The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Car tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

\checkmark
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas étė filmėes.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and,or laminated/ Pages restaurées et/ou palliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueincludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

\square
Masthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmex at the reduction ratio checked below/ Ce document est firmé au taux de réduction indiqué ci-dessous.

WORK FOR THE MONTH.
The winter is now fairly commenced, and the frugal farmer will loose no time in having his outhouses snugly repaired to protect his stock from the extreme cold. If animals are provided with com. fortable quarters, they will sequire much less food to carry them through the winter than if exposed to the chilling blasts of wind, snow, and sleet, which are in. variable concomitants of a Caradian winre:. Provender, especially hay and outs, are a much shorterergp than the farmers of this country are in the habit of harvesting, and it therefore behoves all to deal out their winter's stock of food with the greatest possible degree of economy. True economy in wintering stock upon a short allowance of food, will be found in giving extra attention to the comfort ot the animals, in regular feeding, and in preparing the food so that they will be induced to eat it without waste. The latter particular may be performed by employing a straw cutter, which will pay for itself in a single season of scarcity like the present.

A iwelvemonths' stock of firewood should not only be prepared before the close of the month, hut a quantity of logs should be made ready for drawing to the neighbouring saw mill. Every farmer who cultivates his own land should attend to this particular if possible, and make every necessary preparation to erect a few hundred rods of post and board fence each year, until the whole farm becomes enclosed with a permanent neat fence. The expense of duiug this will not be very great if the logs arc drawn into the mill, and the boards and posts be drawn to the spot where they will be required for use, in the winter, by the hards and horses that are employed on the faim during the summer months. This advice can best be attended to by those "hose furms are entirely cleared, and whose circumstances will acmit of the necessary outlay. There are few indecd who could not do much more in this way than has been doue; and if a few hundred rods cannot be made consistently, probably fifty rods of such fence could be made the coming spring. On
land free from gravel, by the aid of an auger, an able-bodied man will plant thirty posts in a day, and even more when the ground is moist, as it invariably is in the spring. Where board fences cannot be made, or where the farmer is not prepared for this improvement, this will at least be a suitable period to get out rails for fencing.
Much of the grain will be thrashed in the course of this month; and when the travelling machines are used for thrashing, it is usually the case that large quantities of straw are thrown into the yards and wasted; this we trust will not be practiced by those whose limited stock of hay and roots would admit of no such prodigality.

The labor to be performed on the farm duriag this and the other winter months, principally consists in marketing what was produced in the summer ; and therefore any little advice that we may have to give our readers, in this article, in addition to the foregoing, will have a more, direct reference to the theory of husbandry than to its pracicical details.

This may truly be styled an age of improvement, but how far the farmers; of this colony have availed themselves of the light which men of deep research and science have thrown as it were broadcast upon the civilized world, we leave them to judge for themselves. This month closes the year; and every intelligent farmer should ask himself a few pertinent questions like the following: What Enowledge have I gained during the year which is about closing, that is calculated to improve my condition as a farmer? Have the surplus products of $m y$ farm, and the increase in value of my live stock, been greater than in former years? And if I have increasA my practical stock of agricultural
knowledge, the products of my farm, and also the value of my farming stock, what steps shall I take to ensure an additional increase of these essential features of improved farming? As I am ever anxious to reap,any little advantage that can be gathered, by perusing and hearing related the most successful systems of agriculture as practiced by others, would it not be only neighborly and patriotic ont my part, to furnish my brother furmer with the details of my most successful experiments, describing at the same time the various influences that operated fa. vorably or otherwise in perfocting them? Some may possibly a h themselves those questions, whose stock of uscful know. ledge is so limited that it would be diff. cult for a judge in these matters to a: certain whether any improvement hal taken place or not, or whether the products of the farm, or the value of stock, had been increased the present year.If such should unfortunately be the case, what shall the man of improvement say to such an one? Why, he should certainly try all lawful means to argue him out of this false position, by convincing him if possible, that man was made to make use of the good things of this world, and not abuse them; and by showing by incontrovertible argument, that if each individual of the productive classes, were only to produce the bare necessaries of life that they require for their wn individual comfort, what would become of the increase of that population as ushered into the world, and the numerous grades of helpiess objects who demand the attention of the philanthropist; and lastly, though least, the hangers on, or rather the drones of society? We very much apprehend that there are men, yesobjects, styled by this appellation, who are so groveling in their desires, that they have.
no wish to improve their own minds; nor do they care whether their country advance in improvement or not, so long as their own individual interests are cared for. For men of such uncultivated minds we may have some sympathy, but we court not their favor nor friendship. We want to see an intelligent and progressive community of farmers in Can. ada; and to aid in accomplishing this truly desirable object, we want every man who is in possession of even a spark of patriotism, to join us in our endavours to accomplish the agricultural reform which he have been now for some years contending for. The agricultural products of Canada might be vastly increased, if only those who are engaged in this noble calling would adopt the proper course to consummate this desirable object. It shall be our almost only aim in the future management of this journal to clearly point out the means by which the British Americ n Provinces, and cspecially Western Canada, could be made to compare in point of prosperity with any other section of this vast continent.

It is useless for us to advocate measures for the improvement of agriculture unless the farmers themselves evince an interest in carrying them out. Most of the practical agriculturists argue that they have no time to read, and therefore cannot afford to purchase books and magazines to lie on the shelves untouched for months and years. No time to read ! -we hear this hacknied sentence repeatedly sounded in our ears, by men whose years and better judgment should teach them better things. The truth of the matter is, they have not the will to read ; if they had they would go to some little pains in selecting the choicest modern works that afford a fund of invaluable information upon the science and prac.
tice of agriculture, for their amusement, or rather as a means of profitable pastime during the long winter evenings-
Those who have not had the advantage of even a common education, might spend their evenings very profitably in hearing others read valuable agricultural works. We wish to impress the idea upon the agricultural community, that if they wish to make the most of their time and capital, they must become acquainted with. the best systems of agriculture, practiced in their own and other countries; and especially, obtain a knowledge of the causes and effects of the various results, that have a favorable or unfavorable influence upon their prosperity. No means are so wisely calculated to consummate this object as that of consulting agricultural works, particularly those that have been written by practical farmers. Five or ten dollars per annum expended for such works would supply a stock of reading matter for the farmer that would be worth some hundreds of pounds in the course of an oldinary lifetime. Every shilling so invested, would give a returin of at least a pound in the farmer's pocket, if he would make a judicious selection of works, and devote only two hours in twonty-four, the year through, excepting sabbaths, to reading and reflection. This small period of time, could be spared, it by no other means than a little less indulgence in sleep and idle gossip. The most industrious man in the country can set aside a fraction of each day for useful reading. Entertaining the above views, we beg to crave the indulgence of our friends, when we again press upon their attention the importance of taking both their time and money to some considerable extent, in endeavouring to elevate the character of this province, especially in an agricultural and mechanical point of view. Every inhabitant exercises an influence either in favor or against the welfare of the country; and each individual should honestly ask himself the question, whether is the course I purisue in my business calculated to benefit or: injure my native or adopted country?

The intelligent husbandman who takes an interest in the leading improvements of the day, is of himself an invaluable settler in a new country like Canada.We want to sec every farmer intelligible, and each vicing with his neighbor, in exercising a healthful influence upon the community. The means of doing this good are accessible to all ; and we wish to see every farmer avail himself of the great and inestimable privilege of conferrung a lasting benefit upon himself, the nation, and his fellow-man-the means of doing which is placed within his reach upon the most easy terms. Works on agriculture have not been encouraged to any great extent in this province; but we are glad to observe that the far-seeing farmer is of late duly sppreciating such publications-an evidence of which we see exemplified in the additional interest which is manifested in behalf of the Cultivalor. We flatter ourself that with well directed efforts on the part of the five thousand subscribers which we now have to this journal, that its circulation might be increased to twenty thousand in the course of the present winter. The work in which we are engaged is a progressive one,-both conductors and supporters must not tire in their efforts. Assuredly as much depends upon the latter as the former; and while we resolve to put forth double diligence in preparing useful matter for our readers, we desire to see a corresponding degree of effort put forth in extending its circulation. A portion of this month might very profitably be employed in extending the circulation of this journal; indeed we know of no better method for the farmers spending their Christmas holidays than by exerting their influence in creating a zeal among their neighbours for agricultural improvement. While this interest-
ing department of operations are going on, due attention will also, we trust, be given to the interests of the Common Schools. The hints we gave in our last upon this important subject will no doubt have their desired effect upon all who feel an interest in the prosperity of this favoured Province. It is to be hoped that the hints we have here dropped will be well received by a discriminating public, and that none will allow themselves to settle down in supineness and indifference when subjects of such vast importance are placed before their notice. The present is probably the most important period that Canada ever witnessed. The capitalists of England, especially those belonging to the landed interests, have their attention closely fixed to this country, and our future prosperity depends greatly indeed upon the course which its present inhabitants pursues. They have done mach the past year to gain the confidence of their brethren in the mother country ; and we have good reason to believe that the work of improvement so well begun will progress with rapid strides.

THE FARMER'S LIBRARY \& MONTHLY JOURNAL OF AGRICULTTRE.
The four first numbers of this work have been received, for which favor we tender our grateful acknowledgements to its venerable and talented editor. Mr. J. S. Skinner must be considered the father of the American Agricultural press, being the founder of the American Farmer, Baltimore; and since his concection wilh that journal, the author of a number of able treatises on agriculture, and a steady and persevering advocate of the agricultural interests.

The Library and Journal of Agriculture, of which Mr. Skinner is editor, is published in the city of New York by

Greely \& McElrath, Tribune Office.Its price is five dollars per annum for two volumes containing 600 pages each. The work is divided into two grand divi. sions-the one entitled the Farmer's Library, and the other the Monthly Journal of Agriculure, which appears in monthly numbers, each number containing 100 pages and upwards. Each number of the work is beautifully illustrated by numerous cngravings; and to judge from the specimens before us, we would pronounce it the best Agricultural Magazine published in the English language. Any farmer who would carefully read the four numbers already published, must frankly acknowledge that he had received more real benefit than twice the subscription price. If such an event should take place, that we should find it our interest to disconnect ourself from the management of the Cultivator, alinost the first act we should do, would be to subscribe for the Farmer's Library and Monthly Journal of Agriculture, and by doing so, we would calculate that we had made an investment, which would be worth more to us in our business than twenty times its subscription. Owing to the great anxiety we have for the success of this great mammoth undertaking, we beg to inform our friends, that we should feel a pleasure in procuring the above work tor any who may remit to our ad, dress, Newmarket Post Office, the sum of five dollars.

MOUNT HOPE BOTANIC GARDENS AND NURSERIES.

We have been favoured with a descriptive catalogue of fruits, ornamental. trees, flowering shrubs and plants, of the above establishment, which is entitled to, a fuller notice than our present space. will admit of, Itis, however, due to the ing the summer season. upright honey suckles, 4 varieties.
intelligent proprietors, Messrs Ellwanger
\& Barry, to give considerably more than a passing notice of the Mount Hope Nur. sery, inasmuch as they have lately associated themselves with Mr. Leslie's Toronto Nursery, by which arrangement the farmers of this country are enabled to get as good an assortment of fruits, \&c. at as choap a rate as they can bo had on the other side of the water. In, looking over the catalogue, we find there are 171 varieties of apples, 141 of pears, 35 of plums, 48 of cherries, 8 of apricots, 38 of peaches, 6 of nectarines, 6 of quinces, 26 of grapes, 7 of ourrants, 8 of raspberries, and 24 of strawberries, Of ornamental forest trees, there are 70 varieties; ornamenal shrubs, 78 ; orna. mental evergreen trees and shrubs, 37 : vines and creepers for covering walls, \&c., 18 ; twining honey suckles, 8 ; and.

The assortment of summer, and perpetual or autumnal roses; of herbaceous. pæonies ; of tree proonies; of carnations and picotees; of pinks; of bulbous. flower roots; double dahlias and herbaceous plants, are quite as extensive as the fruits. When the whole establishment is taken into account, it will cer. tainly bear comparison with any similar one west of Albany, We lately visited. the Mount Hope Nursery, and through the politeness of one of its proprietors, had the pleasure of examining very carefully the whole of their most extensive grounds. We were delighted to witness the remarkable neatness and order which are displayed in the cultivation of evers. department of the nurseries and flower. gardens $;$, indeed those grounds have become so noted in this respect, that they make a very agreeable place of resort: for visitors to the city of Rochester dura.

TO THE PATRONS OF THE BRIXISH
AMERICAN CULTIVATOR, AND THE FRIENDS OF AGRICULTURAL IMPROVEMEN'T IN BRITISH AMERIOA.
We feel it due our numerous patrons and friends, to record our most heartfelt thanks for the able manner in which our enterprise has been sustained during the year which is now about closed. The
so we would devote a large share of our time in the management of our journal: we therefore hope that all who have a desire to see the British Amcrican Cultivator improve in matter and appearance, will put forth an extra effort in increasing its circulation.

The province of Canada contains three experience of the pasthas given abundant|hundred thousand practical farmers, evidence that a cheap journal cannot every one of whom could derive much prosper, unless the cash system be rigidly profit from an ably conducted Agriculenforced; and we thercfore beg to an-itural Magazine; and if it were practicanounce to our present subscribers, that in ble to induce every proprietor of land to strict conformity with the system which tax himself to ti a extent of only thirty we have invariably observed, none will pence annually, for the purchase of such be supplied with the Cultivator, but such a paper as ours will be in future, we as forward their names and subseriptions, venture the opinion that the effect of such to the Publisher, Toronto. Some few a movement would be productive of an fave taken umbrage at the summary abundant increass of wealth, and that fnamer we exact payment for the ex-, this provinee would shortly become celefremely small subscription of our paper, brated for its great and numerous agrifut to those we would say, that no other cultural resources. The same argument \{ystem would have answered, unless we; would apply with equal force to the other (loubled our subscription price, by which provinces; but it is to Western Canada means the prompt paying would be charg-, that we have hitherto rcceived the largest ed with the default of non-paying sub-; share of patronage, and to the farmers of scribers. This system of injustice would this highly favored portion of British not be calculated to increase the popu- America, we mainly rely for patronage. larity of the work. The small sum of Instead of the large circulation, of which Two Shillings and Sixpence can as well, we have deell picturing to our fancy, we be paid down as at six or twelve months only ask for the forthcoming volume a hence ; and the Cultivator need not cost; cireulation of ten thousand copies; which any a greater sum than this, if they feel would be only double the number that disposed, in conjunction with their neigh., was subscribed for uuring the year which bors, to avail themselves of its wholesale is now aboul closed. To obtain this larce price.

We wish to be disinctly understood to be put forth by the friends of agriculthat the forthcoming volum) will be sent tural improvement. The best means yet only tosuch as renew their subscripions; devised, to give a liberal circulation to and as this rule will extend to all, uone will have just ground of complaint.

We mentioned on a former occasion, that our present supporters might with a trifling effort extend our circulation to ten thousand subscribers, and by doing meetings of the society, was divided off
into sections, and a Director elected to each, a part of whose official duty was to call upon every individual residing in his division in the month of January, to solieit the small annual subscription of One Dollur, for which be would receive the British American Cultivator, in addi. tion to the other advantages which would result from being a member of the society. The present year the W hitby Society has three hundred and forly paid subscribers, and in all probability that number will be greatly increased the next year. The improvements in agriculture in this wealthy township, exceed any thing of the kind wilh which we have any know. ledse; and if the frionds of agriculture only remain true to themselves, they will cee long have the gratilying intelligence to anduaner, that every proprietor ofland. in the township has his name enrolled upon the subscription book of the saciety. Other sections of the province have pursued a very similar course in canvassir.g for the Cullivator: and wherever it has been liberally circulated, the outcry about hard times is no longer heard, and all grades of society vie with each other in the productions of the soil or the workshop. This is precisely the state of things that we are anxious to have brought ajout in every section of the British American Provinecs; and one of the most efficient agents for consummating this desirableobject is, an extensively read and talented agricultural paper. Such a paper as we have described, will be cmbolied in the sfcond vulume of the British American Cullivator (new serics); and when the talents of the editor falls short of supplying such a work, others who are also practically engaged in agricultural opurations will be empluyud to assist him in his arduous task. The next volume will be worth to any practical farmer, at least iwice as much as any of the preceding ones; and as we intend more time and talent shall be invested-in preparing it for the press, we also ask for it a corresponding increase of support. We fully intend to so liberally store the
columns of the Cultivator with valuable information, that every spirited farmer in the country will not fail in becoming its patron. The foregoing exposition of our views and intentions, will screve at least to show, that we not only intend to please others, but that we also intend to be pleased ourselves. The great aim and object of our enterprise is to assist in increasing the wealth of this highly favored portion of the British Empire.

Cause of the Delay of the Issue of tire September, October, and November Numbers of the Culitivator. -Our subscribers have no doubt been considerably disappointed at the irregular issues of the above three numbers of the Cullivator, and we should have mentioned before the cause of our, delay.-Mr. Eastwood, the publisher, failed in supplying paper for the above numbers a: the regular period, in consequence of some improvements which were made to his mills during the past summer. It is highly probable that a like occurrencewill not again take place for a long perive ; and as it is vur intention to publish each number a few days in advance of its date, so that our subscribers will be in the regular receipt of this journal on the first day of each month, we trust that any irregularities will be forgotten.

Errata.-Our readers have no doubt obscrved several errors in the last four or five numbers of the present volume of the Cultivator, which unavoidably crept in through oar not having had an opportunity of seeing the proof-sheet before being put to prisss. We intend in future to be more 'careful in correcting the proof. sheet, by which means the wark will go before the public free from errors.

The Cultivator now receives so liberal a slace of patronage at the hands of the agriculturists, that no pains shall be spared in its management. Such of our readers as detect the inaccuracies weby have alluded to, will do us a kindness pardoning us this once, and we do assure them that in future we shall endeayour to guard against errors of any description.

The September and October numbers of the Eiltivator have lately reached us, and we are dolighted to see that the exalted character which the late Judge Buell aud Willis Gaylord had carned for this journal, is fully sustained by its present conductor. Through sume mistake or ether of the publisher, we have not been in the regular receipt of the Cultivutor the present year; and our readers who were formerly subscribers to that excellent work, have doubtless experienced a loss, as well as ourselves, in not having the picasure of perusing the cream which we might have gathered from our able contemporary. Without further dilating upon the merit of the magazine before us, we would, for the information of our readers, extraet a few articles which we trust will be read with interest.

Deep Plougling.-Dr. D. H. Robinson, of Farmington, Ontario Co., N. Y., ploughed a piece of grass land late in the summer for wheat, to the depth of nine or ten inches. This was thoroughly harrowed, with a light dressing of well rotted manure, and the seed sown upon the inverted sod. The product was thirty-five bushads per acre, on land where twenty are usually oonsidered a heavy crop. Another skilful farmer Gnds as much benefil from the mixture of the subsoil, hat he considers a decided advantore would reault, so far as fall wheat is concerned, if six mohes of the surface of his land were entirely removed and carried off.
Pine Apple Cheese.-Mr. Lewis M. Norton, or Goshen, was the first manufacturer of what is called pine-apple cheese, in America. He commenced making this article in 1808. He had at this time no knowledge of the mode in which it received its peculiar form and qualities. He saw some which came from England, and set himse!f to work to imitate it. His first trial succeeded so well that he was encouraged to persevere, and he has continued to progress, until at this time, he has so perfected the whule process, from the "running up" of the curd, to the sole of the cheese, as to entirely distance all competition.

Mr. Norton is this year using the cuid from rinety cows, for making pine apple chcese. The principal portion of this curd is bougit of hineighbors, for which he pays them the same price per pound that common neir mulis cheese brings, whech is five cems this seacon; so that those who sell him their curd, save all the labor of pressing and curing the ir chepse, besides gaining cunstuecable from the greater weight of the curd.

The curd is kept for twenty-fiur hours before in us made into cheese. The advantage of this,
is supposed by Mr. Norton to be, that a degres of fermentation takes place, which being checked at a critical time, by the cutting of the curd, proparatory to its being formed into cheese, is not renewed after it comes from the press; thus preventing the defect of the cheese being hoven or blown.
The curd is rapidly cut into pieces of not more than a fourth of an inch square, with a muchne invented by Albert Loomis, Torringford, Ct., which Mr. N. prefers to any cord-cutter he has seen. After eing cut, the curdis put in a cheese cloth, placed in warm water, and the temperature gradually rased by pourng in water that is sull\} warmer, till it reaches 105 degues, by the thermometer. This does not scall the curd, which according to the practice of the best cheesemakers in England and in this country, is, we think, discountenanced. The curd is next cooled, by adding cold water, to the temperature of 88 degrees, when the whole of the water is drawn from the vat, and the curd weighed, and salted with the finest kind of table salt-four ounces of salt to ten pounds of curd-and after being well stirred is put in the press, where it remains twenty-four hours, or a longer thme, as is convenient, as it takes no hurt by remaining forty-eight hours. The curd is weaghed inmediately over the tub, being drawn up by a pulley, and when this is done, is again lowered into the tub, where it is salted.

The cheeses are pressed into moulds, made of sound blocks of oak timber, about twenty inches long and ten inches square. They are sawed lengchwise through the middle, and each half is carved or worked out so as to give the general shape of a pine apple-one half in each part. From the cavity to the upper end of the block, a groove is cut in each part, which, when the parts are placed together, makes a round channel of about two and e half inches in diameter, for passing the curd into the mould. When the two parts of the block are put together in such a manner that the cavities match each other, and ara strongly keyed into a frome, they form themould for pressing the curd. She pressure is applied by means of a screw, "operating on an upright, round piece of wood, which fits the chanrel in the block, and as it is farced down compresses the curd in the mould. The presses are very compact and strong, and appear to answer tho purpose well. He has sixty-eight of them, and makes twenty-eight cheeses per day, weighing when dried five pounds each. When the cheeses are tahen from the press, they are thimmed, and then placed in nets and hung in water of tho temperature of 130 degrees. This is to soften the outside, that it may receive the desired impression from the net, which is done by taking them from the water while enveloped in the ners, placing them in a frame and straining the ners tightly over them by means of screws. This indents the threads of the net into the cheese in such a manner as to give them the external ap, pearance of the fruit from which the y are named.

After this operation the cheeses are hung up in the neis from three to five weeks, from the outside to harden, and are then set on shelves having suitable hollows or concavities for the cheeses to rest on. In the centre of each concavity, a hole two inches in diameter is cut through the shelf, the more freely to admit air to the cheese, and to allow any liquad which may come from it, to run off. The nets used for the cheese are made of three-threaded flax-twine, and the manufacture of them costs, exclusive of the material, about 5 cents each. They will last three or four years.

Mr. Norton sells his cheese in New.-Xork, Baltimore, and other southern cities. It usually nets him about ten cents per pouad, afier deducting commissions. How mnch greater are the actual profits derived from this kind of cheese than are obtained from other kinds, we cannot tell. Mr. Norton has evidently incurred great expense in his fixtures, and in the time and study he has spent in bringing the manufacture of the article to such complete perfection, and this ought, in justice, to secure him some corresponding advantages. He, however, makes no secret of any of the discoveries or improvements which his protracted and indefatigable labors have effected; but with a highly commendable liberality, freely permuts the most minute examination of his systematic operations.

Cotton Beds is recommended to be equal to feather beds:-A correspondent thus describes them:-"I have been using them in my family for several years, made of batting. In summer they are cool and comfortable, and in winter equal to any feaiher bed. They are made like matrasses sewed through and through at every six or eight inches."

Profitable Farming.-The editor condenses the leading features of Mr. James Gowen's mode of husbandry, as reported by him to the Philadelphia Society for Promoting Agriculture. The details laid down by Mr. G. are not explained sufficiently clear, but nevertheless, a close observer will be able to trace out in his own mind the particulars omitted in the report-ssfficient is stated to prove, most conclusively, that as good a return can be realised from agrocultural pursuits, where a large amount of capital and skill are invested, as from any other productive calling. The soiling system of feeding cattle has not as yet been practiced in this province, and we trust that Mr. Gowen's great success in this particular, will induee members in this country to practice it.

Fine Pickle for Meat.-Brown sugar, bay salt, common salt, each five pounds; saltpetre one pound; pimento (bruised) five ounces; black pepper (bruised) three ounces; nutmegs (rasped) one ounce; boiling watèr five gallons.' Mix. This not only imparts a fine red color to the meat, but also gives it a most delicious favor.

The Tanning procces.-A discovery has recently been made, which seems likely, to revol)tionize the tanning trade. By means of a tanning machine, or pair of horizontal rollers, fixed over a tan-pit, between which is fixed a band or belt of hides attached by ligatures to each other, to the number of 50 to 100 , and by which the rollers are constantly fed or supplied, the hidss are lified out of the pit on one side' of the machine ; as they pass between the rollers, the exhausted ooze or tanning liguid is pressed out of them, and they are deposited in folds in the pit on the other side, where they absorb another supply of fresh tanning. The first hide having been inserted between the rollers, the others lollow in succession, and upon arriving at the end of the band, the motion of the roller is reversed, and the beit is retumed tlerough the machine to receive another squeeze. This alternating motion is constantly repented, the pit being replenished from time to time with fresh solutions of tan, till the operation is completed. The effects produced by this simple plan, are-1. The shortening of the time of tanning to one fourth of that generally required. 2. The production of a considerable increase of weight. 3. The leather tanned by this method resists water longer than that tanned by the old process. 4. The new method is cheaper than the old. 5. It is applicable to the existing tan-yards, at a comparatively trifling expense, with a capability of working in rounds or series, and of expending less tan or liquor. 6. That it is available forall sorts of leather.-Johnson's Far. Encyclopedia.

Cultivation of the Goosebervy.-First select a soil, neither stini clay nor loose sand, but of good, rich, deep mould, in a position where the midday sun will never reach. Plant your bushes iniee feet apart, train them into heads at least two feet frem the ground, let the heads be formed nearly round and open. After the head is once formed, attend to the bush, from the time the blossom shows itself until the fruit is ripe, and whenever a branch is pushing forward to mako wood, nip the end with the fingers, thus throwing all the juices into the formation of the fruit, beside keeping the bush more open to the air; with the hoe, dig well among their roots, being careful not to break them, but yet to keep the earth loose and most. As often as once a week from the time the fruitsets until ripe, water with liquid manure upon the soil, and use the hoe directly after it. In pruning, let it be borne in mind that the Gooseberry produces fruit on the wood not only of the precedingsummer's growth, but also on spurs from old wood. Should any appearance of mildew become visible, sprinkle the bushes with weak lime water, and scatter lime and sulphur underneath upon the ground.Western Reserve Magazine.

Bees generally eat more honey than they colleat after the first of August. Weiph your hives, and see for yourselyen.

AN ADDRESS TO THE AGRICULTURISTS OF GREAT BRITAIN, EXPLAINing The principles and use of artificial manures.

ax professon jusies liedig.

ON ARTIFICIAI MANUESE.

Twenty-five years ago, the manufacture of spaw and mineral waters began ; they met with violent opposition from the members of the finculty, as being dipprived of all the good qualities of the natural ones-as wanting, in a certain conditio, sine qua non-in a spiritus rector, or vital power, which alone gave them any medicinal qualities. Those tines have passed now-chemistry has demonstrated to a certanty what the constituents of those various valers are, and under what forms and compounds they are united in them. It has succeeded in combining them exactiy in the same proportions, and in rendering them not oniy equal to the natural ones, but even more effective. Only from that time physicians were induced to connect certain eifects on the human body with certain elements in the waters, and were enabled, by the light of science, to add more of this element, or more of that; nay, to apply, instead of the waters themselves, the one active element alone, as is, for instance, the case with iodine in indurations and struma. It is well known, that at this moment there are extensive manuactures of mineral waters in Englond, at Berlin, at Deesden, at Wenna, \&e.

Now. I belfove, that the same principle may be aphiod, partaily, a: ant, to the use of mand factured manures, which in England, has just been called into existenar. Gnano, that powerful manure, the efficacy of wh.ch, in a judicious apphcation, has been clearly demonsirated by the testimony of the moat inteligent farmers, cannot be suppied for a much longer priod, because the rich stores in Chili and Airica must be shorty exhausicd. As it is oniy ia very dry countries that $i t$ is tound. we camot expect to discover many more phaces con:aning it, and what are we then i.) do? IIy at: nacn has often been dirccied to the question, whether according to our experience, and the perent state of science, a wanare might not be compeed whech could repae? the genaine gamo ta is effects, and whether I could not by a seri-s of experants, point out a way of preparing one equal to it in all its chemeai and physical propertes? You are well aware that we know wath certany all the elements of the gunno, as well as of the irine and sohd feces of men and ammals. In like manner it seems to have verifed the opinion which I have laid dowa in my work on agriculture, that the salis masufactured in the laboratory have the same effect on the growth of plants, it they are embodied to the fields, in the same forms in which the animals furnish them in their excrements. This must be evident to every one who knows, that to produce these compounds in the laboratory, the same agencies and means are made use of which are
employed by nature. The fabrication of a manure, equal in its composition and effects to the sold and fluid excrements of animals and men, seems to me one of the most essential demands of our time-more especially for a country like Eng'and, in which, from various circumstances, a rational agriculture without a supply of manure, in some shape or other, from wilhout, seems nearly impossible. On" reasoning will appear the more correct, if we remember how different are the resuls which have been obtained by the numerous analysis of the different sorts of guano--how little the farmer can depend upon producing from a given quantity a certain effect, as the latter naturally varies according to the composition of the former. There are scarcely any two somples in the market with the same composition -may, not even similar. The following saits may be regarded as the essential constituents cf a powerful manure applicable to all descriptions of soil :-

Earthy Phosphates.-The most important of these is Phosphate of Lime. which occurs in nature as a mineral called apatite. It is the principal component in bones, which, it riay be observed, have been found most efficaciuse if calcined, and consequently deprived of their animal matter. The rapidity of the effects of phosphate of lime on the growth of plants depends upon its greater or lesser solubility. Its amount of glue (getatine) diminishes this solubility if the soil is rich in vegetable maters, which furnish carbonic acid by their decomposition, and which acid is required for rendering the phosphate of lime solub'e in water, and introducing it into the organization of the plants. In the calctaed state the bones act suficiently quichly; but in those soils in whech this cause of solubhtity is wanting their action is slower. In my work I had recommended the addition of a certain quantity of sulphuric acid, both in order to render the bones more soluble, and to change the neutral phosphate of the bones into gypsum. and into a phosphate whic: contains more acid-super-phosphate of lime. I have been informed that this advice has been most extensively adopted, that the superphosphate of lime has been found to be a most eficacious mantire, and that it forms already a ranst important article of commerce. A second earthy phosphate, not less important. is the Phosphate of Mangacsia, which it is well known enters into a still larger proportion than the phosphate of lime into the composition of the grain.

The Allakine I'hosphates, although not originally found in nature, are important elements of the seeds of grain, of peas, beans, \&e. A rational farmer must provide them in sufficient quantities to those plants which require them for their developement, from knowing that human excrements increase the produce of glain in a far greater proportion, as they contain more alkalme phosphater, than the animal excrements, in which they do not exist.

The Alkalies-potash and soda-must be constituents of every rationally composed manure,
because, by them the original fertile condition of the fields is preserved. A soil, which contains the alkalies in too small a quantity is, perhaps, fertile for grain; but is not necessarily so for turnips or potatoes, whichrequire a great quantity of altali. By supplying an alkaline manure, tallows, or the cultivation of those planis which are grown during the time of fallowing, becomes less necessary.
Sulphate of Potash is a constituent of all plants, although in small quantity, as well as common sult and chloride of potassium, which are found in inilk in rather a large proportion. The salts of lime, especially gypsum, are important nourishment foi the leguminous plants. Silica is never wanting in all sorts of soils-it is a constituent of all rocks, by the decomposition of which all productive soils are formed, and the cerealia find it everywhere in sufficient quantity, and in a form capable of bsing taken up by the plants, if the alkalies are provided wherever they are present in too small quantity.
Salts of Ammonia.-It may be regarded as certain, that the nitrogen of the plants is derived either from the ammonia of the atmosphere, or from the manure which is provided in the shape of animal fluid and solid excrements, and that nitrogenous compounds exercise an effect.on the growth of plants, only in so far as they give up their mutrogen in the form of ammonia during their decomposition and deday. We may, therefore, profitably replace all the nitrogenous substances with compounds of ammonia.

Decaying vegetable matters, which contain carbon, are useful to the fieldsin so far as they provide a source of carbonic acid; but they are quite dispensable in manure, if it be rationaily combined, as the atmospheric air is an inexhaustible source of carbonic acid, from which the plants derive their carbon, i. e., if in the manure, the mineral substances are provided which are necessary for the assimilation of the carbonic acid. These are the substances which together give fertility to the soil ; but, although each of them may, under certoin circumstances, viz., where the sjil is defective, or where it is not ind fferent to the plant to take up the case with soda instcad of potash, -increase the, sis is sanc, ccal, or less. From these researchrs fertity, no one of them can he regarded as mature,' other clements than fos secds. The frmer contain according to the common meaning of the word, for, no alkali:e phasphates, but hey recuite for their the simple reassh, hat only cill of tion h, z, ceita n develepment and growth a rich supply of alkaline proportens, with fufle the purpose for which the carbonates and sulphates. On the cther hand the common manare is applicd. This purpose is the carbonates are entircly wantion in the secds, which, restorntion, or an increase of the original fertility, howcier, are very rich in phesphates. It is sufiiand by manure we must replace all the constitueats, ciently cbvizus inat a ratignal farmer must sciply of the ptants which have been token away in the, both, is well as all the cthers. If he suppries culy harvest, or whech are contained in the piants which phosphates, and decs not restore the alkaline carwe are desirous to cultivate.

What, then, are the consttiuents of the soil which we remove by the straw, seeds, tuberculous roots, stalks, See, of our plants of culture? It is obvious we must know these first, in order to restore them in sufficient quantities. To this we answer, by giving the analysis of the ashes of plants and their seeds. Hundred weights of the ashes of the following plants contain-

What is wanting in the 100 of the above annly-

In these analysis Silica has not been taken into account, as it is found in all scils, and need not be supplicd. One hundred weight of the ashes of potatoes, and the seeds of the following plants. contain Alkaline Phosphates $\quad 15.75 \quad 52.98 \quad 68.59$ Phesphate of lime and Magnesia
$\begin{array}{lllll}\text { Phasphate of Iron } & - & 0.20 & 0.67 & 0.00\end{array}$
$\begin{array}{lllll}\text { Sulphate of Polash } & - & 15.07 & 0.00 & 1.84\end{array}$
$\begin{array}{llll}\text { Carb. of Potash and Scda } & 51.70 & 0.00 & 0.60\end{array}$ bonates, his soil will become gradually barren-it wiil be exhausted in those necessary elements for the development cf stalls and seeds, withrut which 10 formation of seeds can be expected. If be supplies the alkalies, lime, and sulphates alone, in a given time he will get no more grain. fll constituents of the manure, if they are supplied alone, have this great defect, that by them the sall is impoverished in other equally important substuyces.

REPORT OF THE NEW YORK STATE AGRICULTURAL SOCIETY'S EXHIBITION (Continued from last Cultivaior.)

Mr. Obed Hussey's Reaping Machine (of tirely new principle, and appenred a most perBaltimore, Maryland), being one of the most fect machine for grinding corn and cobs into labor saving machines of the age, deserves to be introduced in this country. We shall submit a few additional particulars in relation to this useful implement, in the hope that some of the enterprising members of your society will take the necssary steps to have them brought into this part of the province, before the commencement of next barvest. If one of those machines were emplo:ed the whole season, it could be made to earn its price twice ovel; and when worked upon land fiee from stumps and stones, we should say that it would last six or eight years. We have read quite a number of testimonials from parties who purchased Mr. Hussey's reaper, and they all agree, that the average quantity of grain that they will cut per day, is twenty acres; and that they cut it with such neatness and precision, that the cleanings were not sufficient to pay the labour of raking, and upon a fine even surface, the stubble, after the sheaves are removed, appear as though they had been cleanly swept with a broom.

Corn and Cob Crusher.-Two machines of this kind were exhibited, one by Mr. Obed Hussey, and the other by Mr. I. A. Pitts, of Rochester. Mr. Hussey's cost him from five to eight pounds each, and appeared better calculated to grind helled corn, peas, oats, barley, and other coarse grains for feeding stock, than for grinding corn and cobo. Mr. Pitts, was constructed on an en
meal. It would make from eight to ten bushels of excellent meal per hour, and would grind nearly a like quantity of pease and barley. The latter implement was better fur corn and cub than other coarse grains. Both are driven by horse-power; and probably are the beat machunes for the purpose that have yet been invented. Mr. Pitts, Corn and Cob Crusher cost $£ 12$ 10s.; and tor any person who cultivates Indarn corn extensively, it would be found an invaluable apparatus for preparing that important grain for feeding stock.
Fanning Nills.-Of these machines there were a very great variety exhibited, nearly all of which had some peculiar merit over those in common use; but there were only two which aturacted our attention, as being improvements upon the best machines in Canada. James Patterson's Mills, of Canandaigua, could be so adjusted that three distinct currents of air could be given at the same time, each performing an important office in separating the chaff and light grains from the marketable grain. It also had a balance wheel in addition to the rog wheels, which increased its speed and lessened the required powerin turning; and it had twelve sieves of the largest dimensions. The sieves were made in a very superior style; four of which were expressly for the purpose of cleaning clover, timothy, and flax-seeds. The
principal merits of this mill consists of the balance wheel and the three currents of air. The price which Mr. P. asks for his machines at the factory is from $\mathbf{f} \boldsymbol{6}$ to $\mathbf{x 7} \mathbf{1 0 s}$.
The other which we considered would be an improvement apon the mills in use in Canada, is manufactured by Clow \& Crolin, Port Byron, N: Y., Cayuga County. The price of these mills is also $£ 7 \mathrm{l} 0 \mathrm{~s}$; and their chief merit consists oi a rolling screen, attached to the lower part of the mill, occupying the place of the seed-box. This screen is eighteen inches in diameter, and is so constructed that the grain, after it has been cleaned with the fans and riddles, enters moto the rolling screen, and passes, over eighteen feet in length of small sieve work, which thoroughly separates chess, cockle, and amall grains from the pure sound grain.

Persons engaged in the manufacture of Fanning Mills, would find it greatly to their interests to combine the leading features ot improvement which these mills possess, and substitute them for the imperfect machines at present manufac. tured in this country. A machine combining those qualities would be as well worth $£ 10$ as the latter are worth $£ 5$.
Stravo Cutter and Corn Sheller.-On the score of mechanical ingenuity E. Taylor's Patent Straw Cutter and Corn Sheller, excelled any thing of the kind we have seen. To all appearance it combined durability with simplicity in its construction, and would hot be very liable to get out of repair. The knife is made very heavy, and is worked by eccentrics which gives it a drawing stroke of great power. It is sald that itcuts about twice as fast as most of the other machines in use. It is adapted to cut all kinds of straw, hay, and corn-stalks, and is regulated by a self-feeding apparatus which can with ease be made to cut straw of any length. The most ingenious part of this machine is the corn-sheller, which performs its work with wonderful rapidity-removing every kernel, and leaving the cob perfectls wholeWe believe they may be had of Beardslee \& Badger, Rochester.

Clover Mulls.--Only one Clover Mill was exhibited, and it was the most substantial, and officient machine for cleaning cloyer seed for market, that we have any knowledge of; it will clean from ten to twenty-five bushels per day, and costs $\boldsymbol{e l f}$. We sazt one in opera-
tion in the village of Waterloo, which was prowpelled by water-power, the owner of whiel cleaned the whole of the clover seed in the vicinity of that thriving village. Mr. E. Halbert, Waterloo, N. Y., is the manufacturer of the clover mills, who assured us that his machines had dressed twenty-five bushels of cbo. ver seed in a day of ten hours.
Revolving Horse Rakes.-There were five different patterns of Horse Rakes exhibited, and without"an exc.ption they appeared well calculated to execute the important office for which they are designed But especially the one manufactured by Mr Lewis Swift, near the village of Clarkson, N Y, deserves to be patronised Sume of the other rakes on the ground displayed greater neatness in their execution, but none in our opinion, are as well adapted to perform the work with neatness and despatch. Probably the highest encomium that we could give Mr. Swift for his improvement, would be to include in this report a paragraph from the able pen of L. B. Langworihy, Esq., Rochester: "I have had one in use sloce the summer of 1843 , and my convicions are, that on any meaduw ground, not absolutely in a state of nature, it is one of the greatest laborsaving machines recently introduced. This ons has advantages that no other that comes undes my observation pussesses, that is, the complefe controul that the holder exercises over the rake, in turning over, when it should again carry forward the hay. The common horse rake, in heavy hay, is very apt 10 turn over so quich as to carry off a part of the winrow, which in Mr. Swifts can: be readily held up and allowed to catch again, at the option of the holder."

Franklin Jackes, Esq., near Toronto, employed one of Mr. Sw:fi's revolving hay rakes; with which he made his whole crop of hay the past season; and he was so delighted with its performance, that he inmediately imported fifiy, which he offered on sale to his neighbors at the price which they cost him, being only $\mathbf{x z}$ each. This heavy order came so late in the season, that a number we believe remain yet on hia hands.

There were a number of otherimplements of husbandry on the show-ground, whoch were highly meritorions, but as the report has alreardy become protracted, we would consider it imposing too much upon your patience, to add any thing further in relation to the late exhibition held at Utica N. Y.

The further particulars promised in the Nor ember number of the Cultivator, togrther, with a history of a visit to the farm of Gen. R. Harman, as well as some other important information collected when on his journey to Uuca, will appear' in the January namber, fiom the pen of the editor.

DR. LEES LECTURE.

Dr. Lee's Lecture on the Science of Agriculture, delivered at the Congregational Church, on the 22 d inst., was one of great interest and importance. His views upen that subject were presented in a clear and lucid mamer, and should have been heard by every pracucal farmer in the county.
He stated that merc physlcal labor is not sufficient, but that a knowledge of the organization of plants and their analysis and that of the soil, is required to enable the farmer to draw the greatest product from the soil tor a given amount of labor; that the art of plowing, sowing and reaping may serve the purpose of wearing out a productive farm, but more knowledge is required to enable the owner to return annually to its fields the substances removed at harvest, at the least possible expense.
Plants are living beings, and the number which may be produced and brought to maturity on a given amount of land, depends upon the quantity and quality of food given them; and the quantuy of food to be supplied to yield the greatest profit, depends upon the cost of the material and the value of the product.

The laws of nature are fixed and invariable. One element is not changed to another, neither can it be. Lime cannot be changed to soda, nor potash to iron. Organized bodies are constituted of certain elements, all of which are necessary to their organization.- By analysis we may ascertain what those elements are, and the relatuve amount of each required in such organization, and by a similar analysis of soils we may ascertain whether these elements are found there. It is important in this case to know how much of the substance of plants is drawn from the soil, and how much derived from the atmosphere, as those found in the atmosphere, need not, necessarily exist in the soil.

By experiment and analysis it has been ascertained that about 97 per cent. of the consutuents of all plants is found in the atmosphere. in the clements carbon, oxygen, nitrogen, and hydrogen; these are constantly furnished by the burning of wood and coal, the respiration of ammals, the fermentation, decomposition and decay of anmal and vegetable bodies. In wheat the remaining 3 per cent is earthy mater, drawn from the soil ; and is found to consist of 10 different substances, viz: shisca, lime, potash, soda, magnesta, alumma, chlorine, sulphur phosphorus, and arom. It there be a deficiency in any one of these eiements there must be a corresponding deficiency in the product, and if either be wholly wanting, no perfect plant can be obtained. Nature is as willing to yald 40 bushels of wheat per acre as 10 , provided there is no lack of material. [Here the reporter should have added, that a large excess of any one necesgary ingredient, may be as fatal to the crop as the perfect absence of such ingredtent. This was inustrated by saying, that to prepare human food in the form uf a good hasty pudding, we must use a few drachms of salt to a few pounds of corn
meal. If we reverse this ratio, and make a pudding by combining a few pounds of salt with a few drachms of meal, no child can grow well on such daily food. Young wheat plants are sadly injured by feeding them with the proper things, in the most improper proportions.]

If wheat be burned, one handred pounds of the plant will produce about 3 of ashes, 75 per cent. of which is silica, (common flint or sand) and this before it can be taken up by the plant must exist in a fluid state; but every one knows that flint is insoluble in water, therefore in its uncombined or simple state it is uufit for food for plants. some menstrum must be at hand through whose agency it may be rendered soluble. Silica is an acid, and when combined with potash or soda, the potash or soda being in excess, becomes soluble, and is then taken up, after which the vital energy of the plant disengages a portion of the potash, and the siliceous matter becomes again insoluble, lorming the substance which gives to the straw a gritty feel. The liberated potash returns to the root and assists in the solution of another portion of silica, and thus a small amoun: of potash becomes of great service to the plant, and that snall amount is as necessary to its developement as the ar we breathe to the continuation of life.

Farmprs have been looking for some great desideratum which should render all soils equally productive, but no such thing has yet been found; one soil may show a deficiency of lime, another of potash, a ihird of phosphorus, and the true object of the science of agriculture is to ascertain how many, and which of the necessary elements are deficient and the cheapest means of supplying such deficiency.

He spoke ot the difference in value of the same species of grass, grown upon soils constituted of materials in proper proportion, and upon those where there was some deficiency; and to illustrate the effects of feeding plants on proper food, showed some heads of timothy, 8 or 9 inches long, which he had been able to produce by furnishing a sufficient supply of such food.
He said that a state agricultural school and expermental farm are wanted, where thas science may be stadied, and the laws wheh regulate the transformation of the substances of the earth into useful plants, may be fully educed; that for the last 26 years efforts liave been put forth to accomphsh this end, but to no effect; that the state has amply endowed institutions for the benefit of other professions, but left the great science of agriculture alone to the care of individual enterprise.

With regard to the present effort there can be but one opinion. The physical wealth and strength of a nation must depend upon the value of its productions, and certainly none can be more valuable than those of agriculture; and since it is an object of wise legislation to develope the resources of the country, is it not the duty of the Legisfature to encourage the efforts of that class constituting the strength of the nation, in their
efforts to understand the hidden laws of nature ? The state of New York possesses all the elements of agricultural greatness, yet no one will assert that its productions have yet attained the maximum of its power to produce.

Individual effort has accomplished much, but there is required a concentration of effort which can be obtained in no way so easily or justly as by the patronage of the State Leegislature.
F. Cooper.

Union School, Camillus, July 25, 1845.
Drive your business, and let not that drive you.-Energy, and force of character, are amongst the first requisites essential to successi in business. Any man may possess a high degree of refinement, large stores of knowledge, and even a well disciplined mind, but if he is destitute of this one principle, which may be termed resolution of soul, he is like a watch without a main-spring, beautiful, but inefficient and unfit for service. Man was never made to act the part of an automaton, or mere machine. His powers are not designed to move quite so mechanically. He is to act, as well as to be acted upon. He must give life and stimulus to his calling. Is he not endowed with a life-giving power, whose emanation is referred to that original source, whence alone can be derived all injpiration! Man's cfficiency nust give nharacter to his business. That employment on which is stamped the impress of a living and energetic soul, will do honor to any man, in any place, or at any age. It is poor policy :ndeed to loiter till driven by force. We thereoy lose all the pleasures of satisfaction. Voluntary service, urged forward by a determined purpose, will give hopefal assuraace, if not a full warrant of success, and all the happiness of a just conquest. Behold the sluggish man. His occupation is a worthy one, but it finds him unworthy of the trust. It presses upon him with all the demand of imperauve necessuty. It finds him but a drone. He is confused by a multiplicity of cares. He is pressed down by a crowd of responsibilities, but makes no generous effort to discharge one of them. Thus his occupation suffers, his family are in want, and that good name, which is better than riches, is lost. True, man is said to be a creature of circumstance, and he ought to be, in a sense, subject to the superintendence of a leading Providence; but this does not justify inertness of character. Man by his own decision of character, and determined spirit, can do much to remove and surmount the inconveniencies and barriers incident to human life: Then be resolute,
and both you and your business will "t go on and prosper."

STILL PRESS ON.

What tho' thy path be lone and drearWhat tho' thy life's o'erhung with fearWhat tho' keen trials, fresh are near,

Still press on.
Conflicts and dangers must assail
All men. Let not thy courage fail-
'Neath adverse fortunes never quail-
Still press on
'Tis only in the darkest hour, When clouds and tempests fiercely low'r, That man can know his own true pow'r-

Still press on.
In action all thy powers employ, To banish doubt, and wrongs destroyThen life will be to thee a joy-

Still press on.
-Bost. Cult.
Locrs.
A good conscience is more to be desired than all the riches of the East. How sweet are the slumbers of hum who can lie down on his pillow and review the transactions of every day without condemning himself! A good conscience is the finest opiate.

Confidence is the first duty of noble minds. It is only the weak and narrow minded, who, Irom the somewhat hard lessons of the world, aequire the faise wislom of doubting those who have never deceived them.

James.

Gooseberrgy Fincgar.-Bruise the gouseberries. when ripe, and to cvery quart put three quarts of water; stir them well tegether, and let the whole stand for twenty-four hours, then strain it through a canvass bag. To every gallon of liquor add one pound of brown sugar, and stir them well to acther bure they are pat into the cark. Proceed in all other respects as before. This vinegar possesses a pleasant taste and smell; hut raspberry vinegar, which may be made on the same plan, is far superior in these respects. The raspberries are not required to be of the best sort, still they should be ripe and well-flavored.

Pillsfor Gravel.-Castile soap, 8 parts; caustic soda, 4 parts; bil of tartar, to mix. Divide intothree grain pills, one to be taken every two hours.

ROTATION OF CROPS.

The practice of rotation of crops, has arisen out af pure experience. The practical farmer oberved that, in most cases, when the same plant was grown for two, three, or more years conseeptively upon the same soil, it did not yield the same abundant harvest; whilst, when another crop was tried upon that soil, the production was eatisfactory. Observation and experience subsequeutly and gradually established for different parts a different alternation of crops, but the practical agriculturist has never been able to devise a fixed rule for every kind of soil; although many efforts have been made to attan this desirable ead, the subject has noc been able to pass the limit of mere empiricism.

While the practical farmer was content to rest amply upon the facts suppled by his experience, and remained satisfied with believing that some plants exhaust the soil, while others do not, the theorist endeavoured to discover a key to this remarkable phenomenon. Of all the hypetheses devised to explain it, that of secretion and excretion by the roots of plants, seems to have had the greatest number of adherents, because it appears to explan satisfactorily the necessity for the rotation of crops.

According to this hypotheses, al! plants secrete ar form ceriain inatters during vegetation, which they cast out by therrroos, and the accumulation of these in the soil exercises an injurious influence upon future cro, ${ }^{\text {s }}$ of the same plants, but does not interfere with the growth of a d.fferent crop; nay, it was further supposed that the excrements of oite species of plants might furnish an appropriate nourishnent for anoher species. The framers of this hypothests, no doubt, imagined nat plants in this respect exhbited an analogy with animals, because we see animals turn with aversion from the excrements of their own species, whilst the same excrements are sought and eagerly devoured by ammals of a different species, But this supposed analogy is utterly fallacious; and if we cxamine the adaptation of the hypotheees to the facts of the rotation of crops, we shail find it to be altogether unsatisfactory.

The experiments made to prove that certain metters are secreted by the roots of plants, are by no means conclusive ; but, since it is well established that planis possess the power of absprbing and adapting matter for their growth, we magy alac suppose, in the absence of direct proofs,
that they likewise secrete matter by their rools. For brevity's sake, we will admit that such secretion takes place, and enquire into the proofs adduced to render the opinion probable, that these secretions exercise an injurious influence upon tho growth of plants of the same species, whilst the same matter favors, or, at least, does not exert any injurious effect upon the growth and developement of planis belonging to other species.
The facts brought forward to estaclish this theory are such as these-lst. That fruit trees, planted on the same spot where previously others of the same species had long giown, have not produced so well as usual. 2nd. The camo-mile-matricaria chamomilla-when, to a certain extent, present in a field, interferes with the growth of the cereals, owing, as it is supposed, to its secretions in the soil being offensive to the latter. 3rd. After the culture of peas, vetches, clover, buckwheat, \&c., far finer crops of cereals will be produced than if consecutive crops of grain were attempted.
But, in objection to the theory of the excretions of one plant being injurious to another, we might allege, that it often happens that trees of the same kind will flourish upon spots where they have previously grown; and that in many coumrres, especally in Ifungary, successive crops of grain plants may be grown year after year continually, on the same soil, without disadvantage. In meadows and forests, also, we see the same species of plants succeed each other for ages, and suffer no injury from the accumulation of the secretions of preceding generations. To explain such cases as these would require a new theory to be added to :he first, and without the aid of chemistry, this would be as weak and unsatisfactory as we have shown the former theoly to be. We must, therefore, reject the hypotheses of the secretions of plants being the cause of the advantage or necessity of the rotation of crops, and endeavour to discover another, capable of affording a satisfactory explanation of the kno.n facts, perfectly consistent with true science, and especially with chemistry; and if such a theory be thus established, it cannot fail to be of great use in practice.

If we assume that the canse of the utility of the rotation of crops depends exclusively upon the circumstance that cultivated plants withdraw from the soil unequal amounts of certain ingredients for their nutrition, all the observed facts are at once and satisfactorily explained, and the possibiliy of determining the rotation of crops, or of avoiding it altogether, if desirable, rendered evident.
I need not here repeat what I have already told you, respecting those constituents of plants which they derive from the soil, but I must remind you that plants of various species differ very much with respect to the nature as well as to the quantity of mineral or maline constituents which they require for their growth and developement.

Bearing this in mind, it is obrious that the gtowth of a plant may be impeded, simply beeause the mineral constutuents principally needed, indeed essential to their proper developement, have already been drawn from the soil by the previous cultivation of another plant, requiring nearly or altogether the same constituenis. If, for example, we take a field the suil of which contains the mineral and saline materials required co produce wheat, and yet only in a quantity exactly sufficient to produce a single crop, it follows, of course, that a second crop of wheat cannot be reared upon the same field. The soil is completely exhausted for the moment, and will reman so for ever, if it does not contain substan. ees which may by dismategration and decumpositon furmsh a new sapply of the ingredients necessary to the growth of plants, or if these essental matters are not artificially supplied.
Such a complete extaustion of the suil as we have supposed, tor the sake of illustration, to be effected by a single crop, is not very likely ever to happen in fact. But what really happens, and that communly enough, is, that although all the salts are not exhausted, yet being present in the soil in relauve proportuons very different to the amounts required by various plants, a single crop of wheat may deprive the soil so completely of one of its mineral constituents, that another crop of wheat would not grow u_{2} on it, and this soil may sull contan abundani mineral constituents for the production of a good cron of cluver or turnips.
It will now be obvious that it is possible to grow three, four, or more successive crops of the same gram upon the same fields, whenever the sonl contams a suffictent amount of the necessary mmeral consutuents, and that if a soil possessed an illimitable amount of these subisances, or received a constaut and sufficient supply of urem, it would be able to produce successive ciops of.the same cereals continually and for ever, and moreover that a rotation of crops would be in such cases wholly unnecessary.
What we have stated with respect to the cereals, applies equally to all other cultivated plants; so that any plant may be grown upon the same field contunually, and good crops obtained, if the ingredients of the soil which the plant requires wither are present originally to an unlimited amount, or the farmer furnishes the field with a constant and sufficient supply of these substances.

Viewed in this light, the subject will be clearer to you than perhaps has hitherto been the case. You will no v understand that an exhausting plant must be one which in comparison with other culuvated plants zequres many inorganic constituents, and consequently requires for its successfal eultivation a soil rich in those constituents. We ueed by no means wait for the perfect development of a plant, and subsequent trais upon the same sonl where it is grown, in order to know whether it is an exhausting piant or not ; we can arrive at a postive conclusion upon this point imanedately by burning the plant and examining
the ashes. The case for example may occur than some hitherto unknown plant is recomunended for cultivation, and tried in a soil equelly unknown, as in its amount of the constituents which that particular plani requires.

Practical experience, arising from the growth of this plant in one field or soil, may pronounce it to belung to the class of exhausting plants, whilst in another soil it may be found to be a non-exhausting crop. Thus, the most contradictory conclusions may be drawn from practical experience, and many a farmer has paid the pemalty of this uncertainty. It is frequently only after the lapse of a long time, and after a series of successfnl and unsuccessful trials, that it is at last fuund out which soil will suit this particular plans and which will nut. All this may be obviated, and the question determined at once, by burning the plant, examining its ashes, and carefully analyzing the soil; this will enable us to determino whether a given field will repay the cultivation of the plant or not.
Thus you perceive that the terms, "exhausing" or "non-exhausting plants," are merely relative; a chemical analysis of the ashes of plants, as well as of the soil, can alone enable us to decide upon this point. Strictly speaking, onty those plants can be called exhausting which find an insufficient amount of ingredients necessary to their growth present in the soil. So that plants requiring a considerable amount of mineral constituents, such as wheat, for instance, when grown in a soil rich in those constituents, cannot be designated an exhausting crop relatively to the soil: whilst on the other hand, plants requiring but in inconsiderable amount of mineral ingredients, when sown in a soil not adequate to supply even a small amount of these ingredients, must relatively be considered exhausting plants. From the preceding remarks it will be evident how ilk founded the assertion is that certain plants improve the soil by enriching it. It is a fact, proved beyond the power of controversy, that all plants whatever, withdraw certain mineral constluents from the soil, and thus so farimpoverish it. All such notions of improvement, founded upon practical experience, are mere illustrations.

It is frequently asserted that fallow crops, such as clover, peas, vetches, luceme, buckwheat, \&c., and even tobacco, potatoes, beet-root, carrois, \&c., do not exhaust the soil, but on the contrary are, in a certain measure, capable of improving it. This is especially said to le the case with buckwheat, which is frequently sown during fallow, and subsequently; when nearly in flower, ploughed into the soil in order to improve and enrech it. The power of the soil to produce cereals, after haviog grown crops of these plants, is thought to prove their non-exhassting natureThe term fallow crops, indeed, indicates that fields left fallow 10 order to restore their fertility for the cereals, have been found by experience to be capable of yielding crops of these plants witbout their subsequent ability to grow the oumale being affected.-Far. Library.

FROM THE PRACTICAL RECEIPT BOOK
To prepare a Round of Fresh Beef for Boil-ing.-Put the beef in a dish of sufficient size, and add water enough to cover the lower part of the meat. Then put a quantity of salt on the top. In a few hours it becomes well seasoned, and when thoroughily boiled, makes a most palatable dish.
Brown Hard Spirit Varnish,--Gum sandarach, $1 \ddagger$ pounds; shell lac, $1 \ddagger$ pounds; alcohol (65 op), 1 gallon. Dissolve in a close vessel, then add turpentine varnish, 20 ounces. Mix weil.
Brown Paint.--Venetian red, or Spanish brown, 1 ewt.; road dust, 3 ewt ; common soot, 2 S pounds; lime-water, 15 gallons. Factitious linseed oil to grind.

Brunswick biack for Paint.-1. Asphalum, 5 pounds; melt, and add boiled oil, 2 pounds; spirits of turpentine, 1 gallon. Six.
2. Litharge, 7 pounds; asphaltum, 45 pounds; melt, then add bolled oil, 7 gallonz. Boal unnil the mixture strings well, and on cooling a hitule becomes quite hard, then take it fion the fire and add spirits of turp mine, $\geqslant 5$ galluas, or enough to hin it sufficiently.

Cheap Brunswick Black-Black pitch, 28 pounds; blacl: restn, 98 poands; melt, and add black tar, 28 pounds; mix well, and further add boiled oll, 12 gallons; gromed hitharge, 12 pounds. Boil uutil stringy, and lastly thin it down with spirits of turpentme.

To remove Eugs, sce.-1. Corrosive sublimate, 1 ounce; muriatic acid, 2 onnces; water, 4 ounces; dissolve, then add turpentine, 1 pint; decoction of tobacco, 1 pint. Mix. For the decoction of tobacco boil two ounces of tobacco in a pint of water. The mixture must be applied with a paint-brash. This wash is a teally poison!
2. The most certain way to destroy bugs, is to pat the bedstead into a close room and set fizato the following composition, place in an iron pot upon the hearth, having previously closed up tine chimney, then shat the door: let them remain a duy. Sulphur, 10 parts; saltpetre, powdered. I part. Mix. Be sure to open the door of the rown five or six hours before you venture to go into it a second time.

To hasten the Blowing of Bullous-Roated Flowers.-Nitrate of potash, 12 ounces; common salt, 4 ounces; pearlash, 3 ounces; sugar, 5 ounces; rain-water, 1 quart. Dissolve, and pit a spoonfal of this liquid into the flower-glass, th n fill it with soft water. Change the water every nine daye.

To Cure Butter.-1. Lump-sugar, 5 pert:: saltperre, 8 parts; common satt, 32 parts. Yowder tine and sift, then ase one ounce of the mixture to every poand of nutter; peck in woud or vitrified jare, no glazed pans This will keep butter for two or three years.

Green Copat Varnzshi.-Verdigris, cryatallized verdigris, compound green, (a muxute of yeilow and blue). The first :wo require a mixture of white in proper proportions, from a fourth to two-
thirds, according to the tint intended to be given. The white used for this purpose is ceruse, or the white oxide of lead, or Spanish white. Proceed as before.
2. Common salt, 2 parts; sugar, 1 part; saltpetre, 1 part. Mix in fine powder and use one ounce of this composition in every pound of hutter. Butter prepared with this mixture will keep three years.

T, remove the Turnip Flavour from Butter. -Nitre, 1 part ; water, 20 parts. Dissolve, and put a little into the milk, warm from the cow.

Cabinctrakier's Varaish.-Pale shell lac, 700 parts; mastic, 65 parts; strongest aleohol, 1000 par:s. Dissolve. Dilute with alcohol.

Calves' Feet Jelly.-Take eight calves' feet and boil them until the water becomes a good jelly, then add sugar, 1 pound ; Port wine 2pints; white of two eggs and shells. Boil for five minutes. and clarity.

Iollow Copal Varnish.-Yellow oxide of lead, or Naples and Montpellier, both reduced to impalpable powder. 'I'hese yellows are hurt by the contact of iron and steel; in mixing them up, therefore, a hom spatula with a glass mortar and pestle must be employed. Or, gam gatta, yellow achre, or Duch pink, according to the nature and tone of the color to be imitated, and proceed as before.

Corying Paper.-Lay open your quire of paper (clean white, of large size), take the brush and cover it wh the foliowing varmish, then hang it ap on the line; take another sheet and repwat the operation, until you have finished your quathtity. If not ciear enough, give each sheet another coat when dry-Camada balsam, turpentine, equal parts. Mix.

Cin Plaster.-1. Bees' wax, 1 pound; resin, 4 ommes; Venice turpentine, 8 ounces; sulphate of copper, 8 ounces; arsenic, 1 ounce. Mix with heat.
2. Yellow wax, 1 pound ; Burgundy pitch, 6 ounces ; turpentine, 4 ounces; powdered verdigris 2 ounces. Mis, with heat, then spread the compound.

To P:ckle Cucumbers.-Trimand wash them in salt and water, drain and put them into the botles, add a litle mace. cloves, capsicum and mustard-seed, then cover them with white vinegar nearly boiling hot; cork immediately.

Bratish Cimn winthe-Soft water, 50 gallons: elder juice, 50 gallons; raw sugar, 120 pounds; cioves (bruised), 娄 ounce; ginger 1 ounce. Kan and ferment, the i rack it into a cask with thre grlons of spirit, three poands of raisins (brused), and one quart of fininge. Observe not to crach the stones in the berries in squeczing out the juice.

Digestive Ointment, for Cattle.-1. Tallow, 9 pands; red precipitate, 1 pound; lard, 2 pcurds. Mix.
2. Tallow, 3 pounds; resin, 3 peunds; spirits of turpentine, 3 pounds; powdered verdigris, 1 pound.

Cambrian and Westphalian Essence.-Barbadoes tar, 1 part ; liquid burnt sugar, 2 parts ; common salt, 4 parts; water, 100 parts; spirit of wine, 1 part. Mix, and let it stand for a week. 'Two or three table-spoonsful mixed with the salt will be found quite sufficient for a common sized ham.

To render permanent Chalk or Pencil Draw-ings.-L Lay the drawing on its face and give the back two or three thin coats of the following (No 1.) mixture; let it dry, and turn it with the chalk upwards, and give that side one or two coats also; lastly, if you choose, give it one or two coals of No. 2.

1. Isinglass or gum arabic, 5 parts; water, 12 parts. Mix.
2. Canada balsam, 4 parts; turpentine, 5 parts. Mix.

Pale Carriage Varnish.-Take copal, 32 parts; pale oil, $\times 0$ parts; fuse boil until stringy, then add dried white copperas, 1 part; litharge, 1 part. Boil again, then cool a little, and mix in spirits of turpentine, 150 parts. Strain.

While making the above-Take gum anime, 32 parts ; pale oil, 80 parts; dried sugar of lead, I part ; litharge, 1 part; spirits of turpentine, 170 parts. Pursue the same treatment as before, and mix the two varnishes while hot.
Second Quality Carriage Varnish.-Take gum anime, 32 parts ; oil, 100 parts; spirits of turpentine 150 parts; litharge, 1 part; dried sngar of lead, 1 part ; dried copperas, 1 part. Proceed as, before.

To swecten Minsty or Stinking Cusks.-1. First wash them with sulphuric acid, and then with clear water; afterwards wash them well out with water.
2. For large casks, unhead them and whitewash them with quicklime.
3. Or match them with sulphar mixed with a little nitrate of potash, and afterwards wash them well with water.
4. Char the inside of the staves.

Observe in every case to scald or well wash the casks out before use.

To fia Cirayon Colors.-Paste your paper on canvass, in a frame, in the usual way, then brush over the back two or three times with the following mixture, 'and when the last coat is cry give the face of the picture one or two coats in the same way. This will make it resemble an oil paining. Spirits of turpentine, 10 parts; boiled oil, 6 parts. Mix.

Sir H. Davy's Corn Solvent.-Potash, 2 parts; salt scrrel, l part. Mix in fine powder. Lay a small quantity on the corn for four or five successive nights, binding it on with rags.

Black Conal Varnish.-Take lampblack or ivony black in fine powder, and mix it with the varnish.

To clean Colored Silks.-Put some white soap into boiling water, and heat it unth dissolved in a strong lather. At a hand hent put it in the article. If strong, it may be rubbed as in washing; rinse it quickly in warm water, and add oil of vitriol, sufficient to give another water a sourish taste, if for bright yellows, crimsons, maroons, and scarlets; but for oranges, fawns, browns, or other shades, use no acid. For bright scarlet, use a solution of tin. Gently squeeze and then roll it in a coarse sheet, and wring it. Hang it in a warm room to dry, and finish it by calendering or mangling.
For pinks, rose colours, and thin shades, \&e., instead of oil vitriol, or solution of tin, prefer lemon-juice, or white tartar, or vinegar.

For blaes, purples, and their shades, add a small quantity of American pearlash; it will restore the colours. Wash the articles like a linen garment, but, instead of wringing, gently squeeze and sheet them, and when dry, finish them with fine gum-water, or dissolved isnglass, to which add some pea:lash, rubbed on the wrong side; then pin them out.
Blues of all shades are dyed with archil, and afterwards dipped in a vat; twice cleaning with pearlash, restores the colour. For olive greens, a small quantity of verdigris dissolved in water, or a solution of copper, mixed with the water. will revive the colour again.

Cast Engravings.-Take the engraved piate you intend to copy, and arrange a support of suitable materials round it, then pour on it the following alloy in a slate of perfect fusion: tin, 1 part ; lead, 64 parts; antimony, 12 parts. These "cast plates," may be worked off on a common prining-press, and offer a ready mode of procuring cheap copies of the works of our celebrated artists.

Copal Varnish.-Copal, 30 parts; drying cil, 25 parts; spirits of turpentine, 50 parts. Put the copal into a vessel capable of holding 200 parts, and fuse it as quickly as possible, then add the oil pre-: viously heated to nearly the boiling point; well mix, next ccol a little, add the spirits cf turpentine; again well mix and cover up until the temperature has fallen to 140° Fahr., then strain.
Draught for Diarrhxa.-Take tincture of opium. 30 drops; prepured chall, 2 drachms; powdered gum, 4 drachms; tincture of catechu, 2 drachms; rose-water 2 ounces. Mix, and take a table spocnful three or four times a day.

Fine Pale Copal Varnish.-Pale Afri-. can copal, 1 part. Fuse, then add hot pale oil, 2 parts. Boil until the mixture is stringy, then cool a tittle and add palo turpentine (spt), 3 parts. Mix well.

Flaxen Grey Copal Varnish.-Ceruse, which forms the ground of the paste, mixed with a small quantity of Cologne earth, as much English red, or carminated lake, and a particle of Prussian blue; and color the varnish therewith.

Fistula and Poll Evil.-The simplest, as well as readiest cure for these two diseases, that ever came to my knowledge, is common table salt. My neighbor, Mr. Ramsburg, took a horse a few years ago, that had a fistula, and ofter every other, effort had been made to cure him, without the least effect, he threw into the u.cer a sandful of ' salt, and the good effect was soon perceptible. The salt was repeated every day or two, and in a short time a cure was perfected.

Last summer, I had a mare that had the poll. evil, and I cured her ulso with salt applied in the same way. I put however, a small bit of red precipitate in the wound, twice. Both animals are at this time well and serviceable.

Geonge Blessing.

> Freủerick Co. Mld., July, 1845.-All. Cult.

Muffins.-Take three pints of flour, one pint of lukewarm water, one teacupful of baker's yeast, one great spoonful of sugar, one tea-spoonful of salt. Make op in the morning for tea or at night for breakfast.

Substitute for White Lead.-Take one bushe! of unslacked lime, and slack it with cold water; when slacked add to it 20 lbs . of Spanish whiting, 17 lbs . of salt, and 12 lbs . of sugar. Strain this mixture thrcugh a wire sieve, and it will be fit for use,'after reducing with cold water. This is intended for the outside of buildings, or where it is exposed to the weather. Two coats should be laid on wood, and three on brick. A whitewash brush may be used for laying it on, and each coal must be dried before the next is applied. This may be made any color you please. For straw color, instead of the whiting use yellow ohcre; for lemon color, nchre and chrome yellow; for lead or slate color, lampblack; for blue, indigo; ar green, chrome green.

To Cure the Scours in Horses.-Dissolve a prece of opium as large as a common sized chestput in one pint of brandy, and pour it down from a bottle at one dose. I have given it, and ordered it in a number of cases and never knew it to fail to effect a final cure. Laudanum will answer the same purpose, if you can a scertain its atrength so as to know how much to give.
R. Burrit.

Prevention of Smut.-I have been soaking mg seed wheat in bluestone (sulphate of copper,) - 1 lb . to 2 bushels, water enough to cover, leaving it in soak for about 24 hours and then rolling it in ashes, and have found this method a full preventive against smut. With the same effect I bave tried for 5 bushels seed wheat, 1 lb . saltpetre, (nitrate potass,) 2 lbs. sulphate soda in crystale, (glauber salts,) 2 lbs of copperas, (sulphate of fron,) and I never had sunut in wheat when I used aither of these preparations. W. B.

Remedy for Ringbone.-Take half a pint of the best whate oil, and half a pound of best box raisins. Cut the raisins open and put them in the oil. Simmer both together (do not boilj till the raisins are hard nad crispy. Appiy the preparation to the ringbone once a day, rubbing it in well. It will last about two weeks, and one preparation will generally effect a cure. I tried this on a horse three years ago, that was quite lame; the bunch is still on his foot, but he has not been lame in the least degree since.

East Weare, Hillsboro Co. N. H.-Alb Cult.
To Destroy Ants.-" It so happened that a piece of camphor was laid in a drawer containing sugar, and which was sadly infested by ants. On opening it a few days afterwards, the bottom of the drawer was literally strewn with dead ants. The experiment was repeated with success-a small piece of camphor placed in a corner of the drawer being quite sufficient. Camphor dissolved in alcohol and diluted with water, might destroy them if sprinkled on trees or walls, or if poured into their nests."[John J. Godfrey, Albany, N. Y. March 3, 1842.
"Proteus" forgets where he met with the foregoing extract, neither has he tried it; but concluded from late numbers of the Chronicle that the destruction of ants is an object of interest to some of his fellow subscribers, he contributes his mite to their service.-Gard. Chron,

To Prevent the Creaking of Doors.-1. Apply a little soap to the hinges.

Take lard, soap, black lead, equal parts.

Black Copal Varnish.-Indigo, Prussian blue, blue verditer, or ultra marine. all these substances must be powdered fine.

To remove Crickets.-Put a litlle chloride of lime and powdered tobacco in their holes.

Jackson's Ilch Ointment.-Lard, sula phur vivum, palm oil, white hellebore, equal parts. Mix.

FARM OF JAMES GOWAN.
In the Farmer's Cabinet for Juue, is a copy of the report given by Mr. Gowen of his farm, to the Philadelphia Society for Promoting Agriculture. We should be pleased to copy the whole of the report, but want of room allows us to make anly the following summary and extracts.
'The farm is located near Philadelphia, and now contains about 100 acres, exclusive of woodland. Mr. G. took possession of it in 1834, at which time it is represented to have been in a very worn down and poor condition, from the neglect and bad management of previous owners. Mr. Gowell took away the old fences, made a uew division of the farm, and fenced with stonewall and hedges of the osage orange, drained and filled up ravines and gullies.
The lend is now brought into a high state of oultivation, producing 100 bushels of corn, 400 bushels potatoes, 30 bushels wheat, \&c., to the acre. He at first bought manure from the city, but after three or four years' experience, he gave ap the plan, and has since made enough on his own premises, excepting light dressing. To do this he has been obliged to increase his, stock of animals. "To maintain his stock," he says, " and bring̀ my land to a high state of cultivation, by the most efficient and economical practice, has been a leading object; and to accomplish this, required no ordinary management on such a farm. The stock in cattle has ranged for years, from forty to fifty head, in addition to the necessary horses, with a large stock of swine for breeding and lattening; and these I have fed from the produce of the farm, except the purchasing occasionally of some straw, and supplies of mill feed for the horses and swine, and some meadow hay for the cattle, selling frequently its equivalent in timothy. During the same period I have sold hundreds of bushels of rye, some wheat, and on an average, four hundred bushels of potatoes annually, with some three or four hundred bushels of carrots, besides providing for the family. But the chief income was derived from the cattle.

My expenditures during the whole period, could not be otherwise than large; as I could not put up so much stone fence, and picket fence, as encloses my farm without incurring a heavy outlay; but I view these improvements as cheap in t.e end. It may be safely inferred, that there is not at this day, any farm of the same extent. in this part of the country, that can so easily be worked, or will require so little expense for a series of years in keeping the fences in order, especially when the hedges are taken into account. I am also of opinion, that taking in view the condition of the soil, as to depth and richnes, as vell as its being entirely free of stones and other impediments, that I can make it produce as much as any. farm of its size in any part of the country, for a series of years, and at as small an expense.

The secret of keeping so large a stock on so Ottle land, consists in my practice of partial soiligg, and green crops, whereby I make some four
or five acres do the work of thirty acres, in the "slow and easy go way." From May to August, my cattle are confined to one or two fields, most commonly one, to which they are driven, more for exercise in the cooler parts of the day, than for pasture ; they being fed in the stables early in the morning, es noon, and at mght, with food cut for them from a lot adjoming the barn-yard. The food is generally of lucerne, orchard grass and clover, oats and corn. The patches from which the corn and oats s.re cut, are always sowed with turnips in August. No one can credit, unless he has had proper experience in the matter, the quantity of food that one acre of lucerne, one of rich orchard grass and clover, and one of oats and corn, afford from May till August, nor can he estimate the great saving in manure, much less the comparatively good health of the cattle, from not being exposed on the naked fields, under a fervid sun, toiling all day in search of food. This practice allows me to crop almost the whole of the land, and to make some 120 to 150 tons of hay annually. In the fall, from, August till November, the cattle have the whole range of the mowed lands, as I do not cut second crop grass for hay. Then for winter feed, I have always an acre of sugar beet, half an acre of sugar parsnips; half an acre or more of carrots; for my horses; and generally from three to four acres of turnips. I report to the committee on crops this, seasun, over 100 tons of these roots. In 1843, I gathered from one acre, 1078 bushels sugar beets, 60 lbs . to the bushel; carrots at the rate of 687 bushels; sugar parsnips, 868 bushels. This year 972 bushels sugar beets; 970 bushels carrots; 700 bushels sugar parsnip; and from three and a half acres, 2500 bushels of turnips, sowed with timothy seed.

The farm buildings consist of three substantial stone barns, one 70 feet by 33 , another 52 by 26 , and another hipt roof with cupola, 57 by 25 , besides a large over-shoot stable and hay house; stable higl of stone, 60 feet by 30 -the lower floors of all these are made of broken stone and lime, planked, bcing vermin proof. There are also, a corn crib capable of holding 1200 bushels of corn, one barrack, ample hog-pens, and sheds for carts and wagons. The barn buildings have been filled this fall to their utmost limit, except the corn crib.

A substantial stone wall encloses the princi ple manue heap; the drainings from this heap are led into a place of deposit, in which are received also a drain that runs under ground from the kitchen, as well as drainings from the pigpens, and the washings from all the yards. These drainings form an important item in the supply of manure to my land; it is a saving which I cannot estimate at less than \$200 a year. This liquid by a simple process is applied to the patches of roots, \&ce., and to this may be ascribed my great success in raising such crops.

Of Improved Cattle, my first , effort was with the celorated" Dairy Maid"" still owned by.me. Her first calf, Leander. by Whitaker's Prince of

Northumberland, was reared and kept by me, for breeding. Dairy Maid's calves alone, exclusive of Leander, have already sold for more than $\$ 500$. It would be curious to trace her profit at this day, by stating an account of her first cost, her keep, and that of her son Leander ; crediting her by salce of her own calves and grand calves; deducting for the portion of tho capital which was invested in the dams that produced the grand calves. To do this, would extend this paper to an unusual length-suffice it to say, that Dairy Maid has long since paid for herself, and that those who laugled at me for giving $\$ 540$ for one cow, may return this statement over in their minds, and thi ' 8 , whether sinee 1838 any investment of theirs, oo the same amount, in any other branch of husbandry, has paid so well.
But there is a satisfaction beyond that of the pocket, and that is, that Dairy Maid's breed will be of infinite services to the country. Her calves and grand calves, are pretty well seatered alrendy -and I make no doubt, But wherever found they will demonstrate the high character of the parent siock.

My sales for the last wo yars, esclusive of Dairy Maid's calves, amount to over $\$ 2000$. The stock now on hand $1 s$ about 40 head, principally Darhams. The butter sold for the last two years exceeds $\$ 750$; this is a respectable item, when the calves tha: were reared, and the supply for my family are taken anto uew. From early fail to spring, the butter averaged 70 lbs . per week-the quaity highy apyrecuted abroad, as well as at home.

In the hog line, I have been quite successinl, at least in bringing the anmal by jublecous crossug, to great perfection. I fated off my old Lincoln, and Berkebire Boars, and my Hampshre and Chester cotnty sows, last monat ; they wesgbed from 400 to 450 lbs , sold ior 850.24. Have sold the last two years of pigs, designed for breeding, $\$ 150$. Bacon, lard, \&c., over $\$ 120$, besides, having on hand 14 fine young barrowe, last fall's pigs, now ready for slaughter, wheh will weigh from 250 to 300 lbs . each, value $\$ 150$. The stock on hand consists of one fine bear of Lincoln, Hampshire, and Berkshire breed; one brood sow of Berkshire breed, 12 shoats and seven pigs. - Alll. Cult.

Improved Copal Tarnish-Caoutchouchine (white and sceutless), strongest alenhol, equal parts; copal in the proportion of two pounds to a gallon. Digest in close vessel, without heat, for one week.

Re? Comal Farnish.-1. Vermillion, red oxide of learl (minium), red ociure, or Prussian red, \&c., and proceed as before.
2. Dragon's blood, brick red, or Venenan red, \&c., and proceed as before.

Whute Copal Varnish. - Copal, 16 parts. Melt, and add linseed oil (hot), 8 parts; spirits of turpentine, 15 parts; finest white lead to color.
Impermeable Varnish.-Boiled oil, 100 parts; finely powdered litharge, 6 parts; genuine bees' wax, 5 parts. Boil until sufficiently stiff and stringy, then pour off the clear.

Parl Grey Copal Tarnish.-White and black ; white and blue: for example, ceruse and lamb-black ; ceruse and indigo: mix them with the varnish, according to the tint required.
Gurrant Wine (Fr ench Method)—Water, 30 gallons; honey, 2 gallons; red currants (bruised), 10 pounds; sugar, 15 pounds; red tartar, 2 ounces. Mix, and allow it to ferment, then rack it into a clean cask. If it docs not appear disposed to ferment, add a little yeast.

Ice Crean.-Any preserved fruit, 5 pounds ; cream, 1 gallon ; juico of six lemons, sugar to sweeten. Pass the whole through a sieve, then put it ino the freczing pot, and work it until frozen.
Low or Fever Diet.-Panada; gruel ; mill, thickened with arrow-root; plain bread pudding ; ariow root, salep, and tapioca jelhes; rice-milk, or chicken tea.
Drink for Incalids.-1.B arley water, acidulated with lemon juice; mills and water; lemon or orange whey; thin gruel ; bohea, baim, or mint tea.
2. Frech small beer ; porter ; port or claret wine with water: wak brandy and water.
3. Brisk cider and perry ; sherry, port or claret wine ; rum or brandy diluted with water.

Chelsea Peneroner's Remedy for Gout and Rheumatism -1. Gum guaiacum, 1 cunce; rhubarb (powder), 2 drachms; flowers of sulphur, 2 ounces; cream of tartar, 1 cunce; ginger porder, 1 ounce. Make them into an electuary with treacle Dcse-tiro tea-fpecnsful night and morning.
2 Poudered guaiacum, 1 part; pordered rhubarb, 2 parts; cream of tartar, 8 parts; flowers of sulphur 16 parts; nutmeg, 2 parts; hency, 130 parts Dese for rheumatism, sc, two largo spoonsful night and mcraing
Excellent China Ynk-Finest lamp-block, 75 parts ; thick mucilage, 15 parts; strcig jnk, pale new, 50 parts ; ox gail, 12 parts. Grind them well tegether, and if too act evaporate a little of the I water by a gentle heat; if too thick add more ink.

THE BRITISH AMERICAN CULTIVATOR, FOR 1846,
 Will be Published on the First Day of each Month, at Toronto, BY.EASTWOOD \& CO.

Paper Manufacturers, Stationers, and School Book Publishers, Yonge Strect, TO WHOM ALL ORDERS MUST BE ADDRESSED.

EASTWOOD \& Co. and Wr. G. EDMUNDSON, Proprietons. W. G. EDMUNDSON, Editor.

TERMS--ONE DOLLAR PER ANNU'M:

$\square 5$ Fum Copies for Three ; Eight for Five; Twelve for Seven; and Twenty for Ten Dollars. © \mathbb{E}
All Payments to be made invarially in alvance, and Free of Postage.
Vol. I. inew series) can be had Neatly Stitched, (in which form they may be sent through the Pust
Office) upon the same terms ; or neatly and substantially Bound at a Quarter Dollar each extra.
Vols. I. and II. (first series) can be had•at 1s. 3d. each, or neatly Bound together for One Dollar.

FOUR YEARS have now clapsed since the issue of the first number of the British American Cultivator, and the friends of Arriculture in British America have had by this time a gocd oppor" tunity to judge of its usefulness. The enterprise, up to a recent period, could be considered cnly in the light of an experiment, inasmuch as a great number of unsuccessfnl attempis have been snade to establish in these Provinces a Journal dercted to the great interest of Agriculture. By perse cerance and heavy sacrifice of capital, the Proprietors of the British American Cultivalor have now the pleasure to state, that the work is placed upen a sound footing, and that the Second Voluare, (new series) will be conducted with a greater amount of spirit and ability than were embedied in the entire four volumes which are before the public.

There are no less than four hundred thousand practical furmers in British North America, all of whom would be greatly benefitted in a pecuniary point of view, were they individually to subscrive for a talented practical work upon Agricuiture, adapted to the climate, ssil, and other intluenes of the country.

As an inducement for every friend of Agriculture to patronise such a Magazine, the Editor, who is practically engaged in extensive agricultural operations, purposes to devote a large share of his time in the editorial management of the British American Cultivator, by wh ch means he intends that it shall be made nearly an original work, compcsed of valuablc information upon every branch of husbandry that would be calculated to interest the inquirer after agricultural knowledge

The Cultivator for 1846 will differ materially from the preceding volimes, and the most promi-
nent improvements will consist of Reports of the Methods of Cultivation, as practiced by the best farmers in Canada, which will be coilected and prepared for the press by the Editor; cf a rich display of Costly Engravings, illustrating the most approved Agricultural Implements of modern invention: besides a great varicty of other improvements that could be better deecribed in this way than with the pen; and of a classification of articles, so that when practicable, cach may appear under their appropriate heading.

In addition to these new features of the Cultivator, a few pages in each number will be devoted to a department for the Ladies, or Farmers' Wives and Daughters, and an equal space to a department for the Boys; and to male the work generally acceptable to all classes of the rural population, two or three pages in each number will be devoted to Horticultural subjects, and an equal space to matter that will be particularly interesting to the Backwoodsmen.
The, friends of Agricultural Improvement will perceive that the fcregoing important pledges have been voluntary made by the Editor, in order to convince them that the great reform in Agriculture, which is so needful for the full development of the great resources of the Nerth American Provinces, is a progressive woris, and that he is fully determined to devote his whole energies in aiding his brother farmers, to elevate the standing of.Agriculture in these highly favored Colonies, so that it may favorably culipare with the best cultivated portions of the globe. The Editor further piedges himself that no trouble or effert shall be spared, to cultivate a taste for Agricultural Literature ameng all classes of the pepulation of British America.

TORONTO

NURSERY AND SEED GARDEN, ON THE KINGSTON ROAD, One and a half Miles from the Market-place. GEORGE LESLIE \& Co., Proprictors.
TIIIS Establis: sent is situated as above, and vas formerly carried on by GEO. LESLIE. The tract of land, twenty acres in extent, is admirably adapted to the purpose. Upwards of ten acres are already planted with Trces, ${ }^{\text {, Shrubs, \&c. }}$ and arrangements are being made with a view to render this the most extensive and useful establishment of the kind yet attempted in the province. They have on hand, and offer for sale, a superior collection of Pruti and Ornamental Trees, Flowering Shruls and Plants, Green-house Plunts, Bullous Flover Roots, Dalhias, \&c.
The collection of Fruit Trees comprises the most Yaluable and estecmed varieties adapted to our latitude, either grown here or in the well known Mount Hope Nurserics of Rochester, N. Y., with which this estab.ishment is connected.
The collection of Ornamental Trees, Shrubs, Roses, Herbaceous, Plants, Kcc. is quite extensive, and is offered at moderate prices. Public Grounds and other places requiring large quantities of Trees and Shrubs, will be laid out and planted by contract at low prices.

To persons at a distance we would recommend to procure their Fruit Trees in the Fall, more particularly where the soil is dry and warm: October and November, immediately after the cold weather has arrested vegctation, is estecmed the best season of all for transplanting Trees. When Trees are transplanted in Autumn, the earth becomes consolidated at their roots, and they are ready to vegetate with the first advancement of spring

All articles sent from the Nursery are carefully packed, for which a small charse, coverng expensos, will be made. Packages will be addressed and forwarded agreeably to the advice of persons ordering them, and in all cases at their rish.

A large supply of Fresh and Genuine Garden Field and Elower Seeda constantly on hand at their Seed Store and Nursery Depot on Yonge Street, between King Street and the Wharf. Such Seeds as can be grown to greater perfecticn here than in Europe, are raised in the Nursery Grounds, and wold wholesale, at low prices.

Orders by mail (post-paid) from any part of the country, if accompanied by a remittance or a satisfactory reference in the City of Toronto, will reccive prompt attention.

Priced Catalogues will be furnished gratis to all post-paid applications.

GEORGE LESLIE \& Co.
Toronto, Sept. 1845.

F
OR SALE the thorough Bred Durham Bull BRITAIN, also three TUPS, Leicester Breed, the property of the Hen. J. H. Dessi.

Apply to Mr. Miller on the Farm, Lake Road, near Toronto

Suptember 19th, 1845.

EASTWOOD \& Co.
Paper. Manufacturers, Stationers, School Book Publishers, \&c.
YONGE STREET, TORONTO, AND King Street, hamilton,

HAVE constantly on hand an assortment of all the Popular and Standard SCHOOL BOOKS in use throughout the Province, together with BLANK BOOKS of every description, WRITING PAPER of all kinds, PRINTING PAPER of any size required, WRAPPING PAPER, various sizes and qualities, STATIONRRY, \&c.

In additicn to the above they keep at their Establishment in Hamilton, a full and varied assortnem of FANCY STATIONERY.

Every description of RULING ard BINDING done to crder.
RAGS bought and taken in exchange.
$\left[\begin{array}{ll}\text { Country Merchants taking in RAGS, as well }\end{array}\right.$ as others, will find it to their interest to give us a call, as we can and will sell or exchange upicn az liberal terms as any Establishment in Canada.

Sept. 1845.

The British American Cultivator

```
(New Serigs,)
```

Is published on the First Day of every Month, at Toronto, by EASTWOOD \& Co., to whom all orders must be addressed.
$\left.\begin{array}{l}\text { W. G. EDMUNDSON, } \\ \text { EASTWOOD \& Co. }\end{array}\right\}$ proprielors.
W. G. EDMUNDSON, Editor.

Each number of the Cultivater contains 32 pages, and is subject to one halfpemny postage, when ditected to any Post Office in British America.
ddecrisements woillbe n nserted far One Doltar if not exceeding Tipelre lines, and in the sanm froportion, if exceeding that number.

Terms-One Dollar per year; Four copies for Three; Eight for Five; Twelve for Seven; and Twenty for Ten Dollars.
All payments to be made invariably inadranee, and free'of postage.

07 Editors of Provincial newspapers will oblige the Proprietors, by giving this advertisement a few insertions.

$$
\text { Toronto, Jan, I } 845 \text {. }
$$

> J. CLELAND, BOOK AND JOB PRINTER, KING STREET, TORONTO, Printing neatly executed on moderate terme.

