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PREFACE.

•9

This book treats in an elementary manner the whole of

what is ordinarily known as Abstract Dynamics, including

Kinema,tics, Kinetics, and Statics, and is designed for

use in the higher classes of Schools and the junior classes

of (Colleges and Universities. It assumes, therefore, a

knowledge of only the more elementary branches of

Mathematical Science—Geometry, Algebra, and Plane

Trigonometry.

The kinematical portions of the subject are treated by

themselves, not only because this course is the more

logical, but also because it has been found in my ex])erience

to be the better from an educational point of view.

The usual division of Dynamics into Kinetics and

Statics has not been adopted ; but statical problems are

throughout regarded as boundary cases of kinetic prob-

lems, the equations of equilibrium being in all cases

deduced from the equations of motion. This course also

/?393(i>K
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has recommended itself to me botli ))y its lof^ical fitness

and in my experience as a teaclier.

A careful analysis of the subject has been made, that

the reader may be able to recognise at once the exact re-

lation which each de])artment bears to the whole. The

scrappiness of treatment which characterizes many of onr

text-books has thus been avoided.

An endeavour has been made to eliminate all un-

necessary assum))tions, the various so-called " Principles,"

which have obtained currency in our text-books, being

deduced from Newton's three Laws of Motion, which are

adopted as the fundamental hypotheses of theoretical

Dvnamics.

It has been found necessary to modify the current

definitions of a few important terms, c.<j., velocity and

acceleration. This is due to the ad()j)tion of the

distinction, proposed by Prof Tait, between velocity and

speed, and the extension of this distinction to acceleration

and rate of change of speed. Velocity and acceleration

have therefore been defined so as to connote both maGrni-

tude and direction.

A large number of illustrative problems have been

inserted both in the text and at the end of the volume.

These have been drawn, for the most part, from the ex-

amination papers of the more important British and

American Universities and Colleges; but some ofthem are

orififinal, and some are taken from works mentioned below.
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For piobleiiis in Rigid Dynamics, I am especially indebted

to Walton's " Prol)lcms in Theoretical Mechanics." Readers

who wish a lar«^er selection of examples may be referred

to Ganiott's "Elementary Dynamics," (Jrcavt's' " Klrmen-

tary Statics," and Walton's " Problems in Elementary

Mechanics."

The traditional chapter on simi)le nuichines has been

omitted, but the treatment of simple machines has been

introduced here and there as illustrative matter.

In the preparation of my class lectures, which formed

the basis of this book, I derived assistance from a large

number of works on Kinematics and Dynamics. As the

lectures were })rcpared witliout any intention of publica-

tion, 1 am unable now to acknowledge, except in a general

way, the assistance thus derived, 1 am sensible of being

directly indebted, liowevei*, to a greater or smaller extent,

to the following works:—Tliomson and Tait's "Treatise

on, and Elements of, Natural Pliilosophy "
; Tait's Article

on Mechanics in the "Encyclopaedia Britannica," !)th e<l.,

and his 'Pro})erties of jMatter": Frost's "Newton";

Clifford's "Elements of Dynamic"; Maxwell's "Matter

and Motion "
; Parkinson's " Elementary Mechanics "

;

(joodeve's " Principles of Mechanics "
; Garnett's "Elemen-

tary Dynamics "
; Wormell's " Principles of Dynamics "

;

Lodge's " Elementary ]\Iechanics "; Earnshaw's " Statics ";

Minchin's '" T)'«'atise on Statics"; Routh's "Rimd

Dynamics"; Thomson's Article on Elasticity in the

A
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" B]ncycl()i)8Bdia Ijritannica," !)th od. ; Kverett's " Units

ami Physical Constants "
: and " Korce, Impulsion

and Energy, b}- Jolin O'Toolc''

1 am indebted for valuable suggCHtions to my colleagues,

Clias. Macdonald, M.A., Professor of Mathematics, and ]).

A. Murray, B.A., Tutor in Mathematics, and to Professor

.1. A. Ewing, F.R.S., of University College, Dundee, who

have kindly read portions of the proof sheets. To Mr.

Murray I am indebted also for the verification of a large

number of the exam])les.

T have taken pains to attain as great accuracy as

possible ; but errors are inevitable ; and readers will

confer a great favour if they will kindly point out to me

any they may detect.

Dalhoi'sik ('oLLKaE,

Halifax, N.S.,

A7/,(/ust \9f/i, 1887.

J. G. MACOKEGOR.
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PART I.—KINEMATICS.

and

CHAPTER I.

I

i:.X

%

POSITION AND MOTION.

1. Kinematics is that branch of Mathematical Science

which investigates motion. It makes no inquiry as to

the causes of the changes of motion in bodies, but studies

their motion in itself.

lid be,

2. Position.—We recognize bodies as existing in space

and having definite positions among one another. We
recognize them as having positions, however, only by the

aid of neighbouring bodies, and we describe the positions

of their various points by reference to chosen points

in neighbouring bodies. Position in space is thus a
relative conception. "Absolute position" is a meaning-
less phrase.

The position of a point P, relative to an}'^ other point

0, is completely determined if we have sufficient data to

enable us to proceed from to P. There are various

modes of specifying the necessary data. They are called

systems of co-ordinates. Of these we may mention two :

(1) that of Polar Co-ordinates; (2) that of Cartesian

Co-ordinates.

(f\ A
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.S. Pohti' (1i}-onliu(it€n.—If tlio point /* is situated in a

r jjiiven plane, its position relative to 0,

another point in that plane, may be de-

sci'il)ed by the aid of ON, a known line

in the same plane, by a statement of the
'V angle NOP and the len^^th OP. Thus,

if and 1* are ])oints in a horizontal plane, and ON the

north and south line through 0, the angle NOP (which
in that case is called the azimuth of P) and the distance

of P from determine the position of P.

The point is called the pole in this system of co-

ordinates, ON is called the initial line, and OP the radius

vector. The length of OP and the magnitude of the

angle NOP are the polar co-ordinates of the point P.

Tliey are usually denoted by the symbols r and 6.

To describe the position of a point P not in a known
plane, let be the pole, ON the initial line, and ONA

p a known plane containing ON but not

/ P. Let OA be the intersection of the

plane ONA with a plane perpendicular

to it through OP. Then, if the angles

NOA and ^OP are given, the direction

of OP is known, and if the length of
"^ OP is also given, the position of P is

completely determined. The length of OP and the

angles NOA and AOP are then the polar co-ordinates of

P. They are usually denoted by r, 0, and 6 respectively.

0, for example, may be a point on the earth's surface,

ONA the horizontal plane, ON the north and south line

through ; in which case the angles NOA and AOP are

what are called in Astronomy the azimuth and altitude

of P.

4. Cartesian Co-ordinates.—If the point whose position

is to be specified is known to be situated in a given plane,

its position may be described by a statement of the

/
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distances which must be traversed in directions parallel

to two known linos in that plane, in passing from the

[)i)int of reference to the given i)oint. I^et be the

point of refcenco, (Ir and (J// two known lines in the

given pliine, JUid P the point whoso
position is to l)c described. From
r draw rM ])arallel to Oij. If tlui

lengths of (Ji]f and MP are given,

the i)osition of P is determined.

These lengths are called the Car-

tesian co-ordinates ofP (this system
having been first employed by iJescartos). The ])oint

is called the origin of co-ordinates, and the lines 0,r and

0>/ the axes cf co-ordinates—the one the axis of u; or the

iC-axis, the other the axis of // or the ;?/-axis. If the axes

are perpendicular to one another they are said to be

rectangular, and the co-ordinates are called rectangular

co-ordinates. In that case OM is called the ahseisaayMP
the ordinate. These co-ordinates are usually denoted
by the symbols .r and y respectively. A point whose
co-ordinates are x and y is called the point (./', y).

Li' P is situated to the left of Oy, the distance OM must
be traversed from in the opposite direction to that

shown in the diagram. In that case, the co-ordinate OM
is considered negative. Similarly, if P is VjoIow Ox, the

co-ordinate MP is considered negative. Thus a point to

the left of Oy and above Ox will have the co-ordinates
— X, y; one to the left of Oy and below Ox the co-ordi-

nates — .r, —y.

5. If the point P is not known to be in a given plane,

its position may be described by reference to three axes
drawn through the origin in known directions in space.

Let Ox, Oy, Oz be three such axes. From P draw PM
parallel to Oz and meeting the plane Oxy in M. From
M draw ML parallel to Oy and meeting Ox in L. The
position of P is specified if OL, LM, MP are given, i.e.,
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if tlu; (li.stanco.s an: known wliich rnnst 1)0 traversed in

the directions of the axes, in ])aHsing from to P. OL,

LM, MP, the co-ordinates of P, are usually denoted by
the symbols x, y, z respectively.

If 0^*, 0?/, Oz are at right angles to one another, the

co-ordinates are said to be rectangular. 0, for example,

being a ])oint on the surface of the earth, Ox the north

and south line, Oy the east and west line, and i)z the

vertical line, the co-ordinates of P are the distances that

must be traversed northwards, eastwards, and upwards
in onler to reach P.

The same convention as to signs is employed as in 4,

co-ordinates drawn from in directions opposite to those

of Ox, Oy, Oz respectively being considered negative.

With this eonvention no two points in space can have the

same co-ordinates.

C. If from P lines be drawn parallel to OL and LM,
and meeting the Oyz and Oxz planes in R and S respect-

ively, and if from Oy and Oz, OA and OB be cut off equal

to LM and MP respectively, and if MA, RA, RB, SB,
SL be joined, it will be clear that OP is the diagonal of

a parallelopiped, of which OL, LM, and MP are the

.1

'11!
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e(l",'es ; nnd ifc follows that tlio .same point /* is reached

it) whatever order the distances OL, LM, MP may ])e

traversed.

It wili als') bo clear that, it* tlie co-ordinates arc

rectangular, PM is tlie distance of V from the plane

containing tlu* axes of ./• and y, or, as it is called, the

)>lane of ./'// ; and that ()L and ML are the distances of

P from tlie planes of yz and of j'z respectively. Hence
the rectangular co-ordinates of a point may be taken to

bo its distances from three planes which intersect in

three straight lines at right angles to one another. Thus
the position of a point in a room is completel}'- specified

if its distances fnmi the floor and from any two adjacent

walls are given.

7. If a, p, y are the angles at which i)P is inclined to

the rectangular axes of ./', y, and z respectively, wo have,

since AP is perpendicular to OA^

OA t)r y = 01^ cos j3.

Similarly x = OP cos a,

Z = (JP cos y.

Now OP being the diagonal of a rectangular parallelo-

piped whose edges are .r, ?/, z,

OP- = x'~-\-y'-+ z^

Hence OP- = OP%coh'u+ cos^^+ cos^y ),

and cos-a + cos-/8+ cos-y = 1

.

If therefore the length of OP, and any two of the
angles a, /3, y, be given, the position of P is completely
specified.

The direction of OP is specified by any two of the

angles a, /3, y. The cosines of these angles are therefore

called the direction cosines of OP.

I

4,'

:•

m
It;

C.'K

<^'

1:

I
r

H:

8. It is frequently convenient to be able to express the
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inclination* of two straight lines in teims of their direc-

tion cosines. Let OP nnd OP' l)e two such lines or

!
;1'

lines drawn parallel to them, Ooc, Oy, Oz rectangular

axes, OZ, LM, MP the rectangular co-ordinates of any
point P of OPy and a, /8, y the angles of inclination of

OP to the axes of x, y, and z respectively. Then

OL = OPQosa, LM= OP cos 13, MP = OP cosy.

Now the projectionf of OP on OP' is equal to the sum of

* The inclination of one straight line to another, whetlier they
are in one plane or not, is the anrle between two Hues dra^^'n

parallel to them from any i)oint.

t (1) The foot of the perpendicular from a point on a straight

line is called the orthogonal i^rojection or simply the projection of

the point on the line.

(2) The locus of the projections of all the points of any line on a
given straight line is called the projection of the former on the latter.

(3) The projection of a finite straight line on a straight line is

equal in length to the product of the length of the projected line

into the cosine of its inclination to the given straight line. LetZil/
be the projected line, AB the line on which it is projected. In
general these lines will not be in the same plane. From Z, J/, draw
LI, Mm, perpendicular to AB. Then Im is the projection of L3I.

Frc 1 in draw ml' equal and parallel to J/Z, and join LI' and W.
Then LI' is parallel to Mm and therefore perpendicular to AB.
Hence the plane LW and therefore the line W are perpeiuUcular
to ^1 />. Hence

Im = I'm cos hni ' = L JAcos hnl',

I Ti
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V direc-

ines or

3

I

the projections of OL, LM, and MF on the same line.

Hencc, if is the angle between OP and OP', and a, j3',

y, the inclinations of OP' to the axes of ,r, //, and c;

respectively,

OP cos e=OL cos « +Zil/ cos /3'+MP cos y
= OPcos a cos a'+ OPcob fi cos /^' + OP coh y cos y'.

Hence

cos = COS a cos a + cos jS cos /3'+ cos y cos y'.

angular

of any
,tion of

9. To find the value of sin 0, call cos a, cos ^, and

cosy, I, m, and n respectively, and cos a', cos^^', and

cos y', r, tn', and ??/ respectively. Then

i.e., the projection of ZJ/ is equal to the product of LM into the

cosine of its inclination to Ali. The simpler case in which LM ixwd

AB are in one plane may be left to the reader.

sum of

ler they
5 dra>v'n

le on a
latter.

line is

ed line

etZil/

d. In
^, draw
of LM.
md W.
o AB.
lien lar

t» p

(4) The algebraic sum of the projections of the parts of a broken
line is equal to the jirojection of the straight line joininff its end
points. Let OLMP be a broken line, the straight portions of which,

OL^ LM, MP, are not in one plane. From and P draw Oo and
Pp perpendicular to A B. Then ol, Im, and mp are the projections

of OIj LM, and MP on A B. Also, from the constructiou, op is the

j)rojection of the line OP on AB. And op^ol+ lin+ mp. Hence
the projection of OP on AB is equal to the sum of the projections

of OL, LM, and MP on the same line.

If the position of Z is such that the point I is situated to I he left

of 0, ol being drawn to the left instead of the riglit must be con-

sidered negative, the lines bn and mp being taken as positive. In
that case we have op= lm+ mp~ol, i.e., the projection of OP on AB
is equal to the algebraic sum of the projections of OL, LM, and MP
on the same line.
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i i

= {{l^+ m2+ n^){r'+m-+ ^i'^) - {ir+mm' + oinf}^

=
{ {mn — nm'Y -\-{riV — In'f+ {lin — ml'f]^.

10. It is frequently convenient also to be able to

express the direction cosines (X, /x, v) of the common
})erpendiculai* to two lines, in terms of the direction

cosines (^, m, n, and V, m\ n') of the lines themselves.

For this purpose wo have (8), since cos (7r/2) = 0,

l'\+ m'fj.+ n'v — 0.

We have also (7) X^+/xH »^^ = 1.

From these equations we obtain values of X, /x, v.

AVriting sin for its value as given above (9) they are

Im — ml'tnn'— nm' nV— ln

4

Ik

I

sin sin
v = -

sin

1:

11. The positions of any two points relative to a third

being given, that of either of the two relative to the

other can be determined.

The positions of P and Q being given relatively to 0,

p the lengths and directions of OP and
OQ are known. Hence also (8) the

Q angle FOQ is known, and consequently
all the sides and angles of the triangle

OPQ. The direction and length of PQ
being thus determined, the position of either of the two
P, Q, relative to the other is known.

It follows that, if the positions of all the points of a

sj^stem relative to any one are known, their positions

relative to any other are known also.

12. Configuration.—The arrangement of the points of

a system is called its configuration. The configuration
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of a system is thus known if the positions of all points

relative to any one are known.

13. Dimensions of Space.—Whatever system of co-

ordinates we may adopt, we require, in order to specify

the position of a point, to have three quantities given.

In the case of rectangular co-ordinates they are distances;

in that of polar co-ordinates they consist of two angles

and a distance. Hence space is said to be tri-dimen-

sional.

Similarly, any point in a given surface may be specified

by a statement of two quantities, two distances or a
distance and an angle ; and any point in a given line

may be specified by the statement of a distance merely.

Hence a surface is said to have two dimensions, and a
line one dimension.

14. Measurement.—The specification of the position of

a point requires therefore that we should be able to

measure lengths and angles.

The measurement of any quantity is the comparison of

its magnitude with the magnitude of a known quantity

of the same kind. The known quantity of the same kind
is called a standard or unit; and a description of any
measurement must include a statement of (1) tne unit

employed, and (2) the ratio of the magnitude of the

quantity to be measured to the magnitude of the unit.

This ratio is called the numerical measure or value of

the quantity. Prof. James Thomson has proposed to

shorten these terms to numeric.

Any quantity whatever, of the same kind as that to be
measured, may be chosen as a standard or unit. But it

will be evident that no standard should be employed
which is not (1) constant in magnitude, (2) well known,
and (3) easil^^ reproduced ; and we shall see farther on,

(>•

n
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that among standards satisfying these conditions, there

are reasons for preferring some to others.

15. We have seen that the numerical measure of any
quantity in terms of any unit is the ratio of the magnitude
of the quantity to that of the unit. It follows that the

numerical measure of a given quantity must be inversely

proportional to the magnitude of the unit in terms of

which the quantity is expressed. Let Q be the numerical

value of any quantity, and let [Q] denote the magnitude
of the unit in terms of which it is expressed. Then we
have

Q avm
IC. Measurement of Length.—The selection of stand-

ards of length presents no difficulty. A certain distance

in space cannot, it is true, be marked off and kept ; but
a body, say a rod, may be selected and carefully preserved,

and when it is in a specified physical condition (as to

temperature, etc.), its length may be taken as unit of

length. The submultiples of the unit thus chosen may
then be determined by geometrical methods. For the

various methods of comparing the leugth of a body or the

distance between two points in space with the standard

length, the reader is referi-ed to works on Laboratory
Practice.

Different nations have adopted different units of length.

The more important are the English and French units.

The English unit, the yard, is defined by Act of Parlia-

ment to be the distance between the centres of two gold

plugs in a certain bronze bar deposited in the Office of

the Exchequer in London, the bar having the temperature

62°F. (The specification of the temperature is nreessary,

because the lengths of bodies vary with temperature.)

The foot is one-third of the yard. The inch is one-

twelfth of the foot. The statute mile is 1,760 yards.

The French unit, the metre, is the distance between tlie
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end pianos of a certain platinum bar deposited in Paris,

the temperature of the oar being O'C. The metre was
intended to be the ten-millionth part of a quadrantal

arc of a meiidiaii on the earth's surface. It is now
known to be a somewhat smallei' fraction. The decmietre,

centimetre, and millimetre are the tenth, hundredth, and
thousandth parts of a metre respectively. The decametre,

hectometre, ana kilometre are equal to ten, one hundred,

and one thousand metres respectively. The decimal

division of the metre renders it a much more convenient

unit than the yard.

The following table shows approximately the relative

values of English and French units of lenjjfth :

—

1 inch = 2-5400 ciii.

1 foot = 30-4797 em.

1 yard = 91 -4392 cm.

1 mile= 1-60933 km.

1 centimetre = 0-39370 in.

do. =0-032809 ft.

1 metre = 3-28087 ft.

1 kilometre =0-62138 ml.

17. Measurement of Area and Volume.—We may
notice here, though it is not necessary for our present

purpose, the measurement of area and volume.

Any arbitrary area may be chosen as unit of surface or

area. But the most convenient unit is the area of a
square whose side is of unit length. The English units

are therefore the square yard, square foot, square inch,

etc.; the I'rench units, the square metre, square centi-

metre, etc.

1 sq. inch = 6-4516 sq. cm.

1 sq. foot =929-01 sq. cm.

1 sq. yard = '836113 sq. m.

1 sq. mile = 2-59 sq. km.

1 sq. centimetre= 0-1550 sq. in.

do. =0-001076 sq.ft.

1 sq. metre =1-196 sq. yd.

1 sq. kilometre =0-3861 sq. ml.

Similarly, the most convenient unit of volume is that
of a cube whose edi^e is of unit lenc^th. The Enoflish

units are thus the cubic yard, cubic foot, etc.; the French

'I

,*.:

i:
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units are the cubic metre, cubic decimetre (called the

litre), etc.

1 eu. inch = 16*387 eii. cm. ; 1 on. cm. =006102 cu. in.

1 cu. foot =28316' cu. cm.

1 cu. var(l= 0*764535 cu. ni.

do. =3-532 xlO-'''cu. ft.

1 cu. metre = 1 "308 cu. yd.

18. Derived Units.—A unit of a quantity of one kind
which is thus defined by reference to the unit of a quan-
tity of another kind is called a derived unit. The
magnitude of such a unit will depend upon that of the.

simple, or arbitrarily chosen, unit, by reference to which
it is derived. Thus it is clear that if our unit of length

be increased two, three, four, etc., times, our unit of area

will be increased four, nine, sixteen, etc., times respec-

tively ; or, generally, that the magnitude of the unit of

area is directly proportional to the square of the magni-
tude of the unit of length. " In symbols, if [*S'] represent

the magnitude of the unit of area, and [L] that of the

unit of length, [S] <x [X]^.

A statement of the mode in \vhich the magnitude of a

derived unit varies with the magnitudes of the simple

units involved in it, is called a statement of the dimen-
i^ions of the unit. The unit of area has thus the

dimensions [X]^.

19. Though this result is sufficiently obvious, we may
obtain it by a method which we shall find useful when
dealing with more complicated units. Let s be the area

of a square whose side is I. Then s= l^. Now (15)

s a l/[>Sf] and I a 1/[Z:]. Hence [>Sf] a [Lf.

g in a20. The reader will find no difficulty in showin

similar way, that the unit of volume has the dimensions

{Lf.

21. Measiivenfient of Angle.—There are two units of
j)lanc angle in ordinary use, the degree and the radian.
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The degree is the ninetieth part of a right angle ; and its

subdivisions are tlie minute, which is one sixtieth part of

a degree, and the second, which is one sixtieth jiart of

a minute. The radian is the angle subtended at the

centre of a circle by an arc equal in length to the radius.

As the circumference of a circle is 27r times the radius,

the radian is equal to 3G0°-r-27r, i.e., to 57°'21)578... or to

57° 17' 44''S nearly. It is subdivided decimally. The
numerical measure of an angle in radians is often called

its "circular measure." It is obvious that the angle sub-

tended at the centre of a circle of radius r, by an arc of

length a, is equal to a/r radians, and that consequently

the magnitude of the radian is independent of the mag-
nitude of the unit of length.

22. The unit of solid angle is the solid angle sub-

tended at the centre of a sphere by a portion of its

surfsice whose area is equal to the square of its radius.

It may be called the solid radian. It follows that the

solid angle subtended at the centre of a sphere of radius

r, by a portion of its surface whose area is A, is A/r'^

solid radians, and that the magnitude of the solid radian

is thus also independent of that of the unit of length.

23. Motion.—The motion of a point is its change of
position in space. It is therefore completely described

by a statement of the changes in the co-ordinates of the
point. Motion is thus, like position, a relative con-
ception.

24. Rest.—A point which is undergoing no change of
position, whose co-ordinates therefore are not varying, is

said to be at rest relative to the origin of co-ordinates or
point of reference. In any case in which we speak of a
body as being simply " at rest," it is assumed that the
point of reference is known.

A ' fixed point " or a " point fixed in space " is one

M

i''
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which, during the time under consideration, is at rest

relatively to the point which has been chosen as point of

reference. A line fixed in space is one containing fixed

points.

25. Relation ofMotion to Thua.—The motion of a body
is found to occupy time; and one important object of

Kinematics is to compare the contemporaneous motions
of different bodies, and to determine the laws according

to which the changes in the co-ordinates of some bodies

are related to the contemporaneous changes in the co-

(jrdinates of others. As it is not possible for one observer

to make many observations of the positions of bodies at

the same instant, it is necessary, for the attainment of

this object, to be able to describe instants of time, in

order that the observations of different observers may
be comparable.

2G. Description of Instants of Time.—To describe the

times of occurrence of events, it is only necessary that

Ave should fix upon some series of continually occurring

events and keep a record of them. We may choose, for

example, the dsiWy passage across the meridian, of a

known point in the heavens, say a " fixed " star. In that

case, the time of the occurrence of an event would be
described as between the n^^ and the (n+iy^ transits

of this star. To make the description more definite, we
may use a rapidly oscillating pendulum, and describe

the event as occurring between the m*^ and (m+1)^^
oscillations of the pendulum after the n^^^ transit of the

fixed star. By thus selecting a series of events occurring

with sufficient frequency, it is possible to give our de-

scriptions of instants of time as great precision as may
be desirable.

27. " Measurement " of Time.—As we are thus able to

describe instants, it is possible to record the magnitudes
of quantities {e.g., distances, angles, etc.) at definite



A
•J!» POSITION AND MOTION. 15

instn.its, and theiofoie to compare the changes whic;h the

]K)sitions of bodies may have uudergoue in any required

interval of time.

28. In order to compare the contemporaneous motions

uf any number of bodies among one another, it is only

necessary to compare the motion of each body with that of

some one selected as a standard ofcomparison. In selecting

a standard, it will save a great deal of labour if we choose

a body whose motion is such that as many as possible

of the laws of the motions of other bodies, when expressed

in terms of its motion, are (1) simple, and (2) permanent,

i.e., independent of the date of their determination. To
fix upon such a moving body, it is necessary to make
observations of the positions of many bodies at short

intervals during long periods of time, and to keep records of

them. This has been done by astronomers, whose records

extend over 2,500 years. Their observations show, that ii

the motions of other bodies are compared with the rotation

(194) of the earth relative to the "fixed" stars, the laws of

their motions take forms which are simpler and more per-

iiianent than if any other motion is taken as the standard.

Hence by common consent the motion of the earth about
its axis is taken as a standard with which other motions
are compared.

29. When the law of the change of the position of a
body, with reference to the rotation of the earth about
its axis, is determined, we are said to have determined
the law of its change of position with reference to time,

successive rotations of the earth being assumed to occur

in equal intervals of time. Whether they do so or not,

we have no means of knowing, as we have no means of

measuring time. But this form of speech, which assumes
the possibility of measuring time, is conveniently short,

and so long as we keep in mind its real meaning, can
lead to no error. The period of the earth's rotation with
reference to the fixed stars, i.e., the period between sue-

I
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cessivo instants at which a tixod star is on our meridian,
is called a nidereal day. When wo employ the earth's

rotation relative to the fixed stars as a standard motion,
we may l)e said to employ the sidereal day as a unit of
time.

130. Recent discussion of astronomical observations *

seems to show that the laws of the motions of heavenly
bodies would take simpler forms, and would be more
permanent, if the standard motion were that of an ideal

earth, rotating so that its rate of rotation would slowly
gain on the rate of rotation of the actual earth. At what
rate the ideal earth's rate of rotation should miin on that

of the actual earth in order that these laws may take
their simplest and most permanent forms, is not known.
But the astronomical data are sufficiently definite to show
that it is exceedingly small. This result is expressed in

the language of time by sa3'ing that the sidereal day is

increasing at a very slow rate.

31. It is found practically inconvenient to compare the

motions of bodies directly with the rotation of the earth

relative to the fixed stars. They are usually compared
directly with the rotation of the earth relative to the

sun ; and the law, according to which the earth rotates

relatively to the sun, having been determined in terms

of its rotation relative to the fixed stars, they can thus

be indirectly compared with the standard motion. In

the laniruajxe of time, it is found more convenient to

measure time in terms of the solar day than of the

sidereal day. The solar day being a variable period, the

mean solar day is chosen as practical unit. It is found

to be equal to 1'002738... sidereal days.

32. It is frequently convenient to compare motions

with some periodic motion of much greater frequency than

* See Tlionisoii and Tait's " Treatise on Natural Philosophy,"

pt. II., § 830.
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the rotation »)t* the ('{irtli. In such crkos tho oscillation

of a ])on(liilinu is chosen; for it is fonnd that, if a pon-

clulinn is kept in a constant physical condition, it will

oscillate tlu! same number of times in different sidereal

days, and that in \/n^^ of a day (i.e., while tlio earth is

makinj^ 1///*'' of a rotation) it will make !//<*'' of tlie

number of oscillations made in a wliole day. The srcotu/

is the time of oscillation of a pendulum which oscillates

8(),4()0 {i.e.y 24- X 00 X (>()) times in a mean solar day. Tlu^

siden^al day contains SO, 104 mean solar seconds. A clock

is an instrument for maintaining a pendulum in oscilla-

tion and for counting its oscillations.

.S3. Complexity of Motion.—The motions of bodies

may bo of various degrees of complexity. Tho simplest

form is that in which all points of the body move
through equal distances in the same direction. Such
a motion is called a tranalation. If, though the various

points of the body maintain the same relative positions

during the motion, they do not move through equal

distances in the same direction, the motion is partly or

wholly a rotation. If, finally, the points of the body do
not maintain the same distances from one another during

the motion, the motion consists partly of a strain or

change of volume or form.

We shall see farther on that the action of a force upon
a body usually affects the motion of the body in all these

ways. It is convenient, however, to study the different

kinds of motion separately, a'suming bodies to have that

kind of motion alone, which, for the time, we may wish
to investigate.

•>i'<

h
1.

B



i>

I IS KINMMATICS. f.14

. i

CHAPTER II.

'r

y>'

i 4 1
*

f

f

TliANSLATION :—PATHS.

34. Wo have defined translation to be the motion
which a body has when all its ])oints move through
cijual distances in the same direction. If then the

motion of one point is known, the translation of the

body is known. Hence the study of the translation of a

body is the same as the study of the "motion of a point.

35. Degy^ees of Freedom.—The position of a point, as

we have seen, is determined by three numbers, which
may be measures of distance or of distance and angle.

The motion is determined if the changes in these meas-
ures are known. Hence a point is said to have three

degrees of freedom to move.

If the point be constrained to remain on a given sur-

face its position can fchon be determined by two numbers,
and it has therefore t.vo degrees of freedom. One degree

of constraint is said to have been introduced. The con-

dition of constraint in this case is that the distance of the

point from the surface shall be zero. If the point be
constrained to remain on each of two surfaces it must
remain on their line of intersection. Hence its position

and its motion may be determined by one number, the

distance or the change of distance from a given point in

the line. It has one degree of freedom. Two degrees of
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constraint liavo \)Q<m introduced. A third dcjjjreo of

constraint, th(^ condition for instance tliat tho [mint

luinain on a tlurd surface, will confine it to tho point

in which the three surfaces intersect; it has then no

freedom.

Constraint is of course not necessarily aj)pliod in the

way mentioned ahove. Thus the condition tliat a point

shall maintain a given distance from a ;;'iven fixed point

restricts its motion to the surface of a sphere. A second

degree of freedom is destroyed by constraining the point

to move in a vertical plane, and it can now move oidy in

the curve of intersection of tho vertical plane and the

sphere. If now it bo so constrained that the line joining

it with the fixed point maintains a constant inclination

to a fixed line in the given verticnl ])lane, the point has

throe degrees of constraint and consequently a definite

position.

30. Paths.—The path of a moving point is the locus

of its successive positions. It must be a continuous
line, but may have any form whatever. We shall

see ftirther on (295), however, that the path of a material

particle (310) can undergo no abrupt changes of dii-ection,

unless indeed its motion cease and recommence ; and
we shall restrict ourselves to the study of paths which
are possible for material particles.

The direction of such a path at any point is that of the

tangent at that point.

37. Curvature.—The change of direction between any
two points of a path lying wholly in one plane is called

the integral curvature between these points. It is

evidently measured by the angle between the tangents
at these points.

The mean curvature between two points is the
integral curvature between them divided by the length

m
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of path intercepted by them. Thus, if AB is a portion
of the path of a moving point, AC and BD being tan-

gents at A and B respectively,

inclined at the angle 0, then ^
is the integral curvature be-

tween A and B ; and, s being

the length of the arc AB, <p/8

is the mean curvature between
A and B,

The mean curvature between
A &ud B will in general have
diiferent values as B is taken
nearer or farther from A. If it

is the same whatever the posi-

tion of A and B on the path, the

curvature of the path is said to

be uniform.

The mean curvature between A and B will have a
Unite value, however small the distance between them,
in the case of the path of a material body. For, as there

can be no abrupt changes of direction in the path, fp and
s vanish together, and to an indefinitely small change in

s corresponds an indefinitely small change in 0.

The limiting value of the mean curvature between A
and B, when B is brought indefinitely near to -4, is called

the curvature at A. The curvature at any point of a

curve of uniform curvature is evidently equal to the

mean curvature between any two points.

Ill

:

' }
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38. The Curvature of a Circle.—Let A, B he any two
points on a circle whose centre is 0, and AC, ED tangents

Ski A, B respectively. The angles OBF and OAE are

right angles, and hence the angle BEC is equal to the

angle 0. Hence, if stand for the angle 0, r for the

radius, and 8 for the length of the arc AB, the mean

I ;aaB
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curvature between A and B has the value f^/s, which, if

^ is measured in radians, is (21) equal to l/sxs/y' or to

1/r. Since A, B are any two points on the circle, its

curvature is uniform ; and consequently both the mean
curvature between any two points and the curvature at

any point are measured by the reciprocal of the radius.

39. The Curvature of any Plane Curve.—As the curv-

ature of a circle depends upon its radius only, a circle

can always be found whose curvature is the same as the

curvature of any given curve at any given point. That
circle whose curvature is equal to the curvature of a

given curve at a given point is called the circle of curva-

ture of the curve at that point. Its radius is called the

radius of curvature, and its diameter the diameter of
curvature. If p is the radius of curvature, the curvature

of the given curve at the given point is Ijp. If a circle

whose curvature is equal to that of the curve at the given

point, be drawn touching the curve at the given point,

the concavities of the two curves having the same aspect,

its centre is called the centre of curvature of the curve at

the given point ; and any chord of the circle through the

point of contact is called a chord oj curvature.

40. The only plane curve whose curvature is uniform

is clearly the circle. For every element or indelinitelj^

small portion of such a curve coincides with an element

of a circle of constant radius.

41. Tortuosity.—In the case of paths (called tortuous

paths) not lying wholly in one plane, the. nature of their
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curvature may most readil}'^ be seen by imagining them
to be polygons with an indefinitely large number of

indefinitely short sides. Then any two adjacent sides

must be in the same plane ; but the planes containing

pairs of adjacent sides are different at different parts of

B
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the curve. Let AB, BC\ CD be three sides of such a

])olygon. Then AB and BC are in one plane, and BC
and (W are in one plane also ; but the plane containing

AB and BC is not the same as that containing BC and
CD. The osculating plane of such a path at any point

is the plane in which the portion of the path indefinitely

near that point lies. In other words, it is the plane in wh oh

adjacent sides of the imaginary polygon lie. The osculat-

ing plane at B contains BA and BC, that at C contains GB
and CD. Hence it passes from the position in which it

contains AB and BC to that in which it contains BC
and CD by rotating about BC. Therefore the osculating

plane passes from its position at any one point of a curve

to its position at any other point by rotating about the

tangent to the curve. The amount of this rotation {i,e.,

the total angle through which the osculating plane rotates)

between any two points of a curve is the integral tortu-

osity between them. The integral tortuosity divided by
the distance of the points measured along the curve is

the mean tortuosity between them. And the tortuosity

at one of these points is the limiting value of the mean
tortuosity when the second point is moved up towards
the first. The consideration of tortuous paths is beyond
the scope of this book.

42. Speed.—The mean S2:)e'id of a moving point, during
a given time, is the quotient of the length of its path
traversed in the time, by the time ; or, in other words,
the mean rate of motion in the path during the time. If

A;;
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•s and H are the initial and final distances (measured

along the path) of the moving point from a fixed point

in the path, t being the interval of time, the mean speed

is thus (s—s)/t. As the distance from the fixed point

may be either increasing or diminishing, the mean speed

is a quantity which has jiot magnitude merely, but also

sign. Such a quantity is called a scalar quantity.

In general, the mean speed has different values for

different intervals of time, and is said to be vari?ible.

In special cases in which it has the same value, what-
ever the interval of time to which it applies, the point is

said to move with uniform speed. A yioint having such

a motion obviously traverses equal portions of its path in

equal times.

43. The instantaneous speed of a moving point (usually

spoken of as the speed simply) at a given instant is the

limiting value of the mean speed between that instant

and another, when the interval of time between them is

made indefinitely small. We shall see later on (295)
that in an indefinitely short time a particle can traverse

only an indefinitely small portion of its path. Hence
the instantaneous speed of a particle has always a finite

value.

It is clear that the instantaneous speed, at any instant,

of a point whose speed is uniform, is equal to its mean
speed during anj' period of time.

The speed of a moving point is usually called its

velocity. To assist the beginner in keeping his ideas

clear, it is better to restrict the term velocity to a more
complex conception (92) to which it is also usually

applied.

44. A quantity which varies with time is called a

fluent, and the rate of its variation is called its fluxion
or its flux. Thus the distance s measured along the

V. f.l
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path of a moving point from a fixed point in the path is

a fluent; its speed is the fluxion or flux. When the

phrase "rate of change" is used without further speci-

fication, the rate of change with time or the fluxion of

the quantity under consideration is always meant. New-
ton denoted the fluxion by the symbol for the fluent

with a small dot above it. Thus his symbol for the

speed is s.

45. Measurement of Speed.—We might choose any
concrete speed, as for instance that of a ray of light in
vacuo, as a unit. But if we keep to the units of length

and time selected above, our unit of speed is determined
by the definitions already given (42 and 43). For both the

mean and the instantaneous speeds of a moving point

were defined to be quotients of the value of a certain

length by that of a certain time. If, then, v is the

numerical value of the speed, s that of the length, and t that

of the time, we have v= 6'/^. Ifnow s and t are both unity,

V must be unity also. Hence we have taken as unit of

speed that of a point moving at the rate of one unit of

length in one unit of time. Expressed in English units,

it may be one foot per second, one mile per hour, etc.; in

French units, one centimetre per second, one kilometre

per hour, etc. The unit of speed is thus a derived unit,

like the units of surface and volume.

4G. Systems of Units.—The simple units (of length

and time so far as we have gone), together with the
units derived from them, constitute a system of units.

Thus we have the foot-second system, consisting, so far

as we have gone, of the foot, the second, the square foot,

the cubic foot, the foot-per-second. We may have also

the mile-hour system, the centimetre-second system, and
as many others as there are sets of simple units. For
scientific purposes the centimetre-second system is the

most useful.
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47. Dimensions of the Unit of Speed.—If [F], [Z], \T'\

denote the magnitudes of the units of speed, length, and
time respectively, in terms of which f, s, and t of the

formula v= 8/t (45) are expressed, we have (15)

/; a 1/[F]; s a 1/[L]; t a 1/[T].

Hence [ F] a [X]/[T] ; i.e., the magnitude of the derived

unit of speed is directly proportional to the magnitude
of the unit of length, and inversely proportional to the

magnitude of the unit of time involved in it. The
dimensions of the unit of speed are thus [-^][2']"^.

48. If [ V], [ V] are the magnitudes of different derived

units of speed, and [X], [T], and [L'], [T] those of the

•simple units involved in them respectively, we have

or

[V]:[V'] = [L]l[T]:[L']/[n

[F]/[F'] = [i]/[i']^[r]/[T'].

If therefore the magnitude of any derived unit of speed

be expressed in terms of some other similarly derived

unit of speed, and if the magnitudes of the simple units

involved in the first be expressed in terms of those

of the simple units involved in the second, the magnitude
of the unit of speed thus expressed will be equal to the

ratio of the magnitude of the unit of length to that of

the unit of time.

49. If V and v' be numerical values of the same speed
in terms of units whose magnitudes are [V] and [F'],

then (15) v:v' = [r] : [F].

Hence, with the symb:)is of 48,

v:v'=[L']lir]:[L]l[T].

If therefore the numerical value of a speed be given in

terms of one set of units, its value can be determined in

terms of any other set.
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50. ExmnijUfi.

(1) A point moving in a circle of 40 ft. radius makes 4T> revolu-

tions in 20 seconds. Show that the mean speed is 56"5... ft. per sec.

(2) A railway train runs from ^l to Z>, stoj)ping at B and C. The

distances are : A to B^ 20 miles ; Z? to C, 5 miles ; C to Z), 10 miles.

It goes from A to B in 30 min., from B to C in 10 min., and from

to D in 14 min. It remains 2 min. at B and 10 min. at C. Find

the mean speed («) during the whole time, (6) between the times of

leaving A and C, and (c) between the time of leaving B and that of

arriving at D.

Ans. («) 0*53..., (b) 0*48..., (c) 0*44... mile per min.

(3) The distance (.s* feet, measured along the path) of a moving

point from a given point in its path, at any time (t seconds after

the instant chosen as zero) being given by the formula 5= 4-1-5^

show that the mean speed for any interval and the instantaneous

speed at any instant are both 5 ft. per sec. [To determine the

instantaneous speed find the value of (s' - s)j{t' — t) where t and t'

and therefore " and s' differ by indefinitely small quantities.]

(4) The distance s of Example 3 being represented by the formula

s= 5t+ 6t^, show that the mean speed between the beginning of the

10th and the end of the 12th second is 131 ft. per sec, and that the

instantaneous speed at the end of the lOtli second is 125 ft. per sec.

[To find the inst?,iitaneoas speed at the end of t seconds, we have

s'-s= 5{t'-t)+6(t'^-t'^).

Hence (.?' - s)l{t' -t)= 5 + 6{t' + = 5 + 12^,

since t and t' are indefinitely nearly equal.]

(5) Com pare the magnitudes of the foot-second and the mile-hour

units of speed.

The magnitudes of the units of length and time involved in these

units of speed are: [L]= l ft., [T] = l sec, [L']=l mile=5280 ft.,

[7^']= 1 hour=3600 sec Hence (47) the magnitude of the ft.-sec

unit being [V] and that of the mile-hour unit being [F'] we have

5280
[V]:[V']==[L]![T :[L']l[T']= l

3600'

h^M«^*iBE*»Qi?e**'^/^^^**va3
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lleucu 1 ft. i)er sec. - luiUe i)er hour.

Otlierwise, without the iuterveiitioii of foriiiuhie, thus

1 ft. per aec.
1

'5280

_1
'5280

3000

5280

mile j)er aee.

nil le per
1

3000
Hour

mile per hour.

(6) How many cm.-sec. units of speed are equivalent to 20 ft.-see.

units ?

Ans. 609-594.

(7) Compare the centimetre per second with the mile per hour.

Ans. 1 mile per hour= 44"704 cm. per sec.

(8) Show that 1 kilometre per hour is equivalent to 27'7 cm.

))er sec.

(9) A speed of 20 ft, per sec. being a derived unit, and 14 inches

being the unit of length involved in it, find the unit of time.

Here (48) [ V] = 20 ft. per sec. and [Z]= 14 in. = 1 1 ft. Hence, the

magnitudes of these units being both expressed in terms of the units

of the foot-second system,

[v]=[L]i[n

and [7']= [Z]/[r] = -I:* sec.L J I. J.L J 12x20
Otherwise, without using formulae, thus :

Unit of speed = 20 ft. per sec.

= 20 X 12 in. per sec.

20x12 ., -, ^,units oi length per sec.
14

14

Hence

= 1 unit of length per ^ - sec.
* ^ 20x12

14
Unit of time= sec.

20x12

(10) One cm. per sec. being the unit of speed of a derived system
and 1 min. the unit of time, show that 60 cm. is the unit of length.
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(11) Reduce 25 ft. jier iiiiii. to em. ])er sec.

The iua<,aiitu(leH of the units involved (49) are; [A]= 1 ft. =30-471)7

vm., [T] = \ niin. = (50 sec., [/>']=! cm., [7"] = 1 .see. respectively.

Jfence, if r' is the numerical value in cm. j)er sec,

3()-47!)7

()(»

2') X 3()47J)7

25 : /=1 :

Ifence r =
60

em. ])er sec.

Otherwise, without using formulae, thus :

25 ft. per min -25 x 3()"4797 cm. pei- min,

= 25 X 30 •4707 cm. per GO sec.

25 X 3()-47J)7

60
cm. i)er sec.

(12) Reduce 24 ft. per sec. to yds. per min.

Ans. 480 yds. per min.

(13) In 40 cm. per sec, how many miles per hour?

A J IS. 0-8!)47...

(14) Find the value in kilometres j)er hour of 10 yds. per sec.

Ans. 32-918...

(15) Compare the s})ee(ls, 14 miles per hour and 14 yds. per min.

Ans. The former is 29-3 times the latter.

(16) One point traverses 50 ft. in G min., another 50 cm. in 6 sec.

<yompare their mean speeds.

Ans. Their ratio is 0*50799...

51. Change of Speed.—The change of speed during a
given interval of time is the difference between its final

and its initial values.

52. Rate of Change of Sj^eed.—The mean rate of
change of speed of a moving point during any given
time is the quotient of the change of speed by the time.

In general, the mean rate varies with the length of the

interval of time to which it applies, and is thus said to

be variable. In cases in which it lias the same value,

Hd
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whatever tlic interval of time to which it applies, it is

said to be uniform.
m

53. The instantaneous rate of change of speed (called

usually the rate of change of speed simply), at a given

instant, is the limiting value of the mean rate between
that instant and another, when the interval of time

between them is made indefinitely small. We shall see

farther on (295) that the speed of a body cannot under-

go any sudden change. Hence the instantaneous rate of

change of speed of a body can never have an infinite

value.

In general, the instantaneous rate of change of speed

varies from instant to instant. In cases in which the

mean rate of change is uniform, the instantaneous rate is

clearly both the same at all instants and equal to the

mean rate for any interval.

54. Rate of change of speed may be either rate of

increase or rate of decrease, and may be thus either

positive or negative. Hence it is a quantity having
both magnitude and sign, i.e., a scalar quantity (42).

Rate of change of speed is usually called acceleration.

This term is also applied, however, to a more complex
conception, to which we shall restrict it, that beginners

may not be confused. It is desirable that a name should

be invented for the phrase " rate of change of speed."

Hayward has proposed the term quickening.

55. According to Newton's notation (44), a rate of

change of speed, being the fluxion of a speed, should be

written s. It is usually written s.

56. Measurement of Rate of Change of Speed.—The
definitions of rates of change of speed given above deter-

mine at once the unit to be employed in their measure-
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mcnt. Whether mean or instantaneous, uniform or

variable, they are (juotients of a certain speed by a

certain time. If a be the vahio of tlie rate of change,

V that of the speed, and t that of the time, we have

(i = v/t. If then V and t are botli unity, (t must be unity

also. Hence we have taken as our unit of rate of change

of speed that of a point whose speed is changing at the

rate of unit of speed per unit of time. The English unit

of the foot-second system is thus 1 ft.-per-sec. j)er sec;

that of the mile-hour system, 1 ml.-per-hour per hour.

Similarly, the French unit of the cm.-sec. system is 1

cm.-per-sec. per sec. The second " per second " is often

omitted ; but this mode of specifying the unit is apt to

be misleading.

57. Dimensions of Rate of Change of Sixxd.—We
have seen (56) that a = v/t. If now [A] denote the

magnitude of the unit of rate of change of speed, [V]

and [T] those of the units of speed and of time respec-

tively, we have (15)

aoil/[A]; 'yal/[n; ^« 1/P1-

Hence [A] a [F]/[T].

But (47) [V]cx [L]/[T].

Hence [A] a [Ly[Tf,

or [^]oc[X][7^]-^

i.e., the magnitude of the unit of rate of change of speed

is directly proportional to the magnitude of the unit of

length, and inversely proportional to the square of the

magnitude of the unit of time.

58. As in the case of speed (48), so also in that of rate

of change of speed, it may be shown that, if [A], [Z], and
[T] are the magnitudes of the units of one derived system,

and [A'], [L'], [T'] those of another similarly derived

system,

[A]l[A'] = [L]/[L']^[Tf/[rf;

llllli I
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ic.y if the nmgnitudes of the units of rate of chaiifi^c of

speed, of lengtii, and of time, of one system of derived

units, be expressed in terms of the nia<;nitudes of the

corresponding units of another similarly derived system,

the magnitude of the unit of rate of change of speed will

be equal to the magnitude of the unit of length divided

by the square of the magnitude of the unit of time.

50. Examples.

(1) A point has at a ^'ivtMi instant a speed of 4 ft. per sec; and*

after 8 sec, one of 20 ft. per sec Find (a) the intei,'ral change of

speed, and (b) the mean rate of change.

Ans. (a) 10 ft. per sec; (6) 2 ft.-per-sec per sec

(2) If a point which moves in a curve traverse in t units of time

after zero of time, an arc whose length «=2< + .3i-' + 4^\ find (a) the

instjintaneous speed, and (6) the instantaneous late of change of

speed, at the end of the 5th second.

Ans. (a) 332 units of length j)er unit of time; {b) 126 units

of speed per unit of time.

(3) If the formula of Ex. 2 had been s= alt + bt'^ (a and b being

constants), show that the instantaneous speed and rate of change

of speed at the end of t iniits of time would have been 2bt-a!t'^

itud 2{alt^ + b) respectively.

(4) If the formula of Ex. 2 had been s= at+ ht-, show that the

rate of chanf^e of speed would have been iniifoini.

(5) Find the number expressing the uniform rate of change of

speed of a train which, 5 minutes after starting, is moving at the

late of 40 mis. per hour.

Ans. 480 nds.-per-hour per hour.

(6) Find how many kilometre-hour units of rate of change of

speed are equivalent to 392 ft.-min, units.

The magnitudes of the units involved in these systems are : [X]

= 1 kilometre; [7']= 1 hour; [X']= l ft. =0*00030... kilom., [r]=l
nun. = tf^ hour. Hence, if a be the equivalent required, we have,

It:
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1)V ft7, oni ploy ill;,' ;i foiiiiulu Hiiiiiliir (u tliitt of -11), vi/.,

a:«' = [/;j[7'T:[AJ/[7'J-',

a : 302 = ()•()()( KJxOO^ : 1.

Hunce /<«=.'){>2 x(5()'-xO"0()IJ kiloin.-|H'r-liour \n'\' hour.

Otherwise, witliout UHJiig formulae, tliUH: '.M)'2 ft.-miii. units of

rate of cluin^'i! (»f Hpeetl

= 3!)1! ft.-ptji-niiij. pur niiu.

= 31)2xO'(K)()3 kiloni.-per ..in. per niin.

= 31)2 X 0'()003 X (10 kiloni.-i)er-liour per niin.

= 35)2 X 0-0003 X 6()'-^ kiloni.-per-liour i)er hour.

(7) Compare the foot-nee. an<l the yd.-min. unit.s of rate of chan^fe

of Hpeed.

Alls. 1 ft.-Hee. unit = 1,200 yd.-min. uuits.

(8) How many cm. -sec. units of rate of change of speed in 1 mile-

min. unit /

Ans. 44-704....

(I)) The rate <»f change of sjjeed of a falling body (32-2 ft.-aec.

units) and 1 pole (5^ y^^^-) heing the units of rate of change of

speed and of length respectively of a derived system, f the unit

of time. [See 58 and 50 (9).]

Ans. 0-7... sec.

(10) The unit of speed of a derived system being the s])eed of a

point in the earth's equator (the earth being supposed a .sphere of

4,000 nds. radius), and the unit of time the montli (30 days),

compare the unit of rate of change of speed with the ft.-sec. unit.

Ans. It is equal to 0'00059... ft.-sec. unit.

(11) Reduce 101 metre-min. units of rate of change of speed to

cm. -sec. units.

Ans. 2*8... cm.-sec. units.

(12) Express (a) in cm.-sec. units, and (6) in kilom.-hour units, a

rate of change of speed of 90 ft.-per-sec. per sec.

Ans. (a) 2,743-17...; (6)355,515-6....

60. Motion under Given Bates of Change of Speed.—
We have !;^een that the rate of change of speed of a point or
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a particle may be uniform or variable. Its value may
be the same at all instants of any interval of time, and
therefore at all ])oints of the path occupied durinji^

that time, or it may vary from ])oint to point of the

path and therefore from instant to instant. And, when
the rate of chanjije is variable, it may vary according to

different laws. • For exam[)le. it may vary directly as the

distance of the moving point from a fixed point in its

path (the distance being measured along the path), or

inversely as this distance, or directly (or inversely) as

the sijuare of this distance, and so on.

01. O'cisYj /.

—

The Bate of Change ofSpeed being Zero.—
In this case the speed is uniform, llence the instantane-

ous speed at any instant is ecjual to the mean speed

during any interval (43), and therefore to the quotient of

the length of path traversed in that time, by the time.

If therefore v is the speed, and « the length of path
traversed in t units of time, we have (42) v= 8/t, and
therefore 8 = vt.

'I

• fl

f I

'tV.|t(*

02. Exaviples.

(1) A point has a unifoiiu .sj)et'(l of 10 ft. per sec. Find the

length of patli traversed in 1 hour.

Ans. 6*81 mis.

(2) A ])oint moves for I niin. with anifonn speed in a circle of

30 decimetres radius, traversing in that time an arc of 04 radian.

Find the speed.

Ans. 2 cm. per sec.

(3) Find the time required by a i)oint moving with a uniform

speed of 40 cm. per sec. to traverse a ])ath 20 metres long.

Ans. 50 sec.

03. Case II.—The Bate of Change of Speed being

Uniform.—In this case the instantaneous rate at any
instant is equal to the mean rate during any interval

c

:(

'4\
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(53). Let v^, V be the initial and final values of the

speed of the moving point during the time t, a being
the rate of change of speed. Then a = {c — v^)jty and
v= VQ-\-at. Hence the final speed is expressed in torms
of the initial speed, the rate of change of speed, and
the time.

G4. As the spcied increases uniformly with the time,

its value at the middle of the interval is the arithmetic

mean of its values at instants r seconds before, and t
seconds after, the middle of the interval. Its value at the

middle of the interval is therefore equal to the arithmetic

meaii of its initial and final values, and also to the mean
speed during the interval. The mean speed is therefore

equal to

Hence, if s denote the distance measured along the path
between the initial and final positions of the moving
point.

Hence this distance also is expressed in terms of the

initial speed, the rate of change of speed, and the time.

liA

65. Eliminating t between these expressions for v and
s (63 and 64), we find

V,2 ._ „ 2V^+ ^GbS.

Hence the final speed is expressed in terms of the initial

speed, the rate of change of speed, and the length of path

between the initial and final positions.

Q^C). By means of the above equations, if the initial

position of a point moving in a given path, its initial

speed, and its uniform rate of change of speed be given,

its final position and its final speed after any interval

ot time can be determined.
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67. Examples,

(1) A railway train is moving with a s* eed of 20 nils, per hour,

and is increasiug its speed uniforndy at tlie rate of 10 nds.-per-honr

per hour. Find (a) its speed after lA hours, and (6) the distance

traversed in that time. [ For (a)—Data : r,, = 20 nds. pei- hour ; a = 10

uds.-per-liour per hour; i=l'5 hours. To be determined : i'. And
(6.3) v= r„+ «i. For {b)—Data: as above. To be determinetl : i«.

And (64) .<?=-V+ 5«^""-]

Ans. (a) 35 mla. per hour
; (6) 41| nds.

(2) A railway train, moving at 50 nds. per hour, lias the brakes

put on, and its speed diminishes uniforndy for 1 minute, when it is

found to have a speed of 20 nds. per hour. Find (a) its rate of

change of speed, and (6) the distance traversed in the time.

Ans, (a) -1,800 ml.-hour units; (6) i^.j ml.

(3) A i)oint wliose speed is initially 20 m. per sec, and is

diminishing at the uniform late of 50 cm.-j)er-sec. per sec, moves

in its path until its speed is 120 m. per min. Find the length of

path between the initial and final positions. [Data: <'(,= 20 ni.

per sec; a= — 50 cm.-per-sec per sec= — 05 ni.-pe;-sec. per sec ;

('=120 m. per min. =2 m. per sec And (65) v-=\\^-\-2 as.']

Ans. 396 m.

(4) A point has a uniform rate of increase of speed of 20 cm.-per-

sec. per sec. and an initial speed of .30 cm. per sec. Find {a) the

speed after 16 sec; (6) the time required to traverse 300 cm.; (c) the

change of speed in traversing that distance.

Ans. (a) 350 cm. per sec
; (6) (\^)-3)/2 sec; (c) 10(\^T2JJ-3'

cm. per sec.

(5) If in Ex. (4) the speed be decreasing instead of increasing,

find (a) the distance from the starting point to the turning point,

(6) the distance from the starting point after 10 sec
;

(c) the length

of path traversed during the time in which the speed changes

to 60 cm. per sec; {d) the time required by the moving point to

return to the starting point. [To find (a), note that the speed

.:* .

. ',»

1
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\
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at the turning point is zero; and to find (c?), note that on the

return to the starting i)oint the distance therefrom is zero.]

Ans. (a) 22"5 em.; (b) 700 cm.; (c) 112'5 em.; (d) 3 sec.

(6) A particle moves round a closed curve with a uniform rate of

change of speed. In the m"', m*'', and p*'^ seconds, it describes a, 6,

and c circuits respectively. Show that, the initial speed being zero,

i({u-p) + b{p - m) + c{m - n)= 0.

N.B.—The readei- should solve the above i)roblems also without

using formulae. Others of a similar kind will be found in 141.

68. Case III.—The Rate of Change of Speed VaHable.
—A useful case in which the rate of change of speed

varies with the position of the moving point in its path
will be discussed farther on (164).

I
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CHAPTER III.

TEANSLATION :—DISPLACEMENTS, VELOCITIES,
ACCELERATIONS.

69. Displacements.—The change of position of a point,

considered without reference to the intermediate positions

occupied by it, is called its displacement. The displace-

ment in any time is thus completely determined, if we
have data by the aid of which the point may be brought

from its initial to its final position. Let
Pj and Pg be the initial and final posi-

tions of the point relative to 0. The
displacement is completely determined if

the direction and length of the straight

line P1P2 are known. A displacement

is thus a quantity having both magni-
^

tude and direction.

70. Any such quantity is called a vector. It may be
completely represented by a straight line. For the

length of the line may be made proportional to the

magnitude of the vector, and its direction may be made
the same as that of the vector. As a line, however, may
represent either of two opposite directions, it is necessary

to indicate, in the case of any given representative line,

which of the two possible directions is that of the vector

which it represents. For this purpose an arrow-head is

frequently employed in diagrams, and in naming a line

;,^'^'

.fl

'if.
i
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W' :

that letter is always placed first, which stands at the end
of the line from which the vector is directed. Thus a

displacement P^Po means one in the direction of the

straight line P^P^ ^^^m P^ towards P.^- When we speak
of a vector as being represented by a line, complete repre-

sentation as to both magnitude and direction is intended.

It should be noted that all lines which have the same
length and direction represent the same vector. It is not

necessary that a line intended to represent a vector

should be di-awn from any particulai* point.

71. Change of the Point of Reference.—A displacement

being a change of position can be described only by
reference to some chosen point. As it is frequently

necessary to change the point of reference, the following

propositions will be found useful.

72. Prop. 1.—A change in the relative positions of two
points P and may be regarded as either a displacement
of P relative to or an equal and opposite displacement
of relative to P.—Let P^ and 0^ be the initial positions

of two moving points P and
(the point of reference is rot
marked in the figure), and let

Pg 'i-iid ^2 ^® their final positions.

From Oi draw OJ^^ equal to and
codirectional with 0^,P^. Then
PiP:^ represents the displacement
of P relative to 0. From P^
draw Pfi.^ equal to and codirec-

Then Ofi.^ represents the displace-

ment of relative to P. Now, since Pfi.^ is equal and
parallel to Pfi^, PiPn is equal and parallel to Ofi^, and
they are drawn in opposite directions. Hence the above
proposition.

73. Prop. II.—Given the displacement of a point P

tional with Pfio.

gisJ-csifa vvwrr"
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relative to a point Q, and that of Q relative to a point 0;

to find the displacement of F relative to 0.—Let A and

0,

B represent the given displacements of P and Q respec-

tively, and let 0^, P,, Q^, be the initial positions of 0, P,

Q. Draw P1P2 and Q1Q2 equal to and codirectional with

^1 and B respectively. Join Q^Pg and complete the

parallelogram QjPg.

P's final position relative to Q is given by the line

QiP2- Whatever, then, Q's final position relative to

may be, P's must be distant from it by the length QjPo
and in the direction QjP„. Now Q^ is (J's final position

relative to 0. Hence P3 is P's final position relative to

0, for Q2P3 is equal to and codirectional with Q^P^. And
P^, P3 being P's initial and final positions relative to 0,

PjP^ is its displacement relative to 0. Now PjPo and
P„P.i represent P's displacement relative to Q and that of

Q relative to 0, respectively. Hence, if two sides of a
triangle, taken the same way round, represent the dis-

placements of P relative to Q and of Q relative to

respectively, the third side taken the opposite way round
will represent the displacement of P relative to 0.

74. Prop. III.—Given the displacements of P and Q
relative to 0; to find that ofP relative to Q.—Let A and B
represent the respective given displacements. Then (72),

if C be drawn equal to B and in the opposite direction,

A and G will be the displacements of P relative to and

•» r;ni
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E. ^n

Mi

of relative to Q, respectively. From any point D draw
DE equal to and codirectional v\^ith A. From B draw

EF equal to and codirectional with G. Then (73) DF
will represent the displacement of P relative to Q.

Hence, if two sides of a triangle taken the same way
round represent the displacement of P relative to 0, and
one equal and opposite to that of Q relative to 0, respec-

tively, the third side, taken the opposite way round, will

represent the displacement of P relative to Q.

In the special case in which A and B have the same
direction the point F is on the line DE\ and it is obvious

that the displacement of P relative to Q is equal to

that of P relative to niiiius that of Q relative to 0.

75. Examples.

(1) Two railway trains run on parallel roads, the one 5 miles

northwards, the other 6 miles southwards. Find the displacement

of the latter relative to the former.

Ans. 11 miles southwards.

(2) Two trains run, the one north-eastwards a distance of 20

miles, the other south-eastwards through the same distance. Find

the displacement of the former relative to the latter.

Ans. 28*28... miles in a northerly direction.

(3) A'b displacement relative to JS is 10 ft. westward. C\. dis-

placement relative to B is 20 ft. in a direction 30° west of south.

Show that yl's displacement relative to C is 17"32... ft. northward.

(4) The point A moves a distance of 3 ft. in a given direction,

relatively to a point 0. Another point B moves, relatively to 0, 4

!i5
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ft. in a direction at right angles to the direction of A's displacement.

Find the displacement of A relative to /?.

Ans. 5 ft. in a direction inclined sin"^^ to that of ^i's displace-

ment.

(5) Two trains A and B start from the same point and run, A 10

miles northwards, and B 8 miles north-eastwards. Find B's dis-

placement relative to A.

Ans. 7-13183 miles in a direction 37°3()'-96 S. of E.

(6) A'a displacement relative to Z/, is 13 miles southwards, and

relative to C, 4 miles westwards. C is initially 10 miles south of B.

Find C's final position reljitive to B.

Ans. Distance 23*34... miles ; direction ft" 51'-9 E. of S.

(7) Two points move in the circumferences of equal circles

'radius= 2 ft.) which are in contact. Both start from the ])oint of

contact. The one moves through a semicircle, the other through a

quadrant. Find the displacement of either relative to the other.

Ans. 2 VlO ft. in a direction inclined tan~^3 to the common
tangent.

(8) Find the displacement of the end of the minute hand of a

clock relative to the end of the hour hand (both minute and hour

hands being 6 inches in length) between 3 and 3*30 o'clock.

Ans. 6(6 -2 cos 15° -4 sin 15°)* in. ; direction inclined to the final

«lirection of minute hand, sin~^{2 sin27°'5 (6 - 2 cos 15° - 48in 15°)4 •

(9) A wheel of 1 ft. radius rolls on a horizontal road turning

through an angle of 7r/2 radians. Find the displacement of the point

of the wheel initially in contact with the road relative to the point

<lianietrically opposite to it.

Ans. 2 fj2 ft. ; direction inclined 7r/4 radians to the vertical.

76. Composition ofSuccessive Displacements.—A point

P undergoes given successive displacements, relative to

the same point ; it is required to determine the resulting

(or resultant) displacement.
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Case I.—7\ro DiHi)lar('ni('i\tH.—Let A, B represent the

displacementH, and let P, be the initial position of the

point. Draw P^P. equal to and codirectional with A,
and from 1\, draw PJ\^ equal to and codirectional with

B. Join P,2^3. As the point is displaced first from i\
to P.„ and then from P., to P.,, P.^ is its final position, and
P P., is its resultant displacement. Complete the paral-

lelogram ^)P,. Then P^ii = P..
7^ = 5; and ^^^P:,= P^P,, = ^l

.

Hence the point P reaches the same final position what-
ever the order in which it undergoes the displacements

A and B.

PyP^ is the third side of the triangles P^PJP.^, ^iV^n*
whose other sides PiP.j and P^P.^ in the one triangle, and

PjP and 2^Pi "i the other, represent the displacements A
and B respectively. Hence, if two sides of a triangle

taken the same way round represent the two successive

displacements of a moving point, the third side taken
the opposite way round will represent the resultant

displacement.

Also PJ^-i is the diagonal of the parallelogram ^^P..

through the point of intersection of the adjacent sides

P^Po, P\P, which represent the two successive displace-

ments A and B. Hence, if two successive displacements

of a point be represented by two adjacent sides of a
parallelogram, taken opposite ways round, the diagonal

of the parallelogram through their point of intersection

will represent the resultant displacement.

Case II.—More than Tiuo Displacements.—Let A,B,C
represent the successive displacements, P^ being the
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initial position of the moving point. Draw P^P., P-^Py

PJ^^ equal to and codirectional with A, J>\ and C respec-

tively. Join i^jP^. Then P^ being the final position of

the moving point, P^l^ is the resultant displacement.

The same construction is applicable to any number of

displacements. If A, B, C, etc., are all in one plane,

J\P„P^P^... is a plane polygon; if not, it is a gauche
j)olygon.

It is clear that the same point P^ is reached in what-
ever order the displacements occur. For, if the parallelo-

gram P„P^ be completed, and then the parallelograms

l\Pv 2^1-^4' ^^^ ViV-y ^^ follows from the equality and
parallelism of the opposite sides of parallelograms that

the line j) P, will complete the parallelogram 2\P^, and
that the six sets of displacements thus laid down, by
which P4 may be reached, are the displacements A, B,

taken in all possible orders. And the same con-

struction may be made whatever the number of dis

|)lacements.

Hence, if any number of successive displacements of a
moving point, in any directions whatever, be represented

hj n — 1 of the sides of a polygon, taken the same way
round, the resultant displacement will be represented by
the 71*^ side taken the opposite way round.
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77. It follows from the last proposition that a given
displacement may be resolved into any number of succes-

sive displacements, provided these displacements can be

represented by n — 1 of the sides of a polygon, taken
the same way round, by the 9?^'' side of which, taken the

opposite way round, the given displacement is represented.

In the special case in which the successive displacements

have directions parallel to the given displacement, it is

olear that their algebraic sum must be equal to the given
displacement.
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78. Composition of Slmultcmeous Displacements.—

A

point undergoes simultaneously, given displacements

relative to the same point; it is required to deter-

mine the resultant displacement. Simultaneous dis-

placements of a point are usually called component
displacements.

Let Ay B, G, etc., be the component displacements, and
let each of them (77) be resolved into n equal successive

displacements in its own direction. The magnitudes of

these displacements will be A/n, Bjn, C/n, etc., respec-

tively. Then (76) the same final position will be reached

whether the point undergo successively the displacements

A, B, C, etc., or undergo, n times, the successive displace-

ments A/n, B/n, C/n, etc. But if n is indefinitely great

and therefore A/71, etc., indefinitely small, the successive

occurrence of the displacements ^/?i, Bjn, C/n, etc., n times,

is the same as the simultaneous occurrence of the dis-

placements A, B, C, etc. Hence the same final position

is reached when A, B, C, etc., occur simultaneously as

when they occur successively. Consequently the pro-

positions established in 76 for successive displacements

apply also to simultaneous or component displace-

ments. These propositions when formulated for simul-

taneous displacements are usually called the triangle,

the parallelograTYi and the polygon, of displace-

ments.
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70. lif'Holution ofJ)i»j)l<icenu'nts.—A displacement and
two strai<^ht lines being given, to find two displacements

parallel to these lines, of which the given displacement

is the resultant.—Let ()A be the

given displacement, Ji and C the /
given lines. From O and A /

draw lines parallel to li and '

(1 respectively, meeting in D.

Then, by 78, the displacement ^

i)A is the resultant of the com-
ponent displacements i)D and Dx\ , and these disi)lacements

are parallel to the given lines.

80. When the components, in given directions, of a

given displacement are thus determined, the given dis-

placement is said to be resolved into components in those

directions.

Displacements are frequently resolved in directions

which are at right angles to one another, in which case

the components are called rectangular components.
When we speak of Hit component of a displacement
in a given direction, we mean its rectangular com-
ponent in that direction. It is clear that the rectangular

component of a displacement in any direction is the

(orthogonal) projection of the displacement on any
straight line in that direction.

81. The component (rectangular) ofa given displacement
in a plane parallel to any given plane may also be found.

OA being the given displacement, draw from
A a line AF perpendicular to the given plane,

and from a line OP perpendicular to AF
and meeting it in P. OF is a rectangular

component of OA , and it is in a plane

parallel to the given plane. It is clearly

equal to the projection (orthogonal) of OA
on the given plane.
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82. The components of a ^iven displacement, in three

directions which are not all in the

same plane, may also bo found.—Let

()A be the given displacement, and
OB, 00, ()J) lines having the given

directions. From A draw Ah' parallel

to OD and meeting the plane of Oli

and 00 in E. Join OK, and through
E draw A'A^ parallel to OCand meeting
OJi in F. Then (78) OF and EA arc

components of OA; and OF and FF
are components of OF. Hence OF, FE, and EA arc

components of OA ; and they are in the given directions.

The special case, in which each of the three directions

OB, OCy OD is at right angles to the plane of the other

two, is of great importance. In this case the components
are adjacent edges of a rectangular parallelopiped of

which OA is the diagonal through their intersection.

83. The resultant of two given displacements is equal

to the algebraic sum of their components in its direction.

Let OA, AB be the given dis-

placements and OB therefore the

resultant displacement. From
A draw AC perpendicular to

OB. Then OG and GB are the

components in the direction of

OB, of OA and AB respectively.

In Fig. 1, 'the components OG
and GB have the same direction,

and we have also OB= OG+GB.
In Fig. 2, OG and GB have oppo-
site directions, and we have also

OB=GB—OG. Hence the displacement OB is equal

to the algebraic sum of the components OG and GB,
in the direction of OB, of the displacements OA and
AB.

Hg.l
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84. The corupoiiont in a <;iveii direction, of tlio ro.sn It-

ant of any number of displacoinents in any directions

whatever, is ecjual to tlie al<,^el)raic sum of their compon-
ents in the same direction. Lei OA, Ali, li(\ (^D, J)J'J

represent the given displacements. Then (78) OI'J repre-

sents their resultant. Now the j)rojection of OJ'J on any
lineMF is equal (8) to the algebraic sum of the projections

of OA, AB, BO, CD, DE. Hence (80) the above proposi-

tion is proved.

The proposition of 83 is clearly a special case of the

above proposition.

85. Tvigonoinctrical E.rpreS'Sioit for the Resultant.—
The magnitude and inclination of component displace-

ments being given, to find expressions for the magnitude
and direction of the resultant.

First, when there are two (jlven components.—Let A
and B be the two components, their magnitudes being d^

and d.,, and their inclination 0. may be an acute angle

(Fig. i) or an obtuse angle (Fig 2). Let P, be the initial

position of the point. Draw P^P., and P„i^3 equal to and
codirectional with A and B. Then (78) P^P^ is the

resultant. Produce PjPg ^^ ^- Then OP„P.^ is the

angled. From P.^ draw P.,Q perpendicular to Pfi.
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sinyS— 1 sin^.
Jx

It follows that the displacement B, has in the directions

inclined a and y8 to its direction respectively, components
whose magnitudes are

d^ =R sin ^/sin («+ ^),

d., =R sin a/sin (a

+

^\

86. Of these general results, the following are import-

ant special cases.*

Case I.—The displacements equal. Let both be called (/.

Then jR2= 2d%l + cos 0) =-- 4(Z-cos2(0/2).

Hence E = 2d cos {0/2).

Also sm a= o sm 6 = - . -r^- = sm -.

R 2d cos (0/2) 2

Hence a = 0/2. Similarly /3 = 0/2.

Case II.— The displacements equal and their inclina-

tion 120°. Then, by Case I.,

R= 2dcosG0'' = d,

and c = /5 = 60°.

Case III.—The displacements in the same direction,

i.e., = 0. Hence cos = 1.

Therefore R^= d^^+ ^./

+

2d^d„,

and R = d^+ cL

Case IV.—The displacements in opposite directions, i.e.,

= 180°. Hence cos0=— 1.

Therefore R- = d^+ d,J- 2d^d„

and R= d^— d.,.

Displacements in opposite directions being considered

of opposite sign, Cases III. and IV. may be generalized

* The reader should obtain the results of these special cases directly.

D

1!
4'f

f

1

'H

:i

I
i

>..

1

4"'

^3



50 KINEMATICS. S6

M'i

thus : The resultant of component displacements in the
same straight line is their algebraic sum.

Case V.—The displacements at right angles to one
another, i.e., 6 = 90°. Hence cos — and sin ^= 1

.

Therefore m = d^^+ d^^,

and R = {d^^Jf.d,^)\,

Also sin a = dJR,
and sin ^ = dJR.

In this case a +^ = 90°, and therefore sin /5 = cos a.

Hence tan a = djd^. Hence also the component (rect-

angular) of a displacement jR in a direction inclined at

the angle a to the direction of R is equal to R cos a.

87. Secondly, tuhen there are more than tiuo given
components.—The magnitudes and directions of three, or

more displacements being given, expressions may be
found for the magnitude and direction of the resultant

by finding, first, the resultant of any two, then the re-

sultant of this first resultant with a third, then the

resultant of this second resultant with a fourth, and so

on, until all the component displacements have been
compounded.

88. An important special case of 87 is the composition
of three displacements, the direction of each of which is

i

i;Vi ^

.III-' i

'.I;'

Xi

!i

perpendicular to the plane of the other two. Let 0-4,

OB, 00 be the three displacements, the angles AOB^

I, 1
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AOGj and BOO being right angles. Complete the rect-

angle AB and draw the diagonal OD. Then 00, being

at right angles to OA and OB, is also at right angles to

OD. Complete the rectangle CD and join OE. Then
OD is the resultant of OA and OB, and OE that of OD
and OC. OE therefore is the resultant of all three. Now,
by Geometry, OE'^ = OA'+ OB^-^OC\ Hence, calling

the resultant R, and the components (/,, d.,, d.^, we have

i{=(^d;'^d,^+d,^)K

The direction of OE is known, if either the angles

AOD and DOE (0 and x)> <^*r two of the angles AOE,
BOE, COE (a, j8, y) are known. These angles may be

expressed in terms of the magnitudes of the given dis-

placements. For we have

cos = djOD = dj{d,^ -}- d.^)K

cos X = ODJOE= {d;'+ < lf)^IR,

cos a — dJR,
cos /? = djR,

cos y = dJJi.

89. It follows that the components d^, d^, d^, into which
a given displacement R may be resolved, in three direc-

tions which are at right angles to one another and are

inclined to the direction of R at the angles a, /8, y, are

r/| =R cos a ; r/., = R cos ; d.^ = R cos y.

90. Analytical Expression for the Resultant of any
number of coi iponent displacements. Convenient expres-

sions for the magnitude and direction of the resultant of

any number of component displacements, may be obtained

by resolving the given components in rectangular direc-

tions which, are the same for all, adding the components
in these directions, and finding the resultant by 86 (V.)

or 88.
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Fii'st, let the given displacements he all in one plane.
—Let d^, d,,, (Zg, etc., be the given displacements. Take
two lines Ox, Oy at right angles to one another in the
plane of d^, d,^, etc. Let the inclinations of d^, d,^, etc.,

to Ox be Up og, etc. Then the displacements c/j, d^, etc.,

have, in the direction of the x axis, components c?jCos a^,

d^cosa^, etc., and, in the direction of the y axis, com-
ponents d^sin a^J d^sin a^, etc. Hence, 86 (III), we have
in the direction of the x axis a resultant displacement
equal to d^cos a^+ d^cos a.^+ etc., which may be written

2c? cos a ; and, in the direction of the y axis, a resultant

displacement equal to (^jSinaj+ d/ina^-f- etc., which may
be written ZcZsina. Ox and Oy being at right angles,

the resultant of these resultants is, 86 (V.),

B = [(2d cos af+ (2d sin a)^]^.

The inclination 6 of this resultant to the x axis is

determined by the equation

tan 6= {2d sin a)/(2d cos a).

In adding together the components of the given dis-

placements in the x and y axes respectively, we have
assumed that the displacements are all in such directions

as to give components in the directions of Ox, Oy respec-

tively. If the directions of any are such as to give

components in the directions xO or yO respectively,

they must be (86, IV.) considered as negative in deter-

mining the resultant displacements in these axes. Thus
2d cos a, 2d sin a are short expressions for the algebraic
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sums of all components of the form d cos a, d sin a re-

spectively.

Secondlyt let the given comj^onents have any direc-

tions ivhatever.—Take three rectangular axes, Ox, Oy, Oz,

and let the inclinations of the displacements d^, d^, etc.,

to the X, y, z axes, be aj, /Sj, y^ a^, Z^^, y^^ etc., respectively.

Then the components of d^, d^, etc., in the direction of

the X axis, are cZ^cos a,, cZ^cos a^, etc., and their resultant is

2cZ cos a. Similarly, the resultant of the component dis-

placements in the y and z axes are 2cZ cos ^, 2c? cos y
respectively. Hence (88), if R is the magnitude of the

resultant,

R={ad cos a)2+ (2cZ cos /3)2+ (2c? cos y)2}i.

Also, if the direction cosines of the resultant with reference

to the X, 2/, z axes, are X, //, »/ respectively, we have

X = (2d5 cos a)/i2; fi = (Id cos (3)/R] v= (Zd cos y)IR.

91. Examples.

(1) ABCD is a quadrilateral. Show that, if ylC is j)ro(luced to ^',

and CE made equal to AC^ the resultant of component displace-

ments represented by AC^ DB, AD. and BC will be representee!

by AE.

(2) ABCD is a parallelogram. -^ is the middle point of AB.

Find the components, in the directions of ^i? and AD^ of a displace-

ment which has the direction and half the magnitude of the

resultant of component displacements represented by ^C and AD.

Ans. AE and A D.

(3) The resultant of two equal displacements of magnitvide, //,

and inclined 60°, is equal to that of a and 2a inclined 120°.

(4) Two component displacements are represented by two chords

of a circle drawn from a point P in its circumference and perpen-

dicular to one another. Show that the resultant is represented hy

the diameter through the point.
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(5) 7*0/', and QO(^i ure two perpendicular chords of a circle,

whose centre is C. Show that the resultant of four component

<lisplacenients represented by OP, 01\, OQ, OQi, has the direction

of OC and twice its niagnitu<le.

(6) The resultant D of two displacements, d^ and J.^, is perpen-

dicular to d^. Find the resultant of displacements dj2 and t/.j,

their inclination bein^' the same as that of di and d,^.

Alls. dj2 in a direction inclined tan~'(/>/o?o) to that of c/^.

(7) A point undergoes two component dis|>lacements, GO ft.

W. :W S., and 30 ft. N. Find the resultant.

Alls. r)l-9... ft. W.

(8) Show that three component dis[)lacenients whose magnitudes

are 1, 2, 3, and whose directions are re])resented by the aides of an

e(|uilateral triangle, taken the same way round, have a resultant

whose magnitude is ^'3.

(9) A point undergoes three component displacements, 40 yds,

N. 60' E., 50 yds. S., and 60 yds. W. 30' N. Find tlie resultant.

Alls. 10v/3yds. W.

(10) A ship is carried by wind 4 mis. N., by her screw 8 mis.

N. 15° W., and by a current 3 mis. E. 15" N. Find lier resultant

displacement in a north-easterly direction.

Ans. 9-4265 mis.

(11) A boat is headed directly across a river flowing from north

to south, and readies a point from which the starting point is found

to bear N. 30° W., and is known to be at a distance of 400 ft. How
far has the boat been carried by the current, and what distance

would it have made in still water ?

Ans. 346*41.. . and 200 ft. respectively.

(12) To an observer in a balloon his starting point bears N. 20° E.,

and is depressed 30° below the horizontal plane; while a place

known to be on the same level as the starting point and 10 nils,

from it, is seen to be vertically below him. Find the component

displacements of the balloon in southerly, westerly, and upward

directions.

Ans. 9'39..., 3"42..., and 5'7T... mis. respectively.
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92. Velocity.—The mean vdocit/j* of a moving point

during a given time is a quantity whose direction is that

of the displacement produced during the time, and whoso
magnitude is the quotient of the magnitude of the dis-

placement by the time. Thus, if a point move in th(!

path A from Pj to P.^ in the time t, its displacement in

': lit

liPr

•h

that time is the straight line P,P.„ the direction of its

mean velocity is the direction of P^P.„ and the magnitude
of its mean velocity is P^Pjt.

In general the mean velocity of a point varies with tho

interval of time to which it applies. Thus, if in a time /'

the point moves from P^ to P3, the direction of its mean
velocity during t' is that of P^P.^, and the magnitude is

P^PJt. In the special case in which a point moves so

that its mean velocity changes neither in magnitude nor

in direction, it is said to move with uniform velocity. In

that case its path must be a straight line. For, wherever
P2 and P3 may be, P^Po and PiP^ must have the sam<'

direction. It must also obviously be moving with uniform
speed.

It will be seen that a point whose speed is uniform has

not necessarily a uniform velocity. The speed is uniform
if

arc P,P2/^ = arc P.Pg/r.

But the velocity is not uniform, unless the chords P,7'..

and P2P3 have the same direction, and their quotients by
/ and f respectively, the same magnitude.

* The term mean velocity/ is employed by most writers to denote
what we have called (42) mea-n speed.
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93. The instantaneous velocity at a given instant

(usually called velocity simply) is a quantity whose
magnitude and direction are the limiting magnitude and
direction of the mean velocitv between that instant and
another when the interval of time between them is made
indefinitely small.

As bodies are found to require in all cases a finite time
to traverse a finite distance, the instantaneous velocity of

a body has always a finite value.

When the interval of time t (92) is made indefinitely

•small, Pg is indefinitely near Pj, and the chord P^P^
coincides with the arc P^P.^ Hence the direction of the

instantaneous velocity at a given instant is that of the

tangent to the path at the point occupied by the moving
point at that instant ; and its magnitude is equal to the

instantaneous speed (43) of the point at that instant.

Velocity, having both magnitude and direction, is thus,

like displacement, a vector (70).

94). Measurement of Velocity.—The specification of a
velocity involves specification of both magnitude and
direction. The direction may be described in terms of

the unit of plane angle (21). The magnitude, being the

<|Uotient of a distance by an interval of time, is a quantity

of the same kind as a speed (42), and may therefore be
measured in terms of the unit of speed (45). A unit of

speed is thus also a unit of velocity; and the results

of 47-49 apply to units of velocity as well as to units of

speed.

95. Examples.

(1) A point (see 91, Ex. 7) moves in a straight line from A to B,

f)0 ft., W. 30° S., in 10 sec, and thence in a straight line to C, 30

ft. N., in 20 sec. Find (a) the mean speed, and (b) the mean
velocity during the whole time.

Ans. (a) 3 ft. per sec; (h) I'TS... ft. per sec, W.
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(2) A point moving with uniform speed in a circular path pasaes

from one end of a diameter to tlie other in 10 see. The radius

being 30 cm., find (a) the mean speed, (b) the mean velocity, and

(c) the instautaneous velocity sit any instant.

Aos. (a) 9'4... cm. per sec; (b) 6 cm. per sec. in the dir'";tion of

the given diameter; (c) 9'4... cm. })er sec. in the directi(»n of the

tangent at the point occupied by the moving point at the chosen

instant.

(3) A man 6 ft. Ingh is walking at the rate of 4 mis. per hour

directly away from a lamp-post 10 ft. high. Find the magnitude of

the velocity of the extremity of his shadow.

Ans. 10 mis. per hour.

9G. Change of the Point ofReference.—Velocity, being

defined in terms of displacement, can be specified only by
ref(M*ence to some chosen point, which point of reference

it is frequently desirable to change.

Since the direction and magnitude of a velocity are

the direction and magnitude of a displacement, viz.,

either one vv^hich actually occurs in a unit of time, or

one which would occur in that time were the velocity

not variable, the propositions established in 71-74 for

displacements apply also to velocities. Hence,

(1) The velocity of one point relative to another is

equal and opposite to the velocity of the second relative

to the first.

(2) If two sides of a triangle, taken the same way
round, represent the velocities of P relative to Q, and
of Q relative to respectively, the third side, taken
the opposite way round, will represent the velocity of

P relative to 0.

(3) If two sides of a triangle, taken the same way
round, represent, the first the velocity of P relative to

0, and the second a velocity equal and opposite to that
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of Q relative to 0, the third side, taken the opposite way
round, will represent the velocity of P relative to Q.

In the special case in which the velocities of F and (^

relative to have the same direction, the velocity of J*

relative to Q will be equal to the difference of those of

P relative to and of Q relative to ().

97. Examples.

(1) A la inoviii<( with velocity 1' in a nortli -easterly direction, B
with an equal velocity in a direction 15" ea.st of south. Show that

vl's velocity relative to B has a maf^nitude l\/3 and is in a direc-

tion N. 15° K.

(2) Two points are niovin<.j with ef^ual uniform speed i\ the on»5

in a circle of radius r, the otlier in a tangent to the circle. Both

start at the same instant in the same direction from the point of

contact of their paths. Find their i itive velocity after t units

of time.

Ans. 2*; sin -, in a direction inclined to the tangent at an angle

(3) One railway train is running at 20 mis. per hour in a northerly

direction. Another running at half the speed appears to a passenger

in the former to be running at 25 mis. per hour. Find the direction

of the velocity of the latter.

Ans. 71° 47'-4 W. or E. of N.

(4) To a person travelling at 8 mis. an hour along a road tending

west, the wind appeared to come from the N.W. On his standing

still, it seemed to shift 5° to the north. Find its velocity.

Ans. 64-905 nds. per hour S. 40° E.

(5) A man walkd at the rate of 4 mis. per hour in a shower of

rain. If the drops fall vertically with a speed of 200 ft. per sec, in

what direction will they seem to him to fall ?

Ans. In a direction inclined 1° 40'*8... to the vertical.

i
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(0) Two candlcM, A .and //, ciitli I ft. [ni\<f and iV(iuirin<( 4 and (5

Iioiu'H n)s|)(!c;tivt'ly to bui-ii out, stand vi'itically at a distaiico of I

ft. The sliadovv of JJ falls on a vertical wall at a <li.staiu;«( of 10 ft.

from li. Find the s])e(>d of the end of the shadow.

Ana. 8 inclie-s per hour.

(7) Two equal circles touch each other. Two niovin^r point-s start in

Mj)j)osite directions from the point of contact and move on the circles

with equal uniform speeds. Prove that the path of each, relative

to the other, will be a circle whose ra«lius is equal to the dianjeter

of either of the tirst circles.

98. Composition of Velocities.—A point has two or

more component velocities ; it is required to find its

resultant velocity.

As in 9G, it may be shown that the propositions proved

in 78 to be applicable to displacements are applicable

also to velocities. Hence

(1) If two sides of a triangle, taken the same way
round, represent two component velocities, the third side,

taken the opposite way round, will represent the resul-

tant velocity. This proposition is known as the triangle

of velocities.

(2) If two component velocities be represented by two
adjacent sides of a parallelogram taken opposite ways
round, the diagonal of the parallelogram through their

point of intersection will represent their resultant. This

proposition is known as the ijarallelograinii of velocities.

(3) If any number of component velocities be repre-

sented by n — \ of the sides of a polygon, taken
the same way round, their resultant will be represented

by the n^^'^ side, taken the opposite waj'^ round. This

proposition is known as the 'polygon of velocities.

99. Resolution of Velocities.—It follows also that

velocities may be resolved into components in the same
manner as displacements (see 79-84).
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100. From tho abovo proposifcion.s (08) tliero may be
deduced trigonometrical and analytical expressions for

tho magnitude and direction of a resultant velocity in

terms of the magnitudes and inclinations of the compon-
ents, just as in the case of displacements. All the formulae
of 85-90 hold if we take d^ and <J,^ to represent component
velocities and M to represent the resultant velocity.

101. In the important case in which the position of a

moving point is s[)ecified by reference to fixed rectangular

axes, Ox, Ofj, Oz, the components of the instantaneous

velocity of the moving point in the directions of the x, y,

and z axes are (93) equal to the rates of change of the

./', y, and z co-ordinates. The}' are thus denoted by x, y, z.

102. Fxam'ples.

(1) A })()iiit has three c()iu})onent velocities, A, /?, aiul C in one

]>lane. Their magnitudes are 4, 5, and 6 respectively, and their

directions are such that ^i is inclined 30" to B, and C 60° to B cand

00° to /I. Find (a) the resultant of J and B, (6) the resultant of

all three, and (c) the component of the resultant in the direction

oiB.

Ans. (a) (41 + 20x/3)^ inclined to A at «"'"^2(41 +'20v/3yi ' ^^^

(107 + 20^3)* incHned to Cat tan-i^-t^„^^
;

(c) 8 + 2^/3.

(2) A boat's crew row 3^ mis. down a river and hack again in

1 hour 40 min. If the river have a current of 2 mis. per hour, find

the rate at which the ciew would row in still water.

Ans. 5 mis. per hour.

(3) A river 1 ml. broad is running at the rate of 4 mis. per hour
;

and a steamer which can make 8 mis. per hour in still water is to go

.straight across. In what direction must she be steered ?

Ans. At an angle of 60° to the river bank.

(4) A ship has a north-easterly velocity of 12 knots an hour.
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Find tlie ina^nitiulo of \wv vi-locity (^0 in an nistt'rly (liivction,

(6) in u direction l.V W. of N.

Ans. (a) (] ^2, and (b) (1, knots per liour.

(5) From a .sliip Htcaniin^ oast at 10 nds. an hour a shot is to'ho

fired HO as to Htrike an o])joct which hearH N.K. If the ^iin,

properly elevated, can give the shot a mean horizontal velocity of 88

ft. per sec, towards what point of the compass must it he directed V

Ann. N. .38' 13'!)... E.

103. Moment of a Velociti/.—The moment of the

velocity of a moving point about a given fixed point

(24) is the ])roduct of tiie magnitude of the velocity into

the perpendicular from the given point on a line through
the position of the moving point at the instant under
consideration, and in the direction of its motion.—Let 1*

be the position of the moving point at the instant under
consideration, A that of the fixed

point. Let PC be the direction of

the velocity, and v its magnitude.
Let p be the length of the perpen-
dicular AB from A on PC. Then
the moment of v about A is |w. If

PC represents the velocity in mag-
nitude as well as direction, the magnitude of the moment
of the velocity is evidently represented by twice the area

of the triangle PA C.

If the moving point have a velocity represented by CP
instead of PC, the moment of its velocity about A will be

of the same magnitude. To distinguish between the

equal moments of velocities represented by PC and by
GP, they are considered to be of opposite sign. If the

motion of the moving point is such that the radius vector

AP moves counter-clockwise (i.e., in the opposite direc-

tion to that of the hands of a clock), the moment of its

velocity is considered to be positive. If its motion is

such that the radius vector moves clockwise, the moment
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i

of its velocity is consid(3red to be negative. Thus the

moment of the velocity PC is —jw; that of the velocity

OP would be +^w.

104. The moment of the velocity of a moving point

about a given line or axis, fixed in space (24), is the

moment of the component of the velocity

in a plane perpendicular to the given line

about the point of intersection of that

plane with the given line. If P is the

,josition of the moving point at the instant

under consideration, V its velocity, OA
the given line, v the component of F in a
plane perpendicular to OA, A the inter-

section of OA with that plane, and AB (length =p) the

perpendicular from A on v, the moment of V about OA
is the product pv. The same convention of signs is em-
ployed as ir 103.

105. The algebraic sum of the moments of two com-
ponent velocities about any point in their plane is equal

to the moment of their resultant about the same point.

—

Let OA, OB be two component velocities whose resultant

is 00, and P any point in their plane, either (Fig. 1)

outside or (Fig. 2) inside the angle between the resultant

and either of the components. Then, by a familiar

»;eometrical proposition,* the sum of the triangles OAP
* If a point /* be taken in the })Iane of a parallelogram OACB^

and lines drawn from it to the angular points, the area of the
triangle OCP is equal to the simi or the difference of the areas of

the triangles GAP, GBP, according as these triangles are on the
same side or on opposite sides of OP. For

area 0/'(7=area OJC+area JPC± area OAP;
and, since the base OB of the triangle GBP is equal and parallel to

the base AC of tlie triangles GAC and A PC, and the altitude of

GBP equal to the sum of the altitudns of OA C and A PC,

area GBP^area GAC+nren A PC.
Hence, area GPC= area GBP ± area OA P.
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and OBP in Fig. 1, and their difference in Fig. 2, is equal

to the triangle OPC. But these triangles are propor-

tional to the moments of the velocities OA, OB, OC

r''E,l

Fig.I Fig.2

respectively. And these moments have, in the ease of

Fig. 1, the same sign, and in that of Fig. 2, opposite signs.

Hence the algebraic sum of the moments of OA and OB
is equal to the moment of 00.

The cases in which the point P is on the line OA or

the line OC may be left to the reader. In the former, the

moment of the one component is zero, and that of the

other is equal to the moment of the resultant. In

the latter, the moment of the resultant is zero, and the

moment of the one component is equal and opposite to

that of the other.

This proposition may obviously be extended to any
number of component velocities in one plane.

106. If the position of the moving point P is specified

by reference to fixed rectangular

axes. Ox, Oy, in the same plane

with P's velocity, its co-ordinates

being x, y, its component velocities

in the directions of the axes are

X and y respectively, and their

distances from 0, y and x re-

spectively. Hence the moments
of the components about are

^ *

(103) —xy and -\-yx respectively. The moment of V
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(the velocity of P) about is therefore (105) yx— xy.

If V is not in the xy plane, yx— ic?/ is obviously equal to

its moment about the axis of z.

K > •

107. The algebraic sum of the moments of any number
of component velocities about any lixed axis is equal to

the moment of their resultant about the same axis.—Let

the component velocities of the point P be represented

by PA, A B, BO, and its resultant

velocity therefore by PC.—Let a,

b, c be the feet of perpendiculars

from A,B,G on the plane through

Q P perpendicular to the given fixed

axis OQ. Then Pa, ah, be, Pc are

the components of PA, AB, BG,
PC in this plane. Since Pa, ab,

be are in a plane perpendicular to

the axis, the moment of Pc about

the axis is (105) equal to the

algebraic sum of the moments of

Pa, ab, and be. And since Pa,
ab, be, Pc are the components, in

the aforementioned plane, of PA

,

AB, BO, PC respectively, the

moments of the former about tjie given axis are equal

respectively (104) to the moments of the latter. Hence the

moment of PC about the given axis is equal to the alge-

braic sum of the moments of PA, AB, and BO.

i''\

108. Examples.

(1) AB is a diameter of a circle of which BC is a chord. When
is tlie monieiit about A of a velocity represented by BC the

greatest ?

Alls. When angle ABC=4rf.

(2) A moving point P has two component velocities, one of wliicfi

is double the other. The moment of the smaller about a point O
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ill their plane is double lliat of the greater. Find the uiHgiiitude

and direction of the resultant.

Ana. If a and ^ are the inclinations of the greater and smaller

components respectively to I'O, the resultant is \/5 -I- 4 cos (/^ — a)

times the smaller component, and is inclined to 1*0 at the angle

sm_j 2 sin o + sin /3

\^5T4'cos (/iJ - a)'

(3) If the component velocities of a moving point can be repre-

sented by the sides of a plane polygon, taken the same way round,

the algebraic sum of their moments about any point in their plane

is zero.

(4) Show that, if the algebraic sums of the moments of the

component velocities of a moving point about two points P and Q
he each zero, the algebraic sum of their moments about any point

ill the line PQ will also be zero.
I

'
!

I

M,

V'. r,\i:

109. Clumge of Velocity.—The velocity of a moving
point in general changes from instant to instant both in

magnitude and in direction. Let PjP^P.^ be the path of

a point, and let F^, which touches the path at P^, repre-

sent the velocity of the point at P^ ; and let l"„ T^.,

E

.%

\

...
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similarly represent the velocities of the point at Po and
7*3 respectively.

The change in the point's velocity, which has occurred

in the time occupied by the point in moving from Pj to

i-*2. i« that velocity which must be compounded with the

initial velocity F^ to produce the linal velocity Fg.

Take any point ; from it draw OQ^ and OQ2, equal to

and codirectional with V^ and Fg. Join Q^Q2. Then
(98) the final velocity OQ.2 is the resultant of the two
components OQ^, the initial velocity, and Q^Q.2- Hence,

QiQ2 represents the change of velocity which the point

has experienced between P^ and P2.

The change of velocity must be carefully distinguished

from the change of speed. The change of speed in the

above figure is V^— V^ and is represented by 0Q2— 0Q^.

110. Acceleration.—The integral acceleration during

a given time is the change of velocity undergone by the

moving point during that time.

The mean acceleration during any time is a quantity
whose magnitude is the quotient of the integral accelera-

tion by the time, and whose direction is that of the
integral acceleration. Thus, if t units of time are

(109),

direc-

tion of Q1Q2 and of the magnitude Q^Qjt. If t+ t'

units of time are occupied in moving from P^ to P.^, and
if 0^3 is drawn equal to V^ and in the same direction,

then the mean acceleration during these t+ t' units of

time is in the direction Q^Q.^ and of the magnitude

QiQj(t+tr

Thus the mean acceleration of a point varies in general

both in magnitude and direction with the interval of

time to which it applies. In the special case in which
it varies neither in magnitude nor in direction, the point

is said to move with uniform acceleration.

occupied by the point in moving from P^ to Pg
the mean acceleration during that time is in the

'
i,
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The instantaneous acceleration of a moving point at a

given instant (called usually the acceleration simply) iy

a quantity whose magnitude and direction are the limit-

ing magnitude and direction of the mean acceleration

between that instant and another when the interval of

time between them is made indefinitely small. As (295)

in the case of a body a finite time is recjuired for a finite

change of velocity, the instantaneous acceleration of a

body can never have an infinite value.

If the point is moving with uniform acceleration, the

instantaneous acceleration at any instant has clearly the

same magnitude and direction as the mean acceleration

for any interval.

Acceleration, having both magnitude and direction, is

a vector (70), like displacement and velocity.

111. Measurement of Acceleration.—The specification

of an acceleration involves specification both of its mag-
nitude and of its direction. Its direction may be described

in terms of the unit of angle (21). Its magnitude being
the quoti'nt of the magnitude of a certain velocity by an
interv al of time, is a quantity of the same kind as a rate

of change of speed (52), and may therefore be measured
in terms of the unit of rate of change of speed (5G). This
unit is thus called also the unit of acceleration; and the

results of 57, 58 hold for units of acceleration.

112. Examiiles.

(1) The initial and final velocities of a moving point during an

interval of 2 hours are 8 mis. per hour E. 30° N., and 4 mis. per

hour N. Find (a) the integral, and (6) the mean acceleration,

Ans. (a) 4/v^3 mis. per hour W.
; (/;) 2.^3 mls.-perdiour per

hour W.

(2) A point moves in a horizontal circle with uniform speed v,

starting from the north point and moving eastwards. lind the

"i'

! •.!<
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! . ,

intef,M*al aceeleratioii when it liaH moved through (n) i quadrant,

(/>) a Heniicircle, (a) three (juadrantH.

Ans. (^0 ''V^, «.W.; (b) -Ir, W.
;

(c) v J2, N.W.

(3) The vehicity v of a point moving in a straight line being

supposed to vary as the square root of its distance s from a fixed

point in the line, show that its instantaneous acceleration in any

position is ecjual to v^j2s.

(4) The velocity of a point moving in a straight line varies as

the square root of the i)roduct of its distances from two fixed points

in the line, show that its instantaneous acceleration varies as the

mean of its distances from the fixed points.

113. The Hodograph.—The variation of the velocity of

a moving particle from one position to another of its

path may be studied by means of an auxiliary curve,

called the hodograph of the path.

The velocity of a particle must have (295) indefinitely

nearly the same magnitude and direction at points of its

path which are indefinitely near. If therefore (109) the

angle between OQ^ and OQ.2 is indefinitely small^ the

length of OQ^ must be indefinitely nearly equal to that

of OQ.^. Hence the locus of the end Q of the line OQ,
which represents the velocity of the moving particle P in

its successive positions, must be a curve of continuous

curvature. This curve is called the hodograph of the

path. Tlie point is called the pole of the hodograph.

The hodograph has two important properties which
majT- be proved as follows :—The straiglit line Q^Q.^ le-

presents in magnitude and direction tlio integral accele-

ration during the time r occupied by P in moving from

Pj to P2, and Q^Q.Jr represents the magnitude of the

mean acceleration during the same time. When P^ is

taken indefinitely near P^, the direction of Q^Q^ is the

direction, and the magnitude of Q^Q.Jr is the magnitude,

of the acceleration of P at the instant at which it is at
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Pj. But when P., is taken indefinitely near 1\, and
therefore Q^ indefinitely near Qj, the direction of Q^Q.y

is that of the tangent to the hodograph at (^,, and the

magnitude of Q^Qy/r is that of the velocity at Q^ of the

point Q in the hodograph. Hence (1) the direction of

the accelei'ation of the moving point P at the instant at

which it occupies a given position in its path is that
of the tangent to the hodogra[)h at the corresponding
position of Q, and (2) the magnitude of the acceleration

of P at the instant at which it occupies a given position

in its path is equal to the magnitude of the velocity of Q
at the corresponding position in the hodograph.

114. Examples.

(1) Show that the liodogiapli of a point moving with uniform

speed in a straight i)ath reduces to a point.

(2) A point moves with uniform acceleration, either in a straight

or in a curved i)ath. Show that tlie hodograph of tlie path is a

straight line, and that the point in the hodograph moves with

uniform speed.

(3) The hodograph of a i)oint wliich moves with uniform speed

in a circle, is a circle, in which the corresponding point moves also

with uniform speed.

(4) If a point move in either a parabola, an ellipse, or an hyper-

bola, so that the moment of its velocity about a focus is constant,

the hodograph is a circle. [Note that the locus of the foot of the

perpendicular from a focus on a tangent is a circle in the case of

either the ellipse or the hy})erbola, and in the case of the parabola

a straight line. Note also that the locus of the foot of the perpen-

dicular from the vertex of a parabola on a straight line drawn

through the focus is a circle.]

(5) The hodograph of a point moving in an ellipse so that the

moment of its velocity about the centre is constant, is a similar

ellipse. [Note that the area of the parallelogram formed by

drawing tangents to an ellipse at the extremities of a pair of con-

jugate diameters is constant.]
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115. (>han<je of the Point of liefcyencc.—Acceleration
being siin})ly tlie velocit}'' whicli must be coinpounded
with the velocity of a moving point at a given instant,

to produce the velocity which it either has after unit of

time, or would have if the acceleration were uniform, the

propositions (9G) dealing with the change of the j)oint of

reference in the case of velocities, apply also in the case

of accelerations.

IIG. CoTYiposition and Resolution of Accelerations.—
Similarly the laws of the composition of velocities (9(S)

may be shown to be those according to which accelera-

tions also are compounded. We have thus propositions

called the triangle, the parallelogram, and the p)olygon

of accelerations identical in form with the corresponding
propositions for velocities. Hence also accelerations may
be resolved after the same manner as velocities (99) ; and
the formulae of 85-90 hold, if <\, d.^^ etc., and R denote
component and resultant accelerations.

117. The component of an acceleration in any direction

is equal to the rate of change of the component in that

direction of the velocity.—Let
OP and OQ be the initial and
final velocities of a moving point

'Q during a given time. Then PQ is

the intef^ral acceleration. Draw-
ing OR, QT at right angles to anv
line PR, we have PT=RP-Rf.
If then T be the time,

PT/t = (RP-RT)/t.

Now PT, RP, and RT are the components in the line

PR of PQ, OP, and OQ respectively. If r is indefinitely

short, P2)r is thus the component of the instantaneous

acceleration in the direction l^R, and {RP— RT)/r is the

instantaneous rate of change of the component velocity

in the same direction.
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118. If tho position of a nioviiiuf point be spccitiod by
reference to rectangular axes Oj% ()//, Oz, its component
accelerations in tiieir directions will therefore be equal

to the rates of change of its component velocities in

their directions, namely of d', y, z respectively. They
are therefore (55) ."/•, y, z.

119. Examfiples.

(1) A ball is let fall in an elevator wliii-h is risiiii;' with an

acceleration of 72 kilometreH per niin. The acceleration of the

falling ball relative to the earth is 081 cni.-.sec. units. Find its

acceleration relative to the elevator.

Ans. 1,181 cm. -sec. units towards the floor.

(2) Two railway trains are niovin,;;' in directions inclined 60".

The one A is increasing its speed at the rate of 4 ft.-per-niin. pei-

niin. The other B has the brakes on and is losing s[)eed at the rate

of 8 ft.-i)er-niin. per nun. Find the relative acceleration.

Ana. 4,^/7 ft.-min. units inclined sin~^» /'_ to the direction of

TT /3
motion of A, and -sin~\ /'- to that of B.

(3) The locus of the extremity of the straight line representing

either of the two equal components of a given acceleration, is a

straight line perpendicidar to the straight line representing the

given acceleration and through its middle point.

(4) A bullet is fired in a direction towards a second bullet wldeli

is let fall at the same instant. Prove that the line joining them

will move parallel to itself and that the bullets will meet.

(5) Find the resultant of four component accelerations, re})resente(l

by lines drawn from any point 1* v/ithin a parallelogram to the

angular points.

Ans. If C is the point of intersection of the diagonals, /'C repre-

sents the direction of the resultant, and APC its magnitude.

(0) The resultant of t\vo accelerations a and a' at i-ight angles

:.%[
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a=F^

If it is the component in the direction A I) of the mean
acceleration between P and Q, and f the time of motion
from r to Q, we have tlms

Now ultimately the time of motion from V to Q may be
put cfpial to 1 Q/V. Hence, calling PQ, h, we have

sin e ]

Also ultimately FQ may be considered an arc of a circle,

and PO, Q(J become ecjual to one another and to the

radius of curvature (p) of the j)ath at P, in which case

8=:pO. Hence
jsine 1

cos (0/2)
• pO'

Also, 6 being indefinitely small,

sin 0,0 = cos (0/2) = 1.

Hence a- V^^/p.

Now a, being the mean acceleration in the direction AD,
becomes ultimately the instantaneous acceleration normal
to the path at P. Hence the normal component of the

acceleration of a point moving in a curved path is the

product of the square of its velocity into the curvature of

its path.

121. If the path be a circle, the radius of curvature

is the radius of the circle. Also a normal to the circle

through any point passes through the centre. Hence
the acceleration of a point moving with uniform speed

in a circle is directed towards the centre, and is equal to

the quotient of the square of the speed by the radius.

(The reader should prove this special case directly.

Thomson and Tait ("Elements," § 30) prove it by
means of the hodograph.)
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i

If T be the time of a complete revolution (the periodic

time) of the point in the circle, and if V be the uniform
speed and R tho radius, F= ^irRjT. Hence the accelera-

tion has the magnitude ^tTt^R/T-^. (See also 131.)

122. Examjyies.

(1) A circus rider ih moving with tlie uniform speed of a mile in

2 min. 40 sec. round a ring of 100 ft. radius

towards the centre.

Ans. 10"81) ft.-sec. units.

Find his acceleration

(2) Sliow that a shot fired at the equator with either a westerly

velocity of 8,370"7 metres per second, or an easterly velocity of

7,440T) m. ])er sec, will, if unresisted, move horizontally roii^^d the

earth, completing its circuit in ahout IJ or Ih hours respectively.

[Data: The mean radius of the earth is 6,370,900 metres; the speed

of a j)oint on the equator 465*1 m. per sec. ; and the acceleration of

a falling body 9'81 m.-sec. units.]

(3) A i)oint moving in a circular path, of radius 8 in., has at a

given i)osition a speed of 4 in. per sec, which is changing at the

rate of 6 in.-per-sec per sec Find (a) the tangential acceleration
;

(b) the normal acceleration
;

(c) the resultant acceleration.

Ans. {a) 6 in.-sec units
;

(b) 2 in. -sec. units
;

(c) 2 n/IO in.-sec,

units, the direction being inclined at tan~i3 to the normal.

(4) If different points be descrihing diffei ent circles with uniform

speeds and with accelerations proportional to tlie radii of their

paths, their periodic times will he the same,

123. The onoment of an acceleration is defined in

exactly the same way as the moment of a velocity. See
103 and 104. Also the propositions of 105 and 107, being
deductions from the parallelogram law, apply to accelera-

tions ,as well as to velocities. And it may be shown, as

in 106, that, if the position of a moving point be referred

to rectangular axes of .co-ordinates, the moment of its

acceleration about the z axis is equal to y^ -- xy.

•.*'
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124. The mo'.nent of the acceleration of a moving point

ubout a fixed point in the i)lane of its motion is equal to

the rate of change of the moment of its velocity about
the same point.

For the final velocity in any time is the resultant of

the initial velocity and the integral acceleration, and
therefore (105) its moment about any point in their plane

is equal to the sum of their moments. Hence the moment
of the integral acceleration is equal to the difference of

the moments of the initial and final velocities ; and
therefore, dividing by the time and making it indefinitely

small, the moment of the instantaneous acceleration is

equal to the rate of change of the moment of the velocity.

125. Angular Displacement^^ ofa Point.—The angular
displacement of a moving point about a given point in a
given time, is the angle between
the initial and final positions of

the radius vector from the given

point. Thus., if the point has

moved from P^ to P.;, its angular

displacement, relative to 0, is

pfip,.

That an angular displacement q.

about a given point may be
completely specified, the magnitude of the angle must be
given through which the radius vector has moved, the

direction of the radius vector's motion, and the plane in

which its initial and final positions lie. This plane is

specified if a line normal to it be given ; and the direc-

tion of the radius vector's motion is specified if this line

is always so drawn from a point in the plane of the dis-

placement that, on looking along it^«B«P^OT5Pt^^laiie.

^^^^^^ Hliu.
* When there is danger of confi

with the displacements considered

displacements.
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the radius vector is seen to move counter-clockwise, i.e.,

in a direction opposite to tliat of the hands of a clock.

An angular dis[)lacemonG about a point may therefore be
completely represented by a line normal to the plane of

the displacement, whose direction is determined by the

above convention, and whose len,;'th is proportional to

the magnitude of the angular displacement. By the

direction of an angular displacement is meant the direc-

tion of this line.

1 1.^
12G. The angular displacement in a given time of a

moving point about a given line or axis, is the inclination

of perpendiculars from the initial and final positions of

the moving point on the axis. Let
OA be the given axis, P and Q the

initial and final positions of the

moving point, and PR and QS
perpendiculars to OA. Then the in-

clination of PR to QS is the angular

displacement about OA. Complete
the rectangle RQ by the lines Rq, Qq. Then (8), since

Rq is parallel to SQ, PRq is the angular displacement.

Since the plane of PqR is perpendicular to OA, and

Qq being parallel to RS is perpendicular to that plane,

Pq is the projection of PQ on that plane. Hence the
angular displacement is the angle subtended by the pro-

jection of the linear displacement on a plane perpen-
dicular to the axis, at the point of intersection of the axis

with that plane.

127. Angular Velocity of a Point*—The mean
angular velocity of a moving point about a given point,

during a given time, is a quantity whose direction is

that of the angular displacement during the time, and

* When there is danger of confounding the velocity of 92 with
angular velocity, the former is called linear velocity.
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whose magnitude is the quotient of the angular displace-

ment by the time.

The mean angular velocity varies in general with the

time. In cases in which it does not, the angular velocity

is said to be uniform.

If the motion of the moving point is confined to a

plane, its angular velocity must have one of two opposite

directions. In other words, it can vary only as to mag-
nitude and sign.

The instantaneous angular ".elocity of a point at a

given instant has a magnitude and a direction, which
are the limitiuf; macjnitude and direction of the mean
angular velocity between that instant and another, when
the interval of time between them is made indefinitely

small.

The mean and instantaneous angular velocities about
a given axis are defined in a manner similar to that in

which they are defined with reference to a given point.

128. Measurement ofAngular Velocity.—The measure
of an angular velocity being the quotient of the measure
of a certain angle by that of a certain time, the most
convenient unit of angular velocity will be unit of angle

per unit of time. The unit of angle which is usually

employed in measuring angular velocities is the radian.

Unit of angular velocity in terms of the radian is one
radian per unic of time.

As the magnitude of the radian is (21) independent of

that of the unit of length, the magnitude of the radian

per unit of time depends only upon that of the unit of

time and is inversely proportional to it.

129. Relation between A ngular and Linear Velocity.—
Let the moving point P be displaced from P, to P^ in

the time t with the mean linear velocity v, and the

Vi
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moan angular velocitj?- w about the jioint 0. Then
(o= 2\OP.:t, and the cliord I\l\, = vt From 7\ draw

y^^i\^ perpendicular to 07^. Then, if the angle P^P.^N
be called 6,

P^N= PJ\/me = vtsme.

Hence sin PfiP.2= vt sin 0/OP,.

If now P2 be indefinitely near Pj, w and t' become
instantaneous velocities at P^, 6 becomes the angle

between the radius vector and the direction of the linear

velocity at P^, and sinPjOP2 becomes equal to PfiP^.
Hence, if r is the radius vector, w=v^\nBlr. Hence
the angular velocity of a moving point about a given
point, expressed in radians, is equal to the component of

its linear velocity perpendicular to the radius vector

from the given point, divided by the length of the radius

vector.

130. If the point be moving in a circle, its linear

velocity is at all points perpendicular to the radius

vector from the centre. Hence, if v is the radius and
ft) the angular velocity about the centre, w = v/r.

131. Hence the normal component of the linear accele-

ration of a point moving in a circle, which (121) is equal
to v^/r, is, in terms of angular velocity about the centre,

equal to (oh\

132. Moment of Velocity in Terms ofAngular Velocity.

—Since PJ^Jt (129), when t is small, is the velocity of
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the moving point, its moment about is twice the are

of the triangle OP^P^ divided by the time. Hence, if ]}

be written for the moment,

2yv= OP. . P^NIt = vr sin 6 = wrl

133. Arcal Velocity.—The area swept out by the

radius vector of a moving point per unit of time, is

sometimes called its areal velocity. It follows from 132
that the areal velocity of the point P (129) is represented

by area OPJPJt and is equal to |<o?'^.

134. These results (129-133) apply also to angular veloci-

ties about axes, provided v stand for the component linear

velocity in a plane perpendicular to the given axis, and r
for the perpendicular distance of the point from the given
axis.

135. Angular Acceleration of a Point.—We might
define the angular acceleration of a moving point about
a given point, as we did its angular velocity, generally.

We restrict ourselves, however, to the useful case of the

angular acceleration about a given axis. An angular
velocity about a given axis must have one of two opposite

directions, and can vary therefore in magnitude and sign

only. Hence the integral angular acceleration about a

given axis is the difference between the final and initial

values of ohe angular velocity about that axis; the mean
angular acceleration in a given time is equal to the in-

tegral acceleration divided by the time ; and the magni-
tude of the instantaneous angular acceleration at a given
instant is the limiting value of the mean angular accelera-

tion between that instant and another when the interval

of time between them is made indefinitely small, or in

other words it is the rate of change of angular velocity.

The angular acceleration of a point moving in a plane

about a given point in that plane is an angular accelera-

tion about a given axis.
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J 36. Measurement ofA ngularAcceleration.—The most
convenient unit of angular acceleration is clearly unit of

angular velocity per unit of time, e.g., one radian-per-sec.

per sec. With the radian as unit of angle its dimensions
are [7'] -2.

137. Examples.

(1) Tlie earth makes a complete rotation in 86,164 mean aolar

seconds. Assume her radius to be 6,370,900 metres, and find (a)

the angular velocity, and (6) the linear velocity of any point on

the equator.

Ana. (a) ,„-,^ radians per sec. ; (6) 465"1 m. per sec.

(2) A wheel of a carriage wliich is travelling at the rate of 7

nils, per hour is 3 ft. in diameter. Find the angular velocity of

any point of the wheel about the axle.

Ans. 6'8... rad. per sec.

(3) Compare the angular velocities of the hour, mi?^ute, and

second hands of a watch.

Ans. As 1 : 12 : 720.

(4) Express in terms of the radian per second an angular velocity

of 20° per min.

Ans. 20-94....

(5) A point is moving with uniform speed v in a circle of radius

/•. Show that its angular velocity about any point in the circum-

ference is vi'2r.

(6) The angular velocity of a point moving with uniform speed

in a straight line is inversely proportional to the square of the

distance of the point from a fixed point not in the line.

(7) Show that the angular velocity of the earth about the sun

is proportional to the apparent area of the sun's disc. [Datum :

The radius vector from the sun to the earth sweeps over equal

areas in equal times.]
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(H) If the ^x'locity of ;i j)artiele hv resolved into Hoveral coni-

{xjiienta in one plane, its angular velocity about any fixed pohit in

the plane is the Huni of the ani^ular velocities due to the several

eonijjonents.

(9) A whe I makes 2W revolutions per hour. Express its angular

velocity (a) in radians per see. ; (h) in degrees per nun.

Ans. (rO^; (b) 1,200.

(10) Reduce an angular acceleration of 300 radiaus-per-min. per

min. (a) to revolution-hour units, (6) to degree-second units.

540,000 _
... 15

Ans. (a) A^) T

(11) A point P moves in a parabola with a constant angular

velocity about the focus S. Show that its linear velocity is pro-
s

portional to ,SP'.
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CHAPTER IV.

TRANSLATION :—MOTION UNDER GIVEN
ACCELERATIONS.

138. Unconstrained Motion.—The motion of a point

under given accelerations will depend upon the degree of

its freedom to move (35). We shall take, first, cases of

unconstrained motion, the moving point having all thrto

degrees of freedom.

Case I.—The Acceleration being Zero.—If there is no
acceleration, there is no change in either the magnitude
or the direction of the velocity. The path is therefore a
straight line, and the magnitude of the velocity is con-

stant. Hence the mean and instantaneous velocities,

and therefore also the mean velocity and mean speed,

have the same values (93 and 43). The results of 61 are

thus at once applicable to this case.

139. Examples.

(1) A point moves with a uniform velocity of 2 cm. per sec.

Find the distance from the starting point at the end of 1 hour.

Ans. 72 metres.

(2) Two trains liaving equal and opposite velocities, and con-

sisting each of 12 carriages, of 23 ft. length, are observed to take 9

sec. to pass one another. Find the magnitude of their velocities.

Ans. 20"91 mis. per hour.

I
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(3) Two points inovo vvitli \uiifonn veltioitics of 8 ami lo ft. ]>(i

sec. ill straight linos inclined J)0°. At a <f'\\vi\ in.stant tlioii-

distance is 10 ft., and their relative velocity is inclined 30° to the

line joining them. Find (a) their distance when nearest, and (/>)

tlie time after the given instant at which their distance will he

least.

5
Ans. {k) .') ft.

; (6)
*- ^/3 sec.

140. Case II.—The Acceleration Uniform.-—The motion
of a point under a uniform acceleration will be different

according as the point has or has not at any instant a

velocity inclined to the direction of its acceleration.

(a) Rectilinear motion.—If at any instant the velocity

of the moving point is in the same straight line with the

acceleration, the path is a straight line. For (109) OQ^
and Q1Q2 being in the same straight line, so also are OQ^
and Oft. Hence the velocity does not vary in direction.

Also, i)Qfi.2. being a straight line, QiQ.,
= OQ.,— OQy If

then t is the time in which the velocity changes from

OQ^ to OQ..,

(lQ,lt=^{0(l-OQ,)it-

and t being taken indefinitely small, we find that the

instantaneous acceleration is equal to the rate of change
of the magnitude of the velocity, and therefore (93) to

the rate of change of speed. Hence the results of GS-fiii

are applicable to this case.

We have a familiar instance of the motion under con-

sideration in the motion of bodies vertically upwards or

downwards through short distances at the surface of the

earth, except in so far as their velocity is modified by
the resistance of the air. For all bodies fallinec freelv

near the surface of the earth are found to have a down-
ward acceleration of about 32'2 ft.-sec. units, or 981

cm.-sec. units. When represented by a symbol, the

^%
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special symbol (j* is usually employed to donoto this

aceolcration.

.

141. Examylci^A-

(1) A body j'h iirojc'cted vi!i(i(;;illy mtwards witli a velocity of HOO

ft. per sec. Find {<i) its velocity aftiu' 2 nee.
; (6) it.s velocity after

l."") sec.; (c) the time required for it to reach it.s greatest height;

{(i) the greatest height reached
;

{e) Mh disiilacenieiit at tlie end of

ir> aec.
; (/) the .space traversed by it {l.e.^ the length of path

described) in the tirst b5 sec. ; {(j) its disjdacenient when its velocity

is 200 ft. per sec. ujjwards
; (h) the time required for it to attain a

di.splacemcut of 320 ft. [Note tliat if the upward direction be

taken as ])o.sitive, the acceleration in thi.s case is negative.)

Aufl. {(t) 235-f) ft. per sec. upwards
;

{b) 183 ft. per sec. down-

wards
; (c) 9-3... .sec; {d) 1,307-") ft.; {e) 877T) ft. upwards; (/)

l/jn-S ft.; {g) 770-3 ft. upwards; {h) 1-13 .sec. in a.scending, 17'5

sec. in descending.

(2) A ball is j)rojected vertically upwards from a window half

way up a tower 117-72 metres higli, with a velocity of 39'24 m. per

sec. After what times and with what .speeds <h>es it («) pass the

top of the tower ascending
; (6) })a,ss the same point descending

;

and (c) reach the foot of the tower ?

Ans. (a) 2 sec, 19*62 ni. per .sec; (6) G sec, 19'G2 m. per sec;

(c) (4 + 2*.y7) sec, 19-02 x ^77 m. per .sec

(3) A stone is dropped into a well, and the splash is heard in 3*13

.sec. Given that sound travels in air with a uniform velocity of 332

metres })er sec, find the depth of the well.

Ans. About 44-1 m.

* The value of g at any place near the earth's surface is given

approximately in centimetre-second units by the following formula,

in which \ is the latitude of the place, and h its height above sea-

level

g= 980-605(5 - 2-5028 cos 2X - 'OOOOOS/t.

t In problems on falling bodies the resistance of the air is not to

be taken into account. When the value of g is not given it is to be
taken as 32-2 ft.-sec. units or 981 cm.-sec. units.
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(4) 8Ii(iw tliiit !i l>oily, projt'cttMl vi'itically ujiwiinls, icciuiros

twice as 1(mi<,' a tiuii' to letiiiii to its iiiitiiil position as to reach tlie

hi;f|n!st point of its p.itli, mikI has, on retmiiiiii,' to its initial position,

a sj)ee(l e(pial to its initial speeil.

(5) A stone pi'ojected veiiically upwards returns to its Initi.ii

position in (I sec. Find (a) its liei<^ht at the end of the liist Mecond,

and (h) what additional initiid speed would liave kejit it 1 sec

Ioniser Ml th e air,

Ans. («)8()*r) ft.; {/>) HVl ft. per sec.

(()) A body let f;dl near the surface of a small planet is found to

traverse 204 ft. in the fifth ;ind sixth seconds. Find the accele-

ration.

Ans. 20"4 ft, -sec. units.

(7) A particle describes in the /<*•' second of its fall from rest a

space equal Uy j) times the space traversed in the (n- 1)"' second.

Fiiiil the whole space described.

Ans. (1-3^M8(1 -/))•-'].

(8) A body uniformly accelerated, and starting without initial

velocity, passes over b feet in the first p seconds. Find the time of

})as8ing over the next b ft.

Ans. p{ /^/2 — 1 ) sec.

(9) A ball is dropped from the top of an elevator 4'1)05 metres

high. Find the times in which it will reach the floor, (a) when the

elevator is at rest
; (6) when it is moving with a uniform downward

acceleration of 9"81 m. per sec.
;

(c) when moving with a uniform

downward acceleration of 4"905 m. per sec.
;
(d) when moving with

a uniform upward acceleration of 4"905 m. j)er sec.

Ans. (a) 1 sec.
; (6) co

;
(c) ^/'2 sec.

;
(d) .j ^ sec.

(10) If 5i, ^2 are the heights to which a body can be projected

with a given initial vertical velocity at two places on the earth's

.surface at which the accelerations of falling bodies are g^ and g.^

respectively, show that s^g^= s,^g„,

(11) A stone A is let fall from the top of a tower 483 ft. high.

•
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At the .sai:ie iii.staiit anotlicv stt)ne B in let fall from a window 161

ft. below the top. Huw loii<( before A will B reach the ground?

Ans. (^/«-2)>,/5 sec.

(Vz) A ball falling from the top of a tower had <leacended a ft.

when another was let fall at a point b ft. below the top. Show
that if they reach the ground together the height of the tower is

(a + hfjAa ft.

(13) If two bodies be projected vertically upwards with the same

initial velocity 1", at an interval of t sec, prove that they will meet

at a height'^(- .,--,).
z\g' 4/

(14) Two stones are falling in the same vertical line. Show that

if one can overtake the other it will do so after the .same lapse of

time, even if gravity cease to act.

(15) Bodies are projected vertically downwards from heights /ij,

/'.J, /<3, with velocities
<'i,

v.,, v^ respectively, and they all reach the

ground at the same moment. Show that

(Ai - k^l{v^ - v.^= {h, - hs)i(v., - v.^) --= (/^3 - /ii)/(r;j - Vi).

(16) T'.vo points move in straight lines with uniform accelerations.

Show that if at any instant their velocities are proportional to theii-

respective accelerations the path of either relative to the other will

be rectilinear.

(17) Particles are i)rojected vertically upwards from different

j)oints in a horizontal straight line AX, with velocities resp»ectively

proportional to the distances of the points of projection from A.

Pr(»ve that all the particles when at their highest points will be on

a parabola whose vertex is A.

142. (6) Curvilinear motion.—If the moving point has
at any instant a velocity inclined to the direction of its

acceleration, the direction of the velocity r^iust change
with the time, and consequently the path must be
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a curved line. For if OA is the initial velocity, and
AQ, AQ\ the integral accelerations after t and f units of

time respectively, OQ and OQ' are the velocities after

these intervals of time. And since AQ and AQ' have
the same direction, OQ and
OQ' must have different direc-

tions.

Nevertheless the component
' acceleration in any given di-

rection being uniform in this

case (140), the formulae of 63-66 apply to curvilinear

as well as to rectilinear motion, provided we restrict

our attention to a component motion in a given

direction.

Curvilinear motion under uniform acceleration is of

interest because it is the motion which projectiles near
the earth's surface woiild have, if they were not resisted

by the air, and if their accelerations were rigorously, as

they are approximately, the same at all points of their

paths.

143. Tofind the Velocity after any Time.—The moving
point has after the time t two component velocities, one
the initial velocity V, represented by OA (142), the other

the integral acceleration at (if a is the acceleration),

represented by AQ. If then the inclination of the two
be given, the resultant, represented by OQ, may be found
by 100.

144. To find the Displacement of the Point after any
Time,—The moving point will have two component dis-

placements after any time t, one due to the initial velocity

F, the other due to the acceleration a ; the one therefore

having the value Vt, the other the value ^at^. If their

inclination be known, their resultant may be determined
by 85.

'),-j>i 'j'^
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145. To Ji7td the Displacement in any ijlvc'ii Direc-

tion.'^—Let P be the iDitial

position of the moving point, PA
the direction of the initial velocity

F, and PB that of the acceleration

a. (We draw PB vertical because

of the importance of this problem
ill the study of projectiles.) Draw
PN perpendicular to PB. Let
PA be inclined to PN at the

angle ^.f It is required to de-

termine the displacement which
the point will reach in the direction of PM , inclined to

PN at the angle «.

The initial velocity has a component Fsin(0— a)
perpendicular to PM. The acceleration has a component
a cos a perpendicular to PM and opposite in direction to

the above component of the initial velocity. Hence, if i^

is the time at the end of which the displacement per-

pendicular to PM is zero, we have (64)

t
2Fsin(e-«)

a cos a

Now the point has in the direction PN a velocity Fcos
and no acceleration. Hence in the time t its displacement

in that direction is

^^^'"^^-«>xFcosft
a cos a

Let PN represent this displacement. Draw NM perpen-

dicular to PN. Then PM is the required displacement

* In gunnery the displacement of a projectile in a given direc-

tion is called its range on a given plane ; the time required to reach
that displacement is called the time of flight.

t In gunnery this angle is called the elevation of the projectile.
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in the direction PM. But FM^PNjcosa. Hence,
denoting PM by R,

^ 2F%in(e-a)cosO
il = 5 •

a cos-a

Expanding sin {6— a), adding and subtracting

Vhma/{a cos^a),

and remembering that 2 cos"0— 1 = cos 20, we find

J.
F2[sin(20-a)-sin«]M = -

:;

a cos-a

The required displacement is therefore determined in

terms of known quantities.

146. If the given direction be upon the other side of

PN, viz., that of the line PM' (the angle MTN being
equal to a), we obtain the result

p_F2[sin(20+ a)+ sina]

a cos^a

If therefore in this case the inclination of the given
direction to PN be considered negative, so that angle

M'PN= —a, we get the same expression for jR as in 145.

147. If 0' is such that 20' - a = 180°- (20- a), we have

sin (20'- a) = sin (20 -a).

Hence R will have the same value, whether the incli-

nation of the initial velocity to PN be or 90°- 0+ a.

With a given acceleration and an initial velocity of given

magnitude, there are therefore two directions of initial

velocity, and therefore two paths, by which the point

may attain a given displacement in a given direction.

148. The above expression for R involves F, a, and
a. If F, a, and a are given, is the only variable. The
magnitude of R will therefore depend upon that of 0.
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Now sin (20— a) has its greatest value when 20— a= 90°.

Hence, with a given acceleration and an initial velocity

of given magnitude, the displacement in a given direction

has its greatest value, viz., F^(l — sin a)/(a cos-a), when
= 45° 4- a/2. When has this value, 90'- + a has the

same value. Hence there is but one direction of initial

velocity by which the maximum displacement in the

given direction can be attained ; and that direction bisects

the angle between the direction opposite to that of the

acceleration, and the given direction.

149. In the important special case in which PM co-

incides with FK, we have a= 0. Hence

jR*=F2sin20/a,

and this displacement is attained whether the inclination

of PA to PN have the value or the value 90"- 0. The
greatest possible value of R in this case is V^ja, and it is

attained when the inclination of the initial velocity has
the value 45°.

150. The important practical problem of determining
the direction of an initial velocity of given magnitude,

with which the moving point will pass through a given
point, may be solved at once by means of the above
expression (145) for M. For the point, say M, being
given, PM (i.e., R) and a are known, and a and V being
given, all the quantities involved in this expression except

are known. We thus have for determining 0,

„ , . ,/aRGOs^a
, . \ , a= J sm

-
1

(—1^2 f- sin
«
J+ 9

•

As pointed out above, may clearly have either of two
values. In practice allowance must of course be made
for the resistance of the air.

* In gunnery the range on a horizontal plane.—The reader should
prove this special case directly.
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151. To Determine the Path of the Point.—The accele-

ration and initial velocity being given, the value of R in

the above expression (145) will depend upon that of a.

If different values be given to u, the displacements of the

moving point in known directions, and therefore as many
positions as we please of the point in its path may be
determined. Thus, as the reader who is familiar with
analytical geometry will see, this expression is an equa-

tion to the path of txie moving point expressed in polar

coordinates.

152. The path may be determined also by the follow-

ing geometrical method. Let P be the initial position of I V f

TO

le

ad

the moving point, and let PQ represent in direction the

direction of the initial velocity and in magnitude the

component displacement due to the initial velocity in t

units of time. Let QR represent the component displace-

ment due to the acceleration in t units of time. Then R
is the position of the point after t units of time. Now
PQ= Vt and QR^laf^. Eliminating t, we find

PQ2= (2F2/a)QR

This relation must hold for all values of t and therefore

for all positions of the moving point. But we know,
from the geometry of the parabola, that, if S is the focus

f.'t;

.*.;• -i*
i

mi I
••

it ^-

m
4 51 ^^
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of a parabola which touches QP in F and whose axis is

parallel to QR,
PQ^ = ^SP . QR

Hence the path of the moving point is a parabola which
touches PQ in P, has an axis parallel to QR, and has a
focus distant Vy2a from P. To find the directrix of the

l)arabola, we know that it must be perpendicular to QR
and at a distance from P equal to PS. Hence from P
draw PM parallel to QR and make it equal to V^l^a.
Then from M draw MM' perpendicular to PM. MM' is

the directrix. To find the focus S we know that PS and
PM must be equally inclined to PQ. Hence from P
draw PS, making the angle SPQ equal to MPQ, and
make PS equal to V^/2a. S is the focus of the parabola.

The directrix and focus being thus known, the parabolic

])ath is known.

153. The acceleration and the magnitude of the initial

velocity being given, PM will be constant. The length

of PS will also be constant, but its direction will vary
with the direction of the initial velocity. Hence the

different positions occupied by S, for different directions

of the initial velocity, lie on a circle whose centre is P
and radius PS.

154. We may apply the geometrical method to deter-

mine the displacement in a given direction with given
acceleration and initial velocity. Let P be the initial

position of the point, PA the direction of the initial
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velocity', M3r the directrix of the path. Then the focus

of the path must lie on the circle MAS. If then the

angle AFS is made equal to the angle MPA, S is the

focus. To find at what point the path cuts the given

direction Fon, it is necessary to find a point P' in Pm,
whose distance from S is equal to its distance from 3IM\
i.e., to find in Pm the centre of a circle which will pass

through S and touch MM'—a simple geometrical problem.

Let P' be this point and M'SS' the circle. Then P'iir=
P'S. Hence P' is a point on the parabola whose focus is

S, and therefore PP' is the displacement of the point in

the direction Pm.

As the circles meet in general in two points we have
MP=PS\ and MT'=FS\ Hence P and P' are also

points on the parabola whose focus is S'. Hence there

are two paths by which, with a given acceleration and
an initial velocity of given magnitude, a given distance

in a given direction may be attained. The direction of

the initial velocity which gives the second path is that

of the line bisecting the angle S'PM.

As the angle MPA increases, <Sf and <S' approach one
another and PP' increases in length. When MPA =APm,
S and 8' coincide, the circles merely touch, and PP'=

''Mi

mm
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PaS'+/S'P'. This is the greatest distance the moving point

can attain in the given direction with an initial velocity

of given magnitude ; and it can be attained obviously by
one path only.

The locus of P', when PP' is the greatest distance

which can be attained in different directions with an
initial velocity of given magnitude, is the curve inside

which all points can be reached by the moving point

with an initial velocity of the given magnitude, outside

which no points can be reached. It is evidently a para-

Q Q'

M
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Ans. 618*2 ft. per sec. inclined 148" 3fi'*G to the direction of the

initial velocity.

(2) Find the direction and maijnitude of the velocity of projection

in order that the projectile may reach its niaxinunn hoi<^ht at n

point whose horizontal and vertical distances from tlie starting;

point are h and h res[>cctively.

Ans. Direction inclined tan~*(2A/6) to the horizon, maj^nitudc

[(4/i2 + 6%/2/i]».

(3) A particle is projected horizontally with a speed of 32'2 ft.

per sec. from a point 128*8 feet from the ground. Find the direc-

tion of its motion when it has fallen half way to the ground.

Ans. Inclination to the vertical = tan~^.

(4) A stone is let fall in a railway carriage travelling at the rate

of 30 mis. per hour. Find its displacement relative to the road at

the end of 01 sec.

Ans. 4-4028... ft. inclined 2° 3'-4 to the horizon.

(5) A stone is thrown into the air at an angle of 45° to the

horizontal plane with a speed of 50 ft. per sec. Find the magnitude

of the displacement at the instant at which the stone's velocity is

horizontal.

Ans. 43-4... ft.

• (6) A gun is fired horizontally at a height of 144"9 ft. above the

surface of a lake and gives the ball an initial speed of 1,000 ft. pei-

sec. Find {a) after what time, and (6) at what horizontal tlistance,

the ball will strike the lake.

Ans. (a) 3 sec.
; (6) 3,000 ft.

(7) A stone thrown at an elevation of 1 9° from the top of a tower

falls in 5 sec. at a distance of 100 ft. from the base. Find (a) the

height of the tower, and (6) the speed of projection.

Ana. (a) 368-06... ft.; (6) 21-15... ft. per sec.

(8) The elevation of a projectile is that of maximum range on a

horizontal plane. Show that the time which elapses before it

reaches a point in its path whose horizontal and vertical distances

from its starting point are h and k respectively is ( -{h — k)j . i
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(0) Three particles are projected at the same in.staiit from the

«amo ])oint in difreient directions. Show that the area of the

triaii<,'lo of wliich they form the au<,aihir })oints varies as the square

of the time, ami that the phiiie pasHini,' throu^di them remains

parallel to itself.

(10) The velocities of a projectile at any two ])oints of its path

heint,' given, find the ditterence of their altitudes above a horizontal

plane.

Ans. (r-sin-a- l"-sinV)/2<7, where V, T' are the magnitudes of

the given velocities, o, a their inclinations to the horizon.

(11) A ball is projected with a velocity of 100 ft. per sec. inclined

75° to the horizon. Find (a) the range oji a horizontal plane
;
(b)

the range on a plane inclined 30° to the horizon ; and (c) what

other directions of the initial velocity wouhl give the nanie respec-

tive ranges.

Ans. (a) 155-2 ft.; (b) (\/3- 1)207-0... ft.; (c) inclinations 15^'

and 45° respectively.

(12) At what elevation must a body be projected with a speed

of 310'8 ft. per sec. that it may reach a balloon 500 ft. from the

earth's surface and at a distance of 1,000 ft. from the point of

projection ?

Ans. Either 39° 17'-7... or 80° 42'-3.

(13) On a small planet a stone ])rojected with a speed of 50 ft.

])er sec. is found to have a maximum range on a horizontal plane of

400 ft. Find the acceleration of falling bodies at the surface of

that planet.

Ans. 0-25 ft.-sec. units.

(14) Show that with a given initial speed the greatest range on

a horizontal plane is just half as great as the greatest range down
an incline of 30°.

(15) The greatest range on a horizontal plane of a projectile with

a given initial speed being 500 metres, show that the greatest

range on a plane inclined 60° to the horizontal is 2 - ,^3 kilometres.

(16) ^4 5 being the ran^e of a projectile on a horizontal plane,
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s.

e.

.show that if t be tho time from A to any point /' of the trajectory

(/.<?., the i)ath), and t' the time from /' to //, the heij,'ht of /' above

A B is }tf/tt'.

(17) A particle prt)jecte(l at a ;,'ivt'n elevation with an initial

speed Treadles the top of a tower h ft. hi^di and 2/i ft. from tho

point of projection in t seconds. Find (a) the initial speed of

another particle whicli, being projected at the same elevation from

a point distant 4/i ft. from the tower, will also reach its summit,

and (b) tho time it will recpiire.

Ans. (a) sf'2!/Vtl{h+gt'^)^i {b)Wi+gf')l<j]K

(18) Two stones tlrown at the same instant from j)oints 20 yds.

apart, with initial velocities inclined 60" and 30° respectively to the

horizon, strike a flag-j)ole at the same jioint at the same instant.

Show that tlieir initial speeds are as 1 : ^^3 ; .and that the <listance

of the pole from the nearer point of projection is 10 yds.

(19) If a i)article, projected with a sjjced ^(, strike at right

angles a vertical wall whose distance from the point of projec-

tion is ?f2cos 0/2,(7, prove that the angle of i)rojection may be rr/4+ 0/2

or 7r/4 — 0/2, and that the distance between the points at whicli it

will strike the wall if projected at these elevations successively is

^t%in 'P/2g.

(20) Show that if two particles meet, which have been projected

with the same initial speed, in tlie same vertical plane, at the same

instant, from two given points, the sum of their elevations must be

constant.

(21) A particle is projected from a platform with a velocity V
inclined a to the horizontal. On the j)latform is a telescope fixed

at the elevation /3. The platform moves horizontally in the pla'ie

of the particle's motion, so as to keej) the particle in the centre of

the field of view of the telescope. Show that the initial speed of

the platform must be Fsin (/S-a)/sin/3, and its rate of change

of speed g cot ^.

' (22) In the parabola describetl by a projectile, its speed at any

l»oint is that which it would have had, had it fallen to that point

from the directrix ; and the horizontal component of its velocity at

G
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any |)oint is that wliicli it would liavo had, had it fallen from rest

throui,di a diMtance e(iual to one-fourth of the IukUS rectum.

(23) The Hpeed of a projectile at any point of its path is equal to

tliat which it would have accpiired had it falh-n from rest through

a diHtjMU!e ecjual to one-fourth of the focal (tliord, p.irnllel to the

direction (»f ni(»tion at the given pctint.

(24) If / in the length of a focal chord of the path of a projectile,

show that the time of flight from one of its extremities to the otliei'

is (2(7- ')^

(25) If any number of bodies be projected from the same point

in ditl'erent directions and with ecpial speeds, ])rove that the foci of

the parabolas they will describe will lie on the surface of a sj)here.

(20) Particles are i)rojected from the same jjoints in horizontal

directions and with different speeds. Show that the extremities of

the latera recta of their ])aths will lie on a cone whose axis is vertical

and whose vertical angle is 2tan~^2,

(27) I'rove that the angular velocity of a projectile about the

focus of its ])ath varies inversely as its distance from the focus.

(28) SIiow that if a ball is projected from a point on an inclined

plane in such a direction that its range on the j)lane is a maximum,
the direction of its motion at the moment of striking the plane is

perpendicular to tho direction of projection.

(29) A sphere (radius= ?•) rests on a horizontal plane. Find at

what distance from its j)oint of contact with the plane a particle

must be projected, with the speed which it would have gained in

falling through a distance equal to the diameter of the ai)here, in

order that the focus of its ])ath may be the centre of the si)here.

Ans. fjii^ - r^.

fc

-.i:^

156. Case III.—Central Acceleration^ the acceleration

directed towards a fixed point or centre. (See 138.)

If a point move under a central acceleration the

moment of its velocity about the centre will be constant.

—Since the velocity of the moving point at any instant
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is tlie resultant oi' tho velocity at a former instant, and
of the inte«^a'al acceleration durin<^ the intervenin;^tiine, its

moment abou the centre is (lOo) ecjual to the sum of tlieir

moments about the same point. But the moment of tlie

acceleration about a point towards which it is directed

is zero. Hence tho moment of the velocity of th'3 moving
point about tho centre is constant.

It is clear also that the converse proposition holds,

that if the moment of tho velocity of a moving point

about any fixed point be constant, its acceleration must
be directed towards the fixed point.

It follows from 132 that, if la be the anguhir velocity

of the moving point about, and r its distance from, the

centre of acceleration, mi'', and therefore Jw?'^, are con-

stant. Hence (13»3) the areal velocity of tho moving })oint,

or the area described per unit of time by the radius vector

from the centre of acceleration, is constant.

II

m

1
,»

H'

157. Exaiiiplea.

(1) Various particles, whose aceelerati(»ns are all directed to one

centre C, are projected from a given })()int A with ecjual speeds Imt

in different directions. Show that the areas <lescril)e(l in a j^iven

time by lines drawn from C to the particles will he })rop()rtional to

the sines of the inclinations of their initial velocities to the line AC.

[The areal velocities are pro[)ortional to the moments of the lineai'

velocities, and the perpendiculars on the directi<ms of motion are

proportional to the sines of the inclinations.]

(2) A point moves in an ellij)tic path with an acceleration directed

to one of the foci. Show that its velocity varies inversely as the

square root of its distance from that focus, and directly as the squaie

\oot of its distance from the other, and has maximinn and minimum
values when the point is nearest to and farthest from the centre of

acceleration respectively. [Note that the jn-oduct ai the per[)en-

diculars from the foci on a tangent is equal to the square ^f thu

semi-axis minor.]

»
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(;}) A jMjiiit inovea in a parabola under an acceleration directed

towards the vertex. Show that tlie time required to move from

any point to the vertex will be found to vary as the cube of the

distance of the point from the axis. [If P is a point on a parabola

whose vertex is A, and if PM is a i>erpentlicular on the axis of the

parabola, the area A PM is pr()j)ortional to the product of ^1M
into MP.]

(4) If an ellipse be described by a point under an acceleration

directed towards its centre, the velocity of the point will vary

directly as the diameter conjugate to that which passes through

the point.

(5) A point moves in an ellipse J i5^'^' (major ?ix\^, ASS'A'

;

minor axis, BB' ; foci, *S' and S') with an acceleration directed

towards ^S*. Show that the ratio of the times of describing AB and

BA' is (tt - 2e)/(7r+ 2e), where e is the excentricity of the ellipse.

(6) A point moves in a circle and is observed to occui)y, in

passing from a fixed jwint in the circle to any other point, a time

proportional to the sum of the lengths of the arc described and of

the j)erpendicular from one extremity on the diameter through the

other. Show that the acceleration of the moving point is directed

towards a fixed point.

(7) Find the angular velocity of a ])oint moving with a central

acceleration, about the centre, in terms of the length of the radius

vector (r) and the areal velocity (/<).

Ans. 2///V2.

158. We shall discuss two important cases of central

acceleration, viz., that of planetary motion and that of

harmonic motion.

I. Planetary motion, the acceleration being inversel}"

proportional to the square of the distance of the moving
point from the centre of acceleration. This case is of

interest, because it is that of the motion of planets about
the Si.;n and of satellites about their primaries.
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(a) The motion redilmear, the velocity being in tht^

same sLraight line as the acceleration at any instant

(140). Let s be the distance of the moving point from
the centre of acceleration at any instant. Then if a be
the acceleration at that distance, and h a constant,

a= —Jc/s^, the negative sign being used because the

acceleration is towards the point from which the distance

8 is measured. If v be the speed at the instant under
consideration, and v' the speed after an indefinitely short

time T,

a={v'— v)/t = — J^/s\

If s' is the distance after the time r, (s'— s)/t is the mean
speed during r ; and as t is indefinitely short, we maj^

consider it equal either to v or to v\ Hence

v+ v' = 2(s'-s)/t.

Hence also

(^+^)-—=-2-2.-—-•

As T is indefinitely small we may consMcr s^ equal to

ss\ Hence

,._,.= _2/.(;-i)=2/o(i,-;).

Let V be the velocity of the point when at a distance S.

Then the space between the positions, whose distances

from the centre are s and S, may be divided into an
indefinitely great number of parts by points whose
distances from the centre are s^, s^, etc., s„. In that

case, if fj, ^2, etc., v„, are the velocities of the moving
point when it is at the above distances respectively,

we have

etc.,
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v,^— v^= 2k{ — ).

Hence by addition we obtain

2k
Therefore

or

9/.

v^— -
"^= u4 (a constant).

If s,, is the distance from the centre of acceleration at

which the velocity becomes zero (the distance of the

starting point, if the moving point start from rest), we

have

and

Hence

A = - 2k

and the speed at any given distance from the centre of

acceleration is thus expressed in terms of that distance.

159. We may apply the above to the case of the falling

of bodies to the earth from great distances. For this

purpose we must determine the value of k in this case.

Now the acceleration of a falling body at the earth's

surface, i.e., at a distance equal to the earth's radius (R)
from the centre of the earth, is g ; and by Newton's law
of gravitation the acceleration of a falling body is in-

versely proportional to. its distance from the earth's

centre. Hence at a distance s we have

a=
m

•^^;

and therefore in this case k=gR^. Hence, if v is the

velocity of a falling body at a distance s from the earth's
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centre, its velocity at a distance s„ having been zero,

At the earth's surface therefore its velocity will be such

that v^= 2,m{]^-l) = 2oR(l-f)

If the point from which the body has fallen be a short

distance h from the earth's surface, SQ= R-i-h, and

If
)

= 2(,i^(l-(l-J+^'-etc.)).

If now h be sufficiently small (h/M)^ and higher powers
may be neglected. Hence we have v^= 2gh, the result

obtained in 65.

If a body fall to the earth's surface from a very great

(practically infinite) distance, we have l/s„= 0, and hence

160. Examples.

(1) The acceleration (expressed in ft.-sec. units) of a moving point

towards a centre is four times the square of the reciprocal of its

distance from the centre. If it start from rest at a distance of 6 ft.,

find its speed at a distance of 1 ft.

Ans. 2*58.. . ft. per sec.

(2) A body falls to the earth from a point 1,000 mis. above its

surface. Find its speed on reaching the surface (neglecting resist-

ance of air and taking the earth's radius to be 4,000 mis.).

Ans. 3"12... mis. per sec.

(3) With the dat?. of the last problem find the body's distance

from the earth's surface when its speed is 2 mis. per sec.

Ans. 535*2... mis.

(4) With what speed must a body be projected vertically at the

earth's surface that it may never return ? (Assume the earth to

have no atmosphere and not to be rotating.)

Ans. 6'98... mis. per sec.
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(5) At wluat point on a line joining the centres of the earth and

moon will a body have no acceleration ? (Acceleration of falling

bodies at the moon's surface due to moon's attraction — 5'5 ft.-sec.

units; radius of moon= 1,080 mis.; distance between centres of

eartli and moon= 240,000 mis.)

Ans. At a point about 215,900 mis. from the earth's centre.

'' ;t. I

f V'yi

*u

\m •
';

... «.

161. (h) The motion curvilinear, the velocity at any
instant being inclined to the acceleration.

As (lor^ is constant (15G), the angular velocity of the

moving point P about the centre of acceleration is pro-

portional to 1/r^, and therefore to its linear acceleration.

Now the angular velocity ofP is also the angular velocity

of the direction of the acceleration, and is therefore (112)

equal to the angular velocity of the tangent at the cor-

responding point Q of the hodograph. And the linear

acceleration of P is equal to the linear velocity of the

point Q in the hodograph. If therefore s be the length

of the small arc between two points of the hodograph,
and the angle between the tangents at these points,

<p/s is constant. Now the acceleration of P is in the

same plane as its velocity at any instant, and the centre

of acceleration, and therefore its path also, is in that

plane. Hence the hodograph is a plane curve of constant

curvature, i.e. (40), a circle. Let
H be the circular hodograph,
its pole (which may be either

inside or outside or upon the

circumference), A its centre, and

Q the point in it corresponding to

the position P of the moving
point in its path. Through
draw OM perpendicular to QA or

QA produced, and through Q draw
QN perpendicular to OA or OA

produced. Since the tangent at Q is in the direction of
the acceleration of P, and therefore in that of the radius

.:%
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vector, OM is the component of the velocity of P, in the

direction of the radius vector, and is therefore clearly

equal to the rate of change of the length of the radius

vector. Also QN is the component perpendicular to the

fixed line OA of the velocity of P. Hence the ratio of

OM to QN is the ratio of a small increment of the radius

vector to the simultaneous increment of the distance of

the point P from a fixed line in the plane of motion.

Now the triangles OJ.il/ and QAN are similar, and the

ratio of OM to QN is therefore equal to the ratio of OA
to AQ, and consequently is constant. P's path is there-

fore such that if r and r' are initial and final values of

the radius vector in a short time, and if d and cV are

corresponding values of the distance of P from a certain

fixed line in the plane of motion, {r'— r)/{d'—d)= h (a

constant). Take another fixed line parallel to the given
fixed line, and so placed in the plane of motion that, if

P's distance from it is S, when the radius vector is r, we
may have r/S= h Also, when the radius vector is r', let

S' be the distance of the point from this line. Then

d'— d— S' -- S.

Hence 7^'- r= 1(6'- S).

Now r= kS.

Therefore r'= k6\

Hence the ratio of the distance of the moving point from
a fixed point to its distance from a fixed line has a
constant value, or, in other words, the path must be

a conic section. If k < 1 (and therefore the point

inside the circle), the path is an ellipse. If /i;= I (the

point on the circumference) it is a parabola. If A; > 1

(0 outside the circle) it is an hyperbola.*

162. The astronomical problem is the converse of the

above. Kepler generalized from many series of observa-

* This proof is due to Prof. Tait. See Encyclopaedia Britannica,

9th ed., art. Mechanics.
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f

t. I

tions (1) that the path of each plauet is an ellipse, one of*

whose foci is occupied by the sun ; and (2) that the

radius vector of each planet, from the sun, describes equal

areas in equal times. These are two of what are known
as Kepler's laws. In astronomy, therefore, we have to

determine the direction and magnitude of the accelera-

tion of a point whose path is

an ellipse and whose radius vec-

tor from one focus describes equal

areas in equal times. Let P be

the position of the planet at

any instant, Fits velocity, ^P.A'
its elliptic path, AA' the axis

major of the path, 8 the focus

occupied by the sun, and ^F a
perpendicular from S on the tan-

gent at P. The locus of Y is a

circle on AA' as diameter. Draw this circle and let YS
meet it in Q.

By the second of Kepler's laws, F. >Sf Fis constant (132),

and by a property of the circle SY. SQ is also constant.

Hence SQ is proportional to F. And it is at right angles

to the direction of F. Hence the locus of Q, the circle

A YA\ turned through a right angle about 8 so that 8Q
may become codirectional with F, is the hodograph of

P's motion. By a property of the ellipse, CQ is parallel

to P8. Hence the tangent QE at Q, whose direction is

that of Q'h velocity, is perpendicular to P8, and, if the

circle be turned through i, right angle, will be codirec-

tional with P8. But (112) the direction of the velocity

of Q is that of the acceleration of P. Hence P's accelera-

tion is towards 8.

Also the magnitude of P's acceleration is equal to that

of Q's velocity. And Q's velocity is proportional to the

angular velocity of Q about G, i.e., since GQ and P8 are

parallel, of P about 8. And the areal velocity ofP about

a
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S being constant, its angular velocity about S is inversely

proportional to the square of Pl^. Hence the acceleration

of P is inversely proportional to its distance from *Sf.*

163. //. Harmonic motion, the magnitude of the

central acceleration being directly proportional to the

distance of the moving point from the centre of accelera-

tion.—This case is of interest because it is that of the

motion of elastic bodies after compression or distortion.

It includes therefore the motion of air and of the lumi-

niferous ether in the transmission of sound and light

respectively.

(a) The motion rectilinear, the velocity at any instant

being in the same straight line as the acceleration

(140)

—

simple harmonic motion.

Let a be the acceleration of the moving point when at

a distance s from the centre of acceleration. Then, /;

being a constant, a= — ks, the negative sign being used, as

in 158. Let the point move to a position at a distance s'

from the centre. Then, since the acceleration increases

uniformly with the distance, its average value per unit

distance during the above displacement must be half the

sum of its initial and final values, i.e., —k{s-\-s')/2. The
change of velocity during the displacement is the same
as if the point had had an acceleration of this amount
during the whole displacement. Hence, if v, v' are the

velocities of the moving point at the distances s, s' respec-

tively (140, 65),

As the point moves away from the centre its velocity

diminishes. Let s„ be the distance at which it becomes

* This proof is also due to Prof. Tait. See his " Properties of

Matter,"' § 146.
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108 KINEMATICS. [168

zero. Then at any other point distant s its velocity u is

.such that
v'^ = k(s,^^8').

When the point reaches the centre of acceleration, 8 = 0,

and v^ = 1cs^. Hence its speed on passing through the

centre is Ijh . s^. At any point distant — s from the

centre its speed is such that

and is therefore the same as at a point distant + s. At a

point distant —s^ its speed is zero. Hence the moving
point starting from a distance s^, with zero speed, moves
with increasing speed to the centre of acceleration where
its speed is ^k . s„ ; thence with decreasing speed to a
distance — Sq ; and thence back to the starting point,

undergoing the same changes of speed in the reverse

order ; and so on, its whole motion consisting of a series

of such oscillations.

Let S be the centre of acceleration, SA the line of

motion. From S as centre with
a radius equal to Sq describe a

M^ circle. From P, whose distance

from S is s, draw PM perpendic-

^

ular to SA and meeting the circle

^ ^ in M. If now the pointM move
with a uniform speed ^k . s^ in the circle, P, the foot of
the perpendicular from M on SA, will move in SA with
a speed which is the component of i/'s velocity in the
line SA and is therefore

^k . SqCos SMP = Jk . s^-^jr. = x/^VV - s^-

If then P's velocity is v,

V^= k(SQ^— 8'^).

Hence P's velocity, and consequently also its acceleration,

at any given distance from S, are the same as the velocity
and acceleration respectively of the moving point under
consideration when at the same distance from its centre
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of acceleration. Hence the motion of a point moving in

a straight line with an acceleration directly proportional
to its distance from a centre of acceleration in that line is

the resolved part in the direction of that line of the

motion of a point moving with uniform speed ^k . s^ in

a circle whose centre is the centre of acceleration and
whose radius is s^.

The time required by the moving point to make a
complete oscillation from A to A' and back to A being
that required by M to move once round the auxiliary

circle is clearly

2-

s/^^'Sq v^/''
"^>

accel

lacement

acceleration

'

since the magnitude of h is the ratio of the acceleration

of the point to its displacement, in any position. The
time of a complete oscillation depends therefore only upon
the value of h, the constant ratio of the acceleration of

the moving point to its displacement from the centre of

acceleration. It is independent of the extent of the

oscillation. For this reason such oscillations are said to

be isochronous.

The time required by the moving point to move from
a position P„ to P is, if M^ is the intersection with the

circle of a line drawn from Pq perpendicular to SA,

_27r

s/k
ailM^ =^. angle i/o^i/,

the angle being measured in radians.

The oscillation of a point moving in a straight line

about a fixed point in the line towards which its accelera-

tion is directed, the acceleration being directly propor-

tional to the distance between the points, is called Simple
Harmonic Motion.*

* Simple Harmonic Motion is thus not only the simplest form of

the motion of bodies after release from strain, but is also the

appaient motion of bodies moving in circular orbits when observed

from a distant point in the plane of the orbit, as, e.g., api)roximately

in the case of the motion of Jupiter's Satellites.
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(2) Thu pi'iiod uf a siiiipKi liiuinoiiii! iiuttiuii is 20 wt'c. ami tin-

niaxiinuni vcloiity uf tin* moving' point is 10 ft. pi-r si-c Kiiul its

volcjcity at a <listaiK;t! of (10/ tt ft. fnun the nit'aii posit i(»ii.

AiiM. 8 ft. p»'i- st'c.

(3) A point moves fi'om rest towartls a fixed point 10 metres dis-

tant, its acceleration l)ein<( evervwiiere 4 times its distance fv(»m tin-

fixed point. At what distance will it have a velocity of 12 meties

per .sec. 1

Ans. 8 metreH.

(4) tMnd the mean sjK'ed of a jioint executinf; a simple harmonic

motion, (hiring the time occupied in movinj^ from one to the (tther

extremity of its ranj^e, its maximum speed l»ein<^ Ti ft. per sec.

Ans. IG/tt ft. ])er sec.

(5) If Thf. the jteiiod and a tlie amplitude (»f a simple liarmonl<'

motion, and if v be the velocity and s the distance from the (;entre,

of the movinj^ point at a •(Iven instant, show that

/Thr- .A J

"=(-4;^^-^-^)-

(()) A point oscillates about a centre, its acceleiatiou being pro-

l)ortioual to its distance from the centre. Show that tlie ratio of its

maximum velocity to the square root of the excess of the scpiare of

its maximum velocity over the square of the velocity which it has

when at a given displacement from the centre, is equal to the ratio

of its maximum displacement to the given disj)lacement.

(7) A point has a simple harmonic motion whose ])eriod is 4 min.

12 sec. Find the time during which its phase changes from /,t t(»

J of a i)eriod.

Ans. 21 sec.

(8) A moving p<jint has a velocity of 1 ft. })er sec. when at a

distance of ^3 ft. from a fixed point in its line of motion towards

which its acceleration is directed, its acceleration being everywhere

numerically equal to its distance from that i)oint. After what time

will it be at a distance of 1 ft. ?

Ans. 7r/12 sec.

(9) Show that a })oint having a simple harmonic motion requires

41
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^ of its |M'ii(»«l to move from a positicMi in which itn disphiccnu'iit in

a iiiiixim till to one in which its (liM|>hu'i>nu>nt in one-half the ampli-

tuih'.

107. (h) Cuvvillneav motio^i, the velocity of the

moving point at any instant beinfj; inclined to the

acceleration

—

compound harmonic niotion.

Let *Sf be the centre of accelera-

tion, P the position of the movino-
point at any instant, and V its

velocity at that instant. In the
plane of V and ^7^ take two fixed

rectangular axes ^x^ Sy. From P
draw PMy PN perpendiculars on
aV^ and Sy respectively. Let the
inclination of V to Sx be a. Then

the moving point has in the direction of Hx a component
velocity Fcos«, and, if s is the distance of P from S, a
component acceleration

— ks cos PSM= - Jis *.
,
.J
= - /t; . SM.

Similarly in the direction of Sy, P has a component
velocity Fsinu and a component acceleration —k.SN.
Hence the motion of the moving point is the resultant

of two component simple harmonic motions, the one in

the direction Sx, the other in the direction Sy. We may
therefore determine its motion by determining the laws
of the composition of simple harmonic motions. We
shall investigate these laws at greater length than is

necessary for the mere solution of the above problem,

as they are of great importance in the study of sound
and light.

168. Composition of Simple Harmonic Motions.—

A

point has two or more component simple harmonic
motions; it is required to determine its resultant motion.
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(i) T)vo Simple Ifiinnonlc Mtdlonf^ bi the same linv

ami with the same pei'uuL—Let the point /*, moving in

the line liH\ have two component simple Imrmonic

c

motions, of amplitudes Cxi and CB, and of the same
l)eriod. Let Gl\ and CP,^ be the component displace-

ments due to the respective simple ho,rmoni(; motions at

a jjfiven instant. Then the resultant displacement is (86,

IK.) 6'P, + 6T.J. Draw the auxiliary circles, and let

JA,, M,, be the points in these circles corresponding to P,,

/\,. Complete the parallelogram ilA,J/,, and from H draw
i^li perpendicular to BB'.

Since if,C'=^'il/„and angle CM^l\=^M.m, C1\==P^R
Henee OR is equal to the resultant displacement, and Kh
motion is the resultant motion. Since the periods of the

motions are the same, the angular velocities of CM^ and
(h]T,^ are the same. Hence the angle M^GM,^ is constant,

and therefore the length of the diagonal CS of the paral-

lelogram i/ji/j' ^^^ i*^ inclination to GM^ or GM^, are

constant, o therefore moves with uniform speed in a
circle. Hence Ra motion is simple harmonic, and there-

fore the resultant of two simple harmonic motions in the

same line and of the same period is also a simple harmonic
motion.

As the inclination of GS to GM^ is constant, the period

of the resultant simple harmonic motion is the common

i'^-.

• t.
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different lines ivith fhe same j^eriod and phase.—Let the

point P have two component
simple harmonic motions in

the h'nes AA' and Bli'. Let
(U\ and C'P,, and ('j>^ and ('/>,

bethecomponentdisplacements
ofP at times t^ and t,,, due to the

respective component motions.

Then, as periods and phases are

the same, CPJCl^^^CpJCjJ,.
Complete the parallelograms

pj\, j>,P^. Then CR^ and C^.
are in the same straight line and CPj(^P,, = CRJCH.,;
i.e., the resultant motion is a simple harmonic motion in

the line CP,^, and is of the same period and phase as the

components. The amplitude is the diagonal of the paral-

lelogram, whose adjacent sides represent the amplitudes
of the components and are inclined at the inclination of

the lines in which the simple harmonic motions occur.

Hence a simple harmonic motion may be resolved in

any two directions into two simple harmonic motions of

the same period and phase as the given simple harmonic
motion.

It follows that the projection of a simple harmonic
motion on any straight line or on any plane is also a

simple harmonic motion of the same period and phase as

the projected simple harmonic motion.

If the component simple harmonic motions are more
than two, they may be compounded two by two accord-

ing to the above law, and it follows that any number of

component simple harmonic motions, in any directions,

and of the same period and phase, give as resultant a
simple harmonic motion of the same period and phase in

a determinate direction and of determinate amplitude.

173. (5) Two component {Simple Harmonic Motions in

in
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different lines ivitlt the smne 'period but with diffeo'ent

phaseti.—We have seen (1G3) that if a point move uni-

formly in a circle, the component of its motion in the

direction of a diameter is a simple harmonic motion.

Hence the uniform motion of a point in a circle may be

resolved into two simple harmonic motions in directions

at right angles to one another.

These simple harmonic motions
will clearly have the same
periods and amplitudes. They
will differ in phase however by

A one quarter of a period. For
let A A', BB' be perpendicular

diameters of the circle ABA'B\
in which the pointM is moving
counter-clockwise. Then ilie

foot P of the perpendicular

ilfPj will be moving towards G, while P.„ the foot of

the perpendicular i/P.,, will be moving towards B. When
P^ is at A (i.e., has the phase zero), P.^ will be at C, and
not until M has moved from A to B will P^ have the

phase zero.

It follows also that two component simple harmonic
motions in perpendicular directions, of the same period,

of equal amplitudes, and wuth phases differing by one
quarter of a period, will give as resultant, uniform motion
in a circle whose radius is the common amplitude of the

components.

Now the orthogonal projection of a circle is an ellipse,*

the centre of the circle projecting into the centre of the

ellipse; the projection of uniform motion in a circle (a

motion in which the areal velocity about the centre is

constant) is motion in an ell pse with constant areal

* If tiie reader is not familiar with the geometry of projection,

he should read the chapter on this subject in Todhunter's " Conic
Sections " or some similar work.
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velocity about the centre; the projections of perpen-

dicular diameters of a circle are conjugate diameters of

tlie ellipse, whose inclination and relative lencjth may be
made what we please by a proper selection of the plane

of ])rojection ; and the projection of a simple harmonic
motion we have seen (17-) to be a simple harmonic
motion with unchanged period and jdiase. If, therefore,

we project the circle A' HA H', with its perpendicular

diameters, on a plane so selected that the projections of

the diameters have any desired inclination and relative

length, the projections of the motions of P^ and P„ will

be simple harmonic motions differing in phase by a

([uarter of a period; and their resultant motion, the pro-

jection of that of M, will be motion in the ellipse which
is the projection o^ A' BAB',t\\Q motion being such that

the areal velocity of the moving point about the centre

of the ellipse is constant. Hence, if a point have two
component simple hnrmonic motions in any directions,

of any amplitudes, of the same period, and with phases

differing by a quarter oi' a period, the resultant motion
will be motion in an ellipse, with conjugate diameters

whose directions are the directions, and whose lengths

are the amplitudes, of the component motions, and with

constant areal velocity about the centre. Such a motion
is called elliptic harmonic oiiotion.

174, If now the two component simple harmonic
motions differ in |)hase by any amount, each of them
may (169) be resolved into two in its own direction,

which differ in phase by a ([uarter of a period, and one
of which has any desired epoch. Thus we have now two
pairs of components, the components of each pair having
the same phase, but differing in phase by a quarter of a

period from those of the other pair. The components of

each pair give as resultant a simple harmonic motion of

determinate amplitude and direction, and of their common
period and phase. Hence we obtain two simple harmonic
motions of determinate amplitude and direction, equal in
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118 KINKMATICS. [174

period, and differing in phase by one quarter of a period,

the resultant of which is determined by 173. Hence the

resultant of two component simple harmonic motions of

the same period, whatever may be their amplitudes,

directions, or phases, is elliptic harmonic motion.

175. It will be obvious that all jiossible paths of a point
having two such component simple harmonic motions,

represented by A A' and BB' , must touch each of the
sides of a parallelogram DEFG, whose sides pass through

A, A\ B, B\ and are parallel to ^.4' and BB'. What the
particular path will be, with amplitudes and directions

given, will depend upon the difference of the phases of

the components. If there is no difference of phase the
path is the diagonal GE. If the phases differ by one
(juarter of a period (that of the simple harmonic motion
in AA' being ahead), the point will move in the ellipse

ABA'B', and its motion will be counter-clockwise. If

they differ by one-half period, the diagonal FD will be
the path. If by three-quarters, the point will again move
in the ellipse ABA'B', but its motion will be clockwise.

For differences of phase of intermediate value the paths
will be ellipses in intermediate positions. Thus, for dif-

ferences between and
-J

or j and 0, the paths will be
such ellipses as HKLM, the motion being counter-clock-

wise or clockwise respectively ; and for differences between

I and } or ^ and f such ellipses as NOFQ traversed counter-

clockwise or clockwise respectively.
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17(). (6) Tliree or more coTmnnnnpnt Sitn'ple Harmonic
Motions in different lines with the same period hut with

different 'phases.—If there be more than two component
simple harmonic motions of the same period, but in

different lines, and of different amplitudes and phases,

each of them may, as in 174, be resolved into two in its

own direction, which differ in phase by a quarter of a
period, and one of which has any desired epoch. We
thus obtain two sets of component motions, all the mem-
bers of each set having the same phase, but the members
of each set differing in phase from those of the other

set by a quarter of a period. The components of each of

these sets give, when compounded (172), a simple har-

monic motion in a determinate direction, of determinate
amplitude, and with the common phase of its components.
Hence we obtain two simple harmonic motions in known
directions, of known amplitudes, and differing from one
another in phase by one quarter of a period. The re-

sultant motion is therefore determined by 173. Hence
the resultant of any number of component simple har-

monic motions of the same period, whatever their ampli-

tudes, directions, or phases, is elliptic harmonic motion.

177. (7) Gom'poyient Simple Harmonic Motions differ-

ing in period.—If a point have two or more component
simple harmonic motions differing in period, the complete

determination of the resultant motion is not possible by
elementary mathematical methods. The path of the

point may however always be found by determining its

positions at a series of instants and drawing a curve

through them.

For example, let us nnd the path of a point P which
has two component simple harmonic motions in lines at

right angles to one another, with periods as 1:2, the

simple harmonic motion of longer period having zero

epoch, and that of shorter period an epoch 37r/2. Let AA\
BB' be the given lines at right angles to one another,

•tlKI
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('A and (W the given amplitudes of the simple harmonic
motions in these lines. Let the simple harmonie motion

in AA' be the one of longer period. The component
displacement of P from Oat zero of time in A A' is (^A.

B
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Hence, while P undergoes the displiicement Ad in the

line AA', it undergoes the displacement ('<i in Iili\ Hence
P moves from ^l to J). Similarly the component dis-

placements ah and uH+Ha occur in the same time.

Hence J^ moves from J) to L\ Similarly hC and a(J, Cc.

and OS, cd and oli'-^B'S, dA' and SO, A'd and (Ui, dc and
uB+ Ba, cC and a(\ Gb and (V5, hi and SB'-\-B'S, and aA
and SC are pairs of displacements occurring in the same
time. And hence the ])}ith passes through the following

points in order, viz., A, J), E, ( \ F, G, A', If, K, C\ L, M, A
,

and will b^ approximately rei)resented by a smooth curve

through these points.

The figures on next page represent a few paths of points

having two component simple harmonic motions in lines

at right angles to one another and differing in period and
e])och. The ratio of the i)eriods is indicated at the left

of the row of figures to which it refers. The component
simple harmonic motion of shorter period is horizontal.

Its epoch is indicated in each case. The ^pocii of the

vertical simple harmonic motion is zero.

178. If the periods of component simple harmonic
motions are commensuiable, at the end of a period which
is their least common multiple the resultant displace-

ment of the moving point from the mean position will be

the same as at the beginning of the period ; and the path
will return into itself, forming a closed curve. If the

periods be not commensurable, the path will not thus

form a closed curve.

179. If the ratio of the peiiods of two component
simple harmonic motions is very nearly a simple rat^o,

but not exactl}'-, the path very nearly returns into itself;

and it is clearly the same as if the periods were thus

simply related, with the difference of epoch slowly in-

creasing, the simple harmonic motion with the shorter

period gradually gaining in epoch on the other. Hence
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the point will very nearly pass through all the paths of a
point with component simple harmonic motions having-

periods in the given ratio and of the given amplitudes
and directions, with all differences of epoch. Thus, if the

amplitudes and the directions are as represented in

175, the periods being very nearly equal, and if at a given

instant the phases are the same, the point will first oscil-

late in a very elongated ellipse about GE. The ellipse

will gradually open out through HKLM to ABA'JV, and
passing through all such forms as OFQN will gradually

come to oscillate in DF. It will then open out again

and retrace nearly the same ellipses in the opposite

direction, passing through OPQN, ABA'B\ and KLMN
until it again oscillates in the line GE. Similarly, if the

periods be very nearly as 1:2, the path of the moving
point will gradually pass through the series of forms

represented on p. 122.

J!*'

180. Paths similar to those re})resented on p. 122 are

traced out most simply by the aid of Blackburn's pen-

dulum, which consists of a bob hung by a Y-shaped

arrangement of wires CDEB, the ends

C and D being attached at points in

a horizontal line. Thus hung, the

bob oscillates in a direction perpen-

dicular to the plane GDEB, about
the axis GD. In this plane it

oscillates about E. Hence (187) B
has two component simple harmonic
motions at right angles to one another and of different

]3eriods. The difference of period may be made what we
please by properly adjusting the lengths of the wires.

If the bob be provided with a funnel containing sand
or ink, it will leave a tracing of its path.

181. Constrained Motion under given Accelerations..

—We take next certain cases of the motion of a point

under conditions of constraint (.see 138).
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4

(1) Motion on an Inclined Plane under Uniform
Acceleration.—Lot a })oiiit liavin<,' a uiiiforiu acceleration

(I, whose direction is OA, be constrained to remain in a

plane whose inclination to OA is y. From
A draw AB perpendicular to the plane

and meeting it in B. Then the angle

AOB is y. The effective component of the

acceleration in the plane is a cos y in the

>B direction ()B. For the component normal
to the ])lane cannot afi'ect motion in it.

Hence the motion of the point will bo

rectilinear or parabolic according to the

direction of the initial velocity, and will

be determined by the equations of 140 and
142-150, a cosy being the acceleration in

the formulae of those articles instead of a. In the case

in which the acceleration is that due to the weight of

a body, OA is vertical and the given plane OB may
have any inclination.

I 'I

I -.1

182. The speed gained by the point in moving on the

given plane through the distance OB is equal to that

which would be gained in moving in the direction of the

acceleration OA, through a distance which is the projec-

tion of OB on OA. To prove this, draw" BC from li

perpendicular to OA. Then, calling OB I, 00 h, the

initial speed V, and the speed at B v, we have

c-' V'-=-2al(io^y.

Had the point moved from to (' with the same initial

speed its speed v' at C would have been suchthat

Hence

r^f'i -.yi — 2((//, = 2aZ cos y.

V = V.

183. The times required to produce these changes of

speed are of course different. Thus, if t, V are the times
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required by the point to move from (J to (/ and from
to Ji respectively, we have

Hence

v= V-\-i(t, and v= T+ft/'cosy.

t = t'coH y.

184. Examiilc^'

(1) A point liaviu^ a coiiHtant acfclt'iation of 24 ft.-.sec. units is.

constrained to move in a direction in wlii(;h its speed changes in 1

min. from 10 to 250 yds. per sec. Find the inclination of its direc-

tion of moti(in to that of the given accehnation.

Ans. 60".

(2) A heavy partich> ((jr= 32) is projecte*!* up an inclined phme
whose inclination to the horizon is 30". Find the distance traversed

during a change of speed from 48 to 10 ft. per sec.

Ans. 64 ft.

(3) A railway carriage has, when 1 mile up an incline of 1 in .')()

(i.e., one having an inclination to the hori/on of sin"'^^), an ui)ward

velocity of 30 miles per hour, (a) In Avhat time will it come to a

standstill ? (h) If it afterwaids run back, with what speeil will it

reach the foot of the incline ? (Take ^ = 32.)

Ans. (a) 1 min. 8*75 see; {b) 63*5 miles per hour.

(4) A body slides from rest down a smooth sloping roof and then

falls to the ground. The length of the slope is 18 ft., its inclination

to the horizon 30°, and the height of its lowest point from the

ground 40 ft. Find the distance from the foot of the wall to the

point where the body reaches the ground. (Take <j'= 32.)

Ans. 15^3 ft.

(5) The times in which heavy j)aiticles slide from rest down
inclined planes of equal height are proportional to their lengths.

(The length of an inclined plane is the distance between its highest

* In these problems friction and other forms of resistance are not
to be taken into account. Also, the motion on an inclined plane is

always supposed to be in the diiection of greatest slope, unless-

specially stated to be in some other direction.
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jiidI lowi'Mt points ; its liri^ht is tlu- <li.stan(t* ImtwetMi hoii/ontul

plaiu's tlir(»n;^li tlicHf points.)

(0) Tf lu'avv piiititlt's slidr «lowii tlu; sidiis of a ri|i[lit-an;i[h't|

trianj^h' wlM»st' livpotlicnust' is vertical, tlu'y will accpiiit' speeds

pi'oportional to the sides.

(7) The times liMpiirt^d liv ht-avy pa^ticle^ ... dest;tnid in straight

lin«'s fioni tht! hi^dmst point in the (;ii(;unifereiu'e of a vertical (dreh-

to all other points in the ciicunift^riMJce are the same.

For, if d is the diameter of the eirele and 9 the inclination to tlu'

^ertic•al diameter of any chord thi'ou<fh the hij^diesfc ))oint, the com-

ponent acctderation in the direction of the chonl is f/cos^, and the

lenj^th of the cluud is JronO. Hence, if / is the time in whii^h

ji particle woidil fall fiom I'est down this chord,

rfcos^= J,///-cos^ and t= xj^d/f/.

Thus t is independent of d and is therefore the same for all chor«ls

throu<^li the liij^hest point of the circle.

(8) The tinjes recpiired by heavy i)articles t<j descend in strai»rlit

lines to the lowest point in the circumference of a vertical ' e

from all other points in the circumference are the same.

(J)) If any focal chord P<ff of a parabola 1)6 vertical, and the tan-

«,^ent8 7'P, T(J be drawn, heavy ])article8 starting simultaneously

from rest at P and J\ an<l falling along the lines PQ, TQ respec-

tively, will ruach (^ at the same instant.

(10) A numoer of heavy j)articles start without velocity from a

v'onnnon j)()siti(m and slide down straight lines in various directions.

Show that the locus of the ])oints reached by them with a given

«})eed is a liorizontal i)lane, and that of the points reached by

them in a given time is a s))here whose highest point is tlie starting

j)oint.

(11) Show that, if a circle be drawn touching a horizontal straight

line in a point P and a given curve in a point (^ (P and the cxirve

being in the same vertical i>lane and P being higher than Q), PQ is

the line of quickest <lescent to the curve (i.e., a heavy particle

requires less time o fall from P to the curve along this line than

along any other).
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(12) Find tlu' strai^'Iit liiw of (|uickt'.st «l»'S('«'nt from u ;,'ivt'u |Miiiit

to a ^ivcii Htrai;;lit liiu*, the point ami the lim; bciii^ in tlic same

vertical plane.

Ann. From /*, the <^iven point, draw a horizontal line meetin;,'

.1//, tlm ^iven line (.1 liein;,' hijLflu'r than /i), in C. From Cli iiit otl'

(J/J ii<\\m\ to C/\ PI) is the re(piiriMl line.

(13) Show that if, from a j,nven point in the same plane as a l;!^ en

vertical circle and outside it, a Htrin<,'ht line he drawn to tlu; lowest

]>()int of the circle, the part intercepted between tint ;^iven point

and the circle is the line of (piickest descent from the one to

the other.

(14) Fin<i the loci of points (<<) inside, and {b) outside, a )i}\v\\ \ er-

tical circle, whitrh are such that the times of fallinjj; from them down

lines of (quickest <lescent to the given circle may have a given value.

Ana. (a) a cir(;le, [b) a circle.

(15) A given point /' is in the same plane with a given vertical

circle and outside it, the highest I'oint (^ of the circle being lowei'

than P. Find the line of slowest «lescent from P to the circle.

A lis. Join P(^ and produce it t(j meet the circumference in II.

Pli is the required line.

H

185. (2) Motion in a (htrved Fatk under a Uniform
Acceleration.—Let 00 be the curved path and OA thr

direction of the acceleration

a. Since any small portion

PjP.^ of the curve may be
considered to be a straight

line, the change of sj)eed of

the moving point between P^
and P^ is (181) the same as

it would have been had the o'

point moved from M to M.,,

M^M^ being the projection of P^P^ ^^ ^^- Hencf
also the change of speed which the moving point under-

goes in traversing a finite portion of its path PQ is

the same as it would undergo in traversing pq the pro-
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Jection of J^Q on a line in the direction of the acceleration.

Hence, if V is the speed at P and v that at Q,

t-2- V^ = ta . pj. .

18G. If a point moving under a uniform acceleration

is constrained to remain on a surface, it must move in a
plane curve which is the section of that surface by a

[)lane through the position of the point at any instant

and containing the directions of the acceleration and of

the velocity at that instant.

187. (3) Motion of a Point constrained to renutln on a
Spherical Surface under a Uniform Acceleration.—This

is the case of the Simple Pendulum, which consists of a
small body (called the bob) attached to a fixed point by

an inextensible string.—Let C be the

centre of the spherical surface, CA
the radius whose diiection is that of

the acceleration of the moving point.

Let P be any position of the point.

P's acceleration a may be resolved

into two rectangular components in

the plane PCA, one, acos0 (angle

AGP= 6), normal to the spherical

surface at P, and the other, a sin 6,

tangential to it and towards A.
" The normal component cannot affect

the motion in the spherical surface. The motion of P
therefore depends upon the other.

If P's velocity at any instant is wholly in the plane

PCA, its acceleration being also wholly in that plane, its

path must be the circle PAQ. How it will move in that

path it in general requires high mathematical methods to

determine. But the problem is easily solved for the

special case in which is so small that it may be con-

sidered equal to sin Q. In that case P's tangential accele-

ration is aO, or if the length of CA be I, a^nvcAP/l.
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It is therefore directly proport/ional to the displacement
of P from A (measured along the path). P's motion is

consequently simple harmonic abouu A as centre (1G4).

The period of the motion is thus (1G8)

27r>v/displacemen t -^ tangential acceleration.

For a displacement of arc^lP the tangential acceleration

is a X arc AP,l. Hence, if T is the period,

and is independent of the amplitude.

The time of oscillation of a pendulum swinging in a

vertical plane is usually taken to be half the period,

i.e., to be the time between the instants at which the

pendulum reaches opposite ends of its oscillation. Thus
the seconds' pendulum is one making a complete oscilla-

tion in 2 seconds.

If is not indefinitely small, sin 6 is less than 0. The
tangential acceleration therefore increases less i-apidly

than the displacement; and the period of the oscillation,

which will be approximately simple harmonic if is com-
})aratively small, will increase with 0.

188. If 7^'s velocity at any instant is not wholly in the

plane PCA, it may be resolved into two components, one
in the plane PGA and the other perpendicular to it, and
both tangential to the spherical surface. Hence, in the

case in which is indefinitely small, P's motion may be
resolved into two simple harmonic motions of the same
period; and its motion is therefore (174) elliptic harmonic
motion, the period being the common period of the com-
ponents, the particular ellipse described being dependent
upon the amplitude and epoch of the components, and
therefore upon the magnitude and direction of the point's

initial velocity.
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189 If is not indefinitely small, and if tne component
motions are of different amplitudes, the periods will have
different values. If they are very nearly equal, the point

P (i.e., the pendulum bob) will go through the motions

described in 179.

190. In the case in which the component motions are

equal in amplitude, and therefore in period, and differ in

phase by one quarter period, the point P moves (173)

in a circle about the foot of the perpendicular on CA
(187), as centre. This is the case of the conical pendu-
lum (320, Ex. 19).

101. Examples.

(1) Find the time of oscillation of a pendulum 20 ft. long at a

place at which (7= 32*2 ft. -sec. units.

Ans. 2*47.. • sec.

(2) Find the length of the seconds' pendulum at a place at which

^= 31-9.

Ans. 3-232... ft.

(3) Find the length of the pendulum which makes 24 beats in 1

niin. where g=32'2.

Ans. 20-39... ft.

(4) A seconds' pendulum is lengthened 1 i>er cent. How much
does it lose per day ?

Ans. 7 min. 8'8... sec.

(5) The length of the seconds' pendulum being 99-414 cm., find

the value of g.

Am 981-17 cm.-sec. units.

(6) A pendulum 37*8 inches long makes 182 beats in 3 min. Find

the value of g.

Ans. 31*78... ft.-sec. units.

(7) If two pendulums at the same place make 25 and 30 oscilla-

tions respectively in 1 sec, what are their relative lengths ?

Ans. 1*44 : 1.

in.
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1

(8) A ])en(lnlum wlu'eli l>eats seconds at one ]>lace is carried t<»

another wliere it gains 2 sec. per «lav. Compare tlie values of g at

tliese jjlaces.

Alls. As 0-999953... : 1.

(9) A pendnlum which beats seconds at the sea-level is carried t()

the toj) of a niountain where it loses 40*1 sec. per day. Assuir.ing

the value of g to be inversely i)roportioiial to the distance from the

centre of the earth, and the sea-level to be 4,000 miles from that

point, find the height of the mouiitain.

Alls. 1"86... miles.

.1 ..'p

192. (4) Motion of a point constrained to remain in a
cycloid, the acceleration being uniforra, in the direction

of the axis, and towards the vertex.—A cycloid is the

curve traced by a point in the circumference of a circle

which rolls along a straight line. If the circle EP roll

along the line AB, starting from that position in which
P the point in its circumference is at A, P's path will

be the cycloid AGB. If G is the position of P when
the diameter of the circle through P is perpendicular to

AB, CD (perpendicular to AB) is called the axis of the

cycloid, and the point its vertex.

Let the moving point Q have at Q^ a speed zero. Its

speed V at Q., is (185) such that, a being the acceleration,

j!^^J^2 being the projection of Q^Q,, on CD. Let t be the

time in which the point would, with the s; :ne accelera-

t!
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tion and with initial speed zero, move from D to C.

Then GD^^at^. Hence

=
^, . CD .{CN^-CN.;).

Now by a property of the cycloid

4(7/) . CN^ = (7(2,2,

and 4>GD .GN.^=CQ^\

Hence ^''= l,(CQr-CQ.^.

Now 1^2 being equal to 2GD/a is a constant. Hence (163-4)

the motion of Q in the cycloid is simple harmonic, the

tangential acceleration a' of Q (in other words the rate of

change of speed of Q) being such that l/t^= ays, where s

is the distance of Q from (7, measured along the curve. If

T is the period of the oscillation (double) of Q,

T=2'7r^^.= 2'J^t=:2'7^^J'-

2C1)
•

a

The time of describing any arc of the cycloid may be
determined as shown in 163.

If f is the time occupied in moving from Q^ to G,

,, TT \2GD

As this expression involves only constant quantities, the

time is the same whatever be the position of the starting

point Qj. Hence the cycloid is called a tautochrone.

193. This result is rendered of practical importance by
one of the properties of the cycloid, viz., that if a flexible

and inextensible string AB having one end fixed at A be

wrapped tightly round the semi-cycloid AG, the end B

II
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will, as the string kept tight is unwrapped, describe

miother semi-cycloid. If therefore .U/ and AD are fixed

semi-cycloids symmetrically placed about a vertical line

through A and AB a simple pendulum, and if B is made
to oscillate in the plane oUCAD, B will describe a cycloid,

and its oscillations will consequently be isochronous what-
ever their extent.
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positions are known of any three points which do not
lie in the same straight line.

For let the positions of three

points, A, By and G be known.
Then that of their plane is known
also; and consequently the posi-

tion of any fourth point E is

known, for it must maintain given
fixed distances from this plane and
from every point in it.

'v'i

i

197. If therefore one point A of a rigid system is fixed,

the specification of the positions of two other points B and
6', not in the same straight line with the fixed point,

determines the position of the system. Now ^'s position

being fixed, and the distance of B from A being given,

J5's position is known, if the direction of AB is known.
And the direction of AB can be described (3) by a state-

ment of the magnitudes of two angles. Hence, ^'s position

being given, i?'s position is determined by two numbers,
i^'s position being given, and O's distance from B, G's

position is known if the direction of BG is known. Now
to determine this direction one angle, viz., ABG, is already

known (the three sides of the triangle ABG being known).
Hence one other angle determines 6"s position. Hence,
also, the positions of A and B being given, one number
determines that of G. If therefore the position of one
point of a rigid system is fixed, the positions of any other

two points not in the same straight line with the first,

and therefore the position of the rigid system itself, are

determined by three numbers.

198. Degrees of Freedom.—The position of a rigid

system with one point fixed being described by three

numbers, any change of position will be described by the

changes which these numbers undergo. Any motion of

a rigid system, one point of which is fixed, may therefore ^

V)\

4'
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be specified by three numbers; and such a system is

consequently said to have three degrees of freedom.

199. Rotations.—If a line passing through the fixed

point of a rigid system be also fixed both in the system
and in space, the various points of the

body can move only in circular arcs,

these arcs being in planes perpendicu-

lar to the given fixed line, and their

centres being the intersections with the

fixed line, of perpendiculars on it from

the various points. Thus, if A be the

fixed point, and AB a. fixed line of the system, any point

(J can 1 lOve only in a plane through C perpendicular to

AB, and its path must be a circular arc whose centre is

D the foot of the perpendicular from (J on ^5, and whose
radius is DC.

The angle between the final and initial positions of D('

is (120) the angular displacement of G about AB. As all

planes of a rigid system must remain planes, and must
maintain their mutual inclination, the angular displace-

ments of all the points of the system about AB must be
the same as that of G. This angular displacement is

therefore called the angular displacement of the system
about AB.

Even if the line AB fixed in the system be not fixed

in space, a motion of the system may be specified by
reference to AB, and in that case also the various points

of the system must move in circular arcs relatively to AB,
though relatively to a line fixed in space they may have
a much more complex motion.

The motion of a rigid system with one point fixed

about a line through that point and fixed in the system,

is called a rotation of the system about the fixed line,

and the fixed line is called the axis of th-) rotation. A
rotation is thus completely specified if the direction of
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tlie fixed line is given, the sense of the rotation about it.

and the magnitude of the angular displacement. It is

thus a vector, and may be completely represented by a

straight line, whose length is proportional to the angular

displacement and whose direction is that of the axis,

provided also that the line be so drawn from the fixed

point that an observer looking along it toward the fixed

point will see the perpendicular from any point of the

system on the axis in moving from its initial to its final

l)Osition move counter-clockwise.

H<1

^'ijj'

Jf

200. Coinj^osition of SucccHsive Rotations.—A rigid

body with one point fixed undergoes successive rotations;

it is required to determine the resultant rotation. The
^iven rotations may be about the same or about different

axes.

(a) About the savie axis. It is obvious that the resul-

tant of any number of successive rotations about the same
axis is equal to their algebraic sum.

It follows that any rotation about a given axis may be
broken up into any immber of successive rotations

about the same axis, provided the algebraic sum of their

magnitudes is equal to the magnitude of the

I'otation.

given

;»»

.'fi

'f .:i

201. {})) About different axes. As these axes must pass

through the fixed point they must be inclined to each

other. The angular displacements about them may be

finite or indefinitely small

First, let the rotations be finite. Let be the fixed

point of the system, OA and OB, drawn so as to indicate

the sense of the rotation, the axes fixed in the system
about which the rotations occur, and and the mag-
nitudes of these rotations respectively. Make OA equal

to OB. Then during the motion A and B move on the

.*: ir

%t

-.y^

<'--'.spra^,.
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surface of a sphere. Let OA^, ()H^ bo the initial positions

of OA and OB in space, and let OH., be the position in

space of OH after the rotation about OA, the rotation

about OA occurring first. Join A^B^, ^1,/^,,. HM^ by great

circles of the sphere. Then angle H^AJi, = Q. Bisect

this angle by a great circle meeting BJi^ in D. Draw a

great circle tlirough 7/„ inclined to B.,A ^ at the angle (Jij'!

and meeting Afi in the point 6'j. It is obvious from the

symmetry of the sphere about a plane tlirough its centre

that a point 6'^ can be found on the other side of B,,A^

from 6'j, wllose position is such that B.,C^ = B.,(l„ Afi^ =
A/J.,, angle Afi/l = (/>/2imd angle B.,A/[, = e/2.

'

If now the system be rotated about OA , OB will move
from the position OB^^ to OB,, and the line 00 of the sys-

tem initially occupying the position OC^ in space will

come to occupy the position OG,,. When now the system
is rotated about OB in its new position 0B„, 00 must
move from the position OC'^ to the position OC^, for the

ano'le Oj^Bfi^ is equal to and B./j[,= Bfi^. Hence the

line 00 fixed in the system has the same position in space
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after the rotations as before them ; and therefore the

resultant motion is a rotation about OC.

202. Secondly, let the rotations be indefinitely small.

Let them he represented by the lines OA, OH. Complete
the parallelogram AB and join 0(1 Take J* any point

of the rigid system in the plane of OA and OB and out-

side the nngle AOB, and draw PQ, PI{, PS perpendicular

to OA, OB, OC respectively. If the rotation OA occur
first, P will move perpendicularly p

to the ])lane of OA and OH to-

wards the reader through an
indefinitely small distance repre-

sented by 0^ xi'Q (100). When
the rotation OB occurs P will

move in a direction perpendicular

to the plane of OA and OB to-

wards the reader through a dis- cT^
tance represented by OB x PR. As these linear displace-

ments have indefinitely nearly the same direction, the

resultant displacement of P is (86, III.; and 105, footnote)

OA . PQ+ OB . PR = OC . PS
Hence the resultant displacement of the point under
consideration will be the same as if the system had
undergone a rotation represented by OC.

The same result would have been obtained had the

rotation OB occurred first and had the point P been
taken inside the angle A OB. Also, it is obvious that the

same result is obtained whether OA and OB be axes
fixed in the body or axes fixed in space.

Hence, if a rigid system with one point fixed undergo
two successive indefinitely small rotations about difierent

axes either fixed in the system or fixed in space, and if

these rotations are represented by two adjacent sides of a
j)arallelogram, the resultant displacement will be a rota-
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tion rtiproMontLMl l»y the (lia«^oiml of the parallclogrnui

throu^'h thoir point of intersection.

If tlioro are more tlian two successive indetinitely small

rotations, the third may be compounded with the result-

ant of the first two hy the ahove ])arallelogram law, and
so on.

2().S. ( ^oDipoHiiion of Shihidiaitcous liohU'ions.—Simul-
taneous rotations aie usually called component rotations.

{<i) AhoiU /he, H(tin(' nj is.—Let the component rotations

<^. /3, y, etc., be broken up each into n eijual rotations

about the same axis and of the magnitudes n/n, Pin, yjn,

etc., where 'n is a large number ; and let these rotations

occur in the order «/?», ^jn, yjn, etc., ajn, P/n, y/n, etc.,

and so on. If /«. is indetinitely great this is equivalent to

the simultaneous occurrence of «, ft, y, etc. And the

resultant of all these rotations is obviously (200) equal to

a+ fS+ y+ eic. Hence the resultant of any number of

component rotations about the same axis is their algebraic

sum.

204. (h) Aboat different axes. —Let OA, OB (Fig. of

202) represent two component finite rotations about axes
cither fixed in the system or fixed in space. Let them
be broken up each into -Ji equal indefinitely small rota-

tions of the magnitudes OA/n, OB/n respectively. Let
these rotations occur in the order OA/u, OB/n, OA/n,
OB/n, and so on. This is equivalent to the simultaneous
occurrence of OA and OB. Then (202) the resultant of

the first {)air of small rotations is a rotation OG/n, that of

the second pair the same, and so on for the n pairs. Hence
the resultant of all is equal to n rotations of the magni-
tude 00/71 each and about the axis 00 ; that is (200), it

is a rotation OG. Hence two component rotations are to

be compounded according to the parallelogram law.

205. If there are more than two components, the third
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may be compounded with the resultant of the first two,

and 80 on.

20(1. Component rotations are thus eompoumled ac-

cording^ to the same hiw as conjponent transhitioi\al

disphicements. We have therefore propositions caHed
the trianjjle, the paralleh)gram, and the polygon of rota-

tions, the enunciation of which may l>o left to tlie reader.

It folh)ws tliat all the formulae of 85-00, deduced from
these propositions, apply to rotations as well as to trans-

lations.

207. Rcmlidion of Rotations.—It follows also that

rotations may be resolved into components after the same
manner as translations.

208. Rotational D Inplace )iicnts in yeneral.—lu any
displacement of a ri^jid system with one point fixed, there

is one line fixed in the system which has the same posi-

tion in space in both the initial and final positions of the

system.

Let A be the fixed point of the system and R and ('

other two points not in the same straight line with it.

Let J5j, C\ be the initial posi-

tions, and R,,, G,, the final

positions in space of R and (

respectively.

As the system is rigid we
must have AR^ = AR,^. Hence
the point R may be brought
from R^ to R,, by a rotation

about an axis through A per- c,

pendicular to the plane of

B^AR^. By this rotation

will be moved from C^ to a
new position c, which, owing
to the rigidity of the system, must be such that Ac=AC

r."
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and B.,c = B„C,,. Hence the triangle AB,,C., is equal ii). all

respects to the triangle AB.fi, and therefore c may he

brought to coincide with C., by a rotation about AB in

the position AB,,. Hence the given displacement maybe
produced by two successive rotations about axes passing
through the fixed point A . Now (201) two such rotations

give as resultant a single rotation about an axis through
xi. Hence the given displacement may be produced by a
single rotation about an axis through ^,and this axis has
therefore the same position in space in both the initial

and the final positions of the system. This axis is called

the axis of the displacement.

200. Hence any displacement of a rigid system v/ith

one point fixed may be completely specified by giving the

direction of its axis and the magnitude of the angular
displacement about the axis.

210. Hence the three numbers which determine any
displacen.jnt of such a system (198) may consist of two
determining the direction of the axis and one giving the

magnitude of the angular displacement about that axis

;

and therefore the three degrees of freedom of such a sys-

tem consist of freedom to rotate about any axis through
the fixed point.

211. It follows fron 208 and 207 that any displace-

ment of a rigid system with one point fixed may be
resolved into three rotations about given rectangular axes
through the fixed point. Any such displacement may
therefore be completely determined by three nuinbers

which are the magnitudes of rotations about three given
rectangular axes. Hence the three degrees of freedom of

a rigid system with one point fixed are usually described

as consisting of freedom to rotate about each of three

rectangular axes.

212. Angular Velocity of a Rigid System.—The mean

B*- I i
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angular velocity of a rigid system with one point fixed,

during a given time, is a quantity whose magnitude is

the angular displacement produced during that time,

divided by the time, and whose direction is that of the

axis of the angular displacement.

In general both the direction and the magnitude of the

mean angular velocity of a rotating body vary with the

interval of time over which it extends. If both direction

and magnitude are the same whatever the interval of

time, the rotation and the angular velocity are said to be

uniform. In that case the axis of rotation is constant in

direction and the angular displacement is proportional to

the time.

213. The indantaneoics angular velocity of such a

system at a given instant has a magnitude and a direction

which are the limiting magnitude and the limiting direc-

tion of the mean angular velocity between that instant

and another when the interval of time between them is

made indefinitely small. The direction of the instantaneous

velocity is called the instantaneous axis of rotation.

In the case of bodies under finite forces (295) the

instantaneous angular velocity, as above defined, has
always a finite value, and abrupt changes of the direction

of the axis are impossible.

The angular velocity of a rigid system (whether mean
or instantaneous) is thus seen to be a vector. It may be
represented by a straight line after the same manner as a
rotation.

214. Relation between the Angular Velocity of a Rigid
System and the Linear Velocity of one of its points.—As
all points of a rigid system with one point fixed move, at

least instantaneously, in circular paths about the axis of

rotation, the linear velocity of a point (130) will be the

product of its angular velocity into its distance from the

,.1'

i

%*'

', ;»

^. -r

m

•;>

w,
HJ I,.

'•tl

'iv)



• -wp V"'T""Tf

144 KLXKMATICS. [214

.i

h

axis. If o) is the angular velocity of the system and v

the linear velocity of a point whose distance from the

axis is r, we have v = u)r.

215. The angular velocity of a system is measured in

terms of the same unit as the angular velocity of a

point (128).

21G. (knnpo^lt'iO)} of Atupdar Velocities.—If a rigid

system with one point fixed have any number of coni-

])onent angular velocities of given magnitudes and direc-

tions, we may prove, by reasoning similar to that employed
in determining the law of the composition of linear

velocities, that their resultant is to be determined accord-

ing to the same law. We have therefore propositions

called the parallelogram, the triangle, and the polygon of

angular velocities of the same form as the similar pro-

positions for linear velocities. The reader can easily

construct them for himself.

217. All the deductions from these propositions made
in the case of linear velocities may also be made in that

of angular velocities ; and hence all the formulae of 85-90

apply to angular velocities, d^, d.,, etc., being now the mag-
nitudes of the component angular velocities and R the

magnitude of the resultant.

218. It follows also that angular velocities may be

resolved after the same manner as linear velocities or

displacements (79-84).

219. Amjulay Aceeler(dion of a Rigid Sfjsfem.—The
angular velocity of a rigid system will in general vary
from instant to instant both in magnitude and direction.

The integral angular acceleration of a rigid system
during any time is that angular velocity which must be

compounded with the initial angular velocity, in order to

produce the final angular velocity.

If .
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The Tnean angular acceleration of such a system during
any time has a direction which is that of the integral

angular acceleration, and a magnitude which is that of

the integral angular acceleration divided by the time.

In general the mean angular acceleration will be different

for different intervals of time. If it is the same, both in

magnitude and in direction, whatever be the interval of

time, the system is said to be rotating with uniform
angular acceleration.

The instantaneous angular acceleration of a rigid

system at a given instant has a direction and a magnitude
which are the limiting direction and the limiting magni-
tude of the mean angular acceleration between that

instant and another when the interval of time between
them is made indefinitely small. The instantaneous

angular acceleration of a rigid body is in all cases finite.

220. The angular acceleration of a system is measured
in terms of the same unit as that of a point (1 36).

221. Gomjjosition and Resolution of Angular Accele-

rations.—The laws of the composition and resolution of

angular accelerations are the counterpart of those of linear

accelerations. As the latter were deduced from the laws
of the composition of linear velocities, so may "^he former
be deduced from the laws of the composition of angular

velocities.

222. It follows that the relations between the magni-
tudes and in> linations of the components and the mag-
nitude and direction of the resultant, as expressed in the

formulae of 8.3-90, hold also for angular accelerations,

r/,, d„j etc., standing now for the magnitudes of these

accelerations.

223. An angular acceleration may, like a linear accele-

ration (120), be resolved into tangential and normal
K
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)ll

angular acceleration, w,, and w, the initial and final angular
velocities, and the displacement in a time t, we may
obtain, as in 63-G5, the formulae

—

Wt^ = ft)„^+ 2a6.

226. (h) Direction any whatever.—Let OA represent

in direction the initial angular
^^

velocity w, OB that of the anovular

acceleration a, the angle AOB be-

tween their directions being 0. In
the plane of OA and OB draw 00
perpendicular to OA. The com-
ponents of the acceleration in the

directions OA and 00 are thus

a cos
(f>
and a sin 0.

^

To find the angular velocity after any time t we know
that its components about OA and 00 are w-f-a^cos^
and at sin <^ respectively. Hence, if 1^2 is its magnitude,

i1={{w+ atco^(}>f+ {at^m(l)fyi.

Also, if ^ is the angle made by its direction with 0C\

, , ift)+ a^cos0
\!r = tan - 1—7-^—r^-
^ ac sm

To find the angular displacement after any time t, we
know that the component displacements about OA and

00 respectively are a)^-|- Ja^^cos^ and lathiVKj). Hence,

if Q is the magnitude of the resultant.

And, if X is its inclination to 00,

(iDt+ hat^cosd)
tan ^ = —'——^'

t

•i\r:MiH
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[Hi

i<

i

' .'
*•



w

the

ite

the

228] ROTATION. 149

component rotation j)ro(liued in 2 niin. about a diameter inclined

45° to the first.

Ana. (a) 5 /^/3 radians per rain.
; (6) 10 ,^/2 radians.

(4) A pendulum, suspended at a })oint in the polar axis of tlie

earth, oscillates in a vertical plane. Find the motion of this plane

relative to the earth, it being given that the earth rotates once a

day about its polar axis from west to east.

Ana. It rotates about the polar axis from east to west at the rate

of one complete rotation i)er day.

(5) A pendulum is hung at a place of latitude \ and oscillates in

a vertical plane. Find (a) the angular velocity of the j)lane of the

pendulum's motion relative to the earth, and (6) the time in which

this plane will make one comi)lete revolution at a place in latitude

60° N. [A pendulum, so moiuited that the angular velocity of the

plane of its motion ma}' be observed, is called Foucault'spendulum^

the experiment having been first made by Foucault. That the

experiment may be successful, the pendulum must be long, must

have a very carefully made bob, and must be very caiefully started.

The agreement of the angular velocities deduced, as in this problem,

from the assumption of the rotation of the earth on its axis once in

24 hours, with the actually observed angular velocities, is strong

evidence for the rotation of the earth.—To obtain the angular

velocity of the plane of the pendulum's motion, note that it is only

the component of the earth's angular velocity about an axis through

the centre of the earth and the point of susi)ension of the pendulum,

which causes a relative motion of the plane of the pendulum's

motion and the surface of the earth.]

2
Ans. (a) 27rsin\ radians per day east to west

;
(h) days.

(6) A cube rotates about a vertically upward axis through one of

its edges. At a given instant at which that diagonal of the uppei-

surface which passes through the axis, points north, the cube has an

angular velocity of 40 radians per sec. and begins to have a uniform

angular acceleration about an axis vertically downwaids through

the same edge, of 6 rad.-per-sec. per sec. (a) In what direction

'ji'n'

1

V
I
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will the above diugonal point after 20 see,? (6) How many revolu-

tions will the cuhe liave made ?

Ann. (a) S. OT^-no... W.
;

(b)
^^^"'^-

TT

(7) A .sj)here i.s rotating at a given instant about a given dia-

meter A CB with an angular velocity of 4 rad. per min. It has an

angular acceleration of 2 rad.-per-min, per min. about a diameter

/JCjE" inclined 30" to ACB. Find {a) the angular velocity, and (6)

the angular diH))lacement, after 20 min.

Ans. (a) 4^101 + 10/^/3 rad. per min., inclined to CB at

5
^^'^'i r /o ' (^) 80 V 5^^ + •'J V*^ radian.s, inclined to CB at

tan -I 5

2-1- 5^/3'

229. Geometrical representation of the ^motion of a
rigid system about a fixed point. At any instant the

instantaneous axis of a rotating rigid body occupies both
a definite position in the body and a definite position in

space ; but from instant to instant it changes both its

position in the body and its position in space. As its

changes of direction must (295) be gradual, the successive

positions of the axis in the body describe a surface in the

body, and the successive positions of the axis in space

describe a surface in space. One point of the body
being fixed, the instantaneous axes all pass through it.

Hence the surfaces, described as above, both in the body
and in space are conical surfaces. At each instant these

surfaces are in contact along a line which is the position

both in the body and in space of the instantaneous axis

at that instant. Hence the motion of a rigid body with
one point fixed may be represented by the rolling of a
cone fixed in the body on a cone fixed in space, the
vertices of the cones being the fixed point. This mode of

representing geometrically the rotation of a rigid body is

of great utility in the higher departments of this subject.



zy^

232] MOTION OF RIGID SYSTEMS. 151

1^

Vj»

CHAPTER VI.

MOTION OF RIGID SYSTEMS.

i
'.'^

230. Motion of Free Rigid Systems,—We are now able

to discuss the motion of rigid bodies or systems of points,

having studied the two forms of motion which they are

capable of undergoing. We shall first consider systems
which are perfectly free to move.

4'

231. Degrees of Freedom.—We have seen (197) that

three numbers are necessary to determine the position of

a rigid body one point of which is fixed. As three num-
bers are necessary to describe the position of that point,

six will be necessary to determine the position of a rigid

system which has no point fixed. Six conditions of con-

straint will be necessary to fix the system. It has six

degrees of freedom.

1.1 h.

I

la

e

232. Displacement of a Rigid System.—Any displace-

ment of a rigid system may be produced by a translation

of the system together with a rotation about any point

in it.—Let A, B, G be the positions of any three points

determining the initial position of the rigid system, and
let A^, B^, G^ be the positions of these points after any
displacement. Translate the system so that A comes to

occupy its final position A^. Then B and G will take

positions B.^, G^, the ends of lines from B and G equal and

. I:

•;. -f

/'it'

i

A <•
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parallel to AA^. Then A is a fixed point in the system so

far as the two positions AjB^C\ and A^B,p,, are concerned.

Hence (208) the system may pass from the one to the

other of these positions by rotation about an axis through
this point.

233. In the special case of a rigid plane system move-
able in its own plane, any displacement which is not a

mere translation may be produced by rotation about some
point in its plane.—Let BC, B'C be initial and final posi-

/ tions of the same line of the

system. Bisect BR and CC in

D and E, and draw DO and EO
perpendiculars to BB' and CC.
DO and EO will in general be in-

clined and will meet in a point 0.

Join OB, 0B\ OG, OC.

It may . adily be shown that

OB and 00 are equal respectively

to OB' and 0C\ Also BC is equal
^^

'

to BV\ Hence the triangle OBC
is equal to the triangle OBV in every respect, and hence
OBC may be brought to coincide with OB'C by rotation

about 0.

Since the angle BOC is equal to the angle B'OC,
taking B'OC from both, the remainder BOB' is equal

to the lemainder COC Hence, if the displacement

is such that the point B is on GO or GO produced, the

point B' will be on G'O or CO produced respectively.

In the former case we have Fig. 2, in the latter Fig. 3.

In both these cases OD will be in the same straight line

with OE, and therefore the above construction will fail.

In both cases ho .v 3ver it is obvious that the point in

which either BC and B'G\ or these lines produced, cut

one another, is the point about which a rotation would
produce the given displacement.
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If, in Fi^^ 2, BB' be equal to CC\ the point becoracs

infinitely distant, and in this case also the construction

Fig 3

Fig 2

fails. Here however BC must be parallel to B'C, and
the displacement is thus a mere translation.

If BE' and CO' are indefinitely small, the point is

called the instantaneous centre of the motion of the rigid

plane system.

234. It follows from 232 that the displacement of a
rigid system is known if the magnitudes and directions

of the linear displacement of any point in it, and of the

angular displacement of the system about that point, are

known.

*

*

1

'^
11
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235. Hence also the displacement of a rigid system is

known if the magnitudes of the component linear dis-

placements of any point in it parallel to three rectangular

axes, and of the component angular displacements of the

system about axes, parallel to the above axes, through the

point, are known.

236. The six degrees of freedom of a rigid system are

therefore usually described as consisting of freedom to

undergo translation in, and freedom to rotate about three

directions at right angles to one another.

1^
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the third rod if the attachineiitH arc (o) hinges periioiidiuidur to the

plane of the rods, (b) ball-und-sockut joints?

AiiH. (a) 1, {b) 4.

$

i

.tit

.1

ii

a

i-

238. Composition of Translations and notations.—
We have now to determine the resultant of any number of

translations and rotations which may be impressed upon
a free rigid body. The following proposition will be
useful.

The resultant of a rotation about a given axis and a
simultaneous translation in a direction perpendicular to

that axis is an equal rotation about a parallel axis.—Let
the plane of ^;he diagram be a ])laue of the bt)dy perpen-

dicular to the axis of rotation, and let A be the point in

which the axis cuts the plane, and AT the direction and
magnitude of the translation. Let BAG be a line of the

body making with AT an angle TAB equal to half the

supplement of the magnitude of the rotation. Draw
BAG' so as to make the angle GAG' equal to the rota-

tion. From T draw TB parallel to AB'; and from B,

BB' parallel to TA. Then TB' is a parallelogram ; and
the angle TAB being equal to TAG', AB, AB', and BT
are equal.

When the body is rotated through the angle GAG', the

r

I
tH.

V-:



156 KINEMATICS. [238

u •

line BAG takes up the position B'AC. If now it under-
go the translation A T, this line moves parallel to itself so

that B moves from the position B' to its initial position

and A moves to T. The result of the two operations is

therefore that the line BAG is brought to the position

BT, the point B occupying its initial poGition. Ais the

angle ABT is equal to the angle GAC\ the line BAG and
therefore the whole body has undergone a rotation equal

to the given rotation, about a parallel axis through B.

It will be clear that the result would have been the

same had the body been first translated and then rotated,

and consequently that the result would be the same were
the translation and rotation simultaneous.

239. By producing TA to T\ making AT equal to AT
and drawing T'B'^ parallel to TB, it may readily be shown
that reversing the direction of the component translation

reverses the d rection of the displacement of the axis of

rotation.

I.

i-

* *

I -:

h-r-

k

240. If 8 is the translation and Q the rotation, we have

All - ^
1' sin (0/2)'

and the angle TAB is equal to (tt — 0)/2. Hence the

axis 1/ is in a line inclined (tt- 0)/2 to the direction of

the translation and at a distance from the axis A equal

to s/[2 sin (0/2)].

241. It follows from 238 that a rotation about a given

axis may be resolved into an equal rotation about a par-

allel axis at a given distance in a given direction, together

with a translation whose magnitude and direction may
be determined by the above construction.

242. Hence, if a rigid system have any number of com-
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j>onent rotations about any axes whatever (the axes will

of course in general not intersect), they may be reduced
to the same number of component rotations of the same
magnitudes respectively, about axes parallel to the given
axes through some one point, together with as many trans-

lations. The resultant of the component rotations may
then be found by 206, and the resultant translation by 78.

243. Hence, if a rigid system have any number of com-
ponent translations and rotations, they may bo reduced

to a single translation, and a single rotation about some
given point. The displacement of the system may there-

fore be determined.

244. It is evident from 242 that the single rotation

referred to in the last paragraph will have the same value

whatever the position of the given point, but that the

translation will vary with its position. Hence, that the

displacement of a rigid system may be known, its rota-

tion about any point fixed relatively to the system and
the translation of some given point of the system must
be known.

245. Every displacement of a rigid system may be
produced by a rotation about a determinate axis and a
translation in the direction of that axis.—Let AB and

BO represent the translation and
rotation to which its component
translations and rotations are re-

ducible. From A and B draw lines

parallel and perpendicular respec-

tively to BG meeting in D. Then the translation AB has

the two components AD and DB. But the translation

DB with the rotation about BO give as resultant an equal

rotation about some other axis parallel to BC\ Hence the

translation AB and the rotation about BC are equivalent

to a translation AD and a rotation about an axis parallel

to AD.
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Ball gives the name screw to the common direction of

the translation and rotation to which any displacement
of a rigid system may thus be reduced. The linear dis-

placement in this direction ]ier unit of angular displace-

ment about it he calls the intch of the screw. A rotation

about a screw accompanied by a translation parallel to

the screw through a distance equal to the product of the

pitch and the angular displacement he calls a twist about
a screw.

246. A twist about a screw is thus the most general

possible motion of a rigid body. Hence one degree of

constraint of the most general kind is attained by allow-

ing a body to rotate about a given line in it, only in fixed

proportion to the amount of its translation along it.

Then the body has freedom to screw in the direction of

this lino, together with freedom to rotate about and to be
translqt'Ml In any other two directions perpendicular to

one atiothtn" and to the given line ; on the whole, five

aegrees oi freedom which, with the one degree of con-

straint, make up the rfix necessary elements.

247. Composition of Linear and Angular Velocities.—
Velocities, whether linear or angular, being displacements

per unit of time, the results of 238 are true of them as

well as of displacements.

In the ease of instantaneous velocities however, the

(Quantitative relations of 240 become simplified. For, if

the translation and rotation of 240 are both indefinitely

small, we have AB = s/0 and angle TAB = 7r/2. If these

small displacements occur in the time r, and if v and w
are the component instantaneous linear and angular
velocities respectivelj^ we have

AB=(s/T)MO/r) = ulco.

Hence the resultant of an angular velocity co about a
given axis and a linear velocity v in a plane perpendicular
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to the given axis is an equal angular velocity about a
parallel axis distant vJm in a direction perpendicular to

that of V.

V
j:

^1

248. Hence also a given angular velocity w may be re-

solved into an equal angular velocity about a parallel

axis distant d m n. given direction, together with a linear

velocity equal to dw perpendicular to the plane of the

axes.

249. a dt'i >f Anrjular Velocities about Parallel'Omposi

x[xes.—By the aid of this result, we may determine
the resultant of two component angular velocities about
parallel axes. Let A^ B be the parallel axes, d the

distance between them, w^, to., the angular velocities about
A, B respectively. Then the angular velocity Wj about A
is equivalent to an equal angular velocity about B with a
linear velocity perpendicular to the plane of the axes and
equal to tZwj. The given angular velocities about A and
B are therefore equivalent to an angular velocity equal to

their sum about B together with the linear velocity equal

to dw^. Similarly, an angular velocity of cd^+ w^ about
B is equivalent to a linear velocity — cZwj, with an
angular velocity coj+ w., about a parallel axis G, distant

— dcoJijM^-i-w.) from B in the direction AB, and therefore

duiJ{od^+ w.^ in the direction BA. Hence, as positive and
negative equal translations destroy one another, the two
angular velocities w^ and w.,, about parallel axes A and H
respectively, are equivalent to an angular velocity w^ + w.,

about a parallel axis through (> in the same plane us A
and B, whose distance from B is (?Wj/(a), +a).,), and from A
rZ— c7c0j/(<0j+ «.,), and which therefore intersects the line

BA so that i?C': 0^=0) ft>2.

If the component angular velocities about A and B are

equal and opposite, w^+ a)._, = 0, and d(vj(w^+ w.^) = go . The
axis of the resultant angular velocity is thus at an infinite

distance; in other words, the resultant velocity is a trans-

;: M
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li

lational velocity in a direction perpendicular to the piano

of J. and H.

250. Composition of Linear and Angular Accelera-

tions.—As in 116, it may be shown that the laws of the

comporition of linear and angular velocities apply also to

linear and angular accelerations.

251. Motion of a Rigid System under given Accelera-

tions.—The resultant linear acceleration of any point of

the system and the resultant angular acceleration beiny-

known, together with the initial velocities, the displace-

ment and the final velocities of the S3^stem may be deter-

mined by 138-180 and 224-226. In practical problems
the angular accelerations are usually known about axes

fixed ill the body. Of such cases we must restrict our-

selves (227) to those in which the axes fixed in the body
have also fixed directions in space.

i
"

W,

252. Geometrical Rejpresentaiion of the Motion of a

Rigid Lamina in its own Plane.—The instantaneous

centre of such a lamina occupies at any instant a definite

position both in the lamina itself and in space ; but from
instant to instant its positions, both in the system and in

space, change. By 295 the successive positions in the

case of a body must be indefinitely near ; and therefore

the series of positions of the instantaneous centre in the

system forms one curve and the series of positions in

space forms another. At each instant these curves must
be in contact, the points of the curves in contact being

the positions of the instantaneous centre at the given

instant. Hence the motion of a rigid plane system in its

own plane may be geometrically represented by the roll-

ing of a curve fixed in the system on a curve fixed in

space. This conception is of great use in the treatment

of some of the more diflScult problems of the motion of

rigid systems.
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253. Motion of Rigid Systems under Constraint.—
If two or more bodies are connected together in any way
they form a system, the motion of any one member of

which, thus subjected to constraint, depends upon the

position and the motions of the others. In such cases it

may be required to determine the instantaneous axis of

rotation of any one member, to find relations between
the velocities of various members of the system, etc. We
may illustrate such cases by a few examples. Readers
who wish a thorough treatment of the constrained motion
of rigid bodies should study works on the Kinematics of

Machinery.

254. EaMniples.

(1) The line Z)£' moves, keeping its extremities in two fixed lines

A7)Ij, a EC. Find the instantaneous centre and the direction of

motion of any point G in BE, when DJ^J occupies any given position.

From D and tJ draw BF and EF peri)endicular to AB and AC
and meeting in F. F is the instantaneous centre (233); for in-

definitely small displacements of B and F have the same directions

as AB and AC respectively, and their middle points coincide

ultimately with D and E. Join GF. The line through G per-

pendicular to GF is the direction of G's motion at the given instant.

(2) A. rod BE falling with its ends in contact with two other

rods, one ABB vertical and the other AEC horizontal, is inclined

30" to the horizontal rod. Find (a) the direction of motion of the

middle point of BE, and (h) the point of the rod whose motion is

inclined 30° to AC.

Ans. (a) Inclined 60° to ^C
;

{b) BE/4 from E.

(3) A rod moves so that its end points remain in a gi\'en circle.

.Show the centre of the circle to be the instantaneous centre of the

motion.

(4) Find the ratio of the velocity of any point of a screw to its

\elocity of advance. [The screio consists of a convex or concave

cylinder with one or more helical projections called threads winding

romid it, the inclination of the thread to the axis of the cylinder

being constant. The pitch of a screw with one or more threads

• 1j '
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/), bein;t5 fixed. Express the au^fular vclncity of (7 in terms of (a)

the velocity v of B, and (/>) the velocity /•' of A. [A 'pvUey is a con-

trivance for changin<j^ the direition of a stiin^. It usually takes the

form of a j^rooved wheel or sheaf, whose axis is fixed in a frame-

work or block, the block being sometimes fixed, sometimes moveable.]

Ans. (a) v]'lr
; (6) ??'/>, where r is the radius of C.

(7) Two bodies D and /i' are connected by means of the system

I

r\
J

(Fig. of Ex. (5.)

of pulleys represented in the figure, A
being a fixed block with four sheaves,

B a moveable block with three sheaves,

and the string being fastened at C and

passed round sheaves in A and h alter-

nately until it has j)assed round them

all. Compare the velocities of D and E,

and find the radii of the sheaves that

their angular velocities may be the

same.

If the distance between D and ^1 is

increased by any amount, the lengths of

the plies 1... 7 nmst be diminished each (Fig. of Ex. 7.)

by one-seventh of that anxmnt. Hence, if c is the velocity of Z), and

'..i!
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/•' that of E^ r— 7v'. If the sheaves have all the same radius r, they

will have different anj^ular velocities. Let Wj, W2, etc., be the angu-

lar velocities of the first, second, etc., sheaves met with in passing

along the cord from C to JJ. Then Ui = v'/r. As twice as much
t!ord passes roiuid the second sheaf as round the first, u,^= '2,v'lr.

Similarly u^= ^v'l)\ and so on. That the angular velocities may be

tlie same, the radii of the 1st, 2nd.., m*'' sheaves must be as the

numbers 1, 2... n respectively.

(8) A By BC\ CD are three rigid rcjds jointed to one another at D
and C, and to fixed points at A and 2), and moveable in one plane.

Kind the angular velocity of CD when that of AD is w. [The motioii

of this system is called three-bar motion. The system is one o:'' the

"elementarv combinations" of machinerv.l

Produce AD and DC to meet in U. Then at any instant the

linear velocities of D and C are i)erpen-

dicular to A B and CD respectively. Hence

at that instant BC is rotating about E.

Now /i's linear velocity m w . AB. Hence

the angular velocity of BC about E is

ojABjDE. Hence also the linear velocity

of C is u)A B . ECIBE, and the angular

velocity of CD is uiAB . ECl{BE . CD).

(9) A disc (radius = r) rolls without sliding on a plane. Find tlie

relation between its angular velocit}' w and the linear velocity v of

its centre.

The point of the disc in contact with the plane has two com-

ponent linear velocities, one the translational velocity v which it

has in common with the centre, and another equal to wr due to its

rotation about the centre. These components are in the same

straight line. Hence their residtant is equal to their algebraic

sum. But their resultant is zero. For as the disc rolls without

sliding the point of the disc in contact with the plane is instantane-

ously at rest. Hence v + ur= 0. As this equation holds at all

stages of the motion, if a and a are the angular and linear accelera-

tions respectively, we have also a+ ar — 0.

(10) A rod (length= 2^) hangs by a small ring at its upper end

from a fixed horizontal rod. To the former an angular velocity
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w ia communicatod in a vertical plaiio tlirouf^li tlit- fixed rod, so that

the centre of tlie moveable )'od moves vertically. Find the lineai-

velocity of itH centre when its inclination to the vertical in 0.

Ans. wl sin 0.

(11) A rod A/J (lenj,'th = /) in freely moveable alxmt a hin<,'e at J

and rests with its end /I on one i)lane surface of a wedge BCD,

whose other i)lane surface is in contact with a ta))ie in which A is

situated, the rod AB being in a plane perjjendicular to the edge of

the wedge. Show that if BCD be advanced along the table towards

vl, with velocity r, and if the angles BAC and BCD are and (f>

respectively, the angular velocity of the rod will be

V sin

J' COH {<l>-dj

'k
n*

k
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255. We have next to discuss the motion of systems of

points whose distances from one another are variable.

Any change of configuration of such a system is called a

strain.

256. Strains may involve both translation and rotation,

i.e., there may be no point of the system which occupies

the same position in space in both the initial and the final

configurations of the system, and there may be no three

intersecting straight lines in the system whose directions

in the initial and final configurations are parallel. In

considering strains however it is usual to exclude from
consideration the translation involved, as occasioning no
difficulty. For this purpose one point of the body is

assumed to be fixed in space.

257. Homogeneous Strains.—We shall restrict our-

selves to the most simple strains to which bodies are

subjected, those, viz., which are such that the distances of

pairs of points so placed in any part of the unstrained

system that the lines joining them have the same direc-

tion, are increased or diminished in the same ratio. Such
strains are called homogeneous strains.

The ratio of the distance of two points after the strain
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p ii.

to their distanco boforo tlio stniin \h called the ratio of the

Htraln for the direction of the line joining them.

The ratio of the increment of the distance of two points

to their initial distance is called the (tlon(jatw)h of the

sintiii for the direction of tlie lino joining them. The
elongations of a strain may bo positive or negative.

If d and (V are the initial and final distances of two
points, a the ratio of the strain, and e its elongation, for

the direction of the line joining the points, wo have thus

a = cV/d, e — (d' — < {)/d.

f[ence a=l+c.

258. Points which lie in straight lines before a homo-
geneous strain lie also in straight lines after the strain.

Let A, B, C he points lying in a straight line before the

strain and let A', B\ C be their positions after the strain.

Then (257)

A'B'\AB = BG'IBC= AV'/A G.

Hence
{A'B'+B'Gy(AB+BG) = {A'B'+B'GyAG= AV'/AG,

and hence
'

A'B'+ BV' = A'G\

B' is therefore a point in the straight line AV\

259. Since all straight lines remain straight after the

strain it is clear that planes must remain planes.
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168 KINEMATICS. [260

260. Lines which are parallel in the unstrained state

of the system are parallel also after the strain.—Let AB,
CD and A(', JW be pairs of intersecting parallel lines in

the unstrained system. These lines being in the same
plane before the strain must be in the same plane after it.

Also AB and CD being equal before the strain must re-

main equal. Similarly AC and BD must remain equal.

Moreover, as one portion of a material body cannot pass

through another portion, CD cannot cut AB or AC cut BD
after the strain. Hence, liA'B'D'C represent the strained

system, A'C and CD' are equal respectively to D'B' and
B'A'\ and A'D' being common to the two triangles A'C'D'
and D'B'A', these triangles are equal in every respect.

The angles B'A'D' and A'D'C are therefore equal, and
likewise the angles B'UA' and D'A'C. Hence A'C is

parallel to B'D' and A'B' to CD'.

26L Parallel straight lines remaining parallel and
straight, parallelograms must remain parallelograms,

parallel planes must remain parallel, parallelopipeds must
remain parallelopipeds, and figures which are similar and
similarly situated must remain similar and similarly

situated after the strain.

262. Since parallel straight lines must remain parallel

and must be increased or diminished in the same ratio, a
circle drawn in any part of the system must be strained

so that parallel chords remain parallel and become in-

creased or diminished in length in a given ratio. Hence
(173) after the strain it will be an enlarged or diminished
orthogonal projection of the circle or some plane, i.e., it

III
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will be an ellipse, perpendicular diameters of the circle

having become conjugate diameters of +he ellipse.

There is one pair of perpendicular conjugate diameters

in every ellipse, viz., the major and minor axes. Hence
there is one pair of perj)endicular diameters in the circle

whose mutual inclination is not changed by the strain.

2C3. As all plane sections of a sphere are circles, a

spherical portion of the unstrained system must after the

strain have the shape of a figure whose plane sections are

ellipses, i.e., of an ellipsoid.

A cube circumscribing the sphere will become a paral-

lelopiped (in general not rectangular) circumscribing the

ellipsoid, the points of contact of the cube with the

sphere, which are the extremities of three diameters at

right angles to one another, becoming the points of con-

tact of the parallelopiped with the ellipsoid, which are

the extremities of conjugate diameters. Hence perpen-

dicular diameters of the sphere become conjugate

diameters of the ellipsoid after the strain.

There is one set of conjugate diameters of every ellip-

soid which are at right angles to one another, viz., the

principal axes. One of them is the greatest diameter,

another the least, and the third has in general an inter-

mediate value. There are thus three peipendicular

diameters of the sphere which after the strain become
the axes of the ellipsoid. Lines in their directions in the

initial configuration have the same mutual inclination in

the final configuration, though the inclination of these

lines to fixed lines in space or to lines in other directions

in the system may have changed.

The directions of the axes of the ellipsoid in the

strained system and of the corresponding rectangular

diameters in the unstrained system are called the prin-
cipal axes of the strain. The elongations in these direc-

V
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t trl

tions are called the 'princij)al elongatUms ; the ratios of

the strain in these directions, the 2Drinci2)al ratios.

204-. The ellipsoid into which any spherical portion of

the system is strained is called the strain ellipsoid. It

has obviously (257) in the case of a homot^^eneous strain

the same form and relative position in whatever part of

the system the sj)here may be taken.

If the principal elongations of a strain are all equal,

the strain ellipsoid becomes a sphere, and the ratios of

the strain in all directions are the same as the principal

ratios. All lines in a system subjected to such a strain,

whatever may be their directions, are changed in length

in the same ratio. There is no chanore of form. If two
of the principal elongations are equal and the third either

greater or less than the other two, the strain ellipsoid is

a spheroid, prolate or oblate. If two of the principal

elongations are equal to zero, it is also a prolate or oblate

spheroid, its equal axes having the same length as the

diameter of the sphere.

A strain in which two of the principal elongations are

zero is called a shnple longitudinal strain.

am
5. There are two sets of parallel planes which remain

undistorted after the strain.—Let ABCD be a section of

the strain ellipsoid by a plane through the greatest and

least of the principal axes. Let SOS' and TOT be dia-

meters in this plane equal to the mean principal axis.
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Then the sections of the ellipsoid by ])lanes tln-ough SOS'
und TOT' perpendicular to the plane A HOJ) are ellipses

with equal ])rincipal axes, i.e., circles. Hence the elonga-

tions of all lines in these pianos are the same as the mean
principal elongation, and these planes therefore, and all

planes parallel to them, remain undistorted after a strain

though they may be changed in area. The axes AC and
IW evidently bisect the angles of inclination of the ])lanes

of no distortion.

26(5. The ratio of the final to the initial volume of a

system homogeneously strained is the same as the ratio

of the volume of the strain ellipsoid to that of the corre-

sponding sphere. Hence, if a sphere of radius r is strained

into an ellipsoid whose principal semi-axes are a, h, c, the

ratio of the final to tin; initial volume of the system is

(4/3)7ra6c a

I'

b

r

e
,=-(i+.)(i+/)(i+<A

^s.

(4/3)7r?'^

if e, f, and g are the respective elongations.

If e, f, and g are so small that their products may be

neglected, we have

(l+e)(l+/)(l+i/) = 1 + 6' +/+£,.

Hence, in the case of a small strain, the cubical dilata-

tion, or expansion per unit of volume, is equal to the sum
of the principal elongations.

207. Pure Strains.—Strains in which the initial and
final directions of the principal axes are the same, are

called pure strains. They are so called because their

characteristic property excludes the possibility of rotation.

268. Rotational Strains.—In general, however, the

initial and final directions of the principal axes of the

strain are not the same. In all such cases, since the princi-

l)al axes maintain their mutual inclinations, they may be
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brought into the positions which they occupy after the

strain, by a rotation, and the body thus rotated may then

have its final configuration given it by a pure strain. It

will be obvious also that the same result will be attained

if the body be first subjected to the pure strain and then
to the rotation.

269. The Shear.—If one plane of a system be held

fixed, and if the planes parallel to it be moved in their

own planes, without change of form or area, those on the

one side of the fixed plane in any one direction, and those

on the other side in the opposite direction, and all through
distances proportional to their distances from the fixed

plane, the system is said to have undergone a shear. The
amount of the shear is the relative displacement of any
two of the parallel planes divided by the distance between
them. The plane of the shear is any plane intersecting

the fixed plane normally in a line parallel to the direction

of relative motion. The direction of the shear is that of

the relative motion of the parallel planes.

Similarly, if one line of a plane system be held fixed,

and if all lines parallel to it be moved parallel to it in one
direction or the other according as they are on one side

or the other of the fixed line, and through distances pro-

portional to their distances from the fixed line, the plane

system will undergo a shear, whose plane is the plane of

the system, whose direction is that of the fixed line, and
whose amount is the relative displacement of any two
lines per unit distance between them.

Thus any parallelogram abed may be produced from
any other parallelogram ABGD on an equal base (AB= ab)

and between the same parallels {aB and Dc) by subjecting

it to a shear whose plane is the plane of the parallel lines

aB and Dc, whose direction is that of the fixed line EF
which is parallel to aB, and whose amount is the quotient

of Dd by the perpendicular distance of EF from Dc.
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A familiar approximate illustration of a shear in three

dimensions is the change of configuration by which a

D

pack of cards initially forming a rectangulai- })arjillelo-

piped is made to take the form of a parallelopiped not

rectangular. The illustration would be exact if the cards

were indefinitely thin.

270. Ho7)%ogeneity of the Shear.—Let AB and CD be
parallel lines having any direction in the unstrained

system. From their extremities let fall perpendiculars

Aa, Bh, Cc, Del on the fixed plane of the shear to which

the system is to be subjected. Let A\ B', C, D' be the

positions of A, B, C, D after the shear. TJien AA\ BB\
GC\ DD' are parallel, and

AA'IAa = BB'IBh = CC'/Cc = DD'/DcL

Let BA and DC produced meet the fixed plane in E and

.'J
4
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A' respectively. Then Eah and Fed being the projections

of EA H and FiH) on the same plane are parallel straight

lines. Since Eaft is a straight line and Aa is paiallel to

Bh, AE/Aa = nE/Bb. Hence AAyAE=BB'/BE; and
therefore EA'B' is a straight line. Similarly FCU is a

straight line. Since EB, Bb, and hE are parallel respec-

tively to FD, Dd, and dF, the triangle EBh is similar to

the triangle FDd. Hence BE/Bb = DFlDd. Hence als(.

BB'/BE= DD'/DF. Now BB' and i5i5: are parallel to DD'
and Z)/"^ respectively. Hence the triangle EBB' is similai-

to FJJjy ; and therefore

A'B'lAB= (J'D'iCJ).

Hence the lengths of the parallel lines AB and CD are

increased by the shear in the same ratio. The shear

is therefore a homogeneous strain. It has consequently
principal axes, ratios, and elongations, like all homo-
geneous strains.

271. It is obvious that as, in a shear, all planes of a

body parallel to a given plane are translated in their own
planes but not changed in area, there can be no changr in

the volume of the body.

272. Reduction of the Shear to a Pure Strain and a
Rotation.— Let be the centre of a spherical portion of

a system subjected to a shear, AOB the intersection of

the sphere with the plane of the shear through 0, and
AB the intersection of the fixed plane with the same.

Let the system be subjected to a shear of amount .s, and
such that planes parallel to the fixed plane through AB
and on the (7-ward side o^ AB move in the direction AB,
parallel planes on the other side oi AB moving in the

opposite direction. Then (270 and 262) the circle AGB
will after the shear have the form of an ellipse ADB
whose centre is ; and the sphere intersecting the plane

of the shear in ACB will become the ellipsoid intersecting

that plane in ADB. Since the distances of points of the

l: H

»
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system from the plane of the shear throucjh remain
constant, this plane must contain the greatest and least

principal axes of the ellipsoid. Now, by 205, EK' and

FF\ the bisectors of the angles AOa and BOa respec-

tively, will be the minor and major axes of the ellipse

ADB. Hence OF, OF, and a line through 0, perpen-

dicular to both and equal to OB, are the least, greatest,

and mean principal axes of the ellipsoid.

If 00 is perpendicular to AB, and CD touches the circle

at G, it will also touch the ellipse, and its point of con-

tact D will be the position of G after the shear. OD is

therefore conjugate to OB. Hence, since OG is equal to

the perpendicular from D on OB,

OF/OG=OG/OL\

Hence the circle may be brought to have the shape ot

the ellipse by elongating all chords parallel to one dia-

meter in the ratio OF/OG, and shortening all chords

perpendicular to that diameter in the ratio of OG/OF.

Let a line through F parallel to OA meet the circle in

e. Then E is the position of e after the shear. Hence
(2G2) Oe and a line perpendicular to it in the plane of

AGS coincide in direction after the shear with OE and
OF. And a line through perpendicular to the plane of

^(75 remains unchanged indirection. Hence these lines

I!
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arc the positions before the shear of the |)rincipal axes of
the shear. And therefore, if the sphere be tirst rotated

about an axis through perpendicular to the plane of

ACB, through the angle eOE, it may then be brought to

its final configuration by a pure strain whose axes are
OF, OPJ, and a line perpendicular to both. The ratios of

the strain in these axes are OFIOC, 0E/0G[ = 1/{0F/0G)]
and 1 respectively. If OF/OC be called a, they are a, l/«,

and 1.

5'.',

!,1^i

273. From the symmetry of the figure it is obvious
that a shear of the same plane and amount, but with the

plane through ah as fixed plane, is equivalent to the same
pure strain as above, together with a rotation of equal

amount and about the same axis but in the opposite

direction.

Hence, rotation being neglected, the same change of

configuration is produced in a system by a shear of given

plane and amount, whether its direction be one or other

of two directions equally inclined to the greatest and
least principal axes of the shear.

274. It is obvious from 2G5 and 272 that planes through
AB and ah, normal to the plane of the shear, and all

planes parallel to these planes respectively, are both un-
distorted and unchanged in area by each (273) of the

above shears. Hence in any body subjected to a shear

there are two sets of planes which are unchanged in area

and form, these sets of planes being equally inclined to

the gi'eatest and least principal axes and parallel to the

mean principal axis.

275. It is obvious also, with the aid of the above, that

Oe may be brought to coincide in direction with OE, its

length remaining unchanged, either by a rotation about

an axis through perpendicular to the plane J. C5, through

the angle eOF, or by a shear of the amount CD/CO in the
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phmc A(Ui, and in the direction (UJ, together with a pure

strain who.se ratios in the principal 'ixes OF, OK have the

vakies OCjOF q,\\(\ Of'/OA' rc^spectively, and in a direction

perpendicular to both, the vahic unity.

276. The amoiint h of the shear may be ex|)ressed in

terms of its principal ratios or elongations. Ly a pro-

perty of the ellipse (Fig. of 272)

0D~-\-On' = OF'-{-OE\

Hence OD" = OF'^+OE' - Oa\
and aw = OF-+ OE' - 20( '-,

and (272) CD' = OF''+ OE'-20E . OF '

=^(OF~(}Ey\

Hence CD!Oa=s=:OF/OC- OE;0C= a - 1/a.

If e is the greatest principal elongation (257),

H = l + e-l/{l-{-e).

If the shear be indefinitely small, we have

l/(l + e) = l-.',

and hence ,s= 2e.

Also, when the shear is indefinitely small, OG, OD and
Oa (Fig. of 272) ultimately coincide. Hence Oa is at

right angles to OA, and therefore (205) is inclined to OE
and OF at angles of 45°.

Hence, if a system be subjected to a strain consisting of

two indefinitel}^ small elongations, one e in any direction,

and the other — e in a perpendicular direction, the resul-

ting strain is a shear whose amount is 2e, whose plane is

that of the two rectangular directions, and whose direction

bisects the angle between them.

277. Exami^les.

(1) Show that, if rotation be left out of account, a small simple

elongation e in any direction is equivalent to a uniform cubical

M
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1.

!Jf.

w

<liliit-;iti<»ii toi^'clluT witli t\v<i sIh'jus, «ii(li liaviii^' tlif ^'ivt'iuliifction

for one |>iin(i|)iil axis aiid lines at ii;rlit aiii^K's to it and t(» t'acli

otiici' foi- tli«' otlu'i- axes ; and di'tt'iniiiif tlu' nia;,qiit wdf (»f tin- dila-

tation and flic MMioinitM of tlif sln-ais. Lrt OA Ik' tlu- direction of

D tlic sinijiU' clon^i'ation and O/f a cultc of wliicli

OA iH an i'dLfc. Tlic cion^^ation >' in tlicdii-ee-

tion (/A is ciiuivalent to three elon^jjationn in

the same diicction, each liaN in;^' the ina<,'ni-

tiide (73. Ah thcic iuc no cl<»n;;atioiis in the

directions 0/i and (JC |»er|)endicnlai' to OA
and t<» each other, we may i'e;;ard the cnhe as suhjected to two

elongations in t-ach of these directions, havin<,' the niaifnitndes c/3

and -6'3. Now an elon<;;ation e/'^ in each of the three rectanj^idai'

directions OJ, (^>/j», and OC is (iJOfJ) eipuvalent to a nm'foiin cid»ieal

dilatation (4 the niaj^'nitnde e. Also, the el(»n<.i'ation ejli in the direc-

tion of OA with tlu^ el( 'i<,fation —ej'^ in the direction of OJi ai'c

t^(iuivalent (270) to a shear whose ))rinci|»al axes art^ these lines and

whose amount is 2e/Ji; and sinn'larly the remaining elongation f/3 in

the (lirtH'tion of OA with the remaining' elongation — ciJ in tlie

direction of OC are ecinivalent to a sheai' whose ))rin(;i))al axes are

OA and OC, and whose amount is 2e!?i.

(2) Show that, if a sijuare he sul»jected to a small shear whose

axes are in the diri'ctions of its diagonals, it becomes a rliom-

l)us whose sides are ecpial to those of the squan; and whose angles

(lifter from I'ight angles by f) radians, being the amount of the

sliear.

(3) Inv^estigate the strain in the case of a uniform circular eyliiuler

of length I fixed at one end and having its other end twisted through

an angle 0. This form of strain is called Torsion.

The cylinder being uniform, every normal section of it will rotate

about its axis ; and, O^'l l)eing the anumnt of the twist per unit

length of the cylinder, tlie amount of the rotation of any section

will be the product of Oil. into its tlistance from the fixed end

of the cylinder. Hence, also, any normal section will be twisted

relatively to any other normal section distant d from it through an

angle ddll.

Let Aa be the axis of the cylindei-, ABha and ADda planes



277 J STKAINS. 171)

tli)'i>u;;°li All, ill tlir iiiisti'iiiiic*! system, iiirliiuMi at an iiiilrlinitrl v

small aii;;lc, .!/>/> aiitl ulid plaiu's iioi-mal to .(«, TA' ami ce lUfs

nf circlrs liaviii^' ICas lailiiis aii<I .1 ami >i as (chtri's risiifttivrlv.

A\

ami no aiitl bd Jircs of riicU's liaviii,i;' A and a icsjicctivcly as

ct'iitres, ami as radius A/> indt'linitclv ncailv t'(|nal to AC. Tlicii

CE, ce, IJJ), and bd may Ix* (•••nsidfivd to he (Mpial and paiallcl

straiglit lines, and I]c/>c a ii'ctani^'dav |)aiall('li>|»i|K'd wlwtsc od^es lih,

Cc, l)d, and £e aic parallel t(t Aa.

After the strain B, 0, /), E will have mnved relatively t(t 6, o, </, <

to /;', 6", D\ E\ BW and DD l.einjr o(iual to {o;i)nh . j//, and (V
and ^A" e(iual to {e'i)Bh . AC. These ((r.antities, when angle BA h
and BC are made indelinitely small, are ultimately e<[ual. Hence

the small reitangular paiallelopiped licDe becomes after the strain

the non-rectangular |)aralleloj)i{)ed B'cD'e, on the same hase and

between the same parallel }»lanes. Hence the parallelo|»iped BiDe

has been subjected to a shear whose plane is BDdh, direction IIJ),

and amount BB'/Bh, i.e., {eil)AB.

Hence at every point distant r from the axis of tlie cylinder tluis

subjected to torsion, it undergoes a shear wlujse j)lane is parallel to

It
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tile axi.i and 5)er))eiHliculav to a |»laiie tlir()U<>h the ]>()iiit and tlie

axis, wliose «liie«:^i(>ii is normal to tliis ])lane and wliose amount
is Or'l.

(4) A unifoini str;\io|it beam is btnt so that lines initially longi-

tudinal and strai^^ht l)e('ome arcs of circles in parallel i)lanes (called

planes of bending), with centies in a line normal to these planes
;

trans\ ^'rse sections initiallv i>arallel become so inclined that the\'

intersect in this lin.', aiid longitudinal lines in a surface, called the

neutral suiface, noimal to )>lanes of bending and initially a plane,

are not changed in length. Investigate the strain.

Let ABBC be a section of the bent beam by a j)lane of l)ending,

EF the intersection with ADJ)C of the rieutral surface, ac and hd

tlie intersections with it of two transverse sections of the beam

(^ being their niclination), and the centre of curvature of AB
and CD.

Then it is obvious that l(»ngitudinal lines, such as Cr//, between

AB and EF Ave lengthened, and longitudinal lines between iST^and

CI) are shortened, h\ the strain. The line gh was initially equal to

ef. Hence it has undergone an ehmgation (per unit of its length)

equal to {gk-ef)jef. Now (jh = Og.d and ef—Oe.d. Hence the

elongation of gk is

{Og - Oe)IOe ^ge/Oe= dip,

if d is the distance of the line GH from EF, and p the radius of

curvatui'e of EF. This result ajiplies to all lines parallel to gh and

intercepted between the transverse sections ac and hd, d being
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hd

lie

positive when measuiinl from ef towards «A, and nej^ative wlieii

nieasmed from 6;/' t(/Wards C(/. Hence at every point of the beam

there is a longitudinal strain in the direction of its Ien<ijth, the

elongation being equal to djp. It is p(»sitive for all points between

the convex surface and the neutral surface, and negative for all

])oints between the neutral and the concave sui faces.

It is obvious however that these longitudinal elongations alone

would not involve bending, and that in order lo bring the beam

into its final contlguiation longitudinal planes normal to planes of

bending, which have thus been elongated, must slide over one

another. Hence at each point of the l)eam there is not only a

longitudinal elongation, but also a shear whose plane is the plane of

l)ending and whose direction is longitudinal. By 273 and 270, if this

shear is small it is ecpiivalent to another in the same i)iane, but with a

direction transverse to the beam and in the i>lane of bending, trans-

verse slices of the beam sliding over one another in the directi<»n of

their intersections with ]>lanes of bending.

Hence the strain at anv. i)(»int (tf the beam consists of a lonuitud-

mai elongation equal to dip, together witli the above shear.

278. Specijlcation of a Strain.—The elongations of a
homogeneous strain in any three non-coplanar directions

being given, the elongation in any other direction can be

found.—Let Ox, Oy, Oz be lines having any three direc-

tions and e, f, g the elongations in them respectively.

iUi

Then any point P whose co-ordinates referred to these

lines as axes are x, y, z, has component displacements ex,

fy, gz, and the resultant displacement may be determined
by 78. The final distance ofP from may thus be deter-

mined, and hence also the elongation in the direction of OF.

ijfj

I"

n
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Hii

279. Hence a homogeneous strain is completely speci-

fied if the elongations in any three non-coplanar directions

are given.

,1 •.

280. The specification of three non-coplanar directions

re(|uires (7) six numerical data, and that of the elonga-

tions in these directions three more. Hence, in general,

nine quantities are requisite for the complete specification

of a strain.

2(Sl. As a pure strain consists simply of elongations in

certain rectangular directions, the principal axes, the

specification of a pure strain requires only data sufficient

to determine the directions of these axes and the elonga-

tions in them. To determine three rectangular directions

three numerical data are sufficient. Hence the specifica-

tion of a pure strain requires only six numerical data.

282. As any homogeneous strain may be regarded as

compounded of a pure strain and a rotation, the nine data
necessary for its specification may consist of the six

necessary for the specification of the pure strain and the

three necessary (198) for the specification of the rotation.

288. Rectangular Specification of a small Strain.—
Let Occ, ()(/, Oz be rectangular axes of co-ordinates, OA,

OB, OG the principal axes of the

pure strain, and Or the axis of the

rotation, of which the given small

strain may be regarded as com-
pounded.

The elongations being given for

the directions OA, OB, OG, equiva-

lent elongations for the directions

Ox, Oy, Oz may (278) be determined.

The rotation about Or may be resolved into com-
ponent rotations about Ox, Oy, Oz. Now the rotation
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about Ox being small may be regarded (27-5-276) as

compounded of a shear whose plane is the }jz plane and
direction either the y or the z axis, together with a pure
strain whose principal axes are Ow, a line bisecting the

angle yOz, and a line perpendicular to both these. The
elongation in the direction of Ox is zero, and those in the

directions of the other principal axes may (278) be con-

verted into elongations in the directions of the Oy and Oz
axes. Similarly the rotation about Oy may be regarded

as compounded of a shear whose plane is the ;/•::; plane and
direction eifcher the ./; or the z axis, together with elonga-

tions in the x and z axes ; and the rotation about Oz, as

compounded of a shear whose plane is the xy plane

and direction either the x or the y axis, together with
elongations in the x and y axes.

Now these various component strains being all small

may be applied in any order. The three component
elongations in the direction of the x axis are thus equiva-

lent to a single elongation in that direction, and similarly

for the components in the y and z axes respectively. Hence
a small strain may be resolved into three simple elongations

e, /, g in the directions of the three rectangular axes Ox,

Oy, Oz respectively, and three shears whose amounts may
be represented by a, h, c, whose planes are the yz, xz, and
xy planes respectively, and whose directions are those

of either the y or z axis, either the x or z axis, and either

the X or y axis, respectively. Any small strain is there-

fore completely specified if the values of e, /, g, a, h, c,

are given.

284. Heterogeneous Strains.—The elongations of a
homogeneous strain we have seen to have the same values

in the same directions throughout the system. In general

however, in the strains to which bodies are subjected, the

elonsfations in a given direction are different at different

parts of the system. Such strains are called hetero-

geneous strains. If throughout the system the elonga-
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tions at points indefinitely near one another are indefinitely

nearly the same, the strain is said to be continuous. The
strains of bodies, except in cases of fracture, are usually

continuous.

The variation of the elongations from point to point

being gradual in the continuous strain, they may be con-

sidered constant throughout indefinitely small spheres,

and the dimensions and position of the ellipsoids into

which these spheres are changed may then be determined
as in the case of homogeneous strain. The ellipsoids

however will in this case be different for different points

of the body, and that the strain may be known, the strain

ellipsoid, or sufficient data for determining it, must be
known for every point of the system.

The consideration of strains of this kind requires

mathematics of a higher order than readers of this work
are supposed to have at command.
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the muscular sonso. We do not re([uire to know the

S(;at of the sense, and may call it simply the sense of

force.

A sensation of forci^ is not (jualitative merely, but
quantitative as well. \V(; recognize ourselves in any
case, not only as exerting force on a body, but as exerting

a greater or a smaller force in a definite direction. Our
power of p(!rc(!iving the magnitudes of the forces we
exert is not naturally strong, but it is susceptible of

cultivation ; and it is the education of the sense of force

which renders all manual skill attainable.

28G. First Lau) of Motion.—Amoncf our earliest srene-

ralizations are included those with regard to the effects

of th(! exertion of force on bodies. These effects are very
different in different circumstances ; but when examined
they arc found to be in all cases composed of changes of

velocity and changes of form or volume. And as a change
of the form or volume of a body is a change of the

relative positions and therefore of the relative velocities

of its constituent parts, we find the effect of the exer-

tion of force on bodies to be in all cases change of velocity,

or acceleration.

Cases of equilibrium (323), i.e., cases in which a body,

though acted upon by two or more forces, has an accel-

eration zero, apparently form exceptions to this result.

But in such cases, if the forces are allowed to act on the

body successively, the accelerations produced are found
to be such as would give a resultant acceleration zero

were they to occur simultaneously. Thus, though the

forces together produce an acceleration zero, each may be
regarded nevertheless as producing its own acceleration.

Having exerted forces on all bodies within our reach and
found acceleration invariably produced, we are led to ex-

pect this effect in all cases whether within the range of our
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experiments or not, and to conclude that a forci! exerted
on any body will produce an acceleration in it.

We observe also, however, that many bodies move with
acceleration when we are exerting no forc<' u[)on them.
Two billiard balls, for example, which impinge upon one
anothei", have their velocities changed. A botly which is

simply let fall is found to fall with continually increasing

speed. One body in short is found to be able to produce
acceleration in others, it may be during contact, it may
be even without contact. In such cases the effect pro-

duced is the same as if we exerteu force upon the bodies;

and we therefore regard the action between them as of

the same kind as our action on them when we are exert-

ing force,

We are thus led to conclude that the exertion of force

on a body is invariably the antecedent of acceleration in

it. We may express this result negatively by asserting

that a body not acted on by force will experience no
acceleration ; and it was in this form that Kepler, and
afterwards Newton, enunciated it. Newton called it

the first law of motion and expressed it thus

—

Every body continues in its state of rest or of uniform
motion in a straiyht line except in so far as it may he

compelled by impressed forces to chanye that state.

The necessity of exerting force in order to produce
acceleration in a body is said to be due to its inertia.

287. Second Laiu of Motion.—We have next to ask

how the acceleration produced by a force depends upon
the magnitude and the direction of the force which pro-

duces it. The investigation of this de[)endence involves

the measurement of force. For this purpose we may take

as a provisional unit of force that exerted by a given

spring when stretched a given amount. We may also

prepare several exactly similar springs. Both our educated

M

!

•\^''

Vii

iH:i

' V

t>

'

Y

lU
'

•.:v;



\-h ,1

^%''-i

190 DYNAMICS. I
'iH7

sense of foico and our confidence in the " uniforniity of

nature" assure us that wlien extended by the given amount
they exert tlie same force. Let us now act by nieh,ns of

these springs on, say, a curling-stone lying on a smooth
horizontal surface of ice, taking care so to a])|)ly the springs

that no appreciable rotation or change of form or volume
may be produced. Preliminary trial shows that if, having
started the stone, we exert no force upon it, it moves
witii a nearly uniform speed in a straight Viiw over the

surface of the ice. If now we attach one of our stretched

springs to the stone and allow it to act on the stone during
known intervals of time, keeping the spring stretched to

the same extent and in a constant direction as the stone

moves, we may, by noting the positions of the stone at a
series of instants, determine the direction and magnitude
of the acceleration which is produced. The same deter-

mination may be made with two or with any number of

springs attached and for longer oi* shorter periods of time.

When that is done it is found (1) that in all cases the

accelei'ations produced are uniform
; (2) that the direction

of the acceleration is always that of the force ; and (3)

that the acceleration produced by a force in a given body
is proportional to the force, double the force producing

double the acceleration, three times the force three times

the acceleration, and so on. The same result is obtained,

whatever the kind or the condition of the body experi-

mented with, whatever its initial velocitv, and whatever
component accelerations it may have besides that produced
by the spiings.

The rough experiments sketched above apply only to

forces whose direction and magnitude are the same during
the whole time of their action. As we find, however,
that the result does not depend upon the length of time
during which the force acts, and as a variable force may
be considered to consist of a succession of constant forces

of different magnitudes or directions, each acting for a

short time, we extend our results to all forces, uniform or
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, variable, and (toncludc that the maj^niitiido ol" a vaiiahlo

force is at any instant proportional to tho instantaneous
acceleration oi* the body at that instant, and that their

directions are the same.

288. If by F we indicate the magnitude of tho force;

exerted on a given body, and by (c that of the acceleration

thereby produced, the third part of the above result may
be expressed in symbols thus: Font. Hence Fi(t = \v

constant, i.e., the ratio of the force acting on a giv^n body
to the acceleration thereby produced in it is constant.

The value of this constant ratio will clearly de|)cn(l u|)on

the magnitudes of the units of force and acceleration.

But with given units this ratio will have a fixed value

for a given body, whatever its condition (as to tempera-

ture, etc.) and whatever the circumstances of its motion.

289. We describe the constancy of the relation between
the force acting on a body and the acceh'ration thereby

produced by sp.ying that the mass of the body is constant,

the mass of a body being thus defined to be a (quantity

proportional to the constant ratio of the fore*- acting on
the body to the acceleration produced by it. Jf m denote

the mass of the body we have thus: Fla(xiit = hn, where
k is a constant, whose value for any given body will

depend upon the magnitudes of the units of force, accele-

ration, and mass which may be employed.

The term mass is clearly the scientific e(|uivalent of

the popular term ntasslueness. We speak of a body as

being massive; when we require to exert a great foice

upon it in order to produce a small change in its velocity.

Thus an iron gate is said to be more massive, than a

wooden gate of the same dimensions, because it takes a

greater force to produce in it a given angular acceleration

than in the wooden gate, though the friction and other

opposing forces may be the same in both cases. The
greater the force required to produce a given acceleration.
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and tlu' sniallcr the acceleration pioiluced by a ^iveii

tbiee, ill other words, the greater tiie value of tlu^ ratio

FjUy the greater do we consider the niassiveiiess to be.

290. The reader should carefully note that the mass of

a body is quite a different thing from its weight. Its

weight is the forces with which it is drawn vertically

downwards in the neighbourhood of the earth, and will

have different values at different parts of, and at different

distances from, the earth's surface. Its mass is not a forces

at all, but, as wo have seen, the value of a certain ratio

which is the same everyw^here.

At any one place all bodies fall with the same accelera-

tion. Now the acceleration with which a body falls is

that produced in it by its weight. Let xo and iv' be the

weights of two bodies,// the acceleration with which they

fall at any given place, then their masses are proportional

(289) to IVI(J and w'jg respectively. If, then, mi and m'
are their masses, we have

Hence the masses of bodies are proportional to their

weights at the same place, and the ratio of the masses of

two bodies is the same as that of their weights. For this

reason the term weight is frequently employed not only

with its primary signification given above, but also as

synonymous with mass. As this double meaning of the

term leads to confusion, we shall restrict it to its primary
signification.

|J1,.KV

291. The mass of a body is by many writers defined as

the quantit}'^ of matter which it contains. As we do not
know what matter is, still less how to measure it, this

phrase (for it is thus a mere phrase) must then itself be
defined ; and such writers define it more or less directly

as being proportional to the ratio of the force acting on
the body to the acceleration thereby produced. This
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mode of dctinitlon is cN'arly tlw sjiinc as thai cmpMycd
ahovc, except that a useless iiitcrinediatc term is in-

troduced.

The phrase quantity of inertia l>as hecMi similarly used

as an intermediate tei'in.

'292. \]y 117, tlie acecderation of a ])ody is ('([luil to tlie

rate of chan^n' of its eomponent veloeity in tlie direetion

of tli(5 acceleration ; and, by th<5 second part of th<' nhove
experimental result (-^7), tlie acceleration is in the direc-

tion of the force. Hence, if v and v' be the initial and
final values of the body's couiponent velocity in the direc-

tion of the force (F) during!: a time / (whieh, if F is

variable, must be small), we have

F=l,ii—'' — h
V T

nil'

293. The product of the mass of a body into its velocity

is called its inoincmtuin* The product of its mass into

the component of its velocity in a given direction is called

its momentum in that direction.

Hence the result of 292 may be thus expressed : When
a body is acted on by a force its momentum in the direc-

tion of the force changes at a rate which is proportional

to the force.

294. From th(! expression of 292 we obtain

Ft = h{mv'— nm^.

The product Ft is called the imjndse of the force during

the time t. Hence we obtain Newton's expression of the

second law of motion

—

* Tlie nioiiieiitnm of a body is often defined as its "(|uantity of

motion," the quantity of motion being then defined as the product
of mrtss into veloeity—another case of the introduction of a useless

intermediate term.
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('h<ni(jr, of iHo in cut lUii /.s' 'j>i'opo)ii(m(d to the impiUsr

of /he hitpvesned force ond takes j^i/ace in ita dlrectUni.

ril)'). It follows iVoni tho second Law of motion that a

finite force can produce in a body only a finite change of

momentum and therefore a finite acceleration. As we
find no infinite forces in nature it follows that the speeds,

velocities, and accelerations of bodies cainiot have infinite

values, and that the directions of their paths, velocities,

accelerations cannot undergo abrupt changes.

200. Measvrement of Force and Mass.—The second
law gives us at once a modv-: of measuring both force and
mass. If forces F, F' act on masses* tii and m and produce
accelerations a and a' respectively, we have F=lmia and
F' = l'iiha. To compare two forces, allow them to act

successively on the sanie mass and note the accelerations.

We have then
F :F'= a:a.

To compare the masses of two bodies, let equal forces act

on them and note the accelerations. We then have

m : m = a' : a.

297. Having thus found modes of measurement, we
must next choose units. Either both may be chosen

arbitrarily, or one being so chosen the other may be

derived. If both be chosen arbitrarily, the constant /.;

in the above equation will usually have an inconvenient

value. Thus let the weight of the body called a pound
be chosen as unit of force, the mass of the pound as unit

of mass, and the foot and second as units of length and
time. We know that the weight of any body produces

in it an acceleration of about 322 ft.-per-sec. per sec.

Hence our un" j of force will produce this acceleration in

* This is ii shoiteiied expression for : bodies whose masses are m
and m'.
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our unit of mass. Substitutin*,^ tli»'so values, F=iii=\
and a = 32*2, in tlic equation F=l-m<t, we tiiul /,-=\^lV2-±

298. If, however, either the unit of force only or that of

mass only be chosen arbitrarily, the other may be so

chosen as to giv<' /.; the convenient value unity, in which
case the symbolic statement of the second law becomes

F=ni(i..

The constant //will have the value unitv \i' F= iii = a = l.

Hence, if the unit of force be arbitrarily chosen, the unit

of mass Avhich will make /• = ! is that mass in which the

unit of force will produce unit of acceleration. And if

the unit of mass be arbitrarily chosen, the unit of force

which will make // = 1 is that force which will produce in

unit of mass unit ot acceleration. According as the unit

of force or that of mass is chosen arbitrarily do we obtain

one or other of two groups of systems of units.

(1) U)iit of Force chosen ArhHrdvll ij.—We ma}^ select

as unit of force any force we please ; but practically the

weight of some body is always selected. The bodies in

general use are the jpoiiiul, which is a piece of olatinum

kept in the Standards Ofiice in London, the I'thgramiue,

another piece of platinum, kept in the Palais des Archives
in Paris, and multiples or submultiples of these.

These units and all units derived from them are called

fjravUational units because their magnitudes depend
upon the attraction of the earth. As the weight of a

given body has difierent values at different points on the

earth's surface, gravitatii)nal units are not constant. The}'^

are sufficiently constant, however, for many non-scientitic

purposes, and are very extenrnvely used.

299. Corresponding to each unit of force we have a

system of gravitational units, as follows :

—

Foot-pound-second (F.P.S.) Gntcltational System.—
The unit of force is tlie weight of the pound.

w

m
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<)The unit of mass is that mass in which a force equal t

tlio weigiit of a pound will produce an acceleration of 1

ft.-per-si'C. per sec. As tlie weight of the pound produces

in the pound an acceleration of r/ (about o'2'2) ft.-sec. units,

it will produce one of 1 ft.-sec. unit in a body whose mass
is

(J
lbs. Hence the unit of mass of this system is

a mass of about 32'2 lbs.

Metre-Jdloyra.mme-tiGcond (M.K.S.) Gra cltationalSyskin.

—The unit of force is the weight of the kilo(»:ramme.

The unit of mass is that mass in which a force equal to

the weight of 1 kilogramme will produce an acceleration

of 1 m.-sec. unit. It may be shown as above that the

unit of mass of this system is a mass of 9"81 kilogrammes.

Other gravitational S3'stems, based on other simple

units of length, time, and force the reader will readily

construct for himself. The two given above are those

most generally used and are sufficient for purposes of

illustration.

W-f\

i"

Mi*

8()(), Dimensions of Derived Unit of Mitss.—The mag-
nitude of the unit of mass, derived as above, will depend
upon the magnitudes of the simple units of force, length,

and time. With the notation of 15 we have (280 and 15)

ra»?a: 1* ex : mo:^—^
1

ace .-

[a\

Hence W«[n'[«];
i.e., the magnitude of the unit of mass is directly pro-

portional to the magnitude of the unit of force, and
inversely proportional to that of the unit of acceleration.

Hence (111 and 57) the dimensions of the derived unit of

mass are given by the equation

[m]c.[F][L]-YJJ.

This equation may be employed in the solution ofproblems
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ill tlio same way us tlu' similar equations in tlio case of

speed and rate of cliani^n' of speed (47-50, 57-ol)).

801. (2) Unit of MdSH cJwscn Arhitrarlly.—Tlie units

ordinarily selected are the mass of the pound and that of

the o-ramme (a body whose mass is l/lOOOth of that of

the kilogramme), with their multiples and submultiples.

The English hundredweight is equal to 112 pounds, the

American hundredvv(jight to 100 pounds. The ton is

equal to 20 cwts. The decagramme and hectogramme
are 10 and 100 grammes respectively. The decigramme,
centigramme, and milligramme are the tenth, hundredth,
and thousandth parts respectively of a gramme.

The following are approximately the relative magni-
tudes of these units :

I nTni. = 0-0022046 lb.

1 k.n-. =0-0009842 ton.

1 lb. =-- 4r)3-5S) on,,.

1 toil (EiigHsli)= 101 0-05 kgr.

As the mass of a body is constant, these units are con-

stant ; and the magnitudes of tlie units derived from them
depend therefore onl}'' on the magnitudes of the simple

units involved in them. Hence they are called absolute

units to express their independence of all such varying

(juantities as terrestrial attraction.

302. Corresponding to each unit of mass selected, we
have a system of absolute units. The following are im-

portant systems :

—

F.P.S. Absolute Si/stein.—The unit of mass is the mass
of the pound.

The unit of force ls therefore that force which will

produce in the pound an acceleration of 1 ft.-sec. unit.

This force is called the poitndal. As the weight of 1 lb.

produces in it an acceleration of 32-2 ft.-sec. units, it is

clear that the poundal is equal to the l/32*2th part of

•*
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tlic wei^lit of a pound, I.e., to about the weight of lialf an
ounce.

(hnthndr('-(/rif.iniit('-secoinl (0. (f.S.) A bso/ate System.—
The unit of mass is the mass of the oramme.

The unit of force is therefore that force which will

produce in 1 t;rannne an acceleration of 1 cm.-per-sec. per

sec. This force is called the <itjne. It will be clear that

the dyne is e<[ual to about l;981th of the weight of a
oranmie.

ii.'i'

jr.

>«;

m

303. Dlmen,slons of Derived Unit of Force.—From the

(equations of 300 we obtain at once [^]cx[-^^/][^'], i-e., the

magnitude of the derived unit of force is directly propor-

tional both to the magnitude of tht' unit of mass and to

that of the unit of acceleration. Hence (111 and 57) the

dimensions of the derived unit of force are given by the

equation

This equation may bt^ employed in the solution of prob-

lems in the same way as the corresponding equations in

the case of speed and rate of change of speed (47-50,

57-59).

304. Density.—The mean densify of a body is the

quotient of its mass by its volume.

The density at a given point of a body is the quotient

of the mass by the volume of an indefiniteljT- small portion

of the body surrounding the given point. If the density

of a body is the same at all its points, it is said to be

liomofjeneous or of uniform density. In general the

density of a body varies from point to point ; the body is

heterogeneous.

The densitv of a substance in a oriven state is the

quotient of the mass by the volume of any portion of the

substance in that state
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If d be the density of a bod}', n} its mass, and v its

volume, we have by detinition (l=miv. Hence the

dimensions of density are given by the exj)ression.

[i)]oc[il/][F]-'a[iUJL/.]-l

The unit of mass of an absolute system of units, in-

stead of being- arbitrarily selected as in 301, may be

defined to be the mass of unit volume of som;; standard
substance whose density in terms of those units is there-

fore unity. This amounts to choosing a unit of density

arbitrarily and deriving from it the unit of mass. The
French unit, the gramme, was intended to be the mass of

1 cubic centimetre of water at its temperature of maxi-
mum density (about 4<°C.). But though it may for most
practical purposes be considered to have that mass, it has

not rifjorouslv ; and thus the 2:ramme must be considered

to be an arbitrarily chosen unit. The great advantagi' of

deriving the unit of mass from an arbitrarily chosen unit

of density is that the density of any given substance is in

that case equal to the ratio of the masses (and therefore

(290) of the weights) of equal volumes of the given sub-

stance and of the standard substance, or to what is called

the specific gravity of the given substance. If the unit

of mass is not thus derived, the density of a given sub-

stance is obviously equal to the product of its specific

grp.vity into the density of the standard substance (usu-

ally water) by reference to which its specific gravit}' is

expressed.

The mean linear density of a body whose length is

great relatively to its other dimensions is the quotient of

its mass by its length. The dimensions of linear density

are thus [i/][X]-i.

The "iuean surface density of a thin body is the quo-

tient of its mass by the area of one of its surfaces. The
dimensions of surface density are thus [^/][/^]"'".
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.SOo. ExamplcH.

(I) Twd foict's pvddiu-e in two masses accfleratictiis of '1') and liO

units ves|)t*ctively. Show that, if tlie masses aie t'c^nal, the forces

are as o to 0, and that, if the forces are equal, the masses are as

() to 5.

{•1) Forces (tf -10 and 30 units actin<^ on tw(» masses jiroduce accel-

erations of 40 and ')() units respectively. Show that the masses are

as 10: 12.

^ (3) Show that 1 poun(hd is ecpiivalent to 13,8:^5 dynes.

(4) Prove that the weii;ht of 1 11). is e(pial to 4-4.') x 10"' dynes

approximately.

(5) Show that the value of 1 dyne, ex})ressed in terms of the

\vei<;ht «'f 1 ton,* is 1003 X 10~'-' ap})r(»ximately.

(()) Compare the values of the mass of a Itody as expressed in

•iiavitational units of the ft.-lb.-sec. and vd.-ton-min. svstems.

A ns. i^()88,00() : 1

.

(7) The value of a force ex[)ressed in dynes has to be exi)ressed

in absolute imits of the metre-kihmrannne-minute svstem. Rv

what nundier must it be multij)lied i

Ans. 0-030.

(8) Reduce 'li) poundals to absolute units of the yd.-cwt.-min.

system.

Ans. -nAl.

(9) The unit of mass bein<^' a mass of 10 lbs., the unit of time 1

min., and the unit of length 1 yd., compare the derived iniit of

force with the jwundal.

Ans. As 1 : 120.

(10) With 20 lbs. and 40 sec. as units of mass and time respec-

lively, find the unit (tf length that the derived unit of force may be

e<iual to the weight of 1 lb. at a jjlace where r/ — 32'2 ft.-sec. miits.

Ans. 2,576 ft.

(11) The unit of acceleration being 6 ft.-per-sec. per sec, find {<()

*The ton used in these Examples is the English ton of 2,240 lbs.
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till' unit <.f niiiss wIk'Ii tlir (lt*ii\t'(l unit «>f foivo is tM|ual to tlu* wci^^^lit

<if -20 lbs., und (/>) tlu' unit of folic wlii'ii tin- dt'iixi'd unit of mass

is a mass of 20 lbs.

Alls. {<i) \()'l lbs., (h) :V7... pomids-Nvt'ij^lit.

(1:^) Till' unit of velocity beiiiy 20 em. per see., the unit (»f mass
1') grammes, and the deii\'ed unit of foive the weight of a kilo-

gramme, find the unit of time.

Alls. 1 3:i70sei-.

• (13) The density of water is about l,()(M)o/. jier cub. ft. Show
tliat it is also about HJH7".") lbs. per lul). yi\., and about I'OOl grm.

per cub. em.

' (14) The masses and radii (»f two sjtheres are as 1 : 2. Show that

their densities are as 4 : I.

(15) (Jiven that the diameter of the earth is l"^75x lO'* em. an<l

its density 'ydl times as great as that of water, show^ that its mass

is about O'b") x 10-'" grammes.

(16) The \niit (tf density being that of water, and the units of

time and ma.ss 1 min. and 1 ewt. res))eitively, find tlie magnitude

«»f the derived unit of force.

Ans. 0"0;i78 poimdals nearly.

(17) The number of seconds in tlie unit of time being equal to

the number of feet in the unit of length, the iniit of force being the

weight of 7")() ibs. {c/ = '.i2 ft.-sec.-units), and a cub. ft. of the stand-

ai'd substance having a mass of 13,500 oz., find the unit of time.

Alls. 5^ sec.

30G. Force is usually exerted upon some portion of the

bounding surface of a body and acts therefore across an
area. In specifying the magnitude of a force we rnay do
so, as above, without reference to the area across which it

a^its, or we may divide its total magnitude by this area

and thus express its magnitude per unit of area or

its intensity. When we do so we usually describe the

force as a pressure, a tension, a stress, though these terms

have another not inconsistent connotation (307) as well.

Thus a force of F poundals which is transmitted by a
-1
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string of « s(|U!ir(' feet section would be a tension (jf l]s

pounJals per square foot, and tlie total force existed

through the string would of course be dtstermined V)y

multiplying this (piuntit}'' by the area across wliich the

force is acting.

It should be noted however that forces are not always
measured in this way when tliey are spoken of as pi'es-

sures, tensions, etc. Unless either it is stated, or the

context shows, that they are so measured, they should

always be assumed to be measured without reference to

the area across which thev act.

307. Third Law of Aloflim.—If we now return to the

examination of cases in which bodies are acted on b}'-

forces, we find that forces always act between pairs of

bodies, never on single bodies alone. I push a body with
my hand ; the body is urged forwards ; the forward
motion of my hand is lessened. Both the body pushed
and the hand are acted on by force. A horse draws a
carriage ; the carriage is pulled forwards ; the horse is

pulled backwards and does not move forwards so fast as

he would otherwise do with the muscular exertion he is

putting forth.

To investigate this mutual action more thoroughly wo
may take two of our curling stones and project them,
without rotation, on the ice so as to make them collide,

notinii: the direction and mamiitude of their velocities

before and after collision. Let OA, OB and Oa, Oh be
drawn representing the velocities

before and after collision, of the

respective stones. Then AB, ah
will rejiresent the respective in-

tegral accelerations. They will be
found in all cases to be parallel and

V in opposite directions. If the

^B stones used were of equal mass,

they will be found equal. If not, it will be found that
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ifilA, '}H sire tlie masses of the res[)ective stoiu's, then il/ . A li

= 7u.<(h. Now the pr()(hict of tlie mass of a body (:il)4

and 117) into its intej^ral acceleration measures the

impulse of a force. Hence tl»e stones (hiring collision hav(>

experienced equal inipid.scs in opposite directions.

Other simple «'xpriinients giv<' the same result and
sujTfoest a third law of motion, which Newton enunciated

as follows :
—

To every action there /.s* aiirdi/s an equal and c(mti<(r/j

reaethni ; or the onutual actio'tis of any two bodies (tre

(divayi^ equal and oiJi>ot<'itely directed.

The exertion of a force upon one body is thus only a

one-sided view of a more complex phenomenon, viz., the

simultaneous exertion of equal and 0])posite forces upon
two bodies. When we are thinkinii* of a force as actinij

not on one body, but between two bodies, we call it a
stress. When the stress is such as to make the bodies

move towards one another it is called an attraction or a
tension ; when its effect is to increase tlieir distance it is

called a repulsion or a pressure (see 800).

308. The experiments which we have sketched above
as leading up to the laws of motion are of necessity rough,

and are quite insufficient to demonstrate the truth of

these laws. They merely serve to suggest them. They
apply moreover only to bodies of so large size that experi-

ments may be made with them. Now, in studying the

motion of bodies, we are forced to regard them as consist-

ing of indefinitely small parts called particles, and the

extension of the above laws to indefinitely small bodies

we cainiot prove to be warranted. Hence the laws of

motion as employed in Dynamics are simply hypotheses
suggested by rough experiments, and their accurac}^ must
be tested by the agreement of deductions made from them
with observed fact. The body of deductions from these

hypotheses constitutes the theoretical ])ortion of Dyna-

,<
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riiicM. Mnuy of ihr (Inductions which will he made in

suhs(!qu('iit chaptcts may b«' tested by cx|)eriineiit. But
for the most part we sliall liave to do with i(h'id bodies

and our de(bictions will be only approximately true of

real bodies. T\u) most satisfactory tests of the laws of

motion are furnished Ity astronomical calculations. These
hiws aro assumed in the determination of tlie positions of

the moon and other hoaveid)' bodies at |L(ivcn times, of

the times of occurrence of eclipses, of the dates of tlie

return of comets, etc., and the precision with which sucli

predictions are fulfilled is well known. The assumption
of the truth of these laws has even led to the discovery of

heavenly bodies not previously known to exist. In short,

they have stood such rigorous tests that n(ju the slightest

doubt is now entertained of their truth. And we may
mak{^ deductions from them, (!ven in cases in which veri-

fication by experiment is impossible, with full confidence

that, if our mode of deduction is correct, the result will be

true.

301). The three laws of motion adopted by Newton as

the fundamental hypotheses of Theoretical Dynamics
have not been universally adopted. Some authors sub-

stitute for Newton's second law one first enunciated by
( lalileo, and therefore bearing his name, which has been
expressed b}?" Thomson and 'J'ait in the following words :

—

When any forces tuhatevcr act on a body, then ivhether

the body be orlfjinally at red or moving vj'ith any velocity

In any direction, each force 'produces in the '^ody the

exact change of motion ivhich it vjoidd have produced if

it had acted, singly on the body originally at rest.

As Newton's second law is perfectly general it includes

Galileo's law. Those who make Galileo's law the second

law of motion must deduce Newton's law from it. This

deduction is made as follows :—Let two forces each equal

to F act in the same direction on a particle. Then if a is

the acceleration which each would produce if it acted
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siiii^^ly, 2f' is by (tiililco's law tlir JU'ci'lcnitioii prnduci'd

wlicM tliey iw.i toyL'tln'r. Sinnlarly '\n is that wliicli

would b(! produced by tliivo forces each of the iiuignitudo

F and in tlu; same direction ; ii<i that wliich wouhl be

])n)duced by n snch forces. And hence the acceleration

produceil in the j)jirticle is propoitional to the force. It

will be noticed that tlu- assumption is here made that n
e(iual forces in tlie same direction are ecpiivalent to a
forct^ of ii times the magnitude, a special case of tlu' Law
of the Composition of Forces (.*U.*) and 8(1, iii.). Wo
made the same assumption in discussing the rough ex-

j)eriments used to suggest the fundamental liypotlu'ses.

But such an assumption made after the choice of three

fundamental hypotheses is ecpuvalent to the introduction

of a fourth.

For D'Alembert's " Princii)le," which is extensively

employed instead of Newton's second and third laws in

the solution of problems on the motion of extended bodies,

see 417.

*.^i
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DYNAMICS OF A rAKTU'I.E.

I31(). \Y(' shall Hist rcsti'ict oui'sclvcs to V\v considci'a-

tion of force as atlcctiiig the ti'anslati.m of bodies. Now
tho ti'aiislation of an iiidctiuitely small body diffci's in no
ivspcct fi'oni that of a body of finiti^ size, while rotation

is possible only for bodies of finite size. Hence in con-

sidei'ing the effect of force on the translation of bodies,

in order to exclude the possibility of its havinijf rotational

effects, we iniaoine the bodies acted ii])on to be indefin-

itely small. Such bodies ai*e called niatei'ial points or

particles, or, if they form jmrts of a continuous body,

elements.

311. A force which we imagine as acting on a particle

is of course one whose place of application is a point.

The lines of action of forces which act on the same pai'-

ticle must intersect in the position of the particle. A
force is completely specified if its place of application, its

direction, and its magnitude are given. If it act on a

particle, its place of application is the position of the

particle itself. In that caso therefore it is completely
specified if its direction and magnitude are given. It

may therefore be completely i-epresented by an}^ straight

line of the proper lengtli and direction.

312. Composition cnid Resolution of Forces,—Forces
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wliicli act siimiltaueoiisly mi n imrticlo nre mlK-d coiii-

poiiLMit forces. The resultant nfjiiiy nuniber of eoiM|>(iii-

eiit f«M*ces is tliat si>iy;le force hy wliieli tlie same I'esultaiit

.•ie(;elerati«>n would be produced.

.SI3. Let 0.1 and (Ui I'epi'csent two component foi'ces.

Since tliese forces act upon the same particle, ()A and Oli

re})resont also the accelei'ations they would produce act-

in<'* sinirlv. Now OA and 0/i rt'presentini; the compon-
ent accelerations, Or' the diagonal

of the })aj'alleloni'am A li rcpi-fscnts

the resultant accidei-ation (110).

And OA, Oli, 06' representinju; ac-

celerations of the same particle ai'e

]n-o[)ortional to the forces which
would proiluce them. Hence O^' repi'esents the resultant

force.

Forces actini;" on a pai'tiele therefore ai"e to be com-
pounded accordin*:^ to the paralhdogram hiw after the

manner of the displacements, or velocities, or accnderations

of a ])oint. We have ther foiv pi'opositions called the;

parallelogram, the triangle^ and the polygon of foi'ces, the

same in foim as those enunciated under velocities (1)8).

Hence forces are to be resolved in the same manner as

<lisplacements, or velocities, or accelerations.

Hence all the consequences of the parallelogram law, as

deduced in the case of the displacements of a point, apjdy
also to forces acting on a particle, and the formulae of

S.")-00 are applicable to component foi'ces, if the symbols
representing displacements are taken to represent forces.

314. Examines.

(1) The resultant of forces of 7, 1, 1, 15 units j-eproseiited in

direction by lines drawn frctni one any;le of a regular pentagon

towards the other angles, taken in order, is y^/ll.

(i) P and Q 'Axe two component forces whose resultant is R. S

.\

!'
!
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is the it'sultant of Jl aii<l 7*. Show that if /* and Q be iiicliiud to

eacli other at a liyht aii;L,He, and if Q = 2P, then S—±P >J±.

(3) (V>nii)onent forces 1\ Q, II are lepresented in direction l»y the

sides of an ecjniiateral triangle taken the .^anie way ronnd. Find

the ma*;nitnde of tlieir resultant.

Ans. (/^'M- Q- + R' - Qli - PR PQ)'.

(4) Three component forces are re})resented l>y lines drawn from

the angnhir points of a triangle to the })oints of bisection of tlie

opposite sides ; show that their resnltant is zero.

(5) Three component foices are represented, in direction by lines

(h'awn froi i the angnlar j)oints A, B, C of a triangle to the j)oints

of bisect! )n of tlie o[)})osite sides, and liave magnitndes ecpial to tlie

cosines of ^1, jB, and C res|»ectively. Prove that their lesidtant is

e(pial to (1 — 8 cos A cos B cos Cy.

(6) Tlie centre of the circvimscribed circle of a triangle ABC is 0,

and the intersection of the perj)endicnlars fr<mi angnlar points on

opposite sides is P. Prove that the resnltant of forces re})resented

in magnitude and direction by OA^ OB, 00 will be lepresented

by OP.

(7) Three forces are represented by the sides AB, AC, BC of a

triangle. Show that the resultant has the direction AG and is

represented in magnitude by -lAC.

(8) ABCD is a parallelogram. From AB, AE is cut off eipial to

one-third of AB. Prove that the residtant of forces represented by

AC and 2AD is equal to tliree times the resultant of forces repre-

sented by AD and AE.

(9) If AB represent the resultant of two forces AC and AD, and

if the angle CAD be given, show that the extremities of the lines

representing the two forces {AC and AD) will lie on two circles,

which, if the given angle be a right angle, will be coincident. Also

show that, if the given angle be obtuse, each force has its maxinnun

value when the other is perpeiidicidar to the resultant.

(10) A particle is acted upon b}' two forces represented by tlie

lines joining the particle to two given points. Show that, if the
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|)article be made to describe any })laiie curve, the end of the

straight line representing the resultant of the above forces will de-

scribe an equal and similar curve.

(11) Give a geometrical construction for resolving the force

represented by the diagonal DB of a square ABCD into three

forces, each represented in magnitude by a side of the square and

one represented by DC in direction.

Ans. Upon BC describe an equilateral triangle BGE. The

required components are represented by BC, CE, EB.

315. Attractions.—An important case of the composi-
tion of forces is the determination of the attractive force

exerted on a particle by an extended body, the law of the

attraction being that of gravitation, viz., that the force

exerted between two particles is directly proportional to

the product of their masses and inversely proportional to

the square of the distance between them. In such cases

the attraction on the particle is the resultant of compon-
ent attractions exerted on it by the elements into which
the attracting body may be divided. Its determination

requires usually the application of the Integi'al Calculus.

But in a few important cases it may be found by elemen-

tary methods.

If m, m' are the masses of two particles, d their dis-

tance, and F their mutual attraction, the law of gravita-

tional attraction is expressed by the equation

where A; is a constant. The value of k, when units of

force, mass, and distance already chosen are employed,
may readily be determined from our knowledge of the
dimensions and density of the earth and of the value of

g. We may give it the more convenient value unity,

however, by choosing a new unit of either mass or force

;

for example, by taking as unit of mass a mass which
attracts an equal mass at unit distance with unit force

o

.f^
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This is called the astronomAcal unit of mass. We shall

use it in the following examples.

31 G. Examples.

(1) Find tlie attraction of a uniform thin circular disc on a particle

]>lace(l at any j)oint on a line through its centre and ])erpendicular

to its plane.

Let AB be the disc, C its centre, CP a line through C perpen-

dicular to AB. Let P be the position of the particle, and m its

mass.

Consider first the component attraction exerted by the element

(i.e., small portion) of the disc surrounding any point D, the line

UP having the length r, and its inclination to CP being 6 radians.

Let the element at D subtend at P the small solid angle w (solid

radians, 22). DPh inclination to CP being 6, the surface of the

element at D is inclined to a surface normal to DP at the same

angle. The element at D being indefinitely small, the cone of which

it is a section is one of indefinitely small angle. Hence the ortho-

gonal section of this cone at D is the projection of tlie element at D
on a plane inclined d to the plare of the element. If therefore A
is the area of tlie element, A cos 6 is the area of the orthogonal

section. But w being the solid angle subtended at P by this

section, its area must be ur^. Hence the area of the element at D
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i.s ur^/coH6. Let p be the surface ilennity of the disc. Tlieu the

mass of the element is w;*-/)/cos 0. Hence the force exerted by the

element on the i)article at P is in the direction wf I*JJ and of

the magnitude

cos tf

-..2

up

COS
m.

This force has one component in the diiection PC of the magnitude

wp——m X cos = up)n,
cos

and another in the direction CD of the magnitude wpwi tan ^.

If i)(7 be jmjduced to J)', and CD' made equal to C/>, the element

of aiea A at D' will exert on the [)aiticle at P a force whose

components in the directions PC, CD' are of the same magnitudes

as the components above determined. The components CD and

CD' therefore neutralize each other, and hence the oidy effective

component of the attraction of the element at D is that perj>en-

dicular to the disc, whose magnitude is lop^n.

Now the same is true of all the elements into which the <lisc may

be divided. Hence the resultant attraction will be peri)endicular

to the disc, and equal to the s-am of the eftective components of

magnitude upm, for all the elements of the disc, i.e., since pm is con-

stant, to the product of pm into the solid angle subtended at P by the

whole disc. If a is the radius of the disc and h the distance of P
from it, the area of the segment of the sphere whose centre is P
and radius P^ or sUi^+ a^ is '2.ir fjfi^ -\-a\ \fli^+ a^ - h). Hence the

solid angle subtended at /• by the disc is 27r(l -/(/xVi'^+ rt-); and

therefore rhe attraction of the <lisc on the jjarticle at /' is

i.^pm{l-h!s'h^+ a^).

If the disc be of indefinitely great extent (« = oc), or if the

particle be indefinitely near it (A=0), the attraction becomes 2irpm.

(2) Find the attraction of a thin circular ring of gravitating

matter of uniform linear density p and radius a on a particle of

unit mass on its axis, at a distance k from its centre.

Ans. 2Trpc(k/(«2 4. ^2^4

(3) All parallel slices of equal thickness of a homogeneous cone

P'

':i It

:1
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Clearly the same would hold for a shell (»f any thickneas, provided

it \h either uniform in thickness and density, or uniform in thick-

ness and symmetrical about the centre as to density.

(6) The attraction of a uniform thin s])herical shell on i i)article

j)laced outside it is the same as if the whole mass were condensed

at the centre.

Let P be the jjosition (^f the i)article and C the centre of the

spherical shell. Join CP, meeting the shell in D, and tlivide it

at B, so that CB : CD= GD : CP. Take any point .1 in the shell.

Join AB and produce it to meet the shell in A'. Join Cvl, CA\
PA, PA\* Since CB :',CA = CA : CP, the triangles GAB and CPA
are similar, and the angle CAB equal to the angle CPA. Similarly,

the angle CA'B is equal to the angle CPA'. Hence also the angle

CPA is equal to the angle CPA'.

If straight lines be drawn from the boundary of a small element

surrounding A , through B, their end points will mark out a corre-

sponding element about A '. These elements are sections of a cone

whose vertex is B and solid angle w (solid radians); and their

common inclination to an orthogonal section of the cone, is tlie angle

CAB. Hence, as in Ex. (1), their attractions on a particle of mass

m at P are respectively in the directions PA and PA', and of

the magnitudes
mp<a . AB^ , mpo)

and
A'B^

AP^ . cos CAB """ A 'P2 . cos CAB '

P being the surface density of tlie shell. Now
AB CA^CA' A'B
AP CP CP~A'P

* PA and PA' are not tangents, as would appear from the figure.

'• '^
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Hence the iiiagnitudes of the above attractions are equal, and they

are efjually inclined to PC. Hence the direction of their resultant

is PCy and its magnitude is 2mpu) . CA^/CF'^ Now the whole sphere

may be divided by lines through B into i)airs of corresponding

elements similar to the above, the resultant attraction of each pair

being in the direction PC, and equal to the product of its solid

angle into the constant 2mp. CA^/CI''^. Hence the resultant attrac-

tion of the spherical shell is in the direction PC, and is equal to

the product of this constant into the sum of the solid angles of all

the pairs of elements into which the sphere may be divided, which

is clearly the solid angle subtended at its centre by a hemisphere. Its

magnitude is therefore 4innp . CA^/CP^, which is equal to the product

of the masses of the particle and shell divided by the square of the

distance of the particle from the centre of the shell. Hence the

shell attracts the particle as if its mass were condensed at its

centre.

Hence also a spherical shell of any thickness, and a sphere also,

attract particles outside them as if their masses were condensed at

their centres, provided their density is symmetrically distributed

about their centres.

(7) Show that the attraction of a homogeneous sphere on a

particle of unit mass ins^-ide its bounding surface is directly pro-

portional to its distance from the centre.

(8) Assuming the earth to be a homogeneous sphere, compare its

attraction on a given mass at a distance from its centre equal to one-

liaF its radius with the attraction when the given mass is at a

distance equal to twice the radius.

Ans. As 1 : 8.

(9) Find in dynes the attraction of two homogeneous spheres,

each of 100 kgr. ma&s, with their centres 1 metre apart. [Data.

—

Quadrant of earth, assumed sj^herical = 10^ cm. ; mean density of

earth= 5*67 grms. per cu. cm.; ^= 981 cm.-sec. units.]

Ans. 0-0649 nearly.

(10) A pendulum beating seconds at the surface of the earth is

.taken («) up a mountain 1,400 ft. high, and (6) down a mine of
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arth is

line of

equal depth. Find its loss or gain per ilay iii each case, aHSUiuiiig

the earth to be a uniform sphere of 21,000,000 ft. radius.

Ans. (a) loss of 5*76 sec.
; (/.>) loss of 2'88 sec.

(11) Show that, if a pendulum oscillates in the same time at the

top of a hill as at the bottom of a mine, the depth of the mine is

very nearly twice the height of the hill.

(12) Show that the astronomical unit of mass of the C'.G.S.

system is 3,928 grammes (mass of earth = 6*14 x 10'-^^ grms. ; radius

of earth =6*37 x 10^ cm.
;
^'=981 cm.-sec. units).

(13) Find in C.G.S. units the value of k in the formula F=k-,., •

Ans. 6-48 >. 10-8.

(14) Compare with the dyne the unit of force employed whe'i it

is stated that the attraction between two masses of m and m' grms.

at a distance d cm. has the value mm'/d'^.

Ans. Unit employed= 6*48 x 10"^ dynes.

317. Equations of Motion.—The second law of motion
provides us with an equation, F=ma, by means of which
any one of the three quantities, force acti^^g, mass of

particle acted upon, and acceleration produced, may be

determined, if the other two are given. These two being

expressed in the units of a derived system, the third

determined by the above equation will be expressed in

terms of the unit of the same svstem.

The acceleration of a particle being determined, the

character of its motion is known from Kinematics. Hence
the above equation is called the equation of motion of a

particle.

If a particle is given as acted upon by several forces,

the resultant force may be found as in 313, or, the com-
ponent accelerations having been found by the equation

of motion, the resultant acceleration may be determined

by 116.

It follows that if -F^, F^y etc., are the components in a

' 'A

i
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etc.,

The impulse (^) of the force, in the given direction, is the

sum of the impulses Ff^^ F^t^, etc. Hence

s& = 'EFt = 77iv' — mv.

This form of the equation of motion is especially con-

venient when the force is one whose magnitude is great

and time of action small, as in cases of impact, collision,

explosion, etc. Such forces are therefore frequently

called impulsive forces. It will be obvious however
that the above form of the equation of motion is applic-

able generally, and that the restriction of the term
impulsive force to one whose time of action is short is

merely a matter of convenience.*

4

^h

320. Examples.

(1) A constant force of 20 pomidals acts on a mass of 10 lbs.

Find {a) the acceleration, (6) the displacement in 5 sec, the initial

velocity having been 4 ft. per sec. in the same direction as the

acceleration
; (c) the velocity at the end of the same time, the

initial velocity of 4 ft. per sec. having been inclined 60° to the direc-

tion of the force.

Ans. (a) 2 ft. per sec. per sec, (b) 45 ft. in the direction of the

initial velocity, (c) 2 ^39 ft. per sec, inclined mi~\5l2 s/l3) to the

direction of the initial velocity.

* The term impulse is unfortunately sometimes applied to these

short-lived forces. But it should be restricted to the sense in

which it is used above. Otherwise it becomes necessary to speak
of the impulse of an impulse. The term impulsive force is some-
times used to denote the impulse of a short-lived force. But this

use of the term leads to coiifus: on and should be avoided.

J
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(2) All uiikiiowii foiif proihiceH in a Ixxly of 50 llw. iiiaHH an

acceleration of 12*5 ft.-.sec. units. ExpicHH tlie force (a) in poiiiiilals,

(b) in terniH of tin; wei<,'lit of a iioniid.

Ans. (a) ()2r>, {/,) 19-4....

(3) A iiiiiforin force of 20() dynes changes tlie velocity of a liody

moving in a straight line from 250 to 300 metres per sec. in I

minute. Find the mass of the body.

Ans. 2"4 grammes.

(4) What acceleration will be iiroduced in a mass of 20 lbs. by a

force e(pial to the weight of 50 lbs.?

Ans. 5<7/2.

(5) How long nnist a force of 14 Ibs.-weight act on a mass of

1,000 tons to move it from rest through 1 inch ?

Ans. 28'8 sees, nearly.

^ (a) A spring balance (an instrument for measuring force, being a

spring provided with a scale to show the amount of its elongation)

is graduated for a place wliere /7= 32*2 and indicates 1*6 pounds-

weight at a place where /7= 32. Find the correct value of the force

thus measured.

Ans. 1*61 pounds-weight.

(7) Find the force which must be exerted by a man in an elevator

on a body of 1 lb. mass which he holds in his hand, to prevent its

moving relatively to the elevator when the elevator is moving (a)

with uniform speed, (/>) with an upward acceleration of 8 ft. per sec,

(c) with a downward acceleration of 8 ft. per sec, (d) with a down-

ward acceleration of 33 ft. per sec

Ans. (a) 32'2 poundals upwards, (b) 40'2 poundals upwards, (c)

24*2 poundals upwards, (d) 0"8 poundals downwards.

(8) Show that in any motion of a particle the tangential compon-

ent of the force acting on it may be measured by the rate per sec.

at which momentum is increased.

(9) Prove that if W lbs. be acted upon by a uniform force of P
pounds-weight for t sec, the velocity acquired will be Pgt/W, and

the distance traversed Pgfil(2 W).

«
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(10) A body of 10 Ilw. mass jiiul with iiii initial velocity of 20 ft.

|>er sec. in a northerly direction is acted u|»on )»y two forces, one of

100 i)onn<lals in a north-easterly direction and the other of the

same ma<^nitudu in a north-westerly direction. Find its velocity

after 1 min.

Ans. 868'r)... ft. per hcc. in a northerly direction.

(11) Find the imiuilse necessary to produce in '20 lbs. a speed of

25 ft. per sec.

Ans. 500 absolute ft.-lb.-sec. units.

(12) Two i)articles, each of mass wz, are at rest side by side when

one is struck a blow of imjudse * in a yiven direction, while a con-

stant force /^begins at the same instant to act upon the other in the

same direction. Prove that if after travelling a distance x in the

time t, they are again side by side, 2'P — Ft and 'I^P'— mFn.

(13) A particle of mass m is moving in an easterly direction with

a velocity v. Find the imjndse necessary to make it move in a

northerly direction with an ecpial velocity.

Ans. mv fj2 in a north-westerly direction.

(14) A particle of mass m moves with uniform sjieed v in a circle

of radius r. Find the force acting u})on it.

The particle has an acceleration equal to v^/r directed towards the

centre of the circle (121). Hence the force must be in the same

direction and equal to mv^/r.

[A body moving in a curved path was formerly thought to have

what was called centrifugal force., which required to be neutralized

by a force applied to the body (through a string or by other means)

towards the centre of curvature (and called therefore centripetal

force), in order that the body might be kept in the curved path.

Thus a body moving with uniform speed in a circle was considered to

be in equilibrium (i.e., to hive no acceleration) under equal and

opposite forces, the supposed centrifugal force and the actually

applied centripetal force. The necessary centripetal foice being

known to have the magnitude mv^jr^ the centrifugal force was

supposed to have that magnitude also. According to our modern

conception of force, a body cannot be said to have a force. More-
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over, wo now know timt if jio frnw be apiduul to a body it will

iiiov<> witli uiiiforin Hpeed in a sti'ai<^ht lint>, and tliat, if it m to be

made to move in a circle, the reHultant force on it must be centripetal.

Tlioii<,di the ohl notion of centrifupil force has been abambmed, the

term in Htill used, l)eing appb'cd by diflerent writerH in different

ways. It is appHed (1) in its orij^onal sense, Home writers finding it

still convenient in some cases to imagine a body moving unifonnly

in a circle as acted on by a force erjnal and < jiposite to the actnal

oentri)»etal force under which it moves
; (2) to the actual centri-

petal force uiuler which the body moves
; (3) to the reaction of the

moving body on the body by which the centripetal force is exerted,

the centrifugal and centripetal forces being thus opposite asi)ects of

tlie same stress
; (4) to the acceleration of the moving body. Such

varying usage leads to great confusion. The old term should be

laid aside with the old liypothesis on which it was based.]

{\!i) Find the hori/oi»tal force which must be exerted on an

engine of 20 tons which is to go round a curve of 600 yds. radius

at the iniiform rate of 30 nds. an hour.

Ans. 0*07 ton-weight nearly.

(IC) j^. stone of 4 kgr., attached to a Hxed jwint by a weightlee,.,

inextensible string 3 metres long, moves uniformly in a circle

in the horizontal plane througli the fixed point. Find (a) the

tension in the string when the speed of the stone is 20 cm. per

sec, and (b) the time of revolution when the tension of the string

is equal to the weight of 1 2 kgr. [We shall investigate farther on

(383) the action of forces on bodies through strings. Meantime,

we may consider the above string to be a means of keeping the

particle at a constant distance from the fixed point and of exerting

on it a force, usually called a tension, directed towards the fixed

point.]

Ans. (a) 5,333^ dynes
; (6) 2 sec. approximately.

(17) A man, standing at one of the poles of a rotating planet,

whirls a body of 20 lbs. mass on a smooth horizontal plane by a

string 1 yd. long at the rate of 100 turns per minute. He finds

that the difference of the forces which he has to exert according as

#
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lie wIuiIm the ImmIv one way or the opixiHite in 001 pouiKl-weigltt.

Find the period of rotation of the ]>lanet.

AnH. 13 li. 37 niin. 21 '0 nee

(18) A railway carriage in j^oin^ nMind a curvt; of r>()() ft. radins

at the rate of 30 nds. per hour. Find how nmeh a phininiet hnn^

from the roof by a thread will he «leHeeted from the vertieal.

Ann. rr r)l'-4....

(19) A i)article of mass )ii is attached liy a massless string- of

len<(th I to a fixed point, and moves with uniform speed v in ji

circular |)ath about a vertical axis thro\igh the fixed |)oint. Find

the tension in the strin*; and the time of a rev«)lution, when the

string has a given inclination to the axis. [This arrangement is

called the conical pendulum. The «listance k of the fixed point

from the ])lane of the particle's motion is calletl the height of the

pendulum.]

The particle is actetl upon by two forces, its weight mg vertically

downwards, and the tension in the string T directed towards the

fixed point. Its resultant acceleration is r'''/(^ sin d) and is directed

towards the centre of its |)ath. The sum of the components of the

acting forces in this direction is Tn\\\. 6. Hence

T Hin e= mv^1(1 HUid).

The particle has no acceleration in a vertical direction, and tlic-

components of the forces in that direction are mg downwards and

iT cos ^ upwards. Hence

TcoHe-7ng= 0.

From either of these equations 7^ may be found. Eliminating 7',

we obtain

'u'^= lgH\\i Otau 6.

Hence, if r is the radius of the circiUar path,

v^= r^glh.

If therefore w is the angular velocity of the particle about the

centre of its path, w= slgjh^ and if t is the time of revolution,

<= 27r/a>= 27r\//«/^,

4
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which also (187) in tlie time of oscillation of a simple pendulum of

lenr,'th h.

If 6 is indefinitely small, h and I are ultimately equal, and hence

t — 2irsltlg ultimately Compare this result with that of 190,

which shows that in tliis case the motion is the resultant of two

simple harmonic motions whose common period is Srr \llg.

(20) A particle of mass m, attached by an inextensible string

(length= ^) to a fixed point, moves in a vertical plane through

the fixed point in a circle of radius I. Find the tension T of the

string in any position.

Let V be the speed at the highest point A of the path, v the

speed at any point P, 6 the angle subtended at the fixed point by
the arc A P. The normal component of the particle's acceleration

whe'.i at P is v'^jl. Since the vertical distance through which it has

fallen from A is then l{\ -cos d\ we ha,ve (185)

^.2= r2+ 2^(1-008^).

Hence the normal acceleration

The forces acting on the particle at P are the tension T towards

the fixed point and the weight of the particle mg downwards. The
sum of the components towards the fixed point is T-\-mg co^d.

Hence

T+ mg cos ^= m{^ ^-jl+ ig{ 1 - cos 6) ]

,

by which equation 7' is determined.

Show that the least and greatest valr.es of T'are m{V^ll-g) and

m{V'-^ll+ 6g) respectively, and that jThas these values at the highest

and lowest points of the path respectively.

Show also that the least value of V with which a circle will be

described is is/lg, and that, when V has this value, the greatest

value of 7' is equal to six times the weight of the particle.

(21) A particle moving in a straight line is acted upon by a force

directed towards a fixed point in the line and proportional to the

distance of the particle from it. Show that the particle's motion

is simple harmonic, and that, if f is the force on the particle when

* Sill
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at unit distance from the nxed point, the })erio<l of its sinn)le

liarinonic motion is 27r simjf, m being its mass.

(22) A mass of 7 lbs., hmig from a lixetl sn|)})ort by a massless

Kj)iral spring, and set to vibrate in a vertical line, makes 80 com-

plete vibrations per minute. What force will the spring exert when
extended 2 inches ? [The force exerted by a compressed or ex-

tended spiral spring is jnoportional to the amount of the com])res-

sion or extension.]

Ans. 81*9 poundals approximately.

(23) A particle moves in an ellipse under a force directed towards

one of the foci. Show that the force is inversely proportional to

the square of the distance of the particle from tlie focus.

(24) A particle of mass m slides down a smooth inclined jjlane

(inclination= ^), its motion being opposed by a force F, inclined

to the plane at the angle <p. Find (a) the acceleration, and (6)

the reaction of the plane. [A smooth body is one which reacts

upon another body in contact with it in a direction normal to its

surface at the point of contact. Smooth bodies are of course purely

ideal. The stresses between actual bodies in contact are not in

general normal to the surface. We shall see farther on (o28) how
their directions are determined.]

Ans. (rt) Fcos <p/m-g sin d, up the })lane
;
(b) mg cos d — Fsin ^.

(25) A particle slides down a smooth curve in a vertical plane,

starting from rest at a given point. If the curve have such a form

that at every point the resultant force on the particle is equal to

its weight, the radius of curvature at any point will be twice the

intercept of the normal to tlie curve at that poijit between the curve

and the horizontal line through the starting point.

(26) A particle (mass= ?w) slides in a vertical plane down the

edge of a smooth circular disc (radius= r) whose axis is horizontal.

Show that if it start from rest at the highest jjoint, it will quit the

disc after describing an arc subtending at its centre an angle

cos 12

I ;,*
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Let V be the speed of the particle after describing an arc sub-

1
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tending at the centre an angle 9, then (Ex. 20) the Uv^i'mal accele-

ration IH

v^lr=2g{l-cofie).

The forces acting on the particle are the reaction It of the disc,

normally outwards, and its weight m(/ ; and the sum of their

normal components is mg cos d — R. Hence

and

mg cos 6 —R = ^mg(\ — cos 6) ;

^= wi.9'(3cos^-2).

Hence, for ^= cos~i§, I{= ; and for 0> cos~^ f, li is negative, i.e.y

the disc must attract the particle if they are to remain in contact.

(27) A. i)article slides down a smooth cycloid placed in a vertical

plane, with its vertex upwards and base horizontal. It starts from

rest at the vertex. Show that it will leave the curve at the point

where the horizontal line drawn through the centre of the generat-

ing circle cuts the curve. [If from a point /* of a cycloid a normal

be drawn meeting the base in the point S^ the radius of cui'vature

at F is equal to 2/*aS'.]

321. Impact.—When two bodies in relative motion
come into contact, they are said to impinge upon one
another or to undergo impact. The consequence of the

impact is a change in their velocities. Hence during
the impact a stress must have acted between the bodies;

and in applying the equation of motion it is often

necessary that we should have some means of deter-

mining the stress.

In actual bodies the stress is usually of very short

duration, and it is thus more convenient to determine

the impulse of the stress than the stress itself In all

cases it affects only the component velocities of the im-
pinging bodies in its own direction. In some cases it is

of sufficient magnitude only to equalize these component
velocities ; in others its magnitude is such as to make
the bodies recoil, or move away from one another, after

impact. Whether or not particles would behave, on im-

f
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short

rmine
n all

im-

pinging, like actual bodies, we have no means of knowing.
For the purpose of illustrating the subject by problems,

we ma}'^ assume that they would.

At our present stage we have to consider only the

special case of a particle impinging upon a smooth surface

of a fixed body. In that case the direction of the stress

is normal to the surface. If u and u' are the components
normal to the surface, of the particle's velocity just

before and just after impact, u is called the velocity of

approach and u' that of recoil. Now the stress must be
sufficient to change a velocity of approach u into a
velocity of recoil u, i.e., if on is the mass of the particle,

to produce a change of momentum equal to mu +01111'.

Hence, if ^ is the impulse,

If e is the ratio of the velocity of recoil to that of

approach, e = u'/u. Hence

If is the stress which is just sufficient to destroy the

velocity of approach, and produces no recoil, we have
= mit. Hence

Newton found by experiment (379) that with given

impinging bodies the ratio of the velocity of recoil to

that of approach was constant. The ratio e is therefore

called the coefficient of restitution for the given bodies.

3Ĵ22. Examples.

(1) A body of 4 lbs. mass, moving with a velocity of 10 ft. per

sec. in a direction inclined 60° to a smooth surface, impinges upon

and is reflected by that surface^ the coefficient of restitution being

0'5. Find the impulse of the stress.

Ans. 30 v/3 absolute ft.-lb.-sec. units.
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- (2) A particle im])iiige.s on a smooth plane, the coefficient of

restitution being e, the angle between the direction of the particle's

motion before impact and the normal to the plane (called the angle

of incidence) being o, and the angle between the direction of its

motion after impact and the normal (called the angle of reflection)

Show that

tan ^/tano= l/e.

being 6

[Let u, V be the components of the j)article's velocity normal and

l>arallel respectively to the given i)lane before impact ; u', v the

same quantities after impact. Then v/u= tana and ?;/«<'= tan <^.

And u' = eu.']

(3) A particle of mass m is let fall from a height h upon a smooth

horizontal plane and rebounds to a height h'. Find (a) the impulse

of the stress, and (b) the coefficient of restitution.

Ans. («) mff v/2( ^h+ ^h'); (/>) \/V/h.

' (4) Prove that the velocity of a particle moving on a smooth

horizontal plane is reversed in direction after impinging successively

oii two fixed smooth vertical planes at right angles to one another,

the coefficients of restitution being the same for both planes.

(5) A particle is projected from a point A in the circumference

of a circle and after impinging at three other points in the circum-

ference returns to A. Show that the tangents of the four angles

of incidence are e^, e^, e~2, and 6~t, e

restitution.

being the coefficient of

• (6) A ball falls vertically from rest for 1 sec. and then strikes a

smooth plane inclined 45° to the horizon, the coefficient of restitu-

tion being 1. Show that it will again strike the plane in 2 sec.

• (7) A. particle, after sliding from rest for 4/;^3 sec. down a

smooth plane inclined 60" to the horizon, strikes a horizontal plane

(coefficient of restitution= ^) and rebounds. At what distance will

it again strike this plane ?

Ans. 37-18... ft.

' (8) A ball is projected at an elevation a towards a smooth

vertical wall (coefficient of restitution= e) from a point whose
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distance from the wnll is a. What must the velocity of projection

be that the ball may return after its rebound to the point of

projection I

Ans. [(ja(l + i');(e sin 2a)]i.

• (9) A particle is projected from a point on an inclined plane of

inclination a, with a velocity v, inclined /3 to the plane. Find the

time between the /i"' and the (/i+ I)"' rebounds, the coetKcient of

restitntion being e.

Ans. 2e"v sin /3/((y cos a).

" (10) A ball is projected with a velocity of given magnitude from

a given point in a smooth i)lane inclined a to the horizon (coetticient

of restitution = 6'). Find the direction of the velocity that the ball

may cease to ho}) just as it returns to the ])oint of projection. [The

ball ceases to hoj) after an infinite se; ies of ho})s. Express the time

in which the ball returns to the })oint of projection (1) by the aid

of the last example, noting that

1 /( 1 _ e) = 1 + c + e- + etc.

;

and (2) by considering the component motion })arallel to the jjlane

;

and equate these expressions.]

Ans. The inclination of the velocity to the inclined plane is

cot~^[tan a/(l - e)].

(11) A ball is projected from a point in a j)lane of inclination a

(coefficient of restitution= e), with a velocity Fat right angles to

the plane. Find its distance ivoni the point of projection when it

ceases to rebound.

Ans. 2 r-'sin a/[g{l - 6')-cos-'a].

(12) A stream of particles, each of mass m grm., moving in the

same direction with a velocity u cm. per sec, impinge successively

on a fixed plane (coefficient of restitution = c) inclined a to the

direction of their velocity. If 7i particles reach the plane per sec,

find the force exerted by the plane. [The plane exerts on the

particles a series of impulses. The force exerted is the sum of all

the impulses occurring in 1 sec]

Ans. mnu{l+e) sin a dynes.

^1
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(13) A uiiiforin chain (linear denaity^p ll).s. ]»»'r foot) is held in

the hand by one end, its otlier end beinj^ in contact with a horizon-

tal table (coefficient of restitution = 0). At a given instant it is let

«;o. Show that the force exerted bv the table on the chain after

t sec. is three times the weij^lit of the })ortion of the chain then

lying coiled on the table. [The various links of the chain having

all at any given instant the same velocity fall as though they were

unconnected particles. After t sec. \pgt^' lbs. of chain lie on the

table, and the force exerted by the table is also destroying the

momentum of pgt lbs. of chain per sec]

323. Equilihviuni.—A particle is said to be in equi-

librium or in a static condition when the forces acting on
it produce in it a resultant acceleration equal to zero.

The acting forces are also said to be in equilibrium in

this case. A particle in equilibrium must therefore

either be at rest or be moving with uniform speed in a

straijxht line.

The subject of equilibrium, together with all those

portions of Dynamics which are necessary for its discus-

sion are frequently treated separately under the title

Statics, the other department of Dynamics, which treats

of forces as producing acceleration, being then called

Kinetics. Some writers employ the term Dynamics as

synonymous with Kinetics, and apply the term Mechanics
to what we have called Dynamics.

mm I

324. Condition of Equilibrium.—That the resultant

acceleration of a particle may be zero, the resultant force

acting on it must (317) be zero also. And if the result-

ant force be zero, the resultant acceleration will be zero

also. Hence the vanishing of the resultant force is the

necessary and sufficient condition of equilibrium. This

condition may be otherwise expressed, viz., that any one

of the forces acting on a particle must be equal and
opposite to the resultant of all the rest.
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325. Exprcsslimi^ for (Condition of Eqv'd'thrimn in
ISpecial Cases.—In special cases the following diffi'rent

modes of expressing completely or partially the condition

of equilibrium are found convenient in the solution of

statical problems.

(a) If two forces only act on a particle, they must be
equal and opposite.

(6) If three forces act on a particle, they must all lie in

one plane. For the resultant of any two must be in their

plane and must be opposite to the third.

(c) If thi'ee component forces can be represented by
the sides of a triangle taken the same way round, the

resultant is zero. This is an immediate inference from
the triangle of forces (313).

(d) Conversely, if three forces are in equilibrium and
if they can be represented in direction by the sides of a

triangle taken the same way round, they will also be
represented by them in magnitude. —Let AB, BO, CA
represent in direction the three

component forces P, Q, R re-

spectively, which are in equi-

librium. Let AB represent P
in maimitude also. If BG does

not represent Q in magnitude, *^

cut off BD from it of the proper length to do so. Then
the resultant AD of AB and BD must be in equilibrium

with the third force whose direction is CA. That is, two
forces whose directions are not in the same straight line

may be in equilibrium, which is impossible. Hence the

assumption that BC does not represent Q in magnitude
was wrong. Similarly it may be shown that CA repre-

sents R in magnitude.

(e) If three forces P, Q, R are in equilibrium, they are

proportional to the sines of the angles between the

<Ni:

Ml
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fliroctions of Q ti-nd i?, P and R, and P and Q respectively.

OA and Oi^ representing P and Q, P must be represented

by CO the diagonal of the parallelogram AB. Now

OA'.AC'.CO^ sin OC^ : sin COA : sin Oila

!Jf

?it)i'

! 1

If the an^le between the directions ofP and Q be written
A

PQ, we have

sin OCA = sin (180° - QR) = sin QR,

sin COA = sin (180° -PR) = sin PP,

sin OAC= sin (1 80° - PQ) = sin PQ.

Hence P : Q : P = sin QR : sin PP : sin PQ.

(/) If more than three forces act, it may be shown
from the polygon of forces that, if any number of com-
ponent forces can be represented by the sides of a polygon
taken the same way round, their resultant must be zero.

But the converse proposition similar to that of (d) does
not hold.

326. Analytical Expression for Condition of Eqni-
lihHum.—We may express the condition of equilibrium

of a particle in a way applicable to all cases by employ-
ing the analytical expression for the resultant of any
number of forces. If F^, F^, etc., are the magnitudes of

component forces, a^, jS^, y^, a,,, fi^, y^, etc., the angles made
by their directions with three fixed rectangular axes, and
if R is their resultant, we have (313 and 90)
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ie=[(2Fcosa)-+ (2f^cos/5)-+ (2Fcosy)2}i.

If there is equilibrium, R — i). Hence in that case

(2Fcosa)2+ (2/^cos^)-'4-(2i^cosy)' = ().

But if the sum of three essentially positive (juantities is

zero, the quantities themselves must each be zero. Hence

SFcos a = 2/^ cos /3 = Si^cos y = 0,

i.e., the condition that the algebraic sum of the compon-
ents of the acting forces in each of any three rectangular

directions must be equal to zero is a necessary condition

of equilibrium. It is evident that it is also sufficient.

If the forces are coplanar, the angles y become right

angles and the angles jS become the complements of the

angles «. Hence the equations expressing the condition

of equilibrium become

2i^cosa = 2Fsina = 0.

327. Ejcam'ples.

(1) A particle of weight IF rests upon a Hiuooth inclined plane of

inclination a (to the liorizontal plane) under a force F acting up the

plane {i.e., in the direction of a line of greatest slope). Find the

magnitude of ^and of the reaction R of the ])lane.

Let A B be the line of greatest slope of tlie inclined plane, ^ C a

liorizontal line in the vertical plane through AB. Then the i)article

at P is in equi'ibrium under the tnree

forces, W acting vertically downwards,

II acting at right angles to AB in a

vertical plane, and F in the direction

AB.
If a perpendicular be let fall from D

(the point in which a vertical line ^

through P meets AC) on the direction

of R and meet it in E, we form a tri-

angle PDE whose sides PD, BE, and EP taken the same way
round have the same directions as the forces W, F, R respectiveh .

Hence (325, d) W : F . R= PD: DE: EP.
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Now A PE })eiiij,' a lij^'lit aii<,Me, tlie angle />/'ii' Ih equal to a. Hence

/>Zi'=y^/)Hinoan(l /iV'^y/JcoHo. Tlierefore

H' :
/'

: yi = 1 : sin a : cos o.

And hence F— Wnma, ami /?= Wcona.

Otherwise thus :—The angle RF is irji radians, the angle RW
(TT-a) radians, and the angle FW {n-j^ + a) rjidians. Hence (325, c)

W'.F: R=Hm (wj-Z) : sin (tt - a) : sin (7r/2 + «)

= 1 : sin a : cos a.

Otherwise thns :—Choose any two directions at right angles to

one another and put the algebraic sum of the components of the

forces in each of these directions equal to zero (326). To simplify tlie

equations it is well to choose the directions so that they may
coincide with those of as many of the forces as possible. In the

direction Ali we have

F- IF sin a= 0.

In the direction perpendicular to AD we have

R- IF cos a = 0.

When the inclined j)lane is used as a simple machine the ratio of

W the weight of the body kept in equilibrium on it to F the force

which must be applied to the body for this purpose is called its

mechanical advantage. Hence in the case in which the force F
acts up the plane the mechanical advantage is cosec a.

If from B a perpendicular BG be drawn to JC, BC is called the

height of the inclined j)lane, whose length is AB and base AC.

The letters //, /, h are frequently used to denote these lines. Hence

in the present case W/F=l//i.

(2) (a) Find the mechanical advantage of a smooth inclined plane

(length= Z, height= A, base= &) when the applied force acts in a

horizontal direction, and (b) express the reaction (R) of the plane

on a particle in equilibrium on it in terms of the weight (If) of

the particle.

Ans. {a)b/h,{b)R=Wl/b.

(3) A particle is in equilibrium on a smooth inclined plane (in-

clination=o) under the action of a force F whose inclination to the
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imliiitMl plaiu' is and t(t tlu' horizon (a-\-0). Kind {<f) F, and (/>)

the reaction (»f the plane, in terms of the weight IF of the particle.

Ans. (a) M'sinoVosi?, (A) ircos(a4-(?) cos^.

(4) A bodv is kept at rest on a wniootli inclined plane by a force

acting up the i»lane and e(|ual to half the weight of the body. Find

the inclination of the ]>lane.

Ans. 30".

(f)) A body is in ecjuilibriuni on a smooth inclined plane, and tlu;

applied force and the reaction of the plane are each e(|ual to tht^

weight of the boily. Determine (n) the inclinati(»n of the plane, and

(h) the direction of the ap))lied force.

Ans. (a)('){)'\ (h) inclined 30° to both inclined and horizontal planes.

(G) A body is supported on a smooth inclined plane by a force

equal to its weight. Show that the reaction of the plane is double

what it would be if the body were supi)orte<l by the least possible

force.

(7) I* is the value of the force which, acting up a smooth inclined

})lane, kee]>s a body on it in ecpiilibrium. (J is the magnitude of

the force necessary to suj)port the body when its (.lirection is such

that it is equal to the reaction of the plane. Show that F acting

up the i)lane could just suj)i)ort a body of weight Q on a plane of

twice the inclination.

(8) A heavy body of 12 lbs. mass is kept in equilibrium by two

applied forces, one horizontal and the other inclined 'Mf to the

horizon. Find the forces.

Ans. Horizontal force= 772*8 pdls., the otlier= 669'2... pdls.

(9) Forces of 2^, C, and 6| i)oundals keep a jjaiticle in equilibrium.

Show that two of them are at right angles, and finil the angle be-

tween the greatest and least.

Ans. cos~^( - A).

(10) A heavy bead (weight= W) capable of sliding on a smooth

circular wire in a vertical plane is held at a distance equal to the

ladius of the circle from its highest point by a force directed to

'"%
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tliHt |M»iiit. Find (tt) i\\v f(»roe, and (/<) the ivaction of tlu' wiro on

till! ]iViU\.

Ann. (//) W, (h) W.

(11) /i in tlic Hnmllt'Ht imd II' the jifivatcst fdrcf which, alonj,' with

/' and Q, can kt'cp a j)arti('k' in i>(inili1»i-inni. Show that, if /*, Q^

and a force {Ji + R')/'2 keep a particle in eqnilibrinni, two of these

f(»rceH are I'cpial ; and tluit, if P, Q, and a force \' Itlt' do so, two of

them niMHt lu; at ri^dit anj,des.

(12) Two ecpial jjarticles, each attractin<^ with a force varying

directly as the distance, are sitnated at the o|)posite extremities of

a iiiameter of a horizontal circular wire on which a small smooth

rin<,' is capable of sliding. Prove that tlie rin<^ will be kept at rest

in any position under the attraction of the particles.

(13) Show that there is but one point in a triangle at which a

j>article would be in equilibrium if acted u])on l)y forces represented

by the lines <liawn from it to the angular ])oints of the triangle.

(14) Show that a particle is in equililuiuni if acted upon by three

forces rejuesented in direction by tlie j)erpendicular8 from tlie angular

j)oints of a triangle on the opposite sides, and in magnitude by the

recijtrocals of the lengths of those perjjendiculars.

(15) On a smooth inclined plane of inclination cos~^^ a particle is

in equilil)rium under the action of a certain force up the plane.

Find the direction in which an equal force must be ai)plied, that it,

along with a horizontal force of the same magnitude, may also keep

the i)article in equilibrium.

Ans. Inclination to inclined plane =cos~'§.

(IG) Show that a particle is in equilibrium under the following

forces :—4, N. ; 2, N. 30° -£1 ; 4, E. ; 2 x/3, E. 30° iS. ; 4 ^2, aS'. W.
;

2 V3, W. 30° 6'. ; and 2, N. 30° W.

(17) Fiom two points lines are drawn to the angular points of a

triangle. Find the condition that a particle acted upon by forces

rej)resented by these six lines may be in equilibrium.

Ans. The given points must be on a straight line through the

point of intersection of the straight lines drawn from the angular

m.
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|H)intH of tlio trian,i(l(> to tli<> iiii<l<il«' points of tlu> opiMKsIte HidcH, niid

iiiUMt 1)0 at i>«in)il diHtjuiccM from this point.

(18) A stiini; whoHc viuU aw lixrd iit two points A iind /i in tin'

simu! lioii/ontiil lint- luis, knotted jit C, sinotluT string cjui-n in^ u

ht'iivv bodv. Conipiut' t\w tt'nsionM in CA Jind CH, when tln'\ iuv of

siK^h lenj^'tli that AC/i is a i'ij,dit an^lc, tlw wlioh- svstnn Ix'in^jj in

«'(piilil)iinni. [Wo shall prove farthci' on ('.\H\)) that when strinj^s

arc knotted to^^ether, the HtresHes or tensions in them are in j^'eneral

different. In such cases, if there is efpiilibrium, the knot mnst be

considered to be in ecpnlibrinm under the action of the stresses in

the strinj^'s.]

Ans. AhCU.CA.

(19) A string,' has its ends fixed at A and IJ. Anotlu'i' strini,^ is

knotted to it at C and su])ports a body of weight IT. The inclina-

tions of CA and CB to tlie horizon are and respectively. Kind

the tensions in CA and CD when there is e([uilibrinm.

Ans. ircoH0/sin (^-f 0) and Frcos^/sin(^4-0) respectively.

{20) Three strings have one end each knotted to<,'ether at C. Two
of them are attached to fixed points at A and /J, and the tensions in

them are T and T' respectively. Tiie third snppctrts a parti(;U'

whose weight is W. Find the inclinations an<l of CA and CJl

to the horizon when there is etpiilibrium.

7^2+ IV -^

Ans. ^=sin— U111-J
; = 8in '

2]VT ' ^ 2WT'

(21) A string whose length is 10 feet has its ends fastened at two

points in fi horizontal line 6 feet apart. A small smooth massless

ring slides on the string carrying a body weighing 10 lbs. Find

the tension in the string when there is equilibrium. [We shall

|)rove farther on (391) that when the direction of a flexible string is

changed by its being bent round a smooth body the stress through-

out the string is the same. In this i)roblem the jiortion of the

string in contact with the ring is in equilibrium under the action

of a force equal to and codireetional with the weight of the body

which the ring carries and of the equal tensions in the two portions

of the string.]

Ans. 201|- poundals.
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(22) A fixed smooth henii8i)l)eiical Ixtwl whose lini is horizontal

has, resting inside it, a j)aiticle of weight IT attached by a stiii)^

whicli ])asses over tlie rim to another j)article of weight IF' which

hangs freely. F'ind the i)osition <»f the j)article in the bowl.

Ans. If d is the angle subtended at the centre of the Ijowl by the

poition of the string within it

e = 2cos

A
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This component F' resists the sliding- of the box over

the surface of the table, and is called the frlctlou between
the box and the table. It increases with F until the box
is just on the point of moving, when it has its greatest

value and is called the Ihnitiiuj static friction. If we
increase F still more the box begins to move with an
i.cceleration ; and the greater we make F, the greator is

che acceleration. If the acceleration be observed, the

resultant horizontal force may be determined, and the

difference between this force and F is the value of F' in

this case. The value of F' when the box is in motion
is called the kinetic friction. It is found (by more re-

fined experimental methods than the above) to be usually

slightly less than the limiting static friction and to be (at

any rate very nearly) independent of the velocity of the

box.

If weights of different amounts are put into the box (/

it is found that the friction (whetlier limiting static or

kinetic) is, within limits, proportional to the weight of

the box and its contents, and therefore to the normal
component of the reaction. If boxes of the same sub-

stance and weight, but with bottoms of different areas,

are used, the friction is found to be independent of the

area of the surface of contact. If the substance of the

bottom of the box and that of the table, or their state

of surface, be changed, the friction is found to change
also.

If F' is the value of the friction (whether limiting

static or kinetic), and R' the normal component of the

reaction R, we have thus F' = jmR', where /x is a constant

for two bodies of given substances with their surfaces of

contact in given states. It may be determined by such
experiments as the above, and it has different values

according as relative motion of the one body over the

surface of the other is on the point of occurring or is

actually occurring, being usually slightly greater in the

former case than in the latter. In the former case, //, is

'H
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B I

called the coefficient of static friction; in the latter, that

of kinetic friction.

The inclination to the normal of the reaction R of the

bodies in contact may be expressed in terms of the co-

efficient of friction. R' and F' being the normal and
frictional components of M, we have, if e is the inclination

of R to the normal, tan e = F'jR' = fx, and e = tan " V-

If IX is the coefficient of static friction the value of e

thus determined is the greatest possible inclination of the

reaction to the normal. It is called the angle of repose.

As R is in the plane containing the normal to the surface

of contact, and the direction in which the acting forces

tend to produce sliding, and as this direction may be any
whatever in the tangent plane at the point of contact of

the bodies, the direction of the reaction when sliding is

on the point of occurring may be any line on the surface

of a cone whose axis is the normal at the point of contact,

and whose semi-vertical angle is the angle of repose.

The direction of the reaction under all circumstances

must be included in this cone.

The ideal iierfectly TOiigli body is one over whose
surface sliding is impossible. In the case of such a body
the reaction is supposed to have any direction and mag-
nitude that may be necessary to prevent sliding.

The above statement of the laws of friction is sufficient

for our purpose. For a more detailed statement of our
knowledge of this subject, see recent works on en-

gineering.

329. Fxcmiples.

(1) A particle of mass m is moving up an inclined plane (co-

efficient of friction= /u.) of inclination a, being acted upon by a force

F up the plane. Find its acceleration and the reaction of the

plane.—Let It be the normal component of the reaction of the plane.

Then fili is the component in the plane, and as the jjoint is moving

Bi ;S«.

lip i ipi

"mi' '
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up the plane, fill is directed (l(jwn it. Hence, if a is tlie accelemtion

up the })lane,

a = {F -fj.lt- ir sin a)/?/i.

As there is no acceleration normal to the plane,

() = l{- 11' cos a.

Hence «= [/'^— ir(//, cos a + sin a)]/m.

Also the resultant reaction is (313 and 86, V)

R Vr+ Ai-=Wsl\+ M- cos a.

In the above formulae fi is the coefficient of kinetic friction.

(2) A body of 100 lbs. mass, moving on a horizontal surface with

a speed of 10 ft. per sec, comes to rest in 2 sec. Find the coefficient

of kinetic friction (supposed independent of the velocity).

Ans. 015....

(3) A mass of 100 lbs. is moved along a horizontal })lane by a

constant horizontal force of 20 Ibs.-weight. Determine the dis-

placement in 10 sec, the cm'fficient of kinetic friction being 0'17.

Ans. 48-3 ft.

(4) A force eq lal to the weight of 28 lbs. is required to draw a

mass of 30 lbs. \\\ a plane inclined 30^" to the horizon. Fhid {a) the

coefficient of friction
; (6) the force that would be necessary if the

hiclination were 45°.

Ans. (rt) O'o...
;
{h) A')j J-1 Ibs.-weight approximately.

(o) A train is going u]j an incline of 1 in 70, at the rate of 10

mis. per hour, the friction being equivalent to a force of 8 Ibs.-

i
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WR' =180° + e - a, U^F=d()° - e, and \VF=90° + a,

we have

and hence

and

F : ir : It'= 8in{a-e) : coac : cos a
;

F= rrain(a-€)/cosc,

/{'= ircos a/cos c.

Otherwise :—Replacing W by its normal component R and its

frictional component fxR (np the plane), and resolving in and per-

pendicular to the direction of AB, we have

and

Hence

and

F-i-fJ-R- Trshia=0,

R— U' cos = 0.

F= W (sin a-fjL cos a),

R'=R \/l+M-= H'cos aV l+fx-.

Recollecting that c = tan~V, it is easy to show the consistency of

the above results. The same equations may be obtained in other

ways. [See 327 (1)].

(8) A body is in equilibrium on a rough inclined plane of incli-

nation a, under a force F, inclined at the angle 6 to the inclined

plane. Find the ratio of the weight of the body to the force F
(a) when the body is on the point of moving up the plane

; (6)

when it is on the point of moving down.

Ans. («)
cos + fj- sin 6

ain a+ fi cos a
(^)

cos d -u sin d

snr a — ^; cos o

Q
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(9) Prove that the liorizoutal force which will just sustain a

heavy particle ou a rough inclined j)lane will sustain the jKirticle

on a smooth inclined plane provided its inclination is less than that

of the rough plane by the angle of repose.

(10) Show that the least coefficient of friction that will allow of

a heavy body's being just kept from sliding down an inclined i)lane

of inclination a, the body (weight= II') being sustained by a given

horizontal force F, is ( irtana-/')/(7^tano+ W).

(11) A heavy body is kept at rest on a given inclined plane by a

force making a given angle with the i)lane. Show that the reaction

of the plane when it is smooth is a harmonic mean between the

normal components of the greatest and least reactions when it is

rough.

(12) A bead, capable of sliding on a rough circular wire (radius

— r, coefficient of friction =yu,) in a A'ertical plane, is in equilibrium

in the highest position (not being the highest point of the wire) in

which equilibrium is possible. Find its position.

Ans. Its distance from the lowest point of the circle measured

along the circumference is rtan~V

(13) Show that it is easier to lift a body a given height than to

drag it up an inclined j)lane of that height by a rope i)arallel to the

plane, if the coefficient of friction is greater than the ratio of the

difference between the length and height of the plane to its base.

330. WotI' done.—Work is said to be done by a force

on a body when its place of application has a component
displacement in the direction of the force, and by a body
against a force when the place of application of the force

has a component displacement in the direction opposite

to that of the force. Work may in both cases be said to

be done by the force if in the one case it is considered as

positive and in the other as negative.

If the force doing the work is uniform, the work done
is measured by the product of the force into the compon-
ent in its direction of the displacement of its point of

application. If W, F, s, a represent the work done, the
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force actin^^ the disphici'm(!nt, and the inclination of the

directions of the displacement and the force, we have thus,

by definition,

}V (X Fs cos a,

Tlie work done is therefore measured also by the pi-oduct

of the displiiccment into the component in its direction

of the actin*^ force.

If tlie force doino; the work is variable, the motion of

the body may be supposed to be bi'oken up into a hir^a-

number of small displacements during each of which the

force may bo consitiored constant, and the work done is

the sum of all the cjuantities of work done durin<^ tliese

small displacements.

331. Aleasiireraent of Work done.—If we write I for

the component of the displacement in the direction of the

force, we have W — kFl, where /.; is a constant whose
value will depend upon tlie units involved in the other

quantities. We have already selected units of force and
length. We can give /; the convenient value unity there-

fore only by properly selecting the unit of work. If

TV= ^=^ = 1, k will be equal to 1. Hence we take as

unit of work the work done when under the action of

unit force a particle has a component displacement of 1

unit in the direction of the force. This derived unit of

work will of course vary with the units chosen as simple
units.

F. P. S. Gravitational System.—The weight of the

pound being the unit of force, the unit of work is the
work done when a body under this force moves through
a distance of 1 foot in its direction. This unit is very
largely used in Engineering. It is called the foot-pound,
and is usually defined as the work done in lifting one
pound one foot vertically.

M. K. S. Gravitational System.—The weight of the

Jf

;:<i

ilt.

'5

i

. i



244 DYNAMICS [331

III'

'•
^ v

kilogramme being the unit of force, the unit of work is

that done when under this force a body moves through
1 meti'e in its direction. It is largely used by French
engineers, and is called the kilofjramme-metre. The
kilogramme-metre is equivalent to 72331 foot-pounds.

F. F. S. Absolute System.—The unit of work is the

work done when under a force of 1 poundal, a body
moves through 1 foot in the direction of the force. This

unit is called the foot-poimdal. It is clear that, as the

weight of 1 lb. is g times the poundal, the foot-pound

must be g times the foot-poundal.

C. G. S. Absolute System.—The unit of work is the

work done when under a force of 1 dyne a body moves
through 1 centimetre in the direction of the force. It is

called the erg. The jotde is 10,000,000 ergs, and is equi-

valent to nearly J of a foot-pound.

332. Dimensions of Unit of Work—From the equa-

tion Wa^Fl, we deduce, as in 300 and 303, [W] x [F][L]

and [If ] oc [il^][i>]"[^']'^. The former expression applies

to gravitational units in which the unit of force is a
fundamental unit. Tlie latter applies to absolute units

in which the unit of mass is chosen arbitrarily. A know-
ledge of the dimensions of units of work is applied in the

solution of problems in exactly the same way as in the

case of units of speed and rates of change of speed.

333. Rate of Woi'Jc.—The mean rate at which a force

does work in a given time is the quotient of the work
done in the time by the time. In general the mean rate

varies with the interval of time to which it applies. In

any case in which it does not, the rate of doing work is

said to be uniform.

The instantaneous rate at a given instant is the mean
rate between that instant and another when the interval
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of time between them is made indetinitely small. It has

(295) in all cases a finite value.

The rate at which an agent (e.<j., a steam engine) can

do work is called its l^oiver or Activity.

334. Let W he the Avork done by a force F on a

particle of mass m in a short time t, and Ji the rate at

which the work is done. Then I{= W/t. If .s is the

distance travei'sed by the body in the direction of F
during t, 2{ = F<s't = Fv, where v is the com[)onent of the

instantaneous velocity of the particle in the direction of

F. If a is the instantaneous acceleration produced in

the particle by F, we have F='ina,Sim\ therefore R = vian,

whence a = RI{mv), i.e., the acceleration produced in a

particle by a force working at the rate R, is equal to the

quotient of this i-ate by the momentum of the particle in

the direction of F.

If the work is done against a force F', which has a
direction op[)Osite to that of F, and produces an accelera-

tion a, the resultant acceleration is a— a = R/{mv) — F/m.
As V increases a decreases. When a = rt' there is no
resultant acceleration and v becomes uniform and has its

greatest value. Hence the greatest velocity which a
force working at the rate R can produce against an
opposing force F' is equal to R/F'.

335. Measurement of Rate of Work.—We have by
definition R= W/t. When W=i = l, R = l. Hence unit
rate of work is unit of work per unit of time. The fol-

lowing are therefore the units of rate of work in the
various systems.

F. P. S. Gravitational System—One foot-pound per
second.—The unit employed b}^ English engineers is a
multiple of this, viz., 550 ft.-pounds per sec, or 33,000
ft.-pounds per min., which is called the horse-'poiver.

M. K. S. Gravitational System— One kilogramme-
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338. (2) Uiidcv a (kntral Force, i.e., a forcr diivctod

towards a centre and varyin<jj with tlic distanc(^ from the

centre.—Let be the centre of force, AH any patli of a

particles from A to H, and PQ any
uidetinitely small portion of the patli.

Join OA, OP, OQ, OP, and from as

centre describe anrs of circles A(i,Pj*,

Q<j, M bein^ the point of intersection

of Pp witli OQ.

PQ being small, the force on the

particle between V and Q may be considered constant.

Lot i^be its ma<»nitude. QO may be considered its direc-

tion. Hence tlie work which must be done in moving
the particle from P to Q is F. PQcosMQP, which, since

PM and PQ may be considered straight lines and PM is

at right angles to 0^, is ec^ual to F. MQ. Now ^^ and q
being at the same distance from as P and Q respectively,

the force on the particle, if taken from /) to q, would be F
also, and MQ=pq. Hence the work which must be done
in moving the particle from P to Q is the same as that

necessary to move it from 2> to q. We niay treat every
element of the path in the same way. Hence, by sum-
mation, the work necessary to move the particle from A
to B is equal to that necessary to move it from a to B in

a straight line.

Hence also the work done in moving a particle from
^ to ^ is independent of the path, and depends only on
the initial and final distances of the points.

r\'.

339. (a) The Force directly proportional to the Distance

of the Particle from the Centre.—Let / be its value at

unit distance. Then its values at a and B are /. Oa and
/. OB respectively. Hence its mean value per nnit dis-

tance between a and B is hf(Oa+OB) ; and consequently
the work which must be done in moving the particle from
a to B, and therefore from A to B, is

Uw.
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If r an<l It aw. tln^ iniMal iind tiual distaiircs respectively,

tlie work done is !/( /i"— r"-).

840. (/>) The Force inrrrsdtj proporfioudJ to the S(ptare

of the JJlsfduce of the- J*(trticle fnna the i'entre.— ljt«t/bo

its value at unit distance. Then its values at y> and q
are /'/0/r and /' Or/- rrsix'ctively. Since />7 is indrlinitely

small, the value ot' the tbrci; between /> anil </ may be put
e(pial to eithci' or to the intermediate VJilue f;{()p'0(j).
Hencc^ the work which must be done in movin<r the

particle from /> to 7 is

^^--(0,-rv)=./(l--y.

Let tlu^ lin(^ aB be divided into the indefinitely small

portions (or elements) ajOj, 2^{[),^, etc., j^n-JI- Then,
adding toijjether the amounts of woi'k done- throug'hout all

the elements of oH, the work done in moving the particle

from a to B, and therefore from A to B, is

^^XocroB) "^^yoA^ ob) ^Ar'Br
if r and R are the initial and final distances respectively.

Hence also the work done in moving the particle from

a point at distance r to a point at an infinite distance from

the centre is fh\

Ml. Examples.

(1) Find the work done hy the weight of a body of 20 lbs. mass

during the lirHt tliree secondn of its fall from rest.

Ans. 9.3,31 5*6... ft.-poundals.

(2) A body of 80 lbs. mass is projected along a rough horizontal

1»gmi.

.'t;
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eartli, distance at Aphelion = l*r)l 2 x lO'-^ em., ili.stai.co at Peri-

helion =1-462 X 10" cm. See 310, Ex. 12.)

Ans. 1-79 X 10''" erg.s.

(9) At the three corners .1, Z>, C\ of a scjuare A BCD (sicU* = l(K)

metre.s) are material particles of 3,928, 7,850, and 11,784 j>rammes

respectively. Find the work done aL?ainst the jfravitational attrac-

tion of the particles in moving 1 grannne from the centre to the

fourth corner.

Ans. 7'82 X 10~^ erg ai)pr()X.

342. Relation of Wovh done by Compo7ient Forces to

that done by Meaidtant.--Thv work done by a force

during any displacement of a particle is equal to the .sum

of the quantities of work done by its components.—Let
0(J be the force, OA, AB, BO,
its components, wliose directions

may be any whatever. Let OD
be the displacement. By 8 (foot-

^ note), 0. a, /3, y being the in-

clinations of 00, OA, AB, and
^ BO respectively to OD,

00 cos 0==OAcoHa-hAB cos ^+BO cos y

.

Multiplying by OD we obtain

OO.ODcos^e^OA . ODcosa+ AB. ODcos/3+BO. ODcosy,

by which the proposition is proved.

If F^, F^, etc., R denote the component and re.'^ultant

forces respectively, d^, d.,, etc., r the component displace-

ments in the directions of the forces respectively, the

above may be written

F^d^-{-FA+ ^tc. = ^Fd = Rr,

care being taken that, wliere F and d have opposite

directions, the product must have the negative sign.

•11
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343. Energy.—We havo seen tluit work is said to be
done by a body against a force which is acting on it,

when it undergoes a displacement having a component in

a direction opposite to that of the force. When a particle

is thus able to do work it is said to possess work-power
or energy.

Energy being power of doing work is measured in

terms of the unit of work.

844. Kinetic Enc nj.—A particle which has a velocity

is able to do work against a force which has a component
in a direction opposite to its velocity. It is therefore

said to possess kinetic energy. Kinetic energy is thus

woi'k-power due to the possession of a velocity.

To find the kinetic energy of a particle we determine
the w^^^rk done by it against any force during a given

(Unijiiutiou of its velocity— Let the particle of mass ?)^

y have an initial velocity F,

and let it do work against a

constant force F. It will

undergo a displacement hav-
ing a component in a direc-

tion o])posite to that of F.

Let that component be d
alid let the velocity of tlie particle be re(! uced to v. Let

the inclination of F to i^'s line of action be rr Then the

particle has in that line a component iniiial velocity

Fcos a and an acceleration —Fl'))i, and at right angles to

it an initial velocity Fsina and no accelerntion. Hence,

after the displacement, its coinponeiit velocity ii in i'^'s

line of action is such that

?f'^-F^'cos2a= -2Fd/m.

Its resultant velocity v is such that

^••2 = kH Psin'^a.

ilrV

~'*t:^<L>H<& TV M. -KW,
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Hence

and Fd = hnV- imv\

If tho force against whicli tlio woi'k is done be variable,

let the path of the particle be divided into a large num-
ber {n) of small displacements, so small that the force may
be considered constant during each. Let F^, F,„ etc., be the

magnitudes of tlie force during these small displacements,

d^, d,,„ etc., the components of the displacements in the

lines of action whicli tlie force has during the displace-

ments, and 7'^, V.,, etc., the velocities of the particle after

the successive displacements. Then

F<l=lmV^-hmv;',
FjL = ^mv{ — imi'./,

etc.,

Fadn = imi'\_i - Imv-.

Hence, if W be the whole work done, we have by sum-
mation W^hraV hmv^.

Hence the work which can be done by a particle

during a given reduction of its velocity is equal to the

change produced in the product of half its mass into the

square of its velocit}'

.

If its final velocity is zero, its work-power due to its

velocity is exliausted. In that case W=^hriiV'-^. Hence
the kinetic energy of a particle is eoual to half the pi'o-

duct of its mass into the squan; of its velocity.

315. Potential Fnerr/y.—A particle which is acted

upon by such a force as that of gravitational atti-action

and is in a position from which it can move in the direc-

tion of the force, can in virtue of its being so acted upon
do work against a second force having a component in a
direction opposite to that of the firs^,. It therefore pos-

sesses work-power or energy. Thus a heavy body in a
position from wdiich it can fall can do work r.gaiiist a

I
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force acting on it in an upward direction, water from a
mill-pond, e.g., against the reaction of tlie buckets of a mill-

wheel. So also the string of a bent bow can do work
against the reaction of the arrow in contact with it.

This form of energy has been called energy/ of iiosition

for an obvious reason, and static energy to indicate its

independence of the particle's possessing a velocity. Tlie

latter term however is defective as seeming to imply that

the particle possessing this form of energy must be in

equilibrium (323).

A particle acted on by a force and in a position from
which it can move in the direction of the force may also

be recognized as possessing energy, if we note that, even
if no other force be supposed to act on it, it must move in

the direction of the force, gaining velocit}^ and therefore

work-power. For this reason energy of position has
appeared to some writers to be simply a potential form of

kinetic energy and it has been named for this reason

'potential energy. We have seen however that a particle

acted on b}'- a force and in a position from which it can
move in the direction of the force, may do Avork without
first acquiring kinetic energy ; and energy of position

must therefore Aaiik as an independent form of energy.

The term potential energy should not therefore be em-
[)loyed in the sense in which it was first proposed. We
shall see however (85G), that this form of energy has
a very simple relation to a quantity called the potential

;

and to indicate this relation the term potential energy is

employed.

In speaking of a particle as possessing potential energy

we are taking a narrow view of the phenomenon and
neglecting the third law of motion, which states that a

force acting on a particle is but one aspect of a stress

which acts between it and another. What we have said

of the one particle applies obviously equally to the other.

Hence the potential energy belongs not to either of the
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particles alone but to tlie pair, and it is due to the stress

between them. When we speak of tlie potential energy
as possessed by the one, we are imagining tlie* other for

tlie moment to be immoveable, or, in other words, we are

taking the position of tlie other as our point of reference.

It folic fr. (45 that all fonlows irom o-ta tnat an torces do not confer

potential energy on the particles on which they act, but
those only in whose directions the particles can move.
If, e.(j., a particle be in motion in contact with a rough
surface, it will be acted u})on by friction. But the

direction of this force must always be opposite to that of

the particle's velocity, and the particle therefore cannot
move in its direction. Hence friction cannot confer

potential energy on a particle. Now all natural forces

may be divided into two classes, those of the one class

(including such as gravitational attraction) depending
only on the ])osition of the particle acted upon, those of

tlie other class (including such as friction) depending
upon its velocity and having in all cases directions opposite

to that of its velocity. Potential energy is thus conferred

on a particle only by forces of the former class whose
action depends upon the ])Osition of the particle only,

and is inr\,pendent of its velocity.

347. The particle will possess potential energy at

whatever point it may be placed of the region through-

out which the force acts, but the farther it is displaced

in the direction of the force the less it will have. The
excess of the value of its potential energy at any point F
over its value at another point Q is ecpial to the work it

can do in moving from P to Q. Now, even if it have no
initial velocity, it can move from P to Q though acted on
by a force F' opposite and indefinitely nearly equal to the

force F, to which its potential energy is due. And the
work done against F' during this displacement is the
product of F' into the component d of PQ in its direc-

tion. But since F' is indefinitely nearly equal to F, we
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work done ai^ainst the acting forces. Hence, in any dis-

placement of a particle, the increase of kinetic energy
together with the work done against the acting forces is

zero.

If now the acting forces are all independent of the

velocity of the particle, the work dinie against them is

equal to the increase of the potential energy of the

particle. Hence, in any displacement of a particle acted

on by forces independent of its velocity, the sum of

the increments of the kinetic and potential energies

is zero, or, in other words, the sum of the potential

and kinetic energies is constant. This result is the

Law of the Conservation of Energy as applied to a single

particle.

Forces which depend only on the position of the

particle acted upon are usually called conservative forces,

as being subject to the above law of conservation of

energy. Those which depend on the velocity are called

non-conservative forces.

If any of the acting forces are dependent upon the

velocity of the particle, the work done against them does

not result in the production of an equivalent amount of

potential energy. In such case, therefore, the sum of

the increments of the kinetic and potential energies, and
of the work done against such foi'ces, is equal to zero.

This result is the Law of Energy as applied to a single

particle. The law of the conservation of energy is

obviously a special case of the more general law of

energy.

.349. If a particle acted on by forces be in motion, its

energy at any instant consists partly of kinetic, partly of

potential energy. During the motion the relative amounts
of these energies will in ixeneral chani^^e. In such a case its

energy is said to be undergoing transfunmitlon. Thus
the energy of a pendulum at the extremity of its swing
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is wholly potential energy. In its mean ])osition (if it be
su[)posed that the string cannot be cut, and that the bob
therefore cannot fall lower than the mean position) the

energy is wholly kinetic ; at intermediate positions it

possesses energy of both kinds. The transformations of

a particle's energy are always subject to the law of

energy. Thus the sum of the kinetic and ])otential

energies of the pendulum at any instant, together with
the work done since any former instant against non-
conservative forces, must be equal to the energy of the

l)endulum at that former instant. If the forces acting are

all of the conservative class, the sum of the kinetic and
potential energies of the pendulum must be the same at

all instants.
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850. ExaiwpleH.

(1) Compare the ainouuts of the uioineiituiii and kinetic energy

in {(i) a mass oi 20 lbs. liaving a s])ee(l of 10 ft. [)er sec, and (h) a

mass of 1 oz. moving at 5,120 ft. per see.

Ans. Momenta the same, kinetic energy of {h) 320 times that oi (a).

(2) A cannon ball of 5,000 grammes is discharged with a s})eed of

500 metres per sec. Find the kinetic energy in («) ergs, and (b)

foot-j)oinids.

Ans. (a) 6-25 x lOi-, (h) 4-Gl x 10\ a])in-ox.

(3) A bale of goods weighing 1 cwt. is lifted 20 ft. Find the

increment of its })otential energy.

Ans. 2,240 ft.-jjounds.

(4) A bow 1 yard long is straight when the string is jnst tight,

but when bent has the form of a circular arc of 1 ft. G in. radius.

The mean force exerted by the hand in bending, })er unit distance

through which it has moved, is equal to the weight of 10 lbs. Find

the potential energy of the bow.

Ans. 483 ft.-i)oundals.

(5) A body is projected eithei- (a) vertically upwards, or (b) in
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any (liicction. Show, hy calculatin!^ its kiiu'tii- aiul |Mit»'ntial

ciH'rjt^it'M afttT any tinu', tliat in hoth lascs tlu' iMieij^fy of the body

is till' same at all [toints (»f its path. [N('<;li'ct the j-csistancc of the

air and assunu' // to have the same valne at all points of the path.]

• (()) A meteorite falls in a straij^dit line towards the earth from a

,1.,'reat distanee, no othe)' hea\('nly hody heini;' snppost'd near. Show,

hy ealcnlatin^f the chanj^^es prodnced in its kinetic and potential

ener<^ies iK'tween any two p(»ints of its path, that there is no rhan^'e

prodnced in its cneiny.

(7) A particle wci^hinu; 1 Ih. has a simi)le haiiiionic motion with

a pi-riod of :2() see. and an amplitnde of I ft. {"'ind (a) its kinetic

ener^fy in its mean position, {/>) its [totential cner^^y in eithei' ex-

ti'eme jxisition, (c) its kiiietiir cner^^fy and potential cncr^'y and their

sum when at a distance of 8 inches from the mean position.

Ans. (if) TT-^iH) ft.-i»oundals, (/>) the same, {>•) kinetic eneigy

= ir'-i'M)0 ft.-poundals, potential energy = 7r'-4r)() ft.-poundals, their

sum = TT- 200 ft.-poundals.

rf

1, it"

rv.

351. Applicatio)b of the Laiv of Eaeiyy to Kinetic
Problems.—The law of energy being a generalized form
of the laws of motion may be applied at once to the

solution of kinetic problems such as those of *J20. If the

forces acting are all conservative, the law of the conser-

vation of energy is applicable. If some of the forces are

non-conservative, and if the work done against them
cannot be determined, the law of energy cannot be

applied.

352. Examples.

(1) What speed will the l)ow of 350, Ex. 4, connnunicate to an

arrow weighing 2 o/. [Assume no work done against iion-eonserv-

ative forces.]

Ans. 87 '9 ft. per sec.

(2) A ball weighing 5 oz. and moving with a f<\)eed of 1,000 ft.

per sec. strikes a shield 2 inches thick and after piercing it moves

on with a speed of 4(J0 ft. i»er sec. Find the force (supposed
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uiiifoiiii) with wliicli tlif nhifhl iVHi.stetl tlie l»all. [AsHiniu* iis

above.]

Alls. 7H7'>()() ixuiihIhIh.

(3) I'iiul the h»M<j;ht {/<) t(» which u Imdv wei;4hiiiv; 2 i^'iJiniiiies iukI

|)r(»j«M-to<l verticjilly upwiuds with a spccil of :i() nu'trt's por sec. will

hil^«' rist'ii ht'foio its spcnl is ie(hi('t'(l to 5 ujetrcs \tvv sec, assiniiiii"^

the iiu'aii lesiHtaiut' of tht^ air to tlu' motion of the h<»(I\ \n'V unit of

distance traveih'd to he lOdvues.

L(»ss of kinetic enery;v = 3,7r)(),()(K) er^is, <'ain of potential eiier^'V

= lfi)(i'2/t er;>s, work done against resistance— iO/i er<^s. Jleiice

/t = 1,01)1 •() cm.

(4) A hody of mass m is projected with s[)ee(l V up an inclined

plane of inclination a, the coelHcient of kinetic friction being' /u.

b^ind the space .v traversed before the body comes to rest.

Loss of kinetic energy = ^7^ T-, oain of potential energy= WJ7.'* sin a,

W(»rk done against friction ='At?»,<7.'<' cos a. Hence

m;/.i sin a + fimf/s cos a - hn I '- = 0,

and 6'== r- [:^//(sin a + ;t/, cosa)].

Hence also the acceleration is constant and e([ual to //(sin a + /xcosa).

(5) Find the speed r of the bob (mass= ?n) of a simple pendulum

(length = ^) which has swung from its extreme position through a

given angle, neglecting the resistance of the air.

Let /if be the angle made with the vertical in the extreme jiosition,

the angle made with the vertical in the position in which the

s])eed of the bob is to l)e determined. The kinetic eiiergv gained

is ^mr"^. The vertical height through which the bob has fallen

is I eoH 6 - 1 con [3, and therefore the })otential energy lost is

ongl{c(m 6 — cos ^). The stress in the stiing has done no work
because the bob has had no diHi)lacement in its direction. Hence

Im /:'' - m(jl(vi )s ^ - cos /3) = (
),

an<l r- = '2(/l{c< )sd- cos /i).

The reader should solve some of the Exami)les of 320 and 329 by

the application of the law^ of energy. Those of 322 cannot be solved

I .' %
5 I
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1)\ tlii> nu'thutl, iM'tjiusf \vt' as \ ct know ton little of t Im- fMitcs wliidi

c'oiiie into play "lining' inipait. \\v camiot tril wlu'tlu-ioi' not tlu-y

juv cojiMt'jvativt; fun»'s, nor can w«' calcwlatt' tli»' work <loni' ugainnt

tlii-ni.

'^'}^^. Ap/J'hation of the Lum of Enerf/i/ to Sfdflc

J^rohlem^.—The law of energy may also be (iinployiid to

obtain an ex])ros,si()ii for the conditions of et[nilibriiini of

a particle. A particle in ecpiilibriuni nuist either be at

lest or b ifornil}'. Ii rletinitely .smallmoving 1

(lisplacoment of a particle, therefore, from a position in

which it is in e([uilibrium, whether or not it bo one
which the particle actually undergoes, there can be no
change of velocity, and hence no change of kinetic energy.

But in any displacement the sum of the increments of

potential and kinetic energies, together with the work
done against iion-conservative forces, must be zero. Heuce
in any indefinitely small displacement from a position of

equilibrium the increment of the j)otential energy, to-

gether with the amount of work done ajijainst ncm-

conservative Ibrces, or, in other words, the work done
against (and therefore l)y) nil the forces acting on the

particle, must be zero. With the symbols of *34<2, ^Fd = 0.

This ec^uation miglit have been deduced at once from
that of .31'2, viz., ^Fd = Br. For, since for equilibrium

R = i), we have lFd = 0.

A small displacement which a particle in e(piilibrium

may be supposed to undergo is often called its uirtiud

dlsplaceme7it or virtual velocity, and its product into the

component of any acting force in its direction the virtual

work or the virtual moment of the force. The condition

of equilibrium as obtained above is then called the

Principle of Virtual Work or of Virtual Velocities.

354. Ejca'inple.

A particle of weight W i.s on the point of moving np an inclined
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l)lane of iii(-liiiati<Mi a uiidtn- a foice /'' inclined 6 to tlu* plane, the

coeftieient (»f fiiction being /t. Find F in terms of W.

The inclination of the reaction li of

the i)lane to the normal I^JV iHc = tan~'At.

As we wish to find F in terms of 11',

we select a displacement J'A })erpen-

dicnlar to Ji. If then AB, AC be

drawn ])eri)endicular to die diret^tions

of /'' and ir res])ectivelv, the work

done by F, W, and It during tlie dis-

])lacenient are F. P/i, - W. PC, .and

F.PB- ir./^c=o,zero resi)ectiveh'. Hence
and consequen tb F. cos .1PB - ircos A PC= 0.

Now the an<fle APB is equal to O-e, and the angle A PC to

Fco^(d-e)- irsin(a + e)=0,OO^-a — e. He. ice

and substituting for e its value tan~V,

F=W sm a-\- /x cos a

cos<?H-^sin d'

The i-eader should ap])ly this method to some of the Examples of

327 and 329.

355. PotentUd.—The region sniToundino- one or more
centres of force (an attracting mass, for example) is called

a field of force. If a particle be moved from any one to

any other point in such a held, work is in general done
either by or against the resultant force of the held, and
the amount of work so done we have seen to be inde-

pendent of the path (338). If therefore some convenient
point of reference be chosen, the work done in bringing a
given particle, say a particle of unit mass, from any other

point to the chosen point has a definite value for every
point of the field. So also will the work done in carrying

the given particle from the chosen point to all other

points of the field. This definite value, when the

given particle is one whose mass is unity, is called the

potential of the point. The magnitude of the potential

of a point Avill depend upon the position of the point of
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reference, and its sign will vary according as we give the

name potential to the work done during motion to or

from the jioint of reference and by or against the force of

the field. The choice of the point of reference and of the

exact mode of defining potential are matters of conven-
ience and vary with the kind of field of force under
consideration.

356. The importance of the potential depends upon the

following proposition :

—

The rate of chau(je of the iiotenf'ial per nvit distance

in any direction at any point of a field of force is equal
to the component force in thai direction ivith ivhich a
particle of unit mass luould be acted upon if placed at

that point.—Let A, B hQ two points in the field of force

and C the chosen point of reference. Since the work
done during any displacement is independent of the path
of the particle, the work done in canying unit mass from
A io B is equal to the difference of the amounts of work
done in carrying it from A to C and from B to (/. Hence,
if Va and Vn are the potentials of A and B, the differ-

ence Va -^ Vb is equal to the work done in carrying the

unit mass from A to B ov from B to A. If now F is the

component m AB of the mean force per unit distance

acting on the particle between A and B, the work done
between A and B \^ F . AB. Hence

F.AB=Va-Vb,
and F={Va-Vb)IAB.

If now B be indefinitely near A, F becomes the compon-
ent force at A in the line AB, and {Va '~ Vb)/AB the rate

of change of the potential at A per unit distance in the

line AB. Hence the above proposition is proved.

As the value of a central force at any point of the

region through which it acts is equal to the rate of

change of the potential at that point, such forces r^re said

to be derivable from a potential.
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It follows from 347 that F . AB is the difference be-

tween the potential energies of unit mass at A and at B.

This difference is thus equal to the difference in the values

of the potential for these points. Hence the appropriate-

ness of the term potential energy.

357. If at any point, F= 0, there also the rate of change
of potential must be zero. Hence, e.g. (31G, Ex. 5), at all

points inside a uniform spherical shell the gravitational

potential is the same.

358. Fquipotential Surface)^.—A surface, at every

y)oint of which the potential has the same value, is called

an equipotential surface. The attraction on a particle

placed at any point of such a surface will be normal to

the surface. For in no direction tanijential to the surface

is there a rate of change of potential or, consequently, a
component force.

We may imagine equipotential surfaces drawn in any
field of force for any values of the potential. If they be
drawn for values increasing by equal amounts, which are

also small, the resultant force acting at any point will be
inversely proportional to the distance between successive

equipotential surfaces in the neighbourhood of the point.

For, if A and B are the successive equipotential sur-

faces, and AB the distance between them at any point,

Vj. '^ K« is constant, and hence (356) F oc 1/AB.

359. Lines of Force.—A line so drawn in a field of force,

that its direction at any point is also the direction of the

resultant force at that point, is called a line of force. As
the resultant force at a point has no component in the

tangent plane of the equipotential surface passing through
the point, lines of force must be normal to the equi-

potential surfaces they may meet.

360. Tubes of Force.—If from points in the boundary
of any portion of an equipotential surface lines of
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force be drawn, the space thus marked off is called a tube
of force.

361. Gravitational Potential.— We may consider, as of

special importance, the potential in a field of force due to

gravitational attraction. If such a field is due to the

attraction of a single particle of mass ni, the force on
unit mass at unit distance (the astronomical unit of mass
(315) being employed) ism. Hence (340) the work done
in moving unit mass from one point at a distance r to

another at a distance R is ni{l/r— l/R). If R is in-

finitely great, the work done is eiiual to m/r. Hence if

the chosen point of reference be a point at an infinite

distance from the attracting particle, the potential of a
point at a distance r has the magnitude m/r. If the

field is due to any number of particles of masses, m^,

m.„ etc., the magnitude of the potential will be ^(ni'r).

It is convenient to have the potential for all points of

a gravitational field positive. Now gravitational force

being in all cases attractive, the work done by the force

of a field in moving a particle from a greater to a smaller

distance from the attracting mass is always positive.

Hence in this case we define the potential of a point

as the work done by the force of the field in moving
unit mass from a point at an infinite distance from the

attracting mass, to the given point.
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362. It folio vv^s that the component force on unit mass
at a given point of a gravitational field in a given direc-

tion is equal to the rate of increase cf the potential per

unit distance in the same direction.

It follows also (347) that with the above convention,

if Pa and Pb are the potential energies of unit mass at

A and B, and Va and Fg the potentials of these points

respectively,

Va-Vjs=-(Pa-Pb); -i^
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and that therefore the rate of increase of the potential

with distance in a given direction is equal to the rate of

decrease of the potential energy of unit mass in the same
direction.

303. Cidculatton of the Poteiitial.—The value of the

quantity ^(m/r) for a given point may, in simple cases,

be determined by elementary mathematical methods.
Usually, however, the Integral Calculus is necessary to

effect the summation.

Si?f.
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3G4. Examples,

(1) Show that the ])otential at a given point (hie to j)article.s of

niasse.s 7tii, m.,, etc., situated on eitlier a circle or a spliere whose

radius is r and centre the given point, is equal to (-7u)/V.

(2) Particles of masses 3'928, 39*28, and 392'8 kilogrammes are

situated at three of the corners of a scpiare whose side is 1 metre.

Find the potential at the fourth corner.

Ans. 1-0807 (\ (i. 8. units.

(3) Find the potential («) at the centre of a thin circular wire or

linear density p, and (b) at a point on a line through its centre per-

pendicular to its plane, distant I from all i)()ints of the wire.

Ans. (if) 27r/3, (/>) 2Trpri'L

(4) Find tlie ])otential at the centre of a circular plate of radius r

and surface density p.

Ans. 'Zvpr.

(5) Find the i)otential at the centre due to a sector of the plate

of Ex. 4, of angle radians.

Ans. rdp.

(6) Find the potential («) at any point inside a uniform spherical

shell of mass m and radius r, and (h) outside it at a distance d from

its centre. [See 316, Exs. 5 and 6.]

Ans. {(() m/r, (b) mjd.
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lies of

whose

Lies are

metre.

wire or

re per-

tadius r

the plate

spherical

;e d from

(7) A,ii jtoint near the eartli's Hurface, is // fivt above another
such point li. Kind the excess of the |)otentiaI of .1 over tliat

of n.

Ana. -g/t.

365. Integra! Normal A ftniction over a i^urface.—If
any closed surface in a field of force be divided into
indefinitely small portions, the sum of the products of the
areas of these portions into the normal components out-
wards (or inwards) of the forces exerted at them on unit
mass is called the integral normal attraction over the
surface (in the language of the Higher Mathematics, the
surface integral of normal attraction).

The integral normal attraction over any closed surface
in a gravitational field of force is equal to 47r times the
mass enclosed by the surface.—Let m be the mass of any

Figi Fig 2

particle, at 0, of the attracting mass. Let a cone of

indefinitely small solid angle meet the closed surface >S'

at Pj, Pg, P3, P^, etc., marking out on it areas A j, A,^ A.^, A^,

etc., inclined to orthogonal sections of the cone at the

angles Oj, Oo» 0.,. 0^, etc., radians. The resultant force due
to this particle at P^, P.„ P3, P^, etc., is towards and
inversely proportional to OP,^ 0/^, 01'}, OP}, etc. The
normal components at these points are therefore pro-

portional to cos 6JOF}, cos 6JOF}, etc. The orthogonal

sections of the cone at Pj, P„, etc., have areas proportional

to OF}, OF}, OF}, etc. Hence the sections inclined to

them at the angles 0^ 0.,, etc., at the same points, have,

since the cone is of indefinitely small angle, areas pro-
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l)ortiorial to 01\-/coh 0,, (JP,^/'coh 0,, etc. The products

of tlio areas yl,, A.,, etc., into the respective normal
components of the force over them are therefore con-

stant.

If now the point be outside the surface, the force

at J\ is outwards, that at 1\, inwards, that at P.^ out-

wards, that at P^ inwards, and^ so on ; and the cone must
meet the surface an even number of times. Hence, if

the forces at Pj, P.„ etc., be reckoned either all outwards
or all inwards, as many of the above equal products are

positive as negative, and their algebraic sum is con-

sequently zero. But the whole surface may be divided

into indefinitely small areas by sucli cones. Hence the

integral normal attraction over the surface is equal

to zero when the attracting mass is a particle outside

it.

If the point be inside the surface, the cone whose
vertex is will cut the surface in whatever direction it

be drawn an odd number of times. Hence the sum of

the products of the areas intercepted by the con*, "ntothe
normal components of the attractions at them is c^ual to

the value of the product at any one section. At P^ the

normal component of the attraction is m cos OJOP-^. If

o) is the solid angle of the cone (in solid radians), the

area of the section at P^ is od. OP^-ycos 0^. Hence the

value of the above product at Pj is wtn, and consequently

the value of the integral normal attraction is the product

of m into the sum of the solid angles of all the cones with
(inside the surface) as vertex, by which the surface

may be divided into small elements, which is ^ir. Hence
the value of the integral normal attraction when and
therefore m are inside is 47rm,

Hence its value when any mass M is inside is

366. In a tube of force whose ends are indefinitely

"^
'! If
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small portions of equipotential surfaces, the force per])en-

dicular to the tubular portion of

the surface vanishes, and at tlie

end surfaces the resultant force is

normal.—Let F^ and F., be the

resultant forces at the ends, and
let Sj, .9., be the indefinitely small

areas of the ends. If then the

tube contain no attracting mass,

one of the two, F^, F,, is outwards, the other inwards, and
we have, by 3G5, F^s^ — F,,s., = 0, i.e., if F be the force at

any point of a small tube of force and s its normal section

at that point, Fs = constant, or F cc 1/ti. Hence the

resultant force at any point of a small tube of force is

inversely proportional to its transverse section at that

point.

367. If the attracting mass is a uniform spherical shell

or a sphere with density proportional to distance from
the centre, the lines of force are clearly straight lines

radiating from the centre, and the tubes offeree are cones,

right sections of which are directly proportional to the

squares of their distances from the vertex of the cone or

centre of the sphere. Hence the attraction exerted by
a sphere such as that specified above, at external points,

is inversely proportional to the squares of their distances

from its centre. (Compare 316, Ex. 6.)

'ft
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368. If the attracting mass is a cylinder of circular

section and infinite length and with density proportional

to distance from the axis, the lines of force are clearly

straight lines perpendicular to the axis of the cylinder,

and the tubes of force are therefore wedges, the areas of

right sections of which are directly proportional to their

distances from the axis. Hence the forces at external

points are inversely proportional to their distances from
the axis.

li

I >
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309. It' tho attracting mass is a plato of unifoiiii thick-

ness and infinite extent, and with the density at its

various points pro{)ortional to their distances from either

bounding surface, the lines of force are chiarly straight

lines normal to either bounding surface, and the tubes of

force therefore are C3'linders of constant section. Hence
the forces exerted at all external points are the same.

.'370. Jf a tube of force cut through a plate of attracting

matter of surface density p, and if the area of the plate

inside the tube be a; we have (1305 and 300)

11 '2 2
irp(T.

If the plate be indefinitely thin ard the ends of the tube

indefinitely near the surfaces of the plate, «j = o- = i>'o.

Hence J^\ — F., = -^firp,

i.e., the attractions on unit mass on oj)posite sides of the

plate at points indefinitely near it differ by ^irp. As
they are clearly equal in magnitude and opposite in direc-

tion, the attraction at either side indefinitely near the

plate is thus 27r/o. (Compare 310, Ex. 1.)

I 'ft

371. The potential canm>t have a maximum or a mini-

mum value at a point in free space. For, if it could, it

must increase or diminish respectively from point to

point in all directions outwards from the given point, and
hence the force at all points of a small surface enclosing

the given point must be outwards or inwards respectively,

and must consequently have a finite value, though the

surface encloses no attracting mass.

Hence, if the potential is constant over a closed surface

containing no attracting mass, it must be constant

throughout the whole enclosed space. For otherwise

there must be somewhere in it a point of maximum or

minimum potential.
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372. A fluid of force whoso law i.s that of 'aavitation

may be so maj)j)e(l out by liiujs of torco tliat they may
indicate not only the direction, but also the ma<,^Mitude of

the forces acting at dirt'erent parts of the field. For let

X|, .s,, be normal sections of any tube of force not enclosinjj;

any attracting mass, and F^, F., the resultant forces on unit

mass at these sections. Then these sections are cut throui^di

by the same number of lines of force. Let the number
{n) be such that F^ = ii/h^. Then, since /',«,= i'.x,, we
have also F.^= n's.^ Hence, if the lines of force in a tube
of force are so diawn that at any one point the quotient

of their number by the normal section of the tube is

equal to the force at that point, the same will be true for

any other point. If therefore the lines of force of a Held

are so drawn that over any e(iuip(jtential surface the

number of lines of force per unit of area at every point is

equal to the force at that point, then throughout the Held

the number of lines of force per unit of area normal to

them at any point will be equal to the force at that

point.

373. A uniform field of force is one at all points of

which the resultant force has the same magnitude and
direction. The tubes of force must therefore be cylinders,

and the lines of force must be parallel straight lines, equal

numbers of which pass through equal areas normal to

their direction.
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CHAPTER III.

DYNAMICS or SIMPLE SYSTEMS OF PAPTR'LES.

ft

I .^ :'•

lUt

r374. For the discussion of ihe motion of a sin^rle

particle we liave found the first tv/o laws of motion to

be sufHcient. If we wish, however, to discuss the

motions of oven only two })articles which act upon one
another, wo have to deal with both aspects of the stress

between them and must know how the stress affects both
particles. The third law tells us that it affects them
equally in opposite directions, producing in them equal

and opposite changes of momentum in the same time.

With the aid of the third law it is often possible to pass

from particle to particle of a simple system, applying to

each particle the equations of motion or the conditions of

equilibrium of a single particle, and thus determining the

motion of the whole system.

o7o. It is hardly necessary to point out that the law
of energy also may be applied to a system of particles.

For since, if the system is in motion, the increment of
the potential and kinetic energies, together with the
work done against non-conservative forces, during any
displacement, is for each particle equal to zero, it must be
equal to zero also for the whole system. And since, if

the particles of the system are in equilibrium, the sum of

the quantities of work done by the forces acting on each
particle during any small displacement is zero, it is zero

also for all together.
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^»7(). The forces acting on a system of particles inay

be divided into two classes, th()S»^ acting between the

])articles of Uh; system and bodies external to the system,

called external forces, and those acting between the

particles of the system themselves, called internal forces.

The internal forces may be mutual attractions such as

gravitational attraction, ex[)l()sive forces, reactions exerted

during collision, or the stresses or tensions in connectting

strings. Some of these cases may be dealt with without
further comment.

:J77. ExanqylcM.

(1) Two particles of luasseH, 20 iiw. and I 11). re.spt'ctivul}, initially

at rest on a smooth horizontal tahle attract tnuy another. After a

time the greater mass lias a velocity (»f 10 ft. ))er sec. Find the

v«^locity of the other.

Ans. 200 ft. [)er sec. in the opposite direction.

(2) Two attractin*^ particles initially i\t rest mi a sinnoth hori-

zontal table are observed at a given instant to be approaching one

another with a speed n, the sj)ee(l of each |)article being nieasnred

relatively to the other. If m and J/ are theii' masses, find their

speeds o and F res[)ectively relatixe to a fixed point in the table.

Ans. v = Mu/(ni + M), V=mi'i(iii+M).

(3) A body having a vehxrity of JO ft. })er sec. in a given direction

is divided by an ex])losion into two portions whose mas.ses are 2 lbs.

and 1 lb. respectively. Both portions move, after the explosion, in

the original lino of motion, and the portion of smaller mass has a

velocity of 25 ft. j)er sec. in the original direction of motion, (a)

Find the velocity of the other portion, {h) Vind what it would

have been had the velocity of the smaller portion been .'iO instead

of 25 ft. per sec. (c) Find the value of the explosive inipulse in

the latter case.

Ans. (a) 2^ ft. per sec. in the given direction, (6) 10 ft. per sec. in

the opposite direction, (c) 40 absolute ft.-lb.-sec. units of imimlse.

(4) Two particles of masses m and m' astronomical iniits, moving

on a smooth horizontal table, attract one another according to the

S

* J

t,

(,

hi

if, 1
'

'^:4

M

!

1 ^

i'.

PJi



s»
.

274 HYXAMICS [ 377

gravitational law. Find the acceleration of either relative to the

other when they are at a distance d.

Each is acted on l)y a force mm' jd'^. Hence their accelerations

iire m'jd^ and mjd'^ res|)ectively in oj)|)oaite directions, and therefore

the acceleration of either relative to the otlier is (m + m')/d^. Hence

each relativeh' to the other moves as it would if the other were

fixed and had a mass m+ m'.

),i >

n
||j

I

m

.378. Collision.—If particles come into collision, v»e

require to know the stress between them during collision

before we can determine their subsequent motion.

If the direction of the stress during the collision be
known, its impulse may readily be determined, pro-

vided there be no recoil. Let m and n be the masses of

two colliding particles, u and v their respective compon-
ent velocities before collision and V their common com-
ponent velocity after collision, in the line of action of the

stress, and the impulse of the stress. As we have
taken u and v both positive, one of them must be greater

than the other that collision may occur, and V must be

less than it and greater than the other. Let u be greater

than u Them ')n(u—V) is the momentum lost by the

one particle, n(V—v) that gained by the other. Since

these changes of momentum are produced by the same
impulse <p, they must be equal. Hence

Hence also

and

m(u — V) = (j) ^ n{V—V).

onu+ nvV=

=

'm-\-n
'

7nn(u— v)

379. If there be recoil, the impulse of the stress $ may
be determined in terras of the value it would have if

there were none. For u' and v' being the component
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velocities of tn and n respectively after collision, in the

<lirection of the stress, we have

Hence
4> a— a' v'—r

^=u-V"^ V-r

From the last of these equations we find

^_ u {v— v') — r{ u —u')

V— V —{ll—ll)

and substituting this value of V in either of the expres-
sions for $/0 we obtain

</) Li — V

The relative velocity of the particles before collision, in

the line of action of the stress, is called the velocity of

approach, and their relative velocity in the same line

after collision is called the velocity of recoil. With the

above symbols ii— v is the velocit}'' of approach, y'— u'

the velocity of recoil. If we call the ratio of the velocity

of the recoil to that of the approach e, we have

Hence

e = {v' - u')l{u— v).

*=^(l+e).

ie.y the impulse of the actual stress between two imping-

ing particles is greater than that of the stress which
would equalize their velocities in the ratio of 1-|-(C^ to 1.

Newton found by direct experiment (380, Ex. 12) that

in bodies of finite size the velocity of recoil has to the

velocity of approach a constant ratio, independent of the

masses and velocities of the colliding bodies and depend-
ent only on their substance. The value of this constant

ratio e therefore, for bodies of given substances, is called

their cocffi^cient of restitiition (often, but improperly, their

coefficient of elasticity).

\:h%
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380. Examples.

(1) Two particles of masses 7n aMcl M moving in a straight line

with velocities v and I' respectively, come into collision, the stress

betwei^n them (hiring collision being in the direction of the line of

motion and the coefficient of restitution being e. Find the veloci-

ties v' and V respectively after the collision.

Clearly the pai'ticles move after collision in the same straight line

as before it. Since the same stress acts on both particles during the

collision, the change of momentum produced in the one is equal and

opposite to the change of momentum produced in the other. Hence

the sums of the momenta of the paiticles before and after im})act

are the same ; i.e.^

V and V being both })ositive, the particles are moving in the same

direction. If J/ is ahead, v nuist be greater than V that collision

may occur. Hence the velocity of approach is v - T', and that of

recoil V -v', and (37JJ)

V'-v' = e{i:- V).

From these equations, eliminating first V and secondly y', we obtain

, mv-\-MV-eM(v~V)
11 = _ i —

'

.

m +M
yf_mv-{-MV - em{ V~ c)

m +M

If the particles be moving each towards the other, one of the

velocities before impact, viz. V, must be made negative in these

equations.

The above result applies, as we shall see in a future section (498,

Ex. 10), to the collision of si)heres whose centres are before impact

moving in the direction of the line joining them. The impact of

spheres under this condition is said to be direct.

(2) Two particle? whose masses are as 2:4 are moving towards

one another in a straight line with speeds of 10 and 20 ft. per sec.

respectively. They impinge, the stress during impact being in the
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line of motion. Find the velocities after impact, the coefficient of

lestitntion being J.

Ana. 50/3 and 20/3 ft. per see. resj)ectivelv in the direction of tlie

velocity before impact, of the ])aTticle of greater mass.

(3) Two j)articles of equal mass, and with coefficient of restitu-

tion ecpial to unity, are moving in tlie same straight line, and

collide, the stress during collision beiug in the line of moti«»n.

Show that they exchange velocities.

(4) Two particles are moving in opposite directions in a straight

line witli equal momenta. They collide and do not sei)arate after

collision. Show that their kinetic energy has disappeared.

(5) Two particles of equal mass move one after the other in the

same straight line, and the velocity of the hindermost is double that

of the other. Show that if on colliding the stress between them is

in the line of motion, their velocities after imjjact will be as

3-e : 3-1-e, e being the coefficient of restitution.

(6) A series of particles (coefficients of restitution = 1) are move-

able in a given straight line. The first of them impinges on the

second, the second on the third, and so on, the stresses during im-

pact being in the given straight line. Prove that, if their masses

form a geometric progression whose common ratio is 2, their veloci-

ties after impact will form a geometric progression whose common
ratio is f

.

(7) Three particles A , 7?, C of different masses and materials are

capable of moving in a given straight line. They are originally at

rest and not in contact. A is projected with a speed ]'' against />',

which then strikes C and communicates to it a momentum M. The

stresses during impact are in the given straight line. Show that,

if G had been i)rojected with the same speed ]'' in the opposite

<lirection, the same amount of momentum 3/ would have been com-

municated to A .

(8) A particle l3^ing at a point A ou a smooth horizontal plane is

driven perpendicularly against a vertical wall by the impact of

another particle of equal mass moving perpendicularly to the wall

1
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the stivss (liiriii;^' impact l)ein<4" in the line of motion. After re-

l»oun(lin<jf from tlie wall at a jioint C, it is biou<,'ht to rest h\ a

second impact at />. Show that liC= e . AC, where e is the e(»ninion

coetticient of restitution of halls an<l vertical Avail.

(9) Twi) heavy particles of etpial mass (c<»etlicient of restitution

= ^) which are in the same horizontal plane at a distance 'la froio

each other aie projected with the same speed sUfa towards each

other. Show that their (tonnnon sjieed after collision will be

A n/oit/", the (lirecti(»n of the stress dm in<,Mm pact Iteing parallel to

the line joining' their initial [)ositions.

(10) Two particles of equal mass, whose coefficient of restitiitioji

is unity, move ahnij;' a smooth horizontal table with equal velocities

in dire(;tions perpendicular to one another and collide at the edge,

the direction of the stress during collision being that of the edge.

The speed of each T»all is that which it would acquire in falling froni

rest through a distance ecpial to half the height of the table. Show

that the <listance between the ])oints at which the particles strike

the floor is twice the height of the table.

(11) A series (tf it particles with masses 1, e, c-', etc., are at rest in

a straight line and not in contact. To the first is given a velocity

u and it impinges on the second. The second strikes the third, and

so on, the stresses during all the impacts being in the line of

motion. Show that the final kinetic energy of the system is

|(l-e+e'>-.

(12) Two particles of the same mass are susj)ende<l hy equal

strings so that they rest in contact. One of them i.s druAvn aside

through an arc whose chord is a and being allowed to fall drives

the other up an arc whose chord is h. Show that the coefficient of

restitution is {2b-a)la. [It was by experiments (»f this kind, per-

formed with spheres instead of particles (see 498, Ex. 10), that

Newton proved the coefficient of restitution to be independent of

the mass and velocity of the impinging bodies and dependent only

upon their substance . The s[)heres were suspended from fixed points

in the same horizontal plane by jjarallel strings of such length that

the spheres rested in contact with their centres in the same hori-

zontal plane.]
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381. Systems of Fartides connected by Strings.—Wo
shall investigate farther on (383-307) the stresses in

strings. Meantime we may assume that tense strings

connecting the particles of a system are straight, except

in cases in which their direction may he changed by
contact with bodies or by the action of other strings

knotted to them ; that the sti-ess in a straight string and
in one which bends round a smooth body such as a peg, a
beam, a pulley, is the same throughout ; and that the

stresses in strings knotted together are not in general the

same.

382. Examples.

(1) Two part 'cles of masses m and ru' {m > m') are connected by a

niasslesa inextensible stiin*:? which passes over a smooth horizontal

cylinder (or peg, or pulley). Find their accelerations and the ten-

sion in the strin<:f.

As the tension 7' is the same throughout the

string, each particle is acted u])on by two

forces, T vertically upwards and its weight down-

wards. As the string is inextensible and m is

greater than m', m will move downwards with

the same acceleration o with which m' moves

upwards. The resultant force downwards on m is
^^

mg-T. Hence (317) a = {mg- T)lm. The result-

ant force upwards on m' is T-m'g. Hence

a= {T-m'g)lm'. Equating these values of a we
obtain

{mg- T)/m= {T-m'g)/m'.

m '

V
nig

/^J

in

mg

m '2mni'

m 4-m
Hence

and substituting this value of T in either of the above expressions

for a, we have a
m —m
m+ m iff-

Otherwise, by applying the law of energy, thus : Let m move dow n

and therefore m' up tlirough a distance «, and let the initial and
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filial velocities be F find v respectively. Then the s^ain of kinetic

ener<,'y is ^(m + m')(v^- T"-). E((nal amounts of work are done bv

and af^ainst T. The work done against the weiglit of m' is m'f/s,

that done by the weifjht of m is wffs. Hence the total j?ain of

potential energy is (m' -m)(/s. If we neglect the resistance of the

air there are no other forces a.itinir. Hence

h(m+ m'Xv2 - V^) + (m' - m)gs= 0,

and V^ — 2 ,g.%
in +m

'

from which it follows that the pnrticlea are moving with constant

acceleration of magnitude (m-m');j/(m+ m').

If 7)1 and m' are known and if (t be observed, g may be determined.

But, as no smooth bodies exist in nature and the conditions of the

above ideal problem cannot therefore be realized, tliis mode <»f

<letermining^ is of no value. AtwoocPs Machine, a. piece of appar-

atus of historic interest, is an attempt to realize as nearly as

})ossible the above ideal .arrangement. The string passes round a

f)ulley so rough that the string does not slip on it. The axis of the

pulley is mounted on "friction wheels" which diminish tlie friction

of the axis very greatly. When the particles move the pulley

rotates, .ind the kinetic energy produced exists partially in the

rotating pulley. Work is also done against friction and the resist-

ance of the air. The comj)lete discussion of this apparatus is

therefore too complicated for us at our present stage.

(2) At the extremity of a string which ]msses over a frictionless

pulley moving in a vertical plane are masses of on and 3 lbs.

Initially the masses are at rest at the same height, and 3 secon<ls

later the mass m is 72 feet below the other. Show that wi = 5 lbs.

(3) Bodies of p and q grms. (p > q) respectively are attached to

the ends of a string which passes over a pulley. At the end of

each second after motion begins, 1 grm. is taken from p and added

to q without jerking. Show that the motion will be reversed

after p-q-\-\ seconds.

(4) Two particles of masses m and m' move on two rough inclined

planes (inclinations a and a', coefficients of friction /* and /*') in a

I
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vertical plane nonnal to the intersection of tlie inclined i)lanea.

'Hiey are connected by a string wliich j)a.sse.s over a nniootli j)e<^' at

the common snmmit of the inclined planes. Find their connnon

acceleration, asHnmin;>- m to move down its j>lane.

Ans. |wi(8ina-/i(.'()Ha) -'//i'(sin a' + ^u'cos a')[y/(wi + wi').

(5) A body weii^diing 1!) lbs. is placed at the centre of a smooth

round table ()'4 1 ft. in diameter. It is moved by a body weij^diin^

1 lb. at the end of a cord passing over the ed^'e of the table. How
long will it be beforti it reach the edge of the table t

Ans. •> sees.

(6) A mass of oz. slides down a smooth inclined ])lane whose

height is half its length, and draws another mass by means of a

string along a smooth horizontal table which is level with the top

of the inclined plane over which the string ])asses. In 5 sees, from

rest it moves through 3 feet. Find the mass on the table.

Ans. SOfi-o oz.

(7) A string having at one end an imknown mass J/, and at the

other a small smooth massless ring, hangs over a smooth horizontal

cylinder. Through the ring a second string passes, having at

its ends masses m and m' {m > m). Find {(() what value M must

have in order that wi', if initially at rest, may remain at rest during

the motion of the system, and (/>) the acceleration of the ring.

Ans. («)--- „ {h)\.— g.Am-m m

(8) Three particles A , B, C of masses Wj, m.^, m^ {m^ > m.^) are

connected by strings, yl to ^ and B to C. The string between A
and B passes over a smooth horizontal cylinder. C lies on a table

vertically below B and the string joining B and G is slack. At a

given instant A and B begin to move from rest, and after t sec.

the string between B and C tightens. Determine the subsequent

luotion.

The acceleration with which ^1 and B move while BC is slack is,

Ex. 1, (m^-m2)g/{nil + 1)1,2). Hence their velocity at the instant at

which i?C becomes tight is (w^l — w?2)<7^'(W] + ???2)' ^''^^^ ^^^^^ ^- ^^^

u be the common speed of A, Z?, and C immediately after the tight-

ening of BC. Then C's momentum upwards has suddenly increased

1
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by ^y*.,M. It has tlierefoiv lieeii actt'd upon l>y n Mlunt-livetl Htress

of inipul.s(f )ii.(n npwarda. vI'h nionieiitiim in an upward <lirection

lias (.lianj^od from -/»,i' to - m^n. Htjnce it )»as

IftH'n at-tcd upon hy a .stress of impulse tn^{o-v)

upwards. Both these stresses have acted on //—the

latter upwai'<ls, the former (h»wnwards. Hence the

impulse of tlie n'sultant uj>ward stress on li is

i>ii{v-u) - ni.jH. Now /»'s momentum upwards has
B
(;han,L(e<l from tn.^v to i)i./>i. Jlenct; (IHD)

*C
and u = 1 - V — HI, in.,

'^ at.
on^ + m.^+ m^

The acceleration with which ^1, B, and C move after JJC becomes

tight njay be shown (as in Ex. 1) to be

wii - m., - >«{

Wj 4- wiu + >".•}

Hence the subsequent motion is determined. Jf ni.,+m^> lUi, the

acceleration is negative, the velocity will gradually diminish from

u to zero, and the direction of moti(m will then be reversed.

We cannot apply the law of energy to a problem such as the

above, because we do not know what non-conservative forces may
be acting, and cannot therefore determine the work done against

them.

(9) Three l)odies A , /?, C of equal mass are connected by strings

A to JJ and B to C. A and B are placed close togetlier on a smooth

horizontal table, and C hangs over the edge. The string J i? is 3

ft. long, and B is 3'5 ft. from the edge. Find the velocity of A (a)

when it begins to move, and (&) when B arrives at the edge.

Ans. {(/)'2>/gl3, (b) \/%/;3."

(10) Two particles .1 and B of equal mass are connected by a

string which passes over a smooth horizontal cylinder. While

moving with a speed v (A moving downwards) a third particle, (7,

of the same mass and at rest, is suddenly attached to the string

betw^een A and the cylinder. Find (a) the common speed of A and

Ji
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(' iiiiiuediately after C's JittHclmiunt, (/>) the time after wliicli the

striu*^ /iC a^'ain becomes ti^'lit, (c) tlie common speed of .1 ami ('

and the speed of Ji jusi before the strin<{ JJC ti<,'htens, and {d) the

common speed «»f all three just after the strini; ti<<htens.

Ans. {(() vi2, (h) '«'/(27), (<•) Vy ri'I ; (</) 5v"(;.

(11) In Ex. 4, tind the latio (»f the masses m and j»' that there

may be ecpiilibrium with ni on the point of movinj^ down its plane.

Equating to zero the vahie of the acceleration found al)ove (Ex.

4), we have

w/(sin a --/xcosa)- ^/<,'(sin a '-f-/x'eosa') = 0,

1 i)i sin a'4-;u'cosa'
and - = .

m sino-Mcosa

Otherwise thus : The actin^^ f(»rces are represented in the fi.i,Mire,

which will be understood without explanation. Kesolvino- forces

parallel to tlie planes w'» obtain

T - mg si n a + fiR = 0,

r-m(j^ma-ii'R' = 0.

Eesolving in directions perpendicular to the phines we obtain

R - mg cos o = 0,

IV - m'g cos a' = 0.

Hence, substituting for U and IV in the first pair of equations their

values as given in the second pair an<l eliminating 7', we obtain

m __ sin a + m'cos a

m' sin a-n cos a
"

r

w
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OtherwiHO tim.s : Let the particles move a .short tlistaiKte «, m
<l(»wri tlie plane CA and m' up the plane ('/I. Then, ecjnatin^' to

zero tlie al<,'el)rai<; sum of tlie amounts of work <h*ne by the various

forces on both particUjs duriiiff tlie displacemt^nt, we have

mc/x sin a - ai'f/s sin a' - fxUs - fx'U'»= 0',

and substituting,' for /i and /t' their values >/j//(!os o and m'^ cos a'

respectively, we obtain the same result as above.

(12) Tw(» |)articles A and Ji of weights W and IT' are connecte<l

by a strin<^. A rests on a rou^di inclined plane (inclination = a, co-

efficient of friction =/x) over whose smooth summit the string passes

;

and fi han<^s freely. I<"'ind the ratio of W to IT that there may be

efpiilibrium with A on the point of moving up the j)lane.

Ans. sin o-f wt-osa.

(13) A string fastened by one end at a fixed jMjint A passes

through a fixed smooth ring at JJ, AB being horizontal, and is

pulled by a force at its other end. Between A and B a body of

weight W is hung by a smooth ring moveable on the string. How
near to AB will it be possible to raise this ring by pulling at the

string, if the string can bear a tension ecpial to 2 11'^ only.

Ans. ABjmK

(14) A rough ])arabolic wire is placed with vertex upwards an<l

axis vertical. A small ring of weight W moving on the wire is

«uj)j)orted at one extremity of the latus rectum by a body of weight

W attached to a stiing passing over a smooth peg at the focus.

F'ind the coelticient of friction.

Ans. {w- ir')/(ir+ W).

(15) Two small smooth rings sliding on a circular wire in a

vertical plane are connected by a string which passes through a

small smooth fixed ring at the highest point of tlie circle. Show-

that if the masses of the moveable rings are inversely proportional

to the adjacent segments of the string, there will be equilibrium.

(16) Two particles A and B (masses m and m!) rest upon smooth

inclined planes of inclinations a and ^ respectively. They are con-
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neoti'd by a fltrin;? (h'n^fth^/) which pussoa ftv«'r h miiooth poj; /*

vtMtitally over tht' coiniiion .suiiunit

^' of the two phiinv^, juul d' taut li

feet from it. Kind the incliiiatioMs

H and of AP and /;/' t(» the

)ianeM.

Let A l)e displaced up its phin*'

through an intUitinitely snuill dis-

tance AA' Then li will move
through a small distance lil]' down
its plane. From A' and li' draw

A'<t and li'h perpendicular to PA
and PJl produced, respectively.

Since the anf,des ^1/M' and Z>7V/ are imletinitely amnll, ^17'

iin.l li'P^hP. Hence

aP

or+Ph=A'P+pir=AP+pn,

and therefore Aa = Jih. The angles A PA' and JiPB' lieing in-

definitely small, PA and PB may be considered the diiections of

the tension 2' in the string during the dis])lacement. Hence the

amounts of work done by the tension are 7'. A(( and - 7'. Jib, which

are equal and of opposite sign. No work is done by the normal

reactions. The amount of work done by the weight of J is

- m<7 sin o . ^IJ ', which is equal to - wi^ . ^br . sin a/cos t'. That

done by the weight of B is 7n'g . Bh . sin ^/cos <p. Hence

m'g . Bh . sin /3/cos <p - )ng . Aa . sin a/cos 6 — 0,

and
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This t'(niati "ii with that <>l)(iiiiuMl ihovn art' HtitKcionf to «h'tiMiniiif

and <p whoii thiM'c is ('(|nilihnuiu.

The n-ader Mhould Holvt^ tin* problem iiIho \>y ipplyin^ the c(»ii«li-

tio'iH of e(|iiilil>riuiii in other wayM.

(17) Two partieh's, of iiia.sses ni and ///', connected hy a Htiin<i, vvsl

upon the (mI^c of a .smooth vertical circular diwc. Kind the position

of ecpiilihrium and th(; tension 7' in the strin;^,

Ann, If a is the angle Hubtcmde*! at the centrt^ by the strin<^ an<l

(i tliu angle subtended by the portion between /n and tlie highest

point,
III sin a

m + ni cos a

7T„ ni)n{/H\i\a

(m^ + m- + 2»iwi'cos o)-'

(18) Three smooth tacks .1, 7i, C are driven into a vertical wall,

Ji and C being on the same level. A string, to whose ends bodies

of e(pial weight v) are attached, is hung over the three tacks. Kind

the forces exerted by tliem on the string when there is e(|uilibrium.

Ans. ?<>2*(1 +COS A)\ ?r2*(l - sin //)^ w''l^{^ - sin C)* lespectively.

(19) Two r(mgh bodies rest on an inclined ])lane and are con-

nected by a string which is ])arallel to the plane, H' and W being

the weights of the bodies, and m, m' tJieir coefficients of friction, and

the lougher body having the liigher j)osition. Kind tl»e gieatest

inclination of the plane consistent with e(piilibrium.

Alls. tan-i[(/xir+/ll")/(">l»'')].

(20) Two bodies weighing A and /> lbs. resi)eetively are connected

by a string and placed on a rough horizontal table (coefficient of

friction = m). A force /*, which is less than ix{A+B) but greater

than fis^A'+ Ji'^, is a])plied to A in the direction BA, and its direc-

tion is gradually turned round through !in angle 6 in a liorizontal

plane. Show that both ^J and J) will slip when

2^BP

Show also that, if P is less than fiJA'^^B- but greater than fxA, it

will cause A only to slip, and tliat A will slip when d=»m-^[nAIP).

(21) Particles A, J5, etc., n in number, of weights w^^ w^, etc., are

connected to one another and to two fixed points P and Q, whose
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lunizontal (listaiu't; is (/ und vorticjil «liMtiiiHt' /<, l»v w»'i;L,'litI('rtH

striii^rs, /' heiii;,' ((nmcctcd to .1, .1 to /A jmhI m» on, iiiwl tlif la.st to

Q. 'Vhv striiij,' coiiiH'ctiii;;- /* :iiiil .1 lias tlu' Initftli ",, that coiiiiect-

lii^' .1 and /i tlu' Icn^^fth <<.„ and so on. Kind tlir tmsions T*,, y^,

I'tc, in those htriii^'H and their inclinations a,, a,,, «'tc., to the hori/on,

when the partieleH are in »'<|nilil>iinni.

Kach particle is acted iipon l>y three forccH, its weight and the

tensions in the sti'inj^s attached to it. Since ^r,, ir.^, rU-., aic all verti-

cal, and since T^ and T.^ are in the same plane as ^",, 7\ and 7', in the

same j)lane as w.^, and so on, tlie whole system mnst be in the verti-

cal plane throngh P, Q. A is in ecpiilibrium vnidei- the forces 7',,

T.,, and (i\. Hence, resolving horizontally and vejtically. wc get

7',c(>s tti - 7^2^'"*^ °->— ^-) '11^*1 7'isin Oj - 7\>sin a^ "•, =0.

Similar equations may be obtained for each ]>arti(lc

equations. Moreover

in all '111

and A= «iSinai + <^2^'" 02 + etc. 4-rf„ + isin a„ + |.

We have therefore 2n+ 2 equations involving -In + -2 unknowii

quantities, viz., n + l tensions and n+l inclinations. 'IMie inclina-

tions of the strings being determined and their lengths given, tlie

})Ositions of the particles are known.
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(22) Particles ^1, JJ, C\ etc., // in uumlier, Jiru connected l)y

weitrhtless strings A to i5, /? to 0, etc., and the ii^^ to a fixed point

Q. A force of given magnitude 7\ is applied to A through the

stiing I*A. Find the weights of the j)articles that the strings iM,
AB, etc., may have given inclinations o,, a^,, etc., to the horizon.

From any point O draw (Jl\, OP2, etc., with

inclinations a^, a.^, etc., to the horizon. These

lines have therefore the same directions as the

strings 7M , AJi, etc. Draw a vertical line

meeting 0I\, 0/'^, etc., in P,, /\,, etc. If 7\,

7 3, etc., are the tensions in AB, JBC, etc , the

particle .1 is acted upon by three forces, T^, 7\,

and ?r,. These are represented in direction by

the lines 01\, P/), ynd /*i/*2 respectively.

Hence (325, <l) they are also represented by

these lines in magnitude. Similarly the forces

acting on B, viz., 7\,, T^, and 'U\^, are represented

in direction and therefore also in magnitude
"Pn^J by 0I\, I\0, and l\Pn respectively. Thus it

may be shown that I\l\, P^^'n^ PJ\-) <^tc., r„P„+i represent the

weights u\, iVo, etc., on the same scale as that on which 0I\ repre-

sents 7\. Hence the values of n\, W2, etc., may be determined by

carefully drav^^ing the diagram (called nforce diagram) and measuring

the lengths of /^Pa? ^^2^':{> ^^c. For this reason the above method

is called a graphic method. It is of great practical value for the

rapid solution of engineering problems.

(2.3) Particles J, Z>, C, etc., are connected together and to two

fixed points, as in Ex. 21, and are in equilibrium, their masses m^^

7712, etc., and the inclinations of the strings a^, a,, etc., being known.

Any one of the strings is cut, say BC. Find the tensions t^^ t^ in

PA, AB respectively inniiediately afterwards. [These tensions are

called initial tensions, because they are the tensions when C, B
begin to aiovo.]

A moves, after the cutting of the string, in a circle about P. At

the beginning of its motion its speed is zero, and hence the com-

ponent cf its acceleration normal to its path {i.e., in the direction

AP^ is zero. Its acceleration is therefore initially wholly tangential

y i

^ V i;
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to its path (i.e., in a direction perpendicular to AP). A^s accelera-

tion in the -^'.irection AP being ?:ero, the sum of the components in

that direction of the forces acting on A is zero also. Hence

ti - ?2C0s(aj - ttg) - m^g sin Oi= 0.

-4's acceleration in a diiection perpendicular to AP is the quo-

tient by its mass of the sum of the component forces acting on it in

this direction, and is therefore

[m^ff cos a, - ^28in(aj — o^)]/^*!.

B also after the cutting of the string moves in a circle about J , and

as above it may be shown that it has no acceleration relative to A
in the direction BA. Hence its acceleration in this direction is

equal to ^I's component acceleration in the same direction, and is

therefore equal to

nil

But it is also equal to (t., - m^^r sin a-Sj/m.,. Hence

^ —a sin 09 = g cos o, sin (a, — o.,) — "^ sin-(o, - a.,).

We have therefore two equations containing no other unknown
quantities than ti and ^2, which therefore may be determined. The

instantaneous changes of tension on cutting BC are of course 7\ — t^

and T^-t^, where 7\ and T^ are the tensions before cutting as

determined in Ex. 21.

(24) A particle is connected by two equal strings to two points in

the same horizontal line and is in equilibrium. Show that, accord-

ing as the inclination of the strings is less or greater than a right

angle, will the tension of eith .r string be instantaneously increased

or diminished bv cuttino' the other.

ilfV-
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i-E ii:

. !

vl

}•



290 DYNAMICS [383

1*1 . I
'

I iff

CHAPTER IV.

DYNAMICS OF FLEXIBLE INEXTENSIBLE STRINGS.

383. A string or cord or chain may be considered to be
a series or row of particles or elements placed end to end.

It may thus be regarded as a system of particles less

simple than those of Chapter III., but more simple than
those of subsequent chapters.

A perfectly flexible string is one which is capable ofbeing
bent without the exertion of any finite force. An inex-

tensible string is one whose length is constant. Flexible

and inextensible strings are ideal. Real strings all re-

quire force to bend them and can be elongated. In many
cases however the forces required to bend real strings are

so slight and the elongations under the acting forces so

small that they may be considered to be practically per-

fectly flexible and inextensible.

Since such a string may be bent at any point without the

exertion of any finite force, the internal forces acting at

that point can have no component normal to the direc-

tion of the string. For, otherwise, this component would
have to be overcome in bending tne string and a finite

force would be necessary. Hence the stress in a flexible

string has at any point the direction of the string at the

point.

We restrict our attention to the simple case in which

ti'i
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the string itself and the external forces acting on it are

in the same plane.

384.

—

Equations of Motion.—Let AB be a tense string

of which PP' is any element. Let the stresses in the

Ii ,
• i»r,

>*(,

[NGS.

d to be

to end.

les less

>le than

ofbeing

n inex-

lexible

all re-

n many
ngs are

)rces so

lly per-

string at P, P' be T, T. Then the element PP' is acted

upon at its end-points by forces T, T tangential to the

string at P, P' respectively. Let it also be acted upon
bj' some external force whose magnitude we may indicate

by the product F\, where X is the length of the element
PP' and F consequently the magnitude of the external

force acting on the string per unit length of the string.

Let the lines of action of T and T' be inclined at the angle

Q, those of T and F\ at the angle 0. Also, let cr be the

linear density of the string at PP\ and at and a^ the

components of the acceleration of the element in directions

tangential and normal to the string at P. Then, resolving

tangentially and normally, we have, as the equations of

motion of the element (317),

J'cos e-T+F\ cos (j) = aXat,

T'sin 0-F\sm<p = aXa,,-
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385. Conditions of Equilibrium.—Putting a/ = a„ =
in the equations of motion we obtain those of equilibrium,

VIZ., Tcos e-T+F\ cos fl>
= 0,

rsine-FXsiiKp^O.

38G. The above equations hold for every element of

the string. The results which may be deduced from
them will vary with the nature of the external forces.

887. (1) No External Forces.—If there are no external

forces, F=0. Hence the equations of motion become

T'cos0-r=(rXct«,

T'sin 6 = (T\a,i.

Ultimately, when P' is very near P, is indefinitely

small, and consequently cos = 1 and sin = 6. Also,

ultimately T' is inde^nitely nearly equal to T, and
XjO = p the radius of curvature at P. Hence the above
equations become

(r-T)/X = o-a„

If we are dealing with ideal massless strings or with real

strings whose mass may be neglected, we have cr = 0.

Hence T=T' and l/p = 0; i.e., the tension is the same
throughout the string and the string has no curvature.

If the various elements of the string are in equilibrium,

we have at = a^ = 0, and therefore in this case, even though
the string be not massless, we have also T=T and
l/p = 0. The string is straight and the tension is the

same throughout.

388. Examples.

(1) An endless string of uniform linear density or, but without

weight, is moving so that the velocity of each element has a con-

stant magnitude V, and a direction continually tangential to the
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strinjj. Show that the tension is the same throughout, aiul

tiud it.

Ah tlie tangential velocity is constant <^t
= 0. Hence T'-T=0.

If p he the radius of curvature at any point, < „= T^/p. Hence

(2) An endless circular string of radius r and )f luiiforni linear

ilensity <r, but without weight, is spiiniing in its o.vn plane about

its centre with the angular velocity w. Find its tension.

Ans. <Tu-r^.

389. (2) The External Forces acting at Isolated Points,

as, e.g., when F\ is the stress in a second string knotted

at PF', or the force exerted by a small peg in contact with
AB at PP\ In this case, if there is equilibrium, PP'
will be in equilibrium under the three forces T, T', F\.
Hence T and T' must have such directions and magni-
tudes that the resultant of the three may be zero. In

general therefore T and T' will have different values.

Only in the case in which thej'' are equally inclined to

F\ will they be equal. The portions of the string be-

tween the isolated points at which the forces act are

portions on which no external forces act. To these

portions therefore the results of 387 apply. (See 297,

Exs. 18-20.)

390. (3) The External Forces continuously applied

throughout the String., i.e., so applied that the forces

acting on contiguous equal elements have indefinitely

nearly the same magnitude and direction. In this case

the curvature of the string is clearly continuous, 6 there-

fore indefinitely small, and \/6 = p. Hence the equations

of motion become

{r-T)/\+Fcofi(l> = <Tat,

T/p— Psin0 = o-a,j,

and the conditions of equilibrium

{r-T)l\+F cos
<l>
= 0,

. Tlp-Fsm<p==0.

:

II.,
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Hence, wlien there is equilibrium, the rate of change of

the stress in the string at any given point, with respect to

its distance measured along the string from a fixed point

in the string, is equal to the tangential component of the

external force per unit of length, at the given point ; and
the curvature of the string at any point is equal to the

ratio of the normal componcmt of the external force (per

unit length of the string) to the stress at that point.

As instances of external forces continuously applied,

we may take the reactions of continuously curved sur-

faces on strings wound round them, and the weights of

heavy strings.

391. {a) The External Force being the Reaction of a
(hntiniiously Curved Surface.—First, let the surface be

a smooth one over which the string is stretched. Then,
as we are supposing the string to have no weight (and in

many cases the weight is so small relatively to the stress

that it may be neglected), each element of the string is

acted upon by three forces only, viz., the reaction of the

surface, F\ normal to the surface, and the tensions 1\ T\
whose directions are those of consecutive tangents to the

string. Hence in the special case to which we restrict

ourselves (383) the osculating plane (41) of the string at

any point is normal to the curved surface, and the form
of the string is that of what is called a geodetic line

on the surface. Since F\ is normal to the surface and
therefore to the string, = 7r/2. Hence the equations of

motion (390) become

{r-T)l\^aat,
Tjp - F^a-Cia.

If (T is so small that it may be neglected, we thus have
T —T=i) and T/p = F, or, in words, the tension in the

string is the same throughout, and the reaction of the

surface per unit length of the string is equal to the pro-

duct of the tension into the curvature.
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If there is equilibrium, T, T and F\ must in all cases

be in the same plane, and the form of the string must
therefore in all cases be that of a geodetic line. Since

for equilibrium a< = (<„= 0, we have, even if o- cannot be
neglected, T— T—^ and Tlp = F. If the curved surface

be that of an indefinitely small peg, its reaction may be
considered a single force, and its direction will be equally

inclined to the directions of the string on each side of the

peg. (See 381 and 382.)

392. Secondly, let ^he surface over which the string is

stretched be a rough one> As before, each element is

acted on by three forces, the two tensions and the re-

action of the surface ; but the last will not in general be
normal to the surface. The conditions of the special case

to which we restrict ourselves (383) may be realized,

however, if the string tend to slip in its own direction.

If in this case we resolve F into its normal component R
and its tangential component /xK, and if we suppose that

the string tends to slip in the direction of T', we have

(390), as equations of motion, since Fs\n^ = Ii and
i^COS0= —fJiR,

{T-T)l\-^iR= aau

Tip— R^=. crCln,

where iul is the coefficient of kinetic friction.

If there is equilibrium therefore, we have

{r-T)/\-^R = i\

T/p-R = 0,

where /m may have any value up to that of the coefficient

of static friction, which it will have when the string is on
the point of slipping. Eliminating R, and noting that

l/p = Sj\ we obtain

«*'%
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Let ^, -B be any two points of the string in contact with
the rough surface, the stress

in the string at A being 2\
and the direction of the

tendency to slip being from
A towards B. Let a be
the angle between the tan-

gents at A and B. Divide
AB into an indefinitely

great number (n) of ele-

ments J. i?!,^^^^, etc., ofsuch

length that in each case the

tangents at the ends are inclined at the angle 6. Then
= a/n, Let the stress in the string have at B^, B^, etc.,

the values T^, T.^, etc., and at B the value T. Then

n
1+^").

n / "\ n
)•

etc.,

T=T,{l+lfj' = T,ei^',

where e is the base of Napier's logarithms (2*71828...).*

Hence, as a increases in an arithmetical ratio, T increases

in a geometrical ratio.

393. Examples.

(1) A rope attached to a ship is wrapped three times round a

rough cylindrical post (coefficient of friction "0"5). If a man pull

at one end of the string with a force of 50 pounds-weight, what

force must be exerted by the ship at the other end to bring the

string to the point of slipping in its direction. [Assume the

osculating plane of the string to be everywhere normal to the sur-

* See Todhunter's " Algebra," chapter on Exponential and Loga-
rithmic Series.
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heases

face. In other words, asMume the thickneHH of the ntriiig* to be

negligible.]

Ans. About 619,500 pounds-weight.

(2) A Htring hanging over a rougli horizontal cylinder is on the

point of slipping, with 10 lbs. hanging at one end and 1 lb. .at the

other. Find the coetticient of friction between the cylinder and

string.

Ans. 0-73...

(3) Over two parallel horizontal rough cylinders of equal radius,

whose axes are in the same horizontal plane, a string hangs in ;>

jdane i)erpendicular to their axes. The coefficient of friction is O'.^).

Find the masses of the j)articles which must be attached to the ends

of the string, that a particle weighing 1 lb. and hanging from a

smooth ring which slides on the string between the cylinders may
be in equilibrium and on the point of moving upwards when the

l)ortiona of the string on each side of the ring are inclined 60" to

the vertical.

Ans. 2*85 lbs. nearly.

394. (6) The External Force being the Weight of the

String.—The weight of unit length of the string being
a-g, we have F^a-g. The equations of motion (390) thus
become

{T — T)j\+ ag cos = arttt,

T/p— a-g sin ^ = a-an ;

and those of equilibrium

(r-r)/x+o-i/cos0=(),

T/p— a-g sin = 0.

We may consider two special cases.

395. Case I.—That of a string hanging vertically in
equilibrium.—If P' be a point above P, = tt, since FX
is now directed vertically downwards. Hence

r/p=o.

I J

'

ty
i T

• .!

i

\

M



rr

'Hi

1 •



aoG] OF FIJ-:\ni|,K INKXTKNSIHI.K STUINCH. L>09 i'l'-

thereforo we adopt this weii,dit jxs our unit of force,

we have

-^=// -/A

Let CD be so chosen that its distance (t from (r, the
lowest point of the string, may be nnmcrically equal to

the tension 7', at G. Then
y'o
= <f; and since, as we go

along the string from G to P', the increment of 7' is equal
to that of y, we have at P, 7'=//, i.e., the tension at any
point P is numerically e([ual to the distance of P from
the line CD.

From any point draw OQ' and OQ i-epresenting T
and 2\ and therefore proportional to

?/' and y respectively. Then, since T,

T and the weight of PP' are in

equilibrium, and since QO and OQ'
represent the tensions acting on PP',
Q'Q will represent the weight, and be

proportional to the length, of P2^'.
^

Similarly, if OQ„^x represent T^-i,

the tension at Pn-\j QQ„-i will represent the weight of

PPn-\y and will consequently be in the same straight

line as Q'Q and proportional to the length of PP„_x-
Similarly, the portion of the line Q'Q produced which
is intercepted by lines representing the tensions at the

ends of any element will be proportional to the length

of that element; and consequently, by summation, the

portion of Q'Q produced which is intercepted by lines

representing the tensions at any two points of the string-

will be proportional to the length of the string between
those points. If s, s represent the length of arc between
G and P, G and P', we have thus Q'Q proportional to

a' —8. From draw Oq perpendicular to Q'Q produced.

Then clearly Oq represents the tension 1\ at G and is

consequently proportional to a, and Qq is proportional

to s.
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From Q draw (^il/ perpendicular to OQ'. Ultimately
OQ is equal to ()M, and hence MQ' to OQ'-OQ. Also,

since OQ'y is the inclination of PP' to the vertical, and
Q'Q is proportional to P7^', MQ is proportional to the

horizontal projection of PP'. Let the distances of 2\
P\ etc., from a vertical lino EF, through 0, be called ./•,

./•', etc. Then MQ is proportional to ./ — ./;.

Since the an^le OQ Q is ultimately ecpial to the angle

OQq, the triangle MQ'Q is similar to the triangle qQO.
Hence

or

Hence

and

Q'Q;(>Q=Q'^'^t:Qq = MQi()q,

{s'- 8)ly= {y'- y)/H = (j/- x)la.

H—8+y'— y_x'— X

8+ y
~ a

Let points P,, i'.^, etc., Ph_i be so chosen between G
and P that the projections of the elements l^fi, PJ^^, etc.,

on CD raaj^ be equal. Then the projection of each element

on CD is x/n, n being an indefinitely large number; and,

the values of s and y for the point G being zero and a
respectively, we have, if .**,, y^, h,,, ?/,, etc., are the values

of 8 and 2/ at Pj, P.,, etc.,

«,+ 2/, =«(n £,)

•%+y.=^«,+2/,)(i+|.)=«0+3'

etc.,

where c is the base of Napier's logarithms. (See 392.)
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By a siinilar process, it may be shown that

.s

Hence

and 2t/ = (t\f" +(~").

The first of theso ccjuations expi'cssos tljc relation

between the weight of strino- (s), and the horizontal

distance (./•), between any given point of the string and
its lowest point, and the tension {<t) at the lowest point.

The second expresses the relation between the distances

of any point of the string from ^'D and L'F, and enables

us therefore to draw the curve in which it han<rs. This
curve is called the coimnon catenary.

397. Examples.

(1) A body weighing 7 lbs. is hiihikmi(1v'(1 from ji Hxcd point l>y

nieauH of a \uiifonu string 12 inches h)Ug weighing 18 o/. Find the

stress ill the string at its middle point and at its upper and lower

ends (5'= 32).

Alls. 242, 2G0, and 224 pouiidals respectively.

(2) A heavy uniform chain, whose extremities are J ami //, can

move freely over a small smooth pulley placed at the highest jtoint

of a smooth inclined plane. Show that the chain will be in equi-

librium if the line AB is horizontal.

(3) Show that the horizontal component of the tension at any

point of a uniform string hanging in e(i[uilibriuin from two fixed

points is equal to the tension at the lowest point, and that the

vertical component is equal to the weight of the portion of the

string between the given })oiiit and the lowest pf»int.

(4) Show that at any point of a uniform string which is hanging

in equilibrium with two points fixed, its inclination to the horizon

is the angle whose tangent is the ratio of the weight of the portion

of the string between the given point and the lowest point, to the

tension at the lowest point.
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(5) A uniform string hangs in e(iuilibriiini between two points.

Prove that tlie square of the tension at any point is equal to the

sum of the squares of the weiglit of the jmrtion of the string

between the given point and the lowest point, and of the tension

at the lowest point.

(G) Show tliat, if a finite string of unifo}'m density and thickness

liang freely over two smooth pegs, the extremities of the string

will be in the same horizontal line when the string is so placed as

to be in equilibrium.

(7) -V teiegra])h wire, weighing 400 lbs. per mile, is stretched

between two points in the same liorizontal line at a distance of 100

yds., with a horizontal tension of 400 pounds-weight. Find how
much the lowest point of the wire will l)e below the fixed points.

Ans. 2*1.. . ft.

(8) Two light rings slide on a rough horizontal rod (angle of

repose =« a). The ends of a heavy chain (length = 2^) are attached

to the rings. Obtain an equation to determine the greatest distance

(d) at which the rings can rest apart.

Ans. 2 = tana(e^'^^'»"-e -'tuna)_

(9) A uniform wire weighing lo lbs. per foot and just able to

stand a stress of F pounds-weight is to be hung between two
})oints in the same horizontal line, distant d ft., so as to be on the

point of breaking. Obtain an equation to determine the length (/)

of the wire.

Ans. l- ).

(10) A cord, 202 ft. long, 10 ft. of which weigh 1 lb., is hung
between two points ij» the same horizontal line distant 200 ft.

Obtain an equation to determine the tension (t) at the lowest

point in terms of tlie weight of a pound.
,10 _ 10

Ans. 202 = 10^e' -e ' ). Solving this equation by a series of

approximations, we find t to be about 40 Ibs.-weight.
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CHAPTER V.

DYNAMICS OF EXTENDED BODIES.

ible to

;u two

on the

398. We shall consider next systems of particles which
are so complex that it is impossible to determine the

motions of the particles singly, as we did in the case of

the simple systems of Chapter III.

An extended body, whether it be in the solid, liquid, or

gaseous form, or consist of bodies in different forms, may
be regarded as an assemblage of an indefinitely great

number of particles.

The internal forces of such a system are those which
act between the particles of the system themselves ; the

external forces are those which are exerted upon par-

ticles of tne system by bodies which are not parts of the

system. Thus, if we are considering the Solar System,
the attractions of the sun on the planets and of the planets

on one another are internal forces ; the attractions of

other heavenly bodies on the sun or planets are external

forces.

399. Centre of Mass.—In studying systems of particles,

we shall find it convenient to determine at the outset the

position and properties of an important point called the

Centre of Mass or Centre of Inertia.

m^
V'
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i,

Iftwo particles of masses m^ and m, occupy the positions

Pj, Pg) ^^^ if ^^^ liiie P^P^ be divided

at Qj, so that

^3 on^:m,,=:Q^P,/.Q^P^,

the point Q^ is called the centre of
mass of the two particles. If there be
at P3 a third particle, of mass m^,

and if Q^P.^ be divided at Q.„ so that

m^+ m,, : m.^ = (?, P.^ : Q.Xi^,

the point Q3 is called the centre of mass of the three

particles. If there be at P^ a fourth particle of mass m^,

and if Q^P^ be divided at Q^, so that

the point Q^ is called the centre of mass of the four par-

ticles. If there be any number of particles in a given

system, and if the above process be extended to all the

particles of the system, the point thus determined is

called the centre of mass of the system.

400. To determine the distance from a given plane of

the centre of mass of a system of particles in terms of the

masses of the particles and their distances from the same
plane.—Let m^, m^, etc., be the masses, and P^, P.„ etc., the

positions, of the particles of the system, and let c/^, d,„ etc.,

be their distances from the given plane. P^, P„, etc., will

not in general be in the same plane. Let a plane through
P^ and P^, and perpendicular to the given plane, intersect

it in AB ; and let P^P^, produced if necessary, meet the

given plane, and therefore AB, in G. The distances of

Pj, P,, from the given plane will be the perpendiculars

PjPj, P^p„, from P^ and P^ on AB. From Q^, the centre

of mass of m^ and on^, draw a perpendicular to the given

plane, intersecting AB therefore in a point q^, and call
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We have by construction

= (CP.^- CQ^) sin P,/JB : (C% - (JP^) sin PJJB
= cl,,— dj .' ^j — Cfj.

ence o, = —^- '- - - ^ -.

m^+ m^

Let a plane through Q, and P.^ and perpendicular to the

A

Vi-

j^iven plane intersect it in A'B'. If P^ is in the same
plane as P^P^ and AB, A'B' will coincide with AB; if

not it will intersect it in q^. From P^ and Qo the centre

of mass of m^, 9)1.3, ^^^ '''^s'
^^'^-w -Pg^^a and ft^g^ perpendi-

culars to the jQfiven plane, and therefore to A'B', and let

PgQj meet A B' in (7'. Then as before, calling f/.g'„, (5.,,

we have

= (CT,-G'Q,hmPfi'R:{C'Q.^- V'Q)f^mP,CB

= 11^— 6^:8^— 6^.

m

; I !
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Hence ^ =(™, +'«.)'',+™A

and, substituting for S^ its value as determined above,

Similarly, by extending the investigation to all the

n particles of the system, we find, if A be the distance of

the centre of mass of the system from the given plane,

. _ 771 jtZj+ m./?,+ etc. + lUndn_ 'Emd
,

m^+ w.j+ etc. +mn 2m
i.e., the distance of the centre of mass of a system of

particles from a given plane is equal to the sum of the

products of the masses of the particles into their distances

from tlie plane, divided by the sum of the masses of the

particles.

401. As the order in which the particles are taken up
in the above investigation affects only the order in which
the various terms of the numerator and denominator of

the above expression, 2mcZ/2m, are written, the centre of

mass has the same distance from an}'' given plane, i.e.,

the same position, in whatever order the particles may
be subjected to the process by which the point is detei*-

mined.

402. The same result will be obtained if the particles

of the S3^stem be divided into groups, and the centres of

mass of the groups determined, and if the above process

be then continued, the groups being imagined as replaced

by particles situated at their centres of mass and havi no-

masses equal to their masses.

403. If the given plane pass through the centre of

mass of the system, we will have A = 0, and therefore

2m(Z= 0. Hence the sum of the products of the masses
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of the particles of a system into their distances from a

plane passing through the centra '^f mass is zero.

404. If iCj, 2/,, 2^1, X.,, y„, 0„, etc., are the rectangular co-

ordinates of particles of masses ')n^, m..,y etc., and if x, Tj, z

are the co-ordinates of their centre of mass, iCj, x.y_ etc.,

X are ((>) distances from the ijz plane, ?/p y.,, etc., y dis-

tances from the xz plane, and s,, z.^, etc.; z distances from
the xy plane. Hence

x =
^rax, - ^y^iy,

V ni '"^Ini
'Emz

These three equations determine the position of the

centre of mass.

If the origin of co-ordinates coincide with the centre

of mass we have

x = y = z = i\

and hence 2m^= ^my = ^mz = 0.

405. Determination of Ckntves of Mass in Special

Cases.—In general the determination of the position of

the centre of mass requires the use of the Integral Cal-

culus to effect the necessary summation. In the case of

some bodies, however, of simple geometrical form and
uniform density, its position may be determined by
elementary mathematical methods. Examples are given
below (40S).

4()G. Centres of Mass of HoTiiorjeneous Symmetrical
Bodies.—If a homogeneous body is symmetrical about a
point, a line, or a plane, its particles may be divided into

pairs, the members of each of which are of equal mass
and at equal distances irom the point, line, or plane, re-

spectively. The centres of mass of the various pairs are

therefore in the point, line, or plane, and consequently
also the centre of mass of the whole body. Hence the

centre of mass of a uniform thin straight rod is its middle

'>

,'.^f
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point, that of a uniform thin circular rod its centre, that

of a uniform thin rod bent in the form of a parallelogram

the point of intersection of its diagonals, that of a uni-

form thin circular plate its centre, that of a uniform thin

plate in the form of a parallelogram the point of intersec-

tion of its diagonals, that of a uniform spherical shell its

centre, that of a parallelopiped the point of intersection

of its diagonals, that of a circular cylinder with parallel

ends the middle ]>oint of its axis, that of a sphere its

centre, and so on.

407. (-eidtr of M<tss of a Body, the Massei< and Centres

of Mass of v'hose Parts are known.—Let m^, m^, etc., be

the masses of the various portions of the body, x^, y^, z^,

^.., ?/9. ^-1, etc., the co-ordinates of their centres of mass,

and X, y, i, the co-ordinates of the centre of mass of the

body, then (402) we have

- _ m^x^ -\- m,jj[;^+ etc.

and similar expressions for y and z. By the aid of these

expressions, the centre of mass of a part of a body also

may be determined when the masses of all the parts are

known, together with the centres of mass of the whole
body and of all the ])arts except this one.

408. UxainitU's.

(1) Four paiticles of 12, 11, 7, aii<l 5 kilograinines are plactul in a

line, their distances lieing 48, 48, and 42 cm. respectively. Find

their centre of mass.

Ans. Distance from body of greatest mass= 54 cm.

(-2) A Ii;.o A/i is bisected in C^, C^B in C.,, C.>B in (3, and so on ad
iiifinitvm. Particles ;ue placed at C'l, C.,, 63, etc., of masses m, m/2,

ml2-, etc. Show that the distance from /> of the centre of mass (»f

the whole system is etpial to one-tliird of .IB.

(3) At J, A', Care three particles of equal mass. Show that, if

AB be bisected in J> and DC divided at £ so that Uh^DC/'^, tlic

point £! is the centre of mass of the syttBui.
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(4) Show that, if be the wntie of lufins of thive pjii ticU's of im-

t([ual iiiasBeH J\ Q, U Hituated at J, /i, C^

area OBC : area OCA : area OAU-^V : V :
^''•

(5) Find the centre of mas? of five equal j)articles at tlie anyidar

points A^ 7i, (7, Z>, 7s of a regidar liexagon AliCDEF.
Ana. On tlie line joinin<^ the centre of the circinnserihiiiy circle

witli (7, and at a distance from e(i\ial to OC;b.

(6) At tlie corners J, /;, C, J), A', F, G, II of a cnV.e of 1 ft. edjre,

particles are ])laced of 1, 2, 3, 4, 5, 6, 7, 8 lbs. resjH'ctiv«'l_\ . Find

the centre of mass.

Ana. Distance froni face A/iCJ), ]'i ft. ; from ABdF^ f; ft, ; from

ADEF, 5 ft.

(7) A piece of uniform wire is bent twice at right angles so as to

form three aides of a square of side a. Show that the ilistance of

the centre of mass from the centre is a/6.

(8) Find tlie centre of mass of a uniform wire, b .t into the form

of a scalene triangle.

Ana. It ia at the centre of the circle inscribed in the triangle

formed hy joining the middle points of the sides of the scalene

triangle.

(9) Find the centre of mass of a uniform wire, bent so as to have

the shape of n of the sides of a regular polygon.

Let ABCDEF be the wire. Then the

centres of maaa of the portiona AB^ BC^

etc., are at their middle })oints a, h, c, d,

e. Let be the centre of the inscribed

circle and let its radius be r. Let ae

subtend at an angle 2o, and let a6, be,

etc., subtend each the angle d. Then
2a=(n-l)d. Take Oa as axis of .v and

a line perpendicular to it as axis of y.

Then the distances of a, 6, c, etc., from o'

Oi/ are r, rcos 0, r cos 2^, etc., and their

distances from Ox are 0, rsin^, rain 2^, etc., respectively. Hence,

''\
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if .r, y are the (listancea from Ot/, O.r respectively of the centre of

mass of the wire,

.7 =-*'[! + cos 9 + cos 29+ etc. + cos (n - 1 )9]
n

^ r cos {n ~ 1 f2)9 sin (nl'2)9 ^
n' sm{9l2)

_ r cos a sin {njn - 1 )a

w" sin(a/«-l)

Tj= *'[sin 9 + sill 29+ etc. + sin {n - \ )9]
ft

^r ain(?< - l/2)^sin(;//2)^^

'~n' ain(^/2)

Hence

_ r sin a sin (n/n - 1 )o

»*' 8in(o/n-l)

y.r=tano,

r Hm{n/n—l)a
and s/a/^+f=- . —

^^^

'* sni (a/?j - 1

)

I.e., the centre of mass is on a line thrt)Ugh whose inclination to

the X axis is a, and is at a known distance from 0.

(10) Find the centre of mass of a uniform wire in the form of a

circular arc. [If n of Ex. 9 be made indefinitely great, and the

sides of the polygon indefinitely short, ABODEF becomes a circular

arc subtending at its centre an angle 2o.]

Ans. Distance from centre= ;• sin o/o.

(11) The distjince of the centre of mass of a uniform semi -circular

wire of radius *• from its centre is 2r/7r.

(12) Find the centre of mass of a uniformly thin homogeneous

triangular plate.—Let ABC be such a triangular plate, and let it be

divided by lines parallel to BG into an indefinitely great number of

indefinitely narrow strips. Then the centre of mass of each strip

is its middle point. Now the middle points of all these strips lie

on the line AD drawn from ^ to Z> the middle point of BC, Hence

* See Todhunter's " Plane Trigonometry," chapter on Summation
of Series.
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the centre of in«a88 of the plate is in the line AD. Hiniil.irly if A'

is the point of bisection of Ali^ the centre of mass lies in EC
Hence it is tlie point F\\\ wliich AD and EC intersect.

B

Since E and D are the middle points of AB and /?C, ED is

parallel to AG. Hence the triangles A /^Cand DFEare similar, and

DF:FA=DE:AC=l : 2.

Hence the centre of mass is on the line DA, and at a distance from

D equal to DAjS.

(13) Show that the centre of mass of the triangle* formed by join-

ing the middle points of the aides of a triangle has the same posi-

tion as that of the latter triangle.

(14) ABC is a triangle and D a fixed point in BC. A triangle

BPC is cut away, whose vertex P is in A D. Show that whatever

be the position of P, the centre of mass of the remainder lies on a

fixed straight line.

(15) Given the base and perimeter of a triangle, show that the

locus of its centre of mass is an ellipse.

(16) Prove that the centre of mass of the trapezoid formed by

joining the middle points of two sides of a triangle is on the line

joining their point of intersection to the middle point of the third

side, at a point which is 2 9 of this line's length from the middle

point of the third aide.

(17) P is the point of intersection of the diagonals of a quadri-

lateral, Q the point which bisects the line joining the middle points of

* By the centre of mass of a surface is meant that of a uniformly
thin homogeneous plate liaving the form of the surface.

'ii
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thoHedia^'oiials, :tn<l It a, point in /V^ jiroductid, hiicIi that Qli=V{^l',\.

Prove tliat It \h tlie centre of ntass of tlie (piadrilateral.

(18) AUG is an isoHceleN ri^'ht-angled triangle, ri<(l»t-anf,'Ie<l at 11.

ScjuarcH are described on its three nicU's. Show that the diMtance «»f

the centre of mass of a uniform thin plate of this form is at a dis-

tance from B ecpial to VAsJlABlTt.

(19) One circle touches another internally. The diameter of tin*

latter is d^ that of the former Ijf/. Find the distance from the point

of contact, of the centre of mass of the crescent or lune thusforme<I.

Ans. llil.

(20) Find the centre of mass of a sector of a circle of angle 2oand

radius r.

If the curved portion of the boundary of the sector be divided

into an indefinitely large number of equal arcs, the sector may be

regarded as consisting of an indefinitely large number of equal

isosceles triangles whose bases are the elements of the circular arc

jind whose equal sides are radii. The centre of mass of each of

these triangles is at a distance ^r from the centre of the circle.

Hence the centre of mass of the sector is tlie same as that of a cir-

cular arc of the angle 2o and the radius |r, and is therefore (Ex. 1(>)

at a distance from the centre equal to Ijrsiu ala.

(21) The centre of mass of a uniform thin semi-circular plate of

radius r is at a distance from the centre equal to 4r/37r.

(22) The centre of mass of a iniiform thin conical shell is on the

axis, and at a distance from the vertex equal to f of the height of

the cone.

(23) Find the centre of mass of a homogeneous triangular pyra-

mid.

Let the triangular pyramid A BCD be divided by planes

parallel to ABC into an indefinitely great number of indefinitely

thin triangular plates of which «/>c is any one. Let F be the centre

of mass of the plate ABC, and let the plane ^Z^/* intersect ABC,
((he and ADC in BE, be, and DE respectively, and let DF and be,

which are in the plane BDF, intersect in f. Since F is the centre
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of niasM »tf A/iCj A' is tlu; iniMdK! point of AC Since a.r is paialU-l

to ACf t]»t>H(; Hnt'M bein;; tlie iiittMst'ctioiis of p;nnIU'l plum's »//><•,

ABC with the pljiue A DC,

oo.Ai:---i)i..i)i:=,r:i:c

Hence e is tlie middle jmint of ac. Since th is pHiallel to ED, these

lines being intersections of the parallel planes ahc, A liC, \s'\\\\ the

l)lane BDh!,

ef: EF=nf:DF=fh : FJi.

Hence ef=}^i'b, and /is theiefore the centre of mass of abc. Hence
the centres of mass of all the triangular plates into which the

pyramid is divided, and theiefore the centre of mass of the pyra-

mid, lie on the line DF. Similarly, if LV be equal to lED, G will

be the centre of mass of A CD, and the centie of mass of the i)yra-

niid will lie on the line CB. Now GJJ and JJF are in the plane

DEE, and intersect in //. Hence JJ is the centre of mass of the

l)yramid.

Since EG : GD=EF : FB, GF is parallel to DB, and the triangle

GHF similar to the triangle BUD. Hence

FH : HD=FG : BD=EG : ED= 1 : 3.

Hence the centre of mass of i py ine drawn from
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systom, «,, «.j, etc., » tho distanccH from a piano perpendi-

cular to the j^iven direction, of tlie ])articles and their

centre of mass lespoctively, at a given instant, «,', «,/, etc.,

h\ their respective distances after a sliort time t Then

- _ 7)<.,H, + r>i,Hj -f- etc. . -, _ r//. ,N,' -|-m ,«,'+ etc.

7/t, 4-//*.,-hete.rji, -f ?/i, -f etc.

Hence, subtracting, and dividing by t,

7/^1 + 7/1.^4- etc.

or (44 and 101), o being the velocity of the centre of mas.s

in the given direction,

- - 2.7nH

This result may be otherwise expressed thus:—The
velocity of the centre of mass in a given direction is

equal to the momentum of the system {I.e., to the alge-

braic sum of the momenta of the various particles) in tlie

given direction, divided by the mass of the system.

410. It follows that the momentum of the system in

any given direction relative to the centre of mass is zero.

For from 409 we have

2m« — "SSm = 27)i(s— «) = ;

and from 9G (3) it is obvious that '2m{.s - «) is the

momentum in the given direction relative to the centre

of mass.

411. Acceleration of Centre of Mass.—The component
acceleration, in a given direction, of the centre of mass of
a system of particles is equal to the sum of the products
of the masses of the particles into their component
accelerations in the same direction, divided by tl "> sum of

the masses of the particles.
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The proof may be left to the reader. It is similar to

that of 409, s, Sj, etc., being replaced by «, s^, etc. Hence
(118), d being the acceleration of the centre of mass in the

given direction,

a= fi

^m

412. It follows, as in 410, that the sum of the pro-

ducts of the masses of the particles of a sj^stem into their

component accelerations, in any given direction, relative

to the centre of mass, is zero.
t

413. Examples.

(1) If two particles move with uniform speed in straight lines,

tlieir centre of mass will either be at rest or will move with uniform

speed in a straight line also.

(2) A number of particles of masses, '/Mj, ?«2) ^tc, are projected at

the same instant vertically upwards from given positions with given

speeds, Vj, v^f etc., respectively. Find {a) how long, and (6) how
far, their centre of mass will rise.

Ans. (a)
; (6) — ( I .

(3) Two particles connected by a string a^e placed on two smooth

inclined planes, the string passing over a smooth peg at the common
summit of the planes. Show that the path of their centre of mass

is the straight line which joins them when they are in such a posi-

tion that the parts of the string on the two planes are to one another

as the masses of the particles at their extremities, and that that

paiticle will descend which in this position is the lower of the two.

(4) Of three equal particles which start from the highest point of

a vertical circle, one drops down the vertical diameter, and tht'

others slide down chords of 60° and 120° respectively, on the same

side of the diameter. Show that the centre of mass slides down a

chord of cos~X-it)j and that its rate of change of speed is

Iv.
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414. Acceleration of Centre of Mass in terms of Ex-
ternal Forces.—The component accelerati'^n, in any given
direction, of the centre of mass of a system of particles is

the same as the acceleration of a particle of mass equal to

the mass of the system, acted on by a force in the given
direction equal to the sum of the components in that

direction of the external forces acting on the particles of

the system.

Let F^, i^y, etc., be the components, in the given direc-

tion, of the resultants of all the external forces acting on
the particles (masses = r/?j, m„, etc.); and let F^', F„\ etc.,

be the components, in the same direction, of the resultants

of all the internal forces acting on 77ij, tx^.^, etc., respectively.

Then Sj, s^, etc., being the distances from a plane perpen-

dicular to the given direction, wo luive (ol7 and 818)

Hence

F^-\-F;= m;s^; F^+ F:= mji^- etc.

yF+y.F'^y.ms

Now by the third law of motion, the internal forces consist

of pairs of equal and opposite forces, whose sum is there-

fore zero. Hence 2i^'=0, and 2F=S?7i«. Now (411)

,s = 2m.s'/2m. Hence, calling d the acceleration, in the

given direction, of the centre of mass,

a— s — . -, .

And it follows from 317 that d, as determined by this for-

mula, is the acceleration that a particle of mass ^m
would have, if acted on by a force equal to Y.F.

If therefore the external forces acting on the system
and the mass of the system are known, the acceleration

of the centre of mass may be determined.

415. If the components of the external forces in three

rectangular directions, the axes of x, y, z, are X^, A^^, etc.,

\irJ/}

<^ifi t
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F,, K„ etc., ^,, Z,,, etc., respectively, the component acce-

lerations of the centre of mass in these directions are

. 2X ^ lY ^ IZ
Jj XT' > ./ V > '^

y,7n'

and the component accelerations being known, the magni-
tude and direction of the resultant acceleration may be

determined.

41 G. In the special case in which a system of particles

is acted upon by external forces, the sum of whose com-
ponents in any given direction is zero, the acceleration of

the centre of mass is zero. For ^F being zero, so also is fc*.

It follows also from 411 that if «

also, and Swi.s may easily be shown to

with time of the momentum of the

direction. Hence if there are no
momentum of the system is constant,

spoken of as the "Principle/' of
Linear Momentum.

is zero, ^ms is zero

be the rate of change
system, in the given
external forces the

This result is often

the Conservation of

I #'
.t :<

t * ij;

If

417. [UAlemhert's Princi2)le.—In 1742 D'Alembert
proposed as a law of motion what is called his "principle."

It is usually enunciated in the following form, though
this is not the form in which it was enunciated by
D'Alembert himself :

—

The impressed forces, ivith the reversed effective forces,

of a system of material "particles, constitute together a
system of forces in equilibrium.

By the term " impressed force " is meant an external

force acting on the system. The " effective force " on a

particle was the name given to the product of its ftiass

into its acceleration, and this hypothetical force was sup-

posed to act in the direction of the acceleration. A re-

versed effective force would thus act in the opposite direc-
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tion. If F is the component in a given direction of the

resultant of all the external forces actino- on a particle,

m its mass and a the compon-^nt in the giveu direction

of its acceleration, ^F is the sum of all such components
of external forces, 2?7ia the sum of the components, in the

given direction, of the effective forces, and — !!S?7Ut there-

fore the sum of the components in the given direction of

all the reversed effective forces. Since the sum of the

components in a given direction of all the forces of a
system of forces in equilibrium (1323 and 326) is zero,

13'Alembert's principle may be expressed by the equation

2F— 2v/ia = 0. This equation is obviously that obtained

in 414 ; and thus D'Alembert's principle may be deduced
immediately from Newton's second and third laws, which
were formulated in 1687.

By D'Alembert's principle every kinetic problem was re-

duced to one of equilibrium between actual and fictitious

forces. It was thus of great practical importance, as

enabling the equations of motion to be written down for

any system for which the conditions of equilibrium had
been investigated,]

418. The Moment of Momentum of a particle about a
given line is the product of its mass into the moment of

its velocity (104) about the line. If v be the component
velocity of the particle of mass m,, in a plane perpendicular

to the given line, and p the distance of this component
velocity from the line, the moment of momentum of the

])article is -jr^vp, the sign being determined according to

the convention of 103.

The algebraic sum of the moments of momentum of all

the particles of a system about a given line, is the moment
of momentum of the system about that line.

If the given line be taken as axis of z, he analytical

expression for the moment of momentum of the particle
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ordinates and component velocities are those of the centre

of mass.

420. T/ic Angular Mwientum of a particle about a
given line is the product of its mass (??i), into its angular

velocity (w) about the given line, into the square of its

distance (r) from the given line—in symbols 7)i(i)r^.

The aljjebraic sum of the anjofular momenta of all the

particles of a system about a given line is the angular

momentum of the system about that line.

421. It follows from 132 that invp^Ttiwv'. Hence the

moment of momentum about any given axis is equal to

the angular momentum about the same axis of either a
single particle or a system of particles. Hence also the

rate of change of angular momentum about any given

axis is equal to the rate of change of moment of momen-
tum about the same axis.

422. The Moment of the Acceleration of Momentiun of

a particle about a given line is the product of its mass
into the moment of itc> acceleration about the given line.

The algebraic sum of all such products for all the particles

of a system is the moment of the acceleration of momen-
tum for the system.

If a be the component acceleration of a particle in a

plane perpendicular to the given line, and if p be the dis-

tance of a from it, the moment of the acceleration of

momentum for the particle is 7}iap and for the system
^map. The analytical expression for it will be (123, and
106) ^m(yx—xy).

423. It follows from 124 that the moment of the acce-

leration of momentum of a particle about a given axis is

equal to the product of its mass into the rate of change
of the moment of its velocity, and therefore to the rate of

change of its moment of momentum, and therefore to the
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. i

a

rate of cbanj^e of its auijular momentum about the same

axis. In symbols nutj^ =m (tor-). Hence also for a system

of particles ^inap^^m (ayr^).

424. It may be shown by the method employed in 419
that the moment of the acceleration of momentum of a
system about a given axis is equal to its value about a
parallel axis through the centre of mass, together with
the moment of the acceleration of momentum about the
given axis, of a particle, having a mass equal to the mass
of the system, and situated at, and having the acceleration

of, the centre of mass. With the symbols of 419,

425. The Moment of a Force about a line or axis is the

product of the component of the force in a plane perpen-
dicular to the axis, into the distance from the axis of

the line of action of the component. If F is the magni-
tude of the component, and p its distance from the given
axis, Fp is the magnitude of the moment of the force

about the axis. Its sign is determined by a convention
similar to that of 103.

426. It follows from 313 and 107 that the moment of

a force is equal to the algebraic sum of the moments of

its components about any fixed axis.

427. If the given line be taken as axis of z, and other

lines perpendicular to it and to one another (as in 419) as

axes of X and y, and if x, y, and z be the co-ordinates of

the particle on which the force acts, and X, Y, Z the

components, in the directions of the axes, of the ^ven
force, then X and Y are rectangular components of F in

the plane perpendicular to the given line, and y and
X their respective distances from the given line, and
therefore Yx and —Xy their respective moments about

it. Hence (426) Fp=Yx— Xy. This is the analytical

expression for the moment of a force.
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428. The sum of the moments, about an axis fixed in

space, of the external forces acting on a system of particles

is equal to the rate of change of the angular momentum
of the system about the given axis.

II being the component, in a plane perpendicular to the

given axis, of the resultant force acting on the particle, a
its component acceleration- in the same plane, and m its

mass, we have R = ma. If p is the common distance of

R and a from the given axis, R'p = map. If F and F are

the components in the same plane of the resultants of the

external and internal forces respectively, acting on 991, j^

and F' are components of R. If therefore P and P' are

their respective distances from the given axis (42G),

Rp = FP-\-FF = map.

Hence, for the system (423),

:E.FP + ZFF = l.map = m2(^p).

Now the internal forces consist of pairs of equal and
opposite forces equidistant from the axis. Hence

2i^T' = 0,

ZFP^-Lmi^^.

he analytical expression of this result is (427 and 422)

2( Yx — Xy) = ^m(yx - xy).

429. In the special case in which the sum of the

moments of the external forces about the given axis is

zero, the angular momentum of the system about the

given axis is constant. For we have ^FP = 2m(t^2) = 0.

Hence ^majv^ is constant. This result is called the

"principle " of the conservation of angular momentum.

It follows that 2ma)rV2 = constant. Now (ISS) wry2
is the area swept over per unit of time by the radius vec-

and
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tor of the particle of mass iti. Hence the above result is

also called the " principle " of the conservation of areas.

430. From 428 and 424 it follows that

2( Yx-JCij) = {yx - xy)lm-\-I,m(ij$- ^t])-

This applies, as we have seen, to an axis fixed in space.

If we choose the axis so that at the instant under con-

sideration it is passing through the centre of mass of the
system, we have x = y= 0, x = ^, and y = r], and therefore

Now ^7n(tj^— ^rj) is the rate of change of angular momen-
tum about an axis parallel to the given axis through the

centre of mass; and ^{Y^—Xri) is (427 and 428) the

value the rate of change of angular momentum would
have if the centre of mass were fixed. Hence the rate of

change of angular momentum about the centre of mass,

produced in a system of particles by the forces to which
it is subjected, is the same as that which would be pro-

duced if the centre of mass were fixed.

431. Equations of Motion.—We have now obtained

two important results; the first, that of 414, by which
the acceleration of the centre of mass of a system is

expressed in terms of the external forces acting on it,

and its mass ; and the second, that of 428, by which the

rate of change of angular momentum of a system about
a fixed axis (or, 430, about an axis through the centre of

mass) is expressed also in terms of the external forces

acting on it. These equations tell us all that we can

know of the motion of a system of particles vvithout data

as to the internal forces. They are therefore called the

equations of motion of a system of particles or of an

extended body. The principles of tho conserve bion of

linear and angular momentum are special cases of these

equations of motion.
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432. Enenjy of a Sjjdem of Particles.—The energy of

a system of particles is the sum of the amounts of energy
possessed by its particles. The amounts of potential

energy possessed by its particles depend upon their

mutual attractions, and on the action of external forces,

and vary as their distances from one another vary, and
as the position of the system varies with respect to the

bodies exerting force on it from outside. The potential

energy therefore depends only upon the configuration

and position of the system. If the system is isolated, so

that no external forces act upon it, its potential energy
depends upon its configuration only.

433. If the forces of the system are independent of the

velocity of the particles, the change of potential energy
during any change of configuration will be independent
of the paths in which the particles have moved, and
therefore of the series of configurations through which
the system has passed, and will be equal to the work
done against the forces of the system during the change
of configuration. If we choose some convenient configu-

ration of the system as the configuration of zero potential

energy, the potential energy of the system in any other

configuration will be the work done against the forces of

the system during the passage from the zero configuration

to the othr^,

434. The work done by the forces acting on the par-

ticles of a system, during any change of configuration, is

equal to the change produced in the kinetic energy of

the system.

Let Xy F, Z be the components, in three rectangular

directions Ox, Oy, Oz, of the resultant of the external and
internal forces acting on a particle of mass m at a point

P, whose co-ordinates are OL, MP, L3I, or x, y, z. Then
(414) taking all the particles of the system into considera-

tion, we have
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be i', //, z and x\ ji\ z respectively ; and, us tlie time t (jf

the displae iinent is sinall, the mean component velocities

may be taken to be (.;;+ ;/)/2, {il+ y)l'l, {z+ z)/'2. Thv
component accelerations are {x—,i')/t/{i/'— y)it, {i'-z)'t\

and, as t is small, these may bo taken to be the same as

ii', y, z. Hence

and

'in,

:^{X{y - .,) + Yd/ - !,) + /(-- - c) - 2
[.;-

+

ir

+

:'

-

-(xH»/Hi-)]J=0.

If W denote the work done on the particle in, r the

velocity of the particle at 7^, and v its velocity at P'

,

we have (342, 9cS and 8S),

If= A' {x - .r) + Y(y -y) + Z{z' - : ),

r^ = i^+ 2/Hi-.

Hence

ni
2:{ir-'^(r'^-f^)}=o.

'

[•

"I

Hence the sum of all the quantities of work done by the

forces acting on the particles of a system, during any
indefinitely small change of configuration, is equal to

the sum of the quantities of kinetic energy gained by the

particles.

Any finite change of the configuration of a system may
be broken up into an indefinitely large number of inde-

finitely small changes, to each of which an equation

» •, i>

.

'
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similar to tlio above a()|)lies. Adding them, we liave for

a finite cliange of con H<,'U ration,

nt

or the work clone by the actinjjf forces diiiin*^ any finite

change of confi^auation of a Hy.steni of pjirticles is ecjual

to the inclement of the kinetic energy of the system.

43'). (fiyiincronflon of Eneroy.—If all the forces (ex-

ternal and internal) are de])endent only on the positions

of the particles (84G) on which they act, the work done
against them results (*i47) in the increment of the poten-

tial energy of the particles. The amount of the potential

(Miergy produced is e([ual to the work thus done ofjainst

the forces, and is therefore equal to mtmiH the work done
hy them. If therefore P is the increment of potential

energy of a particle in any small displacement, P— — W\
and hence

and if K denote the increment of kinetic energy,

:s2(P+/o=o.

Hence the sum of the potential and kinetic energies of

a system of particles is constant, provided all the acting

forces are dependent only on the positions of the particles

on which they act. This result is called the law of the

Conservation of Energy. A system of particles to which
it applies is called a conservative system.

43G. A cycle of transformations of a system is a series

of changes of configuration by which the particles are

brought finally to their initial positions. If the system
is conservative and isolated, it is clear that the initial

and final potential and kinetic energies must be the same.

If therefore a conservative system of particles be so

arranged that when set in motion it undergoes a cyclical
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tian.sft)rn»ation, the cycles of transformations will j^o on
for ever. If, for cxaninlo, li(.'avenly bodies moving in

space met with no resistance to their motion, of the

nature of friction, the solar system would form a system
of this kind and the planets must continue to move
round the sun for ever. If wo had materials of ])erfect

smoothness and with other properties excluding the pos-

sibility of the action of non-conservative forces, it would
bo possible to make a machine which, once started, would
run for ever without work being done upon it, provided
work were not done by it.

An isolated conservative system thus undergoing cycles

of transformation can never, however, increase the total

quantity of its energy. If therefore natural forces are of

the conservative kind, it will be impossible to devise a
machine which, when set in motion and left to itself, will

both run itself and do external work—in other words,

the " perpetual motion " will be an impossibility. The
universal failure of efforts to discover the perpetual

motion have placed it in the same category as the philo-

sopher's stone and the elixir oltae.

Many writers accept the impossibility of the perpetual

motion as having been proved by experience and make it

a fundamental law of motion (usually without saying so),

deducing the law of the conservation of energy imme-
diately from it. It will be clear that such a course is

unphilosophical if Newton's three laws have already

been chosen as fundamental laws of motion, because

the conservation of energy and the impossibility of the

perpetual motion may be deduced from these laws. If

the impossibility of the perpetual motion be chosen as a

law of motion, one or more of Newton's laws should be

obtained as deductions from it.

437. Law of Energy.—If any of the forces acting on

the particles of the system are of the nature of resistances

which depend upon the velocity of a particle, not on its
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position merely, the work done against them does not

result in the production of potential energy. In such
systems therefore, which are at any rate apparently non-
conservative, the work done against the acting forces is

equal to the sum of the increment of potential energy and
of the work done against such resistances. If this work
be denoted by v.^, we have therefore P-\-io= — W, and hence

lI,{P+ v>+K) = 0.

Hence the kinetic and potential energy of a material

system, together with the energy expended in overcoming
friction and other forms of non-conservative force, is a
constant quantity.

This result is the general law of energy, of which the

law of the consei vation of energy is a special case.

438. If therefore a non-conservative system of particles

be so arranged that, when set in motion, it undergoes
cyclical transformations, its energy will grr^dually dimin-
ish, and its cyclical transformations cannot therefore go
on for ever. It is probable that the planets move in a

resisting medium, whose resistance they expend energy
in overcoming. If so, they must be moving in spiral

paths and getting gradually nearer the sun. No machine
can be constructed whose parts in tlieir relative motions
do not meet with frictional resistance and other forms of

(apparently) non-conservative force. Hence no machine
can be constructed which will run itself even if no ex-

ternal work be done.

439. When work is done against forces, such as friction,

which are, apparently at least, non-conservative, there

seems at first sight to be no return in the form of energy
;

and until recently energy thus expended was believed to

be lost. Experim^ent, however, has shown that when
energy is thv.s expended heat is always produced, that

heat is a form of enercv and that the amount of thermal
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energy produced Avhen work is done against friction or

other such forces, is the exact equivalent of the work so

done. Hence tlie law of energy in the case of material

systems which are apparently non-conservative ma}" be

thus expressed

:

The energy of the system, including kinetic, potential,

and thermal energy, is a constant quantity, if the system
is isolated, so that it can neither give energy to, nor re-

ceive energy from, outside bodies.

440. The frictional and other non-conservative forces

which we find acting on bodies in their relative motions,

and to whose action is due the apparent non-conservative

character of material systems, are observed to act between
bodies of finite size. It is possible therefore that, ifwe could

observe all the motions of the particles or small parts of

bodies, their apparent non-conservative character might
disappear. When work is done against friction, for ex-

ample, it may be that the relative motions of the particles

of the bodies in contact are increased, so that though the

rubbing bodies do not gain potential energy their particles

gain kinetic energy. Thermal energy is generally be-

lieved, though not yet proved, to be the kinetic energy

of the particles of a body due to their motion among one
another. If so, the laws of Thermodynamics should be
capable of deduction from the laws of motion. At present

however we do not know enough about the relative

motions of the particles of a body, or how they are

affected when the body meets with frictional or other

such resistances, to make this deduction.

441. In applying the law of energy, obtained above,

to the solution of problems on the motion of material

systems, it is important to notice that forces acting on
fixed portions of the system, stresses between particles

whose distances are invariable, and forces acting on par-

ticles whose motion is normal to the direction of the force,
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do no work and therefore do not appear in the equation
of energy.

442. In the solution of such problems the following

proposition will be of use to facilitate the calculation of

the kinetic energy of the system :

The kinetic energy of a system of particles is equal to

the sum of the kinetic energies of the particles of the

system moving with velocities equal to their velocities

relative to the centre of mass, together with that of a

particle having a mass equal to the mass of the system
and a velocity equal to the velocity of the centre of mass.

Ox, Oy, Oz being rectangular axes, let the co-ordinates

of a particle of mass m be x, y, z. Then its component
velocities are x, y, z and its kinetic energy ^m(ii;^-|-2/^+ ^ )•

The kinetic energy of the system is thus ^\yn{b?'-\-if'-\-z^).

Let X, 2/, z be the co-ordinates of the centre of mass and

^, v\, f the distances of a particle from it in the directions

of Oxy Oy, Oz respectively. Then (419)

x= x-^^, y = y-{-tj, and z = z + ^.
. • • • •

Also (96) x= x-\-(, y = y-\-)'i^ and z= z+ ^.

Hence the kinetic energy of the system,

2im{x'+ i/^+ 2^==i:im{(x+ if-{-{y+ ,})^-\-(i+ ^f}

= 2im(^ +t/+ z")+ 21m (^2 _|. ,-2^ ^-2)

• • • • •

= 2im(F+ ^7 -f i^) + 2im(^2+ ,-2+ ^2^^

since (410) 2m^=2mv= 2mf=0. And 2im(f2+ v'+ r)
is the sum of the kinetic energies of the particles mov-
ing with velocities equal to their velocities relative to

the centre of mass, and ^^')n{^^+ y'^-\-z^) is the kinetic

energy of a particle having a mass equal to the mass of

the system and a velocity equal to the velocity of the

centre of mass.
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443. Examples.

(1) Two particles of masses m aiul M moving in a straight line,

with velocities v and F respectively {v> V) come into collision, the

stress between them during collision being in the line of motion,

and the co-efficient of restitution being e. Find the loss of kinetic

energy.

Let U be the velocity of the centre of mass, which (416) is the

same after as before the collision. Then their velocities relative to

the centre of mass before the collision are v — U and V— U resi)ec-

tively ; and if v' and ]"' are the velocities of m and M respectively

after the collision, v' - U and V - U are their respective velocities

relative to the centre of mass after the collision. Hence (442) the

kinetic energy is, before the collisit)n,

and, after the collision,

\{m+ M)U'' + hn{v'- Uf^-\M{V'-UY.

Hence the loss of kinetic energy is

\m[{v- uf-{v'-UY\+ui\{ V- uy--{V'- to-].

Now, as both particles have at the instant of collision the velocity

V, we have (416),

{m +M)U=niv + J/T,

and (380, Ex. 1),

, mv-\-MV eM{:v-V)

Hence

m+M
y_ *" ''+ 3/F- em{ V- v)

m+M '

m+ JI

= e{U -v).

And similarly F — U—e{U- F).

Hence the loss of kinetic energy is

If therefore e= l, there is no loss of energy. If e = 0, the loss of

energy is equal to the energy due to the motion of m and M relative

to their centre of mass before the collision.

)

M f'5

I ;
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(2) In any diaplacement of a system of lieavy particles, the work

<l()nu against tlie weights of the })articles is equal to the product of

the weight of the system into the vertical displacement of the

(•entre of mass of the system.

Let Wi, m.2, etc., be the masses of the particles, d^, d^, etc., the

vertical components of their displacements, .r^, .r^, etc., their initial

flistances from a horizontal plane. Then the amounts of work done

on the various particles are niigd^, 'in^Of^-ii ^^c Hence the whole

work done is g'^md. Now the vertical displacement of the centre

of mass is

:Lm{x + d)_'^m.r_'Lmd— -—

2,m 2.m^m

Hence the |)roduct of the weight of the system into this vertical

displacement,

„ _ ^md V Jg^m X -;^;— =g2.md,

wliich is the whole work done.

(3) Find the work done in raising from the ground the materials

(cubical blocks of stone of 1 foot edge and of density 1 cwt. per

cubic ft.) in building a uniform column 66 ft. high and 20 ft.

square.

Ans. 42,800 foot-tons.

(4) A right pyramid on a square base of 16 ft. side, has an alti-

tude of 24 ft., and stands on a horizontal plane. Find the work

necessary to turn it round one of its edges, its density being 100

lbs. per cubic ft.

Ans. 819,200 ft.-pounds.

(5) A chain whose mass is 100 lbs. and length 50 ft. hangs freely

by the upper end, which is attached to a drum, upon which the

chain can be wound, the diameter of the drum being so small

relatively to the length of the chain that it may be neglected.

Find the work done against the weight of the chain in winding up

one half of it.

Ans. 1875 ft.-pounds.
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1 •
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(6) The cylindrical shaft of a mine, whose section is 50 s(|. ft.,

contains water (density= 1000 oz. per cubic ft.) to within 90 ft. of

the surface. How much will the surface of the water be lowered

b}-^ an engine working at 10 hor.se j)ower for 1 hour.

Ans. 54-1 ft.

(7) Find the initial speed of a shot of 1000 lb. mass, discharged

from a 100-ton gun, the energy oi the charge being .300,000 ft.-

pounds, and 1 per cent, being lost in heat, light, etc.

Ans. 24*3... ft. per see.

444. Eqitilibriwin of Extended Systems.—By the

equilibrium of a system of particles may be denoted
either of two states of motion : (1) a state in which the

centre of mass of the system has no linear acceleration,

and the system a constant angular momentum about the

centre of mass, (2) a state in which the particles of the

system are all without linear acceleration. The former
may be called a state of molar equilibrium or equilibrium

of the sj'^stem as a whole, the latter a state of molecular

equilibrium or equilibrium of the individual particles or

molecules of the system.

445. The necessary and sufficient conditions of molar
equilibrium may be obtained at once from the equations

of 431, viz., a = 2i^/2m, and 2i^P= 2m(ft^). For in

order that the acceleration of the centre of mass may be
zero, and the angular momentum constant, we must have
^F=0 and 2-PP = ; and if these conditions are fulfilled,

we have cT= and 2m(<-^) = 0. Hence the necessary and

sufficient conditions of molar equilibrium are (1) that the

algebraic sum of the components, in any given direction,

of the external forces must be zero, and (2) that the

algebraic sum of the moments of the same forces about
any axis must be zero also.

446. An expression of the condition of molecular
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equilibrium may be obtained from the equation of energy

(437), which may be written (484)

2
I
Tf_^V-.>''+ 2/''-2/'+ ^''-i')

[
=0.

W is here the work done by all the forces acting on m in

any smal] displacement whose components are x'— x,

y'— y, z' — z. 2W is therefore the work done by all the

forces of the system during its corresponding change of

configuration. Dividing by t, the time of the small dis-

placement of m, we get

,{»-_-/—- (u;+ic)+v/ ^ ^(7/ +7/)+-^^- (^+0)jj = ().

If now the given change of configuration be from one of

equilibrium to one indefinitely near it, the component
accelerations (x' — x)/t, etc., may be put equal to zero.

Hence we have 2(ir/Q = (), i.e., the rate at which the

forces acting on the system do work is zero. If the work
done by external forces be denoted by ^v, and that done
by internal forces by w\ we have STr=St(/+2t(;', and
therefore 'E(w/t) = 2( — w'/t). Hence if a material system
in any given configuration be in molecular equilibrium,

the rate at which the external forces do work during any
small motion through that configuration is equal to the

rate at which work is done against the internal forces

;

or, if the system is conservative, to the rate of increase

of the potential energy of the S3^stem due to internal

forces.

447. Conversely, if in any small motion of a material

system through a given configuration, the rate at which
the forces of the system do work is zero, the given con-

figuration is one of molecular equilibrium.

For if not, some of the particles of the system must in

that configuration have accelerations. Let them be re-



450 J OF KXTKNDKI) iJODIES.
»> O K

•luced to equilibrium by the action of forces F^, F.^, etc.,

equal to the products of their masses into their accelera-

tions and in directions opposite to these accelerations.

Let the system now undergo an indefinitely small change
of configuration, such that the particles having accelera-

tions move in the directions of their accelerations. Then
work will be done against F^, F,, etc., and the rate at

which work is done by these forces will in all cases be
negative. But the rate at which work is done by all the

forces of the system together with F^, F^, etc., is zero

(446), since the system is now in molecular equilibrium.

Hence the rate at which work is done by the forces of

the system alone is positive, and cannot be zero. Hence
none of the particles of the system can, in the given con-

figuration, have accelerations, and that configuration is

therefore one of molecular equilibrium.

448. Hence the necessary and sufficient condition of

the molecular equilibrium of a material system in any
given configuration is that in any small motion through
that configuration the rate at which the external forces

do work shall be equal to the rate at which work is done
against the internal forces, or, if the system is conserva-

tive, to the rate of increase of the potential energy of the

system due to internal forces.

()

449. Hence also the necessary and sufHcient condition

f the molecular equilibrium of a material system in any
given configuration is that in any small motion through

that configuration the work done by the external forces

shall be equal to that done against the internal forces, or,

iu other words, that the algebraic sum of the amounts of

work done by all the forces shall be zero. In symbols, if

F^, F.„ etc., be the forces acting on the particles of the

system, and d{y d.„ etc., their component displacements in

the directions of F^, Fo, etc., respectively, 'LFd = 0.

450. Stability of Equilihriiiin.—If a system of particles
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which has undergone any indefinitely small change of

configuration from that of equilibrium, returns, when left

to itself, to the configuration of equilibrium, its equilib-

rium is said to be stable for a change of configuration of

that kind. If, when left to itself, the system deviates

still more from the configuration of equilibrium, its equi-

librium is said to be unsUthle. If the new configuration

is also a configuration of equilibrium, the e(|uilibrium of

the system is said to be neutral. Thus the position of

(Mjuilibrium of the bob of a pendulum is the lowest point

of its swing. If it be slightly displaced from that position

and left to itself it will return to that position. Hence
its equilibrium is stable. A symmetrical egg may be

made to stand on one end ; and this position is thus one

of equilibrium. But if it be displaced from this position

ever so slightly and left to itself, the displacement increases

with the time and it falls over on its side. Hence an egg
standing on one end is in a position of unstable equilib-

rium. If a uniform sphere, resting in equilibrium on a

horizontal plane, be slightly displaced and left to itself, it

will still remain in equilibrium ; and thus a uniform
sphere on a horizonttil plane is in neutral equilibrium.

A configuration of equilibrium of a system may be

such that for different small chano-es of conficjuration the

stability of its equilibrium may be different. Thus a

sphere resting on a horizontal cylinder is in neutral

equilibrium for small displacements, which are rotations

about an axis through the point of contact and perpen-

dicular to the axis of the cylinder, while, for rotations

about all other axes through the same point, its equilib-

rium is unstable. The equilibrium of a sphere resting in

a cylindrical trough is stable for some displacements and
neutral for others; and that of a sphere resting on a

saddle-back, or col, is stable for some displacements and
unstable for others. The equilibrium of a system which
is stable, unstable, or neutral, as the case may be, for all

])Ossible small displacements of the system is said to bo
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wholly or absolutely stable, unstable, or neutral. The
equilibrium of a system which is unstable for any small

change of configuration, though it may bo stable or neutral

for others, is said to be practically unstable.

451. There is a simple relation between the potential

energy of a conservative system in its configuration of

equilibrium and the stability of its equilibrium. If,

after a small displacement from a configuration of equi-

librium, the system, when left to itself, returns to the

C(jnfiguration of eciuilibrium, the forces of the system on
the whole do work on the ])articles of the system in

bringing it back to the configuration of ecpiilibrium.

Hence, in the configuration of equilibrium, the potential

energy of the system is less than in the other configura-

tion. If therefore a system has a configuration in whicli

it is in wholly stable e [uilibrium, that configuration is

one of minimum potential energy. If, after a small dis-

placement from a configuration of equilibrium, the system,

when left to itself, deviates still more from the configura-

tion of equilibrium, the forces of the system on the whole
do work during the given small displacement, and hence
the potential energy of the system is less after the dis-

placement than in the configuration of e(|uilibrium. If

therefore a system in a given configuration is in wholly
unstable equilibrium, the given configuration is one of

maximum potential energy. If, finally, after a small

displacement from a configuration of equilibrium a system
of particles is still in equilibrium, the forces of the system
have neither done work nor had work done against them
during the displacement, and hence the ])otential energy
after the displacement is the same as before it.

4.52. If the potential energy of a system of particles

depends wholly upon their weights, the increase of

potential energy in any change of configuration (448,

Ex. 2) is the product of the weight of the system into

the height through which its centre of mass has been
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t
'

raised. A cuiiti<4uratioii in which the value of the poten-

tial energy is a maximum or minimum, therefore, is one
in which the centre of mass has a maximum or minimum
height respectively. Hence a configuration of wholly
stable or wholly unstable equilibrium is one in which the

centre of mass has a lower position ov a higher position

respectively than in any other conHguration into which
the system may be brought by an indeHnitely small

change of conHguration. Thus a rod, one end of which
is fixed, is in stable equilibrium if the other end, and
therefore the centre of mass, is vertically below the fixed

end, and is in unstable equilibrium if the other end, and
therefi^re the centre of mass, is above the fixed end.

'» .
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CHAPTER VI.

DYNAMICS OF lUGID IIODIES.

4.') 3. A rigid body or system of particles is one whose
contiguration is invariable, the particles maintaining con-

stant relative positions. Such bodies are i)urely ideal.

But in many cases solid bodies are so slightly deformed
by the forces acting on them that for many purposes they

may be considered rigid.

It follows from the constancy of the configuration of a
rigid body that, if it is rotating about an axis fixed in

itself, all its particles must have the same angular

velocity, and consequently the same angular acceleration,

about that axis; and that the distance of any particle from

the axis must be constant. Hence (420) the angular

momentum about the given axis, viz., SiJiw?'-, may be

written coEmr^, and ^/.2 becomes wr'. Hence (225) the

rate of change of angular momentum

if u denote the angular acceleration about the given

axis.

We found (428) that about an axis fixed in space,

2i^P = 2m(tJ7-)- Hence, if a is the angular acceleration

about any axis fixed both in space and in the body,
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By 4.S0 thu Haiiio fonnula applies it* a be tlio unj^ular

accolerution about an axis iixccl in the body and passinj^

throujzli its centre of nia.ss, whether or not it be fixed also

in space.

454. We have thus two equations (414 and 4.5;}),

^JLF JLFP

expressing, the one the linear acceleration of the centre

of mass, the other the angular aceeleration about that

point. Hence (251) these equations completely deter-

mine the motion of the body.

455. From the second of these equations it follows

(Lmr^ being constant) that the rotating power of a force,

or of several forces, about a given axis is proportional to

its moment, or to the algebraic sum of their moments
respectively, about that axis. This result is frequently

assumed by writers on elementary statics.

45G. From the two equations of 454 it follows that a
force produces in a rigid body the same kinetic eft'ect at

whatever point of its line of action it may be applied.

For d has the same value, provided the magnitudes and
directions of the applied forces are the same ; and a has
the same value, provided the magnitudes of the applied

forces and the distances from the axis of their lines of

action are the same. This result is usually called the
'*princi'ple of the tranamissibility offorce," and is usually

made a fundamental hypothesis by writers on Statics.

457. It follows, from the result of 453, that for the

complete specification of a force which is acting on a

rigid body, it is necessary to know not only its magnitude
and direction, as in the case of a particle, but its line of

action or some point in its line of action as well.
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4.')(S. It tollowH, from tlio Hccond equation of 4')4, tliat

if a free ri«jfi<l ))oily bo acted upon by a force wlioso line

of action passes tlirough the centre of mass, it produces
in the body n») an<^ulur acceleration about the centre of

mass, and therefore (as is evident from 2-^-^) no an^adiir

acceleration wliatever.

-tol). Composituni of Forces,—It is often convenient in

investi<jfatin<4' tlu; motion of a ri<;id body to re])lace the

forces acting on it by a simpler set of forces, which would
produce the same kinetic effect. Before applyinjjf the

equations of 454 to the solution of problems, there-

fore, we shall investi^jjate the composition of forces actin*;'

on a rigid body, i.e., the reduction of such forces to sim])ler

eijuivalent systems.

The resultant of the forces acting on a rigid body is

the single force or the sinq)lest system of forces which
will produce in it the same accelerations as are produced
by the given forces.

4G0. Any coplanar forces acting on a rigid body are

reducible to a single force.—A force F, whose components
in rectangular directions in the plane of the forces are

Fx, F,„ will produce the same linear acceleration of the

centre of mass as the acting forces (conijionents X^, Y^,

X2, K2, etc.), provided i'!e= fZ and F,, = '!^Y; and it will

produce the same angular acceleration about any point

in the plane of the component forces if its line of action

is at such a distance (2?) from the point that Fp
is equal to the algebraic sum (iV) of the moments of

the forces about it,* if therefore Fp = N. Hence, as

F={F^-\-F,f)^, the forces are reducible to a single force

if

* The moment of a force about a point is it.s moment about an
axis through the j)oint perpendicular to the plane containing the

point and the line of action of the force.
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By thus applying the parallelogram law the resultant

may be determined either by calculation or graphically

(382, Ex. 22).

403. The following is a more elegant graphical method:

—

Let forces F^, F.,, F^, F^ act as represented in the diagram

at the points A, B, C, D. From any point E draw EG,
from G draw GH, from 7/ IfK, and from K KL, ropie-

ft

senting in magnitude and direction the forces F^, F.„ F.^,

F^ respectively. Then (401) EL represents their resul-

tant in magnitude and direction. To find a point in its

line of action, take any point and join it to E, G, H,
K, L. From any point in F^, say a, draw a line pai'allel

to OG and meeting F.^ in h. From h draw a line parallel

to OH, meeting F.^ in c. From c draw a line parallel to

()K, meeting F^ in d. From d draw a line parallel to

()L, and from a a line parallel to OE, and let them meet
in M.

A force represented by EG may be resolved into two
represented by EO and OG. Hence F^ is equivalent to

forces proportional to EO and OG, with lines of action

Ma and ba. Similarly F^ may be resolved into forces

proportional to GO and OH, with lines of action ah an<l

ch, Fe^ into forces proportional to HO and OK, with Mnes
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of action he and Jc, and i^^ into forces proportional to

KO and OZ, and with lines of action cd and (ii)/. Hence
the given system of forces is equivalent to single forces

in the lines clM and Ma, and pairs of equal and opposite

forces in each of the lines a6, he, cd. The resultant of

this system is clearly a force through M. Hence the re-

(juired resultant is a force represented by EL and acting

a: M.

i

m-f ^1 % ;

•i ? ':

III

4G4. Case II. Parallel Co'planar Forces.— If the

given forces are parallel, the constructions of 4G2 and
463 fail. In any such case, however, a system equivalent

to the given system may be obtained by introducing two
equal and opposite forces in the same line, and with direc-

tions inclined to those of the given parallel forces ; and to

thi.s equivalent system the above constructions may be

applied.

405. We may find the resultant of parallel forces more
readily, howevei', as follows :

—

First, let there be two such component forces. These

may be either codirectional or o])posite in direction.

(a) The Forces Codirectional—f^et P and Q be forces

acting in the same direction on a rigid body of mass m.

Then, that the resultant It may produce in the centre of

mass of the body the same acceleration as P and Q, iis

III
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line of action must be parallel to theirs, and we must
have

a = {P-\-Q)l)n = Rlm:

and hence B =P+ Q. Also that 11 may produce about
any point 0, the same angular acceleration, as P and Q,
its moment about must be equal to the algebraic sum
of their moments. From draw OBA perpendicular to

P and Q, and therefore to R, and meeting P, Q, and B in

A, B, and G respectively. Then

P . AO+ Q . BO = B. C() = {P+Q)C().

It follows that (yO is intermediate in length between A O
and BO, and that C is therefore between A. and B. Sub-
stitutincf for AO and BO their values we have

Hence

P{AC+ CO) + Q{CO - CB) = (P 4- Q)CO.

P .AC=Q . OB,

i.e., M's line of action cuts the line AB (and, therefore,

any line intersecting P and Q), so that the products of

the forces into the segments adjacent to them are equal.

466. (h) The Forces Opiwslte in direction and Unequcd.
—Let P and Q be the given forces. Then, as above, if

P be greater than Q, B =P— Q and is codirectional with
P, and

'P

P . AO-Q. BO = R . CO = {P-Q)CO.

Now BO is less than A 0. Hence

{P'-Q)A0<P.A0-Q.B0,

11
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the sign of the moment. Such a line is usually called

the axis of the couple.

4G8. It follows from the above that all couples which

have equal moments of the same sign, and are in the same
or in parallel planes, produce the same kinetic effect, or

are equivalent, whatever may be their length of arm oi"

the magnitudes or lines of action of their forces.

4G9. CompoHlt'ion of Coupler.—Tlie resultant of any
number of component couples is a couple, and is to be

determined by the parallelogram law.

Let the planes of two component couples intersect in

tlie line AB. At A and B let equal and opposite forces,

F, act in the plane of one of the component couples at

right angles to iVB, and of such magnitude and direction

that the couple F . AB has the same moment and sign

as the component couple in its plane. At A and B let

equal and opposite forces F' act in the plane of the second

component couple, and at right angles to AB, F' being of

such magnitude and direction that the couple F' . AB has
the same moment and sign as the second component
couple. Then the couples F . AB and F' . AB are equiva-

lent to the two component couples. Let AF and BFy
AF' and BF\ represent the forces F and F'. Then if the

parallelograms AFRF\ BFRF\ be completed, the diago-
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iials AR and /f/? will represent the resultants of ^ and F'

at ^l and B resi)ectively. Since the anj^lt FAF and
FBF' are equal, the parallelograms FF' .iio similar.

Hence the angles FAR and FBR are equal, and therefore

the equal resultants, R, are in the same plane. Since in

each case R is in the same plane as Fund F\ AR and BR
are perpendicular to AB. Hence the two component
couples are equivalent to the coui)le R . AB.

From B draw Bf, Bf, and Br, the axes of the couples

F . AB, F' . AB, and R . AB respectively. Bf, Bf, and
Bv are thus perpendicular to the [)lanes FABF, FABF,
and RABR respectively ; and consecpiently the angles/i:?r,

fBr are equal to FBR, F'BR respectively. Also, since

the couples represented by Bf, Bf, and Br have the same
arm, we have

Bf: BF=Bf : BF = Br : BR.

Hence, if r hv joined to /' and /", rfBf will be a parallelo-

gram ; and consequently the axis of the resultant couple

is to be determined from the axes of the component
cou[)les by the parallelogram law (7tS).

If there arc more than two component couples, the

resultant of any two may be compounded with a third,

their resultant with a fourth, and so on until the resul-

tant of all has been found.

It follows ohat the laws of the resolution of couples are

the same as in the case of disidaccmcnts, velocities, etc.

470. Secondly (465), let there be any number of com-

ponent parallel forces. In that case the resultant of any
tvro may first be determined, then the resultant of their

resultant, and a third, and so on, until the resultant of

all has been found.

471. Any system of ])aral]el foi'ces, whether coplanar

or not, may be reduced to a single force.—For, as any
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two parallel lines are necessarily in the same plane, the

resultant of any two of the given forces is co[)lanar with

a third, that of any three with a fourth, and so on. Thus
the single resultant of a non-coplanar system may be de-

termined as in 470.

472. From 471, 465, and 399 it is clear that the above
process is exactly that by which the centre of mass of

a system of particles was determined, the magnitudes of

tlie parallel forces taking the place of the masses of the

particles, and the positions of their jjoints of application

that of the positions of the particles. Hence, as in 400,

it may be shown that if t\, F.,, etc., are the magnitudes
of the parallel forces, and d^, d,, etc., the distances of their

points of application from any given plane, the distance

from it of the point of application of their resultant is

^Fd/HF. The point of application of the resultant is

called the centre of the system of parallel forces.

478. In the special case in which all the particles of a
body are acted upon b}'" parallel forces ]^roportional to

their masses, the centre of parallel forces is an important
point. If jPj, ^^2» ^^^> ^^^'^ ^^^® parallel firces, and m^,

'ni.y, etc., the masses of the particles on which they act,

F^ = k7u^, F^ = hn.-,, etc., where /.; is a constant. Hence
the distance of the centre of the system of parallel forces

from any plane from which the distances of tlie particles

nre d^, d,,, etc., is

And this is the distance of the centre of mass. Hence
the centre of the above system of parallel forces coincides

with the centre of mass.

474. If a body be suthciently small relatively to the
earth, the weights of its particles may be considered to

be parallel forces; and they are proportional to the masses
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of the particles, fur they produce in the particles tlie same
acceleration, (j. Hence the wei<^hts of the particles of a

sutficiently small body are reducible to a single force

e(jual to (/ times the mass of the body and acting verti-

cally downwards through the centre of mass, whatever
the position of the body may be. For this reason the

centre of mass is often called the centre of (jnu'lty.

The term centre of ijiuvltjj has also the following

signification to which it should be restricted : If a bod}'

attracts and is attracted by all external bodies, whatevei-

their distance and relative position, as though its mass
were concentrated in a })oint fixed relatively to it, that

point is called its centre of gravity, and the body is said

to be centrobaric or barycentric. In general, bodies aie

not centrobaric. We hav(^ seen (810, Ex, G) that a uniform
sphere or spherical shell has this pro[)erty.

If a body has a centre of gravity it necessarily coincides

with the centre of mass. For, as we have seen (473), the

resultant attraction of an infinitely distant body, whose
attractions on its particles would be parallel forces,

would pass through the centre of mass whatever the

position of the body.

47o. Exaini:)lci^.

(1) Three foi'ces Jict at the uiitldle points of the sides of a li^id

tiiungular i)late, in its plane, each force heing perpendicular .tml

j)roportional to the side at which it acts. If tlie forces are nil

inwards or all outwards, the resultant is zero.

(2) If a rigid plane quadrilateral ABCD be acted upon by foui

forces, represented in magnitude, direction, and line of action by

AB, CBy AD, CD respect ivel}', the line of action of the residtant

will be the line joining the middle jjoints of the diagomtls ; and it>

magnitude will be represented by four times the length of tlmt

line.

(3) A system of any muiiber of coplanar forces being representeil

1
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i)ve!S'weiitei

by tlie several sides of a closed polygou, as described by the con-

tinued motion of a point in a plane, show that the sum of their

moments round any point in the plane is independent of the position

of the point.

(4) If six forces acting on a rigid body be completely represented,

three by the sides of a triangle taken the same way round, and

three by the sides of the triangle fomied by joining the middle

points of the sides of the original triangle, and if the parallel forces

act in the same direction, and the scale on which the first three

forces are represented be four times as large as that on which the

last three are represented, the given six forces produce neither

translational nor rotational acceleration.

(5) Forces of 10, 20, 30, and 40 poundals act on a rigid body at

J, B, C, D, the corners of a square whose side is 2 feet, and in its

I)lane. Their inclinations to AB, BC, CD, DA are 4.r, 90°, 30°, 60"

respectively. Show that their resultant is a force of 3r)'6r>. .. poundals,

and that its line of action is distant 3*03... ft. from C.

(6) Parallel fiu'ces in the .same direction, and of tlie magnitudes

10, 15, 20, 25, act at points A, /*, C, J) respectively of a straight

rod, the distances A Z>, BC, CD being 2, 3, and 4 respectively. Find

the distance of the point of application of the resultant from A.

Ans. 5 "07....

(7) Two parallel forces in opposite directions, and of magnitudes

20 and 5, act at points ^1 and B respectively of a rigid body 4 feet

apart. Find the distances from A and 11 of the point in wliicli

tlieir resultant line of action cuts A B.

Ans. 1^ and 5.^ ft.

(8) At each end of each side of a uniform triangular plate a force

acts parallel and proi)ortional to the line drawn from the opposite

vertex to bisect that side. Show that the resultant of the six

forces passes through the centre of mass of the triangle.

(9) A triangular lamina ABC at rest is moveable in its own
plane about a point in itself. Forces act on it along and propor-

tional to BC, Cvl, BA. Show that if they do not move the lamina,
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A force, F, whose components in the directions of rec-

tangular axes are F^, F,,, Fz, acting at any chosen point

whose distances from the centre of mass of the body in

the directions of the components are f, >;, f, will produce
the angular acceleration about the centre of mass pro-

duced by the acting forces, provided (427)

F.r, - F,^=L, /:,f
- F,i= M, F„i- F,n = iV,

where Z, M, N are the algebraic sums of the moments of

the acting forces about axes through the centre of mass,

])arallel to the x, y, z axes respectively. We may reduce

these equations to one by multiplying the first by F^, thi^

second by F,,, and the third by A"^, and adding, by which
process we find that

is the condition which must be satisfied that the force F
may produce the required angular acceleration. It is

obvious that values of F^, F,j, F^ can always be found to

satisfy this equation. These values will be different for

different chosen points of api>lication.

The force 7^ with another force F' , whose components
are F^, Fy , Fz, and which acts at the centre of mass, will

produce the linear acceleration produced by the acting

forces, provided

F,+ f; = IX, F,

+

f; = z Y, Fz

+

f; = IZ,

where HX, 2 F, 'EZ are the sums of the components of thi;

acting forces in the directions of the x, y, z axes respec-

tively. As F* acts at the centre of mass it has (458) no
effect on the body's angular acceleration.

Now, whatever may be the values of F^, Fy, Fz which
satisfy the first condition, values of F^, FJ , Fz may be
found to satisfy the last three equations. Hence any
forces acting on a rigid body are reducible to two forces.

As the point f , >;, f chosen above was any point what-
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ever, the forces acting on a rigid body may be reduced to

any one of an infinite number of pairs of forces.

477. To determine the condition of the reducibility of

a system of forces acting on a rigid body to a single force.

As this force must produce both the linear and the

angular accelerations produced by the acting forces, we
have, if Fx, F,,, F^ are its rectangular components, and f,

//, f the co-ordinates, relative to the centre of mass, of its

point of application, and if X, if, N are the moments of

the acting forces about axes, parallel to the axes of co-

ordinates, through the centre of mass,

and

F,.^ - F,l= L, Fx^~F4= M, F,i- F^^j = K.

These six equations may, as in 47G, be reduced to the

single equation

which therefore is the condition which must be fulfilled

that the resultant of the given forces may be a single

force.

478. The magnitude of this resultant force is clearly

Its direction cosines are 1.X/R, 2F/jR, "ZZ/R. If we
put ^=0 in the equations of 477, we obtain ^=MlFx.,
//= —NjFx. These therefore are the co-ordinates of the

point in which the line of action of the force cuts the >;f

plane.

479. Any forces acting on a rigid body may be reduced

to a single force and a single couple.
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If F^ be any one of the forces acting on a rigid body,
there may be introduced at

any point 0, without any
change of the motion of the

body, a pair of equal and
opposite forces, F^, parallel

to the original jP,; and for

every force acting on tlie

body we thus obtain an equal

force in the same direction acting at 0, and a couple

(called the couple of transference). The forces at give

a resultant force at 0, and the couples compound into a

resultant couple (409).

Whatever point may be chosen, the direction and
magnitude of the resultant force will clearly be the same.

The resultant couple will however be differont for ditfe-

rent positions of 0.

480. To determine the resultant force and couple for

any given system of forces and for an}' given position of O.

Let X^, Fj, Z^, X,, F.„ Z,, etc., be the components of the

forces of the system in the directions of rectangular axes
through 0, and let x^,

ij^,
z^, x.,, y,„ s,, etc., be the co-or-

dinates of their respective points of application. Then
as the resultant force R is the same for all positions of 0, it

must be the same as the force which at the centre of mass
would produce the linear acceleration produced by the

system of forces. Hence

i2=V(i:A7+(vi7+(vz)'^

and its direction cosines are ^XR, ^ Y/R, ^Z/R. As
the component couples must produce about the chosen

axes the same anixular accelerations as the forces of the

system, they must be equal to the moments ot" the forces

about these axes. Hence if L, M, N arc the component
couples whose axes have the directions of the x, y z axes

respectively,

i

\ 1

Mr?'
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Hence (4G9 and 88) the resultant couple

= s/[I.{Zi/ -Yz)f+ [E{Xz- Zx)f+ [2( Yx - Xy)]\

and its direction cosines are L/G, M/G, NjG. Hence also

(8) the inclination of the axis of the resultant couple to

the resultant force is

coŝ \R ' G^ H ' G'^ R ' G)'

481. The resultant force being given, and the resultant

couple for a given point of application of the resultant

force, to find the resultant couple for any other point of

application.

Let OR and OG represent the resultant force and couple

when the resultant force acts at 0.

Let 0' be the other point of applica-

tion. At 0' introduce two opposite

forces R equal and parallel to the force

R at 0. They will not affect the

motion of the bodv. Now the forces

R at and 0' constitute a couple,

whose axis ON is perpendicular to the

plane of ROO'R, and is proportional

to the product of R into the perpen-
dicular distance of OR from OR. The
two couples OG and ON give (469) a
resultant couple OG' . Hence the given

system of forces is equivalent to a force R acting at O'

and a couple OG'

.

If 0' is in the line of action of OR, it is evident that

ON^ is zero and that OG' is the same as OG. If 0' is an}

-

where else, ON will have a value and OG' will differ from

OG. It is obvious that any other line of action of the

resultant force than that throuo:h 0' must either be at a
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placec' that the plane through it and Uli is inciinea to

the plane ROO' R, and that therefore ON, and cui-

sequently also 0G\ can have a given magnitude and
direction only for one line of action of the resultant

force. Hence in a given body, acted on by given forces,

there is but one line, such that, if the resultant force acts

in it, the resultant couple will have a given magnitude
and direction.

482. Any forces acting on a rigid body may be reduced

to a single force and a couple whose axis is parallel to the

line of action of the force.

Let R be the force (OR being its line of action) and G
the couple (OG being its axis), which
together form the resultant of the

acting forces according to 47i). The
couple OG may be resolved into two,

whose axes are OH and OJ, in and
perpendicular to the direction of OR
respectively. The couple OJ is in the

j)lane through OR perpendicular to

the plane of OR and OG. Let 00', '^

drawn perpendicular to the plane of OR and OG, be the

length of arm of the component couple OJ when its forces

are made equal to R, and let the forces R of this couple

act at and 0' in directions perpendicular to 00'. Then
we have two forces, R, acting at in opposite directions.

Hence the original force R, together with the component
couple OJ, are equivalent to a force R at 0', having the

same direction as the original R. Hence the given system,

viz., the force R acting at and the couple OG, is reduced

to the force R acting at 0' and a couple whose axis OH
is parallel to R.

When this reduction is made, the line of action of the

force is called the central axis of the system of forces,

and as this theorem is due to Poinsot, it is usually called

M
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Poinsot's central axis. It follows from 481 that a given

system of forces can have but one central axis.

Sir R. S. Ball has given tho name wrench to the re-

sultant forc(3 and couple to which a given system of forces

may bo reduced when tlie line of action of the resultant

force is the central axis.

483. If the angle ROG (482) is 0, the component couples

OH and OJ are G cos and G sin respectively. Hence

00' = {G sin 6)1 R.

If the direction cosines of OR and OG are I, m,
and n, X, /x, and v respectivel}^ those of 00' will be (10)

{mv— ii/x)/sin 6, (n\ — li/)/ sin 0, (Ifi — mX)/sin 0. Now the

products of 00' into its direction cosines are the co-

ordinates of 0' relative to 0. Hence, employing the

values of I, m, n, X, /n, v found in 480, we obtain as co-

ordinates of 0'

(N1Y-M1Z)/R^ {LZZ-NI.X)IR\ {MZX-L^Y)IR\

The direction of the central axis being thus known,
and the position of one point in it, the axis is completely
determined.

484. The magnitude of the resultant

couple is less when its direction is that of

the central axis thaa when it has any
other direction.

Let OA be the central axis of a given
system of forces, O'A' any ])arallel line,

and 00' a line perpendicular to both.

Let R, acting at 0, be the resultant force,

and OH the resultant couple. At 0' in-

troduce two opposite forces, equal and
parallel to R. Then the system is equi-

valent to a force R acting at 0' and the
couples OH and ON, ON being perpendicular to the plane
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ROO'R and therefore to 07/, and proportional to the

product of E into 00'. The resultant of these couples is

one represented by OG, which is necessarily greater

than on,

485. Ejcaniples.

(1) The magnitudes, directions, and lines of action of four forces

acting -on a rigid body are represented })y four sides of a skew

quadrilateral taken the same way round. Show that the system is

equivalent to a couj)le whose axis is perpendicular to both diagonals.

(2) Show, by using the result of 477, that the resultant of any

-system of parallel forces is a single force.

(3) ABCD is a tetrahedron, the angles BAC, CAD, DAB being

right angles. At the centres of mass of the faces BAC, CAD, DAB
forces act (all inwards or all out 'ards), with directions perpendicular

to the faces, and magnitudes proportional to the areas of the faces.

Show that their resultant is a single force.

(4) When a force is transferred to any point 0, the resolved part

of the couple of transference in any direction OZ is e(pial to the

moment of the given force about OZ.

(5) OA, OB, OG are conterminous edges of a cube and CD, EF
are edges parallel to OB and OC respectively. Find the distance

from of the central axis of a system of three equal forces com-

pletely re])re.sente(l by OA, CD, and EF.

Ans. JC'/S.

(6) OA, OB, OC are conterminous etiges of a rectangular parallelo-

piped, so related that a positive rotation of 90^ al)out OA as axis

would bring OB to the initial ])Osition of OG. Forces proportional

to OA, OB, OC (whose lengths are a, h, c respectively) act at />, G,

and A in the directions OA, OB, OC respectively. Find the central

axis.

Ans. Its direction is that of the diagonal through 0, and it passes

through a point whose distances from the planes BC, AC, and AB
are respectively

ctc'^ - ab^ a^b - bc^ b-c - a^c

aM^6'T7^' (i^ + ly^+ (^ ^+b'^+ 'c^'

i ' 'I

11,1;

•I./ J, I

ill'

11.

s

11

r^:
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(7) AHy.stem of forces ciin iil\viiy.s lu' itMluced to two forces v/hosc

lilies of action are at rifjht aiij^les to one another. [Tliiou^'h a jioint

P in the central axis draw a Htrai<rht line, 0P(/, perpendicnhir to

the central axis, l)i.secte(l in /*, and of snch U'n<,'th tliat if F \n tlie

nia.<,niitnde of the resultjint force wlien its line of action is tlie

central axis, /'. OP is e(jual to the resultant cou])le. Resolve
the lesultant force, F, into two e(|ual and parallel forces, F/2, at

O and O', and let the forces (»f the resultant couple act at and
(>' also.]

(8) The volume of the tetiahedron, op])osite e(l<4es of which repre-

sent the forces of any one of the intinite number of pairs of forces

to which a «,dven system of forces may be reduced, is constant.

Let /'and /" be any such i)air of for(;es, and let J)F, CF' repre-

sent them, DFCF' being therefore the tetrahedron referred to in

the problem. Let J/i be a line i)erpendicular to both DF and CF'.

At A introduce two opj)osite forces /" equal and parallel to CF'.

Let E be tlie resultant of /"and the force F' whicli acts at-.l and is

codirectional with CF'. Draw AG perpendicular to the plane of

the forces F' and representing the cou})le whose arm is AB and

whose forces are the forces /" acting at C and A. Then the forci'

AR and the couple AG form the resultant of the given system.

J)F, AF', and AG being all perpendicular to AB are in the same

])laue and AG is perpendicular to AF'. The resultant couple 7/

whose direction is that of the (.'entral axis is (482, 483) such that

'i
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= CF'.An.H\uJiAF'
= CF'.An.»iuFAF'. DFlll.

Hence // . li = CF'. DF. A li . sin /'. 1 F.

Now (481) II . li is constant. And AII.CF' being e(jual to tvvict-

the area of the triangle JC'/'^', and DFhxwFAF' being the length

of the projection of I)F on a line perj)endicular to the plane of the

same triangle, CF' . DF . AB .h\\\ FAF' is ecpial to six times the

vobnue of the tetrahedron FDCF'. Hence the vohime of this

tetrahedron is constant.

480. Moments of Inertia.—The quantity ^nir'^ (45:J),

the sum of the products of the masses of the particles of"

a rigid body into the squares of their distances from a
fixed axis in it, is called the moment of inertia of the

l^od}-- about the given axis.

If M is the mass of the body, a quantity k can alw^ays

be found such that Mk" = ^'r)iv'^. The quantity /.; thus

found is called the radius of gyration of the body about
the given axis.

Moments of inertia may be determined either by ex-

|)eriment or by calculation.

487. Determination by Experiment.—Let the body
whose moment of inertia / about a given axis is to be

determined be so mounted that the given axis is fixed.

Let it then be acted upon by a known force i^ at a known
distance 7? from the axis, and in a plane perpendicular to

the axis, and let the angular acceleration a be observed.

We have then (4o3) aI=Fi) and I=Fp/a.

It is practically impossible to appl}^ a known force at a
known distance from a given axis in it and to observe

the angular acceleration. But it is generally easy to

apply the same force or set of forces at the same distance

or distances in successive experiments. Hence a moment
of inertia is more readily determined by two experiments

H
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than by one. First, let the angular acceleration of the

body under investigation be observed when under the

action of forces whose moment S/'^' is constant from
experiment to experiment. We have as above a/= 2/'Y^-

Next, let a body, whose moment of inertia (/') about a

given axis is known, be rigidly attached to the given body
so that the axis about which its moment of inertia is

known is in the same straight line with the fixed axis of

the given body ; and let the same forces be applied in

the same way as before. If the angular acceleration is

now found to be a', we have a'(I + l') = 1>F2^. Hence
al=u'(l+r), and

1 =
(I — a

It is pnictically impossible to observe the angular acceler-

ation. But the forces employed may readily be so

applied (see 588) that the sum of their moments may
be directly proportional to the angular displacement (6)

of the body, and that they may tend always to bring the

body to a position in which its angular displacement is

zero. In that case the body will oscillate, the ratio of its

angular acceleration to its angular displacement will Ix;

independent of its angular displacement, and every point

of the body will therefore execute simple harmonic
motions. Hence (1()3) the time of oscillation will be

t = 2'7rs/0ia, and will be independent of the extent of the

oscillation. For any given value of therefore aculjf.

Hence, the times of oscillation in the above experiments

having been observed to be t and t' respectively, we have

/=
i^r

t'~ - 1'-r

The best methods of applying the force and of observing

the times of oscillation will be found described in books

on Laboratory Practice.

488. Determination by Calculation.—To effect the
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summation indicated l)y the formula 2»t>'- the Integml
Calculus is in general necessary. But in the case of

bodies of simple geometrical form and of uniform density

the summation may be effected by elementary mathe-
matical methods.

In the determination by calculation the following pro-

positions will be found useful

:

(1) The moment of inertia of a body about a given

axis is ecjual to the moment of inertia of the body about
a parallel axis through the centre of mass, together with
the product of the mass of the body into the square of

the distance between the two axes.

Let r be the position of any particle of the body of

mass 7IL Let the plane of the diagram intersect the

given axis and the parallel axis

through the centre of mass, nor-

mally in A and C respectively. Let

(I be the distance between the axes, ^

H the distance from the axis C of

the foot M of the perpendicular PM
from P on CA or (fA produced, i.e.,

the distance of P from a plane through the centre of mass
and perpendicular to (fA. Let the length of PM he p.

The moment of inertia of the body about A,

2m . yl P2 = Zm[(«-r/)2+p'],

since (408) 2)/is' = 0. Now ^m . CP' is the moment of

inertia of the given body about an axis parallel to tlie

given axis, through the centre of mass ; and d~1.in is the

product of the mass of the body into the square of the

distance of the axes.

If M is the mass of the body, and /.; its radius of gyra-
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tion about an axis in the given direction through the

centre of mass, the moment of inertia about the given

axisisil/(F + f/=^).

489. (2) The moment of inertia of a plane lamina
about an axis perpendicular to it through a given point is

equal to the sum of its moments of inertia about axes in

its plane through the given point, and perpendicular to

one another.

Let xx' and yy' be perpendicular axes through the;

point in the plane of the lamina B, Let P be the

])osition of any particle of mass m ; PM, PN, PO its dis-

tances from xx\ yy\ and an axis through perpendicular

to xx' and yy'. Then the moments of inertia of m about
these axes are "in . Pli-, m . PN'^, mil . PO^ respectively,

and those of the lamina are thus 2m . PJ\P, iliii . PN'^,

2m . PO^ respectively. Now PO' = PM'+PN\ Hence

m .
2'0^ = on .PM'+m. PN'

and 279iP02 = 2m . PM'+ J.mPN\

490. Examples.

(1) Find the moment of inertia of a uniform thin straight rod

(length = ^, mass= 3/) about an axis perpendicular to its length, (a)

through one end point, and (6) through its middle point.
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(a) Tiot tlic rod In' dividi'd into an iiidt'tiiiitcly <,MViit ntnnber (n)

of •(pial parts (lrii^ftli = r/). Tlic distaiur nf tlic iiiidillc point of

'a(!li of tlu'sc parts may be tiikcn to Ik* tlic distantt' of tin* part

itHt'lf. Let p 1)0 tin' linear density. Tlien if /denote the inonn'nt

of inertia aliont tlu' ;,'i\('n axis,

/= P"( J +p^'(^) +r^(^) +et.-.+p<<( ^^ ),

a
-P ri+3- + r.-' + ete + (2M--l)2|,

4 3
("'':)'

-PI
V 3 12 /'

= p„, Hinoe (t is in<lefinitelv small,

J/
.3

If /r is the radius of j^^y ration, /• = /' y/3.

(b) The moment of inertia of each half about its end i)oint is

by Kx. 1 [(f\

M It V . .r/-
24^2 V2 ' •'

Hence the moment of inertia (»f the whole rod ab )ut its middh'

puintis J//'2/12, and /•= ^/s/i2.

(2) The moment of inertia of a uniform straight thin rod

fniass= J/, lenrjth=^) about an axis inclined a to the lod and

through its end point is LI//- sin- a.

(3) Show that the moment of inertia of a uniform thin circidar

wire (niass= J/, radius= 7') about an axis through its centre ))er-

pendicular to its j)lane is Mr'.

(4) Find the moment of inertia of a uniform thin rectangular

* See Todhunter's "Algebra," Chapter on Arithmetical Pro-

Lfression
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plate (iiiasH=3/, si(leH=a and b) about an axis through the centre

y of figuie parallel to the side of

^ length b.

The plate may be divided iato

indefinitely thin strips by lines

parallel to the side AB of length a.

Then if ?Hi, Wj,, etc., are the masses

of the strips, their moments of in-

ertia about the given axis yy' are

wija'/12, vi2a-/l2, etc. Hence the

moment of inertia of the plate is

(wii + m.^+ etc .)a^/l 2= Ma^l\ 2.

(5) Show that the moment of inertia of a uniform thin rect-

angular plate (mass— J/, sides= a and b) about an axis through its

centre of figure j)erpendicular to its plane is J/(«^-|-/r)/12. (See

489.)

(0) Find the moment of inertia of a rectangular parallelopiped

(mass= il/) about an axis through the centre cf figure perpendiculai-

to one of the faces. (Edges perpendicular to the axis= rt and b.)

We may imagine the parallelopiped divided into thin jjlates by

planes perpendicular to the axis. If w?j, m.^^ etc., are the masses of

these plates, their moments of inertia are (Ex. 5) m^{a- + b^)/12,

"%(«'^+ ^^)/12, etc. Hence the moment of ii:ertia of the parallelo-

piped is (m^-f w.^+ etc.)(a2+ i^)/12 = J/(a2+ 6-)/12.

(7) Find the moment of inertia of a uniform thin right-angled-

triangular plate (mass = J/, sides containing the right angle= a and

b) about an axis perpendicular to its plane and through the centre

of mass.—Let ABC be the triangular plate and

£J its centre of mass. Complete the rectangle

A BCD. E is on the diagonal BD and at a dis-

tance from <), the intersection of the diagonals,

equal to s^a^+ b^/Q. Hence the moment of mertia

of the triangle about (f is (488), if Ijn is its mo-

ment of inertia about A', /^;-i-3/(ir--fi2^/36. Hence,

if Iq is the moment < f inertia of the rectangle

A BCD about a normal axis through 0,

i ;
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/o=2[/A + i/(f<-+ 62)/36].

;;69

Bui (Ex. 5) /o=2iI/(a= + i-)/I2.

Hence /,..= J/(a2+ 62)/12 -- i]/(a'H t-)/36

= i/(a2 + 62)/i8.

(8) Find the moment of inertia of a uniform thin right-an,i(l('d

triangular plate (mass= J/, sides containing the right angle = a and

6), about an axis perpendicular to its plane, and through one of the

acute angles (say C, fig. of Ex. 7).

The distance of E from C is 3^ V^ -{"-, if DC is the side of length

h. Hence, if / is the required moment of inertia,

6=
= ../('r + p,,>yEx.7.

(9) Find the moment of inertia of a uniform thin plate of tlif

shape of an isosceles triangle (mass— J/) about an axis perpendiculai

to its plane and through the vertex.

If a is the length of base and h the distance of the vertex from

the base, the triangle may be divided into two right-angled

triangles whose sides containing the right angle are h and o/2, i>

being the side adjacent to the vertex of the isosceles triangle.

Hence

^24 2/

(10.) Find the moment of inertia of a uniform thin [>late (ma.ss =

M) of a regular polygonal shape, about an axis through its

centre of figure and normal to its plane.

If there are n sides, each having the length a, and each distant r

from the centre of figure, as the polygon may be divided into ?«

isosceles triangles with vertices at the centre of figure, of base a,

height r, and mass Mjn^

V24 2/

(11) Find the moment of inertia of a uniform thin circular plate

2a
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(n)a.ss= il/, ladiuM^r) about an axis through its centre and Dormal

to its plane.

Ah the circle may be considered to be a polygon with an inde-

finitely great number of indefinitely short sides, each distant r

from the centre of figure, we have I=Mr^l'2,.

(12) Find the moment of inertia of a uniform thin circular plate

(mass= J/, radius= r) about {a) a diameter, {h) a tangent.

Ans. {a) iVr-74
; {h) bMr'^IA.

(13) Find the moment of inertia of a uniform circular cylinder

(mass= J/, radius = r) (a) about its axis, (6) about a generating line.

Ans. (rt) I//72
; (6) 31//-72.

(14) The moment of inertia of a uniform sphere (mass= J/,

iadius = r) about a diameter being 2Mr';bf find its radius of gyration

about a tangent line.

Ans. r iJljb.

491. Measurement of Moment of Inertia.—The unit

of moment of inertia is that of a particle of unit mass at

unit distance from the axis of rotation. In specifying

moments of inertia, no mention is usually made of the

unit, but they are described as of such and such a value

when expressed in such and such units of mass and
length.

The dimensions of the unit of moment of inertia are

clearly [M] [Lf.

492. Examples.

(1) Express in oz.-in. units a moment of inertia of 20 ft.-lb.

units.

Ans. 46,080.

(2) A moment of inertia has the value 500 when expressed in

terms of the centimetre and the gramme. Find its value in terms

of the metre and the kilogramme.

ns. 0-00005.

(3) An author speaks of a rectangular parallelepiped (edges 1, 2,

.it,
"
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)f 20 ft. -Un-

expressed ill

ilue in terms

(edges 1, 2,

and 12 cm. reajjectively and density 4 grm. per cub. cm.) asliaving

a moment of inertia equal to 1*207 about an axis through its middle

l)oint and perpendicular to the face of greatest area. He is knowu
to have employed the cm. as unit of length, and to have worked

where
(jf
has the value 980'94 cm. -sec. units. Wliat must liave been

his unit of mass ?

Ans. Tlie unit of mass of tlie (*.G.S. system of gravitational

units.

(4) By what number nuist we multiply the value of a moment of

inertia expressed in the units of the ft.-lb.-sec. absolute system in

order to determine its value in the unit of the C.G.S. absolute

system ?

Ans. 421390-7....

(5) At the end of a thin rod, of length 2 ft. and linear density 1

oz. per in., are particles of masses 1 and 2 lbs. respectively. Ex-

press its moment of inertia about an axis perpendicular to the rod

through a point distant 3 in. from the particle of smaller mass, in

the units of (a) the absolute, and (6) the gravitational in.-oz.-sec.

systems (,7= 32 ft.-sec. units).

Ans. (a) 17,352; (b) 45-18....

493. Equations of Motion.—The moment of inertia

being thus a quantity capable of determination, we can
apply at once, to cases of motion, the equations of 454.

If the motion be about an axis fixed both in the

body and in space, the angular acceleration about it

a = ^FP/'2'inr'^, where 'EFP is the algebraic sum of the

moments of the external forces, and 1,nir^ the moment of

inertia, about the fixed axis.

If the body be quite free to move, the linear accelera-

tion of the centre of mass is given by the equation

a= ^F/llm ; and the angular acceleration about any axis

fixed in the body through the centre of mass, by the

equation a^^FPl^nir^y where ^FP is the algebraic sum

m

*h !

•'''* '

Hyy'

4 I 1 ;

m
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of the moments of the external forces and 'Evir^ the

moment of inertia, about this axis.

These accelerations being determined and the initial

velocities being given, the final velocities and the dis-

placement may be found (see 251). The above equations

are therefore called the equations of motion of a .Igid

body. We can apply them only in simple cases of the

motion of rigid bodies (227), in cases, viz., in which one
line in the body has a fixed direction in space. More
complex cases require higher mathem.atical treatment
than the readers of this work are supposed able to

apply.

494. In many cases, especially when the forces act only

for a very short time, it is convenient to have the equa-

tions of motion expressed in terms of the impulses of the

acting forces rather than of the forces themselves. Let
V, o) and v\ w be the initial and final values of the com-
ponent linear velocity of the centre of mass in the direc-

tion of the impulse, and of the angular velocity of the

body about the fixed axis, respectively. Then (117, 225,

and 319),

V —V —

and ft) ft)

where $ is the impulse of the force F.

495. The laws of the conservation of linear and of

angular momentum, deduced from the equations of motion

of extended systems (416 and 429) apply necessarily to

rigid systems. The expression of the latter becomes

somewhat modified however. In the case of extended

systems, it is expressed by the equation 2mft)r^ = con-

stant. In the case of a rigid body, either about an axis

II <

I
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Lr and of

lof motion

)ssarily to

becomes
extended

,jr^ = con-

it an axis

fixed both in it and in apace, or about an axis fixed in it

through the centre of mass, it is expressed by the equa-
tion oo^mr" = constant.

496. Motion about Fixed Axes.—We shall now discuss

some examples of the application of the equations of

motion to the determination of the motion of rigid

bodies. We take first cases in which the axis of rotation

is fixed both in *he body and in space.

Exanij^les.

(1) Find the angular acceleration of a uniform circular disc,

moveable about an axis through its centre, perpendicular to its

plane, uncier a force applied in the plane

of the disc by means of a string fixed at

a point of the rim of the disc and wrapped

round the rim.—Let the disc have a mass

JI and a radius r, and let its radius of

gyration about the given axis be k. The
force F acts taugentially to the disc. If

it acts as in the diagram, its moment
about the fixed axis is (425) - Fr. Hence

(493)

a= — Fi'

The angular acceleration is therefore constant. Hence, if the

initial angular velocity be given, the final angular velocity and

the displacement after any time may be determined as in 225.

(2) A rigid rod, 12 ft. long, whose mass may be neglected, has at

one end a particle of 10 lbs. mass and at the other a particle of

5 lbs. mass. It is free to rotate in a horizontal plane about an axis

through the centre of mass of the system. Find the force which

must be applied to the smaller particle perpendicularly to the rod

that unit angular velocity may be produced in the rod in 1 sec.

Ans. GO })Oundals.

>i\
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(3) Find the time of oscillation of a heavy bwly ca[)able of lota-

tion about a fixed horizontal axis, which does not pass through its

centre of mass. [Such a body is called a compound or physical

pendulum.']—Let the i)lane of the diagram be a

plane through the centre of mass p»rpendicuhir

to the fixed axis. Let S be the point in which

that plane intersects the axis, C the centre of

mass, and SN a vertical line.

The external forces are the weight mg (if m is

the mass of the body) and the forces by which

the axis is fixed. The latter have no moment
about the axis. The moment of the weight

which (474) acts at the centre of mass is, if we
denote CS by k and the angle CSN by dy

-mghmwd. If k is the radius of gyration of

the body about an axis parallel to the fixed axis through the centre

of mass, the moment of inertia of the body about S is (488)

?n(F+/i'^). Hence, if a is the angular acceleration about >S',

o =_ mgh sin d

~~'mJ[WVhp;

The angular acceleration therefore varies with the displacement

from the position in which SG is vertical, and the deter-

mination of the displacement produced in any time is therefore

difficult.

If however the body move so that 6 is always small, we may
write d for sin ^, in w^hich case

In a similar way, or by reference to 187,* it may be sliown that the

* In 187 we found the tangential acceleration of the bob of a
simple pendulum, moving under acceleration g^ to be gd. Now, as

the bob moves in a circle, it follows from 135, 130, and 120, that
the magnitude of its angular acceleration about the centre is the
quotient of its tangential acceleration by its distance from the
centre, or in this case gdll.
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)lacement

le deter-

I

therefore

we may

that the

Ibob of a

Now, as

1 120, that

re is the

from the

angular acceleration of a simple (or matliematical) peiuliilum of

length I oscillating in a plane is

a= -9

Hence the motion of the physical pendulum will be the same as

that of a simple pendulum whose length

and the time of oscillation (187) will therefore be

'-WW-
A simple pendulum of the length I is usually spoken of as the

isochronous simple pendulum.

Produce SC to 0, and make SO equal to I. The point is called

the centre of oscillation, the point »S* being called the centre of

siispeTision of the pendulum. Then

Ji;^=:h{l-h) = SC.CO.

Let the point be now made the centre of suspension, i.e., let the

given body be made to oscillate about an axis through 0, parallel

tc the original axis ; and let OC be produced to a point S' such that

OS' is equal to the length of the simple pendulum which is iso-

chronous with the physical pendulum about the new axis. Then
it may be shown as before that

I-= 00. OS'.

Hence the points S and S' coincide, and the centres of suspension

and oscillation are convertible.

[Capt. Kater applied this property of the centres of oscillation

and suspension of the physical pendulum to the determination of

the value of g. He employed a uniform metallic bar, provided

with means of suspension at points A and B, known by calculation

to be very nearly in the relative positions of the centres of oscillation

and suspension, and provided with means of producing slight

.IM
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cliangeH in the ponitiun of the centre of mass of the bar and in itH

moment of inertia. He then adjusted the instrument so that its

time of twciUation was the same wliether ^ or J5 was the point of

Huspension. Tlie time of oscilhition thus observed was that of a

simple ])endnhim whose len<i;th was the distance of A from B,

Hence, in the equation t— 2T'Jl/(/^ I and t being known, </ could

be found. The construction of ('apt. Kater's pendulum, the mode
of its adjustment, and the best methods of observing its time of

oscillation, will be found described in books on laboratory practice.]

(4) A uniform rod, 10 ft. long, is suspended from a point 2| ft.

from one end. Find (a) the position of the centre of oscillation,

and (h) the time of a small (double) oscillation.

Ans. (a) Ij ft. from the other end
;
(b) 2*67... sec.

(5) A uniform cube is free to turn about one edge which is

horizontal. Find the length of the edge that the cube may swing

to and fro in a second.

Ans. 0-865... ft.

(6) Compare the times of oscillation of a uniform thin circular

plate about a horizontal tangent with that about a horizontal axis

through the point of contact perpendicular to the plate.

Ans. »J5 : J6.

(7) Determine the axis of suspension of a uniform rectangular

lamina for which the time of oscillation under gravity is a

minimum.

Ans. Its distance from the centre of mass is equal to the radius

of gyration about a parallel axis through that point.

(8) A uniform straight rod AB is freely moveable about its fixed

lower end A. The other end B is attached by a fine string to a

fixed point C. The system is slightly displaced, the string being

kept tense. Find the time of a small (double) oscillation.

Ans. t= 2v^/ ^ —-r where d» is the inclination of AC to theV 3gr cos

horizon, and jS is the inclination of -dCto AB.—AC ia the fixed axis
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lout its fixed

string to a

String being

i)n.

\i AC to the

le fixed axis

of the HyHteui. If htg is the weight of .IZ/, its component in .i plane

perpendicular to AC'ih mffrj)H(p, and the diHtance of the line of aetion

of this component from AC is, if d is the inclination of the j)l;uie

ABC to the vertical plane through AC, \ABH'n\I^H'u\ 6,

(9) A plane lamina is moveahle ahout a fixed point in its own
plane. To determine the line of action of a blow of impulse «l> whieli

will produce no jerk at the fixed point.—Let C be the centric of

mass of the lamina. The blow will ])roduee in two component

accelerations, one due to th- jingular acceleration about C and

therefore perpendicular to OC, and the other the translation}!

I

acceleration common to it and to Cand therefore codirectional with

the impulse. Since is fixed and these component aeeelerations

therefore equal and opposite, the line of action of the impidse nuist

be perpendicular to OC. Let OC=hy and let d be the distance of

4>'s line of action from 0, and let k bt* the r.adins of gyration of the

lamina about C. Then (244), e<piating the values of the angular

acceleration about O and C resj)ectively, we have

Hence

The point in which *'s line of action cuts OC is called the iumtr>;

of percussion. By Ex. 3 it coincides with the centre f)f oscillation.

(10) A uniform rod AB is capable of rotation alxtut A. Show

that, if a blow (impulse = *) be applied perpendicularly to its

length at either the point B or a point distant from B by the

amount ^AB/Z, the jerk at A is 'i>/2, i.e., a blow of im])ulse */2 must

be applied at A to keep that point at rest.

497. Motion of Free Rigid Bodies.—The following

problems illustrate the application of the equations of

motion to bodies which have no point fixed.

Examples.

(1) A uniform circular disc whose plane is veitical rolls (without

sliding) down an inclined plane. Determine its motion.

•".a
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The (liMc is acted upon l>y three forces, its weight TK, the

'^ iioriiial reaction of the phaiie Jt, and

the friction F. All are in the plane

of the disc. Were there no friction

the disc would slide down the plane.

Since the friction prevents the sliding',

the direction of F is therefore up the

plane.

Let the radius of the disc be r, its mass

//^, an<l I- its ratlins of "gyration about an axis through C perpen-

<licular to its plane, and let / be the inclination of the jdane. Then,

if d is the linear acceleration of the centre of mass down the i)lane,

(? = <7sin i- F/iH.

The linear acceleration in a direction normal to the plane is zero.

Hence the above is the resultant linear acceleration. The resultant

angular acceleration about the centre of mass is

a= — —Fr
mi'

Now (254, Ex. 0)

Hence

a -f oy= 0.

, Fr^ , „ mCd^

mi'- r'

Substituting in the first etpiation this value of F^ we find

. <7r''^sin i

Hence a =

Both linear and angidar accelerations are therefore constant.

Hence the displacements and velocities after any given time may
readily be determined.

(2) Find the time a rigid cylinder will take to roll from rest down

a plane 20 ft. long and inclined 30° to the horizon, the axis of the

cylinder being horizontal.

Ans. 193... sec.

(3) A uniform circular disc whose plane is vertical moves in con-

"1
•
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tact with a .sniootli inclined plane. From a point in the Miinn'

vertical ])Iane as the disc and at a <Iistance from the imlined plane

equal to the di.nneter ot tlu' disc, a strin;,' is ciirried parallel to

the inclinttd plane and is wrapped round the ed;^'i' of tin- disc an<l

itH end is fiwA in the circumference. Find (<t) the tension in the

string, (b) the linear airceleration of the centre <»f the «lisc, and

{(•) its angular acceleration.

Ans. {a)m(/k^fimil{Jt- + r^), (6) g/^>*\niXl' + r'\ (r) <7rsini;(/-H>'-),

wlierem is the uw.hh of the disc;, r its radius,/' its radins of gyiation

ahout an axis thi'ough its centre perpendicidar to its plane, and /

the inclination of the inclined ])lane.

(4) A flexible iuid inextensihle rihhon is coiled on the circumfer-

ence of a uniform circular disc (radius = r) and lias its free end

attaclied at a fixed point. A part of the ribbon is unrolled and ver-

tical, and the disc is allowed to fall from rest by its own weight.

Find (a) the uiotion of the disc before the ribbon becomes wholly

unrolled, and (b) the time in which the centre of the disc will de-

scend 5^/3 ft. from rest.

Ans. (a) Acceleration of centre of mass = 2r//3; angular accelera-

tion =2gf/(3/')
;

(b) 1 sec.

(5) A homogeneous hemisphere performs small oscillations on a

perfectly rough horizontal plane. Find the periodic time.

Ans. If r is the radius, c the distance of the centre of mass from

the centre of the hemisphere, and k the radius of gyration about an

axis parallel to the instantaneous axis through the centre of mass,

the time of a small oscillation is

2irV CfJ

cf

(6) A uniform circular hoop moving in a vertical plane in contact

with a rough horizontal surface has at a given instant an angular

velocity opposite in direction to that which would enable it to roll

in the direction of its translation at that instant. Determine its

subsequent motion.

Let // be the hoop, Ox the intersection of the given vertical and

horizontal planes. The forces acting on the hooj) are its weight and

'I
I

'i

It

J-
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m

ii'

the ('(Jinpoiit'iitH of tlie reaolion of the pl.inr, vi/., its iiorinnl eonipoii-

•'Mt /i iiiui the fiictioii /'. If wt'

sii|)|>osc the ti-iUisliitioM of the liooj)

to be in the direction Ox, the frii-

tion F which aetM at A will have

the direction AO. II and the

weijrht m(j net also throu;r|i J. the

one vertically iipwardH, tlie other

X vertically downwardH. If m is tlu'

nia8s of the hoop, r its radius, k

its radius of gyration about an

mg axis throu*(h its centre C perpen-

dicular to its i>lane, the acceleration of the centre of mass parallel

to 0,v

a= - F/'m,

and the angular acceleration about an axis throiigh C perpendiculai

to the plane of the liooj)

a= - Fr/(mk^).

Since the hooj) remains in contact with O.v there is no acceleration

perj)endicular to Ox; and therefore

Hence, if /* is the coefficient of kinetic friction,

F=nmg.

Hence </ = - /«/

and a= -figt'lk'-.

Tlie linear and angular accelerations are therefore constant, and

hence the initial linear and angular velocities, and the initial posi-

tion of the hoop being given, its position and velocities after an}

time may be determined.

If at any instant there be no slipping we have (254, Ex. 9), if I'

and w' are the linear velocity of C and the angular velocity about C

respectively at that instant, v' -\- w'r =0. If therefore it be required

to determine the time, ^, after which slipping ceases, we have, de
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noting by v and a> tlic initiiil values uf the linear and un^Hilar \elo-

lities respectively,

KlinwiiatiiiL( 7'' and w' from these ('(niatiMiis we fiml

/ =

At the instant at which ?' + w'/' beconuis zero, there is no tendcn»\

to slip, and jm becomes /en*. I[ence f7 — a = (). Hence after the

time / the linear and angular velocities are constant, and theii

values are

_,_ _ /•'-( r + ur)_ r{rT) - I'-w)

w = w
r{v + wr) /-w re

/••- + ,
/•^ + ;-^

U rv-k^u is ne.i^ative, i^' is ne;>ative. Hence if w is positive and

<(reater than r<;//'-, the translati«tn of the hoop will, after the alxAc

time t, be in the opposite direction to the initial translation.

The above results api)ly als(» of c(»urse to a ball spinnin«^ about a

horizontal axis perpendicular to the direction of its tianslation.

The reader who in his yctuth has played with a hoop, or in more

advanced years has amused himself with a napkin iin<,' or a billiard

hall, will recognise in the above lesults the mathematical ex[)ression

of a familiar exi)erience.

(7) A uniform circular cylinder (radius = ?', ladius of <,'yration

about axis = /-), rotatinf( about its axis with angular velocity, w, is

placed with its axis horizontal on a rough inclined plane (coelKcient

of friction = ^i, inclination (/)to horizon = tan ~V), the direction of the

rotation being that which it would have if the cylinder were rolling

without sliding u}) the plane. Show^ that the axis of the cylinder

will be stationary for a time k-u}'{nr(/ cohi), at the end of which the

angular velocity will be zero.

(8) A uniform beam is sui)ported horizontally on two props.

Where must one of them be ])laced that, when the other is remove«l.

1

1!

a
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1 ?

i-f

rl,)'
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„ ,i,f

I u

a=

the instantaneous force exerted on the former may be equal to half

the weiglit of the beam ?

Let h be the required distance of the i)ermanent j)rop fron» the

middle j^oint of the beam, k the radius of gyration of the beam
about a normal axis through its middle point, m the mass of the

beam, a its angular acceleration, and R the force exerted on the per-

manent ])rop mimediately after the removal of the other. Then

(496, Ex. J), and 244).

mgh _ Jlh _ hagh

Hence h = l:

(9) A uniform square is supported in a vertical })lane with one

diagonal horizontal by two pegs, one at each extremity of the dia-

gonal. Show that the initial force on one peg, when the other is

suddenly removed, is equal to one fourth of the weight of the square.

(10) A uniform horizontal bar, suspended from any two points in

its length by two parallel cords, is at rest. If one of the cords be

cut, find the initial tension in the other.

Ans. If I is the length of the bar, W its weight, and d the dis-

tance from its centre of mass of the point of attachment of the

uncut cord, the tension is ^72/(^^4-12^'-^).

(11) A uniform beam (weight = W) rests with one end against a

smooth vertical wall, and the other on a smooth horizontal r^lane,

its inclination to the horizon being i. It is prevented from railing

by a string attached to its lower end and to the wall. Find the

instantaneous force between the upper end and the wall when the

string is cut.

Ans. hWcoti.

(12) A sphere is laid upon a rough inclined plane (inclination= t).

Show that it will not slide, if the coefficient of friction is as great

as, or greater than (2/7) tan i.

v^i3) A sphere (radius= r) whose centre of mass is not at its centre

of figure, is placed on a rough table (coefficient of friction =in) ;

find whether it will begin to slide or to roll.

Ans. If the initial distance o:'' the centre of mass from a vertical

line through the centre of figure is greater than M'^/r, k being the

i-'i

m
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L'et J// be the rod rn fK • .

the ma.« of H.e r« « H >""""'' '"

"« centre of maj on.?;'!*"'''^:."' ^of gyration about an axis ill T-''"""'

" ^
the rod at J on impact. Its dtlio!,

' "T^"^ e^l«ie„ced by
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("> if there is no recoil 1 .0 • •

h»pact. Hence the sum 'of it!
,!',"' '" "'""'"' *'"' ^^ '''fter tl„.»-t he .ero. These ar ^u ^ JX*"*

-'-•"•- after in,,:'
Hence "I'^'Aids and a,'acos» downwards.

-w'acos(?= o

have were there no recoil, le havejara'" " "'' '"'""'^'^ -<""''

1(

ll
1

{ r

^^
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•I'' is then'fdic kiK»wii in teriu.s of 7*, w. 0, and c. If its value be sub-

stituted for * in tlie first two equations, v' and w' may then be

determined for this case also.

(15) A beam which is moving without rotation in a horizontal

plane imjunges without recoil on a fixed rod at right angles to the

plane. Find (a) tlie impulse of the reaction of the rod, and (h) the

angular velocit> of the beam immediately after impact.

Ans. (a) )id-'-i/H'm a/{c^+ k'^)
;

(b) cuHiiiai(c^+ k'^) ; where m= mass

of beam, /•= radius of gyration ab(mt normal axis through centre

of mass, y<= velocity of centre of mass before impact, a= inclination

<»f direction of u to the beam, «- distance of centre f)f mass of beam

from fixed rod at instant of impact.

498. Motioii of Systems ofRigid Bodies.—If the motion
is to be determined of several bodies which act upon one
smother, the equations of motion nmst be applied to each

of them. The following cases will serve as illustrations :

En'amples.

(1) Two i)articles of masses 7U and ni are connected by an inex-

tensible string which hangs over a pulley moveable about a fixed

horizontal axis. The axle of the pulley is smooth, its rim so rough

that the string does not slip. Find the acceleration of the particles.

(AtwoocFs Machine. See 382, Ex. 1).

Ijct 7^ and T be the tensions in the portions of the string attached

to w?- and m' respectively. The moments of T
and T about the axis of the pulley are, if r is the

ladius of the pulley, 7V and - Tr respectively.

Hence, if o is the angular acceleration of the

pulley,

_ Tr-Tr
*~

'Mir '

where J/ is the mass of the pulley and k its radius

of gyration about its axis. As the string is in-

extensible, the acceleiation a of m' is the same as

that of »i; and we have as in 382, Ex. (1),

a= {m'g - r)/m' = {T- mg):m

.

mg

K <•

f
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We have also, Hince the string does not slip,

a = ar.

Hence we have four equations involving four unknown quautities,

a, a, T, T. Eliminating a, T, and 7", we find

a — m -m

which differs from the'result of 382, Ex. 1, in which theatrin<r liaiiirs

over a smooth peg by the introduction of the quantity Mlrjr
o

(2) A uniform cylinder weighing 100 lbs. turns without friction

on its axis whicli is ho"'''ontal. Motion s communicated by a bodv

of 10 lbs. mass, attaclied to an inextensible string without weight,

which is coiled round the surface of the cylinder. Find the tlistance

through which the body will descend from rest in 10 sec.

Ans. \0(j.

(3) To the string coiled round the wheel of the simjile machine

called the Wheel and Axle (254, Ex. 5) a mass of 10 lbs. is attached
;

to the string around the axle a mass of 100 lbs. Given that the

radii are 3 ft. and 3 in. respectively, that the moment of inertia

about the axis expressed in terms of the pound and foot is 2400,

and that the machine is frictionless, find the number of revolutions

made in 1 minute from rest, taking g to be 32 ft.-sec. units.

Ans. 60/7r.

(4) Find the time of a small oscillation of a Balance with nearly

equal masses in its pans. [The Balance consists of a practically

rigid body called the beam, moveable about a horizontal axis fixed

in it, and symmetrical about a plane through this axis and the centre

of mass of the beam. It carries pans or scales to contain, one the

body to be " weighed," and the other standards of mass. The j)ans

are moveable abor.t axes fixed in the beam, which are parallel to

the axis of the beam, and are equidistant both from it and from the

centre of mass. A plane through the centre of mass of the beam,

perpendicular to the three axes, intersects them in three points,

which are called the points of suspension of the beam and pans

respectively. The distances of the points of suspension of the jjans

from that of the beam are called the arms of the balance. The
2b
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'- i^iii

centre of iiians of the heain is u.sually below its fixed axis, the beam

being ju'ovided witli an adjuHtnient by wliich the position of tliat

point may be varied. The h'ne joining tlie points of suspension of

the ])ans passes in general below the axis of the beam. In some in-

struments it is made to pass as nearly as possible through the jixis,

in others a little above it, when the jnins are unloaded.]

Let OBC be the beam, being its point of suspension, (J its

centre of mass, and B and C the ))oints of suspension of tlie j)ans

P and (^. Let A l)e the point in which OG produced cuts CB. It

is obvious that OA is at right angles to liC. In the diagram the

angle OCA is for clearness made large. It is usually small.

The beam is acted ujxni by thiee forces, its weight and tlu-

resultants T^ T' of the tensions in the strings or rods sup])orting

P and Q respectively. The motion of the beam is usually slow and

through small angles. Hence, though /' and Q will oscillate aboiit

C and B^ we may for an approximate result assume T and T' to be

vertical. If, then, M be the mass of the beam and k its radius of

gyration about 0, m and m! the masses of the pans P and Q respec-

tively with their contents, /3 the angle OCA , and 6 the inclination

of BC to the horizon at any instant, we have for the angular ac-

celeration (a) of the beam

a _ T{A (7 cos d-OA sin 0) - T'{AB cos e + OA sin d) - Mg . OG . sin e

Mk\

For the reader will have no difficulty in proving by tlie aid of tiie
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st'coml figure, (in whiclj the (h)tted lines are all either horizontal or

veitieal) that the numerator <.f this e.\))ressi(»n fur a is the algebraic

sum of the moments of the forces about 0.

The pans P and Q are aeted upon by two forces each, viz., their

weights and the resultants ^ and 7" of the tensions in the strings

or rods supporting them. Hence the vertical linear acceleration

of P is {mg — T),in ; and it is equal to the vertical component of the

linear acceleration of (', which is a . OC . cos (^ + /S). Hence

mg -T^ maOC eoa (6 + fi).

Similarly T' - vi'g = m'aOCQos (0 - fi).

Now r;Cco8(0±/3)=:C>»(7(cos6'cos/3+ sin 6'sin|9)

= .\CcoHd + OA sin e.

Hence

aMk- = mg{A C cos d - OA sin 6) - m'g{A C c< .s e + OA sin d)

- MgOa sill d - maOC^ cos-(^ + jB) - ru'aOC- fOii\e - (i.)

•For small values of d therefore

aMU"^ = mg{A C - OA . 6) - m'(j{AC+OA .e)- My . 0(/ . 6

- {m + m')aOC'^ cos^jS.

Hence, noting that JC=0Ccos/3,

m(AC- OA . e) - 7n'{A C+ OA . 6) - J/. 00'
. e

Mk'^+ {ni + )a')AC'^
"^'

If the masses of P and Q are the same, viz. ///, we have

2m.OA+3f.OGa= — gO.

Hence (496, Ex. 3) the time of a small oscillation is

Hence

} ill the sa

^-^V M.OG.

MJf^+ 2m.A0-
{2m.OA+}f7oa\g'

If yi, 0, and Care in the same straight line, AC—OCawH OA ==0.

~0C^

M.OG.g
'

(^)uickiiess of motion is a desirable characteristic of a balance,

and it should therefore be so constructed that t may be as small as

I

m

i f
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jjOHsible. Hence for this purpose the mass of the beam, its radius

of gyration, and tlie distance between the j)oints of suspension of

the pans, sliould be as small as i)Ossible, and the distance from the

axis both of the centre of mass and of the line joining the points

of suspension of the pans should be as great as possible.

For conditions of sensitiveness, see 507, Ex. 11.

(5) A uniform sphere aS' rolls without sliding down AD a. line of

greatest slojie of the inclined j)lane surface of a wedge AC^ which

lies upon a smooth horizontal table Ox, the centres of mass of the

sj>here and wedge and the given line AB being in the same vertical

plane. It is required to determine the motion of the sphere and

wedge.

Let the vertical plane containing the line AB and the centres of

mass of sphere and wedge, D and C, intersect the table in the line

Ox ; and let Oy be drawn in this plane, and perpendicular to Ox.

TiCt m be the mass of the sphere, r its radius, k its radius of gyra-

tion about any axis through its centre of mass, m' the mass of the

OB
wedge, R the normal component, and F the frictional component of

the reaction between the sphere and wedge, and the angle ABC
< >f the wedge. As it is the frictional component of the reaction of

the wedge on the spliere which causes the sphere to roll, it must be

ilirected up the plane. Hence the same component of the reaction

of the sphere on the wedge is directed down the plane. (The forces

acting on the wedge are indicated by double arrow-heads.)

The equations determining the motion of the sphere are as fol-

lows. If dx is the linecir acceleration of the centre D of the sphere

in the direction Ox,
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«x= ( - /^ sin +F COM 0)'wi.

if di, is its linear acceleration in the direction Oy,

(if^— (/^coH 04- /^ain <p - /i></)lm.

If a is the angular acceleration of the sphere about an axis through

/) perpendicular to the plane of the diagram

The wedge obviously moves so that JiC remains in contact with

the table. Hence the weight of the wedge and the normal reaction

<if the smooth table do not affect its motion, and the acceleration

(Tjc of the centre of mass of the wedge is therefore

7ijc= {lt sill - i^cos <t>)lm'.

In the above four e([uations we have six unknown quantities,

li, F, a, cix, Uy, a'x. But two more ecpiatioiis may be obtained by ji

statement of the kinematic conditions of the jiroblem. First, since

*S' rolls down the inclined jilane, the change i)roduced in any tinu-

in Z^s vertical distance from any jioint B in the wedge divided liy

the change in its horizontal distance from the same jioint is equ;il

to tan 0. Hence at every instant the ratio of /)'s vertical velocity

relative to B to its horizontal velocity relative to B has this

value ; and hence also the ratio of the vertical acceleration of D to

its horizontal acceleration relative to B has the value tan 0. Now,

the vertical accelerations of J) relative to B and to are the s}ime,

for B has no vertical acceleration relative to 0. And the horizontal

acceleration of D relative to is equal to that of B relative to 0,

together with that of D relative to B ; and therefore the horizontal

acceleration of D relative to B is etjual to that of D relative to O,

iiiimis that of B relative to O. Hence the first kinematic condition

may be expressed by the equation

i^fyli^x - ii'x) = tan 0.

Secondly, since there is no sliding of the s])here on the incliiie<l

plane, the linear velocity in any direction of that point of the

sphere which is in contact with the wedge must at every instant be

equal to the velocity of the wedge in the same direction. Now,

tliis point of the sphere has in the direction Ox two component

ik'



:590 DYNAMICS [498



[498

ul anotlier

U'Viuine tlio

iu<r, (Uvectly

Htiing coilx

t'l-, revolving

btev cyliiuler

Fiiul {a) tlu'

3 string ; aiul

iuul yii\ can

their central

a Hniall pro-

rhe other has

ties after tiie

coefficient »»f

iui[>act antl

Ex. 11),

Ltive angular

4!»8J OF UKUD ISODIKS. :]i)l

aii'l from the equations of {a)

htm )'/' w,
II

Hence

aiitl

'2{iiir+ tii'r')

)ii r+ III'
r'

u

ta —0),

(8) A particle, of mass m, diopjied from a lioiLcht I, strikes tin?

t'lul of a iiorizontal uniform heam, of mass 8>;< and length 2/, which

can move freely ahout its centre of mass, b'iml the angular vi'locity

of the beam immediately aftei' im|>act, (a) if there is no recoil, (h)

if the coefficient of restitution is 0"').

a ,

Ans. ((i)>/gl2l; (b) 2^g/-2L

(9) A circular cylinder (mass= m, radius= /-, radius of gyration

about its axis= ^) is revolving with angular velocity w aboul its

axis which is horizontal, when it suddenly begins to lift a particle

(niass--m') by means of an inextensible string wound round th»*

cylinder. B^ind (a) the angular velocity of the cylindei* immediately

after the particle begins to move, and (6) the impulse (f the stress

transmitted by the string.

Ans. {a)
m'r^ + mk, ; (^)

m'r'^+ nik-

(10) Two uniform weightless spheres, either smooth or rough, and

moving without rotation, undergo impact. At the instant of im-

pact, their centres are moving in the direction of the line joining

them. Given their velocities before impact, tind their velocities after

impact.

Since the spheres are either smooth or moving without rotation,

the direction of the stress during impact is normal to the surfaces

of the spheres. It therefore produces no angular acceleration. The

equations of motion are therefore the same as in the case of two

particles moving in the same straight line which so impinge, that

the stress during impact is in the line of motion. Hence the results

of 380, Ex. 1, apply also to this problem.

When two spheres impinge whose centres at the instant of im-

ij

:|i'

•f

'I
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r:' i. h

1 i

pact ;ir(! moving in tlio (IiT'C(!tion of tlio Hue joining; tlieni, tlu-

impact in said tf) be direct. From the above it is obvious that Kxs.

1-8 of 380 may all b»! traiiMformed, by changing a few wordw, into

examph^H «if the ilirect impact (»f smooth or of non-rotating spht^res.

(11) Two uniform smooth weij^htiesa spheres, movinj^ without

rotation bo that their centres remain in a piven phme, im|»in;L(e

with or without recoil. (Jiven tlieir velocities immediately before

impact to find them immediately after.—Let /I, B ha sections of

y

the spheres by the given plane, 6", D their centres of figure and

therefore of mass. Let ?«, v, inclined 0° and x° to CD respectively,

be their velocities before impact, w', v\ inclined 0'°, x'" respectively

to Ci), their velocities after impact.

During impact a stress of impulse It acts between the spheres

in the line joining their centres. It therefore produces no

angular acceleration in either. As there are no external forces

acting on the spheres, the linear momentum (416) in the direction

of the line of impact {CD) is the sami before and after imi)act.

Hence, if M and m are the masses of the respective spheres,

M^i cos + mv cos X= Mu' cos <t>' + mv' cos %•

As no forces act on either sphere i»i the direction perpendiculai

io CD
wsin0=w'sin0',

and V sin x= ^' sin x'.

If there is no recoil the component velocities in the direction of CD
are simply equalized by the impact. Hence

u' cos 0'= v' cos x'.

I I f«*
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These four e(|uations are suflicient to dct«'nnine w', v\ 0', x '" terniM

of M, V, 0, and X-

If tluMc is r(M'(»il, and if e \a the cocHiciont of reHtitutinii, \\r

have (:J7J>)

r'cosx' j<'coh0' = <''mcom0 - ycoHx)

;

and this (-(piation, with the first throe of thosr obtained abo\ c, air

Hiitficient to deteiniine the four unknown (piantitios.

The impact of two Hphcnts, whose centres at tin* instant of inijiact

are not niovin;^ in the sanu; strai<^ht line, is sai«l to be obfique,

(12) A smooth ball .1, wci^diin^ 20 ^rni., strikes another ball 11

which is at rest, the direction of vl's motion bein«( incline*! 30" to

the line joinini,' the centres of A and li at the instant of impact,

and glances oti' in a dirtiction perpendicular to that of its motion

before impattt. Kind the mass of /i, the coefHcienl of rcstitiititui

being 0"4.

Ans. 100 grm.

(13) A billiard ball .1 (niass = wi) impinges upon another //(mass

— m') which is at rest, the dire(;tion of J's motion before impact

being inclined 45° to the line joining the centres at the instant of

impact. Find the direetion of .I'm motion after impact, assuming

the coeiticient of restitution ecpial to unity.

Ana. Inclinati(»n to the line joining the centres = tan"*-'- '",.

til - III

(14) Two billiard balls A and Z? are lying in contact on a table.

Fin<l the direction in which Ji must be struck bv a third ball ('s»i

as to be driven '>ff in a direcition inclined at a given angle to the

line joining the centres of A and /i, all three balls being smooth

and of eipial volume and mass. Show that the result is the .same

whatever be the value of the coefficient of restitution.

Ans. The line joining the centres of C and B at the instant of

impact must be inclined to the line joining the centres of A and li

at the angle tan~*(A tan 0).

(15) Two straight rods ACB AWiX CD, wliose thickness and density

are equal, and whose coefficient of restitution is unity, lie on a

smooth horizontal plane at riglit angles to each other, the en<l ('

II

i|

^'1

ir
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of tlu' l.'ilttT Itrin;^' ill cfiiitjict with tlu' foniiri'. hi'tiTiiiiiu' tla;

point ut wliicli A('/{ iii.'iv he .stunk without coiist'tjiu'iit rotiiti«»ii.

Aim. If A('=((, C/h />, and ('/) <\ and if </-/>, the n'(|uii«'«l

a- />-'

|K»int is in JC, and itH dif^tanct' from r JH ., ,

(1(5) A l)all (niaHW = wj, iadiuH = /', radius of j^Niatioii about itrt

ctMitiV"/') slidiiij^' without rotation alon;,' a smooth horizontal

|»hint', with \i'loi;ity //, wtriki's a<;ain.st a perfectly rou^di vertical

plane, its direction of motion hefore impact bein^^r inclined at the

an;,de to th»! veitical plane. Show (I) that if there is no recoil

the impulse*, during' imjiact, of the frictional coni|»(tnent of tin*

reaction of the Ncilic.'il plane is

mli'-ii c< Ks I)

V + A"

and (2) that if the (M)efHcient of restitution is c, the. hall's direction

of motion after ini|)act is inilined t<» the vertii'al jilane at the anj^le

tun-i("<r
\ r--

K/-
+/••-')

eHr
-'''')', ta

409. The Law of Enenjy.—The general law of energy,

deduced (437) from the equations of motion for extended
systems, including the law of the conservation of energy

(435), applies of course to those extended systems which
are rigid. Its application to the solution of problems is

simplified in the case of rigid bodies for two reasons.

First, as the particles of the sj'^stem are at invariable

distances from one another, the internal forces do no
work in any displacoment, and tlierefore the external

forces only appear in the equation. Secondly, the ex-

pression for the kinetic energy relative to tlie centre of

mass is very simple. If o) is the angular velocity about

an axis fixed in the body, and r the distance of a particle

from the axis, wr is its linear velocity relative to points in

that axis. Hence the kinetic energy of the system rela-

tive to points in the given axis is

o
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it* M niid /.• aic the huimh of tho Ixuly and its radius of

j^'yration about the <j[ivon axis rcvspectively. If tlu5 j^ivon

axis pass throu<^li tho centre of mass, the al)ove is the

ex[)ression for the kinetic energy relative to tlmt point.

Wo shall illustrate the a])plieation of the law of cnerj^y

to the solution of problems by a few examples:

rj,LUDipU'S

(I) A uiiiforni md iiiom>.s in a vert iciil plaiu' within a lixcd .sniuotli

luMni.s|>ht'ii'. Ix) (U'tt'rniine iim anynlai- \flo(;ity in any |)<»sni(»n, iih

initial position bi'iiiLf ono of instantaneous rust.

—

\jv\ ABIi' be tin*

lu'niis|)lu!re, its ccntic, (Arand
i o '-* "'

()i/ lioii/ontal and vortical hiu's

ivs|)t'ctively in tlio plane of the

rod's motion. Let A' 11' be tlic

initial position of the rod, li

heini,' the distance (C'J)') of its

centre of mass (C) from O.r. ^

liCt AB be its ])()sition at the

instant under consideration, 0/)

and DC, or .<• and 7/, bein<jj the co-ordinates of its <;entre of mass.

The component velocities of C will be .*• and //. Uowx' if w is the

anj^ular velocity of the rod about (\ m its mass, and /• its radius of

;;yration about a normal axis throu<^h C\ the kinetic ener<fy of

the rod in the ])osition AB and therefore the increase of kinetic

energy during the motion from the position A'B' to the position A B
is (442) hm{a;'^+j/^+ l:-u}'^). The external forces acting on the rod are

the reactions of the smooth sphere and the weight of the rod. As

the ends of the rod move in all positions in directions perpendicular

to the reactions exerted on them, no work is done by or against these

reactions. Work has been done by the weight of the rod, and, as

the centre of mass has fallen through the distance v/-// verti-

cally, the potential energy has diminished by the amount mg(J/ -h).

Hence, by the law of conservatioii of energy,

Now the instantaneous centre of the motion (233) of A B is 0. Hence

<

.
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tlie linear velocity of C is perpendicular to OCand has the magni-

tude OC. w, or, if c he the distance of the rod from the centre, cw.

Hence its components in the directions Oa^^ Oy are, if the angle

€0y be written ^,

X— —CO} cos fi,

m

y= ceo sin 6.

Also y = c cos 0,

and A= ccos0,

if is the initial value of 6. Hence, substituting in the above

equation these values of .?;, y, y, and A, we obtain

(c'+ ^•2)w2= 2c<7(cos 6 - cos ip).

If 2a is the length f)f the rod, Jc^= d^jX Hence

(a^=—_^„ „(C0S 6 - cos ri)).

(£) Two equal spheres starting at the same instant without

initial velocity move down two equally inclined planes, one of which

is smooth, the other perfectly rough. Find the ratio of the kinetic-

energy of the former sphere to that of the latter at the end of any

time. (See 490, Ex. 14.)

Ans. 7/5.

(3) A solid cylinder is freely moveable about its axis which is

fixed horizontally, and masses m, m! are hung at the ends of a string

wound round it and attached to it at some point so as to prevent

slipping. After m' has descended from rest for t seconds it is sud-

denly cut oflf and the system comes to rest in t seconds more. Find

the mass of the cylinder.

Ans. 4mrl[m' - 2m).

(4) A uniform rod JB (length= 2a, mass= wi, radius of gyration

about a normal axis through the centre of mass= k) is capable of

moving freely about a hinge at a point A in a smooth horizontal

table. The other end /i rests upon the smooth upper surface of a

wedge (angle= 4, mass= m') which lies upon the table, the vertical

plane through AB being perpendicular to the edge of the w^edge

and passing throiJg)i its centre of mass. Find the angular velocity

^y
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of the rod when inclined to the table at an angle 0, given that its

vahie was zero when the inclination of the rod was p.

. / 2w«</ sin''^i(sin ^ - sin ^) \*

V m{d- + /•^)sin-i+ 4m'a'cos-(?" -6)/

(.")) A thin s])herical shell rests upon ;. smooth horizontal plane

and a particle of the same mass as the shell is placed at the lowest

point of its internal surface, which is smooth. With what horizon-

tal velocity must the shell be projected in order that the particle

iiiav ascend to the height of the centre of the shell.

Let C be the centre of the shell, S its section by a vertical plane

tlirough C', and Ox the direction of

projection. The particle is to move

from J* up to Q. At any ])osition I^'

it is acted upon by two forces, its

weight iiKj and the reaction It of the

shell. The forces acting on the shell

are its weight 7n(j/y the reaction /i' of

the horizontal plane, and a force equal

and oi)posite to It. All pass through

its centre of mass, and thei'efore (495) the angular acceleration of

the shell being initially zero continues to be zero. When the

particle has risen to the height of the centre it ia to be instan-

taneously at rest relatively to the shell. Hence it will have

the sj,me velocity as the shell. Let v' be the velocity of shell

and particle at that instant, v the initial velocity of the shell,

//I itH mass, and a its radius. Then the initial kinetic energy

of tlie system is ^mv' and the final kinetic ericrgy is mv''. The
increase of the potential energy of the i)article is m(/a. The
potential energy of the shell undergoes no change. Hence, by the

law of the conservation of energy,

mv'- - hnv' + mga == 0.

Now the external forces acting on the system of shell and j)article

are all vertical. Hence, by the law of the conservation of linear

momentum (41G), the horizontal momentum is constant and we
1 1ave thus mv= 2'mv'.

Eliminating v' fiom these equations w^e find

y= 2 s/ffa.

• t-

Vi-

}

rjl

i Hi'

I

I
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(()) Anniforin rod (length = 2cif, radius of gyration about a normal

axis tlirougli tlie centre of nias.s = ^) is at rest, lianging by a ring

attaclied to its upper end from a smooth fixed horizontal rod. An
angular velocity w is comnuuiicated to the hanging rod about an

axis perpeiuliodar to the vertical plane through the fixed rod.

Pind its angular velocity when inclined at an angle 6 to the ver-

tical.

^^, /aa,^-12^sin^^2)V

(7) ( !<»m])are the times of oscillation of two pendulums, each of

which consists of a massless rod ending in an indefinitely thin

massless spherical shell which contains a miiform rigid sphere of

the same diameter as the shell, the internal surface of the shell

being in one })endulum smooth, in the other perfectly rough, and

the dimensions of both pendulums being the same.

Let m be the mass of the sphere, r its radius, and k its luiius of

gyration about a diameter. Let fi be the greatest inclination of

the rod to the vertical <luring an oscillation, the inclination at any

given instant ; and let <( be the distance from the centre of the

.sjdiere to the point of susi)ension.

When the rough ])endidum falls from inclination /3 to inclina-

tion d, the ])otential energy increases h\

the amount

m(/a(cos j3 - cos 0) ;

and, as the angular velocity of the si)here

about its centre of nuiss is the same as that

of the rod at any instant, which we m;;

.

denote by w, the kinetic energy incre.'-se^

by the amou)it hma-ia'^+ lmk-o}^ (442).

Hence

h)i{a^+ k'^)ui^ + mga (cos j8 - cos 0) = 0,

and w — o
' %.>{^f^^ ^ ~ COS iS).

a^ + ii:-^^

When the smooth pendulum falls from inclination ^ to 0, the

potential energy changes by the same amount as in the case of ^^he

rough pendulum. The change of kinetic energy however is difFs^r-

ent. The forces exerted on the sphere by the smooth shell all pass
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through its centre. Hence, hy the law of the conservation of

angular inctnientuin (429), its angular velocity about its centrt; of

mass is constant, and as its value is zero at inclination /i it is zero

also at inclination 6. Hence, if we denote bv u the aiimdai' velocity

of the rod at inclination B^ the kinetic energy of the smooth pen-

dulum increases during the given change of inclination by the

amoi lit i»<'/V-. We have therefore

and

hmn-ii)"^+ ;»7</(cos jS - cos ^) = 0.

w"-i = ^'/(cos^-cos/:J).

Now (352, Ex. 5) the angular velocity w" of a simple j»eii<luluni

of lengtli ?, acfpiired in falling from inclination j3 to inclination is

such that

CO -:
if/

(

(cos<^-C(js/3).

Hence the lengths of the simj>le ])enduluiiis, whicli are isochronous

with the above rough and smooth pendulums, are {a^+ L'-)la and <t

respectively; and hence the times of oscillation through indefinitely

small angles are respectively

'IttJ-- - and 'lirj .

(8) A pendulum has a bob consisting of a massive block of woo<l

and is at rest. A bullet is iired into the block of wood horizon-

tally, and ill a direction perpendicular to the axis of the ])endulum.

Kxpress the velocity of the bullet in terms of the angle through

which the pendulum is deflected. [Such an arrangement is called

a Ballistic Pendulum and is used for determining the velocities of

cannon balls and rifle bullets.]

Let J/ be the mass of the i)endulum with the bullet lodged in it

and k its radius of gyration about its fixed axis. Let m be the

mass of the bullet, v its velocity, and p the distance of the fixed

axis from the line of the bullet's motion. Then mvp is the angular

momentum of the system of pendulum and bullet before inij)act.

The block of wood being of great mass (it must be sufficiently mas-

sive for this purpose), the ball and block will have the same velocity

before the pendulum has been aj)preciably deflected. The only

J
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external forces acting' on tlie system during the inij>aet are the

weights c»f pendulum and Imllet, and in an indefinitely short time

these finite forces can jjroduce no change in the angular momentum
of the system. Hence tlie angular momentum immediately after

and immediately before irai)act are the same. Now, if w is the

angular velocity of the pendulum immediately after impact, its

angular momentum is J//-w. Hence (453 and 486)

Hi op = Mk'-uj.

Immediately after impact, as the pendulum is still luactically at

its lowest position, its kinetic energy has the value iJ/Pw-'. When
its angular velocity becomes zero its energy is wholly jwtential. If

a is the angle through which it has then been deflected, and if h is

the distancf* of the centre of mass from the axis, the increase in

jiotential energy is }f<jh{\ — cos^). Hence

Hence

and

Mgh{\ - cos e)= UW-u}-.

jn- s'al>
sni

(9) A uniform spherical shell whose external radius inn times its

internal radius contains a sphere of the same substance, completely

filling it. Find the ratio of the space through which the shell

would roll from rest in a given time down a perfectly rough in-

clined plane, if its internal surface were smooth, with the space

through which it would roll in the same time if its internal surface

were |)erfectly rough. (The radius of gyration of a sphere about

an axis through its centre is ^2/5 times its radius.)

Ans. 7nP/{7n^-2).

(10) A imiform rod (length= 2a) can turn freely about one ex-

tremity. In its initial position it is horizontal, and it is projected

horizontally with a given angular velocity w. Show that the least

angle 6 which it will make with the vertical during its motion is

determined by the equation

2aw2cos 6= 3g siu^O.

n .
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500. EqnilihvhiTYi of a RlcjUJ Body.—A i-igid body is

said to be in equilibrium "nler the action of forces when
its linear and angular momenta are both constant, or, in

other words, when its centre of mass has no linear accel-

eration and the body has no angular acceleration about
that point. This state is what we called (4'44-) one of

molar equilibrium. It admits of both translation and
rotation, but the linear and angular velocities must be

constant. If a rigid body be in what we called (444)

molecular equilibrium, it may be undergoing transla-

tion, but cannot be rotating, and its translational

velocity must be uniform.

The conditions of equilibrium (molar) may be obtained

from the equations of motion (493)

That (I and a may be zero we must have SF=0 and
2i^P = 0. Also, if these conditions are fulfilled, a and a
must both be zero. Hence the following are both neces-

sary and sufficient conditions of equilibrium (molar), viz.,

(1) that the algebraic sum of the components in any
direction of the external forces be equal to zero, and (2)

that the algebraic sum of the moments of the external

forces about any axis through the centre of mass be zero.

501. Expressed analytically, these two conditions give

us six equations which (415 and 427), if ^, >;, fare the

co-ordinates, relative to the centre of mass, of the point

at which the force acts whose components are X, Y, Z,

are as follows

:

2X=o, 2r=o, yz=o,
:^(Yi-Xr]) = 0, 2(A7-^f) = 0, 1{Z,-Y0 = 0.

If the forces are coplauar (in the oi:y plane, say), these

six reduce to three :

2A = 0, 2F=0, l{Yi-X^j) = 0.

2c

i '

I

IIri

ri

M-

n.
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502. If a rigid body is in equilibrium, the algebraic

sum of the moments of the forces about parallel axes
through all points fixed either in or relatively to the

body is the same.

Let X, Y be the components of a force acting at P,
in the directions of rectangular axes Cx, Cy through the

centre of mass C. Let the co-ordinates of P relative to

(j be X', y ; and let those of G relative to parallel axes

through any point fixed relatively to the body be a, b.

Then the algebraic sum of the moments of X, Y about an

axis through perpendicular to the plane of Gx, Gy is

Y{x-\-a)-X{y-ith)=Yx-Xy-\-aY-hX.

Hence the algebraic sum of the moments of all the forces

about this axis is

y{Yx- Xy), +aS Y- blX = l{Yx-Xy\

since 2A'^ = ]SF=0. Hence the sum of the moments of

the forces about an axis through any point is equal to

that about a parallel axis through the centre of mass.

In the above, the system is supposed to be in one

plane. The result will obviously be the same, however,

if the force acting at P have a component Z in the

•direction perpendicular to Gx and Gy, if the co-ordinates

ot P are x, y, z, and if those of G are a, fe, c.

503. Hence the following are necessary and sufficient
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conditions of eciuilibriuni (molar) : (1) that the algebraic

sum of the components, in any direction, of the external

forces be equal to zero
; (2) that the algebraic sum of the

moments of the external forces about any axis through

any point fixed relatively to the body be zero.

504. In special cases the above conditions take special

forms :

(a) Body under two forces.—If the rigid body be in

equilibrium under two external forces only, they must
obviously be equal and opposite and have the same line

of action.

505. (6) Body under Parallel Forces.—One of them
must obviously be equal and opposite to the resultant of

all the rest and must have the same line of action.

Hence it must be equal to their sum, and its line of

action must pass through the point :;alled their centre

(472).

506. (c) Bodjy under three Non-Parallel Forces.—If a
body be in equilibrium under three non-parallel forces,

their lines of action must be coplanar and must all

pass through one point.—For about a line intersecting

the lines of action of two of the forces, these two and
therefore the third force can have no moment. Hence
its line of action must either be parallel to the given line

or intersect it. Hence any line intersecting the lines of

action of two of the forces and not parallel to that of the

third must intersect it also. It follows that, if through
any point in the line of action of any one of the ^orces,

two straight lines be drawn, each of which intersects the
line of action of one of the remaining forces, and is not
parallel to that of the other, both straight lines must
intersect the lines of action of both forces ; and that these

two forces, which were any two of the three, must be in

the same plane. Hence the forces are co-planar. Again,

1'-^

t'.

'If I.;

a

m.

M.
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jibout the point of intersection of the lines of action of

any two of these forces, these two can have no moment.
Hence also the third can have no moment about it, and
consequently the line of action of the third force must
pass through the intersection of the lines of action of tho

other two. If therefore a body be in equilibrium u ider

three non-parallel forces, these forces must be coplanai*

and must all pass through one point.

Hence the conditions of equilibrium of a rigid body
under three forces are exactly the same as those appli-

cable to a particle under three forces. Hence the results

of 325, (c), (d), and (e), deduced in the case of a particle,

apply also to the equilibrium of a rigid body.

507. Examples,

(1) A uniform right-angled-triangular plate is suspended by a

string from the right angle. Show that its sides make the same

angles with the vertical as they do with the base.

[The only forces acting are the stress in the string and the weight

of the triangle. Hence the stress and therefore the string must be

vertical, and their directions must pass through the centre of mass

of the triangle, and consequently through the centre of the base.]

(2) A hemisphere and a cone are fastened together by their bases

which are equal, and the body so formed rests in equilibrium on a

horizontal plane in whatever position it may be j)laced. Show that

its centre of mass coincides with the common centre of their bases.

(3) A mass m hangs from the edge of a homogeneous hemisphere

(mass= J!/, radius= »•, distance of centre of mass from centre= 3r/8),

which rests with its concave surface on a smooth horizontal plane.

Find the inclination 6 of the axis of the hemisphere to the vertical.

Ans. d = tai»~^ • .

(4) Two men carry 3 cwt. by a i)ole 8 ft. long, which they sup-

port at the ends. If the body be hung 1 ft. from the middle of

the pole, what forces are exerted by the men ?

Ans. Forces equal to the weights of 1§ and 1^ cwt.
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(!)) AD is a heavy straight rod or lever of length /. Wiien a

body of weight H' is suspended from J, the rod balances about a

fulcrum (or fixed point) at a distance a from J, and when the same

body is suspended from /?, it balances about a fulcrum at a distance

h from B. Find (1) the distance of the centre of mass of the rod

from J, and (2) the weight of the rod.

Aim. (1) -"_'
; (2) (-L^

(6) The mass of a window-sash, 3 ft. wide, is 5 lbs., and that of

each of the " weights " attached to the cords 2 lb.s. If one of the

• ords be broken, at what distance from the middle of the sasli

should the hand be placed to raise it with the least efibrt ?

Ans. 1 ft.

(7) A rigid rod ABC\ suspended l)y the point A, is composed of

two pieces rigidly connected at Jij and inclined at a right angle to

one another. Show that if a and <• are the lengths of the arms AB
and i^C respectively and $ the inclination of AB to the vertical,

c'-^cot 0=a'+ 2at'.

(8) A heavy unifoi'm bar lies with two-thirds of its length on a

smooth horizontal table. Show that a body weighing more than

half as much as the bar would, if suspended at the free extremity,

jmll it over.

(9) Two forces P and Q act at the ends of a straight weiglitless

..--"0

all

t

> fi 'I

I.

r
: ;

S %

lever AB, their directions being inclined to AB at tlie angles <p and
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6 reHpet'tively. Find the position of tlu' fiilcinni F (i.>'., what point

/'^niUHt be fixed), that eepiilibiiinn ni;«v he niaintiiined.

(10) The radii of the wheel (IT) and the axle (J) of the simple

machine called the Wheel and Axle

(254, Kx. 5) are li and r respectively.

Find the force /^exerted throuj,'h a strin<;

coiled round the wheel which will balance

a force Q exerted through a strin{^ coiled

round the axle (the axle bein<,^ smooth).

Since the sum of the uumientH about

the fixed axis must be zer(», PJ{-Qr=
•AmXP^QrlR.

(11) Find the conditions that must be

fulfilled that a Balance mav be stable and

sensitive. (See 498, Ex. 4.)

The beam without the pans will be in stable equilibrium

(450), if a (fig. of 498, Ex. 4) be vertically behjw 0, in which

case DC will be horizontal. If the centre of mass of the

beam be at 0, the beam without the pans will be in neutral

equilibrium. With jmns of ecjual mass the beam will be in stable

equilibrium, with BC horizontal, provided (1) that G and BC are

both below 0, or (2) that if G be above 0, BC be sufhciently far

below it, or (3) that if BC be above 0, G be sufficiently far below it.

When the balance is in equilibrium, T and T' are vertical and

equal to mg and m'g respectively. As the sum of the moments of

the forces acting on the beam about must be zero, we have,

if m and m' are the masses of the pans, anil d the inclination of BC
to the horizon,

mg{A Ccos d - OA sin e) - ni'g{AB cos d+ OA sin 6) - Mg . OG . sin ^ = 0.

Hence tan^= J.»i-'>n')AB

l)n + m')OAVM.OG'

The greater the angle 6 for a given value of m — m' the greater is

the sensitiveness of the balance. Hence for sensitiveness the mass
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of the beam, the load {i.e., the total mass in Ixttli pans) and tlu' dis-

tance of the axis of the beam both from its j-entrc of mass and from

the line joining the points of suspension of the pans must be as

small as possible, and the distance between the points of snspension

of the pans nujst be as great as possible. Except with rt'gard to

the mass of the beam, the conditions for sensitiveness and f(n

(piickness of motion (4{)8, Ex. 4) are antagonistic. Hence in all

balances the mass of the beam is made as small as is consistent

with authcient rigidity, and a compromise is struck between the

demands of sensitiveness and of (piickness of motion with regard to

length of arm, etc.

If the line BC i)ass through 0, OA—0. Hence

tau^= ^'"-"^')'|^.

In this case, therefore, the sensitiveness is independent of the

load.

(12) m^y 7«o, are the apparent values of the mass of a body when

weighed successively in both pans of a balance which has its three

suspension points in a straight line, {a) If its pans are e([ual and

its arms unerjual, show that the real mass of the body is \'iii^m.^.

(6) If its anna are equal but the pans uneipial, show that the

difference of the masses of the pans is \{m^-m.,).

(13) The beam of a false balance {i.e., one having uneciual arms)

is 3 ft. long. If a certain body is placed in one scale it weighs 4

lbs., if in the other 6 lbs. 4 oz. Find (a) the real mass of the body,

and (6) the lengths of the arms.

Ans. (a) 5 lbs.
; (6) 1 ft. 4 in. and 1 ft. 8 in.

(14) The shaft of a steam engine carries a strong wheel (radius

ft

:*

= /•) with a flat rim. An iron strap lined with blocks of wood is
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pe the whole
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What must its mass bi> that a ton niav be placed an\ wlierc on it

without tilting it ?

Ans. 3 tonn.

(17) A rod Ali hinged at one end so that it can mov(> in a ver-

ti(;al plane rests with the other end on a smooth inclined plane,

whose line of intersection with the horizontal plane is perpeiidicidar

to the plane of J//s motion. Find the force exerted on it by the

liinge and the reaction of the plane.

Let AB be the roil hinged at A and resting with the end 11 on the

inclined plane liC. Let ACl) be the horizontal plane, and let the

jiiigles BCl)^ BAt\ be d and respectively.

The rod is acted upon by three forces—its weight W acting

vertically through G its centre of mass, the normal reaction li of

the inclined plane, and the force F exerted by the hinge. Hence

(506) the force F must pass through the intersection E of W and li.

The direction of F is known if the angle FAB(\f/) is known. Now,

.1 G^ sin ^lA^^ sin (^TT- 0-1^) ^ cos (^ + yp)

GE sin ^ sin ^ sin
yf/

GB sin GEB sin e sin 6
and

Hence

and

GE~ sin GBE am{^ir+ <i>-d) cos(^-0)

AG^coB{e-4>) cos(i/.+ iA) .

GB sin^ ' sin^

^=cot-^(

t
••»

^fl

I

GB cos cos {0 - <t>)

4- tan ^j.
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F<jr the nia^niitude of F we have (50(5)

H':/''=8iii AiHiii ]hi

= 8iii(|7r - - ^ + ^) : sin 9

= cos{(p + ^ -6) : aiii 0.

sill ^
Hence F=W

Foi- the magnitude of It we liave siniilarlv

aiu' hence

ir:/i!=sm A:sin ^7''

;

R= W cos(0 + ^)

eos(0 + '/' -fi*)'

(18) A uniform rod AH rests over a smooth peg at P and with

its end A on a smooth horizontal plane, being acted on at C by a

horizontal force F in the vertical plane through the rod. For a

given value of F, find the position of the rod, and find the reactions

of the plane and peg in this position.

Four forces act on the rod, its weight W acting through its

middle point />, the reactions II and li' of the horizontal plane and

I)eg, normal to the plane and rod respectively, and the force /'.

B

R, W, and jPare in a vertical plane through the rod. Hence li' is

in that plane also.

The position of the roil is determined if the angle (0) between it

and the horizontal plane is known. Let the distance of P from

that plane be h, the length of the rod I, and the distance of C from

B,c.
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For equilibrium : (1) The sum of the vertical components of tlu*

external forces must be zero. Hence

R- W+R'coHd = 0.

(2) The sum of the horizontal comjKments of the external forces

must be zero. Hence

F-R' sin = 0.

(3) The sum of the moments of the external forces about any pt)int

A must be zero. Hence

R'h I sin 9 - F{1 - c) sin e-\Wl cos ^ - 0.

These three equations involve only the three unknown quantities 0,

y?, R', and are therefore sufficient to determine them.

For the resolution of the acting forces we select those tlirections,

and for the exj^'ession of their moments we select those jjoints,

which will give the simplest equations. Thus in the above exam])h'

the equations obtained by resolving horizontally and vertically aie

simpler than those wliich could be obtained by a resolution in and

normal to the direction of AB, because the forces R and W have m*

horizontal component, and F has no vertical comj)onent, while R' is

the only force with no component in the direction of AB, and jill

the forces have components in the direction normal to it. Similarly

it is better to take moments about .1, D, P, or t'than about any

other point, because in each of these cases one of the acting forces

will have no moment. If the force F acted at D, that would be the

best point co take moments about, as in that case two forces would

be excluded from the equation of moments.

If we do not wish to determine all the unknown quantities, we
may select the directions and the point referred to above, witli a

view to the exclusion from the equations, of the quantity or (quan-

tities which we do not wish to determine. Thus if we wish in the

above example to find only R and d, we select the direction of A/>

for resolution of forces, and we obtain

(R- W)sine + FcoHd =
;

and, selecting the point P for the summation of moments, we
obtain

^' - hl\ - R cos d . .

^' - Fsin e( I - c - /'

sni 6'
ircos e( /' -hl)-R COS d . .

^' - Fsin e(l-c- /' ) = 0.

H'
V.I lii

l*tj.t

J
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These two equations are sufficient to determine the two unknown

<iuantities, It and 6.

(19) The horizontal plane and the peg of Ex, 18 being rough

and the force F heing withdrawn, find the position of equilibrium

when the rod is on the jjoint of slij)ping down.

The roughness of the plane and

l)eg introduces two new forces act-

ing at A and at the peg, in the direc-

tions of A A' and .1 B, and ecpial to fx-R

and fi'R' respectively (m being the co-

efficient of friction between the plane

and the rod, m' that between the peg

and the rod). Resolving horizontally

and verticallv, and taking moments
about A as before, we obtain the three

equations :

—

fill - R ' sin e + fi'R' cos d= 0,

R- W+ R' cos e + fj-'R' sin 6= 0,

R'hlsme-^Wlcose = 0,

which are sufficient to determine R, R\ and 6.

(20) A uniform straight rod moveable about its lower extremit}

leans against a vertical wall and makes an angle of 45° with the

horizon. Show that the force exerted by the wall on the rod is

equal to half the weight of the rod.

(21) A uniform beam AB (weight= W) rests with one end A on

a smooth horizontal plane, and the other B against a smooth vertical

plane, the vertical plane through the beam intersecting at right

angles the former in the line >.16'and the latter in BC. The beam

is attached to the point 6' by a string AC. Find (a) the tension in

A C\ (6) the reaction of the horizontal plane, (c) the reaction of the

vertical plane.

Ans. (a) i >f cot BAC ; (6) W ;
(c) |TFcot BAC.

(22) If the string in Ex. 21 is attached to a point E in the beam

between A and its middle point, show that the tension will be

1 ty cos BA C
- s\^BAC-ECA)'
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Hence show that the length and point of attachment of the string

must be such that the angle JiAC is greater than ECA in order that

equilibrium may be possible.

(23) If in Ex. 21 the horizontal and vertical planes 'oe rough

(co-efficient of friction in both cases = m), and if there be no string,

find the position of e(piilil)rium.

Ans. Angle/?.l(.'=tan-i^~K

(24) A rod (weight — TF, distance of centre of mass from lower

end= ^) rests upon a smooth prop, with the lower end pressing

against a smooth vertical wall (distance from prop= ci?), the vertical

plane through the rod being at right angles to the wall. Find (a)

the position of e(iuilibrium
;
(b) the reaction of the prop

;
(c) the

reaction of the wall ; and show that equilibrium is impossible

unless I be greater than d.

Ans. (a) Inclination of rod to wall = sin"'(t^,0^
5 {^') ''(('0^;

(c) W{lT[-d^lldl

(25) A uniform rod rests with one end pressing against the inner

surface of a fixed smooth hemispherical bowl (radius= r) whose rim

is horizontal, and with the other projecting beyond the rim. It is

inclined 30° to the horizon. Find its length.

Ans. 4r/ ^/3.

(26) A sphere (weight = W) rests upon two inclined planes

(hiclinations to the horizon = ^ and W'). Find the reactions of the

])lanes.

Ans. W sin «'/ shi (0 + e'\ and W sin dj sin {6 + d') respectively.

(27) One extremity .1 of a beam AB (length= ?, distance of

centre of mass from B= n times its distance from ^1) rests against

a rough vertical wall (angle of repose= 6), and a cord tied tf) the

other extremity B is fastened at a point in the wall above ^1, the

vertical plane through the rod being perpendicular to the wall.

Show that, if the rod is to be horizontal, the length of the cord

must be \^w- + tan-'e.

(28) A uniform heavy rod, 2 ft. long, is hung up to a peg by

means of two strings tied to its ends, the lengths of the strings

...A

11
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being 1 ft. and ^/3 ft. respectively. Show that, wlien the rod is

in e(juilibriuni, it will make an angle of 30^ with the horizon, and

the tension of the shorter string will he ecjual to half the weight

of the rod.

(29) A uniform heavy rectiuigular trai)-door ia moveable about

one edge as a hinge-line. To the middle point ^I of the opposite

edge is attached a string wliich i)asses over a smooth pidley at the

point occupied by ^1 when the door is horizontal, and sustains a

body of weight w. If IF be the weight of the door, show that the

inclination of the door to the horizon is given by the equation

w
cosH^ - -jT, cos \d-\= 0.

(30) A carriage wheel (weight= IF, radius = r) rests upon a level

road. Show that the force necessary to draw it over an obstacle of

height h is WJh{p^)l{r - h).

(31) A heavy uniform sphere hangs from a peg by a string, the

length of which is equal to the radius, and rests against another

peg, vertically below the former, the distance between the two

being equal to the diameter. Show that the tension of the string

is equal to the weight, and the reaction of the peg to half the

weight, of the sphere.

(32) A beam or lever is moveable about a fixed rough cylindrical

R

axle (radius= r, angle of repose ~e), which very nearly fills the

hole in the beam through which it passes. Find the relation

a
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the relation

})etween two forces P and (J acting on the beam at given points

.1 and Ji and in given directions in a plane })erpendicular to the

axle, when the beam is on the j)(>int of moving.—Let be the

inclination of 1* and Q, and let p, q be their distances from T
the centre of the axle. Produce P and Q to meet in O. Then A*,

the reaction of the axle, nuist pass through 0. Since the axle only

nearly fills the socket there is contact, at any instant, only along a

single line. If this line is represented in the diagram by the point J),

DO will be the direction of li and will be inclined to CD productd

at the angle e. Hence the distance of R from C is rsine. For

e(|uilibrium therefore we have

Qq = Pp + llr sin e.

Hence Qq = Pp-\-r &in c JP- + (J-+ 2PQ cos d,

which is the required relation between P and Q.

(33) A heavy homogeneous cubical block rests on a rough hori-

zontal plane, and a force is exerted on it by means of a string

attached to the middle point of one of the upper edges, the string

and the centre of mass being in the same vertical plane. The force

being gradually increased, find the nature of the initial motion of

the block.—Let ABC be the plane in which all the forces act, and

let F's line of action be above the centre of mass Z>. Then the

initial motion of the block will

clearly be either a sliding in the

direction of AB or a turning about

the edge B. For F=0, the re-

action of the plane is normal to

AB; but, as F is gradually in-

creased, the reaction (328) becomes

gradually more and more inclined

to the normal, passing, since there

is equilibrium, through the inter-

section of F and W. If the cube turn about B, the reaction

must pass through B. If therefore it is on the point of turning

about B, the line of the reaction must be BO. Hence, if the fric-

tion is such that the angle CBO is less tlian the angle of repose,

the initial motion will be a turning about B. If however CBO is

^'1

1
ill

^M

*

4' El

: 41

m\
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greater than the angle of repose, .slipjnng will be the initial motion
;

for the block will begin to slip when the reaction in inclined to the

normal at the angle of repose. Let be the inclination of F to

J/i, ethe angle of repose, and a the edge of the cube, then the

condition for initial turning is

tan e > tan CBO

> 1/(2 - tan e).

Hence also the condition foi* initial sliding is

tan e < 1/(2 - tan 6).

If F's line of action is below />, the jmssible initial motions are

sliding in the direction AH and turning about the edge A. Show
that the condition of initial turning about .1 is

tanc > l/(tan(?- 2).

(34) A homogeneous right cone (vertical angle= 2^) is placed

with its base on a rough inclined plane (coefficient of friction =At),

whose inclination is gradually increased. Show that, if /* > 4 tan 0,

the initial motion of the cone will be tumbling, and if m < 4 tan 6, its

initial motion will be sliding.

(35) A rectangular block is placed with one of its edges horizontal

on a rough inclined plane. Show that, if a is the length of the

edge of the block which is perpendicular to the plane, and b the

length of the other non-horizontal edge, and if fi is the coefficient

of friction, the initial motion will be one of tumbling, provided

IX > bja, and of sliding, provided fi < b/a.

(36) A rectangular block, weighing 20 lbs., with a square base

8 inches in side, is set up on a level table, and it is ^ound that ;i

horizontal force equal to the weight of 5 lbs., if applied below a

certain point, is just able to make it slide, while, if it is applied

above that point, the block topples over. Find (a) the position of

this critical point, and (b) the coefficient of friction between the

block and the table.

Ans. (a) 16 in. from the base
;

(b) 0"2o.
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weightless pulleys represented in Fij,'. 2, there being n moveable

pulleys.

Ans. 2".

r
V
i

)

\,

Figl

•'

»'>(!• if

mu Iff'
'^

V

(3) Find the mechanical advantage of the system of smooth

weightless pulleys represented in Fig. 3, there beirg n pulleys, and

the ropes being so long that they may all be considered vertical.

Ans. 2«-l.
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(4) A syHtein of smooth weij^'lithiHs pulh'ys, like tliat of Ex. I,

but with only one moveable pulley, Is in eiiuilibrium. Show that

if the body Hiipportt'd by the moveable pulley have its mass

4h)iil>le(i, and the other its mass halved, the tension in the stiin^

will be unaltered.

(5) Two smooth spheres rest on two smooth inclined planes an<l

press a«,'ainst each other. Determine their position and the ma<,nii-

tudes of the reactions. -Let .1 and /i be the spheres, C and (" tlnn'r

centres, DE and fSF the inelined )>lanes of inclinations (p and e

respectively. Each sphere is acted upon by three forces— its weight

(IF, W), the normal reactions of the j)lanes (i^, W), and the etpial

normal reactions of the s])lieres on one another (^S", *S"). As each

sphere is acted on by three forces only, these three must in each case

be ill i-lie same plane, but as the lines of action of >S' and S' coincide

with the line CC, IT, IT', ^ and S' are in the same ])lane. Hence all

six forces are in the same plane, which is consefjuently a vertical

plane and perj)endicular to both inclined planes. Let that be the

l)lane of tlie diagram. The positions of the spheres are determined

l)y the angle ^, the inclination of CC to the horizon.

For the equilibrium of A we have, resolving in the direction

of DE

W sin (p-S con {<p-\p) = (),

and resolving in a perpendicular direction,

It - Wcos <t>
- Sam (0 - ^) = 0.

III

'A

iri;i
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For the ecptililM'iuiii of l\ we liuve, Hiniilarly,

11" Hi 1 1 /y /S'coh(^ + \J')= (),

As S~S\ the ahovt' foiii- t'ciiuitions are Hunicient to detennine all

the unknown quantities involved vi/., A', li', <S', and ^. To deter-

mine i/' onl\ , the first and third eijuations are suttieient.

If we re<'ard the whoh- svsteni as a ri<fid hodv, ,S' an«l »S" beeonie

internal forces, and may he left out of aeeount. E(|uatin<( to zero

(I) the vertieal and (2) the hori/nntal e(»n«|»onents of (ixteinal forces,

we iind

1)'+ ir /•'.•osr/,--A"eos^=(),

and y^'sin «/»- /rsine = 0.

Also equatin*^ to zeio the sum of the moments of external forces

ahout C\ we have,

W\^oH^P-Ji' cos {e + :p)= 0.

We have thus thn;e etjuations for the determinatittii of the three

unknown (juantities /*, ll\ and </'.

(fj) Two smooth splu'ies of equal radius r and weight W are

placed insiile a uuiforuj thin hollow (cylinder (radius=/< 'Ir) which

is open at both ends and rests with one end on a horizontal table.

What must the weiifht of the cylinder be that it may not upset ?

Ans. <iW{r'-r)lr'.

(7) A smooth s|»here (weij^ht= IF) rests \\\)o\\ two ecjually in-

clined })lanes (inclination = a) which are placed on a smooth hori-

zontal tal)le, and are prevented from slidinj^ apart by a horizontal

string which binds them together. Find the tension in the string.

Ans. \W tan a.

(8) Of four ecjual smooth sj)heres (weight of each= W) three re.st

in contact on a smooth horizontal plane, and the fourth is [)lace(l

u[)on them. Find the horizontal force which nnist be apj)lied

to each of the three to preserve ecpiilibriuni.

Ans. Wj'is'^-

(J)) A heavy uniform smooth beam (weight = w, length = 2a) is

moveable in a vertical plane about a smooth hinge at one end.
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A heavv Hinooth sphere (weight= M', rjulius = /') is attached t»» the

hing/' by a string (h'ngth = /), and the two bocb'es rest in <;ontai't.

Obtain ecpiatioiis for determining the inclination of the string to

the vertical, the inch'nation */> of the beam to the vertical, the

reaction A' of the hinge on the beam, and the stress A* bi-tween tlu*

beam and the s})here.

Ans. W{l + r) sin = wa sin '/>,

(/ + r)sin(^ + «/>)= r,

y^ COM (« + «/>)= M'ain(^,

(.^2 - w'^) cos-((? + r/,)= W' sin'-'<^ - 2w W sin 6 sin «^ cos((? + </»),

(10) A \miform heavy rod (weight= W, length = 20 connects the

centres of two wpial heavy wheels (radiu8= r), which rest on a

rough inclined jdane (coefficient of friction = m) in a vertical plane,

which is a plane of greatest slope of the inclined (ilane, the lower

wheel being locked. Find the greatest inclination of the j)lane

that will admit of ecpiilibrium.

Ans. tan"'
21 - nr

(11) Three horizontal weightless levers, AEB, BF(\ CGI), the

fulcrunis of which are at E, F, 6', act upon one another [jcrpendi-

cularlv, the first and second at B and the second and third at ('.

They are kept in ecjuilibrium by bodies hanging from the jioints

J , D, and weighing W and 2 irrespectively. AE, EB, BC\ C0\ (J I)

are 1, 2, 7, 2, 3 ft. resj)ectively. Find [a) the jwsition of F, and (/>)

the reaction of the fulcrum at F.

Ans. (a) FC=\ ft.; (/>) 7 ir/2.

(12) Two beams whose weights are proportional to their lengths

(0 and 7 ft.) rest with their lower ends in contact on a smooth

liorizontal plane, and their upj)er ends leaning against two smooth

vertical and parallel walls 10 ft. a))art. Show that if 9 and 0' are

the respective inclinations of the beams to the horizon,

7 tan ^= 9 tan 0',

and ycoa^ + 7cos6>' = 10.

(13) Two uniform straight rods of equal length rest with their

•t'

^.,

W

^[••i

:

"••I".
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lower ends on a rou({li liori/ontal plane (eoettitient uf fric'ti()n = ^)

and their npper ends in contact, and are on the |x>int of Hiipping.

Kind the cr>ninion inclination to the hoi-i/(»n.

AnH. tan-'(l/2M).

(14) Two liars which iwv connect(Ml l>v a smooth hinj^e or joint

are in e<|nililirinni. Investij^ate j^enerally its reactions on the bars.

(a) If the hin^e pin is rigidly connected with one of the bars,

the reactions between the bars are obviously eciual an<l opposite,

their nia^^nitude and direction depending upon the external forces

acting u|>on the bars.

(/>) If the hinge pin is distinct from both bars, an<l if no external

forces act on the pin (which condition re(]uires either that the

weight of the pin should be negligible, or that it should be

neutrali/e<l by an ecjual and o])posite extt'rnal foice), its reactions

on the bars must be ecpial and opp(»site. For the pin is in equili-

brium under the two forces exerted upon it by the bars at the

points or rathei" lines of c«)ntact, and as these forces must therefore

be equal and opposite, the reactions of the pin on the bars must

also be e(pml and opjmsite. If however the pin is acted upon by

an external force, the forces exerted upon it by the bars will not

have the sanie line of action, and its reactions on the bars will

therefore also have different lines of action.

(15) In a system of jointed thin bars, in which the hingc-jHus

are distinct from the bars, if the external forces act onlv on the

hinge-pins (this condition implies that the weights of the bars are

negligible), the refactions of the pins on the bars will be in the

directions of the bars.

For in that case any bar is acted upon by two forces only, the

reactions of the hinges at its ends. These forces must therefore be

e(jual and o])posite, and their lines of action must consequently be

the direction of the bar.

•;!.< •

(Kj) Two e(iual uniform rods, equally inclined to the horizon, and

connected by a smooth hinge at their higher ends, pass through two

small fixed rings in a horizontal line. Find the inclination of

either rod, when the system is in etjuilibrium, and the reactions of

the hinge on the rods.

.i
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Let AB, AC he the two ro<lH hin^tMl at .1 ; D aiwl A' tlio hiiiuII

ringH. The rod« are actnl upon hy their weights ( VK, U") ami the

reactions of the rings (/^, W) and of the hinge (6', «S"). The reac-

tions at A must be in the same straight line, must pash tiirongh

the intersection of the lines of action of the weiglit and of the

reaction of the ring in tlve case of each rod, and must therefore be

horizontal. Hence the centres of mass of the rods must be be-

tween the rings and their lower end points.

Let I be the length of each rod, d the distance between the two

rings, and the inclination of each rod to the horizon. Resolving

the forces acting on AC in the direction of AC, we have,

Wm\e-Scofie = 0,

and, taking moments about £J, we have

W cos e(l - d/coH 0) - Sd tan ^ = 0.

From these equations we may obtain both *S' and 0.

(17) Three rods jointed together at their extremities, are laid on

a smooth horizontal table, and horizontal forces are applied at their

middle points perpendicularly to them. Show that if these forces

produce equilibrium, the stresses at the joints will be equal and

their directions will touch the circle circiunscribing the triangle

(See 475, Ex. 1.)

(18) Two uniform rods A (7, BC (weights=w and W) are connected

by a smooth hinge at C, their other ends A and B being fastened to
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fixed hinges in a vertical line. Find the reactions ol the hinges on

the bars.

Let .Vi, Fj and X.>, Y^ be the horizontal and vertical components

of the reactions on A C and BC at .1 and B respectively. (It does

not matter in what direction, uj) or down, we draw Y^y Y^ or

whether we draw X„ X^ to the right or left. If the actual re-

actions have components in directions opposite to those assumed in

-.i » ,.

m'-m

ki 1

im .:

It ' '
'

the diagram, the values of A'j, Tj, etc., as the case may be, will be

found negative.) Let A'3, Fg be the components of the reaction of

the hinge at C on the rod AC. Then, since the hinge-pin is not

acted on by external forces, its weight being negligible, its reaction

on jBCwill have components -X^, - Y^. As the four forces shown

in the diagram as acting at C act two on ^l C and two on BC, it is

often advisable to draw a special diagram for each bar. Such

diagrams are shown above. The equations of equilibrium may be

written down by their aid without danger of inserting BC's forces

in AC'b equation. Thvis for the equilibrium of ^iC we have

x\+x,=o,

Y,+ Yr-io=0,

and taking AC -2a, and calling its inclination to AB, a,
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J', sI•n«^

Alls, (a) '''+ H"
2(tan a + um a')

'

~-'J ^ '- J,*^" « - ^J^ tan a')'i

^^ . .

2(taiia + tai,V) " ~ '^

"""""
'•"••'•-"•'"o'K,ri.„.at ..„-.( W"U„„- „...„„.

(20) T«-„ ,,Kh J/, ^fl
"'+"' /

«" '-0 feed ,„„„,,, ;,; il;';;',;';""?'^'"'!
'- «n,ooti, ,„•„„,,

.^^ , ,^

^'^on, tile nicJniaticn to t])P )>.>.- /
^'^ "icJiued a° tr. f 1

e= at the joints, tlie

.1'
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>>.

;i-'--i

ifci«'
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and its directions at I , . «
^^"

^\-d S, at J and /. rls.^l^Lel/"
"''^^^''^^ ^" ^''-' ^''-tion.s <.f

it may be mentioned tJ.it ;,. ^--d V the force, acl?:; /re:,;7' * '""-=-'' »«'.".*-
lengthened U calJed a tie.

'*""' " "^"'^ <"»- which i.s

-7 be consiJeredl t ™i, "l ill^:"-. -Ll-e,, wei,;:!:
tl'e bars they connect and t IT '^"""' ""de'' the «tre>«e.s i,

equal aid oJJSi;;'^J^-Jfi;;'';^'--"'tant of u, an,l /'„ , f,,,,,.
equal and opposite to ^ to,^2 ' ' ^ ''' ""' ^'- «-- » f'-
force equal and opposite' tol VX f' T"'"''

'"'^ "" -'"-'* a™-e bars, it is i„ e,,„i|i,,.i„„
'

,^Z^^^ '""S-l'"' -nnect two or
t, together with forces equal a, > "'""'""'

'"'-^-e^ actin.. „„
0" the ba.u Hence it ,! Vl

' "'''•?"' '" "'" '•«»'••"•"-
't evt

-K'er the stresses in th t a^J'^f
""' "" '""'= "' eq'.iHl.

"

tr^^tJ-^'"'"'
^'''Shtless bars AS BC r ,t-eunties, are kept in eauilil„.;„. ,

', ''' •>"""«<' at their ev
^o.uts-/. c«ngr, ./,./«:?; ".^^,^-;/-es acting at Z
«ii« the stresses in BO Pi iT ' ^^^'^^ that if ^' v c-

^^/,- speetiveiy, afd \/t if1^^^'^^^'^ ^^^'^^^ ^-^^'-
intersect, ^ '« ^he point m wind. />, ^;' ^,,j /,

(25) Four
^•-speetively) are /oiXl
points at ^
inclination o

Hi:

*•'."•

I'

j5( ' > .1
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(26) Three beams, A By liC, CA are connected at their ends by

wnooth hinj,'e-pin.s, so as to form a trian;j;le. The ends of the beam

CA rest upon pillars of e(pial lun'jjfht. The other two are in a

vertical j)Iane ; and at the joint which connects them hangs a body

whose weight JK is so great that the weights of the beams may be

neglected. The lengths of the beams being given, show how to de-

te)iiiine the stresses in the beams an<l the reactions of the pillars.

Take any point 0, and from it draw Op vertically downwards,

making its length numericrally equal to W. From Odraw Oq parallel

to BC, from p,pq parallel to AB, and
from q, qr in a horizontal direction.

By Ex. 23 the pin at B is in

e(iuilibrium under forces whose

directions are those of J 2?, CB^

and ir, or of pq, qO^ and Op ; and

as Op represents W in magnitude

it follows that pq represents the

stress in AB and qO that in CB.

Similarly it may be shown that qr

represents the stress in CA and

that pr and rO represent R^^ and

R.,, the reactions of the pillars,

respectively.

The diagram Opq constructed as

above is called a Force Diagram. It may be used to solve the

problem in two ways. (1) By its aid we may obtain formulae by

which the stresses may be calculated. Thus the sides of the

triangle ABC being known, we may express the angles CBD and

ABD and thei"efore the angles qOp and qpO, and therefore also

the angle Oqp in terms of them. Hence also since OqlOp=
sin Opq/sin Oqp, Oq/Op may be expressed in terms of them. But if

S is the stress in BC, >SJlV=OqlOp. Hence the stress in BC may
be exi)ressed in terms of W and the lengths of the beams. And
ex|)ressions for the other stresses mav be obtained in the same wav.

(2) The lengths of the beams being given, exact values of the angles

A BD, CBD may be obtained, and the force diagram may be care-

fully drawn to scale. Then Op having been drawn with a length

numerically equal to W, a careful measurement of the lengths of

I*

,
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(27) A Warren crini^,.

^
^iut the we.gi.ts of tlu- ,o,Is .n.v )

^ f ^^'«''^'

'"•"fe' at the joints D C n 1.^

«^10. Conditions nf Vr. -i-i .

the direction of ttr"' '',"'' ''"« 'o he r^ a^f P^'T"'
acting at thi« °/oi" /^to""'

«- '-1 forSoT
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S'2F'=.^F'^'^
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i.e., the algebraic sum of the amounts of work done by the
components of the external forr»es in the direction of the
translation is zero.

Let the plane of the diagram
be the plane perpendicular to

the axis of the rotation, the

intersection of the two being
at 0. Let PA perpendicular
to OP be the small linear dis-

placement S of P due to the

rotation w about 0. From
draw OM (length =^) at right

angles to F'\ the component of F in the plane of the

diagram. Since there is equilibrium, 2^"^>>= 0. If 6 is

the inclination of S to F",

p = OP cos 0= cos = ,

ft) ft)

if S" denote the component of S in the direction of F'".

Hence

^F"^ =^-I.F"o"=^0.
ft) ft)

Hence also 'EF"S" = 0, i.e., the work done by the com-
ponents of the external forces perpendicular to the direc-

tion of the translation is zero.

If d is the component of the resultamt linear displace-

ment of P in the direction of F, Fd is the work done by
F during the displacement. Hence (342)

Fd = F'S'+F'S"

and XFd = ^F'6'+ ^F"S' = 0.

And XFd is the algebraic sum of the amounts of work
done by the external forces during the indefinitely small

displacement selected.

511. Conversely, if during any indefinitely small dis-

c's-
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3tion of F'.

^^f-' \i\<\\\) HOJ)|K,s.

VM
placement of a licnM u 7

the algebraic sum°^ the LTt^'^J* ^^^^ its ri,.i,iifc,,
external forces bo zero Tb!T?*' '^^ ^^^^ ^^one b Z'
(^•^.. molar equilib^iZ^.

'^^' ^^^^ ^^" ^e in equilib'rifnn

orfci::^^^^-^--b,thestepsof5lOinth.reve.^^^^

the eJumSi^tlTora Xt?l ^?'«f.''^"'
-"'""on of«"m of the amounts of wo?k d"oi^'"'^

*hat the algebra.V
.lunno- any indefinitely small L^ *''*' '''''e'"«Hbrees
w.th ngidity. be equal tT. ^cto

''''P'^<=''n'«"t consistent

.
513. It follows from 44<t fi,.* *.

cient condition of th/, . ,' '"« nccessaiv and «,,«;
;igM body, which istSrlT"''^"""'(^"i o -t"
l*ut not with rotation oT"htev''il ^'* '^anslat osum of the amounts of wrJt^^; '^ *'''^t the al-rebr.
and internal, durin' any fndJ°-? ,'*^ "" f«'-«es, external
be equal to zero. If Z '"^^ofin'tely small disp acemeni
7ith the rigidity of the b^ f^^'"'"^ '''^ """^ '^'""t

nected [508 a ^T?!.''^^
'^'^^"^ ^^'^^^^ bodies nMu

ennilJK. • ^^J' ^^e necessary and%nffi«- V ^^^'^^ly eon-
equilibrium is obviouslv ihJ ^"^cient condition of^-1 forces involvedt^:^^Jl^^. the£
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not rigidly

I sufficient

:pressed by

J involved

jquilibrium

1, the forceB

the system

s and rods

r the small

%vill be the

igs, stresses

he equation

ysteni.

ternal forces

1 rods or in-

Usplacement

Bd force acts,

1 which case

)rces and the

lentro of mass

)tli horizontal

in a vertical

[iiig by a force

^all. Find (a)

|of the vertical

l)y which the

ia small, the

and vertical

Lll through a

which, since e' is small, is equal to ^^'sin B.

falls through a distance

Also the centre of mass

aHm9-am\{d+ e'),

which, since 8' is small, is equal to -ad'coHd. No work is done hy

or against the reactions of the horizontal plane and vertical wall.

Hence, for equilibrium,

Fld'sin e - M'rt^'cos ^ = 0,

and =»„..-.»'«^=tan
/''/

(6) Let the beam undergo a small translation in a horizontal

direction, the reactions being supposed to continue during the

displacement. Then the oidy forces by or against which work

is done are F And the required reaction, and their points of appli-

cation move through equal distances. Hence, if d is the translation,

lid- Fd =0, And Jt = F.

(2) A body J , of weight II', is supi)orted by a body B, of weight

w, by means of the system of smooth weightless pulleys of 509, Ex.

•2. Find the relation of w to W.

The only forces of the system by or against which work is done

during a displacement are w and W. When .1 rises through a

distance a, B falls through a distance 2"tf, where n is the number

of moveable pulleys. Hence

w2"5- Ws= Q,

and M'/Tr=l/2».

(3) Obtain the results of 509, Ex. 1 and 3, by the above method.

(4) A Wheel and Axle is used to raise a bucket frt)m a well. The

radius of the wheel is 15 in., and while it makes seven revolutions

the bucket, which weighs 30 lbs., rises 5|^ feet. Find the smallest

force with which the wheel can be turned.

Ans. The weight of 3 lbs.

(5) Find the mechanical advantage of the Differential Wheel and

Axle. [In the Wheel and Axle the smaller the radius of the axle

with a given radius of wheel, the less the force required to support

a body of given weight hanging by a cord wrapped round the axle

(254, Ex. 5, and 507, Ex. 10\ To increase the mechanical advantage

2 E

1 f

;*•'.

I.
:r

lu14

li ^

Ti.
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of the niaehiiic withuut weakening the axle unduly, the cord hanging

from the axle in pasHed round a pulley

supporting the hody, and ho wrap[)ed

round a prolongation of the axle of

Hujaller radiun that, when it unwinds

from the thicker portion of the axle,

it will wind on the thinner portion.

This machine is called the differential

wheel and axle.]

When the place of ap])licavion of the

force /' moves down a distance s, the

wheel turns through an angle sjJi radians

(7^= radius of wheel). Hence, if r and

r' are the radii of the larger and smaller portions of the axle,

lengths rs/Jt and r's/Itof cord are wound on the larger portion of the

axle and off the smaller portion respectively. The pulley therefore

rises through a distance s(r-r')l'2R. Hence

and
W 2/2

s~p:

(6) A heavy beam presses upon the top of a smooth jack-screw

with a force F. The distance in the

direction of the axis of the screw

between successive windings of the

thread is d. Find the force P which

must be applied at the end of a

handle, of length I, perpendicularly to

its length to maintain equilibrium.

For one turn of the handle the

beam would be raised a distance d,

and P's point of application would

move in /"s direction a distance equal

to ^irl. Hence

'2Trir-Fd=0,

and P =Fd
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(7) Find tlie ineclianiral lulvanlagf <»f tlie Differenthd Screw.

[The ineclianical advantage of the hcivw (Kx. (>) increases as the

diHtanee between Huceessive windings of the same thread diminishes.

It is therefore limited by the necessity of giving the thread snHicient

strength To increase the mechanical advantage withont nn(hie

diminution of strength, a combination of two screws is emi»U)}ed as

shown in the diagram. A is a screw working in a nut cut in the

block /i. Between A and the body to wliieh force is to be a)»i»lied

the screw intervenes. C works in a nut cut in the inteiior of

.i, its upper end being fixed so that it cannot rotate. Wlien A

advances by the amount corresponding to one turn, viz., the dis-

tance between successive windings of J's tlnead, C screws into

A to a length ei^ial to the distance between successive windings

of C's thread, and thus C advances by an amount ecpial to tlie

difference of these distances. Such an arrangement is called a

differential screw.

Ans. ^irljd, wliere I is the length of the arm or handle, and d is

the difference of the distances between successive windings of the

threads of the respective screws.

(8) Show that the efficiency of a machine^ i.e., the ratio of the

useful work done by it when it is moving uniforndy (and theref(ne

1j 1

• V* !
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\H ill (>(|iiilihriiiin) to tho whole amount of work (loii(>, iHtxpial to the

mtid of the force which woiiM <lrive the iiuuhiiie against the force

a^MiiiHt which useful work in to he done, were there no friction or

other foriuH of noii-conHervutive force, to the force which i« actually

required to drive it.

If /' Ih the force actually applied to the machine and m the din-

placement of its point of application in its direction, IF the UHeful

work done hy the machine, and vf the work «lone ag&inst friction

and ctiier Huch reHistanceH, we have /'.•<= Il'+ w. If F' in the forct!

which would tlo the name useful work, if the friction and other

resistances did not a(!t, then /'"/»= 11'. Hence the efticiency

_1L _^'
ir+w~>''

(9) Find the efficiency of the rou«,di lever of 507, Ex. 32.—Let V
be the force against wliich the usc^ful work is done and P the force

applied to the lever. Then (607, Kx. 32)

J>p = Qq+ r sin e \/T^+(^^+2 1'Qcmd.

Let P' be the value P wouM have were the lever smooth. Then

P'p=Qq.

Hence the efficiency

Pp Pp

If, in the above equation, we substitute for Q its vahie EPpjq^

we obtain

pq{\ - E) = r sin c sIp'^t'^+ ^pqEcmd +^',

an equation whicli determines the value of /i'.

(10) Determine the mechanical advantage of a rough sciew.

Let F be the force against which work is done, and P the force

bv which work is done on the handle of the screw. Let II be the

normal component of the reaction of any little element of the

thread. Then fiR is the frictional component. In a rotation of th"

screw through a small angle 6, if i is the inclination of the thread

to a right section of the cylinder, r the radius of the cylinder, and /

the length of the arm, the work done against F is Fr9 tan ?', that

t Mi, i
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e(\nal to th«'

HHt the force

(> friction <»»'

ill in actually

ind H the iliw-

W the useful

iiuHt friction

P' irt the foi'ce

Ml and other

iency

Ix. 32.—Let V
ul P the foriH'

)oth. Then

value El'pjqy

;h screw.

a /' the force

Let H he tlif

lenient of the

•otJition of th"

of the thread

|;ylinder, and I

^r^tan/, that

done apiiimt friction is ^ulirOwvi, that done l»y /' is /'fO, Henvv

for e(|iii!i')riuni

aiK

rid - Fr0 tan i - r^ /^^^ sec i= 0,

yV - /• > tan I - ^r sec i . i) /i = 0.

Now the e(|uilihriuni of the screw also retunres that the sum of the

component forces in the direction of the axis should he zero, ilcnce

F- 2:/icos i+:^nl{ Hin t.=0,

and /'=(cost -/ism Ir^n.

Suhstituting tills value of -/i in the foiinei- e(iuation, we ohtain

F
cos i -/usin i

n= Fr tan / 4- /ii' sec i

= Fniii\{i+f),

where c is the angle of re|)ose. Hence

F^ I

1* rtan(<+e)'

(11) Show that the efhciency of a rough screw is tan i/tan (i+e),

i and c liaving the same meanings as in Ex. 10.

(12) Four rigid weightless bars, jointed at their extremities so as

to form a (juadri lateral AliVl) in one plane, and having the opposite

vertices connected by tense strings M\ BO, are in e(iuilibriuni.

Compare the tensions in the strings.

The vertices A, B, C, D may (509, Ex. 23) be considered to be in

equilibrium under the tensions in the strings and the stresses in

I'

11

it-'
'*

»n.
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the bars. As we wish merely to compare the tensions in the

strings we choose a small displacement which will involve variation

in length of the strings only. Then the tensions will be the only

forces apjjearing in the equation. Let A BCD therefore undergo ?«

small displacement of ihat kind, taking the form A Bed, The dis-

l)lacements of D and C^ will be small arcs Dd, Cc of circles about A

and B as centres resj)ectively. Tlie elongations of the strings BD
and AC \\'\\\ be the projectio'is on their directions of Dd and Cc re-

spectively. Hence the elongation of yiCis Cc cos Ccyl, which, since

BCc is a right angle and Ac ultimately coincides with AC, is equal

to Ccs,h\ACB. Similarlj^ that of BD is -DdaxnBDA. Her.;e, if

7* is che tension in AC, T' that in BD, we have (515)

T.Cc. sin ACB- T'. Dd . sin BDA = 0,

T ^DdMnBDA
T'~Cc. sin ACB'

and

Now (233 and 254, Ex. 8) the instantaneous centre of the displace-

ment of C7J is the point £ in which AD and BC intersect. Hence

the angles DEd and CEc are equal ; and therefore

Dd
Cc''

DE
CE

Also

and

Hence

DE=BD.

CE=AC

r

sin DBE
sin BED'

^xwCAE
^\\\AEC'

BD.smBDA sin DBE
AC. sin CA /'J. sin ACB
BD OA qc
AC OD' OB'

being the point of intersection of ylC and BD.

(13) The toggle-joint consists of two bars AB and CD of which

.12? is moveable about a fixed joint at B, and CD is jointed to AB
at C while its end D is constrained to move in the line BD. Find

the relation of the force F acting on D in the direction BD, to the

force P acting at .1 perpendicularly to .1^, when there is equili-

brium.
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lis in the

5 variation

; the only

niulergo »

The «lis-

BS about A

strings JiD

and Cc re-

diich, since

[C, is equal

Her'^e, if

;he displace

-

ieci. Hence

W of whicli

)iiited to AB
BD. Find

|n Bl), to the

^re is equili-

Imagine a small displacement of tlie system whereby, while D
remains fixed, A moves through a small arc (length= ."*) of a circle

D B

about B as centre. Then C moves tlnough Cc, whose length is

s . CB/AB. The elongniion of the bar CD is thus

CB
Cc cos DcC=-rjj s sin (0 + d'\

if the ano;les CBD and C/)B are 6 and 6' respectively, sii>.ce the in-

clination of cD to cC is ultimately equal to that of CD to cC j)ro-

duced. Hence if >S' is the stress in CD

C/i
Ps - .S^ ssm{e + d')= 0,

and S=P AB
CB sin {d + 0')

Now D is in equilibrium under S, F and the forces by which it is

constrained to remain in the line BD ; and if we neglect friction,

these forces are perpendicular to BD. Hence F= S cos d', and

A B cos d'F^P
CB' sin {f+e')'

Hence if both 6 and 6' diminish to zero, /^becomes infinitely great.

The reader should solve some of the exami)les of 507 and 509 by

this method.

.«i
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CHAPTER VII.

DYNAMICS OF ELASTIC SOLIDS AND FLUIDS.

518. Statics of Deforinahle Bodies.—We have seen

(256 and 2G8) that the motion of non-rigid bodies may
be compounded of translation, rotation, and strain In

studying the effect of the exertion of force on such

Dodies, we in the first instance restrict ourselves to the

consideration of its effect in producing strain. In other

words, we consider the equilibrium of strained bodies,

determining the forces necessary to maintain equilibrium

when thev f^re strained in a given manner, and the strains

wnicli will be maintained in them by given forces.

In discussing the effect of forces in producing change
of the linear and angular momentum of bodies (414 and
428), we found tliat the internal forces might be neglected.

In determining their effect in producing strain, however,

both internal and external forces must be taken into

account.

519. Stresses.—Across any surface which we may
imagine as drawn in the interior of a body, innumerable
forces act, the particles on the one side attracting or

repelling those on the other, and the latter reacting on

the former. We may I'egard all these forces as bemg a

single force whose place of application is not a point out

the given surface ; and when so considered we call the
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force a stress. Across any surface of a body then, cm

between the two portions into which it divides the body,

we have in general a stress actinj;.

When the stress across a surface is one which opposes

the separation of the portions of the body on opposite

sides of the surface, the stress is called a pull, a tension,

a traction, or a negative pressure. When it is one which
opposes the approximation of these portions, it is called

a push, a thrust, or a pressure.

We speak of a stress as acting across a surface when
we wish to draw attention to its acting iu opposite

directions on the two portions of the body on opposite

sides of the surface. When we wish to restrict attention

to its action on one of these portions, we speak of it as

acting on the bounding surface of that portion.

520. The forces acting between the particles on opposite

sides of any surface in a body may have any directions

and magnitudes. In general, therefore, the stress across a

surface cannot be said to have any one direction or mag-
nitude. In the important case of a continuous stress

however, the case, i.e., in which the resultant forces act-

ing on particles indefinitely near one another have inde-

finitely nearly the same magnitude and direction, if an
indefinitely small part of the surface be taken, the stress

across it may be considered as acting at a point, 'And as

having both a definite direction and a definite mag-
nitude.

J8,

^

i< t

521. Integral Stress over a Surface.—If any given sur-

face be divided into an indefinitely large number of inde-

finitely small portions, the sum of the forces on these

small portions may be called the integral stress over the

surface. If the surface is finite, it is obviously a quantity

having magnitude, but in general not direction.

The TYiean stress over a surface is the quotient of the

i.
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integral stress over the surface by its area. For a finite

surface it is also a quantity in general without direction.

The stress at a point across a given surface through
the point has a magnitude which is the limiting value of

the mean stress over a portion of the given surface con-

taining the point, when the area of that portion is made
indefinitel}'^ small. By 520 it will have a definite direc-

tion in cases of continuous stress.

The magnitude of the mean stress over a surface or

the stress at a point is usually spoken of as its intensity.

The stress at a point is in general different for different

points of any given surface, both as to magnitude and
direction. If the stress has at all points the same magni-
tude and direction, it is said to be uniform over the

surface.

The stress at any point is in general different both as

to magnitude and direction for different surfaces through
the point.

522. Homogeneous Stress.-—If the stresses at all points

of a body across parallel surfaces through them are the

same, the stress is said to be homogeneous throughout
the body. If not, the stress is said to be heterogeneous.

Heterogeneous stresses are in general continuous, i.e.,

the stresses across parallel surfaces at points indefinitely

near one another are indefinitely nearly the same. It is

obvious that if a body be subjected to a continuous
heterogeneous stress, the stress may be taken to be
homogeneous throughout indefinitely small portions of it.

523. Measurement of Stress.—The intensity of a mean
stress over a surface, or of the stress at a point of a sur-

face, being the quotient of a force by the area of a sur-

face, the derived unit of stress will be unit force per uni^
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of area, e.g., one poundal per sq. foot, one dyue per sq,

centimetre, one pound-weight per sq. inch (usually ex-
pressed as one pound per sq. in.), etc.

The dimensions of the unit of stress are thus, if \F'\ and
[>Sf] are the magnitudes of the units of force and area le-

spectively, [F]^ [S\-\ and therefore by 303 [M] [Z]-i \;r\-\

The reduction of the numerical values of stresses from
one to another system of units is made after the same
manner as in the case of speed, rate of change of speed,

etc. (45-50, 56-59).

524. Exmnples.

(1) Show that a stress of 20 poimdals per sq. foot is equivalent to

one of •297o dynes j)er sq. centimetre a[)proximately.

(2) One pound-weight i)er sq. inch is etpiivalent to fi'OxlO'*

dynes pe:' sq. cm. nearly,

(3) Reduce 40 dynes per sq. cm. to kilogrannues per sq. dcm.

Ans. 408 X 10~^ nearly.

(4) The unit of stress of a derived system being the poundal per

sq. in., the unit of mass a mass of 2,(")0(> lbs., and the unit of time a

1 inute, find the unit of length.

Ans. 0-0038G ft. nearly.

525. Resultant of Stress on a Surface.—It is frequently

convenient to imagine the poi'tion of any non-rigid body
under consideration to become rigid, and to treat it as

though acted upon by the forces, acting at points, which
in that case would produce in it the same effect as the

stresses on its bounding surfaces. This course is admis-

sible, because, if a portion of a deformable body be in

equilibrium under stresses acting on it over its bounding
surfaces, it will still be in equilibrium, though it become
rigid ; and if it become rigid, it will still remain in equili-

brium, though one or more of the stresses acting on its

bounding surfaces be replaced by equivalent forces acting

at isolated points.
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526. It is therefore important to 'determine the single

force or the simplest system of forces to which a stress on
a given surface mr.y be equivalent, or, as it may be called,

the resultant of the stress. In general such a stress will

not have a single force as resultant (47C, 477). But in

the special case in which the stresses at all points of a
surface have the same direction, a single resultant may be
found (471).

To find it, divide the whole surface of area S into a
large number of small portions of areas Sj, s^, etc. Then
S= '2s. If Pj, p^y ^tc, are the values of the mean stress

over the areas s^, s.„ etc. (when these areas are indefinitely

diminished, the mean stresses become stresses at a point),

the integral stresses over these areas will be p^s^, p^s^,

etc.; and as these stresses are parallel, we have (4G5, 470-1),

if P is the magnitude of the resultant stress,

P= /\Si +2¥-2+ etc. = 2/^s.

The direction of P will be the common direction of the

stresses p^, p^, etc., or, in other words, the direction of the

stress at any point of the surface.

The magnitude of the integral stress over a surface,

when the stresses at its points have different directions,

is obviously equal to that of the resultant stress over the
same surface when the stresses at its points have the

same intensities and have also a common direction.

527. Examples.

(1) Find the resultant stress over a surface of area S, the stress at

all points of the surface liaving the uniform intensity /), and a uni-

form direction.

Ans. pS. (For '^ps=p'^s=2>^.)

(2) Find the integral stress over a suiface of area >S', and consist-

ing of indefinitely small })ortions s^, s^y etc., wliose distances from a

given plane are Aj, h.^, etc., respectively, the stress at any point of
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tion of the

tion of the

a surface,

.
directions,

iss over the

is have the

;tion.

the stress at

L), and a uni-

the surface beiufj proportional to the distance of the point frttui the

<,aven plane.

If Ji>n />.j, etc., are the intensities of the stress on .>*,, x^, etc., res|)ec-

tively, we liave Pi = i/ti, Pi^k'li.^-, etc., where /• is a constant. Hence
the forces acting' across Xp .f^, etc., are kh^f<^, I'/la^, etc. Hence the

integral stress in

for S= ^s. Now l./isjli^.t is obviously (400) the distance from the

given plane of the centie of mass of a unifornx thin material

lamina of the same form and area as the given smface, and of sur-

face density unity (304), or, as it is called for shortness, the rev fre of
mass of the surfwe. Hence the integral stress is equal to tlie j)roduct

of the constant k\ into the area of the surface, into the distance of its

centre of mass from the given i)lane.

(3) Find the lesultant of a normal stress on a plane surface of

rectangular form (sides = a and 6), the stress at any j)oint being pro-

portional to its distance from a given plane i)arallel to the sides of

length a and inclined to the sides of length h at the angle 0, and

that side of length a which is nearest the given j)lane being at a

distance h from it. (Use result of Ex. •!.)

Al>8. kah {h sin ^ + 2/i)/l^

(4) Find the integral stress over a spherical surface of radius /•,

the stress at any jwiut being pr()])ortional to its distance from tlie

tangent j)lane at the highest point of the si)here and the stress at a

point at unit distance being k.

Ans. Airkr'\

(5) Find the integral stress over the curved surface of a right

cone of height h and semi-vertical angle 0, the stress at any point

of it being numerically e(|ual to }> times the distance of the point

from the base.

Ans. irp/i^sin ^/3 cos-6'.
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528. Centre of l^tret>t<.—If a single force can be found

which is equivalent to a given stress on a given surface,

its point of application is called the centre of the stress.
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the stresses at

Is the distances

|iial width par-

h strip. Hence

)int, and that of

middle point of

The resultant

iiit of this line

le point of this

JJOA the stress

Ing as their dis-

Is of equal width

It at its nuddU'

Kven plane, and

therefore to its distance from A /I. Ht'uce the resultant stresses on

the strips are j)r()p()rtional to tlu' K'lii^'tlis «>f the portions of thr strips

intercepted between strai<,dit lines (hawn from V and /) to A', the

middle j)oint (»f A/i; and Iience the centre of stress of tlie parallelo-

gram coincides with the centre of mass of the triangle hV/).

(4) Find the lentre of stress for any ])lane surface, the stresses at

its various points being parallel and proportional to their distances

from any given plane.

With the synd»ols of 528 we have y>, = //<,, jt>.2 = /7/ 2, etc. Hence

^ps/i/'^ps = -.>»A'-/-.s//.

The deternnnation of the value of ^s/r/^Mh in sj)ecial cases re(pures

in general the aj)})lication of the Integral Calculus.

(5) Find the centre of stress on a trianmdar plane A/iC, the

stresses at all points being uniform in direction and proportional to

the distances of the points from a plane through C i)arallel to AJi.

Let the triangle be divided into n narrow stri})s of etpial width

parallel to A IS. These may be treated as rectangles if 71 be very

i^reat. If ^1 /? have the lengtli a, and if /; be the distance of C from

it, the areas of these rectangles in the order in which they occur

from C towards AB are ahjn-, 2ah;n', '^<iJ>'n^, etc. As they are very

narrow the distances of their centres of mass from the given plane,

if A is the distance of AB from it, may be taken to be h n^ '2/thi,

^hhi, etc. Hence the distance of the centre of stress from the

given plane is (Ex. 4)

abhl??+ 2-«6A/7i» + etc. + n-ab/i jn^
^

' (
1-^2'-+ etc. + n-)/?i^'

= .3A 4,

since n is indefinitely great. And it is obviously in the line joining

C with the middle })oint of . 1 B.

(6) Find the distance fnmi a given })lane of the centre of stress

on a triangle ABG^ the point .1 being in the given })lane and the

points B and C at distances h^ and ho from it, the stress at any

point being normal and proportional to the distance of the j)oint

from the given plane. [Let BC meet the given i)lane in D. Then

the resultant stresses on ACD and ABl> may be determined in

terms of the length of A I) and the inclination of the i)lane of ABC

I

1

I

V

r
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PI,

.

to tlie ^'iveii |>ljine, and their centres of MtresH may l»c (letenniiied

l>v Kx. 2. TluiH the resultant stresses and the (centres of streMS on

the whoU' AlU) and the part AC/) bein;,' known, the centre of

stress of the part AJJC may be rea<b'ly <Uitermined.]

Ans. (/iiH/^,/^^4-A;-)/2(/'i +//,,).

(7) Find tlie centre of stress on a i)araneh><,Mam AHC/), the

stress at any point beinj^ normal and proportional tt> its distance

from a ^fiven plane which is parallel to the sides A/i and C/>, and

distant /<! and //._, from them resjtectively.

Ans. 2(/<
i"- + // i/i., + h.r)r^{l,

i
+ /<..,).

530. RcHolntion of Stress.—A stress being in general

oblique to the surface across which it acts, may be re-

solved into tangential and normal components. For each

of the forces acting at points, of which it may be con-

sidered to consist, may be so resolved.

A stress which is normal to the surface across which it

acts is often called a longitudinal stress. One which has

the inclination zero is called a tavgeiitial or .^henrimj

stress.

531. Specification of Stress. — The magnitudes and direc-

tions of the stresses at a point across an}'^ three plane sur-

faces through the point being given, the stress across any
other plane through the point can be determined.

First, let the stress throughout the body be homoge-
neous, and let there be no external

forces. Let be the given point,

and Ox, Oy, and Oz the intersec-

tions of the three planes through

0\ and let any fourth plane in-

tersect these planes in AB^ BC,
CA. Then the tetrahedron OABC
being in equilibrium under the re-

sultant stresses on its four faces,

and those on the three faces OAB, OBC, OCA being

known, the magnitude and direction of that on ABC may
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be determined by oOO ; and the area ABC being known,

the stress at any point of AJiC, and consequently the

stress at 0, across a plane; parallel to ABC becomes known.

532. Tt is usually convenient to take rectangular planes

as planes of referenct'.

Let OABC be a tetrahedron whose faces OAB, OBC,

OCA are at right angles to one another ; and let the

normal to the plane ABC have the direction cosines I, m,
n relative to the x, y, z axes respectively. Let the stress

at across OAB (the xy plane) have components T, S,

R in the directions of Ox, Oy, Oz respectively, that across

OBC (the yz plane) components P, U', T, and that across

OAC (the xz plane) components U, Q, S', in the same
directions respectively. Also let F^, Fy, Fz be the com-
ponents in these directions of the stress F at across a

plane parallel to ABC, and therefore across ABC. Then
the tetrahedron is in equilibrium under forces equal to

the products of these various stresses into the areas of

the faces across which they act, and acting (529, Ex. 1)

at the centres of mass of the faces. Hence (500)

F^ . ABC=P . OBC+ U . OAC+T . OAB,
2f

;fl
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ABC, OBG, etc., standing for the areas of the faces. Now
OBG, GAG, &nd GAB are the projections of ABC on the

yz, xz, and xy planes respectively. Hence (see 173)

GBG=ABG.l: OAG=ABG.m; eiud GAB^ABO . n.

Hence

Similarly

and

Fy=U'l+ Qm.+Sn,
F,= T'l+S'm+Rn.

533. It is also necessary for equilibrium (500) that the

sum of the moments of the acting forces about Ox, Gy, Gz
should be equal to zero. The relations between the com-
ponents of the stresses, which are obtained by applying
this condition, however, may be more easily obtained by
considering the equilibrium of a cube of which Gx, Oy, Gz
are adjacent edges. Let GD, GE, GF be three faces of

such a cube. The component stresses at all points of

'S ^ S-l'''M ill

^h

these faces are the same as at all points of the correspond-

ing faces of the tetrahedron ; and the component stresses

at all points of the faces opposite to 02), GE, GF are

equal and opposite to those on OD, GE, GF respectively.

Let the component stress equal and opposite to P on the
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.ces. Now
BC on the

il73)

= ABC .n.

00) that the

t Ox, Oy, Oz

jen the com-

by applying

obtained by

?h Ox, Oy, Oz

hree faces of

all points of

AQ correspond-

Lnent stresses

OE, OF are

respectively.

be to P on the

face opposite to OE be called 2>y and let the stresses simi-

larly related to Q, M, etc., be called q, r, etc. If the cube
be one of unit edge, the components of the resultant

stresses on its faces are P, Q, H, etc., ^>, q, r, etc., and
the points of application of these component forces are

the centres of the faces. Hence, equating to zero the sum
of the moments about Oj' of all the forces acting on the

cube, and noting that F, T, U, p, t, ii, which are parallel

to Ox, and S and 8' which intersect it, have no moments
about it, that R and r, Q and q, T and t\ and U' and u'

have equal and opposite moments about Ox, and that s and
s' are equidistant from it and have moments of opposite

sign about it, we obtain s = s', and therefore

tS*= 8'.

Similarly we find T=T,
and U=U\

534. Substituting these values of S', T, U', in the ex-

pressions of 5.32 for Fy^, Fy, F^, we have

F, =Pl^Um+Tn,
Fy=Ul+Qm+ Sii,

F,= Tl+Sm+ Rn.

535. Hence if P, Q, R, S, T, U are known, the stress

at across any surface through is known. The com-
plete specification of the stress at a point requires then
only these six numerical data. P, Q, and R are the com-
ponent stresses at 0, normal to the yz, xz, and xy planes

respectively. >S* is the tangential or shearing stress either

on the xy plane parallel to the y axis, or on the xz plane

parallel to the z axis ; T, that on the xy plane parallel to

the X axis, or on the zy plane parallel to the z axis ; U,

that on the xz plane parallel to the x axis, or on the yz
plane parallel to the y axis.

536. Secondly (531), if the stress is not homogeneous the

same result may be obtained, provided the tetrahedron

m
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and cube above be taken indefinitely small. For in that

case the stresses at across the planes of the faces may
be taken to be the stresses at all points of the faces.

537. The above conclusions (534-5) hold also if the body
is acted upon by external forces. Such forces must either

be forces acting on the outer surface of the body, or

forces, such as gravitational attraction, acting throughout
the mass. Forces acting at the outer surface of the body
act only on tetrahedra or cubes having faces in the bound-
ing surface, and they constitute the stresses on those

faces. Forces acting throughout the mass of the body
are proportional to the mass acted upon. Hence such of

these forces as act on the tetrahedron or cube are pro-

portional to its volume. The stresses on its faces are

proportional to the areas of these faces. The former are

therefore proportional to the cubes, and the latter to the

squares of any edge. Hence, if the tetrahedron or cube
be gradually diminished, the external forces diminish

more rapidly than the stresses ; and if it be made inde-

finitely small, the external forces become indefinitely small

relatively to the stresses, and may therefore be neglected.

538. Resolution of a Tangential Stress into Longi-
tudinal Stresses.—Let a body
be subjected to a tension

P in a given direction, and a

pressure of the same intensity

in a perpendicular direction,

the state of stress being homo-
geneous. And let ABDG be a

section of a cube of unit edge,

with its faces normal to the

directions of the tension and
the pressure, through their cen-

tral points. Then the resultants

of these stresses on the faces of

the cube may be considered as acting at the middle points
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of the sides of ABDC and as having the magnitudes P.

The triangle AGE, or rather the triangular prism of

which ACB is a section, being in equilibrium under the

two forces P, and the resultant stress on GB, this resul-

tant stress must be equal and opposite to the resultant of

the two forces P, on AB and AiK Now in a direction

normal to GB, these forces have equal and opposite com-
poiients, and in the direction of GB each has a component
P cos 45°. Hence the resultant stress on GB must be in

the direction BG, and of the magnitude 2P cos 45°. Now
the area of the section of the cube through GB perpen-

dicular to ABDG, which is the surface on which this

stress acts, has the area 1/cor, 45°. Hence the intensity

of the stress on GB is 2P cos- 45° or P.

Hence a tension parallel to one line, and an equal pres-

sure parallel to any line at right angles to it, are together

equivalent to a shearing stress of the same value on planes

cutting these directions at angles of 45°. (Compare 276.)

The directions of the pressure and tension may be called

the axes of the shearing stress.

539. It follows that since a stress at any point of a

body may be completely specified in terms of longitudinal

and shearing stresses, it may also be completely specified

in terms of longitudinal stresses alone.

540. Relation of Stress to Strain.—In considering the

determination o*^ the strain produced in a body when sub-

jected to given stresses, we must restrict ourselves to the

simple case in which the body is homogeneous, isotropic,

and perfectly elastic.

541. A body is said to be homogeneous provided any

two equal, similar and similarly situated parts of it are

not distinguishable from one another by any difference

in quality. Probably no bodies perfectly fulfil this con-

dition without limit as to the smallness of the parts. But
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many bodies are so nearly homogeneous that their hetero-

geneity eludes observation.

542. A homogeneous body is said to be isotropic^ when
any two equal and similar portions of it, whether simi-

larly situated or not, are not distinguishable from one

another, or, in other words, when it has the same qualities

in all directions. A body which exhibits difierences of

quality in different directions is said to be ceolotropic.

A body may be isotropic with respect to some qualities,

and aeolotropic with respect to others. We have to do
with isotropy only with respect to the relations of stress

to strain.

543. A body is said to be elastic, provided (1) the ap-

plication of force is required to produce a change in its

shape or its bulk ; and (2) a continued application of

force is necessary to maintain the change, in which case

it will return towards its initial shape or bulk when the

applied force is removed.

A body is said to be perfectly elastic for a strain of a

given kind, provided the same application of force is re-

quisite to maintain the given strain as to produce it, in

which case it will obviously return to its initial configu-

ration when the stress is removed.

544. Probably no natural bodies fulfil this condition of

perfect elasticity, unless in producing strains in them care

be taken to keep them at constant temperature. For in

all bodies the stress required to maintain a given strain

's found to vary with temperature; and we know from
Thermodynamics that consequently a change of configu-

ration must be accompanied by a change of temperature.

545. In all bodies it is found that the amount by which
the stress required to produce a strain exceeds that re-
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quired to maintain it, is greater than the amount due
merely to this change of temperature ; and the difference

between these amounts is found to depend upon the

rapidity with wliich the change of configuration is pro-

duced. Thus the relative motion of the parts of a body
are resisted in the same way as the relative motion of

different bodies in contact ; and bodies are therefore said

to exhibit moleculai' friction, or as it is called viscosity.

Even a perfectly elastic body will not therefore appear
to be perfectly elastic unless its changes of configuration

are carried out with infinite slowness.

546. For most bodies, and for most kinds of strain,

there are limiting values of the stress by which a strain

of a given kind is produced, within which the elasticity

for that kind of strain is perfect, and beyond which the

elasticity is imperfect. Such limiting value of the stress

is called the limit of perfect elasticity for that kind of

strain.

strain of a

force is re-
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ire. For in

riven strain

'know from
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lemperature.

it by which
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547. All bodies exhibit some degree of elasticity of

volume. If a body possess any degree of elasticity of

shape, it is called a solid. If a body possess no degree of

elasticity of shape, it is called a fluid.

548. That a body may be elastically isotropic, i.e.,

isotropic so far as the relation of stress to strain is con-

cerned, it must obviously satisfy two conditions:—(1)

Any spherical portion of it must, if subjected to a uniform
normal pressure or tension over its whole surface, undergo
no deformation, the compression or dilatation produced
being the same in all directions

; (2) Any cubical portion

of it, subjected to shearing stresses on the planes of its

faces, must undergo distortion or shear ; and the amount
of the shear must be the same to whatever side of any face

the shearing stress is parallel.

'^f.
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549. Hence the relation of stress to strain in a perfectly

elastic homogeneous isotropic body is completely defined

if we know (1) the ratio of the intensity of the stress,

uniform in all directions, to the dilatation or condensation

(266) which is produced by it; and (2) the ratio of the inten-

sity of the shearing stress to the amount of the shear pro-

duced by it. The former of these ratios is called the

resistance to compression or the elasticity of volume, the

latter the rigidity or the elasticity of figure or foimi.

The former may be denoted by the symbol k, the latter

by the symbol n.

550. Did wo know the laws of the forces with which
the particles of bodies act upon one another when in close

proximity, and the distribution of the particles in the

body, it would be possible, by the aid of the laws of

motion, to determine the values of the elasticities of ligure

and volume for strains of different magnitudes, in the case

of different bodies, and in the case of the same body in

different physical states. In our ignorance of tne laws
of these forces, however, we find it necessary iv. have re-

course to experiment.

551. Statics of Elastic Solids.—Hookes Laiv gives us
the necessary experimental basis for the study of the
strains of elastic solids. Hooke expressed the law as

follows :
" [Tt tensio sic vis ; That is, The Power of any

Spring is in the same proportion with the tension there-

of: That is, if one power stretch or bend it one space,

two will bend it two, and three will bend it three, and
so forward." In modern phraseology it takes the follow-

ing form : Strain is proportional to stress. This law
has been subjected to the most minutely accurate experi-

mental tests, and the simple proportionalit}- of stress to

strain is found to hold in the case of all solids for sufficiently

small strains, and in the case of metals and hard solids

(i.e., solids in which the stress applied, if maintained,
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does not produce a continually increasing strain) for all

strains within the limits of perfect elasticity.

The strains, by the investigation of which Hooke's law
has been established, viz., the stretching of wires by
appended v; eights, the compression of rods, the flexure

of beams, the extension of spiral springs, the torsion of

wires, etc., are all more or less complex strains, involving

in most cases both change of volume and change of form.

The constancy of the ratio of stress to strain, within the

limits of perfect elasticity, in strains involving both
change of form and change of volume, warrants us in

holding that within the same limits the elasticity of figure

and the elasticitv of volume must be constant also,

552. Moduluses of Elasticity.—A modulus of elasticity

is the ratio of the intensity of a stress to the magnitude
of the strain which it produces. Thus the elasticity of

figure {n) and the elasticity of volume (Jc) are moduluses
of elasticity. The elasticity of figure is often called

therefore the modulus of ricjiditu (or of simi^^lc rif/idity),

and the elasticity of volume the modulus of hit/k elas-

ticity. The reciprocal of the latter is called the com-
pressibility of the body.

Younr/s modulus, or the modulus of shni^le longi-

tudinal stress, is the ratio of the intensity of the stress

applied at the end of a wire or rod in the direction of its

length to the increase or diminution which each unit of

its length undergoes, the strain being one within the

limits of perfect elasticity. The extension of a wire or

rod by longitudinal stress involves change of both volume
and form. Hence Young's modulus may be expressed in

terms of k and n.

A modulus of elasticity, being the ratio of a stress to a

strain, has the same dimensions as a stress ; for a strain

is the ratio of two quantities of the same kind, two
lengths, for example, or two volumes, and has therefore

I

rt\
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no dimensions. The dimensions of a modulus of elasticity

are thus [ilf][Z]-^[jr]-2. The value of such a modulus
expressed in any one system of units may thus readily

be reduced to any other system of units. Moduluses
are usually expressed in gravitational measure, in pounds
{i.e., pounds-weight) per square inch, e.g., or in grammes
{i.e., grammes-weight) per square centimetre.

In the measurement of moduluses however a special

unit of force is frequently employed, viz., the weight of

unit of volume of the substance to which the modulus
applies. The value of the modulus thus expressed is to

be obtained from its value expressed as above in ordinary

units of stress by dividing by the weight of unit volume
of the substance, i.e. (304), by the product of the specific

gravity of the substance into the weight of the unit

volume of water at the standard temperature. Thus,
if a modulus be expressed in pounds per square inch, its

value in terms of the special unit of force is obtained b}'

dividing by the product of the specific gravity of the

substance into the weight of a cubic inch of water, which
in gravitational units is equal to the density of water in

pounds per cubic inch. If the modulus be expressed in

grammes per square centimetre, its value has to be

divided only by the specific gravity of the substance,

for the density of water in grammes per cubic centimetre

may be taken to be unity.

The dimensions of " weight of unit volume " being

[^][FJ"^ (where [F] and [V] are the magnitudes of the

units of force and volume respectively), and therefore

[ilf][Z]"-[jr|"^, those of moduluses expressed in terms
of the weight of unit volume as unit of force are

[if][X]-i[r]-V[i)/][Z]-2[r]-2 or [L]. The modulus thus
expressed is therefore a length, and its value is there-

fore usually called the "length of the modulus." Thus
the value of a modulus obtained by dividing its value
in pounds per square inch by the product of the specific

s f . •^ t:

I
/»'
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The term modulus is also applied to the following

ratios, though they are not the ratios of stresses to

strains :

—

The lyiodidus of torsion of a rod or wii*e is the ratio (jf

the couple applied at one end (the other end being fixed)

to the torsion produced per unit length of the wire.

The modulus of Jiexural vlglditij, in any plane, of a
rod or beam, slightly bent in that plane, is the ratio of

the couple producing the curvature to the curvature

thereby produced.

The dimensions of the modulus of torsion are obviously

[if][ZP[T]--'; those of the modulus of flexural rigidity

the same.

553. Examples.

(1) The nioduluH of rigidity of a piece of glass is 245 x 10" grammes

per sq. cm. Express it (a) in kilogrammes per sq. mm. ;
(b) in

absolute C.G.S. units ; and (c) in pounds per sq. in.

Ana. (a) 2,450 ; (6) 240 x IQ"
;

(c) 3'48 x 10«.

(2) The modulus of bulk-elasticity for steel is 1,841 x lO'' dynes

per sq. cm. Show that its value in grammes per sq. cm. is

1,876 x 10", and in poundals per sq. ft. 1,237 x 10^

(3) Young's modulus for lead (specific gravity = 11*215) being

177 X 10" grammes per sq. cm., sliow^ that the length of the

modulus is 15*78 x 10" cm.

(4) The length of Young's modulus for iron (specific gravity= 7*5)

being 9x10" feet, show that its value in grammes per sq. cm. is

2,057 X 10", and in pounds per sq. ft. 4,218 x,10". (A cubic foot of

water weighs 1000 oz. approximately.)

(5) The modulus of torsion of a certain wire has the value

it
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Find itH value in

554. Strain due to Lon<jitu(lincd Stress.—As the stress

at any i)oint of a body may (5.S9) V)e completely specified

in terms of simple longitudinal stresses, the determination

of the strain produced by any given stress lequires only

that wo should determine the strain produced by a simple

longitudinal stress.—Let AG be a unit cube of a body
subjected to a simple longi-

tudinal stress, of intensity P,

normal to the faces ABCD and
EFGH. We may obviously

apply to each of the other

faces two equal and opposite

normal stresses of the inten-

sity 773. (Each arrow-head
in the figure denotes a stress

of the intensity P/3.) Then
it is evident that the simple

longitudinal stress P is equi-

valent to a uniform dilating

tension P/3, together with two
distorting stresses (538), each

equal to P/3 and having one

axis in the direction of the

simple longitudinal stress, their other axes being at right

angles to it and to one another. Hence (549) the eftect

of the simple longitudinal stress P will be a uniform
cubical dilatation of the amount (per unit of volume)
P/3A.', together with two shears, each of the amount
P/3'^ and having one axis in the direction of P, their

other axes being perpendicular to it and to one another.

Each of these shears, if small, is (270) equivalent to a

positive elongation equal to PjQn in the direction of P
and a negativo elongation of the same magnitude in the

direction of the other axis. Also the cubical dilatation

\ml
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P/lMc is (2G(>) equivalent to an elongation tlic same in all

directions and equal to P/dk. Hence tlu^- etioct proiluced

by P is L positive elongation in its own direction ec^ual

to

P/i)l-\-Pl^n or P{:]k-{-n)/M:n,

and a positive elongation ccjual to

P/dk-PlCm or P(2n-3/;)/18/cn,

in each of two perpendicular directions at right angles to

one another, and therefore in all directions at right angles

to that of P.

555. Stress reqidred for Longitudinal Strain.—Simi-
larly, as any strain may (279) be specified in terms of

simple longitudinal strains, the determination of the stress

required to produce a given strain requires only that we
should determine the stress required to produce a simple
longitudinal strain.

By 277 (Ex. 1) a small simple elongation e is equivalent

to a cubical dilatation c (due to elongations -3/3 uniform
in all directions), together with two shears, each of the

amount 2e/3, having the direction of the given simple

elongation as major axis or axis of positive elongation,

and having as other axes lines perpendicular to the

direction of the elongation and to one another. For the

production of the cubical dilatation e a tension ke, uniform
in all directions, is necessary. For the production of

each of the shears (538) a tension in the direction of the

elongation, and of the intensity 2en/S, together with a
pressure of the same intensity in a perpendicular direction

is necessary, the pressures required for the two shears

being perpendicular to one another. Hence the elonga-

tion e requires altogether a tension in the direction of

the elongation of the intensity (k+ 4!n/3)e, and tensions

of the intensity {k—2n/S)e in two directions perpen-

dicular to that of the elongation and to one another,
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and therefore in all directions perpendicular to that of

the elongation.

556. The above results are sufficient to enable us to

solve a few important problems on the strains produced
in elastic solids when subjected to given stresses, and
on the stresses required to produce or maintain in them
given strains.

Examjples.

(1) A rod, bar, or Avire is subjected to equal and opposite forces

acting at its ends in the direction of its length. Find the ratio

(called Poisson's ratio) of the Ii)iear contraction it undergoes

laterally to the elongation pioduced in the direction of its length.

Ans. Obviously from 554, (3^--2?i)/2(3^+n).

(2) Find in Ex. (1) the diminution, per unit area, of the cross

section of the rod, P being the intensity of the stress applied at

the ends.

Ans. 7^(3^ - 2n)/9kn.

(3) Show that in Ex. (1) the dilatation per unit volume is F/Sk,

P being the intensity of the stresses at the ends of the rod.

(4) Express Young's modulus in terms of tht moduluses of bulk-

elasticity and of rigidity.

The stress P applied at the end of a rod or wire in the direction

of its length will (554) produce an elongation per unit of length of

P(2k+ n)l9kn. Hence Young's modulus, the ratio of this stress to

the elongation produced, is equal to 9knl{3k+ n).

(5) Show that in the extension of a band of India-rubber, for

which k is large in comparison with n, the area of ^he cross-section

is diminished in nearly the same proportion as that in which the

band is lengthened, and that there is therefore but little chaxige

of volume.

(6) Find (a) the stress produced at an}- point in a circular cylinder

of length I, one end of which is fixed while the other is twisted
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dar cylinder

[r is twisted

through an angle 0, and (b) the moment of the couple which nnist

be applied at the free end of the cylinder to maintain the torsion.

(a) By 277, Ex. (3), the cylinder is, at every ])()int distant r

from the axis, sui^jected to a shear whose plane is ])er])endicular to

a plane through the j)oint and the axis, and is parallel to the axis,

whose direction is normal to the plane containing the })oint and the

axis, and whose amount is Gr/l. Hence the stress at any point is a

shearing stress of the intensity nO/'ll, on a plane normal to the axis

and in a direction perpendicular to the ])lane throngh the axis and

the given point.

(b) If the normal section at the end of the cylinder be divided

into an indefinitely large number of indefinitely small portions of

areas a-j, s^j etc., distant /\, 7*2, etc., from the axis, the resultant

shearing stresses on them will be ndi'iSn'I, nOr.jS^.Jl, etc. The
moments of these resultants about the axis will be ndr^-Syjl^

nOr^s,Jl^ etc. Hence, if T is the moment of the couple which

must be aj>plied at the free end to maintain the given torsion,

7'= nd)\^Si!l+ ndi\^s.2ll+ etc. ^- '^nBr-sIl- (neil)^sr-.

Now 'Ls'T is (486) the moment of inertia of a uniform thin lamina

of the shape and size of the section of the cylinder and (304) of sur-

face density unity (called for shortness the n'oment of inertia of the

section), about an axis through its centre perpendicular to its plane,

and (490, Ex. 11) if a is the radius of the cylinder, is equal to 7ra''/2.

Hence T=neTra*l2L

Hence also the torsion produced in a wire i^ directly proportional

to the twisting couple and to the length of the wire, and in^^ersely

proportional to the rigidity and to the fourth power of the radius.

The proportionality of the angle of torsion to tlie twisting couple

was discovered experimentally by Coulomb, and is called Coulomb's

law.

(7) Express the modulus of torsion of a wire (552) in terms of its

dimensions and its rigidity.

Ans. mra*i2, a being the radius of the wire.

(8) A uniform straight beam, with one end fixed, is slightly bent

by a force F applied at the other end normally to its length and in

in

I-

it-

I
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the i)laiie of bending, F being so great that the weight of the bean»

may be neglected. Find the flexural rigidity (552) of the beam in

the plane of bending.

Since the beam is uniform, and is but slightly bent, the strain

l)roduced may be taken to be that of 277, Ex. 4.—Let A ECE' be

any transverse section of the beam. Then the part of the beam
between this section and the free end is in

equilibrium under the force F, the normal

stress over AEGE\ due to the longitudinal

strain, and the shearing stress over A EGE\
due to the shearing strain, to which the

beam is subjected. Let EE' be the inter-

section with AECE' of the neutral surface.

Then at any point O, distant d from Et\
there is a longitudinal strain in a direction

normal to AECE\ the elongation being

djp, where p is the radius of curvatuic of longitudinal lines in the

neutral surface and therefore, since the bending is slight, of all

longitudinal lines. Hence, if S is the intensity of the longitudinal

stress at G^ and J/ is Young's modulus for the beam (552),

M= SI{dlp)^ and theref(jre S= Mdjp. If s is an indefinitely small

area surrounding G, the resultant stress on this area is Msdjp. The
moment of this resultant stress about EE' is therefore Msd^/p.

Now the whole area AECE' may be divided into an indefinitely

large number of indefinitely small portions. Hence the moment
about EE' of the normal stress over the whole surface AECE' is

!« \- ,

I M

^{AIsd^!p)= {Mlp)^sd\

the summation apjjlying to all the small areas into which A ECE' is

divided. Now '^sd^ is (486 and 556, Ex. 6) the moment of inertia

of the surface A ECE' about EE'. Calling this /, we find the

moment about EE' of the normal stress on AECE' equal to MI/p.

The shearing stress on A ECE' being tangential has no moment
about EE'.

If the distance from AECE' of the free end of the beam be 5, the

moment of F about EE' is F5.

The portion of the beam between A ECE' and the free end is
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thus in equilibrium under the two moments F8 and MIjp. Hence
(500)

F8= MIIp, and F8p= ML

Now 1//) is the curvature of the beam, and therefore Fbp is the

flexural rigidity of the beam in the plane of bending.

Hence the flexural rigidity of a beam in the plane of bending is

the product of Young's modulus for the beam into the moment of

inertia of a transverse section about the line in which this section

intersects the neutral surface.

We must therefore determine the position in the beam of the

neutral surface. We have seen that, s being any small portion of

a transverse section, the resultant stress on it normal to the trans-

verse section has the magnitude Msdip. Hence the resultant normal

stress ever the whole section is

2J/«c///)= (J///))25c?.

Now the bending being slight, the direction of this resultant longi-

tudinal stress is perpendicular to the directions of the other acting

forces. Hence for equilibrium this resultant stress must be zero,

and therefore 'Lsd=0. Hence (403) the line EE\ distant d from

the little area s, passes through a point which is the centre of mass

of the section AECE' {527, Ex. 2), and therefore the neutral surface

is the surface passing through the centres of mass of the transverse

sections of the beam, and normal to the plane of bending. (That

line of the neutral surface which passes through the centres of mass

of the sections of the beam is called the elastic central line.)

We can now calculate the flexural rigidity of a beam of given

section. Thus let the transverse section be rectangular, its sides

being a and b. Then (490, Ex. 4) the moment of inertia of a trans-

verse section about an axis parallel to the sides «, in its plane, and

through its centre of mass, is ab^/12. Hence the flexural rigidity in

a plane normal to the sides a is Mab^/I2j where M is Young's

Modulus for the beam.

(9) A uniform straight horizontal beam of length L has one end

fixed, and is slightly bent in a vertical plane by the weight F oi a.

2g
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Find the distance through whichbody attached to the other end.

the free end will be lowered.

Let the unstrained beam be divided

into an indefinitely large number of

transverse slices of thickness t, and let

abdc be one of these slices in the

strained state. The bending being

slight the transverse sections win in-

tersect one another in a horizontal line

vertically below the fixed end of the

beam. Let this line intersect the plane

of the diagram in 0, and let be the

inclination of ac to bd. Let ak and bl,

tangents at a and b respectively, inter-

sect a vertical line through ^ in ^ and I

respectively. Then kl is the lowering

of B due to the strain of abdc. The

whole lowering of B will be the sum of the amounts of the lowering

due to the strains of the various slices. Hence, if kl be denoted by X,

the total lowering of B will be S\. Now the angle between ak and

bl is 6. Hence, since the bending is slight, if the distance of the

slice abdc from the free end be denoted by 8, we have

Now (277, Ex. 4)

Hence

Also (556, Ex. 8)

Hence

\= 8d.

t=pd.

\==8tlp.

MIIp= F8.

\= FtS^IMI.

Hence also the total lowering of the free end

SX= S(/?'ifS2/J/7)= {FIMI)i:t8^,

the summation extending to all the slices of thickness t into which

the beam of length L is divided. Now (486) 2^52 is the moment of

inertia of a uniform thin rod of length L, and linear density unity,

about a normal axis through its end point, and is therefore (490,

Ex. 1) equal to Z'/3. Hence the whole lowering
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If the beam have a lectangular transverse section of breailth <(

and depth 6, as in Ex. 8,

/=«/>'Vl2.

Hence, in this case, the whole lowering

(10) A uniform straight beam of length L is supported (not

fixed) at the ends liorizontally, and weighted at its middle point

with a body of weight /. Find the amount of the lowering of the

middle point, the bending being slight.

Obviously this case is the sauie as if the middle point of the beam

were fixed and its ends acted uj)on by njjward forces equal to F'2.

Af
2

B

F

For the beam is in equilibrium under the force F and the equal re-

actions of the supports, which, since the bending is slight, may be

considered vertical. Hence the lowering will be obtained from the

result of Ex. 9 by putting Z/2 for L and Fj2 for F. Hejice the

lowering

1=FL^I46MJ.

If the beam be of rectangular section, breadth = « and depth= 6,

l= FL^l4Mah\

557. Kinetics of Mastic Solids.—The motion of the

parts of an elastic solid relative to one another is to be
determined by dividing it into small portions and apply-
ing the general equations of motion to these portions,

the forces acting on them at any instant being the stresses

which must act across their bounding surfaces to produce
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the state of strain which they may have at that instant,

and the stresses due to viscosity, together with the ex-

ternal forces.

In general the investigation of the motion of elastic

solids which have been strained and then " let go " re-

quires more mathematical power than this book pre-

supposes. We may however solve one simple problem.

558. Examj)le.

A uniform cylindrical body (moment of inertia about the

axis=/) is hung by means of a wire (length= ?, radius= a, rigid-

ity =?i) whose axis is in the same straight line with the axis of the

cylinder. The cylinder, after having been turned about its axis

through an angle involving a torsional strain in the wire, which is

within the limits of perfect elasticity, is let go. Find the time of

oscillation of the cylinder (neglecting viscosity), and show how the

rigidity of the wire may be determined by observation of the time

of oscillation.

The cylinder may be considered to be a rigid body acted upon in

a horizontal plane by no forces except the shearing stresses on its

upper end where it is attached to the wire. We found (556, Ex. 6)

that the couple neceisary to twist a wire of length Z, radius a, and

rigidity n, through an angle d is )nrda*/2L Hence at the instant

at which the cylinder is turned d radians from the position in which

the wire is without torsion, the moment of the stresses exerted bv

the lower end of the wire on the cylinder about its axis will have

this magnitude. Its direction will be such as to turn the cylinder

towards the position in which the wire is without torsion. If there-

fore a is the angular acceleration produced in the cylinder by these

stresses, we have (493)

a= irnda*/2ll.

Hence a cc e ; and therefore for any point of the cylinder distant r

from the axis, or qc 0?; i.e., the component acceleration of the point

in the direction of its path varies as its displacement (measured

along its path) from its mean position, that occupied when the wire

is without torsion. The motion of each point of the cylinder is
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therefore (164) simple harmonic. Hence the cylinder will oscillate

about the })osition in which the wire has no torsion, the rate of

change of speed of each of its jwints when at unit disbmce (meas-

ured along its \y»X\\) from its mean position being

arl0r = a:d= ir)ia*l2l/.

Hence, if t be the time of a complete (double) oscillation,

t= 27r{2lIfTrna*)*.

Hence also n= 8rrUlt'^a'^. If therefore t be observed, n may be

determined.

559. Work done during Strain.—The work done
during a strain can be best studied by considering a cube
of the body subjected to the strain, whose edges have the

directions of the rectangular axes by reference to which the

strain is specified. Let ODEF (Fig. of 533) be such a cube
subjected to a stress (P, Q, R, S, T, U), and let it undergo
a small elongation e alone. (We use the symbols of 283
and 535 to specify strain and stress.) The only stresses

in the direction of e (that of the x axis) are P, T, and U,

and the equal and opposite stresses on the opposite sides

of the cube. The distance of the places of application of

the two opposite stresses P is changed by the elongation,

by the amount el, if I is the edge of the cube. Hence
work is done equal to Pl^.el or Pel^. The places of

application of the pair of stresses T, and of the pair U,

are not moved relatively to one another by the elonga-

tion. Hence no work is done by either. Hence the

whole work done during the elongation e is PeP.

Similarly, if the body undergo small elongations f or g
alone, the whole work done will be Qfl^ or Pgl^ respec-

tively.

If now the body undergo the small shear a alone, seeing

that we may regard it as having the direction of the y or of

the z axis, i.e., as being a shifting of planes parallel to the xy
plane in the direction of the y axis, or of planes parallel
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to the ./'2 piano in the direction of the z axis, the pairs of

stresses M, T, S\ S, Q and U' may be in the direction of

motion. Now the pair of stresses li, and the pair Q, are

longitudinal stresses, and the distances of their places of

application are not changed by the shear. Hence they

do no work. Also the places of application of the pair of

stresses T, and of the pair U\ undergo no change of dis-

tance. Hence T' and U' do no work. If the shear be a

shifting of planes parallel to the xy plane in the direction

of the 2/ axis, the places of application of the pair of stresses

S experience a relative displacement in the direction of >Si,

of the amount al, while the places of application of the

pair S' undergo no change of distance. And if the shear

be a shifting of planes parallel to the xz plane in the direc-

tion of the z axis, the places of application of the pair S'

experience a relative displacement in the direction of S'

of the amount al, while those of the pair S undergo no
change of distance. Hence, 8 being equal to S', the work
done in either case and therefore the whole work done
during the shear a, is Sal^.

Similarly during small shears b or c, occurring alone,

the work done would be Tbl^ or Ucl^ respectively.

Now the translation or rotation which may accompany
any strain do not change the distances of the places of

application of any of the pairs of stresses P, Q, R, etc.,

and therefore they do not involve the performance of any
work by these stresses. Also the work done during a

small strain (e, f, g, a, b, c) is the sum of the amounts
of work done during each component alone. Hence the

whole work done throughout a cube of edge I, subjected

to a homogeneous stress (P, Q, H, S, T, U) during a small

strain {e, /, g, a, b, c) is

{Pe+ Qf+Rg+ 8a+ Tb^- Uc)P.

Hence also the work done throughout the body per unit

of volume is

Pe-\-Qf+Rg+ 8a+ Tb+Uc;
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and the whole work done, if the body have the volume v,

is

(Pe+ qf+ Ihj+ Sa -h Th+ Uc)v.

560. This amount of work is equal to that done on the

body by the stresses on its bounding surface. For if the

body be divided into indefinitely small cubes, the work
done by the stress on any side of any cube is equal to

that done on the contiguous side of the neighbouring
cube and of opposite sign. Fence the sum of the amounts
of work done on all internal surfaces is zero

; and there

remains only the work done by the stresses on those faces

of cubes which are parts of the bounding surface of the

body.

561. Let a body subjected to a stress (P, Q, R, S, 2\ U)
undergo a small strain (e, f, g, a, h, c), and let its stress

after the strain be (P', Q', R\ S\ T, U'). Then since, by
Hooke's law, the stress is proportional to the strain, the

mean stress is one half the sum of its initial and final

values. Hence the work done is equal to

If initially the body is in a state of no strain, and there-

fore of no stress, the work done is thus

562. If the body be perfectly elastic, and if .the strain

be conducted so slowly that no change of temperature

results, and no effect of viscosity is appreciable, then the

stresses called into play depend only on the configuration

of the body, and it thus constitutes a conservative system.

Hence the potential energy of the body in its final con-

figuration is equal to the work done in producing it.

''.

I

1^

563. If the body be perfectly elastic, and if the strain
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be not effected with infinite slowness, the stresses at the

various stages of the strain are not dependent wholly
upon the configuration, but depend also upon the varying

temperature and upon the viscosity. Hence in this case

the body does not behave as a conservative system, and
the final potential energy is less than the work done in

producing the change of configuration, the difference

being the amount expended in the production of heat.

564. If the body be not perfectly elastic, then, even if

the change of configuration be effected with infinite slow-

ness, the stress required to produce a strain is not equal

to that required to maintain it. Hence in this case also

the body does not behave as a conservative system, and
the final potential energy is less than the work done.

565. The potential energy of a body strained to the

extreme limit of perfect elasticity is called the resilience

of the body for that kind of strain. It is usually mea-
sured in gravitational units, and expressed per unit mass
of the body. It is obvious that the resilience of a body
thus expressed is equal to the height to which the body
would be lifted if an amount of work equal to the resi-

lience were done in lifting it. The term resilience is also

used by some writers as synonymous with elasticity.

566. Statics of Fluids (Hydrostatics).—A fluid is a
body which possesses no degree of elasticity of shape, i.e.,

its shape may be changed by a stress of any magnitude
however small, and no stress is required to maintain the

strain thus produced, the body exhibiting no tendency to

return to its initial shape when the distorting stress is

removed. In consequence of the viscosity of fluids how-
ever, a finite stress is necessary to produce a change of

shape, if the change is to be effected vuth finite rapidity.

567. All fluids are perfectly elastic for condensation

strains. But they differ greatly in compressibility.
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Liquids are fluids whose compressibility is small
;
giises,

fluids whose compressibility is great.

The compressibility of most liquids is so small that the

properties of the ideal liquid, a liquid of constant density,

are approximately those of many real liquids. Hooke's
law applies to the condensatioii of liquids up to the

highest pressures to which they have been subjected. In

discussing liquids, however, we shall assume their density

to be invariable.

The relation of the pressure to the volume of a given
mass of gas kept at constant temperature is approximately
expressed in Boyle's law, which states that the pressure

is inversely proportional to the volume, and therefore

directly proportional to the density. All gases at sufti-

ciently high temperatures follow Boyle's law with con-

siderable accuracy through extensive ranges of pressure.

But the lower their temperature the greater their devia-

tion from it. We may take as the ideal gas one which
follows this law, and in dealing with gases we assume it

to hold.

568. The distinctive property of fluids, that the main-
tenance of a shearing strain requires no stress, may ob-

viously be expressed thus :—Provided the parts of a fluid

body are not moving relatively to one another, the shear-

ing stresses at all points of the fluid are zero, or the

stresses at all points on all surfaces through the points

are normal.

569. Stresses in Fluids.—The stresses of fluid bodies

are usually pressures, though in certain cases they may
be tensions. The centre of stress in the case of a fluid is

thus usually spoken of as a centre of pressure.

The stress throughout a fluid, which is in equilibrium

and is not acted upon by external forces throughout its

mass, is homogeneous (522). For (1) any hemispherical por-
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tion of it is in equilibrium
; and the pressures on the small

portions into which its curved Hurtaco may bo divided

bein<f all normal to these portions, and therefore passinj^'

through the centre of the sphere, cheir resultant also

passes through that point. Hence also the resultant of

the pressure on the plane surface i)asses through its centre
;

and tlie pressure over it is therefore uniform. Also (2)

any cylindrical portion, with ends normal to the axis of

the cylinder, is in equilibrium, and the pressures on the

curved portion of its surface being normal to the axis,

the pressures on its ends must bo equal and opposite.

Hence the pressures on parallel surfaces are ecpial.

570. Specijieati(>7i of Fluid Pressure.—The stress

throughout a fluid in equilibrium and not acted on by
external forces being homogeneous, the results of 531-535
apply to the case of a fluid in this state. In the case

of a fluid however the equations of 534 are much sim-

plified by the absence of shearing stresses (508), and
thus become

whence

F^^IH) F„ = Qm; F, = Rn,

Now in the special case in which l —m = n, we have
since F is now a fluid pressure and therefore a normal
stress,

and therefore in all cases,

Hence (7) F=P=Q=R.
If therefore a fluid be in equilibrium and be not acted

upon by external forces, the pressures at all points across

all surfaces through these points are the same.

If it be acted upon by external forces (537) the pressures

at any one point across all surfaces through that point are
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The ])rcHsurc at any point of a Huid in equilibriuui is

therefore speciticd by one numerical datum.

571. Equal TranHif)i\»Hlon of Pvcshuvc.—If P and 1*'

be the pressures on the ends (normal to the axis) of a
cylinder of unit section, and of any leny;th and in any
direction, and if 7*^ be the sum of the components in the

direction of the axis of the external forces acting on the

cylinder, then for equilibrium

P'-P = F.

Hence, if P be increased by any amount, P' becomes
increased by the same amount. This result is often

called the " Principle " of the equal transmission of

pressure.

572. Surfaces of Equal Pvessare in a Huid acted upon
by external forces and in equilibrium are surfaces at all

points of which the ])ressure is the same.

Lines of force in a fluid acted upon by external forces

are lines whose directions at all points coincide with the

directions of the resultant external force at those joints.

573. Surfaces of equal pressure are at all jioints normal
to lines of force. For the resultant external force on a
small cylinder of the fluid with ends normal to its axis,

and so placed that the pressures on its ends are equal,

can have no component in the direction of the axis.

574. If the external forces are central forces (338), and
the various points of the fluid have therefore potentials

(355-6), the resultant foice at a point must be normal to

the equipotential surface through the point (359). Hence
surfaces of equal pressure coincide with equipotential

surfaces.

\\:

\.\.
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575. In that case also (356) the resultant external

force on unit mass of the fluid at any point is equal to

the rate of change of potential per unit of distance in its

direction. Now, if the fluid between two surfaces of

equal pressure, indefinitely near one another, be divided

by lines of force into columns of equal section, the differ-

ences of pressure on the ends being the same for all, and
all being in equilibrium, the resultant external forces

acting on all must be the same. Let F be the resultant

external force on any column, m its mass, I its length and
Fand F' the potentials of its ends. Then F/m= (¥'-7) /I.

Hence, the difference of potential between the ends being

the same for all, the ratio of the mass to the length and
therefore of the mass to the volume must be the same
for all. And therefore surfa,ces of equal pressure are also

surfaces of equal density.

576. In the case of heavy fluids, the attraction of the

earth is the external force. Hence in that case level or

horizontal surfaces are surfaces of equal pressure.

The free surface of a heavy liquid in equilibrium, being

exposed to the pressure of the atmosphere, is therefore a
horizontal surface throughout the region in which the

pressure of the atmosphere has the same value.

577. Variation of the Pressure of Fluids acted upo7i

by External Forces.—Let F be the resultant external

force acting on each unit of volume of the fluid, in one of

the columns of 575, s being the area of either of its ends,

I its length, and P and P'the intensities of the pressures

on its ends. Then

and

{P'-P)8= Fls,

{P'-P)ll = F.

Hence the resultant force on unit volume of the fluid is

equal to the rate of change of pressure in its direction per
unit of distance.
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578. If the external forces are derivable from a
potential, we have also (356) F' and Fbeing the potentials

at the ends of the column at which the pressures are P'
and i^ respectively, and p being the density,

(r-V)/i=Fip.
Hence (P'-P) = (F- F)p.

If gravitational attraction is the only external force,

we have therefore, with the convention of 361, since the

external force is directed from the end of smaller to the
end of greater pressure,

P'-P = />(F'-F).

Now in this case

Hence P'~P= pgl\

and therefore the rate at which pressure increases per
unit of distance in a direction normal to surfaces of

equal pressure in a heavy fluid is equal to pg.

579. In the case of liquids p is a constant. Let P^, Pj,

Pg, etc., P be the pressures at a series of surfaces of equal

pressure indefinitely near, let Z^, l^y etc., be the inter-

cepts between these surfaces of a line of force, and let the

surfaces whose pressures are P„ and P be so near that g
may be considered constant, then

^1-^0 = PQK' ^^-^x = P9h etc.

Hence, if L be the length of the line of force extending

from any point of the surface whose pressure is P to that

of which the pressure is P„, we have by addition

P- Po= pgil, + ^2+ etc.) = pgL.

Gravitational attraction being the only external force

acting throughout the mass of the fluid, the surfaces of

equal pressure are horizontal surfaces and the lines of

force are vertical lines. Hence the difference of pressure

w

I
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b3tween two points of a heavy liquid is equal to their

difference of level multiplied by pg, and therefore to the

weight of a column of the liquid whose length is the

difference of level and whose section is unity.

If n is the ])ressure of the atmosphere at the free sur-

face of a heavy liquid, the pressure at any point at depth
L is thus H+pgL, which may be written pg{L+ L'), pro-

vided L'= Il/pg, i.e., provided L' is the length of a column
of the liquid of unit section v/hose weight is equal to 11.

The determination of the resultants and centres of the

pressures on the surfaces of bodies immersed in heavy
liquids is of great practical importance. The reader will

find, on looking back to 527, Exs. 2-5, and 529, Exs. 2-7,

that examples of such determinations have already been
given in considering resultants and centres of stress.

580. In the case of gases kept at a constant tempera-
ture we have (567) p — kP, where k is a constant and p
the density of a gas at the point at which its pressure is

P. Hence

and

P'-P = kP{V'-V),
P'= P[l+k{V'-V)l

Let Pq, Pj, Pg, etc., P be the pressures at a series of 7i-|-l

surfaces of equal pressure indefinitely near, and so chosen

that the differences of potential of neighbouring surfaces

are the same, and let F, V^ be the potentials of the sur-

faces whose pressures are P, P^. Then

P, = P.[l+t(F-FJ/m],

=Pl\ + h(V-V^)lnf,

etc.,

p=Pli+k(V-v,)M'.
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Hence, if n Vie made indefinitely great, we have (392)

where e is the base of Napier's Logarithms.

Gravitational attraction being the only external force

acting throughout the mass of the gas, and the volume of

the gas under consideration being so small that g may be

considered constant, we have

V-V,= -gh.

where h is the height of the point whose potential is V
above that whose potential is Vq. Hence

P=^P.e- kffh

It is obvious that since P= plk, 1/k is equal to g times the

length of a column of the given gas of uniform density p
and of section unity, whose weight is equal to P. It is

therefore equal to g times the height which an atmosphere
of the gas would have if its density were the same
throughout its whole extent as at the earth's surface. This
height is consequently often called the " height of a
homogeneous atmosphere " or the " pressure-height " of

the given gas for the temperature to which the given
value of k applies. If this height be denoted by H, since

1/k = gH, we have

The value of H for any gas depends only on its nature

and temperature and on the value of g. For dry
atmospheric air at 0° C. in the latitude of Paris it is

7-990 X 105 cm.

581. Archimedes' Principle.— If a body be wholly or

partially immersed in a heavy fluid, the resultant of the

pressure over its surface is a single force acting vertically

upwards through its centre of mass and equal to the
weight of the fluid displaced. For a portion of the fluid

having the same position, shape, and size as the given

m

\^r.

f

«h-
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body or the part of it which displaces fluid, would be in

equilibrium under its own weight and the resultant

pressure on its surface, which, since the pressure at a
point of a heavy fluid varies only with its depth beneath
or height above any chosen level surface, must be the

same as the resultant pressure on the body.

582. Equilibrium of a Floating Body.—It follows,

from 581, that a body floating at the surface of a heavy
liquid will be in equilibrium provided (1) the centres of

mass of the body and of the displaced liquid are in a
vertical line, and (2) the weight of the body is equal to

that of the displaced liquid.

583. Stability of the Equilibrium of a Floating Body.
—The general discussion of the stability of the equilib-

rium of a floating body is beyond the scope o^ this book.

But in the important special case of a homogeneous rigid

cylinder, of any section, for angular displacements about
its axis, the condition of stability admits of simple ex-

pression.—Let ABC be a transverse section of such a
cylinder, through its centre of mass G ; and let E be the

centre of mass of the portion beneath the surface S8' of

the liquid, and therefore of the displaced liquid, in the
position of equilibrium, in which the line GE is obviously
vertical. Also let -F be the centre of mass of the sub-
merged portion when the cylinder has been rotated

through a small angle about a longitudinal axis, M being
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Is, M being

the point in which a vertical line through F intersects

GE. Then the cylinder is acted upon by equal and
opposite vertical forces; through G and F; and it is

oDvious that if the point M be above G these forces will

tend to diminish the angular displacement and to bring
the cylinder back to the position of equilibrium ; where-
as, if M be below G, they will tend to increase the dis-

placement. In the former case therefore the equilibrium

is stable, in th'^ latter unstable. The point M is called

the metacentre. The equilibrium is therefore stable,

provided the metacentre be above the centre of mass.
This result applies to the rolling of a ship so built and
laden that G, E,. and F are in the same plane.

584. Kinetics of Fluids (HydroJcinetics).—When the
parts of a fluid move relatively to one another, shearing
stresses make themselves manifest. If, e.g., a cylindrical

vessel, with its axis vertical, and containing a liquid, be
made to rotate uniformly about its axis, the liquid will

be found after a time to be rotating with the vessel, and
if the vessel be now brought to rest the motion of the

liquid gradually subsides. Hence any cylinder of the

liquid coaxial with the vessel is acted upon by stresses

having tangential components when the liquid outside it

is in motion. For otherwise that cylinder must remain
at rest or in uniform motion.

In many important practical cases however the effect

of these shearing stresses is small and may be neglected

;

and as the consideration of the motion of fluids exhibiting

tangential stresses is attended with great difficulty, we
restrict our attention to these cases.

585. If the stresses at a point of a moving fluid on all

planes through the point are normal, they have also the

same intensity.

For if we consider a tetrahedron, such as that of 532,

2h

11

ili:';-

!6{

ilit*-.
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we have, as the equation of its motion in the direction of

Ox, using the symbols of 532,

P . OBG-Fl . ABC+X = md,

where X is the component of the resultant external force,

m the mass, and a the component acceleration of the

centre of mass in the x axis. Now X is proportional to

the mass, and therefore to the volume, of the tetrahedron.

If therefore (537) the tetrahedron be indefinitely small,

both X and m may be neglected relatively to F and F.

Also we have OBG=ABC. I Hence P^F.

586. Equations of Motion.—The motion of a fluid

under given forces may be determined by applying the

general equations of the motion of extended bodies and
expressing in equations the conditions imposed by the

distinctive peculiarities of fluids. Of these equations

there are two. The first expresses the relation which
holds between the pressure and the density of the fluid.

In the case of a gas at constant temperature it is p= kP;
and in that of a liquid, /? = const. The second is the

equation of continuity which expresses in mathematical
language the general law that a fluid in motion is always
a continuous mass. The employment of these equations

however in the solution of problems is beyond the scope

of this book.

587. Steady Motion.—In general the velocity of the

fluid particles passing through a given point in space

varies with time. When at each point in space through
which fluid is passing the velocity of the fluid is constant

both in magnitude and direction, the motion is said to be
steady.

The paths of the particles of a fluid which is moving
steadily, are lines of motion, i.e., lines whose directions at

all points are the directions of the motion of the fluid at

those points. They are therefore called stream lines.
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588. Equation of Energy.—We may obtain, as being
simple and important, the equation of energy applicable

to cases of the steady motion of liquids under external

forces which have a potential.

Consider a tube whose curved surface is bounded by
stream lines, and whose ends A and B are small and
normal to the stream lines. Let p be the pressure, v the

speed of the liquid, V the potential due to external forces,

and 8 the area of the section, at A ; and let p\ v\ F', s'

be the values of the same quantities at B. The masses
of liquid entering the tube at A and leaving it at B in

unit of time are pvs and pv's respectively, and since the

liquid moves as a continuous mass and does not vary in

density, we have (the equation of continuity for this

case)

pvs= pvs
;

and hence vs — v's'.

Unit mass entering the tube at A has the kinetic energy

v^l^y the same mass leaving it at B the kinetic energy

v'72. Hence the excess of the amount of the kinetic

energy entering the tube at A over that leaving it at B
in unit of time is pvs{v^— v'^)/2. The potential energy of

unit mass at A is greater than that of unit mass at B
by V — V, if we adopt the definition of potential given

in 361. Hence the excess of the amount of the poten-

tial energy entering the tube at A over that leaving

it at B in unit of time is pvs(V'— V). Also, the work
done by the pressure at A on the liquid entering in unit

of time is pvs, and that done by the liquid leaving at B
in unit time against the pressure at B is ^/t^'s'. Hence
the energy gained by the tube in unit of time on account

of the work done by the pressures at the ends is

pvs —p'v's = {p~-p')vs.

Now as the motion is steady the energy of the tube is

constant. Hence

i!

I

I:

!i

I

111

i"
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pvsiv^ - v''^)l''l 4- pvi*{V'-V)+ {v- i/)iw = ;

and p+ p(t;V2 - F) = ?>'+ /o(''/72 - V')
;

or ^+ /oO;V2-F) = (/,

wliere C is a constant for the same stream line.

589. We may apply the above result to one important
hydrokinetic problem. Problems on the motion of fluids,

even of liquids, in general require higher mathemati-
cal attainments than readers of this book are supposed to

possess.

Exmwplc.

A vessel is kept filled to a coiiHtaut level with liquid, which

e.seape.s thvough a small orifice in its wall. Find the speed of

efflux.

In this case the flow of liquid soon becomes steady. Since the

upper surface is large relatively to the orifice, the speed of the

moving liquid there is small, and, if the orifice be sufliciently small,

may be neglected. The pressure at the upper surface is that of the

atmosphere II. If that surface be taken as the level of zero poten-

tial, F=0. Hence the above equation of energy for a point at the

upper surface on any chosen stream line reduces to

II=(7.

Let P be the pressure of the liquid at the orifice and v its speed.

Also, let the depth of the orifice below the upper surface of the

liquid be h. Then, at the orifice, V=g/t. Hence, for a point of the

orifice on the above stream line

r+p(v^/2-gh)=a

If the pressure at this point be taken to be that of the atmosphere,

we have therefore

v^=2gh.

And if the pressures at all points of the orifice be taken to be equal

to that of the atmosphere, this equation would give us the speetl
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witli whicli all liquid imrticles leave the orifice. This renult is

called Torrieelli's Theorem.

Torricelli's Theorem caniK>t be a))plied to the calculation of tin-

rate «>f efflux, t."?., the amount of liquid escaping' per unit of time,

for two reasons : (1) The stream lines at the orifice are for the

most part not normal to it, for the jet diminislies in diameter from

the orifice outwards. Hence the «» of the above formula is not the

value of the normal velocity of the licpiid ])articles. (2) The

assumption that the pressure at all points of the orifice is equal tit

that of the atmosphere is not well jjrounded. For, as the jet con-

tracts from within outwards, the speed of the liquid particles nu'st

be increasing, and therefore the pressure of the liquid must be

<liminishing, in that direction. The pressure in the interior of the

jet at the orifice must therefore be somewhat greater than that of

the atmosphere.

At a short distance from the orifice the contmction of the jet

ceases, the section of the jet at which it ceases being called the

Vena Contracta. Here the stream lines are normal to the trauh

verse section of the jet, and the pressure may thus be taken to be

the same '\t all points of the section and therefore to be that of the

atmosphere. Hence the sjjeed of the liquid j)articles in i)as.*ing

through the Vena Contracta will be C^ffhy, where h' is the depth of

the Vena Contracta beneath the u})i)er surface. Also, the liquid

particles are here moving normally to the Vena Contracta. Hence,

if S is the area of the Vena Contracta and p the density of the

liquid, the rate of efflux is pS{2(/hy.

590. Work done during Strain.—As tangential stresses

exist in a fluid during the relative motion of its parts,

the expressions obtained (559) for the work done in an
elastic solid during a change of configuration apply also

to fluids.

Since work is done during the straining of a fluid, in

overcoming its viscosity, a fluid, like a solid, will behave

during a strain as a conservative system only if the strain

be effected with sufficient slowness.

*•:.!;
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Since a fluid in equilibrium exliibits no shearing

stresses, the work done against shearing stresses during a
strain has no result in the form of production of potential

energy.

In the case of liquids, on account of their incompressi-

bility, a strain involves no change of volume. Hence the

work done in producing a strain in their case has no
result in the form of potential energy. It is wholly ex-

pended in overcoming molecular friction and results only
in the production of heat. Hence Joule employed the

agitation of water as a means of determining the me-
chanical equivalent of heat, the water employed havin[,^

after its agitation, the same potenilii! energy as it had
before.
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MISCELLANEOUS EXAMPLES.

(1) A point moves in a plane curve so that its distance, j» feet

measured along the curve from its starting point, is represented by

the formula 8= 2Sj+ 6t'^, where t is the time in seconds reckoned

from the instant of starting. Find (a) the mean speed between

the beginning of the 10th and the end of the 12th second
; (b)

the instantaneous speed at the end of the 10th second
;

(c) the

mean rate of change of speed between the instant of starting and

the end of the 10th second
;
(d) the instantaneous rate of change

of speed after any time.

Ans. («) 126 ft. per sec; {b) 120 ft. per sec; (c) 12 ft.-per-sec

per sec; (d) 12 ft.-per-sec. per sec

(2) The breadth between the rails of a certain railway is 4 ft. 8

in. Show that in a curve of 500 yds. radius the outer rail ought to

be raised about 2^ inches for trains travelling .30 mis. an hour, that

there may be no horizontal pressure on the rails.

(3) The velocity of a point moving in a given elliptic orbit is the

same at a certain point, whether it describe the orbit in a time t

when its acceleration is directed towards one focus, or in a time t'

when its acceleration is directed towards the other focus. Show

that, if 2a is the length of the major axis, the focal distances will

be 2at'J{t + t') and 2at/{t + t').

(4) A large number of equal particles are fastened at unequal

intervals to a fine string and then collected into a heap at the edge

of a smooth horizontal table with the extreme one just hanging
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mm

over the edge. Tlie intervulH arc Huch tliat the tiincH In'tweeii

HUCccHHive jmrticleH being carried over the edge are e(}iial. I*ro^ «•

that if c„ be th(( interval between the n^^ and (n + 1)"' partielew, And

<'„ he veK)eity jimt after the (/t + l)*'' |)article \h carried over,

(5) lte<Iuce 20 cm. per hcc. to yards per liour.

Ann. 787-38.

(()) If a particle move on any smooth curve under the action

of any force, and if, at any point, Fha the component of this force

normal to the curve and towards the concavity of the curve, the

reaction of the curve on the particle towards the concavity is e(iual

to mv'^/p-F, when p is the radius of curvature of the curve and <>

the speed of the particle.

(7) A uniform rod liangs horizontally supported by two equal

vertical strings, of length ^, attached to its ends. It is twiste*!

horizontally through a very small angle so that its centre of mass

)emain8 in the same vertical line, and is then let go. Find the time

of a complete (double) oscillation, neglecting the 'nertia of the

strings.

Ans. 2ir x/l'lig.

(8) A pouit is moving with a simple harmonic motion of ampli-

tude a and i)eriod 7\ Show that, if d is its displacement from its

mean position after a time t, the epoch being 5,

d=acos{27rtlT+0).

(9) A straight stairciise consists of stairs each 1 ft. wide and

in. high. A smooth particle is projected from a point on one of

the stairs near its edge and ii' the vertical plane perpendicular to

the edge of each stair. Fiid the velocity of projection that the

particle may strike the different stairs in succession at the same

distance from the edge, the coefficient of restitution being 0"5.

Ans. fJiiglS feet per second, inclined 45° to the horizon.

(10) The unit of rate of change of speed being a rate of change

of speed of 100 cm.-sec. units and the unit of time 1 min., show

that the unit of length is a length of 36 x 10* cm.
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(11) If a hiill iinpin^'e MncccMHively aj^ainnt two adjacent widt'H of

a rwtaii^le, its velocity will he diminished in tlie r.itio of 1 : '•, *;

being the coetticient < ( restitution.

(12) Two uniform soli«l cylinders, of weights w aiitl w\ descend

from rest directly down the two faces of two smooth inclined

planes, of inclinations o and a' resjH'ctively, over the common
summit of which passes a thin inextensiltle string which goes under

and round the central transverse sections of the cylindeis, to which

the ends of the scrijigs are fastened. Kind (a) the tension of the

string, and (h) how much it will have slid aK)ng the planes at the

end of any time t.

Ann. (a) wio' (sin a f sin ayti{w+w')
;

(h) (/t%io Hin a ~ w' sin a')l2{w+w'),

(13) A particle weighing ^\ Ih. moves hackwanls and forwards

in a straight line 3 inches long with simple harmonic motion, 2o

times i)er second. Find the force acting on it (a) at the end of the

range, and (6) at a jjoint at one half the maxinmm distance from

the centre.

Ans. («)61G-8... plls.; (A) 308-4... pdi.i.

(14) A particle of mass n is suspended from two points in the

same horizontal line by two strings of ecpial length I (inclination

= o). One of the strings is suddenly cut. Find the initial changt;

of tension of the other string.

Ans. mg{2 cos'^^a - 1 )/(2 cos o).

(15) A heavy smooth tetrahedron rests with three of its faces

against three fixed pegs and the fourth face horizontal. Prove

that the reactions of the pegs are as the areas of the faces on which

they are exerted.

(16) A point is moving with a unifonii rate of change of speed

of 2 ft.-see. units. Show that, if its initial speed is 3 ft. per sec,

the ratio of its final to its initial speed during the time required to

traverse 4 feet of its i)ath is 5/3.

(17) I' particles are dropped from given heights ujwn a fixed

horizon plane, the heights being inversely as the squares of the

coeificients of restitution, they all rise to the sau)e height after

reflection.
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(18) A unifoini lever ACB, whose arms AC and BC are at riglit

angles to each other, is in equilibrium when AC ia inclined at an

angle /3 to the horizon. If AC be raised to a horizontal position, C
being fixed, find the angle through which it will fall.

Ans. 2^.

(19) A particle of 0*1 grm. mass executes 512 simple harmonic

oscillations per second, the amplitude of the oscillations being 0*25

cm. Find the maximum value of the force exerted upon it.

Ans. 258,736-1... dynes,

(20) A rope hanging over a rough horizontal cylinder carries two

bodies. The mass of one is 20 lbs,; that of the other is m lbs.

(w( ^ 20). But the rope does not slip off the cylinder, on account of

friction. If the coefficient of friction, when the rope is just on the

point of slipping, is 0*4, what is the value of m ?

Ans. 70-269 lbs.

(21) ^'s displacement relative to P is n times as great as /"s

relative to 0, and they are inclined at an angle 6. Show that

ii 6< 7r/2, <^'s displacement relative to increases with n, and that,

if ^ > 7r/'2, it decreases as n increases until 7i= - cos ^, increasing

with n for greater values of n.

(22) A particle is projected from a point on an inclined plane and

after n rebounds returns to its point of projection. Prove that,

if a is the inclination of the plane, /3 the angle between the direc-

tion of projection and the plane, and e the coefficient of restitution,

cotocoti8=
oW+ l

1-e

(23) The time of descent of a heavy particle sliding freely from

rest down a smooth inclined plane of given height varies as the

cosecant of the inclination.

(24) A chain, whose weight per unit length is equal to that of 1

lb., is to be stretched between two points in a horizontal line 800

ft. apart, so that the tension at the lowest point may be equal to

the weight of 1,600 lbs. Find (a) the length of chain required,

and (6) the depth of its lowest point below the points of suspen-

sion.

Ans. («) 808-32 ft. ; (b) 50-24 ft.
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(25) A point undergoe." component displacements represented by

straight lines drawn from a point within a triangle to the angular

points. Show that its resultant displacement is the same as if it

had undergone component displacements represented by lines drawn

from the same point to the points of bisection of the sides.

(26) On the sides of a right-angled triangle squares are described,

the square BODE on the hypothenuse being on the same side of

BC as the triangle, the squares CAFG^ ABJJK on CA, CB on the

opposite side of each to the triangle. Prove that if forces repre-

sented by AB, BC, C'J, BIT, HK, KA, CD, DE, EB, AF, FO, OC,

act on a particle, it will be in equilibrium.

(27) A particle slides from rest down the whole length of a

smooth inclined plane. Prove that the distance between the foot

of the inclined plane and the focus of the parabola which the

particle describes after leaving the plane is equal to the height of

the plane.

(28) Trucks containing each a ton of ballast are sustained upon a

smooth plane of inclination a by an equal number of empty trucks

upon a smooth plane of inclination ^. Find the mass of a truck.

Ans. sin o/(sin /3 - sin o) tons.

(29) A right cylinder whose weight is to the diameter of its base

as 3 : 4, stands on a perfectly rough inclined plane whose inclination

is 45°. From the lowest point of its uppermost circular section a

body is suspended whose weight is a little greater than one-sixth of

the weight of the cylinder. Prove that it will overturn the

cylinder.

(30) A ship sails from A to B, ^3 miles N. 30° W., in 15

minutes ; from B to C,\ mile N. 60° E., in 7 minutes ; from C to /),

4 miles N. 45" W., in 20 minutes ; and from D to E, 4: miles N. 45"

E., in 18 minutes. Show that her mean speed has been 9-f ^/3

miles per hour, and that her mean velocity has been 2 + 4 >/2 miles

per hour, N.

(31) ABCB and A'B'C'D' are two parallelograms. Show that if

a particle be acted upon by forces represented by AA\ B'B, CC\
and DD, it will be in equilibrium.
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(32) A uniform straight plank (length= 2a) rests with its middle
.

point upon a rough horizontal cylinder (radius =/•), their directions

being perpendicular to each other. Supposing the plank to be

slightly displaced so as to remain always in contact with the

cylinder without sliding, determine the period of an oscillation.

Ans. 2ira/ s/Sffr.

(33) Two circles lie in the same plane, the lowest point of the

one being in contact with the highest point of the other. Show
that the time of descent from any point of the former to a point in

the latter down the chord passing through the point of contact, is

constant.

(34) Four pegs are fixed in a wall at the four highest vertices of

a regular hexagon, the two lowest being in a horizontal line. Over

the pegs a loop is thrown su])porting a body of weight W, the loop

having such a length that the angles formed by it at the lov/est

])egs are right angles. Find (a) the tension in the string, (b) : ue

reactions of the two highest pegs, and (c) those of the two lowest

pegs.

Ans. {a) If; (6) W, inclined 60° to the horizontal; (c) W\/2,

inclined 15° to the horizontal.

(35) Two points, P and Q, move in straight lines (inclination= d)

with uniform accelerations a and a', and at a given instant have

velocities v and v' respectively. Show that their relative velocity

will be perpendicular to Q's line of motion after a time

{v cos e - v')!ia' — a cos 6),

and will have its least value after a time

{av' 4- a'v)cos 6 -av — a'v'

o?-+ a'^ - 2aa' cos Q

Show also that if vjv'— aja'^ the least value of their relative velocity

will be zero.

(36) A particle of weight W is supported on a smooth inclined

plane of inclination a, by means of two strings attached to fixed

points in the plane and inclined at angles 6 and 6' to a line of
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- and -—r^ „< ; (o) M cos a.

(37) A given circle and a given straight line whicli does not cut

the circle are in the same vertical plane. Show that if a tangent

lie drawn to the circle at its lowest i)oiiit P, meeting the given lino

in A, and if from the given line AQ be cut oft' equal to AP, and if

PQ intersect the circle in li, Qll is the straight line of quickest

descent from the given straight line to the given circle.

(38) Two equal heavy particles slide along the arc of an ellipse

whose plane and major axis are vertical. They are connected by a

string passing through a smooth ring at the focus. Prove that the

l)articles will be in equilibrium in all positions.

(39) A point has three component coplanar velocities, Vj, Vg, Vg,

the angles between t'j and Vo? ^3 ''^'^d v^, r., and i\ being o, /3, y re-

spectively. Show that its resultant velocity is

(Vj2^ 'ff^^ y2.^ 2V2V3 cos a+ 2^'i^?3
cos /3+ iv^v.^ cos y)h.

(40) If the height of a rough inclined plane be to the length as

a is to >/a^+ b^, and a body of ky/a^+ b'^ lbs. mass can just be

supported by friction alone, required the least force acting along

the plane which will draw the body up the plane.

Ans. '2kag.

(41) Two bodies of equal weight ^o are tied to the ends of a fine

string which passes over two pullies without mass in a horizontal

line (distance= a). Supposing a body of weight W {W> 2w) to be

fixed to the middle point of the horizontal portion of the string,

determine how far it will descend.

Ans. 2tcTfa/(4tt'2- W^).

(42) A pendulum which would oscillate seconds at the equator

would gain 5 minutes a day at the pole. Show that the ratio of

the value of g at the equator to its value at the pole is 144 : 145.

(43) If there are n particles in a straight line, of masses m, 2m,

3m, etc., and at distances a, a/2, a/3, etc., respectively from a point

in the line, the distance of the centre of mass from it is 2a/(?? + l).

I
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(44) A square board is hung flat against a wall by means of a

string attached to the extremities of its upper edge and passing

round a smooth nail. Prove that if the length of the string is less

than the diagonal of the board, there will be three positions of

equilibrium.

(45) A point moves in a circle of radius r ft. with a uniform

speed of irrjQ ft. per sec. Show that its mean acceleration during

6 seconds is 7rr/18 ft.-sec. units in a direction opposite to the initial

direction of the velocity, and that the mean acceleration is 2/ir times

the magnitude of the uniform instantaneous acceleration.

(46) A jMirticle is just supported by a rough inclined plane of

variable inclination when its inclination is i. Find its acceleration

up the ])lane when moving upwards on a line of greatest slope

under the action of a force equal to twice its weight acting up the

]ilane.

Ans. <7[2 - tan i(3 cos-i - sin'-t)].

(47) At a given instant a pendulum begins to oscillate in a

vertical j)lane at a place of latitude 60°. Find after what time it

will be apparently oscillating in a j)lane j^erpendicular to the

former.

Ans. l/2v''3day.

(48) ABCD is a square from which a corner AEF is cut off by

a straight line drawn parallel to BD and at a distance from A
equal to f of the diagonal. Show that the distance of the centre

of mass of AEFivowx A is ^ of the diameter.

(49) A and B are pouits in a horizontal line. A uniform and

smooth rod AC (weight= W) is fastened to a hinge at A and can

swing in a vertical plane through AB. A string passes over a

pulley at B, supporting at one end a body of weight P, and at the

other being attached to a small smooth ring which slides on the

lod. Prove that there will be equilibrium in any position if

W.AC=^P.AB.

(50) If a conic section be described under the action of a force

tending to a focus, the hodogi^ph will be a circle.
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(51) Show that 1 foot-grain is equivalent to 1*975 grannne-

centimetres. [1 grain = 0'064799 gramme].

(52) A rod (leiigth = ?) is f\\\.^. at one end ahout which it can

move freely in any direction. When it is inclined to the liorizon

without motion at the angle o, a liorizontal velocity V is com-

municated to its other end. Determine the velocitv of tlie free end

at the instant at which the rod becomes horizontal.

Ans. (V^+ ^lgHhia)^, inclined to the vertical at the angle

tan~^[ V cos a/( V'^Hin-a + Slg sin a)i].

(53) A three-legged stool stands on the floor of an elevator

sliding in its frame-work with i)erfect freedom. Show that it has

four degrees of freedom.

(54) The distance of the centre of mass of half a hexagon

2r
inscribed in a circle from the centre is equal to — where r is tlie

radius.

(55) Two unifoini beams of given weight are in equilibrium in a

vertical plane, the lower end of each beam resting on a horizontal

floor and the upper ends being in contact. Show that the friction

between either beam and the floor varies inverselv as the sum of

the tangents of the angles which the beams make with the floor.

(56) A particle moves in a parabola vuider the action of a constant

force parallel to the axis. Show that the hodograph of its path is

a straight line parallel to the axis.

(57) Show that one horse-power is equivalent to about 746 watts.

(58) A cone is revolving round its axis with a given angulai-

velocity when the length of the axis begins to be diminished

uniformly, and the vertical angle to be increased so that the

volume of the cone remains unchanged. Show that if w is the

initial angular velocity of tlie cone, and h the initial length and /•

the rate of decrease of its axis, its angular velocity after any time t

will be w(l -?•<///).

(59) Show that a body has two degrees of freedom, when two of

its points are constrained to remain in given curves.
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li^lK^H.

(60) A IkkI}' consists of two portions and one of them is moved

into a new position. Show that the line joining the two positions

of the centre of mass of tlie whole is })arallel to, and bears a fixed

latio to, the line joining tlie two positions of the centre of mass of

the part moved.

(61) A regular hexagon is formed of rods jointed at their ex-

tremities. Strings are stretche<l between every pair of alternate

angles of the hexagon so as to form two equilateral triangles.

Show that the tension of any string is equal to ij of the sum of the

tensions of the strings which cross it, minus ^ of the tension of the

string which is parallel to it.

(62) The kinetic energy of a particle, which is constrained to

move in a circular path of radius r, varies as the square of its

distance .<f, measured along the path from a fixed point in the path.

Show that its tangential acceleration in any position is to its

normal acceleration as r : s.

(63) If an agent working at the rate of one horse-power, perform

the unit of work in the unit of time, and the acceleration of a falling

l)ody be unit of acceleration, a pound being the unit of mass, find

tlie unit of (a) time and (6) length. [,<7=32 ft.-sec. units.]

An^. (a) 17i=V sec. ; (6) 9453^ ft.

(64) A rod is kept in a vertical position by means of two small

rings and its lower end is supported on an inclined plane

(inclination= i) which is freely moveable on a horizontal plane.

Show that if v is the velocity of the rod and v' that of the inclined

plane, v= v' tani.

(65) Show that if G be the centre of mass of the triangle ABC
3{GA -+ GE' -h GC^)=AB'+ BC' -I- CA'K

(66) Two equal and similar rods ABy BC are freely hinged at B,

and rest in a plane of greatest slope of a rough inclined plane, in a

])osition of limiting equilibrium, with the end A hinged at a point

in the i)lane, and the end C resting on the plane. If o, 0, e are

respectively the angle of inclination of the plane to the horizon,

the angle of inclination of the rods to the plane, and the angle of

friction, sliow that

3 COS(0 -t- e)cos(0 - o)= C0S(^ - €)CO8(0 -f a).
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(67) A point is moving in a straight line with an acet'leration

varying as its distance from a point in that line. Prove that the

corresponding point in the hodograph moves witli a sin i liar ac-

celeration.

(68) The mass of a railway train is 150 tons and the resistanceM

to its motion (from air, friction, etc.) amount to 16 pounds-weight

per ton. Find (a) the horse-power of the engine wliich can just

keep it going at 60 miles an hour on a level plane, and (h) the

greatest speed which an engine working at 200 horse-power can

give it on a level plane.

Ans. ( «) 384, (/>) 31]; miles per hour.

(69) A uniform rod (length= 2c) moves in a vertical plane within

a hemisphere with angular velocity w. Show that if he the

inclination of the rod to the horizon at any instant the horizontal

and vertical velocities of its middle point have the magnitudes

c'w cos 9 and cu sin 6.

(70) The corners of a pyramid are cut off by planes parallel to

the opposite faces. Show that if the portions c j off be of equal

mass, the centre of mass of the remainder will coincide with that

(f the pyramid.

(71) Two uniform rods AB, AC of lengths a, h respective!}', are of

the same material and thickness and are smoothly jointed at .^. A
rigid weightless rod of length I is jointed at B to AB, and its other

end D is fastened to a smooth ring sliding on AC. The system is

hung over a smooth peg at A. Show that AC makes with the

vertical an angle tain~\al/{b'^+ a 'Jar-l')].

(72) If each unit involved in the measurement of g become m
times its former value, show that the new value of g will be m
times its former value also.

(73) A particle of 10 lbs. mass, whose motion is simple harmonic,

has velocities 20 and 25 ft. per sec. at distances 10 and 8 ft. per sec.

respectively from the centre of force

the motion from the distance 10 to the distance 8 feet

Ans. 112'6 foot-poundals.

2i

Find the work done during

: i
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(74) A miiform rod in falling Htrikes, when in a horizontal

|t<»8ition, with one end against a stone. Show that the impulse of

the blow it receives is half that of the impulse of each of the blows

which it would have received had both ends struck simultaneously

Mgainst two stones, the blows being in all cases supposed to be at

right angles to the rod.

(75) Show that a force of 100 dynes is equivalent to the weight

of rOlOx 10~* kilogrammes.

(76) Show that in the direct impact of elastic balls of masses m
and M and initial velocities v and F, and with coolficient of restitu-

lion e, an amount of kinetic energy equal to (1 - e)'^ 9/ i/TT \ ( ^~ ^)^

is lost.
,

(77) How much water will Ik- pumped from a vertical cylindrical

shaft of 10 feet diameter by an engine working for 6 hours at 200

horse-power, the water being discharged at a point 10 feet a love

the mouth <jf the shaft, and the surface of the water being initially

•20 feet below the mouth of the shaft. [Density of water =1,0(K)

oz, per cub. ft.]

Ans. 2,157*1... tons.

(78) Determine the unit of time in order that with the foot as

unit of length g (32 ft.-per-sec. per sec.) may have the value unity.

Ans. 1/4 >J2 second.

(79) Find the work done on a body of 12 lbs. mass in falling to

the earth's surface from a point 1,000 miles above it. [Earth's

j;idius= 4,000 miles
; ,9' = 32 ft.-see. units.]

Ans. 22,628-5... ft.-tons.

(80) A ball rolling on a horizontal plane strikes obliquely an

r(|ual ball at rest. The direction of motion of each ball after

impact makes the same angle 6 with that of the striking ball before

impact. Show that the coefficient of restitution is equal to tan^^.

(81) If the weight of one ounce be the unit of force, one second

the unit of time, and 162 the density in pounds per cubic foot of

the standard substance, find the unit of length, g being taken to be

32 ft.-sec. units.

Ans. 4 inchef!.
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(82) If from any point in the piuni- of a i>oly«^on perpendiiiilars

be drawn to its sidew, and if foreen act along these i)er|>en<li(vdars,

either all inwards or all ontwards, each force being jjroportional to

the side to which it is perpendicular, the system is in etpulibrium.

(83) A rough heavy body bouiuled by a curved surface rests

\ipon two others, which themselves rest upon a rough horizontal

]>lane. Show that the three centres of mass and the foiu' points of

contact lie in one j)lane.

(84) Two points move in concentric circles of radii r and /.

When their radii vectores from the connnon centre are inclined

radians, their angular velocities about the centre are w and w'

respectively. Find the magiutude of their relative velocity.

Ans. (wr + w'/- - 2wu)'rr' cos 6)K

(85) The ram of a pile-driver has a mass M, and a vertical fall /t

before reaching the ])ile. The pile has a mass Mj/t and is driven

by one stroke through a vertical distance /•//<. Find the mean

resistance assuming that there is no recoil ami that all work is

expended in forcing the j)ile through the ground.

Ans. J/ff{n- + ii+l):n.

(86) Two equal balls of radius a aie in contact and are struck

simultaneously by a ball of radius e moving in the direction of their

common tangent. All the balls are of the same material, the

coefficient of restitution being e. Prove that the impinging ball

will be reduced to rest if '2e = c-{a + cy-/{'2(i'^ + (r^c).

(87) If two forces acting <jn a particle be rej>iesenteil by m times

the line OA and n times the line OBj respectively, their resultant

will be represented by m+ n times the line OC, C being the j)oint

on the line AB between A and B such that m . AC=n . BC.

(88). Prove that the centre of three parallel forces acting at the

angular points of a triangle and proportional respectively to the

oi)posite sides is at the centre of the inscribed circle when the forces

are codirectional and at the centre of one or other of the escribetl

circles when they are not.

t.
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(89) Prove that the attmotioiiH of homogeneo\i8 splieres nf

different deiiHities on a particle placed at the Hanie distance from

the centre of eacli, are as the ]>rodiu;t.s of tlie cubes of the radii and

the denwitieH of the HpheiVH.

(00) The axle of a wheel (radius = /•) i.s moving parallel to itself

in one plane with a velocity v, and the wheel is turning about its

axle with an angular velocity w. Find the magnitude of the

velocity of the en<l of a sj>oke whose inclination to the direction of

the axle's motion is 0.

Ana. {v^+(>i'-r- + 2vurniu d)'>,

(91) A ])article of 10 lbs. mass moves with a simple harmonic

motion of 2 inches amplitude and 0*04 seconds periodic time. Find

(n) the i)otential energy at the extremity of its swing and (h) the

kinetic energy at a distance of 1 inch from the mean position.

Ana. (a) 3426-9... ft.-p<lls.
; (/>) 2570-2... ft-inlls.

(92) An arc of a parabola is cut off by the double ordinate

through the focus. Two bodies attached to the extremitiea of the

arc sustain it with the axis inclined to the vertical at the angle 7r/4.

The vertex being the point of suspension, show that the weight of

one of the bodies is 3 times that of the other.

(93) Forces J* and Q act on a particle, and their resultant is Jf.

U any transversal cut their directions in the points X, J/, A\
respectively, show that FIOL+ QIOM=RION.

(94) If a rigid body be acted ui)on by four forces represented by
the sides of a quadrilateral figure the axis of the resultant couple

is proportional to its area.

(95) In a system of smooth pulleys such as that of Fig. 2, p. 418,

if there are n moveable pulleys whose weights in order from the

lowest are Wi, iV2, w^, etc., and if W is the weight of the body which

can be supported by a force F^ and if the weight of the ropes be

neglected,

2"/'= W+w^+ 2m?2+ 2-W3 + etc. + 2"-'w„.

(96) Two particles start together from rest and move in direc-

tions perpendicular to one another. One moves uniformly with a
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velocity of 3 ft. per Mec, the other »inder the action of a coiwtant

force of 20 i>o\iiulalH. Deteriiiiiie the inaMH of the ] (article on which

this force acts, if the particleH at tlie end of 4 Heconds are 20 feet

a|iart.

Ans. 10 lbs.

(97) A uniform spherical shell of jfravitating matter has an

internal diameter of 4 feet, an external diameter of 6 feet and a

density of 4 lbs. i)er cubic foot. Find in Ib.-ft. units the potential

at a point distant 10 ft. from tlie centre of the aliell.

Ans. 10-13ir.

(98) In a false balance a body of weight P appears to weigh ^,

and one of weight P' to weigh Q\ Prove that the real weight X
of what appears to weigh Y is given by the ecpiation

x{Q-Q')= y{P~P')-\-P'(^-PQ'.

(99) ABCDEF is a regular hexagon, and at A forces act repre-

sented by AB, 2.4 C, '6A /), AAEy 5AF. Show that the length of the

line representing their resultant is v's.'il . AB.

(100) Two forces P and Q act ujion a body along two given

straight lines. Prove that

1/P= (cos e)IIi + {a sin <?)/(?,

l/(^=(cos0)/^ + (6sin (p)!a,

6 and 4> being the angles made by the given straight lines with the

central axis, a and b the .shortest distances between these lines and

the central axis, R the resultant force and O the resultant couple.

(101) Show that a stress of 40 grammes-weight per squai'e

centimetre is equivalent to one of 0*5689.. . ])ound's-weight per sq.

inch.

(102) If s and s' are the spaces traversed by a point moving with

uniform acceleration in a straiglit line in the times t and t' respec-

tively, reckoned from the same instant, show that the acceleration

and the initial velocity are, respectively,

tt'{t'-t)
^"'

tt\t-t)'
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(103) A j^iin iH HU.s|M'inh'(l frt'cly by two tM|nul piuallt'l cmhU ami

a shot in (UimI from it. Pi-(»vc that thi^ raii^u on a horizontal plant'

iH, for a given gnn and shot, ilircctly proportional lioth to the height

through which the giui ri^eH in (he recoil ami to tlu^ tangent of its

initial inclination to the hori/on.

(104) Kind tlie force exerted l»y tw«» e((ua I nniforni discs (radius

= </, distance = (?, Hurfaee density =p) plac« '. per|)endicularly to the

line joining their centres, on a particle of unit mass in that line at a

distance h from the nearer disc, it being given that the one disc

attracts, while the other repels, according to the gravitational law.

A ns. 2Trp[(h + <•)/ sla-^^cf - bj s/ci-' + />-].

(105) Kind the moment of inertia of a tly-wheel (maHa = J/)

formed by cutting from a circular plate of radius r, a circular

portion (conceiitiic with the plate) of radius n^.

Ans. LI/(/V- + r,-').

(1(X)) A hollow vessel has the forni of a pyramid, four of whose

five faces are e(juilateral triangles (side = u). It is placed with its

wjuare face on a lutrizontal ))lane and filled with a li(iui<l of density

P through a small aperture in the vertex. Kind the integral 'ess

on the four triangvdar faces.

Ans. a^pgisl'H'h.

(107) Two inclined planes intersect in a horizontal line, their

inclinations to the horizon being a and /i If a particle be pro-

jected at right angles to the former from a j)oint in it ao as to

strike the other at right angles, the velocity of i)rojection must be

sin /ii[2//(</(sin a - sin ^ cos (a + /i))]i,

a being the distance of the point of projection from the intersection

of the planes.

(108) Two particles, of masses 9,820 an<l 1,964 grammes respec-

tively, attract one another. Find the acceleration of either relative

to the other, when the distance between tliem is 4 cm.

Ans. 0*75 cm.-sec. units.

(109) Find the acceleration produced by a mass of 1 kilogramme

in a particle at a distance of 1 metre. [Earth's mass= G"1 4 x 10'-*''

grammes ; earth's radius=6"37 x 10^ cm.
; ^= 981 cm.-sec. units.]

Ans. 6-48 xlL-'-'.
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(110) A niomt'iit of inertia is t'xpn'HHod in torniH of tlu' iinitH t.t'

flu- ft. -lb. -HOC. ^M'livitfilionjil wystiMn. Hy wluit nmnltfi- must it

^

viiiu«' l)t! niulti|)li«Ml tli.'it it ni.-iy l)c cxprcs.siMl in ti'iins of tin* nictri*-

kilfti,M'iinnn<!-H<'((>n(l ;,'iuvitiiti<th!il .syMtuni.

Ans. 0138....

(111) Two partieh's art; prctjt'ctcd fiuni two ^ivt'n pojnls in the

snnir vertical line with tlic huiiw vt'locitics. Prove that lin«vt

touching the path of the lower will cut oM" from the path of the

upfH'r, arcH described in e(iual times.

(112) One bullet is fired towards an(tthei' bulh-t which is let fall

at the same instant. I'rove that if, on meetinj^ (see IIJ), Kx. 4).

they coaloHce, the latiM rectum of their joint path will be oiu'-fourtli

of that of the ori;,'inal |)ath of the first bullet.

(113) A uniform bar of length n rests susptMided bv two strings

of lengths / and V fastened to the ends of the bar and to two lixet!

points in the same horizontal line at a distance c apart. I'rove

that if the directions of the st i ings are perpendicular the ratio of

their tensions is al + cl' : al' + cL

(114) In the expression for the attraction of two [)articles,

F=h)im'/d", how does the value of i- depend upon the uints of

mass, length, and time.

Ans. Its dimensions are [J/]"'[Z/]''[7']~-'.

(115) Show that the radius of gyration of a uniform square dis>-

(side = «) about one of its diagonals i^ aj \^12.

(116) A particle describes an ellipse under a f<trce directed

towards its centre. Show that the time between the extremities

of conjugate diameters will be constant.

(117) A particle is dropped from a point A and a second equal

])article is simultaneously projected vertically upwards from a point

/i so that the balls impinge, the stress during impact being in a Hue

inclined tan~^ ^^fe (e being the coefficient of restitution) to the verti-

cal. Prove that both balls will strike the horizontal plane through

/> simultaneously, and that if the velocity of projection at B be
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i

m

that due to AB (i.e., that which the jiarticle would have had had

it fallen through the vertical distance AB), their distance there will

he AB>J-Se.

(118) If a body, attached at its centre of mass to one end of a

string of length r, the other end being attached to a fixed point in

a smooth horizontal plane, make n revolutions in one unit of time,

prove that the ratio of the tension in the string to the force exerted

on the plane is 4Tr'^n^r : g.

(119) Find the time of a small double oscillation under gravity

of a uniform one foot cube suspended by one edge as horizontal

axis.

Ans. l"-07....

(120) A particle describes a parabolic orbit under a force directed

towards the focus. Show that the sum of the squares of the

velocities at the extremities of a focal chord is constant.

(121) A body of mass P pulls one of mass Q over a smooth pulley,

.and Q in ascending, as it passes a certain point A, catches and car-

ries with it a third body B, which in its descent is again deposited

at A. Supposing no jerk to occur when B is caught up and that

9 oscillates through equal distances above and below A
,
prove that

the mass of B is (p2 - q^)iq.

(122) A uniform triangular lamina suspended from a fixed point

by three cords attached to its three vertices is in equilibrium.

Show that the tensions in the cords are proportional to their

lengths.

(123) Three inches of rain fell in a certain district (5^= 32 ft.-sec.

units) in 12 hours. Assuming that the drops fell from a height of

a quarter of a mile and neglecting the resistance of the air, find the

pressure on the ground due to the rain during the storm. [The

mass of a cubic foot of rain water= 1,000 oz.]

Ans. 0"105... poundals per sq. foot,

(124) Show that in the case of a right-angled isosceles triangular

plate the times of small oscillations- are the same about horizontal

axes perpendicular to its plane through its vertex and through the

middle point of its base.
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Abscissa, 4.

Absolute units, 301.

Acceleratiou, 110; angular, see An-
gular acceleration ; central, 1.50

;

change of point of reference, 11.5

;

planetary, hodograph and path of

point moving under, 161 ; moment
of, 123-4 ; motion under uniform,

140 ; normal, 120 ; of falling bodies

at the earth's surface, formula for,

140 (footnote) ; of momentum, mo-
ment of, 422; of point moving
subject to Kepler's Laws, 162 ; of

point moving uniformly in a circle,

121; relative, 115; tangential,

120 ; units of, 111.

Accelerations, composition and reso-

lution of, 116.

Activity, 333.

-^olotropic bodies, 542.

Amount of shear, 269.

Amplitude of simple harmonic motion,
165.

Angle, plane, units of, 21.

Angle, solid, unit of, 22.

Angular acceleration, of a point, 1.35
;

of a rigid system, 219 ; units of, 136.

Angular accelerations, composition
and resolution of, 221.

Angular and linear velocity, relation

between, 129.

Angulardisplacement of a point, 125-G.

Angular momentum, 420.
^

Angular velocities, composition of, 216.

Angular velocity, of a point, 127; of a

rigid system, 212 ; of rigid system,

and linear velocity of one of its

points, relation between, 214 ; mo-
ment of velocity, in terms of, 132

;

units of, 128.

Approach, velocity of, 321.
Archimedes' Principle, 5S1.

Area, units of, 17-19.

Areas, conservation of, 429.

Areal velocity, 133.

Arm of couple, 467.
Atmosphere, homogeneous, .580.

Attraction, integral normal, over - a
surface, 365; of infinite uniform
plate, 369 ; of thin circular disc,

316 (1) ; of thin uniform spherical
shell, 316 (5 and 6), 367 ; of uniform
circular cylinder, 368.

Attractions, 315; difference of, on
opposite sides of attracting plate,

370.

Atwood's machine, 382 (1), 498 (1).

Axes of co-ordinates, 4.

Axes, principal, of strain, 263.

Axis, of couple, 467 ; of rotational dis-

placement, 208 ; of rotation, in-

stantaneous, 213 ; Poinsot's central,

482.

Azimuth and Altitude, 3.

Balance, common, conditions of sta-

bility and sensitiveness, 507 (11)

;

quickness of motion, 498 (4) ; time
of oscillation, 498 (4).

Balance, spring, 320 (6).

Ballistic pendulum, 499 (8).

Barycentric bodies, 474.

Bending of a beam, 277 (4), 556 (8-10).

Blackburn's pendulum, 180.

Boyle's law, 567.

Bulk-elasticity, modulus of, 552.

Cartesian co-ordinates, 4.

Catenary, common, 396.

Central acceleration, 1.50.
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Ilk,

Oentrpl axis, 482.

Centre, instantaneous, 233 ; of

gravity, 474 ; of inertia, 30!) ; of

mass, 'AW); do., acceleration of,

411 ; do., acceleration of, in terms
of external forces, 414 ; do.,

distance of, from auy plane, 400-401

;

do., of a surface, 408 (13); do., of
circular arc, 408 (10) ; do., of com-
posite bodies, 407; do., of homo-
geneous symmetrical bodies, 40G

;

do., of lune, 408 (19) ; do., of sector
of circle, 408 (20); do., of triangle,

408(12) ; do., of triangular pyramid,
408 (23); do., velocity of, 409; of

oscillation of physical pendulum,
490 (3) ; of percussion, 496 (9) ; of

I'ressure, 579 ; of stress, 528 ; of

suspension of physical pendulum,
49(5 (3) ; of system of parallel forces,

472.

Centrifugal force, 320 (14).

(Centripetal force, 320 (14), 338.
Centrobaric bodies, 474.

Chain, sec String.
Clock, 32.

(Coefficient, of elasticity, 321 ; of limit-

ing static friction, 328; of kinetic

friction, 328 ; of restitution, 321,
378.

( 'ollision, of particles, 378 ; of spheres,

380 (1), 498 (10 and 11).

Component accelerations, etc., see

composition of accelerations, etc.

( Jomponents, 80-82 ; resultant equal to

algebraic sum of components of, in

its direction, 83, 84 ; trigonometrical
expressions for, 85, 86, 89.

Composition, of accelerations, 116 ; of

angular accelerations, 221 ; of an-
gular velocities, 216 ; of angular
velocities about parallel axes, 249

;

of couples, 469 ; of forces acting on
a particle, 312 ; of forces acting on
rigid body, 459 ; of linear and an-
gular accelerations, 250 ; of linear

and angular velocities, 247 ; of

simple harmonic motions, 168 ; of

simultaneous displacements, 78 ; of

simultaneous rotations, 203 ; of suc-

cessive disi>lacements, 76 ; of suc-

cessive rotations, 200 ; of transla-

tions and rotations, 238 ; of veloci-

ties, 98.

Compound harmonic motion, 167.

Compound i)endulum, 496 (3).

Compressibility, .552.

(configuration, 12.

Conical pendulum, 190, 320 (19).

Conservation, of angular momentum,
principle of, 429, 495 ; of areas, 429

;

of energy, law of, for single particle,

348 ; of energy, law of, for extended
bodies, 435 ; of linear momentum,
principle of, 416, 495.

Conservative forces, 348.

Conservative system, 435.

Constraint, of a point, 35 ; motion of
points under, 181 ; motion of rigid

systems under, 253 ; one degree of,

of most general kind, 246.

Continuity, equation of, 586.

Continuous stress, 522 ; strain, 284.

(Jo-ordinates, 2 ; Cartesian, 4 ; polar,

3 ; rectangular, 4-5.

Coplanar forces on rigid body, single

resultant of, 4(10-463.

Cord, see String.

Coulomb's law, 556 (6).

Couples, 467 ; composition of, 4G9.

Cubical dilatation, 266.

Curvature, centre, chord, circle, and
diameter of, 39 ; of a circle, 38 ; of

any path, 37 ; radius of, 39.

Curved path, motion in, under uniform
acceleration, 185.

Cycle of transformations, 436.

Cycloid, motion in, 192.

Cycloidal pendidum, 193.

D'Alembert's Principle, 417.

Day, sidereal, 29; sidereal, variation

of, 30 ; solar, 31.

Degree, 21.

Degrees of freedom, see Freedom.
Density, 304 ; surfaces of equal, 575.

Derived units, 18.

Differential screw, 517 (7) ; wheel and
axle, .517 (5).

Dilatation, cubical, 266.

Dimensions of space, 13 ; of units, 18.

Direction cosines, 7 ; inclination of

two straight lines in terms of, 8

;

of common perpendicular to two
given lines, 10 ; sum of squares of,

equal to unity, 7.

Direction of shear, 269.

Displacement of free rigid systems,
232-233.

i
Displacements, 69 ; angular, see An-
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variation

3edoni.

^qual, 575.

wheel and

M units, 18.

llination of

Jrms of, 8

;

liar to two
1 squares of,

id systems,

lar, see An-

gular displacement ; change of point
of reference, 71-74 ; composition of

Himultaneous, 78 ; composition of

successive, 7G ; resolution of, 70

;

rotational, 20.S.

Dynamics, subject matter of, 285, 323.

Dynamometer, friction brake, 507(14).
Dyne, 302.

Kfticiency of a machine, 517 (8).

Efflux of liquids, 589.

Elastic central line, 55G (8).

Elastic isotropy, conditions of, 548.

Elasticity, 543 ; of figure, .549 ; of vol-

ume, 549 ; perfect, 543 ; perfect,

limit of, 546.

Element, 310.

Elevation of a projectile, 14.5.

Elliptic harmonic motion, 173.

Elongation of strain, 257.

Energy, 343 ; equation of, for fluids,

588 ; law of, application to kinetic
problems, 441, 499 ; law of conser-
vation of, for extended bodies, 435 ;

law of, for extended bodies, 437,

439 ; law of, for single particle, 348 ;

law of, for single particle, applica-

tion to kinetic problems, 351 ; law
of, for single particle, application to

static problems, 353 : loss of, on
impact, 443 (1 ) ; of a system of par-

ticles, 432 ; of i)osition, 345.

Epoch of simple harmonic motion, 165.

Equation of continuity, 586.

Equations of motion, of a particle, 317

;

of extended bodies, 431 ; of fluids,

586 ; of rigid bodies, 493 ; of strings,

384, 387, 390, 391, 392, 394.

Equilibrium, of elastic solids, .551 ; of

extended systems, 444 ; of floating

body, 582 ; of floating body, stabi-

lity of, 583 ; of fluids, 569 ; of a par-
ticle, 323 ; of a particle, analytical
expreision for condition of, 326

;

of a particle, condition of, 324 ; of

a particle, expressions for condition
of, 325 ; of a rigid body, 500 ; of a
rigid body, analytical conditions of,

501 ; of a rigid body, conditions of,

in terms of work done, 510 ; of a
rigid body, expressions for condi-
tions of, .504 ; of a system of rigid

bodies, ,508 ; of strings, 385, 387,

390, 391, 392, 394 ; stability of, 450.

Equipotential surfaces, 358.

Erg, 331.

Kigometer, .507 (14).

Extended bodies, 398.

External forces, 376, 398.

I' -Uing bodies, 140-141, 159 ; value of

acceleration of, 140 (footnote).

Field of force, 3.55 ; mapped out
by lines of force, 372 ; uniform,
373.

First Law of Motion, 286.

Fixed point, 24.

Flexural rigidity, modulus of, 552 ; of

bent beam, .5.5(5 (8).

Flexure of a beam, 277 (4), 556 (8-10).

Floating body, e(iuilibriuni of, .582

;

stability of equilibrium of, .5)^3.

Flow of liquids, .589.

Fluent, 44.

Fluid, .547.

Fluid pressure, 569 ; centre of, .569

;

resultant, 569 ; specification of,

.570.

Fluids, shearing stresses in, .584.

Flux, 44.

Fluxion, 44.

I'oot-pound, .331.

Foot-poundal, 331.

Force, acting on particle, specification

of, 311 ; acting on rigid body, speci-

fication of, 4,57 ; centrifugal, 320
(14); centripetal, 320 (14), 338; de
rhevat, 335; diagram, 382(22), .509

(26) ; dimensions of derivecl unit of,

.303 ; in terms of potential, 356

;

line of, 359, .572 ; moment of, 425

;

origin of idea of, 285 ; rotating

power proportional to moment,
4.55 ; tube of, 360 ; units of, 297-

302, 552.

Forces, conservative, 348 ; internal

and external, 376, 398 ; non-conser-

vative, 348 ; on particle, composi-
tion and resolution of, 312 ; on rigid

body, composition of, 4.59 ; on rigid

body, condition of reducibility to

single force, 477 ; on rigid body re-

ducible to a force and a couple, 479 ;

on rigid body reducible to two forces,

476.

Foucault's pendulum, 228 (5).

Freedom, degrees of, of a point, 35

;

of a rigid system with one point

fixed, 198, 211 ; of free rigid system,

231, 236.
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Friction, kinetic and limiting static,

328 ; molecular, 545.

Friction brake dynamometer, 507

(14),

Galileo's Law of Motion, 309.

Gas, real and ideal, 567.

Geometrical representation of motion
of rigid systems, 229, 252.

Graphic methods, 382 (22), 509 (26).

Gravitation, law of, 315,

(Gravitational potential, 361.

(gravitational units, 298.

Gravity, force of, 140 (foot-note)

;

centre of, 474.

Gyration, radius of, 486.

Harmonic motion, 163; compound,
167 ; elliptic, 173 ; simple, 163.

Heterogeneous strains, 284.

Heterogeneous stress, 522.

Hinge, reactions of, on bars, 509 (14

and 15).

Hodograph, 113, 161.

Homogeneous atmosphere, 580 ;

bodies, 541 ; strains, 257 ; stress, 522.

Hooke's Law, 551, 567.

Horse-power, 33.5.

Hydrostatics, 566.

Hydrokinetics, 584.

Ideal gas, 567.

Impact, direct, of spheres, 380 (1), 498

(10) ; oblique, of spheres, 498 (11)

;

of particle on smooth surface, 321.

Impulse, 294 ; equations of motion of

a particle in terms of, 319 ; equa-
tions of motion of rigid body in

terms of, 494.

Impulsive forces, 319.

Inclination of two lines, 8 (footnote)

;

in terms of direction cosines, 8-9.

Inclined plane, equilibrium of body
on, 327 (1), 329 (7), 354 ; motion on,

under uniform acceleration, 181,

329 (1), 352 (4).

Inertia, 286 ; centre of, 399 ; moment
of, see Moment of inertia

;
quantity

of, 291.

Initial line of polar co-ordinates, 3.

Initial tensions, 382 (23).

Internal forces, 376, 398.

Instantaneous axis of rotation, 213.

Instantaneous centre, 233.

Intensity of stress, .523.

Isotropic bodies, 542.

Isotropy, elastic, conditions of, 548.

Joule's experiments on mechanical
equivalent of heat, 590.

Joule, the, 331.

Kater's pendulum, 496 (3).

Kepler's Laws, 162.

Kilogramme-metre, 331.
Kinematics of machinery, 2.53.

Kinematics, subject matter of, 1.

Kinetic energy, 344, 432 ; change of,

equivalent to work done, 344, 434 ;

loss of, on impact, 443 (1).

Kinetics, subject matter of, 323 ; of

elastic solids, .557 ; of fluids, .584.

Law of energy, see Energy.
Laws of motion, 285.

Length, units of, 16.

Level surface, 576.

Lever, 507 (9) ; rough, 507 (32) ; rough,
efficiency of, 517 (9).

Limit of perfect elasticity, 546.

Linear and angular velocity, relation

between, 129.

Linear density, 304.

Linear displacement, 12.5.

Linear velocity, 127.
Lines, of force, 359, 572 ; of motion

(of fluids), .587 ; of quickest descent,
184 (11).

Liquid, 567.

Longitudinal stress, 530.

Machinery, kinematics of, 2.53.

Machines, simple, see Simple ma-
chines.

Mass, 289 ; astronomical unit of, 315 ;

centre of, see Centre of mass ; di-

mensions of derived unit of, BOO ;

to be distinguished from weight,
290 ; units of, 297-302, 304, 315.

Material point, 310.

Matter, quantity of, 291.

Measurement, 14 ; of length, area,

etc., see Length, Are?, etc.

Mechanical advantage of simple ma-
chine, 327 (1 and 2).

Mechanical powers, see Simple ma-
chines.

Mechanics, 323.

Metacentre, 583.
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Moduluses of elasticity, 552 ; ditneii-

sions of, 552.

Modulus, length of the, 552 ; of bulk
elasticity, 552 ; of flexural rigidity,

652 ; of rigidity, 5.52 ; of simple
longitudinal stress, 552; of torsion,

5.52 ; of torsion, in terms of rigidity,

556 (7) ; Young's, 552, 556 (4).

Molar equilibrium of extended sys-

tems, 444.

Molecular equilibrium of extended
systems, 444.

Molecular friction, 545.

Moment, of acceleration ofmomentum,
422 ; of a force, 425 ; of a force, ana-
lytical expression for, 427 ; of an
acceleration, 123-4 ; of a velocity,

103 ; of a velocity, analytical ex-

pression for, 106 ; of a velocity in

terms of angular velocity, 132 ; of
inertia, 486 ; of inertia, dimensions
of units of, 491 ; of inertia, deter-
mination by calculation, 488, by
experiment, 487 ; of inertia of an
area, 556 (6) ; of inertia, units of,

491 ; of momentum, 418.

Moments of inertia, 490.

Momentum, 293 ; angular, 420 ; con-

servation of linear and angular, see

Conservation ; moment of, 418; mo-
ment of acceleration of, 422.

Motion, in cycloidal path, 192 ; of free

rigid bodies, 497 ; of particle,

equations of, 317 ; of particle, under
given rates of change of speed, 60 ;

of particle under uniform accelera-

tion, 140 ; of particle, under uniform
velocity, 138 ; of rigid body about
fixed axis, 496 ; of rigid system
under constraint, 253 ; of rigid

system under given accelerations,

251 ; of rigid system under given
angular accelerations, 224 ; of sys-

tems of rigid bodies, 498 ; rela-

tion of, to time, 25.

Neutral equilibrium, 450.

Neutral surface, 277 (4).

Newton's experiments on collision of
spheres, 378, 380 (12).

Newton's Laws of Motion, 285.

Non-conservative forces, 348.

Non-conservative system, 435.

Normal acceleration, 120.

Numeric, 14.

Numerical measure or value, 14; in-

versely proportional to magnitude
of unit, 15.

Oblique impact of si»heres, 498 (11),
Ordinate, 4.

Origin of co-ordinates, 4.

Orthogonal projection, 8.

Oscillation, centre of, of physical
pendulum, 496 (3).

Osculating plane, 41.

Parallel forces, resultant of, 464-467.
470.

Parallelogram of accelerations, 116 ;

of displacements, 78 ; of forces,
313 ; of velocities, 98.

Particle, 310.

Particles, systems of, 374, 398.
Path, 36 ; of point under planetary

acceleration, 161 ; of point under
zero acceleration, 138 ; of point
with harmonic motion, 163, 164,
168, 170-180; of a projectile,
151-2.

Pendulum, ballistic, 499 (8); Black

-

burn'8,180; Captain Kater'8,496 (3)

;

compound or physical, 496 (3)

;

conical. 190, 320 (19) ; cycloidal,

193; Foucault's, 228 (5); mathe-
matical or simple, 187, 352 (5).

Percussion, centre of, 496 (9).

Perfect elasticity, .543 ; limit of, .546.

Perfectly rough body, 328.

Period of simple harmonic motion, 165.
Perpetual motion, 436 ; impossibility

of, as law of motion, 436.

Phase of simjjle harmonic motion, 165.

Physical pendulum, 496 (3).

Pitch of screw, 245, 254 (4).

Plane of shear, 269.

Planetary motion, 158.

Poinsot's central axis, 482.

Point of reference of displacements,
change of, 71-74.

Poisson's ratio, .556 (1).

Polar co-ordinates, 3.

Pole of polar co-ordinates, 3; of the
hodograph, 113.

Polygon, of accelerations, 116 ; of dis-

placements, 78 ; of forces, 313 ; of
velocities, 98.

Position, 2, 11.

Potential, 355; calculation of, 363;
central forces derivable from, 366

;
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force in tcrinH of, 85G ; no maximum
or minimum value of, in free space,

371.

l»otential energy, 345-347, 3r.(), 432.

Poimdal, 302.

Power, 333.

Pressure, 30() ; centre of, .57*.) ; lUtt'er-

ence of, between two points of a
heavy Huid, 579, 580; equality of,

in all directions in fluids, .570, 585
;

fluid, 5()9 ; of fluids acted on by
external forces, .577; resultant, 579;
surfaces of equal, .572.

Pressure-height, 580.

Projectiles, 142 ; displacement of,

after given time, 144 ; displacement
of, in given direction, 145 ; elevation

of, 145 ;
path of, 1.51-2 ; range on

given plane, 145 ; range on hori-

zontal plane, 149 ; velocity of, after

given time, 143.

Projection, orthogonal, elementary
propositions on, 8 (foot-note) ; of

simple harmonic motion, 172.

Pulleys, 254 (()-7). 509 (1, 2, 3), 517 (2).

I'ure strains, 2G7.

Quickening, 54.

Quickest descent, lines of, 184 (11).

Radian, 21 ; solid, 22.

Radius, of curvature, .'59
; of gyration,

486.

Radius vector, 3.

Range, of a projectile, 145, 149.

Kate of work, 333 ; dimensions of units
of, 335 ; units of, 335.

Ratio of strain, 257.

Recoil, velocity of, 321.

Rectangular components of a displace-

ment, 81.

Rectangular co-ordinates, 4.

Relative acceleration, 115.

Relative velocity, 90.

Repose, angle of, 328.

Resilience, 5G.5.

Resistance to compression, 549.

Resolution, of accelerations, 116 ; of

angular accelerations, 221 ; of dis-

placements, 79 ; of forces, 312 ; of

rotation into translation and rota-

tion, 241 ; of rotations, 207 ; of

stress, <530 ; of velocities, 99.

Rest, 24.

Restitution, coefficient of, 321, 378.

Resultant displacement, 76 ; analy-
tical expression for, 90 ; trigonome-
trical expression for, 85.

Resultant pressure, 579.

Resultant stress, 52.5.

Rigid bodies, 194.

Rigid bodies, motion about fixed axes,

496 ; motion of free, 497 ; motion
of systems of, 498.

Rigid dynamics, 453.

Rigidity, .549.

Rigidity, flcxural, modulus of, ')52.

Rigidity, modulus of, 552.

Rotation, 33, 194.

Rotational displacements, 208.

Rotational strains, 268.

Rotations, 199 ; composition of simul-
taneous, 203; composition of suc-

cessive, 200 ; resolution of, 207.

Rough bodies, 328.

Scalar quantity, 42.

Screw, 24.5, 254 (4), 517 (6) ; differ-

ential, 517 (7) ; rough, efficiency of,

517 (11) ; rough, mechanical advan-
tage of, 517 (10).

Second, 32.

Second Law of Motion, 287.

Shear, 269 ; amount of, 269 ; direction
of, 269 ; homogeneity of, 270 ;

plane
of, 269 ; reduction of, to a pure
strain and a rotation, 272.

Shearing stress, .530.

Sidereal day, 29 ; variation of, 30.

Signs, convention of, for co-ordinates,

4, .5 ; for moments of forces, 425

;

for moment of velocity, 103.

Simple harmonic motion, 163 ; ampli-
tude of, 165 ; epoch of, 165 ;

period
of, 165 ; phase of, 165 ;

projection

of, 172.

Simple harmonic motions, composition
of, 168.

Simple longitudinal strain, 264.

Simple machines, see Pulley, Inclined
Plane, Wheel and Axle, Lever,
Scr6W*

Simple pendulum, 187, 352 (5^

Simple rigidity, see Rigidity.

Smooth body, 320 (24).

Solar day, 31.

Solid, 547.

Solid radian, 22.

Space, dimensions of, 1

SpeciKc gravity, 304.
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analy-

gonome-

Led axes,

:
motion

f, .')52.

8.

of aimul-

n of 8UC-

,207.

1) ; differ-

ciency of,

jal advan-

directiou

•70
;
plane

o a pure

of, 30.

ordinates,

ices, 425

;

•3.

3 ; ampli-

5 ;
period

Iprojection

Imposition

264.

k Inclined

je. Lever,

(5^

Speed, 42 ; change of, 51 ; dimensions
;

of units of, 47 ; motion of a point
,

with uniform, 61 ; motion of a
|

point under given rates of change I

of, 60; motion of a point under
{

uniform rate of cliange of, (VS ; rate :

of change of, .52, 53 ; rate of change i

of, dimensions of, 57; rate of change
|

of, units of, 56 ; units of, 45. '

Spring balance, 320 (6).
'

Stability of equilibrium, 450 ; of

floating body, 583 ; relation of

potential energy to, 451. 1

Stable equilibrium, 4.50.

Standard substance, 304.

Standards, 14; of length, etc., sic

Length, etc.

Static energy, 345.

Statics, subject matter of, 323.

Steady motion, .587.

Strain, 33, 255 ; continuous, 284 ;

due to longitudinal stress, 554

;

ellipsoid, 264 ; elongations of, 257 ;

heterogeneous, 284 ; homogeneous,
2.57 ;

principal axes of, 263 ;
princi-

pal elongations of, 263 ; principal

ratios of, 263 ; pure, 267 ; ratio of,

257 ; rectangular specification of a
small, 283 ; relation of final to

initial volume, 266; relation of

stress to, .540 ; rotational, 268

;

simple longitudinal, 264 ; specifica-

tion of, 278.

Stream lines, .587.

Strings, flexible and inextensible, 383.

Stress, 306 ; centre of, .528 ; con-

tinuous, .522 ; dimensions of units

of, 523 ; homogeneous, 522 ; hetero-

geneous, 522 ; longitudinal, 530 ;

relation of, to strain, .540 ; required
for longitudinal strain, .5.55 ; resolu-

tion of, 530 ; resultant of, 525 ;

specification of, .531 ; tangential or
shearing, 530 ; tangential, resolu-

tion of, into longitudinal stresses,

538 ; units of, 523.

Stresses, 519; in bars of framework,
509 (22 and 23).

Surface density, 304.

Surface integral of normal attraction,

365.

Surfaces of equal density, .575 ; of

equal xiressure, 572.

Suspension, centre of, of physical

pendulum, 496 (3).

Systems of particles connected by
strings, 381.

Tangential acceleration, 120.

Tangential stresH, 5.i0 ; resolution of.

into longitudinal strcsMcs, 53S,

Tautochrone, the cycloid ji, HI2.

Tension, 30(».

Thermal energy, 440.

Third Law of Motion, 307.

Three-bar motion, 254 (8).

Time, description of instants, 26 ;

measurement of, 27; relation of
motion to, 25 ; units of, 29-32.

Toggle-joint, 517 (13).

Torricelli's Theorem, .589.

Torsion, 277 (3) ; modulus uf, 552

:

stress rec^uired to maintain, 5.56 (6)

;

time of oscillation of a body sus-

pended by a twisted wire, 5.58.

Tortuosity, 41.

Transformations of energy, 'MU.

Translation, 33, 34.

Transmissibility of force, principle of,

4.56.

Transmission of pressure, principle of

the equal, 571.

Triangle of accelerations, 116; of dis-

placements, 78 ; of forces, 313 ; of
velocities, 98.

Tubes of force, 360.

Twist, 24.5.

Uniform acceleration, motion in curved
path under, 185 ; motion on in-

clined plane under, 181, 329 (I), 352

(4) ; motion under, 140.

Uniform velocity, motion under, 138,

Units, absolute, 301 ; derived, 19

;

dimensions of, 18 ; gravitational,

298 ; systems of, 16 ; of k-ngth, etc.

,

see Length, etc.

Unstable equilibrium, 450.

Vectors, 70.

Velocities, composition of, 98 ; reso-

lution of, 99 ; virtual, 353.

Velocity, 43, 92 ; angular, see Angular
velocity ; areal, see Areal velocity ;

change of, 109; change of point of

reference, 96 ; instantaneous, 93 ;

mean, 92 ; moment of, about a point,

103, about a line, 104 ; motion under
uniform, 138 ; relative, 96 ; units of,

94.
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Vena, eontracta, 589.

Virtual displacement, 353; moment,
353; velocities or work, principlu

of, 353.

Viscosity, 545.

Volume, dimensions of units of, 20

;

units of, 17.

Warren girder, 509 (27).

Watt, the, 335.

Weight, 290; to be distinguished

from mass, 270 ;
proportional to

mass, 290.

Weights of particles of small body

reducible to single force acting at
centre of mass, 474.

Wheel and Axle, 254 (5), 498 (3), 607
(10) ; differential, 517 (5).

Work done, 330 ; by component forces

and resultant, relation between,
342 ; dimensions of units of, 3H2

;

dimensions of units of rate of, 335

;

during strain, 559, 590 ; under cen-
tral forces, 337 ; under uniform
force, 337 ; rate of, 333 ; units of,

331 ; units of rate of, 335.

Young's modulus, 552; in terms
moduluses of elasticity, 556 (4).

of

/;

;» END.
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