 \cdot 5$	18.5
29	19.0	20.0	25.5	33:0	$38 \cdot 0$	$32 \cdot 0$
30	$80 \cdot 0$	$35 \cdot 0$	43.0	40.0	38.5	$32 \cdot 0$
31	$-34 \cdot 0$	$-37 \cdot 0$	$-38 \cdot 0$	-39.0	-37.0	$-85 \cdot 0$

APRIL 1876.

Date	4 P.M.	8 1.m.	Midnight	4 А. ${ }^{\text {a }}$.	8 А.м.	Noon.
				\bigcirc	0	-
1	-32.0	$-35 \cdot 5$	-37.5	-38.0	-37.5	-31.0
2	$30 \cdot 0$	36.0	$38 \cdot 0$	$40 \cdot 0$	$39 \cdot 0$	$32 \cdot 9$
3	31.0	$35 \cdot 0$	38.0	$34 \cdot 0$	$29 \cdot 0$	24.0
4	$26 \cdot 0$	$34 \cdot 0$	$35 \cdot 0$	$36 \cdot 0$	$36 \cdot 0$	$32 \cdot 0$
5	$32 \cdot 0$	$38 \cdot 0$	$38 \cdot 5$	$39 \cdot 0$	$38 \cdot 0$	$30 \cdot 0$
6	$29 \cdot 0$	37.0	38.0	-39.0	$35 \cdot 5$	$22 \cdot 0$
7	$21 \cdot 0$	$23 \cdot 0$	$22 \cdot 0$	-	$22 \cdot 0$	-
8	-	$27 \cdot 5$	$30 \cdot 0$	-	$21 \cdot 0$	$20 \cdot 5$
9	-	$24 \cdot 5$	$25 \cdot 6$	-	-16.0	-11.0
10	-	$10 \cdot 0$	$5 \cdot 0$	-	$+0.5$	+4.0
11	-	$2 \cdot 0$	$9 \cdot 0$	-	- 6.0	-4.0
12	-	16.0	21.0	-	16.5	10.5
13	-	11.0	$12 \cdot 0$	-	14.0	11.0
14	-	14.0	22:0	-	$19 \cdot 0$	17.0
15	-	$\cdot 0$	30.0	-	$22 \cdot 8$	80.0
16	-	$32 \cdot 0$	38.0	-	$27 \cdot 0$	$26 \cdot 0$
17	-	$27 \cdot 0$	$30 \cdot 0$	-	$20 \cdot 0$	17.0
18	-	$21 \cdot 0$	$27 \cdot 0$	-	26.0	$34 \cdot 0$
19	-	28.5	$29 \cdot 0$	-	22.0	17.0
20	$16 \cdot 0$	$16 \cdot 5$	$19 \cdot 0$	-	19.0	$17 \cdot 0$
21	$14 \cdot 0$	$20 \cdot 5$	24.0	-	14.0	11.0
22	11.5	0	18.0	-	11.5	16.1
23	$16 \cdot 0$	$17 \cdot 0$	$17 \cdot 0$		17.0	11.0
24	$12 \cdot 0$	16.0	19.0		-10.0	-8.0
25	$11 \cdot 0$	$-12 \cdot 0$	12.0	-	+ 0.5	+ $5 \cdot 0$
26	-4.0	$+3 \cdot 0$	9.0	-	-0.0	-6.0
27	+ 3•0	$4 \cdot 0$	- 2.0	-	+ $2 \cdot 0$	+8.0
23	$9 \cdot 0$	$6 \cdot 0$	+ 3.0	-	4.0	$9 \cdot 0$
29	$5 \cdot 0$	$9 \cdot 0$	1:5	-	$9: 0$	$7 \cdot 0$
30	+ $5 \cdot 0$	$+9 \cdot 0$	+3.5	-	+900	+ $9 \cdot 0$

MAY 1876.

1	$\underline{\circ} \mathrm{O} \cdot 0$	\circ +0.0	- ${ }^{\circ}$		- ${ }^{\circ} \mathrm{O}$	(0
2	-0.0	- $3 \cdot 0$	12.0	-	:0.0.	- 0.0
3	$4 \cdot 0$	$8 \cdot 0$	12.0	-	$3 \cdot 0$	$7 \cdot 0$
4	$8 \cdot 0$	9.0	12.0	-	8.0	$8 \cdot 0$
5	$8 \cdot 0$	10.0	19.5	-	$5 \cdot 0$	-0.0
6	1.0	-2.0	$2 \cdot 5$	-	$2 \cdot 0$	+4:0
7	- $1 \cdot 0$	+2.0	- 2.0	-	-40	-0.0
8	$+1 \cdot 0$	$2 \cdot 0$	$+10.5$	-	+2.0	+ 4.0
9	$5 \cdot 0$	$2 \cdot 0$	$2 \cdot 0$	-	10.0	10.0
10	12:0	6.0	6.5	-	10.0	-
11	-	-	11.5	-	15.0	18.0
12	$12 \cdot 0$	10.5	1.5	-	$7 \cdot 0$	-
13	-	$5 \cdot 0$	4.5	-	$7 \cdot 0$	10.0
14	$9 \cdot 0$	$7 \cdot 0$	+0.0	-	5.0	-
15.	-	5.0	- 2:0	-	7.0	-
16	-	9.0	$-1 \cdot 3$	-	-	14.0
17	-	13.0	+12.8	-	17.5	-
18		-	15:0	-	20.0	20.0
19	21.0	17.0	17.0	-	20.0	20.0
20	21.0	-	. 21.0	-	23.0	24.0
21	24.0		17.0	-	24.0	28.
22	24.0		19.0	-	18.0	22.0
23	23.0	-	12.0	-	17.0	18:0
24	20.0	-	$10 \cdot 0$	-	16.0	$19 \cdot 0$
25	28.0	. $22 \cdot 0$	16.0	\cdots	$22 \cdot 0$	2\%60
26	24.0	$\therefore 22.0$	$15 \cdot 0$		21.0	28.0
27	28.0	28.0	$22 \cdot 0$	-	21:0	. $29 \cdot 0$
28	24.3	41.0	20.0	-	$19 \cdot 5$	28.0
29	$20 \cdot 0$	17.0	$9 \cdot 5$. 1	1-15:0	16:0
30	12;0	-10:0	8:0.	T	[, 15:5	15:0
31	+19.0	+19.0	+9.0		$+25 \cdot 0$	$+27 \cdot 0$

JUNE 1876.

Date	$4 \text { Р.м. }$	8 г.3.	Midnight	4 A.M.	8 A.m.	Noon.
	c	\bigcirc	\checkmark	-	\bigcirc	a
1	+29.0	+25.0	+ 26.0	+29-5	+33.0	+33.0
2	34.0	31.5	25.0	29.0	$33 \cdot 0$	22.0
3	$30 \cdot 5$	$28 \cdot 0$	26.0	$27 \cdot 2$	$28 \cdot 5$	$26 \cdot 0$
4	$26 \cdot 5$	$23 \cdot 0$	27.0	27.0	$25 \cdot 0$	$25 \cdot 0$
5	26.5	24.5	19.0	$20 \cdot 0$	26.0	$27 \cdot 0$
6	27.0	26.0	26.0	$30 \cdot 0$	31.0	30.0
7	31.0	$30 \cdot 0$	27.0	$32 \cdot 0$	36.0	$33 \cdot 0$
8	36.0	$33 \cdot 0$	$29 \cdot 0$	33.0	$34 \cdot 0$	33.0
9	36.0	$35 \cdot 0$	$32 \cdot 0$	30.0	$30 \cdot 0$	31.0
10	31.0	30.0	$29 \cdot 0$	31.0	$32 \cdot 0$	$32 \cdot 0$
11	31.0	31.0	28.0	31.0	$32 \cdot 0$	$32 \cdot 0$
12	$32 \cdot 0$	$32 \cdot 0$	$28 \cdot 0$	31.0	33.0	$32 \cdot 0$
13	$30 \cdot 0$	$29 \cdot 0$	$25 \cdot 5$	$30 \cdot 0$	32.0	$35 \cdot 0$
14	$35 \cdot 0$	$34 \cdot 0$	$24 \cdot 0$	$30 \cdot 0$	$30 \cdot 0$	$34 \cdot 0$
15	$38 \cdot 0$	$34 \cdot 0$	$27 \cdot 0$	40.0	37.0	$37 \cdot 0$
16	- $34 \cdot 0$	34.0	30.5	32.0	$35 \cdot 0$	$36 \cdot 5$
17	36.0	$36 \cdot 0$	28.0	$35 \cdot 0$	36.0	$37 \cdot 0$
18	$34 \cdot 0$	31.0	27.0	$37 \cdot 0$	30.0	$31 \cdot 0$
19	31.0	$29 \cdot 0$	28.0	31.0	35.0	$36 \cdot 0$
20	$32 \cdot 0$	$33 \cdot 0$	$25 \cdot 0$	$29 \cdot 0$	$33 \cdot 0$	$35 \cdot 0$
21	$35 \cdot 0$	$33 \cdot 0$,	31.0	$33 \cdot 0$	33.0	$35 \cdot 0$
22	35.5	$35 \cdot 0$	$34 \cdot 5$	38.0	$39 \cdot 0$	$37 \cdot 5$
28	36.0	34.5	$32 \cdot 0$	36.0	36.0	$35 \cdot 0$
24	$36 \cdot 0$	38.0	36.5	$87 \cdot 0$	88.0	39.0
25	37.0	37.0	36.5	$39 \cdot 0$	$41 \cdot 0$	41.0
26	38.0	37.0	$35 \cdot 0$	$38 \cdot 0$	38.0	38.5
27	$37 \cdot 0$	$38 \cdot 0$	$35 \cdot 2$	$35 \cdot 5$	$36 \cdot 0$	$37 \cdot 0$
28	39.0	36.0	$35 \cdot 6$	36.0	$35 \cdot 0$	36.0
29	36:0	35.0	38.5	34.0	34.5	36.0
30	$+37.0$	+36.0	$+34 \cdot 0$	+34.0 ${ }^{\prime}$	+36.0	$+38 \cdot 0$
	$\therefore \mathrm{B}$	- $\quad 1$	\square		$\therefore{ }^{1}$	

	\cdots	\bigcirc	\bigcirc	-	-	-
1	+38.0	+36.5	+35.0	$+36 \cdot 0$	$+37 \cdot 0$	$+37 \cdot 0$
2	, 38:a..	$39 \cdot 0$	36.0	$34 \cdot 0$	$36 \cdot 0$	41.0
3	37.0	37.0	36.0	$35 \cdot 0$	37.0	$37 \cdot 0$
4	38;0	36.0	34.0	$33 \cdot 0$	83.0	$89 \cdot 5$
5	38%	36.0	$38 \cdot 0$	$32 \cdot 0$	$34 \cdot 0$	36.0
6	38.0	36.0	83.0	$33 \cdot 0$	$35 \cdot 0$	37.0
7	36.0	35.5	36.0	$35 \cdot 0$	36.0	$37 \cdot 0$
8	39.0	36.5	35.0	$33 \cdot 0$	36.0	40.0
9	37.5	$40 \cdot 0$	40.0	$40 \cdot 0$	40.0	$41 \cdot 0$
10	41.0	$39 \cdot 0$	$39 \cdot 0$	$39 \cdot 0$	$40 \cdot 0$	$44 \cdot 5$
11	41.0	40.0	39.5	37.0	$40 \cdot 0$	$41 \cdot 0$
12	42.0	$89 \cdot 0$	39.0	87.0	37.0	38.0
18	189.0	38.0	$38 \cdot 0$	$34 \cdot 0$	$36 \cdot 0$	$40 \cdot 0$
14	38.0	$85 \cdot 0$	85.0	$34 \cdot 0$	$36 \cdot 0$	39.0
15	39.0	86.0	$85 \cdot 0$	34.0	$39 \cdot 0$	41.0
16.	-390	38.0	36.0	84.0	$35 \cdot 0$	$37 \cdot 0$
17:	37\% 0	37.0	$36 \cdot 0$	$34 \cdot 0$	36:0	$39 \cdot 0$
18	37.0	34.0	$34 \cdot 0$	32:0	$38 \cdot 0$	$36 \cdot 0$.
19	36.0	$35 \cdot 0$	34.0	$33 \cdot 0$	84.0	37*0
20	38.0	36.5	35.0	35.0	37.0	37.0
$21{ }^{1}$	38.0	30:0	40.0	$36 \cdot 0$	36.0	36.0
22	$\bigcirc 35 \cdot 0$	35\% ${ }^{\circ}$	34.0	$34.0{ }^{\circ}$	39.0	39.0
23	$40 \cdot 0$	39.0	$37 \cdot{ }^{1}$	36.0	870	-40-0
24.	$88 \cdot 5$	$35 \cdot 0$	$35 \cdot 0$	88.0	$40 \cdot 0$:39:0
$\therefore 25$	$40 \cdot 0$	37%	$35 \cdot 0^{\prime}$	35-5	! 36.0	88.0
26	37.5	$37 \cdot 0.1$	$37 \cdot 0$	$35 \cdot 5$	86.0	: 38.0
27.	38:0	39.5	39.0	$87 \cdot 0$	- 87.0	. $40 \cdot 0$
$\therefore 28$.	40:0	$86^{\circ}{ }^{\circ}$	36.0	$\therefore 39 \cdot 0$	36.0	140.0
:29,	10 4200	- $39 \cdot 5$	37.0 \%	\% 86,0	"35.5	37.0
80	189:0.9	38\%0	39-0	88700	-39.0	1-41.0
31	+41.0.	$+4000$	$1+40 \cdot 0$	$+400$	+41.5	+61.5

AUGUST 1876.

Date.	4 r.a.	8 r.3.	Midnight.	4 A.3.	8 А.м.	Noon.
1	+ 30	+40.3	+ $33^{\circ} \cdot 0$	$+36 \cdot 0$	$+3{ }^{2} \cdot 0$	+39.0
2	$40 \cdot 0$	$39 \cdot 0$	$38 \cdot 0$	$38 \cdot 0$	38.0	$3: 0$
3	$37 \cdot 0$	$37 \cdot 0$	$37 \cdot 0$	36.0	$37 \cdot 0$	$36 \cdot 5$
4	3370	36.0	36.0	36.0	36.0	$38 \cdot 0$
5	38.0	$38 \cdot 0$	$37 \cdot 0$	$36^{\circ} 0$	$35 \cdot 0$	$33 \cdot 0$
6	35.0	$34 \cdot 0$	33.5	36.0	$34 \cdot 0$	$34 \cdot 0$
7	$37 \cdot 1$	36.0	36.0	$39^{\circ} 0$	$39 \cdot 0$	37.0
8	$33^{\prime \prime} 0$	37.0	36.0	$32 \cdot 0$	$34 \cdot 0$	36.0
9	$39 \cdot 5$	$40 \cdot 0$	38.0	31.0	$35 \cdot 0$	$36^{\circ} 0$
10	41.0 36.0	40.0 360	36.0 35.0	$35 \% 0$ 34.0	36.0 35.5	$35 \cdot 0$ $36 \cdot 0$
12	38.4 380	$36 \cdot 0$ 350	$35 \cdot 0$ 34.0	34.0 32	$35 \cdot 5$ 32.0	$36 \cdot 0$ $32 \cdot 0$
13	$32 \cdot 0$	$34 \cdot 0$				
14	$32 \cdot 0$	$32 \cdot 0$	31.0	$30 \cdot 0$	$32 \cdot 5$	$37 \cdot 1$
15	36.0	$34 \cdot 0$	$31 \cdot 5$	$30 \cdot 0$	$34 \cdot 0$	$37 \cdot 1$
16	$37 \cdot 11$	$35 \cdot 0$	$32 \cdot 0$	$30 \cdot 0$	$32 \cdot 5$	$34 \cdot 0$
17	36.0	$30 \cdot 0$	$29 \cdot 5$	29.0	$32 \cdot 0$	$34 \cdot 6$
18	36.0	$34^{\circ} 0$	33.0	$30 \cdot 0$	28.0	$32 \cdot 0$
19	31.0	$37 \cdot 0$	$33 \cdot 0$	35.0	36.0	37.0
96	35.0	31.0	$30 \cdot 0$	$30 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$
$\underline{21}$	$33 \cdot 0$	$34 \cdot 0$	$30 \cdot 0$	31.0	$33 \cdot 0$	83.0
22	+i.0	$43 \cdot 0$	$39 \cdot 0$	41.0	$41 \cdot 0$	36.0
23	35.6	$34 \cdot 0$	$35 \cdot 0$	$35 \cdot 0$	38.0	38.0
24	35.0	$35 \cdot 0$	$35 \cdot 0$	$39 \cdot 0$	$36 \cdot 0$	$35 \cdot 0$
\because	$37 \cdot 0$	$34 \cdot 0$	31.0	$32 \cdot 0$	$32 \cdot 0$	$32 \cdot 0$
26	$35 \cdot 0$	$37 \cdot 0$	$31 \cdot 0$	31.0	32.0	$33 \cdot 0$
27	$34 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$	$33 \cdot 0$	$33 \cdot 0$	$32 \cdot 0$
28	$34 \cdot 0$	$32 \cdot 0$	$31 \cdot 0$	31.0	31.0	31.0
23 30	32.9	31.0	27.0	29.0	31.0	27.0
30 31	28.0 +28.0	22.0 +28.0	$21 \cdot 0$ +30.0	$20 \cdot 0$ $+30 \cdot 5$	23.0 $+30 \cdot 0$	26.0 +32.0

Temperature and Specific Gravity of the Sea Surface in Baffin Bay and North of Smith Sound.-H.M.S. "Alert" and " Discovery," 1875-76.

Temperature and Specific Gravity of Sea.

On the 26th June 1875, the "Alert" and "Discovery" were in lat. $58^{\circ} 39^{\circ}$ N., long. $46^{\circ} 4^{\prime} \mathrm{W}$., 90 miles S.W. of Cape Farewell, without having met with any ice; the temperature of the water being 41°, and the sp. gr. 1-0254.5.

On the 27 th the ice hordering the south-west coast of Greenland was met in lat. 59° $46^{\prime} \mathrm{N}$. , long. $4 x^{\circ} 40^{\prime} \mathrm{W}$.; the sea temperature falling from $40^{\circ} \cdot 5$ to 39°, and near the edge of the ice to $36^{\circ} \cdot \%$. Ten miles outside of the ice stream the minimun temperature of the water between the surface and a depth of 22 fathoms was 38°.

Proceeding to the northward the edge of the pack was followed, at a distance of about 50 miles from the land, until midnight of the 30 th, when we had npparently cleared its northern edge in lat. $6 z^{\circ} 40^{\prime} \mathbf{N}$; while following its edge we occasionally passed through streams of open pack, the temperature of the surface water falling to 32°, but except when amongst ice it was between 35° and 38°.

On July lst, near the most southward of the Torske banks, although ice was not met with, we passed through water at a temperature of 33° and 34°, evidently the continuation of the cold current rumning to the north-west past Cape Farewell and Cape Desolation. This was the most northern indication of its presence. In obtaining a serial temperature sounding (No.2.) the minimum temperature of the water between the surface and a depth of 130 fathoms was $33^{\circ} \cdot 5$. The specific gravity of the surface water was $1 \cdot 0246$.

During the rest of the passage to Disko the land was kept in sight at a distance of 15 or 20 miles, the temperature of the water ranging between 36° and 40°, one observation recording a temperature of 34° in the neighbourhood of a piece of ice. Very few icebergs or pieces of ice were met with.

At Godthavn, Disko, the temperature of the sea was 40°.
On the 15th July, when in Disko Bay, on our passage to Ritenbenk, the sea temperature ranged between 49° and 42°.

On the 17th we left Ritenbenk, passing through the Waigat strait. But notwithstanding that the southern end of the channel was much encumbered by icebergs, the water remained at a steady temperature ranging between 39° and 41°.
Between Hare Island, on the eastern side of which we passed on the 18th, and the harhour of Proven, where we anchored on the evening of the 19th, icebergs were passed only occasionally; the sea temperature ranged between $41^{\circ} 5$ and 37°.
Between Proven and Upernivik, passing through the channel inside the outer islands, and close to Sanderson's Hope, the temperature of the sea ranged between 37° and 39°.
Upernivik was left on the 22nd July, the ships taking an inshore passage to Kangatok. The channel was much encumbered by icebergs and berg pieces; the tempcrature of the water, however, never falling below 34°.
Passing out from the land to the northward of Brown Island, the temperature of the water was 37°, the specific gravity 1.02361 , with a few icebergs in sight.
At 0.45 А.м. of the 24th we sighted the pack ice, the temperature of the water falling to 33°. The middle ice was entered in lat. $73^{\circ} 17^{\prime}$ N. 60 miles west of the Berry Islands. By noon of the 25 th when we were in lat. $75^{\circ} 20^{\prime} \mathrm{N}$., long. $66^{\circ} 19^{\prime} \mathrm{W}$., we had gained the North-water off Cape York.
While in the pack the temperature of the water ranged between 29° and 35°, the specific gravity being 1.02037 . Only two or three icebergs were met with before we approached Cape York, but there vast numbers were collected together.
On entering the North-water the surface temperature rose to $36^{\circ} \cdot 5$, but near the land it again fell to 33°, and remained at 35° until Cape Atholl was passed.
While near a land floe in a bay to the eastward of Cape York, and surrounded by icchergs, the "Discovery" found the specific gravity of the surface water to be 1.005 . In the North-water it was $1 \cdot 02274$.
On the 26 th, after passing Cape Atholl, and when about eight miles south-west of Wolstenholme Island, the temperature of the sea rose to 40°, at about which temperature it remained until the Cary Islands were approached. A serial set of temperatures (No. 5.) indicated that a warm stratum of water, above $35^{\circ} 8$, extended to a depth of 10 fathoms, and that below 20 fathoms the minimum temperature of the water down to a depth of 275 fathoms was about $29^{\circ} 0$, and that was the actual temperature at a depth of 100 fathoms. The specific gravity of the surface was 1.0241 .
Between the Cary Islands and Northumberland Island, the surface temperature ranged from 36° to 44°, the specific gravity was $1 \cdot 0241$. Many icebergs were in the neighbourhood, the largest clusters being inshore and probably aground ; the majority of them were table-topped.
Crossing the entrance to Murchison Sound the temperature of the sea was between 34° and 36°. Inglefield Gulf was full of ice, apparently fast to the shore, otherwise no floe-ice was met with.
We arrived at Jensen Point on the morning of the 28th July, the surface temperature being $34^{\circ} 5$, the specific gravity $1 \cdot 0236$.
Thus except when we were near ice the temperature of the sea between Conical Rock and Port Foulke was always above 34°.
A southerly running current was experienced while near the Cary Islands.
On the 29th July we crossed the entrance of Smith Sound, the temperature of the sea falling to 32° immediately we left the east shore; near Cape Isabella it was 31°. While crossing we experienced a southerly current independent of the tidal currents.

Nohthward of Smith Sound.

Arriving off Cape Sabine on the 30th July the main pack was fallen in with, a spur six miles broad separating the "Alert" from the shore of Ellesmere Land. The temperature of the sea was $32^{\circ} \cdot 5$, in the pack it fell to 31° and $30^{\circ} 5$.
In Payer Harbour, while completely surrounded by pack ice the surface temperature ranged between 29° and 31°, the specific gravity was 1.02420 and 1.02445 .
On August the 4th the ships ran along shore through Buchanan Strait, the temperature of the sea rising to 34° at Alexandra Haven, but falling again to 31° whenever the close vicinity of the land was left.
In Haycs Sound the minimum temperature of the water between the surface and 20 fathoms was $30^{\circ} 5$, and between the surface and a depth of 57 fathoms $29^{\circ} 0$.
While in Hayes Sound, between the 3rd and 6th of August, the specific gravity of the surface water fell to 1.02301 and 1.02239 ; on our leaving the sound on the afternoon of the latter date, it again increased to its ordinary standard,

On arriving at the entrance of Princess Marie Bay on the 8th, the sea water was again found to be fresher than ordinary sea-water, the specific gravity by the uncorrected Casella Hydrometer being $1 \cdot 019$. On entering Franklin Pierce Bay, and securing the ships alongside a fixed ice floe, the surface water was found to be nearly fresh, the uncorrected Hydrometer registering $1 \cdot 003$.

While mavigating along the Grinnell land shore between Walrus shoal and Dobbin Bay, always close to ice, the water remained at about the same degree of fresinness, but on our rounding Cape Louis Napoleon on the 15th, and entering a water channel about a mile in breadth, the specific gravity increased to 1.0235 ; on the following day it was 1.02375 .

Between Hayes Sound and Cape Louis Napoleon the temperature of the water ranged from $29^{\circ} \cdot 5$ to 31°. On the 18 th, off the latter position, it fell to $29^{\circ} \cdot 0$.

After the 22nd August, when the ships were in Kennedy Channel, it was difficult to obtain the true temperature of the sea, owing to that of the air being always below the freezing point of water. A coating of ice collected on the instrument, which, if not completely removed, caused a lower temperature to be registered than what actually existed.
Dr. Moss' report and the Tables will give the temperature and specific gravity obscrvations at Discovery Bay and Floeberg Beach.

On the return vogage in 1876, the "Alert" left Floeberg Beach on the 29th July, the temperature of the surface water ranging between 29° and 30°.

On the 1st August, when the ship was secured off the mouth of a small watercourse, the surface temperature rose to 33°; on leaving the vicinity it again fell to $29^{\circ} \circ$, at which temperature it remained until we arrived at Discovery Harbour on the 12th.

Off Cape Union on the 2nd the specific gravity was $1 \cdot 02443$, and on the 7th off Cape Beechey it was 1.02383 .

The pack ice prevented the two ships leaving Discovery Bay before the 20th August, the temperature of the water in the bay was 30°.

Passing to the southward along the east coast of Grinnell Land the sea temperature ranged between 29° and $30^{\circ} 5$; the specific gravity ranging between 1.02430 and 1.02178 , always being fresher than ordinary Atlantic sea water.

On the 23rd the serial temperature observation (No. 19) indicated that below a depth of 30 fathoms the bottom water gradually increased in temperature from $29^{\circ} 0$ to $30^{\circ} .0$.
The specific gravity of the surface water was 1.02430 , and that at a depth of 70 fathoms $1 \cdot 02547$, a decided indication of Atlantic water.
This last observation was confirmed on several occasions, notably so on the 1st September (No. 15) when at a depth of 115 fathoms water, a temperature of $30^{\circ} 8$, and a specific gravity of $1 \cdot 02.267$ was found.
On the 4th September on entering Allman Bay the temperature of the water suddenly rose from its usual temperature between 29° and 30° to 32°. A sample of it was tested, and the specific gravity found to be $1 \cdot 00217$. The freshness of the sea water was probally caused by the large discharge of water from the John Evans Glacier at the head of the bay.

Owing to the lateness of the season the temperature of the sea during the early part of September, when the ships were navigating along the sonth-east coast of Grinnell Land, was $29^{\circ} \cdot 0$, and young ice was constantly forming on all the water pools opened by the dritting of the pack.

On the 9th September the two ships escaped from the pack, about one mile north of Victoria Head, between which position and 10 miles north of Cape Sabine the young ice was from one to three inches thick, covering water at a temperature of 29°.

To the southward of Cape Sabine the temperature of the water was $29^{\circ} \cdot 5$, and no young ice had formed.

Bippin Bay.

Between Cape Isabella and Bardin Bay, where we arrived on the 12th September, the sea temperature ranged between 30° and 31°. In Bardin Bay, where the ships anchored on the 13th, the temperature of the water near the end of a discharging glacier was 33°.

When passing near Hakluyt Island, and when crosing our outward track near Wolstenholme Island, we failed to meet with the wani stream of water, at a temperature of about 40°, which we passed through in July the previous year, the temperature on the homeward voyage remaining at hetween 30° and 33°.

On crossing Baffin Bay towards Lancaster Sound，a stream of water at a temperature of 34° ，about 50 miles in breadth，was passed through off the entrance of Lady Ann strait，Within a distance of 50 miles from Possession Bay at the south side of the entrance to Lancaster Sound the water fell to 32° and 30° ．
When crossing Baffin Bay from Possession Bay towards Wilcox Head，the warm stream was again met with about 70 miles distant from the West coast，the temperature rising to $34^{\circ} \cdot 5$ gnd 35° ，this extended to within 70 miles of the Greenland coast where the temperature was between 33° and 32° ．Two narrow streams of water at a temperature of 32° were met with within the warm area．This was the coldest water passed through in the position occupied by the middle ice the previous season．Off Cape Shackleton from 20 to 40 miles irom the coast the temperature of the water was 34° ．
On the 22nd Sepiember we met with colder water，the temperature falling to $30^{\circ} .5$ ， and indicating the near neighbourhood of ice．At noon when in lat． $71^{\circ} 58^{\prime} \mathrm{N}$ ．，and long． $60^{\circ} 19^{\prime} \mathrm{W}$ ．， 85 miles from the Greenland coast，the edge of the western pack was sighted．
On the following day when 50 miles off Svarten Huk Peninsula we entered the warm current hugging the Greenland coast，the temperature rising to 36° ．From that position to Godthavn Disko the temperaiure ranged between 36° and $38^{\circ} \cdot 5$ ．

A serial temperature observation obtained on the 22nd（No．4．）indicated a warm stratum of water，at a temperature of 30° at a depth of 100 fathoms，underlying a colder stratum at 29° at a depth of 20 fathoms．
On the 3rd October on the Torske Bank North of the Knight Islands in Davis Strait the temperature rose to 39° ．

On the 6 th when in lat． $64^{\circ} 46^{\prime} \mathrm{N}$ ．long． $56^{\circ} 29^{\prime} \mathrm{W}$ ．the temperature of the sea fell to $33^{\circ} \cdot 5$ ，denoting the nearness of the western pack．Several icebergs and berg pieces were in sight．

On our nearing the Greenland shore the temperature again rose to 38° ，and on reaching lat． $63^{\circ} 20^{\prime} \mathrm{N}$ ．long． $54^{\circ} 30^{\circ} \mathrm{W}$ ．on the 7 h ，the temperature was 40° and 42° above which temperature the water remained as we proceeded to the southward and eastward．

Date．	Latitude． N．	Longitude． W．	Tempe rature of Sea Surface	Specific Gravity．			
				Hydrometer．	Corrected for 60° ， Standard at 60° ．	Corrected for 60° ， Standard at $39^{\circ} \cdot 2$.	
$\text { June } \begin{array}{r} 1875 . \end{array}$	58 $\mathbf{8}$	\circ 33 8	44	1.0275	1.0270	$1 \cdot 0261$	
＂ 22 －－	5923	3546	44	$1 \cdot 0270$	1.0265	1.0256	
＂ 28 －－	5986	895	43	$1 \cdot 0265$	1.0260	1.0251	
＂ 24 －－	58 0	4022	43	$1 \cdot 0270$	1－0265	$1 \cdot 0256$	
＂ 25 －－	585	410	42	1.0265	$1 \cdot 0265$	$1 \cdot 0256$	
＂ 26 －－	$\begin{array}{ll}68 & 39\end{array}$	464	41	1.0270	1.0265	1.0256	See Dr．Moss＊report on
＂27，noon	8936	4846	40	1.0265	1.0250	$1 \cdot 0241$	Specific Gravity．
＂＂ 4 p．m．	二	－	39.5	－	－	－	
＂$\quad 3.68$	－	－	$37 \cdot 0$ 39.0	二	－	二	
＂$\quad 7 \begin{array}{rrrr}8 & \prime \prime \\ " & 12 & \prime \prime\end{array}$	二	－	$39 \cdot 0$ 36.5	一	二	－	
＂28， 2 mm.	－	－	89.0	－	－	－．	
＂ 314	－	－	$37 \cdot 5$	－	－	－	
＂＂ 80	－	－	$39 \cdot 0$ 36.5	－	－	二	
	$60-20$	4_{49-31}	$36 \cdot 5$ 37.0	1．$\overline{0260}$	1．0255	1.0246	
＂＂ 8 p．m．	－	－	$35 \cdot 5$	－	－	－	
＂＂ 10 ＂	－	－	$37 \cdot 0$	－	－	－	
＂29， 4 a．m．	－	－	$35 \cdot 0$	－	－	－	
＂$\quad 1$6 8	二	二	33.0 82.0	$1 \cdot \overline{0253}$	$1 \cdot \overline{0240}$	$1 \cdot \overline{0231}$	
＂$" 1080$	二	－	36.0	－	－	1－201	
$\cdots>$ noon	6132	5188	38.0	－	－	－	
n 80 noon	6148	524	37.0	－	－	－	
＂＂10 p．m．	－	－	84.0 850	－	－	－	
＂＂12＂				－	－		
July 1， 6 am．			83.5	－	－	－	
$\begin{array}{lll} n & n & \text { noon } \\ & n & 2 \text { p.m. } \end{array}$	${ }^{63} 16$	52.89	34.5 38.0	二	$1 \cdot \overline{0253}$	1．0246	
＂＂ 12 ＂		－	$37 \cdot 0$	－	－	－	
．2， 8 am ．	－		38.0	－	－	－	\because
\cdots＂noon	6444	52 ss	89.0	－	－	－	＂
$n \quad 1 \quad 2$ p．m．	－	－	$40 \cdot 75$	－	－	－	$\because:$
＂	二	二	30.5 88.0	1.0245	1.0255	$\cdots-1.0246$	$\cdots \quad . \quad: \quad . \quad \%$
＂$\quad 10$＂	－	－	－890				
II 407.				L．			

Date.	Latitude. N.	Longitude. W.	Temperature of the Sea Surface.	Specific Gravity at 60°. Water at $39^{\circ} \cdot 2=$ Unity .	-	
1876.	,	= ,	\checkmark			
Aug. 9 -	Off Ca	eechey	29.0	-		
" 10 -			$29 \cdot 0$	-		
" 11	Of Cap	urchison	$29 \cdot 0$	-		
" 12	Disc	Bay	$30 \cdot 0$	-		
" 19 -			$30 \cdot 0$	-		
" 20 -	8030	-	30.0	$1 \cdot 02380$		
" 21	$80 \quad 20$	7020	30.5	-		
" 22.	$80 \quad 4$	-	$30 \cdot 0$	1.02326		
, 23	$79 \quad 46$	Cape Fraser	20.0	1.02430		
$\because 24-$	7948	7132	$30 \cdot 0$	-		
, 25 -	7940	725	$30 \cdot 10$	$1 \cdot 02397$		
" 26 -	7940	725	29.0	-		
, 27 -	Cape Lo	Napoleon	$29 \cdot 5$	-		
" 28 .		Bay	$29 \cdot 5$	1.02178		
Sept. 2 -			29.0	-		
" 3, noon	Off Ca	Iuwkes	29.0	-		
" 4 -	All	Bay	$32 \cdot 0$	1-00217		
" 6 -			31.0	-		
" 7, noon	Wa	Shoal	29.0	-		
" 8 -	Off Vi	Head	29.5	1.02506		
" 9 -	Off Buc	n Strait	$29 \cdot 0$	1-0234"		
" 10, noon	7730	74 30	31.0	1.02416		
. 11 - ${ }^{-}$	$77 \quad 16$	$71 \cdot 5$	31.5	$1 \cdot 02410$		
"" " niidnight -			30.0	-		
", 12, noon	$\underset{\text { In W }}{\substack{\text { In }}}$	Sound	$30 \cdot 0$ $38 \cdot 0$	-		
" 13, noon -	${ }^{76} 33$	${ }^{70} 37$	32 80	$1 \cdot 02405$		
\% 14, 2 u.m.	-	-	29.5	-		
" ${ }^{\text {noin }}$	769	7316	$80 \cdot 5$	$1 \cdot 02385$		
" " 4 p.m.	-	-	$82 \cdot 0$ 81.5	-		
" " 12 " -	-	-	81.5	-		
" 15, + a.m.	-	-	30.5	-		
" " 10 " -	-	二	81.0	-		
" " noon -	74-56	75 -14	$34 \cdot 5$ 34.0	1.02447		
" "\% 6 p.m.	-	-	$34 \cdot 0$	-		
" " 8 "	-	-	$82 \cdot 0$	\cdots		
" 16, yoon	-	-	$80 \cdot 5$	-		
, 17, $10 \mathrm{a} . \mathrm{m}$.	-	-	30.5	-		
" ${ }^{\text {noon }}$	$73 \quad 40$	738	34.5	1-02304		
$" \quad \#{ }^{2} \mathrm{~m}$ p.m.	-	-	33.5	-		
" " ${ }^{12}$. ${ }^{6}$	-	-	34.0	-	Water phosphorescent.	
" 18, 9 a.m.	-	-	34.5	-		
$\because 06$	-	-	$32 \cdot 5$	-		
" " 9 "	-	-	35.5	$\overline{0240}$		
" " noon	$73 \quad 50$	67×4	$35 \cdot 0$	1.02440		
" " 5 p.m.	-	-	$32 \cdot 5$	-		
" " i "	-	-	$35 \cdot 0$	-		
" 19, 1 am.	-	-	33.5	-		
" " \quad noon miduight -	74 17	61 - 22	33.0 32.0	$1 \cdot 02382$		
" " 20, noon -	73 -39	5848	38.5	1.02416		
" ", 6 p.m. -	-	-	$34 \cdot 0$	-		
\cdots " ${ }^{8}$ " -	-	-	92.5	-		
" ${ }^{10}$ " -	-	-	$84 \cdot 0$	-		
" 21, noon -	$73 \quad 7$	$58 \quad 26$	33.5	$1 \cdot 02401$		
" " ${ }_{10}^{8} \mathrm{p} . \mathrm{m}$ -	-	-	31.5	-		
" $\quad 10$ " -	-	-	$32 \cdot 0$	-		
" 22, 4 a.m. -	$71-58$	60^{-19}	30.5 31.0	$1 \cdot \overline{02325}$		
" " ${ }^{8} 8$ p.m. ${ }^{\text {n }}$ -	-	${ }^{60}$	$33 \cdot 0$	-		
" " midnight -	-	-	$32 \cdot 0$	-		
" 23, 5 a.m.	-	-	$34 \cdot 0$	-		
" " 6 nour	71-12	57 37	36.0 86.5	1.02439		
" " noon	$71 \quad 12$	$57 \quad 37$	86.5	$1 \cdot 02439$		
1. 24, noon	$70 \quad 23$	$55 \quad 53$	$35 \cdot 5$	1•02372		-
, 25, noon	$69 \quad 20$	5426	$38 \cdot 0$	$1 \cdot 02436$		
" 26, noon	Godt	, Disko	38.5	-		

Observations on the Specific Gravity of the Sea Water, by Buchanan's (Challenger) Method and Chlorine Estimations. By Staff Surgeon Edward Lawton Moss, M.D., R.N.

Standard of unity water at $39^{\circ} .2$ Fahrenheit (4° centigrade).
The observations are arranged with regard to the latitude of the stations.
The thermometer used was, except when others are specified, a centigrade instrument supplied with the apparatus for carbonic acid estimations, verified in melting snow.
The colour scale refers to an arbitary scale of 18 tints; passing from pure blue at i to decided green at 18 .
The screw-well answered the purpose of a water glass. There was little difficulty in deciding on the tint. On the day the scale was completed, 13 individuals made independent estimations and all settled on two tints next cach other on the scale.
The first four observations connect with and check those made with Casella hydrometers. These observations are repeated in their order with regard to latitude. The cylinder to float Buchanan's hydrometer was too short for certain specific gravities, and a suitable substitute could not at once be extemporised.

Refe- rence to Notes.	Date.	Latitude N.	Longitude W.	(d.) Depth at which Water was taken.			Specific Gravity at t. Water at $39^{\circ} \cdot 2$ $=$ Unity.	Specific Gravity at $\boldsymbol{t}, \mathrm{o}$. Water at $39^{\circ} \cdot 2$ $=$ Unity.	Specific Gravity at 60°. Water at $39^{\circ} \cdot 2$ $=$ Unity.	Percentage of Chlorine.	Colour Scale.
		-	- ,		-	-					
	26 June 1875	5839	46 4	Surface	41	$48 \cdot 2$	$1 \cdot 02719$	$1 \cdot 02670$	1.02545	-	-
	23 July 1875	73	5656	"	35	50	1-02559	$1 \cdot 02470$	$1 \cdot 02361$	-	-
	24 "	$73 \quad 33$	$63 \quad 19$	"	30	$48 \cdot 2$	1.02249	1.02162	$1 \cdot 02037$	-	
	25 "	$75 \quad 20$	6619	"	98	38	$1 \cdot 02467$	$1 \cdot 02467$	$1 \cdot 02274$	-	-
	19 Oct. 1876	5544	8538	Surface	46	59	1-02744	1.02620	$1 \cdot 02607$	1.985	-
Note 1.	10 "	58	547	"	44	50.4	1.02722	1.02676	1.02572	-	9
	26 June 1875	58	$46 \quad 4$	"	41	$48 \cdot 2$	1-02719	$1 \cdot 02670$	1.02545	-	-
Note 2.	8 Oct. 1876	6156	$54 \quad 41$	"	42	57.6	1-02642	1-02499	$1 \cdot 02473$	-	11
	7 "	$63 \quad 42$	3432	"	38	53.6	$1 \cdot 02577$	1-02457	1-02386	-	11
	6 "	$64 \quad 46$	5629	\%	38	41.0	$1 \cdot 02543$	1.03531	$1 \cdot 02352$	-	-
	4 "	$66 \quad 40$	5430	"	38.7	$50 \cdot 0$	1-02632	$1 \cdot 02553$	1.02445	-	11
	3 "	$67 \quad 59$	$35 \quad 37$	"	38.7	46.4	1-0269i	1.02639	1.02500	-	13
Note 3.	s0 Sept. 1876	6838	Egedesminde Harbour.	"	38	50	$1 \cdot 02710$	1.02624	1.02520	1.986	16
	25	6920	5426	"	37	51.8	$1 \cdot 02629$	1-02527	1.02436	-	15
Note 4.	24 "	6945	-	"	37	$50 \cdot 9$	$1 \cdot 02651$	1.02560	1.08458	1-929	-
Note 5.	24 *	$70 \quad 23$	$55 \quad 53$	"	36	46	1.02572	1.02513	$1 \cdot 02372$	-	-
Note 6.	23	$71 \quad 12$	$37 \quad 37$	"	36. 5	46.8	$1 \cdot 02636$	$1 \cdot 02574$	1.02439	-	6
	22 "	7158	$60 \quad 19$	"	32.0	52.2	1.02535	$1 \cdot 02414$	1.03325	-	-
	23 July 1875	73	5656	"	35	50	$1 \cdot 09559$	1.02470	1.02361	-	-
	21 Sept. 1876	$73 \quad 7$	5826	"	33-8	$49 \cdot 6$	$1 \cdot 02613$	$1 \cdot 02312$	1.02401	-	-
Note 7.	20 "	$\begin{array}{ll}73 & 33\end{array}$	38 4צ	"	34	$52 \cdot 2$	$1 \cdot 02628$	$1 \cdot 02503$	$1 \cdot 02416$	-	6
	16 "	7333	$76 \quad 39$	"	31.5	56.8	1 -02516	$1 \cdot 02338$	1.02300	-	15
	24 July 1875	73	$63 \quad 19$	"	$30 \cdot 0$	$48 \cdot 2$	$1 \cdot 02249$	$1 \cdot 08162$	$1 \cdot 02037$	-	-
	17 Sept. 1876	7340	737	n	$30 \cdot 7$	44.6	1.02520	$1 \cdot 02460$	$1 \cdot 02304$	-	-
	18 "	7350	$67 \quad 44$	"	$35 \cdot 6$	$48 \cdot 2$	$1 \cdot 02648$	$1 \cdot 02564$	1.02440	-	11
Note 8.	19 "	7419	6122	"	32.9	52•7	1-02591	$1 \cdot 02460$	1-02382	-	11

Note 1.-Nostoc spheres common.
Note 2.-After 8th October 1876, in lat. $61^{\circ} 56^{\prime}$ N., long. $54^{\circ} 41^{\prime}$ W. on the homeward voyage no Ceratium was found.
Note 3.-Full of Cydippe.
Note 4.-This was the ncurest station to the site of Rink's sample of July 1849, examined by Forchhammer.

Note 5.-The towing net yielded Linacina, Oikoplewra, and Sayitta.
Note 6.-Filter choked with Caratins tripas.
Note 7.-Limacina and Sagitta common,
Note 8.-Cotton filter choked with Ceratius tripos. This Peridinean is extremely plontiful in these seas.

	Dite.	Latitude N .	Longitude w.	(d.) Depth at which Water was taken.			Specitic Gravity at t. Water at $39^{\circ} \cdot 2$ $=$ Unity.	Specific Gravity at t, o. Water at $39^{\circ} \cdot 2$ $=$ Unity.	Specific Gravity at 60°. Water at $39^{\circ} \cdot 2$ $=$ Unity.		$\left\{\begin{array}{l} \text { Colour } \\ \text { scale. } \end{array}\right.$
Note 9.				Surface	\bigcirc	-					
	15 Sept. 1876	75	75 5		$34 \cdot 4$	$50 \cdot 4$	$1 \cdot 02650$	1-02553	1.02447	-	-
	25 July 1875	$75 \quad 20$	$66 \quad 19$		38	38	$1 \cdot 02467$	1-02467	$1 \cdot 02274$	-	-
	14 Sept. 1876	$76 \quad 9$	$73 \quad 16$		so	56.8	$1 \cdot 02602$	$1 \cdot 02422$	1-02385	-	11
	18	$76 \quad 33$	$70 \quad 37$		32	48.3	1.02620	1.02503	$1 \cdot 02405$		15
Note 10.	11	$76 \quad 16$	715		$30 \cdot 0$	57.2	1.02626	$1 \cdot 02444$	$1 \cdot 02410$	-	-
	11	$77 \quad 30$	$74 \quad 30$	"	$30 \cdot 0$	52.2	1 -02628	$1 \cdot 02503$	1-02416	-	-
Note 11.	4	78	$\begin{aligned} & \text { Off Leconte } \\ & \text { Island. } \end{aligned}$		29.8	64.9	1-02668	$1 \cdot 02539$	1-02450	-	16
	1 Aug. 1875	7842	1'ayer Harbour	"	32	$45 \cdot 5$	1.02655	$1 \cdot 02590$	1-02445	-	15
	2 ,				32	$42 \cdot 8$	1.02630	1-02580	$1 \cdot 02420$	-	15
	$\begin{array}{cc} 5 & "_{\text {A.M. }} \end{array}$	$78 \quad 58$	7546	"	33.8	37.9	$1 \cdot 02507$	$1 \cdot 04492$	$1 \cdot 02301$	-	17
	6 "	$79 \quad 0$	760	"	31.6	36.0	$1 \cdot 02450$	$1 \cdot 02439$	$1 \cdot 02339$	-	-
Note 12.	9 Sept. 1876	796	Off AlbertILead	"	28.9	$46 \cdot 4$	1.02558	1.02486	$1 \cdot 02347$	-	11
Note 13.	8 10 Ang. 1875	$79 \quad 15$	Off Victoria Head.	56 fatholus	30	$46 \cdot 8$	1•02719	$1 \cdot 03641$	1.08506	$1 \cdot 97$	-
		79	75	Surface	31.6	$33 \cdot 8$	$1 \cdot 00784$	$1 \cdot 00600$	$1 \cdot 00578$	-	13
Note 14.	$10 \quad \ddot{4} 4$			15 fathoms	$29 \cdot 5$	$50 \cdot 0$	1-02629	$1 \cdot 02523$	1-02413	1.89	-
		\%9 29	Allman Bay -	Surface	31.8	46.0	$1 \cdot 00493$	$1 \cdot 00358$	$1 \cdot 00217$	-	-
Note 15. Do.		,		2 fathoms 3 fathoms	30	51.8	1-01955	1-01835	$1 \cdot 01743$	-	-
					$29 \cdot 7$	57.2	$1 \cdot 02600$	$1 \cdot 02422$	$1 \cdot 02388$	-	-
Note 16.	$\begin{aligned} & 31 \text { Aug. 18:6 } \\ & 28 \quad " \end{aligned}$		$73 \quad 15$Dobbin Bay(cbb tide.)	115 fathoms	$30 \cdot 9$	54.3	$1 \cdot 02779$	1-02634	$1 \cdot 02567$	2-019	-
		$79 \quad 38$		9 feet	30.2	$56 \cdot 1$	$1 \cdot 02389$	$1 \cdot 102284$	1.09178	-	15
Note 17.	$"$$"$16 Aug. 1875(9 p.m.)17 (11 a.m.)25 Aug. 1876	$\begin{aligned} & " \\ & " \end{aligned}$		20 fathoms so fathoms	$90 \cdot 3$	56.3	1-02677	$1 \cdot 02506$	$1 \cdot 09462$	-	-
					$29 \cdot 8$	$56 \cdot 1$	1-027s0	$1 \cdot 02553$	$1 \cdot 02307$	-	-
		$79 \quad 37$	$72 \quad 25$	Surface	$30 \cdot 2$	$30 \cdot 2$	$1 \cdot 02588$	1-02588	$1 \cdot 02375$	-	16
		"		70 fathoms	$30 \cdot 9$		$1 \cdot 09500$	1-62500	$1 \cdot 02288$	-	16
			$\begin{array}{cc} 72 & 5 \\ \text { Off Cape Fraser } \end{array}$		29.5	56.8	$1 \cdot 02612$$1 \cdot 02643$	$\begin{aligned} & 1 \cdot 02443 \\ & 1 \cdot 02446 \end{aligned}$	1-02397		-
Note 18. Note 19.	23				$30 \cdot 0$$30 \cdot 0$				1•02480	1.88	
	"	"	Off Cape Fraser "			$55 \cdot 0$29.8	1.02761	1 -02606	$1 \cdot 03547$	1.99	-
	19 Aug. 1876 ($10 \mathrm{p} . \mathrm{m}$.	79 50	Maury Bay -	70 fathoms	29.8		1-02558	$1 \cdot 02558$	$1 \cdot 02345$	-	15
	$21 \text { (12 p.m.) }$	$80 \quad 4$	$70 \quad 10$ Near Crozier Island.	"	20-5	29.5	$1 \cdot 02.541$	$1 \cdot 02541$	1.02326	-	16
	20 "	$80 \quad 30$		"	$\begin{aligned} & 30 \cdot 0 \\ & \mathbf{2 9} \cdot 1 \end{aligned}$	$\begin{aligned} & 43 \cdot 7 \\ & 29 \cdot 1 \end{aligned}$				-	17
	$\begin{aligned} & 22 \text { Aug. } 1875 \\ & \text { (11 p.m.) } \end{aligned}$	$80 \quad 38$	Off Franklin Island.	Surface						-	17

Note 9.-Water phosphorencent contains numerous Ceratius tripos and Chatocerce. Many iceberge near.

Note 10,-Contains Oikupletrr, Fritillaria, Corutium, and Awned Dittonatica.

Note 11.-Wull of Diutonaccous needles and Ceratius tripos.
Note 1g.-A few Diatomuecous ueedles.
Note 13. - A bottled sample of this water examined in Luboratory of Royal Dublin Suciety containerd-

$$
\begin{aligned}
& 1-97 \text { per cent, of chlorime. Co-efficient 1-94. } \\
& \text { 0.219 " sulphuric acid. } \\
& \text { 3•792 } \quad \text {, solids. } \\
& \text { Specific gravity by bottle } 1 \cdot 02621 \text { at } 59^{\prime} 99^{\prime} \text {, unity } 59^{\circ} 9^{\circ} \text {. } \\
& " \quad, \quad 1 \cdot 025316 \text { at } 59^{\circ} 99^{\prime} \text {, unity } 39^{\circ} 2^{\prime} \text {. }
\end{aligned}
$$

Note 14.-This sample was retained and examined on, th October, when the apparatus for chlorine estimations was first available.

Notes 15.-No results in cotton filter after 1.5 litre of each lad pusseci through.

Note 16.-Water has an actinic cloudiness from extremely minute muld which conld not he filterel out through cotton filter; 1.5 litre tiltered through microscope feld of cotton yicldel only one organism; the minute cup-chaped end of a Chatoceros.

Note 17.-Full of Diatomaccous needles, thus differing from luyers above and below.

Note 18.-150ee of muddy water came up in the collapsed tabe of Buchanan's bottle lowered to 112 fathoms; this water gave $1 \cdot 92$ per cent. of chlorine, but was too small a quantity to estimate specific gravity.

Note 19.-A quantity of water too small to extimate specific gravity came up in a magnotic current indicator from 70 fathoms, an additional quuntity was obtained from 80 fathoms in a common bottle whose cork had resisted the pressure at 50 fathons, and both quantities united gave results noted on 24th Augnst ; each sample having beeu found to give the same results by Casella hydrometer, No. 742, i.c., $1 \cdot 027$ at 60°.

Note 20.-Tide ebbing north under floe 4 feet 2 inches thick; several Cydippes seen.

Site 21.-Four Copepoda captured with towing net hauled up and down.

Note 22.-A very small phosphorescent Pleurobranchia caurht in the tow net
'The temperature $28^{\circ} 2^{\prime}$ was obtained by No. 9 registering Casellin (R.C.) thermometer lowered to depth of 4 feet for 25 minutes.

Note 28.-The temperature of the snow-hut over the "fire hole" where this sample was obtained was 13°. So that minute plates of ice at once formed on the sides of the beaker and floated to the top. When they melted (at $28^{\circ} 9^{\prime}$) the resulting water floated on top like spirit, and had to be shaken up before observations for specific gravity estimations could be made.

Note 24.-The thennometer usel was a Negreti and Zambra reversible, and it registered $28^{\circ} 3^{\prime}$.

Note 25.-The fire-hole had been closed since early March and this sample was therefore obtained from the narrow bole duy to find thickness of floe; the sca water rose so slowly that it had time to part with some of its water to the sides of the hole.

Note 26.-Casella hydrometers, Nos. 811 and 740, give at 60° with this water $1 \cdot 0256$ and $1 \cdot 0255$ respectively. Standard being water at 60°. At standarl 39° these specific gravities would be $1 \cdot 0247$ and $1 \cdot 0246$.
Commander Markham used these two hydrometers in obtaining $1-0268$ t. $28^{\circ} 8^{\prime}$ and $1-0262 t .29^{\circ}$, at lat. $83^{\circ} 19^{\prime}$ N. on the 11 th May 1876. The latter specific gravities corrected for t. of observation, and referred to standard at 39° give $1 \cdot 0246$ and 1.0241 .

Note 27.-The two first attempts to raise water from this depth failed, owing to the light surface water freezing in the neck and funnel of Buchanan's bottle cooled by the temperature of deeper water. I attribute the lighter specific gravity of this sample to the intrusion of a little ice.

Note 28.-Water at 29° extends to within 9 feet of the surface and is covered by that depth of water at 32°.

Nute 29.-Re-examined in the Laboratory of the Royal Dublin Society, a sample of this water sealed with Canada balsam in a marked stoppered bottle possessed a specific gravity of 1.025567 , by specific gravity bottle $t .60^{\circ}$. Standard $t .60^{\circ}$, this referred to standard at $39^{\circ} 2^{\prime}=1 \cdot 02467^{\circ}$. Its chlorine was $1-9$ per cent. co-efficient $1-98$.
Total solids 3-761.
Sulpharic acid -2146.'

Surface and Deep Sea Temperatures.-H.M.S. "Alert" and " Discovery."

Making due allowance for instrumental errors, and for the inexperience of some of the Observers, these independent Sea Temperature observations, taken on the west shores of Smith Somid, demonstrate the existence there of a stratum of cold Arctic water. At a temperature of about $29^{\circ} \cdot 0$ lying between the locally heated surlace water and a depth of from 20 to 30 fathoms, flowing to the southward during the summer months.

They also denote a wam underlying stratum at a temperature of about 30° ().
The latter water was not found near Floeberg Beach, but coupled with the observations made in 1572 by the members of the Polaris Expedition, when a temperature of $32^{\circ} \cdot s$ is reported to have been found at a depth of 203 fathoms in Lat. $80^{\circ} 44^{\prime} \mathrm{N}$., midway between Franklin and Hans Islands and a temperature of $32^{\circ} \cdot 1$ at a depth of 17 fathoms in Polaris Bay, it would appear that the warm underlying water forces itself to the nothward on the east side of Robeson Channel. Whether it enters the Polar Sea or no will depend on the depth of water at the north end of that channel.

The observations also denote that water at a lower temperature than $28^{\circ} \cdot \mathrm{S}$ does not exist in Smith Sound or Baffin Bay above a depth of 275 fathoms.

The coldest portion of the Aretic water appears not to affect that near Hayes Sound to so great an extent as that in the direct channel.

The specific gravity estimations are reduced to a temperature of 60^{n}; water at $39^{\circ} \cdot 2=$ unity.

1. 27th June 1875. "Alert." Lat. $59^{\circ} 36^{\prime}$ N. Long. $48^{\circ} 46^{\prime}$ IV. Millar Casella Thermumeter--Off Cape Desolation.

Reading before Immer:on.		Depth.	Temperature of Air $4^{\circ} \cdot 0$.			
		Reading on Recovery.	Minimum Temperature of Water between the surface and lepth denoted.			
Maximum.	Minimmı.			Maximum.	Minimum.	
\bigcirc	$\}$ recorded. Not $\{$		Sea surface - -5 fathoms -	-	-	$\stackrel{\circ}{40 \cdot 5}$
$52 \cdot 0$		52.0)		$40 \cdot 0$	$40 \cdot 0$	
$52 \cdot 0$		15	$52 \cdot 0$	$38 \cdot 5$	$38 \cdot 5$	
$52 \cdot 0$		220	$52 \cdot 0$	$38 \cdot 0$	38.0	

2. Ist July 1875. "Alert." Lat. $63^{\circ} 16^{\prime}$ N. Long. $52^{\circ} 39^{\prime}$ W. Millar Casella Thermometer.-Off Fiskernæs.

Realing before Immervion.		Depth.	Temperature of Air $39^{\circ} \cdot 0$.			
		Reading on Recovery.	Minimum Temperature of Water beiween the Sarface and Depth denoted.			
Maximum.	Мinimum.			Maximum.	Minimum.	
\bigcirc	-		Sea surface	\bigcirc	\bigcirc	$\stackrel{\circ}{34 \cdot 5}$
$49 \cdot 0$	Not recorded.	130 fathoms	$48 \cdot 0$	$33 \cdot 5$	$33 \cdot 5$	

At a position seven miles farther North the sea surface was $38^{\circ} 0$.
3. 24th September 1876. "Alert." Lat. $70^{\circ} 25^{\prime}$ N. Long. $56^{\circ} 0^{\prime} \mathrm{W}$. Negretti and Zambra Thermometer.-O'f the N.W. point of Disko Island.

4. 22nd Scptember 1876. "Alert." Lat. $71^{\circ} 54^{\prime}$ N. Long. $60^{\circ} 18^{\prime}$ W. NegrettiZambra Thermometer.-On the eastern edge of the Baffin Bay west pack.

The observation denoting a temperature of $31^{\circ} \cdot 2$ at 10 fathoms is questionable; a second observation gave a temperature of $30^{\circ} \cdot 5$.
5. 26th July 1875. "Alert." Lat. $76^{\circ} 35^{\prime}$ N. Long. $71^{\circ} 40^{\prime}$ W. Millar-Casella Thermometer.-20 miles S.E. of the Cary Islands.

The reading $29^{\circ} .8$ at 30 fathoms appears to be in error.
The thermometer lowered to 20 fathoms must have passed through the upper stratum of water warmer thau $38^{\circ} \cdot 5$, too quickly to record it.
6. At the same time and position. Negretti-Zambra Thermometer.

Temperature at 100 fathoms - - $29^{\circ} \cdot 0$
Compared with the temperatures obtained elsewhere this appears to be in crror.
7. 26th July 1875. "Discovery." Lat. $76^{\circ} 40^{\prime}$ N. Long. $72^{\circ} 15^{\prime}$ W. Nature of thermometer not recorded.-A short distance from the shore at Cary Islands.

> Minimum temperature registered by a thermoneter lowered $$
\begin{array}{lll}32 \text { fathoms } 32^{\circ} \cdot 0 & \text { (?) Bottom. }\end{array}
$$

This observation differs considerably from the other recorded observations.
H 407.

ع. 6th August 1875. "Alert." Lat. $79^{\circ} 0^{\prime}$ N. Long. $76^{\circ} 0^{\prime}$ W. Millar-Casella Thermometer.-In Hayes Sound.

Reading before Immersion.		Depth.	- Temperature of the Air $40^{\circ} \cdot 5$.			
		Reading on Recovery.	Mininum Temperature of Water between the Surfac and Depth denoted.			
Maximum.	Minimum.			Maximum.	Minimum.	
$\stackrel{\square}{-}$	\bigcirc		Sea surface	-	-	${ }^{\circ} \mathrm{O} \cdot 0 \quad$ Sp. gr. 1-02239
$54 \cdot 0$	$54 \cdot 5$	20 fathoms -	$54 \cdot 5$	$30 \cdot 5$	30.5	
$59 \cdot 5$	$59 \cdot 5$	40 " -	$59 \cdot 5$	$28 \cdot 8$	$28 \cdot 8$	
$58 \cdot 0$	$58 \cdot 0$	57 "	$58 \cdot 0$	$29 \cdot 0$	$29 \cdot 0$ Bottom.	
$33 \cdot 5$	$33 \cdot 5$	Ditto	$33 \cdot 8$	$29 \cdot 5$	29.5	

"Discovery" near the same position. Nature of thermometers not recorded.
Minimum temperature registered by thermometer lowered 12 fathoms $30^{\circ} \cdot 5$ Bottom.

$$
\text { Ditto } \quad \text { ditto } \quad \text { ditto } \quad 42 \quad \% \quad 29^{\circ} \cdot 5 \text { Bottom. }
$$

The reading at 40,42 , and 57 fathoms is probably the temperature of an upper stratum which the instruments had passed through.

The difference in half a degree in the two thermometers is probably due to the instruments not remaining in the cold stratum an equal time.
9. "D Discovery." Sth August 1875. Lat. $79^{\circ} 15^{\prime \prime}$ N. Long. $74^{\circ} 30^{\prime}$ W. Nature of Thermometer not recorded.-Near Cape Victoria.

$$
\begin{array}{lll}
\text { Temperature of air } & - & - \\
\# & \text { of sea surface } & -
\end{array} 2^{\circ} \cdot 5
$$

Minimum temperature registered by a thermometer lowered 29 fathoms $29^{\circ} \cdot 75$ Bottom.
10. "Discovery." Sth September 1876. Lat. 79° 16". Long. $74^{\circ} 30^{\prime}$ W. NegrettiZambra Thermometer.-North of Cape Victoria.

11. 7th August 1875. "Discovery." Lat. $79^{\circ} 17^{\prime}$ N. Long. $74^{\circ} 15^{\prime}$ W. Nature of thermometer not recorded.-In pack 6 miles East of Cape Victoria.

$$
\begin{gathered}
\text { Temperature of air } \\
, \quad \text { of sea surface }
\end{gathered} \quad-\quad-\quad 41^{\circ} 00
$$

Minimum temperature recorded by a thermometer lowered 48 fathoms $31^{\circ} .5$ Bottom. This obs rvation appears doubtful.
12. 9th August. "Alert." Lat. $79^{\circ} 24^{\prime}$ W. Long. $74^{\circ} 30^{\prime}$ W. Millar-Casella Thermometer.-Walrus Shoal.

Reading before Immersion.		Depth.	Temperature of the Air $\mathbf{S c}^{\circ} \cdot 0$.			
		Reading on Recovery.	Minimun Temperature of Water between the Surface and Depth denoted.			
Maximum.	Minimum.			Maximum.	Minimum.	
$\stackrel{\circ}{32 \cdot 8}$	$\stackrel{\circ}{32 \cdot 8}$		Sea surface - 46 fathoms --	-	$\frac{\circ}{29 \cdot 5}$	$\begin{aligned} & 32 \cdot 0 \text { Sp.gr. } 1 \cdot 00578 \\ & 29 \cdot 5 \text { Bottom. } \end{aligned}$

10th August. "Alert." Same position. Nature of thermometer not recorded.
Temperature at 15 fathoms

- $29^{\circ} \cdot{ }^{\circ}$. Bottom. Sp.gr. 102413 Per-centage of chlorine - . . 1.89

13. 7th September 1876, "Discovery.". Lat. $79^{\circ} 24^{\prime}$ N. Long. $74^{\circ} 30^{\prime}$ W. NegrettiZambra Thermometer.-Near Walrus Shoal.

Temperature of air	of sea surface		
$\#$	-		
$\#$	at 15 fathoms	\quad	$30^{\circ} \cdot 0$
:---			

14. 4th September 1876. "Alert." Lat. $79^{\circ} 29^{\prime}$ N. Long. $74^{\circ} 10^{\prime}$ W. MillarCasella Thermometer.-Mouth of Allman Bay.

Reading before Immersion.		Depth.	Temperature of the Air $34^{\circ} \cdot 0$.				
		Reading on Recovery.	Minimum Temperature of Water between the Surface and Depth denoted.				
Maximum.	Minimum.				Maximum.	Minimum.	
\bigcirc	$\stackrel{\circ}{-}$		Sea surface -	- .	\because	$\stackrel{\circ}{0}$	Sp. gr.l -00217
$29 \cdot 5$	$30 \cdot 0$	1 fathom	$30 \cdot 0$	$30 \cdot 0$	$30 \cdot 0$		
$29 \cdot 0$	$29 \cdot 2$	2 "	$30 \cdot 0$	$29 \cdot 2$	$30 \cdot 0$	" 1.01743	
$38 \cdot 8$	$39 \cdot 0$	$3 \cdots \cdots$	38.8 .	29. 5	$29 \cdot 5$	\% 1.02388	

At the same time and position.
Temperature by Negretti-Zambra Thermometer at 10 fathoms $29^{\circ} \cdot 2$ Ditto ". ditto :
15. "Alert" and "Discovery." 31st August and 1st September 1876. Lat. $79^{\circ} 34^{\prime}$ N. Long. $73^{\circ} .15^{\prime} \mathrm{W}$. Negretti-Zambra Thermometer. - West of Washington Irving Island, Dobbin Bay.

16. "Alert." 28th August 1876. Lat. $79^{\circ} 38^{\prime}$ N. Long. 72ㅇ․ 57^{\prime} W, Negretti-Zambra-Thermometer-Cape Hilgard, Dobbin Bay.

Sp. gr: 102178 at 9 feet

Temperature of sea surface $30^{\circ} \cdot 0$

" $1.02462,20$ fathoms. \quad, \quad at 30 fathoms $29^{\circ} 0_{0}$

M 2
17. "Alert." 29th August 1876. Same position. Moored to a grounded iceberg.

Temperature	of air		$34^{\circ} \cdot 0$	N. Z. thermometer.
"	of sea surface	-	- $30^{\circ} \cdot 0$	
"	at 10 fathoms	-	- $29^{\circ} \cdot 5$	
"	at 20	-	- $29^{\circ} \cdot 2$	
"	at 30	-	- $29^{\circ} \cdot 2$	
"	at 39	-	- $29^{\circ} \cdot 5$	Bottom.

18. "Alert." 25th August 1876. Lat. $79^{\circ} 40^{\prime}$ N. Long. $72^{\circ} 0^{\prime}$ W. NegrettiZambra Thermometer.-2 miles East of Cape Louis Napoleon.

Temperature of air - - - $38^{\circ} .0$
Sp. gr. $1 \cdot 02397$.

	of sea surface	-	-	$29^{\circ} \cdot 5$	
$"$	at 15 fathoms	-	-	$29^{\circ} \cdot 0$	
$"$	at 25		-	-	$29^{\circ} \cdot 2$

"Discovery" at the same position.
19. "Alert." 23rd August 1876. Lat. $79^{\circ} 45^{\prime}$ N. Long. $71^{\circ} 20^{\prime}$ W. NegrettiZambra Thermometer.-Off Cape Fraser, 2 miles from shore.

Temperature of air			
"	of sea surface	-	- $29^{\circ} \cdot 0$
"	at 10 fathoms	-	$29^{\circ} \cdot 0$
"	at 30	-	$29^{\circ} \cdot 2$
"	at 35	-	$29^{\circ} 8$
"	at 40)	-	$30^{\circ} \cdot 0$
"	at 45		$30^{\circ} \cdot 0$

At the same time and position a Millar-Casella Thermometer was used.

Reading before Immersion.		Deptl.	Reading on Recovery.	
Maximum.	Minimum.		Maximum.	Minimum.
$38^{\circ} \cdot 8$	$38^{\text {c }}$ - 8	47 fathoms - -	$38^{\circ} \cdot 8$	$29^{\circ} \cdot 2$

This thermometer could not indicate the warm stratum of water at the lowest depth; but the observation agrees precisely with the record above that no colder water exists.

At the same time and position with a Negretti-Zambra Thermometer.

	Per-centage of Chlorine.	Specific gravity.	Depth.	Temperature.		
	1.88	1.02430	Surface	.	-	$30^{\circ} \cdot 0$
1.99	1.02547	70 fathoms	.	-	$30^{\circ} \cdot 0$	

20. "Alert." 19th August 1875. Lat. $79^{\circ} 50^{\prime}$ N. Long. $71^{\circ} 20^{\prime}$ W. Nature of Thermometer not recorded.-Near Cape John Barrow.

Temperature of air

- $42^{\circ} \cdot 0$
$\begin{array}{llll}" \quad \text { at sea surface } & \text { at } 22 \text { fathoms } \quad \text { - } & 29^{\circ} \cdot 0 & \text { Sp.gr. } 1 \cdot 02345 \\ " & -29^{\circ} \cdot 5 & \text { Bottom. }\end{array}$

21. "Discovery.". 27th March and 10th August 1876. Lat. $81^{\circ} 44^{\prime}$ N. Long. $65^{\circ} 3^{\prime}$.

Negretti-Zambra Thermometer.-Discovery Bay.

		Specific gravity,		Deptl.			'Temperature.		-		
		1.023921.02398		Surface - 7 fathoms -			$\begin{aligned} & 29^{\circ} \cdot 5 \\ & 28^{\circ} \cdot 4 \end{aligned}$				
Date.	27th Mar.	28th Mar.				1st July.	2nd Aug.	10th Aug.	Winter. Nature of Thermometer not recorded.		
						1st Jan.			1st Feb.		
Surface -	$\stackrel{0}{29} 0$	\circ 28.8	28.5	30.0	29.0		$\stackrel{\circ}{0.5}$	34.5	${ }^{\circ} \mathrm{B} \cdot 8$	-	$\stackrel{\circ}{27.5}$
3 fathoms -	-	-	-	-	-	-	-	$29 \cdot 2$	-	-	
15 "	-	29.5	$29 \cdot 5$	-	-	-	$29 \cdot 8$ Bottom.	-	-	-	
21 \% -	-	-	-	$30 \cdot 0$ Bottom.	$29 \cdot 8$. Bottom.	-	-		-	28.5	
24 "	-	-	-	-	-	-			$29 \cdot 0$	-	
25 "	-	$29 \cdot 8$ Bottom.	-	-	-	$29 \cdot 5$ Bottom.	-	-	-	-	
35 "	-	-	$29 \cdot 8$	-	-	-	-	-	-	-	
45 "	-	-	-	-	-	-	-	$29 \cdot 8$ Bottom.	-	-	
50 " -	30.0	-	$30 \cdot 0$	-	-	-		$29 \cdot 8$ Another position.	-	-	
65 "	-	\cdots	$30 \cdot 2$ Bottom.	-	-	-		-	-	-	

The observations made between the 28th March and 2nd August at depths between 15 and 30 fathoms are remarkable as denoting the existence of water about half a degree warmer than that found in the same neighbourhood during the winter and on the 10th August; and also to that found in Robeson and Kennedy Cbannel to the northward and southward.

If no instrumental error has to be applied it would appear that the north running warm bottom current enters Discovery Bay during the spring; and that the cold arctic surface current only enters the Bay occasionally.
22. "Alert." 3rd August 1876. Lat. $81^{\circ} 53^{\prime}$ N. Long. $62^{\circ} 50^{\prime}$ W. NegrettiZambra Thermometer.-Close to the shore ice near Cape Beechey.

Sp. gr. 1.02383.
Temperature of the air

- $35^{\circ} \cdot 0$

23. "Alert." 2nd August 1876. Lat. $82^{\circ} 14^{\prime}$ N. Long. $61^{\circ} 0^{\prime}$ W. Negretti-Zambra.Thermometer.-One mile from the shore off Cape Union.

Temperature of the air
Sp. gr. 1•02443.

$\#$	of sea surface	-	-	$30^{\circ} \cdot 0$	
$\#$	at 5 fathoms	-	-	$29^{\circ} \cdot 5$	
$\#$	at $40 \Longrightarrow$	-	-	$29^{\circ} \cdot 0$	Bottom.

At this time a strong under current was setting to the southward while the water at a depth of 5 fathoms was stationary.
24. Lieut. Egerton. 28th May. Lat. $82^{\circ} 23^{\prime}$ N. Long. $61^{\circ} 5^{\prime}$ W. Millar-Casella Thermometer:-Half a mile from the land near Black Cape.

Realing before lumersion.		Depth.	Temperature of the Air $22^{\circ} \cdot 0$.			
		Reading on Recovery.	Minimum Temperature of Water between Sirface and Depth denoted.			
Maximum.	Minimum.			Maximum.	Minimum.	
$\stackrel{3}{*}$	\square			${ }^{\circ}$	\bigcirc	\bigcirc
$24 \cdot 0$	$25 \cdot 0$	2 fathoms	$28 \cdot 5$	$29 \cdot 1$	28•5* Sp.gr. 1-02472	
$29 \cdot 5$	$29 \cdot 2$	5 "	$29 \cdot 0$	$29 \cdot 2$	$29 \cdot 2$	
22.8	$23 \cdot 8$	10 "	$28 \cdot 3$	$23 \cdot 8$	$28 \cdot 3 \dagger$	
$22 \cdot 2$	$21 \cdot 2$	20 " -	$29 \cdot 0$	21.2	29-0	

* Per-centage of chlorine - 1.93 .
\ddagger This observation is eridently untrustworthy except as indicating that water colder than $88^{\circ} \cdot 3$ does not exist.
At the same time and position a Negretti-Zambra Thermometer at 30 fathoms recorded a temperature of $29^{\circ} \cdot 4$ near the bottom.

The current was setting to the southward during the observations.
25. 19th July 1876. "Alert."; Lat. $82^{\circ} 27^{\prime}$ N. Long. $61^{\circ} 20^{\prime}$ W. Negretti-Zambra Thermometer.-Half a mile from the shore near Floeberg Beach through a crack in the ice.

Per-centare of Chlorine: $0 \cdot 04$		$\begin{gathered} \text { Specific } \\ \text { Gravity. } \\ 1 \cdot 00092 \end{gathered}$					
	-		Temperature of air _ - $36^{\circ} \cdot 0$				
			\%	of sea surface - $32^{\circ} \cdot 5$			
			"	at $1 \frac{1}{3}$ fathoms		- $29^{\circ} 0$	
			\because	at $2 \frac{1}{2}$	3	- $29^{\circ} \cdot 0$	
			\because	at 10	9	- $29^{\circ} \cdot 0$	
			"	at 20	"	- $29^{\circ} \cdot 0$	
1.89			"	at 30	"	- $29^{\circ} \cdot 0$	
$1.897\}$	$1 \cdot 02413$	1.02458-1.02467	9	at 46	"	- $29^{\circ} 0$	Bottom.

These obscrvations were made by experienced observers.
26. 9th July 1876. "Alert." Lat. $82^{\circ} 27^{\prime}$ N. Long. $61^{\circ} 24^{\prime}$ W. Negretti-Zambra Thermometer.-Near the grounded ice at Floeberg Beach through a crack in the ice.

The great difference in temperature at 9 and 12 feet below the surface is due to the former being nearly fresh water from the melting of the ice and snow, and the latter being salt water. The difference in specific gravity also denotes the freshness of the surface water.
27. Temperatures of sea water obtained at Floeberg Beach between 19th December 1875 and 21 st June 1876. Negretti-Zambra Thermometer.

Dr. Moss, Observer.

	12th Oct.	1st Nov.	29th Nov.	3rd Dec.	24th Dec.	30th Dec.	27th Jan.	6th Mar.
Surface -	-	0	\circ	\circ	\circ	\circ	\circ	\circ
6 to 8 feet -	29.1	28.5	28.3	28.2	28.3	-	-	-
27 feet -	-	-	-	-	-	28.3	-	-

G. S. Nares, Observer.

* Previons to the 23 rd May the highest daily mean temperature of the air in the shade was $24^{\circ} \cdot 0$. On only forr days had the
temperature risen above $28^{\circ} \cdot 5$; but the temperature in the sun had been above 28° on nine previous days temperature risen above $28^{\circ} \cdot 5$; but the temperature in the sun had been above 28° on nine previous days.

28. Captain Markham. 11th May 1876. Lat. $83^{\circ} 20^{\prime} 26^{\prime \prime}$ N. Long. $63^{\circ} \cdot 5^{\prime}$ W. Millar-Casella Thermometer.
Temperature at surface

- $28^{\circ} \cdot 5$

Reading of thermometer after recovery from 10 fathoms

- $28^{\circ} \cdot 5$

20	$"$
30	$"$
40	$"$
50	$"$
60	$"$
72	$"$

- $28^{\circ} \cdot 5$
- $28^{\circ} \cdot 8$
- $28^{\circ} \cdot 8$
$-28^{\circ} \cdot 8$

و ッ

- $28^{\circ} \cdot 8$
- $28^{\circ} \cdot 8$ Bottom.

The specific gravity of two samples of surface water, corrected for a
temperature of 60°, water at $39^{\circ} \cdot 2=$ unity
$1.0246,1 \cdot 0241^{\prime}$

Remarks on the Weather experienced by H.M.S. "Alert" and " Discovery " while North of Smith Sound, 1875-1876.

Augusr 1875.

July 28th.—On the 28th July 1875, H.M.S. "Alert" and "Discovery," on an exploring voyage towards the North Pole, arrived at the entrance to Smith Sound, and anchored in a small bay on the south side of Sunrise Point, Hartstene Bay.

The barometer had been falling steadily from $30 \cdot 20$ inches on the 26 th, and was then 29.90 inches with a northerly wind ; temperature of the air ranging between 42° and 46°.

July 29th.—On the 29th Smith Sound was crossed. On approaching Cape Isabella, the barometer having fallen to 29.75 inches, a squall from the S.W. set in, accompanied with snow; the barometer rising slightly, and then remaining steady. By the morning of the 30th the weather was calm, but misty overhead. In the afternoon the two ships anchored at Port Payer, the temperature of the air ranging between 32° and 36°.

August 2nd.-During the night the barometer again fell slightly with northerly winds, accompanied with cloudy weather and snow. This lasted until the morning of the 2 nd August, when the barometer was $29 \cdot 47$ inches. A light air from the southward, lasting eight hours, with fog, then preceded calm weather, and a rising barometer.

August 3rd.-On the 3rd, 4th, and 5th, winds from the S.W. were experienced, with a stationary barometer at 29.6 inches, the weather misty, temperature between 34° and 41°. On the evening of the latter day the wind shifted to the N.E., and died off into a calm. The barometer still going down slowly; the S.W. wind returned on the afternoon of the 6 th. With a rapidly rising barometer it gradually blew itself out; the weather being calm on the night of the 10 th, with the mercury standing at $30 \cdot 10$ inches; a few cirrus clouds in the sky.

For the 12 following days light airs and calms, with clear weather, were experienced, the barometer remaining fairly stationary, and the temperature ranging between $29^{\circ} \cdot 5$ and 39°.

August 19th.-On the afternoon of the 19th the barometer commenced falling from $29 \cdot 78$ inches, and on the following day, when it was 29.36 inches, a northerly wind, accompanied with snow and fog, set in, blowing down Kennedy Channel. With the continuation of the northerly wind the barometer rose; after a short calm on the 22 nd , when it had reached $29 \cdot 85$ inches, a southerly wind checked it until the $24 t \mathrm{th}$, when northerly winds obtained the mastery, and the glass rose steadily. The weather was cloudy and misty.

August 25th.-On the 25th the two ships entered Discovery Bay, experiencing calms and northerly airs, which lasted until the 28 th, when the "Alert" parted company, and continued on her voyage towards the north.

August 27 th.-On the evening of the 27 th the barometer at 30.05 inches commenced to fall, and on the 28th south-westerly airs and calms set in with cloudy weather, which lasted until noon of the 31 st, when the glass commenced falling rapidly at both stations. At Discovery Bay no wind was felt, but at the "Alert's" position at Lincoln Bay the southerly wind foretold by the falling barometer set in at $8 \mathrm{p} . \mathrm{m}$. of the 31 st .

Winter Quarters, 1875-76.

The station at Discovery Bay was protected from the E.S.E., through N.E., to West, by nearly precipitous hills attaining an altitude of upwards of 2,000 feet. Two miles towards the S.W., an island 2,050 feet high, protected the position from that direction; only S.E. or west winds could reach the station direct. Consequently the records of the winds are merely of those in the locality, and do not denote the winds prevailing in the neighbourhood.

The station at Floeberg Beach was protected from S.S.S.E., through S.W., to N.N.W., by hills 500 feet high, sloping gradually up to an altitude of about 1,000 feet, at 10 miles towards the southward and westward.

H 407.

September 1875.

September 1st.-On the morning of the Ist, while at Discovery Bay, a wind, force 4, from the S.W. was experienced; agale set in at Lincoln Bay, which enabled the "Alert" to advance up Robeson Channel. During the afternoon the barometer rose slightly, and the wind died away at both stations. During the night the former again fell. At the same time a $\mathrm{S} . W$. grale sprang up, reaching at Floeberg Beach to force 9, but at Discovery Bay force 6 was the highest registered.

September 2 nd.-At 10 a.m. of the End the barometer at each station commenced to rise, the wind shifting suddenly to the N.W., and then becoming gradually lighter until it died away calm on the 3rd. During the gale the temperiture ranged between 27° and 31°; on the change of wind it fell to 18°. The sky was overcast and misty, masses of rolled cumulus and stratus clouds, with very hard edges, moving slowly from the S.W. Sleet and thick mist accompanied the change.

September Sth,-Calms and moderate breczes, generally from the N.W. quarter, with a rising barometer and low temperature, followed until the 8 th, when after rising very rapidly the preceding day, the glass began to fall, the wind inclining to haul more to the south-westward, the temperature rising a few degrees, but varying as the winds blew from the northward or southward of west. During the prevalence of the fine weather the height of the barometer at the two stations agreed very closely together, but although the variations in the temperature of the air occurred simultancously, it was always from four to six degrees colder at Flocberg Beach than at the more southern station.

September 9th.-On the 9th a N.W. wind at Floeberg Beach, when at its greatest force, was felt as a southerly wind at Discovery Bay.

September 12th.-After falling steadily for four days the barometer reached $29: 30$ inches on the morning of the 12th, when it commenced to rise slightly; shortly afterwards, while light variable winds were experienced at Discovery Bay, at the northern station a breeze set in from the S.W. Weather fine at both places. The barometer now began oscillating slightly, the sky clouded over at Flocberg Beach, and the temperature, which had fallen to $+3^{\circ}$ on board the "Alert," and $+8^{3}$ " 5 at the "Discovery's" position, rose quickly to above $+20^{\circ}$; and the wind freshened to a strong galc, blowing uninterruptedly until $10 \mathrm{a} . \mathrm{m}$. of the 15th, having culminated in strength (force 10) at the north, and force 7 at the south station on the afternoon of the 14th, when the barometer at Floeberg Beach registered the minimum of the month, $29 \cdot 21$ inches. During the disturbance the barometer was slightly higher at Discovery Bay, and continued to fall until 4 p.m. of the 15th, when it registered 29.38 inches. From this time the barometer rose slowly at both stations, and as in the previous gale, the wind at Floeberg Beach shifted suddenly to the N.W., but in a few hours, during which it shifted right round the compass, through east and south, returned to its old quarter in the S.W., and blew furiously for several hours of the night of the 15 th and forenoon of the 16th; but although its strength reached to force 10 at Floeberg Beach, it was only force 5 at the southern station. The weather was overcast at hoth places, snow falling occasionally.

September 17th.-Since the setting in of the disturbance on the 12th, the temperature rose at both stations, and with a temporary fall during the change of weather on the 15th, rose to $35^{\circ} \cdot 5$ and $36^{\circ} \cdot 5$ at midnight of the 17 th .

September 18th. - At noon of the 18th a very rapid rise of the barometer took place simultaneously at both stations with a northerly wind and cloudy weather, the temperature falling fast.

For the five following days the weather was calm with light variable airs, the weather cloudy with occasional snow, the temperature falling, but always remaining coldest at the northern station.

September 21 st. - On the 21 st the temperature was $+2^{\circ} .5$ and $+4^{\circ} \cdot 4$. The barometers then fell rapidly, and the temperature rose. On the 22nd a N:W. wind was expericuced, reaching in strength to force 7 at Discovery Bay, but only lasting eight hours, after which the weather was calm.

September 23 rd .-On the afternoon of the 23 rd a $\mathrm{S} . \mathrm{W}$. wind was experienced at Floeberg Beach, the temperature rising to $24^{\circ} 9$, while the weather was calm, and the temperature fell to $+9^{\circ}$ at the southern station.

During the remainder of the month the winds were light and variable, the barometer having a small range, and those at the two stations agrecing closely together. The
temperature of the air also varied very little, remaining at about $+10^{\circ}$. On the night of the 28th snow commenced falling, and continued throughout the following days.

October 1875.

October was a quiet month; the prevailing winds were light, and from the north or south of west, the strongest was force 5 at Floeberg Beach on 6th, 7th, and 1ith. At Discovery Bay on only three days was the strength of the wind greater than force 1; force 4 being logged on the 2nd.

During the first 10 days snow fell nearly continuously.
The variations of the barometer were remarkably similar at the two stations. The greatest disturbances were on the 9th and 16th. During the former, northerly winds were experienced, with a fall of the barometer and a very remarkable fall of temperature of upwards of 25°. With the latter, while it was calm at Discovery Bay, a squall from the S.W. was felt at Floeberg Beach, lasting, however, only an hour, after which the winds were from the N.W.

Between the 10th and 16th there was a remarkable difference in temperature at the two stations, that at Discovery Bay remaining 10° to 20° colder than that at the north station. During this period light S.W. winds were experienced at the latter station, which were not felt at the former. Again, between the 23 rd and 28 th there was a difference in temperature of about 10° in favour of the northern station. In consequence the mean temperature of the month was nearly 5° colder at Discovery Bay than at the north station.

A decided change to cold weather took place on the 13th, after which date the thermometer rose above zero only on two days, when light puffs from the S.W. were felt.

Our winter may be said to have set in on the 14th, the mean temperature of the first 13 days being $+8^{\circ}$, and of the latter part of the month -14°.

November 1875.

November 2nd.-On the night of the 2nd, after a long period of settled weather, the temperature rose very quickly at each station, but the weather remained calm and the barometers steady. On the morning of the 3rd a southerly wind was experienced at Floeberg Beach, which was not felt at Discovery Bay, consequently the temperature was 15° warmer at the former than at the latter-named station. After midnight the barometers commenced rising from 29.80 and 29.74 inches respectively, and continued to do so with a few slight fluctuations until the 12 th, when they reached $30 \cdot 82$ and $30 \cdot 87$ inches; the cxtreme height registered during the year.

November 8th.-Up to the 8th southerly winds and light airs prevailed, which kept the temperature above the mean, that at Floeberg Beach being always higher than that at the protected station at Discovery Bay, where the southerly and westerly winds had a difficulty of entering in consequence of the bigh land in the immediate neighbourhood. This was noticeably the case on the 7th and 8th, when the temperature was 20° warmer at the northern than at the southern station. The sky was overcast occasionally, much more so at Floeberg Beach than near the "Discovery." Very little snow fell, and ix. weather was usually fine.

The temperature remained high $\left(+14^{\circ}\right)$ until after noon on the 8th, when a fresh breeze of short duration was experienced from the northward, which caused it to fall gradually, the barometer continuing to rise steadily.

On the 12th, l5th, and 19th there were sudden rises in temperature without any apparent cause. On the two latter days the fluctuations were greatest at Discovery Bay.

By the 15th the barometer had fallen to an average height. On the 21st, with light northerly winds, the temperature at each station fell considerably, the mean on the 22nd being -40°. On the two following days light northerly winds kept the temperature low, with a slightly rising barometer. During all this time the weather was exceedingly clear and fine.

On the 26th at Floeberg Beach, a light air from the west, backed round to S.S.W., and afterwards to S.S.E., with a quickly rising temperature and slowly falling barometer. At 9 p.m. the temperature had risen to $+19^{\circ}$.

During this period the "Discovery," in her protected position, experienced calm and cold weather; only one light puff from the S.E. reaching her, and the highest temperature recorded being - 10°. We must therefore conclude that the warm blast which reached the Polar Sea passed clear of Discovery Bay in its passage north.

At Floeberg Beach the disturbance lasted until 1 a.m. of the 27 th, when it vas checked by a squall from the west, which instantly lowered the temperature to -10°, abeut the same temperature as the "Discovery" experienced at the same time.

During the four following days the "Alert" experienced light airs from the N.W., with fine weather and a high temperature from -13° to -7°, a most unusual occurrence. At Discovery Bay the maximum thermometer recorded $+1^{\circ} 6$, at midnight of the 28 th, and $+5^{\circ}$ on the 30 th. These blasts of warm air did not reach the northern station. The barometer rose steadily from midnight of the 26th until midnight of the 28th; on the two following days it was unsteady.

Decemrer 1875.

December 1st.-On the 1st, calm weather with a light clear sky, and occasional light variable squalls, was experienced at both stations, the temperature ranging between -5° and -10°, but the maximum thermometers indicated that the temperature had actually risen above zcro.

December 2nd.-At 8 p.m. of the 2 nd a south-easterly wind, accompanied with a falling barometer, reached Floeberg Beach. During the following night the temperature rose above zero, and at $7 \cdot 30$ a.m. a squall from the southward raised it to $+25^{\circ}$. At noon the maximum thermometer registered $+34^{\circ}$ and at 8 p.m. $+35^{\circ}$. At 10 p.m., the wind changing to the northward, lowered the temperature immediately; by midnight it had fallen to $+4^{\circ}$. This very warm blast of air from the southward passed the station at Discovery Bay without affecting tie temperature there, the maximum temperature registered being only $+4^{\circ}$. Light north-westerly winds and calm were experienced at the time.

December 4th.-On the morning of the 4th another southerly squall, lasting two hours, reached Floeberg Beach, raising the temperature from $+22^{\circ}$ to $+23^{\circ}$; at 8 a.m. a brecze from the N.N.W. caused it to fall below zero again.

This last wind forced its way into Discovery Bay, and affected the temperature there to an equal degree, but not at quite so early a period of the day. At 1 a.m. gale set in from the S.W. with the temperature at -2°, and a fairly clear sky; at 11 a.m. the temperature was $+21^{\circ}$; and about noon, when at Floeberg Beach the cold air current had replaced the warm blast, the temperature at Discovery Bay was $+26^{\circ}$. It then gradually fell with a N.E. wind; at 8 p.m. it was below zero, and by noon of the 5 th, with calm weather and a perfectly clear sky, it was -20°.

At buth stations the barometer rose slightly from 29.70 inches cluring the 3 rd and 4 th, to about 30.00 inches. At 8 p.m. on the latter day it commenced to rise rapidly, with a falling thermometer.

December 6th.-At 8 a.m. of the 6th, when it was calm at Discovery Bay, with a temperature at -11°, the " Alert" experienced a S.S.E. wind, which raised the temperature at that station to -2° without affecting the southern position.

December 7 th.-At 3 a.m. of the 7 th, during calm weather, the temperature at Floeberg Beach again rose above zero. A similar rise occurred at Discovery Bay a few hours later, accompanying a squall from the S.E., which, however, did not reach Floeberg Beach. The temperature remained high until the afternoon of the 9 th, when it fell below -20°, the fall occurring earliest at the most northern position, accompanied by a northerly wind.

December 13th.-Between the 10th and 13th, each station experienced variable light airs and calm, with a very low barometer, reaching 28.98 inches at the northern, and 28.99 inches at the southern station, the lowest registered during the year, the temperature rising to -7° and -5°.

December 14th.-By midnight of the 14th, although the barometer remained low, the disturbance had pussed away, the weather remaining calm, and the temperature ranging generally between -20° and -40° during the following fortnight.

It, however, fluctuated considerably, the weather at the northern station being invariabl- much warmer and more affected by southerly winds, which did not enter Discovery Bay. On the night of the 28th, however, when the barometers at each station fell rapidly, the temperature at the southern position, during a calm, rose to -7°, a light northerly air keeping the temperature at Floeberg Beach 12° colder.

An unusual quantity of snow fell on the $6 \mathrm{th}, 7 \mathrm{th}$, and 8 th , and the four last days of the month.

After the return of the expedition to England, we learnt that a remarkable rise in temperature, accompanied by south-easterly winds, was experienced on the west coast of

Greenland, between the 23rd November and the 11th December 1875, agreeing precisely with the disturbance at the same period at our more northern stations.

At Upernivik on the 25 th November the temperature was 46° above the mean. This disturbance arrived at the northern stations about 24 hours afterwards, prolucing a heat excess of about 40°. On the 3rd December there was a heat excess of about 58° at Floeberg Beach, and on the following day, at both stations, of 46° or 48°.

January 1876.

January is remarkable for the very calm weather at Discovery Bay, where the wind was never greater in strength than force 2, while at Floeberg Beach several strong winds and one gale, force 10 , for two days were experienced.
January 3rd.-The month commenced with fine weather and a slightly varying barometer below the mean height. On the morning of the 3rd we experienced light squalls from the S.S.W. with fine weather, followed during the next 24 hours by a slightly fluctuating barometer with light and variable winds, which settled steadily down from the W.N.W. just before midnight of the 3rd, blowing for 12 hours, force $4-5$, when the wind shifted to the S.W. for a couple of hours, accompanied by a little snow, and then died away calm as the barometer rose. This wind not being felt at Discovery Bay the temperature there was considerably the coldest.
January 5 th.--At 8 a.m. of the 5 th a heavy squall came from the S.W., lapsing into a breeze from that quarter with a rise in temperature.
From noon of the 5 th the barometer rose steadily until the night of the 8th, when it stood at $29^{\circ} 99$ and $30^{\circ} 20$ iuches, the latter being the register at Discovery Bay.

January 7th.-Up to midnight of the 7th the weather remained fine, but occasional puffs of wind were experienced from the north and south of west; light as they were, as a rule, the variations in temperature were sudden and extensive, ranging between -13° and -39°; while at Discovery Bay it remained fairly steady at about -43°.

The clouds consisted of very hard edged smoky looking stratus with a little cirrus, the moon and stars being particularly bright, and the sky a very unusual black blue. The hard detached patches of stratus did not appear to move in any direction; they formed chiefly above the hills near the entrance to Robeson Channel, and were at a moderate hcight. Similar clouds were observed twice before; firsi of C Cape Sabine, and in September before the gale of the 14th.

After midnight of the 7 th the temperature rose considerably, but only at Floeberg Beach, and a few hours afterwards there were some exceedingly heavy squalls from the southward, which continued more or less frequently until midnight of the 8th, when the barometer commenced to fall, and a most furious gale set in from the southward. Its force was such that it becume impossible to register the temperature outside the ship, but that under the housing of the ship rose nearly to zero during the main strength of the gale. At Discovery Bay, although the force of the wind was only -1°, the temperature rose considerably, but not quite so high as at Floeberg Beach.
Throughout the gale the barometer at the southern station, where it was nearly calm, was more than a quarter of an inch higher than that at Floeberg Beach.
January 10th.-On the 10th the barometers began to rise, the wind died away, and snow fell in moderate quantities.

At noon of the 11th the barometers were again at about the same height, and agreed fairly together for the rest of the month. By the 15th the weather was completely settled, and remained calm and fine, with a few short breezes from the S.W., which invariably caused fluctuations in the temperature, until the end of the month. It is remarkable that on the 18 th, and the morning of the 25 th, when the temperature rose 25° at Floeberg Beach, it remained steady below -50° at the sheltered position at Discovery Bay. On the latter day the range at the northern position was between -23° and $-56^{\circ} .5$.

The first half of the montb, being subjected to southerly winds, was warm; while the last half consisted in northerly winds, calms, and extreme cold. Thus the mean for the first 15 days was -22°, and that of the last $16-44^{\circ}$. The great differences of $7^{\circ} \cdot 3$ in the mean temperature of the month at the two stations is evidently due to the exposed position of the "Alert," and the shelter afforded by the high land near the "Discovery."

February 1876.

The two first days of February were remarkable for a breeze from the N.N.W., fresh at Floeberg Beach, but only a light air at Discovery Bay, which continued for 24 hours,
accompanied by heavier snow than had fallen for several weeks, with a rising barometer and warm temperature.
February 3rd.-At 5 a.m. of the 3rd, it fell calm for a short time, followed by a strong brecze from the S.S.W., which, however, did not enter Discovery Bay. This again was followed hy light airs and calms, with a clear sky, till midnight, during which the temperature feli at both stations. At 4 p.m. the barometer at Discovery Bay commenced to fall from 30:31 inches. At Floeberg Beach the corresponding fall did not take place until six hours afterwards. Between 4 a.m. of the 4 th and noon it fell 0.46 inches at the south, and $0 \cdot 40$ inches at the northern station, accompanied with a strong gale from the northward, and a rapid rise in temperature at the northern station, the register there reaching 20° higher than at the southern positiou. During the gale heavy dark coloured stratus clouds collected over Robeson Channel.
February 5th.-The gale lasted until $8 \mathrm{a} . \mathrm{m}$. of the 5th, when the barometers at the two stations commenced to rise simultaneonsly, the temperature falling, and the wind dying out at the same time.

Although this warm gale was felt as a N.N.W. wind, a most unusual occurrence, several squalls from the southward and westward were experienced at Discovery Bay. Also the maximum temperature there was $+2^{\circ}$, while it was only -10° at the northern station; it is therefore probable that the wind was affected locally, and that the gale was in reality a southerly one. After the extreme force of the gale was over snow fell for several hours.
February 6th.-During calm weather on the 6th; while the lower clouds were moving from the N.N.W., the upper clouds, consisting of small cirro cumulus, were moving slowly from the southward.
In the afternoon the weather again became misty, snow falling occasionally, with a breeze, force 5, from the N.N.W., with a slowly rising barometer and decreasing temperature.
February 7th.-On the 7th light northerly winds and calm, with a very clear atmosphere, set in, lasting until the 19th, accompanied with cold weather, the mercury being almost continually frozen. During this time the barometers remained high and fairly steady, attaining a maximum of $30 \cdot 48$ inches, and $30: 50$ iuches at 8 a.m. of the 14th. After the 16 th they fell steadily until the 19th, on which day a rise in temperature was experienced without any corresponding wind at either station.
February 20th.-On the 20th a few patches of black smoky-looking stratus clouds appeared over Robeson Channel. The upper part of these clouds was rounded with clearly defined but soft edges. About noon it was very clear to the northward, but from the summit of a hill 480 feet high, a mist was observed extending about 60 feet above the floe, and for a short distance to iceward. The Greenland coast was enveloped in fog, with the tops of the hills visible above it.

February 22nd.-Similar smoky clouds to those mentioned above appeared on the two following days, Greenland being hidden to the same extent. During the afternoon the cold weather broke up with squalls from the S.S.W., lasting six hours; the temperature rising suddenly from - 50° to within a few degrees of zero. Neither this wind nor the rise in temperature was experienced at Discovery Bay.
From noon of the 23 rd the barometers went down steadily; the weather was very unsettled with strong brcezes, amounting in the squalls to a gale, from the southward, and the temperature fluctuating considerably and once rising above zero. At Discovery Bay, although the snow was observed to be drifting off the high land, the wind did not reach the ship.

On the 25 th the weather had settled again, with rising barometers and a falling temperature, the atmosphere being very clear. With the exception of a short squall on the 26 th, accompanied with misty weather, fine weather was experienced during the remainder of the month, the barometers being high and steady, and the temperature at the two stations agreeing well together, the northern position, however, being 3° or 4° the coldest.

March 1876.

The first eleven days of March were intensely cold, both the barometers were very steady and agreed remarkably closely together, ranging slightly on either side of 30.00 inches. The winds were very light, and usually from the N.W. and N.N.W.

March 8th.-On the morning of the 8th, with a rising barometer and a temperature of about -44°, light snow fell for two or three hours, the weather been foggy and overcast.

March 12th.-On the forenoon of the 12th a breeze from the N:N.W. set in at Floeberg Beach, and from the N.N.E. at Discovery Bay; accompanied by show and a considerable rise in temperature. Immediately the breeze set in the barometers which had fallen previously began to rise.

March 13th.-At midnight of the 13th a breeze from the S.W. set in at both stations, and rapidly freshened to a gale; which lasted until the afternoon of the 14tn, when the barometers began to rise, and the wind shifted to the N.W. at the northern station, but remained in the eastern quarter at the southern position. As the wind shifted and became light the temperature fell about 10 degrees.

March 15th.-Throughout the 15th a great many shifts of wind were experienced at Floeberg Beach from the N.W. and S.W, with "a rising barometer and a varying temperature between -9° and -37°, the cold weather accompanying the northeily winds. The "Discovery" also experienced variable winds, but the temperature remained high and steady.

March 16th.-On the 16 th the temperature fell quickly at Discovery Bay and remained low with calm weather. At the northern station light southerly winds kept the temperature fluctuating considerably.

March 22nd,-On the 22nd light snow fell for some hours with a rising barometer ; wind light from the S.S.E. and warmer weather.

March 28th.-Nothing particular happened until the morning of the 28th, when with falling barometer a S.W. gale set in at Flocberg Beach, with furious squalls, force 8 , which on the morning of the 29th, was followed by light airs. The "Discovery" at this time experienced light variable winds, but on the night of the 29 th, when the wind was only force 3 at the northern station, she experienced a squall from the northward, reaching to force 8.

The cold weather during the last two days of February and the first oleven days of March was the most intense during the winter, the mean for 13 days being - $58^{\circ} 4$ at Floeberg Beach and -53° at Discovery Bay. During the first six days of March the mean temperatures were $-63^{\circ} \cdot 5$ and $-57^{\circ} \cdot 7$. The minimum temperature registered was $-73^{\circ} .75$ and $-70^{\circ} .8$ respectively.

The difference in temperature between night and day became perceptible from about March 19th. The fluctuations in temperature during the previous week prevented its being noticed.

$$
\text { April } 1876 .
$$

April 3rd.-The first three days of April, light N.W. winds were experienced with a mean temperature of about -30°, a slowly rising barometer, and, with the exception of a low mist occasionally, very clear weather at each station. On the lst, when the "Alert" experienced a northerly breeze, force 4, and the "Discovery" a calm, at Cape Beechey, a traveling party was confined to the tent by the wind blowing, force 9 , from the northward.

April 6th.-The barometers continued rising steadily until midnight of the 6th, when they began to fall, followed by a light breeze from the southward, force 3 , at the northern station and a rise in temperature at both positions. The wind lasted only a few hours, and from midnight of the 7 th the barometers rose, and calm fine weather with a mean temperature of about -25° set in.

April 10th.-On the noining of the 10th it was foggy in Robeson Channel with threatening cirro-stratus clouds. The barometers fell, and a decided rise in the temperature took place, reaching to just above zero on the 11th, accompanied by misty and gloomy weather with a little snow. A S.W. squall, force 3, was felt at Discovery Bay, but little or no wind at Floeberg Beach.

April 13th.-On the two following days the barometers fell a little, with calms and light variable winds, and, except a thick low mist, very fine weather. On the 14th and 15th the barometers rose with clearer weather. A falling temperature and light northerly and westerly winds at Floeberg Beach, and south-westerly ones at Discovery Bay.

April 20th.-From noon of the 20th the barometers fell slowly and steadily with N.W. breezes (variable airs at Discovery Bay), which lasted till midnight of the 22nd, with occasional light snow falling and a comparatively warm temperature Light airs from the southward and calms followed, with fine clear weather, the barometers falling below 3000 inches for the first time during the month:

April 2 th. -On the 25 th they began to rise again rather rapidy yntil the 28th, light snow falling at both stations on the latter day, aud more or less frequently until the end of the month, with a falling barometer and light northerly airs and calms.

The barometers only fell helow 30.00 inches on five days during the month, and the mean for the month was the highest of the year, and was 0.43 and 0.44 of an inch above the mean height for the year. In this respect the observations agree with those of the other expeditions which have wintered north of Smith Sound.

The winds during the month were very light, force 4 being the strongest registered at the northern, and force 3 at the southern station. At the latter position the relative amount of calms 0.86 is remarkable.

The mean temperature for the month $-17^{\circ} .96$ and $-17^{\circ} \cdot 27$ appears to be the lowest yet recorded.

May 1876.

During the first week the barometers fell steadily from $30^{\circ} \cdot 37$ to $29^{\circ} \cdot 73$. A N.W. wind, sometimes quite fresh, blew for the first three days, bringing with it a low temperature. On the 6 th and 7 th, before the barometers began to rise, several puffs of wind from the S.W. were experienced at Flocberg Beach, but they were not lasting; at Discovery Bay it was calm.

May 9th.-On the 9th a southerly wind set in at the northern station, which affected the temperature very little; the barometers fell as the wind got stronger, and rose again towards noon of the 10 th, by which time it was nearly calm.

May 13th.-On the night of the 13th a moderate gale from the northward was experienced at Discovery Bay and Polaris Bay, while merely a light air from the N.W. was felt at the northern station.

At the latter position, snow fell on the 15 th without any movement in the barometer, but the following morning the glass fell quickly, accompanied by a strong breeze from the westward, which lasted until midnight, and was succeeded with light N.W. winds, calms, and occasional falls of snow. At Discovery Bay this wind was from the N.E., light and without snow. At Polaris Bay it was felt as a strong northerly gale.

With the exception of the 24th, which was a fine day, snow fell more or less on each of the last 14 days of the month, with a low barometer and light N.W. winds, accompanied with thick misty weather.

May 21st.-On the 21st and 22nd the "Discovery" experienced northerly winds. On the former day its force reach to 8 ; with these exceptions the weather at that station was calm and much finer, with considerably less snow than fell at Floeberg Beach. On the 31st there was a very heavy fall of light snow at each position, with a strong breeze from the N.W. at the northern and a calm at the southern one.

The winds during the month were almost entirely from the N.W. and W. at Floeberg Beach.

The temperature rose rapidly after the first week.

June 1876.

The barometers rose slowly and steadily for the first four days of the month. On the night of the 2nd, when only light N.W. winds prevailed at Floeberg Beach, a strong northerly gale was experienced at Discovery Bay. Snow fell at both stations.

June 8th.-After miduight of the 8th the barometer rose a little, with northerly winds increasing to force 7 at Discovery Bay, hut only to force 4 at the northern station. The weather was misty with snow falling until noon of the 12th, when the barometer began to fall and the weather cleared for a short time.

On the 8th of June a stream of water nine feet broad was observed running in a ravine at Discovery Bay for the first time.

Light winds, with a slowly rising barometer, were experienced until the afternoon of the 19th, when the glass began to fall pretty rapidly. No wind was felt until the afternoon of the 21 st , when a strong gale set in, backing round from N.W. to S.W., the barometer commencing to rise at the same time and continuing to do so for the next 48 hours. At midnight of the 21 st the wind was from the southward, force 8 , at each station.

June 21st.-On the 21 st a pool of water was observed on the land at Floeberg Beach.
June 23rd.-On the 23rd the barometer fluctuated considerably and the wind freshened to a strong gale from the southward at both positions. Squally weather continued until the 26 th, when the wind died away gradually and shifted to the N.W., the barometer rising slightly throughout the 27 th.

During this disturbance the weather was generally fine, but a slight shower of rain fell on the 26th, at Floeberg Beach, the first which was experienced during the season.

June 28th.-On the 28th, while only light airs from the N.W. were experienced at the northern station, a strong breeze from the north-eastward was felt at Discovery Bay. After this wind the barometer weut steadily down during the remainder of the month, with fine weather and light winds.

After the 20th the temperature remained steadily above freezing point of fresh water.
Generally speaking S.W. winds brought fine weather, the N.W. winds being accompanied with clouds and snow.

On the 29th the streams in the ravines commenced running; this was three weeks after the same thing occurred at Discovery Bay with a sheltered southern aspect.

Jury 1876.

July is marked as not only showing the lowest mean monthly height of the barometer during the year, but also the lowest maximum height in any one month, the instruments in the two ships never rising above $29 \cdot 88$ and $29 \cdot 89$ inches respectively.
July 5th.-Fine weather with light variable airs and a rising barometer were experienced until noun of the 4th, when a fall of snow occurred; between the 5th and the llth the barometers were fairly steady. On the night of the former day the "Discovery" cxperienced a heavy squall from the eastward shifting round to the S.W. with rain, while only light airs were felt at the northern station.
July 7th.-On the 7th rain fell at Discovery Bay during a calm, and on the 8th, after a light breeze from the S.E. and W.S.W., rain fell at Floeberg Beach for two hours, also during a caln.
July 9th.-On the morning of the 9 th, with a slightly rising barometer, while it was calm at Discovery Bay a breeze set in at Floeberg Beach from the S.W., with fine weather, lasting 24 hours.

July 14th.-From noon of the 1 th until the morning of the 14th the barometer went slowly down, with little or no wind and fine weather, a little fine snow or rain falling occasionally. The barometer then rose slowly until the 18th, light winds from the N.W. prevailing at the northern and southerly airs, and calm at the southern station with fine weather.

July 18th.-Between the 18th and 23rd the barometer, with a temporary rise on the 19th, fell considerably with occasional rain or snow and overcast weather. On the 21st the fall in the mercury was greatest and a good breeze set in from the southward, at each station with rain or snow, lasting intermittently for three days.

July 23 rd .-On the 23 rd the barometer began to rise, the wind gradually fell, and was succeeded by calm and snow, on the 24th, which again gave place, on the following day, to a light breeze, force 2 from the N.W., at Floeberg Beach, and a moderate wind, force 6 from the N.E., at the southern station.

July 27 tb .-Throughout the afternoon of the 25 th and 26 th the mercury rose quickly, and at noon of the 27th, with fine weather, a breeze set in from the S.W., as usual blowing strongest at the northern station; it continued 36 hours and gave place to overcast misty weather, with occasional snow or rain.

As the wind died away, the barometer went down, and on rising again about noon of the 30th a light air from the southward commenced, with snow or rain.

During the night it again commenced to fall, with an overcast sky and heavy cumulus clouds collecting over Robeson Channel, foretelling a stronger breeze, which set in at Floeberg Beach on the morning of the 31st; although at Discovery Bay the strongest force of the wind was 2, the squalls at Floeberg Beach reached to force 6 . During the wind the weather was fine and the Greenland coast very clear.

The "Alert" left Floeberg Beach on the last day of the month.

August 1876.

August ist.-On the 1 st the barometer continued falling as long as the southerly wind lasted. In Robeson Channel force 6 was logged while only light airs were felt at Discovery Bay. The weather remained finc.

August 4th.-On the three following days the barometer fluctuated considerably, rising with light airs and calm, and falling as the southerly wind increased. While the wind was strongest a considerable quantity of snow fell.

August 5th.-On the 5th and 6th the glass rose rapidly, a light north-easterly wind setting in with fog and misty weather in Robeson Channcl. At Discovery Bay the weather was finer, with variable winds.

August 8th.-On the 7th and 8th similar kind of weather occurred with a falling barometer, the wind freshening to a gale as the glass fell. At Discovery Bay force 9 was logged at midnight of the 7th, and at Cape Beechey force 8 on the following morning. By the evening of the sth the gale had blown itself out, a low fog forming over the Greenland coasts.

This gale was felt by the "Pandora" at Cape Isabella.
The "Alert" reached Discovery Bay on the 12th. On the 20th the two ships crossed Lady Franklin Straits.

August 9th.-Between the 9 th and the 21 st the weather remained remarkably fine, with a fluctuating barometer, and light winds from the southward.

August 18th.-On the 18th a southerly wind was seen to be blowing on the southern shore of Lady Franklin Sound, which, however, did not extend across the pack collected there or that in Hall's Basin. On the 20th as the ships crossed the Sound they stcamed out of a calm, which prevailed in the neighbourhood of. Discovery Bay, and met a strong south-westerly wind near Cape Lieber.

On the 22 nd and 23 rd a strong gale from the S.W. was experienced, preceded by an overcast sky and snow with a rising barometer, which remained high and fairly steady while the storm lasted. In this it was totally different to our previous experience, when each southerly disturbance was preceded or accompanied by a fall in atmospheric pressure.

On the 24th the weather was fine but foggy, and the wind freshened slightly from the S.W. This continued on the 25 th with a rising barometer.

During the remainder of the month the weather was foggy with an occasional fall of suow or rain. A fluctuating barometer and high variable winds or calms.

September 1876.

September lst.-On the 1st the temperature, which had ieen below freezing point for the three previous days, rose to 35°. The barometer, which had been falling during the same period, ceased doing so, and rose slightly; it then remained fairly stationary. The weather was very misty with frequent falls of rain or snow; the upper clouds, when seen through the mist, were moving from the southward or westward, but only light variable airs were experienced. Except on the night of the 3rd, when a northerly wind set in backing round to the W. and S.W. on the morning of the 4th, this kind of weather continued until the 6th, when the mist and fog cleared off with a rising barometer and light variable airs, the temperature again falling below freezing point.

Owing to the warm temperature the ravines, which had previously stopped running, burst forth again.

The fine weather continued until the morning of the 9 th, when a S.W. wind sprang up with a falling barometer and misty weather.

On the cvening of the 9 th the Ezpedition quitted Smith Sound on its return voyage to England.

Remarks on the Freezing and Thawing of Mercury in Thermometers.

The spirit and mercury thermometers were fixed alongside one another in the same screen, and, being read off every hour during the winter, were found to agree very well together until the temperature fell to about -44°, when on the temperature reaching a certain point between - $45^{\circ} .0$ and $-46^{\circ} .5$ the mercury fell suddenly to a point in the tube, which would be about equal to -60° had the tube been graduated.

While in this state the mercury could be easily tapped down to a lower point in the scale; it appeared to be very brittle, that is, as the end of it reached the narrow passage leading to the bulb, small particles broke off and found their way through; the stream was not continuous.

When the thermometer was left quite still, no matter how cold the atmosphere was, the mercury never sank lower in the tube than about - 60°.

When a thaw set in the first effect was to melt the mercury remaining in the tube, which fell into the bulb out of sight, the mercury in the bulb always taking a longer time and a higher temperature before it became fluid. By the observations made, this temperature is about $-35^{\circ} \cdot 0$, but length of time may affect the actual degree at which the mercury would become fluid.

Occasionally when the mercury assumed the fluid state, the expansion was apparently a sudden action, as the mercury in the tube of the maximum thermometer, lying in nearly an horizontal position, was projected along the tube aud registered a much higher temperature than that of the atmosphere; thus, on February 22nd the maximum thermometer registered a temperature of $+51^{\circ} \cdot 5$, and on March 30 th $+3^{\circ} \cdot 0$, both readings being higher than the actual temperature experienced. During the 24 hours preceding the first of these observations the weather was storny, and the thermometer may have been shaken. When the latter observation was made the weather was calm.

\cdots		No. 440. Mercury.	No. 208. Spirit.	Reference to Notes.	
Febrnary	27	${ }^{\circ}$	\bigcirc	Note (8.)	
		$-41 \cdot 8$	$-42 \cdot 0$		
		$41 \cdot 8$	$42 \cdot 0$		
		$43 \cdot 8$	$45 \cdot 3$		the temperature foll beloweter continued to work fairly until
		44.8	$46 \cdot 4$		reading does not record a lower ${ }^{\text {a }}$, 4 . Although the hourly
		-60.	-46.4		erature, the minimum
"	19	$\begin{array}{r} -40.8 \\ 40.8 \end{array}$	$-42 \cdot 0$ 41.0		(9.) The mercury
		$\begin{aligned} & 40 \cdot 8 \\ & 44 \cdot 8 \end{aligned}$	$41 \cdot 0$ $45 \cdot 3$		the temperature fell to - $-40^{\circ} \cdot 4$, when the worked fairly until
		-60°	-46.4		contracted to about -60°. ${ }^{\text {a }}$, when the unercury suddenly
March	30	-42.8	-43.1	Note (9.)	(10.) After the mercury had remained frozen for three days,
		$44 \cdot 8$	$45 \cdot 3$		during which time the temperature fill to - $50^{\circ} \cdot 2$. On the
		-60.	$-47 \cdot 5$		setting it of the thaw the frozen mercury left in the tube
January	24	-60^{-60}	-54.1		suddenly sank into the bulb out of sight, as soon as the temperature rose to $-35^{\circ} \cdot 1$.
		All in bulb. $-28 \cdot 4$	$36 \cdot 1$ 29.5	Note (10.)	(11.) For 11 hours the temperature ranged between -39° and - 37°, but the mercury remained unmelted.
"	26	-60° -60°	-39.0 -37.0	Note (11.)	(12.) The mercury was found to be working within an hour
		-60°	$-37 \cdot 0$ $-37 \cdot 0$		of the change of temperature, but the maxinum thermometer
"	27	-601*	-43.6		showed that for a short time the temperature bad risen to $-28^{\circ} \cdot 8$.
"		$-36 \cdot 6$	$-37 \cdot 0$	Note (12.)	(13.) With the rise in temperature the percury in
	31	$-^{-60}$	-41.0		(13.) With the rise in temperature the mercury in the tube melted at $-39^{\circ} \cdot 0$, but fell into the bulb and remained
		In bulb	$39 \cdot 0$	Note (13.)	there, probably frozen with the rest, until the temperature
		In bulb	$37 \cdot 0$		rose above $-37^{\circ} \cdot 0$.
		In bulb	37.0		(14.) During three hours, while the
February		-34.6	-34.1		$-35^{\circ} \cdot 1$, the mercury remained frozen, but thawed at about
	18	Frozen Frozen	$-38 \cdot 0$ $35 \cdot 1$		that temperature.
		$-36 \cdot 6$	$35 \cdot 1$ $-36 \cdot 1$	Note (14.)	(15.) Mercury remained frozen until the temperature rose to about - 35°.
March	11	Frozen	$-41 \cdot 0$		
		Frozen $-33 \cdot 1$	$3 i \cdot 6$	Note (15.)	

Astronomical and Atmospheric Phenomena Observations, H.M.S. "Alert" and "Discovery," 1875-1876.

ASTRONOMICAL PHENOMENA.

September 1875.

September 24th. Report. Discovery Bay.-At 10.30 a.m., the sun having an altitude of about 12° and bearing S.E. (true) the following phenomenon was observed : Two mock suns, one to the left, the other above the sun; these were included in a prismatic are about 10° distant from the sun, with the sun for its centre; another arc over this one at about 12° distant from it. Temperature at the time $+11^{\circ} 8$. Barometer $29^{\circ} 68$ inches falling steadily. No wind. Clouds cr.-st. 6. It was visible for 25 minutes. Vide diagram.

October 1875.

After the 12th the sun did not rise above the southern horizon at Floeberg Beach. After the 14th it was not seen nt Discovery Bay.
The moon remained above both horizous between the 14th and 24th. Full moon occurred on the 14th.

Although the weather was calm and often apparently favourable for the occurrence of atmospheric phenomena, none were observed at either station during the month.

October 27th. Discovery Bay.-At 11.30 p.m. two meteors were observed in the S.E. (true) about the second magnitude; they were both faint and moved slowly.

November 1875.

The moon remained above both horizons between the 11th and 21st; full moon occurring on the 13th.

November 11th and 12th. Discovery Bay.-Faint halos of about 40° diameter were observed round the moon during the first and middle watches.

November 13th. Discovery Bay.-At 4 p.m. a lauar phenomenon consisting of a luminous arc on each side of the moon, crescent in form and a tangent above. From the middle of each side arc appeared a broad horizontal ray tapering to a point; while from the moon itself radiated four shorter pointed rays resembling the cardinal points of the compass. Vide diagran. The temperature was 14°. Barometer 30.65 inches. No wind. Clouds st. 5.

November 19th. Lieut. Aldrich. Floeberg Beach.-6.30 p.m. A moderately brilliant paraselena was observed: thrce bright patches were visible displaying prismatic colours. These were joined by a luminous arc, and were situated at an angle of $22^{\circ} 15^{\prime}$ on either side of the moon and above it. Crucial rays from the moon were distinct, the vertical rays being the brightest, and all growing fainter as they became more distant from the moon. Of the luminous patches or mock moons the two horizontal ones were much brighter than that above the moon. The phenomenon lasted more or less brightly for nearly two hours.

November 19th. Captain's journal. Floeberg Beach.-A fine clear paraselena in the evening. The prismatic colours being clearly visible in the halo passing through the horizontal mock moons. The red tint was nearest to the true moon. The vertical reflection was merely a bright blurr. Temperature, -25°. Calm weather. Barometer $29 \cdot 80$ inches, steady. Clouds cum. 1. Atmosphere a little misty.

November 20th. Report. Discovery Bay.-A lunar phenomenon was observed precisely the same as the one described on the 13th. It was first observed at 8 a.m., most vivid at 8.35 , after which it gradually faded away. Temperature -25°. Barometer 29.97 inches. No wind. Clouds cr. 1.

November 20th. Dr. Ninnis. Discovery Bay.-8 p.m. observed a lunar corona with radiating and convergent rays from either side, slightly prismatic. Also four convergent rays from the moon itself, and an arc tangent to the upper part of the corona.

Meteors.

November 2nd. Report. Discovery Bay.-9.30 a.m. One moving from N.E. to S.W. November 7th. Report. Discovery Bay.-2 p.m. One moving from the Zenith to N.W. November 10Lh. Report. Discovery Bay.- 9.30 p.m. One moving from East to West. November 14th. Report. Discovery Bay.-10.0 a.m. One moving from N.E. to S.W. November 16th. Report. Discovery Bay.-2 p.m. A meteor of a very brilliant green colour was observed in the East, emitting light as it passed on its way to the westward; it finally broke up, the particles emitting a violet light.

November 18th. Report. Discovery Bay.-4 a.m. One moving from the Zenith to West.

November 20th. Report. Discovery Bay.-6 a.m. One moving from South to North.
November 29th. Report. Discovery Bay.-9.30 a.m. One moving from East to West.

December 1875.
The moon remained above both horizons from the 8 th to the 18 th. Full moon occurred on the 12th.

December 9th. Report. Discovery Bay.-1 p.m., a lunar phenomenon was observed similar to the one on the 13th November, with an additional arc above the tangent, 55° from the moon. Diameter of circle $44^{\circ} 48^{\prime}$. Altitude of moon $21^{\circ} 50^{\prime}$. Temperature of the air -9°. Barometer $30 \cdot 25$ inches. Wind, N.E. force 2. Clouds, cr. 1. Vide diagram.

December 11th, Lieut, Aldrich. Floeberg Beach.-4 a.m. A very clear paraselena was observed, the atmosphere was rather hazy. Moon, bearing about West, and at an altitude of 23°, very bright. The phenomenon consisted of two concentric halos, with the moon as a centre, and at angular distances of $23^{\circ} 25^{\prime}$ and $47^{\circ} 30^{\prime}$ respectively. The inner circle was quite complete and visible between the observer and the hills. The brilliancy of the crucial rays varied much in intensity, the horizontal rays being always the brightest, and extending between 90 and 100 degrees on either side of the moon. The sky was quite clear of clouds, but there were two masses of luminous haze, which appeared to rise from the horizon to about 15° of altitude as tangents to the lower part
of the outer circle. There were three mock moons, tolerably distinct, situated in the inner circle, and very faint representations of two others where the horizontal crucial rays intersected the outer circle. The phenomenon lasted for 212 hours.

December 14th. Report. Discovery Bay.-At 10.30 p.m. observed a halo round the moon, diameter 45°, the weather being misty.

December 15th. Report. Discovery Bay.-1 p.m. A faint halo round the moon, the weather very thick and misty. Temperature, -26°. Clouds, stratus, 6.

December 15th. Report. Floeberg Beach.-The moon has been surrounded by a halo for the best part of the last two days; between 11 and 1 to-day the clouds consisted of stratus radiating from two points situated in the horizon N.N.W. and S.S.E.

December 16th. Report. Discovery Bay--Between 3 a.m. and 4 p.m. Faint halos round the moon were observed, light snow was falling at the time.

December 16th. Report. Floeberg Beach.-Between 1 a.m. and 5 a.m. A faint halo round the moon, the atmosphere hazy with light snow falling. Temperature, -26°. Light air from the N.W.

December 17th. Report. Floeberg Beach.-1 a.m. A faint circle round the moon. The atmosphere very misty.

December 17th. Captain's journal. Floeberg Beach-About noon. As the moon sank towards the northen horizon a misty paraselena foimed of the usual diameter. Observing that the reflection was between us and the land I walked until it fell directly on the ship, my position being 250 yards from the reflection. Objects at a greater distance were mistly hidden from view by the lighted part of the atmosphere, while other objects at the same distance, which were seen through the same hazy but unlightened atmosphere, were quite distinct and presented sharp outlines.

December 18th. Report. Discovery Bay.-At 2 a.m. A faint halo round the moon.
December 2nd. Report. Discovery Bay.-Two meteors of the second magnitude were observed passing from East to West.

December 17th. Report. Discovery Bay.--11.45 p.m. A meteor of the first magnitude was seen bearing S.E.

December 21 st. Report. Discovery Bay.-10 a.m. Three were seen, one bearing S.S.W., one bearing East, and one bearing North.

December 24th. Report. Discovery Buy.-4 p.in. A very brilliant meteor from the Zenith to W.S.W.

December 26th, Report. Discovery Bay.-11.40 a.m. A meteor of the first magnitude moving from North to South.

December 29th. Report. Flocberg Beach-A most brilliant metcor was observed to the southward; so intense was its brilliancy that it lit up the whole floe, and was mistaken for a flash of lightning by those who happened to be facing towards the North. A similar occurrence was noticed the previous day, but no meteor was actually seen.

January 1876.

The moon remained above both horizons from the 4th to the 14 th. Full moon occurred on the 11th.

January 4th. Report. Floeberg Beach.-3 p.m. Very faint paraselena.
January 5th. Report. Discovery Bay.-At 8 p.m. Observed a halo round the moon; diameter about 40°.

December 6th. Report. Floeberg Beach.-7 a.m. Faint paraselena lasting for an hour, succeeded shortly afterwards by another. Two concentric circles partially visible, horizontal crucial rays much extended and appeared curved upwards away from the horizon.

January 9th. Report. Floeberg Beach.-3 a.m. A faint halo round the moon. A strong gale from the southward with a heavy snow drift.

January 11 th. Report. Floeberg Beach.-7 a.m. A very faint halo round the moon.
January 12th. Report. Discovery Bay.- 4.50 a.m. A halo round the moon, diameter 43°.

January 13th. Report. Floeberg Beach-l a.m. Fair paraselena with a misty atmosphere.

January 13th. Report. Discovery Bay.-6 a.m. A halo round the moon; diameter 50°. 5 p.m., observed several distinct rays of light radiating from a halo round the moon (which at the time was hidden by the hills, leaving only a segment of the halo visible). These rays after arching across the heavens met again at the opposite point of the horizon. Besides these, a pointed ray was visible within the halo evidently coming from the moon. Vide diagram. Radius of the halo about 23°. Altitude of the moon about $17 \frac{1}{2}^{\circ}$. A very fine snow dust was falling during the time that the phenomenon was observed. Temperature -23°. Barometer $29^{\circ} 58$ inches. No wind. b. c. Clouds, stratus 4. Shortly afterwards the halo broke up, the rays seeming to come from the moon. At 6 p.m. the moon was clear of the hills, and the rays of light crossing the heavens were in the same position, but very faint. At 8 p.m. there was a magnetic disturbance. The needle was deflected to the eastward 2° beyond the normal. No appearance of any aurora was visible.

January 14th. Report. Discovery Bay.-9 a.m. Observed faint and imperfect side arcs on either side of the moon, slightly prismatic. A horizontal ray proceeded from each of them (diverging); also four divergent rays from the moon. The right-hand arc passed between the observer and the land, distant three miles. There was also a faint circle above the moon as in former cases. Vide diagram. The sky was clear overhead, with a very fine and impalpable snow dust falling. Distance of side arcs from the moon's centre $21^{\circ} \cdot 5$. Altitude of the moon 17°. Temperature, -40°. Barometer 29.75 inches. No wind. No clouds.

January 16th. Report. Discovery Bay.-On the 16th there was a very bright dawn in the southern horizon at noon having an altitude of about 8°, β Aquile (fourth magnitude) was nearly obscured; the light was sufficient to throw a slight shadow.

On the 24th very bright dawn. β Aquilæ was on the meridian at noon with an altitude of 14°, and could not be seen. Ordinary newspaper type could be read at noon on the 28th.

January 2nd. Log. Discovery Bay.-Between 9.30 p.m. and 10 p.m. eight meteors were observed.

January 5th. Report. Discovery Bay. - At noon, a bright meteor was observed passing from East to West.

February 1876.

The moon remained above both horizons from the 1st to the 11th, and from the 28th to the 9th March.

Full moon occurred on the 9th.
On the 29th the upper limb of the sun was seen above the southern horizon at Discovery Bay.

February 3rd. Report. Discovery Bay.-8 a.m. A faint halo round the moon. Diameter about 45°.

February 5th. Report. Discovery Bay.-4 a.m. A very faint halo round the moon. Diameter about 40°.

February 6th. Report. Discovery Bay.-8.15 p.m. Observed a faint and imperfect halo. A nucleus of light was situated on either side of the moon, distant about 23°. The weather was very thick and hazy at the time.

February 7th. Report. Floeberg Beach.-11 p.m. A faint halo round the moon lasted till $7 \mathrm{a} . \mathrm{m}$. of the 8 th .

February 8th. Report. Discovery Bay.-1 a.m. A faint halo round the moon. Diameter about 48°.

February 1.0th. Report. Floéberg Beach.-6 p.m. Very faint paraselena observed.
February 6th. Report. Discovery Bay.-At 1.45 p.m. Venus appeared to be very much refracted ; on looking through the astronomical telescope the disc appeared blurred and prismatic, violet at the top and the remainder of the prismatic colours in succession, with red at the bottom. On looking through the telescope green appeared to be the upper colour, but on careful observation the blue and violet could be seen flashing out occasionally. On being observed through the spectroscope a faint spectrum was obtained from the reflected light, in which the red predominated. The day was bright and clear. Temperature -26°. Barometer $29^{\circ} 72$ inches. Wind N.E. 2. b. c. Clouds, cirrus 4.

February 9th. Report. Discovery Bay.-At 10.30 a.m. a very brilliant meteor of a green colour was observed moving very slowly from the Zenith to the westward leaving a luminous track behind it. The dawn at the time was considerable, sufficient to read ordinary type.

March 1876.

At Flocberg Beach the sun appeared above the horizon at noon of the first.
The moon remained above both horizons from the 28th February to the 9th March.
Full moon occurred on the 10th.
After the 26 th stars were not visible at midnight.
March 2nd. Report. Discovery Bay--At 11 a.m., a faint nucleus of light appeared to the right of the sun, slightly prismatic.

March 7th. Report. Discovery Bay.-At 0.30p.m. from the high land over "Distant Cape," about five miles from the ship, the following phenomenon was observed: A luminous patch appeared about 23° to the left of the sun, slightly prismatic, with a horizontal ray tapering to a point proceeding from it; shortly afterwards a similar one appeared to the right. About thirty minutes afterwards the side patches became more developed and strongly prismatic, appearing like mock suns. At the same time a mock sun appeared directly over the sun, and the same distance from it as those at the sides. A vertical ray tapering to a point proceeded from the sun. Thermometer $-49^{\circ} \cdot$. Barometer 29.96 inches, No wind or clouds. This phenomenon was not observed from the ship, the sky being clear at the time.

On the same day at 11 p.m. a faint halo was observed round the moon; diameter about 45°.

March 9th. Report. Discovery Bay.-At 11 p.m. a faint halo was observed, with side arcs on either side of the moon, with a broad horizontal ray tapering to a point proceeding from each. Thermometer -52°. Barometer 30.37 inches. Wind N.W., force 1, b.c.m. ; clouds, cirrus 6. Diameter of the halo $48^{\circ} \cdot 5$.
March 11th. Report. Floeberg Beach.-At noon a faint parhelion was observed.
March 16th. Report. Discovery Fay.-At noon a mock sun was observed to the right and a luminous patch of prismatic colours to the left of the sun, both distant $23^{\circ} \cdot 5$ from the sun. Thermometer - 10°. Barometer 29.94 inches. Wind, North-easterly, force 2 to 3. Weather, b. c. Clouds, stratus 4.

March 25th. Report. Floelerg Beach.-Between 11.30 a.m. and 1 p.m. a parhelion was observed on either side of the sun, with a third much fainter and only occasionally visible above the truc sun.

March 26th. Report. Floeberg Beach.-A slight parhelion was visible for an hour.

April 1876.

The sun remained above both horizons after the 8th.
April 14th. Report. Floelerg Beach.-At 2 a.m. a very faint parhelion was observed.

May 1876.

May 1st. Lieutenant Aldrich, on the north coast of Grinnell Land, reports: There was a very brilliant parhelion, lasting for about an hour, during the afternoon. It consisted of a horizontal white, but hazy looking belt, which reached nearly three quarters of the way round the heavens; in it were situated four luminous patches of prismatic colours or mock sums. The angles, measured by sextant, between those ncarest on cither side of the true sun and the true sun itself, was 23°. The more distant ones, very much fainter, were at an angle of 105° on either side of the true sun.

Right above, and curved upwards or away from the true sun, was a most brilliant arc of prismatic colours, about 80 or 90 degrees of it only visible. The colours were most vivid, the red being nearest the sun, on the outer edge of the arc; the angle between the most adjacent portion of which and the true sun was 46°. In the luminous patches the red colour was invariably nearest the sun.

Auroras observed, 1875-1876, at Floeberg Beach and Discovery Bay. By Lieutenant A. C. Parr, R.N.

Though the auroral glow was often present and served in some degree to lighten the darkucss of the sky during the long winter, when the moon was absent, the actual appearances of the aurora itself were few, and the nimbus worthy of any particular remark extremely small. Those which were stationary assumed the form of low arches with streamers flashing up to them from the horizon and usually to the castward. But the more common form was for an arch to apnear low down in some part of the sky where the glow was brightest; at first it was very faint and narrow, but as it rose gradually in the heavens it would increase both in size and intensity, till ou arriving near the zenith with its ends extending nearly to the horizon, it would be about the breadth of three or four rainbows, and its colour that of white flecey clouds lit up by the rays of the full moon. On reaching this point, however, its course was nearly run; for after appearing to remain stationary, as little white gaps would suddenly rend the arch asunder, the portions thus detached scemed to roll together and concentrate all their brightness in the smaller space, and then gradually fade away and become extinct. Sometimes a very pale green would show itself in the more luminous patches, and once or twice there was a slight suspicion of red; but never was the whole sky illaminated by streams ranning in all directions, and forming corone, while these colours varied every moment.

When instead of the arch rising up from the horizon a streamer appeared, its origin was in the north. From the northern horizon it would stretch out towards the zenith, passing nearly overhead, and reaching to within a few degrees of the land to the south. In appearance they would be the same as the arches, but sometimes as second would grow out of the first, and on one occasion three were visible at the same time. They had lateral motion either from east to west, or west to east, but there was no flashing to brighten them, and they gradually faded away.

The time at which auroras usually occurred was between 9.0 p.m. and midnight, the last display being on February 19th, commencing at 11.0 p.m. It was a beautifully clear night without mist or haze of any description, and small stars visible close down to the horizon. At the above-named hour two arches made their appearance and remained stationary; the lower one was the brighter, being of a pale green colour, its centre bearing E.S.E. (true), and having an altitude of about 5°, with a breadth of about twice that of a rainbow. The second arch was concentric with the first, and abont 7° above it, but rather broader and fainter. These arches maintained their altitude, the upper one at about the same intensity, but that of the lower one varied considerably. It would gradually ligiten up, then send flashes to the upper one, then break up and fade away; before, however, it had quite disappeared, flashes would cone up to it from the horizon which seemed to endue it with new life, for the arch wonk be reformed, brighten up, and the same performance would he again repeated. This occurred three or four times in the course of three quarters of an hour, but the flashes from the horizou never extended beyond the lower arch, and those from the lower never went beyond the upper. During this display the citron line was obtained very clearly with the spectroscope, but no other lines were visible.

On six or seven occasions auroras were visible at the same time on board both the "Alert" and "Discovery," but the absence of characteristic features makes it impossible to determine whether they were the same display, or merely two distinct ones which happened to occur at the same time. But as by far the larger number of those recorded in the one ship were not visible at the other, it was certainly only under exceptional conditions that they could be simultaneonsly observed at both stations, if indeed they ever were. Auroras seemed to appear indifferently both when there was wind and when it was calm, with either a high or low barometer, and seemed quite unconnected with the temperature, although on an occasion the thermometer was observed to fall 3° during the display, and to rise 2° almost immediately afterwards. But it was never seen illuminating the edges of clouds as we saw it on the passage home, nor playing about the outline of the land, and never was there the slightest suspicion of sound being produced by it.

The opportunities for observing the spectrum of the aurora in this position have been most unsatisfactory, as the displays were small in number and deficient in brilliancy.

The form they generally assumed was to rise like an arch from a portion of the horizon where there was a luminous glow, at first very faint, but gradually increasing in
brilliancy till near the zenith, where it would remain stationary for a short time aud then break up and disappear. Sometimes they would rise up as streamers, but fonly occasionally was more than one visible at a time, and they lasted for such a short time, that cven if they had been bright it would have been very difficult to make satisfactory observations.

Very few showed any signs of colour, and those only the slightest tinge. Nearly all that were obscrved gave the citron line with the small pocket spectroscope with more or less distinctuess, though no signs of any other lines were ever seen; but on only two occasions was it bright enough to get the line with Nury's spectroscope, and then only for such a short time that a satisfactory measure could not be obtained.

Solar spectrum.-- No observations of the solar spectrum were obtained, as in the autumn the sun was obscured by cloud or fog nearly the whole time, so that the only opportunitics which my other duties allowed me to avail myself of were occupied in trying to adjust the large spectroscope which was out of order, and in which I was not successful before the sun disappeared altogether before the horizon. During the winter I got it nearly into working order, but since the sun has returned this spring the temperature has been so low as to prevent any observations being made, and the start of the sledges as soon as there is a rise precludes any chance this season.

October 1875.

On the 25 th, except between the hours of 9 a.m. and 3 p.m., it was sufficiently dark for the whole 24 hours for aurora display to have been distinguished.
After the 27 th, the moon remained below both horizons. New moon occurred on the 29th.
October 25th. Lieut. Parr. Floeberg Beach.-At a quarter to 12 p.m. a faint display of aurora extending from about S.E. through North to West; brightest E. by S. Streams running up towards the zenith.
Captain's journal. Light flashes of colourless aurora in the East.
October 26th. Lieut. Aldrich. Floeberg Beash.-At la.m. observed an aurora S.E. to East for about an hour.

Meteorological Register. Sub.-Lieut. Conybeare. Discovery Bay.-At 10 p.m. there was a very faint display of aurora in the S.E., lasting for 15 minutes. Temperature -25°. Barometer $30 \cdot 33$ inches, steady. No wind. Clouds st. 5 .

Lieut. Parr. Floeberg Beach.-Observed an aurora at 11 p.m. It assumed the form of two low arches stretching from about S.E. to N.E., the first about 15° and the second 10° in altitude. The rest of the sky seemed slightly illuminated except to the southward and S.W.
October 30th. Dr. Ninnis. Discovery Bay.-10 p.m. Faint aurora E.S.E. Temperature -21°. Barometer 30.33 inches, steady. Clouds st. 5.

November 1875.

Between the 10th and the 21 st the moon was above both horizons, and prevented any aurora display being distinguished. Between the latter date and the 5 th December it was sufficiently dark throughout the whole 24 hours for it to have been seen.

November 1st. Dr. Ninnis. Discovery Bay.-10 p.m. Faint but well-marked aurora E.S.E. Temperature -20°. Barometer $30 \cdot 66$ inches, steady. Clouds st. 4 .

November ε^{2} d. Lieut. Parr. Floeberg Beach. -9.0 p.m. An aurora commenced and lasted about an hour. Mostly in the form of arches with very few and short streamers. The principal arch had an altitude of about 10°, and in the end seemed to roll together, the ends being brightest, and then disappeared.

Capt. Nares. A few flashes of aurora N.E.; stars very bright and distinct, particu. iarly at low altitudes. Temperature -39°. Barometer $30 \cdot 45$ inches, steady. Clouds cum. st. 4.

November 21st. Lieut. Parr. Floeberg Beach.-Between 9 and 10 p.m. slight flashes of aurora. At about 10 p.m. appeared a bright broad streamer which passed from due North about 15° above the horizon, through the zenith, and then terminated in an irregular curve 25° above the horizon, bearing S.S.E. The whole belt appeared to have
a lateral motion from West to East, but it gradually disappeared as it drew clear of the zenith, and was succeeded a short time afterwards by various luminous patches, those most brilliant being to the S.E. The temperature, -45°, fell 3° during the display, and rose 2° shortly afterwards.

Lieut. Aldrich. The stars in the zenith were visible through the aurora.
Capt. Nares. A faint streak of aurora through the zenith in a line parallel with the coast line; we could not determine whether it shot up from the northward or southward. At first it appeared to rise from the northward.

Register. Distovery Bay.-During the first watch a slight aurora was visible, lasting about 30 minutes without any defined lines or brilliancy.

November 22nd. Lieut. Parr. Floeberg Beach.-2 p.m. Slight red aurora occasionally. $s \mathrm{p} . \mathrm{m}$. Aurora lighter, but not so red.

November 26th. Lieut Parr. Floeberg Beach.-About 9.30 a.m. a stream of light, about $1^{\frac{10}{3}}$ in breadth, was observed; it extended as nearly as possible North and South, beginning and ending some 8° or 9° above the respective horizons. It passed through the zenith and was of very moderate, but about equal, brilliancy throughout.

Capt. Nares. A streak of aurora passing in a North and South direction through the zenith. It consisted of a continuous straight thin ribbon of fairly bright light, distinctly marked at the edges. The sides were parallel, and the stars were visible through it. The sky near the border was not darkened. Sky was perfectly clear of clouds.

Report. Discovery Bay.-During the first watch a slight aurora was visible, lasting about 30 minutes without any defined lines or brilliancy.

November 27th. Register. Discovery Bay.-11.40 p.m. A slight aurora was visible, lasting about 30 minutes, without any defined lines or brilliancy.

November 27th and 28th. Lieut. Parr. Floeberg Beach.-Flashes of anrora between midnight and 1.0 a.m., principally overhead, and to the S.E. The streamer which passed nearly through the zenith was much more broken, and appeared closer than former ones.

Capt. Nares. At I a.m. a bright streak of aurora made up of detached feather-shaped streams stretched across the zenith from north to south, from and to about 20° of either horizon. At the same time there were several bright flashes forming an arch in the S.E., having a darkened sky below them. The streams in the zenith were apparently close to the earth, moving past the stars like a thin cloud, and having the same effect in hiding them.

November 29th. Register. Discovery Bay.-A faint reddish glow was observed in the southern horizon at $9.30 \mathrm{a} . \mathrm{m}$., and shortly afterwards a few streamers were observed reaching to the zenith; they worked, closing and opening, for a space of 10 minutes, and then disappeared leaving a glow in the horizon. The streamers were too faint to make any spectroscopic observations. The glow and streamers appeared as if they were the reflection of an aurora farther to the southward.

November 30th. Register. Discovery Bay.-A very faint aurora was observed at $4.30 \mathrm{a} . \mathrm{m}$., lasting 20 minutes.

Dr. Ninnis. Discovery Bay.-5 p.m. Faint Northern lights.
Lieut. Aldrich. Floeberg Beach.-5 p.m. Aurora flashes. 8 p.m. Aurora flashes occasionally. $10 \mathrm{p} . \mathrm{m}$. Flashes of aurora.

December 1875.

Between the 8th and the 18th the moon remained above both horizons.
The aurora display on the 16 th was one of the few seen when the moon was present. The moon was hid by clouds at the time.

December 2nd. Lieut. Parr. Floeberg Beach-Streams of aurora in the evening. Temperature -7°. Barometer 29:83 inches, falling rapidly. Clouds nim. 4...Wind S.E. 1 .

December 3rd. Lieut. Aldrich. Floeberg Beach.-1 a.m. Flashes of aurora not very distinct. Temperature - 80 Barometer $29: 72$ inches, falling rapidly. Wind S.W. 1. Clouds nimbus.2. At 8 a.m. a strong breeze from the southward set in with a very extraordinary rise in temperature to $+25^{\circ}$.

Register. Discovery Bay.-2.30 p.m. A faint aurora was observed in the East, lasting 1 h .30 m . Temperature - 5°. Barometer 29.83 inches. Calm. Clouds st. 2 .

December 16th. Licut. Parr. Floeberg Beach.-A slight aurora at 10 p.m., which gave the citron line very clearly in the small spectroscope, but the bright flashes did not last long enough to observe it well with the larger one.

Register. Discovery Bay.---11 p.m. Faint Northern lights from South to West, without colour or defined dimensions. Temperature - 24°. Barometer $29^{\circ} 22$ inches. Wind N.E. by N. 3. b. c. Clomds st. \%.

December 19th. Licut. Aldnich. Floelerg Beach.-3 p.m. and 6 p.m. Faint aurora. 'Iemperature - 322°. Barometer $29 \cdot 40$ inches, falling slightly. Clouds cum. 4 .
Lieut. Parr. F/oeberg Beach. - Between 9 and 10 p.m. Faint indications of an auroma. At the latter hour there was a moderately bright arc, extending from the horizon, about N.N.W. and E.S.E. and attaining an altitude of 15°. This was replaced siortly afterwards by a series of flashes and luminous masses chiefly in the North, apparent motion of the flashes to the westward. Temperature - 33". Barometer 2935 inches, stationary. Wind S.S.W. 1. Clouds cum. 4.

December 22nd. Lieut. Parr. Flocberg Beach.-10 p.m. A slight aurora.
December 23rd. Lieut. Parr. Floeberg Beach.-6 p.m. A slight aurora.
December 24th. Register. Discovery Bay.-At 9 a.m., an aurora in the form of an arch passing through the zenith from S.S.E. to N.N.W. of a pale white colour. It lasted ten minutes and then gradually disappeared. The weather was rather thick at the time. Temperature - 37°. Barometer $29: 55$ inches. Calm. b. c. m. Clouds cr. 2.

December 26th. Register. Discovery Bay. -6 p.m. A faint aurora was observed from N.E. to West. Temperature -45°. Barometer 29.69 inches. Weather calm. b. No clouds.

December 20 th. Register. Discovery Bay. -6.15 p.m. A very faint aurora was observed from E.S.E. to W.N.W. Temperature-26. Barometer 29.21 inches. Calm. No clouds.

December 31st. Lieut. Aldrich. Floeberg Beach.-4 p.m. A very faint aurora visible from N.E. to West.

January 1876.

Between the 4 th and the 14 thl the moon remained above both horizons and prevented any aurora display being distinguished.
Fanary 1st. Yicut. Aldrich. Floeberg Beach.-5 p.m. A slight aurora towards the S.W. I p.m. A slight aurora.

Jamuary 2nd. Licut. Parr. Floeberg Beach. - 9 p.m. Streams of aurora. Stars shining loightly.

Register. Discovery Bay. -9 p.m. Observed an aurora like a pale band of light in the form of an arch whose centre was on the true meridian and 15° from the zenith. It shortly afterwards lroke up into feathered edges, their direction being a litule to the castward of the zenith. The arch grew fainter and shifted to the eastward of the meridian four points; the left extremity of the arch faded away, and the right assumed the shape of the folds of a curtain duabled over. Vide diagram. The weaher was clear and calm. The display lasted upwards of 30 minutes.

A spectroscope, one of Browning's 8 -in. direct vision, was directed towards the aurora, but the light was not sufficient to give any spectrum.

The temperature was -39°. Barometer $29: 56$ inches. No wind. Clouds stratus 2. Eight meteors were observed during the time the aurora was visible.

January 17th. Register. Discovery Bay.-9.25 a.m. A few streams were observed above the hills to N.N.E.; they were very faint. Temperature -46°. Barometer $30 \cdot 11$ inches. Wind S.E. by E. 2. b. c. Clouds cr. 3.

January 18th. Lieut. Aldrich. Floeberg Beach. - 8.40 p.m. Aurora visible from E.S.E. to N.N.W. Stars very bright. Temperature -24°. 10.5 p.m. Aurora visible from S.S.E. to N.N.W

Register. Discovery Bay.-10.15 p.m. Observed a faint aurora in the form of an arch of a very pale colour, passing through the zenith from S.S.E. to N.N.W. There was also a faint glow over Bellot Island to the S.E. by South having an altitude of about 15°. Temperature - 50°. Barometer $80 \cdot 08$ inches. No wind or clouds.

January 20th. Lieut. Aldrich. Floeberg Beach.-2 a.m. A slight aurora to the S.S.E.
January 23rd. Metcorological Register. Floeberg Beach.-7.55 a.m. A slight appearance of aurora N.N.W. 2 p.m. A faint streak of aurora. A few stars visible. Temperature -50°. Barometer 29.13 inches, steady. Calm weather. Clouds str. 7.

Register. Discovery Bay.- 8.45 p.m. Observed a faint aurora from N.W. to S.E. across the sky in detached masses, soon passing away. 'Temperature - 56°. Barometer $29 \cdot 13$ inches. Calm weather, 6 . No clouds.

January 24th. Lieut. Parr. Floelerg Beach.-5 p.m. Slight flash of aurora N.N.W.
Meteorological Register. Floeherg Beach.-11.15 p.m. Faint aurora North to South. Temperature -42°. Wind squally from S.W. 2 to 4 . No clouds. Barometer $29 \cdot 18$ inches, steady.

January 27th. Metcorological Register. Floeberg Beach.-2 a.m. Aurora faintly visible to the S.W. Stars bright. 3 a.m. Aurora disappeared. 3.45. Aurora visible, faint, to the westward. Temperature -40°. Barometer $29^{\circ} 64$ inches, falling slightly. Wind N.W. 4. Clear sky.

Register. Discovery Bay.-At 1 a.m. observed a faint aurora in the form of a double arch, running N.N.E. and S.S.W. They were very faint and indistinct, and lasted for three hours. Temperature - 48°. Barometer 29.52 inches. No wind. b.c. Clouds stratus 4. 8.30 p.m. Observed a very faint aurora from the zenith to N.W. The temperature was -49°. Barometer $29 \cdot 49$ inches. No wind. b. No clouds.

January 28th. Meteorological Register. Floeberg Beach.-7.30 p.m. Faint flashes of aurora visible, to the E. and N.E. 9 p.m. Faint ray of aurora, S.S.W. Calm weather. Stars very bright. No clouds. Temperature -42°. Barometer 29.82 inches, rising slightly.

Register. Discovery Bay.-7.20 p.m. Observed a faint aurora in N.E., streamers reaching to the zenith. Temperature -56°. Barometer $29 \cdot 80$ inches. No wind. b.c. Clouds stratus 2. From 8.30 to. 10.30 p.m. Very faint aurora in detached masses in all parts of the heavens.

January 30th. Licut. Aldrich. Floeberg Beach.-8 p.m. A streak of aurora from N.W. to about N.E., passing through the zenith. No colours visible. Temperature -39°. Barometer $29^{\circ} 63$ inches, falling slowly. Calm weather, No clouds.

Register. Discovery Bay.-7.50 p.m. Observed a very faint aurora in the form of an arch, similar to the one observed on the 2nd instant at 9.30 p.m., but not so brilliant. It lasted till 9 p.m., varying slightly in form, and increasing and decreasing in brilliancy Temperature -44°. Barometer 29.65 inches, falling. Weather calm, with no clouds. Stars shining brightly.

January 31. Register. Discovery Bay.-8.25 a.m. and 5.30 p.m. Very faint aurora to the N.E. and W. by N. Very faint streams. Temperature - 39°. Barometer 2942 inches. No wind. b. m. No clouds.

Mcteorological Register. Floeherg Beach. -8 to $8.30 \mathrm{a} . \mathrm{m}$. A flash of aurora rising in the W.N.W., end passing towards the N.E. No colours visible. 'Temperature - 40°. Barometer 29.52 inches, steady. Light north-westerly air. Clouds stratus 3. 7.30 p.m. A streak of aurora W.N.W. to E.S.E. Temperature - 43°. Barometer 29.49 inches, steady. Calm weather: Clouds cumulus 1. Stars shining brightly.

February 1876.

After the 5th the returning twilight was tno powerful at noon to allow aurora display to be distinguished. On the 18th bright twilight lasted from 9 a.m. to 3 p.m. After the 27 th the moon remained above both horizons.

February 3rd. Lieut. Aldrich. Floeberg Beach.-10 p.m. Slight flash of aurora. Stars shining brightly. Light air from S.S.W. No clouds. Temperature - 26°. Barometer 30.30 inches, steady. At 3 a.m., with a falling barometer, a strong gele set in from the N.W.

February 1lth. Register. Discovery Bay.-11 p.m. A very faint aurora from South to North was observed. Temperature -41°. Barometer 30.11 inches, rising rapidly. Wind South 1. Weather b. c. Clouds stratus 6.

February 13th. Lient. Aldrich. Floeberg Beach.-11 p.m. Flashes of aurora S.E. Weather fogery towards the Nurth. No wind. Clouds cumulus stratus 3. Temperature -48°. Birometer $30 \cdot 49$ inches, stationary.

Felruary 11. Register. Discovery Bay.-At 2 a.m. a faint aurora passing across the heavens from S.E. to S.W. was observed, like an arch of a pale colour. It lasted only a short time, and was very indistinct. Temperature - 47°. Barometer $30 \cdot 44$ inches. No wind or clouds.

Lieut. Aldrich. Floeherg Beach.-2 a.m. A faint aurora towards the S.W. Weather calm. Cumulus stratus clouds 3 . Temperature -46°. $8 \mathrm{p} . \mathrm{m}$. Faint flashes of aurora in the East and S.W.

Lieut. Aldrich and Licut. Parr. Floeberg Beach.-11.50 p.m. A moderately bright arch of aurora extended from duc North to about S.S.W., where it terminated close down to the horizon in a crook turned to the eastward (Fig. 1). In a few moments a streamer flashed from the end of the crook parallel to the first and right across the heavens, its edges being quite sharp and parallel to each other (Fig. 2). A third streamer shot up a minute afterwards, but did not extend more than 80° upwards (Fig. 3). The streamers were visible for a very short time, the first remaining longest. The second named arch gradually faded away till within a few degrees of the S.S.W. horizon, and (still being a continuation of the crook) bent round to the eastward, and towards the horizon, going on to what was left of the stump of the third are (Fig. 4). A lateral motion to the eastward now began, the whole body gradually turning round until it disappeared about duc South, its last appearance being as (Fig. 5). Stars were visible through it at its brightest, but not very distinctly. This is the most intense and variegated aurora we have experienced, but scarcely any colours were to be seen. Temperature -51°. Barometer $310 \cdot 13$ inches, stationary. Calm weather. Clouds cumulus 1. Preceded and followed by calm weather.

Metcorological Register. Discovery Bay.-9.15 p.m. An aurora was observed to the southward, spreading out like a fan in separate ways. It was faint. A few cirro-stratus clouds were visible, apparently between the observer and the aurora. It lasted about 40 minutes, and then gradually faded away. Temperature -47°. Barometer $30 \div 5$ inches, stationary. No wind. Clouds cirro-stratus 4.
February 19th. Meteorological Report. Discovery Bay.-9.45 p.m. An aurora like a fluted arch with rays flashing towards the Pole was observed spanning the hills from the South to the East. The direction of the lines of light from all parts of the arch was towards the zenith. Above the arch a pale band of colour appeared, like a secondary arch above the other. It appeared very much as if it was caused by the reflected light of the aurora. The aurora was bright for a few seconds, and then gradually died away. It lasted altogether about 30 minutes. See diagram. The centre of the arch bore S.E., having in altitude of about 30°. The secondary arch was about 15° above the former. Both arches were of a pale light colour, the upper one very faint. Temperature -34°. Barometer $29.87^{\text {inches, rising rapidly. Weather calm. Misty. No }}$ clouds.

Licut. Parr. Floeberg Beach.-An aurora appeared shortly after 11.0 p.m., consisting of bright arch, whose centre bore about E.S.E., and had an altitude of about 5°, with a second broader and fainter arch about 7° above the first. These arches maintained their altitudes, the upper one at about the same intensity, but that of the lower one varied considcrably. It would gradually brighten up, then send streamers up to the second, then break up into light patches, and gradually fade away. This happened three or four times during the 40 minutes that the display lasted. At times streamers would come up from the horizon to the lower arch, for it was a splendidly clear night, and seemed to brighten it up, but none of them extended beyond it. Neither did the streamers from the lower arch extend beyond the upper one. It was slightly green in colour when brightest, and the citron line was well defined, but no others were visible. Temperature -46°. Barometer 29.95 inches, steady. Weather calm. Cumulus clouds 4. Misty:
February 20th. Mctcorological Register. Floelerg Beach.-2 a.m. A faint aurora, forming an arch along the eastern horizon. $2.30 \mathrm{a} . \mathrm{m}$. Aurora visible to the S.W. Stars shining brightly. Light S.W, wind. No clouds. Temperature -44°. Barometer 29.99 inches, rising slowly.

Meteorological Report. Discovery Bay.-2.30 a.m. A very faint aurora was observed from North to South, very indistinct. Temperature -45°. Barometer 30.01 inches, rising slowly. Wind N.Ely. 2: b. c. Clouds cirrus 2.

Aurora.
Obsherved 3.30 P.M. January $2^{\text {mi }} 18 / 6$.
C' Comferaice.

DIFFERENT APPEARANCES OF THE AURORA ON February 14. ${ }^{\text {TH }} 1876$. abOUT Midnight
g. Clldrich.

> ino l. In we S.S W.

NO 3. In THE S S.W

No 5 .South

No 2. In the S.S.W.

No 4. In the S.S.W.

FEB. 19 9. 9.5 PM.
C. Emyberic.

'F:Dangerviedd:Lith' Londan'

SOLAR PHENOMENON
Observed 10 AM 24 Ti Stepmber 1875

GUNA PHENOMON OBSERVED AT: 4 P.M H Novi: 1875.

,'rlimingrtith tith Lutidme

UNAK PGENMENON: OBERVI M DECEMBER AS/F
wht enylacre

IUNARTHENOMENON:

OB SD 510 PM $13^{\text {rH }}$ JANUARY IB7 6
eg milempleat:

TUNAR PHENOMUNON
 es miculture

February 24th. Discovery Bay.-At midnight a very faint indistinct aurora from North to South was observed. Temperature 22°. Barometer 29.99 inches, steady. No wind. No clouds. Bright sky.

February 26th. Metcorological Register. Floeberg Beach.-10 p.m. Faint flash of aurora to the southward. 11 p.m. Faint flash of aurora to the castward. Temperature -24°. Barcmeter $30 \cdot 11$ inches. Falling slowly. Light southerly wind. Misty. At 3 a.m. a S.S.W. squall, force 5, was experienced.

$\mathrm{March}_{\text {. }}$

The moonlight prevented any aurora display being seen previous to the 10 th, by which date the returning sunlight was too powerful, except between 9 p.m. and 3 a.m.
After the 23 rd, it was so light at midnight that no aurora could have beeu distinguished.

A Report to the Hydrographer of the Admiralty, on the Results of the Magnetical Observations made by the Officers of the Arctic Expedition, 1875-1876, by Staff-Commander E.W. Creak, attached to the Admiralty Compass Department.

The Government having decided to despatch an Arctic Expedition in the spring of 1875, the Secretary of the Admiralty, in a letter dated 4th December 1874, invited the President and Council of the Royal Society to offer suggestions "in regard to carrying "s out the scientific conduct of the voyage."

Professor J. C. Adams, Lowndes Professor, Cambridge University, and Captain F.J. Evans, R.N., the Hydrographer of the Admiralty, were deputed by a committee of that body to prepare a Memorandum on the existing knowledge of the distribution of the magnetic elements in Arctic latitudes, together with instructions for the observers of the coming Expedition. The equipment of instruments was also to be arranged by them.

This Memorandum was published in the "Arctic Manual and Instructions" of 1875, accompanied by charts of the three magnetic elements, representing graphically the first-mentioned object of the Memorandum.

It having been directed that the two ships of the Expedition, the "Alert" and the "Discovery," should winter at different stations, a complete set of instruments was prepared for each vessel. They comprised the following :-

1. A portable unifilar magnetometer, for determining the absolute horizontal force at a fixed station.
2. A Barrow's circle, for determining the inclination; also fitted with Dr. Lloyd's needles, for determining the total force.
3. A specially constructed azimuth compass with levels and adjusting foot-screws, for determining the absolute declination.
4. A portable declination magnetometer, for differential observations at a fixed station.
5. Mr. Fox's apparatus, for observing the inclination and intensity in sledging or travelling parties.
6. Four three-inch prismatic azimuth compasses, for observing the declination when travelling, also seven sledge compasses for steering purposes, all specially fitted for Arctic service.
The complement of officers having been appointed to the Arctic ships, the following were selected for carrying out the magnetical observations :

$$
\begin{array}{ll}
\text { H.M.S. Alert } \quad & =\left\{\begin{array}{l}
\text { Commander Albert H. Markham. } \\
\text { Lieutenant George A. Giffard. }
\end{array}\right. \\
\text { H.M.S. Discovery }\left\{\begin{array}{l}
\text { Lieutenant Robert H. Archer. } \\
\text { Lieutenant Reginald B. Fulford. }
\end{array}\right.
\end{array}
$$

These officers were instructed in elementary magnetism, and in the use of Barrow's circle with its Lloyd's needles and Mr. Fox's apparatus, at the Hydrographic Department of the Admiralty by Staff Commander E. W. Creak. Instruction in the use of the unifilar horizontal force and in the differential declination magnctometers was given by Mr. Whipple jat Kew Observatory. At this observatory the base observations were made and the constants of the several magnetical instruments determined, with the
exception of the compasses, which were, as usual, furnished directly from the Admiralty Compass Observatory at Deptford.

No arrangements were made for observations at sea, the Committee having decided to direct the attention of ohservers solely to those made on land or fixed ice.

With complete sets of instruments, and the observing officers faniliar with the use of them, the "Alert" and "Discovery" left Portsmouth on the 29th May 1875.

The first magnetic observations made were those at Godhavn in Disko, where considerable differences were found in the values of the declination and inclination at various stations round the harbour, evidently caused by local magnetic disturbance.

Proceeding northward to winter quarters a few results in declination were obtained at intermediate stations.

On the 1st September 1875 the "Alert" reached her winter quarters at Floeberg Beach, in latitude $82^{\circ} 27^{\prime}$ N. longitude $61^{\circ} 22^{\prime}$ W. By the end of October the magnetic observatory was completed. It was situated on a slope of the hill adjoinings the ship, and constructed cntircly of snow. Entering by a doorway 200 yards from the ship, one branch to the right led to the horizontal force magnetometer and Barrow's circle houses, the other on the left, to the differential magnetometer house. These three honses were from 9 to 11 feet in diancter and $10!$ fect high, wihh a snow pedestal, 2 feet in diameter and $3 \frac{1}{2}$ feet high in the centre, upon which the instruments were mounted. The huses of the two absolute instruments lay in a north and south dircetion (true), 27 feet apari.

No stove was used, the object being to avoid rapid changes of temperature. The extreme range of the thermometer registered was from -10° to $+4^{\circ}$.

Here the scrics of observations, the results of which are given in the succeeding pages, were made during the winter. The following are the mean values of the several elements:-

Absolute declination - - $\quad 9757 \mathrm{~W}$.		
", horizontal force (unifilar)	$1 \cdot 137$	Total force $=12.309$
Total force (Lloyd's needles) -	-	$=12.258$
Horizontal force (ditto)	$1 \cdot 134$	

In his sledging journey to the extreme northerly position attained in the expedition (Lat. $83^{\circ} 20^{\circ} 26^{\prime \prime} \mathrm{N}$.) Commander Markham made observations of the declination, and with the Fox circle.

The " Discovery" took up winter quarters at Discovery Bay, 53 miles S.W. of the "Alert," in lat. $81^{\circ} 44^{\prime} \mathrm{N}$. , long. $6.0^{\circ} 3^{\prime} \mathrm{W}$. , on the 26 th August 1875.

13y the 10th Heptember 1875 the observatory house was completed. It was constructed of wood, with copper fastenings, 12 feet long, 7 feet broad, and 6 feet light, fixed at a distance of 197 yards from the ship. A copper stove warmed the building. The pedestals were formed of the ship's binnacles suak into the ground, a coveriug of wood with radial copper grooves fitted to them. These were foand to be very from.

For the differential declination magnetometer an ice house was built 90 yards from the ship, dimensions, 7 feet long, $3 \frac{1}{2}$ hroad, and 6 fect high. By the evening of the 22 nd Octover, after much care and trouble, the instrument was frozen to the pillars, and on the 23 rd the observations were commenced and continued with only one important interruption of two days until the 29 th of March.

The mean value of the several clements obtained at this station, of which the variou details are recorded in the tables, are-

Absolute declination ", inclination	$\begin{array}{r} -10144 \mathrm{~W} . \\ -\quad 8450 \mathrm{~N} . \end{array}$	
horizontal force (unifiar)	1.131	Total force $=12: 559$
Total force (Lloyd's needles)		=12.225
Horizontal force (ditto)	1-107	

One of the chicf subjects of interest in the magnetical results of the observations at the winter quarters observatories is that of the diurnal variation of the declination, and frequent magnetic disturbances, the latter especially, as the ships wintered in a region remarkable as it proved for an absence of brilliant auroras, and in which no connexion was observed between the appearances of that phenomenon and movements of the declinometer magnet.

To follow up this remarkable fcature, and in order to render the results of these observations directly comparable with other series obtained at stations on the North

American Continent, the forms of the several tables in this discussion have been assinilated to those adopted by Captain (now General Sir J. H.) Lefioy, in the published volume of his':"Magnetical and Meteorological Observations at Lake Athabasca, \&c."* Tables of a similar character are given by Mr. A. Schott in his discussion of Dr. Kane's observations at Van Rensselaer Harbour, \dagger and thus the results at three stations in the neighbourhood of Smith's Sound may be readily compared.

The greatest range of the declination was observed on the 19 th February 1876, about the same hours, at Floeberg Beach and Discovery Bay, reaching $5^{\circ} 9^{\circ} 4$ and $5^{\circ} 47^{\prime} \cdot 9$ respectively. The smallest range was observed on the 12th January, when only $0^{\circ} 4^{\prime}$ was recorded at the first-named station, and $0^{c} 6^{\prime} 9$ at the last. On an average, about every eighth day the higher values of the daily range were attained, and comparing the highest with the lowest scale reading during the whole period, it shows that the magnet moved over 8° of arc.

The hours of the greatest easterly and westerly deflection of the declinometer magnet in its mean daily departure from the normal, differed considerably from those of the middle northern latitudes, where $8 \mathrm{a} . \mathrm{m}$. and 1 to 2 p.m. are the well-established hours.

At Discovery Bay, when the disturbances are retained, the mean time of the greatest casterly deflection is 11 p.m., the greatest westerly deflection at $10 \mathrm{a} . \mathrm{m}$. After rejecting assumed disturbances the extremes are reached an hour later or at midnight and 11 a.m. At Van Rensselaer Harbour, when the disturbances are eliminated, the extreme easterly deflection occurred at 2 a.m., the westerly at 1 p.m.

The method of eliminating disturbances adopted in the discussion of these observations, has been to select certain days of principal disturbance, and to reject the observations of the whole of such days from the mean. But an adopted method, which consists in deciding upon a separating value and rejecting all hourly observations exceeding that value, may also be said to have been satisfied, for out of 2,088 hourly scale readings at Discovery Bay, all those that exceeded the mean hourly value for the whole month by 30^{\prime} of arc have been rejected, with the exception of 15 which diffeed 40^{\prime} of arc.

A separating value of 30^{\prime} at a station where the absolute horizontal force is $1 \cdot 13$, and the inclination $84^{\circ} 50^{\prime}$, may be considered sufficient, when compared with those adopted by Sir Edward Sabine, viz., at P'oint Barrow, $22^{\prime \prime} 87$, with a horizontal force equal 1.88, and dip $=81^{\circ} 36^{\circ}$, at Port Kenoedy, 70°, with horizontal force equal $0 \cdot 35$, and dip $=88^{\circ} 27^{\prime} . \ddagger$

Before proceeding further with the question of disturbances, it may be remarked that it is difficult to fix upou any given day as free from disturbance. At Discovery l3ay, for example, there is not a single day on which it may be said that the magnet moved progressively towards its extreme points of deflection without disturbance, during some hours of the twenty-four.

The erection of the declinometer houses of both ships on the ice floe (which rose and fell with the tide), renders the observed motions of the magnet open to the suspicion of disturbances other than those produced by magnetical causes. In the case of the "Discovery," comparisons were made between the declinometer on the floe and the unifilar magnetometer on shore during times of disturbances, and the magnets moved alike, with two exceptions. On February 2nd, the magnet on shore was much disturbed, that on the ice very steady; at midnight of February 28th, the reverse took place, the declinometer being disturbed in a peculiar manner, whilst the unifilar magactometer remained nearly steady.

An analysis of the disturbances at Discovery Bay, is given in the discussion of the observations made by the officers of the "Discovery." The salient points of this analysis are,-that the disturbances were continuous-that the easterly disturbances prevailed over the westerly during the night from 7 p.m. to $7 \mathrm{a} . \mathrm{m}$., and tiat the westerly predominated during the remaining hours of the day. Also, that the period of least disturbance occurred about the time of the solstice, and the greatest about the equinos.

Beyond this, there is what may be termed their semi-American, semi-Asiatic character. At lekin, Nertschinsk, and Discovery Bay the aggregate values of the westerly deffections decidedly predominate, the contrary obtains in America. In North America "the conical form (of the curves) characterizes the easterly deflections." The same occurs at Discovery Bay, but the double maxinum-which is observed in the casterly deflections at Pckin and Nertschinsk, and the westerly in North America-is common to both easterly and westerly deffections.

Of magnetic storms, the most remarkable observed were those of the 19th February 1876, and of the 25 th to the 26 th March. Although there is not complete evidence to indicate the exact time of these and other storms commencing and ending, yet suffi-

[^1]cient is known to show that they lasted through the same absolute hours at Kew and Discovery Bay. The direction of the deflections of the magnets was often opposite at the two stations, and in the March storm, whilst there was a continuous pull to the westward at the high northern station, at Kew easterly deflections were frequent.

Reference has been made to the charts of lines of equal declination, inclination, and horizontal force in Arctic latitudes, (prepared in the Hydrographical Department of the Admiralty,) published in the "Arctic Manual," 1875.

In their preparation the lines about Smith's Sound were for the most part drawn from the observations of Drs. Kane and Hayes, in the American Expeditions of 1853-1861. Although so many years have elapsed, little or no modification is required in the direction of the lines by the observations of 1875-76, this points to the important fact of the magnetic elements in this part of the world undergoing at present no secular change.

The numbers of results from the observations made during the voyage are-

On the return of the Expedition on the 27th October 1876, the magnetical instruments were examined at the respective observatories as before starting.

In the following pages 123-129 "Alert," and 130-145 "Discovery," will be found abstracts of the whole of the magnetical results obtained in the Expedition.

As the instruments furnished to the Arctic ships for observing the magnetic elements were designed with the view of obviating some of the difficulties attending the use of instruments of the ordinary construction under the conditions of an Arctic climate, a short description is here given.
For declination or variution of the compass.-A compass with bowl of pure copper fitted with levels, and supported by foot-screws which rested on a suitable table and tripod. Azimuth circle of the same construction as the Admiralty standard compass. The magnctic needles were arranged on a brass frame as in the Admiralty standard compass, but the graduated card was, dispensed with, and a light aluminium ring graduated to 360°, and each degree again divided into parts of 20^{\prime} was added. The cap was also of aluminium. This compass is the shore azimuth compass of the text.

Differential declination magnetometer. - The chief peculiarity of this instrument was the size of the scale, which was graduated to record a range of 10° of the magnet (5° on either side of zero). The thumb-pieces of the levelling screws were of ivory, and a fixed mirror was added to the magnet box so as to avoid the loss of the zero at any time. The too near approach of an observer with possible magnetic substances on his person was provided against by arranging the focus of the observing telescope so as to ensure a sufficiently safe distance from the suspended magnet.

For inclination or dip, and total force.-The dip circles were of the ordinary construction known as "Barrow's Dip Circles." These were also fitted with Dr. Lloyd's needles for observing the total force, and deflection bars for ascertaining the distribution of the magnetism in the needles, with a view to rendering the results independently absolute.
For alsolute horizuntal force.-In the unifilar magnetometers there were considerable modifications of the ordinary form in order to simplify the work of observing. The usual copper box was dispensed with, and the mahogany box sufficed for both deflections and vibrations. The glass suspension tube was replaced by one of metal surmounted by a large torsion circle. All portions of the instrument likely to be frequently touched, such as screws and clamps, were ebonite.

Dip and intensity apparatus (by Mr. R. W. Fox, F.R.S.)-These were of the usual construction, but of a smaller and lighter pattern, for convenience in sledge travelling. Mr. Fox took the greatest interest in the construction of some of those furnished to the Expedition.

H.M.S. ALERT.

Abstract of Inclination Obgervations mith Barrow’s Cibcle, No. 26.

[^2]Abstract of Values of Absolute Horizontal Force. Unifilar by Elhott, No. 36.

Assuming the mean inclination $=84^{\circ} 42^{\prime} \mathrm{N}$. during the period when the horizontal force was observed as above, the total force $=12 \cdot 309$ at Winter Quarters Observatory.

The values of m, or magnetic moment of the vibrating magnet, show a nearly coustant result during the observations at Winter Quarters, a real change only taking place after their conclusion, as shown by the return observations at Kew Observatory.

Abstract of Total Force Results as made with Lloyd's Nerdles. Barrow's Circle, No. 26.

1875, 12 July - 2 P.M. - Godmarn, Disko (Flagstaff Station) $12.530 \quad X=1 \cdot 805$ Lat. $69^{\circ} 13^{\prime} 56^{\prime \prime}$ N. Long. $53^{\circ} 42^{\prime} \mathrm{W}$. Winter Quarters Observatory.

In computing the horizontal from the total force, the values of the inclination have been taken from those observed at the time of the total force observations.

In the computation of the horizontal force, or X, the first mean has been used for observations in November and December, the scoond mean for the later months.

Abstract of Values of Log $\pi^{2} k$. Unifilar, No. 36.

Abstract of Declination Observations made with Sledge Azimuth Compass.

1876, 6 May	Lat. $83^{\circ} 16 \frac{1}{1}{ }^{\prime}$ N. Long. $62^{\circ} 40 \frac{1}{2}^{\prime} \mathrm{W}$.		$102^{\circ} \mathrm{W}$.
8	Lat. $83^{\circ} 17 \frac{1}{2}^{\prime}$ N. Long. $62^{\circ} 40 \frac{1}{2}^{\prime} \mathrm{W}$.	-	

Abstract of Inclination and Intensity Observations made with Fox's Cricles, No. 28.

Inclination.

Intensity.

1875, 9 to 13 July - Gollhnvn, Disko (Flagstaff Station) - Circle, No. 28 - 12.561
Lat. $69^{\circ} 13^{\prime} 56^{\prime \prime} \mathrm{N}$. Long. $53^{\circ} 42^{\prime} \mathrm{W}$. - "No. 2 - 12.578

Results of Observations made with the Differential Declination Magnetometer at Winter Quarters Observatory, Floeberg Beach, 1875-76.

Lat. $82^{\circ} 27^{\prime} 2^{\prime \prime}$ N. Long. $61^{\circ} 22^{\prime} \mathrm{W}$.
Observations were commenced in November, but not in sufficiently connected numbers to give results. They were, however, resumed on the 7th December 1875, and the hourly series continued until the 18th, when an interval occurred. From the 6 th to the 15th January, and from the 6th to the 22nd of February, the hourly- series was continued, with the exception of an interval between midnight of the 8th January and 2 p.m. of the 10 th, when a $S . W$. gaie prevented communication with the observatory.

On days of magnetic disturbance special observations were made at frequent intervals, of which the following is a general description :--

1875, December 17, 18.-Great disturbance. Four readings of the scale per minute during intervals of 5 to 10 minutes were registered, both a.m. and p.m. each day.

1876, January 14, 18.-Disturbance. Quarter and half-minute observations, at intervals both a.m. and p.m.
25.-Disturbance from 2 hours to 5 hours, quarter-minute observations from 2 hours to 3 hours, and 4 hours to 5 hours.
1876, February 10-Between 6 hours and 7 hours, quarter-minute observations during two intervals of 7 minutes.

"		11, 13.-Disturbances. From 5 to 6 hours, quarter-minute vations during two intervals of 7 minutes.
"		19.-Great disturbance: From noon to 2 hours, quarter-minute observations during four intervals of 5 minutes each.
		20.-Continuous quarter-minute scale readings for 45 m 1 hour and 2 hours.

Table I．，showing the daily range of the declination，has been taken from the hourly scries of observations and the extra scale readings on disturbed days，that is，the highest and lowest scale readings from whatever source during the 24 hours．The mean daily range for the three months，or the square root of the mean of the squares of all the daily ranges for each month，expressed in arc，is，－

$$
\begin{aligned}
& \text { 1875, December }=71^{\prime} \cdot 4 \\
& \left.\begin{array}{l}
\text { 1876, January }=68^{\prime} \cdot 5 \\
1876, \text { February }=110^{\prime} \cdot 9
\end{array}\right\} \text { Mean }=91^{\prime} \cdot 5 \text { for the whole period. }
\end{aligned}
$$

The value of a division of the scale $=0^{\prime} \cdot 4754$ of arc．
Table I．－Daily Range of the Declunation．

Date．	In tue Hourly Scries．		Obserred．		Ravge．		
			$\pm \substack{\text { Highest Sale } \\ \text { Seading．}}$	$\xrightarrow[\substack{\text { Lowest Sale } \\ \text { Reading．}}]{ }$	In the fourly	Total Observed	arc．
1875．							－
December ${ }_{8}$	$\xrightarrow[\substack{770 \\ 882.5}]{\substack{\text { che }}}$	${ }_{\substack{654 \\ 6 ; 0}}^{\text {cid }}$	＝	＝	${ }_{\substack{116 \\ 115 \\ \hline}}$	－	
＂${ }^{\prime}$	${ }_{788}^{719}$	$\underset{\substack{63 \\ 619}}{63}$	三	二		三	${ }_{\text {a }}^{0}$
$\#$ \cdots 11 10 12	，	$\underset{\substack{659 \\ 659}}{\substack{65 \\ \hline}}$	三	三	49 46 49	E	
＂${ }^{13}$	${ }_{872}$		三	二	cise	－	
＂${ }_{0}^{14}$	${ }_{710}^{712}$	${ }_{631}^{663}$	－	二	${ }_{79}^{49}$	三	${ }^{0} 803837$
\cdots	${ }^{312}$	${ }_{478}^{478}$	＝	二	${ }_{299}^{24.5}$	＝	－${ }^{1}$
＂，is	$=$	＝	${ }_{706}^{777}$	（640	$\underline{-}$	${ }_{24}^{437}$	（
${ }^{1876 .}$							
\cdots			－	三	${ }_{5}^{43}$	こ	
＂	（iol	${ }^{975}$	－	ニ	${ }_{8}^{73}$		
\cdots		${ }_{\substack{631 \\ 489}}$	＝	－	${ }_{3}^{147}$［75	－	
\cdots	二		${ }_{\text {810 }}$	${ }_{\substack{489 \\ 609}}^{48}$	＝	${ }_{3}^{3115}$	－
			${ }^{295}$	570		155	${ }_{1}^{13} 6$
February ${ }^{\text {¢ }}$						＝	
\cdots		cosion	三	三		こ	
＂，${ }^{10}$	cos	cose	三	三	${ }_{\text {l }}^{183}$	－	
＂．${ }^{11}$		${ }_{\substack{599 \\ 59 \\ \hline 9}}$	三	三	${ }_{\text {cke }}^{238.5}$	－	（151．14
	\％ 81	$\underset{672}{ }$	三	＝	${ }^{384}$	Е	${ }_{3}{ }^{2}$ \％ 78
\cdots	${ }_{807}^{89}$	${ }_{6}^{697}$	＝	＝		こ	
\cdots	${ }_{9}^{893}$	${ }_{7}^{643}$	三	－	－	Z	（1） $\begin{gathered}140 \cdot 20 \\ 142: 81 \\ 1\end{gathered}$
$\cdots{ }^{\square}{ }^{18}$			＝	＝	$\xrightarrow{291}$	＝	
\cdots		691	1050	400	－	650	59%
	${ }^{817}$	${ }_{667}$	－	－	150	－	111.40
					，		

From this table it will be seen that the greatest range on any given day took place on the 19th February，and attained a value of $5^{\circ} 9^{\prime} 4$ ．The lowest range on the 12th January，amounting to only $0^{\circ} 4^{\prime}$ ．The difference of the lowest and highest scale readings throughout the period amounted to $5^{\circ} 37^{\prime} .5$ of arc．

The next，Table II．，contains the mean scale reading for each hour of the day during the month．The difference between this scale reading at each hour and the mean for the whole 24 hours，is the mean diurnal variation or diurnal inequality of the declination， which is here expressed in arc．
'Table II.-Mean Diurnal Variation in the Dechnation, also the Mean Hourly Scale Readings of the Differential Declination Magnerometer for each Month.

	$\begin{aligned} & 1875 . \\ & \text { December 7th to December } \\ & 18 \mathrm{th} . \end{aligned}$		$\begin{aligned} & 1876 . \\ & \text { January 6th to January } \\ & 15 \text { th. } \end{aligned}$		1876.February 6 th to February22nd.		Remaris.
	Mean Scale Reading.	Variation in the Declination.	Mean Scale Reading.	Variation in the Declination.	Mean Scale Reading.	Variation in the Declination.	
		,		'		,	
Noon	663.9	-13.5	666.8	-18.0	$690 \cdot 0$	-22.2	From 1 am . of the 9th January
1	$667 \cdot 4$	11.9	$689 \cdot 6$	$7 \cdot 2$	677.7	$28 \cdot 1$	to $11 \mathrm{alm.m}$. of the 10th, the ob-
2	671.4	$10 \cdot 0$	672.8	$15 \cdot 1$	$683 \cdot 5$	$25 \cdot 3$	servations were discontinued,
3	$668 \cdot 3$	$11 \cdot 4$	$668 \cdot 1$	$17 \cdot 4$	$698 \cdot 0$	$18 \cdot 4$	a S.W. gale preventing any-
4	674.8	-8.7	$679 \cdot 9$	11.8	$711 \cdot 2$	$12 \cdot 2$	one leaving the ship.
5	693.0	+ 0.3	$692 \cdot 6$	$5 \cdot 7$	$714 \cdot 0$	-10.8	
6	$697 \cdot 4$	$2 \cdot 4$	$691 \cdot 2$	- 6.4	$742 \cdot 5$	+ 2.8	
7	$715 \cdot 6$	11.0	714.9	+4.9 +8.7	$750 \cdot 1$	6.4 9.1	The large differences in the
8	704.4	$5 \cdot 7$	722.9	$8 \cdot 7$	$755 \cdot 7$	9.1	mean scale readings for each
9	707.9	$7 \cdot 4$	$728 \cdot 6$	11.4	$758 \cdot 0$	$10 \cdot 2$	month are due to a new zero
10	707.5 717.9	$7 \cdot 2$ $12 \cdot 1$	$725 \cdot 1$ 726.9	$9 \cdot 7$ 10.6	$775 \cdot 0$ $778 \cdot 1$	18.2 19.7	of increasing value having been taken for each month.
11	$717 \cdot 9$	$12 \cdot 1$	$726 \cdot 9$	10.6	$778 \cdot 1$	19.7	been taken for each month.
12	$721 \cdot 4$ 722.9	$13 \cdot 8$ 14.5	$718 \cdot 3$ 706.6	6.5 0.9	$793 \cdot 9$ $771 \cdot 6$	27.2 16.6	
13	722.9 703.6	14.5 5.3	706.6 797.6	0.9 10.9	$771 \cdot 6$	16.6 18.8	
14	703.6 712.0	$5 \cdot 3$ $9 \cdot 3$	$737 \cdot 6$ $717 \cdot 6$	10.9 6.2	$776 \cdot 1$ $780 \cdot 5$	$18 \cdot 8$ 20.8	Increasing numbers on the scale denote a movement of the
16	$712 \cdot 9$	$9 \cdot 7$	$714 \cdot 9$	$4 \cdot 9$	$753 \cdot 8$	$7 \cdot 9$	magnet towards the east.
17	$705 \cdot 2$	$6 \cdot 1$	$719 \cdot 2$	$6 \cdot 9$	$754 \cdot 3$	+ $8 \cdot 4$	
18	694.9	$1 \cdot 2$	$719 \cdot 5$	$7 \cdot 1$	$734 \cdot 2$	-1.2	
19	697.4	+ 2.4	$720 \cdot 4$	$+7 \cdot 5$	$739 \cdot 3$	+1.2	
20	$689 \cdot 9$	-1.2	$701 \cdot 1$	- 1.7	$719 \cdot 8$	-8.1	
21	676.0	$7 \cdot 8$	$701 \cdot 0$	$1 \cdot 7$	$711 \cdot 0$	$12 \cdot 2$	
22	$645 \cdot 0$	$22 \cdot 5$	$689 \cdot 7$	711	$705 \cdot 4$	$14 \cdot 9$	
23	645'7	-22.2	696.6	$-3 \cdot 8$	708.8	$-13 \cdot 3$	
Means	$692 \cdot 4$		$704 \cdot 6$		$736 \cdot 7$		

The extreme deflections of the magnet (always regarding the mean position of the north end as being the magnetic north) took place,-

$$
\text { Westerly extreme }\left\{\begin{array} { l }
{ \text { December, } 1 0 \text { a.m. } } \\
{ \text { January, Noon. } } \\
{ \text { February, 1 p.m. } }
\end{array} \quad \text { Easterly extreme } \left\{\begin{array}{l}
\text { December, } 1 \text { a.m. } \\
\text { January, 9 p.m. } \\
\text { February, Midnight. }
\end{array}\right.\right.
$$

From a mean value of the whole period the westerly extreme occurred at noon, the easterly at midnight, and the mean positions of the magnet were reached at about 6 p.m. and $7 \frac{1}{2}$ a.m. These general results are of course affected by disturbances, therefore Table III. has been prepared, in which are shown the mean diurnal variation of the declination computed from a number of days assumed to have no disturbance, or at least a minimum amount.

Days on which the extreme range of the magnet failed to exceed 60° of arc were selected as undisturbed. The reasons for this arbitrary selection will be found in the discussion of the differential declinometer results obtained by the officers of the "Discovery."

In December, out of 12 days' observations, 5 were rejected as disturbed; in January, out of 9 days, 3 days; and in February, 10 out of 16 . We have, therefore, 18 disturbed and 19 undisturbed days.

The Table shows the effect of this elimination (arbitrary, it is true,) the extreme deflections of the magnet under these conditions taking place,-

$$
\text { Westerly extreme }\left\{\begin{array} { l }
{ \text { December, 1 p.m. } } \\
{ \text { January, 2 p.m. } } \\
{ \text { February, 3 p.m. } }
\end{array} \quad \text { Easterly extreme } \left\{\begin{array}{l}
\text { December, } 1 \text { a.m. } \\
\text { January, } 10 \text { p.m. } \\
\text { February, } 2 \text { a.m. }
\end{array}\right.\right.
$$

The mean values of the 19 undisturbed days give a westerly extreme deflection at 10 a.m. and 1 p.m. of equal value; the easterly extreme at 1 a.m. The hours of the mean position of the magnet are but little affected by the rejection of the disturbed days.

The general effect of disturbance is therefore to accelerate the arrival of the magnet at its extreme westerly and easterly deflection by one hour.

[^3]Table Iti.-Mean Diurnal Variation in the Declination, rejecting Days of great Disturbance, also the Mean Hourly Scale Readings of the Differential Declination Mageetometer for each Month.

Minn	December ${ }^{1875}$ th to December		18if.January 6 6th to January 15th.		1876.Fehruary 6th to February22 nd.		Remarks.
Place.	Mean Scale Reading.	Variation in the Declination.	Mean Scale Hearling.	Variatiou in the Declination.	Mean Scale Rcading.	Variation in the Declination.	
		,		,		,	
Noon	675-4	-7.8	$689 \cdot 1$	-8.8	$716 \cdot 0$	-8.8	Days on which the range of the
1	$662 \cdot 1$	$15 \cdot 1$	$695 \cdot 9$	$5 \cdot 6$	715-2	$9 \cdot 2$	magnet exceeded 120 divisions
$\stackrel{2}{2}$	686.8	$3 \cdot 3$	$68: 10$	117	726.4	$3 \cdot 9$	of the scale have been ex-
3	689.0	$-2 \cdot 3$	691.7	$7 \cdot 6$	$706 \cdot 8$	$13 \cdot 2$	cluded from the means.
4	$697 \cdot 0$	+ 1.5 ,	686.3	$10 \cdot 1$	$715 \cdot 9$	$8 \cdot 9$	
$\stackrel{\square}{0}$	$694 \cdot 9$	$0 \cdot 9$	201.4	- 3.0	$726 \cdot 2$	-4.0	
6	$699 \cdot 9$	$2 \cdot 9$	$712 \cdot 5$	+ $2 \cdot 3$	$737 \cdot 3$	+1.3	to 11 am . of the 10 hh , the
7	801.8	3.8 3.8	$713 \cdot 6$	$\underline{2.8}$	741.0	$3 \cdot 1$ 4.8	observations were discon-
8	$701 \cdot 9$	$3 \cdot 8$ $4 \cdot 6$	$781 \cdot 5$ -16.7	$6 \cdot 6$ $+\cdot 3$	$744 \cdot 8$ $750 \cdot 4$	$4 \cdot 8$ $7 \cdot 6$	tinued, a S.W. gule preventing
$\stackrel{9}{10}$	$703 \cdot 5$ $702 \cdot 1$	+6 $4 \cdot 0$	$\begin{array}{r}76.7 \\ \hline 23.6\end{array}$	$7 \cdot 3$ $7 \cdot 6$	$750 \cdot 4$ 753.8	$7 \cdot 6$ $9 \cdot 2$	anyone leaving the ship.
11	697.6	1.8	$213 \cdot 8$	$2 \cdot 9$	$746 \cdot 1$	$5 \cdot 5$	
12	$709 \cdot 6$	$7 \cdot 6$	7171	$4 \cdot 6$	$740 \cdot 4$	$2 \cdot 8$	
13	716.1	$10 \cdot 6$	$208 \cdot 4$	$0 \cdot 4$	$765 \cdot 0$	$14 \cdot 5$	
14	$700 \cdot 7$	$3 \cdot 3$	$719 \cdot 1$	$5 \cdot 5$	$767 \cdot 0$	15.5	
15	702.5	4.1	$716 \cdot 6$	$4 \cdot 3$	76.3 .7	$13 \cdot 9$	
16	$705 \cdot 0$	$5 \cdot 3$	$715 \cdot 3$	$3 \cdot 7$	741.0	3.1	
17	$697 \cdot 7$	$+1.4$	716.8	4.4	747-6	+ 6. ${ }^{2}$	
A	$690 \cdot 1$	- $1 \cdot 8$:16.9	$4 \cdot 4$	$730 \cdot 4$	- $2 \cdot 0$	
19	697-7	$+1 \cdot 9$	$714 \cdot 3$	$3 \cdot 2$	727-0	$3 \cdot 6$	
20	$690 \cdot 8$	-1.4	$710 \cdot 8$	$+1.5$	722.3	$5 \cdot 8$	
91	$684 \cdot 6$	$4 \cdot 4$	$698 \cdot 3$	-4.4	$714 \cdot 5$	$9 \cdot 5$	
22	671.2	$10 \cdot 7$	$694 \cdot 5$	6.3	707-5	$12 \cdot 9$	
23	$672 \cdot 5$	$-10 \cdot 1$	$705 \cdot 9$	-0.8	$721 \cdot 6$	$-6 \cdot 1$	
Means	$693 \cdot 8$		$707 \cdot 6$		$734 \cdot 5$		

As the observations of the differcntial declination magnetometer at Floeberg Beach only extended over unconnected portions of three months, the question of disturbances in the mean diurnal variation of the declination has not been further examined. There exists also the doubt whether, from the observatory having been necessarily erected on the ice floe, all the disturbances observed proceeded from magnetic causes or partislly from shocks received by the ice floe and communicated to the observatory.

Auronas.

The appearances of auroras and the synchronous movements of the declinometer magnet were subjects of special observation during the stay of the "Alert" and " Discovery" at their winter quarters. Table IV. gives the dates and hours when auroras were visible. On all occasions they were observed to be faint, with none of those brilliant manifestations which are described by our own officers as seen at Point Barrow,* and by the Austro-Hungarian Expedition at Franz Josef Land, \dagger where the magnetical instruments were so sensibly disturbed.

These phenomena were not observed cither in the "Alert" or the "Discovery," especially no connexion between magnetical disturbances and the appearances of auroras could be traced.

This is quite in accordance with the remarks of previous observers within the region comprehended between the meridians of 60° and 90° West, and North of the parallel of 73° North. For example,-

In the Phil. Trans. 1826, Part IV., page 76, Captain Parry and Lieut. Foster remark, in the discussion of their magnetical observations at Port Bowen: "As far, however, " as our own observations extended, we bave reason to believe that on no occasion were " the ncedles in the slightest degree affected by aurora, metcors, or any other perceptible " atmospheric phenomenon."

Again, in the Smithsonian Contributions, Vol. X., 1858, Mr. A. Schott, in his discussion of Dr. Kane's observations at Van Rensselaer Harbour in 1854, remarks: "In conformity with the supposed periodicity of this phenomenon as recognised by " Professor Olmstead, no brilliant and complete auroras have been seen; with an " exception of very few, they may all be placed in his fourth class, to which the most

[^4]" simple forms of appearances have been referred." * * * * The following statement is given in the same page as a foot note. "The processes have no apparent " connexion with the magnetic dip, and in no case did the needle of our unifilar indicate disturbance."

Table IV.-Table of Dates when Auroras were observed by the Arctic Expedition, $1875-76$.

The following description of the aurora observed on 21st November 1875 is given by Commander Markham and Lieut. Giffard in their abstract of observations at Floeberg Beach:-
"Between 10 and 11 p.m. bright broad streamers of the aurora appeared 10° or 15° above the north horizon, stretching through the zenith, and terminating in an irregular curve about 25° above the south horizon, bearing S.S.W. During the aurora's greatest brilliancy the magnet was observed during five minutes to be undisturbed."

All other references to this phenomenon are accompanied by the words "faint" or "very faint."

H.M.S. DISCOVERY.

The magnetical instruments furnished to this ship were identical with those for the " Alert," and already described at page 122.

Wintrr Quarters Observatory.
Lat. $81^{\circ} 44^{\prime}$ N. Long. $65^{\circ} 3^{\prime} 14^{\prime \prime} \mathrm{W}$.

(Near) C. Louts Naroibon.
و 25 " - 10.30 A.m. - Lat. $79^{\circ} 40^{\prime}$ N. Long. $72^{\circ} 5^{t}$ W. - 10946 ,
Dobbin Bay.
" 29 " - - 10.4 A.M. - Lat. $79^{\circ} 41^{\prime}$ N. Long. $72^{\circ} 53^{\prime} \mathrm{W} . \quad$ - 109 ;
Walrus Islant (on ice).
" 7 Sept. - 0.50 p.m. - Lat. $79^{\circ} 24^{\prime}$ N. Long. $74^{\circ} 45^{\prime}$ W. - 11112 ,",

[^5]Godhavk Disko.
1876, 27 Sept. - $\quad 11.45$ A.m. - Lat. $69^{\circ} 14^{\prime}$ Long. $53^{\circ} 42^{\prime}$ W. - - 6820 W.
Egedesmunde.

Abstract of Inclination Observations with Barbow's Circle, No. 27.

Winter Quarters Observatory.

Kew Obshbyatoky

1877,14 Feb. - - 11,0 A.m.
 R 2

1875, May	Values of Aisolute	rizontal Force, Unifilar by 37.	Elliotr,	
		Kew Onservatory (Departure)	$\underset{3 \cdot 878}{\boldsymbol{X}}$	$\stackrel{m}{\sim}$
	Wister Qcaltms Onservatomy.			
14 Oct .	- 5.30 r.s. to 7.40 rar .	Lat. $81^{\circ} 44^{\prime} \mathrm{N}$. Long. $65^{\circ} 3^{\prime} 14^{\prime \prime} \mathrm{W}$.	1-133	$\cdot 65$
5 Nov.	- 10.30 A.s\% to 12.50 r.m.	"	$1 \cdot 128$	$\cdot 6674$
17	- 4.30 p.m. to 6.40 r.m.	" \#	$1 \cdot 126$	-6772
"7 D"c.	8.0 P.s. to 10.50 p.r.s.	" "	$1 \cdot 142$	-6611
" ${ }_{13}$ Dce.		" "	$1 \cdot 125$ 1.118	-6613
1876, 7 Jan.	- 4.30 r.m. to $6.45 \mathrm{r} . \mathrm{s}$.	" "	析	-6581
9 Fcb .	- 5.35 rms to $7.0 \mathrm{Pr.m}$.	" ${ }^{\prime \prime}$	1-153	-6638
	$5.45 \mathrm{rm.m}$ to 7.20 p \%.m.	" "	1.139	$\cdot 6735$
" 8July	- 4.50 r.as. to $6.30 \mathrm{r} . \mathrm{m}$.	"\# "	1.134	-6581
\cdots	- 6.40 r.m. to 7.55 r.s.	"	1-122	-6512
1877, 14 Feb .	- 3.5 r.m. to 4.24 P.m.	Kew Observatory (Returi).	$3 \cdot 917$	-641

Assuming the mean inclination $=84^{\circ} 50^{\prime} \mathrm{N}$. during the period when the horizontal force was observed as above at Winter Quarters Observatory, the total force $=12.559$.

Abstract of Total Force Results made with Lloyd's Needles, Barrow's Circle, No. 27.

Winter Quarters Onservatory.

In computing the horizontal from the total force the values of the inclination have been taken from those observed about the time of the force ubservations.

Results of Obsenvations made with Differential 1 ${ }^{\text {echination Magnetometer at }}$ Winter Quarters Observatory, Discovery Bay.

Lat. $81^{\circ} 44^{\prime} \mathrm{N}$. Long. $69^{\circ} 3^{\prime} 44^{\prime \prime} \mathrm{W}$.
These form a valuable addition to the existing knowledge of the diurnal variation and disturbances of the declination in Arctic regions, both on account of the geographical position of the observatory being in so high a north latitude, and from the extended series of observations made there.

At noon of the 23 rd October 1875 the continuous hourly observations were commenced and carried on with only two omissions until the 28th March 1876. The first break in the series took place during the 8th and 9 th November, when instrumental adjustment was necessary; the second for five hours of 3rd February, when stress of weather prevented communication with the observatory.

Extra observations were made on the following days in each month. The mean astronomical day was maintained throughout:-

1875, October 26.-Between 20 hrs. and 1 h .23 m . of the 27 th.
" November. -From 21 hrs . of the 1 st to 1 h .19 m . of the 2 nd about every five minutes;
Also on 3rd, 4th, 5th, 10th, 11th, 12th, 13th, 29th, and 30th.
" December.-On the 1st, 2nd, 5th, 6th, 17 th, 20th, and 21 st, every five minutes during portions of each day;
Also on 20th, 24th, 25th, and 26th, every 30 minutes during portions of the day.
1876, January.-On the 4th, 5th, and 14th, every five minutes during the afternoons. On 13th, at intervals of two minutes and a half about midnight.
, February.-On the 19th and 25th, every five minutes during portions of the day.
" Marcl.-On 12th, 13th, 24th, and 25th, every five minutes during the afternoons.
Among the objects of inquiry which these observations suggest are those of the daily range of the declination, its varied amount, and mean monthly value. Table I. has been constructed to show their values, and further to serve as a means of comparison with those of Arctic and other stations on the American continent.

R 3

It shows in the first two columns the highest and lowest scale readings in the hourly series of observations for each month. In the next two columns are the highest and lowest scale readings, whether in the hourly series or observations between the hours. Under the head "Range" is shown the differences of the highest and lowest scale readings in the previous columns, or range expressed in scale divisions and arc.

The value of one scalc division $=0^{\prime} \cdot 6325$.
The highest scale reading recorded is $9: 30$, in the month of February, the lowest 170, in March; the difference of which equals 8° of arc. The greatest range on any given day was on the 19th February, when it attained a value of $5^{\circ} 47^{\prime} 9$; the smallest on the lith January, when it was only $0^{\circ} 6^{\circ} 9$. The mean daily range (or the square root of the mean of the squares of the daily ranges) for each month was-

1875, October	$=93 \cdot 3$
",	November

The mean daily range, therefore, gradually declined in value from October to December, when the minimum range was reached, but again increased during the subsequent months of ohservation.

Comparing the results of the mean daily range during the whole period with those oltained at Plocherg Beach and Van Rensselaer Harbour-stations where the inclination and horizontal force differ so little from the same elements at Discovery Bay-it is found that the mean daily range at Van Rensselaer harbour was $2^{\circ} 28^{\prime} 6$; Floeberg Beach, $1^{\circ} 31^{\prime} \cdot 5$; Discovery Bay, $1^{\circ} 28^{\prime} \cdot 0$.
The high value oitained at Van Rensselaer Harbour, as compared with the other two stations, may possibly be accounted for from being the result of only 17 days observations spread over a period of three months, when many days of probably small range have not been selected for observations.

Mean Diurnal Variation in the Declination.

In Table II. are presented, for each month, the mean scale reading of the declinometer at each hour of the astronomical day during the month; the differences between this mean hourly scale reading and the mean for the whole month, expressed in arc, or the mean diurnal variation or inequality in the declination.

In this table we find that, taking the months separately, the hours of extreme westerly deflection (always regarding the mean direction of the magnet as pointing to the North) varied in the different months-hetween 10 and 11 a.m. in October, November, and December; and between Noon and 1 p.m. in January, February, and March.

The extreme casterly defection occurred between 11 p.m. and Midnight, throughout the period.

In Table III, are given the values of the mean diurnal variation for the whole period of observation at Discovery Bay, Flocberg Beach, and Van Rensselaer Harbour, as observed.

Hours of extreme deflection at the three stations and Port Bowen, compared :-
Westerly extreme $\left\{\begin{array}{lll}\text { Noon, } & \text { Van Renssclaer Harbour, } 2 \text { a.m. } \\ \text { Noon, } & \text { Flocherg Beach, } & \text { Midnight, } \\ 10 \text { a.m., } & \text { Discovery Bay, } & 11 \text { p.m., } \\ 11.49 \text { a.m., Port Bowen, } & 10 \text { p.m., }\end{array}\right\}$ Easterly extreme.
As it is probable that magnetic disturbances have had a certain degree of control over the determination of these hours of extreme deflection, it now becomes necessary to definc as nearly as possible the amount of disturbance, and form tables of the nean diurnal variation of the declination, freed from such disturbance.

These are giveu in Table LV., formed in the same manner as Table II., after rejecting all observation made on certain days selected as days of disturbance. On the present occasion 69 days out of 156 have been rejected as disturbed during some portion of the 24 hours.

Two methods have been generally adopted for eliminating disturbance variation: one, in which an arbitrary separating value has been decided upon, and all hourly observations differing by that quantity from the mean hourly value have been rejected; another, in which the observations of the whole day during which any disturbance
occurred are rejected. In this discussion the latter method has been adopted, as the remarks of the observing officers as to days of disturbance scem to indicate a more accurate means of defining a disturbance than the selection of a separating value for certain hours.

The following remarks are taken from the "Discovery's" journal of magnetic observations, showing the days of disturbance noted :-
1875, October 31.-Disturbance at 22 hours, lasting until 7 hours November 1st.
November 1.-Great disturbance at 21 hours, lasted 7 hours, the needle constantly to the westward of the normal.
12.-Disturbapce at 22 hours, until 4 hours of November 13th.
29.-Disturbance at 21 hours, until 7 hours of November 30th.

December 1.-Great disturbance at 21 hours, lasting 7 hours.
2.-Disturbance from 21 hours to Noon.
5.-Great disturbance in the forenoon, increasing during the afternoon, moderating at 6 hours of the 6 th, increasing again during the night, and ending at 3 hours of the 7 th.
17.-Disturbance at 21 h . 25 m ., lasting till $5 \frac{1}{2}$ hours of 18 th .
20.-Disturbance from $21 \frac{1}{2}$ hours, until 3 hours of 21 st.
24.
25. All disturbed days at various times.
26.

1876, January 4.-Disturbance at 22 hours, continuing for 9 hours.
13.-Grent disturbance from 9 hours, until 15 hours.
14.-Disturbance from 21 hours until 7 hours of 15 th.
22.-Disturbances from 22 hours until 7 hours of 23 rd.
30.-Disturbances during the night.

February 19.-Great disturbance from 2 hours to 21 hours.
25.-Slight disturbance from 2 hours to $5 \frac{1}{2}$ hours.
28. - Very great disturbance at Midnight.

March 12.-Disturbance from 22 hours to 7 hours of 13th.
24.-Disturbance at 20 hours, lasting 11 hours.

We have here 22 days of undoubted disturbance. From an examination of the hourly scale readings at the above dates, it was found that the motion of the magnet was very irregular from hour to hour, and that there were other occasions (not noted in the previous list) when similar movements took place and might likewise be considered days of disturbance. It was further remarked that on all these days the daily range exceeded 60^{\prime} of arc; therefore the excess of this value on any given day was accepted as the criterion of its being one of disturbance.

The rejection of the assumed days of disturbance has the following result, as shown in Table IV. In the monthly values the time of extreme westerly deflection is very little altered, but the easterly extreme is attained at hours varying between 9 p.m. and 4 a.m. The mean values for the whole period, as recorded in Table III., are-

The general effect, therefore, of disturbance is to accelerate the arrival of the magnet at its points of extreme deflection by one hour, in addition to producing a much larger range in the diurnal variation. Thus, with disturbances included, the range is $35^{\prime} \cdot 6$; with their rejection it is only $16^{\prime} \cdot 3$ at Discovery Bay.

Curves illustrating Tables II., III., and IV. are appended. In diagram No. 3 the curves of the "Discovery" show the effects of disturbance very clearly in the difference between the red and black lines. The times of the magnet reaching its mean position are also sharply defincd.

In Table V. are shown the values of that part of the mean diurnal variation of the declination which is produced by disturbances. In these, the effects of westerly disturbances are greater at certain hours than the easterly, but the latter are longer sustained.

Analysis of the Disturbances.

Although differential observations of the magnetic declination and analyses of the disturbances have been made at numerous stations on the North American continent, these have been generally, at places where some connexion was assumed between appearances of the aurora and disturbances of the magnetic elements.

Discovery Bay may he considered to lie in a region within which all observers hitherto report their inability to discover connexion between disturbances and appearances of auroras. It possesses further the interest of being situated in the most remote northern latitude at which a prolonged series of observations has been accomplished.

The method adopted for computing the elements of Tables VI., VII., VIII., in which the difference is taken between the scale reading at each hour and the monthly mean at the same hour, the square root of the mean of the squares of these differences being called the mean disturbance at that hour, is one well known; the formula for a
 hourly scale readings, ψ / h the monthly mean at the same hour, N the total number of the observations, $\Sigma>$ the sum of all the squares.

Turning first to the mean disturbance without regard to sign in Table VI., it is found that the disturbing force never ceases. It will be observed that in the declinometer abstracts there are solitary scale readings here and there which do not differ from the monthly mean at the sane hour, but they are rare. It is evident from the monthly values in the tables that as the winter solstice is approached the disturbing force decreases, and increases again rapidly towards the equinox. Thus December gives the lowest values closely followed by January, but in March a sensible increase is apparent. This points to an accordance with the investigations by Mr. Broun, F.R.S., of the disturbances of declination in high northern latitudes, "that there are maxima at the equinoxes and " minima at the solstices." ""

In the hourly values the maximum mean disturbance occurs between the hours of 9 a.m. and 3 p.m., and again from 9 p.m. to 2 a.m.; the minimum from 6 to 9 p.m. and 3 to 8 a.m. Comparing the results for the whole period at Van Rensselaer Harbour and Discovery Bay, a marked difference is apparent. Mr. Schott, \dagger in his discussion of the observations at the latter place, says, "the disturbing force is least during the day (if "s such an expression is admissible in this case) from 10 a.m. to 7 p.m., and greater and "c equally regular during the hours of the night (:) from 8 p.m. to 8 or 9 a.m." Now at Discovery Bay the disturbing force during the day, that is, from 8 a.m. to 8 p.m., is considerably greater than that of the night between 8 p.m. and S a.m.

Whilst, however, pointing to differences in results, there are those in which marked agreement occurs. Again, quoting from Mr. Schott's discussion, he says, "At Van "Rensselaer Harbour we find the maximum disturbance at this very hour (noon) preceded " and followed by quite small values; this circumstance certainly deserves our particular "attention." Captain (now Gencral Sir J. H.) Lefroy, in his Magnetical and Meteorological Observations at Lake Athabasca, \&c., also remarks, "There are indications in " each of the three curves (of declination for Lake Athabasca, Toronto, and Sitka) of a " small increase in the mean disturbance about noon." \ddagger These remarks are confirmed by the results in Discovery Bay as regards the hour of noon, and they may be supplemented by another as to the more marked disturbance at 11 p.m. when compared with the moderate disturbances of the whole night.

In the monthly curves of the mean diurnal variation of the declination, the effects of disturbance about noon are remarkably shown, more especially in the months of November, January, and March, by the decided break in an easterly direction of the prevailing curve of westerly deffection between 10 a.m. and noon.

Having considered the mean disturbances without regard to sign, it yet remains to be seen what was the direction of the disturbance during the hours of the day.

For this purpose Tables VII. and VIII. have been formed, in which the mean disturbance in the casterly and westerly directions are shown separately, the hourly values having been computed by the formula previously given. Taking the differcnce between the results in these tables, we obtain the elements of Table IX., or the excess of easterly over westerly deflections, and vice versâ.

From these it is evident that the casterly disturbances prevail over the westerly during the night from about $7 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{a} . \mathrm{m}$., and during the remaining hours of the day the westerly disturbances predominate.

At the bottom of each column are the means of the aggregate values, which show the easterly disturbances to be both moderate in amount and monthly change when compared with the westerly. Thus the ratio of the excess of westerly disturbances in December

[^6]to that in March is $3 \cdot 25$, but the ratio of the easterly excess in the same monihs is $1 \cdot 32$; the mean actual values being $-11 \cdot 7$ and $-38 \cdot 1 ;+8 \cdot 5$ and $+11 \cdot 2$.

Among the peculiarities of the disturbances at Discovery Bay are two which exhibit their semi-American semi-Asiatic character. "At Pekin and Nertschinsk "the aggregate " values of the westerly deflections decidedly predominate, whilst in America the easterly "deflections are no less decidedly predominant." In North America "the conical form " (of the curves) and single maximum characterize the easterly deflections;" but "at " Pekin and Nertschinsk the conical form (of the curves) and single maximum charac" terize the westerly deflections, whilst the easterly have the double maximum." Thus it will be seen that at Discovery Bay the aggregate values of the deflections have an Asiatic character, whilst the conical form of the curve of easterly defection is American. The double maximum at this station occurs with both easterly and westerly deflections, and so presenting phenomena, one of which is peculiar to the two stations in Asia, and the other to those in America and Kew.

If it should be deemed scarcely admissible that the observations of a few months should be compared with those of as many years, it seems only necessary to point out that, as in the present instance, the period of observation includes one solstice and the following equinox, all the broad features of the disturbances have been rendered prominent. The latter portion of these remarks as to the law of disturbances at the equinoxes and solstices has been based upon the iuvestigations of Mr. Broun (before quoted) of observations in high latitudes.

Before concluding this analysis, the question of how far the observed and assumed days of disturbance at Discovery Bay coincided with those at Kew Observatory seems worthy of examination. For this purpose Table X. has been drawn up, the days of principal disturbance at Kew having. been kindly furnished by Mr. Whipple, superintendent of the Observatory.

The period embraced by these observations was one of great disturbance, especially towards the end of February and the greater part of March, and the tabular values tend to show that the declinometers were, for the most part, affected on the same days. It was to be expected that at a station in high latitude, where disturbances are so marked, there would be an excess of days noted as disturbed over those in a middle latitude; but in January and February Kew has certain days in excess of Discovery Bay.

This may be partly accounted for by the fixed observatory at Kew having continuous photographic records to draw from,-the temporary observatory principally hourly observations, taken under circumstances of difficulty.

The two greatest disturbances or "magnetic storms," occurred on the 19th February and the 25th March, and the time limits at the two stations agree fairly in "absolute time," \dagger thus : the principal disturbances-

Kew.
19th February 1875 \{ 25th to 26th March Coun at 2 .m. of 20 th. Conmenced at 11.45 a .m. Ended at 3.30 a.m. 26th.

Discovery Bay.

Commenced at 4 p.m.
Ended between 1 and 2 p.m. of 20 th. About Noon.
Indeterminate.

The hours of disturbance at Floeberg Beach were about the same (in Fcbruary) as at Discovery Bay.

During the second storm of the 25-26th March at Discovery Bay the magnet kept continuously to the westward of the normal from the comınencement to $10.20 \mathrm{p} . \mathrm{m}$. (absolute), and at 6.50 p.m. (absolute) it had deviated $4^{\circ} \mathbf{3 5}$ from the mean hourly position, whilst at, Kew it was often to the eastward as well as to the westward, 18^{\prime} being the greatest decrease in the declination; and at $6.50 \mathrm{p} . \mathrm{m}$. it was 12 ' to the eastward of the normal.

Finally, it may be stated that the comparison of the disturbances at Kew and the two winter quarters observatories of the Arctic Expedition, 1875-76, appear to confirm M. Gauss's conclusion, that "the synchronous disturbances of the same element not only "differ widely in amount, but occasionally appear to be even reversed in direction."

[^7]
H.M.S. Discovery, Winter Quarters Observatory, Arctic Expedition, 1875-1876.

Table I.-Daily Range of the Declination.

Date.	In the Hourly Series.		Observel.		Range.		
	Mighest Scule Reading.	Lowest Scale Reading.	Ilighest Scale lleuding.	Lowest Scale Keading.	In the Hourly Series.	Total Observed.	Arc.
1875.							\bigcirc -
October 23	600	550	-	-	50	-	$031 \cdot 6$
" 2.4	682	490	-	-	192	-	21.4
, 2.5	669	462	-	-	200	-	26.5
" 26	676	476	\cdots	$\overline{4}$	200	-	$26^{6 \cdot 5}$
" \quad "	G28	-	676	444	-	232	296.7
" 27	628	458	-	-	170	-	147.5
" 28	628	566	-	-	62	-	$039 \cdot 2$
" 29	648	574	-	-	74	-	$044 \cdot 9$
" 31	606 596	576 427	二	-	30	-	$018 \cdot 9$
$\cdots 31$	596	42.	-	-	169	-	. $146 \cdot 9$

October.--Mcan Daily Range $=93^{\prime} \cdot 3$

November 1	624	394	-	-	230	-	$\bigcirc{ }^{\circ} \mathrm{O}$.
" "	-	-	624	348	-	276	254.6
"	668	395	62		273	276	254
" 3	672	502	-	-	170	-	$147 \cdot 5$
" ${ }^{\prime}$	-	-	672	492	-	180	153.8
$\cdots 4$	632	509	-	-	123	-	117.8
" 5	619	559	-	-	67	-	$042 \cdot 4$
- 6	666	442	-	-	224	-	$221 \cdot 7$
, 7	682	504	-	-	178	-	152.6
." 10	614	498	$\bar{\square}$	7	116	-	$113 \cdot 3$
" \quad,	-	-	6.3	498	-	175	$150 \cdot 7$
" 11	605	488	-	-	117	-	$114 \cdot 0$
" \quad,	-	-	632	488	-	144	131.1
, 10	$6 \% 8$	446	\cdots	\cdots	232	-	$226 \cdot 7$
, "	-	(10)	678	430	-	248	236.8
, 13	613	430	\square	-	183	-	$155 \cdot 7$
\cdots	-	-	614	404	-	210	$212 \cdot 8$
\% 14	604	486	-	-	118	-	$114 \cdot 6$
" 15	601	546	-	-	54	-	0 34-1
" 10	506	567	-	-	99	-	$018 \cdot 3$
" 17	582	557	-	-	95	-	$015 \cdot 8$
" 18	582	54.5	-	-	37	-	$023 \cdot 4$
\% 19	600	548	-	-	52	-	038.9
* 20	646	536	-	-	110	-	$109 \cdot 5$
\% 21	684	420	-	-	264	-	$247 \cdot 0$
" 29	670	504	-	-	166	-	$145 \cdot 0$
$\text { " } \quad 23$	609	526	-	-	83	\cdots	052.5
\% 24	604	510	-	-	94	-	059.5
" 25	588	538	-	-	50	-	$081 \cdot 6$
" 26	586	552	-	-	34	-	$021 \cdot 5$
" 27	579	568	-	-	11	-	06.9
" 28	582	566	-	-	16 168	-	0 10.1
" 29	688	526	-	-	163	-	$142 \cdot 5$
, 30	602	465	-	-	137	-	126.7

November.-Mean Daily Range $=90^{\circ} \cdot \mathbf{2}$

							- 1
December 1	608	484	$\bar{\square}$	-	124	-	-18.6
	-	-	608	468	-	140	128.6
$\cdots 2$	607	536	$\overline{6}$	$\overline{58}$	71	-	044.9
", "	-	$\overline{505}$	607	534	3	73	046.2
$\because \quad 3$	597	505	-	-	32	-	$020 \cdot 2$
$\cdots 4$	596	572	-	-	24	-	$015 \cdot 2$
" 5	596	415	-	-	181	$\bar{\square}$	1,54:5
" \quad,	-	-	596	371	-180	225	222.0
" 6	643	455	-	$\overline{4}$	188	-11	158.9
	-	-15	643	432.	-	211	218.5
" 7	606	515	-	-	91	-	057.6
" 8	627	563	-	-	64	-	040.5
- $\quad 3$	595	569	-	-	26	-	016.5
\% 10	592	547	-	-	45	-	028.5
" 11	$\mathbf{6 9 4}$	537	-	-	57	-	$036 \cdot 1$
" 12	589	536	-	-	53	-	033.5
$\# \quad 13$				-	161	-	141.8
$\Rightarrow \quad 14$	597	560	-	-	37	-	023.4
" 15	588	552	-	-	36	-	$028 \cdot 8$
" 16	586	472	-	-	114	-	$112 \cdot 1$
$" 17$	648	447	-	-	201	-	${ }_{2} 7 \cdot 8$
\cdots	-	-	648	420	-	228	224.1
" 18	588	550	$\overline{621}$	$\overline{494}$	${ }_{-}^{38}$	$\overline{127}$	024.0 1820.8

＇Pable I．－continued：

Date．	In the Hourly Series．		Observed．		Range．		
	Highest Scale Reading．	Lowest Scale Reading．	Highest Scale Reading．	Lowest Scale Reading．	In the Hourly Series．	Total Observed．	Are．
1875. December19	616	534	－	－	82	－	$051 \cdot 9$
\＃ 20	631	544	－	－	87	－	$055 \cdot 1$
＂${ }^{\prime}$	－	－	631	538	－	93	$058 \cdot 8$
＂ 21	602	440	－	－	162	－－	$142 \cdot 5$
＂ 22	580 580	534	二	－	46	－	029.1
＂ 23	580 680	508	二	－	72	－	045.5
＂ 24	680 684	552 460	二	二	128	二	121.0
$7 \quad 25$ $" \quad 26$	684 640	460 496	二	－	224 144	二	221.7
＂， 27	589	572	－	－	17	二	1 0 10.7
＂ 28	602	564	－	－	38	－	$024 \cdot 0$
\＃ 29	601	570	－	－	31	－	0．19．6
＂ 30	602 604	562 533	二	二	40	－	$025 \cdot 2$
＂ 31	604	533	－	－	71	－	$044 \cdot 9$

December．－Mean Daily lange $=69^{\prime} \cdot 6$

$\begin{gathered} 1876 . \\ \text { January } \end{gathered}$	596	502	－	－	94	－	$\begin{array}{lc} \circ & \prime \\ 0 & 59.5 \end{array}$
＂${ }^{\text {J }}$	592	529	二	－	63	－	$039 \cdot 8$
＂． 3	636	549	－	－	87	－	0 $55 \cdot 0$
＂ 4	604	498	$\bar{\square}$	$\overline{7}$	106	－	107.0
＂	－	－	604	470	－	134	124.8
＂ 5	630	456	－	－	174	－	$150 \cdot 0$
＂ 6	557	546	－	－	51	－	$032 \cdot 3$
$\cdots \quad 7$	596	550	－	－	46	－	$029 \cdot 1$
＂ 8	604	529	－	－	75	－	0474
＂ 9	586	486	－	－	100	－	$103 \cdot 9$
＂ 10	598	508	－	－	90	－	$\bigcirc 56.9$
＂． 11	606	572	－	－	34	－	021.5
＂ 12	588 678	577	－	二	11	－	0
＂ 13	678	514	$\overline{690}$	425	164	265	$143 \cdot 7$
＂ 14	$\overline{622}$		690	425	$\overline{86}$	265	$247 \cdot 6$
＂$\quad 15$	6214	504	－	二	186	二	157.6
＂ 16	． 602	562	二		40	二	$025 \cdot 3$
＂ 17	598	574			24	－	$015 \cdot 2$
\％ 18	598	522	－	－	76	－	048.1
＂ 19	622	529	－	－	100	－	$103 \cdot 2$
＂ 20	610	542	－	－	68	－	0 43．0
＂ 21	612	430	－	－	182	－	155.1
＂ 22	612	496	－		116	－	$113 \cdot 3$
	698	356	－	－	336	－	3 32 $3 \cdot 7$
＂ 24	606 634	522	二	二	84	－	0 $53 \cdot 1$
7 $\#$	634 620	542	二	二	180	－	$\begin{array}{lll}0 & 11 \cdot 4 \\ \\ 0 & 49.4\end{array}$
＂$\quad 27$	638	550	二	二	88	三	0 55．7
＂ 28	604	540	－		64	－	0 40．5
＂ 29	618	508	－	－	110		109.6
－ 30	594	459	－	－	135	－	12.54
＂ 31	624	432	－	－	192	－	21.4

January - Mean Daily Range $=7 x^{\prime} \cdot 3$

February．－Mcan Daily Range $=98^{\circ} \cdot 7$

Table I.-continued.

March.-Mean Daily Range $=105^{\prime \prime} \cdot 2$

* From observatious taken every two hours.

Table II.-Meax Diurnal Variation in the Declanation, also the Mean Houmly Scale Readings of the Differemtial Declination Magnetometer for each Month.

Men 'Jime at I'suce.			```1875. November Ist to November 30th.```		$\begin{gathered} 1875 . \\ \text { December ist to December } \\ 31 \text { ist. } \end{gathered}$		Rhanrks.
	Mean Scale leading.	Variation in the Declination.	Mean Scale Heading.	Variation in the Declination.	Mean Scale Reading.	Variation in the Declimation.	
Noon		- $20 \cdot 7$		\cdots		*	
1	-566.	$-20 \cdot 7$ 10.6	$535 \cdot 3$ $543 \cdot 4$	-23.6	$560 \cdot 8$	$-9 \cdot 5$	From the 8th to 10 th November
9	575-4	$10 \cdot 6$ $6 \cdot 3$	$543 \cdot 9$ $548 \cdot 6$	19.5 15.0	$555 \cdot 0$	$13 \cdot 2$	the observations were discon-
3	$581 \cdot 7$	$2 \cdot 3$	$348 \cdot 6$ $545 \cdot 6$	$15 \cdot 2$ 17.1	554.2 856.7	$13 \cdot 7$ 13.1	tinucd, the zero of the scale
4	$582 \cdot 0$	$- \pm .1$	$563 \cdot 2$	17.1 -7.3	568.4	$13 \cdot 1$ $4 \cdot 7$	being out of adjustment,
5	$603 \cdot 3$	+11.5	573.8	$+0.7$	$554 \cdot 7$	$-0 \cdot 7$	denote a movement of the
6	631.8	4*1	574.1	0.9	576.9	$+0.1$	north end of the magnet to.
8	592.8	$4 \cdot 7$	$586 \cdot 6$	$8 \cdot 8$	586.2	$6 \cdot 6$	wards the cast.
8	$608 \cdot 4$	$12 \cdot 0$	$585 \cdot 4$	$8 \cdot 0$	$583 \cdot 9$	$5 \cdot 1$	
111	$602 \cdot 0$	$10 \cdot 5$	$588 \cdot 1$	$9 \cdot 7$	583.4	$4 \cdot 8$	
11	607.1	$13 \cdot 8$	$589 \cdot 5$	$10 \cdot 6$	$588 \cdot 3$	$7 \cdot 9$	
12	$61.5 \cdot 4$ $605 \cdot 8$	- 19.0	$604 \cdot 3$	$20 \cdot 0$	$594 \cdot 0$	$11 \cdot 6$	
13	$603 \cdot 3$	12.9	599.6	17.0	598.7	$14 \cdot 5$	
14	G12.0	16.9	594.5	18.8 13.8	$595 \cdot 1$	12.9	
15	$602 \cdot 0$	$10 \cdot 5$	594.6	$13 \cdot 8$	$588 \cdot 6$	11.8 8.0	
16	600.2	$9 \cdot 4$	592.4	$12 \cdot 4$	$586 \cdot 6$	$6 \cdot 8$	
17	$590 \cdot 6$	+ 3.3	586.2	8.5	583.7	$4 \cdot 4$	
18	681.3	- 2.6	576.5	$+2 \cdot 4$	$588 \cdot 2$	$4 \cdot 0$	
19	$573 \cdot 6$	$7 \cdot 4$	$567 \cdot 6$	-3.2	$579 \cdot 4$	$+\quad 23$	
20	$574 \cdot 1$	$7{ }^{1} 1$	$56.4 \cdot 0$	$5 \cdot 5$	$555 \cdot 2$	-13.0	
-1	$567 \cdot 8$	$11 \cdot 1$	$548 \cdot 5$	$15 \cdot 3$	567.3	- 5.4	,
22	584.6	$32 \cdot 1$	$535 \cdot 0$	23.8	$550 \cdot 5$	16.0	
23	625.0	$-38 \cdot 9$	545.6	$-17 \cdot 1$	$555 \cdot 5$	$-12 \cdot 8$	
Mcans	$585 \cdot 3$		$572 \cdot 7$		575.8		

Table II.-continued.

	1876. January 1st to January 31st.		$\begin{aligned} & 1876 . \\ & \text { February Ist to February } \\ & 29 t \mathrm{~h} . \end{aligned}$		$1876 .$ March 1st to March 28th.		Remarise.
	Mean Scale Reading.	Variation in the Deelination	Mean Scale Reading.	Varintion in the Declination.	Mean Scale Reading.	Variation in the Declination.	
		,		,		-	
Noon	$550 \cdot 0$	-18.4	559.3	-17.8	$550 \cdot 3$	-23.1	On 3rd February, from 15h. to
1	$547 \cdot 0$	$20 \cdot 3$	$560 \cdot 8$	16.9	556.1	19-4	21 h . the observations were
2	543.7	$18 \cdot 6$	560.5	$17 \cdot 0$	$553 \cdot 3$	$21 \cdot 2$	stopped by bad wcather.
3	563.3	$10 \cdot 0$	$565 \cdot 3$	$14 \cdot 0$	$562 \cdot 1$	$15 \cdot 6$	stopped by bad wathe.
4	$561 \cdot 4$	$-11 \cdot \underline{2}$	$573 \cdot 6$	$8 \cdot 0$	564.6	$14 \cdot 1$	
5	$582 \cdot 8$	+ $2 \cdot 4$	$579 \cdot 0$	$-5 \cdot 3$	$574 \cdot 3$	$7 \cdot 8$	
6	$578 \cdot 7$	- 0.2	$590 \cdot 4$	+1.5	$581 \cdot 5$	$-3 \cdot 3$	
7	$590 \cdot 5$	+ $7 \cdot 2$	$597 \cdot 0$	$6 \cdot 1$	$600 \cdot 2$	+ $8 \cdot 5$	
8	$592 \cdot 1$	$8 \cdot 2$	$605 \cdot 3$	11.3	$607 \cdot 2$	12.9	
9	594.4	$9 \cdot 7$	$603 \cdot 6$	$10 \cdot 2$	606.8	$12 \cdot 7$	
10	$597 \cdot 0$	$11 \cdot 3$	$603 \cdot 8$	$10 \cdot 3$	$613 \cdot 3$	$16 \cdot 8$	
11	593.4	$9 \cdot 1$	$613 \cdot 8$	16.7	$615 \cdot 9$	18.4	
12	$595 \cdot 2$	10.2	$610 \cdot 4$	$14 \cdot 5$	$618 \cdot 1$	$19 \cdot 8$	
13	$590 \cdot 3$	$7 \cdot 1$	$602 \cdot 7$	$9 \cdot 7$	$608 \cdot 8$	$13 \cdot 9$	
14	$393 \cdot 5$	$9 \cdot 1$	$602 \cdot 3$	$9 \cdot 4$	606.5	$12 \cdot 5$	-
15	$594 \cdot 0$	$9 \cdot 4$	$602 \cdot 2$	$9 \cdot 3$	$601 \cdot 1$	$9 \cdot 0$	
16	591.8	$8 \cdot 0$	$602 \cdot 8$	$9 \cdot 7$	$605 \cdot 0$	11.5	
17	$591 \cdot 4$	$7 \cdot 8$	$598 \cdot 4$	$6 \cdot 9$	$608 \cdot 7$	13.9	
18	591.4	$7 \cdot 8$	$595 \cdot 6$	$5 \cdot 2$	$599 \cdot 4$	$8 \cdot 0$	
19	586.8	+ $4 \cdot 9$	$592 \cdot 8$	+ $3 \cdot 4$	$591 \cdot 0$	+ $2 \cdot 7$	
20	576.1	- $1 \cdot 9$	$574 \cdot 6$	-8.1	579.5	$-4 \cdot 6$	
21	$565 \cdot 3$	$8 \cdot 7$	571.2	$10 \cdot 3$	557.9	$18 \cdot 3$	
22	$553 \cdot 9$	$15 \cdot 9$	$572 \cdot 8$	$9 \cdot 3$	$552 \cdot 1$	$22 \cdot 0$	
23	$569 \cdot 4$	-6.1	561.5	$-16 \cdot 4$	$568 \cdot 3$	$-11 \cdot 7$	
Means	$579 \cdot 1$		$587 \cdot 5$		$586 \cdot 8$		

Taele III.-Mean Diurnal Variation in the Declination at Winter Quarters and at Dr. Kane's Winter Quarters at Van Rensselaer Harbour, 1854.

Mean Time at Place.	Van Rensselaer Harbour.		H.M.S. Alert.		H.M.S. Discovery.	
	Mean Diurnal Variation us observed.	Mean Diarnal Variation Disturbunces eliminated.	Mean Diurnal Varintion as observed.	Mean Diurnal Variation Disturbances eliminated.	Mean Diurnal Variation as observed.	Mean Diarnal Variation Disturbances eliminated.
		,		,	,	,
Noon	-37.8	-29.2	-17.9	-8.5	-18.8	-8.9
1	$35 \cdot 0$	$34 \cdot 4$	$15 \cdot 7$	$10 \cdot 0$	-15.8	$7 \cdot 0$
2	$26 \cdot 3$	$25 \cdot 7$	16.8	$6 \cdot 3$	$15 \cdot 3$	$8 \cdot 9$
3	$21 \cdot 3$	$13 \cdot 6$	$16 \cdot 8$	$7 \cdot 7$	$11 \cdot 3$	$5 \cdot 6$
	$7 \cdot 0$	$6 \cdot 9$	$10 \cdot 9$	$5 \cdot 8$	-7.7	$4 \cdot 5$
5	24.3	$23 \cdot 7$	$5 \cdot 4$	- $2 \cdot 8$	$+0 \cdot 1$	- 1.3
6	-11.8	- 6.0	-0.4	+ $2 \cdot 3$	$0 \cdot 6$	$+0 \cdot 3$
7	+ 3.2	+ $3 \cdot 8$	+ 7.4	$3 \cdot 1$	$7 \cdot 0$	3.9
8	$13 \cdot 5$	$9 \cdot 3$	$7 \cdot 8$	$5 \cdot 1$	$9 \cdot 5$	$5 \cdot 7$
9	$20 \cdot 8$	16.4	$9 \cdot 7$	$5 \cdot 5$	$9 \cdot 6$	$6 \cdot 9$
10	91.0	$12 \cdot 5$	$11 \cdot 7$	6.9	11.8	6.2 6.9
11	21.8	$\underline{92} 5$	$14 \cdot 1$	$3 \cdot 4$	$15 \cdot 8$	$6 \cdot 3$
Midnight	$28 \cdot 3$	$34 \cdot 7$	$15 \cdot 8$	$5 \cdot 0$	14.8	$7 \cdot 3$
18	$28 \cdot 3$	$97 \cdot 3$	$10 \cdot 7$	$8 \cdot 5$	$11 \cdot 9$	$5 \cdot 1$
14	29.0	$35 \cdot 1$	11.7	$8 \cdot 1$	$13 \cdot 9$	$5 \cdot 5$
15	$87 \cdot 8$	$34 \cdot 1$	$12 \cdot 1$	$7 \cdot 4$	$10 \cdot 0$	6.4
16	$87 \cdot 8$	26.0	7.5	4.0	9.6	$5 \cdot 9$ $3 \cdot 4$
17	$93 \cdot 1$	$20 \cdot 1$	7.1	4.0	$7 \cdot 4$ 4.8	3.4
18	+10.5	+8.0	2.4 +3.7	0.2 +0.5	4.8 +0.4	2.3 +0.6
19	-0.8	- 9.0	$\begin{array}{r}\text { a } \\ +3.7 \\ \hline-37\end{array}$	(+0.5 $+\quad 1.9$	+ 0.4 +6.7	+ 0.6 +3.9
20	12.2 17.4	19.0 29.3	3.7 -7.3	$-1 \cdot 9$	-6.7	+8.9 -7.7
21	$17 \cdot 4$ $30 \cdot 6$	$28 \cdot 3$ $30 \cdot 0$	7.3 14.8	$6 \cdot 1$ 10.0	11.5 19.8	$7 \cdot 7$ $8 \cdot 2$
28 23	$30 \cdot 6$ -29.6	$30 \cdot 0$ -29.0	14.8 -13.1	10.0 -5.7	$19 \cdot 8$ -17.1	$\begin{array}{r} 8.1 \\ -9.1 \end{array}$
23	-29.6	-29*0	$-13 \cdot 1$	$-5 \cdot 7$	$-17 \cdot 1$	$-9 \cdot 1$

Table iV.-Mean Ditrnal Vamation in the Declination, rejecting Days of Disturbance, also the Mean Hourly Scale Readings of the Differential Declination Magnetometer for each Month.

Table V.—Mean Hourly Values of the Disturbances from the Assumed Nobmal Variation in the Declination.

Mean Time at Place.	1875. November 1st to 30th.	1875. December 1st to 31 st .	$\begin{gathered} 1876 . \\ \text { January } \\ \text { lat to } 31 \mathrm{st} . \end{gathered}$	1876. Febraary 1st to 29th.	$\begin{gathered} 1876 . \\ \text { March } \\ \text { 1st to 28th. } \end{gathered}$	Remarks.
	,	,	,	,	,	
Noon	-11.7	-2.0	-7.5	-10.8	$-13 \cdot 7$	This table is compiled from the
1	$5 \cdot 9$	$4 \cdot 4$	11.7	11.2	$9 \cdot 7$	differences of the variation in
2	$9 \cdot 8$	6.8	$9 \cdot 9$	11.8	$7 \cdot 0$	the declination given in
3	11.2	- 7.9	$0 \cdot 7$	$5 \cdot 2$	$10 \cdot 2$	Tables II. and IV., or the
- 4	-3.4	+ $2 \cdot 8$	- 9.6	$2 \cdot 0$	$12 \cdot 9$	differences between the black
5	+2.8	0	+ 2.2	- $\mathbf{3 . 9}$	5.2	and red curves in the
6	$2 \cdot 7$	$+0.8$	$-1 \cdot 6$	+1.2	-5.0	diagrams.
7	$3 \cdot 5$	$2 \cdot 1$	+ 3.8	$1 \cdot 7$	+4.3	
8	$8 \cdot 5$	+ 0.9	$2 \cdot 1$	$4 \cdot 6$	$7 \cdot 2$	
9	$6 \cdot 0$	-0.3	$3 \cdot 5$	$4 \cdot 9$	3-6	,
10	$7 \cdot 3$	+ $\mathbf{3} \cdot \mathbf{4}$	$3 \cdot 5$	$4 \cdot 1$	$7 \cdot 8$	
11	$15 \cdot 7$	$7 \cdot 5$	$3 \cdot 9$	$9 \cdot 4$	$9 \cdot 9$	
19	$7 \cdot 8$	$7 \cdot 1$.	$4 \cdot 5$	$6 \cdot 4$	$11 \cdot 7$	
13	$9 \cdot 3$	$6 \cdot 1$	1.9	$3 \cdot 3$	$8 \cdot 9$	
14	5-8	$5 \cdot 7$	$4 \cdot 9$	$4 \cdot 6$	$6 \cdot 4$,
15	$3 \cdot 7$	$2 \cdot 9$.	$1 \cdot 5$	$3 \cdot 3$	$4 \cdot 8$:
16	$6 \cdot 5$	$0 \cdot 9$	$0 \cdot 1$	$0 \cdot 7$	$6 \cdot 4$	
17	$5 \cdot 0$	$0 \cdot 6$	$2 \cdot 9$	$2 \cdot 2$	$9 \cdot 3$	
18	+ $2 \cdot 4$	1.0	$2 \cdot 4$	$1 \cdot 4$	$5 \cdot 7$	
19	- 1.2	$+1.8$	+ 1.5	$0 \cdot 3$	$2 \cdot 7$	
20	$4 \cdot 0$	$-11 \cdot 9$	-1.1	$0 \cdot 3$	+2.0	
21	8.6	1.2	$+0 \cdot 1$	+1.6	-11.4	,
93	$18 \cdot 7$		$-9 \cdot 7$	- $0 \cdot 4$	$13 \cdot 7$	
23	-10.9	-8.8	$+\mathbf{3 . 5}$	$-4 \cdot 1$	-2.6	

Table Vf.-Mean Disturbance of the Declination, without regard to Sign, at each Hour during

- the several Months, and also for the whole Period, expressed in Arc.

Mean Time at Place. \therefore : ! !	$\begin{gathered} 1875 . \\ \text { October } \\ \text { 23nd to 3ist } \end{gathered}$	1875. November 1st to 30th.*	1875. December Ist:to' 31st.		1876. February lat to 29th.	$\begin{gathered} 1876 . \\ \text { March } \\ \text { 1st to 28th. } \end{gathered}$	Mcan Disturbance for the whole Period,	Mean Disturbance at Van Rensselaer Harbour, 1854.
	,	,	,	,	,	,	,	,
Noon	$31 \cdot 1$	28.0	$13 \cdot 8$	$25 \cdot 0$	$28 \cdot 5$	$42 \cdot 7$	$28 \cdot 3$	$\dagger 60$
1	$23 \cdot 5$	$17 \cdot 9$	21.0	32.6	. 28.4	$28 \cdot 1$	$25 \cdot 9$	46
$\mathrm{g}^{\mathbf{g}}$	$12 \cdot 6$	$14 \cdot 1$	$21 \cdot 8$	$97 \cdot 3$	34.2	$38 \cdot 0$	$26 \cdot 3$	- 39
$\begin{array}{r}8 \\ \hline\end{array}$	$15 \cdot 2$	$29 \cdot 3$	$25 \cdot 7$	$19 \cdot 1$	$12 \cdot 5$	28.5	$24 \cdot 7$	- 45
- 4	$18 \cdot 3$	$14 \cdot 3$	$10 \cdot 3$	$19 \cdot 9$	$81 \cdot 8$	84.0	$\cdots .18 \cdot 0$	41
- 5	$11: 9$	13:4	-.. $9 \cdot 3$	11:8	-16.8	. $17 \cdot 8$	-13.5	31
\bigcirc	$3 \cdot 7$	- 7.4	$5 \cdot 8$	$16 \cdot 2$	$13 \cdot 2$	$19 \cdot 3$	12.8	41
7	$10 \cdot 7$	- 9.5	$9 \cdot 7$	$12 \cdot 8$	9.0	$13 \cdot 7$	$10 \cdot 8$	37
' ${ }^{6}$	$14^{2} 3$	14.4	$6 \cdot 5$	6^{6}	$\bigcirc 18.8$	$19 \cdot 3$	$13 \cdot 6$	47
9	$15 \cdot 6$	$10 \cdot 9$.5.7	711	$15 \cdot 4$	$10 \cdot 6$	$10 \cdot 1$	49
10	11.2	$11 \cdot 6$	$10 \cdot 6$	14;2	$\because 13.5$	16.2	$13 \cdot 2$	50
11	$20 \cdot 9$	7.9	$17 \cdot 0$	10-4	$\therefore 28.4$	$18 \cdot 1$	21.7	46
Midnight	$19 \cdot 6$	$15 \cdot 4$	$18 \cdot 7$	$7{ }^{7} 9$	$\bigcirc 19 \cdot 0$	$20 \cdot 4$	17.0	52
18	$18 \cdot 3$	20.8	16.7	$7{ }^{6}$	$\because 14.8$	$17 \cdot 8$	$15 \cdot 8$	51
-14	$17 \cdot 2$	17.5	$17 \cdot 6 \times$	96	$\therefore 13.2$	$17 \cdot 8$	$15 \cdot 7$	47
$\therefore 15$	$6 \cdot 6$	13.4	$9 \cdot 7 \%$	$9 \cdot 0$	$\because 10 \cdot 6$	$15 \cdot 9$	$11 \cdot 6$	50
$\because 16$	$7 \cdot 8$.	8.7'3	9.3	$7 \cdot 3$	- 13.5	$19 \cdot 5$	18.0	53
$\because 17$	$8 \cdot 1$	11-4	6.1	$7: 6$	$\therefore 10.0$. 17.7	10.9	49
; 18	12.8	; 6.4	6.8 !	$5 \cdot 0$	- 8.1	- 14.2	8.8	42
. 19	$24 \cdot 0$	988	$12 \cdot 3$	$5 \cdot 9$	16.0.	- $13 \cdot 2$	$12 \cdot 9$	54
$\cdots 20$	$23 \cdot 0$	$8 \cdot 2$	12.6	$9 \cdot 2$	- 16.5	. $11 \cdot 2$	$18 \cdot 1$	$48^{\text {i }}$
$\therefore 21$	17.8.	$15 \cdot 6$	11.2 :	$13 \cdot 4$. 18.7	- 42.6	21:8	46
¢ 28	86.0	$23 \cdot 6{ }^{\text {23 }}$,	$85 \cdot 0$	${ }^{24.6}$	$\begin{array}{r}18 \cdot 3 \\ \hdashline 10 \cdot 8\end{array}$	$44 \cdot 5$	$27 \cdot 9$	81
\%28	$42^{\circ} 5{ }^{\circ}$,	23-1.	$81 \cdot 3$	20:2	$18 \cdot 8$	$19 \cdot 2$	$22 \cdot 5$	46
Sums	$405{ }^{6}$	352.1	383.5	389.5	408.5	825 3	5-	1
\cdots	: 5	*No objervationin were made or 8th and gth November. it Principally due to a very large disturbance.					$8 \cdot 8$	\because
\%							:18\%	\because
\because	\because \%	trit	-	to a ray	¢	\cdots	\cdots	mim
$\because 4$	$\cdots \cdots k_{2}$	4.0.	- 1		+1/4	\cdots	; ${ }^{\text {a }}$	\because

Tame VII.-Meay Easterif Disturdance of the Declination at each Hocr during the several Moxths, expressed in Minutes of Arc; also the Mean Value of the same during the whole Pertod.

Mean Time at Ilace.	1875. October 23rd to 31st.	1875. November 1st to 30th.	1875. December lst to 31st.	$\begin{gathered} 1876 . \\ \text { January } \\ \text { lst to 31st. } \end{gathered}$	$1876 .$ February 1st to 29th.	$\begin{gathered} 1876 . \\ \text { March } \\ \text { 1st to } 28 \text { th. } \end{gathered}$	Mean Easterly Disturbance
	*	,	${ }^{\prime}$	- ' ${ }^{\prime}$	'	${ }^{\prime}$,
Noon	15.9	$10 \cdot 2$	$8 \cdot 0$	- 16.1	14.5	17.2	$15 \cdot 6$
1	17.5	16.8	$12 \cdot 5$	16.2	14.2	$15 \cdot 0$	15.1
\pm	$11 \cdot 8$	11.4	$12 \cdot 9$	$16 \cdot 9$	$15 \cdot 4$	16’	14.5
3	$8 \cdot 6$	18.9	$12 \cdot 8$	$16 \cdot 1$	12.5	$15 \cdot 3$	14.1
4	$6 \cdot 2$	9-0	$8 \cdot 2$	$16 \cdot 2$	$13 \cdot 7$	$17 \cdot 6$	$13 \cdot 3$
5	$8 \cdot 6$	$15 \cdot 3$	$8 \cdot 7$	$11 \cdot 1$	$9 \cdot 3$	13.8	$11 \cdot 6$
6	$4 \cdot 3$	7-4	$5 \cdot 6$	8.0	$19 \cdot 3$	$9 \cdot 6$	$9 \cdot 8$
7	$12 \cdot 3$	$9 \cdot 9$	$15 \cdot 6$	$23 \cdot 7$	$8 \cdot 8$	15.5	$14 \cdot 9$
8	$99 \cdot 7$	14.2	7.8	$6 \cdot 6$	34.7	27.5	$19 \cdot 4$
9	$17 \cdot 3$	13.1	6.5	11.1	$30 \cdot 6$	$11 \cdot 3$	13.5
10	$12 \cdot 9$	$16 \cdot 1$	14.2	22.2	$21 \cdot 2$	27-1	19.5
11	28.4	$32 \cdot 6$	29.7	$13 \cdot 8$	$51 \cdot 6$	$31 \cdot 1$	$30 \cdot 6$
Midnight	$27 \cdot 6$	$21 \cdot 0$	$30 \cdot 0$	10.9	$23 \cdot 7$	$38 \cdot 0$	24-4
13	$12 \cdot 6$	$37 \cdot 5$	$24 \cdot 7$	7.7	$19 \cdot 3$	$21 \cdot 3$	20.8
14	$17 \cdot 6$	$19 \cdot 9$	$23 \cdot 3$	$13 \cdot 9$	$15 \cdot 2$	21.5	$18 \cdot 9$
15	$7 \cdot 1$	$16 \cdot 8$	$11 \cdot 3$	$10 \cdot 9$	$15 \cdot 4$	$14 \cdot 8$	13.5
16	$13 \cdot 4$	9*7	10.7	$8 \cdot 0$	19.9	$24 \cdot 8$	15.2
17	9.1	$18 \cdot 3$	$4 \cdot 9$	$9 \cdot 3$	12.8	$24 \cdot 9$	14.4
18	7-1	$6 \cdot 5$	7-6	$5 \cdot 9$	$9 \cdot 9$	$20 \cdot 3$	$10 \cdot 3$
19	$12 \cdot 5$	6.6	16.1	$5 \cdot 3$	$23 \cdot 0$	$15 \cdot 4$	$13 \cdot 9$
20	$14 \cdot 3$	$8 \cdot 3$	13.9	$5 \cdot 9$	12.7	$11 \cdot 8$	$11 \cdot 4$
21	$8 \cdot 9$	11.4	8.3	$9 \cdot 4$	$8 \cdot 1$	18.1	$12 \cdot 8$
22	28.5	19.0	13.7	15.2	9.7	18.3	$16 \cdot 5$
23	$33 \cdot 4$	$14 \cdot 6$	11.7	6.9	12.9	13.1	14.2

Table VIIf.-Mean Westerly Disturbance of the Declination at each Hour during the several Montias, expressed in Minutes of Arc; also the Mean Value of the same during the whole Period.

Mean Time at Place.	1875. October 23 rd to 31 st .	1875. November 18 t to 30 th .	1875. December 1st to 31st.	1876. Japuary 1st to 31st.	1876. February 1st to 29 th.	1876. March 1st to 28th.	Mean Westerly Disturbance.
	,	'	1	+	,	,	*
Noon	$51 \cdot 3$	38.\%	$16 \cdot 8$	86.8	$46 \cdot 4$	106.6	$40 \cdot 8$
1	33.5	19.7	29.8	$55 \cdot 8$	57.0	$50 \cdot 0$	41.3
2	13.2	20.1	$30 \cdot 3$	$38 \cdot 0$	61.4	$60 \cdot 2$	$40 \cdot 7$
3	24-5	$48 \cdot 8$	$35 \cdot 7$	$22 \cdot 5$	$37 \cdot 3$	$46 \cdot 6$	$84 \cdot 4$
4	$15 \cdot 2$	$20 \cdot 8$	14.1	24*2	31.4	$37 \cdot 0$	$25 \cdot 1$
5	$12 \cdot 6$	11.8	$10 \cdot 4$	$12 \cdot 4$	$26 \cdot 7$	25.7	$15 \cdot 8$
6	$3 \cdot 7$	$8 \cdot 1$	$5 \cdot 9$	$26 \cdot 2$	9•7	$30 \cdot 9$	$16 \cdot 3$
7	$10 \cdot 6$	$9 \cdot 5$	7-4	$5 \cdot 7$	$9 \cdot 1$	$13 \cdot 0$	8.6
8	6.3	14.7	$5 \cdot 9$	$4 \cdot 4$	$7 \cdot 6$	$12 \cdot 7$	9.2
9	14.3	$9 \cdot 2$	$4 \cdot 2$	$4 \cdot 7$	$9 \cdot 2$	$10 \cdot 2$	$8 \cdot 7$
10	9*1	$8 \cdot 9$	$7 \cdot 3$	$7 \cdot 1$	$8 \cdot 1$	8.5	8.2
11	$13 \cdot 6$	19.6	8.8	8.3	$12 \cdot 8$	$10 \cdot 5$	$12 \cdot 6$
Midoight	$14 \cdot 9$	$10 \cdot 4$	$10 \cdot 4$	$5 \cdot 7$	14'7	11.9	11.2
13	11.9	$13 \cdot 6$	$8 \cdot 3$	$7 \cdot 6$	$11 \cdot 6$	15.0	$11 \cdot 7$
14	$16 \cdot 7$	$15 \cdot 7$	12.1	$7 \cdot 8$	$11 \cdot 3$	$15 \cdot 7$	18.0
15	$7 \cdot 6$	$10 \cdot 4$	$8 \cdot 3$	$8 \cdot 0$	$7 \cdot 8$	17.9	$10 \cdot 2$
16	$5 \cdot 4$	$8 \cdot 0$	$7 \cdot 3$	$7 \cdot 8$	6.6	$15 \cdot 7$	$9 \cdot 5$
17	6.8	$6 \cdot 6$	$7 \cdot 4$	$6 \cdot 2$	$9 \cdot 9$	$11 \cdot 0$	$8 \cdot 5$
18	$20 \cdot 8$	$6 \cdot 1$	6.6	$4 \cdot 1$	$6 \cdot 8$	9.1	$7 \cdot 8$
19	47.7	$14 \cdot 1$	$8 \cdot 3$	6.6	$10^{\circ} 0$	11.2	$12 \cdot 0$
20	$42 \cdot 8$	$8 \cdot 3$	$4 \cdot 5$	18.7	$80 \cdot 9$	11.1	$15 \cdot 6$
21	34*1	$17 \cdot 6$	$18 \cdot 9$	$18 \cdot 2$	$20 \cdot 9$	$86 \cdot 8$	$80 \cdot 7$
23	42.2	85.3	$89 \cdot 5$	85.6	$11 \cdot 1$	$99 \cdot 8$	$48 \cdot 7$
28	53.1	38.8	32-3	$30 \cdot 6$	$27 \cdot 5$	$28 \cdot 7$	88.0

Table IX.-Differences of the Mean Easterly and Mean Westerly Disturbances of the Declination at each Hour, expressed in Arc.
The sign - indicates an excess of Westerly over Easterly deflections The sign + indicates an excess of Vasterly over Westerly defiections.

Mean Time at Place.	1875. October 23rd to 31st.	1875. November 1st to 30th.	$1875 .$ December 1st to 31 st.	$1876 .$ January 1st to 31st.	$1876 .$ February 1st to 29 th.	$\begin{gathered} 1876 . \\ \text { March } \\ \text { Ist to } 98 t h . \end{gathered}$	Differences of the Mean Easterly and Westerly Disturbances for the whole Period.
Noon	-35.4	-19.5	-8.8	$-20 \cdot 7$	$-3 i \cdot 9$	$-89 \cdot 4$	$-25 \cdot 2$
1	$16 \cdot 0$	2.9	$17 \cdot 3$	$39 \cdot 6$	$42 \cdot 8$	$35 \cdot 0$	26.2
9	$1 \cdot 4$	$8 \cdot 7$	17.6	$22 \cdot 1$	46.0	$43 \cdot 5$	26.2
3	15.9	29.9	$22 \cdot 9$	6. 4	$24 \cdot 8$	30.8	$20 \cdot 3$
4	$9 \cdot 0$	-11.8	$5 \cdot 9$	$8 \cdot 0$	$17 \cdot 7$	19.4	11.8
5	-4.0	$+3.5$	$1 \cdot 7$	$1 \cdot 3$	-17.4	$12 \cdot 5$	4.2
6	$+0 \cdot 6$	-0.7	-0.3	-18.2	$+9.6$	-21.3	-6.5
7	$1 \cdot 7$	$+0.4$	$+8 \cdot 2$	$+18 \cdot 0$	-0.3	$+2.5$	$+5 \cdot 6$
8	$23 \cdot 4$	-0.5	$1 \cdot 9$	2.9	$+27 \cdot 1$	14*8	$10 \cdot 2$
9	$3 \cdot 0$	$+3 \cdot 9$	$2 \cdot 3$	6.4	$21 \cdot 4$	$1 \cdot 1$	5.8
10	$3 \cdot 8$	$7 \cdot 2$	$6 \cdot 9$	$15 \cdot 1$	$13 \cdot 1$	18.6	$11 \cdot 3$
11	$15 \cdot 2$	$13 \cdot 0$	$20 \cdot 9$	$5 \cdot 3$	$38 \cdot 8$	$20 \cdot 6$	18.0
Midnight	$12 \cdot 7$	$10 \cdot 6$	$19 \cdot 6$	$5 \cdot 9$	$9 \cdot 0$	$21 \cdot 1$	$11 \cdot 2$
13	$0 \cdot 7$	23.9	16.4	$0 \cdot 1$	$7 \cdot 7$	$6 \cdot 3$	$9 \cdot 1$
14	$+0.9$	$4 \cdot 9$	11.2	$6 \cdot 1$	$3 \cdot 9$	$+14.8$	$5 \cdot 9$
15	-0.5	$6 \cdot 4$	$3 \cdot 0$	$2 \cdot 2$	$7 \cdot 6$	- 2.4	$3 \cdot 3$
16	-8.0	1.7	$+3.4$	$0 \cdot 2$	$13 \cdot 3$	+9.1	$5 \cdot 7$
17	+ $2 \cdot 3$	11.7	-2.5	$3 \cdot 0$	$2 \cdot 9$	18.9	$5 \cdot 9$
18	$-13 \cdot 7$	$+0.4$	+1.0	$+1.8$	3.1	11.2	$2 \cdot 5$
19	$35 \cdot 2$	$-7 \cdot 5$	7.8	-1.3	$+13 \cdot 0$	$4 \cdot 2$	$+1.9$
20	27.5	0	+ 8.7	$7 \cdot 8$	-8.2	+ 0.7	-4.2
21	$25 \cdot 2$	-6.2	$-5 \cdot 6$	$8 \cdot 8$	12.8	-68.7	$17 \cdot 9$
22	$13 \cdot 7$	$16 \cdot 3$	$25 \cdot 8$	$20 \cdot 4$	$1 \cdot 4$	81.0	27.2
23	-19.7	-19.9	-20.5	$-93 \cdot 7$	-14.6	$-15 \cdot 6$	-18.8
Mean Values	$\left\{\begin{array}{l}-16 \cdot 1 \\ +6 \cdot 4\end{array}\right.$	$\begin{array}{r} -11.2 \\ +\quad 7.2 \end{array}$	$\begin{array}{r} -117 \\ +\quad 8.5 \end{array}$	$\begin{array}{r} -14.8 \\ +\quad 5.5 \end{array}$	$\begin{array}{r} -19 \cdot 8 \\ +13.1 \end{array}$	$\begin{aligned} & -38 \cdot 1 \\ & +11 \cdot 2 \end{aligned}$	$\begin{array}{r} -17.1 \\ +\quad 7.4 \end{array}$

Table X.-Dates of Principal Disturbance of the Declination at Kew Observatory and of Assumed Disturbance at Discovery Bay, compared.

Kew.		Discovery Bay.		Kew.		Discovery Bay.	
$\text { October } 1875 \text {. }$	24	24	$\begin{aligned} & 1875 . \\ & \text { October. } \end{aligned}$	$\begin{gathered} 1876 . \\ \text { January }- \end{gathered}$	19	19	$\begin{gathered} 1876 . \\ \text { January. } \end{gathered}$
	25	25			21	21	
	26	26			-	22	
	27	27			23	23	
	-	31			25	25	
November - -		1	November.		26	-	
November - -	* ${ }^{-}$	2			27	$-$	
	-	3			-	29	
	-	4			-	30	
	-	6			-	31	
	-	7		Febraary - -	5	5	February.
	9	-		Tobrary	9		
	10	10			10	10	
	-	11			11	-	
	12	12			13	13	
	13	13			14	-	
	-	14			15	-	
	-	20			16	16	
	21	21			17	-	
	29	92			18	-	
	29	29			19	19	
	-	30			20	-	
						21	
December - -			December.		-	24	
	-	5 6			25	25	
	$\underline{6}$	6 13			26	26	
	-	18 16			27	27	
	17	17		March - .]	-	March.
	18	18		Harch - -	4	4	
	19	-			6	6	
	-	81			-	8	
	-	24			11	11	
	25	26			12	12	
	26	26			18	13	
			$1876 .$		-	16	
January		-	January.		24	94	
	8	-			25	25	
	-	4			26	26	
	-	5			27	27	
	-	9			28	28	
	18	18			29	89	
	14	14			30	30	
	-	15			81	81	

Atmospheric Electricity.

Extract from pages 15 and 16 of the "Report on Atmospheric Electricity," by Professor J. D. Everett, M.A., D.C.L., Queen's College, Belfast; published by authority of the Meteorological Council, London, 1878 :-
" 28. The late Arctic Expedition was furnished with two of Sir William Thomson's portable electrometcrs, which were committed to the charge of Captain Parr of the " Alert," who has furnished a report of the results obtained.
" Observations were taken at Disco and other places further north, from July 9th to November 22nd; the first observation at the winter quarters of the ship being on September 9 th. The potential observed was almost always positive, and does not appear to differ materially from what is observed in temperate climates. The observations, however, are too scanty to furnish a very exact comparison. The electrometer with which the observations were made was broken on November 22nd, and Captain Parr was never able, either before or after this accident, to make any use of the other electrometer.
" 29. The most notable circumstance connected with these observations was the difficulty of getting a sufficiently good earth-connexion, owing to the non-conducting quality of the snow and ice; a quality which became more marked as the temperature fell. On October 26th, with the thermometer at 12 below zero Fahrenheit, the ice was found to give a sufficiently good earth for the measurement of difference of potential between the earth and a point in the air, although it had been found insufficient for the operation of charging the Leyden jar. On November 22nd, with the thermometer at $-37^{\circ} \mathrm{F}$., it was found insufficient even for the measurement of difference of potential; and it was in the attempt to remedy this want by a connexion with the ship's cable that the accident occurred which destroyed the instrument."

II.

MEDICAL REPORT

ON THE

ESKIMO DOG DISEASE.

Abstract

Stoneham House, Winchester, 8th January 1877 Sir, I have the honour to forward the enclosed paper on "Eskimo Dog Discase," drawn up by Flect Surgeon Belgrave Ninnis, M.D., late of H.M.S. "Discovery."

The information contained in the paper is of great valuc, and particularly so to the Danish authorities on the coast of Greenland, and the Eskimo on the west side of Baffin's Bay, where no remedy for the disease, which is constantly occurring, has previously been discovered.

I have, \&c.
G. S. NARES,

The Secretary of the Admiralty.
Captain, R.N.

Eskimo Dog Disease: Its Symptoms, Treatment, and Pathology. By Belgrave Ninnis, M.D., Fleet Surgeon, Royal Navy.

For many years there has existed among the Eskimo dogs of the western coast of Greenland a disease which has resisted all attempts at successful treatment, and which threatens, if not at onee grappled with and overcome, to annililate the breed, in which case, as the inhabitants of many settlements along the northern coast are almost entirely dependent upon their dogs for the means of locomotion and hunting, it becomes a question whether, in saving the lives of these most useful and much maligned animals, we are not really preventing the Greenland Eskimo from becoming extinct. It would be out of place in a paper like the present, which is intended to give some practical hints relative to the nature of this disease, its symptoms and treatment, to enter deeply into the origin of the Eskimo dog; but a few remarks respecting those which were on "toard H.M.S. "Discovery," 1875, 1876, and amongst which the following cases occurred, may not he without interest. We embarked 25 dogs at Retenhenk, to all appearance sound and in good health. From the accounts we had received of their ferocity and wolfishness they were confined to one side of the deck, but this being found inconvenient, they were allowed to run loose on the topgallant forecastle. The usual battles of course took place, but not with the usual result, for instead of the one assuming unlimited sway over the rest, after the manner of Eskimo dogs, the pack was divided into two factions, the leader of the second one yiclding but very reluctant homage to the "king." Among the most rebellious were two grisly but fine-looking animals exactly alike, apparently brothers. These never submitted to either faction, but held themselves aloof from both. In vain did the " king" attempt to enforce his authority. No sooner did he attack one, than the other hastoned to his assistance, and fighting shoulder to shoulder, they beat the enomy off, unless overpowered by numbers, when they were frequently cruelly bitten. Lamed cach in a hind leg, they still retained their freedom until one died. The
existence of the other was now one of constant fighting for dear life, until the "king," having companions, save him a good thrashing, and then took him under his protection. He might now have led a q̧uiet life, had he not been found paying attention to the "lady whom the 'king' delighted to honour," when his troubles recommenced. Constantly fighting, torn, bleeding, corered with wounds, but unsubducd, erery " log's teeth" against him, he passed a stormy winter. Early in the spring, after a more than usually severe melfe, it was found that amongst other wounds he hal one penetrating the aldomen, through which a portion of intestine protruded, to the extent of more than two inches. I attempted to reduce the protrusion, but ineffectually; and as he did not appear to be suffering, I determined to leave him to his own devices for 24 hours. During the day he constantly licked the part, and would get up and stretch himself, lying down again in a few minutes. In the morning the protrusion had disappeared, the wound found to be very small, and the animal apparently as well as ever. 1Ie worked well during the spring sledging, hat his spirit appeared to be broken. One day, in the summer of 1876, he was not to be found. Days elapsed, when his mangled body was discovered not far from the landing place where the other dogs were encamped, evidently killed by his unforgiving fellow creatures.

On becoming betier acquainted with our dumb companions, we soon found that they were not ly any means so savage as we were led to expeet. "Don't feed them more than twice a week, and if they show any signs of insubordination, knock them down with a marling spike," or, "it they attempt to come near you, kick them; it is the only way to prevent them liting you." Such were the instructions given us on their comin'r on board. But sailors are notorious for making pets, and our men were no exception to the rule. The dogs were soon all named, and instead of kicks, blows, and starvation, they were to be seen sharing the rations of the blue-jackets, behaving in as sociahle and decorous a manner as if brought up in a cottage.
IThey "littered" several times, four to ten being the number at a birth, but the pups died, gencrally from leing born at an unfarourable time of the year. Those born in the spring or carly sumner did well.
The full-grown dogs stood the cold well. It was not at all an uncommon thing to find long icieles hanging from the hair on their backs, rattling as they trottel about. On one occasion I found a dog fastened to the "flor," his tail having become frozen to it. He howled, but soon got himself free.

Our dogs never quarrelled with, or attempted to bite the bitches, or young pups. I have seen a bitch and sometimes the pups cating oft the same meat or piece of skin as a dog, unmolested. The first appearance of the disease was on August 9 th, when one of the young females fell of the topgallant forecastle on to the deek and thence down the hatchway, in a fit, foaming at the mouth; it was thrown overboard, and the shock appeared to revive it. There was no inclination to bite. She had a similar fit on the 15th instant, soon recovered, and arain on the 16th, hut apparently quite as well after as before it came on. On the 20 th she was observed to run wildy about amongst the others, suapping at any in her way. No foaming at the mouth. In a few minutes she fell down convulsid, teeth clenchel, head thrown back, hack curved in, tail curled over the back, legs extended. This lasted about 1! minutes. She then suddenly jumped up and legan running about, hut in a "tottering" way, as if the hind legs were partially paralysed, snapping at anyone who approached. It was not without risk that she was pushed overboard, when she swam to the "floe." I gave her two grains of opium, and she soon after crept into a boat and slept quietly for many hours, awaking apparently quite well. During all this time she took food and drink quite readily.

On the 2 end she had another fit and fell off the topgallant forecastle on to the deck. Opisthotenos extreme appearing as if the back must break from the exeessive curving, grinding of teeth, movement of the legs as if swimming. This lasted about a minute, but fit succeeded fit in rapid succession, and she died apparently from exhaustion. During the fits breathing seemed to be suspended.

Five grains of opium was given as soon as the mouth conld be opened, succeeded in half an hour ly 30 minims of Tr. Opii, but death took place before any effect could be produced.

Sectio Cadaveris. 1! hours post mort. temp.
Rigor mortis subsiding; brain and spinal cord, with their membranes, apparently healthy; larynx, healthy; brown foam about epiglottis and rima. Chest: walls Hattened laterally. On introducing a knife, air entered with a hissing noise, and chest
expanded. Lungs collapsed to a degree, healthy; heart firmly contracted, healthy; liver healthy. Gall bladder full.
The two following cases oceurred in young dogs, belonging to our Eskimo Hans, which he brought on board at Proven. 'Ihey were seized with fits of a mild deseription similar to the preceding, but, as is the custom amongst the natives, Hans shot one and put the other on the "floe," when he speedily ran away and we saw him no more.

Case No. 4.

This dog was observed to be ailing for two or three days, and on the 14th August he fell overboard into the water in a fit. He was pieked up, and being quite unconscious and very wet, was put ly the side of the galley fire, where he remained for about an hour. He then got up and began running ahout. A rope was fastened around his neek and he was taken on deek, where he very soon had a fit which lasted two minutes, foaming at the mouth, shallow respiration, working of the legs as if swimming, very offensive diarrhoa during the fit. On recovering he was put on the "floe" too feeble to move, and some run and water poured down his throat, when it was found that he was bleeding from the mouth. He remained quiet for an hour, and then had another fit which lasted two minutes, and during which he rolled completely over. At the commencement his back was curved inwards, head thrown back, and tail curled over the back, but towards the close the back was arched, all four feet and his head being drawn together. The fit left him searcely able to stand. He remained curled up for the next live or six hours ($6 \mathrm{p} . \mathrm{m}$.) as if asleep, when some walrus meat was given him, which he took greedily. He likewise had some more rum and water and appeared quite comfortable. On the 15th at noon he had a fit ind fell into the water, and although he was quickly pieked out he was drowned. He did not attempt to swim.

Case No. 5.
Whis case was peculiar on account of the rapidity with which it proved fatal. It appeared, from what I could learn from the men, that this dog had been ailing for several days, but did not have any fits. On the morning of 17 th August he became very excited, trying to get overhoard, and snapping at the other dogs, who snapped at him in return. IIe was immediately removed from the topgailant forecastle, when he ran swiftly to the stern of the ship, fell down and convulsed, and died before anyone could get to him.

Sectio Cadaveris. 15 minutes post mortem.

Rigor mortis well marked; marks of bites on the left ear, both hips, and face; small indurated ulecr under the right side of the tip of the tongue; no frothing or bleeding from the mouth; jaws closed and fixed; legs stretehed out at right angles to the body; brain firm and healthy, a little fluid in the lateral ventricles; larynx healthy, no spasm or obstruction; chest contracted, expanding on admission of air ; lungs pink and healthy, but quite collapsed. Heart: left ventricle hard and contracted, right side full of semi-fluid blood; stomach contained alout six ounces of greenish fluid and two pieces of partially digested bone, one a little larger than a walnut, the other smaller and resembling "gristly honeycomb," and firmly fixed close to the pylorus; gall bladder full; liver healthy.

Case No. 6.

This dog jumped from the topgallant forecastle, 17 th August, on to the "floe" and refused to be caught ; he appeared to he quite well. He was caught on the 18th and brought on board. On the 20th he began to ran about in an excited manner, trembling, but not attempting to bite, even when pattel. He was secured by a rope, but tried to get loose, howling and barking, until, in a few minutes, he fell down in a regular epileptic fit, foaming, \&e. \&c., which lasted about a minute, when lie got up and appeared quite well. As there was tenesmus, five grains of calomel were administered. He took walrus meat and drank water greedily. The medicine operated in about 10 hours, the stools being "pitchy" and offensive, and containing some blood. The next day he was much better, the medicine was repented, and the evacuations gradually assumed a normal appearance. He quite recovered, worked well through the sledging season, and was landed at Disco on our way to England. He did nat suffer any relapse.

Case No. 7.

This dog, when first seen by me, was trembling and looked frightened, not attempting to bite, but very restless; no foaming at the mouth. At times he ran about wildly, so was put into ny "dog hospital," which consisted of a sheep-pen roofed in by a strong net. He soon became savage, snapping at anyone who appeared, and struggling to break out. On attcmpting to feed him, he snapped viciously at the spoon, leaving his teeth marks on the metal, whining, barking, and howling as if frightened. Under these circumstances he was corered up, so that he could not see people passing his abode. In about an hour and a half he had a typical epilcptic fit, which lasted about two minutes, followed in 20 minutes by another of three minutes' duration, during which he bit his tongue. In the meantime he constantly ran round in a circle from left to right as if after his tail. At times he appeared as if he saw something frightful, the expression of abject terror reminding one of a person suffering from delirium tremens. He constantly rushed at his food and water, but did not attempt to eat or drink. About two hours before he died the fits became almost incessant; his look of terror was extreme, crouching in a corner of the "pen," and then dashing wildly forwards. On one occasion, having seized the iron bars of his " hospital" in his teeth, a fit came on so suddenly that he remained in that position, smashing his teeth, and bleeding from the mouth. The naturalist in endeavouring to assist me in administering a sedative narrowly aseaped a severe bite, the animal's teeth pinching the skin over the ball of the thomb so as to raise a "blood resicle," from which, however, no ill effect followed.

In less than six lours after the commencement of the first fit he died. The head and tail almnst touehing from the extreme curving in of the back, legs stretehed out, lips drawn up, exposing the teeth, penis protruded, but not erected.

Sectio Cadaveris. 12 hours post mortem.

Brain and spinal cord removed together; membranes of the former somewhat injected, as was likewise the case with the latter over the origin of the brachial and lumbar plexuses; but this increased vascularity did not extend to the brain or cord itsclf, both of which were, to all appearances, healthy. Chest: lungs collapsed, as in the former cases, but quite healthy. Heart : fibrous clots in both ventricles, coagula in all the cavitics. Liver, healthy; gall bladder full.

Case No. 8.
This dog when first seen was observed to be standing quict but trembling violently. He soon began to run round as if after his tail; no foaming at the mouth. The day previously (17th August) he passed blood and pus per anum. Pupils contracted, took food and water cagerly. He was conveyed to my "hospital," and two grains of opium administered. He did not sleep much, but dozed for nearly 12 hours ; he then became restless, enrowling when approached. Two more grains were given him, and some food and water, which he took. He passed a quiet night, and carly the next morning I administered four grains of calomel, which operated liecly, the evacuations boing dark, but fairly healthy. Two days afterwards he was convaleseent. He worked well all through spring sledging, and was landed at Disco on our way to England.

Case No. 9.

A bitch, very thin and small, was reported to me as having just had a fit, August 21st. The fit lasted about a minute, with foaming at the mouth. I did not give any medicine, but had her removed from among the others and regularly fed and tended. There was no return of the fits until September 5 th, when she had two or three slight ones of a tetanic character. She appeared as if in pain in the abdomen, alvine ceracuations seanty, and like pitch. Five grains of calomel were administered, and some food and water supplied. The medicine operated freely, bringing away a great deal of very dark matter, and she was convalescent on the 11th.

She worked well during the sledging season, and was landed at Disco on our way to England, 1876.

Case No. 10.

A fine large dog, echicf of the rebel faction; he had a fit of an epileptic character, August 21st, followed by great weakncss of his hind legs. As the bowels were not moved during the day, five grains of calomel were given, and as this did not have any effect another five grains was given on the 22 nd, which was followed by copious
"pitchy" evacuations. No return of fits, took his food and water well. As the "pitchy" stools continued, on the 24th another five grains of calomel was given. He was discharged from the "hospital" quite well on the 26th.

This dog has turned out one of the finest of the pack, was invaluable during the sledging season, and was also landed at Disco on our way home.

Case No. 11.
This dog had an epileptiform fit, 22nd August, and fell off the topgallant forecastle; no inclination to bite, foaming at the mouth. As he appeared quiet I did not give him any medicinc, but had him tied up. The next morning he had several well-marked tetanic convulsions, in one of which he died, his head and tail almost touching, from the violence of the downward curve of his spine. Opium was administered, but his death was too rapid to have any effect.

Sectio Cadaveris. Two hours post mortem.

Rigor mortis subsiding; head and spine not examined; chest contracted, and lung collapsed, as in the other cases; heart healthy, firmly contracted. Abdomen : liver healthy; gall bladder full; spleen and pancreas healthy; stomach contained a quantity of biscuit; large intestines contained a large quantity of irregular lumps of hardened fæces. In the immediate neighbourhood of the ileo-ccecal valve semi-livid spots were noticed. On slitting up this portion of the intestine the inner surface of the colon was found studded with a number of greenish bodies, hard to the touch, and having depressed centres; they did not extend into the ileum. For some distance on either side of the valve the surface was coated with a tenacious substance much resembling pitch. Bladder healthy.

Case No. 12.

This animal had a well-marked tetanic fit, August 25th; no foaming at the mouth. Took his food and water well; some weakness in his hind legs; "pitchy" evacuations. One drop of croton oil was given, which operated freely, causing a copious and very offensive black excretion. On the 26th he was very feeble, had twitching of the legs on the right side, and constantly opened his mouth. Two grains of opium were given, and repeated in 12 hours, as he appeared to be in pain, howling, and rostless. On the 29th this dog. was drowned; he bid fair to make a good recovery, as he had no return of fits, took his food well. Stools normal, and did not appear to suffer. All the dogs were at this time landed, and he got into the sea, but whether in a fit or not I do not know.

Case No. 13.

Up to the present case the dogs were kept on board, and under my personal observation, but some of the remaining reports I quote from hearsay.
This dog was reported to me as having died on the evening of the 29th August. All I could learn was, that he had had a fit the same morning. A post-mortem examination was made, with the following results:-

Sectio Cadaveris. 36 hours post mortem.
The body was extremely stiff, but whether through rigor mortis, or caused by the cold, I could not determine (temperature $+25 \cdot 2$). Chest contracted, and lungs collapsed, as in the previous cases. Intestines contained the same "pitchy" tenacious substance as did the others, and three or four inches on each side of the ileo-cecal valve was studded with umbilicated elevations, evidently ulcers.

Case No. 14.

This dog died on the evening of September 5th. From what I could learn, after the event, he had had several fits during the preceding 24 hours; no inclination to bite, no foaming at the mouth; he was not under treatment.

Sectio Cadaveris. Two hours post mortem.
Rigor mortis subsiding; head and spinal canal not opened; chest contracted, and lungs collapsed, as in the former cases; heart healthy; abdomen, liver, spleen, pancreas, and kidneys healthy; ileum and ceecum contained the usual "pitchy" substance; intestines on either side of the ileo-cceal valve ulcerated ; cougula adherent to some of the ulcers, which were not so hard as in the previous cases, nor were the edges so elevated.

Case No. 15.

A fine, handsome liack bitch, in pup. She was brought on board from shore September 7th, being scareely able to stand. Very contracted about the loins, and with twitchings of the hind legs. She was very quict, and made no attempt to bite when touched. Some food and water were readily taken, and five grains of calomel given, soon after which she slept quietly. On the Sth she was better, but the "twitchings" continued. Bowels freely moved, dark greenish evacuations, no blood. Opium two grains. She slept well during the night, and on the 9th was put on the "floc," as the slip was being cleaned out. She occasionally ran about, and then fell down, but there was no convulsion of any kind, although she was perfectly unconscious. The opium was repeated at intervals, and food and water given regularly, the bowels acting regularly, but retaining the same character of stool. On the 11th she was discharged convalescent; on the 28 th she had a litter of 10 pups. October 14th she had a fit, and several more on the following day, alvine evacuations "pitchy," and scanty. She was very thin, and did not go near her pups (now seven in number). Some water and meat were " thawed," of both of which she partook greedily. Calomel, five grains. On the 17 th she continued free from fits, and was progressing favourably, but as the pups were cridently too much for her, they were removed and fed by hand. From this time she gradually gained strength, and passed through the winter well. All her pups died, but did not show any signs of fits.
'Towards the end of February she had a slight fit; she was very thin, and had been sledging. She had two or three more of a similar character in June, when she was on a sledte journey, but they did not interfere with her working. On July 15th, 1876, she had another litter of pups, five in number; she appeared much distressed all day. During the next few days she had two or three fits of a mild character, and as she was very thin and would not eat, although quite quiet and docile, her pups were taken from her and fed by hand with preserved milk, whieh they took readily.
The mother died July 9th, apparently exhausted, her last fit being very slight and of an epileptic character.

Case No. 16.

A very fine black and white animal, almost as large as a Newfoundlamd dog; he had a mild fit when sledging, Scptember 15th. On being unharnessed he began to whine, ran round, and then fell down, when he lay motionless for almost a ninute. He then got up, ran about, occasionally stopping, and snapping at his loins. He continued in this state four or five hours, refusing food and water, at which time five grains of calomel were given him. Next morning he appeared much better. Where he had passed the night there were three patches of florid blood on the snow, which was seen to pass per anum. The next 24 hours were spent apparently sleeping, but he continued to growl if approached. $\Lambda \mathrm{s}$ the bowels had not acted lately, five grains of calomel were given with good effect; stools dark and offensive. He ate and drank well. On the 21st he was so far recovered as to be considered fit for work, and he went sledging, returning on the 24th, during which time he had several fits, but of a very slight nature and of short dnration. He gradually recovered his health, and was in fine condition when we left for England.

Case No. 17.

This dog was of the most unsociable disposition from the time he was first embarked. He was reported to me (July 15th) as having had a "fit," but as I did not see it and as he appeared very thin I had him fed and secured. He did not have any return of "fits" during the remainder of the time he was under treatment (July 21.st), but he had "pitchy" stools which yielded to the calomel treatment, and he became a useful animal, although never getting thoroughly sociable. He was landed at Disco on our way to England.

Case No. 18.

This, the last case that I shall mention, was that of a pup that I was bringing to England. He was one of eight born May 16th, 1876, and his mother, a young bitch, never to our knowledge had a "fit" up to the time of his birth. When the pups were about two months old, and still taking nourishment from her, she had some mild epileptiform fits; she was, however, subject to them on our way home.

The weather in Baffin's Bay and indeed during all the way to England was extremely tempestuous. The only place for the dogs was on the topgallant forecastle, where they were constantly wet and rendered cold by the wind out of the head-sails. Under these circumstances it is scarcely to be wondered that many dogs and pups died. She had a slight fit and rolled overboard. Five out of the six pups died. At Disco we landed all the dogs excepting my pup "Hans" or "Boxcr," as the men called him. After leaving Disco he was removed to a warmer and less exposed position on the upper deck and appeared to be doing well. About the 5th September he had an epileptiform fit, foaming at the mouth, and all the legs drawn together; this lasted a minute, and he then appeared quite well. I noticed his evacuations were "pitchy," so gave him six grains of calomel, with the best results. He remained quite well for nearly three weeks, when he again had "pitchy" and offensive evacuations. Calomel was again given with equally grood result, and he was kept in the engine room, where he had spent much of his time lately. In the course of three or four days he being on deck in the sun, I heard him give a whine such as is common with these dogs when in pain. I went to him, and whilst patting him he had a most violent tetanic convulsion lasting nearly five minutes and leaving lim apparently lifeless. I happened to have a bottle of chlorodyne in my hand, and as he lay on his side with his mouth partially open I poured about a drachm into it, most of which he retained. In a few minutes he lifted his head and looked at me, wagging his tail feebly, and then lay quite quict. I repeated the dose, and in a few minutes he got up and went into his kennel. He had eaten very little food for some weeks, as he seemed to dislike the prescrved meat on which he had been fed since leaving our winter quarters. I tried him with scraps from our table, but he ate very little, and as he appeared in great pain he was kept under the influence of morphia. The bowels were confined. The usual dose of calomel having failed, another was given (16 grains in 24 hours), the only result of which was to produce salivation. A drop and a half of croton oil was placed on his tongue, which operated in an hour, the evacuation being a large quantity of perfectly transparent slime and some blood. He from this time improved, took his food well, even ravenously. The day before reaching Ireland his stools again became dark and scanty. Calomel was again given with benefit. At Queenstown I left the ship, which proceeded to Portsmouth, but before the vessel arrived the pup had died in a fit.

From the above cases, it will be seen that this disease differs from rabies in there not being the same inclination to bite, and in the animal taking food and water eagerly. Whether dogs bitten by one suffering from the disease become disensed in their turn is a question very difficult to determine, inasmuch as there was not one amongst our pack but that was scarred in numerous places by bites. Case No. 7 I look upon as an exception; that was evidently rabies, and to the circumstance of his early confinement within my "hospital" we owe, in all probability, the safety of our dogs as well as of ourselves. A brief summary of the foregoing cases may assist us in arriving at an opinion on this most important question.

Twenty-five apparently healthy dogs were embarked on board ship in the middle of July 1875, subsequently increased to 27 by the addition of two young ones. We were given to understand that feeding twice a week was amply sufficient, that the worst possible personal treatment was too good for them, and meat in any stage of decomposition a perfect luxury to their fastidious palates.

Seven-and-twenty animals confined to a space where the utmost attention was scarcely sufficient to keep habitable, constantly quarrelling and fighting for dear life, exposed to sun, snow, dew, and wet generally, and without a chance of a run ashore, it was not to be wondered at that they began to show signs of disease. The first attacked was a young female 25 days on board, and she had a fit and died in 13 days. Others became attacked. One was summarily shot, one ran away and was seen no more. Two were accidentally drowned; seven died from the disease; six recovered; one died mad.

Of the whole number, 12 only were under medical treatment; one had rabies and died ; one so far recovered as to have two litters of pups, and then died ten months after her first fit, and two or three days after her last litter. Two fell into the water when in fits and were drowned. Two died notwithstanding everything that was done to cure them, and six recovered and were landed at Disco.

The symptoms were disinclination to move, accompanied by a very contracted appearance of the loins, which, however, were not tender to the touch tencsmus, and scanty pitchy stools.

H 407 .

These symptoms were followed in two or three days by a fit, with foaming at the mouth. No disposition to bite.
As the discase progressed the fits became frequent and altered somewhat in character. lnstead of lying quietly on their side only slightly convulsed, the fits lasted about a minute, then leaving the animal apparently as well as before. The animal now struggred violently, the head thrown far back, spine curved deeply in, and the tail curled over the back, almost touching the head, legs stretched out, teeth exposed, violent contraction of the muscles of the chest, rendering the cavity greatly reduced in size and rigid, and thus arresting respiration. These fits sometimes succeeded each other rapidly, and left the dog so exhausted as to be scarcely able to move, and he died in one of these fits. The post-mortem examination showed healthy brain, spinal cord, heart, lungs, liver, pancreas, and kidncys.
The chest in all cases was exceedingly contracted and the lungs collapsed, and in all cases where the intestines were examined they were found to contain the " pitchy" substance noticed abore, as forming one of the earliest and most certain symptoms of the disease, and also uleerations of the inner surface of the gut to the extent of at least four inches on either side of the ileo-cœecal valve, which in some cases were found covered with coagulated blood.
The treatment found most bencficial and which I recommend is, on the first signs of pitchy stools, or teaesmus, give five grains of calomel, followed by croton oil, if necessary, and repeated at intervals, until the stools become more natural. If there appears to be much uneasiness, or if the animal whines, I have given 40 minims of solution of morphia, and kept him under its influence, repeating the dose every four hours if necessary.
As the patient is generally hungry, I prefer to keep him from roaming, and give nim the best of water and good food, in small quantities, and frequently. I think, if taken at this stage, very few would dic. As the disease advances there is less time for the action of medicine, therefore larger doses and more active remedies must be used.
In conclusion, I consider the ulecrations in the intestines quite sufficient to account for the symptoms. The canse of these ulcerations would be difficult to trace, but the effect of such, acting as an irritant to the nervous system, and causing convulsious, is, in my opinion, a highly probable circumstance.

The following List of Papers published in connection with the Natural History results of the Arctic Expedition, 1875-76, will no doubt be useful for reference.

Mammalia of North Greenland and Grinnell Land. By H. W. Feilden, F.G.S., C.M.Z.S. ; "Zoologist," 1877, pp. 313-321, 353-361.

Human Skeleton, Fragment of, from North Latitude $81^{\circ} 42^{\prime}$. By E. L. Moss, M.D.;
"Scientific Proc. Roy. Dublin Soc.," 1877.
Birds of the North Polar Basin. By.H. W. Feilden, C.M.Z.S.; "Proc. Zoo. Soc.," 1877, pp. 28-31.

Birds observed in Smith Sound during Arctic Expedition, 1875-76. By H. W. Feilden; "The Ibis," 1877, pp. 401-412.

Fishes collected during Arctic Expedition, 1875-76. By Dr. Albert Günther, F.R.S.; "Proc. Zoo. Soc.," 1877, pp. 293-295 and 475-476.

Mollusca collected during the Arctic Expedition, 1875-76. By Edgar A. Smith, F.L.S.; "Annals and Mag. Nat. Hist.," August 1877, pp. 131-146.

Arctic Molluscan Fauna. By H. W. Feilden; "Zoologist," 1877, pp. 435-440.
Insecta collected between 78° and 83° North Latitude. By R. M‘Lachlan, F.R.S.; "Linnean Soc. Journ., Zoology," Vol. XIV., pp. 98-122.
Spiders new and little known from the Arctic Regions. By Rev. O. P. Cambridge, M.A., C.M.Z.S.; "Annals and Mag. Nat. Hist." Oct. 1877, pp. 273-285.

Crustacea of the Arctic Expedition, 1875-76. By E. J. Miers, F.L.S., F.Z.S.; "Annals and Mag. Nat. Hist.," Vol. XX., 1877, pp. 2-29.
Copepoda of the Arctic Expedition, 1875-76. By Rev. A. M. Norman, M.A.; "Nares Voy. Polar Sea," Vol. II., pp. 249-253.

Ostracoda of the Arctic Expedition, 1875-76. By G. S. Brady, M.D., F.L.S.; "Nares Voy. Polar Sea," Vol. II., pp. 253--255.

Annelids of the British North Polar Expedition. By W. C. M'Intosh, M.D., F.R.S.;
"Linnean Soc. Journ., Zoology," Vol. XIV., pp. 126-134.
Echinodermata, Arctic Expedition, 1875-76, Report on. By P. Martin Duncan, M.B., F.R.S., and W. P. Sladen, F.G.S., F.L.S.; "Annals and Mag. Nat. Hist," Dec. 1877, pp. 449-470.

Surface-fauna, Arctic Seas. By E. L. Moss, M.D. ; "Linnean Soc. Journ., Zoology," Vol. XIV., pp. 1-4.

Polyzoa, Arctic Expedition, 1875-76. By George Busk, F.R.S.; " Nares Voy. Polar Sea," Vol. II., pp. 283-289.

Hydrozoa, Arctic Expedition, 1875-76. By G. J. Allman, M.D., LL.D., F.R.S.; "Nares Voy. Polar Sea," Vol. II., pp. 290-292.

Sponges, Arctic and Antarctic. By H. J. Carter, F.R.S.; "Annals and Mag. Nat. Hist." July 1877, pp. 37-42.

Reticularian and Radiolarian Rhizopoda of the North Polar Expedition, 1875-76. By H. B. Brady, F.R.S.; "Annals and Mag. Nat. Hist.," June 1878, pp. 425-440.

Botany of the North Polar Expedition, 1875-76. By Sir J.D. Hooker, C.B., K.C.S.I., P.R.S. List of Flowering Plants; by Prof. D. Oliver, F.R.S. Musci; by W. Mitten, A.L.S.; "Nares Voy. Polar Sea," Vol. II., pp. 301-319.

Algæ of Arctic Expedition, 1875-76. By G. Dickie, M.D., F.L.S.; " Linnean Soc. Journ., Botany," Vol. XVII., pp. 6-12.

Fungi collected during Arctic Expedition, 1875-76. By Rev. M. J. Berkeley, M.A., F.L.S.; "Linnean Soc. Journ., Botany," Vol. XVII., pp. 13-17.

Geology of the Coasts of the Arctic Lands. By H. W. Feilden, F.G.S., and C. E. De Rance, F.G.S., Assoc. Inst. C.E.; "Quart. Journ. Geo. Soc.," August 1878, pp. 556-5\%0.

Palæontology of the Coasts of the Arctic Lands. By R. Etheridge, F.R.S.; "Quart. Journ. Geo. Soc.," August 1878, pp. 568-639.

Fossil Plants discovered in Grinnell Land by Captain Feilden. By Prof. O. Heer, F.M.G.S.; "Quart. Journ. Geo. Soc.," Feb. 1878, pp. 66-72.

Flora Fossilis Arctica, Vol. V., 1878. The Fossil Plants collected in Grinnell Land (at nearly 82° of North Latitude) by Captain Feilden and Doctor Moss during the last English Expedition to the North Pole under Captain Sir G. Nares. By Oswald Heer, Professor of the University of Zurich.

Post-Tertiary Fossils, Arctic Expedition, 1875-76. By J. Gwyn Jeffreys, LL.D., F.R.S.; "Annals and Mag. Nat. Hist.," Sept. 1877, pp. 229-242.

Post-Tertiary Beds of Grinnell Land. By H. W. Feilden, F.G.S., and Note by J. Gwyn Jeffreys, LL.D., F.R.S.; "Arnals and Mag. Nat. Hist." Dec. 1877, pp. 483-494.

Inter-glacial Epochs, in reference to Fauna and Flora between the Parallels of 81° and 83° N. By H. W. Feilden, F.G.S.; "Scientific Proc. Roy. Dublin Soc." 1878.

Glaciation by Sea Ice. By E. L. Moss, M.D.; "Proc. Roy. Irish Acad.," 2nd Series, Vol. III. (Science).

On Chemical Composition of the Coal discovered by the late Arctic Expedition. By Richard J. Moss, F.C.S.; Proceedings Royal Dublin Society, New Series, Vol. I., p. 61. [An analysis and comparison with other coals and lignites.]

Notes on Arctic Air, by E. L. Moss, Staff Surgeon, R.N. ; " Proc. Roy. Dublin, Soc." 1878.

Reduction and Discussion of Hourly Tidal Observations made for six months on board H.M.S. Discovery; and for three months on board H.M.S. Alert; by Rev. Samuel Haughton, M.D. Dubl., D.C.L. Oxon, F.R.S. [Will shortly be published in the Philosophical Transactions of the Royal Society.]

Some Experiments on Conductive properties of Ice made in Discovery Bay, 1875-76. By Staff Surgeon R. W. Coppinger, M.D. ; Proc. Roy. Soc., Vol. 27., 1878, p. 183.

Observations on Arctic Sea-water and Ice. By Staff Surgeon Edward L. Moss,M.D., R.N., late of H.M.S. Alert ; Proc. Roy. Soc., Vol. 27., 1878, p. 544.

Atmospheric Electricity. By Professor Everett, M.A., D.C.L.; Proceedings of Belfast Natural History and Philosophical Society, 1878, p. 9.

ARCTIC EXPEDITION.

RESULTS

jBrrved proan tile

ARCTIC EXPEDITION,

$$
1875-76 .
$$

I.-Thysical Onservations by Captain Sir George Nares, R.N., and Captain Feilden, \&c.

II.-Medical Report on the Eskimo Dog Disease, by Fleet Surgeon B. Ninnis, M.D.

LONDON:
PRINIED BY GEORGE EDWARD EYRE AND WILLIAM SPOTTISWOODE, printers to the queen's most excellent majesty. FOR IIER MAJESIY'S STATIONERY OFFICE.
1878.

ARCTIC EXPEDITION.

RESULTS

DERTVET FROM THE

ARCTIC EXPEDITION,

1875-76.

T.-Physical Observations by Captain Sir George Nares, R.N., and Captain Feilden, dc.

II.-Medical Report on the Eskimo Dog Disease, by Fleet Surgeon B. Ninnis, M.D.

LONDON:
PRINTED BY GEORGE EDWARD EYRE AND WILLIAM SPOTTISWOODE, PRINTERS TO THE QUIEN'S MOST EXCELLENT MAJESTY. FOR HER MAJESTY'S STATIONERY OFFICE.

[^0]: I.-Physical Obscrvations by Captain Sir George Nares, R.N., and Captain Feilden, \&c.
 page 3

[^1]: * See Section I. (Magnetic Declination) and "Irregular Fluctuations," \&c., pages 74-75 of that work. \dagger See Smithsonian Contributions to Knowledge, Vol. X., 1858.
 \ddagger See Phil. Trans., 1863, p. 656.
 H407.

[^2]: * On a small hill just left of Flagstaff. A rock at the place where the variation was observed had the marks cut into it- - -

[^3]: Note.-A Table showing the mean resalts of the differential declination observations made by H.M.S. "Alert" and "Discovery," and those of Dr. Kane at Van Rensselaer Harbour in 1854, will be found appended to the "Discovery's" observations:

[^4]: ${ }^{*}$ Sce Phil. Trans. Roy. Soc., 1857, page 498.
 \dagger Sce "Austrian Arctic Voyage," 1872-74, pages 327-328.

[^5]: * Doubtful result.

[^6]: * Sec Trans. Roy. Soc. Edinburgh, Vol. XXVII., Part IV., page 586.
 \dagger See Smithsonian Contributions, Vol. X., 1858, Art. III., puge 18.
 \ddagger Page 76.

[^7]: * See Phil. Trans. Roy. Soc., 1863, page 282.
 \dagger Or mean time at Greenwich.

