The Institute has attempted to obtain the best original copy available for fiiming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction. or which may significantly change the usual method of filming, are checked below.

Coloured covers/
 Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculèe

Cover title missing/
Le titre de couverture marique

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avoc d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrèe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omiztia from filming/
Il se peut que certaines pages blanches ajoutées lors dune restauration apparaissent dans le texte. mais. lorsque cela était possible. ces pages nont pas ètè filmées.

Additional comments:/
Commentaires supplèmentaires.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique. qui peuvent modifier une image reproduite. ou qui peuven: exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

rages damaged/
Pages endommageesPages restored and/or laminated/
Pages restaurées et/ou pelliculeesPages discoloured. stained or foxed/
Pages décolorèes, tachet'ies ou piquees

Pages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de limpression

Includes supplementary material/
Comprend du raatériel supplémeritaire

Oniy edition available/

Seule édition disponible

Pages wholly or partially obscured by errata slips. ussues. etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet derrata. une pelure. etc.. cr:: été fi!mées à nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmè au taux de réduction indiquè ci-dessous.

Cimadian grinculturith，

OR

OURNAL AND TRANSACTIONS OF THE BOARD OF AGRICULTURE
OF UPPEIRCAINAD．
OL．XIV．
TORONTO；JANUARY 16， 1861.
No． 2.

Land Drainage．

It is now a universally admitted truth by㑭 who understand the subject，that in the Pmperate zone of Europe and America the \％der drainage of land is the foundation of Y agricultural improvement．Hence laws ve been passed for enabling the owners and goupiers of land to facilitate this cssential Seration；and the British Government have baned large sums of money，to be repaid by an nnual rent charge extending through a long gries of years，for the purpose of extending Bimproved system of land－drainage．Some Gd of this nature would no doubt be of im－ Sense bencit to Canada，provided sufficient wecks could be brought to bear to prevent iouses．At best the draining of a young and Etensive country like this must necessarily B a slow and progressive work，since the多pital required for such operations，on an htensive scale，is very great，and at pre－ 3nt wholly beyond the reach of the propric－ grs of the soil．Notwithstanding all that ys been done in the old country in this way解ring the present contury，it is astonishing翟 find this cssential means of agricultural Enelioration，can only be said to have made ©commencement．Imperfect，supericial drain－䓡e is，as yet，comparatively limited．From㥜 elaborate paper recently read before the nntral Farmers＇Club in London，by that要inent draining engineer，Mr．Bailey Denton， 3 condense the following information：

It appears that the total extent of wet lands drained or capable of improvement by drain－ ing in Great Britain alone is estimated at $22,890,000$ acres，out of the total area of $06,352,000$ ．The extent of land already per－ manently drained will not reach $1 \frac{1}{3}$ millions up to the present time，so that there remains undrained more than 21 millions of acres． The remaining $33 \frac{1}{2}$ millions of acres consist， for the most part，of free soils，naturally dry， which absorb and infiltnate to various depths， beyond the reach of evaporation，from one－ tenth to half of the rain that falls on the sur－ face，the rest of the rainfall being taken up by vegetation or evaporation，or passing off the surface without entering it in times of heary and sudden rainfalls．The other portion of the $33 \frac{1}{2}$ millions consists of mountainous lands of rock formations，the surfaces of which hav－ ing rapid slopes，throw of the rainfall in very large proportions，uamely，from one third to four fifths of the rainfall．Within the bounds of these stecp lands there are bogs and moors， which eatch a large quantity of the water thrown from the mountain slopes，and give off by evaporation much more moisture than tae rain which falls directly upon them．The extent of the surcharged free soils drained or requiring draining is about 12 millions out of 23 millions of wet lands，leaving of clays about 11 millions．These figures are set forth to draw attention to the magnitude of the ficld to which under－drainage is gradually ex－ tending itself，and for which provision must
be made sooner or later in the main arteries and outfalls. The depth of drains required by the commissioners, before a rent charge on the land is allowed must not be less than four feci.

From the above facts it appears that in Britain there is enormous scope for the improvement of wet lands for many years to come; drainage companies and agricultural engineers will all have abundant work on their hands; and it is equally plain that their labor will be facilitated and made successfu! on all clay lands by the agency of the ste:m plough.

Growth of Red Clover with Different Manures.

In the valuable paper on the culture of this valuable plant by the application of special manures, in a recent number of the Journai of the Royal Agricultural Society of Eingland, by that scientific and extensive experimenter, Mr. J. B. Lawes, some very interesting and suggestive facts are stated; some of the more important of which we will state in a much abridged form.

The experiments on MIr. Lawes' farm satisfactorily show that some of the crops that are generally grown in rotation will yield a larger amount of produce year after year on the same land, on the application of certain constituents as manure. Thus, a part of the same field, in which the experiments on clover now in question were made, has grown barley for ten years in succession, and on some plots large erops have always heen obtained. In like manner, in an adjoining field, wheat has been successfully grown for sisteen years consecutively. Nor is there at present anything in the results to lead to the supposition that these crops might not be so grown continuously for a century.

The results, however, of similar experiments with clover are very different. The practical conclusions derived from a carcful comparison of the experiments may be thus very briefly stated:-When land is not what is called "cloyer sick," that is from exhaustion not
capable of producing a healthy crop at all, the produce of clover may frequently be increased by top-dressings of manure containing potash, gypsum, and super-phosplante of lime; but the high price of salts of potash, and the uncertainty of the action of manures upon the crop, render the application of artificial manures for clover a practice of doubtful cconomy. On land termed "clover sick," some of the ordinary manures, whether "artificial" or natural, can be much relied upon to secure a crop. So far as our present knowledige goes, the only means of ensuring a good crop of red clover is to allow some years to clapse before repeating the crop upon the same land.

In works on agriculture the failure of clover is accounted for in a great number of ways, among which the following assumed causes may be mertioned:-Exhaustion of the soil by over-cropping and non-manuring; the growth of parasitic plants, which strike their roots into the clover and exhaust its juices; destruction by insects; the injurious influence arising from the matter excreted by the roots of the former crop, or from the decay of the roots themselves; the growth of the young plant under the shade of a grain crop. Although the clover crop may be found to suffer from more than one of the above-mentioned causes, the phenomena which present themselves are nevertheless by no means satisfactorily explained; and so far as prevention is concerned, our knowledge is pretty nearly limited to that of the fact, that the only chance of growing the crop with success is to allow a certain number of years to clapse be. fore repeating it on the same land.

Although clover is generally a more certain crop on this side of the Atlantic than in the old countrics of Europe, still even here of late years it has becone somewhat precariotis on land that has been iong under tillage in the ordinary way; and cither special manure, or rest,-that is, repeating the crop at longer intervals,-must be given, in order to bring about the former state of productivenes Much injury is often done the cultivated grasses as well as grains, by the.foul state in which the former are often sown. Clean sed
is a matter of the utmost importance. Farmers in general are quite unaware of the extent of the mischief which they thus suffer. In a single pint of red clover as many as 1,600 seeds of plantain have been found; and in a pint of white clover have been detected by careful observation by means of the microscope, 11,200 small seeds of various kinds of weeds! It thus becomes easy to account for the dirty state into which much of our pasture as well as arable land has fallen.

Care and Food of Live Stsek.

At this inclement season of the year, the farmer's best attention should be devoted to the management of his live stock. Not only should shelter and warmth be provided, but special care must be bestowed on all matters relating to cleanliness, feeding, and ventilation. In this country, animals suffer more from want of systematic feeding and cleanliness than from cold, a low degree of which they can tolerably well endure, if unaccompanied with dampness. It is fortunate that in our severest weather, the atmosphere is generally still and dry. With buildings properly constructed, so as to prevent cold currants of air, and yet admit a sufficiency of that essential element, stock, with due attention to cleanliness and freding, may be carried through our long and severe winters without any estraordinary difficulty, or risk of their health.
The use of straw as food to cattle forms a portion of a very valuable prize essay of Mr. Evershed, which appeared in a recent number of the Journal of the Royal Agricultural Society of England. The writer is of opinion that, although it is a common plan in many of the grazing distructs of England, where roots are comparatively scarce, to feed store cattle on about 20lbs. of straw and 3lbs. of bean meal, yet that they do better on straw with roots instead of meal, even when the supply of roots did not exceed $\frac{y}{:}$ cwt. per head, a day. Cattle wintered on straw and meal only became "lide. boond," with staring coats. It is calculated that the average production of straw per acre is $2 \frac{1}{1}$ tons; that not more than four cwt. of straw aters into the composition of a ton of farm
yard manure; the remesinder being, excrements 6 cwt. and rain water 10 cwt. The consumption of straw-chatf by a cart horse is put down at coie ton per annum, at least; cattle at 21 ewt. per annum; and for the sheep on a farm of 400 acres, 8 tons of straw-chaff yearly. On an arable farm of 400 acres, therefore, Mr. Evershed calcuiates that there is required for the fodder of 50 head of large stock, whether horses or beasts, at least 50 tons; fur sheep 8 tons; for storing roots, when wheat is reaped, waste from thatching, making foundation of stacks, 8 Kn , sef 5 tom; total 63 iuns ui straw. This article of straw, when fine!y reduced by the chaff-cutter, is more readily eaten by animals ganerally.

We also find in the same number of the Society's Journal, an interesting report by Professor Voelcker, on the results of his experiments, which appear to have been conducted with great care and originality, on the feeding properties of several substimees. The following results of his analysis of two varieties of Kohl-rabi, of cabbage, and of mangel wurzel, and of the repose pulp after its distillation, will be interesting to our readers :-

Green top. Purple top.

Water	86.020	89.002
Oil.	. 227	. 177
*Soluble compounds	2.056	2.006
Sugar, gum and pectin.	6.007	4.480
Salts suiuble in water.	. 970	. 919
fInsoluble protein compound	. 360	. 269
Digestible fibre and insoluble pectinous compounds	2.933	1.896
Wo dy fibre (cellulose).	1.230	1.106
Insoluble mineral matters.	. 197	. 139
	100.000	100.000
${ }^{*}$ Containing nitrogen	. 329	. 321
\%Contsining nitrogen.	. 048	. 043
Total Nitrogen	. 377	. 364
Per centage of ash	1.167	1.058

A comparison of the preceeding results, with the analysis of swedes, mangels, and turnips, shows that theoretically kohl-rabi is much more nutritious than white turnips, and fully equal, if not superior, to swedes and mangels.

The composition of the heart and innor
leaves of the cabbage was proved to be as follows:-
Water 89.42
Oil 08
-Soluble protein compouids 1.19
Sugar, digestible fibre, de. 7.01
Soluble mineral matter 73
\dagger frusuluble protein compounds 31
Woody fibre 1.14
Insoluble mineral matter. 12
100.00
-Centaining nitrogen 19
fContaining nitroren. 05

Cabbages contain about the same proportions of water, sugar, and protein compound as are found in good swedes. It appears that cabbages and swedes, weight for weight, possess nearly the sume nutritive value.
There is nearly $3 \frac{1}{2}$ per cent. more water in the pulp than in the mangel. The decomposition of one specimen of each dried at 212° was found by Dr. Voclcker to be as follows:-

Hangels. Pulp.

Sugar, gum, and soluble protein compounds.	58.98	23.22
Solumble mineral matter	10.79	6.17
*Soluble albuminous compounds	7.62	6.67
trsolable albuminous compounds	S 1.14	8.25
Celluiar fibre and insoluble pectinous compounds (crude fibre)	20.57	49.22
Insoluble mineral matters.	. 90	5. 71
	100.00	100.00
*Containing nitrogen.	1.22	1.07
\dagger Containing nitrogen	. 18	1.32
	1.40	2.39
Elual to protein compounds.	876	14.92

The Professor adds:-"A careffal consideration of the differences just pointed out in the composition of pulp and roots will enable us to decide with no great difficulty-lst. That weight for weight, pulp similar to that analyzed by me cannot possibly have the same feeding value as good mangel-wurzels. 2nd. That such pulp, however, is a refuse material which possesses high-feeding propertes."

Adulteration of Seeds.

It would appear, at first sight, an umnecessary thing to remind farmers and gardeners of one of the most important and self evident truths connected with the practice of their art, viz., the
importance of excrcising the greatest care in selecting pure and sound seed; but observation and experience too plainly show that in numerous instances, such precautions are in a great measure practically disregarded. Hence it is that both our farm and garden crops are not only inferior both as regards quantity and quality, but the soil is filled with peruicious weeds, most difficult and expensive to cradicate.

In a recent number of the Enyrlish Agricultural Society's Journal, there is a valuable paper on this subject, by the Messrs. Raynbird, of Eisex, who are amono the most extensive and respectable seed-growers in l3ritain. The following facts, chiefly taken from that article, camot fail to interest our readers on this side of the Atlantic, where it is to be feared a great many old and impure seeds, partly, perhaps, because they are sold cheap, are extensively purchased, to the great loss and annoyance of our farmers and grardeners.

Seeds are adulterated with old seed and with dead seed, and with other seed. Thus ciovers of the last jcar's growth are mixed with the remainders of old stocks, either deat or with vitality impaired-red clover is mised with tho cheaper artcle trefoil-white clover with red sucking, when that happens to be the cheaper of the two, and it is moreover sometimes colored to make it resemble alsike elover.

Turnip seeds, too, are mised with dead ani refuse samples and with rape seed, sometimes killed to save detection in the crop.

Rye grass seed is mixed with seed of the worthless Holeus lanatus-soft meadow grass: and the high-priced Italian rye grass is especially liable to adulteration of this lind, though its awn should make any admisture with it easy of detection. Let us here quote from Mr. Raynbird a passaye indicating the general prevalence r! dishonesty of this Kind:-"Although with tho farmer and countiry dealer some of the Eiondon trade get the credit ot these tricks, they sometimes extend to the eountry; as shown by th? following transaction, in which I was personally concerned. Sume five or six years since, to wards the ead of the seed season, I bought of well to-do country dealer, who has a high repp. tation for respectability, and who has (it is said) amassed a large fortune by his dealings, some 50 or 60 quarters of what appeared to he a fine parcel of ltalian rge grass, the want of the uspally characteristic awn on a part of the seed be. ins attributed to over-ripening. or some snet cause. This sample was immediately re sold to Mr. William Skirving, the well-known seedsman of liverpoal, one of the most straightforward and honorable men in the trade, who mades
request for immedate despateh. Accordingly, dependence bems placed upon the honesty and reputation of the country merchant, the 50 or 60 quarters we.c forwarled on from Lindon without the usual cxamination there. When the seed was inspected in Liverpool it was foum to contain a lar ge percentage of light Scotsha rye grass so carelessly mixed that when shot out of the bars the seed showed a streaky appearance, givins plain evidence of the impostor's practices. Accordingly the seed was returned; but, as it wiss suld for delivery in Lomdon, its removal thence without examination prevented me, by the custom of the trade, from enforcits the ciaim to compensation; althou gh it is very doubtfal, I believe, whether the law would not have given me redress, and a sound legal decision on this point would be of gieat sarvice to the trade."It is, however, moie, perhaps, from the carelessness than the dishonesty of dealers that the farmer suffers, and under this head the injury intlicted is in point of fact iuflicted by himself. Seeds of crops are mixed with seeas of weeds, owing to the carelessness of the grower; and this is an injury to the buyer of greater maynitude than any which is suffered by the intentional admixture of dead or wo:thless seeds with a genuine sample.
Weeds are no nocessary growth amidst our crops. The plant appears because the seed is in the soll; and it continues to appear, notwithstandine cultivation. because the caltivator sows its seed. In grass fields many weeds continue to arise because mown alter the seeds are ripe; and in arable lands the hoe sows often a myriad in the act of destroying one. The scythe and the sickle scatter broadcast what ought never to be allowed to ripen; and the drill and hand in depositing our wheat and other grain, our turnip seed, sainfoin, clovers, grasses, \&c., sow and carefully deposit, and harrow in as many seeds of weeds as seeds of cultivated crops. And not ouly dons the hoe, and the scythe, and the wind, and the sowinr machine, seatter weeds broadcast over our fields, but the dang cart also is full of them. So long ago as the inecting of the Agricultural Society at Southampton we remember seeing plots of grasses which had been manured wilh farm yard dung compared with other prots on which (broadeast) guano, nitrate of sodia, \&e., had been used. The artificial manures oontained no seeds of weeds; but it was plain that the dung cart had been full of them. When pure seed shall he sown, and no opportunity given in any way for the return to the land of any other than the seed of our cultivated crops, then we may hope that the hoe will ultimately clear the land of weeds; but as long as the farmer sows their seeds he must expect to reap their produce.

We take the following illustration of our subject from a recent number of Morton's Farmers' Almanac:
The impurity of farm sceds, owing to the presence of weed seeds, ${ }^{\text {ass }}$ been fully investi-
gated by professor Buckman, of Cirencester Colleze, who has published his resutts in the Agricultural Gazette. The following table describes the chamater of one series of samples of seeds, to which his attention had been drawn by a correspondent:-

The first example in this list may well astonish our readers. One hundred and twenty thousand weeds to a pint of clover seed! This; allowing 12 lbs . to an acre, should give to a square yard of ground a quantity more than sufficient to crop the soil; and if we consider that clovers are at best a slow and shy growing plant, and that the weeds detected in this particular sample come to perfection so rapidly as not unfrequently to produce two crops of seed in a year, we need scarcely wonder that tl.e land should so often be pronounced as "clover sich ;" for while there is no denyung the condition to which this designation has been given, yet recent observations heve led to the conclusion that in cases
of well-prepared land in good condation for a clover crop, sown weeds-to say nothing of thuse previvasly in the suil from seeding on the land as the result of durty farming-have been the cause of tailure. Uur limited space hinders any enlarsement on this subject ; but we commend the above table to the attention of our readers, as duscribust the must important fact in arriculture to which thas little book this year reters.
The foilowing is Mr. Raynbird's advace to buyers of seeds, in order to the detection and punishment of roguery:-

1st. To seiect a resifonsible and respectable seedsmam, and not to seek groudsat the lowest price and of the lowest value; if he does this, a seedsman can yo doubt supply a cheap article, but can he 'recommend it? 2nd. T'u purchase seed widh a warramty that a certain per centage of the seed will vegetate; the warranty to cover the value of the seed, or more, if necessary. 3rd. To try a certain number of seeds, both in a hot-bed and in the open ground, and see what proportion vegetates : the linst plan speedily showing the actual number of hiving' seeds -the second what number would probably grow under open air culture. 4th. to examine sceds him with a microscope, that he may detect the per centage of weed adulterations; the microscope, carefuily used, would probably detect not ouly this but the new or old, ductored or mised nature of seeds-a single glass is sometimes used now, but a microscope of tolerably hich power would be far more efficacious. Eth. T'o note that the adulteration of rye-gr.iss by admisture. however carefully done, may be detected casily when one seed is lishter than the other; the winnowing machine will separate each according to their respective gravities 6th. To get good genuine samples of similar seed, with a view to a comparison with that purchased both by the eye and by floating the two in water as a test of comparative gravity. 7th. Since, however simple these modes are, many persons will be too much engaged to try them, and will bus seed just before sowing and put it in the ground with merely a cursory examination; why should we not adopt the practice of taking a sample for examination by a scientific botanical examiner, that he may determine the per centage of weeds and of live seeds, just as we have chemfical analysis to examine artificial manures? A few shillings thus laid out might save pounds.

To conclude, the adulteration of seeds is a practice of trade, or rather a system of fraud similar to that of falsely lahelling goods for sale: as when a hundred yards of cotton thread are labelled as 200 ; or a tin of coffee stated to weigh 2 oz. or 3 oz. more than its tiue weight. But there is this difference in these latter instinnes, that the huver of the cotton or the coffee suffer an immedinte and direct loss, the amount of which can be at once estimated; but the loss to the buyer ot doctored seeds is far greater, affecting all the expected increase of
the fruits of the earth, if not permanently tainting the soil on which they grow. In honorable trade things should be called by their proper names, and if it is necessary to have mixed and doctored seeds they should be sold as such.

Adulteration plainly owes its origin to the desire to amass wealth and, so long as the demand for cheap goods coutinues, I fear it will be pandered to by the ungcrupplons trader. Dr. Euckman's words in the "Journal," vol xvii., p. 376, may prove a fitting conchasion: "Pure or clean seed is ever wotth paying a greater price for, as the reverse may entail frouble and cxpense for ycars. Any mechamical processes, therefore, which can be made available for cleaning seed are well worthy of patronage. A seedsman who will be carefirl in the preparation and collecifon of seed deserves the best suppoit. In order also to assist in this matter, farmers should be partheular not to allow a dirty patch to stand for seed, although it may be 'the most profitable :hing they can do with it.'"

Mean Temperature of the Year 1861.

We have been oblioingly furnished with the following table, showhag the mean temperature of each month of the past year, with the difference from the average, by Mr. Sergeant Walker, of the Toronto Meteorological Observatory:

NONTLE.	MKAN TEMferature.	DIFPERENGE fROM THE $A V E R-O E$	memarms.
January..	19.66	-:3.67	
February. .	26.06	$\times 3.03$	Alternately
Blarch. . . .	-6182	-3.21	Warmis
Aprit. .	42.02	$\times 1.04$	Colu.
Bhay......	47.50	-3.49	
June.	61.29	-0.07	Cold.
July .	65.37	-1.48	Cold.
August.	65.43	-0.54	
September.	59.67	X1.16	
October...	48.74	$\times 3.2$	Warm.
November. December.	37.14 31.13		
becember.	31.13	X 0.02	
Меяะ .	44.21	$\times 0.09$	slid.

Leached Ashes as Manare.

Editors "Agriceturist,"--Would yoa be good enough in your next issue to give a little intormation as to the value of Leached Ashes as a manure for general purposes. Their value unleached is well known, but after coming from the soapers their value must be greatly dimin. ished. Alone, would they be sufficient for turnips, or wheat, or corn-say 20 tons per acre? or must they be combined with other composts?

Last year I applied coal ashes, with the cinders, over land on whick a week after I planted corn, and sowed a patch ef turnips. Both corn and turnips were greatly injured. The corn on which stable manure was used was green, and gave good ear, while that on the ashes woa gel-
lowish and very poor. And as for the tumips, (and they were well worked, not one grew bijg fer than a good sized potato. Can they not be used adrantageously?

Is bone dust equally good for carrots and turnips and manyels? Kindly say where the dust can be had, and at what price?

Your kind attention will oblise,
Yours respectfully,
Robr. Macaclay.
Hamiton, January 1862.
REMARKS.
The ashes of plants diffor matoria!!y in theur composition, not only as regards the varions species, but also the same variety of plants will yield mrredients, in different propo.tions, according to the nature of the soil, the mode of culture, and the chararter of the season. The manuring power- of ashes, therefore, cannot be estimated by any fixed standard. Wood ashes always contain a considerable amount of carbonate of potash, lime, \&c., and are consequently very beneficial to such plants as require large quautities of these alkalies, such as Iudian com, curnips, beats, and potatoes Leackea ashes have lost much of the principal alkaline salts, and have been deprived of the greatest part of their most important soluble ayredients; still they must not be . ggarded as an unimportant fertilizer, as the lime and other mineral matter which they contain is always more or less beneficial to the soil. Unless the land is well worked and contains sufficient organic matter, we should not consider ashes, whether leached or unleacheu, as alone adequate to the production of a good crop of wheat, turnips, or com.
Leached ashes we should recommend, as a general rule, to be used as a compost, or with other materials abounding in the organic elements; that is, concaining ve retable and animal matter.

Coal ashes rank much lower in the scale of fertilizers than those derived from wood. Their chef value as a manure consists in the quantity of carthy salts they contain. Especially sulphate of lume, and more or less of the phosphate of magnesia. After all, thair mechanical action on certion soils is, perhaps, more beneficial than their chemical, particularly on very heary, adhesive souls, dest tute of lime. In such soils coarse coal-ashes, when applied in considerable quantity, and thoroughly incorporated with the
soil, by deep ploughing or digsing, tend very much to lighten it, by permanently openiug up its pores, and thereby affording free admission of air, heat, and moisture. On very light soils, which are naturally too loose and porous, the action of conl ashes may prove positively injunous, by giving greater intensity to these qualities. This may have been the case with our correspondent, who dees not state whether his soil is still or light, nor its condition in relation to orgamic matter. We should certainly not recommend the application oi coal ashes to light, hungry soils, exerpt, perhaps, as a top dressing for grass or cluver.

Bone dust may be relied on as an exceilent manure for turrips, carrots, mangels, \&c., and it possesses great value as a dressing for most of the cereal crops, particularly old pastures. The most reliable and economical way, perhaps, of using it, is m a compost with other things, such as farm-rard dun:, : shes, rotten leaves, scouring of ditches, dcc. It would be well if a bone mill was erected in the vicinity of all our priacipal towns and cities, as the quantity of manuring matter lost from this neglected source alone is beyond all calculation. Mr. Lamb, of Tor nto, has had a bone-mill in operation for several years, and many of his customers, we happen to know, have been well satisfied with the result of ther trals. Mr. Lamb's prices are 50 cents pcr buslel, crushed coarsely; and 60 cents for hulf inch and dust. He allows 15 per cent discount on all orders of not less than $\$ 100$. We will shortly take up the considera tion of the matters involved in our correspondent's communication more in detail.

The Agriculturist.-Correspondents Wanted.

Editor of tie Canadian Agricuiturist. - Dear Sir,-I have just received the last number of the Cunadian Agricullurist for 1861, and I must say that I am highly gratified with its improvement, especially for the last year, therefore I du not hesitate to say that it stands not No. 2 to any of the A merican Agricultural papers that we yet from our neighbours. But there is one feature lacking, namely, a greater amount of correspondence, which I frequently hear you cumplain of. If this could be obtained it would add much to the popularity of your valaable paper. I think the cause of this must b. the high postage. Men do not like to give
information and then have to pay for it. But I will come to a conclusion, with the remark that your paper is like a winter apple, ripening better and better.
R. 13. Wernmar.

Picton, Prince Edward, Jan. 20, 1S62.

Patents of Invention.

We extract from the official Gazeste the following list of patents issued for agricultural implements and machines:

Bumeau of Agricultube and Statistics, Quebec, 15th Jan., 1862.
His Excellency the Governor General has been pleased to grant Letters Patent of Invention for a period of Fourteen Years, from the dates ihereof, to the fillowing persons, viz:-

Heman Mazleton, of the Township of Townsend, in the County of Norfolk, Carpenter, "An Improved Self Propelling Gate" - (dated 21si May, 1861.)

Silas Welte, of the village of Princeton, in the County of Oxford, Cabinet Maker, "An improved Churn, termed the 'Blenheim Churn.' "-(Dated 22ncl May, 1861.)

Robert Kerr, of the township and county of Waterloo, Ycoman, "A Grain and Seed Broadcast Sower."-(Dated 24th May, 1861.)

George A. Carman, or the village of Morrisburgh; in the county of Durdas, Carriage Maker, "A Vegetable Root.Cutter."-(Dited 25th Mray, 1861.)

Michael Clair, of the township of Sophiasburg, in the county of Prince Edrard, "The Excelsior Washer:"-(Dated 4th June, 1861.)

James McKelvey, of the town of St. Catherines, in the County of Lincoln, Tinsmith, " Λ Ikefrigerator termed the 'Prince of Wales' Cupboard Refrigerator."-(Dated 25th June, 1861.)

Elias Vanderwater, of the township of Sidney, in the county of Hastings, Machinist, "An improved Reaping and Mowing Ma-chine;"-(Dated 17th July, 1861.)

Fenry Fryatt, of Aurora, in the County of York, Carpenter, "Rotary Tooth for Harrows." (Dated 17th July, 1861.)

George Deans, of the town of Port Dover, in the county of Norfolk, Mechanic, "A' Challenge Washing Machine."-(Dated 18th July, 1861.)

Almas A. Knowlton, of the township of Brome, in the county of Brome, "A Washing Machine."-(Dated 18th July, 1861.)

John Pike, of Prescott, in the County of Grenville, as assignee of John G. Frazer, of the aforesaid place, Barber, "An improved Churn."-Dated 30th July, 1861.)

Charles R. Parkes, of the City of Toronto, in the County of York, Turner, "An improved Clurn."-(Dated 30th July, 1861.)

Peter McEwen, of Russell, in the county of Russell, Farmer, "An improved Plow."(Dated 30 th July, 1861.)
Abiel O'Dell, of the Town of Bowmanville, in the county of Durham, Machinist and Buileter, "A Self-regulating Spiral Spring Mangle and Washing Machine."-(Dated 3rd August, 1861.)

John Powers, of the town of Stratford, in the county of Perth, Builder, "The Vietoria Washing Machine."-Dated 3rch August, 18(11.)

Richard II. Oates, of the city of Toronto. in the county of York, Manufacturer, "A Self-revolving Wind-Mill llouse with circular foundstions."-(b)ated 0th August, 186it.)

David Elm Norton, of the town of Bowmanville, in the county of Durham, Machinist, "An improved Churn, termed 'Norton's Horizontal Screw Eash Churn.'"-(Inated 10th August, 1861.)
hobert Werber, at the township of East Zorra, in che county of Oxford, Yeoman. "Webber's Scarifier or Field Cultivator."(Dated 20th Scptember, 1801.

William and Thomas Walker, both of the township of Chinguacousy, in the county of Peel, Carpenters, "The Ocean Wave Washing Machinc."-(Dated 29th Nov., 1861.)
C. S. Shamon, of the city of Ilamilton. "An improved Driving Rein."-(Dated 20th Nov., 1861.)

IIenry Dodd, of the township of Goderich in the county of IIuron, "Improved Sieves or Screens for Fanning Mills."-(Dated 29th November, 1861.):

Volney O'Brien, of the town of Guelph, is the county of Wellington, "Tha Excelsior Churn."-Dated 29th Nov., 1861.)
James G. Thompson, of the town of Peterborough, Gentieman, "An Automatic Gate." -(Dated 20th Nov., 1861.)

Asa Jarvis Foote, of the village of Tilsonburg, in the county of Oxforc, "A new and uscful Washing and Scouring Machine."(Dated 29th Nov., 1861.)

Hugh Mc:Laren, of Lowville, in the counts of Halton, " A combined Sced Drill and Cul-tivator."-(Dated 29tĥ Nov., 1861.)
N. H. Nutting, of the township of Marysburg, in the county of Prince Edward, "The Ontario Washing Machine..'-(Dated 29th Nov., 1861.)

William Depew, of Paris, county of. Brant. Tinsmith, "A Balance Gate."-(Dated 291L Nov., 1861.

On Feeding Stock.

The foilowing lecture on Feediag Stock wa delivered by Dr. Anderson, chemist to the High land digricultarat Society of Scotland, at its ans nual meeting in Edinbargh, December 184h.
1861. It will be found interesting and useful to our readers generally. Eids.]

In an addeess riven at the E linburöh show, in the yea: 18.59, I took up the subject of the feeding of stock as a branch of firm manarement, and discussed the general principles on which its prosecution depends, reterrins more aspecially to the nature of the food and its use in such a manner and in such quantities as are necessury to secure a proper proportion of the erreat classes of nutritive compounds required to mantain the vital functions in a state of heallhy action, and the particular conditions under which the constant wastes of the tissues may be reduced within the narrowest posisible limits, and the quantity of food required to supply the place of the effite matters thus diminshed to the areatest extent. These matters. in fact, include ie broad principles whech must be kept in view in the feeding of all animals, and practice has arrived at conclusions in harmony with them, by studying, in the first instatice, the natural instincts of the animals, and obsersing the kinds of food they preter, and then by mixmer the different subs inces in different proportions, and otherwise varying the mode in which they are supplied to the animul. It has chus come to be well known that certain foods and mixtures produce a better effect than others, some kinds fattening quickly and giving the animal those qualties which the butcher seeks, and others f"odacing a much less favourable result. Jooohng at the subject in a practical point of view; it becomes, of course, most impoitant to prosecute it into detail, and tos ascertain the most coonomical method of arriving at the required result, and by a systematic series of trials it is pussilhe to ob. tain an accurate knowledge of the hinds and quantities of food capaule of replacing those in common use. and to make mistures which fultil the same ena with greater economy. A great part of this knowledge has been attained by ex-perience-that is, ing a succession of trials extending over a very lons period of tume, and many of whel have, in one sense, proved failures, imasmuch as they showed that particular mixtures were uneconomical. and a source of loss to those who used them, althourh in another sense, they were not fullures, because they showed what ought to he avoided. If it were possible to go back over the whole range of trials by which our practical knowledge of the best proportions and kinds of food has been acquired, it would, no doubt, be fou d that, as in most instinces, experience has beea bourgt at a very high price. It is only after often-repeated observations that it can arrive at incontestible conclnsious, and herein it is that science differs from experience. The results in both are obtainel by observation, but science has systematised observation, and has coupled with th the explanation of the facts observed. It starts from the knowledre aryuired by experience, steks to discover the rationale of every fact, and
endeavours to generalize and classily them.Thus, if it has discovered, for example, that is partzcular food known to give unfavourable results is deficient in some part:cular element, it then proceeds to try whether the addition of that sabstar ce will increase its nutritive elfects; and it this proves to be \because case, $i t$ is justilied in inferring that evers other food in which that element is wantiug will also prove disadvantageous in practice. The tendency of science, therefore, is to dimimsh the number of trials whinch end in loss, and thus to acquire practical knovled ge with greater rapidity and economs. It is obvious, however, that sciente cannot in all, or even in many instances, predicate with absolute certainty the exact extent to which partucular foods are likely to be advantageous in practice; lat this is owinr in a great measure to our still imperfiect knowiedre ot the complicated mechanism of the animal frame; and no one who knows either this or the various disturbing causes whieh interfere with the results when vital processes come into play would for a moment venture to indulge in dugmatic assertions, but would rather look upon science as fitted to direct experiment and supply a class of facts which may form the groundwork of further practical observations.
The position which science is capahle of taking may be best illustrated by a particular example, and for this purpose we may select the facts comected with the use of rape cake as a feeding stuff. Chemistry has shown that, so far as the propotion of nutritive matters contained in that substance is concerned, it is completely on a par with linseed cake, which sells at donble the price, hut it has also established the fact that it contains a small proportion of a peculiar bitter principle of a resinous character associated with its oil. Now, it is well known that some bitters are not unpalatable to cattle, while others are very offensive ; hat it is not possible by analysis alone to foretell whether any such substance belongs to the one or the other category, that beind a matter which can only be decided by observing the effect it produces on the aninal itself. At this point, therefore, the function of science ends, and that of practical observation begins; and it has been found in practice that-owing, no doubt, to the presence of this substance-rape cake cannot -3 given with the same freedom as linseed cake, because, when consumed in lar re quantity, its disagreeable taste affects the mimal, althourh when used in smaller proportion and mixed with palatable substances it proves highly nutritious. These facts having been determined, a further progress may be made.and science may proceed to mquire whether it lies within its resources to devise a process by which the ohjectionable constituent may be re moved and the substance thus placed on a levelwith the most favored food, while practice may study the best method of concealing its 1aste or othervise palliating its bad effects. When the study of the principles of feeding is.
prosceuted into detail, many subjects of great interest and importance ofler themsences for conzaderation, and of these nut the least worthy of notice is the b.st method of makin. the food consumed fully avaibable to the amimal. It has been clearly established that only a very small proportion of the mutritive matters of the food is stured up withm the body in the form of ife h and fat, and that even under the mosi favorable circumstances by far the la:ger proprotion is practically wasted, or at least reduced to the less valuable form of manure. It is kiown also that the quantity stored differs areanly in differ. ent anmabls; thus, the pis makes a much better use of its food than the ox. for it will increase in weirht nearly twice as much with the same consumption of food. Ihe same is true, thourg to a more limeded extent, with regard to individuals of the same speros, and ereij one hows that some cattle fattern moue quacky than others. These diferences are, no doubt, ofte: due to constitutional pecularities which cannot be wer come in practice; but $1 t$ cammot be questioned that it is a matter of the areatest prosible mo. ment to determine the circumstances under whech the waste can be redueed (1) a minmum, and the animal be made to assimate the larges possible proportion of the fuod which enters its stomach. It is very obviotis that the compicte solation of this problem involves many nice physiolorical questions, and in the present state of our knowledse is scarcely possible: !nt there are individual depertments of the sul)ject which may be considered, and to one of these I propose direct. ians your attention on the present occasmon

The particular question I intend to discuss is how far the nutritive value of a food nat be increased by addurs to it ce.tain acessiny sub. atances which are not themselves foods. in the proper sense of the term, but which, either by manatining the general functions in a state of health, or by promnsine direstion, faciatate the assimilation of the true foold. My atteation has recently been directed to the subject in the course of some experiments, to which eference will afterwards be made, hut which I shall here discuss only in a general point of view. Sul). stances added to the food in this way are commonly known by the bame of "eontiments," and are understood to opeater hy promoting the heathy exercise of the rizestive organs. Thr m.ode in which thry do this. bowerer, is not well defined, and camot in all cases he inmoneal. We ourselves use a vast vamety of thase sul). stances, but we do so without any defmite ohiject. and most of then have probably no other efferet but that of pleasing the palate, and are. theocfore, very far from acting favomiliy, but wither induce the ingestion of a larter cquantity of food than the stomach can pronerly dispuse of, amb, cousequent If. check, instead of prominte the progress of dizes. tion. On the other hand, if we are to angue from our natural instincts and the universalit.p of thrir ase, there are suinstaners which must he beneficial. Experience has led us to the use of
certain mixtures of food, which are often considered to be mere manitestat.ons of pupular fance, but which ane scally foumded on hatual tans, thus, for example, we cat heans and bacons and thas conjoin a lery fat fecd with the most Inghly nitrogenous veretable. In the sane way, the Inshlationer who consumes a large quantity of the starchy potato uses allong with it a great doal of milk, so as to supply the nitrogenous and litty substances the system requires. It is reasomaide, therelore to assume that the use of condiments sis dictated by the necessity for them. If, then, the subject is important in resard to haman beinrs, it is still more so in relation to the feeding of cattic, whoch, in their artifical state, cammot select for themselves, but must take What the feeder supplies.

The most importast of all condiments to animats is unquestionahig salt, and if we are to assume that lhair nathral instiat tead diom to tahe what is bencficial, we can bate no deubt as to its uthlity. Ihae desiac fur it is shumn by the atidit) with which cathe coust.me it when ham ${ }^{\text {s }}$ of it ate placed in then feedng thoushs, and that this is not the effeet ot the atificial state in which they ane hept is proved ly the fact that any spot where it exists is suce to become the resurt of widd catt!e. Such spots are not uncummon in the back wouds of America, where they are linown by the name of "salt lielis," and the ground around them is constimtly covered with the footprints of innumerable hends of wild cattle. So tamiliar is the desire of cattle for salt that in our colonies it is well known that the must eifectu:al methud of perenting them from straying is to place abundance of salt at their disposal in the neighlonlood of the stations at which they ate kept. Beyond all question, then, salt mast he in some way adaniareous to animals. Lat us see whethr it is pussible to find any reasin for this. If the difierent parts of the amimal body be examined, the guantity of salt comtaned in it is fuund to be far from nconsiderable. Thus-

Human blood contains	0.12 per cent.
Milk	$0.02{ }^{\prime \prime}$
Horses blond.	0.51
\because chyle	0.j:3
6: urime.	0.99 6
Ox urine	0.11 *
lij urinc.	0.520
Sherp arine.	0.63

It is clear, therefore, that a ennsiderahle quantity of salt is indispensalle for maintaining the supply required hy the sustem. Thus, a hore exerctes daily abnut $20!$ s. of urine, containing nearls 400 gis. of salt. If, now, we look to the food is the source of this supply, we are sturk by the small proportion of common satit which many of them contain. This quantity is exceedingly variahle, and depends in no small extent on the uatare of the soil on which the crop was raised, proximity to the sea, dec.; but the follow ing tables give in grains the averare gumaty
contained in 100 lbs , of the mure important Linds of cattie food:-

Grains.

Meadow hay.................... 2940
Clover hay 2380
Oat stray. 840
Turnips............................. 770
Red clover (firesh) 630
Beans 560
Jeas 315
Uats 210
Potatos.............................. 158
Rye straw.... 79
Barley and wheat straw traces.
Barley and wheat grain. traces.
It is at once obvious from the examination of this table, that in only a small number of the common linds of food is the:e a considerable quantity of salt, and many of the most important substanees are altorether devoid of it. It is particularly worthy of notice also that hay, which may be described as the natural food of eattle, contains it in abundance. and hence, when feedmo on at, the animals may oltain all that is absolutely necessary for their health, but when they are placed upon some of the mixtures of fool now in common use-such, for example, as tumips and straw-the quantity may be too small for their requirements. If to these considerations we add the necessity for salt to supply the hydrochlanic acid which is found in the gastric juice, and the other uses which it fulfils in the system, we can entertain but little doubts as to the importance of an adequate supply of it for maintaining in a healthy state the functions of the amimal, while it is also manifest that the quaitity required tor this parpose is mainly dependant on the nature of the food. Proceeding further to inquire into the influence which salt exerts in cansing the aumal to exhan it more completely the food supplied to it, and to store up a larger quantity, the results oblained by different experiments are very conlieting. The subject has been examined very carefilly by Boussingault. Fie took six younz cattle, which he divided into lots of three each, so as to secure as perfect uniformity as possible, and to the one he gave no salt, to the other he gave it in the proportion of 52.5 grains per head daily. After gome time both lots were weighed, when it was found that the lot which had got galt had gained 10.5 lbs . for every 100 hs . of initial live weight, while those which did not get salt had gained Il lhs. In this respect the animals were restricted to a fixed quantity of fond; but another was made, in which they were daily supplied with more than they could consume. and the residual quautity weirhed. In hhis ease it was found that the aminals which got salt took 38.4 lbs. of food daily; those which got none, 35.9.; or for every 100 lb . of live weirlt, the first tooh 3.2 lbs. , the seennd 3.1 lbs ., or rather less. 100 lhs of fond consunsed with salt gave an increase of G.S the. of live weight: and wilhont salt, of 7.2 lbs .

Little difference is, therefore observable between the results of the two cases; but, such as it is, it is unfavorable to salt, a somewhat larger quantity of food being necessary to produce a giveu increase with salt than without it. Boussingaull himself remarks that the difference was so tiifling that it might be distegarded; but he says also that there was a marked difference in the general appearance of the animals. Those whech got salt had a lively appearance, their eyes bricht, and their skin smooth, soft, and shining ; while those which cot no salt wera dull and inactive, and their coats rourh and staring; and this difference was so great that it could not escape the observation of the most cursory observer, and there cosuld be wo doubt that the former would have brought a higher price in the market. A series of experiments made hy a German observer (Farthmann) on sheep lead to an opposite conclusion. He took thirty sheep and divided them into three lots. They all got daily 1 lb . hay, 3 lb . straw, and 3 lb . potatos; and durm the latter part of the experiment, $1 \frac{1}{4} \mathrm{lb}$. of beans were addded. One lot got no salt, but the other two were supplied with it in different quantities. The result is shown in this able :-

> Average gain in weight per sheep.

No salt, 13.1 lb .
${ }_{3}^{\frac{1}{1}}$ ounce of salt daily $-\ldots . .{ }_{6}^{16.9}{ }_{6}^{16}$
Here the difference is marked, but the effect appears to be very irregular, for some of the sheep which got no salt had actually lost weight to the extent, of 1 or 2 lb . Some experiments of Sprengel's also tend to show that salt promotes the production of wool: for of two lots of sheep which got 3 lb . of potatos and $4 \frac{\mathrm{l}}{\mathrm{l}} \mathrm{lb}$. to 5 lb . of rye straw daily, those which got salt yielded I Ib. $11 \frac{1}{2}$ oz. of wool more than the others. It is worthy of notice that in both these experiments the food contained a very small quantity of s:lt, amounting, in Farthmann's experime.ct, to about 41 grains, and in Sprengel's to 83 _rins daily, quantities which are probably insuffcient to maintain the functions in a state of health.

An interesting series of experiments has reeently been made by Lehmanu on the quantity of salt consumed hy draurht horses. The animals on which he experimented were doing their daily work, and fed on the mixture of fond, which, by actual analysis, were found to contain daily 290.8 grains of salt. Into the manger of each horse was placed a lump of rock-salt weinhing 8 or 10 lb , which it was allowed to lick ad libitum. The quantity of salt consumed duriner the first three davs was very large, and amounted in the case of one horse to nearly 10 oz . per day: hut it rapidly fell, and at the end of six weeks the cousumption did not exread 200 mrains per head, and the animal which begau by taking so large a quantity of its orn
accord entirely abandoned its use. The salt consumed by different horses vaied vely much, but was alnays lagest in the case of old aminals, so much so, that Lelimann remans that the quantity caten might almost senve to guve an ap proximate estimate of the age of the amimal. It was olserved also that when the horses were worked hand, the quantity of salt used in ariably dimmished. The following table gives his re${ }_{\text {s }}$ ults on this point: 一

Average daily consumption.
Lieht work. Hard work.
Young horses 199 grs. 132 grs
Old horses........... $305: 3166$ "
If we add to these numbers the quantity of salt contained in the food, we may draw the conclusion, that accordmg to the aye and work, the total amount of salt required formaintaining the functions of a horse in a state of health varies from 400 to 600 grains daily, and it may be reaonably inferred that if the food contains this guantity, the addition of salt may generally be dispensed with.
(To be continued in next number.)

Agricultural Intellinamer.

Sorghum Sagar.

The Executive Commitee of the State Agricultural Sucicty of Illinois, is in session at Springfield. The correspondent of the Chicago Times writes that the greatest enthusiasm seems to prevail all over the state in regard to the Sorghum question. There ase many growers there, all of whom have met with martied suceess in its culture the past season, and who will embark more largely in the enterprise anohber year. The samples of both surar and srrup there shown wend convince the most sleptical of the !easibili...nr its becoming one of the fixed staples of Illinois.
anathe the more promuent of these exhi bitors of sugar, Imay mention Mr. J. H. Smbth, of Quincey, Ill., who presents a sampic of a lot of about one ton, the lareest amount, I am sure, ever made by one man from northern canc. It should be stated that this was made from the Afiecan cane and not fom the Chmese. Mr. Emith considers this mach the best came for the production of sugar. He states that aloout soven tenths of tie syup rums to sugar. and that he can make the surar at five cents per pound and molasses at twenty-îve cents per gallon, and realize more profit from an acre of cane than he can from an acre of corn.

A fine (much lighter color and dries) sample of sugar is preseni from Illymeis, Pates \& Day, Ma:sfield, Ohio, I do not know how large a quantity the have produced.

Much meresi also attaches to the fere samples
of retine ${ }^{5}$ sy rup fiem the refinely of Mr. Conbett, of the Pruaric Furmer. Evershedy is delight. (d with it, whe phacing it, for flaver and sweetnes:, butow the golden syan of comnerce. The whole question will suceive the attertion it deserses at the bands of the Eaccotive loand. I hase head mot, phominent manicultasal matters, state to day that eremg dollt they hase heretofure chentaincd in egad to the pufitable production of both sugar and syrip upon our praires is entirely dispelied ly the stmples now on exhibition hele and the statements accompanying them.

Advantages of Crushing 0ats.

The London Omnibus Company have lately made a report on feeding horses, which discloses some interesting information, not only to farmers, hut to every onner of a horse. As a great number of horses are now used in the amy for cavalry, artillery and draft purposes, the facts stated are of great value at the present time. The London Company uses no less than 6,000 horses; 3,000 of this number had for their feed bruised oats, and cut hay and straw, and the other 3.0 C 0 , got whole oats and hay. The allowance accorded the first was, hruised oats,
 The allowance accorded to the sccond was, unlircised oats 181 l s., uncut hay 13 lbs . The l ruised eats, cut hay and cut straw anounted to 261 l .; the $1 . \operatorname{mbruised}$ cats, ete. to 32 lb . The horse which inad loruised oats, with cut hay and straw, and consumed solls. per day, could roo the same work, as well, and was kept in as gool condition, as the horse which roceived billhs. per day. Ilere was a saving of cilbs per day on the fecding of each horse recciving hruised oats, cut hay and stram. The adrantage of bruised oats and cut hay over unlmised cats and uncht hay is cstimated at 5 c . per day on each horse, amounting to upwards of $\$ 300$ per day for the compeny's 6,000 horses.

Inpontations of Animals for Stock -The following resth.tions have been adepned by the Beard of Agriculture of Iower Camada:-Re solved that, in the opinion of this Boad, agn culture would derine gurat adomayis fom the import.tion for mary years to cr me of impored stock of catile. That, in onder to procme the lest results, :s the mest mempt and most pene: al, this loard yecommends to all the Agn withat Societies of Lewer Canada to appropiate forthe period at least of the yents an amual stm for the importation of :mimials of good stock. This Board, in oider to facelitate these importation and to diminish the expeuse thereof, enyags itselito purchase these animals and deliser thio to the different societies withent other chargb than these of purchase and carriage.

Effect of Cold on Fattening Anmals. -Dr. Playfiair, in the Journal of the Royal Agricultural Society, in speaking of the necessity of warnth to fatten an animal readily, says that to keep up the animal heat, the oxygen of the air unites with that portion of blood which goes to form fat and tissuc, and converts it into carbonic acid, water, and ammonia. Where all the vitality of the animal is used to manufacture heat, there is no power left to increase the fat. If we would fatten animals in winter we must give them a summer temperature, by warming the shed and stable they occupy. The air that they breath should be as pure as possible.

Gqurticultural.

For the "Agr,culturist."

Dwarf Apple Trees.

On seeing a few remarks in the April number of the Agricullurist, made by Mr. Atikins, 1 would say to ham that I believe from his experience, to rether with mine, that the representations made by in uursery-men in their catalogues and bouks, that the dwarf epple will bear when it is a small bush, or like the dwarf pear, is only a humburs, and done for the purpose of selling their trees; for, like Mr. Atkins, I have fine model trees eirht or ten feet high, and the tops uver ten leet in circumference, with limbs frauching out from the ground, that have never borne an apple yet. These trees were purchased from the most responsible nusergmen in Rochester, and recommended to bear the second or thind year atter planting, and are now elght or ten yeans old.
Alr Attins says, if he wanted to make more dwarf trees he would graft them to Keswiek Codiin, Haw horn Dean, and Duchess of Oldenburgh. These trees are carly bearers, but they grow as larre as any tree, and bear on young standard lrees as well as on the Paradise stock. I have Gate bearing kinds, such as the Northern Spy fand st. Latwrence on the Paradise stock, in order to throw them into early bearing, but withbut effect. I have likewise visited the Rochesfor nurseries, and found their dwarf apple trees fast file my own, and none in bearing except the carly beariur limds as above mentioned. fut I an satisfied they are a better stock to gatt on than the commen standard, as they are fire hardy and more fibrous, not forming such foge ponrs, ruming deep in the cold and wet froud. Their branching from the ground is wo a sclf protection to the tree, and will be he cause of it being more hardy; for no fruit fe in this country should be trimmed up and stortel, leaving a lone troml to the merciless tremes of heat and cold of our extreme climate, hich uill disarrange the sap vessels and cause fate to become diseased and stort-lived.

I now wish to ask for more information respecting the dwarf apple trees, to show if the above statement is not true, that others may not he deceived as to the nature of the trees, as we have been. Auy informatio:. respecting the nature and habits of the dwarf apple tree, or what treatment will cause them to bear whea young and small, will be thankfully received.

> R. B. Werden.

Picton, Prince Edward County, Jan. 1862.

Cultivation of Plums.

The following observations on Plum culture, written by J. M. Barret, of Canterbury, N. Y.. and published in a recent number of the Horticulturist, will be acceptable to fruit growers generally.]

So much has been said and written of late upon the Grape question, that I begin to fear that we may forget that other fruits can be successfully raised. I therefore propose to give you my experience in raising Plums, in which I have made a profitable experiment, willing that my fellow readers of the Horticulturist may go and do likewise, if they believe the Yankee maxim, that some things may be done as well as others, and that one man can do what another has done if he tries.

In 1856, I set out with care what remained of 700 or 800 Plum trees, which had been struck our by contract two years before, and up to that time had refused to thrive. This transplanting revived them, and from that period I date the begiming of my experiment, which, including the present season, makes six years that they have been under treatment. The ground between the Plum trees has been regularly plowed and cultivated for the Raspbery crop, the product of which hats paid all expenses, including \$00 per year ground-rent, for two acres and a quarter, and a profit besides. In 1859, I spread under each tree half a peek of common salt.

The black knot upon these Plum trees has appeared regularly every year, and has been cut out clean to the healthy wood in the month of June, say within a fortnight after its first appearnce, and while the excrescence was still soft. It is then easily removed without injury to the tree, the wound generally healing over the same scason. For the last three years this disease has decreased yearly. The past scason I removed the whole from g40 trees in less than half a day. In 1859, these trees began to hear fruit, yielding twenty bushels, which was sold for fifty-five dollars, after paying expenses. In 1860, the crop was nine bushels and one peck, which brought
three dollars a bushel. In 1861, I gathered and marketed seventy-two bushels, for which I received five dollars and twenty cents a bushel, after paying expenses. The total receipts ior the three years amount to four hundred and forty-eight dullars and seventy-five cents, atter paying all expenses, and amounts to about three times the original outhay, including cost of trees, labour of setting, and tramsplanting. I know of no business which pays a better profit upon the investment. Only about one-half of my trees have jet borne fruit. Many of them produced from six to twenty Plums the past season. Of course, the production may be expected to increase for many years.

The varicty cultivated by me is the freestone frost Plum, which is the most prolific. The cling-stone is much the fincst varicty, holds good on the tree two or three weeks later, and brings a higher price in market.

The secret of my success may be summed up as follows:

1. By selecting varieties that are but little troubled by curculio, and that are marked with unt damage to the fruit; these, being used for preserves, are gathered before they become soft and mellow enough to eat; consequently, they are not injured by traniportation to market, and are sure to bring a good price.
2. By careful planting in ground previously prepared and mellowed, and kept so by yearly working.
3. By use of salt as manure.
4. By an unsparing use of the knife upon the black knot in the month of June of each year, instead of waiting until fall or the next spring, or perhaps neglecting it altogether.

In former years the Plum crop of this comtry was a source of profit to almost every farmer, but the curculio has attacked and destroyed the fincr varieties of tiruit, and the black knot made such havoc among the blue Plum trees as to discouatage its 'culture. May we not hope to see this frut again generally cultivated for market purposes.

Fruits, Flowers and Seeds of the West.

Nebraska is not entirely void of those little comforts that render it a home to us. Many wild fruits are to be found in abundance.The plum, grape, gooseberry, strawberry and raspberry grow spontancously all along our little streams and on the borders of woodlands. Gooseberries of an cnormous size and fine flavor, that do not mildew and are hardy, give us their yearly crop of wholesome fruits. There are plums growing in some portions of the Territory that are curculio proof, and are large, fine and delicious.

But the "Flora" of the Western prairies
and plains is the admiration of all that behole them. There are a great many flowers grow ing wild of greater beauty and attraction than hundreds now in the flower gardens o the East, that have cost them vast amounts to get them there, while these prairie beauties are left for us to enjoy. They are left because they are not known to eastern botanists and garcleners.

We have a friend who, we understand, has been engaged the past season in collecting many linds of shrub, flower and creeper seeds of Nebraska, Kimsas, Utah, Minnesota, for a nursyman of Utica, New York, who will be the first to introduce them to the cultivator and amateurs of the East. When once introduced, the catalogues of castern seed dealers will have more than one new novelty that it did not possess heretofore--Nebraski Far. ner.

Dairy Management.

[It is well known that the breed, and particularly the feeding of cows, have a great influence on the amount and character of dairy products, to which we may more fully advert here after. In the meanwhile we give our readers some excellent information on the Dairy Management, from the Jris/h Agricultural Gazelte of January 4th.—Ens.]

MUTTER.

The first essential, in either case, is a proper dairy or mill-house; and when we consider the abominable manuer in which milk is frequemly kept in dwelling houses, even in sleeping apart ments, in barns, where there is no protection argainst dust. from the thatehed root and cobwebbed walls, we cannot feel su:prised that there is so much rood milk annually wasted in making atrociously bad butter. The milk-house shouid be sufficiently rooms, and fitted up so that it can be easily kept clean, and perfects dry. For this purpose, polished stone is the best material ; and the immeuse quantities of marble which are found in many parts of Ireland could be turned to great advantage in this was, whilst, at the same time, shelving of that nature would not be too expensive. Caithness pare ment, being hard, dry, and susceptible of a hiph degree of polish, which is given to it hefore the stones are shipped, forms also ve.y superior pare ment and shelving, and is obtainable at moderat cost. Ventilation is likewise a necessary point in a dairy, and it must he so arranged that ite milk room shali be cool in summer, s.nd yet kep at a sufficiently high temperature during winter, which should never be below 50 degrees F. Tt:
average temperature of Mr. Horsefall's dairy is 52 degrecs to 56 degrees; and he is now recognized as a standard authority on many points of daily management.

Lurthenware dishrs are much better adapted than woden ones for holdng milk, because the latter requine much more latbour in keeping them clem, and some dairymaids are apt to be neglirent on this point. Clcanhnes-extreme cleanluess, in fact-is all-important in dairy management ; for the leat mustiness in malk-vessels will taint the milk, and injure the butter. The churns must be thoroughly scalded after each churning, and kept clean, sweet, and dry.

Butter is made either solely from cream or from the whole mill; ; that is. the cream is not separated from the nill, in the later as in the firmer e:se, but both are kept and churned together There is a difference of opinion as to which mode produces most butter. We would remand those who are not accustomed to the latter method that they must not attempt to churn the whole milk while it remains'sweet, otherwise their labour will be lost, for it will gield no butter; the whole milk must be kept until it has become sour, when if all other points are equally attended to, as good butter will be produced as from cream alone.
Supposing the cows to be all milked-and this must be thoroughly done, for the last milk which can be drawn from the udder is the richestthen the milk is poured through a milk sicve in to the dishes, so as not to be more than two mehes in depth; at the same time, 4 to 6 inches is more common. Cream will not rise when there is a considerable depth of milk placed in the dish, and some people do not allow it to exced one inch. It also rises sooner in warm weather than in cold, and for this reason it must le skimmed sooner when the weather is warmer thun usual. In ordinary cases, the cream shouid be skimmed about 20 to 24 hours after the mulk has been put into the dish; in warm weather idking it off somewhat sooner, and allowin it to remain a hittle longer in cold weather. As the cream is skimmed, it is put into an earthenware jar, the top of which is covered with a piece of muslin, in order to prevent thies or dust gettury into the cream, whilst it admits air. As additions of cream are made to that in the jar, the whole should be thoroughly stirred and intermised together, and the contents should not he alowed to remain longer than three or four doss without being chamed.

Whop the whole milk is churned, it is strained, as milked, imto milk dishes or cuolers; but a preater qumtity is fut into each dish than is dine when the cream is to be taken off. In the nouth of Ireland, where churning the whole mulk is a prevalent practice, the milk is stramed into 3 jar or "crock," sucressive milkings being added until the jar is full, but avoiding puting hanes milk just before churnurs; that is, supfose the churning takes place in the cranse of
the formoon, the morning's milk is not added to the contents of the crock whi'h are to be churued, but put into a fresh crock, and leecomes the beginuing of another gathering. This system. however, is not so good as leeping each milking by itself, so that the warm and colo milk is not mixed together. The frequency of the churning will partly depend on the we ther, but the whole milk ought not to be allowed to remain longer than three days in ordina y cases, or, perhaps, four without being churn d; and, in warm weather, it may be churned in two days from the time the finst of it was taken from the cows.

In large and even moderate-dairies the churns are diven by power, which is preferable to manual lahour. Hot water is often added to milk or cream, to bring it up to the proper temperature for churnmg-say 52 or 53 degrees; but this is not a good practice, and where an increase in the temperature is necessary, it is better to acyuire it by putting the churn containing the milk or cream into a tub filled with a sufficient quantity of water to bring the contents to a proper state. During the process of churning, the temperature will rise to 56 or 58 degrees; but it is requiste that attention be paid, so that it may not rise much hisher than that point, otherwise the butter will be injured. When whole milk is churnc d, it will stand, however, a higher temperature than cream. Rapid churninr is not desirable, and over churning is equally bad; but the best medium will be found when it takes an hour and a quarter of steady churning in ordinary weather, to produce butter.

There is a difference of opinion as to the mode of handling toutter after it is taken from the churn. Some put it into a small, flat tub, and wash the buttermilk out of it by kneading it among clear, cold spring water, the milky water beng occasionally poured off, and Hesh supplies added, until it ceases to hecome tinged with milk; others knead and heat it in a clean cloth, which absorts the buttermilk. and is frequently wrung dry, un til the buttermilk is entirely taken away; whilst a third set of butter makers say that it ought to be worked by means of a wooden skimming dish. and that to work it in any degree by the hard is to spoil it, for the heat and perspiration, which is sad to render the butter waxy. Mr. Ballantine's method, as detailed in the prize report in the Transaclions of the Highland Society, was to extract the milk by working it with the cool hand, but the butter itself was not washed or worked in water. Mr. Diilon Croker, who paid great attention to the management of butter, recommended that, after finishing the churning, the milk should by drawn off by a plug from the hottom of the chum, and replaced by a quantity of pure sping water A few turns of the wheel is then given, and the water run off; this is to be repeated until the water appears as clean as when it is put into the churn, showing that the mill has been a,l extranted. A strong
pickle, well strained is now put on the butter and several turns of the paddles given, so that evers patt will feel the effect, which finishes the operation. If the weather should prove warm, it will be advisable, he considered, to let the butter lie in the churn for a fes hours, which will render it firmer than it was when the washiug was finished.

The salting process should commence directly after the buttermilk has been all catracted from the butter, and the quantity of salt must he regulated by the purpose for which the butter is intended. Whenit is to be sold merely powdered, a quartar of an ounce of salt wall be a suffcient for a pound of butter. For ordinary keeping purposes, or the London market, it may be cured with half an ounce of s.lt to the bound of butter, and many add a quarter of an ounce of yellow sugar, and one-cighth of an ounce of powdered nitre. For export to the colonies, or long keeping, more salt is necessary, and as much as one ounce of salt, with a proportionate quantity of sugar, and the foreroing quantity of nitre, will be required. Nitre and surar are both omitted by many, but these ingredients assist in flavoring and preserving the latter.
The salt used must be of the purest description, free from salts of lime and magnesia which exst in ordinary sea salt. Prof. Johnson reiommended the purification of common salt for dairy purposes "by pouring two quarts of boiling water upon one stune or two of salt ; stiring the whole well aboui, now and then, for a couple of hours, and afterwards straining it through a clean eloth. The water which runs though it is a saturated solution of salt, and contans all the impurities, but may be used for common culinary purposes, or may be mixed with the food of cattle. The salt which remains in the cloth is free from the solubie salts of lime and magnesia, and may be hung up in the cloth till it is dry enough to be used for mixing with the butter, or with cheese" The salt must be rendered as tine as possible, which may be done by crushing it with a rolling-pin, and the nitre and sugar well mixed with salt, when these ingredients are used alony with it. In salting, the butter is spread out thin in the tub, and the salt, de., carefully sprinkled over it, and worked in with "the heel of the hand," until the whole is thoroughly intermixed. Some only work in half the salt at finst, and then lay the butter aside till next day, when the remainder is added after pouring off any brine which has come from the butter. A great deal of Irsh butter is spoilt by over salting.

When the salting process is completed, the butter is packed into "crocks"-earthenware jars -or into small casks. The former answers well enough when the butter is intended for home use, but when it is to be sent by rail or steam-boat it should be packed in firkins. These are made of ash and oak, and p:evious to being filled with britter, they must be first filled with boiling water which will be allowed to remain in them for 20
or 24 hours; they are then riused in clean, cold water, and filled wth strong, hut pickle, which may remain in them until they are requned for use. The firkins are weighed before the butter is put in, and half a being allowed for any ad ditional soakage that may take place, the weigh of the firkin is branded upon it. A little fine salt is then sprinkled in the bottom, and the but. ter packed tightly with a wooden rammer, or with the knuckles, and the greatest attention must be paid to this operation, so that thero shall not be any vacant point left, as the air contained in that vacant space, no matter hor small, would soon spoil the butter. If the firkin or jar is not filled at one churning, the butter must be covered with pickle, or some salt is sprinkled over it, and a clean cloth pressed clos, upon it, to keep out the air uatil the next chuming is ready, when the pickle is poused off, or th: salt carefully removed with a spoon, and th: smooth surface is roughened or raised into fir: rowe, for the purpose of allowing the last packed butter to become perfectly united to the fast without any appearance of seam, which woul? be the case were this precaution neglected When the firkin or jar is filled, a little salta strewn on the surface, and a piecs of linen dipped in strong salt and water, is spread equabit over the top, when the cask may be headed, an! is then ready for market, to which it should te sent with as little delay as possible.

Butter which has been improperly packed, e. otherwise affected by the anr, becomes rancid, but this may be cured by beating in water into wheh from 12 to 15 drops of chloride of limet the pound of batter have been added. After working it well leave it lying in the water fo: two hours, and then wash it in pure cold waten when it will be fuund to have become sweetend

CHEESE:

There is cons derable diversity in the many facture of this article; so mach so that not on' is there a marked distmetion between the chees produced in different districts, but it frequent: happens that such is also the case on adjoinit: farms in the same district. In the latter case, doubt, whilst the distinction may arise fro natural causes, such as the nature of the pasture and of the breed to which the cows belong; sti: it is well known that much of the characterc checse arises from the manner in which the mil? has been previously treated, and, in the cased skim milk cheese, from the proportion of crea which has been allowed to remain on the mill Some "s goodwives" are notorious for keepits what is called "a good creaming-dish;" that they are very particular in removing every m^{2} licie of cream from the milk, for the purposed? making butter. and the cheese made from sud milk is, therefore, of a peculiarly leathery tes ture. It was an article of this kind which elicike' a rather pithy cliticism from a half witted fellar who got a living by running errands Ω bout D : blane, in Scotland. On one occasion, he r_{i}
sent to a farm-house where the "creaming-dish" was very vigorously used, and on being set down to a repast being composed of bread, butter, and cheese, he was observed to spread the butter pretty thekly over slices of cheese, muttering ali the white, quite loud enough to be heard by the bjstanders, "Deil be in their fingers that ever pairted ye."
But it appears to be the case that for some unknown reason cheese cannot be successfully made in some parts of the country, and we have found some marked instantes of this in Ireland, both on the sown grasses of a five shift course and on the old pastures of the Golden Vale, mod that, to0, where it had been tried by persons who had been all their lives well acquainted with the process of manufacture as practised in Cheshire and Ayrshre. At the same time, we found excellent cleese made on other farms at no great distance, but eertainly where the soil and pature were somewhat different. showing that there is nothin the climate at least, as some allere, to prevent cheese making being carried on in Ireland It has never gained a footing in Ireland, however.
When skimmed milk is set aside for checse making it must be scalded, but not booled, in order to prevent it from turning sour, which would spoil the cheese. In making sweet milk cieesc-that is, whea the milk is used without being deprived of the cream-the morning's milk is mused with that of the preceding even-ing-supposing there is a sufficient quantity of milk to allow a whole cheese to be made every day-the cream which has gathered on the erening's mulk being mixed through the entire quantity, the temperature of the whole being raised to a certain degree by heating a sufficient quantity of milk in a pan set in boiling water, and then pouring this warmed milk nito the rest. The temperature to which the milk is raised ranges from 75° to 80°, and even 90°, a higher temprature heing requiste in cold than in warm weather. The milk at this stage is all in one tub, and it is at this point that the "rennet" is added. This is prepared from calves' stomachs, which have been salted a year belore they are used. These can generally be procured from shopkeepers in the dainy districts; and where cheese is the sole object of manufacture, two ars," or "vells," as they are sometimes term. w, art necessary for the milk of each cow during the season. Ir: some cheese districts, Etale rennet is used; in others, as in Cheshire, it is prepared on the day previous to bemg put into the malk. The Cheshire system is to cut wo bits of two or three square inches of the vells or bagskins, and those bits are "put into half a pint of warm water the day before usf, along with a teaspoonful of salt, and this iufusion suffices for 50 or 60 gallons of mill:" (Morton). In Gloucestershire, where stale rennet is used, 6 veils are put to every 2 gallons of brine, and in large dairies a 30 to 40 gallon cask is prepared at once. The infusion is considered to improve with age, that is, if it is not further di-
luted by the addtion of more brine. Stale rennet is also used in A yrshure in the manufacture of Dunlop cheese, aud in that which is made accordin; to the Cheddar system, a tablespoonful of the remet being added to every 20 gallons of milk. It is at this stage also that annato is added for the purpose of colouring the cheese-a practice which, we think, ought to be gricen up; for it is only a mere fancs, and does not improve the quality of the checse in amy degree.

The time requisite for coagulation varies according to the temperature of the malk when the remet is putinto it. Where the temperature tanges from 75 to so degrees, the curd will usually take an hour to fon m; but where the temperature is from 85 to 90 deglees, it may only require half the time, or er en less. Too rapid cuagulation is not desirable.

The subsequent stops in the manufacture of Choshire checse are described in the following manuer in "outon's excellent hitle work, the The Iland book of Dairy IIusbandry. After the curd is fully furmed,
"It is then cut slowly with a wire curd-breaker, and the cund simhins, the whey is baled out; the curd is collected and squeezed, buth by hand ard the direet pecssure of a weight ahove a board placed ul on it; and the last of the whey being removed, it is lifted cither into a basket or into o e of the Cheshire chece e vits (' thrusting thb.') pierced with hules fur the further escape of the fluit, the lower pant leing a wooden cylindrical vat, and the upper a timed cylinder slipping into it, as the cund on pressuc sinhs. After a certain picssure in this form, the curd is removed and cut, and broken by hand or a cmd mill, and from 1 to 2 lbs . of line salt is scattemed over t , according to the weight of the cheese; about 1 1b. to every 40 lbs . of cheese is a common quan. tity. The whole curd being then re-broken, is recilled into the vat, in which a cheese eloth has previously been placed. It, is then put gradually under pressure [in a lever cheese press;] which after the second or third day amounts to nearly a ton weight upon each cheese.
"Every day the cheese is turned, and wrap. ped in fresh cloths, aud on the serenh or eighth day of this treatwent, or as soon as dry, it is removed to the loft, and there swathed asound with strong githing, and placed on a bench. By-andby it is land, still swathed as before, on a layer of straw on the floor of the room, and there it lies till from ten weeks to four months old, when it is ready for sale."

It is of the greatest importance that the curd be freed entirely from the whey; for if any whey is left, the cheese is apt to swell and burst. For this reason, in some dairies t is the practice, on the first day when the cheese is put under the press, to thrust skewers into it through the holes in the cheese-vats, in order that the whey may more readily drain off through the holes piereed with skewers. The whey is scalded and given to pigs.

Varnisimng Cheesbe-A writer in the Dairy Farmer states that it is the practice of some dairy-men to coat each cheese thinly with varnish made from shellac dissolved in alcohol, when about to ship to market. It is said to improve the appearance of the cheese and to keep it from losing weight and gathering mold. We cannot say as to the value of its recommendation.

Dumestic.

Housek'epers' Recipes.

To Make White Indian Meal Cakes.-I read one ur jour receipts fur making " Indian cakes" to my wife, fiom one of your late numhers, and we hod a laush ver it. Annexed is her mode of making them: To enough white meal for breakinist add sufficient salt, then max eatirely with builing wate, to the consistency of a stiff batter, and boke mmediately on a hot griddle, well greased-the batter to be put on the fridulle with a large spoon, une spountul fur each cake. No miatum of ladian meal can enceed these cakes in delicacy of Hanor. This is the way we make them duwn in Deleware.Germantown Telegraph.

For Killing Rats.-Mix some unslacked lime with conf meal, and place it where the rats may accidentally find it. They will soon become very thirsiy, and upon drinking water, the lime slacks and swells the rat till it kills lim. In the Bahama Isles, spon re is fried and placed in in their way; they cat it, driok, swell, burst and die. Lime and meal should be, of the first one part and meal two parts, well mixed together and dry.

Starch.-There is'no better way for making mee starch for shirt bocoms, than to boil it thoroughly after miving, addinr a littie fine salt and a few shavings of a star or spermaceti candle; the star or pressed candle is quite as good as sperm. Let the starch boil at least ten min utes, and it will give a gloss, if neatly ironed, fully satisfactory.

Mince Pie without Meat.-Four soda crackers, fuar cups of water, two cups of sugar, one cup of butter, one cup of chopped raisins, hall a cup of linesar, one lemun, grated citron, nutmeg, allspice, cloves, cmmanom, etc.

To Broil a Fowl.-Split the fowl down the back, season it very well with pepper, and put it on the grdiron, with the inner part next the fire, and allow the fowl to remain unthl it is nearly half done; then turn it, taking great care that it does not burn. Broil it of a fine brown. A duck may be broiled in the same way. If the fowl is very large, half roast it, and then cut it into quarters and finish it on the gridiron.

Indian Meal Muffins.-To \& quart of meal, pour boiling water, stirring cous antly untila
hick batter; let it cool; while warm, add a small teacup of butter, a tea-spoonful of sal and a tablesponnful of yeast, with two wel beaten eges ; set it on a warm place for tw hours, then stir it smooth, and bake in sma cakes on a griddle: when one side is rich brow turn the other ; lay them singly on a hot dish and serve. These may be made without th yeast, and baked as soon as mixed.

Muffins.-Mix a quart of wheat flowe smoothiy with a pint and a half of lukewar milk, half a teacup of yeast, a couple of beater egrgs, a teaspoonful of salt, a couple of table spoonsful of lukewarm melted butter. Set the hatter in a warm place to rise. When light butter your muffin cups, turn in the mixture, an bake the muffins a light brown.

Cleaning Papered Walls. - The prudent housewife who, on account of "hard times," has decided not to re paper the sitting-room, as desirable, will find the old paper very much im. prove in appearance by simply rubisins it well with a flamel cloth dipped in oatmeal.

IU Clean Knives.-One of the best suir stances fur cleaning hnives and forhs is charcoak reduced to a fine powder, and applied in the same manner as bṛick-dust is used. This is a recent and valuable discovery.

Preparation of Chicory.

Ebitors cf the Agriculltubist.-Can you or any of your subscribers inform us of the best way to prepare chicory for mising with coffee? We grow it, and are fond of it, but think me have not the proper method of preparing it for use.
Niagara, Jian. 1862.
W. C.
[We are not aware that there is any other. mode of preparing chiccry for use as a substitute for coffee, than that of first drying, and then roastiner and grinding the root. After the roots have been cleaned, and sliced in the thits parts, they may be placed in an oven, after the hread has been removed, and remain theretil they cool. If one such baking should not dr them sufficiently the operation may he repeated. The Rev. W. L. Rham, in his Dictionary of the Farm, in speaking of the culivation and pro paration of chicory in Belgium and German: as an article of commerce, says :-
"In September the leaves should be finally gathered and the roots taken up, which may he done with a common potato fork. They are then cleaned by scraping and washing, sphit where they are thickest, and cut across in piects. about two or three inches long. These piects
are dried by means of a slow oven or a kiln. Some nicety is required in drying, to prevent the root from being scorched, and to keep the proper flavor. In this state it is sold to the u:erchants, packed in bags. It is afterwards cut or chopped into small pieces, and roasted exactiy as coffee, ground in a mill, and packed in papers in pounds and half pounds for retail sale. When coffee, as well as all colonial produce, hecame too dear for the laboring ciasses in France and Germany, chicory was almost universally used as the best substitute, and the taste is by many thought so grateful, that they prefer the coffee with which a fourth or a fifth part of chicury has been mixed."
We have seen it stated that chicory is apt to produce injurious effects upon the constitution when used too freely. Should any of our correspundents know a better way of preparing it for use thar. the above, we shall be happy to lear from them.--Ebrrons Agriculuuni t.]

(Tl) 那oultry Narit.

Froftable Poultry Keeping.

\dot{F} ouls and their Breeds.-A poultry keeper, in the Journal of Horticulture, places in order of profitable merit different fowls, in the following order:-

1. The Specliled Dorking.-Good layers, setters, and nurses; chickens come early to profit; preferred by dealer.
2. The White Dorting.- Flesh of these chickens a better color than the speckled.
3. The Hamburg Everlasting Layers.Layffrom 200 to 250 eggs yearly; do not sit well; flesh good.
4 The Game.-Flesh and eggs excellent; but rear with difficulty.
4. The Cochin.-Best for confined places; tear early; eggs excellent, sits true; good nurses; flesh not very good.
5. The Spanish.-Shy layers, poor sitters; bad nurses; eggs large and poorish; do not rear well. Poultry should be kept perfectly dean, have access to chalk, and a dust heap uacially kept dry for them to busk in.

Poultry.

We are indebted to the Irish Farmer's Gazette for the following remarks, gathered from different sources. In the old country fowls are generally prepared for table in the natural way, but French feeders jrefer a system of forced feeding, the details of which may be gathered from the following description given in a recent number of the Journal of Agriculture :-
"A sketch of the mode in which the La Fleche virgin cocks and poulards are fattened will convey a good notion of the mamer in which this process is fiequentiy managed in France. It is undertaken chiefly ly country dealers and small cultivators, called poulaillers, and although attended w.th a good deal of trouble and expense, they mana;e to realise fair profits-some of them even small fortunes. These individuals buy up, from the markets and their neirhbours, the juthin coqs vierges and pullets, which they name gelines, that appear to be finest, and best fitted for fattening. About the age of seven or eight months, they are considered best adapted to the purpose. From fifty to a hundred are subjected to the process at one time, and it generally commences in October. In the apartment where it takes place, a series of boxes or frames, formed of rough timber, are placed on the floor-one portion of the covering fixed, the other movable-for the purpose of putting in and taking out the fowls. The dimensions of these boxes vary, but they should never contain more than six birds, and the space should be such as to accommodate each comfortably, without permitting it to move about. No light is admitted from without, and very little air. In order to accustom the fowls gradually to the dietary regimen and seclusion to which they are to be subjected, for the first eight days thes are enclosed in a place only partially darkened, and fed on a somewhat thin paste, composed of meal, with a mixture of a third or a half of bran, and they are allowed to eat and drink at pleasure. The paste cakes, or patons, on which they are to he fattened, are composed, the one-half, of buchwheat meal, a third of barleymeal, a sixth of oatmeal, the coarse bran being removed. Every day this substance is steeped in milk in the quantity necessary for two meals. Some add to the paste a hittle lard, particularly when the treament is drawing to a close. Being neither too J-ard nor soft, it is easily rolled in small cakes or patous nearly in the form of an olive, and of a size adapted to the throat of the fowls.

The times of foeding require to he strictly attended to, and the poultryman or feeder, aided liy the light of ε. lamn, takes three fowls at once, ties them altugether hy the feet, and rests them on his knees. He then makes them swallow a spoonful of water or whey (although this.
is occasionally dispeused with), inserts a paton in the bak of each, and gently slips it downwards by the pressure of his two forefingers and thumb, rubbins his band along the neck till the food reaches its destination : this prevents its being rejected. The time required for this in each case afords sullicent leisme for deglutition in the others. During the lirst few days on y a small number of patons are given, but they are gradually inereased till each duse consists of a dozen or fifteen. They are dipped in water before beinr administered, in order that they may be more easily swallowed. By this process some fowls are fattened in six weeks, others take two months; the time depends on the constitution of the anmal and its degree of strensth. Some cannot be brought to the desired plumpness without risk, and in such cases the feedin! must be interrupted or moditied, as the occasion seems to demand. It is calculited that some fowls consume 20 iitres of meal, others one-half more. Two feeds must be regularly given in the twenty four hours, and the diet indicated must never be altered in its composition. A curious feature in the process is, that the feeding-house must never be cleaned, the fowls have no litter under them, and their dung is never removed. The highly azotised emanations which prevail in the feeding-house are considered necessary to assist the fittening process, althourh they are disarreeable to the attendants, and not seldom injurious to their health. The fowls are never subjected to any mutilation, as is the case with capons, and often with fowls fattenel in other ways. The finer specimens of poulardes attan a weight of upwards of 8 lb , the cocks 13 lb ., and these weights are sometimes exceeded."

Another mode of forced feeding consists in
"Causing the fowls to swallow, by means of a funnel inserted into the mouth, farinaceous subtances in a liquid state. This latter method, named entonnage, is so simple and rapid, that it is thourlit likely to be adopted in preference to any other. The filler or funnel, made of white iron, should be of sufficient size to holds one meal, havitg a ring below the rim externally for receiving the forefinger and thumb, and the onfice at the lower extremity cut aslant, the ed,es carmunded with a thin coating of india rnbber, to prevent injury to the walis of the throat. The beverage, which by this means is to be introduced, consists of batley meal (not bruised batley), mixed up without knots in equa? parts of milk and water. When all is ready, the fowl is scized by the wings near the shoulder, the head held forward between the knees and grasped by the left hand, while the right holds the fumel, opens the beak, introduces the intrument into the gallet, and tine proper quantity of the mixture is poured in. The quan+ity of the latter should he about the eighth part of a litre, hat only half that quantity is given during the first three days. This dose must be given regularly three times in the
four-and.twenty hours, at intervals of eight hours. The boxes cr frames containing the fowls should be placed in a stable or other tem perate place, protected from currents of air, and they should be littered with straw, the litter fre. quently reneved, and every impurity removed, unlike the practice followed with the La Fleche pullets. The duration of this treatment is from filteen to twenty days; if it fails to be succes. ful within that time, the subjects should be with. drawn and otherwise disposed of."

Alluding to the insipidity of the flesh of pout try as an article of food, and which we endearour to correct by eating it along with ham of tonzue, the writer of the article in the Journal of Agriculture surgests the possibility of im. parting different derrees and kinds of flavour to it by mingling aromatic substances with the usual farinaceous food, the forcing system of feeding presenting the means of accomplishing this end. He reasons from the fact that the nature of the food has an effect on the flesh of ammals-thus, "that of the capercaille has the scent of the fir shoots on which the bird feeds; hares inhabiting low wooded regions have less tlavour than such as live on mountains. Do. mestic rabbits are always insipid when compar ed with wild ones. Birds feeding on certaih berries-those, for example, of the juniper-ac. quire the perfume of their principal food." Tho Hesh of grouse, also, he might have added, has a stroner flavour of heather shoots. "Flavour: ed berries, such as the juniper, the aromatic buds of trees, tops of labiate plants, such as thyme, lavender, odoriferous barks, \&c., would form the materials to work with. They would not require to be used but towards the close of the period of fattening, as a short treatnent would be sifficient to perfume, at our wish, the whole flesh of the animal. In this way the value of our common fowls might be greatly increased, aud they might be brought to equal; and even surpass, many linds of game." The surpestion is weil worth being put to the test of careful practical experiment.
The exhibition of fowls at poultry shows haring now become a subject of general interest, we shall be doing young exhibitors a service by transcribing the following useful remanks on this suliject from the poultry department of the Journal of Ilorticulture (Nov. 19, 1861):-
"Fowls, to be successfinl, must be sent in high condition; but even in those classes where weight is an essential, mere fat will not dolarge frame work is necessury. Judues are not guided by mere weirht, lut the size of the fom is ascertained and tested by measurement. Ex. cessive fat, so far from being desirable, is a great disadvantare. Fowls suffering from it are neccssarily dull and sleepy, they get into the corner of a care, whence they will haddy allor themselves to he moved, and are spiritless and unattractive. The greatest amount of weight must be attaned that is consistent with exer.
e and hard condition. Beanty of plumare is great help to success, and thas camnot exist th much fat, as its tendency is to loosen the athers and make them hollow. Fowls should sent to ashow with clean plumage, and those at should be white and are not white should wassed to make them so. Soap and water ay be casily and sately used with a flamnel; dif the binds are afterwards put in a straw sket with solt straw, and placed before a grood e, they soon beenme dry. All fowls should so be sent to a show with clean legs. Liven heie the birds shown do not belong to a breed which feather is the principal merit, it is deable to choose those that match as nearly as ssible; and in every breed it must be recoleted that positive similarity of comb and lour are imperatively necessiary to constitute competing hen in uny class.
"We advise sending fowls away early to a ow. Thay get more care in unpacking, and es look better before the judges, from haviner d mure time to recover the effects of packing d the journey. It is, besides, due to the memis of any committee who undetake the task unpacking. There is no reason why they ould be lept at their unpleasant work all -ght. It is also far better, where they have a ar journey before them, that fowls should avel at it hit. Those who manage to a nicety e somet mes too late, and at others they arire after the judges have commenced their or's. One is almos: as bad as the other. With gard to the fond they should have before they art, it should' be of a light character. They we no opportunity in their haskets of findinin ones to assist in digestion, and for that reason cobject to whole corn. We believe sopped end to he the best thing they can have, and rery severe weather it is a wise precaution to re them a part of their meal steeped in strong .er."
"All baskets should be round, to prevent any athers from being broken. There is no angle such a one for a hird to get into to escape um beating, or to crouch to roost. If it is in otion, the tail follows round, and the feathers enot injured. The basket should be covered ith double canvas. It should be large enough allow all the hirds to sit down, and high bugh to allow the cock to stand upright withat injury to comb or top-knot."
(Concluded in next number.)

(1) 2 Ruiarb.

On the Management of Bees.

othe Editor of the Canadian Agriculturist.
Sin,-In the October number of your valule journal I noticed the following enquiries hy tpiarian," addressed to the bee-becping commu If, for mformation as to the results of their
experience in reference to the most profitable system, stating the average gield of honey, cost of stocks or swams, the best time to stock an apiary, and any other panticulans that might be useful? I have been looking for the re ,uested information in answer to those engurics, in the subsecpuent numbers of your publication, as an interchange of sentment upon the practice of this pursuit, would have been acceptable to myself and, no doubt, to many others of your subscribers, especially from those apianims who have made it a special lusmess, bat have not yet met with it. In the absence of such information, I here submit a brief statement of part of my exprience, in connection with partuculars from other sources. But, from the limits of a communication of this sort, much of the details of operations in manipulating with the bees is necessarily omitted.

Having taken much interest in the natural history and practical management of this wonderful insect for the past twenty years, and lieeping a limited number of stocks, I conceived this msect evidently intended for domestication, as much so as any other stock of the farm, its instincts and habits being devised in reference to the benefit of man.

This branch of sural industry is in a very low state, from the small amount of encouragement given by the different local auriculturul societies in Camada West, in connection with the large number of failures,-by which bee-keepers have had to renew their stock every fow years, -arising from defective manayement, and too often no management, excepting, of course, the hiving of a swarn and placing it upon the stand, and leaving the subsequent results to luck. The absurdity of a corresponding amount of management in comection with other crops, would he casily seen, and failure anticipated. This low state of the mdustry has given rise to an unfavorable impression in regard to its profitahleness and importance, as a natural resource of the country. But a land flowing with milks is inseparably connected with a flow of hones. And if the practical knowledge and attention be given, that the present state of improved hee-management requires, it can be made a profitable bisiness. On the other hand, a deceptive or ton sanguine an impression may be produced, from the perusal of those accomats of large profits inserted in many of the published papers, perhaps the results of one year in ten.

The average yield of honey in one lneality will not be a reliable criterion for an expected result in another, as different seasons, situation, and the strength of the stock, materially affect the amount of the relums. In the absence of a record of profits, I should judge that from 30 to 50 per cent. on the capital invested in honey would be a safe estimate, leaving a limited number of young stocks, to offet expenses of hives, stands, \&e. The prossective profits of the lo-
cality, in whic'2 your correspondent resides, witl be best juderel oif, from a view of the surrounding vesetation. White clover, buckwheat, linden, raspherry, the orchards, dee, are the chief suarces trom wheh honey is obtained in this country. But white clover takes precedence of all other plants, for its superiority in quantity and yuality, often denominated Fine Canada.
The growth, matarity, and havesting of all crops in Canada, is coatined to a limited period, and the harvest of 1 , aey is not an exception. Consequently, the sirensth of the stocks should be promoted is aduanee, by every meaus within the power of the apiarian, so as to meet the required de nand of labour; for a successfial im. provement of the short time allotted for an enficient gathering of not only an abundance but often a superabundance of the honey, that may be secreted by plants in blossom. For its duration upon the blossoms maty prove uncertaia. The pasture of bees, is not like pasture of other stock, what is left by cattle to-day can be eaten the next, or she next week, buta storm of main or a few days of wet weather, will wash the greatest abmadance from the blossoms, or a cold spell of weather or drought may check the plentiful secretion for that season. It is obvous from this reasoning, if correct, that strong stocks, at the commencement of the serson, in this climate, are the foundation of certain success, other cirumstances being equal, as it is only those stncks, in ordinary seasons, that will realize a surplus of houey. over the quantity required to keep them overwinter; and in a season of scarcity, weak stocks must perish, if not previously fed, taken up, or united with other stock: Therefore, assuming my stocks to be strone, at the commeucement of the honey and swarming season, I endeavour to keep thein so, by limiting the swa ms, and returning them to the old stocks, or ${ }^{\prime}$ movable comb-hives are in use, remove the remeinder of queen's cells, in excess of the number of swarms permitted to leave. This hive is an impoovement upon the chamberbox, ba rhives. and a legion of worthless patents, as theres the apieritin crintrol and power of insn ecting the interior, and the past scasons's trial by mrself will justif; their future use. This mode of increase of stocks is much at variance with the practice of a large number of hee kepers throu riout the country. 'lhe advantages over the old system are unquestionable, whatever merits other methods may posgess, as the loss and waste of a v luable swarm, brod, and beebread, with the labour and time in aceumulating this wasted nroduct committed to the hrimstone pit are saved, and are properly directed in the most profitable way, when the increase must he saved or lost. And it will prove ultimately a botter guarantee of profitable merease than where more swarms, that is to say, wll the first and consequently the hest swarms. are allowed to leave withont reducing the old stock to becone a preg to the moth.

The best time to stock an apiary, is the lis of winter or carly spring. The operation. this time is attended with the least loss of beta and any reasomable enhancement of phat over the fall stock, will be fully compensime for in the avoidance of care and risk of witte: ing; alhough bees can be removed at aty seasuns of the year, and successfully whe swarming, and artificial swarms are the bette for being removed some distance. The pricen stock will average four dollars, in this sectie of the country, in common boxhives. Sue practical experience in purchasing, is necessi? at any seasun of the year. The common meth of judging by the weight of the skip, is t i always a safe guide, as old stocks are much het ver in proportion to their contents, and mar queenless hives will prove quite heary.
Some care and attention are requisite in winte ing bees, more from the length than the sere ity of the winter, in order to counteract accumulation of moisture, generated in : wooden hives, by the breath and heat of is bees becoming frozen, without direct or uprigh ventilation, but this is is is some measure an cessary evil. This is the reason that the cos mon boxhive, placed upon blocks or pins, is: successful, exposed as it is, in many instanca to every vicissitude of the weather. The co: dry air, and driving winds, dry up the moister in some measue, but at the expense of the vite ity and animal heat of the bees, and extra cos sumption of food. The evils of this unmercifi exposure of bees, to the severity of a Canadia winter, are increased by the sudden changes temperature, as a sudden change from a thant severe freezing, before the mside becomes ing will often prove fatal. But, as protection : properly regulated ventilation becomes bett understood, this old ssstem will gradually d appear.

Straw lives are better adapted to winteit bees, than wood, as this material is a nonco: ductor, consequently warmer in winter and co: er in summer, and will absorb and evapora moisture, and when combined with extemal pi tection, either of the same material or woo? will obviate the necessity of direct upriget ventilation. But where movable con! frames and surplus honey boses are the $5:$ tem, the straw cannot be worked into it proper shape, without being combined mi. wood. And those complicated arrangemet for ventilation can never be adjusted to the st: den changes of the weather by ordinary be keeners.

There are some objections to straw, as affor ing a harbour for the moth, but the depredatio: of this enemy of the bee are better prevenk by other means than the adoption of any mat rial of which the hive is constructed, as th: will enter any hive that was ever invented, if t : prevented hy the bees themselves And hors boxes are the best in everv respect for the d posit of surplas honey, both for its securits '
ans, with and convenience of keeping, and a re puarantee of ats purity, devoid ot beebread ad boodeomb, as the bee store it for themlwes, and not for the owner. Whereas heve niey is more or less intemixed with beebread d broudcomb, and the separation canot be feeted in all of it without straming one through e uther.
The suarcity of honey has given rise to heavy pipotations of Cuba, and other West India mey, much of it unfit for table consumption, e hest often repacked in kers, and sold as rained Camadian honey, but box honey requires warrante for its purity, and the comb will t exceed one-thind of an ounce to the pound. public revenue derived from this source, as mpared with the present public expendture, rough importations, or even a supply equivaont to the demand for home consumption, apars somewhat distant, and will remain so unthl corresponding interest is awakened in this anch of rural economy.
The importance attached to this purstit in ermany, where it is followed as a profitable ployment by a large number of its populan, and the interest evinced by a large portion the clerpy, as practical aprarians, aided by real publications devoted to this and its kintil subjects, have produced corresponding pubresuits, as a few figures here, taken from mostroth, furnished by Wagner from the statical tables of Hanover, will show.
The average annal production of wax, in the oince of Lunenburg, is $300,000 \mathrm{lbs}$., and asmint one pound of wax for each hive, we se that number talien up, and computing the whe number, with every allowance for casual. s, the lowest estimate would be $60^{\prime} 3,000$ Jeks, giving $1: 41$ to each square mile, to secure eresults in the tables, and this district is so ren tha: it has been called the Arabia of Germy. And accordiny to (Ettl, pare 389, Bomat contained 160,000 stocks in 1853, and from saretial cstimate, he thinks the country would pport four times that number,- the lingdom utains 20,200 square miles. The ofticial reits of Denmark show the export of wax to be on that country, $118,379 \mathrm{lbs}$. In 185 t, the cial estimates returned $58,96+$ stocks for the nolom of Wirtemberg. And in the same ar the yield of honey and wax, in the empire dustria, was estimated at seven millions of llars.
As there is unquestionably a lack of informan and a degree of uncertainty existing in the nds of a larre number of beekeepers, as to thest methud and the probable profits of beeeping, it would tend much to the removal of se apparent difficulties, if the different sysis were made public, through the columas of r joumal.

> Respectfully:

Jas. Heslop.

Yest Flamboro', Jan 5th, 1862.

Waits on Cattle.

Mr. Emron:-Will you please inform me through the columus of the $F^{\prime \prime}$ remer what is the most eflective cure for wats on cattle? If you will you will great!y oblge G. C. b.
Note. There ane several modes of curing wats. Nitric acid diluted whoh water, applied occasionally, has been successfully ased. Chloride of zine made mona paste with an equal anount of flow, and apphed, will act as a caustic and destroy them. A tincture of iodine applied two or three times a week bas been known to destroy them. All these things act as caustic more or less strone, which destroys the vitality of t..e wart, and it is then thrown oft as dead matter.-LED.

We cut the above from an exchange paper. Warts consist in a norbidly increased growth of the outer skin. They generally origimate on young animais, and are supposed to be associated with that state of the system when the tissues are in a growing state, as they usually appear during the period of growth, and disappear as age advances. Epidermic warts, when seen in the horse, are found to occupy various situations, as on the nose eyelids, ears, between the hind leas, or sheath, and under the abdomen. When occurring in cattle, they are chiefly confined to the infenor parts of the abdomen, teate, dewlap, or about the head.

Treatment.-The easiest and quickest method of getting rid of wartz, when extening over a large surface, is to remere as much as possible with the knife, and apply a hot iron to stop the blecding, or tie the blond vessels, and afterwards dress cautiously with arsenical ointment, at intervals of several days. When presenting a well defined neck they may be removed by tying ti-htly around them a piece of waxed whip-cord; this cuts off all natrition, and as a consequence they drop off. Calomel is also useful in removing these excrescences.

The Cattle Disease in Montgomeryshire, Wales.

[REPORT OF PROFESSOR SMOND.]
Royal Veterinary College.
In continuation of my former report on the outbreak of a destructive clisease among the cattle belonging pricipally to Mr. Harvey

Jones' tenants in the parish of Llandinam, Montgomeryshire, I have to speak more fully of the nature of the affection, and the causes which produced it; as also of the means which were alopted to arrest its progress, together with the result. In the previous report it was stated that upwards of fifty animals, of various ages, had died up to the time of my visit, and that others were being attacked almost daily. For the finst few days aftur my investigation, the disease continued to prevail with unabated fatality, but it then ceased, and no more cases have since occurrel. This sudden disappearance of the affection I believe to be entirely due to the preventive measures which were adopteel, and I am warranted in giving this opinion, because all the local causes were still existing.

Causes.-Under his heal we must class the kind of weather which prevailed during the existence of the disease, the nature of the soil, the character $(:$ the food, and the manarement pursued towards the amimals.

The cases occurred principally during Oc-tober-a month remarkable for its hu idity and warmth. The state of atmosphere which then prevailed was accompanied with heavy fogs, and particularly in the district in question. The fogs often hung over the fields excepting for an hour or two throughout the entire day, and were so dense as frequently to hide the animals from observation, although but a few yards distant. Constant exposure to weather of this kind wonld of itself prove detrimental to health, by impeting the process of reppiration, and alsio the decarbonization of the blood; bat besides this it would have an indirect effect on the animal ceonomy no less injurious.

Speaking in general terms of the entire parish, it may be satid to bave a character of soil described as a clatey loam overlying slate shalc. The soil is nece:sarily very retentive of moisture, ame as mach hiere rain had fallen in the distriet than, as may be said loy way of contrast, han done in the iicinity of London or elsewhere, so the lamd was more than ordinarily wet. I was particularly strack with this, for many of the roads leading to difierent farms were hiten:ny mid-leg decp in mud, anl perfectly impassable eacept on horseback.

The warmoth of the atmonphere necessarily induced under surin circumstumes an abund. aut growth of grases and it was souterl, in answer to mo inquices, that more heep existed in the pastuens than was oiten to be found in the month of Junc. The sras showever produced under these circumstances would of nexcsity be not only surcharged with moisture, hat beoporti, mathy deficient both in albuminous and other proximate principles which are imperatim nexcesary for the making oí pare :end healthy hovd. Hence
we have another powerful cause in the food itself in inducing the discase.
The abundance of grass likewise led the proprictors of the cattle to leave the animaly out night and day without any othe: prover der, with a view of saving their winter keen
These several things being combined brougul about a state of the blood by which it ma unfitted for the purposes of life, and as an itlr mediate consequence, local hamastasia on sulted-in other words, the contaminated blood became partially stagnant in the ve sels. Somctimes this stagmation took play in one part of the system and sumetimes is another. The affectel structures became swo: len, hard, and painful. The head and throst were the principal seat of the local symptom but occasionally the fore or the hind extremities would be attacked. Nor were the exter nal organs exempt, as the lungs were now atd then primarily affected.

The duration of the malady varied a little, but was rarely longer than 24 hours; whit many of the animals, apparently umailectedin the morning, were dead before night.

In several respects the local symptoms wer closely allied to those seen in homatosepsi "black leg," but no gascous matters wea evolved into the cellular tissuc, as is the caz in that malady. Cattle also of all ages wer its victims, and that without respect to the being milking or fattcning animals, or ston stock.

It was not to be expected that caratirt means would be of much arail in such a distas and therefure I learned, without surprise, the little or no advantage had resulted from the application. A case occurring while I wi staying with Mr. Powell, Mr. Jones's ages and the chief occupier in the parish, afiorde me the opportunity of giving trial to curatir measures, but without much relief, as the airmal died in aloout twenty-eight hours froz the time of the attack.

Precentives.-It was selfevident that le: efit could only result from the applicatione prophylactics, and especially from remoria the ceatuses of the disease to as great extent: possible. With this view I ordered that th animals should no longer be kept in the ps: tures at night, but be brought into the yat and fed on hay, hay chaff, and bram, and at croshed corn. It appeared to me to be a mat ter of minor importance what kind of co: was given, and therefore this varied in diffe ent instances according to the convenience the occupier. The chicf thing was to lifi the amoint of succulent dict, and to salt: tute food rich in the elements of llood. I structions were also given for the animad be-kept entirely in the sineds and jards a fogry, hat especially on net days.

Besides this alteration in the diet, ?ncatio and manascment of the animals, orders inc
given for each to take of nitrate of potash in woder in a bran mash every othernight, from wo to four drachms, varging according to its ge and condition. These doses to be given othe extent of about six or eight in number. In a few instances, as in Mr. Powell's case, tho had been the greatest sufferer, I directed hat an aperient combined with a diffusible timulant should be administered at the comracement of the preventivetreatment, which as to consist of sulphate of magnesia, half a sound ; compound solution of aloes, from two othree ounces; compound tincture of genian in the same quantities, and two drachms foowdered ginger. The whole to be given nsome well boiled gruch.
As previously stated, these measures at once roved most effective for good, by entirely utting a stop to the further progress of the mady.
In concluding tais report, I may remark nat these cases possess an especial interest to ae pathologist as tending to prove the necesty of giving mreater heed to the state of the aids in many affections of the solids than has itherto been done, and also in showing that ome of the most destructive maladies occurng among herbivorous animals depend imediately for their production on the quantr and quality of their food, the manageent which is pursued towards them, aud the ature of the soil they inhabit.
They also prove to the practical agricultust that very often the simplest means, when ghty directed and founded upon a scientific iquiry, will suffice to arxest the most fatal isase which may be raging among flocks or .rds.

fliscellancous.

Tue Domestic Tyrant.-It is to me a oroumbly disgasting sight to see, as we someies co, the wife and cbildren of a a famly pt in cor stant terror of the bashan at thead of the house, and ever on the watch jield in every petty manner to his whims and acies. Sometimes, where he is a hard-wrought d anxious man, whese hard work ea:ns his ithren's hread, and whose hife is the sole stay is reedful tbat he should he deferred to in many iogs, lest the over-tasked brain, and over-strainrervcus syatem sbould break down or grow squal to the task. But I om not thinking sach cases. I mean cases in which the head the family is a great fat, bullying, selfish, nodrel ; who devours sulleoly the choice tes at dinner, and walks inte all the fruit or sert, while his wife looks on in silence, aud the estricken children dare not hint that they ald like-a little of what the brutal hoand is oaring. I'mean cases in which the contempt-
ible dog isextremfly well-dressed, while his wife and child en's attire is thin and bare ; in which he liberally tosses ahout his money in the billiard roาm, and goes off in un'umn for a tour on the continent by himself, leaving them to the jogless routine of their unvaried lite. It is sad to see the sudden hush that falis upon the little thing when he enters the house: how their soorts are cut short. and they try to steal away from the room. Would that I nere the Emperor of Russia, ard such a man my subjece! Sbonld not he taste the knout? Shoufd not I make him howl? That. would be his suitab'e punishment ; for he will never feel what worthier mortals would regard as 1 h : heaviest penalty by far, the uter absenc of corfidence or real afiection between him and bis chaldren when they grom up. Me will not mind that there ever was a day whon the t ddling creatures set up a shout of delight at his entrance, and ru-hed at him, and $\mathrm{s}^{\text {naled }}$ him, and searched his poekets, and piled him abont; nor that the day will never tuoue when, growing into men and women, they will come tu him for sumpathy and gaidance in their litule trials and perplexities Oh!woeful to thmb there are parerts, held in g neral estimation, too, to whour their children would no more thiuk of goiug for lindlo aympathy, than they would thak of going to Kiova Z:mbla tor warmth. - Cuantry Person.

Habit of the Fippopotamios-There can be little doubt that the "Behemoth," of 8cripture is identical with the animal we bave named Hippopotamus In the fortieth chapter of the book of Job, Behemoth is spoken of as an animal "that lieth down in the shade of the trees, on the covert of the reeds and fens:" "whose bones are as bars of iron." "He eateth grass, like an ox"" "Ihe shady trees cover him with their shadows; the willows of the brook compass him about." "Behold be drinLeth up eriver: he truseth that 18 cen draw up Jorden into his mouth." Although the researches of geologis.s hare putit begond doubt that, at a remote period of the warld's historg, the hippopotamus was common to Europe and Asin, it is now found only in Africa, and there not universally; with the exception of the Nild, none of the rivers that fall into the Mediterratear, producing it. He is a sby brute, and retreats rapidly before civil zation; indeed, it is only in the large and solitary rivers and lakes, ranning from the confines of the Cape Colony to about the twenty-third degree of north latitude, that the hippopotamus is foand at home and at bis ease. And no beast of the fie'd can bcast of a home so vastly grand and beantifol. Great silent lakes spread out on evers side, with fairy islands dotting betweer-islands, juiting green from the transparent water, and s:added with the date, the black stemmed mimosa the wild wide spreading sycamore, the elegadt mshoma, an ' other great strageling regsed fruitbearers, the yel!ow, and scarlet, and jeanly-white
frui fluckeriug and flatiner in the sun, like col..r. ed lamps, and the hooderful fan pain, each leat of which is as a lic te and eain y sup d as a ladys tan, and which bears as fruit maboran!coloured apples, that have for a core a round, hard, stony substunce, like ivorv. Throug the mok underwod glide snakes of all the eolnorof the rambow, and lizards, 1 whing hk animated masses of juwels; an 1 above these dart and flutter birds, targe aid small, some wi h forked tale, a nd some with crowns, sume vermation, and fome the e lour of flame. The bipmop tumi at the \%., 1 gica! (i ritens, Regent's Palk are fine spec,mens. The larger of the two was shipped during its inf ner, subsis.ing, durit.g its voyage to lig glaud, on the milli of two cows and thre goats. This, however, was soun fuad to be insuffici n, so a f w quarts of Indan meal were thrumn in. By depre es he was "weated," and "getable dict sapp ied $\mathrm{h} m$ ins ead of m / k. At the present time in allowance is $(19$ hundredweig at daily of hay, corn, bran, mangelwure.l, ald white cabbage; and, during tie ten years ine has honoured this country by his presence he his mer ased in weight more ahan a ton.—Wild Sports af the World.

Tue Flaax avd Lanen Trade of Ireiand.Beltast, the great emporium of the lin n trade last year exported $65,000,000$ satds of linen, and $15,200000 \mathrm{lbs}$ of linen yard and theal. Next lugmprance to the gax indutry is the trade in sewed muslins, emploging about half a million persums in Ircland. Another manufacture carred on in Belfast is important in the consumptinn of agricultural produ $e \mathrm{e}-\because{ }^{2}$., , starch-mhing fiom wheat. T'en fims use nearly 30000 quar:s of the finest red wheat every ytur. The wheaten starcia made by the old fermentative process, is largely used by olu bleachers, the goods retaining their stiff,es: longer than if dressed with rice atd other starches. The whole of this businpss is at present para'sz d, as Am rica was the best marliet for Irish limen esods, vers limited quantinies of which have been imported during tie past nine mentis.

Cows v. Iforses.-1t a ploming ma'ch held on the cotu:e of In got Hun. Earl Ducic, Crammel
 ing at uns uid of ilat tid 13 ; and as they appeared to excite a t , leratile amuat of attenan, we thoaghe it mu. h while to maks a tue: or two oo the sp..t. It e anis:als were p hind cows in full miik, a.. 3 blutiond to Mir. Juha Livang, of Worufud, Glo acestur inie, who is, we beliere, a small entarpuving farmer. Tios of the cows we e ralher old, the hindmost one, the owner assured us, had beca sorked regularly duriug the last seven years, and hed had a calf every jear, and o.e sess.n was worked up to the day prevous to calv.nr. The middic cow was a threeyear old, and this was her second season, the orner putting his cows to the plow at two years
ill. Oar readera mat bear in mand that hes enws were in full mik, heing nilked twice ere da! ; in very lot day-it was found necessary mili them teree tines. Mr. Evons assured. that the cos ind em re ard richer milk wer they were regnlarly worlse d, and that the good were larser in amomb, as well as beteri quality; to use his own words when theren a less yuthy of groods made, h's w'fe would te hin thit he had no' worked the co 's vo med whi th w.s invaridbly the fict. Our readers s: of c.murse, im give that the cows were, a ought to be well fed ; hay, oil cake bran e: chaff, we were told, was the fond given the during their working tim". We give the ope ion as to the polics of working duiny coxs' a luve, leavin' our readers to draw their of .on lusion; we must s"y we thnught it rat slow work, althoigh the plowing was pretty: done, and there srem-d no lack of strengh will on the part of the c ,ws.

An Eaix Way to Dissnfite Boxes.-Jay S. (ireentiold, practuces dissolving bones bs melhad which seems worthy of notice from: simpheity and conveuience. Ca lis havinget but oue h-ad are provided; a layer of by: six or seven inch-s hick plac-d on the bote then strunz, unleach.d wood ashes are spe over the boues to the thickness of tw.) inchrs more. The casks are filled in this war, the care to h we a pretty good thicknes of athes' the top to pre ent the exhalation of amm \dot{x} The proc sis of thus packing the bones goris. through the semon, as ashes a comulate in: house and they remain in the casks t.ll spit when the casks are emptied, and he bones: found to b a geueratlo well pulver $z \cdot d$, or sos that they can e siig b - hrok : n as fine as d sit The mixed boues an.l ashes are exsellenta. u-e fire moat er mos, ma especially f r fruit cior, -Boston Cullivator.

Physical Strengtit and Dexterity.-P: scally, no man is made t e most of. Lad. an nerobat or a boser : there is what 5 1 mbi might have been made for stre gth: ag lity. 'Tras: is the potential which is in: man watu e in these rexpert:. I never withs: a priz-fight, and assuradly I never w.ll mith. - ne ; bu. I.m toid that whea the chandi. appear in the ring, stripped for the cori: (however bestid and blacken rd-l oking t: c uuti nurces may be), t.o cle riest and bik of their skia t sisiff, that by skilfal phesicaic cipline, a grea: deal mure may be made of human hide than is usua!ly made: of it. T. if you wish to know what may be maje ef. human muscles as regards rapd dexterits, 1 . it the Wiz.rd of ti.e North or at an let Juggler. I am very far indeed fr.m sajic'; thinking that this pe a iar pre-eminence is rim the pains it mast cost to acquire it. Nots: 1 have a word to say agai.st the man: mantains his children by bringing some.
ulty of the body to absolute perfection. I ready even to admit that it ia a very right d fit thing that one man in five or six millions ould devote his life to showing the very utat that can be made of the huanan fingres, or human muscular system 8 '3 a whole. It is fit tarart man here and there shonld caltivate ie accomplishmant to a perfection that looks pral. just as it is fit that a man here and re should live in a house that cost a million pounds to build, and round which a wide tract counery shows what might be made of t-ees 1 fields whare unlimited wealth and exquisite 'e have done their bet to improve nature to fairest forms of which it is capable. Bat a if it were possible, it would not be desirathat all human beings shond live in dwelling a Hamilion Palace or Arandel Castle ; and wuld serve no good end at all-sertainly no ' worth the cost-to have all educated men mu-calir as T'om Sagers, or swift of haud as nert IIoudin. Practical efficiency is wanted the b 'siness of this life. not absolute perfec-- Lruzer's Murazine.

4 Good Smozeriodse.-We lately nbsarved a 1 -p'anned smokehouse on the premies oí a 1 farme-, worthy of a brief description. It ahout six feet square, the lower half built of i, turnished with an ir, on-lined door, and ing as an ash-house, and place for the fire. upp r part ab ous four feet high, besides the at of the roof, was made of wood. It was rated from the lower part by scantling ts, a space of too or three incies between 4 , throuth which smose and air could freely ; but suff :ient to catch any ham that might dentilly fall, and thus save it from the fire. apper part as well as the lower, was enterej door from the outside; this uopar aoor be kept losked, except when admitting or drawing hams: bat the lower may be left ched, for the hired men to buiid fires, withang danger of the contents above being 0 , as the thief canoot pass through the rings between the joists. - Country Gentle-

1-bIRDs. - The quastion is oftea asked, re do sea-birds obtain fresh water to slake thirs! ? but we have never seen it satisfacρ answered till a few days ago. An old per, with whom we were conversing on the ct, suid that be had frequently s"ed these :at sea, far from any land that cuald furnish with water, hovering round and under a a cloud, clattering like dacks on a bot day pand, and drinking in the drops of rain as tell. They will smell a rain squall a hanmiles, or even further off, a d acad for it alanst inc nnceivable swiftness. How long irds can exist without water is ouly a maifenjecture; but probably their powers of ring tharst are increased by habit, and poslies can go wichout for many dass, if not

Notes on Raven Storites.-It is a curious fact that a brd of so grave and sedate a demuanour should so aff ct inns aud tavens. Whether it is thar, being burdened with an evil c.ansciencs, he seek+ thre to drown it-not by indulging in in oxicating liquor, but rabber in the row and riot con equent on its ater retion by mor'als: or whether, beng of a cyncal turn, he delights in the con emplation of folks going the sane thing from the m st opposite reas n n -arinking, because they are jully, a a because they are miserable, hecause they can afford it, and because they are so wretchediy poor -is more than 1 can say. I onk buow that of the few remaining racens in L ndon, at least one half are atbac'ed to public-hous.s, and uend! always to such hoases as adbere to the old custom of sign-posts and water-troughs. S, me years ago there was atiached 10 a tavern as Stoke Newington a raven, whose great antipathy was grey or white hurses. B own, bluck or roan horses might halt outside, and welcore; but so sure as one of the detested colour drew up and appeared at the water-irough, $P^{P} \approx g$ was ou thy alert. Sue would perch on the edge of the trough and abuse the poor animal in the very choncest billingagate, or "gee, whon !" in exact imitation of a carter, and stat it off. I abould have thought all this was dove fur pure fun and love of mischief, but for an incident related to me by the land:ord, and wbich at once proved that the hird was actuated by sbeer malice. It bappened oue das that Peg was particularly curious respectiog a tobacco box belunging to a sailor who was drinking ale in the partuur. Presently the suilor tools a " qu'd" from the bex, and put it in his month. Peg watched the operation with gre at attention, and observing that the sailor reli-hed the di-gusting mouthfal, as sonn as his bacis was tarned she dirted at the box and s wallowed its contents at a gulp. The consequence was that for the remainder of that day and the next she was very ill inde d. A few days after an unlucky whi:e horse, at'ached to a hay car', arived at the h wuse in question, and was drawn up to the trough to drink, and the raven instantly began her piesecution. The white. borse, homever, had mat Peg several times hef re, and had learned to tre it hor mpu e co with madference. Fimding abose and as aalt of no aval Pes turne 1 into the ho ise, an l. findiner some mon s noking in the taproum, she cargbt up a p.pas of tobacco from the table, fle. p to the ed se of tie trough with it, and ueliherately dropsed it into the horse's nose-bay.-Home Pets, (Oct.)

The New Artestan Well near Paris.-.The sinking of the artesian r eit al P aris cost $£ 40,000$. The resalt 13 , however, begund all previous culculation. Instead of the 12000, ve less than 75,000 cabic feet spring op every twen'y-ione hoars-the well at Grenelle giving obly 3000 at the atmost, $n 0 w$ reduced to 2200 cabic feet. weeks.-Milsor.

The Pasy bore is 60 inches in diameter, and quite a river ot pure water fiswa from $\mathrm{i}^{\text {r }}$, equa in quarty to one thirty-til is of the avarige fow of the Se ne! With a fex such wells all Paris coould be sapplied, and at a triflur cost compared with that uf the gigan'ic scheness for bing. ing water firm Can upagne add itimer quarete. The t^{\prime} mperature is h gh- 80 degre-s- ad in this state it can be male very usetul for many purp sese, though fur dr nki,y it nus: be cooled.

Wuaks of Heman Lab r - Nineveh was 15 mile: hous, 8 wide, and forty mies round, whth a wall 100 feet high, and thick emsura for three chariote abreat. Btirlon was 50 miles within the walls, when w re 75 le t, t ic:k and 100 hig'?, with a 100 brizmate. 'T e e enople of Dama, Ephesus, was 4? fest to hes suppuit of the r of: it was a hundred sears in buidd ng. 'T'e largost of the prounds is 451 fe: thign, and 6.53 on the sides; is b ise covers 11 acres. The ston"s are about 60 feet in length, and the layers are 2118 . It enployed 330000 mea i^{\prime} buld ng. The labyrnath in Erypt esntains 300 chanb rs aud 12 halls. Thebes, in Kirypt, pes nta rui $: 327$ miles round, und 100 gates. Certhage waz 29 round. Athens was 20 mitex r mid, and cointinued 359000 e tizens and 400,000 slaves. The temple at D - phos was oo ricit in don ations, that it was plundied o $\$ 550.000,000$, and Ner carried away from it 200 s:atues. The walls of Rume were 13 miles rund.
 in a lite number oi cis Elacator, $\mathrm{D}:$. C rasll, of Pailulpiaia, sags:-I'n: most frequent and immsdate canie of insanity, and one of the m sst imoort me to gu red against, is the want of sleep. Indeed so rarely d we see a recent case of insanity that is not preceded by want of sleer, that it is regarded as almost a sire precursor of mental der ingement. N itwilhisanding s'ring hereditary predisposition, ill health, loss of tindred or property, insari'y rarely resnits, unless the ex jtug can eiare such as to pr,duce a loss of sl e_{i}. A mother lises har olly child; a nercha't his fortune ; the plitician, the sch lar, the enthusiast may have their minds poweifully excited and disturbed; yet, if 1 h?y slepp well, they will not become insanc. No adrice is so good, thersfore, to those who have recovered from an attack, or to those who are in delicate he 1 lih, as that of exaring, by all moans, sound regalar, and refreching sleep. "l'nere is n" fact," says Dr. Sp "cer, "more c'ear'y es'ablished in the pibssiology of man than this, that the brain expands iti energies and itself du-ing the heurs of wakeful eese, at d that these are recupesated dorng sleep; if the recuperation dies no' equal tre expenditure, the brain withers-this is insanity. 'L'aus it is that in early Enolish histors, persons who were condemned to death by being prevented from s'eeping, alwass died raving maniacs ; thus it is, also, that those who starve to deaih become insane ; the brais is not nourished, and they cannot sleep."

Uisifur, Msodar. Hexts.- We find the fo tosigg remarts (by u.e editor) in the Culicia tatuo a coientific and agricalrural journal puh ished at Uacmati, O ii):-It' a person slyat to os any po so i whatever, or hat fallen into an :o valsio is from having overloaded the s'or teh, an intanta cons remedy is a teasponful, c.) nuno quali and as mas' ground mas'a d, stio red rap diy in a teacup of water, warm or ehd sad s wallowed instantly. It is scarc ly. dofi refure it begins to come up, bringiag with itt coatents of the stomich; and lest there be an emant of poison, howevar small, let the whik of an erge or teacup fal of strongr coff:e be sud o.ved as s on as the st unath is quiet ; becura hese nullife many virulent poisons. Ia case 6 scalding or buruing the body, immersing the put 1. cold water gives e stirs re ief, as instantas uaty as the lighting. Meanwhile, get $3 / 18$ co nomou dry fonar, and apply it an in $\cdot \mathrm{l}$ or tr hick on the injur d part the moment it emerye fom the water, and keep spriakling on the fis: brough anythiag like a nepper-box ewer, soz to put it on evenls. Do uthing else; drit nothing but wa'e'; eat rothing until impros ment commences, except some dry breade ${ }^{2}$ ned in very weak tea of some kind. Currse rightful burnings have been performed in tis vay, as wonderfial as they ate painkess. If mes saved the lie of an inf nt which had be madvertently drugged with lauranum, nbi vis fast sinking into the sleep whech has, waking, hy giving it strong coffee, cleared mit t e waite of an egg-a ceasponnful every ininute=-untul it it ceased to be dionsy.

How to Treat tue Bite of a Dig.-bt Sephen Ware, of Bustor., in his testimong d recent case which gres out of the injuries fi: the bite of a dog, furcished the following va. b'e advice :-In the case of a bite by a 4 . vere the tee:h of the animal penetrated: flesh, whether the dog was kn swn to be mad no, he should us? the sam : precauling. i w uld wash the wound ai h warm water, est. all the rirus possible by sucking the worn'm nis lips, and hen cavter ze it deeply with. caustic most readily obtaiued, but shouds potash if it coald he procured at cnce. i. time in which the eff ctis of the bite of a a dog would ne seen, varied from two to th diys to as many years, but if no effects a: felt afier two or three months, as a general $1:$ the patient might consider himseif safo. E: made through c.othing are seldom productia much harm, as even if the dog is mad the ch. ing absorbs the giras before the teeih re the fl sh. Most of all the fatal nases are mit the person was.bitien on some nalsed pirt. 6 ceinng the possibility of a care in a real cay iydrophobia nothing was said.
Water tur Drink for Suldiers.-Mr. El: Marshall, who was for a long period D:;
laspector of Hospitale, in the British Arny, shy: -"By the duily custom of mbibing sprituous potations a vew waut is created, incmperance is established as a habit, and f equent intoxica ion is the consoquence. The wre:ched drunkard must now have a large sup ly of ligur in the moruing to recover from the effects of the quantity dratk on the previous night. He perhaps has neither money nor credt, and his clothes are then sold at a small portion of their palue. Siome do not stop here ; for, alter having fild all their clothes, they will rob their comrades and with the proceeds of their dishoves's rovide the means of intoxication Continenett follows upon corfinement, court-martial pon court-martial, and punishment upou pu ishent, until the worn out wreteh dies in hospital f the 'horrors,' fever or dysentery ; or if he hould for a time resist the fatal at acks of disase, bis constitution becones broken d win hy be combined influence of the poison of epiri's, o exhausting climate and repeated attacks of loess, so that, in a few years, he is tuund untit uf further service in India."
The personal experience of Mr. Marshall wis ridedly in favor of the superior sanita. y effects frator drinking, in hot climates. He says :I bare insself marched on font wilh troops on atual sorvice, in a tropical climite, where the ean temperature is considerably higher tha., at of Jamaica, without any ober beverage an water, and occasionally a cup of coffee. So from heing calculated to assist the human ody in enduring fintigue, I have always found at the strongest liquors were the most enervat$g ;$ and this in whatever quantity they were nsumed, for the daily use of spirits is an evil bich retains its perncious cbaracter through 1 its gradations. Induged in at all, it can oduce nothing better than a diluted or mitigatkind of mischief." Dr. Rubert Jack onon, whe, as at nne time at the heid of the medical staffi the West Indies, expresses his opinion that. English soldier, aided by temperance, miy be odered capable of going through the severest iliary duty in the bottest islands in the West dies.
Whitiey wes unknown among the iron soldiers 1 mme , who were the conqu rors of the worlh. a'er was their common drink, sometimps modid by weak sour wine, almost resembling vinegar.

Rules for Reading.-Read the best bcoks jich wise and sensi le persons odvise, ann ody them with reflection and examination. add with a firm determination to make use of
sou read. Do not, by reading, neglect a se immediate or more important duty. Do tread with a view to make a display of your sding. Do not read too much at a time. Bret upon what you read, and let it be modnely erjosed and well digested.

Tine Basmfus Man.--Washington Irving, at a party in Eugland, once to'd the following s ory of a bushiul fiienu of his, who, beng assed to a dinner-party, sat duwn to the tuble n-xt o the hostess in a great state of excitement, owing to his reciuse hite. A few glasses of wine, mo.ating to his brain, c mpleted his confuson, and dis-iputed the s rall remaius of his pesence of misd. Casting bis eyes down, be saw on his lap some white liuen. "My beavens !" thought be, "that's my shirt procruding at my wanstoant" He immed ately commenc do thes in the offending portion of his aress; but the more he tucked in , the m re there seamed to remain; at hist de made a desperate effort, when a sudden crush aroused han, and ecreamy from the company bruaght him to his sen-es. We had 0 - en all the time stulfing the tablecloth into his breeches, and the last attempt had swept everything clean off the tabe. Thus our bash:ul friead ansexed a table cloth, thubing it was the tail of his own shirt.

The Journal of the Boamd of Arts and Manufictunes of Upper Canada: Torowtro.
The first number of Vol. 2 has just come to hand of this useful periodical, and its contents contain much to interest not only the mechanic and manufacturer, but also the gencral reader. In a young country like Canada, to rouse a spirit of energy and cmulation in relation to arts and manufactures, must always be a slow and sometimes difficult work; and this is folt to be more particularly the case at the commencement and during the carly stages of such undertakings. We are glad, therefere to find that the excrtions of our Board of Arts and Manufactures have already been attended by suchian amount of success as to encourage them to bring out their Journal for the current year in an enlarged and improved form, without increasing the price. The present number indicates much care and skill in preparing and editing the various subjects of which it treats, some of which are well illustrated by appropriate wood cuts. Its "getting up," as well as its scientific and litcrary matter are alike creditable to all concerned in its production. We will only add, that to single subscribers the yourly subscription is $\$ 1$; to clubs of ten or
more 75 cents; but members of Mechanics' Institutions, and also those of Agricultural Societies, can procure the world for the very small sam of 50 cents a year! Communications should be addressed to W. Edwards, Esq., Secretary of the Board of Arts and Mranufactures, Toronto.

The Garieners' Montimy: Edited by Thos. Mechan; Philadelphia, January 7, 1862.
This excellent gardening periodical has entered on its fourth sear, with a constant tendency to improvement, so that it may now be considered as being permanently establishe l. All subjects connected with Horticulture, in its various departments, the management of orchards, \&c., are treated in its pages with a fullness and practical skill that must be highly acceptable to all who are in any way interested in these important and pleasing pursuits. We shall be happy to know that the Gardeners' Monthly is being increasingly circulated in every county and township in the Province. In this manner the taste and do mestic comforts of the people would most surely be raised and increased. A good vegetable garden and orchard are among the indespensibles to the enjoyments of a country life; and the cultivation of a few flowers, and the proper grouping of a few shrubs and trees around a country home, very much tend to increase its beauty and attractiveness. Mr. Fleming, Seedsman and Florist, of this city, will supply subscribers with this interesting and useful work for one dollar a year, a sum extraordinarily low, when its execution and the character of its papers are taken into consideration.

The Rubat, Annuat and Horticuiturat. Directory, for the year 1562 : Rochester, N. Y., Joseph Harris.

This is the seventh annual publication of this very useful and popular Annual, the high character of which is fully sustained by the present volume. It is, as several of our readers are aware, published by Mr. Joseph Harris, at the office of the Genesce Farmer, at Rochester, in the state of New York, from whence it can be obtained by mail, by remitting the price, only 25 cenis! This small sum will appear extraordinary when it is considered th:' ' the work is very neatly printed, and illustrated by numerous wood cuts. Publications of this nature cannot fail to ensure a highly beneficial influence on the
practice of agriculture, and the minds of ad that are in any way engaged in country pursuits.

Among the contents of this volume we notice articles on the culture of Apples, Pears, Peache, Plums, Grapes, etc., with a list of good varietiec; also of Strawberries, Raspberries, Currants, eter on Amuals and their Culture; on the Manufae ture of Domestic Wines; on the Cultivation of Wheat, Barley, Oats, Rye, and Indian Corn; on Cutting Potatocs for Planting ; on Harrowing Potatoes; Chinese Hogs; English Mutton Sheef Making Hay; Covering Grass Land with Strar Culture of Figs; on Poultry; on the Culture ${ }^{\text {a }}$ the Peach in the Middle States ; Fruit and Mais ria; Protecting Plants from Frost; Summe Pruning Apples; Rules for Arranging Ornames tal Grounds; Fire-proof Wash for Roofs, etc.; a Clder-Making ; Seeding with Clover among Com to Kill Canada Thistles; Amount of Roots fros Clover and Grosses; to Destroy Insects, it Poultry Nildew; Trimming Osage Orana Hedges; Cultivation of the White Bean; Moa on Roofs; Whitewash; a Novel Ice-Hous: Application of Manure; Toads and Bees; a the Cultivation of Dwarf and Standard Pear: Nulching the Currant; Mildew on the Grap: S'ireas and their Culture; Cold Graperie When to Gather Grapes; Low-Headed Tres: the Delaware Grape; Strawberries; Aphiak on trees; Covering Grape Vines in Winter Aeriating the soil ; Warts on Cattie; Cut IFor. and Corn Grub Killer ; Treatment of Milk Cor, etc., etc.

To Agents and Subscribers.-We beg: remind officers of Agricultural Socteties a. other gentlemen who are in the habit of obtio ing subscriptions for this Tournal, as well as h readers generally, that it is our invariable pra tice to stop all papers as soon as the terma which the subscription has been paid h expired. The paper is not again forwarded t the order has been renewed and the amora remitted. Agents will therefore please girel explanation to any subscribers of last year r_{t}. may not understand the reason of their not. ceiving our journal since the commencement. the new near. We have already a large pmpa" tion of last year's subscribers on our hooks so: for this gear, and we shall be happy to receiret whole, with any number in addition, as 5000 . they please to forward their orders.

BOARD OF AGRICULIUKL.

THE Olice of che Board of Agriculture has been removed to 188 King street West, few doors from the late location adjoining the Government House. Agriculturists und iny others who may be so disposed are invited to wll and examme the Library, \&c., when conreaieut.
huge C. Thoman,
Torunto, 1861.
Secretary.

International Exhibition, London, 1862.

TIU Commissioners for Canada at the INT'ERNAI'MNAL EXHEBITION of 1862, jive notice to all pataes desirous of exhibitms "amadem products, whether application has been Tready made for the exhibition of the same or ot, that such articles may be sent in for examnation and approval to the followin; places, at as time betwcen the TENTH DAY of FEB'UARY next, and the undermentioned dates, iz:-
IN CiNADA WEST.--London, 18th Febrary; Hamiton, 20th February; Turonto, 2nd Vebrua:y; Kingston, 25th February, and Ittawa, 2sth February.
IN C.ANADA LAS'I.-Quebee, 14th Februrf; Three Rivers, 18th February; St. Hyaiathe, 2 2nd February ; Sherbrooke, 25th Februrg next; and Montecal, 3rd and 4th March next. Articles will be received and storel at the apots of the Grand Trunk Railway Company t London, Toronto, Kingston, Quebec, Yomt si, Sherbrooke and St. Hyacmenthe.
The Commisssoners will begin then examinaons at $10 v^{\prime}$ clock, A. M, of each day wamed.
Intendiny exhibitors must deliver the articles rexhibition at the above named places, free f charge. Should they not be approved, the rand Trunk Railway will return them free of arge, to any depot on their line from which ey have been sent.
Parties sendiug in Grain or Woods are redested to transmit a certificate, station the ecles and varieties, and where grown. Woods ould be sent of the usual dimensions for com. erce, and Her Majesty's Commissioners have pressed a desire that they be shown in planks inches thick, showing the sap on both sides, or 4 inch scantling, and accompanisa, wherever acticable, by twigs with leaves or flowers.
Parties desirous of further information, may ply, concerning Minerals and Specinens of :onomic Geology, to Sir W. E. Logan, Montal; concerning products of the Forests and aters, to Dr. Tache, Queber, or Dr. Hurlburt, umitton; concerning Ayricaltural produce, to a. L. V. Sicotte, St. Hyacinthe, and Col. omsun, Toronto concerning articles of nadian Manufacture, to Dr Beatty, Cobourg, to the Secretary, Montreal, to whom also, momications on all other business of the mmisssion are to be addressed.
R. Chamerlin, Com'r, Secritay. ntreal, December 12, 1861.

Notioe of Co-Partn ${ }_{i}$ ship.

HE Undersigned have entered into Partnershop as Seedsmen and dealers in all kinds of Agricatural and Lorticultual Implements, under the firm of James Fleming ${ }^{\circ}$ Co. JAMES F'LEMANu, GEORGE W. BUCKLAND.

NOOTICE.

fAMES FLEMING \& CO., Seedsmen to the Agricaltural Assuciation uf Lipper Camada. wall carry on the above business, wholesale and Retal, at 126 Yongest., 4 doors North of Ade-lade-street, until next July, when they will remove to the new Agracultural Hall, at the comer of Queen and Yonge streets.

JAMES FLEMING will continue the business of Retail Seedsman and Florist at his old stand, 350 Yunge street.

I'oronto, January lst, 1861.

FOR SAIEA.

AT

WOODHILL, WATERDOWN P. 0.

M^{R}R. FERGGUSON expects to have several pure Durham bull calves to dispose of next Spring, 1.56 , not intendmes to rase any this season. These calves will be all of the well known DUCHESS tribe, and will be put on the G. W. K. R. at six weeks old for eighty dollars each.
N. B.-Frst come, first served.

Waterdown, Nov. 14, 1861.
4-t.

THOROUGH BRED STOCK FOR SALE.

r WHE SUBSCBIBER has for Sale Durham and Galloway Cattle, male and female.
Leicester, Cotswold, and Lincolnshire Sheep, male and femaie.
January 1, 1862.
tr.
John Sxela,
Elmonton, P. O., C. W.

VETERINARY SURGEOIT

ANDREW SMITA, Licentiate of the Edinburgh Vetevinary College, and by appointment, Veterinary Surgeon to the Board of Agriculture of Upper Canada, respectfully amnounces that he has obtained those stables and part of the premises heretofore occupied by John Worthington. Esq., situated corner of Bay and Temperance strects, and which are being fitted up as a Veterinary Infirmary.

Medicmes for Horses and Cattle always on hand. Horses examined as to somdness, \&c. Veterinary Establishmelt, Ccraer of Bay and Temperance Sts.

Toronto, January 22nd, 186 .

FOR SAえ玉．
 A FEIV PUREBRED SOUTH－DOWN RAMS and Ewe Lambs，from

IMPORTED STOCK，

Selected from the lest Flock－dealers in Dorset， Wilts，and Hants．
The Sulseriber will Warrant these Lambs to produce as much Wool and Mutton，and of equal Quality，as those of Jonas Webb，or any other llock of the sime kind and number in lengland．

Oct．12th， 1861.

> Joni Spevern, Brooktin, Post Oliice,
> Ontamo Comity C. W.

AYRSHIRE BULL FOR SALE．

M1R．Denison，of Dover Court，offers for Sale a thorough bred Ayrohire Bull，bred ly the celehrated Ayrshire i－reeder，John Dodd， Esec．，of Memtreal．The bull is 3 years old，and can be delivered at or after the Show at Lon－ don，in Suptember．
＇Toronto，Aug．， 1861.

＇现

JOURNL OR THE BOARD OF ARTS

 AND MANUFACTURES，
FOR UPPER CANADA，

Is Published on the first of cvery Munti，

AT Sl per annum for single copies，or to clubs of ten or more at 75 cents．jer cops；to mernbers of Mrechanics＇Iustitutes，zud of Liter－ ary，Scimtilic：and Agricultural Societies， through their Secretary or uther efficer， 50 cents per annum－percopy．

Subseriptions payable in advance．
Printed for the Board oï Arts and Manufactures for Upper Canada，by W．C．Cuewett \＆Co．， King Street East，Toronto．

FOR SALE．

ALOT of thorough brad Essex Plge，－bred from recently imported lst prize animals and who have this season taken premiums at both Township，County，and Provincial Exhi－ bition．

James Cowan．
Clochmhor，Galt P．O．，Oct．19， 1861.

Contents of this Number．

Land Drainage．．．．．．．．．．．．．．．．．．．．．． 33
Growth of Red Clover with different manures 34
Care and Feed of Live Stock．．．．．．．．．．．．． 35
Adulteration of Seeds．．．．．．．．．．．．．．．．．．．． 96
Mean Temperature of the year 1861．．．．．．．3s
Leached Ashes as Manure．．．．．．．．．．．．．．．．． 39
Correspondents Wanted．．．．．．．．．．．．．．．．．．．． 39
Patents of Invention．．．．．．．．．．．．．．．．．．．．． 40
On Freeding Stock．．．．．．．．．．．．．．．．．．．．．． 40
Aghculuruar Intelhgence：
Sorghum Sugar．－．．．．．．．．．．．．．．．．．．．．．．．． 44
Adrantages of Crushing Oats．．．．．．．．．．．．． 44
Importation of Aumals for Stock．．．．．．．．is
Effect of Cold on Fattening Animals．．．．．4t
Horticultural：
Dwarf Appie Trees．．．．．．．．．．．．．．．．．．． 45
Cultivation of Plums．．．．．．．．．．．．．．．．．．．．． 45
Fruits，Flowers and Sceds of the West．．．．is
The Dary：
Dairy Manargement，Buter，Cheese，．．．．．． 48 Domestic：
IInusekeepers＇Recipes．．．．．．．．．．．．．．．．．． 5
Preparation of Chicory．．．．．．．．．．．．．．．．．．．．
The Poultry Yard：
Prulitabie P＇oultry Keeping．．．．．．．．．．．．．．．．51：
Fecding and Management of Poultry．．．．．．就，
Tur Aplary ：
On the Management of Bees．．．．．．．．．．．．5s
Vetfrinary：
Warts on Cattle．．．．．．．．．．．．．．．．．．．．．s
The Cittle Disease in Wales．．．．．．．．．．．．${ }^{5 ?}$
Miscemaneors：
The Domestic Tyrant，The Hippopotamus． 5
The Flax and Linen Trade of Ireland， Cows．vs．Horses，An casy way to d：ssolve
bones，Physical strength and dexterity．．
A Guod Smuke－house，Sea－Bidds，Notes on
Raven Stories，The new Artesian Well near Paris．
Works of human labour，Slecp vs．Insan－ ity，Useful mu lical hims，how to treat the bite of a dos，Water the drink for Soldiers Rules for Reading．
Editorial Notices，\＆c． \qquad

The Aaxriculturist，

Or Juurnal and Trassactions of the boait of Agricletitire of Upper Cakida， TS published in Toronto on the 1st and 16thi each month．
Subscription－Half a dollar per annum Single copies ；Eleven copies for Fire Doll Twenty－two copies for Ten Dollars，\＆c．

Editors－Professor Buckland，of Univeni College，Toronto，and Hugh C．Thiumson，Setw tary of the Board of Agriculture，Toroniof： whom all orders and remittances are to bi： dressed．

[^0]
[^0]: Printed at the＂Guardian＂Steam Press： Street East；Tóvonto：

