IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibllographically unlque. which may alter any of the Images in the reproduction, or which may signiflcantly change the usual method of filialng, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted froin filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été possible de se procurer. Les détails de cet oxemplaire qui sont peut-être uniques du polnt de vue bibliographique, qui peuvent modifier une Image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminatad/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages détachées
Showthrough/
Transparence
Quelity of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips, tissues. etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy fllmed here has been reproducsd thanks to the generosity of:

> Library of the Public Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeplng with the filming contract specificatlons.

Origlnal copies In printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or Illustrated Impresslon, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or Illustrated Impression, and ending on the last page with a printed or Illustrated Impression.

The last recorded frame on each microflche shall contaln the symbol \rightarrow imeaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applles.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included In one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La blbliothèque des Archives publiques du Canada

Les Images sulvantes ont été reprodultes avec le plus grand soln, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformitté avec les conditions du contrat de flimage.

Les exemplalres originaux dont la couverture en papier est imprimée sont filmés en commençant par le premler plat et en terminant soit par la dernìre page qul comporte une empreinte d'impression ou d'llustration, soit par le second plat, selon le cas. Tous les autres exemplaires orlginaux sont filmés en commençant par la premlère page qui comporte une empreinte d'impression ou d'lllustration et en terminant par la dernidre page qui comporte une telle emprelnte.

Un des symboles suivants apparaîtra sur la dernière Image de chaque microflche, selon le cas: le symbole \rightarrow signifle "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, Il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessalre. Les diagrammes suivants illustrent la méthode.

arrata

Lovollv, Sorles of School Hookr.

TIFTH BOOK

 0THNAN

FOR THE USE OF SCHOOLS.

Authorized by the Council of Public Instruction for Opper Canadas

PRINTED AND PUBLISHED BY JOHN LOTHLL AND sOLD BY ROBYBr MILLIE.

\%

ADAM MLLER; 82 KING STRNET, RAET. 1864.

Ma mind

PREFACE.

This Fifte Book or Leasons has been compiled as a portion of the plan of progressive Lessons, partially developed in the preceding Books. Its object is to ourxy forward the Instruction of the more advanced Pupils, into subjectis which had been but brielly noticed, or altogether omitted in the former Nambers of the Series.

39207

CONTENTS

CONHENT
19ral.............. $-\frac{1}{2}$
(in 291
PHYSIOAL GEOGRAPHY AND GEOLOGY.
Rotundity of the Earth Pag
General View of the Globe 3
Mountains 6
The Ocean 9
Springs-Rivero-Lales 13
Chianges in the suxface of the Marth 17
Thie Atmosphore 22
The Winds 25
Aqueous...Vapour-Cloude aual Minth Raing Dowh Snow, Hail 28
On the Doluge 32
Mineral Kingdom, No. 1-Minese in Giscat Brithin 35

- No. 2. 39
No. 3 42
+ No. 4 47
-

53
53
No. 6 59

+ No. 7-Organio Romaina. 6267
+ No 9 72
No. 10 75

HISTORT.

Page
Histozt and Caronoloay 88
Arainy Hiscozy. - Tint Era. 87

- Second Era 88
Third Era 89
Fourth Era 90
Fifth Era 92
Sixth Era 86
Seventh Tra 104
Eighth Era 135
Modern History 166
First Era after Ohrist 168
Second Ira 185
Third Era 193
Fourth Era 197
Fifth Era 201
Sixth Era 206
PHYSIOLOGY, VEGETABLE AND ANIMAL.
Veaetabie Peyyiology, Introduction to 212
Roots 216
Stems 219
Functions of Leaves 222
The Sap 225
The Flower. 228
The Seed 230
Arimal Peysiology.-Animal Life 232
The Integaments 234
The Bones 236
Marks of design in the Human Body. 238
The Muscles 241
The Teeth 244
The Digestion. 248
The Elemart 251
Reppization. 265

NATURAL PELLOSOREY.

Tatoral Peilosopit, Introduction to Enco
General Properties of Bodien. 261 263
Laws of Motion and the Oentre of Gravity 268
The Meahanioal Poweze. 274
s 289
Astronony.-The Farth' Annual Motion
203
203
Planets
Planets
297
297
The Terrestrial Globe 300
The Seasons 303
The Moon and Eolipees. 306
The Tiden 308
Eirdzostartos.-Meohanical Properties of Fluids 311
30. Specific Gravity 315
Springs, Fountains, \$o. 318
Pneviatics.-Mechanical Properties of Air. 322
Optics
328
Refraction and Colours 338
Structure of the Eye. 347 4Hherreiolity
352
Galvanism 354
Magnetim, \&o. 360
Oaloric. 362
3
Cermisirt. - Introduction to 364
Chemical Affinity 366
Eimple Bodies. 368
Simple Bodies, continued. 369
Oarhom 370
212
216219222225
228230

TOMTOAL Pheme

Pege
 874
 375
Bnom..., 376
Thrmanores.o
 877
Procrastination Foung 879
Tasto Akenside 380
Detachod Picout Shakespeare... 381
On Millorta Blindtress - Elto 385
Captain Bobaill's method of derexting
Berv Jonodn. 386
 387
lieport of an - Adjudged - Oceoj not to be . found in any. of the Booke 389
The Demerted Wife 390
Gertrude of W.yoming........................... Campbenf. 391
Lines written in a severo Frost and strong Flaze on Surday' Moming :........ Anonymous.. 393
On the Efflects of Time and Cnatige......... Beattio. 394
Mutual Forbearance necemsery to the Happiness of the Married State i...i...... Onoper .nyo.o 305
The Conviet Ship T. K. Hervey 396
Christian Benevolence Wrloox 398
The Last Minstrel Scoth 399
The Moral Change anticipated by FHope .. Campooth. 400
The Strow Flake Goilid. 401
To a Waterfowl Bryant. 403
The Blind Mother Anon.w.w.w. 404
Song for May Day Anomis.o.....6. 405
The Silent Glen H. Nele...... 406
Who is my Noighbour Anon. 407

FIFTH BOOK.

4 Gmas varioty of appearances, both on the nurficel of the oarth, and in the heavene, prove conclusively, thas the earth is a spicerical or cound body.-1. When We ctand on the sea-shore, while the sea is perfectly calp, We perceive that the surface of the water is not quite plane, but convex or rounded; and if we are on the ride of an arm of the set, and, with our eyes near the watert, look towards the opposite coast, we plainly ees the watar clovated between our eyes and the shore, so as to prevent our seoing the land near the edge of the whatern. When an object is seen at a distince upap the suriface of the cinth, a part of its base is hid

PITTE B00K.

from the view. As the distance is lessened, a greator portion of the object beoomes visible, and, when brought sufficiently near, the whole of it is seen. If, on the other hand, the distance is increased, the visible part of the body is continually diminished, and at last the object entirely disappears. Every person who has paid the slightest attention to the manner in which mountains, towers, and ships begin to appear and disappear, must be familiar with these facts.-3. Magellan, Drake, Anson, and other navigators, by holding an easterly or .westerly course, at last arrived at the point of their departure. They thus sailed upon a line, whish, in one revolution, returned into itself, ending where it began; and, therefore, the surface on which it was

In
once
surro
sea 01
exten
The
globe, the highest mountains on its surface being little more than the tro-thousandth past of its diameter. Some of the mountains on the surface of the moon are higher than those on the earth, and yet that body appears, both to the naked eye, and through a telesoope, of a spherical figure. Equally futile is the objection, which has been improperly and ignorantly drawn from the expressions occasionally to be met with in the Bible. The object of the inspired writers who used these expressions, was not to advance a true system of natural philosophy, or to correct the popular errers of the ciay, in matters of mere science, but to illustrate or enforce some precept or doctrine, or to record the occurrence of some remarkable event, whioh could not have been done intelligibly but by adopting expressions in agreement with the opinions of the age.

On the knowledge of the spherical figure of the earth, the art of navigation in a great measure depends; anc all the voyages of discovery, which have been made in later years, were undertaken in consequence of the knowledge of this fact. Had mankind remained unacquainted with this disoovery, the circumnavigation of the globe would never have been attempted-vast portions of the world would have remained unknown and unexplored-no regular intercourse would have been maintained between the various tribes of the human race-and, consequently, the blessings of Divine Revelation could never have been communicated to the greater part of the Gentile world.

GENERAL VIEW OF THE GLOBE.

In looking over a map of the world, it is seen at once that the surface consists of various spaces of land, surrounded by an extensive field of water called the sea or ocean. Of these spaces of land, two are of vasit extent, and on this account are termed continents. The slarger of thewe continents inoludes the three
divisions of Europe, Asia, and Africa, and is dicu tinguished by the title of the Old World, from ite having, till the discovery of America by Columbus, in the year 1492; been the only part of the globenwith the existence of which Europeans were acquainted. The other; which includes North and South America; is named the New World.

The general direction of the land in the two oontinents is entirely different. In America, it is from pole to pole: in the Old World, it is from south-west to north-east; and if we keep Africa out of view, it is almost parallel to the equator. The longest atraight line that can be drawn on the old continent commences on the western coast of Africa, from about Cape Verd, and extends to Behring's Strait in the northeeast of Asia. It is about 11,000 miles in length. A similar line, traced along the new continent, passes from the strait of Terra del Fuego to the northern shore of North America, and is nearly 9,000 miles long. In both continents the direction of the large peninsulas is similar, almost all of them running towards the south. This is the case with South America, California, Florida, Alaska, and Greenland in the New World; and, in the Old, writh Scandinavia, Spain, Italy; Greece, Africa, Arabia, Hindostan, Malaya, Cambodia, Corea, and Kamtschatka. The only exceptions to this remark are the peninsula of Yucatan in Mexico, and that of Jutland in the north-went of Europer Both of these are directed towards the north; but they consist of plains and alluvial land, whereas the other peninsulas are more or less of a mountainous character. There is a farther resemblance between the two continents, from each being divided into two parts by an isthmus. But in the character of their outlines they differ very much; for while the coast of the Old World (excepting Africa) is broken equally on all sides by gulfs, bays, and inland seas, the New. World has a series of openings on its eastern shore only. On its western side, the only inlet of any magnitude is the gulf of California.

Besides the two continents, many extensive portions of land are disporned through the oeoan, partiotularly
the immence regions of Now Holland, whioh oocupy a space nearly as large the whole of Europe. There ane also the islands of New Guinea Borneo, Madagascar, Sumatra, Japan, Great Britain, Nev Zealand, Ceylon, Iceland, Cuba, Java, and thousands of others, of different dimetuions scattered through the Pacific, the Indian, and the Atlantic Oceans, and whieh form a very considerable portion of the habitable regions of the globe.

The ocean surrounds the earth on all sides, and penetrates into the interior parts of many countries; sometimes by large openings, and frequently by small straits. Though it is striotly speaking, but one immense body of water, extending in various directions, yet different names have been appropriated to different portions of it. The Pacific Ocean, divided by the equator into North and South, is inclosed between Americt on the east, and New Holland, the islands of Java and Sumatra, and the continent of Asia, on the west on the north, it terminates at Behring's Strait. The neas of China, Japan, Okhotsk, \&c. form parts of this ocean. The Indian Ocean lies between Africa on the west, and the peninsula of Malaya, with the islands of Sumatra, Java, \&c. and New Holland, on the east, and is bounded by Persia and Hindostan on the north. The Red Sea or Arabian Gulf, the Persian Gulf, and the Bay of Bengal, are all parts of this ocean. The Southern or Antarctic Ocean is bounded on the north by a line drawn from Cape Horn to the Cape of Good Hope, thence to Van Diemen's Land, and again by the south of New Zealand to Cape Horn. These three oceans form what may be callew the great South-Eastern Basin, the waters of which cover nearly half the globe. The Atlantio Ooean commences, in the south, from a line drawn from Cape Horn to the Cape of Good Hope, and is terminated on the north by the Arctic Circle: It is divided into North and South by the equator, and its branches are the Mediterranean, the North Sea or German Ocean, the Baltio, Baffin's Bay, Hudson's Bay, the Gulf of: Mexico, and the Orribbean Sea. Tha Aretic or Northern Ocean surrounde the Noxth

Pole, and is bounded, on the south, by the tudtio Circle, and the northern thores of the two continentil The Atlantio and Arctic Oceans may be callod ctio. Western Bexin, which forms a channel betreen tho Od and New Worlds.

The Ocean, which is thus subdivided, is sprend ovor nearly eoven-tenths of the globe; but it is remerkablo how unequally the land and water: are distributed it \#e compare the northern and southern hemiopherw, that is, the two equal parts into which the globe is divided by the equator, we shall find that, if the quatitity of land in the northern hemisphere be represented by 16 , the quantity in the eepthern will be boarooly equal to 5. Buffon and some other philosophezs, therefore, asserted that a great continent must exist towapds the south pole, in order to counterbalange the mass of land in the northern hemisphere; but the high southern latitudes have as yet been found to contain only a for ialands. This fact, however, does not prove that thote is a less mass or weight of land in the cuthern that in the northern hemisphere; for it is possible that the land may be only rather depressed in the couth, rund

MOUNTAINS.

Mountains are distributed in various forms and nizes through every region of the globa, and serve as a sort of connecting band to the other portions of the earth?s surface. The largest mountains a generally arranged in immense chaing, which extond, in nearly the same direction, for several hundreds, and even thousands of miles. The highest in the world are the Himalayas, in the north of Beagal, on the borders of Tibet. The loftient mountain in this range is stated to be about 27,000 feet, or a little more than five miles in perpondicular height, and is visible at the distance of 230 milae Next to the Himalayas, airs the Autuen it South Ameriba, which extend more than 4,000 mile
is 1
Me
Chis
fow
mou
Swit
whio
whic
ridg
Cunc
Japa
Mow
In
and

- wo
with
then
Troin
cont
rang.
agnin
weate
Hind
appro
tinuii
Felix
Good
the v follon which with Asis, India these
gener Ocean ${ }^{\circ} \mathrm{Bu}$ surfiog mount सेगेपैं partio

In longth, frese the provitice of Quito to the staits of Megolinn the highest summit of the Ander is Ohimberte, which is maid to be 20,600 feet, or nearly fove milem, above the level of the wea. The highest monitains in Turope are the Alps, which run through Sivitremland and the north of Italy; the Pyrenees, which eqparate Praico from Spain; and the Dofrafeld, which divide Norway from Sweden. The most elevatod. ridgen in Asia, ate the Himalaya, Taurus, Imaus, Cencomen, Ararat, with the Uralian, Altaian, and Japanese mountains; in Africa, Mount Atlas, and the Momitains of the Moon.

In order to obtain a conneoted view of the loftiest and most extensive oystem of mountains upon the globe, - we muist uppose ourselvea pleced in New Holland, With our fioe turned towards the north; America will then be on the zight, Asia and Δ frice on the left. From Oupt Eorn to Behring's Strait, along the westera compt of America, there is an almost uninterrapted range of the highest mountains. From Behring's Strait agith succeeds an enormous line pawsing in a southWeaterly direction through Asia, leaving China and Hindostan to the south, momewhat interrupted as it approaches Africa, but still to be looked upon as cottinuing its course in the mountains of Persia and Arabia Felix. From Cape Guardafui in Africa to the Cape of Good Hope, there appears to be a chain which completes the view. The series of mountains which we have thus followred, is in the form of an immense irregular curve, which comprisen within it the Pacific and Indian Oceans, with their innumerable islands, besides a portion of Asis, including China, the Birman dominions, and the Indian peninsula. It presents a steep face towards these soceang; while, on the other aide, the land very gonerally lopes towards the Atlantio and Aretic Oceans.
iBut, though the mont considerable elevations of the surfeo of the eapht are thuis formed itto chains, nome momitains are orspetoly insulatody that is, are quite
 partionlarly of thin Eind. The torm volanno is derived

from Viulaen, the mane which the Bompan meve their inaginary gor of fire, and is qgoliod of oh gountaipg whioh eond forth, from their anmerito or

 monntaip of this hind; there if found to boinn immano and deep hollow, whioh is dopomineted thes ortery or oup. Fiom mont of the nalcmon thich eromet outitet there is a smoke more or legs freguently arining; by the eruptions, which are disghangeq, of atonce whe, Leva, \&o, recompanied with lofty ionlamins of fin? violent explosions, and concussion of the math, mpin at irfegular and pomptimes very long intortalant It seems to be gery general rule that the greatar the mape and the eleration of the mountain, the lese froquont and more tromendpual are the eruptions. Stromboli, the small volqapy on one of the Lipari islands, it almogt al way hurning; Vemvius has more fioguen otuptoce than Hins; while the immense dummit of tha ATh Cotopaxi and Tunguraban, have an ertiption herde proe in a centrury. The rolcanon of Amecice becios the cominon Isva and racka, ©ois, past out acorifod oley, carbony aulphwr and Whter, aoomphniad, in aow instameen, by'fiches. The mouncrin of Macalibe in Sipily, rome hills name, tho tarin of Zatan indtia Qrimes, and a folcina whioh is sitnated toitarde the middle of the islind of Jtva, in plaik abongding vith sodt mpringer aend forth oraptions of mud.

It in temankahle thats in the Old Gontinent, the plitio cipal olaine of morintaing contain no tolomen, and that ielpuds and the extiemities of peninglas ate alome the pente of thete convituions; while in the zot World; the immense range which runs slong the ahote of the Proifia Deean, persesmer more volonnos thin are to be met with in the whole of the Old Continent and its adjacent islands. No voloano has jet beon difrouserea on the contivent of Afries, but yost or its gronpe of ialonds are distingtuiahad by them 41 Mro dimph mound this geatl Pajifid Odean, wa us to ihcheto tive joer range of monntaing on the wat of A mives

of Getenter ted Jove, whil havo within is by for the
 Wobe. Hom Terte del Fago (ine tavid of fire) to the penimbela of Alaika, a complete 'reities of volonuos Hiay bo tricod. Thie Aleutian itatands, which atietch froin that peninistia to the opposte poninethe of Kitmt-
 come of great violenise. The iflands of Jiaphen and Formion eive zeveral; and, Deginning whth Joumatim

 tue Lroilo Odean. In the Thaian Otein, the ishavids

 Meditorniteat, wre tata to Eioify, and Vestivivis neat the odart of Napted. Between thiese thro motintains ab lhe Mifari thlatit, gall of vortanie dhataoter. Tre

 and bome of the West Inaia llaindis, Miso oxperienió
 of the thind which tre titefed by tio waters of the
 haypened that itiem lislinds have been pormed luring
 marks of having, wet sorie very distant periba, been the ottiets of fires, "era, on this Woount, they' are callea extinct volcanos. Altogether about 205 voloanos aro known, troflding only thioed whioh have been tetive vithin a póriod to whioh histowy br Gradition reaches.

Ig the ahore lonnos thin Id Continent us yet beon - ast of its n. 41 lno 3 to indario of A mider the thent nt, the pititilounon, mand las ate alowe tho ky \therefore En $i \therefore x^{3} y+1$
condoneod and dippormed through the upper mifoats form oloude, which are the Bource of a contitant mpphly if tun and moisture to the land. The ocean'; aleo, by the thailities for communiontion whioh it offor, in the means of uniting the most distant nations, while it onables them to interchange, with mutual ndraitngos the productions of their several olimates.

The bottom of the see appeans to have inequalition similar to thiose on the surfice of the continenter; the depth of the water is therefore extremely variona. There are vast spaces where no bottom has been foced; but this does not prove that the sen is bottomlese bo canse the line is able to reach to but a comparativoly small depth. If we were to found our opinion apoos analogs, Te might conclade that the greateat depth of the ocean is, at least, equal to the height of the loftient mountains, that is , between 20,000 and 80,000 foek Along the coast, its depth has alwaya boon found proportioned to the height of the shore. When the conct is high and mountainous, the see that waihen it is deppy but when the oosst is low, the water is shallow. If we reckon its average depth at two miles, the ocome wilt contain 206 millions of oubical miles of watern. We shall have a more apecific idee of this enormous mam of water, if we consider that it is muffioient to cover the whole glabe to the height of more than eight hoomand feet; and if this water were reducod to one epherical mass, it would form globe of more than 800 miles in diameter.
The general colour of the sea is a deep bluish green, whici becomes olearer towards the coasts. Thir colous is thought, by some, to arise from the same cause an the asure of the sky; it is probable that the former is/due to the rays of blue light being reflected in the greatest quantity from the water, and the latter to their being roflooted in the greatest quantity from the particles of the air. The other colours exhibited in parts of the zea, dopend on causes which are local, and sometimes docopt tiva The, Mediterranean in ite upper part is anid to have at timees a purple tint. In the gulf of Guined the aen is white; around the Maldive inlande it is blatk;
and i
The 0 nymbe soll, the proges tables I2h stancee compo mointy salty; with 1 salting obtaine $\mathrm{itaz}_{\mathrm{z}} \mathrm{Tl}$ expopti the trc rempor effeet is noreiab rivense soemb, Soes ite 1sooses prings n the springs distanc bcour n nothe Vatious saltness beds of he sea icles f Whiah heareti Wi the nility caild 1
and in an tome planes. it has beem ebperved to bo rede These appearancees laro probably ocomioned by vat numben of minute marine inssecte, by the nature of the soil, ori by the infusion of oertain earthy substanoos in the whitar. The groen and yellow shedes of the sen progendi frequentty from the existence of marine vegotables at or near the surface.
The whter of the sear contains weveral extraneous substances, in proportions varying in different places: Tho component parte, in addition to pure water, aro oommonty foulphate of sode; chloride of sodium (common: salty, ablorides of caloium, magnesium, and potassium; With ceme organic matter. Common salt, which for salting meat is preferred to the salt of springs, is obtained by boiling the sea water aso to evaporate iti,y The ellness of the sea appears, with some local expopitions, to be less towards the poles than near the tropios; and, in particular pleoes, it varies from remporaxy causes. The violent tropical rains have an offeat in diminishing it, especially near coasts, where an ncereised, yolume of fresh water is brought down by the ritenses The Baltio is at all times lese salt than the ooent, and when a atrong east wind keeps out the North Sen, its waters are said to become almost fit for domestio nsege The most curious phenomenon of all, is that of priggs of fresh water rising up in the midst of the sea. In the bay of Xagua, on the southern coast of Cuba, springs of this hind gash up with great force at the fistance of two or three miles from the land; and otherts ocour near, Goi, on the western coast of Hindoatan, and n the Meditermanean Sea, not far from Marseillesi Various theories have been advanced to account for the valiness of the ocean. Some assert the existence of vast beds of salt at its bottom. Others have supposed that he sea may have originally received all its saline paniolesi from those existing on the surface of the earth, Thich were dissolved and carrisd down to the ocean by henction of the rivers. The most probable solution C the matter is, that it is an essential and absolute nility impressed upon it from the creation of the could by the Great Author of nature. Its presence,
luish green, This colous sause as the ormer is/due the greatest their boing ticles of the of the reen, imes decep t is mint to Guine the it is black;
united to the motion of tho thea and waveg potherve:
 time given it a spocifo gravity whioh emablet ft mive ontily to flous the large bodiss whioh move in it, or teplese ite surface. The bittornces which axisty in woithatiry, but apparently not boyoud a cortail dopth, is whthe much probability considered to bo owing partly to thet vogetable and animial matter held thete in a state of abcomposition; and partly to some of the calts it containu? From the former cause some acoount for the 'Jumitions appearance which the sen ofter prevents at nighty pitive onlarly in tummer and autumn, while others asoribe it to eleetricity, or to innumurable mintute animals movings. rapidy through the water in all direotions.

Water being a bed conductor of heat, the tomperatuve of the sea changes much less suddenly than thiat of the atmosphere, and is by to mears subjeot to stech ore tremes as the latter. It is also modified by currentig, which mingle together the waters of difierent depths? and regions, and by the neighbourhood of shallows and banks. Thus bays, inland seas, ard the spoces amorig clucters of islands, where the action of the wavte is mpre oonfined, and the water usually of lese depth than at a distanse from land, are the most lavourable plades for the production and acoumulation of marine ise. It is on this account that the ravigation of the Baltise ing annually stopped by the ioe in latitude not mote northerly than that of tracts which in the main ocean, are always open to the passage of ships. In like menner, ice extends from five to eight degrees fariher from the south than from the north pole, owing, it is probable, to the almost entire absence of land near the Antarctic Cirole; while the north pole is so nearly surrounded by land; that the ice of the Arctic Ocean is shut up, and cannot be carried forward to such a distance by the current, which sets towards the equator.

The ocean has three kinds of motion. The first is that undulation which is produced by the wind, and
 motion is that continual tendency which the whole water in the sees hiti towards the west, which in groutur
nan 1 the m watarn and great 4арре impeatr inta. oomats of the guddan Wente the di in a di thind ooving 0 pa reflue. here ntiped The ath and di (ull m when happeni H2,

$4 x^{4} z^{\prime \prime} \frac{1}{2}$

The
rom b
qe exe hey ar
reter now, neven Y in

 tha maninide of A mocrion, when it is modemta; bat as the matan admance westimed, thoir motion is acoelerated; and afiot having traverued tho globo, they wrike with great violonos on the entern shom of Amorion. Being chopped by that continenty they rush, in the form of an impeatuon ourrent called hy navigatons the Gulfstream, into the Gulf of Maxico, and thence proceed along the oomet of North Amorice, till thoy coma to the south wide of the great hank of Newfoundlandy. When they turn guddanly off and run down through the Axoses, or Wentorn Isles. This motion is mosi probably oving to the diumal revalution of the earth on its axis, which is in a direction contrayy to the current of the sean. The thind motion is the tide, which is a regular swell of the oonen overy 123 hours: This motion is now ascertained to be oring to the attractive infuence of the moon'; and
partly to that of the sun. There in alwayna a flux and refluic at the mane: time, in tro parte of the globe, and theen apo opposite to eech other; so that when our rotipeden have high water, we have the same. When the attometive powers of the sun and moon act in the ome dirpotion, whioh happens at the time of nem and all moon, we have the higheat or spring tides; but Then their attroction is opposed to each other, whiob; happens at the quarterns wo have the lomest or neap iden.

SPRINGQ-RIVDRS-LAKES.

The origin of the pumerone apring that break forth tpe benenth the carth's surface cannot bo referred to ne ezclnaiva carue. Tha internal nesertoirs by which hey are aypplied are, in many oapoc, derived from the rater whioh the earth aboorba frem rain and melted now, and from these remerveirig wherever thera is neven or morintainon ground, the water flowe ont I minnte figmen in the aiden of the hillt But when - von mering rising op in pleing it is evident that an man buver amomad, thet in, trardled, in a diren

14

tion contrary to that produced by the forco of getivity, in order to reach the surfaco. This, no doubty in mire. timee "to "be" attributed" to water flowing nuider gtound from distant elevations, and to the natural tendemoy of: aliquid to find its lovel. But some permangatelisive that the rising up of springs in plains caninot alwaye be accounted for in this manner; and have, thereftorey dovised other modes of explanation:cit Spriugs which suffior no diminution even from the longest continued dry weather, would appear to be derived from wource quite independent of rains and other extornal meins of supply. They hate been attributed to somer whist body of water within the earth y and it ham been concluded, though without sufficient reason, that masy spring arise from the ocean, filtering through the pores of the earth, the salt partieles being lowisin the passage. Springs, whick have their watema combined with mineral substanioes, and are, from that coircum. stance, called mineral, are very numerous and of various kinds. Warm and hot aprings are calso common, especially in volcanic countries, where they jurespometimes distinguished by violent ebullitions. IIceland is noted for these curious phenomena's its celebrited boiling fountain, the great Geysex, frequently throws out its contents to the height of more than handrod feet: sometimes to twice that olevation. Ne stodiv ati gemp
Rivers are to be traced to springs, or to the gradual meltings of the ice and snow, which perpetually cover -the summits of all the most elevated ranges of moin. tains upon the globe. The union of various apringut on of these meltings, forms rivalets; these last follow the declivity of the ground, and comraonly fall, to different stages into one great channel, cuid rivergwhich at last discharges its waters intr a. se oradowe great inland lake. The declivities atong whioh descondithe Various streams that flow into one particulayinvepcare called its basin; a term, therefore, which -maluden the whole extent of conntry from which the waternd ithe
 spings, we find that most rivers, more enpevially thoso of the ant dati, eommonoe from a chain of motutuins: o somerivist t have been 1, that mavy through the lowish in the nec combiried that ccircuhn. outs andicof abo cominon, y traxeraque-
Iceland is lebrated boilhrows out its mindred feet: at rexoin 0 the gradual etually cover ges of motinis springut or ut follow the 1, ato different ver, whick at pracie great Idescondithe ala Miniverare fincludes the watens of the if ahoorid in pecially those f moturucins:
cach side of a ohain alvo hav ite apringy, and the rivary which ariginate on one side fow in the opponite direotion to thoo which riee on the other. As it is the property of water to follow the most rapid dewcent that comes in its why, the coursen of streams naturally point out the traions deolivities of the earth's aurfico, and tho line, from whioh lavge rivers low in contrary direations will govierally mark out the moat elevated iparts of the earth. When rivess proceed through a mountainous and rugged country, they frequently fall over precipioes and form eatariots, in come canes several hundred feet in depth. The mont celebrated falls in the world are those of LViagars, in North Americu. In the tropisal regions, mont of the rivers are subject to periodical overfowings of their banky, in consequence of the rains which ennually fall in moch abundance in thees countries during the wot menson. The overfiow of the Nile was considered by the ancients, whe were ignorant of its cause, as one of the grealent myeteries in nature, because in Figypt, where the overflow taken pleoe, no rain ever falls. Hte epparent myatory is ensily explained from the oircumatande of tho rains desoending and the gnow malting updia the mountaing in the interior of Africa where the Nile ciean. The consequent acoumulation of the waters among the high grounds gradually oriells the river along its whole extent, and in about two months from the commencement of the rains, occasions those yearly inundations, without which Egypt would be a desert Mivers, in their junction with the ees, present sereral appearances worthy of notice. The opposition whioh takei plece between the tide and their own currents occaions, in many instances, the collection at their mouths of banks of cand or mud, called bars, on account of the obatruction which they offer to navigation. Some otreame rush vith guch force into the sea, that it is pomible to distinguish for a considerable distance their witari from thome of the ses. Many of the largest rifors, the 8t Lamrence and the Rio de la Plate, mingle with the peean by mpand of a fincle onelet, while other, as the Nile, the Ganges, tho Volgt, the Rhine, and the Orinon, before their twmination, divido into
ceyeral branohes. In tome of the mandy plaing of:t the torrid sones the rivern divide into brapcher, and finn the nature of the soil and the heat of the climater at ahsarbed and evaporated; and, thas neyer regch the mana,

Lakes may he classed into four distinct kinds. Th first class inoludes those which have no outilet, and which do not reoeive sny kunning wator. Thoy ap usually very small; and some appear to be tho onaters of extinct volcanos. The second class ave thase whiol have an outlet, but which receive no running vater, They have been formed by aprings flowing into aome large hollow: upon the water cising up to the top of the hollow, it would, of course, run over the lowast part of the edge, and thus find an outlet; and these autlets are in some cases, the beginning of vary large riverm The third class; which empraces all thoge which both receive end discharge streams of whter, is mugh more numeroua thap any. Though they are the reaptacles of many streams from the neighbouring countrys they uatally have each but one outlet, which oftenjtike its name from the principal river that rups into thei lake. The largent lakes of this class axis the immenme budies of watarin North America between Capada and the United Stamens Thore are fixe (Superior, Michigan, Huron, Erio, and Ontario), almost all like seas in extent, connectod: together, and having their purity maintained hy means. of the contincal flow of whter which is kept up from one to another. Their final antlet ta the Atlantic; Ooesn. is the great river St Lamrence, Lake Baikal in Asiatic Rossia, is alsa remarkable forits siza; it sencla forth a large stream whieh joins the Yenisei. The fourth: class of lakes comprise a very mall number, but they: axe the most singular of all in their ohatacters They: are those which receive simams of Natex, and often great rivers but haveno visille, outdets, The most celen. brated are the Oaspian Sea; Luke Aral, and the Desdi Saa, all situated in the west of Alsia. The Caspian ia between 600 and 700 miles lonfe and, in one part, ben
 very large vivern, the chiof of which are theivolge, thes Urat or Xaik, anditho: Kur Lako Axil is muoh amaller:
the and the hod ting heel peri Dea salt and, from the eharaoter of the isthmus which separates them," it is supposed that thay formerly composed one body of water: They are both salt lakes, and are dis tinguished by marine productions; from whiok it has heen conjeotured that they must, at a very remote period, have been connected with the Blaok Sea. The Doad Sea is still smaller than the Lake Aral, it is also salt and exceedingly bitter.

Library of Useful Knowoledge.

CHANGES IN THE SURFAOE OF THE EARTH.

From the quiet and rogular succession of natural events to which we are accustomed, and the repugnance we feel to the idea that it is possible for the course of nature to auffer internuption, we might, without dua investigation; alinost persuade ourselves that the phyrecal features and condition of the globe possess an unchangeable character. So far, however; is this from being the caso, that there is no country wherein traces are int discoverable of the violent revolotions of whiohi the earth was formenly the theatre: and even yet it is experiencing changes of a very peroeptible kind: Of the several agents which contribute to these changes water has the widest sphere of activity. Streams whiok descend along the flanks of elevated grounds: carry along with them some portion of the materials of their respective slopes, eapecially when swelled into violerce by rains or the melting of snows; and such as come from mountains sweep down with them even some of the fragments of rock that have beon colleeted in the high valleys. In proportion, however, as these streams reaioh the saore level country, and their channels become more expanded, thay daposit tia fragmentio and stones, till ail lant their waters convey along only partieles of mud of tho minutant kind. If, therofore, thone waiow do not
run too rapidly into the sea, or the particles in question do not previously settle in some lake through which the rivers pass, the mud is deposited on the sides of their mouths, forming low grounds, by which the shores are prolonged and encroach upon the sea; and when the waves, by casting up sand upon them, assist in their increase, whole provinces are created, capable, from their rich soil, of yielding, in the highest degree, to the support of man, and of being made the seats of wealth and civilization. It has been concluded, with reason, that the greater part of Lower Egypt owes its formation to the alluvial matter brought down by the Nilo, aided by the sand cast up by the sea. The Delta of the Rhone is undergoing a similar augmentation, and it would appear that the arms of that river have, in the course of 1800 years, become longer by three leagues; and that many places which were once situated on the brink of the sea, or of large pools, are now several miles distant from the water. In Holland and Italy, the Rhine and the Po, since they have been banked up by dykes, raise their beds and push forward their mouths into the sea with great rapidity. Such, indeed, has been the increase of new land formed by the latter, that the city of Adria, which there is no doubt was, at a very remote date, situated on the coast of the Adriatic, is now more than fifteen miles distant from the nearest part of it. At the same time, the river has, in consequence of embankments made to confine it, been so much raised in the level of its bottom that the surface of its waters is higher than the roofs of the houses in Ferrara; and the Adige and the Po are higher than the whole tract of country lying between them. The same cause produces the alterations perceived to be taking place in many of those lakes which are traversed by rivers. The matter brought down by the rivers easily settles in the still waters of the lakes, and the necessary result is, that the basins of the latter are gradually undergoing a diminution. Lake Erie, one of the vast bodies of water in North America, is every year beooming ghallower from the infins of pebbler and earth, and the constant acoumulation of reeds and aholla; and the diminution of the boantiful lake or

tin

th
be

f

mi

an

th
m

nu

va
Se
da
In

sh

S
th
${ }^{p l}$

${ }^{1}$

|y
st

r

in question 1 which the les of their shores are 1 when the st in their sable, from gree, to the of wealth reason, that ormation to 10 , aided by te Rhone is ould appear rse of 1800 that many of the sea, nt from the he Po , since their beds with great ase of new dria, which situated on fteen miles same time, Its made to its bottom he roofs of the Po are ig between ations perakes which t. down by the lakes, f the latter - Erie, one ca, is every of pebble reeds and al lake or

Geneva is also said to have been considerable within the memory of man.
Tea The formation of new islands constitutes another dis5 tinct 'and interesting class among the changes to which the surface of the globe is subject. Those which have been raised up by volcanic agency are comparatively few; but those of coral, which owe their origin to marine insects (of the class of zoöphytes or plant animats), are innumerable. Of the different coral tribes, the most abundant is that named the madarpore. It is most common in the tropical seas, and decreases in number and variety towards the poles; it surrounds, in vast rocks and reefs, many of the islands of the South Sea and Indian Ocean, and increases their size by its daily growth. The coasts of the islands of the West Indies, of those of the east of Africa, and the shores and shoals of the Red Sea, are encircled with rocks of coral. Several navigators have furnished us with accounts of the curious manner in which these formations take place; the following is extracted from Capt. Basil Hall's narrative of his voyage to the Loo-Choo islands:-
(7as " The examination of a coral reef, during the different stages of one tide, is particularly interesting. When the tide has left it for some time, it becomes dry, and appears to be a compact rock exceedingly hard and rugged; but as the tide rises, and the waves begin to wash over it, the coral-worms protrude themselves from holes which were before invisible. These animals are of a great variety of shapes and sizes, and in such prodigious numbers, that, in a short time, the whole surface of the rock appears to be alive and in motion. The most common of the worms at Loo-Choo is in the form of a star, with arms froni four to six inches long, which are moved about with a rapid motion, in all directions, probably to catch food. Others are so sluggish, that they may be mistaken for pieces of the rock, and are generally of a dark colour, and from four to five inches long, and two to three round. When the coral is broken, about high-water, it is a solid hard stone; but if any part of it be detached at a spot. Which the tide reaches every day, it is found to be full of worms of
different lougthe and colours; some being an fne an thread, and several feet long, of a bright yellow, and sometimes of a blue colour; others resemble spailg, and some are not unlike lobsters in shape, but soft, and not above two inchés long. The growth of the coral ap pears to cease when the worm is no longer exposed ton: the washing of the sea. Thus, a reef rises in the form of a caulifiower, till its top has gained the level of the highest tides, above which the wurm has no power to advance, and the reef, of course, no longer extonds itself upwards. The other parts, in succession, reach the surface, and there stop, forming, in time, a level. field with steep sides all round. The reef, however, continually increases, and being prevented from going. higher, extends itself laterally in all directions. But this: growth being as rapid at the upper edge as it is lower: down, the steepness of the face of the reef is still pre served. These are the circumstances which render coral reef so dangerous in navigation; for, in the firgt place, they are seldom seen above water; and in the next, their sides are so steep, that a ship's bows maystrike against the rock, before any change of soundings has given warning of the danger."

Another navigator givesi the following succinct aser count of the manner in whioh, after being raised up, the : coral islanda gradually acquire a soil and vegetation:"To be constantly covered with water seems neoessary to the existence of the animalcules, for they do not work, except in holes upon the reef, beyond low-water mark; but the corals, sand, and other broken remaanta thrown up by the sea; adhere to the rook, and form solid mass with it, as high as the common tides reach That elevation surpassed, the future remnants, being rarely covered, lose their adhesive property, and remains. ing in a loose state, form what is visually called a. Keyg upon the top of the ref., The new bank is not long in being visited by sea-birds; salt-plants take root upon it, and a soil begins to be formed; a cocom-nut, or the drupe of a pondanis, is thromen on shore; land biad visit it, and deposit the seeds of shrubs and tweep; every high tide, and atill more avory gale, adde nomothing tot.

la

th

sui

mC
in

en

by

ac

the
the
lut

suc

de
alt
sti
lar
จ
thi
\oplus sudid last of all comes man to take possession."
The other chief agents in changing the surfsee of the carth volcanos and carthquakes. The changes occasioned by the eraptions of the former are very considerable near the seat of action, but they operate over a less extensive field than either of those which have been already mentioned. The principal effect of the issue of subterranean fires is the elevation of the surface of the surrounding country; and the size of the mountains themselves must have been prodigiously increased by the matter thrown up during successive eruptions. Earthquakes appear to be brought about by the same causes as volcanic eruptions; but their action is much more tremendous than that of the latter. They are frequently accompanied by loud subterraneous noises, and are sometimes so violent, that the ground heaves up, and undulates like an agitated sea. They are felt, almost at the same instant, over a most astonishing extent; though happily, compared with this extent, their destructive ravages are confined within a small range. In those parts, which appear to ke near the centre of their action, the most-calamitous effects sometimes occur: whole cities are destroyed, and their inhabitants buried beneath the ruins; springs are stopped, and others gush out in new places; fissures are made in the earth; and enormous masses of rock and other materials sink down, or are detached from the mountains.

Such are the principal ohanges, which the surface of the globe is now undergoing. But great as they are, they could not have brought about those grand revolutions, which formerly visited the earth, and in which such multitudes of the animal race were consigned to destruction. The whole of them are insufficient to alter, in any perceptible degree, the level of the sea, still less to have occasioned an overwhelming of the land by that element. Some philosophers have endeavoturea to prove that a gradual ana general lowering of the level of the sea takes place, and have appeated to ortain observations, which, if correct, tend to establish
the fact of a diminution of the waters along the rortherny? aheres of the Baltic. But it must not be forgottenge that though in some places the ocean has retireder or sunk in level, in others it has encroaohed upon the land; while it is known that many harbours of the Mediterranean have preserved exactly the same level since the time of the ancients. It is plain, therefore, that all variations upon the coasts of the ocean are: merely of a local kind, and that if the different accounter are balanced, we must arrive at the conclusion, that the general volume of the ocean, and perhaps even its superficial extent, suffer neither increase nor diminution

Library of Useful Knowoledge.

The atmosphere is one of the most essential append dages to the globe we inhabit, and exhibits most sitriking proof of Divine skill and amnipotences It ins. now ascertained to be a compound substance, formed chiefly of two very different ingredients, termed oxygen and nitrogen gas. Of 100 measures of atmospheric air, 21 are oxygen, and 79 nitrogen. The one, namely, oxygen, is the principle of combustion. It is absolutely necessary for the support of animal life, and is one of the most important substances in nature. The other (nitrogen) is altogether incapable of supporting either flame or animal life. But the term atmosphere is also applied to the, whole mass of fluids, consisting of air, vapours, electric fluid, and other matters which suri. round the earth to a certain height. This mass of fluid matter gravitates to the earth, revolves with it in its diurnal rotation, and is carried along with it in its course round the sun every year. It has been computed to extend about 45 miles above the earth's surface, and it presses on the earth with a force proportioned to its height and density. From experimenta made with the barometer it has been ascertained, that.
it qqa
pro:
abo
sur
wer
by
the
be
diay
whi
a fo
of y
esse
cont
whi
sun
vap
beir
phe
cont
Nou
exti
eart
vap
vaxi
lowi
by
the
thos
dan
whi
latic
and
thei
freq stro.
air,
qua
tain

- Hosthern forgotiong retiredy or upon the us of the same t level therefores, ocean are s it eccounta a, that the its supersation ovoledgo.
it promen with a weight of about 15 pounds on evory square inch of the earth's surface; and, therefore, its prosesure on the body of a middle-sized man, is equal to about 32,000 pounds, or 14 tons avoirdupois, a pressure which would be insupportable, and even fatal, were it not equal on every part, and counterbalanced by the spring of the air within us. The pressure of the whole atmosphere upon the earth is computed to be equivalent to that of a globe of lead, 66 miles in diameter; in other words, the whole mass of the air, which aurrounds the globe, compresses the earth with a force or power equal to that of five thousand millions of millions of tons. This amazing pressure is, however, eessentially necessary for the preservation of the present constitution of our globe, and of the animated beings which dwell on its surface. It prevents the heat of the sun from converting water, and all other fluids into vapour; and preserves the vissels of all organized beings in due tone and vigo ir. Were the atmospherical pressure entirely reinoved, the elastic fluids contained in the finer vessels of men and other animals would inevitably burst them, and life would become extinct; and most of the substances on the face of the earth, particularly liquids, would be dissipated into vapour.

Besides these, the atmosphere possesses a great variety of other admirable properties, of which the following may be mentioned. It is the vehicle of smells, by which we become acquainted with the qualities of the food which is set before us, and learn to avoid those places, which are damp, unwholesume, and dangerons. It is the medium of sounds, by means of which knowledge is conveged to our minds. Its undulations, like so many couriers, run for ever backwards and forwards, to convey our thoughts to others, and theirs to us, and to bring news of transactions which frequently occur at a considerable distance. A few strokes on a large bell, through the ministration of the air, will convey signals of distress, or of joy, in a quartor of a minute, to the population of a city containing a hundred ghousand inhabitants. It transmits
to our ears all the harmonies of musie, and oxpretece every passion of the soul: it swells the notes of the nightingale, and distributas alike to every ear the pleasures, which arise from the harmonious sounds of a concert. It produces the blie coloner of the sky, and is the cause of the morning and evening twilight, by its property of bending the rays of light, and reflecting them in all directions. It forms an essential requisite for carrying on all the processes of the vegetable kingdom, and serves for the production of clouds, rain, and dew, which nourish and fertilize the earth. In short, it would be impossible to enumerate all the advantages We derive from this noble appendage to our world. Were the earth divested of its atmosphete, or were only two or three of its properties changed or destroyed, it would be left altogether unfit for the habitation of sentient beings. Were it divested of its undulating quality, we should be deprived of all the advantages of speech and conversation, of all the itelody of the feathered songsters, and of all the pleasures of music; and, like the deaf and dumb, we could hate no power of communicating our thoughts but by visible signs. Were it deprived of its reflective powers, the sun woutd appear in one part of the sky of a dazzling brightness, while all around, would appear as dark as midnight, and the stars would be visible at noon-day. Were it deprived of its refractive powers, instead of the gradual approach of the day and the night, whioh we now experience, at sun-rise we should be transported, all at once, from midnight darkness to the splendour of noonday; and, at sun-set, should make a sudden transition from the splendours of day to all the horrors of mid. night, which would bewilder the traveller in his journey, and strike the creation with amazement. In fine, were the oxygen of the atmosphere completely extracted, destruction would seize on all tribes of the living world, throughout every region of earth, air, and sea.

A change in the temperature of a portion of air; an jncrease or a diminution of the quantity of water, which it holds in a state of vapour; in short, any circumstance which causes it either: to contract or expand, destroys the equilibrium among the different parts of the atmosphere, and occasions ia rush of air, that is, a wind, towards the spot where the balaice has: been destroyed. Winds may be divided into three classes: those, which. blow constantly in the same direction; those, which are periodical; and those; which are variable The permanent winds are those which blow constantly between, and a few degrees beyond, the tropics, and are called trade-winds: On) the north of the equator, their direction is from the: north-east, varying at times a point or two of tho compasis each way: on the south of the equator, they proceed from the south-east. The origin of them is this:-:the powerful heat of the torrid zone rarefies, or makes lighter, the air of that region; the air, in consequence of this rarefaction, rises, and to supply its place, a colder atmosphere from each of the temperate zones moves towards the equator. But these north and south winds pass from regions, where the rotatory motion of the earth's surface is less, to those where it is greater. Unable at once to acquire this new velocity, they are left behind, and instead of being north and south winds, as they would be, if the earth's surface did not tarn round, they become north-east and southeast winds:
The monsoons belong to the class of periodical winds. They blow half the jear from one quarter, and the other half from the opposite direction : when they shift, variable winds and violent storms prevail for a time, which render it dangerous to put to sea. The monsoons of course suffer partial changes in partioular places, owing to the form and position of the lands, and to. other ciroumistances; but it will be sufficient to give their general directions. From April to October, a nouth eant wind provails north of the equator, math-
ward of this a south east wind; from October to April, a north-east wind north of the equator, and a northwest between the equator and 10° of south latitude.

The land and sea-breexes, which are common on the coasts and islands situated between the tropics, are anuther kind of periodical winds. During the day, the air, over the land, is strongly heated by the sun, and a cool breeze sets in from the sea; but in the night, the atmosphere over the land gets cooled, while the sea, and consequently the air over it, retains a temperature nearly even at all times; accordingly; after sunset, a land-breeze blows off the shore. The sea-breeze generally sets in about ten in the forenoon, and lasts till six in the evening; at seven the land breeze begins, and continues till eight in the morning, when it dies away. These alternate breezes are, perhaps, felt more powerfully on the coast of Malabar than any where; their effect there, extends to a distance of twenty leagues from the land.

Thus, within the limits of from twenty-eight to thirty degrees on each side of the equator, the movements of the atmosphere are carried on with great regularity; but beyond these limits, the winds are extremely variable and uncertain, and the observations made, have not yet led to any satisfactory theory, by which to explain them. It appears, however, that beyond the region of the trade-winds, the most frequent movements of the atmosphere are from the south-west, in the north tem: perate zone. This remark must be limited to winds blowing over the ocean, and in maritime countries; because those in the interior of continents are influenced by a variety of circumstances, among which the height and position of chains of mountains are not the least important. These south-west and north-west winds of the temperate zones, are most likely occasioned in the following manner:- In the torrid zone there is a continual ascent of air, which, after rising, must spread itself to the north and south in an opposite direction to the trude-winds below: these upper currents, becoming cooled above, at last descend and mix themselves with tho lower air; past of thom may; parhapa, fall ayain into
to April, A a north. ttitude.
non on the ropics, aro e day; the sun, and a night, the he sea, and emperature sunset, a reeze geneasts till siz egins, and dies away. ore powerere; their aty leagues
ht to thirty vements of regularity ; emely varile, have not to explain e region of ents of the north temd to winds untries; beinfluenced the height he least imwinds of ned in the re is a connust spread direction to s_{3}, becoming aselves with 1 aygain into
the trade-vinds, and the remainder, pursuing its course towards the poles, may occasion the north-west and south-west winds, of which we have been spenking. This interchange between the heated air of the Tropics, and the cold air of the Polar regions, greatly tends to moderate the climate of each. Besides the air from the Tropios being richer in oxygen, on account of the more luxuriant vegetation decomposing a larger quantity of carbonic acid, is well calculated to supply any deficiency in the amount of this most important substance, which might occur from the barrenness of a less favoured climate.-(See page 224.)

Hurricanes have been supposed to be of electric.origin. A large vacuum is suddenly created in the atmosphere, into which the surrounding air rushes with immense rapidity, sometimes from opposite points of the compass, spreading the most frightful devistation along its track, rooting up trees, and levelling houses with the ground. They are seldom experienced bejond the tropics, or nearer the equator than the 9 th or 10th parallels of latitude; and they rage with the greapat fury near the tropics, in the vicinity of land or islaitus, while far out on the open ocean they tarely odectur. They are most common among the West Itidia islands, near the east coast of Madagascar, in the islands of Mauritius and Bourbon, in the bay of Bengal, at the changing of the monsoons, and on the coasts of China.

Whirlwinds sometimes arise from winds blowing among lofty and precipitous mountains, the form of which influences their direction, and occasions gusts to descend with a spiral or whirling motion. They are frequently, however, caused by two winds meeting each other at an angle, and then turning upon a centre. When two winds thus encounter one another, any cloud which happens to be between them, is of course condensed, and turned rapidly round; and all substances sufficiently light, are carried ap into the air by the whirling motion which ensure. The action of a whirl. wind at sea, pocasions the erione phenomenion called in vator-spowe:
Library of Uceful Incoivaipe:

AQUEOUS VAPOUR OLOODS AND MSTS，

RAIN，DEW，SNOW，HAIL．

When water is exposed to the air，it is gradually cons－ verted into vapour，which，on account of its specifie levity，recends into the atmosphere．This vapour pre－ sents itself in various forms．When the air holds it in solution＇it is invisible，just as salt dissolved in water is invisible；but when the air becomes incapable of re－ taining it in solution，the watery particles become visible， either in the form of clouds and mists suspended in the atmosptere，or in that of raỉn，dew，snow，and hail， falling to the ground．

Olouds and Mists differ only in this，that the former loat in the air，whereas the latter extend along the ground．Water，dissolved in the atmosphere，is first， by the agency of cold，withdrawn from it in very minutite particles，which being very light，remain suspended at argreater or less distance from the earth，and are kept asuedem by the electrical repulsion developed during that separation from the air．When the electricity is rénotved gothdually，by pointed rocks，trees，\＆o．，or ouddenly，during thunder storms，the rain falls．Thus ＊é perceive another admirable means by which climates are rendered more suitable to man．The enormous evaporation which occurs in hot countries cools them by abstracting vast quantities of heat，which is imparted io colder regions when the clouds are formed，and again； when the rain descends．The height of clouds is very various．In ascending to the summits of mountains，the traveller frequently passes through a zone of clouds，and beholds the vesicular vapours of which it is composed， stretched under his feet like a vast plain covered with snow ；and éven on Chimborazo，the loftiest peak of the Andes，there are always to be seen，at an immense height； ．cerithin whitish clouds resembling flakes of wool．These clonds，which are perhaps many miles from the surfade of the earth，have been supposed to owe their dlevation to ninnive oloctricity repelfing them from the ground，in

10030

 sion to poditive eleotricity attracting them topards it
Rain falls from the clouds, when the vepicalar yapour, of which they are composed, unitee into drops. The fall of the drops of rain, after they are formed, is ensily accounted for from the attraction of gravity; bat the cause of the conversion of vesionlar vapour into mindrops is not hetter understood, than the cauce of the conversion of vapour into vesicles; though it is highly probable, that electricity is an agent in the one case, as well as in the other. If the change be owing to the diminution of this fluid, we have a ready oxplanation of the well-known fact, that mountainous are the most rainy countries; mountains constitating so many points for drawing off the electric fluid. This supposition is further rendered very probable by the fact, that no rain falls in those regions where thunder is unknown, as in the environs of Lima, and on the coast of Pera. The quantity of rain that falls, in different regions of the globe, is very different. It is most abundant within the torrid zone, and decreases in proportion to the distance from the equator. The anpual fall at Grenade, in $12^{\circ} \mathrm{N}$. lat. is 126 inches; at Calcutta, in $22^{\circ} \mathrm{N}$. Iat. it is 81 inches, at Rome, in $41^{\circ} 54^{\prime \prime}$, it ie 39 inches; in England, 82 inches; and at Petersburg, in lat. $59^{\circ} 16^{\prime \prime \prime}$, it is only 16 inches. Even in different places in the same country, the quantity that falls is different. But the most curions fact of all, in the natural history of rain, is the difference of quantity, which is collected at different heights at the same place. In one year, a rain gauge on the top of Westmingter Abbey, received 12 inokes; another on the top of a house in the vicinity reeeived 18 inches; and a third on the surface of the ground received 22 inches.
Dev, or the moisture insensibly deposited from the atmosphere on the surface of the ground, is a mellknown phenomenen. It was long supposed, that its precipitation was owing to the eooling of the atmosphere towards evening, which prevented it from retaining so great a quantity of watery vapour in solution, as during the heat of the day. But it has been recently proved, Aist the deponision of dew is produced by the mivoling of
the surface of the earth, which takes place previously to the cooling of the atmosphere. The carth is an excellent radiator of caloric, whilst the atmosphere does not possess that property in any sensible degree. Towards evening; therefore, when the solar heat declines, and after sunset, when it entirely ceases, the earth rapidly cools by radiating heat towards the skies; whilst the air has no means of parting with its heat, but by coming in contact with the cooled surface of the earth, to which it communicates its caloric. Its solvent power being thus reduced, it is unable to retain so large 2 portion of watery vapour, and deposits those pearly drops called dew. This view of the matter explains the reason why dew falls more copiously in calm than in stormy weather, and in a clear than in a cloudy atmosphere. Accumulations of moisture in the atmosphere not only prevent the free radiation of the earth towards the upper regions, but themselves radiate towards the earth; whereas, in clear nights, the radiation of the earth passes without obstacle through the atmosphere to the distant regions of space, whence it receives no caloric in exchange. The same principle enables us to explain the reason, why a bottle of wine taken fresh from the cellar (in summer particularly), will soon be covered with dew. The bottle, being colder than the surrounding air, absorbs caloric from it; the moisture, therefore; which that air contained, becomes visible, and forms the dew, which is deposited on the bottle. In like manner, in a warm room, or in a close carriage, the inside of the windows is covered with vapour, because the windows being colder than the breath, doprive it of part of its caloric, and by this means convert it into watery vapour. Bodies attract dew in proportion as they are good radiators of caloric; as it is this quality which reduces their temperature below that of the atmosphere. Hence we find, that little or no dew is deposited on rocks, sands, or water; while grass and living vegetahles, to whioh it is so highly beneficial, attract it in abundance; a remarkable instance of the wise and bountiful dispensations of Providence. The same benevolent design we may observe, also, in the abundance of dow in summer and in hot olimaten, in
which its cooling effects are so much required. The more caloric the earth receives during the day, the more it will radiate afterwards; and consequently, the more rapidly its temperature will be reduced in the evening, in comparison with that of the atmosphere. In the West Indies, accordingly, where the intense heat of the day is strongly contrasted with the coolness of the evening, the dew is prodigiously abundant. When dew is frozen the moment it falls, it gets the name of hoar-frost.

Snow is another of the forms which the vapours of the atmosphere assume. It consists of aqueous vapour, congealed either while falling, or when in the air previous to falling. The first crystals, produced at a great height in the atmosphere, determine, as they descend, the crystallization of aqueous particles, which, without their presence, the surrounding air would retain in a state of solution. The result is the formation of hexagonal darts, or stars of six rays, when the weather is sufficiently calm, and the temperature not too high to deform the crystals by melting off their angles; but when the atmosphere is agitatod, and the snow falls from a great height, the orystals clash together, unite in groups, and form irregular flakes.

Hail, according to all appearances, is a species of snow, or of snowy rain, which has undergone a variety of congelations and superficial meltings, in its passage through different zones of the atmosphere, of different temperatures. Its formation evidently depends on electricity. It is by an electrical apparatus, that we can produce artificial hail; and it is well known, that volcanic eruptions are often followed by the fall of hailstones of enormous size.

Such are the principal circumstances which are supposed to concur in the formation of aqueous meteors. Their beneficial influence upon the earth is a point more easy to determine. We observe all nature languish, when the atmosphere retains, for too long a time, the moisture arising from the earth. Plants fade and droop; animais feel their strength failing them; man himself, breathing nothing but dust, can with diffeulty
procure shelter from the sultry heat, by which his frame is parshed and overpowered. But scarcely have the waters of heaven descended from the clouds, when ait
putt of n livog beings begin to revive; the fields resume their gieen attire; the flowers their lively tints; animals the sportive freedom of their motions, and the elements of the air their healthful equilibrium. Snow itself, whose very name alarms the natives of the tropics, is productive of real advantages in the economy of pature it secures the roots of plants against the effects of intense cold; it serves to moisten gently those lands, from which, owing to their local situation, the rain is too $300 n$ carried off; and it paves for the inhabitant of the north, comm dious and agreeable roads, along which le gaily skipus in his light and nimble sledge. Hail ulone, of all the aqueous meteors, never appears but as a harbinger of distress. Birds and quadrupeds instinctively conceal themselves, as soon as they have any presentiment of its coming. Man can neither foresee ite approach, nor arrest its ravages; he has been able to ward off the thunderbolts of the sky, but he sees the hail destroy his corn, break his fruit trees, and shatter the very house where he dwells, without being able to prevent it.

> M'CuLLocम's Course of Reading.

ON THE DELUGE.

It stands on record in Scripture, that this globe was twice enveloped in water; once, when God by his work of six days, described in the first chapter of the book of Genesis, raised it up from what is usually galled its chaotic state; and a second time in the days of Noah. Now, the effects of these two immersions of the earth in Water aro distinctly marked in the present form of it.

In regard to the first, it is a vulgar error, to which the Scripture gives no countenapce, that the earth was fint prought into existonce when God compenced his nix days work. A more careful reading of the namative will oonvince you, that this work ras morely
h his frame y have the s, when atis sume their animals the elements of itself, whose , is produciture : it $s \theta-$ 3 of intense lands, from rain is too itant of the long which edge. Hail ears but as drupeds iney have any ther foresee s been able he sees the and shatter ing able to

Reading.
is globe mat by his work the book of y called its ys of Noah. the earth in m of it. r, to which e earth was menctu f the narrama marely
putting it in order, and fitting it for being the habitation of man.

The words of Scripture are, "In the beginning God created the heaven and the earth." This is a general announcement of what was done in the beginning; but how long antecedent to the subsequent history that boginning was, we are not informed. The narrative procoeds, "And the earth was without form and woid; and darkness was upon the face of the deep, and the Spirit of God moved upon the face of the waters." This describes the condition in which the earth was, when God commenced his work of six days. How long it had been in that condition is not said. There are indications, however, in the formation of the crust of the earth itself, that it had been for a long period in that condition, and that its then chaotic state was the result of some former revolution or revolutions. Now, in perfect conformity with this history, there are evidences of the present dry land having been immersed in water, for a much longer period than its transient immersion at the deluge. For example, there are immense masses of solid rock, some at great heights in the mountains; some deep in the bowels of the earth, entirely formed of shells and other marine remains cemented together. Many of the most beautiful marbles are thus formed. In digging mines, after piercing through many strata of rooks of varicus descriptions, and arriving at great depths below the surface of the earth, miners come to remaius of plants and of animals, that must have been formed in waters of the sea.

These, and many other phenomena, not only prove, that the globe was immersed in water, but that it must have continued in that condition, for a much. longer pe riod than the waters of the deluge remained upon it.
But there are other phenomena, which indicate, that after the earth was brought into its present form, its mountains and valleys, and rivers and seas, nearly as we now cee them, it was suddenly immersed in water, Fhich aiso sudienily receded. The phenomena to whioh I now ;allude, are such as fossil shells, marine plants, bones, \&e. which are found in earth, or gravel, or sand,
and in other situations, which indicate a much more recent deposit, than the shells and other marine substances formed into solid rocks, already alluded to. In every part of the world, there are found indications of a submersion of the dry ground in water, much later than the formation of the mountains and valleys, und affecting the condition of the globe much more superficially. Caves, for example, have been found in countries the most distant from one another, in Europe and in New Holland, containing large quantities of bones of animals, mixed with earth or gravel, and in many cases, covered with a substance called stalagmite. In many cases, the bones belong to species of animals, that no longer exist in the countries in which they are found. Bones of elephants, hyænas, rhinoceroses, \&c. have been found in Britain, and in many parts of Europe.

It seems now to be generally admitted by scientifio men, that there are means of ascertaining at what distance of time a deluge covered the earth, and that the calculations founded upon them point uniformly to the time marked in the Scriptures. The following passage is from. Baron Cuvier :-
"Thus, while the traditions of all nations have preserved the remembrance of a great catastrophe, the deluge, which changed the earth's surface, and destroyed nearly the whole of the human species, geology apprizes us, that of the various revolutions, which have agitated our globe, the last evidently corresponds to the period, which is assigned to the deluge.
"We say that, by means of geological considerations alone, it is possible to determine the date of this great event with some degree of precision.
"There are certain formations, which must have commenced immediately after the last catastrophe, and which, from that period, have been continued up to the present day with great regularity. Such are the deposits of detritus observed at the mouths of rivers, the masses of rubbish which exist at the foot of mountains, and are formed of the fragments, that fall from their cummits and sides. These deposits receive a yearly increase, which it is pomible to measure. Nothing, there-
fore, has This debr peri has shor has evid tradi form luge the to oc abou first the tain casi Sc
woh more remarine subluded to. In dications of a ch later than ys, and affectsuperficially. countries the and in New es of animals, cases, covered any cases, the , longer exist d. Bones of been found
by scientifio at what disand that the iformly to the owing passage
ons have pretastrophe, the and destroyed ology apprizeß have agitated o the period, consideration of this great
must have tastrophe, and ued up to the 1 are the deof rivers, the of mountains, all from their ve a yearly inothing, there-
fore, is more easy, than to caloulate the time, which it has taken them to acquire their present dimensions. This calculation has been made with reference to the debris of mountains; and, in all casen, has indicated a period of about four thousand years. The same result has been obtained from the other alluvial deposits. In short, whatever has been the natural phenomenon, that has been interrogated, it has always been found to give evideace in accordance with that of tradition. The traditions themselves exhibit the most astonishing conformity. The Hebrew text of Genesis places the doluge in the year 2349 before Christ. The Indians make the fourth age of the world, that in which we now live, to commence in the year 3012. The Chinese place it about the year 2384. Confucius, in fact, represents the first King Yeo as occupied in drawing of the waters of the ocean, which had risen to the tops of the mountains, and in repairing the damage which they had oc-casioned."-Carlile on the Divine Origin of the Holy Scriptures.

1.-MINERAL KINGDOM.

There is, perhaps, no portion of the earth's surface, of the same extent, which contains so great a variety of those mineral substances which minister to the necescities and comforts of life, as the island of Great Britain; and it would almost seem, from its internal struccure, as if Providence had pre-ordained that it should be the seat of an opulent and powerful people, and one of his chief instruments for the civilization and advancement of the human race. That this is no extravagant, overstrained expression of national vanity, may, we think, be very easily made apparent, by a few roflections on the vast advantages, which the British empire itself, and, through it, the oivilized world, have derived, from the sircumstanoe of our ponsessing an
sbundance of one partionlar mineral under the kurfece of our soil. The almost inexhanstible mines of coAs, which are found in so many different parts of our island, have unquestionably been one of the chief sources of our vealth, and of our influence among the other nations of Europe. All our great manufacturing towns,-Birmingham, Leeds, Sheffield, Manchester, Glasgow, Paisley, are not only situated in the immediate vicinity of coal, but never would have existed with. out it. If we had had no coal, we should have lost the greater part of the wealth we derive from our metallic ores; for they could neither have been drawn from the depths, where they lie concealed, nor, if found near the surface, could they have been profitably reined. Without coal, the steamjengine would probably have remained among the apparatus of the natural philosopher. Not only did the fuel supply the means of working the machine, but the demand for artificial power, in order to raise that same fuel from the bowels of the earth, more immediately led to the practical application of the great discovery made by Watt, while repairing the philosophical instrument of Dr. Black. Before the invention of the steam-engine, the power required to move machinery was confined to the impelling force of ranning water, of wind, of animal and human strength, all too weak, unsteady, irregular, and costly, to admit of the possibility of their extensive ap. plication. But the steam-engipe gave a giant power to the human race, capable of being applied to every purpose, and in every situation where fuel can be found. Thus, manufactures arose, and from the cheapness with which labour could be commanded, and the prodigions increase of work done in the same space of time, their produce was so reduced in price, ss to bring luxüries and comforts within the reach of thousands, who never tgsted them before. New tastes thus excited, and inareasing consumption, multiplied mannfacturing establishments; and their demands led to great manufaetures of machinery competition lea to ipprovement in tho gteam-engine itself, and thus, by the reciproal action of mprorement and demand, our machinery and manu
shatu tion, prov plica years When carri revol Ni mine that want to ex great tuall the it fil wher wood have and grea tant for man exte of ir Tl York shire cient but CoPI and mine

0
mine
are
血话
tion
dive
the nurfece ines of qOAL, parts of our the chief e among the aanufacturing Manchester, the immediexisted with. Id have lost from our me. been drawn nor, if found profitably reould probably natural phi. the means of for artificial m the bowels practical ap. Watt, while f Dr. Black. e, the powes d to the im. f animal and irregular, and extensive ap. ciant power to to every puran be found. heapness with he prodigions of time, their bring luxuries ds, who never cited, and incturing estabmanufactures reune it in the rocal action of ond manu
factures gradually acquired that high degree of perfec. tion, to which they are now arrived. With the improvement of the stsam-engine, came the wonderful application of it to navigation, which has already, in a few years, produced such extraordinary results ; and which, When combined with its farther application to wheel carriages, must, at no great distance of time, occasion a revolution in the whole state of society.
Next to coal, our IRoN is the most important of our mineral treasures; and it is a remarkable circumstance, that the ore of that metal, which is so essential to the wants of man, that civilization has never been known to exist without it, should in Great Britain be placed in greatest abundance, not only in the vicinity of, but aotually associated with, the coal necessary to separate the metal from the impurities of the ore, so as to render it fit for use. In Sweden, and most other countries, Where iron mines exist, the ore is refined by means of wood; but no space on the surface of our island could have been spared to grow timber for such a purpose; and thus, without coal, in place of being, as we are now, great exporters of wrought and unwrought iron to distant nations; we must have depended on other countries for this metal; to the vast detriment of man'y of our manufactures, which mainly owe their improvement and extension to the abundance and consequent cheapness of iron.

There are extensive mines of LEAD in Derbyshire, Yorkshire, Northumberland, Lanarkshire, Dumfriesshire, and several other places in Great Britain, suffisient not only for the internal demand for that metal, but yielding a considerable amount for exportation. Copper is produced in large quantities in Cornwall; and the same county has been celebrated for its IIN mines, for nearly tho thousand years.

Coal, iron, lead, copper, and tin, are the principal minerals of our country, which, in comtrion language, are usually associated with the idea of the produce of
 tion of a litulo of the forther bontained in some of the

sufficient quantity to yield a profit, beyond the expense of the process ; but wo have somo other metals, highly useful in the arts, such as zinc, antimony, and manganese.

Besides the substances above mentioned, we have many other mineral treasures of great importance still to be noticed. Of these the most valuable, perhaps, is limestone, from its use in agriculture, to meliorate the soil and increase its fertility, and from its being an in. dispensable ingredient in mortar for building; and there are not many parts of the island far distant from a supply of this material. Building stone is found in most parts of the country; and although we must go to Italy for the material for the art of sculpture to be employed upon, we have free-stones applicable to all the purpose f ornamental architecture, and we have many marbles a great beauty. If stones be far off, clay is never wanting to supply a substitute; and the most distant nations have their daily food served up in vessels, the materials of which, dug from our clay-pits, have given occupation to thousands of our industrious population, in our potteries and china manufactures. For our supply of sALT, that essential part of the daily sustenance of almost every human being, we are not dependent on the brine which encircles our island; for we have, in the mines and salt-springs of Cheshire and Worcestershire, almost inexhaustible stores of the purest quality, unmixed with those earthy and other ingredients, which must be separated by an expensive process, before a culinary salt can be obtained from the water of the sea.

Familiar as is almost every one of the mineral substances we have named; in the common business of life, there are many persons who have but a very imperfect idea whence they are derived, and what previous processes they undergo, before they can be made applicable to our use. In the formation of organized bodies, that is, in the structure of animals and plants, tho most superficial observer cannot fail to discover a beautiful and refined mechanism; but if we cast our eyea upon tho round, and look at hoapi of grarol, iand, dare and
stone gethe cover convi and migh pect, and displa most the has 0 the the i his hi of 'isl nents it $00 n$ tion, and 1 trent Num shown inequ it is which tains, abyss

Di and d dom, deper bing
the expenss etals, highly y, and man.
d, we have ortance still , perhaps, is neliorate the being an in. ilding; and stant from a is found in - must go to re to be em. e to all the o have many r off, clay is the most disip in vessels, y-pits, have trious popuctures. For he daily susare not deland; for we Sheshire and of the purest ther ingredisive process, the water of
mineral subiness of life, ry imperfect revious prode applicable bodies, that the most sueautiful and子es npon the id, clay and
stone, it seems as if chance only had brought them together, and that neither symmetry nor order can be discovered in their nature. But a closer ezamination soon convi ices us of that, which reasoning from the wisdome and design manifested by other parts of creation; we might beforchand have very naturally been led to expect, viz. that in all the varieties of form, and structure, and change, which the study of the mineral kingdom displays, laws as fixed and immutable prevail, as in the most complicated mechanism of the human frame, or in the motions of the heavenly bodies: and if astronomy. has discovered how beautifully "the heavens declare the glory of God," as certainly do we feel assured by the investigations of geology, that the earth "showth his bandy work." - P'enny Magazine.

II.-MINERAL KINGDOM.

The land rises from the surface of the sea in the form of tislands, and of great continuous zuasses called continents, without any regularity of outline, either where it comes in contact with the water, or in vertical elevation, its surface being diversified by plains, valleys, hilla, and mountains, which sometimes rise to the height a^{\prime} twenty-six thousand feet above the level of the ses. Numerous soundings in different parts of the world have shown, that the bottom of the ocean is as diversified by inequalities as the surface of the land; a great part of it is unfathomable to us, and the islands and continents, which rise above its surface, are the summits of monntains, the intervening valloys lying in the deepest abysses.

Different climates produce different races of animals, and different families of plants; but the mineral kingdom, as far as the nature of stone is concerned, is independent of the influence of olimate, the same rooks baing found is the polar and in the equatorial rogionot

Although thare is considerable diversity in the strueture of the earth, it is not in any degree connected with particular zones, as far as relates to circumstances, Which are external to it; nor can we say, that the wonderful action which burning mountains tell us is going on in its interior, is confined to any part of the sphere, for the volcanic arres of Iceland burn as fiercely as those that burst forth under the line. From all the observations hitherto made, there is no reason to suppose, that any unexplored country contains mineral bodiod, with which we are not already acquainted; and although we cannot say beforehand of What rocks an unexamined land is likely to be composed, it is extremely improbable, that any extensive series of rocks should be found, constituting a class different from any which have been already met with in other parts of the globe.

When we dig through the vegetable soil, we usually come to clay, sand, or gravel, or to a mixture of these unconsolidated materials; and, in some countries, we shall probably find nothing else, at the greatest depths to which we are able to penetrate. But in most places; after getting through the clay and gravel, we should come upon a hard stone, lying in layers ortheds parallel to edeh other, either of one kind, or of afferent kinds, according to the depth. This stone would vary in different countries, and in different places in the same country, as well in its constituent parts; as in the thickness, alternation, and position of its beds or layers. It : has been ascertained by the observations of geologists, in various parts of the world, that the crust of the earth is composed of: a series of such layers, distinguishable from each other by very marked characters in their internal structure. The elements, of which they are composed, are not very numerous, being for the most part the hard substance called quartz by mineralogists, of which gan-flints may be cited as a familiar example, these being wholly composed of it, and the well-known substancea, clay and limestone, but these elements are asgregated or mixed up together in so many proportiond and formag as to produce a considorablo variety of
rock
may pror cont shel fish beer upo is n stra A lowe of t of t so lette this all toge they hap] by 8 but infin are inte dom the
beca
num
esta
com
cour
men
stra
ber.
stral
upp
orde
Who
tra

he strueture

 inected with roumstances, y, that the s tell us is part of the n as fiercely From all the ason to supins mineral tainted ; and at rocks an d , it is ex. ies of rocks nt from any parts of the, we usually ure of these ountries, we eatest depths most places, , we should beds parallel ferent kinds, suld vary in in the same in the thickls or layers. of geologists, of the earth stinguishable ers in their ich they are for the most nineralogists, liar example, e well-known elements are nany proporis variety of
rocka. Besides this elementary compnsition, or what, may be termed their simple structure, the greacest proportion of the rocks, that are so arranged in layers, contain foreign, bodies, such as fragments of other rocks, shells, bones of land and amphibious animals, ana of fishes, and portions of trees and plants. It has furtiner been found, that these different layers or strata lie upon each other in a certain determinate order, which is never, in any degree, inverted. Suppose the series of strata to be represented by the letters of the alphanet, A being the stratum nearest the surface, and the lowest: A is never found below Z, nor under any other of the intervening letters; nor is Z ever found above any of the letters that stand before it in the alphabet; and so it is with all the strata represented by the othom letters. It must not, however, be imagined, althoug this regularity in the order of superposition exists, that all the different members of the series always occur together; on the contrary, there is no instance where they have all been found in one place. It possibly may happen, that where C is found in a horizontal position, by going deeper all che rest would follow in succession; but this we can never know, as the thickness would be infinitely beyond our means of penetrating: and there are reasons, which render the existence of such an uninterrupted series extremely improbable. It very seldom happens, that more than three or four members of the series can be seen together;-we say of the series, because each nember is composed of an almost infinite number of subordinate layers. This order of succession, established by geologists, has been determined by the combination of many observations made in different countries at distant points. The order of three or four members was ascertained in one place; the upper. stratum in that place was found to be the lowest member of a second series in another plape, and the lonoest stratum at the first station was observed to be the uppermost at a third point; and, in like manner, the order of superposition was discovered throughout the Whole range. Neither is it to be supposed that, the strata, which lie next each other, are always so in

$$
\text { D J. } \mathrm{L}
$$

nature ; as, for inatnioe, that, wherever if in found assuciated with another momber, it is always either with Fabove it, or H] below it: it very oficn happens that F lics upon H, G being altogether abseat ; and C may even be seen lying on R, the whole of the intervening members of the series being wantiug Very frequently one of the lowest members of the series appears at the surfuce. Every one may have soen sometimes chalk, sometimes slate, lying immediately beneath the vegetable soil, or even at the surface without that scanty covering. But if a lower member of the series be seen at the surface, however deep we might go, we should never find any one of those rocks, that belong to the higher members of that serier. The inmense practical advautuge of this knowledge of the determined order of succession will be seen at once; for if 0 were found to occupy the surface of the country, it would be at once known, that all search for ocal in that spot would be fruitless.

Ibid.

III.--MINERAL KİNGDOM.

The means, by which geologists have been enabled to fix the order of wuperposition in the strata composing the crust of the glube, have been partly the nineral composition of each member of the series, partly their contuining fraganents of other rocks, but chictly the remains of animuls and plants, that are imbedded in them. They observed, that there was a class of rocks distinguished by a cousiderable degree of harduess, by closeness of texture, by their arrangement in slaty beds, and by possessing, when in thick masses, a glistening structure, callod by mineralogists crystalline, of which statuary warble or louf sugar may be quoted as familiar exnuples; and these were, even when associatea with rocks of another sort; always lowest.-Above, and in contuict "with them, another group of atrata was of either with ppens that und C may intervenVery froies appearn sometimes eneath the that scanty ies be seen we should ong to the e practical ed order of re found to be at once t would be Ibid.
en enabled composing the nineral partly their chictly the mbedded in ass of rocks larduess, by a slaty beds, a glistening e, of which as fami!igr ociated witn ovs, and in ata was ch
served, which, in mineral-composition, bad a good deal of resemblance to those below them, but contained rounded fragments of other rocks: and, when these fragments were examined, they were found to be identical with the rocks composing the lower strata. This second series was observed to be covered by another group of strata, which contained shells and corals. bodies that had never been seen in any of the lowas strata. Thus it was clear, as the including substance must necessarily be formed subsequently to the pebble or shell it contains, that, previous to the formation of this third group, there had existed rocks to supply the imbedded fragments, and to contain the wators of the ocean, in which the animals that once inhabited the shells must have lived. Ascending still higher, that is, observing the strata as they lay one above another towards the surface, it was found that many were entirely composed of the fragments of pre-existing rocks, either in the form of pebbles, or of sand cemented together : that there was a vast increase in the number and variety of the imbedded shells, the latter forming very often entire beds of rock, many feet in thickness; and that the remains of plants began to appear.

In this manner certain great divisions of the strata were established, by very olear and infallible distinctive characters. But it was reserved for an English practical mineral surveyor to make a discovery, which gave a new direction to geological inquiries, and which, in the course of a few years, introduced into the science a degree of precision and certainty, that was formerly unknown. About thirty-five years ago, Mr. William Swith, of Churchill in Oxfordshire, by an extensive series of observations in different parts of England, asoertained that particular strata were characterized by the presence of oertain fossil or petrified shells, which were either confined to them exclusively, or in prodominating quantity, or were of rave occurrence in other strata: and he was thus enabled to identify two rooks at distant points as belonging to one stratum, When mere mineral characters would either have left
him in uncertainty; or have entirely failed in deciding. the question: When this disoovery became known to geologists, numderous observations were made in other conntries, which completely proved, that the principle was not only applicable in those places, which Mr. Smith had had an opportunity of observing, but that it held good generally, and throughout the whole series of strata, from the lowest, in which organic remains are found, to those nearest the surface. Under the direotion of this guide, geologists have been enabled to discover lines of separation in the great divisions, which, as already mentioned, had been established by prion observations; pointing out distinct epochs of deposition, and revealing a succession of changes in the organic and inorganic creation, in a determinate chronological order. This more accurate knowledge of the structure of the crust of the globe is of the highest interest and importance; not only as a matter of speculative seience, but as regards the practical advantages in common life, that have been derived from it.

An examination of the phenomena, exhibited by the internal structure of this series of superimposed rocks, has established this farther principle-that all the strata must have been deposited on a level foundation-that is, on pre-existing ground, that was either horizontal. or nearly so, at the bottom of a fluid bolding their materials either in suspension, or in solution, or partly both. Now, as we know of no fluid in which this could have taken place except water, geologists have come to the conclusion, that the chief part of all the strata, how. ever elevated they may now be above the level of the sea, were gradually deposited at the bottom of the ocean; and the remainder of them at the bottom of. inland seas, or lakes. But if this bo so, what mighty revolutions must have taken place to cause rocks, formed in the dopths of the ocean, to mscupy the sum. mits of the highest mountaing! By what known agency can so extraordinary a change of position have beep. effected? That the fact of elevation ios incieputable, is proved by the shells imbedded in atratified rocke at the
co
bl
th
th
al
th
se
ti
ta
$0 i$
$0 i$ nown to in other principle bich Mr. ut that it ole series. moins are he direoed to dis1s, which by prior eposition, e organic onological structure erest and e science, mon life, ed by the ed rocks, the strata ion-that horizontal ling their or partly this could e come to rata, howvel of the m of the bottom of. at mighty ase rocks, the sum. wn ageņcy have been putuble in clue at the
greatest elevations ; and geologists, who have endea: voured to discover by what cause this change in the relative position of the rock and the sea has been brought about, have, by an attentive observation of the phenomena of earthquakes and volcanos, and the resemblance between the products of the latter and certain parts of the earth's structure, which we have yet to notice, arrived at a very probable solution of the problem.

Although the strata were originally deposited in a horizontal position, and are often found so, eapecially as regards the inferior members of the series, they are not uniformly so, but are frequently inclined, more or less; and they have been seen, not only at every angle of inclination, but very often in a vertical position. When a vertical section of a mountain is exposed, as is often the case in valleys or the deep bed of a river, such an appearance as that represented here is not un-

common; and if the stratum a be composed of rounded blocks of stone surroutded by fine sand or clay, and if the stratum b contain a layer of shells lying parallel to the sides of the stratum, and if they be unbroken although of the most delicate texture, it is manifest, that these strata could not have been deposited in their present vertical position, but upon a level ground. Sometimes they are not only disturbed from their horisontality, but are bent and contorted in the most extra-
 powerfill foreo while they were vot in a moft flexible
state. This appearance, very common in the slate rocke of the north coast of Devon, is shown in the diagram.

This seeming disorder and confusion is evidently a part surface of the globe, if they had enveloped it like a shell, or to.use a familiar example, had they surrounded it like the coats of an onion, it is clear that we should never have become acquainted with any other than the upper members of the series; and that the beds of coal and salt, and the ores of the metals, all of which are confined to the inferior strata, could never have been made available for the purposes of man. Without this elevation of the strata, the earth would have presented 2 monotonous plain, unbroken by the beautiful forms of hill and valley, or the majestic scenery of mountains. With these inequalities of the surface are intimately connected all the varieties of climates, and the diversified products of animal and vegetable life dependent thereon; as well as the whole of what may be termed the aqueous machinery of the land-the fertilizing and refreshing rains, the sources of springs, inland lakes, and the courses of rivers and brooks in their endless ramifications. Throughout all this there reigns such a harmony of purpose, that the conclusion is irresistible, that the breaking up of the earth's crust is not an irregular disturbance, but a work of design, in perfect accordance with the whole economy of nature.
We have axid, that if we dig through the axpericial col

by

ve
wo
late rocke diagram. f the prohave been if all the lel to the it like urrounded we should r than the eds of coal which are have been ithout this presented tiful forms mountains. intimately he diversidependent be termed ilizing and land lakes, eir endless igns such 2 irresistible, not an irin perfect б. a axporiciel upon atone
disposed in layers; but there are many placen. where we should find a rock without any nuch arranyement, which would continue of the same uniform texture, and without any parallel rents dividing it into beds, nowever deeply we might peuetrate into it. Such unstratified rocks, although of limited extent in proportion to the stratificd rocks, constitute a considerable portion of the crust of the earth, and in all parts of it they generally rise above the surface in huge unshapen masnes, surrounded by the stratified rorks; and sometimes they occupy districts of great extent, where none of the latter rocks can be seen. In mineral conposition they are essentially different from the other class; never consisting of limestone, or sanilstone, or clay, and never containing rounded pebbles, shclls, or the remains of any other kind of organized matter. Their elementary constituent parts are simple mineral substances, which, although sonetimes found in the stratified rocks, are always, in the rocks we now speak of, in different cumbinations: they are always in that particular state called crystalline; and when the parts are large enough to be distinguished; they are seen to interlace each other, and by this arrangement they form a very hard tough stone. very difficult to break into regular squared forms, wa to work with the chisel, and they are very often caprable of receiving a high polish. The substances most famili r to us in common life, which belong to this class of r ks , are granite, whinstone, and basalt.

1 lid.

IV.-MINERAL KINGDOM.

We have shown, that the crust of the gloke is composed of two great classes of rocks, ane of which consists of a series of beds of stone of lifferent kinds, lying upou oue another in a certain determinate order of suocossion, called the Stratified Liucks, or the

meth ilook.

Strita; the other of a class of stones distinguishable from the strata by peculiar mineral conpusition, by pever containing pebbles or the remains of aninals and plants, and by never being arranged in parallel layers, from which last character they have been denominated the Unstratifiea Rocks. We shall now proceed to show in what manner these two classes of rocks are associated together. It is quite evident, that the mode of formation of the two must have been totally different While the strata, by cheir parallel arrangement, by the pebbles of pre-existing rocks, and by the remains of living bodies which they contain, demonstrate that they must have been formed under water, by deposition from the surface downwards, the whole oharacters of the unstratified rocks equally prove, that they must have come to the surface from the interior of the earth, after the deposition of the strata; that is, that they have been ejected among the strata from below in a melted condition, either fluid or is a soft yielding state. Geologists have come to this conclusion, from a careful examination and comparison of the unstratified rocks with the products of existing volcanos, or those burning mountains, that have thrown out streams of mielted stone or lava, both in past ages, as recorded in history, and in our own time. By this comparison they have discovered a great similarity, often an identity, of composition, between the unstratified rocks and lava, and the closest analogy in the pinenomena exhibited by the masses of both kinds, and in their relations to the stratified rocks, with which they conis in contact.

In every case the unstratified rocks lie under the stratified. This order has never been reversed, except in cases, which have been afterwards discovered to be deceptive appearances, and where they have been protruded between strata. But it may be said, that this fact of inferiority of position is no proof of ejection from below, far less of posteriority of formation: for they might have been the foundation on which the Wtrata aro dopositod. But their ecruption from the
into strai we fied toge sent

A
with brai
are
and
ston
flow
its
Nov
of
it
afte
But
the
tain
wit
to
the
\dot{r}
rocl
rela
equ
sho
dire
${ }^{2} \mathrm{~g}$
tra
The
inguishable usition, by of animals in parallè have been shall now classes of fident, that have been ir parallel rocks, and ey contain, med under wnwards, ks equally irface from ion of the among the er fluid or me to this comparison of existing that have ra, both in own time. d a great n , between est analogy es of both rocks, with
under the sed, except vered to be been prod , that this of ejection nation: for which the 2 from the
interior, and that that eruption took place after the strata were formed, are proved by other evidence, as we shall presently shuw.

A section of the crust of the earth, where the stratified and unstratified rocks have been found associated together, has often exhibited the appearance represented by the diagram.

4
B
A and B are mountains of granite or of whinstone, with strata of limestone lying upon it. From A branches or shoots connected with the principal mass are seen to penetrate into the superincumbent strata; and in the mountain B, the granite overlies the limestone for a considerable way near the top, as if it had flowed over at that place, and lower down it has forced its way between two strata, ending like a wedge. Now, as the penetrating substance must necessarily be of subsequent formation to the body that it penetrates, it is evident, that the granite must have been formed after the limestone, although the latter rests upon it. But if any doubt remained, it would be removed by the additional fact, that the granite veins in the mountain A, contain augular fraginents of limestone, identical with the strata above; and the fractured ends are seen to fit the places of the continuous stratum, from which they have been broken off.

The posteriority of the formation of the unstratified rocks to the strata is thus made evident from their relative positions; their forcible ejection from below is equally proved by the penetration of their veins or shoots into the superincumbent strata in an upward direction, often with the most slender ramifications to a great distance, and by the portions broken from tho trata and enveloped in the substance of the vein. That they were cjected in a soft melted atate, produced
by the action of heat, is shown by the close resem. blauce, in mineral composition, of the unstratified rocks to the products of existing volcanos, and by remarkable changes often observed to have taken place in the strata, where they come in contact with granite and whinstone. Soft chalk is converted into a hard crystalline limestone like statuary marble; clay and sandstone are changed into a substance as hard and compact as flint, and coal is turned into colse; all of them changes which are analogous to what takes place, when the substances are subjected to a strong artificial heat under great pressure. In the case of coal, it is very remarkable; for when a bed of that sub. stance, and a stratum of clay lying next to it, come in contact with whinstone, the tar of the coal is ofter driven into the clay, and the coal loses all property of giving flame, although, at a distance from the whinstone, it is of a rich caking quality.

We have shown, that we are enabled to fix a chronological order of succession of the strata with a considerable degree of precision; and although we have not the same accurath means of determining the relative ages of the unstratified rocks, there are yet very decisive proofs, that certain classes of them are older than others, that different members of the same class have been ejected at distinct periods, and that the same substances have been thrown up at different times far distant from each other. Granite, in veins, has never been seen to penetrate beyond the lower strata; but whinstone and the lavas of existing volcanos protrude in masses, and send out veins through all the strata: veins of one sort of granite traverse masses of another kind, and whinstone and basalt veins are not only found crossing masses and other veins of similar rocks, but even of granite. Upon the principle, therefore, before stated, that the penetrating substance must necessarily have been formed subsequently to the body penetrated, the above phenomena demonstrate Eqecengive formations or oruptions of the unstratified rocks.
Δ the highly olovated, broken, and contortod
pusitic suppo below in thi very 2nd 0 occasi been alchor only the phenc same comp of a tains not rocks have down islanc islănc era; in di same comp are shell earth the d of t is si mane mou the leng quak cani at B cart foun
close resem. unstratified nos, and by have taken contact with onverted into marble; clay ance as hard d into coke; to what takes to a strong case of coal, of that subto it, come in coal is ofter 1 property of m the whin-
o fix a chrotrata with a although we ermining the there are yet of them are of the same jds, and that p at different lite, in veins, ad the lower existing volveins through anite traverse d basalt veins ther veins of the principle, ing substance quently to the demonstrate unstratified
and contortod
pusitions of the strata are only explicable on the supposition of a powerful force acting upon them from below, and as they are seen so elevated and contorted in the neighbourhood of the unstratified rocks, it is a very legitimate inference, that the mountain chains and other inequalities on the earth's surface have been occasioned by the horizontally deposited strata having been heaved up by the eruption of these rocks, although the latter may not always appear, but be only occasionally protruded to the surface, through the rents produced by the eruptive force. The phenomena of earthquakes are connected with the same internal action, and these have often been accompanied by permanent elevations of entire portions of a country. This theory of the elevation of mountains by a force acting from the interior of the earth is not a mere inference from appearances presented by rocks, but is supported by numerous events, which have occurred repeatedly within the period of history down to our own time. In the middle of a gulf in the island of Santorino, in the Grecian Arohipelago, an island rose from the sea 144 years before the Cliristian era; in 1427, it was raised in height, and increased in dimensions; in 1573, another island arose in the same gulf; and in 1707, a third. These islands are composed of hard rock; and in that last formed, there are beds of limestone and of other rocks containing shells. In the year 1822, Chili was visited by a violent earthquake, which raised the whole line of coast, for the distance of above one hundred miles, to the height of three or four feet above its former level. Valparaiso is situated about the middle of the tract thus permanently elevated. A portion of Cutch, near the mouth of the Indus, underwent a similar revolution in the year 1819, when a district, nearly sixty miles in length by sirteen in breadth, was raised by an earthquake about ten feet above its original level. A volcanic eruption burst out in an adjoining part of India at Bhooi, at the exact period when the shocks of this earthquale terminated. These eases must not de con. founded with the production of new mosntains, mall
as that of Jorullo, in Mexico; in the year 1759, which was raised to the height of 1600 feet above the table land of Malpais by eruptions of scorim and the outpouring of lava. The appearance of a new island off the coast of Sicily, in the year 1831, is another phenomenon of the latter class. It rose from a part of the sea, which was known by soundings a few years before to have been 600 feet deep, to the height of 107 feet above the water, and formed a ciroumference of nearly two-thirds of a mile. It was composed of loose cinders, and the part that rose above the level of the sea, was washed away in the winter of the same year; but an extensive shoal remains.
Is must not be supposed, that these internal movements only took place after the whole series of strata had been deposited. There must have been long intervals between the termination of the depoeition of one member of the series and the commencement of that of the stratum immediately above it ; and internal movements, accompanied with disturbance of the already deposited strata, after they had come to consolidate into stone, appear to have taken place during the Whole period, that the strata, from the lowest to the uppermost in the series, were deposited. The clearest eviaence of this is afforded by certain appearances exhibited by the strata, in all parts of the globe, that have yet been examined. The diagram that follows represents a case of very common occurrence, and will explain our meaning. It must be borne in mind, that it is an acknowlodged principle in geology, that all stratified rocks, in whatever position they are now found, must have been originally deposited horizontally.

 d; xe. Now, it is ovident that tho veries a most haw have Atite dioturbud; thatcifier it obange of poivioni,

1759, which ive the table and the out. new island 1, is another om a part of a fow years he height of yiroumference composed of ve the level of the same
iternal moveries of strata been long deposition of encement of and internal ance of the me to consoli. se during the lowest to the The clearest appearanoes he globe, that that follows ence, and will in mind, that logy, that all are now found, intally.

 a sinust haw go of poition,
the sentes b and c were deposited, covering the ends of the strata of the series a. But c appears to have been ected upon by two forces at distant points, when hrown out of its horizontal position; for the strata lip in opposite directions, forming a basin-shaped; cavity, in which the series d was deposited. In like manner, after the disturbance: of c, the series e was leposited, covering the ends of c; but the internal force, which raised the beds e from the depths of the sea to the summit of the mountain where they are now; seen, appears to have acted in such a direction, as to have carried up the whole mass without disturbing the original horizontality of the structure. It is obvious, hat all the interior strata must have partaken of this, last disturbance. There are, besides, numerous proofs, that there have been not only frequent elevations of the strata, but also depressions; that the same strata, Which had been at one time raised above the surface of the sea, had again sunk down, preserving an inclined position ; that they had formed the ground, upon which hew sediment was deposited, and had again been raised up, carrying along with them the more recently formed strata.

1bid.

V.-MINERAL KINGDOM.

The subjects, which it is the province of the geologist to investigate, are by no means confined to questions concerning mineral substances, but embrace a wider field, involving many considerations intimately connected with the history of several tribes of animalo and plants. It is not possible to give aven a brief outive of the doctrines of geology vithouti neferrige to the great orders and olasses, into which naturalista have divided the enimal kiagdom. It will be neoese rary, therefore; before prooed ding to describe the iivisions of the stratified rooke, whiela geologist hand wablished, amd. Which spe foundot mainly rapo the

Cilathotive ohamotory afiforded by the romains of organimed bodion contained in the difforent atruta, to my a fow worda upon the olauilloation of animaln, in order to rondor the tormi we muat employ moro intelligible to thone who aro unaoguainted with the subjoot.

Animalta are divided into four groat branohon, difUnguinhed by the terma Vertebrated, Nollumeous, Artiomlated, and Radiated. The shas piviaion inoluder all thone animala whioh are providod with a baokbove; and beonute the almilar bonea, or jointh, of which it is composed, are onlled by anatomitus vertebree, (rom a Latio word aignifying to tura,) the indifidualm thai bolong to thita divfition are collod Verseorvatad Animala. It is mubdivided into four olamean, 1. Mammalia, comprohonding man, land quadrupede, and the whale tritio; that in, all animala which givo suok to thoir young; the torm boing dorivod from mamma, the Latin name of that part of the body, from whioh the millk in dmana. 2. Bivde of all kinde. 3. All thove animala oalled Reptiles by naturaliats: tho word moanan nothing more than that thay eroep, but il has in eommon languapo a far more oxtondod soinso than that to whioh it is restrioted in natural history. Froge, morponte, lizards, orooodiles, alligatore, tortoisoes, and turtloe, are roptiloes, in the sense of the word as nood by naturalista. 4. Piehes, of all kinda, oxoopt the whale tribe, whioh bolongs to the olame mammalia.

The arcond division ineludes tribee of animals, Whiob have no bonos ; and because thoir bodies contain no bard parts, they are oalled. Molluscoua Animaly, from a Latin word aignifying soft. But with a for exoeptions, they have all a hard covering, or ahell, to which thes are oither attached, or in whioh they can inoloee themeolvee, and be preserved from injuries, to which, from their sof nature, they would otherwise be constantly exposed. There are aix olasses in thin divicion, founded on certain poouliaritios of anatomion
 for, withont a muoh longer dewoription than we oun ealer apon, it would bo a molem onumeration of hard
paman bottor divinit the fi hard their imbed nof p dianpy divinil A ahe
as ana sholla 8. M of wh

Th Artic atruot a litt Anve аทnน oxam sof ! cruat, such form beetl Th of an asselt and radi but we 1 one very word is fix in Coral the
remaing of at atrata, to auimaln, in mploy moro d with the ranoher, dis: Molluнсоия, P diviaion idod with or jointe, of ta vartebrea,) the indisalled Vertoour olamsen, quadrupeda, which give orived from - body, from ll kinds. 8. araliats: the creep, but it onded senso ural history. re, tortolaon, the word as inda, oxcopt mammalia. of animale, odies contain us Animale, with a for or sholl, to ioh they ona injurien, to otherwise bo ssos in this of anatomioal 11 not notion: than we call ation of hand
namine It will anawer our pronent purpone maoh botter to nay, that the animala bolonging to this division may bo olamnitiod acoording to difforencon in the forma of their hard covering or aholla, for it is the hard parta of animala whioh furainh the recorde of their former oxiatonce; thene only are proserved imbedded in the atrata, all trucen of the flesh or other nof parta, an far an form is conoerned, having outirely dianppeared. Molsuzoous Animala, therefore, are divisible into, 1. Univaluna, that in, animale armed with a ahell or valve forming one continuous ploce, such as analeu and whelkn. 2. Bivalues, or those laving two sholls united by a hingo, suoh as oystora, oooklos, \&o. 8. Nultivaluea, or those having more than two ahella, of which the oommon barnacle is an oxample.

The thiad division is acsigned to what am oallod Arriculated Animala, theno having a peouliar anatomionl atructure, called artioulationa, from articulue, latio for a littlo joint. It is subdivided into four olasses; 1. Annelidea, or those having a ringod atruoturo, from annulua, Latin for ring: leoohes and earth-worms are examples. 2. Oruatacea, or those, which have their sof bodios and limbs protected by a hard coating or cruat, which in cominon language wo also oall sholl, such as lobsters, orabs, and prawns. 8. Spiders, whioh form a class by themselven. 4. Insects, such as flien, beetles, bees, and buttorflies.

The rourth division comprehonde a great variety of animula, whioh have an anatomioal structure like an assemblage of rays diverging from a common point, and frou whioh they are oulled Radiated Animals, radius being latin for ray. It contuins five clusses, but as three of these are animals without hard parts, wo may pass them over: of the romaining two, the one contuins the ochimi or sea urohins; the other, the very numorous tribe called zoüphitos, from two Groek words signifying animal and plant, beoause the animal is fixed to the ground, and builds its strung habitation in the form of a shrub, or branoh, or leafy plant. Corals and spouges belong to this clase; and amung all the different animal remains, that are found in the
shata, there is, no olan, which bears any proportion, in point either of frequenoy of occurrence, or in quantity, to this last.

The great divisions of animals, so far as the romains of spesies found in the strata, are concerned, or, as it is termed, in a fossil state, are therefore briefly these :-
I. Vertebrated Animals; Classes-Mamnalia, Birds, Reptiles, Fishes.
II. Molluscous Animals; Classes-Univalve, Bivalve, Multivalve Shelle,
III. Articulatod Animals; Classes-Crustacea, In secta.
IV. Radiated Animals; Classes-Echini, Zoöphiten

Each class is farther divisible into several families: cach family into several genera; each genus int several species, according as greater or minor points of resemblance and difference bring individuals near tte each other. There are certain other great distinctions, which it is neqessary to mention, viz, that some apimals eat animal food, the Carnivorous; others vegetable food; the Graminivorous; some can live both in the air and in water, the Amphibious. Among fishes, molluscos, and crustacea, some live in the sea, some in fresh water, some in both; and of those inhabiting fresh water, some are peculiar to rivers, others to lakes. There are aleo land-shells, such as the common garden-snail. It is scarcely necessary to remind our readers, that certain species are peculiar to particular regions of the earth, being adapted by their nature to the different temperature and other peculiarities, that exist in different countries.
The number of distinguishable genera and species of: fossil plants bears but a small proportion to that of fossil animal remains.

The lowest members in the order, in which the stratified roak are placed one above another, are dis. tinguished by the great predominance of hard slaty ropke having a orystalline or compact texture, but chiefly by this circumstance, that they haye not beet found to contaiu any fragments of pre-ebisting rocks,
oportion, in in quantity,
as the roconcerned, efore briefly
alia, Birds,
Ive, Bivalve,
astacea, In
Zoöphite al families: genus int or points of uals near te distinctions, that some ous; others ne can live Amphibious. ome live in poth; and of peculiar to 1 -shells, such ly necessary are peculiar adapted by e and other 8. ad species of it to that of

1 which the ther, are dis. f hard slaty texture, but aye, not beeu sisting rocks,
or the remains of organized bodies. On this account they have boen called the primary strata, as if formed prior to the existence of animal life, and as containing no evidence of other rock having existed before them. That we cannot now discover animal remains in these strata is, however, no proof that they had not previously existed; because we meet with rocks containing organio remains, which are so altered by the action of heat in those parts, where they happen to have come in contact with a mass of granite or whinstonc, that all traces of the organic remains are obliterated, those parts of the rocks acquiring a orystalline character analogous to what prevails in the primary strata. These last may have contained the remains of animals; but being nearest to the action of volcanic heat, they may have been so changed as to obliterate the shells and corals, by their being melted, as it were, into the substance of the crystalline rock. The absence of the fragments of pre-existing rock is a less questionable ground of distinction. From whence the materials composing these primary strata were derived, is a question, that it is not very likely any geological researches will enable us to solve; that they. were in a state of minute division, were suspended in, and gradually deposited from, a fluid in a horizontal arrangement, and that they were subsequently elerated, broken, and contorted by some powerful force, prior to the deposition of the strata that lie over them, is beyond all doubt. There may also be beds of rock of grat thickness, in which neither fragment nor rgen.e remain has been found throughout a great exter of country, which nevertheless may not be primury; for if in any part of the same mass a single pebble or a single shell should afterwards be discovered, indubitably imbedded in it, one such occurrence would be as conclusive as a thousand, that a prior state of things had existed. It follows, therefore, that until the whole of an extensive district of such rocks were carefully examined, we could never be sure, that they might not one day be discovered to be of eecondary origin; there is nothing in the ninleral TJ. L. 2

YITrit BOOK

structure of any one stratified rook, that entitles absolutely to say, that other rocks and living bodiea could not have existed prior to its formation. But as there are large tracts of country occupied by strata, in Which neither fragments of pre-existing rocks nor organio remains have yet been discovered, geologists are justified in designating them the primary strata; to call them primitive, as they used to be, and indeed still are called by some geologists, is to employ a term, which expresses much more than we are entitled to assert.

The unstratified rock, most usually associated with the primary strata, is granite, of different varieties of composition, usually lying under them in great masses, and bursting through, forming lofty pinnacles, as in the Alps, and sometimes sending forth shoots or veins, whioh penetrate the superincumbent strata in all directions.

Immediately above the primary strata there commences another series, very like many of the rocks below them, in respect of mineral composition, but containing the remains of shells, and some pebbles, and interstratified with thick beds of limestone, including shells and corals. These rocks are penetrated also by granite, and, in common with the primary strata, form the great depository of the metallic ores. They are, for want of a better term by which the class can be distinguished, usually called the transition strata, a name given by the elder geologists, because they were supposed to form a step or tracsition from the primitive state of the globe to the condition in which it began to be inhabited by living bodies; in strictness, they form the lowest members of the next great division of the strata, which is distinguished by the name of the Secondary. Rocks. These will be treated of in our naxt section.-Ibid.

VI. - HINERAL KINGDOH.

The Secondiay Hooiss comprehend a great variety of different beds of stone, extending from the primary strata to the chalk, which forms the upper or moit recent miember of the division.
These rocks consist of an extensive sertes of strata, of limestones, sandstones, and clay, all of which contain either rounded frigments of pre-existing rocks, or organic remains, or both; and eaich group, and all the subordinate members of the groups, are distinguishable by characters of great constancy and certainty, dérived from the peculiar nature of the included fossils. They must all have been deposited in a horizontal position; bat there are parts of them, which hade undergone greater or less disturbatice, beitg often thrown into a vertical position, and broken, twisted, and disturbed in the most extraordinary manner. Many of the disturbances of the lower groaps took place prior to the deposition of the upper; for the latter are found lying in unconformable stratifieation on the ends of the former, as represented in the diagram, in page 52 . They are traversed by veins, or dykes, as they are often termed, of whinstone and other unstratified rocks; and there is usually great disturbance of the strata, when these occur. The dykes are ofter of great magnitude, and the rock is frequently thrust in hage wedgeshaped masses; of miles in saperficial dimensions and some hundred feet thick, between the regular strata. After the deposit of the secondary rocks, a remarkable change took place; for all the strata that lie above the chalk, have a totally different character from that rock, and all below it.
These have been classel together in one great division, and hate been designated the Tiepitary Rociks. Thus the whole series of strata, of which the erust of the globe is composed, is divided into the Primary, the Stcontary, and the Tertiary. It is evident that, at

part of the present continent of Europe must have been considerably lower than the present level of the sea; that when the oldest or lowest members of the series were forming, the summits of the mountain ridges of primary rocks rose as islands of different magnitudes from the bosom of the deep; that at several successive periods these islands were more elevated, and attained consequently a greater superficial extent, the newer formed strata occupying the lower levels. In the progicss of this series of changes of the surface of the globe, when there were evidently occasional depressions of the land as well as elevations, there appear to have been formed basin-shaped cavities or troughs, not entirely cut off from communication with the sea, and vast estuaries, in which the tertiary strata were deposited. While the secondary strata stretch continuously for hundreds of leagues, the tertiary are found only in detached insulated spots of - comparatively limited extent. In this state of the earth's surface there must have been vast inland freshwater lakes; for we find regularly stratified deposits of great thickness full of organic remains, which exolusively belong to animals, that lived in fresh water, and to terrestrial animals and plants. Like the secondary, the tertiary rocks consist of a great variety of strata of limestones, sandstones, clays, and sands which have distinct characters, and have been united in several groups. In them we first discover the remains of land, quadrupeds, and birds; and bones of mammalia are most abundant in the beds nearest to the surface. Among all the various remains of animals and plants, that are found in the secondary rocks, from the chalk downwards, not one has been found, which is identical with any living species. Although they have characters agreeing with those, by which existing animals have been grouped together in the groater divisions of genera, families and classes; the living individuals of the same divisions have forms of structure distinct from any found in a fossil state in the secondary rookg. But, with the tertiary atrata, a new order of things pommeneet ; for, in the lowest of these, a mall propor.
ust have el of the rs of the mountain different that at rere more ter superpying the if changes evidently elevations, ed cavities nunication ae tertiary lary strata s, the terspots of te of the land freshdeposits of ich exoluwater, and secondary, f strata of rhich have in several ins of land, mmalia are he surface. and plants, the chalk is identical e characters imals have livisions of lividuals of listinot from 7\% rockg,r of things mall propor.
tion-about three and a half per cent. of the fossil uhells cannot be distinguished from species that now exist: as we appraach the higher beds the proportion always increases; and in the most recent stratum, it amounts to nine-tenths of the whole. It is not more than twenty-one years since the great division of the tertiary rocks was established. Prior to that time the peculiar characters, which separate them from the secondary strata, had been entirely overlooked, - a circumstance which marks very strongly that geology is the youngest of the sciences. The discovery was made by the celebrated Cuvier and his associate M. Brongniart, who found that the city of Paris was built in a hollow basin of chalk, that had been subsequently partially filled by vast deposits of clays, limestones, sands, and sandstones, and that there were alternations of beds, containing remains of fresh-water and terrestrial animals and plants, with others containing only the remains of marine animals.

The publication of the work of the French Naturalists led to a similar discovery in our own island, and singularly enough in the valley of the Thames; so that the capitals of France and England are both built upon these strata, so strangely neglected for so long a time, although occurring in the very spots, where the greatest numbers of scientific men are collected together in both countries. A series of tertiary strata was discovered by Mr. Webster in the Isle of Wight, having strong points of resemblance with that of the environs of Paris ; and these, with some partial deposits on the coasts of Suffolk and Lancashire, constitute the whole of the tertiary rocks found in Great Britain. It was for some time supposed, that these newer strata, which were soon found not to be confined to the neighbourhood of Paris and Liondon, extended like the secondary rocks over great tracts of country; and that there was such a degree of uniformity in their characters, that deposits widely distant from each other could be recognised as belonging to the same period in the chronological order of succession of the strata. Later observations, bowever, have shown, that, although possessing a
general charactor of resemblance, they hayo been so, mpah modified in their formation by local circumstances, that no two tertiary deposits, even of the same era aro alike. The discoveries of the last fev years have led Geologiste to establish distinct subordinate groups, as in the case of the secondary rocks; and the upper stratum of the Paris basin, which was at one time considered the most recent of stratified rocks, has been found to be inferior in the order of succession to many others, some thousand feet thick.

VII.-MINERAL KINGDOM.

ORGANIO REMAINS.

We have already stated, that the stratified rocks contain the remains of animals and plants - and that heds of stone, situated many miles distant from euch other, may be proved to belong to the same place, in the order of suecession of the ctrata, by remains of prganized bodies, or Hossins, of identical species, being found in the stone at both places. The word Fossil, which meaps anything that may be dug out of the earth, used to be applied to all minerals; but modern Geolqgists have conveniently restricted its application to organized bodies contained in the loose or solid beds compasing the crust of the globe, and for the most part petrified; that is, converted into stone. Fossils are now alvays understood to be petrified remains of onimals of plants, and we say, fossil shells, fossil bones, fossil trees, \&o. We are enabled to make out, by the gid of those bodies, that a bed of limestane on the coast of Dousetshire, another on the coast of Yorkshire, a third in the Wiestern islapds of Scotland, and a fourth in the intaitar of Gexmapy, plthqugh jiffring parfais in apperrangen for An the mero limentong. in congerned
belong to the came age or period of formation in the chronological order of the strata.

Fossils reveal to us the important and wonderful fact that the Author of Nature had created different species of animals and plants, at successive and widely distant intervals of time, and that many of those, that existed in the earlier ages of our globe, had become totaliy extinct, before the creation of others in later periods : that, prior to man being called into existence, innumerable species of living beings had covered the surface of the earth, for a series of ages, to which we are unable, and probably shall ever remain unable, to fix any definite limits. We further learn, that a very large proportion of those creatures of the later periods, had become extinct, and had been replaced by the animals which now exist, before the creation of our first parents. When that great eyent took place, the crust of the earth had already undergone numerous changes, and we have already said, in alluding to those changes, that they appear to us to afford indisputable proofs of design; to be evidences most clear of the establishment of an order of things adapted to the predetermined nature of that more perfect creature, about to be sent as an inhabitant of the globe, to whom was to be given "dominion over the fish of the sea, and over the fowl of the air, and over the cattle, and over all the earth." We are also taught by the study of fossils, that, prior to the creation of man, there had existed a totally different condition of our planet, in so far as regards the distribution of land and water, from that which now exists; that where there are now vast continents, there must have been deep seas, and that extensive tracts of land must have occupied those parts of the globe, which are now covered by the ocean. In many parts of the interior of our continents, there must have been vast lakes of fresh water, which were drained by subsequent changes in the form of the land which bounded them, and were replaced by wid valleys, long antecedent to the existence of man. Thus, in the vary boat of Frapoe, in a distriot along
the baiks of the river Allier, of which the town of Vichy may be taken as the centre, vast strata, full of fresh-water shells, prove, that there must have existed, for many ages, a lake nearly a hundred miles long, and twenty miles in average breadth. It is proved, moreover, by the nature of organic remains, that changes of olimate, no less remarkable, have taken place $;$ and that a heat equal to that now existing in the equatorial regions must have formerly prevailed in latitudes far north of our islands.

All this, so far from contradicting the Scriptures, confirms the Mosaic account of what is usually called the Creation. Moses says, In the beginning God created the heavens and the earth. How long that beginning was before the time that he wrote, he does not furnish us with the means of ascertaining; but he goes on to say, that the earth was without form and empty. All living beings, that might have been upon it proviously, had been destroyed: it was in darkness and covered with water. When it was in this condition, which is usually called chaos, God said, Let there be light; and there was light; and thus the creation was commenced; for it is immediately added, that the morning and the evening were the first day.

The organized bodies which are found in a fossil state, belong to classes of animals and plants that exist on the land, or in lakes and rivers, and to those also, which are inhabitants of the sea. The latter are by far the most numerous, as might be expected would be the case, when it is considered, that the greater proportion of the strata must have been deposited at the bottom of the ocean. Of marine productions, shells and corals constitute the chief part, and for this reason, that being almost wholly composed of mineral substance, they are not liable to decay. In all cases of petrified remains of animals, it is the hard parts only that we find; the whole of the flesh and softer parts have disappeared, 80 much so, that, with the exceptions of some instances of fishes and amphibious animals, no trace of the external form of the living animal ea: be discovered; and

whi

the

to
tho
whi
Hu
stọ
end
e town of rata, full of ve existed, long, and oved, morechanges of place; and e equatorial atitudes far

Scriptures, ually called nning God long that te, he does ng; but he t form and been upon in darkness u this consaid, Let d thus the ttely added, irst day.
in a fossil ts that exist those also, r are by far ould be the proportion the bottom s and corals reason, that substance, petrified rewe find; the appeared, 80 instances of he external rered; and
where bones are found, it is very rarely that an entire skeleton is met with. There are fossil rerasins of

Shells.
Corals and Sponges.
Radiated animals, such as Star Fish. Reptiles, resembling Crocodiles.
Fishes.
Cetacea, or the Whale tribe.
Crustacea, such as Lobsters and Crabs.
Plants.

$$
\begin{aligned}
& \text { Fresh-water shelle, found in lakes and rivers. } \\
& \text { Land-shells, such as the Garden Snail. } \\
& \text { Quadrupeds. } \\
& \text { Reptiles. } \\
& \text { Birds. } \\
& \text { Insects. } \\
& \text { Stems of trees and wood. } \\
& \text { Smaller plants and leares. }
\end{aligned}
$$

These several bodies are not found indiscriminately throughout the whole series of the secondary and tertiary strata; some are peculiar to the lowest beds, some to the intermediate, and some to the superior. But all, of whatever description they may be, which occur in the secondary strata, belong to species now wholly extinct. By far the greatest proportion of those found in the tertiary strata, belong likewise to extinct species. It is only in the uppermost beds that there is any very considerable number of individuals, which are identical with unimals now in existence; and there they preponderate over the others.

The bones of man are not more liable to decay than those of other animals; but in no part of the earth, to which the researches of Geologists have extended, has there been found a single fragment of bone, belonging to the human species, incased in stone, or in any of those accumulations of gravel and loose materials which fonm the upper part of the series of strata. Human bones have been occasionally met with in stones formed by petrifying processes now going on; ond in caves, associated with the bones of other animals;
but these gre deposits posseassing charactera whiph prove them to havi been of regent origit, as compared with even "the most modern of the tertiary strata.

The Geologist may be considered as the historian of events relating to the animate and inanimate creation, previous to that period when sacred hiitory begins, or the history of man, in relation to his highest deatiny. Although it belongs to the Geologist to study the events that have occurred within his provinoe during the more modern ages of the world, as well as those which are in progress in our own day, his special object is to unfold the history of those revolutions, by whieh the crust of the globe acquired its present form and structure. The solid earth, with its stores of organic remains, which now rises above the surface of the aea, may be oom pared to a vast collection of authentic records, which will reveal to man, as soon as he is capable of rightly interpreting them, an unbroken narrative of events, commencing from a period indefinitely remote, and Which, in all probability, succeeded each other after intervals of vast duration. Unilike the records of human transactions, they are liable to no suspicion that they may have been falsified through intention or ignorance. In them, we have to fear neither dishonesty nor the blunders of unlettered and wearied transcribers. The mummies of Egypt do not more ceitainly record he existence of a eivilized people in remote ages on the banks of the Nile, than do the skells, entombed in solid stone at the suminit of the Alps, and Pyrenees, attest that there was a time, when the rocks of those mountains occupied the bottom of a sea, whose waters were 2s. warm as those within the tropies, and wero peopled by numerous species of animals, of which there does not pow exist one single descendant.
Some soattered observations, and some fanciful theories founded upon them, show that a fer of the philosophers of antiquity, and a few among the learned since the revival of letters, were not altogether unsware of the existence of these arohives; but it is little more than half acentury since, their true volue begen to to
unde Heal
dran botar and
000
to 00
writt
in t
in x
whic
some
ferrix
nere
the
of a
many
prota
enter
guess
the x
at 80
on as

W
secon
of \propto
parat
ascen
oomp
drupe
ters whiph compared rata.
historian of te oreation, begins, or est destiny. r. the events Ig the more hich are in is to unfold he crust of ture. The aing, which ay be 00 m ords, which θ of rightly of events, mote, and other after of human they may rance. In y nor the bers. The record ohe ges on the jed in solid nees, attest lose mounwaters were re peopled there does
e fanciful few of the he learned or unsware little more egan ond
understood. The caue of this is osgily explyingd, Gealogy hat grown out of the adyanced stata of other pranches of knowledge. Until chemistry, mineralogy, botany, and above all, zoology, or the natural history and comparative anatomy of animals, had arrived at a considerable degree of perigation, it was impossible to comprehend the language in which these records are written. Many of the early Geologisto 14 some even in the present day, appear indeed to fina no difficulty in reading them; and when they meet with a passage which is obscure, they cut the knot, and reaspa apon some bold interpretation, which they, arrive at by conferring upon Nature powers which she herself has never revealed to us that she has employed. But since the discovery, in recent times, by Cuvier and othert, of a key to the langaage of these precious documents, many have been unrolled; the errors of former interpretations have been discovered; and we may now entextain a well grounded hope that if we ceash to guess at meanipgs, and patiently search and coppare the materials that are accessible to us, we shal arrive at suich sound conclusions, that geology will h3 placed on as secure a basis as the most exact of the soiences.

VIII.-MINERAL KINGDOM.

ORGANIC REMAINS.

We find is the lowest beds of the series of the secondary strata that the organic remains consist chiefly of corals apd suells, that is, of animals having a comparatively simple anatomical structure; and that ss, we asoend in the series, the propoztion of animals of more complicated forms increases the bones of land quadrupeds heing almont entiraly confined to the mots
recent members of the tertiary strata. From these circumstances, it is a received opinion, among cortain Geologists, that the animals which were first created were of an exceedingly simple structure, and that they gradually became more complex in their frame.

Although it be true, that in the lower strata there is a large pmpertion of the remains of animals which possess aus anyarently simple structure, nothing can be more unsound than to found upon such observations a doctrine such as we have above stated. : What we have at one time called simple, has again and again been afterwards found to be exceedingly the reverse, so that the term is really uothing more than an expression of our ignorance, a statement of the limit beyond which we have not yet been able to advance. The animalculm called Infusoria, are living creatures, found in stagnant waters, so wonderfully minute, that they are invisible to the naked eje, - a collection of many thonsand individuals occupying no greater space than the tenth part of an inch. For a long time after they were discovered by means of the microscope, they were thought to be little more than specks of animal matter endowed with locomotive powers, jut the ingenious researches of Ehrenberg, a philosop'ser of Berlin, who employed a very powerful instrument, laid open to our wondering sight a new creation. That distinguished Naturalist has shown, that these animalculm are provided with limbs and organs, and with a system of vessels and nerves; and even figures of their teeth accompany his curious memoir. Thus, the lowest member in the supposed graduated scale of animal structure, in place of being a simple body, is probably a very complicated piece of mechanism. Besides, corals and shells, though of most frequent occurrence, are not the only animal remains found in the lower strata, for recent observations have discovered in these rocks, the vertebre or joints of the backbone of fishes, as well as othcs parts belonging to them, and even impressions of entire fish have been met with. Now, one singlo undoubted specimen of an animal of that description, found in such a
situa overt grad ascer A is, th been with Thro the diate terme nortb plant to e north Kiver 70th the b in su ivory Indee ist b eleph inferi those those where years ice, t disent mass, anima of wh destit to a rocks remot dition portio

From theso nong cortain first created ad that they me.
rata there is imals which thing can be bservations a That we have 1 again been verse, so that expression of eyond which e animalcula in stagnant are invisible ny thousand an the tenth 1ey were diswere thought tter endowed is researches employed a ar wondering d Naturalist rovided with vessels and company his in the sup. in place of complicated hells, though only animal cent observa. vertebree or othcs parts ontire fish doubted spe. nd in such a
situation, is as conclusive as ten thousand would be in overthrowing the whole dootrine, that there has been a gradual development of structure in animal life, as we ascend from the lowest to the uppermost strata.

A most curious circumstanice, connected with fossils, is, the unequivocal evidence they afford of there having been formerly a completely different state of our planet with regard to climates, from that which now exists. Throughout all the strata, from the lowest member of the secondary series, up to the last layer lying immediately beneath that which, in geological language, is termed a formation of the recent period, we find, in our nortbern latitudes, numerous remains of animals and plants belonging to genera, which are now known to exist only in tropical climates. - In the most northern part of Asiatic Siberia, at the mouth of the Kiver Lena, which flows into the Arctic Ocean, in the 70th degree of latitude, there are vast accumulations of the bones of an extinct species of elephant, and these in such a state of preservation, that a great part of the ivory used in St. Petersburg, is brought from thence. Indeed the quantity is so great, that a Russian Naturalist has stated it as his belief, that the number of elephants now living on the globe, must be greatly inferior to those which occur in a fossil state in those parts of Siberia. The entire carcase of one ofthose animals was found enclosed in a mass of ice, where it must have remained incased for thousands of years; and yet, from the preservative quality of the ice, the flesh was in such a state, that, when it was disentombed by the accidental breaking up of the mass, it was devoured by the wolves and other wild animals. Moreover, it was thickly covered with hair, of which the existing species of elephants are nearly destitute; thus proving that it was of a species adapted to a cold climate. Then, as to plants, specimens of rocks have been brought from Melville Island, the remote northern land discovered in our late polar expe-
 portions of plants belonging to an order now known to
exist onty in the warmest parts of the equatorial regions.
hive Whic grou follo idea wate temp year: extel vicis cont Mos latit extt in w silve Napl air such liche mour etern there num wher to h Asia abov the n Al are lime also some clay. a str main atrate
formi
Pacif
rial regions. ave existed eeds' of the the nature that there ry consider.
The heat hat at last, the tertiary ere does not t it is now. arful change es, is one of 1 history of iety of con. portant and bodies, are rence in the iich they are lany theories en originally aally cooled; ss of cooling, according to f the varth iow, an was xposed 10 : 8. But the thèmselves in harmons ions of th ected to tos d not stand n ingenious Lyell. His rmer preva ce for by nd We Know ifferent"pro: int fotimuly
have oxisted in the northern hemisphere from that Which we now find. It is not very easy to state the grounds of this theory in an abridged form; but the following explanation will perhaps convey an intelligible idea of it. Wherever there is a great expanse of water, like the sea, there is always a more uniform temperature in the adjoining countries tir roughout the year, less extremes of heat and cold. On the contrary, extensive tracts of land are liable to considerable vicissitudes; and hence the difference of an insular and continental elimate in the same parallel of latitude. Moscow and Edinburgh are very nearly in the samo latitude; but while at the latter place, there is neither extrome cold nor excessive heat; at Moscow, the cold in winter is sometimes so intense as to freeze quicksilver, and there are often days in summer as hot as at Naples. In like manner, the higher you ascend, the air becomes colder; and thus in lofty mountains, such as Attna, the sugar-cane grows at the foot, and the lichen, or moss of Ioeland, at the summit. In the lofty mountains of South America there are regions of eternal snow under an equatorial sun. If we suppose, therefore, extensive continents; lofty mountains, and numerouis islands to have existed in southern latitudes, Where there is now a wide expanse of sea, and an ocean to have occupied the place of northern Europe and Asia; it will be readily conceived, from the principles above atated, that very different climates would exist in the northern hemisphere from . What now prevail.
All the solid strata, most abundant in animal remains, are either limestones, or contain a large proportion of lime in their composition. Many thick beds of clay also abound in them; but in that case, limestone, in some form or other, is generally associated with the olay. From this it has been inferred, and not without a strong semblance of probability, that animals have mainly contributed to the formation of many limeatone Btraita, in the saime way as we see them now at work forming vast limestone rocks in the coral reefe of the Paciic ocenn. A roof of this most oxtonde for throp
hundred and fifty miles along the east coast of NeW the coral formations have been found to extend, with very short intervals, throughout a distance of seven hundred miles. Of all the forms of organized bodies, which are found in a fossil state, from the lowest stratum in which they occur, to those of most nodern date, shells and corals constitute by far the greatest proportion. All the strata must have been deposited in seas or lakes; and it is therefore natural, that animals living in water should be most abundant. Besides, as shells and corals are not liable to decay, they remain, while the soft boneless animals, which inhabit them, perish entirely; and fish-bones, being more perishable than shells, are comparatively rare.

IX.-MINERAL KINGDOM.

We have soid that shells are by far the most numerous class of fossils: they are found in all formations, from the lowest stratum in which animal remains have been seen, to the most recent deposits now in progress. To a person who has made Conchology a special object of study, there appear many striking differences between those found in a fossil state, and such as now exist in our seas, lakes, and rivers; but were we to describe, or give representations, of even remarkable fossil shells, a general reader would discover, in most of them, nothing so peculiar as to arrest his attention. There is, however, one, which is so different from any thing now living, and of such common occurrence, that we are induced to give it as a good example of an extinct genus. It is called the Ammonite, or Cornu Ammonis, that is, Horn of Ammon, from its resem. blanes to those horns which are affixed to the hoad of the statuee of Jupiter 1 mmon.
bee

tior

elaj
spe
fro
or
nnc
No
80
he

Here is a representation of the exterior of one of the numerous species, of which this genus is composed.

These shells are found of all sizes, from that of a few lines to nearly four feet in diameter; and above three hundred different species are said to have been observed.

The diagram here given represents the two sides of 2 species of crustaceous marine animal, which has

been wholly extinct from an carly period in the formafion of the crust of the globe; many ages may have elapsed since it ceased to exist. There are several species of the animal, which has been called Trilobite, from the body being composed of longitadinal divisions or lobes. It is found in the British isles, in Germany and Sweden : and specimens have been brought from North America. In some parts of Wales the slate is so full of fragments of the animal, that millions must have swamed on the ppot.

Another fossil animal which is very pecaliar in it form is this called the Lily Encrinite. It resemblen

that flower upon its stalk, and still more so when the several parts of which the flower-like extremity is composed, are separated and spread out; specimens of it in this state are not unfrequently met with. That stalk is not a single piece, but consists of a number of distinct joints like those of the backbone, or like a necklace of beads, on which account the fossil has been sometimes called the Necklace-form Encrinite. The stalk is perforated through its whole length, and the joints, when separated, have figured surfaces such as are represented above in the circular bodies, the figure being different at different parts of the stalk. This family of radiated animals, which consists of many extinct gerara and species, has not wholly disappeared, like the trilobite and ammonite; living representatives of it are still found in the seas of the West Indies, and a very perfect specimen may be seen in the Museum of the Geological Society: but the lily encrinite, that branch of the family, is not only wholly extinct, but has been so ever since the period when the New Red Sandstone was deposited. It appears to have had comparatively a short existence, for it has only been found in a limestone which occurs associated with the New Red Sandstonc. It is met with abundantly in that particular limestone which occupies a great extent of country in Germany; but the fossil has never been seen in England, and that kina of limestone is mot found in our island.
eculiar in it It resembla
so when the emity is comecimens of it with. That a number of ae, or like a he fossil has m Encrinite. length, and surfaces such r bodies, the of the stalk. asists of many disappeared, epresentatives Indies, and - Museum of acrinite, that extinct, but the New Red to have had as only been ated with the dantly in that at extent of never been estone is not

The remains of fishes occur in almost every stratum, from the Old Red Sandstone up to the most reeent deposits of fresh-water lakes. Fossil fish have been less accurately made out, as to the genera to which they belong, than any other kind of animal remains; because the Natural history of fishes is not so far advanced as that of most other departments of zoology. The great French Naturalist, Cuvier, began an extensive work on the subject; and, had he lived, much would have been done, for his master-genius threw light on every thing he touched. One of the most celebrated places for fossil fish is a hill near. Verona in Italy, called Monte Bolca. Immense quantities have been found there in a very perfect state of preservation, as far as the form is concerned, but, as in most other cases, quite flattened and thin, so that they are like a painting, or engraving of a fish. These. impressions are of rare occurrence, in comparison with the quantity of separate bones that are found in must strata: teeth of the shark are frequently met with, and sometimes of a size which shows them to have beionged to individuals of giant dimensions, such as are not now seen in any seas.

Ibid.

X.-MINERAL KINGDOM.

organic remains.

In our last lesson, we gave some examples of remarkable species of fossil-shells, corals, and crustacea: two of these, the trilobite and the lily encrinite, belonging to genera which became extinct after the deposit of the oldest secondary strata. In the extensive series of sand-stones, lime-stones, and clays of the secondary rocks, from the coal measures up to, and including the chalk, the fossil remains of animals consist of a vast variety of shells, corals, sponges, and other marine productions of a similar deserintion-of a
fow kinds of orustacea, that is, animals having a crus or shell fike that of the lobster or crab, a few kinds of fish, some great rextiles, and a few insects. No re mains of land quadrupeds, or of the marine mammalia, or of birds, have yet been met with in chalk or anj stratum under the chalk, except one supposed instance. Among the numerous animal remains that occur in the secondary strata, there is not a single species which has not been for many ages extinct; and even whole genera have totally ceased to exist.

The extinction of species is so important a fact in all that relates to the geological history of the earth, that we will, even at the risk of some repetition, endeavour, by a little popular explanation, to make olear what is meant by the term. Each particular kind or genus of animal usually consists of several individuals, which while they possess a common character or colass of characters, have particular forms which distinguish them from each other; and such individuals constitute the species of a genus. The characters, by which geola gists distinguish the relative ages of strata, in so far ws animal remains are concerned, depend, not upon genus, but on the species; for while species have become ex. tinot, one after the other in succession, the genera to which they belong have continued to exist from the period of the deposition of the oldest of the secondary stratu to the present time. For example, the genus ostrea, of oyster, is fond in the lime-stones which lie beneath the coal-measures; but not one of the many species of oyster, which are met with in almost all the strata from that lime-stone up to the chalk, is identical with any species of oyster inlhabiting our present seas.

It is unnecessary for us to give the names of the marine remains, which are most abundant in the secondary strata, because even with the assistance of figures, they would oonvey to the general reader no clear ide of their peculiar forms; as distinguished from those of marine shells, corals, sponges, \&c. now existing; but some of the marine reptiles are so extraordinary in point of form and size an to denerve a more patiticuth motice Of these monsters of the ancient seas, nisi
liffere the se re se by Ge izard
A con epres but a hem. ng of poly t verted liso, t s four the n the ubstar hon t coo, ccoun process lead a rated, rater, cess of bones frequen enabled the ge sufficie conclus them. occupie ture of frame, departm have en riable p of gent only be akendy
having a orus few kinds of 2sects. No ro rine mammalia in ohalk or anj posed instance. sat occur in the ecies which has dd even whole
ant a faot in all the earth, that tion, endeavour, e olear what in ind or genus of ividuals, which er or olass of istinguish them constitute the y which geolo ta, in so far ws ot upon genus, we become ex. the genera to from the period econdary strata renus ostrea, ot ch lie beneath any species of the strata from tical with any as.
names of the in the secon. nce of figures, no clear ides from those of existing; but traordinary in sore paizticultu an seas, nive
ifferent genera have already been found entombed in he secondary strata, and of sqme of the genera there re several species. They have been called saurians py Geologists, from the resemblance they bear to the izard tribe, saura being the Greek name for a lizard. A common green lizard is a tolerably good miniature epresentation of the general form of these reptiles: put a crocodile or alligator gives a still better idea of hem. It must be remembered, however, that in speakng. of the fossil remains of those animals, we niean only their skeletons or bones; the flesh is never conerted into a fossil state. It very seldom happens, lso, that the entire skeleton of any large animal is found, particularly in the strata that were deposited t the bottom of a sea, and for this reason-the bones. n the living body are kept together by a cartilaginons ubstance or gristle, which after death putrefies, and then the several members fall asunder. Very often, 00, we find only detached bones; and this may be accounted for by another circumstance attending the process of putrefaction. When that commences in a dead animal, a considerable quantity of gas is generated, which swells up the body, and, if that be in water, makes it so much lighter that it floats. In process of time the skin bursts, and the gradually loosened bones are scattered far apart. Such detached bones frequently constitute all the data, by which we are enabled to decide upon the nature of the animal ; and the general reader may perhaps think that they are sufficiently scanty materials, consid ring the important conclusions which geologists sometimes draw from them. But the discoveries of philosophers, who have occupied themselves in comparing the anatomical structure of the lower animals with that of the human frame, and have created the interesting and beautiful department of science called Comparative Anatomy, have enabled them to establish certain fixed and invariable principles for our guidance in this curious branch of geologinol inquiry This field of invētagtioun inis only been entered upon within a fer years; but it has. akrondy violded eo ridh a harresta that it has gatablizhod.
some of the most important truths connected with the past history of our planet.-The great discoverer of those general laws of the animal kingdom was the illustrious French Naturalist, the Baron Cuvier. He has shown, that there reigns such a harmony throughout all the parts of which the skeleton is composed, so nice an adaptation of the forms to the wants and habits of the animal, and such a degree of mutual subordination between one part and another in portions of the structure apparently quite unconnected, that we are enabled, by the inspection of a single bone, to say with certainty that it must have belonged to a particular kind of animal, and could not have formed a part of the skeleton of any other. Thus, if we present to a skilful comparative anatomist a small bone of the foot of a quadruped, he will not only pronounce with certainty as to the size of the animal to which it belonged, but will say what sort of teeth it must have hadwhether it had horns, and whether it fed upon the flesh of other animals, or on vegetable substances. If many detached bones belonging to the same kind of animal be collected, the skill of the comparative anatomist enables him to put them together in their true places; and thus a complete skeleton has been constructed of separate fossil bones, which had belonged to several individuals of the same species. In this application of anatomy to geology we have a beautiful illustration of the intimate connexion of the sciences with each other. The discovery, in one of our stone quarries, of a few mutilated fragments of bone, imbedded in the solid rock, reveals to us the kind of animals that must have inhabited this region of the earth at the remote period when the rock was in the act of being deposited at the bottom of the sea, and tells us also that the climate was not that of the temperate zone, but of the tropics:

The most remarkable of the fossil saurians, which are found in the secondary strata, are those which have been called iohthyosaurus, plesiosaurus, megalosaurus, and iguanodon. The first of these is so called from the oharacters of the animal, partaking at the same time of the mature of a fish and of the lizard tribe,
ted with the discoverer of was the illuser. He has y throughout osed, so nice nd habits of subordination of the strucare enabled, ay with cerrticular kind part of the to a skilful foot of a ith certainty it belonged, have hadpon the flesh s. If many d of animal e anatomist true places; astructed of 1 to several pplication of ustration of each other. s, of a few n the solid ; must have mote period sited at the climate was pics:
ians, which whioh have egalosaurus, called from the same izard tribe,
ichthys and sauras being two Greek words signifying fish and lizard. Its head resembles that of a crocodile, only it is much larger and sharper, its snout ending in a point, 'almost as acute as the beak of a bird: it has 2 most formidable supply of sharp conical teeth, no less than sixty in each jaw. Its head was of an enormous size, for jaws measuring eight feet in length have been found; and it was furnished with a pair of eyes of still more extraordinary propurtion, for the oval hollows for that organ, in a skull in the possession of a gentleman at Bristol, measure fourteen and a half inches in their largest diameter, the size of a dish on which a tolerably good-sized turkey could be served up. The head was about a fourth of the whole length of the animal, and was joined to the body by a very shart neck: the back-bone was composed of joints or vertebre different from those of land animals, and similar to those of fishes; it was supplied with four paddles like those of a turtle, in the lower part of the body, and by means of these, and its very powerful tail, it must have darted very swiftly through the water. It was a most singular ombination of forms, for it had the snout of a dolphin, the teeth of a croca dile, the head and breast-bone of a lizard, extremities like the marine mammalia, and vertebræ like a fish.

We can, however, form no idoa of the appearanse of the animal when alive, except such as is conreyed to us by the sight of the skeleton; a very imperfect one, no doubt, as we know by the difference between any animal and its skeleton placed beside it. The foregoing representation of the complete skeleton of the ichthyosaurus, as restored in the way we have alluded to, is given by the Rev. W. Conybeare, the cminent Geologist, to whom we are indebted for the most complete aceount of these fossil waurians.

Homaine of the iohthyosaurus have been found in all the secondary strata, between the red sand-stone and the chalk, in many parts of England; but they are most frequently met with in the lias lime-stone, and in greatest abundance at Lyme Regis in Dorsetshire. They have also been found in several places on the continent, especially in Wurtemberg.
The plesiosaurus is so called from its near approach to the lizard tribe, plesion being Greek for near. It has a considerable resemblance in the body to the ichthyosaurus, but the head is much smaller, and is altogether of a different structure; but its most remarkable character is the great length of its neck. In man, all quadrupeds, and other mammalia, there are exactly seven joints or vertebre in the neck; and so strict is the adherence to this rule, that there is precisely the same number in the short, stiff neck of the whale, and the long, flexible neck of the giraffe. Reptiles have from three to eight joints-birds many more : the swan, which has the most, is enabled to make the graceful curves of its neck by being provided with twenty-three of those separate vertebro; but the plesiosaurus had no less than forty-one.
Mr. Conybeare, to whom we are indebted for the first description and name of the plesiosaurus, has given the following representation of this extraordinary longnecked reptile, in a restored state, in the same way as he has given us a figure of the ichthyosaurus:

Some fragments of the bones of a saurian of gigantic size were discovered by Dr. Buckland, a few years ago, in the quarry of Stonesfield, near Woodstock, in Oxfordshire. According to the oninion of Ourier, whe examined them, they must have belonged to an individual of the lizard tribe, measuring forty foet in length,
found in all d-stone and it they are one, and in Dorsetshire. aces on the

approach to

 \therefore It has a he ichthyo3 altogether rkable oha n man, all re exactly so strict is ecisely the whale, and ptiles have the swan, ie graceful enty-three us had nod for the has given nary long. ne way as
and having a bulk equal to that of an elephant seven feet high. This fossil animal was distinguished by Dr. Buckland with the name megalosaurus, on account of its great size, megale being Greek for great.
A. most curious discovery was made a few years ago by Dr. Buckland at Lyme Regis.
He had often remarked a number of long rounded stony bodies, like oblong pebbles or kidneyi potatoes, scattered on the shore, and frequently lying beside the bones of the saurians when these were discovered in the rook, He was induced to make a closer examination of them, and they turned out to be the dung of the saarian reptiles in a fossil state. When found along with the bones they are always under or among the ribs. Many specimens of them contained scales, teeth, and bones of fishes that seemed to have passed undigested through the body of the animal; just as the enamel of teeth and fragments of bone are found undigested in the dang of the ravenous hyæna.. It:was thus shown, that these great monsters of the deep fed not only on their weaker neighbours, but sometimes even on the smaller defenceless, individuals of their own species ; for Dr. Buckland: found in one of these stones. a joint of the back-bone of an ichthyosairus, that must: have been at: least four feet in longth. He has called the stones coprolites, from lcopros, Greek for dung; and lithos, a stone. Since his attention was directed to the subject, he has found similar bodies in many other strata, and belonging to different animals. "In all: these various formations," he says, "the coprolites form records of warfare waged by successive generietions of inhabitants of our planet on one another; and the general. law of nature, which bids all to eat and to be eaten in their turn, is shown to have been co-extensive with animal existence upon our globe; the carnivora in each period of the world's history fulfilling. their destined offion to oheck excess in the progress of life, and maintain the balance of areation." Ibid.

SECTION II.

HISTORY AND CHRONOLOGY.

History is the record of public events that have occurred in different ages and nations. Chronology treats of the precise dates at which these events took place. Our knowledge of historical events is derived chiefly from the writings of individuals; but these are aided by public records, inscriptions, coins, and other documents of a similar nature. Our knowledge of the chronology of these events is drawn from similar sources. History and Chronology, therefore, are intimately connected; yet they are so distinct as to suggest very different trains of investigation. History treats of the characters of the persons engaged in the events which it records, the motives which influenced them, the circumstances which led to the events, the incidents which accompanied them, the effects which resulted from them, involving considerations of the state of the nations that were engaged in them, their advancement in civilization and useful arts, and their relative position with respect to one another. The study of chronology, on the other hand, leads to the examination of the divisions of time that have prevailed in different nations, their modes of reckoning hours; days, weeks, months, years; different epochs that have been used in different ages and nations; cycles and other periodical revoin. tious of years; the deciphering of the devices and legends of coins and medals, the calculating of the eclipses that are mentioned in connexion with historical events ; and, in short, the investigating and estimating of any notices of time that may be discovered either in natural objects, or in any reoord kent by mon of the transactions in which they have boen ongaged.

The Hebrews were the only nation of antiquity, who had among them a regular chronological history. In the Sacred Scriptures, there is a chain of such history from the creation of the world till profane history assumes an authentic form. In the early portion of this history, the chronology is determined by a suc. cession of first-born sons, accompanied by a statement of the age of each individual, at the time when his eldest son was born. In the later portion of the history, the chronology is determined by the time allotted for the continuance of the authority of a succession of judges, ana afterwards of kings. There are some difficulties in adjusting this chronology, chiefly arising from variations introduced into manuscripts and translations of t.se Scriptures, during a long course of ages; but still, the best, perhaps the only guide. to a general view of ancient chronology, is the history contained in the Sacred Scriptures. As the land in which the Israelites were placed, was in the very centre of the world's population, in the neighbourhood of the great empires that successively arose, and as it became an integral part of these empires, the history of that people is intermingled with almost all that is important in the history of our species. In reading the sacred history, there is brought before us in regular succession the sovereignties established on the banks of the Tigris and the Euphrates, and the states that rose to eminence on the eastern shore of the Mediterranean sea; the kingdoms of Egypt, Ethiopia, Syria, Assyria, Babylon and Persia, and the influence which they possessed in the affairs of men in different ages of the world. The regular chain of Jewish history and chronology is broken off at the building of the second temple, after the return from the captivity of Babylon, when the Persian monarchy was at its height: but a general view of the subsequent history of the world, marking the rise of the Grecian empire on the ruins of the Persian, its separation into several kingdoms, the adyance of the pomat ompire in its gigantic strides to universal sovereignty, its strength and character, its

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

decsy and overthrow, is given in the prophota visiona of Hebiret prophet; so graphioally; andr inia mannert so perfectly conformable to the truth of history, thate when lose the aid of Jewish history, we cainot: follow betion guide than the sold characteristios sketch of subsequent ovents furnished by the Jéwiah prophecies:

The history of the world naturally divides itself into two great periods, namely, that which elapsed before the coming of the Saviour Jesus Christ into tho world ; snd that which has elapsed since that event. The appearance of that illustrious personage on oar planet was the commencement of that great revolation of mind, whick has already produced such stupèndous effects, and which is every day extending and strèngthcning its infuence. It was then that those sublime vie'm of the Deity, and that pure morality, whioh the nation of the Jewi had received from the Scriptures, began to be diffused over the world, a provess which soon changed the aspect of the Roman empire, ahd. laid the foundation of that superior illumination and humanity; and those just conceptions of the rights and liberties of men, which distinguish Europeas from the rest of mankind; as well as all who are of their kindred in other regions of the globe. The comimencement of this mighty movement is happily marked among the nations professing Christianity, by theit adopting it as the fixed era, From which they date all other events either before or after it ; stating the time: of their oecurrenoe by the number of years before Christ, or after Christ. We shall regard the birthi of the Saviour Jesus Christ, as the great tarning or hinging point of the worla's history, and vier the ohrobiology of, aill other events with referenoe to it:

Our attention, therefore, is, in the first place, to be direoted to those events which took place before the birth of Jesus Christ.

The various dítes and periods noted in the Hebraw Suriptared, ap oramined and compared by many lauthod mon, make the duration of the world frem ther
creation recorded in the book of Genesis, till the wbith of Ohrist; 4004 yeari For aiding the membry, this period may be conveniently divided, fallows: At the middle of this period; oy two thousand yearm before Chinst, and two thousand after the ofention of the world, Abraham was iborn: and the cill of dibraham was the commencement of that important dispensation of Providence, by which one family terer seiparated from the rest of the world, increased to a nation, phinfted in as central place of the fearth, that they might preserve among them the knowledge of the nameg stid oharicter, and law of the true God, and altimately difface it among the rest of marikind. In the miadle of the period between the creation of the frorld ard the siarth of A braham, or about the year B.O. 3017, Froch was translated to heaven, as a token of the favour and approbation with which God regarded his devout and holy character. In the middle of the period between the birth of Abraham and the birth of Christ, or about the year, B.C. 1004, Solomon's temple was finished. This period marked the fulfilment of the promises made to Abraham in their literal sense; for then, and not till then, did his seed reign in peace and prosperity, from the great river Euphrates to the shores of the Mediterranean sea. Thus the whole period of four thousand years is divided into four parts of a thousand years eaph, every successive period commencing with a remarkable event, namely, the creation-the tringlation of Enoch-the birth of Abraham-and the completing of Solomon's temple.
These four periods, thus distinctly marked, may bo further conveniently dividod ints eight, each of 500 years. So little is recorded respeoting the first two periods of a thousand years, that it is of less importance to divide them into half thousands. We momark, however, that the first thousand years, namoly, from the creation of the world to Enoch, is divided nearly equally, by the birth of Jared the fifth demppndant from Adam, whish was, according to the goumon chronology, in the year B.C. B544. The meopnd thousand years, namely, from Enooh to Δ braham, is
divided neurly equally, by the denunciation of the deluge and the commencement of the building of the ark.

The divisions of the latter two periods of a thousand years are marked by very important eras. That which intervened between Abraham and Solomon, is divided by the mission of Moser to the Israelites, their deliverance from Egypt, ard the giving of the law at Mount Sinai, which is determined to the year 1491, or, nearly 1500 years B.C. The last period of a thousand years, or that which intervened between Solomon and the * birth of Christ, is equally divided by the building of the second temple, after the return of the Jew from the captivity of Babylon, which event is determined to the year B.C. 515. Thus the whole period from the creation of the world to the birth of Christ is divided by remarkable cras, into eight periods, of about 500 years each, as in the following table.

No.	ERAS.	Tearnatter the Creation. A.M.	Tears before Ousith B.O.
1.	ORMATION.		1-4000
파	Javid.	800	8500
π \%		1000	8000.
IV.		1500	2500
V.	ABRAEAM	2000	2000
V1.	Ti, Moas	2500	1500
VIIL	That sozomos.	2000 碞	1000
VIII.		8690	1 600
$1+$	\% ¢	40	0^{2}

In the following chapters a succinot vien of the state of the world at each of these eight erve will bo given.

FIRST ERA.

The Creation.

A.M. 1.-B.C. 4004.

When man was created, he was placed in the garden of Eden, some delightful spot in the neighbourhood of the rivers Tigris and Euphrates; and a command was given to him, enforced by the perialty of death, by which command he was given to know his suijection and responsibility to the Almighty Creator. Eive was then made and brought to him, to be his wife. The fall of Adam and Eve into sin, soon follows, and their expulsion from the garden of Edn, to earn their bread by the sweat of their face; and then, in pursuance of the penalty of death which they had incurred, to return to the dust whence they were taken.

This era also is distinguished by the annunciation of a great deliverance and victory which God purposed to accomplish for man. "The seed of the woman," said he, "shall bruise the head of the serpent." "his era is also marked by the sudden and awful development of that corruption, with which human nature is tainted. Cain, the first-born son of Adam, became the first murderer, imbruing his hands in the blood of his own brother, Abel.

Cain was then banished from his father's home, and, in process of time, built a city. His descendants; apparently living without God, betook themsolves to parious चुonlaty avocations and amusements, to fill up that sad vacuity in their bosomes, whigh : the
ment of love to God hed greated there. In thon mean while, mother, son was born to Adam, whom ho called Seth, and who occupied the station of Abel whom Cain slew.

Thus mankind were early separated into two classes, namely, the descendants of Cain, and the descen innta of Seth.

SECOND KRA

Jared.

A.M. 500.-B.C. 3500.

At this era the families of Cain and Sefh were atill living separate from one another. During tha period that followed, there were born Anoch, Nethuselah, ana Lamech, the father of Noah. Adam died at the age of 330 years. During the antediluvian periods, human ife bore nearly the same proportion to a thousand, Which it now does to h hundred years. If is now but sbout the one-tenth of what it then was.

THIRD ERA.

Enoch.

A.M. 1000 _B. 2.3000.
ppitere in marked by that attenondinern atactimeny great thought nually; the god manded himself ITHidhyGed abofe to ithe ihelincesi of mookls chatector

ANODANT MCGOORT.-STMSD EMA.

89
When he removed him to heaven, without subjecting him to the universal sentence of death. This distinction conferred on Enoch, indicates that corruption was making rapid strides among men. And accordingly, in a prophecy of Bnoch, ceveried iny the apostle Jude, he denounces the judginamis of God apon the ricked; safing, "Behol:1, ti.e loord cometh with ten thousand of his saints, to edvcute judgment upon all, to convict all the impious anlon: t:um, of all their deeds of impiety, which they have impiously perpetrated, and of all the hard things whioh impious sinners liave spoken against hım." In this propheoy, there is the first intimation on record of a final day of retribution.
Towards the conclusion of the period of 500 years which followed this era, the progress of corruption was accelerited by intermarriages forned between the descendants of Cain and the descendants of Soth. "The
i wene atill period that selah, ana the age of ds, human thousand, is now but sons of God," it is written, "saw the daughters of men that they were fair, and they took them wives of all that they chose." By this statement is probably meant that the professing worshippers of God, the family of Seth, began to intermarry with the votaries of the world, the family of Cain. The consequence of this intermixture of the two families, was the rapid and universal spread of wickedness. Tho children of these marriages becaine nighty men, men of renown. There were giants (literally fellers) on the carth in these days; and the earth was filled with violence. Thus the crime of murder, which had been specialis marked by the high displeasure of God, was the very crime into which men rushed headlong, doubtless glorying in it, as it is known they did after the detuge.
"And God saw that the wickedness of man was very great upon the earth, and that every imacination of the thoughts of his heart was only evil. and that continually;" and he declared his purpose of sweeping away the godless race by the waters of 2 deluge; and commanded Noah to build an ark for the premervation of himpelf and his family.

FOURTH ERA.

The building of the Ark.

A.M. 1500.-B.O. 2500.

This era finds the whole world one soene of nolence and corruption. Only Noah was found upright before God. And Gol, proposing to sweep away the whole race of the wicked, commanded Noah to build an ark for the preservation of himself and his family. Noah believed that God would do as he had declared, and, "moved with fear," began to build the ark according to the directions that were given to him, proclaiming in the meantime, the catastrophe that was approaching, and warning men to repent of their sin;for he was "a preacher of righteousness" They, nowever, were too intent on their own parsuits and pleasures to atténd to him. "They were eating and drinking, marrying and giving in marriage, and knew not till the flood came, and took them all away:" The ark being finished, Noah was directed to collect in it, pairs of all those animals that were to be preserved, and then to onter it himself and his family, in all, dight persons. The windows of heaven were then opened, and the fountains of the great deep broken up, and the water rose, till it reached the tops of the ioftiest mountains, destroying every living thing that sould not subsist in the watet. It then again gradually retired. This whole operation occunied only about a year;-namely, the year B.C. 2347.

The first remarkable event after the deluge, was the promise of preservation from any future deluge, and the laiv given to Noah, in which was pointediy prohibited the shedding of blood. At this time aleo
libet follo of 1 to spres reste
Ham
occu
were
T
year
rose
of 8
who
in th
Babe
On
menc
inter
those
to h
that,
splen
Th
altho their ing t] That repea destm ding feroci have regior the p
liberty was given to mon to oat animal food. Then followed the division of the carth among the three sons of Noah, which seems to haye been done according to some rule or system. The deaserdants of Shem spread themselves from Mount Ararat, where the ark rested, towards the South and Fiast; the descendants of Ham went towards the South and West, particialarly occupying Africa; and to Japheth and his posterity vere assigned the North and West.

Towards the latter part of this period, or abont 2250 years B. C., cities began to bo built, which aftervards rose to great eminence. Ashur, one of the descendants of Shem, built Nineveh on the Tigris; and Nimrod, who had addicted himself to hunting, erected a kingdom in the land of Shinar, on the banks of the Eaphrates. Babel seems to have been the capital of his kingdom. On the plain of Shinar, the tower of Babel was commenced; but its completion was prevented by the interposition of Cod, who introduced confusion among thooe Tho were employed in building it; yet it seems to have formed the germ of the city of Babylon, that, many ages afterwards, arose to great power and splendour.

Thus, the conduct of men very soon proved, that althongh the deluge had given a temporary cheok to their wiokedness, it had done nothing towards purifying the human heart, from its proud, ambitious passions. That very crime against which Almighty God had repeatedly pointed his indignation, which had brought destruction on the old world-violence and the shedding of human blood, soon began to appear in all its ferocity and scenes of carnage commenced, which have disgraoed and consumed mankind, and kept whole regions of the earth in desolation and wretchedness, till the present day.

IIFTH TRA

Abraham.

A.M. 2000.-B.C. 2000.

At this era idolatry had made some progress. Even the family of Shem wns corrupted by it. Tera, the father of Abraham and of Nachor, when he lived on the other side of the Euphrates, we are told, "served other gods." But instead of checking this evil by some awful infliction similar to the deluge, God selected a family with whom he might deposit the knowledge of himself and his will, and to whom he might give so conspicuous a station among the nations of the world, as would tend to preserve that knowledge in the world, and diffuse it among the rest of mankind. This measure he commenced by calling Abraham to leave his native country, Mesopotamia, and to reside as a stranger and a wanderer in the land of the Canaanites; a land which lay between the river Jordan and the Mediterranean sea. To Abraham, who was falling tinto the contagion $9 f$ idolatry, he revealed himself, and maintained an intercourse with him from time to time, promising to give nim a numerous posterity, while yet he had no child; to give the land in which he had come to sojourn to his posterity; and to make them a great nation, and to give them dominion from the Euphrates to the shore of the Mediterranean sea,

Abraham obeyed the call of God, and came from Mesopotamia to the land of Canaan. This land was occupied by different families descended from Canaan, the son of Ham, but to a great extent open and uncultivated; yet with some towns or cities scattered oves it. The sea-coast to the southward, was in possession of the Philistines, from whom the whole country afterwards derived the name of Palestine. The valley of the Jordan, which river seems to have then flowed to the Red Sea, especially that part of the valley which lice betirean the monntains in the eouth of Palestine,
38. Even Tera, the lived on I, "served 1 by some selected a wledge of ve so con. world, as he world, 8 measure ais native inger and ind which terranean contagion d an ing to give no child; arn to his , and to shore of
me from land was Canaan, and upred over rossession try afterralley of Howed to which ?alestine,
and a mountainous district on the eastern side of it, seems to have been more thickly peopled, having in it several cities in the midst of a luxuriant country, of which Sodom and Gomorrah were the chief. The inhabitants of these cities had become profigate in the extreme. They were governed by kings; each city having its own king. But these kings were tributary to an empire, the centre of which was on the eastern bank of the Tigris. It is probahle that the kingdom erected by Nimrod had, by this time, extended itself to the Jordan. The kings of the cities of the plain of Jordan had, about the time of the call of Abraham, rebelled against the king of Elam or Persia. And the next year, Chedorlaomer, with four confederate kings, one of whom was the king of Shinar, came upon them with an army, defeated them, and plundered Sodom and Gomorrah. They wore, however, overtaken, in returning home, by Abraham, with his servants, and some of the neighbouring chiefs, and the booty recovered from them.
Egypt vas then governed by a king, and seome, to have retained some knowledge of the true God. Damascus was built in a beautiful valley, watered by two rivers, on the edge of the wilderness. It is called by the inhabitants of that country; Sham, which reniderd it not improbable that it was built by Shem, the son of Noah.
Abraham had brought with him Lot, his nephew, who went down to live in the vale of the Jordan, near the city of Gomorrah. While he was there, the vickedness of that and the neighbouring cities became 00 intolerable, that God rained fire and brimstone upon them, and destroyed them; and, at the same time, the ground seems to have sunk, so that the Jordan, instead of fow. ing through the valley to the Red Sea, was arrented in its course, and formed that salt Iake which is called the Dead Sea.
After this, Lot, who had been warned of the imponding fate of the cities, and fled with his family lived: among the mountains, to the ent of the Dead Bex; Whas ho had two cons, Moab and Am heces hy whoms
detoendants that distriot of country was aftervards peopled.

Abrahiam had a son by Hagar, an Egyptian woman Ishimael, whom he sent away from him, and who took up his residence in the vilderness, between the south of Palestine and Egypt.

In his old age, Abraham had his son Isaac, who was to inherit the promies that had been made to him on leaving his own country. Isaaio, before the death of his father, married his tuear relativo Rebekah, by whom he had two sons, Esiau and Jacob. Esaü, or Edom, became a man of the field, and freguented Mount Seir, to the south-east of Palestine. His descendarits, for many ages, ocoupied that distriet, under the name of Edonites, and more réoentily Idumexans.
Jacob went to Mesopotamia and married two of his near relatives Rachel and Leah, and by them, and tro other wives, he had twelve sons, who became the heads of the twelve tribies of Irrael.

Abraham had also children by Keturah, another wife, Whom he sent avay fiom Teiac towarta' the eatward. Aming these was Mitian, who became the liead of a nyftion, which is frequently noticed in the subsequent history.
Jicoob remaihed in the land of Mesopotamia for 21 years, and then returned to Canaan, where he found Isaac still living. Esain, his brother, who had addicted hitiviself to the chase, atid probably yliso to warfare, was at the hised of 400 armine then, and resided chiedy in Monit Seir. Juoblb hud eftern sobis at the time of hith return to Canain, ind one whas born to him after his refuith: The tro youngest were soins of hils ceroured wifs, Rachill, ard were distingidillied by him from his other cluifaron by pulticutar tokens of affection. This ofecafionied discontern atid oivy in the others, whito bofing licireased, with respect to Joseoph, the elder of Rachel's sons, by his fidelity in reporting their vioes, and ly bevidin dreames, which he rethtold, thitit noended to indictite in fumbition of raling over theme thiy

thro
İhn
sold
W
marl
being
impu
brou
signi
of pl
of e
to th
intru
of gr
years
oution
famiv
breth
ately
him;
whiet
their
The
also o
remov
jears,
Th
count
amaxi
E
That 1
sequab
supply
soarci
thie po
was,
the p it the lat
affitic
and
a woman! who took south of 0, who was to him on eath of his Thom he mb, became eir, to the for many Ddomites,
tivo of this 1, and tivo the heads
other wife, eastward. lieail of a ubisequent
ia for 21 he found 1 addicted urfare, was chinefy in ime of his difter his envorited from his on. This tro, whion 1elder of cir vioen, it noomed om, thay
 to faving
through the country. These merchants, who were Ishmaelites and Midianites, brought him to Egypt, and sold him there as a slave.

While he was there, the king of Egypt had a remarkable dream, which gave him uneasiness, and Joseph being informed of it, felt himself warranted, by a divine impulse, to propose to interpret it. He was accordingly brought before Pharaoh, and interpreted the dream, to signify that it indicated that there would be seven years of plenty in the land of Egypt; followed by seven years of extreme scarcity. Joseph was immediately raised to the highest rank in the kingdom of Egypt, being intrusted, during the years of plenty, with the collecting of grain for supplying the deficiency of the approaching years of famine. While he was engaged in the execution of this office, during the years of sicarcity, the famine, having reached to Canaan, brought down his brethren to Egypt to purchase corn. Joseph immediately recognised them, although they did yot rebognise him; and after a variety of measures, the purport of which seems to have been to bring them to a sense of their guilt; he at length made himself known to thein. The result was, that, on the invitation of Joseph, and also of the King of Egypt, Jacob and lis whole family removed to Egypt, where he lived about seventeen years, and died.

The Israelites, being placed in a fruitful part of the country, increased, under the blessing of God, with amaziing rapiditfy.

Earpr.-Egypt had now become a powerful kingdom. That king, who reigned in the time of Joseph, in consequetice of his having obtained the command of the supply of food during sevein years of extraordinaty saarcity, had been enabled to make his own terins with the people. And the arrangement which he had made wais, that the people should pay to him a fifth part of the produce of the land, in lieu of rent as proprietor of the laha, atid of tares as head of the goverument. This atrationtit eutatla the kjug to maintain a powerful ard mell-appointed army, with abundarice of hotberimen
and war chariots. It onabled him also to engage in those stupendous works of architecture, the reinains of which are still the astonishment of the world. Fygpt had also conmenced the pructice of enibalming the bodies of the dead, by which it has been rendered so remarkuble. Forty days were employed in this opera. tion in the time of Joseph.

SIXTI ERA.

Moses.

A.M. 2500.-- B.C. 1500

Trm Isramfites.-The rapid increase of the Israclite ered thom in process of time objects of alarma to 1 yptinus: a king arising who knew not Joseph, he began to adupt the most rigorous and unscrupulous measures to diminish their number. He reduced them to the anost abjest slavery, employing them in building gitien; exacting of then exhausting and overpowering labour. But finding that they still continued to increase, he commander that all the male children should be thrown intc, the river as soon as they were born, and only femalea preserved alive. At this time Moses was born and was preservel from the effects of this edict in consequencre of haring been taken under the protection of the kilug's daughter. His parents had placed him in a chest of bulrushes, and laid him among the flags, by the brink of the river, and Pharaoh's daughter finding him, adopted him as her own son. Thus Moses received an cilucation which fitted him for the important ofice to which he was destincd, as leader and governor of the Israclites. When Moses came of age, however, huving boen made acquainted with his descent from Abraham. Isuac, nad Jacob, and having been in structed by his purcints in the privileges bestowed upon their untion by the tiud of heaven, he relinquished his fiir hopaz nud prownects, on an Eyyptian of high, eveen
spis
suffe
the
smit taki
This
the
the
whic
cons
resid
beco
with the 1 Lord to Eg ites, the p The of pl the 1 tion, Phara let tho the \mathbf{R}
extrei
of Go the w the I wives parent ariuy, unable or tc. this ex directe it T bian de follow Euas of
engage in emains of 1. Eyypt ming the ndered so his opera. of alarn Joseph, rupulous ed them building owering increase, lould be orn, and oses was is edict protecced him e flags, aughter Moses imporler and of age, descent een in. d upon hed his h, нveu the do
spised and persecuted Israelites: He ohose "rather to suffer affiction with the people of God, than to enjoy the pleasures of sin for a season.". He saw an Egyptian smiting, probably putting to death, an Israelite, and taking the part of the Israelite, herkilled the Egyptian. This being discovered, he tled across the Red Sea, to the mountains which lie between the gulfs into which the Ked Sea divides itself at its northern extremity, which was then called the land of Midian, doubtless in consequence of Midian, the son of Abraham, fixing his residence there. He thus cbtained an opportunity of becoming acquainted with that district of country, and with the whole of the desert that lies between it and the land of Canaan. While Moses was ir Midian, tho Lord.appeared to him and commissioned him to return to Egypt, there to call together the heads of the Israelites, and then to go to Yharaoh and demand liberty for the people to leave the land of Egypt. Moses did so. The denand was, of course, refused; but, by a series of plagues, which Moses was commissioned to inflict on the land of Eyypt, the last of which. was the destruction, is one night, of all the first-born sons in Egypt; Pharaoh was compelled to vield to the demand, and to tet the people go. Moses accordingly led them, towards the Red Sea, as if he intended going round the northern extremit of the westeru gulf of it; but by direction of God he turned, and encamped close by the gulf, on the westeru side. Pharaoh seeing the immense body of the Israelites, consisting of 600,000 men, with their wives and uhillren, entangied in the land, and apparently withun liis reach, pursued them with his whole army, and vuine up with them as they lay encamped, unable to go forward, for the sea was in their front, or to turn either to the north or the south. In this extremity, the Lord caused the sea to divide, and directed Moses to lead the people through the bed of it The [sraclites thus passed in safety into the Arabian desert; while the Egyptian arny, in attempting to follow them, wore caught by the roturn of tho see to its vine \%in, and drownod

Moses then conducted the people to the motintainour district, where he himself had found refuge; and there the law was given to them, and their civil and ecclesiastical policy arranged. They then marched north wards towards Canaak, and were directed to enter it, but, being afraid, and refusing to go, they were condemned to wander forty years in the desert, till all the generation that came out of Egypt had died, with the exception of two persons. Duting their wanderings, they met with many vicissitudes, fell into many sins, suffered severo corrections; but, at length, they were led round by the south of Edom, and, after defeating two kings who attempted to withstand them, they found themselves ericamped on the east side of the river Jordan, opposite to Jericho.

Ábout this time Moses died, and Joshua succeeded to the command. He led them across the Jordan, which was miraculously divided to afford them a passage. He first took and destroyed the city of Jericho, and afterwards passed through the greater part of the land, took the cities wherever he went, extirpating, or driving out the Canaanites, and setting the Istaelites in their room.

Joshua did not complete the conquest of the land, many of the natives retaining their footing is it: After his death, the people fell from time to time into idolatry, and the Canaanites, who were in the land, or the neighbouring nations, particularly the Moabites, Midianites, and Philistines, obtained power to oppress them.

During this period the Israelites were governed by judges, who succeeded Joshua; and these led them in war, and administered justice to them in peace.

In the first century, after the death of Joshua, Oushan-rishathaim, king of Mesopotamia, oppressed them for eight years, when, on their repentance, Oth niel was raised up to deliver them, B.C. 1405.

The people enjoyed rest for forty years, but returning to idolattry, they were invaded and oppressed for 18 years by the king of Moab, aided by the kings of Ammon and - malck, and on their tepentainoe wete do-
livel 132
I retu by 3 pein' dire on t atta. 128 ode,
untainous nd there 1 ecclési. d north. enter it, were conill all the with the underings, tany sins, hey were defeating hey found river Jor. ceeded to an, which age. He and afterland, took iving out in their
the land, tt. After o idolatry, the neigh Lidianites, rerned by 1 them in

Joshua, oppressed nce, Oth
livered by Ehid, who slew the king of Moub, B.O. 1325.

In about 20 years afterwards, the Israelite, having returned to their idblatry, were invaded and oppressed by Jabin, king of Canaau, for 20 years. On their repentaince, Barat, and Deborah, a prophetess, under the direction of God, assembled an army near Mount Tabor, on the banks of the stream Kishon, and, on their being attacked by the army of Jabin, totaily defeated it, B,C. 1285. This victory gave occasion to the celebrated ode, composed by Deborah.

Another relapse into idolatry brought upon them an oppressive invasion of the Midianites, who tyrannized over them for seven years : and, when they repented, and oried to God for deliverance, Gideon routed the army of the Midianites, with 300 chosen men, B,C. 1245.

On the death of Gideon, idolatry again began to appear, and on this occasion the people were chastised by intermal warfare. Abimelech, a son of Gideon by his concubine, slew all the rest of Gideon's children, and was proclaimed king by the Shechemites, but his adherentes afterwards quarrelling, destroyed one another.

On a subsequent relapse into idolatry, the Philistines and Ammonites obtained power over the Israelites, and oppressed them for eighteen years. Jephtha wis, on this becasion, raised up to deliver the people. He defeated the chirildren of Ammon in a battle fought on the east pide of the tiver Jordan, B.C. 1187. The Ephraimites quarrelled, on this occasion, with him, for not taking them to the war along with him; and he intercepted them at the fords of the Jordan, and slew of them 42,000 men.

About 88 years after thin, Eli; the high priest, was judge, and duting his weak government tho people fell into their besetting sin. The Philistiles then came upon them, overrat thic country, and miserably oppressed them for forty Jear.s. It was during the goTefnimet of thet chimot perboned hir the of

roused to resist the Philistines, and the sons of Eli brought the ark out of the tabernacle, for the purpose of inspiring the people with courage, and of terrifying the enemy; doubtless, also, with some expectation that God would not permit that sacred symbol of the covenant to be taken by the Philistines. But they were totally dofeated, and the ark taken, B.C. 1116. Wli received so great a shock by this event, that he fell backwards and died.

Samuel, who had been brought up in the tomple with Eli, then became judge of Israel. Ho was the last of the judges. His sons, being entrusted by him with the government of the kingdom, conducted themselves in the most profligate manner, so that the people demanded a king, that they might be like the nations around them. Samuel was directed by God to comply with this demand, and Saul was chosen the first king of Israel. He, however, proving unfaithful, the Lord rejected him, and ohose David to be king. This choice came to the ears of Saul, who from that time pursued David with the most deadly malignity. At length, Saul and his son Jonathan, a young man of the noblest and most amiable oharacter, were slain in battle by the Philistines, and David ascended the throne of Judah, B.C. 1055, and became king of all Israel, B.C. 1048.

Davil was a warlike prince, and subdued the Syrians, the Philistines, the Moabites, and Edomites, and brought that whole district of country that lies between the river Euphrates and the Mediterranean sea under tribute. After an eventful life, David died, leaving his dominions to the undisturbed possession of his son Solomon, who succeeded hin, B.C. 1015.

Palestine. - This country had in the days of Moses become more densely peopled than it was in the days of Abraham. It was occupied by several tribes, desconded from the same stock, namely, tho family of Canaan, as the Hittites, Hivites, Amorites, and Jebusites. These tribes had built many strongly fortitied cities, and had brought the ground into conerl cultivetion. The eitine on the
coa-coust had commenced that commercial career whioh, for many ages, gave them much influence in the political rovolutions, which mark the general history of the world.
liut, in their prosperity, they had cast off all fear of the God of heaven, and had rushed, with one consent, into the most debasing idolatry. They occupied that land which God had destined for the seat of his own peoiple; and, by the time that the Israelites had become' sufficiently numerous to occupy the country, they were, by their wickedness, ripe for the fate that awaited them.

They had abundant warning given to them of the parpose of God to expel them. After the Israelites had been separated from the Egyptians by their passage through the Red Sea, they hung on the borders of Canaan for about forty years, wandering in'a desert, in which no such budy of people could have existed without a miracle. But the Cunaanites, so far from taking waruing and retiring from the country, seem to have been at the more pains to fortify themselves in it; so that when they were attacked by Joshua, they seem to have regarded themselves quite prepared by their fortresses, their armaments, and their leagues for mutual defence, to repel him.

They were, however, subdued, with amazing rapidity, but not wholly expelled nor extirpated. Considerable numbers of them remained in the land, and for many ages greatly harussed the Israelites.
In the time of David these original inhabitants of the holy land were either extirpated, or thoroughly subdued. The empire of Jabin, king of Canaan, the capital of which was Hazor, towards the north of Pulestine, and which rose to its height about $\mathbf{3 0 0}$ jears before the time of Sulomon, seems never to have recovered the blow that it received from Deborah and Baruk. The Philistines also were thoroughly and permanently subdued by David. Uf the siates on the coast, Tyre rose to great eminence; ay the inhabitarits of Tyre became celebrated for their s ill in navigation ond eofimerce. Hirain was King of Tyre in the day of Solomon, and the two moparch weem to.
haye lived on termen of pudiaturhed firiendship. Himan gave Solomon mayh aspigtence in the building of tho tomple, and they sent out feets togethar from minionGeber, on the Red Sea, for commercial purposes. The places whigh theme fleets visited, aro not exietly known.

The nations immediately surrounding Palestine, as Syria, Noab, Lmmon, Edom, and Nidian, were, in the daya of Davi, brought into subjection to his ompire.

Wor
the led whi tion the
hav
by
pose
of 1
a m
calic
I
been
then
Thei
expe
year
by J
a sh
who
came
Med
pedit migh
Zeals
to th
70 y
in a
wife
on th
gave
in th have
duced
Who
the I
of So
wore wrought up with inspiration in the composition of their writings, there can be no doubt that, in the knowledge which Moses exhibits of a vast variety of subjects, which were not likely to be communicated by reveletion, we have some indigation of the advancement of the Egyptians of that age, in science and art.

Griegor.-The kingdom of Athens is supposed to bave been founded about the time of the birth of Masas, by Cecrops; and Dencalion's flood, in Thessaly, is sppposed to have taken place about the time of the misaion of Moses to Pharaoh. Others think that this flood was a mere tradition of the universal deluge, and that Deucalion was Noah.

The people, who gettled in Greece, appear to have been refugees from many pations; and society among them soems at this time to have been in its elementis Their most ancient traditions, chiefly respect marauding expeditions, and the destruction of citieg. About 260 vears before Solomon, when the Leraelites were govarned by Judges, an expedition wae undertaken by Jason, in a ship called the Argus, having on hoard 50 followers, Who entered the Euxine sea, and coasted along till they came to Colchis. Here Jason carried away with him Medea, the daughter of the king of Colchis This ozpedition seems to have been very much like what we might expect to have taken place among the Ne Zealanders, or the inhabitants of Tabiti; previously to the introduction of Christianity among them. About 70 years afterwards, Paris, the son of the king of Trey, in a similar piratical expedition, carried off Helen, the wife of Menelaus, king of Sparta. Menelaus pretailed on the Grecian states to espouse his cause; and this gave rise to the celebrated siege of Troy, which ended in the total destruction of that oity. It is supposed to have been in the time of David, that Cadmus intioduced letters into Greece from Phonicia; and Homar, who celebrated the siege of Troy in his poom called the Iliad, is supponed to have flourished about the tims of Solomon.

MPVENTI MRA.

Splomon.

A.M. 8000.-B.C. 1000.

The Kingdom of Judah.- Solomon, on his coming to the kingdom, was in possession of every thing that could contribute to the greatness and happiness of a mighty prince. His possession of the throne was undisputed his dominions at perfect peace-his government rospected by the surrounding nations, and abundance of wealth flowed into his kingdom through the means of an extensive comm jre He himself was a master of all the learning of th: g ge , and possessed wich knowledge, in which the rest it cankind did not partuijate. He wrote treatises, whicr are not now extant; on plants and on animals. He wrute many proverlus, or woral sayings, and also many poems, some of which are extant, having been embodied in the book of inspiration. He lived in the utmust magnificence and was energetic and able as a judge and a statesman. His great work was the crecting of a magnificent temise at Jerusalem, which, for many ages, was, as the taternacle previously had been, the centre of divine worship.

Arts and sciences must have made considerable progress in the days of Solomon. The temple, which he built at Jerusalem, seems to have furnished the model for the most chaste and simple of the Greek temples, being, like the Greek temples, an oblong house, divided into an outer and inner apartment, the inner the most sacred; a portico also, supported by two pillars, with their bases, shafts, and capitals, and probably, also, with an entablature and pediment, being placed in front of the principal entrance. This temple was built of stone, hewn and polished in Mount Lebanon, the wood part of it also being of timber cut in that mountain; and the whole materials for the ereetion of the temple were prepared there, brought by sea to

Joppa Jeruse sound bigh a соиро dernes the \mathbf{P} plicity and S
was no this tio mands simplic comule have su Hiram down Cupe rabean. expressl allusion: natural must lia
The
in the declinu. should the rive Beal, wals attained mon hin ters of The Ep have be house of on the a deman meut. boum, an muder t Wore divi

Joppa, and thence conducted over the mountnins to Jerusulemir; so that, when they canne to be erected, 10 souud of any iool was heard. This, of itself, exhibits high advantennent in the mechanioal arts. In the art of composition, nothing can excel, for sublimity and tenderness, the Psulluss of David; for tersenens and foree, the Proverbs of Sulomon!; or, for beauty and siml. plicity of uurrative, the history of the reigus of David and Solomon. And this adrancennent of literature mas not contined to Judea; fur, if Homer flourished at thin time, tice Greck poetry also of that age still connmande the admiration of the world, for its combined simplicity, sublimity, and elegance. Navigation also, anid commerce, were cultivuted to a great extent. Simue haye supposed, that the combined fleets of Solomon and Hiram even went round the peninsula of Africa, paissing down the Red Sea, doubling the Cape, now called the Cape of Good Ilope, and returiingy by the Mediterrabean. Although none of the works of Sillomun, expressly on nutural history, ure extant; yet from thie allusions made by him,' and by David his father, to natural ubjects, much accurate knowledge, it is obvious, must have been collected on these subjects.
The Jowish monarchy reached its' liighest elevation in the reign of Solomen, and it immediately began to deelinc. The promise made to Abrahain, that a seed slould be raised up to hill, which should reign from the river Euphrates to the shires of the Mediterrailean sein, was literally fultilled. But no s oner had the nation attained this elevatioun, than it began to decline. Sulo'mon himself, cuticed by idolitrous wives, the duiughters of the veiglibouring princes, fell into idulatry. The Ephraimites, a power.ul tribe, never reem to have been thuroughly reconcileu to the reign of the house of David, which was of the tribe of Judali; and on the succession of Reliobuam, the son of Solmun, a demand was made for some relasation in the government. This demiand was answered rouylly by Rehoboam, and instantly ten of the twelve tribes revolteid, muder the auspiees of Jerobuam. Thus the Israelites: Fore divided into two kiingdouss the one, comaininy of
ton tribes, called the kingdom of Israel; the other, cothsisting of the tribes of Judah and Benjamin, with the Levites, salled the kingdom of Judah. The consequence of this division was an almost continual rivalship and wirfare between the two kingdoms.

Refioboam was the first monarch of the kingdom of Judah, as distinguishod from that of Israel. He was a weat prince, and in his reign Shishach (supposed to be the mine with Sesostris), king of Egypt, invaded his kingdon, and plundered Jerusalem and tho tomplo. He reigned 17 years.

Abujah succeeded him, and reigned three gem. In his reign, a battle was fought between him and Jerobosm, ling of Israel, in which the latter was defeated with the loss of $500,000 \mathrm{men}$.

Lsa succeeded Abijah, and reigned 41 years. He Was, on the whole, a good prince. In his reign tho Ethiopians, or Cushites, a people ocoupying the southern parts of Arabia, came up against his kingdom, with an immense army. Asa committed himself and his people to God, and then going out against the Ethiopians, totally defeated them. After this, Baasha, king of Israel, came up against him, and began to build 2 fortress at Ramah, on the borders of his kingdom. Ass, instead of again betaking himself to God, hired Benhadiad, king of Syria, to send an army against Israel. This expedient succeeded for the time; the army of Israel withdrew, and the fortress was levelled to the ground. But God was displeased with him, and sont a prophet to rebuke him; on which he was angry, and put the prophet in prison. Soon after he became diseased in his feet. In lis disease, he sought not to God, but to the physicians, and died of his disease. To Asa succeeded -

Jehoshaphat, his son, who reigned 25 years. Jehoshaphat adopted vigorous measures for purging the land from idolatry, and for instructing the people. Towards the beginning of his reign, Elijah the prophet The raimed np to contend against the progress of idolath and viokodnem in Imrael. Jehomhaphat joined

[^0]her, coithwith the e conserivalship gdom of He was a sed to be aded his tomplo.
nin. In ad Jero. defeated
rs. H. oign tho e southingdom, self, and inst the Baasha, to build ingdom. d , hired against ne; the levelled im, and angry, became t not to disease.
rs. Jeing the people. prophet fidolajoined

Aheb, the wioked king of Irrael, in an onterprise. agoinst Ramoth Gilead, whioh mas in ponemenion of the Syrinns. In this enterprise, Ahab was killod, and Johoshaphat escaped to his own kiagdom. Jehookhaphat engaged in another militiary expedition along with Jehoram, now king of Iaraol, rgtinnt the Moabites; and the two kings after being in imminenti danger of losing their armies and their lives from want of water, were, by applying to Elisha the: prophet for direotions, not only dolivered, but enabled to defeat the Moabitions Jehoshaphat died in 889, B. C. and was surcobelled by his mon-
Sehoram.-This prinee had married Athaliah, daughtor of Ahab and Jezebel. On his acceession, he murdered his brethren and intirodioed idolatry into his kingdom. Another Jehoram, son of Ahib, was, at the same time, king of Ierael. In this reign the Ealomites revolted from under the dominion of Judah, and never were again subdued. Jehoram was warmed, by a letter from the prophet Elijah, of the judgments of God about to fall upon him; but in vain. God then brought the Philistines and Arabines against him, who broke into Judah, plundered the king's house, and took away his wives and his sons, so that he had ne son left him but Jehoahaz or Ahaziah.* Still remaining incorrigible, he was emitten with violent disease, and died miserably, in the 8th year of his reign, B.O. 885.
Ahaziah, his younger son, succeeded him. He was the son of Athaliah, the daughter of Ahab, who seems to have been absent when the Philistines came and took away the other wives and children of Jehoram. Under the advice of his mother, he followed the ex. ample of the house of Ahab, in all manner of wickedness. Having entered into an alliance with Joram, king of Tsrael, to make war upon Hazael, king of Syria, Joram was wounded, and Ahaziah went down to

[^1]Jesreel to visit him. There he was indolved in orid
Hdon common destruotion with Joram. Jehu, who had riseti up against his master, finding the two kinge togethes, alew them both, B.O. 884.
Athaliah, his detestable mother, then murdered all his obildren, with the exception of Joush, who was asved by Jehoshabeah, a daughter of king Jebotam, the father of Ahaziah and husband of Athaliah. Jehoshabeah, who had been married to Jehoiada, the priest, concealed Joush in the temple till he was seven yeari old, during which time Athaliah, the queer mother, reigned over Judah. But, in the seventh year. Jehoiada brought forward Joash to the people, who roeived him with joy, and Athaliah was put to death.
Joash thus began his reign, in the 7th year of his age, and reigned 40 years. He acted well during the life of Jehoiada the priest. He repaired the temple, and renewed the worship of God; which had been suspended under the influence of Athaliah and her sons. On the death of Jehoinda the priest, Joash, listening to the suggestions of the princes of Judah, left the house of God and worshipped idols. Prophets were sent to remonstrate with him; but in vain. Among these prophets was Zacharias, the son of the venerable Jehoiada, to whom he owed his life and his kingdom. He stood forward, and declared to the people, that, as they had forsaken the Lord, so he had forsaken them; on which Joash was so incensed, that he commanded him to be stoned to death, which barbarous command was executed in the court of the temple. Zacharias, when he was dying, said, "the Lord will look on it and require it;" and, accordingly, before the end of the year, the Syrians came up, destroyed all the princes, and left Joash himself dangerously ill, probably from wounds which he had received. When he was in this helpless condition, two of his own servants, an Ammonite and a Moabite, conspired against him, and murdered him on the bed ou which he lay.
Amaxiah succosded ? wah, and reigned 29 jears.

Hdomitos, and reoover them to his kingdom. In thin army he had embodied 100,000 men of the kingdom of Irrael, whom he had hired for 100 talents of silver. But a prophat remonstrating with him on the ain and danger of accepting the assistance of a poople whom God had forsaken, he sent back the Israelites to their own country. Amaziah then went on his expodition against the Edomites, defeated them, and treated them with great cruelty, as rebels. On his return, however, he brought their idols with him, and set them up and worshipped them. In the meanwhile, the troops that he bad hired from Israel, enraged at being dismissed, came up when he was absent in Edom, and committed great ravages in Judah. This induced Amaziah to challenge the king of Israel to meet him in battle, and the challenge being accepted, 2 battle was fought, in which Amariah was defeated, and taken prisoner. The king of Israel then brought him back to Jerusalem, broke down 400 oubits of the wall of the city, seized all the gold and silver that he found, and taking hostages with him, returned to Samaria. After this a conspiracy, was formed against Amaziah, on which he fled to Lachish; but was overtaken and slain there, B.O. 810. To Amaziah succoeded his son-

Uzziah, in the 16th year of his age, who reigned 52 years. He was a warlike prince, and seems to have reduced war more to system than it ever had been before. He had a standing army of 307,500 men, well armed by himself, that went out to war by bands, according to h . enrolment made of them. He fortified the city, and placed engines upon the walls to hurl darts and great stones upon any assailants. He attweked the Philictines and dismantled their principal I)tified vities. He also succeeded in an oxpedition against the Arabians, and brought the Ammonitos under tribute, and became celebrated for his military talents and success.
But Uzziah's prosperity proved his destruction. He became proud and self.willed, and insisted on entering into the temple to burn incense according to the cuatom of the monarche of other countrien, butt in direet oppois
vien to the lave of God. He was resolutely withstood by - a body of priests; and, becoming angry, he was struok with leprows, and instantly hurried ocit of the temple to retive to a separate house, in whioh he lived till his death, B.O. 758.

Jotham, his son, succeeded him, and reigned well for 16 Jears. He followed up the deíensive preparations begun by his father, by erecting forts and fortified cities in the mountains of Judah. He defeated the Ammonites, and brought them under tribute. On his death, B.C. 742 -

Ahaz, one of the most profigate princes that ever reigned in Judah, succeeded, and reigned 16 years. He \tan headlong into idolatry, with all its accompanying abominations. His dominions were invaded by the king of Syria, who took away a multitude of captives to Damawous. Afterwards Pekah, who had usurped the thione of listal, defeated him with immense loss; 120,000 men being killed and $200 ; 000$ taken prisoners. The prisoners were conducted to Samaria, where it was proposed to make them slaves; but on the remonstrance of the prophet Oded, they were not only set it liberty, but elothed, treated kindly, and ment baok to ofudah.

After this, Ahas, being distressed by incursions of the Elomites on one side, and Philistines on the other, and also threatened by the king of Syria, applied for help to Tiglathpileser, king of Assyria. This was readily given, as Tiglathpileser was now meditating conquest, and He grasped at the opportunity of intermeddling with the western kingdoms of Asia. He invaded Syria, took Damascus, and killed Rezin the ting. But he only harrassed Ahaz by exacting gold and silver for his army: Ahas stripped the temple and the palace of their gold and silver to pay the demand made on him. He even took the vessels out of the temple, shut it up, suspended the worship of God, and
 At length, after a misohievous and ditastrous reign of -16 yeard, he died, B.O. 726 ;

We shall here pause in the history of the kingdom of Judah, and look back to the history of other countries during the same poriod. One reason for this pause is, that several of the great eras in the history of the most famous nations of antiquity, belong to this century, and several of the most important, to the time of Hezekiah. Thus, the era of the building of the city of Rome, A.U.C. Was the year B.C. 753. The era of Nabonassar, or rise of the Babylonian empire, was B.C. 747. The dissolution of the kingdom of Israel was B.C. 721. The first Olympiad, from which the Greeks were accustomed to compute their history, was a little earlier in this century, namely, 776 B.C. and the founding of the kingdom of Lydia still earlier; namely, B.C. 797. Besides these more remarkable eras, it may be noticed, that the first Messenian war was begun by Sparta, when Hezekiah was about seven years old, B.O. 743. To all this, it may be added, that about the close of the preceding century, the kingdom of Media, and also that of Macedonia, were founded; the former, B.C. 820, the latter, B.C. 814. The young student of history, therefore, should fix in his mprory the eighth century B.C. as that in whioh the great lingidome of nntiquity began to be organized, and to lay the feundation of their future eminence.

7 Ismaet. - Tro have alrendy obserred, that ten of the tirelve tribes of which the whole nution of the llebrews consisted, revolted at the commencement of the reign of Rehuboan, son of Solomon, from the family of David, and elected Jeroboam their king.
IIrribinim, finding himself elevated to the sovereign - power over the larger pruportion of the nation, began to fear that his newly acquired subjects imight, if they went up to Jerrusalem to worship at the temple, be induced to return to their allegiance to the family of David, and therefure erected itwo idols, one in Bethel, and the other in Din. Before these idols he commanded the people to assemble, iustend of going up to Jerusaleur. This was the introduction of a corruption into that kingdom, from which it never recovered. Ho was in continual warfire with the kingdoun of Judab, and suffered that defeat from Abijah, which has already been mentioned. He reigned 22 years, and died towards the beginuing of the reign of Asa, king of Judah. He was succeeded by lis sun-

Nutclult. Bausha conspired against Nadab, and murdered him.
Birmiskia then usurped the kingdom, destroyed the while family of Jeroboan, and reigned $2 f$ years. There was a war betireen him und Asa nll his life, and his kingdom was invaded at the instigution of Asa, by Benhadad, king of Syria. Baasha dying, was succeeded by-

Eliul, who reigned two yenrs, when his servant, Zimri, conspired against him, and killed hims

Zimiri succeeded him, hut reigned only seven days; fur the people did not appruve of hime, and called Unri, commander of the army, to the kingdom. Zimini, however, in his short reign, destrayed the whote family of Baashal. Then, Uarri came ngrainst him to Tirzah, and he, seeing no hope off suceess or of eseape, retired to the palace, set it onf tiro, and perished in it.

Omiri succeeted; but he had n rival, celled Tibni, whe was follawed by tall uif the peenlie omiris party, Luwever, pravailed; so Libui died, and Ouri revigued reigu of f David, overeign II, begran , if they mple, bo amily of Bethel, he comag up to rruption ed. He Judah, already ud died king of
red the years. life, and Asa, by as sucretired
alone. Isttlo is recorded of Omri, but his wickednew. In his reign, Samaria was built, which afterwards becalle the capital of the kingdom. He reigred 12 pears, and died towards the latter end of the reign of Asa, king of Judah, leaving his crown to his son,

Ahrul. -This prince is still more distinguished than nis father, for his audacious wickedness. He married a heathen woman, Jezebel, daughter of the king of Zidon. IIe then set up the worship of . Baal openly, in Samaria. It was to stem the flood of iniquity let in upon the nation by this wicked prince and his queen, that the prophet Elijah was raised up; -but nothing could arrest them in their career of wickedness. His kingdom was invaded by Benhadad, who still reigned, at Dallascus, over Syria, and who seems to have subdued the neighbouring tribes, for he had thirty-two sings with him in his army. Ahab, under the direction of a prophet, was enabled to defeat this host. Next year the Syrians returned, and were again totally routed, and Benhadad forced to sue for meroy.

Ahub and his wife Jezebel, in their career of wickedness, persecuted the prophets of God, and established prophets of Bual in their stead. Ahab wished to purchase the vineyard of Naboth, one of his subjects. Naboth refused to sell it, because it was the inheritance of his father. Jezebel then contrived the murder of Naboth, which was executed, and Ahab took possession of his vineyard. For this Elijah denounced, on him, his wife, and his kingdom, the terrible judginents of Gorl. Ahab, after this, persuaded Jehoshaphat, king of Judah, to join him in a war against the Syrians, and Was wliain in buttle, B.C. 897,-having reigned 22 years.

Alurzicul, who had been associated with his father in the throne for some time before his death, now succeeded to the entire government of Israel, and reigned two years. His death was occasioned by a fall from a lattice is the upper part of his house. He was succeeded by-

Jchurom. He came to the throne, daring the reigu of Jehushuphat, king of Judah, who had a con nauped

Jehoram associated with him in the kingdom. The king of Moab having on the death of Ahab, withiheld a certain tribute whioh he was accustomed to pay to the kings of Israel, Jehoram invited Jehoshaphat, king of Judah, to assist him in subduing the king of Moab. Jehoshaphat conisented : and the two kings had well nigh perished with their armies by want of water, but Were delivered, as has been notioed under the wign of Jehoshaphat. The king of Moab, in his extremity, offered up his eldest son as a sacrifice, to obtain deliverance from his God. It was to Jehoram that the king of Syria sent Nsaman, the commander of his army, with an insolerit lettor to be cured of his leprosy. After this, he went to war with Hazael, king of Syria, and was wounded. He retired to Jezreel to be cured of his woinds; and while he lay there, Jehu, one of the commanders of his army, formed a conspiracy against him, and put him to death. Ahaziah, king of Judah, was slain at the same time.

Jehu succeeded, and reigned 28 years. He put to death Jezebel, and the whole family of Ahab, and mássacred all the priests of Baal; but he himself continued to worship the idols which Jeroboam had set up. In his reign, Hazael, king of Syria, encroached upon the territory of Israel, taking possession of that part of it which lay to the east of the river Jordan. On the death of Jehu,

Jehoahaz, his son, succeeded him, and reigned 17 years. The Israelites persisting in their idolatry, Hazael, king of Syria; was permitted to invade the land, and to succeed in oppressing it during the whole reign of Jehoahaz. This prince dying, ho was succeeded by

Joash, br Jehoash, his son, while Joash, the son of Ahaziah, reigned in Judah. He reigned 16 years; and, though he persevered in the hereditary idolatry of the kingdom, yet manifesting respect and attachment to Elijah the prophet, God gave him three victories over the Syrians, and enabled him to recover the cities thingh had fallor into their handers. Joash aiso defeated

Amaxi
wall of the re ceeded Jero years i still fur and eve which
which
Jona
was suc
Zach
Shal usurped Mena ten yeas other 1 Assyrial interme harass 1 Pul, ki about \&

Pelcal
Pelcal conspire throne made a Judàh; the reigr hás alres invaded ward of Hoshei to death reign of wickedly, were inve submitted wards, 8
m. The withiheld pay to vat, king f Moab. ad well ater, but rign of , offered iverance king of ay, with

After ria, and ured of of the against Judah, put to ib, and elf conset up. d upon part of On the
ned 17 dolatry, de the θ whole sceeded
son of years; atry of aent to es over cities efeated

Amaxiah, king of Judah, and broke down part of the wall of Jerusalem, as has already been notived under the reign of that prince. Joash died, and was succeedéd by

Jeroboam, the second of that name. He reigned 41 years in Samaria. In this reign, the Israelites were still further-secured from the oppression of the Syrians, and even obtained possession of Damascus and Hamath, which David had subdued. He died 784 B.C. upon which followed an interregnum of eleven years.

Jonah the prophet lived during his reign. Jeroboam was suceeeded by

Zachariah, his son, who reigned wickedly six months.
Shallum conspired against him, and slew him, and usurped the throne, but reigned only one month, for
Menahem attacked him and slow him, and reigned ten years over Israel. His reign was, like those of the other kings of Israel, idolatrous, and widked. The Assyrian kings, who had hitherto been restrained from intermeddling with Israel and Judah, now began to harass Menahem; and he, to purchase peaee, gave to Pul, king of Assyria, 1000 talents of silver, equal to about $£ 340,000$. Menahem having died,
Pekahiah succeeded, and relgned ill two yeais.
Pekak, the son of Remaliah, an officer in his army, conspired against him, put him to death, usurped his throne B.C. 759, and reigned twenty years. Pekah made a league with Rezin, king of Asoyria, against Judah; but it did not succeed. He invaded Judah in the reign of Ahaz, and gained that great victory which hás already been noticed. In his reign, Tiglathpileser invaded Israel, and took possession of the country eastward of Jordan.

Hoshea formed a conspiracy against Pekah, put him to death, and usurped the throne B.C. 730, in the reign of Ahaz, king of Judah. Hoshea reigned wickedly, like the other kings of Israel. His dominions were invaded by Shalmaneser, king of Absyria. Hoshéa submitted to him, and paid him tribute; but afitivwards, Shalmaneser discovering that Hoshé whe giving
himsolf into the hands of So, king of Egypt, and with. holding tribute from him, went up and besioged Samaria, took it, and carried the people captive to his own land, and thus put an end to the monarchy of Israel, in the year 721, B.C. after it had continued from the reign of Jeroboam I. 254 years.

We now bring down the accounts of the heathen nations ω the time of Hezekiah.

Of the original inhabitants of Palestine, the inhabitants of TYRe, whom we found advanced in civilization, skilful in maritime affairs and commerce, still continued to rise in riches and power. The Philistines also continued to be an independent people. In the reign of Joram, king of Judah, B.C. 888, they made an inroad into Judah, and carried away the wives and sons of Joram. They were, however, rapidly falling under permanent subjection to the great monarchies, that were rising up around ihem.

Similar observations are equally applicable to the other small states round Judah. The Moabites and Edomires, at an early period of the ninth century, B.C. threw off the yoke of the Jews, by whom they were never again subdued. The Edomites, or Idu. means, elected a king, and were afterwards governed by their own kings.

Of Earpt, little is known, from the time that elapsed between the departure of the Israelites out of it till Solomon. In the days of Solomon it was still a great kingdom and seems to have carried on a considerable trade; for it is recorded, that Solomon imported, from Egypt, horses and chariots, and linen yarn, not only for himself, but for the kings of the Hittites, and for the kings of Syria. And soon after the days of Solomon, we find Egypt performing a distinguished part in the history of the world. In the reign of Rehoboam, the son of Solomon, Shishach, supposed by some to be Sesostris, invaded Judah, laid it under tribute, and carried away the mhields of gold

Which
B.C. 97

Hezekia
Egypt, Hoshea, king of This inc was attel Assyrian

SyRI century quests.
peatedly Ahab. vaded Is in a pan quent wi same ye murderec the grea He invad and rave Judah, army. I Jehoash, princes, in 839 B who was feated b again br the reign of Rema
-Syria wa and brou recovered

A8sYR Pul, app mintrons
and with. besioged ve to his archy of sontinued
heathen
[NI, the anced in ommerce, er. The ependent ah, B.C. carried эre, hown to the om.
to the ctes and century, om they or Idu. erned by
t elapsed of it till a great siderable ed, from not only and for days of nguished reign of supposed laid it of gold

Which Solomon had made, and also much treasure, B.C. 971. At a latter period, during the reign of Herekiah, Sabacus, or So, an Ethiopian, was king of Egypt, B.C. 725. He endeavoured to persuade Hoshea, king of Israel, to forsake his alliance with the king of Assyria, and enter into an alliance with himself. This indicates that Egypt, in the days of Hezekiah, was attempting to rival the power and influence of the Assyrian king.

Syria, towards the middle and end of the first century after the age of Solomon, was making conquests. Benhadad, king of Syria, or Damascus, repeatedly invaded Israel, but was ultimately defeated by Ahab. Afterwards, recovering himself, Benhadad invaded Israel and besieged Samaria; but his army fled in a panic, which God sent upon them. In a subsequent war, Ahab was slain by him in battle. In the eame year, 885 B.C. Hazael, a servant of Benhadad, murdered him, usurped the throne, and raised Syria to the greatest height of power which it ever reached. He invaded Israel in the reign of Jehu, defeated him, and ravaged the kingdom. He afterwards invaded Judah, but was induced by presents, to withdraw his army. He, however, returned, and in the reign of Jehoash, sacked Jerusalem, putting to death the princes, and carrying off much plunder. Hazael died in 839 B.C. leaving the kingdom to his son Benhadad, who was the third king of that name. He was defeated by Jehoash, king of Israel, and his kingdom again brought under tribute. At a latter period, in the reign of Uzziah, king of Judah, of Pekah, the son of Remaliah, king of Israel, and of Rezin, its own king, -Syria was attacked by Tiglathpileser, king of Assyria, and brought into a bondage from which it has never recovered till the present day.

Assyria was now indulging ambitious projecta. Pul, apparently the first who rendered Ninereh the mulntrems of an extonaive ompiro, brought Imad undot
tribute in the reign, of Menahem, B.C. 771. Tig. lathpileser, who succeedod Pul, reigned 19 years at Nineveh, invaded and conquered Syria, and exacted tribute from Judah. After him Shalmaneser, in the reign of Hoshea, invaded Israel, took Samaria, and put an end to that monarohy, B.C. 721. He also made war upon Tyre, and besieged it five years, without success. Sennacherib suoceeded Shalmaneser, and invaded Judah in the reign of Hezekiah, and took several towns. He was pacified for a time by the paymont of a tribute, and went against Egypt. He, however, returned to besiege Jerusalem; but Hezekiah, having laid his letter and his blasphemy before the Lord, in prayer, the whole of his army were destroyed in one night. He himself fled to Nineveh, and was there murdered by two of his sons.

Babylon, hating hitherto been dependent on Nineveh or Assyria, became an independent atate, a short, time before the reign of Hezeliah. Nabonassar, from whom the rise of the Babylonian or Chaldean monarchy is dated, came to the throne, B.O. 747, which year is called the era of Nabonassar. Merodach Baladan, one of his suceessors, was he who sent the ingidious message to Hezekiah, for the purpose of ascertaining the state of his kingdom.

Media, also, had some time before this, thrown off the yoke of Assyria, and become an independent king. dom under Arbaces, who reigned over it 28 years. The reigns of this pripee and his suecessore, however, for upwards of a century, are by many considered as little better than fabulous; and the rise of the Median monarchy is dated from B.O. 700, during the life of Hezekiah, when Dojoces was elected king.

In Greeor, Lycurgus, while Athaliah was in possession of the throne at Jerusalem, B.C. 884, introduced his sybtem of lays into Lacodzmon. And, in

their fir Messeni

Durin while J Oirtha or Dido conseque Africa.

In It which y marked This wa Hezekial its conte the Sabil

Tere
 Hezekiab

Mañas
was marl with his built ido made his Moloch; spirit, an innocent with him the Lord doom, w executed.
Mánass The king prisoner, There in
their first ferocious and deadly struggle to enslave the Messenians, having begun it B.C. 748.

During the reign of Joash, ting of Judah, and while Jehoiada the priest was yet living, B.C. 869, Oarthage is said to have been fonnded by Elisa or Dido, sister of the king of Tyre; she having, in consequence of the murder of her husband, fled to Africa.

In Italy, Rome was built by Romulus, B.C. 759, which year is the era of the building of that city, marked by the initials, A.U.C. Anno Urbis Conditco, This was in the reign of Uzziah, king of Judah. In Hezekiah's reign, the infant city was yet engaged in its contests with the neighbouring states, The rape of the Sabine virgins was in 750 B. 0.

FROM HEZEKIAH TO EZRA.

The Kinadom of Judah.- On the death of Hezekiah, he was succeeded by his son,

Manasseh.-The beginning of the reign of Manasseh was marked by extraordinary wickedness. He entered, with his whole heart, into the practices of the heathen; built idolatrous altars in the courts of the temple; made his children pass through the fire in honour of Moloch; used enchantments; dealt with a familiar spirit, and made the streets of Jerusalem flow with innocent blood. His suibjects seem to have entered with him heartily into all the wickedness ; so that the Lord finally denounced upon his kingdom that doom, which about half a century afterwards was executed.

Manasseh vas visited with severe chastisement. The king of Assyria sent an army, which took him prisonier, and brought him to Babylon in fetters. There in his affliction he roinembered the Lord God
of his fathers, repented of his sin, and besought the Lord to pardon him; and the Jord heard him, and restored him to his kingdom. He then set himself to undo, as far as possible, the mischief that he had dove in the former part of his reign ; but the people do not eeem to have entered so heartily with him into his measures of reformation, as they did into his apostasy. Although he himself was pardoned, the sentence against the nation still remained unrepealed. He died, after a reign of 55 years, 13.C. 643. He was succeedea by his son,

Amon.-He followed the wicked example of the early part of his father's reign; but did not follow him in his repentance. After a reign of two years, his servants conspired against him, and murdered him. The people resented this conspiracy, put to death the conspirators, and raised to the throne his eon,

Josiah, in the eighth year of his age. His character is one of the most beautiful in the whole sacred yolume, and his efforts to reform the nation were the last that were made to retrieve the downward course of the kingdom. It was in the eighth year of his reign, or the 16 th of his age, that he began seriously to seek the Lord God of his fathers; and in the 20th year of his age, he had begun his measures for purging his kingdom from the gross and open wickedness that had overrun it. Having banished idolatry from the land, he revived the worship of the Gud of Heaven in the temple at Jerusalem. In the course of purifying the temple, the book of the law was found, which seems to have been concealed from him by a sycophant priesthood; and, when he read the commands of the law, and the denunciations annexed to them, he was in deep distress, and sent immediately to inquire of tho Lord respecting the book. The reply justified his apprehensions, that destruction was hanging over his kingdom; which, however, he was informed, should not come upon it in his day. The people, although to a certain extent, externally reformed, retuined all their predilection for idolatry, which accordingly broke out诗命 om the removal of Jominh.

Jehuia expedi but w the as bim it Babylo under that D and A it is fi Judah, first ded Jehoil Nebluch tinie re rezzar the cou to deitit Jehoiak Jehivii son, akce Conidert
ught the him, and imself to and done e do not into his apostasy. sentence He died, ucceedea
of the follow o years, ed him. ath the
sacred vere the courso is reign, usly to e 20 th purging ess that om the aven in nifying which cophant of the was in of the
ed his er his uld not h to a their le out

The occasion of his death was this. Pharraoh Neoko, \#ho reigned in Eyypt; wian a puwerful monarch; and Babylonia, having fallen under thê governinent of a bold aintitious prince, these two monarchs were soon invulved in war with one another. Pharaoh seems to have been the assailunt, for he led his army as far do the Euphrates, to besiege Carchemish. Having in his march to pass near to Judah, Josiah went out to intertcept him, and would not be dissuaded from thus enbroiling himself in the quarrel. The result was, that in a battle between the army of Egypt and that of Judah, Josiah was killed, after having reigued 31 years.

Immediately on his death, the people raised his younger son Shallum, or Jehoühaz, to the throne; but the king of Egypt, having, by his victory, acquired ah ascendency over the kingdou of Judah, set aside this election, carried Jebuahaz to Egypt, and placed his elder brother Eliakim, whose nuwe be changed to Jehuiakim, on the throne. He then prnceeded on his expedition against Nebuchadnezzar, king of Babylon, but was defeated. Nebuchadnezzar; thus obtaining the ascendency in Judah, dipused Jehoiakim, and put him in fetters, fur. the purpose of carrying him to Babylon; but on his prowising to hold the kiugdom under him, he restured him ta it. It was at this tivie that Datiel and his three friends, Shadrach, Meshacti, and Abednego, wére carried captives to Babylour ; aña it is from this fitst incursion of Nebuchadiézzar into Judah, that the 70 yeurs' captivity of the Jeŵs, to the first decree fur their réstoration, are computed.
Jehuiukine, haviug naititaived his allegiancer to Nebuchadnezzar for three years, at the end of that thiie revolted. The consequence was, that Nebuchadrezzar sent an army againist hiu, which laid waste the country, took Jehoiakinn prisúnet, and put him to death in the year B.C. 599. On the death of Jehóakim -
Jehiuinchin (named also Coniah and Jeconith), wa Bon, ancended the throne; but not beving obtaived thi
 1. J. m
months, was set aside, and carried to Babylon. Along with him, there were taken all the gold and silver vessels, and treasures of the temple, also all the able men, and men of influence in Jerisalem, to the number of 10,000 , and 8,000 artificers from the country; the poorest of the people only being left. It was in this captivity, that Mordecai and Ezekiel were taken; and Ezekiel reckons the time, in his prophecy, from
ma
tem
of
was
solv
and
reel

Per

B
cons
tera
year
the
Bab time seem at f after pend little it is Senn the and, as w the that

Sc

probs

king
have
If so durin too Sa in Ch and, who 1 with
made a dreadinl carnage among the people, burned the temple and all the principal edifices, and made slaves of all whom they did not put to the sword. Zedekiah was carried to Babylon, where he died. Thus was dissolved the kingdom of Judah, in the year B.C. 588; and it is from this captivity that the 70 years are to be reckoned to the decree of Darius Hystaspes, king of Persia, to restore the city and temple.
Babylon.-The era of Nabonassar, who may be considered the first king of Babylon, has been determined to correspond to the year B.C. 747, or three years after the birth of Hezekiah. For some time, the history is obscure, the kings of Assyria and Babylon sometimes seeming to be the same, and sometimes different. The general current of the history seems to have been, that the kings of Babylon were at first governors for the kings of Assyria; but that, after various struggles, they rendered themselves independent. To Nabonassar succeeded several kings, little or nothing of whom is known, and whose names it is not necessary here to record. After the death of Sennacherib, king of Assyria, who invaded Judah in the reign of Hezekiah, Assarharddon succeeded him; and, during the latter part of his reign, had Babylon, as well as Nineveh, under his dominion. He came to the throne during the reign of Hezekiah, and died in that of Manasseh. He was succeeded by

Saosduchinus, of whom nothing is known. It was probably in his reign that Manasseh was restored to his kingdom. To him succeeded

Chyniladan, who is supposed, on good grounds, to have been the Nabuchadonosor of the book of Judith. If so, he occupied Palestine with his army, probably during the reign of Josiah, when that prince was yet too young to resist him. To Chyniladan succeeded

Sarac, or Sardanapalus.-He committed his forces in Chaldea to Nabopolassar, who rebelled against him; and, to strengthen his zebellion, invited the Medes, who had always borne the sway of the Assyrian empire with impatience, to unite with him. They did so,
aind thre two arasies besieged Niveveh. Sardamapilus,
loade dreading the calumities that seemed to be coming upon him, retired to his palace with his wives, and; having set it on fire, was there destroyed, with his whole family and property. The allied army of Medes and Babylonians, some time afterwards, took Nineveh, and destroyed it. Nabopolassar associated his som, Nebuchadnezzar, with him on the throne, two years before he died; and, on his death, was succeeded by

Nebuchadnezzar, when Jehoiakin was on the throne of Judah. His treatment of the Jews has already been noticed. Under him the Babylonian empirs; or the first of the four great monarchies, described in the prophecies of Daniel, reached its greatest height. Having established his: government in the east, he attacked Pharaoh Necho, and dreve him within the boundaries of his own kingdom. He then set himself to strengthen and ornament the oity of Babylon: He enclosed an immense space of ground within an enormons walk, and erected baiging gardens, or gardens on elevated terraces, which have been the wonder of the world. He seems to have repaired the tower of Babel, and fitted it to be a temple for his god; and there probably he set up that golden image which the three Hebrew captives refused to worship. While these events were passing in Babylon; the nations to the west of the Euphrates were seeking an opportunity to revolt against him. The leading powers in this confederacy seem to have been Tyre and Egypt. Tyre had then become the greatest commercial oity in the wortd, and possessed the greatest maritime power then known. Nebuchadneizar laid siege to Tyre, but mett with a most resolute and formidable enemy. For 13 years he carried on his operations againsti it, till the Tyrians, secing that they were not likely to be able to hold oat much longer, built a city on an island, a little way from the shore. Thither they removed all their wealth; and left to Nebrochadnezsar merely the wallst and empty housed of the oldi city Heving thus done what he could towards olbastising Tyre, the tarned his army mgainit Myypt, speadily ororran it, laid it damoliter Amp

Thus
by De
it had existed separate from the Assyrian empire about
88 years.
The Medo-Persian Empire. -The Medes and Persians were originally two monarchies, of which the Median first rose to eminence. Previous to the time of Hezekiah, the Medes were subject to the Assyrian monarchy. On the reverse which Sennacherib mei with in Judah, during that reign, it is believed that the Medes revolted, and after a time of anarchy, elected Dejoices king. He reigned 53 years, and seems to have devoted himself entirely to the internal regulation and improvement of his kingdom. He was succeeded by his son,

Phaortes, who, being a warlike and ambitious prince, attacked the Assyrian empire, under Chyniladan, ol Nabuchadonosor; but was defeated, his capital city taken and destroyed, and afterwards he himself takin and slain. He was succeeded by

Cyaxares, his son.-Cyazares recovered from the Assyrians. What his father had lost. Not, however, contented with this, he was eager to revenge the death of his father, and the destruction of Ectaban by the Assyrians. He accordingly attacked and defeated the Assyrian army, and laid siege to Nineveh; but was obliged to raise the siege, in consequence of an invasion of the Scythians. Being unable to repel the Scythians by open force, he had recourse to treachery, and succeeded in having the greater part of them massacred in one night. Having freed the country of the Scythians, he resumed the siege of Nineveh, and to strengthen his hands in this enterprise he obtained the co-operation of Nabopolassar, king of Babylon. These two confederate-kings took that great city, and utterly destroyed it, about 612 years B.C. After this success, the two kings directed their forces against Pharaoh Necho, and defeated him. They then separated, and Nebuchadnezzar advanced upon thooe western provinoes of the Asaymian empire that lay to the southword, as Syria, Edom, and Palontine; while Oyazaris attactiod then thet lay to the
north
he sl
Cyax
empir to hi
reign,
As princ betwe marri the 1 Astya born, Persia in ma brated
Datius Astya tioned the u Merod greatl Astya

Dai
the co the m reign noticed and th ment provin pointed sidents prophe the pr reign,
was ca the wo which
mike.
Dabyle
northward, as Armenia, Pontus, and Cappadocia, which he subdued, with great slaughter of the inhabitants. Cyazares is also supposed to have added Persia to his empire; although that acquisition is, by some, ascribed to his predecessor. He died in the 40 th year of his reign, leaving his throne to

Astyages, his son.-Astyages married a Lydian princess, to cement the peace that had been made between that kingdom and Media; and from that marriage was born Darius, called in Scripture Darius the Mede; but called by the Greek writers, Cyazares. Astyages, during the same year in which Darius was born, gave his daughter Mandane to Cambyses, a Persian nobleman, or, as others say, the Persian king, in marriage, and of that marriage, was born the celebrated Cyrus. Cyrus was, therefore, the nephew of Darius, and was only about one year younger than he. Astyages reigned 35 years. The only incident mentioned in his history, worthy of record, is, his repelling the unprovoked invasion of the Babylonians under Evil Merodach. In this war, Cyrus, then a young man, greatly distinguished himself. On the death of Astyages, he was succeeded by his son,

Darius, or, Cyaxeres II.; but Cyrus, his nephew held the command of the army under him, and conducted the military operations of his reign. It was during the reign of Darius, that Cyrus took Babylon, as already noticed; after which event Darius came to Babylon, and there, in concert with Oyrus, settled the government of his new empire. They divided it into 120 provinces, over each of which a governor was appointed. Over these governors there were three presidents, and the chief of these presidents, was the prophet Daniel, who might, therefore, be regarded as the prime minister of that vast empire. It was in this reign, when Daniel was about 80 years of age, that he was cast into the den of lions, for persevering in the worship of God, in defiance of a foolish decree which Darius had been persuaded by his courtiers to make. In about two years after the capture of Dabyles, Darins died, loaving Cyrus eole monarah of

123

HyNE pooz

the ompine, B.C. 536 . The Persian empire now ax. tended from the river Indus to the shore of the Archipelago, and from the Caspian and Euxine seas, to the seas of Arabia.

Cyrus, on coming to the throne, issued a decree for the restoration of the Jews; in consequence of which, that people assembled from various parts of his eupire, to the number of 42,360 , exclusive of serrants, amounting to 7,337 , making a total of nearly 50,000 persons, aud proceeded to Jerusalem. The first care of theso restored captives was, to rebuild the city and temple of Jerusalem. The jealousy of the surrounding nations, especially the Samaritans, greatly retarded their operations. They could not openly oppose them, because Cyrus was avowedly their friend, and Daniel was at the seat of government to protect theul. But, from the distance of the capital, these nations had it in their power to throw many obstacles in their way. Soon after this, Daniel died, at tne age of 90 years; Cyrus also, soon afterwards died, in the 7 th year from the restoration, and 70 th of his age. He is one of the greatest men of antiguity, not in regard of his extensive conquests; but in regard to the nobleness of his character. There is, indeed, some ground to hope, that he was a convert from heathenism to the worship of the true God; and the peaceful and beneficent character of the latter part of his reign, gives additional countenance to this opiniog. On the death of Cyrus,

Camlysses, his son; succeeded to the empire, a weak and profligate prince. Early in his reign, he invaded and obtained possession of Egypt, whigh had forwerly been subdued by Nebuchadnezzar. He had a bruther named Surdis, whom, in a fit of jealousy, he caused to be killed. But, while ho was absent in Hyypt, a pretender to the throne appeared, who personated Suserdis, the brother of Cambyses. Caubyses warched from Eyypt against him; but on mounting his horse, his own sword fell from its scabbard and wounded him on the thigh, of which wound he died.
\$meritis, the usurper, who is usually called Smerdis the Muring, bseoue be belongod to the priouthoud
which,
shurt t
of hig
nobles
family
that on
To dete
whose
the risi have bc Persian
Hystas
Cyrus, king, aı
Dari
from D_{a}
of the
enpire.
the Mag vent th poisoned But on two of. as his He , the of the year of dedicate by Nellou
In th
was besi he was and at of one mailued had beel coutiden nity of began to west.
$4 \min$
whioh, in Persia, was called the Magi, reigned for shurt time, till being detected and exposed, by a lady of high rank, whom he had married, seven of the nobles conspired against him, and slew him. The family of Cyrus beiug now extinct, these nobles agreed that one of themselves should be elevated to the thrune. To determine which it should be, they agreed that ho whose liorse on a certain day should first neigh, after the rising of the sun, should be king. This seems to have been an act of aduration to the sun, which the Persians worshipped. The horse of Darius, the son of Hystaspes, one of the generals who had served under Cyrus, having first neighed, he was impediately elected king, and is known by the naune of

Durius Hystaspex, and is carefully to be distinguished from Darius the Median, and also from two other princes of the name Darius, who afterwards attained to the enpire. During the reign of Cambyses, and Suerdis the Magian, the enemies of the Jews contrived to provent them from proceeding with the teuple, having poisoned the minds of these princes against theim. But on the accession of Darius, he, having married two of the daughters of Cyrus, and affecting to reign as his successor, was disposed to fultil all his intentiuns. He_{e}, therefore, issued a new decree for the rebuilding of the city and temple of Jerusalem; and, in the $6 i \mathrm{i}$ year of his reign, the second temple was finished, and dedicated, exactly, 70 years after it had been destroyed by Nebuchaduezzar.

In the 5th year of Darius, Babylon revolted, and was besieged by him. As in the foruer siegre by Cyrus, he was constrained to attempt to reduce it by famine; and at length became master of it by the devotednass of one of his officers. This person having cut and maimed himself, fled to Babylun, pretending that ho had been so treated by Darius. He thus obitained the confidence of the Babyluuiaus, and found an opportunity of betraying the city to Darins. Darius then began to think of aztendige his cupine twivara the west. He already possc-sed Eyypt on che nuuth, aud Anis Minar on the corth of the Aluditarramentis but ho
proposed to bimself an expedition against the Seythians who inhabited the country between the Danube and the Don, under pretence of avenging the Scythian invasion of Media, 120 years before. He accurdingly orossed the Hellespont by a bridge of boats, marched through Thrace, and crossed the Danube by another bridge of boats. The Scythians retreated before him, till, finding no sustenance for his troops, he was compelled to return, having lost one half of his army. He then purposed to extend his empire eastward. In this he succeeded better, and laid India, or at least that part of it which bordered on the Indus, under tribute.

In the 18th year of his reign commenced the war between the Persians and Greeks, which brought so many calamities on both nations. A sedition, in some of the Greek Islands, of the people against their governors, led to an application to the Persian governor of Asia, from one of the parties, for assistance. This was granted, and that interference led to a hostile expedition into the Persian province of Asia Minor, the capital of which was Sardis, in which the Athenians took part. The Greeks proceeded to Sardis, which they plundered and burnt; but were compelled to retreat, and were defeated before they could reach their ships. Darious could never forget this insult on the part of Athens, and determined on an invasion of Greece. He sent an army across the Hellespont, round by Macedonia, a fleet being appointed to follow and cooperate with it. The fleet, in doubling the Cape of Mount Athos, was overtaken by a storm, and totally disabled, having lost 300 ships and $20,000 \mathrm{men}$; and the army having encamped without sufficient precaution, was attacked by the Thracians, and so roughly handled, that it was forced to return to Asia. Darius, however, was not to be diverted from his project of revenge, but fitted out another army. This he sent directly across the Archipelago to Attica. There it was met on the plain of Marathon by a small army of Athenians, under Miltiades, and totally defeated. The remains of the atmy escaped to the ships, and returned to Asia. Stilt-detorminod upon his wohease of revoage, Darius.
fitted out in his ow took the done this, his domir Greeks, reign of I his public
The 0 brings the period of fore, pause of the wor
Eaypt
Babylonia from this All the o cumstance:

Greece back as 8 Lycurgus as a mons aristocracy.
Athens hereditary Jotham so time of tl changed fo only 10 yes mode of g the govern who were
But alth in the han hands of t tests betw required, al 624 B. C . grinary; to

Seythians ube and Scythian cordingly marched another ore him, vas comny. He In this that part -. the war ught so in some st their ;overnor This le expeor, the henians which lled to h their the part Greece. and by ind coape of totally n ; and precauoughly Darius, of reirectly as met mians, lins of Asia. Darius
fitted out another army, which he determinei io lead in his own person; but being now an old man, he first wook the precaution of settling the succession. Having done this, he died, in the 36 th year of his reign, leaving bis dominions, but leaving also his quarrel with the Greeks, to his son Xerxes, B.C. 486. During the reign of Darius, Ezra, the Jewish scribe, was born; but his public operations belong to a subsequent reign.
The conclusion of the reign of Darius Hystaspes brings the Persian bistory down to the end of the 7th period of 500 years from the creation. We now, therefore, pause, and take a brief view of the other, nations of the world during the same period.
Eaypr having fallen under the dominion of the Babylonian empire, and soon after under that of Persia, from this time held the rank only of a tributary state. All the countries round Palestine were in the same circumstances.

Grexce.-It has been already mentioned, that, so far back as 884 B.C. While Athaliah reigned in Judah, Lycurgus had settled the constitution of Lacedæmon, as a monarchy, with great powers conferred on the aristocracy.

Athens was then governed by Archons, a kind of hereditary magistrates. These about 754 B.C. while Jotham son of Uzziah, was king of Judah, about the time of the building of the city of home, were exchanged for elective Archons, who enjoyed this office only 10 years. After about 60 years' experience of this mode of government, a further change was made, and the government placed in the hands of nine Archons, who were elected annually.
But although the legislative authority was nominally in the hands of the people, the executive was in the hands of the nobles. This gave rise to continual contests between ruling families. Some remedy was required, and Draco was called to form a code of !awe, 624 B.O. His laws were to absurdly sevare and sangriviry; that they eould not be excoutvol. A furthes
time of oonfuasion ensued, whon Solen whe invitod to reform the constitution. He executed his task with great success, aud constructed a code of laws, which forus the basis of the luws now existing in most of the kingdoms of Europe. The Rowans founded their laws upon those of Sulon; and, through the Romans, they have been dittused over the civilized world. Solon flourished 59+ B:C. when Zedekiah was king of Judah, tributary to Nebuchadnezzar, and about the time of the birth of Cyrus, afterwards king of Persia.
The constitution of Sparta was highly aristocratieal; that of Athens was continually becouing more deniocratical. In nearly all the Greek republics, there was a perpetual struggle between the nobles and the people, the former looking to Lacedæmon as their protector, the latter to Atheos. Athens itself was agitated by similar conflicts between the nubles a d the people. In the course of these struggles, Pisistratus, a popular leader, seized the Acropolis, and reigned over the city as a king, for 33 years, although his reign was twice interrupted. He was succeeded by his sons Hipparchus and Hippias; but they becoming tyrannical, first one was killed, and then the other was forced to retire from the cify. He fled to Darius Hystaspes, who now reigned in Persia. After the expulsion of Hippias, the old dis. putes between the aristocracy and democraey were renewed. Isagoris mas banished, and applied to Sparta for aid, which readily granted it. The Athenians were thus threatened with a war with Sparta, and applied to Persia for help; but they received a haughty reply, requiring thein to subject themselves to Darius. In the meauwhile, Hippias had prevailed on the Persian governor of Asia Minor to espouse his cause, and to insist on his being reinstated in the government of Athens. This the Athenians peremptorily refused to comiply with, and theneeforward regarded theniselves as at war with Persia.
Sown after this, Darius sent heralds into Creece, do. manding earth and water, as tokens of subjection; Thict lawand way 'indignantly rejected by Sparta and Athom While metoces inces is chis procerious mutis
betiven take par been al Then fo which hi the Δ thi

Rome the only commenc for the and the fighting, states, or treaties.
Romu jears. 1 together, inviting religious upon the the two subdued seciatórs, theceeded
Nutina and gare of his kir

Tưlux thile Ma the celeb Curiatii. suiperiorit thie even chosen m side, were victorious. been kille others, he Hartius:
nvitod cask with ps, which st of the heir laws ans, they 1. Solon f Judah, ae of the
cratical; e demio. here was e people, ctor, the y similar In tho r leader, ity as a ce interhus and one was rom the reigned old dis. 2y were Sparta ns were plied to 1 reply, In the Persian and to uent of used to alvee as

20e, do. ection; ta and
betiven Persia and Greece, the Athenians wero lod to take part in that expedition into Asia Minor, which has been already noticed, in which Sardis was burnied. Then folluwed the invasion of Greece by Darius, in which his army was defeated, at Marathos, by Miltiadés, the Atheninn'general.

Rome.-According to ancient traditions, which are the only authority extant for the history of Rome, at its commencement, Rome was founded, B.C. 757. It was, for the two first centuries of its existence, a monarchy, and the chief occupation of its kings and citizens, was fighting, and gradually subduing the neighbouring states, or incorporating them into their body politic by treaties. The first king was

Romulus; the founder of the city, who reigned 30 jears. Having collected a number of loose person's together, all males, he procured wives for them, by inviting the neighbouring tribe, called Sabines, to a religious festival, aurd there directing his men to seize upon the wonen. This created a war, which ended in the two nations being incorporated in one. Having subdued several of the other tribes, he was kiiled by his senators, B. C. 717. After an interregnum, he was stacceeded by

Nutha lompirius, who was of a pacifo disposition, and gare his attention chiefly to tive internal regulation of his kingdom. To binr succeeded

Tullus Hostilius, B. C. 660, who reighed 32 yeart, While Mapasseh tas king of Judih. In his reign was the celebrated battle between the Horatii and the Curiatii. The Albans and the Komans were at war for superiority, when it was agreed to leave the matter to the event of a battle, to be fought between three chosen men on each side. Phree brothers, on euch side, were chosen, when the Roman chanupions proted victorious. Tullus Hostriius is suid, by some to have been killed by lightning with his whole faminy by others he is saidt to have boen muidored by Anetz Martius, who sueceeded hin.

[^2]the reign of Josiah in Judah. He was a warlike prinoe, and subdued the Latins, and several other neighbouring
that ti of Da

Car the co of the people mariti gold n great It app of Cyr B.C. Hystas The tr comme of Sar Cartha begun Till thi origina city st from t they di a peace tribute

This the Ind Egypt,
like prinoe, ighbouring aldest only f Tarquin, quin took his pupils
about the echo. His ns of the Ie greatly onstructed cleansing the world. ted in his m he had was suc.
luring the lon. He and, with 3 into the zens, rich ds of the laying the ne to give lished by asses and sons of urquin, to formed a as at first Servius his own
led. him, 1 a most sequence cretia, a me , from
that time, a republic, B.C. 605. This was in the reign of Darius Hystaspes

Carthace had been founded by the Phomicians, on the coast of Africa, about the time of the foundation of the city of Rome, or a little before that era. Like the people from whom they sprang, the Carthaginians were a maritime people, and early became acquainted with the gold mines in Spain, from which their city àcquired great wealth. Little is known of their ancient history. It appears that they were formidable by sea in the time of Cyrus and Cambyses, kings of Persia. In the year B.C. 503, which was during the reign of Darius Hystaspes, they entered into treaty with the Romans. The treaty related chiefly to matters of navigation and commerce; but from it, we learn, that the whole island of Sardinia, and part.of Sicily were then sabject to Carthage, and that a spirit of jealousy had already begun to manifest itself between the two republics. Till this time, the Carthaginians had paid tribute to the original African tribes for the ground on which their city stood. They now attempted to free themselves from this tribute; but, notwithstanding their power, they did not succeed. They were obliged to conclude a peace, one of the articles of which was, that the tribute should be continued.

MGHTH RRA.

Ezra.

$$
\text { A.M. 3500.-B.C. } 500 .
$$

This era finds the whole western part of Asia, from the Indus to the shores of the Archipelago, and alse Egypt, under the dominion of the kings of Persia

Profarie history hiat now begun to ilsetime a prectiob ind authentic form; and muny docunients are still extatit, besides the Sacred Scriptures, which shed a clear and stendy light on the affiirs of men at this ert.

JUDEA was now a tributary kingdom, the history of Whieb is involved in that of Yersia, and the monarchies whioh succeeded the Persian. We, therefore, com. mence this period with

Piersit. - At the conclasion of the former era, B.C. 500, Darius Hystaspes was on the throne of Persia, and we noticed his history till bis preparation for a econd invasion of Greece, which, however, he did not live to accompliskr. He died, leaving

Lericte, his sorn, as his successor. The first dare of Xerxes was to prosecute the invasion of Greece, for Which preparations wère made by his father. To prevent the Greeks from receiving assistance from their dolonies in the west, he entered into a treaty with thie Carthaginians, by which they undertook to attack the Greek setilenents in Sicily. He then proceeded with his army to Greece. He took the same route which Darius had taken on his invasion of Scythia, crossing the Hellespont, as he did, by a bridge of boats into Thrace, and passing along the head of the Archipelago through the southern part of Macedonia. He then turned southward towards Attica, but was withstood at the straits of Thermopylæ (a narrow pass in the southern part of Thessaly, between the mountains and the sea), by Leonidas, with 300 Spartans, and as many ther Greeks as made up the whule number to 4000. [his little company. aided by the nature of the ground, -rrested the progress of the whole Persian army for two days, till a Greek betrayed it, by leading a Persian Jetachiment across the no ountains. The Greeks seeing

retir of h were then retire dren, Pelo Gleets occur fleet bouri mine rende in $c o$ fusion of thi
$\mathbf{X e}$ the G his re of bo crossi

Wb his co
Hami
slain \mathbf{i}
and al
Aft
retired
next
not to and Greek
were
which
and A
army,
and A
came
Persia
the 0
Penaia
retired, with the exception of Leonidas, and the remains of his 300 Spartans, who kept their ground till they were overpowered and cut to pieces. The Persian arimy then proceeded southward to Athens. The Athenians retired to their ships, and placed their wives and children, for protection, in cities on the opposite side of the Peloponnesus. Meanwhile the Persian and Greek fleets were assembled near to one another. The Persian occupied the Athenian port of Phalerus, and the Greek fleet under the command of Themistocles, the neighbouring straits of Salamis. There the Persians determined to attack them; but the narrowness of the straits rendering it impossible for their huge armament to act in concert, the Greeks contrived to throw it into confusion, and utterly destroyed it. The shattered remains of this fleet retired to the opposite shore of Asia.
Xerxes, seeing his fleet destroyed, and fearing that the Greeks would sail for the Hellespont, and interrupt his return to Asia, fled thither; and finding his bridge of boats broken by storms, was under the necessity of crossing the strait in a small fishing boat.

While Xerxes was suffering these disasters in-Greece his confederates in the west were equally unsuceesisful. Hamilcar, the Carthaginian general, was surprised and slain in his camp by Gelo, the Sicilian king, and his fleet and army totally destroyed.

After the departure of Xerxes for Greece, Mardonius retired with the army to Thessaly, and then returning next year, and finding the Athenians still determined not to submit, burned whatever remained of the city, and committed all manner of excesses. But the Greeks of the Peloponnesus had collected an arny, and were marching towards the Isthmus of Corinth, by which they threutened his communication with Thrace and Asia, and he retired to Bootia. There the Greek army, commanded by Pausanias, king ofe Lacedæmun, and Aristides, the Athenian general, followed him, and came up with him near the city of Platea; where the Persian army was totally routed, and cut to pieces, with the exception of 40,000 mien, whom Artabizus, a Pencian general, foreseeing how the battle wai likely to
isgat, withdrew early from the field, and brought to Byzantiun, where they re-crossed the Hellespont into Asia.

On the same day with the battle of Piatma, the combined Greek fleet attacked and destroyed the Persian fleet at Mycale, a promontory on the coast of Asia. The Persian ships were drawn up on the shore, surrounded by a rampart, and defended by a land army: but the Greeks forced the rampart, and burned the ships. Thus ended the celebrated expedition of Xerxes against Greece; and in consequence of those victories, the Greeks were delivered from any further invasions from Persia, or the east.

Xerres, on the defeat of his armies, retired from Asia, and took refuge in Susa, the Persian capital. There be gave himself up to the greatest licentiousness. In the meanwhile, the Greeks were prosecuting the war against him with vigour and success, and depriving him of his possessions. Cimon, the Athenian commander, in one duy destroyed a fleet, sald to be equal to that which had been destroyed by Salamis, and defeated an army equal to that which was defeated at Platæa. At length Artabanes, the captain of his cuard, formed a conspiracy against him, and put him to death. B. C. 465 .

Artaxerxes, surnamed Longimanus, who is celieved to have been the Ahasuerus of the Book of Esthes queceaded him. He secured himself on the throne by putting to death Artabanes, and defeating his partisuns. He then celebrated a great feast, on which occasion it was, that Vashti, the queen, was repudiated; and Esther, a Jewess, made queen in her stead. Towards the beginning of his reign, the Egyptians revolted from him, being aided by a fleet and army of Athenians. Artaxerxes sent an army against it; but it was defeated Tith great slaughter, and the remnant of it shut up aud begsieged in Memphis, Artazerxes sent another army to trise the siege, "in which he succeeded, having dofented the revolters.

In the 17 th yeariof Artererses and 150 B, C_{4}. tho Jowh pxioctand prophaty mon in cajitivity, obtained
prepably through the interngsition of Fisther, an amplat comumissjon to return to Jerusalom, with as many Jews as i chose to accompany him. Crra immediately addressed hinself to the mort of bringing into order the little community orer which he presided. He revived the rites? and ceremonies of the Jewish church according to the: prescribed order; he settled and arranged the canon of Scripture, and transcribed the Oid Testament from the old Hebrew character, which had fallen into disuse, into the present Hebrew, or Chaldee character. This did, not change in any respect the words of Revelation. It was not a greater alteration than writing or printing the. Bible in the present Roman character instead of the black letter, which, was in use when our present trans lation was made. He also arranged, or as some thung. established the synagogue service. Whilgt Elara was engaged in these important works, Nehemjah was serving as cup-bearer to Artaxerxes; and inteiligence. having reached him, that the walls and gates of Jerusalem were still in ruins, he was deeply affected, and procured, probably through the influence of Esther: also, liberty to repair to Jerusalem and to do whatever was necessary for completing the defences of the city Ha arrived about eleven years after Ezra Having male considerable progress in restoring the city and polity of the Jews, he returned at the appointed time to Persia; but almost immediately came tack to Jerusalem a second time, when he found that abuses had again begun to appear. The sahbuth was openly violated, and many of the leaders of the peo-: ple had married heathen wives; and he set himself, with. renewed vigour, to correct these abuses While theses important operations were in progress at Jerusalom ${ }_{2}$ under the direction of Eyra and Nehemiah, the cele. brated Peloponnesian war commenced between the Spartans and Athenians. Artazerzes, although he, was solicited by both parties for aid, seems to bave declined tajipg either side. He sent an ambaspedor to Sparta; but before his return Artazerzes himpelf had died

reigned only forty-five days, being murdered by hit brother Sogdianus. Sogdianus attempted to get another of his brothers into his power, whose name was Ochus, whom his father had made governor of Hyrcania, but Ochus suspecting his brother's intention, raised an army, came against him, defeated and slew him, after he had reigned only six months and fifteen days. Thus he established himself on the throne, and took the name of Darius. He is that prince whom historians call

Darius Nothus. - In his reign, Egypt revolted from Persia, and successfully defended itself during the life of Darius and the lives of some of his successors. In his reign also the temple of Samaria was built to rival that at Jerusalem, which increased the enmity between the two nations. Darius Nothus sent his son Cyrus as governor to Asia Minor, and he gave such assistance to the Lacedæmonians in their war with Athens, as enabled them to defeat the Athenian fleet, and to put an end to the war. Darius Nothus died about the time of the conclusion of the Peloponnesian war, B.C. 405.

Artaxcerxes, surnamed by the Greeks, Mnemon, sucoeeded him; but Cyrus, his brother, who commanded in Asia Minor, instigated by an ambitious and unprincipled mother, laid a plot to wrest the empire from him. The plot was discovered, but by the influence of his mother, he was pardoned, and sent back to his government. But here again he employed the opportunity which he enjoyed of having intercourse with the Greeks, to form another conspiracy against his brother. He hired a mercenary Greek army, and with it, and such other troops as he could raise in Asia, he marehed against Artaxerxes. The two brothers met with their armies, at Cunaxa, in the province of Babylon, where Cyrus was defeated and slain. The Greek troops had remained unbroken, and now had no resource but to attempt a retreat to their own country, in the face of a viotorious enemy. Their general, Clearchus, fell by treachery into the hands of the Persians, and was nlain; and the commend dovolveu on the celebratea Timophon, whom hintery of the rotreat of the 10,000

Creeks to the shoren of the Fuxine, and thence to Greece, is one of the most instructive and intereating military histories extant.

A new war breaking out with Sparta, which since the conclusion of the Peloponnesian war, had ruled Greece with a rod of iron, the Spartans invaded Asia Minor, and the Persian forces being unable to arrest their progress, Conon, an Athenian exile, advised Artaxerxes to place a fleet at his disposal. This advice was adopted, and Conon, having organized a powerful conspiraoy against the Spartans, came up with their fleet at Cnidus, and totally defeated it. He then obtained liberty to repair to Athens, and restore the fortifications of the city, which soon became as formidable as ever. The Spartans were thus reduced to the necessity of making peace with the Persians.

The latter years of the life of Artaxerxes were embittered by dissensions in his own family. He died in the 94th year of his age, and the 46th of his reign, B.C. 359. On his death,

Ochus, his son, succeeded him, having cleared his way to the throne by the murder of those of his brothers who rivalled him in the succession. These murders he soon followed up by an indiscriminate massacre of all the royal family, without distinction of sex, age, or character. On his accession, the western provinces revolted, but returned to their allegiance. Egypt had never been thoroughly subdued since the last revolt. Nectanebus was now king of that country. Ochus marching into Egypt, lost a large proportion of his army in the quicksands of Lake Sorbonis. He, however, sucseeded in driving Nectanebus out of the kingdom. Nectanebus was the last native king of Egypt ; that fine country having, from that day till the present, been under the dominion of foreigners. But while Ochus was in the midst of his success, he was laying the foundation for his own destruction. He had a favourite servant named Bagoas; an Egyptian, who gocompanigd him; and Ochue, not z=tisfect with subduing Hgypt, insulted it religion, killed the sacred bull, and gavo it Aleah to his attendanta. Bagoas determined

 Wring Oohbas.Arses, the youngest of the king's soins, was raised * the throne by Bagods; but not firding him fuff. oiently cohpliant, Bagoas poisored him also, B.C. 338. He the brought forward a descendant of Dariüs Nothuls, named Codömanus, and placed him on the throve. Cddomanus took the name of
"Darius (\%odomanus. Fearing that he might Be treated by Bagoas, as Ochus and Aisés had been, He pat Bagdas to death, und thus secured bimself on the throne. But the Persian empire was \dagger now haistening to its rain. The affairs of Greece bad by this time fallen under the undisputed direction of the king of Macedot, and Alezander, the won of Philip, had combined the whole strength of its various tribes, in a long threatened enterprise against that great, but ill-côinpácted empire. The events that led to the downfall and death of Darius, belong rather to the history of Greece than of Persia. We merely mention here, that Alexander passed over to Abia at the head of the Greek ariny, and defeated the forces of the Persians, in several battles, the last of which was near Arbela. Darius, after this defeat, fed to Eebatana, the cupital of Media. On Alezanderts approdich, he retired to Bactria, and was there nurdered by Bessus, the Governor of that province. Thus fell Darius Oodomanus, and with him the Persian empire, B.C. 850 , after It had eristed, from the waing of Babylon, 209 years.

We shall here pause, ds we did at the reige of Hezekiah, and bring down the history of the other rations to the time of Alezander; when the whole political aspett of the wortd underwent la mighty rovolution.

Griacomivilt thas ulteady beôn ubtivea, unaer thib hittory of Persity that zerzes sucteeding Dariuts at tewpted to oary into offect his father's chenem af

Salamib, Platioa, and Mýcale. After these victories, the Greeks continued still to carry on the war with Persia, chiefly by deseents on their coasts, till peace was concluded, in the reign of Artaxerxes, the son of Xerxes.

The Spartans were at this time, the acknowledged leaders of the Greek confederacy, but their king, Pausauias, carrying himself proudly and contemptuously to the allies, they put themselves under the patronage of Athens. From this time the Athenians held the decided ascendency at sea, and over those Greek states and colonies which were approached by sea. At first, they used their influence with equity and moderation; but gradually feeling their strength, they became moro haughty in their conduct, and more dictatorial in exacting the service of their allies. The result was, that the allies of the Athenians eventually became subjects, from whom the Athenians regularly exacted tribute: but they were impatient subjects, and ready to avail themselves of any opportunity to emancipato themselves.

The Spartans eyed the growing power of Athens with jealousy, and were prepared to embrace the first plausible occasion of going to war with it. Such an occasion was not long wanting. The government of Athens was yearly becoming more democratical, and the management of the affairs of the state falling under the influence of demagogues; these, to obtain influence, or retain it, were under the necessity of proposing popular measures. Cimon, the son of the celebrated Miltiades, himself a great military leader, attained to the chief influence in Athens; and being a man of immense property, he secured his popularity by spending it freely among the people. Others, who followed him, had not the same means of bribing them; but they, to supply this defect, proposed to the people to take for themselves, the same indulgences out of the pubiic treasury. They voted to thenselves money for attending on the great councils of the nation. This paturally threw tie power over publio, affairs into the

was always open to whatever proposals their oratorm might make, for the purpose of pampering their idleness, or feeding their vanity; and that orator, who flattered them most, was sure to be the most popular, avd to have most power. In these circumstances, nothing could exceed the folly, or the flagitiousness of many of the measures adopted by the Athenians. Thus corrupted, they became idle and dissolute; and were under the necessity of supporting themselves by exactions made on other states. This roused the impatience and enmity of their allies; and the Lacedæmoniaus, on the watch for an excuse to attack them, soon found on in the discontent of the Athenian subjects.

These were the circumstances that led to the celebrated Peloponnesian war, which, for nearly thirty years, raged in Greece, with an animosity, a reckless barbarity, and regardlessness of public faith, scarcely to be paralleled in the history of any other country. On the one side were ranged all the states of Peloponnesus, except Argos and Achaia, which were neutral; and all the states of nurthern Greece, except Thessaly and Acarnania. On the other, the Athenians had with then the islands and maritime towns. At the head of the Peloponnesian party, was Lacedæmon, which was one of the most oligarchical states in Greece ; yet, such had been the oppressive conduct of republican Athens to all those states that were under its power, that the Lacedæmonians were enabled to represent the war as one waged by them for the liberties of Greece. The war was carried on, at first, by inroads of the Peloponnesians into Attica, which the Athenians, unable to resist, retaliated, by descents on the coast of Peloponnesus. Pericles, an able statesman and general, was at the head of the Athenian affairs at the commencement of the war; but, in the second year of it, he died, and then the government fell into the hands of men of an inferior description. This war between the great patron of oligarchy on the one side, and of democracy on the other, kindled strife and civil war it many of those states of Greece, in which the parties were nearly
balance
their st
might
the den
be con!
contests
Corcyra cruelty
Sever
to strai
by the
a temp
only a
menced.
siderabl
the mo Alcibiac great ts ambitiot He was who flot the nar were en conquest reasons mand; enemies absence. the head next res its failu army. mainten might p prosperit mitted b potamos, under L destroyed Greek fil and at
ratorm idlewho pular, ances, ess of Thus were y ex-im-Lavehem, enian
celehirty kless reely ntry. pontral; ssaly with d of was such hens the r.as The pon3 to ponis at ent and an reat racy of arly
balanced. The oligerchical parties manouvred to bring their states into connexion with Lacedæmon, that they might govern through means of their influence, and the democratic parties wished, for a similar reason, to be connected with Athens. In some of these civil contests, particularly in that which took place in Corcyra, the scenes of treachery and cold deliberate cruelty were hideous beyond description.
Several times, when one of the parties was reduced to straits, overtures of peace were made, but rejected by the opposite party; till, in the tenth year of the war, a temporary peace was concluded. It was, however, only a breathing time; and the straggle soon recommenced. At this time, the affairs of Athens were considerably under the influence of a young man, one of the most remarkable characters of Grecian historyAlcibiades. He was of noble birth, of great wealth, great talents, most accomplished address; hut artful, ambitious, profligate, and utterly destitute of principle. He was a pupil of the celebrated philosopher, Socrates, who flourished at this time. Alcibiades, impatient of the narrow sphere of warfare in which the Athenians were engaged, prevailed on them to attempt. a foreign conquest in Sicily, holding out to them many plausible reasnns for the enterprise. He was put in chief command; but the people were jealous of him. He had enemies at home, who plotted against him in his absence. One result was, that he was removed from the head of the armament, and forced into exile; the next result was, that the expedition totally failed, and its failure involyed the ruin of the Athenian fleet and army. The Athenians made powerful efforts for the maintenance of their influence and their liberty, and might probably have succeeded in recovering their prosperity, had not the commander of their fleet permitted himself to be surprised in the harbour of \&igospotamos, in the Hellespont, by the Lacedmmonian fleet, under Lysander; when the Athenian fleet was totally destroyed. This sealed the fate of Athens. The Greek fieet sailed to the unhappy city, blockaded it, and at leggth, compolled the Athenians to surrender.

Thicy then yroceedeà to demolish tho walls, which operation was conducted to the sound of musical instru. ments-as if celebrating the recovery of the liberties of Greece. They also changed the constitution, and, instead of a republic, put it under the command of thirty of the aristocracy; who are usually known by the designation of the thirty tyrants. These thirty oligarchists soon abused their power so much, that they forced into exilo a large proportion of the influential citizens; and the people, subuitting with reluctance to their oppressors, the exiles, under Thrasybulus, secretly aissembled, obtained possession first of the port, and afterwards the city, and proclainued anew the deriocratical constitution, B.C. 401 . In the following yeat, Conion obtained a fleet from Artazerxes Mhemon, the Persian monarch, with which he defeated the Lacedemonian fleet; and, afterwards sailing for Athens, he rebuilt the walls, and thus raised Athens to nearly its former 'freatnéss. It was at this time that the Greek mercenaries engaged themselves in the servize of Cyrus, the brother of Artaxerxes, to dethrone that monarebl; in which expedition Cyrus was killed, and the Greeks, Tander Xenophon, performed their celebrated retreat. Meanwhile, the contests between the oligarchies and the democracies of the Greek states were proceeding with their usual violence. In the midst of one of these struggles in Thebes, two men of singular talents attained to the chief influence ; placed their city, for a time, at the head of the affairs of Greece; and permanently changed the relative position of its different parties. These were Epaminondas, and Pelopidas. The demorfatic party being predominañ in Thebes, a war broke out between them and Lacedmmon, in which Epami. nondas, by a cliange in the usual mode of conducting battles, totally defeated the Spartan army with inferior force. The first of those battles, which broke thie power of Sparta, wais fought at Leuctra, B.C. 371 . Dpaininoindas ufterwards invaded the Laconian territory, ravaged the country, and built'a city in the neighbourHoid of Spartu, which he called Messini, and gave it to

\%osituir in eff demioi "entere Jaced Spaita ence, for ne silled of The Mea Grecia Philip of par ópport of abl matica electéd to res Demos length with o army znnihil states, Phi began rading the nii young enterp
On was bympto Athem hearit tiồ.
taking before
ongage troopa

 at effectual curb on the power and prosperity of Lato dremon. The war still continuing, Epaminondas again entered the Peloponiesus, and again defeated the Lacedmmonians, near Mantinee, B.C. 361. Thuls the Spartans were deprived of that prepoinderating inficience, which they had exerted over the affairs of Greece, for nearly 500 years; but Epaminondins wảs hiniself killed at that battle ; and, with hrm, vanished the power of Thebes.
Meanwhilo, Macedon, hitherto, scarcely Kiown in Grecian history, was rising to power "and eminence. Philip came to the throne, B.C. 360. The "situation of parties in Gréece furnished him with a favivourable opportunity of interfering with its affairs. By a series of able manóurres, partly military, lañd partly diplomatical, he gradually extended bis iuffuence, till he was elected general of the coubbined Greek army. It was to resist hîs growitrg influence, that the celebrated Denosthenes exerféd his unexampled eloguence. At Length "Athens" and Macedon came into direct confict with one another; and the result was, that the A theniat army wais defeated at Chxronea. This battle, which znnibilated for ever the independence of the Greek states, was fought, B.C. 338.
Philip. Was now the first potentate of Greece, and began almost immediately to niake preparations for invading Persia with the united Greek army But, in the niidst of his preparations, he was assadssipated by a young Macedonian of rank, leaving his crown and hts enterprise to bis son Alexander.
On Alexander's coming to the throthe, his first care was to establish his authority in Greece. Som'e symptows of resistance to him were manifested in Athens and Thebés; but he suddenly appeared in thic feart of Greece with an army, and crushed all opposistion. Thebes held out adainst hin, buit a okirmish taking place between his troops and the Thebatis,
 ongagement, the Thebans were defeateed aind ffeut. Thic troops of Alexander following clesely, antered the city
along with thom; and the soldion, finding themedrem within the city without any control, and many of them belonging to cities over which the Thebans had domineered with the utmost pride and insolence, began an indiscriminate massacre, and ultimately levelled the city to the ground-murdering, or making slaves of all the inhabitants. This execution struck terror into the rest of Greece; and enabled Alezander to carry forward his scheme of the invasion of Persia, without interruption.

Alezander then crossed the Hellespont, B.C. 834, into Asia Minor. There he was met by the Persian troops; whom he defeated at the passage of the Granicus; and thus oleared his way to the possession of the whole of Asia Minor. After arranging the affairs of Asia Minor, he proceeded towards Syria, and crossing Mount Taurus, encountered the Persian army, under Darius Codomanus, at Issus, and totally defeated it. He then proceeded along the sea-coast of Syria, possessing himself of the various towns on his route. He was resisted by Tyre, but after a siege of two years, took it by storm, and destroyed it. He then proceeded to Egypt, which fell easily into his hands; and there he founded the city of Alexandria. Having settled the affairs of Syria and Egypt, he proceeded eastward towards Persia, where the Persian king had loeen proparing an army to resist him. The two armies met at Gaugamela, near Arbela, on the east of the Tigris; where the Persian army was again defeated, and thus the fate of Asia was decided. Darius fled to Ecbatana, and afterwards to Bactria, where he was assassinated.

Alezander then took possession of Babylon. He afterwards occupied himself in subduing some of the neighbouring tribes. He crossed the Indus, and ${ }^{\circ}$ gained some victories over the people that inhabited these regions. But here his soldiers mutinied, refusing to accompany him further, so that he was under the neoessity of returning vestward. He came to Babylon, Where he died of fever, supposed by some to have been pogaioned by poison, B. O. 32 z .

Row: lio, its by disse patricia wars fo general place in tricians ment of nuderst dicated army in the vicir to the 1 plebeian

The c man his attacked with the assistanc to a bat was enti the Cap were col (B.C. 38 was duri Persia.
Romans
Oart and pow make co tions be was to ol never su nized by military frustrate was, to

Uhomedrem Iy of them is had donce, began evelled the laves of all or into the ry forward out inter-
B.C. 334 , ae Persian the Granision of the affairs of d crossing my, under efeated it. Syria, pos. oute. He two years, proceeded and there settled the eastward been proies met at e Tigris; and thus Ecbatana, inated. lon. He ne of the nd ${ }^{\circ}$ gained ited these sing to $80-$ the neoesBabylon, have been

Rome.- From the time that Rome became a republio, its history, for several centuries, is occupied chiefly by dissensions, similar to those in Greece, betweer the patricians or nobles, and the plebeians or people, and by wars for supremacy with the neighbouring states. The general tendency of the movements that were taking place in the city, was towards a democracy. The pa tricians had assumed to themselves the exclusive government of the people; but the people, as they came to understand their importance and weight, gradually vindicated their own rights. In one of these contests, an army in the field deserted the consuls, and encamped in the vicinity of Rome; and the patricians were reduced to the humiliating necessity of proposing terms to the plebeians.

The chief incident of importance, in this part of Roman history, is the invasion of the Gauls. Brennus had attacked one of the northern states, that were in treaty with the Romans. The Romans interposed for the assistance of their allies. The Gauls and Romans came to a battle, near the city of Rome. The Roman army was entirely defeated, the city taken and burned, and the Capitol, or citadel, closely besieged. The Romans were constrained to purchase the retreat of the Gauls (B.C. 385,) by giving them 1000 pounds of gold. This was during the reign of Artaxerxes Mnemon, king of Persia. It was not till the year 266, B.O. that the Romans were masters of all Italy.

Oarthage.-This city was still growing in opulence and power. It was busily engaged in attempting to make conquests-the chief object of its military operations being Sicily. The object of the Carthaginians was to obtain possession of that island; but in that they never succoeded. The sea-coasts of Sicily were colonized by Greeks; and they, partly by their superior military tactics, and partly by obtaining aid from Greece, frustrated every attempt of Oarthage, powerful as ahe was, to enalave them.

Alexander, having died a young man, left no children capable of assuming the gevernment of his ellipire. This circumstance immediately led to cabals and intrigues among his principal officers - the object of which was, to secure, each for himself, as great a share of the empire as possible. At first, an attempt was made to. erect a government in the name of one of Alexander's. children, with, one of the Macedonian generals for his, protector; the provinces being distributed among other generals, as governors. The central government, however, wanted strength to keep the governors in subordination. Every one soop sought not only to make himself an independent prince, but to seize on his neighbour's territory. Then followed a scene of confusion, of treachery, and of bloodshed, such as the world has scarcely ever witnessed. One of the first results was, that the whole family of Alexander were successively murdered. Olyupias, his mother, the wife of Philip, perished by the hand of the executioner. At length. after nearly, all of the generals of Alexander had callen in battle, or had been mirdered, the result of the struggle was the partition of the empire into four kingdoms, as predicted by Daniel the prophet. To Ptolemy Lagus were allotted, Egypt, Lybia, Arabia, Coilo-Syria, and Palestine. To Cassander, the son of Antipater (whom Aloxander had left in Greece, to watch over his interests there), were allotted Mace donia and Greece. To Lysimachus, Thrace, Bithynia, and some other Asiatic provinces; and to Seleucus, all the other parts of Asia, as far as India. But, although thees four kingdoms were thus formed out of Alex. arider " ${ }^{\circ}$ ompire, there was no cessation of hootilitiea On the contrary, there were almost perpetual wars among them, till they wore all swillowed up by the noman empist.

Srata.-The arrival of Seleucus at Bahylan, B.C. 812, to take possession of the eastern pruvinces of Alexunder's eupire, after having' been ubliged by Aitigonus to fly to Eyypt, is called the era of the Seleucidx, which word means the descendants of, Seleuclus; and was the era which was long in use in the east for computing time.

Sileucus was a prince of great talrnt, and muoh beloved by his subjects, for his great clemency. He was at war with Antigonus, as soun as he came to the throne; and at length succeeded in defeating and slaying him in battle, at Ipsus. He and Lysiniachus Were now the only surviving generals of Alexander. When buth were about seventy years of age, they went t! war with one another, and Lysimachus was slain. Soun afterwards, Seleucus himself was treacherously murdered. Seleucus built many cities, 16 of which be named Antiveh after the name of his son, the: most celebrated of which was Antioch in Syria on the Urontes; several he camed Seleucia, from his own name; and several Apamia, from the name of his wife. Seleucus was succeeded by
Anticchus' Soter, who reigned 12 years, and was succeeded, B.C. 261 , by his son;

Antiochus II. or Theos.-Having divoroed his wife, Laodice, for Berenice, daughter of Ptolemy, king of Egypt; and on the death of Ptolemy, having put away Berenice, and taken back Laodice; the latter, to secure herself from further disgrace, poisoned him, and raised her son, Seleucus, to the throne, B C. 246.

Seleucus II, or Culinicus, with his wicked mother, then put Berenice and her son to death; which so enraged her brother, Ptolemy, that be invaded the dominions of Seleucus, and getting Laodice into bis hands, put her to death. Seleucuis embarked in an expedition into Parthia, where he was defeated, taken prisoner, and after four years' captivity, died. He was succeeded by

Seleucus III, or Caraunus, who after reigning one Jear, was ngionned by two of his offentio
Intichun, numamed the Grenti nuecendod him.

162

His reign was a continued series of wars with the ueighbouring princes, particularly Ptolemy Philopator, king of Egypt; and Arsaces, king of Parthia, which led to no important or permanent result. His reign is remarkable for having first given occasion to the Romans to interfere in the affairs of the east. Ptolemy, king of Egypt, dying and leaving a son only five years old, to succeed him, $\{$ ntiochus formed a conspiracy with Philip, king of Macedon, to seize on and Antiochus, afterwards, on the advice of Hannibal, the celebrated Carthaginian general, made war with the Romans: but was ultimately defeated, and was obliged to purchase peace on the most ignominious terms. Antiochus, was afferwards slain, when he was attempting to rob the temple of Jupiter at Elymais.

Seleucus IV., surnamed Philopator, succeeded him, B.C. 187. After a reign of twelve years, he died, lesving his throne to

Antiochus IV.; surnamed Epiphanes, one of the most year blood-thirsty and barbarous tyrants, that ever disgraced any throne. The Romans, now in effect, gave laws to Syria, so that when Antiochus hesitated about obeying some of the commands of the Senate, the Roman ambassador drew a circle round him, and insisted on receiving an answer before be should leave that spot. It was this prince, who, by his outrageous persecution of the Jews, drove them to exasperation; and stirred up that successful resistance of his authority, which is recorded in the two books of Maccabees. In the midst of this Jewish war, he went on an expedition to the east. In his absence, his generals were defeated by the Jews; on which, he hastened back to revenge himself upon them; but died miserably on his journey.
Aftar his death, the Syrian throne fell a prey to a guccoasion of usurpers and impontore, who rapidty frlkoind one npothor, and whope mamen it in not ?
neoessary to reoord The last of them was Ancrochows Asiaticus. In his reign, Pompey, the Roman generad, overran his dominions and reduced Syxie to a Boman province, B.C. 65 .

Eaypt.-Rtolemy Lagus, afterwards Soter, who obtained as his share of Alexander's empire, Egyp and the neighbouring countries, reigned 39 years. Ho greatly embellished the oity of Aloxandria, which he made the capital of his dominions. He was, like Seleucus I. the best of his race. He died about 284 years B.C. and was succoeded by

Plolemy Philadelphus, - The most important events of the reign of this prince were, his founding the celebrated Alexandrian library; his causing the Sacred Scriptures of the Jews to be translated into Greek, which translation is still extant, under the name of the Septuagint Version, from the tradition that seventy persons were employed in executing it; and his opening a port on the wosterm side of the Red Sea, by which he drew the commerce of the east from Tyre, to Alezandria, his oapital. He was the frat Egyptian king, who entered into an alliance with the Romans.
Ptolemy Evergetes. - This name, which signifies benefactor, was given to him by the Egyptians, because he restored to them the idols, which had been carried away by Cambyses into Porsia. In a war with Antiochus Theos, king of Syria, he proved successful; and greatly enlarged his dominions towards the east. He also extended his kingdom southward, on both sides of the Red Sea, even to the straits of Babelmandel. He died in the 27th year of his reign, B.O. 221. During these reigns, the Jews enjoyed, at Alexandria, the same privileges with the Macedonians; and this induced great multitudes of that nation to settle there. Ptolemy Euergetes was succeeded by Ptolemy Philopator, who began his reign by the murder of his brother Magas; and then gave himself up to universal licentiousness. His kingdom fell into confusion, and continued so till his death, B.C. 204. L J. Ln

The Jews were threntened in this reign with extirpation, fur refu-iing to worship the tisyptian idols; hut were, as their historians sity, miraculuusly preserved, und restored t" their privileges.
lior rimy Ejpiphinurx sucreeded him, when he was an infant, of tive years old. Sicipio, had just defeated the Cathaqimians, and forced them to humiliating terme of peace; and the young king was, as has already been mentioned, threatened by the : kings of Syria and Macedon; but the Alexandrians placed him sader the protecti-11 of the Rumans. Ptolemy, on coming of ayre, by his mal-administration, drove the Egyptians iato rebellion. He, however, orushed the rebellion; and after having granted terms of peace to the revolted nubles, put them all to derth. He was soon after poisoned, B.C. 181, and thus left bis dominions to

Piolemy Philometer, a child of six years old, under the tuition of his mother Cleopatra. In a war, which he had with the kings of Syria, towards the beginning of his reign, he was made prisoner; and this induced the Alexandrians to raise his brother,

Ptolemy Physcon to the throne.-Ptolemy Philometer, however, recovered his liberty; and the two brothers at first united in opposition to Antiochus Epiphanes, who was seeking an opportunity of availing himself of the distracted state of the kingdom, to obtain possession of it. Antiochus then proposed to invade Egypt ; but was prevented from doing so, by the intervention of the Romans. Philometer was one of the best of that race; and Physcon, one of the very worst. Under the sanction of the Romans, Philometer reigned in Egypt, and Physcon in Libya and Cyrene. * Philometer was slain in battle with Demetrius king of Syria, and Cleopatra, his queen, attempted to secure the kingdom for her son: but Physcon making pretensions to it, he married her, and then murdered her son in her arms. The remainder of his reign was a continual series of the most revolting orimen t He died, B.O. 117, and wan succeeded by

Ptolamy Lathyrus. - Cloopatra, mother of Lathyru, attempted to govern him and the kingdom at the same time; but finding him not sufficiently tractable, she instigated the Alexandrians to drive him from the throne, and to place his younger brother, Alezander, upon it. He, finding his mother's dictation insupportable, caused her to be murdered. He was then driven from the throne by the people, who would not have a matricide for their king; and Lathyrus was recalled. Thebes was one of the cities which had rebelled against Lathyrus, and it continued to resist him; but, after a three years' siege, he took it, and gave it up to plunder and devastation: so that it never afterwards recovered its former influence and splendour. On the death of Lathyrus, he was succeeded by
Alexander II. under the protection of the Romans, among whom he had lived. The Alexandrians had, in the meantime, chosen Cleopatra for their sovereign; and on the arrival of Alexander, it was agreed that he should marry her. This was done, but nineteen days afterwards, he murdered her; and afterwards continuing to perpetrate the most horrible crimes, the people rose up against him, and obliged him to flee for protection to Pompey, the celebrated Roman general. He soon afterwards died, lesving all his rights to the Roman people, declaring them to be the heirs of his kingdom.
Ptolemy Auletes was heir to the throne; and endeavoured to obtain possession of the kingdom, by the consent of the Rcman Senate, among whom he expended large sums of money. After many disappointments, he at length obtained the crown, and held it for four years. On his death, he left a son and two daughters under the tuition of the Roman people. One of these daughters was the celebrated Cleopatra, who makes so conspicuous a figure in the civil wars of Rome. - With Cleopatra ended the race of the Ptolemies, who had reigned over Egypt for the space of 294 jears. Egypt then became a province of the Row n

166

In the other two kingdoms, namely, Turace and Maomon, into whioh Alezander's empire was divided, no events affecting the general history of the world took place, except such as were conneeted with the history of Rome, till they were both swallowed up in that all-absorbing empire. We therefore proceed to give a brief view of the history of

Rome, from the age of Alexander, till the advent of the Saviour of the World. The last and most formidable enemy that the Romans met with, in their wars to obtain the sovereignty of Italy, was Pyrrhus, king of Epirus. He was brought into Italy by the Samnites and Tarentines, to assist them against the Romans ; and it was not till after a six years war, that the Romans were able to expel them. Pyrrhus was killed at the siege of Argos, B.C. 272; after which, the unsubdued states of Italy submitted to Rome.

Soon after this, the Romans were engaged in the first war with the Carthaginians; ùsually called the first Punic War, from the Carthaginian name, Poni, or Phoni, which they had, as being descended from the Phenicians. This war was occasioned by the Carthaginians having possession of part of Sicily, and grasping at possession of the rest. The Mamertines, having been defeated by Hiero, king of Syracuse, and reduced to great distress, had resolved to surrender the city of Messina to him; when Hannibal, the Carthaginian general, obtained possession of it by stratagem. The Mamertines called in the assistance of the Romans; and thus brought Rome and Carthage into direot collision. The war continued 24 years; and ended in the Romans abtaining possession of Sicily, and forcing the Carthaginians to conclude a peace on very disadvantageous terms.

The interval between the first and second Punio Wars, was occupied in subduing some tribes of Italy chat had revolted; and also in taking possession of Consica, Sardinie, and Malta The seond Panic War was purposely provoked by the younger Hannibal, now general of the Carthaginian army. Ho found a pro-
text for attacking Saguntum, a city in alliance with Rome. The Romanis remonstrated, but in vain; and war was the consequence. Hannibal, having taken measures for securing Africa and Spain, crossed the Pyrenees, and then continued his march to the Rhone. This he passed, in the face of some opposition from the Gauls; and then, scaling the Alps with his army, he descended into the plains of Italy. There, by a series of able measures, military and diplomatic, he maintained himself for 16 years; defeated the Romans in several pitched battles, - namely, at Ticinium, at Trebia, at Thrasymene, and at Cannæ\%; and brought Rome itself into the most imminent danger. Had he boen supported by his country, as its interests required, he might probably have turned the scale permanently in its favour. But an envious faction at home refused him the necessary supplies; and, for a considerable time, he could do little more in Italy, than maintain his ground. At length Scipio, the Roman General; after defeating the Carthaginian forces in Spain, passed over to Africa, and threatened Carthage itself. Hanuibal was then recalled to defend his native city. He leíc Italy with regret, and contrary to his own judgment. He encountered Soipio at Zama; but his army, consisting chiefly of mercenaries, was unequal to the army which Scipio commanded, and was defeated, B.G. 196. Peace was then made on terms for Carthage still more humiliating.

The Romans, however, were not satisfied with humbling this rival republic. It was a favourite maxim with some of their statesmen, that Carthage should be overturned. An opportunity sooin oceurred of ronewing hostilities. The Carthaginians were anxious to avoid war, and made many extriordinary concessions; but nothing would satisfy the Romans. They proposed that Carthage should be destroyed, and a city to accommodate the inhabitants, buils 10 miles inland. This propossal drove the Oarthaginians to despair, and they determined to resint to the utter. mon the wity wat besieged; tie people defended

d Punio of Italy ssion of nic War ibal, now d a pro-
betrayed by one of their own citizens, the city r. taken by storm, and destroyed B.C. 146.

The manner in which the Romans were led to interfere in the affairs of Egypt, on the accession of Ptolemy Philometer, has already been related.

Similar causes led to their interference in the affairs of Greece. After the death of Pyrrhus, king of Epirus, the Macedonian kings resumed their authority over Greece. An effort was made by a confederacy among the Greek states, called the Achæan league, to assert their liberties; but, in consequence of their mutual jealousies, and want of good faith, they never shook off the shackles, in which Philip, the father of Alexander, had bound them. At length, the ambition of the Macedonian king, induced him first to enter into a league with Hannibal, and afterwards to engage in an enterprise against Egypt, which was under the protection of the Romans. These aggressions, together with an application for protection from Athens, induced the Senate to declare war against Macedon, B.C. 200. This contest lasted four years, when Philip, having been defeated by the Consul Flaminius, agreed to peace. Philip died B.C. 179, being in the interval between the second and third Punic Wars, and during the reign of Antiochus Epiphanes, king of Syria. Perseus, his son, succeeded him, and immediately began to make preparation for war with Rome. The Romans, anticipating him, sent an army against Macedon. Perseus at first defeated the Romans; but was ultimately defeated by the Consul, Paulus AHmilius. When the Romans first defeated Philip, they proclaimed freedom to Greece; and the infatuated Greeks exulted as if they were really free. They seem to have forgotten that, by receiving their freedom from Rome, they put it in the power of Rome to take it away. Accordingly, in the same year that the Romans destroyed Carthage, their Consul Mummius destroyed Corinth; and reduced Greece to the rank of a Roman province, B.C. 146.

Not long after this a confast commenced batreen the patriojans and plebeians, which ended not, tive is
had
Gra
or S
whe retu Thu pers them cont coun
conq
prine
Th
were
Num
of hi
peal
and
him,
him
In th
himse
Th
with
defeat
Bu1
broug
propos
relativ
enemi
becaus
provol
lasted
300,0
to it,
B.C. 8

Tha
had effected the ruin of the republic. Tiberius Gracchus, a tribune, proposed to revive the Agrarian or Sempronian law, by which no citizen was permitted to hold above 500 acres of conquered lands. This attempt so irritated the senators, that during the tumult of an election, they assassinated Gracchus, and 800 of his partisans. His brother Caius Gracchus, when tribune, made a similar attempt; and on his return to a private station, was persecuted to death. Thus was begun, by the senators, that system of persecution, which very soon fell most heavily upon: themselves. In the meanwhile, however, the republic continued to be successful in its foreign wars; and country after country was annexed to the empire by conquest, or by treaties, or by the bequests of sovereign princes.

The next important transaction, in which the Romans were engagad, was the war against Jugurtha, king of Numidia. He had come to the throne by the murder of his uncle's sons, Hiempsal and Adherbal. An appeal was made to the Romans against the treachery and oppressions of Jugurtha; and they made war on him, and ultimately took him prisoner, and brought him to Rome; where he was strangled in the prison. In this war, the celebrated Marius first distinguished himself.

The Cimbri and Teutnnes, threatening to cover Italy with desolation, Marius was sent against them, and defeated them with immense slaughter.

But the ambition and revengeful spint of Marius brought innumerable calamities upon the republic. He proposed again the execution of the Agrarian law, relative to the lands recently recovered from their enemies. This produced the social war, -so called, becauso it was a war of the Italian states upon Rome, provoked by the operation of the Agrarian law. It lasted three years: and, after a slaughter of more than $300,000 \mathrm{men}$, the Senate succeeded in putting a stop to it, by granting, in part, the demands of the allies, B.C. 87.

The mext important war in whioh the Romans were
ongiged, was that with Mithridates, king of Pontus. This prince obtained possession of Phrygia, by bribing one of the Roman generals. He was driven out of it, by Sylla; and this expulsion laid the foundation of determined enmity to the Romans. He proved one of the most formidable enemies they ever had. He was, however, subdued, and forced to sue for peace. But this war was the occasion of more disastrous consequences to the state, than the resistance of Mithridates. Sylla and Maritus contended for the privilege of conducting the war, which was likely to prove lucrative. Marios gained the popular interest, and was appointed to the command; but Sylla marched to Rome, with six legions, proscribed Marius, and eleven of his adherents, who fled. Sylla, now deeming himself secure, retarned to prosecute the war with Mithridates; but Marins returned to Rome, massacred great numbers of citizens and distinguished senators, and abrogated the laws of Sylla. Marius then caused himself to be eleeted consul with Cinna ; but survived his election only six. teen days.'

Italy, on Sylla's return, became the theatre of civil war; in which Carbo the Consul, and the younger Marius wete slain. Sylla, every where victorious, enterid Rome in triumph, trampled on the laws, prosoribed 80 senators, and several thousands of citizens, and gave up his enemies to military execution. Julius Cossar, who was nephew of Marins, narrowly escaped the carnage, while Pompey was a zealouis partisan of Sylla. Sylla died, B.C. 78 .

The civil war still continued; and also a servile war against about 40,000 rebel slaves raged. Pompey so much distinguished himself in these warsj that he was vested with the supreme command of the Roman army, and sent against Mithridates, king of Pontus, whom be subdued; and carrying the war beyond Pontus, he subdued Armenia, Syria, and Palestine. From these conquests, he returned to Rome, B.C. 63 .
Meanwhile, Julius Comsar was signalixing himself in the west. Retirning in triumph from Spain, he found Romo divided into two factions; the one abtircted to

Pow
the
unit
umv
the part Spai

0

Part

the
dire
shou
influ
Cæs
Pom
to and, Pom murd Syria Pom was Anot his a Rome the 0 assass Pomp

His had i horse, then differe treach of O Octavi allianc proser
and 2
mon trium

Pompoy, the other to Crassus, who was the richest of the oitizens. These men, Cassar had the address to unite, and to bring to an agreement to form a triumvirate with him, the object of which was, to divide the government among themselves. They accordingly partitioned the provinces among them: Pompey taking Spain; Crassus, Syria; and Cesear, Gaul.
Crassus, on entering his province, made war on Parthia; and was defeated, and slain. This broke up the triumvirate; for Pompey and Casiar, coming into direct collision, a contest immediataly arose, who should be at the head of the state. Pompey had chief influence in the Senate; Cwesar among the soldiers. Cosar marched to Rome, and forced Pompey to retire. Pompey went to Greece, where he raised an army to withstand Cessar. Thither Cesar followed him: and, encountering him at Pharsalia, totally defeated him. Pompey fled to Egypt, where he was treacherously murdered. Ozsar, after this battle, overran Egypt, Syria, and Pontus, and then returned to Rome. Pompey's party was not yet extinct : one portion of it mas in Africa. Thither Owsar went, and defeated it. Another part of it, was in Spain: thither he next led his army; and overthrew it. He then returned to Rome, where he was greeted by the acclamations of the eitizens; but, almost immediately afterwards, was assassinated in the senate-house, at the foot of Pompey's statue.
His death rekindled the flames of war. The Senate had its interests to promote; Antony, master of the horse, had his; and Octavius, Cresar's sister's' grandson, then only 18 years of age, had views and interesto different from both. After a series of intrigues and treacheries, a second triumvirate was formed, consisting of Octavius, who had assumed the name of Cresar Octavianus, Antony, and Lepidus. The tomporary alliance between these three, was founded upon a proscription of the enemies of each: and 300 Senators and 2000 Knights being included in this proscription, it moon filled Rome with bioodshed and terror. The triampirse then proctoded to nubdiop the conapiztiturs
against Csosar. The contest was deoided in Greeoe; the last decisive battle being fought at Philippi: After the death of the conspirators, the triumvirs divided the Roman empire among them. Antony, by this partition, went to Egypt, to govern the Eastern kingdoms. There he met with the notorious Cleopatra, and was so fascinated by her, that he ceased from that time to attend to his own interests will energy. Meanwhile Octavianus, whose unceasing ainc was to centre the supreme power in his own person, easily found means to undermine Lepidus, to deprive him of all authority, and force him into banishment, where he died in obscurity., He then contrived to quarrel with Antony. The pretence was the insult which Antony had offered to his sister, whom he had married, and then deserted for Cleopatra. The war was decided by a naval engagement at Actium, in which Antony was defeated. He fled to Egypt, whither Octavianus followed him; and, finding it impossible to retrieve his affairs, he put himself to death. Cleopatra, also, after a fruitless attempt to gain Octavianus, caused herself to be bitten by an asp, and died. Octavianus thus became sole monarch of the Roman empire, B.C. 27,-and received from the senate, the title, Augustus, by which title he is usually known. :Aagustus, having firmly fired himself in the sovereign authority, his ferocious character seems greatly to have softened; and he employed himself sedulously in promoting the welfare of his empire. It was in the 23rd year of the reign of Augustus Cossar, when the empire was in profound peace, that the Saviour of the World was born at Bethlehem. The Christian era began four years later. The reason of this was, that the birth of the Saviour was not used as an era for the computation of time, till some ce-. turies afterwards; and, in computing the time backwards, a mistake wa made of four years ; so that his birth really took place in the year of the world, 4000 ; although, in consequence of this error, the Christian era corresponds to the year of the world 4004.

Jupma. The oniy country besides Rome, whose
affiars, during this period, it is neoessary to notice, is Judes. After the death of Alezander, the Jews fell under the dominion aiternately of the Egyptian and Syrian kings, as the one or the other were able to take possession of Palestinc. Judea was, consequently, during this period, almost constantly the theatre of war. Antiochus Epiphanes, on his accession to the throne of Syria, B.C. 175, being much in want of money, received an offer of 350 talents from Jason, the brother of the high priest, on condition that he should be made high priest instead of Onias, and that Onias should be confined for life at Antioch. This contract was completed. Jason entered on the office, and being a zealous admirer of Greek customs, he suspended the worship of God in the temple, and gave himself up to Paganism. Jason was afterwards supplanted, in the same manner, by Menelaus, another brother, who offered 300 talents more, for the highpriesthood. A report afterwards, reached Jerusalem, that Antiochus was dead. The people could not refrain from expressing their joy, which coming to the ears of Antiochus, he entered the city, and put to death, it is said, 40,000 of the inhabitants, and sold as many more for slaves. Some years afterwards, Antiochus having been mortified by the Romans, resolved to wreak his vengeance on the Jews, and sent his General with the most sanguinary orders to put an end to their religion. A scene of carnage then commenced that has hardly any parallel in history, till the people were driven to desperation; when a priest named Mattathias oollected \& small body of iesolute men, and, af many struggles, succeeded in driving the Syrian army beyond the borders of the kingdom. He was succeeded by his son, the renowned Judas Maccabæus, who defeated the Syrians in five pitched battles, and baffled all their attempts to recover Palestine. Antiochus was in Persia, whilst this revolution was taking place in Judea. Mad with rage, he hastened back, breathing out slaughter and destruction against

and aied at These, a town on the frontions of Poridi and Babylonia. The Byrian Generals renewed the wir, and were defented repeatedly by Judas, who was at length slain in battlo, B.C. 161, and was sucoeeded by Jonathan, his brother. Jonathan, conducted the affairs of the nation with the same pradenoe and success, till he was treacherously murdered. He was succeeded in the command by his brother, Simon; who, after governing wisely, for some years, was murdered by Ptolemy, who had trarried hin daughter. Simon was succeeded by his son,

John Hyrcanus, who took the title of King. He was the first king, after the captivity; and in his reign, the nation rose to greater prosperity than it had enjoyed at any period since the restoration. On his death, B.C. 107, he was succeeded by

Aristobalus, his eldest son, who proved a tyiant and a murderer, After a short reign, he was succeeded by

Ilexander Jannoers, B.C. 105, who made some conquests to the eastward of Jordan. Rettrning from his conquests and triumphs, he gave himself up to luxury and dissipation; and brought upon himself diseases, of which he died. He pas succeeded by

Alexandra, his wife, B.O.78, during the contests of Mithridates, king of Pontus, against the Roman power. In her reign, the Pharisees having obtained her caty rose to influence, and persecuted the party that was opposed to them. She died B.C. 70, and was suc. ceeded by

- Hyrcanus, her eldest son; who, in three months, was driven from the kingdom by

Aristobulus, his younger brother. It was in the contegs between these two brothers, that Attipater, an Idumbean proselyte, and the father of Herod, the first of that name, came into notice. Under pretence of supporting the catse of Hytcanus, he contrived to ingratiate himself whth the Romans, and, after Jerusalem was taken by Pompey, B.O. 63; in the war that ensued bo

mani
muntity of obtaining the favaur of the former, and the insalt was, that
Herod, his son, was made King of Judea, by Mank Antony, B.C. 40. He became one of the most furious blood-thirsty tyrants, whose names stain the page of history. He had married the daughter of Hyroanus, through whom his family enjoyed all its dignity and influence. Becoming jealous of the rank which she posressed independently of him, he oansed her and all her family to be put to death. After he was firmly settled on the throne, he set himself to beautify his dominions. Ho rebuilt Samaria; calling it Sebasta, in hopour of Augustus Comar. He built a stately paluce on Mount Zion: he also built the city of Cosares; which name was given to it also in honour of Angystus. But bis most celebrated work was the rebuilding of the temple at Jerusalem, on a seale of great magnificonce. It was towards the close of his reign, that the Lord Jesus Christ was born at Bothlehem; on which occasion he caused all the infante in Bethlehem, puder the age of two years, to be massacred in oold blood, in the hope that the new-born Messiah prould perigh among them He soon aftor died himself, in extrome torture, leaving his dominions divided among his four song, who, from their inheriting s fourth part of the king dom, were ealled Tetrarche. One of these sons was that Herod, tetrarch of Gailee, who put to death John the Baptist, and who derided our blessed Lord, when he was ment to him by Pilate, the Roman Governor. Archelous had Judea for his province; but, inourning the enmity of his eubjecte, they accused him at Rome, and ultimately procured his banishment. Judea was then made a Roman province, and continued to be so till the destruction of Jerusalem; except for a fow years, during which by the favour of Caligula and Claudius, thast Herod reigned, who put to death the apostle James, and imprisoned Peter; and who, afier a vein-glorious speoch, was smitton with the digeases of which he died Agrippa and Bemiee, befors whom Pqui pleaded his canne, whilo Bostue wh

Roman Governor, were also of the same family. Agrippa reigned however, not ovis Judea, but over some of the neighbouring districts.

MODERN HISTORY.

That portion of the history of the world, which followed the birth of the Lord Jesus Christ, may fitly be called Modern History ; because the institutions of the empire of Rome, which then had reached its height, still continue to influence the western world; and particularly, because that great revolution of religion, and generally of the human mind, which then commenced, has continued to advance; and, in the present day, is proceeding with nabated, or rather renewed, vigour.

This portion of history, like that which preceded it, from the creation of the world, might also be regarded as distributed into periods of 500 years, by remarkable eras. The first period of 500 years, after the Christian era, is marked pretty nearly by the reign of Justinian, and the fall of the western empire. The second period is marked by the reign of William the Conqueror, and the settlemert of the Gothic nations. The third is marked by the discovery of America, the fall of the eastern empire, and the Reformation. These divisions, however, do not suggest the leading revolutions in the history of the world, since the birth of Christ. Wo rather, therefore, adopt the following eras, as-our resting points. The dates are given in round numbers. I. The era of Constantine, marked by the toleration of Chistianity, and the division of the Roman territory into the Eastern and Western empires, A:D. 300. II. The rise of Mahomet, A:D. 600. III. The Crusades, A.D. 1100. IV. Charles V. of Germany, and the discovery of America, A.D. 1500. And V. Bonaparte and the Frenoh Revolution, A.D. 1800.

A.b.	: ERAS	Century.	PRINCIPAL PERSONY OR EVENTB IR EACII CENTURY.
$\begin{gathered} 0 \\ 10 \\ 100 \end{gathered}$	JESUS CEIRIST.	180	Josus Cricitied under Tiberius, Emperor, A.D. 35 Jurusalem deatroyed by Titas, A.D 70. Porseoution of Christians.
$\begin{aligned} & 101 \\ & \text { to } \\ & 200 \end{aligned}$		2nd	Trajan, Emporor. Antoninus Pins, Emporor. Perseoution of Christiang.
$\begin{aligned} & 2011 \\ & 10 \\ & 501 \end{aligned}$		8 rd	Pertinax, Emperor. Dlouleaian, Emperor. Perseoution of Chriatiang.
$\begin{aligned} & 3(11 \\ & \text { to } \\ & \text { fin } \end{aligned}$	CONSTANTINE.	Sth	Perseoution eeases, A.D. 318 Constantinople built, and Eraplee divided.
$\begin{aligned} & 401 \\ & 40 \\ & 500 \end{aligned}$	-	5th	Rome plundered by Alarie the Goth, A.D. 110. Attila, king of the Hnns. Western Empire overturned by Odosoer, A.D. 176.
$\begin{gathered} 101 \\ 00 \\ 500 \end{gathered}$		6th	Justinian, Emperor of the East. Belisarius. Narses defeats the Gothe in Italy.
$\begin{aligned} & 601 \\ & 60 \\ & 100 \end{aligned}$	MAHOMET.	7th	Mahomet's flight, or Elegira, A.D. 62%. Caliphate eatablished. garaconio oonqueata.
$\begin{aligned} & 701 \\ & t 0 \\ & 800 \end{aligned}$		8th	Saraoens defeated, and thoir progrese stopped by Pepin, king of Franoe. Charlemagne, Westera Empire revived. [Charles Martel.
$\begin{aligned} & 801 \\ & \text { to } \\ & 900 \end{aligned}$		9th	England united in one Monatohy. Danes invade England. Alfred.
$\left.\begin{gathered} 801 \\ t_{0} \\ 1000 \end{gathered} \right\rvert\,$		10th	Normans establish themselves in France. Hugh Capet, king of Franoe.
$\begin{gathered} 1001 \\ 10 \\ 1100 \\ \hline \end{gathered}$	CRUSADES.	11th	Cannte, first Danish kiag of England. William the Conqueror, Fing of England, 1066. Crusades oommence, A.D. 1096.
$\begin{aligned} & 1101 \\ & t_{0} \\ & 1200 \end{aligned}$		12th	Henry II. of England, recoives the unbmiedon of the Irith Kings. Saladin, Sultan of Egyph, A.D. 1193.
$\begin{aligned} & 1201 \\ & 60 \\ & 2500 \end{aligned}$		13th	Magna Charta, aigned by King John, 1216. Zengis Khan overruns Asia. Rise of Ottoman Empire.
$\begin{gathered} 1501 \\ 140 \\ 1400 \end{gathered}$		14th	Battle of Bannockburn, 1316 Tamerlane overruns Abia. Henry IV. usurps the Englioh throns.
$\begin{aligned} & 1401 \\ & 150 \\ & 1500 \end{aligned}$		1804	Printing invented, A.D. 1440. Constantinoplo taken by the Turke, A.D. 1453. Amerion discovered, A.D. 1492.
$\begin{aligned} & 1001 \\ & 1600 \end{aligned}$	CHARLES V.	16th	Henry VIII: king of England. Reformation. Elisabeth. Dofoat of Epanich Armada.
1601 1700 1700		17th	Louis XIV. king of Franoe. Charles I. King of England, bohoaded, A.D. 1649. William and Miary, ling and queon of Gt Britain.
$\begin{aligned} & 1701 \\ & 109 \\ & 1090 \end{aligned}$	BOYAPA껴T․	184h	Poter the Great, of Russia. Unit. Btates of Amorios solknoledged, A.D. 17 ge Louir XVI. Ling of Irauce, beheaded, A.D. 1793.
		19th	Union of Great Britain and Troland. Gonth 4 morican Ropeblion ioparato from fipain. Abolit of Slave Trade, A.D. 1808, of Slavery tist

At the birth of Jesus Christ, nearly the whole of that territory that had been successively occupied by the Babylonian, the Persian, and Grecian monarchies, was under the dominion of the city of Rome, now itself governed by a despotio monarch, retaining, indeed, the forms of a republic, but really under the absolute government of a military chief. And besides the territnry of the former menarchies, this great empire now inoluded under its sway those western countries, Spain, France, Holland, or Batavia, as far as Britain, whioh were scarcely known to history, even at the latest of the former eras. It was, with the single exception of Palestine, pagan. That country was inhabitsd by the Jews; who derived their religion with rtore or less purity, from the Geriptures of the Old Testament.

FIRST ERA.

Eirth of Jesus Christ.

FIRST OENTURY.

After the birth of the Saviour of the world, Augustus continued to govern the empire with much good judgment and clemency, attending to its internal order and prosperity, and to its protection from foreign invasion. Towards the end of his reign he adopted his step-son, Tiberius, and appointed him his successor in the empire. He died, A.D. 14, in the serenty-sixth year of his age, and the forty-first of his reign.

Tiberius succeeded him, a man naturally of dark suspicious temper-a disposition which was fostered bythe circumstances in which he was placed-till he became a torment to himself, and a scourge to all who fell within his reach. In the 12th year of his reign, he retired to the Island of Capreæ, opposite to Naples,
 his abominable debaincheries. In this retreat he ro. mainod ispuing his murderous odiots, till the 23rd year
whole of cupied by onarchies, now itself ndeed, the o absolute ssides the sat empire countries, as Britain, en at the single exwas inhaigion with f the Old
, Augustus good judg. lorder and n invasion. is step-son, the empire. of his age,
y of dark lostered by . -till he beto all who is reign, he to Naples, aclties, and eat he re. 23rd yeas
of his reign, and 78 th of his age; when he was seized with illness, and in that state, was puit to death by ond of his attendañts. Previós to his death, he had appointed Caliguila his súccessor, who seems to have reoonmended himself to him chiefly by his profligacy: It was in the 18th year of the reign of Tiberius, that the Lord Jesus Christ was crucified.

Caligula succeeded him, but was remarkable for nothing but his extravagant vices. His cruelty, his rapacity, his profligaci, and his licentiousness, were without bounds, till the injuries which he inflicted on the citizens of every rank, became intolérable. A conspiracy was formed to murder him, which proved successful, in the 4th year of his reign, and the 29th of his age. When Caligula was slain, no successor had been named; the Senate met; and some of the Senators proposed to avail themselves of the opportunity of re-establishing the liberty of the city and eimpire: but they were opposed by the populace and the soldiery, who preferred to the government of a Senate, the largessies and the shows by which the Emperors sought to secure their favor. The soldiers and the populace, therefore, were resolved to have an Emperor; and some of them passing round the palace, found Claudius, the uncle of Caligula. a man about 50 years of age, who had been known chiefly by his imbecility:-him they touls upon their shoulders, and proclaimed Emperor.

Claudius began, as most of the Binperors did, to reign well. He paid great attention to the making of aqueducts, roads, bridges, harbours, and other works uf public utility; but, partly under the influence of an infamous woman, his wife, and partiy through suspicions and fears to which his exalted rank exposed him, he became jealous and cruel, and a multitude of persons of the - first families in Rome fell a secrifice to his apprehensions. At length his wife, becoming apprehensive for her own safety, caused him to be poisoned, after he had reigned 13 years, A.D. 54. In the reign of Claudius, Hritain was invaded a second time by the Romans. They were
 man totally defated, and the Britons deprixed of the Mr, 的
power, and, as it would appear, the inclination to resist. He was succeeded by

Nero, son of Agrippina, the second wife of Jlaudius. He, too, began to reign well, but afterwards rushed with such headlong fury into every species of wickedness, as to eclipse the enormities even of Tiberius, Caligula, and Claudius. The first indication which he gave of the native cruelty of his heart, was the ordering his mother Agrippina to be executed, and coolly observing, when he saw her dead body, that he never had thought his mother was so handsome a woman. The whole of his future life was divided between the most frivolous occupations, and the perpetration of cruelties-the recitals of which make the soul to shudder. Chariot-driving was his favourite amusement. He also valued himself upon his skill in music, and even condescended to appear as a public performer. But on the other hand, his thirst for blood was insatiable.

During his reign, a great part of Rome was burned; and most historians attribute to him the conflagration. To remove the odium of it from himself, he attributed it to the Christians, who were then beginning to attract attention; and upon that pretence commenced an inhuman persecution against them. Some of them were covered with the skins of wild beasts, and in this disguise, devoured by dogs; some were crucified, and others burned alive. It was in this persecution that Paul was imprisoned the second time, as mentioned in his second epistle to Timothy, and in all probability suffered death. Peter also, it is generally believed, suffered about the same time.

Seneca, the celebrated philosopher, had been his tutor; and Nero, having taken up some suspicion that he was accessary to a conspiracy ugainst him, sent him an order to die; which order Seneca obeyed. Lucan, the poet also, the nephew of Seneca, received a similar order, for the same cause, and obeyed it. Nero murdered his wife, Octavia, that he might marry an infamous woman, named Poppioa, and her he afterwards Eilled by a kick, while she was in a state of prognancy.

For thirtoen years was he permitted thus to outrage
ho
ric
at

vi
to
cla
on

$$
\mathbf{c o t}
$$

the
Th

daI

tell and ink
rais
din.
mar
atte
furr
favo
atte
succ
the
deat
0
not
Com
the
dang
army
him
Otho
of se
were
worl
human nature, till at length the empire was roused to rid itself of such a monster. Servius Galba, who was at that time Governor of Spain, and much revered both by the soldiery and the citizens, accepted an invitation that was given to him to march an army towards Rome. When Nero heard that Galba had declared against him, he gave himself up for lost. He made one or two efforts to put himself to death, but his courage always failed him. He at length fled out of the city, to the country house of one of his freedmen. There again he purposed to put himself to death, but dared not, till he heard that the senate had decreed that he should be put in the pillory, and scourged to death, and that the soldiers were actually in pursuit of him for that purpose. Then, by the assistance of an atteidant, he gave himself a mortal wound with a dagger, and expired, just as the soldiers who pursued him burst inlo his apartment.

Galba succeeded him, and soon found that, being raised to the throne by the army, it required more steadiness of purpose and of conduct than he could command to keep the soldiers in subordination. In his attempts to do so he rendered himself unpopular, and furnished an opportunity for Otho, who had been a favourite of his, and who expected to succeed him, to attempt to undermine and depose him. In this Otho succeeded: =-the soldiers bore him on their shoulders to the Forum, where they found Galba, and put him to death.
Otho, accordingly, succeeded to the throne, but did not possess long his newly acquired dignity. Other Commanders of armies, finding that the throne was at the disposal of the soldiery, began to aspire to that dangernus elevation. Vitellius, who commanded the army in Germany, persuaded bis soldiers to proclaim him Emperor, and immediately marched towards Rome. Otho went to meet him; anct, aficer a desperate conflict of several days, in which the uwo armies, felt that they were contending for the disposal of the whole Roman vorla, fought with great obstivacy anu fury, At length
been his cion that sent him Lucan, a similar ero mury an infterwards gnaney. - outrago ,

Mlaudius. rushod wickedTiberius, rhich he e orderad coolly he never woman. ween the ation of shudder. He also ven conBut on le. burned; lagration. ittributed to attract an inem were this disied, and tion that tioned in robability believed,

Otho was defeated, and soon afterwards kilid himeth having reigned three monthes and five day.
V tietivis was then declared Emperor by the Senata He entered Rome as a town that he had taken by conquest, and immediately gove himself up to the indulgence of all kinds of luxury and profusion, arid rendered himself proverbial for his glattony.- By these degrading practices, as well as by his cruelties, he too soon became unpopular; and the legions of the east availed themselves of the opportunity of declaring their general Vesprsian Emperor. When the first army from the east entered Italy, Vitellius sent one of his Generals to meet it, but he being defeated, Vitellius proposed to resign the empire to Vespasian, on condition of his life bëing spared, and a sufficient revenue allotted for his support. Other circumstances, however, occurred to induce him to attempt to defend himself in the city: Vespasian's Commander laid siege to the city, forced his way into it, slaughtered a large proportion of the army of Vitellius, and at length some of the soldiersi, finding Vitellius himself hid in an obscure corner, put a halter round his neck, killed him by blows, and then dragged his body through the streets and cast it into the Tiber.

Vespasian was now declared emperor by the Senate, A.D. 70. He was a man of rather low extraction, his father having been a collector of tazes. His name being Flavius Vespasian, his accession to the empire is sometimes regarded as the commencement of a new dynasty called the Flavian, as distinguished from the Julian; which preceded it. When the way to the empire opened to him, he was engaged in subduing the Jews who had revolted; and being under the necessity of coming to Rome, he left his son, Titus, to conduct the Jewish war.
Vespasian was not tainted with the vices of the preceding Emperor. He was a man of rather austere manners. He set himself steadily to reform the profigeoy of both the citizens and the army, and was reepooted by both. Fiis goverament is not ensrgod with

MODMRN MTGTOBI. FITRST ERA.

Senata by cone indulâd renBy these s, he too the east ing their rmy from Generals oposed to f his life d for his urrea to the city y, forced of the soldiers, rner, put and then t it into

Senate, ction, his Iis name e empire of a new from the ze empire the Jews essity of aduct the
the prer austere he profliwas roreả with
nay public vice except avarice, and even that perhapa; on not rery sufticient grounds.

The most remaykable event of his reign was the destyyction of the city of Jerusalem, and dispersion of the Jews. This event took place A.D. 69. The open oountfy and provipcial tonns had been subdued by Vespasian, and the Jews made their last stand in the city of Jerusalem. That eity vas strongly fortified and defended with the utmost obstinacy. The Jews in the oity were divided into two factions that were in deadly hostility with one another. The two factions, howevey one keeping pospession of the city, and the other of the temple, united in the defence against the Romans; and the city was so strong that Titus felt himself under the necessity of calling a council of his officers, when it was determined to surround it with a trench, and thus reduce it by famine. In the meanwhile, however, the operations for assaulting the city went on without relaxation; and at length the besiegers forced their way into it, when a scene of unexampled carnage ensued. Titus attempted to save the temple, but in vain. The city and temple were burned to the ground, every wall thrown down, and the ground on which it stood ploughed up and sowed with salt as the emblem of perpetual desolation. Thus was the prediction of our Lord fulfilled, that not one stone of the temple should be left on another.

Vesperian and Titus then entered Rome in triumph. A triumphal areh was erected for the occasion, which still stands almost entire. On this arch are sculptured some of the scenes of the Jewish war, and among others the Roman soldiers bearing in the triumph, the table of show bread, the silver trumpets, and the golden candlestick with seven branehes. Vespasian also byilt a prodigious amphitheatre, sapable of holding 80,000 spectators seated, and 20,000 standing, which still remains almost entire, and is known by the name of the Coliseum. Trelve thousqnd Jepish captives were employed in its erection. Vespasian reigned in all ten years, and died of a natural di ease, loavine his son mitin to nieceed the themire

Titus ascended the throne A.D. 79, and has been held up to all ages as a Prince possessing almost every, virtue. It is to be observed, however, that he reigned only two years and two months, and that most of the Roman emperors began their reigns well. Had Nero himself reigned so short a time, he too would have been set forth as an example of every thing amiable and great. In the first year of his reign, A.D. 80, eruptions of Mount Vesuvius took place, by which the city of Herculaneum was overwhelmed in a torrent of lava, and Pompeii buried under an immense mass of ashes. These towns were discovered in the beginning of the last century, Herculaneum in 1713, and Pompeii 40 years afterwards; and from their ruins have been collected some of the most interesting remains of antiquity.
Towards the latter end of the reign of Vespasian, Agricola had been sent to Britain; and, in the reign of Titus he succeeded in bringing the southern part of the island under the dominion of the empire. After a reign of two years and two months, Titus was seized with a violent fever, of which he died, not without the suspicion of having been poisoned by his brother Domitian.

Domitian succeeded him, A.D. 81, and, at first, he, too, reigned well, but soon became one of the most degraded and detestable of the Roman Emperors. His character was a compound of arrogance, cruelty, and licentiousness. Agricola's success in Britain filled him with envy; he recalled him, and that General dying soon after, it is suspected that Domitian procured his death by poison. Men were daily put to death for the most trivial causes. In his reign, the second persecution of the Christians took place, when the Apostle John was banished to the island of Patmos, and there wrote his Apocalypse, or book of Revelations. The governor of Upper Germany revolted from him; but prematurely:-he was defeated and slain. At length his wife Domitia, having discovered that her name was inserted in his tablets to be destroyed, and also the names of several officers about the palace, headed a conspiracy against him, by whieh ho was put to death.
been held every, vir-- reigned of the Iad Nero have been iable and eruptions e city of of lava, mass of beginning 1 Pompeii been colis of anespasian, reign of art of the or a reign ed with a he suspiomitian. first, he, most deors. His elty, and filled him ral dying cured his h for the persecuApostle and there ns. The him; but ength his e was inhe names d a conto death.

His death was regretted only by the soldiery, whose favour he had taken care to secure by frequent and large distributions of money among them. The Senate immediately began to load his memory with reproach, and proceeded, before the soldiers had an opportunity of making an appointment of their own, to name his successor, so that on the very day of his death, Nerva was chosen to the empire, A.D. 96 .

Nerva was an amiable but somewhat imbecils man. The people, however, had been so much accustomed to be governed by the most furious tyrants, that they regarded his gentle reign with rapture. Nerva recalled all the Christians who had been banished from Rome during the former reign. Finding the soldiery disposed to dictation and tumult, and his own strength decaying, for he was about 65 years of age when he was called to the throne, he wisely, overlooking his own family, chose Ulpius Trajan to succeed him; and, about three months after this, he died, having reigned only one year and four months. Nerva vas the first foreigner that ever reigned in Rome.

Trajan accordingly succeeded him, A.D. 98. He was a Spaniard by birth, and at the time of his adoption by Nerva, was governor of Upper Germany. He had been the pupil of the celebrated Plutarch the Biographer. He was a man of great vigour, both of body and mind, and proved a warlike and energetic Prince. The barbarous nations that lay upon the outskirts of the empire were now becoming troublesome and dangerous. The Dacians that inhabited the country to the north of the Danube, invaded the empire. Trajan marched against them, defeated them, erected a bridge across the Danube which consisted of 22 arches, the ruins of which remain till the present day, and reduced Dacia to the condition of a province of the Roman empire.
Trajan, however, led away by the prejudices that existed against the Christians, permitted them, about the ninth year of his reign, to be furiously persecuted; and manty of them were put to death by popular tumults, and by judicial proceedings., After some time, however, being aatisfiod that they were an unoffending
people, he put a stop to the persecution. In his rolga, the Jews made a fanatical insurreotion against the government of Rome, in all parts of the empire, expecting that some signal deliverance would be sent to them from God. They took advantage of the absence of Trajan, in an expedition to the east, to massacre oll the Greeks and Romans whom they could get into their power, perpetrating the most revolting druelties. Their crimes, however, only recoiled upon themselves, and brought upon them a terrible retribution from the enraged army and populace of the empiro.
In the east, Trajan extended the limits of his empire; but, on returning towards Rome, he was seized in the oity of Selencia with apoplexy, of which disease he died after a reign of 19 years, A.D. 117. A splendid column Whs erected to his memory during the reign of his successor, which still continues to be one of the most iateresting ornaments of miodern Rome.

SECOND OENTURY.

Adrian, his nephew, was chosen to succeed him.The character of his government was totally different from that of Trajan. He was a man of peace, and adopted every method to promote and maintain peace. He was one of the most remarkable of the Roman emperors for the variety of his endowments: and, although his private character was stained with many faults, his public acts seem to have been dictated by sound policy. The barbarians still continuing their irruptions into the empire, had adopted the method of watching the absence of the Roman armies to make their incursions, and retiring before them when they came to drive then back. Adrian, tinding that according to this mode of *arlare, he bridge which Trajan built was at least as cunvenient for his enemses as ior himself, dentroyed it. His mude of obtaining peace in the eastern part of the oupire, whs an ant yi uwore yuemtiouble golacy. H:
purel Whio invas H whio the a being to th apon throu Adri subdu fare, nearl all J death Ad vellin visite south and st Cumb portio spent abuses endin many restrai witho to disc As bodily reques howev servic reign

Ant
worshi
to Ad
of Pi ,
derallu
parehased the barberians off by large sumg of monoy; which could only oncourage them to meditate new invasions.

He gave orders for the rebuilding of Jerusalem, which work was performed with great expedition, by the assistance of the Jews; but that infatuated people being enraged by the privileges which were granted to the Pagan worshippers in their renoxated cify, fell upon the Romans and Christians that were dispersed through Judea, and mercilessly put them to the sword. Adrian sent a powerful army against them, which subdued them, but not till after two years of warfare, during which 1000 towns were demolished, and nearly 600,000 men killed in battle. Adrian banished all Jows from Judea, and forbade them, on pain of death, to come within view of it.

Adrian spent a considerable part of his time in travelling through the empire. Among other places, he visited Britain; and, for the better security of the southern parts of this province, he built a wall of earth and stone across the island, between the river Eden, in Cumberland, and the Tyne, in Northumberland, some portions of which can still be traced. After 13 years, spent in striying to regulate the empire, and reform abuses in it, he returned to Rome, with the intention of ending his days there: and while there, he introduced many wise regulations into the city, particularly the restraining of masters from putting to death their slaves without trial, and preventing slaves from being tortured to disoover the murder of their masters.

As he advanced in age, he became subject to great bodily pain, so that he ardently desired to die, and requested those around him to despatch him; none however could be found to engage in so dangerous a service, and he was permitted to die naturally, after a reign of nearly 22 years, A.D. 138. He was succeeded by
Antoninus, who, partly from his attachment to the idolworship of the empire, and partly from his tenderness to Adrian mbile he waô dying, has abtined the name of Pins His character stands high for justioe and moderuliva, and genarally for primitive strictueme of morals

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences Corporation

No regular account of the transactions of his reign has come down to us; but his general policy was rather to preserve the bounds of the empire, than to extend them. He was wont to say, after Scipio, that he would rather save one citizen, than kill a thousand enemies. He died of fever, at the age of 75, having reigned 23 years. On his death-bed he confirmod an adoption of Marcus Aurelius, which he had previously made, and nominated him as his successor.

Marcus Aurelius, who also took the name of Anto. - ninus, accordingly succeeded to the empire; but associated with him Lucius Verus. Marcus Aurelins is frequently called Antoninus Philosophus, and is thus distinguished from his predecessor, Antominus Pius. He is justly regarded as one of the best of the Roman emperors. Verus was almost a contrast to him in all the features of his character, being dissolute and ignorant; yet they seem to have conducted the affairs of the empire in uninterrupted amity

When Antoninus came to the throne, he was urged by the Pagan priests and others to persecute the Christians; but he received that proposal with indig. nation; and, on the contrary, interposed his authority for their protection. During his reign the empire was visited with several heavy calamities. An inundation of the Tiber destroyed a vast multitude of cattle, and caused a famine in Rome. This famine was followed by an invasion of the Parthians, and about the same time the Celti made an irruption into Gaul and Rhæotia. Verus went against the Parthians, defeated them and drove them out of Mesopotamia. About the same time a pestilence ran over the empire, making dreadful havoc of - the inhabitants. The Marcomanni, another German tribe, began to take up arms against the Romans. The two Emperors marched to meet them, but Varus died by the way. In the conflict that ensued, the Romans were defeated with great slaughter. The Emperor made vigorous preparations for renewing the war; but his army being blocked un by the Quadi, a German tribe, an incident happened which has given rive to many contradictory wtatementm. The Roman
of his reign al policy was npire, than to r Scipio, that ill a thousand of 75, having confirmed an had previously
lame of Anto empire; but rcus Aurelius s, and is thus tominus Pius. f the Roman to him in all ute and ignothe affairs of
he was urged jersecute the 1 with indig. his authority le empire was n inundation f cattle, and was followed out the same 1 and Rhætia. ed them and ut the same king dreadful anni, another against the meet them, conflict that sat slaughter. for renewing the Quadi, h has given The Roman
amy were in danger of perishing with thirst, and the onemy assailed them in that condition, when suddenly a copious rain fell, which refreshed the Romans, while, at the same time, $\&$ storm of thunder and hail beat in the faces of the assailants, and enabled the Romans to overcome them. The Pagan writers ascribe this interposition to magicians : the Christians ascribe it to the prayers of a body of Christians who wers in the army, chiefly in the 12 th legion, from which that legion obtained the name of the thundering legion. Soon after this Avidius Cassius revolted, but wras killed by a centurion. In A.D. 179, the Marcomanni again invaded the empire. Antoninus went against them and obtained a victory over them; but died before he had completed the war, A.D. 180. During his reign, the Roman rampart which ran between the Forth and the Clyde in Scotland, known vulgarly by the name of Graham's Dyke, was built. Antoninus was succeeded by
Commodus, his son, a weak and dissolute prince, who has made himself remarkable only for his licentionsness, cruelty, and injustice. After a reign of 13 years, he was assassinated by a conspiracy of the members of his honsehold. He was succeeded by
Pertinat, A.D. 192, who had previously been nominated to the empire. He was of low birth; and had risen to eminence by his military virtues and talents. He reigned but three months; after which, he was murdered by the soldiery. The pratorian soldiers then set up the empire for sale; and it was purchased by a weak but rich man, named
Didius Julianus. Didius had amassed his money by ararice; and, continuing to manifest an avaricious disposition, he kon became unpopular with the soldiers; and Severus, an African by birth, induced the army, which he commanded, to proglaim him emperor. Severus immediately marched towards Rome, and Didius was slain.

Severus succeeded him, A.D. 194, having overcome tro other competitors for the throne. His reign was energetio, but cruel. He went against the Parthians, Who were then invading the frontien of the ompire, and

189

 Ass ten Mrygiproane them mompolled the anhmighior of the Gipa of drmenion and destroyed foreral oition th Aratia Felix. He entered Ropa jn trimpt is solen. did frimphal arch having been grected to reoevv him Which is still in good preservatipn The toman quib. focta in Britain being hargsied and in danger of boing destrgyed by the northern uhapoitants, He went thither, drove bap the Calodonians, and huilf wall across the istand betrieen the Sotrey rith and he Gemmen Qpean He did nq tong guyive his gucpespas in Britain, batcicd at Iork attor Ra active though crai sGign of ahont 18 years.

THIPD GENTURY.

Oaracalla and Geta, the pons of Saperns being outnonledged at Emperon bs the \&rmy A D. 211 , hegan to manifeat thewr hatred of one another gren bofore their argival at Bome Caragall at length
 followed by a troop of ruffians and maydered Gets in his mother arms He tren became one of the mogt exearable tyranto that ever diggrayed the empirpe He eryen putdji Moro and Domitian in his Karharities; fit Macrimgs the Commander of the forges in M esonotamis, wa poused to get rid of him and employed $\%$ persop to assassmate him, after he had reignod BHF Jear. Tho soldiers then fixed ppqu

Mqcrinus as Emperor, not knaving the part which he had taken is the aspassinatipn of Caracalla He was permitted to reion lithe more than one jear, when, having been defeated by fome poditiong legion of hiv 9Fp army, he was purgned and killed.

Heliogabalus, a boy of about 14 zeat of ege, then called to the throne by the mume His mole

Modzan mitiox

181

 though bitit 16 yeart of nge whin he waty called to the
 of the Chiperors. Ir his reigit the Germails began to pout, in iminimbey Svarng, itito the evípifite. They paessed
 extreme constergation. The Bitheror resisted them in
 by a matify samion int ofr soldiets, after a recen of 15 pearrs.
Taximin, who had been the chier prombter of this sedition Ragainit Alexander, wats then ctioser eminjefor?
 He haã, by his extríordinary petrsonal qualfications,
 duced hific into Mis biday guarto ; fina from that station
 character wha thutal ferocity, "which Fis efovation gave

 sêferal atternits to destioy him, hoobe of which steceeded, tint the solfiers, thving ganned over his ghardes, enterted his tent while hè wal asfeep, and tew bobth hith ana niis soun, dfter a reigh of three yearts, After him
Puppientid and Ba llotenus Poighled A.D. 238, but disagreein be betineen themselves, they wore both dlah by
 alonit the itreet, thet
 AD. 238. H1 mat youth 16 years of age, and of good aisposithonis and abilites. The atmy to wever,

Philip thon bocame Emperor, and associated his son with him, A.D. 243, 2 boy of six years of age. The army, however, soon revolted in favor of Decius Julianus, his General, when Philip was put to death, and

Decius became Emperor, A.D. 248. He was a man of talent and moderation, and seemed for a time, to retard the fall of the empire. He was killed, after a reign of two years and a half, by an ambuscade of the enemy. He was a furious persecutor of the Christians.

Gallus, who had betrayed the Roman army, had sufficient address to get himself proclaimed Emperor, A.D.251. He was the first that agreed to pay an annual tribute to the Goths to induce them to cease from disturbing the empire. Gallus wished for relief from foreign enemies, that he might give himself up to induigence. Meanwhile, however, he permitted the Pagans to wreak their malice on the Christians, who

263, celle ricto with A_{1} empi stren the and Long Subli Aure rities own ${ }^{2} \mathrm{cor}$ was s the se
Ta
A.D. ambit He b month death defeat
Pro
soldier
Durin
to the
repelle
ous, til his mu

Car
sons
west b
them,
enemie
lightni
the mir
and C
by the
Thioc
iated his son of age. The of Decius to death, and [o was a man r a time, to illed, after a iscade of the e Christians. army, had ed Emperor, 1 to pay an tem to cease ed for relief imself up to rmitted the ristians, who ilence raged a his reign. 1 from him, battle that Amilianus, s chose the throne forming the ding Syria, n imprisonI with every er,
the insult, sut it soon indulgences f down to a re were no 0 are someence to the 1. One of nsession of lst him, but oldiers. him AT:

263, a man of evergy and talent, having done excellent servioe against the Goths; but after a great victory over these unwearied enemies, he was seized with a fever, of which he died. Upon his death
Aurelian was acknowledged by all the states of the empire. He was a man of great courage and personal strength, and rapid in his military movements. One of the most noted events of his reign was his subduing and taking prisoner Zenobia, the queen of Palmyra. Longinus, the celebrated author of the treatise on the Sublime, was Secretary to Zenobia, and he was by Aurelian's orders put to death. This Emperor's severities were at length the cause of his destruction. His own Secretary having been threatened by him, formed a conspiracy against him, which succeeded, and he was slain, having reigned five years. After some time, the senate chose
Tacitus, a man of 75 years of age, to succeed him, A.D. 275. He was a man of great merit; no way ambitious of the honours that were offered to him. He began with moderation; but after reigning six months, he was seized with fever and died. After his death his half brother attempted to succeed, but being defeated by Probus, he killed himself.
Probus was then declared Emperor; he was bred a. soldier, and was noted for his determined bravery. During his reign, every year produced new calamities to the empire, by the incursions of enemies. These he repelled. with great energy, being every where victorious, till, as he was marching to Greece, he was slain by his mutinous soldiers. He was succeeded by

Carus, A.D. 282, who associated with him his two sons Carinus and Numerian. Several nations in the Test having revolted, he sent his son Carinus against them, and adyanced himself against his eastorn enemies. He defeated them, but was struck dead by lightning, after having reigned about 16 months. In the midst of the tumult and the attempts of Numerian and Carinus to secure the empire that was occasioned
> by the death of the Emperor,

10

wws chosen, A:D. 284. In his time, the northent barbarians hatving discotered the wait of disicipline aidd ehorigy in the Roman legions, poured down in swarmis on the devoted temitory. The Scythians, Goths, Sarmatiahbs, Alani, Cúrsii, and Quadi, assailed it along the whole northern frontier. Dioclesian liad chosen Maximian as bis colleagtie, and afteimards took tro other colleagues, Oonstentius Ohlorus and Galerius, with the title of Oxesars. These Dimperors gained many viotories over the baibarians, but withbat the alightest effect in patiting a stop to their incursion's.

Dioclesian has rendered himself notorious by the most furious and perseyering persecution of the Christiant, which they were ever called to endure; brats in his effiort to orush them, he was, as much disappointed, as ia his attemuts to subdue and restrain the barbarians. At length, being threatened with a civil war, Dibolesian and Matimian resigned the empire, and on the asme day, both retired into private stations. Diooldsian lived in his palace near Salona, amnining himself in the cultiration of his garden till he died, either iby poison or instrity. After the resigration of Dioclosian and Maximian,

Constantius Chlorus and Calerius, the two Cæsars, were universally acknowledged as their successors Galerives immediately begian to take measures for ultimately centering the sole government in himself; but his arrangeinents were rendered abotive by the elegration of Constantine, the of Constantivs Chlorus. Constantius died at York, A.D. 306, having appointed his son Constantine as his succeessor. Galerius died soon afterwards, and his government was distributed betiveon Licínius and Maximian. There were nor, therefore, four Emperiors, Maxéntins and Maximian, Who had evitered into a seovet treaty with one another, Cohstantine serid Liciniuls, who were naturally led to associate for mitural defence againgt their rivals.
Matentius was in posseision of Rome; land a oteadfast supporter of Paganism. Constantine marched against him and during his march he made puiblic profession

the northen discipline and on $7 n$ swarmis Gothis, Sariled it along thad chosen rads tool tro Galerius, with gained many the elightest ation . 5 michas rious by the of the Chrise; bat, in his sappointed, as de barbarians. ar, Dioclesian the same day, बsian lited in in the cultiiby poison or. ioclosian and
two Cæsais, x successors tures for ultiin himself; tive by the Constantins - 306, having sor. Galerius as Sistributed e were nom, d Maximian, on'e another, urally led to trals. ad a steadfast rched against lio profession armidor

Christians; and his profession of Christianity, not merely attached them the more to him, but procured for him many adherents in all parts of the empire. Marentius was defeated, and drowned in his flight while attempting to cross the Tiber. Maximian; who governed in the east, marched against Licinius, but was also defented, and soon afterwards died.

SECOND WRA.

Constantine.

At this era, the Roman empire still retained its ascendency; but its armies had lost much of their energy. They had been pampered and ruined by success, and had taken into their own hands the appointment of the Emperors. Constantine having built Constantinople, constituted it the capital of the eastern portion of the empire, and thus rent the empire into two parts. He also became professedly ${ }^{2}$ Christian; and his accession drew multitudes into the church, many of whom, in all probability, knew little of Christianity, beyond the name.

YOURTH CENTURY.

Constantine and Licinius thus remained undisturbed possessors of the Roman world. It was not, however, likely that both would be satisfied with only a share of sovereignty, and accordingly, a content soon arose, Which termipated in favour of Oonstantine.

Constantine thus having become sole Monarch, adopted measures for estahlishing Christianity as the religion of the empire, which was effected, as it would appear, tithont mpeh difionlty The batile had alieaty been fought in the diffusion of the truth; to that 8
large number of his subjects mere suremdy profoning Chiristians ${ }_{i}$

Ariother important change introduced by thin D3mperor. was his building Constantihople, and conntitating that city the cipital of the empire, and memoving thither. with his whole court. This mensure ultimatuly batued a division of the empire into the weaterti and castern; the capital of the one being Rome, and that of the other Constantinople. . This result was hastened by his dividing his empire among his three sons. Constantine died, A.D. 337, and was succeeded by his three sons,

Constantine, Constantius, and Constans. The weakness produced by this divigion, encouraged the enemies of the empire, who had been restrained by the power and vigour of Constantine, ta take. up arms.- The most remarkable and dangerous of these enemies was Sapor, king of Rersia. He wea vigonously opposed by Constantius, but with various succeses, till both, partiog bejing weatied with the struggle, and, पew, epemian to enooh, appearing, they conoluded a peace.
In the meanwhile, Constentine attempted to dion possese hife brother Constans of, hin dominions, bpt perished in the attempth Constana geperned so tyraninionlly, that he provoled an ingeyreetion, headad by Magnentius, who commanded the weternn, trucpu of the weili. Coistans was unprepared for this insurragtign, and fled, but was overtaken and pat toi death. Mag. nentius had now to contend with Constantius, the other brother. A decisive battie was fought near the town of Mursa, on the river Drave, and the army of Magnentius defeated, and almost extirpated. This battle was decisive, ant only of the fate of Megnentius, who afterymrdes put, himself to deeth, but of thg empire itself So mapy, wall disemplined voterans, iss were, lost on that fatal day, oould never be replaced; and neyer again did an Imperor oommand an army, guch as that which fell on the plaing of Mmpap.

Constantive thus beoame: Moparch of, then whole Roman enpire, Bat the omergencien of the atate compelled him to nominate an asiogite Galus and

had been kept in confinement from their childhogd. Gallus vas zow called forth to be aqsociated with Constanitios; buy conducting himself indliscreeth, he alarmed the Jealony of Congtantius, and Want put to death. His brothet -tlian was then chosen, who conducted the affairs of the western empire. with much ability Constantios beoame jealous of him also, and demanded Jome of his troops, under pretenié that reinforcements tefe required in the east. The troops refused to march, and Julian, after Bome delay, banotioned their disobedience. A civil war was averted by the death of Constantius, when

Jution becamg Emperor A:D. 361, He had been educated in Christianity, but had a strong bias towards the Pagan religion and philosophy. While he was a subject, he continued to profess Christianity, of at least not openly to deny it; but when he attained to supreme poser, he openly embraced Paganism. From the circumstance he has apquired the name of the apostate. He did not, howeyer, persecute the Christians. He had observed that perseqution only increabed their numbers. He therefore aftached them by ingre subtle means, - by fomenting quarrels among then by discountenancing them, by encouraging and fávotring Pagans, apd by reviving the Pagan worship, who had fallen into disuse, in all jts aplendopr; also "by arguing agajnst Christianity in his writings and conver sations. Por the purpose of providing such an argument, he attempted to rebuild the temple at Jeruatem; but could not succeed. The micst respectable writers of his age attribute the, defeat of this attempt to a miraculous interposition, which interrupted the Forkmen, Bo that they did not dare to proceed with the work. But whether the interposition was miraculous or not, it agreed on all hands, that the attempt Fas made by Julian, a Monarah of the Roman, empire, and that it failed.
The Perrians were at this time carrying on war againgt the Romang with vigour, and Julian marched to oppose them. On his wey he fevitu wo tagit Woribis Therfier ho rent, conviled the chaiop
oreclea respegting the event of his onterprise, and was unitormly assured of success. Full of hope and con. fidence, inspired by these assurances, he marohed towards Persia, orossed the Euphrates and Tigris, and penetrated some way into the enemy's territory But the Persians had laid waste the country on hi line of march, and he was at length compelsed 'to re treat. The Persian horse now haragsed him oon tinually. It was in vain that the Romans were victo rious in every encounter, the enemy only retired ts renew the assault, till, at length, Julian, in his eager ness to repulse one of these attacks, was mortally wounded, and died the same evening, having reignec only twenty months. The army, reduced to great atraits, chose
Jovian, an able commander, to succeed him, A:D 863. When Jovian was thus raised to the throne, he and his army were in imminent danger of perishing by famine. Unexpectedly the Persians sent proposals of peace, upon the condition that the Romans should restore five provinces whioh had been taken from them in the reign of Dioclesian. To these oonditions Jovian agreed, and this was the first permanent dismemberment of the empire. Jovian did not live to return to Rome, or even to Constantinople; but was found dead in his bed on his way thither. At Antiooh, however, he had revoked all the laws that Julian had made against Christianity.

Valentinian wac ohosen Emperor, and then named his brother Valens as his colleague. The empire being assailed on all sides by the barbarians, the two Em perors divided the empire between them, Valentinian receiving, as his share, the western, and Valens the eastern part of it. The Goths, in the reign of Valens, advanced up to the very suburbs of Constantinople, defeated and killed the Emperor, and then laid siege to Adrianople, but were repulsed with great alaughtor After their repulse, great numbers of them were out to pieces by the Saracens, who had come to the sid of the Romans. Valertinion continued to make bead againat the barbarians who invadod him part of
the ompire, till A.D. 875, when he died in the 12th year of his reign. At his death he was sucooedod in the west by

Gratian, and the western empire being at this time without any Emperor, he obtained the sorereignty of that also. He was immediately engagod in conflict with the barbarians, who threatened the ompire with dentruction. Finding himself pressed on all sides, he ohose Theodosius as his partner, and committed the east to his care. Theodosius was an able General, and of generpus dispositions. He was a decided favourer of Christianity, and did much towards the abolition of idolatry, destroying the idols and temples of the heathens. While Theodosius was employed in combating the barbarians in the east, Gratian was attacked. by a usprper in the west named Maximus. Gratian had previously given his brother Valentinise (kno.. is as Valentinian II.) a portion of his dominions. Maximus succeeded in putting Gratian to death, and then attacked Valentinian. Valentinian fied to Theodosius, who esponsed his quarrel, attacked and defented Maximus, too him prisoner, and put him to death. Valentinian II. vas afterwards murdered by a General of his army, and Eugenius raised to the throne. Thoodosins attacked and defeated him, and he was aiterwards beheaded by his own soldiers. Theodosius, who is sometimes called the Great, divided his empire between his two sons, Honorius and Arcadias, allotting the west to Honorius, and the, east to Arcadins. He died noon afterwards of dropsy.

Honorius and Arcadius sucoeeded him, A.D. 895. Honorius was a weak prince, pitterly ingepable of contending with the hordes of furious barbarians that wero pouring in on the empire. Ho had, however, an able general named Stilicho. The celebrated Alario was at this time king of the Goths. He raviaged Greece and invaded Italy, where he was defeated by Stilioho, who was hailed as the deliverer of Italy. Honorius retired to the inacgesible fatyesef of havenina, to bo secure from the assauts of the barbarians, and the efforts of hin Geperal were confined to the defonce of Italy it
bofing dttety timpodible to protioct the thiore distuatipto-
 by Rodogaisus or Rodogast, at the head of 'sh memetitise Hot of Geerminis of difortent tribies. They taid wioge to Florence, thich was reduced to the last "etriferimity, When Stilicho appeated for its delivera loe. He inthodulcod sajpliés into the clty, sürroutided the bésiegthg army with a treach and rampart, atid redaced it by famine 40 a frdgtient of that it originally was. The Wretthed reminaint of it was forced to surrender at alisGreition, and solld for slaves. Stillitio wis this hailed a Beedid thime ads the deliverer of Titaly.

Honotifs, howeter, was expbsed to a forse efrothy

 of cstrupt Thbtives, afid ptut to death. This oporded

 firdt madeed to spafe the oity by a large ransom, but
 daoring thaty of the inliabit tets.

In the ceatern ientipire, ribthing worthy of boing Hofioed in this brief fratrutive is reoolded, from the

'Intit' dedtury.

 of this century. Noive of thein ever polssedsed the real
 being now in full posselessidn of the barydriata tiflbes

 nọmitail tank of thitperor by hif fataze Otestes, a

titlo of Eirperor, Italy was invaded by Odoãoer, a Gbth. Odoacer quefeated, tobk, urid slew Oreistes, wedth to Ravennia and took Augdistuilas ; but spared his life' in consideration of his yoith, and appointed him a liberal maintenaince. He then went to Rome, which readily submitted to "him,"and he immediately causised himbelf to be proclaithed King of Italy. Thus the very' name of the "empire of the weest was obliterated. Britain had long been dbatidoned by the Romazis. Spain yas held by the Goths "aina Shevans. Africa by the Vandals. The Burgundians, Goths, Franks, and Alans, had erected several governments in Gaul, and at length Italy itself, as we have just seen, was enslayed by a barbarian, whose family, country, and nation can scarcely be traced.
In the east the empire was attacked by the most formidable bnemy it had yet encountered; Attila, king of The Hefis, a Tartar rice who had come from the great waf of China, Eprestding blood and desilation oper their track. Attila called himself the 'scoutge of God, and bobasted that grass never grew whete his hoise had triofllth. Tro hafterwards adyanced westwards to Gatl. His dimpire los suppopsed to hive been the most extensive ever acquired in orio retign; bis authority beitg acktioivledged oyer the noth of Asia "atid Europe, from the shores of the Pacific neatrly to the "shored of the Allartio. It' wis, however, "greater in territorial extent than in popilation "arfd iniportance. Acótius, the Roman prefesit of Guitl, whio had inatueed the Kings of the Goths and Fraiks to make cothmon cauise with the entipire againinst Attila; treet him hear Chalobso-sur-Marne, and defeated him with the loss of 200,000 men. But Attila though defeated was not subdued; he sent a threatening messege to the Einperor, and received in reply' a defatice. He then resolvod to raise all his forces anid intade Italy, azid actually pentetrated was far ds Milan, which he took. Sich was the terror that his prouich occeesioned, that many of the inhabituntin tooth refuge' amori'g the danals and marshes that were at the extrienity of thie Adriatic Gulf, and there ghve bitgin to the orty of Venilce. Atuilín was dispuated by the

Pope from advancing upon Rome. Acotius compelled him to pass into Gaul, and there Thorisraond, King of the Goths, gave him as signal a defeat 'as he had formerly reoeived from Aootius.
In 476 a great configgration took place in Constantinople in which 120,000 beoks were consumed. Towards the end of this century, the Ostro Goths, or Eastern Goths, erected a kingdom within the limits of the eastern empire, as the Visi Goths, or Western Gothe, had done in the west.

SIXTH OENTURY.

The western empire is now at an end. In the easterr empire the chief object worthy of attention during this century is the reign of Justinian. He cume to the throne, A.D. 527. The first enemy that he had to encounter, was the Persian Monarch. This monarch, although successful in one battle, was routed afterwards by the celebrated Belisarius. The war, however, was continued, with various success for many years. During this war, one of the greatest civil tumults, recorded in history, took place at Constantinople. It began with different factions in the Circus, but ended in open rebellion. One party went so far as to proclaim a new Emperor and seemed to carry every thing before them zill Belisarius, who had been recalled from the Persian war, came upon the rebels when they were assembled in the Circus, attacked and slew 30,000 of them, and effectually quelled the rebellion.
Justinian now turned his arms against the Vandals in Africa, and the Goths in Italy, both of which provinces his able generals Belisarius and Narses recovered out of the hands of these barbarians. In A.D. 558, Justiniar purchased peace with the Persians by paying a large sum of money The same year a bodj of Hunt having passed the Danube, marched towards ConstanHiople, and came vithin 18 miles of the aity. Tho
us compelled ond, king of ; as he had
ace in Con$e \times$ consumed. Dstro Goths, within the si Goths, or
the easterr during this rame to the he had to is monarch, d afterwards ver, was con58. During recorded in began with ed in open claim a new before them the Persian e assembled them, and the Vandals which prois recovered . 558 , Jusying a large of Hune Is Constan. city. Tho
mdefatigable and faithful Belisarius wont out against them with ocmparatively a handful of men, and put them to flight. This was his last exploit. On his return to Constantinople, he was disgraced, stripped of lis employments, and confined to his house, on pretence of being party to a conspiracy against the emperor.

Justinian thus, by the talent and bravery of his Generals, seemed to revive the anciant grandeur of the Roman empire. But he is scarcely less celebrated for the different digents of the laws which were ezeouted under his auspices, and which have been of the most essential use in arranging the jurisprudence of the different kingdoms of Europe. He also founded the Church of Saint Sophia at Constantinople, Which. has been converted by the Turks into Mahometan mosque, and is still regarded as a master piece of architecture. Justinian died, A.D. 565, in the 83rd year of his age, and the 39 th of his reign.

THIRD MRA.

Mahomet.

At this era the Western division of the empire was no more. Barbarian tribes, from the north and east, had burst in upon it, and were in possession of much of its territory: and Rome itself was governed by a lieutenant, sent by the Emperor of Constantinople. In A.D. 600, Mahomet was preparing to propagate that celebrated imposture, which has obtained possession of so large a portion of the human race.

GEVENTH OENTURY.

This century is remarkable for the rise of the Mahometan imposture. which produced important results in

He history of the worfd duthe this and the miccoedtyg fifitid. Mithonet was bof totiards the olowe of the provibus toituly ; Dut did "utt commerdo his system" of indposition virabout A.D. 620. In A:D. 623, his efforts "to dissenifitte hils doctivine began to attruct the attention of the magisterates bf Meccs, and they soindeived that he should be punished with death, as a disturber of the public peace. Mahberet fled to Medina, and from that circunstexice Mis followtrs trivetadopted this gear as the tere fibm Which they'dnie dll events, which is known' by
 Itshed "his coctrite in Aytubla. His countrymen were
 of Elitisulaity to render thatifest to thera the absiarditles of Pagdrism. Mandmet aitifuly naide such motiffications an the ©ewish ind Offistidn doentints and corms bf
 piopedfities of the Atabs, iha culso to establish'his om persoñal sanotity and àthblety. After perstiading somo of his countrymen, and, through them, compelling others, to receive him as the prophet of Fod, he entered upon a regular system of conquest, which was followed up by his successors under the name of Caliphs. Thes overran Syria, Persia, Egyptr, tatd Asia Minor, and ra vaged the Greek empire; besieged Constantinople, but did not succeed in takitig it. They spread themselves along the whole southern shore of the Mediterranean, Drossed over to spain, Lhd entred Gav, but were de Theted atd sifiten back by Charles Hartel. They, ${ }^{1}$ govever, estabisked a splendid kindath Th the south of Spath thit thamtatifed the ir grotnd "there till near the time of the teformation, when the tere tually driven out by pertifhaitd ahd loabelfa, in the fitteenth century. After the Chiristian era, to thats the begintitg of the seventh century, the Saxom heptdrchy was established in England, and the various barbarian tribes that had settled themselves in th3 Roman empire began to assume the form of regular stater adid ritigdoms.
id the suivevedthg the tlove of the co his "tystem" of). 623 , his effiots taot the attention windeived that he disturber of the it, and from that this ytar as the rich ts known' by cumbe' first estail. sbutariy yman wern blient knowledgo a the abisianditites che incoutfications s'and Corms bf the habits and stablish his om perstiading some em, compelling Fod, he entered ch was followed Caliphs. Thes Minor, and m stantinople, but read themselves Mediterranean, 4 buit were de Marte. Thê, ot the soouth ere tuil near the re "íallly driven teenth century. Hinditig of the was estưblishéd tribes that had egan to assume

cigerit oentulty

Towards the beginning of this ceentury, Pepin, maybr of the palade of the " French tings,' becime pobesessed of the "roybl authority, hand dying, was moceeded by his son, Oharres 'liartel.
This dentury is tetrrartable dhiefly for the effebtual othedk that The SAriceens Yeveived from OHarles Mattel
 ciptation. In the greatb batile which was fought betweon Tours difl Pbitiers, historians state that 1875,000 mien mere slain, among whom was the Saracen General.
Pepin, son of Charles Martel, assumed, after his death, not only the authority, but the title and prerogatives of sovereignty. Pepin was succeeded by his son Charles, usually called Charlemagne, or Charles the Great, who mikes the most congpicuous figare in the historit of Edtrope towaras the etrd of this, thd the beginnitg of thie following oentury. His dominioins ditended ovir Pratce, Germany, dind the' northern partis of Italjs; and to was investral "y the Pope with imperial chignity, and trowred as the fodnder bf: a new empire of the west. Bit His chief tionour consisted in the encourg gement Which he 'gave too jhitergtare' and leatried free throtghoit ais dorintulons. He Tounded the Univensity of Pavie, and various other veminafies $;$ and his attention to government, and the general improvement of his subjects, rould have done honour to any Monarch in the most enlightened ages of the world.

Niñti divivat.

 yon of tHe Danes', atia the reeg of 'Afrea, who, whe-

monarchs. The early part of his reign was most cale mitous, in consequence of the incessant invasions and ravages of the Danes. He himself was reduced to the necessity of wandering about in disguise. He, however, succeeded in defeating them repeatedly, and cheoking for a time their incursivins. Like Charlemagng, he gave every encouragement to learning that his meay enabled him. He founded the University of Oxford, and composed more books than most men have doon whose whole time has been devoted to study. In A.D. 890 he promulgated a code of laws, which are juasty considered as the foundation of the common lav af England. He died at the age of 51, A.D. 900.

TENTE OENTURI.

This century is chiefly remarkable for the alman total extinction of literature and civilization throughon Europe : The light of antiquity had perished amidsf the violent agitations that followed the breaking up of the Roman empire, and the light of modern scieno and literature had not yet been kindled. The word presents over its whole surface one field of oontention and bloodshed, with scarcely any object sufficiently pmminent to deserve attention, or to excite interest. II is the very midnight of the dark ages.

ELEVENTH OENTURY.

This century is nearly as barren of important everut as the preceding. It is, however, interesting in th history of England and Scotland. During the earlypul of this century, the Danes, still continuing their inn sions, at length succeeded in placing their king, Canuty on the throne of Fingland; and the Norwegian having, in the absence of Canute, attacked Denmart Canute returned to hip native country, invaded Nornes,

At thi aliphate tainomet, ingdoms "T powe the bos on of A etward. so and remies 0

anquer

 trone, ingdon a his 5 tro hom t] But hese dy he Nor rast of Villiam g Har Inglish ings, th In the ere of ve King nder Ta Persia led not 50 inva ot did dres msn was most cale int invasions and If was reduced disguise. He, repeatedly, and ike Charlemagna ag that his mena rrity of Oxford ' men have dono study. In A.D. which are justh common law d D. 900 .
for the almat ation throughoot perished amid breaking up of modern scieno led. The workd ld of contention sufficiently po ite interest.
mportant evertis eriesting in thy If the early part ling their in ir king, Canut, Horwegian ciked Denmath avaded Norwsy
onquered and deposed the King, placed himself on the hrone, and thus became the sole monarch of the three ingdoms, Denmark, England, and Norway. Canute, a his death, was succeeded in the throne of England, y two of his sons; the one following the other; after hom the Sazon line resumed the sovereignty.
But another enemy, destined to supersede both of bese dynasties, was now advancing to power, namely, he Normans, who had settled themselves on the west cust of France. Towards the middle of the century, Filliam, Duke of Normandy, invaded England, defeathg Harold, King of England, at Hastings, ascended the inglish throne, and originated a dynasty of Norman ings, that for many ages reigned in England.
In the west, the Turks were rising into power. They ere of Tartar descent, and having been called in by he King of Persia to assist him in his wars, they soon, nder Tangrolipix, their leader, made themselves masters Persia. Although they were Mahometans, they scruled not to attack the caliphate, and overthrow it. '1hey 50 invaded the Greek empire, ravaged its territories, at did not, till a period considerably later, make themIres masters of Constantinople.

FOURTH ERA.

The Crusades.

At this era, the empire of the Saracens, or the aliphate, which had arisen out of the imposture of ahomet, had been broken up into many independent ingdoms, all professing the Mahometan religion. A en power, namely, the Turkish, had also sprung up the bosom of the Caliphate; and was now in posses: on of Asia Minor, Syria, and some provinces to the stward. The Turks also were Mahometans. Palesno and Jerusalem were thus in possestion of the femies of Christianity.

Aref sinea the risa and rapid extension of Mahometap. inf Joruatem and Palestine, localitiep that were endeared to Christians by so many interesting associationg, were in tha hands of enemies of Christianity. To mards the end of the previous ceptury, the westorn church had been aroused by, the preaching of Peter the Hermit, to the disgrace of. permitting inftide to retain possession of the hoty city and holy sepulchre, and all the other sacred localitien Añd already an army called a crusade, from, its march. ing apde the hanner of the crose had adranced into Syria. The firgt of the armies that went upon this ex pedition, being vithout arrangement or gegnerals port sessed of military skill, and neicessarily plundering the country in theit route, were massacred, of perished with the exgeption of about 20,000 men, betore the reached Constantino ole and these, crossing into A sin weve met by th Hurfish army and totally defeated That army was followed by one befter organised, under the com mand of Gadfrey of Boinilon, who defated the Turks in several battles, and at, length succeeded in taking Jerusalem, which the crusaders held for nearly a eentury. Godfrey was elected king of Jerusalem A.D. 1098. These crusades were repeated from time to time for about 150 years, till seqven arymies had found their graves in the plains and mountains of the east. But although these expeditions prazed abortive in regard to the immediate object of them, namely, the rescuing of Jerasalem from the poyer of the infidels, they produced a beneficial effect on the state of Europe. They carried of many of the more turkulent spirits, and left a breath. ing time to the various king doms of tide west ; during which many torys rose to eminemce and power, and the supreme civl authorities were strengthened. The also notroduced into Eürepe a taste cor elegance and refinempot. Many of the crusaders returning from the aese where some remains of the civilization apd poliah of the Greeks, and of the Roman empire still lingered prought along with them a relish for more poliitho
mann at ho the cr to be
The tianity hid t
geáeric ancien of. I of chis who Whose parficion mptivi we:seld of: inn ensive every P It w of En tomage

The eniary ndertal apis,in or the Mong f the. mpire. ubdred pent, wib oo, at: Ben Sintury
manners than those to which they had been accustomed at home. Hence it is, that almpet infmediately after the crusades, ancient literature and the fine arts began to be cultivated sed ylouidy in Huropio.
The coninexion also of warlike opentions with Clurien tianity, howevier incongfuous the espmizture may appear, hid the effect of infusing more of hamanity, and supright. gaderous prinoiple into the opergtions of mar, than the ancient Pagan empires and datem had any conception of. It was probably from this cause that tha institution. of chivalry arose, by which a n raoe of warriom waperquiced roo cultivated the highest prinoiples, of /homour, and Whose aim and pride it was to relleve the oppressed; patioularly woimen, and even ohildrea; who might be is raptivity, or exposed to insult or injury. It is thius that ve: Beldom or never hear, in , modern timen, of inefi sceaicen. of unninginled atrocity, siich deadly treachary, suoh ext kenive ind coldablopded massacien, an we. nead iof in. verry page of ancient history.
It was towards the end of this century that Henry II. of England first invaded Ireland, and obtained the homage of the Iriah kings.

THIRATEDNTH OENTURY.

The crusades atill continued till the middle of uthis. emiory; the last, which totally failed, having buen ndertaken by Louis IX: king of s Tranoe, oill of ifictint hain, in A:D. 1270. This ientury is obtief fy seimarkublo or the conquests of Zengis Khan, a chief of the Magal, rMonguil Thertare, in the easto He ôverran the empire t the Saracens, took Bagdad, and putian end to that mpire. Tomarde the end of this century ithe Moguls bbdued China, and then established: a Thutar govern. pent, whichi has's continued titlithè present daj. Othman, lo, at: the ihead of oTkirks, founded the Ottoman em, ine Idivard II of Englani, about the eloge of thia
 bure hive adtiopotity.

HOURTEENTE OLNTUET.

The commencement of this century is marked by tho Scotoh achieving their independence at the battle of Bannookburn, whioh was fought A.D. 1814. Towards the middle of the century Edward III. of England invaded France, and gained several victories, which led to no permanent. result. Towards the end of tho century, another Tartar leader, Timour Beg, known usually by the name of Tamerlane, overran the middle and west of Asia, carrying desolation and deatruction wherever he went. He laid the foundation of the Mogal empire in Hindostan. Delhi was taken by him A.D. 1898. In this century the dawn of literature becomes manifest in Europe. Petraroh, Boccaccio, and Froissart, on the continent; Geoffry Chaucer in Ingland; and Abulfeda, an Arabian geographer and historian flourished.

FIFTMENTH OENTURY.

In this century commenced that confiot, known in history by the name of the Reformation, whioh resulted in many of the kingdoms of Europe separating from the church of Rome. John Huss in Bohemia, Jerome of Prague, and Wiokliffe in England, took the lead in disveminating the doctrines of the Reformation.

In the history of England, the early part of this century is marked by the attempt of Henry V. to obtain possescion of the crown of France, by availing himself of the distracted state of this country. For a time he seemed to succeed in his enterprise; but the English wer ultimately repulsed and driven back by the enthusiam of a peasant girl, named Joan of Are, who believed that ahe was called by heaven to achieve the deliverance of her country, and who infused into the armies of Franow a portion of her own enthusiasm. She was taken, and banely condemned and executed by the Figlish Genemb

But that zot of imbecile revenge rather hastened the expulsion of the English from France than retarded it. In the succeeding reign commenced the wars betweez the houses of York and Lancaster, in which a large portion of the English nobility were extirpated.

In the east the Turks, under Mahomet II. besieged Constantinople, and, after an obstinate siege, succeeded in taking it, A.D. 1458, the Greek Emperor being slain, fighting sword in hand in the breach. This put an end to the eastern empire.

The latter part of the century will ever be celebrated over the whole world by the discovery of America by Christopher Columbus, A.D. 1492.

FIFTH ERA.

Charles ∇.

This era finds the Greek or Byzantine empire extinct, and the Turks in possession of Constantinople and of Greece, to the shores of the Adriatic; with the most considerable islands. Further to the eastward, a great empire had been established by the Mogul Tartars; which had, particularly under two chiefs, Zengis Khan and Timour Beg, or Tamerlane, embraced a larger extent of territory, than any of the great empires of antiquity; but which, at this era, was broken up into a number of independent sovereignties. China was under the dominion of a Tartar dynasty.

The kingdoms of Europe were assuming that form, which, with the exception of late modifications, they still retain. Spain was then one of the most warlike countries in Europe.

Literature had begun to advance, with a steady and rapid pace, over Europe. The art of printing had been discovered about the year 1440, and was now beginning to assume that influence over human affairs, which has been so wonderfully developed in the present day. Statuary, painting, and architecture, had reached their 0 J. In
higheat oxoollenes in Italy, ander Leonardo da Niel, Mighael Angelo, Raphael, Nitian, Corraggio, and othern.

Wut the mont remarkable, as well at the most iuphor. sunt, focture in this era, was the disoovery of Aimerioa, by Columbus; by which diseovery a net world, that had been hid from the inhabitants of that portion of the globe which we have hitherto been contemplating, Teas unfolded to their mindering gaze, and opened to their ppirit of disoovery and onterprise-opened, also, alas! to their cupidity and oruelty. This ovent took place in 1492.

This age, so fernile in great ovents, was aloo the age of the Reformation; in which the Protestant churobes eeparated from the church of Rome; an event which still continues to influence the yolitioal affairs of Furope.

SIXTEENTH OLNTURY.

In the beginning of this century the ejes of all Europe were turied towards the newly discovered continent of America and its islands, till their attention was called off by a now object of a different description, namely, the disisemination of the doctrines of the Reformation, followed by thè atruggle forcivil liberty that immediately ensuec. The crowned heads of Europe regarded the introdpetion of any political or religious docitrines into their cominions, without their consent, as a dangerous dnoroachment on their power and prerogative; and, aided by many of the clergy and aristocracy of the day, attempted to crush every such tendency to innovition. Hence arosel wars, persecuicuis, proseriptions, ind massacres, scarcely less revoltir jh thea hose which stain the pages of ancient pagan history.
Towards the commencement of this century, Charles, king of Spain, wàs elected Emperor of Germany, and beine an able and ambitious prince, he made use of his wisy pewre to attain to sapreme influende in Earope. \#. We Etemdiy resisted by Francis I. of France. After 42ublive enterprising reigny in the latter part of whiob d, and othern. most inapor. of Aincerion, world, that at portion of ontemplating, ad opened to opened, also, sevent took 3 also the age ant chunches event which ns of Fhurope.
of all Europe continent of on was called tion, namely, Réformation, immediately cegarded the octrines into a dangerous gative ; and, gracy of the ney to innoroscriptinns, hose Whieh
ary, Charles, ermany, and le use of his in Earope. inee. After art of whiob

Khet fith mány disappointifents, he at length rougula his crown, and retired into private life.
This contury is celebrated in English history, chety by the reign of Elizabeth, the attempt of Philip' of Spain to subdu'e England, and the total destruation of his fleet, which he had bodstingly called the Idivincible Armádâ.

seventeenth oentuay.

This century is marked by the struggle for civil liberty in England with the Kings of the Stuart family. Charles I. had imbibed higher ideas of royal prerogative than the people, were disposed to submit to; and after virious attempts on his part to establish an independent undefined right of tazation, which was steadily resisted, the contest broke out into a civil war, and the result, was, that Charles was defaated and beheadeds and a kind of republio established, with a Protector, who, in fact, posseesed all the authority of royalty. On the death of Cromwell; the Protector, the people of England were disposed, to return to their former monarchical government, and Charles IL. the son of the former Charles, was restored to his hereditary dominians. On his death, James, his brother, succeeded him; but manifosting a disposition to exercise the absolute authority which had been claimed by the first Charles, he was forced to abdicate the throne; und William, Prince of Orange, who had married the eldest daughter of James and was also his nephew, was called to it. This revolution led the way to those struggles for liberty which have since taken place in America and Europe, and which have not yet subsided.
On the Continent of Europe, this ceintury is celebrated for the wars waged by Gastavus Adolphus, the Swedish Monarch, against the emperor of Germany. Gritavis befifu tie atuest generals of the empire, gained several batties. till, at the battle of Latzen, A.D. 1632, he Was iliain' atthouigh his troops gainied the victory. This

of Franoe, which may be regardod as the Auguatan age of Frenoh literature.
In the east of Europe, the Turks were pressing upon the Christian stater Their arnies had advanced to the neighbourhood of Vienna, where they were defeated by John Sobieski, king of Poland.
While the southern parts of Europe were thus occupied, a power was rising in the north, which was destined to produce important ohanges in its social st te. Russia, which had scarcely been felt or even heard of in European politics, till towards the beginning of the eighteenth century, now began to emerge from its obscurity. This empire may be said to owe its existence, under Divine Providence, to the extraordinary enterprise of Peter, more justly called the Great, than many of those who have obtained that title, and who ascended the throne of Russia A.D. 1682. The measures which he adopted for raising his oountry to eminence, were not conquest; but the introduction into his dominions of civilization, and of the arts and sciences. By these means he rendered available the resources of his vast territory; and his successors, following up his plans, with the addition of direct efforts to onlarge their territory, the Russian empire has assumed a more commanding and formidable position, than any single state now in Europe.

In Asia, the Tartars again overran China, and commenced a new Tartar dynasty on the throne of that vast empire.

EIGHTEENTH CENTURX.

The commencement of this century finds. England and several of the states of Europe combined to resist the ambitious projects of Louis the Fourteenth. And the Duke of Marlborough, General of the forces of tiy allies, gained several great victories over the armies of France, which ultimately led to the peace of Utrecht. The attention of Europe was also directed to the war of

Frederick the Third, king of Prussia, with the German Imperor, for the possession of Silesia: and the rise of the Prussian kingdom to influence. Also to the wars of Oharles the Twelfth, king of Sweden, against Russia, which ended in his defeat and death. Towards the middle of the century, Britain was disturbed by a rebellion which arose in the highlands of Scotland, the object of which was to replace the family of Stuart on the throne, but which was frustrated by the total defeat of the rebel army at Culloden, A.D. 1746.

While Europe was thus occupied with her own internal causes of jealousy and dissension, a new power was rising on the other side of the Atlantic, destined to produce the most important effects on the politioal condition of the world. Amidst the agitation and contentions on the subject of celigion in England, during the reign of Charles I. and II., many of the English emigrated, carrying with them high ideas of religious and political liberty. To these were added a colony a little to the southward, consisting partly of persons convicted of crimes, and sentenced to transportation. Under favourable circumstances for increasing, the colonists did increase with unexampled rapidity, and soon began to feel that they were able to support themselves without aid from the parent country. The consequence was, that they became impatient of the right olaimed by the British legislature to tax them without their consent. This was the very claim on account of which their forefathers had resisted Charles, and for the establishment of which they had been driven from their native country. The British government most unwisely pressed their claims, till they drove the settlers in America into open revolt. A war ensued, in which the Americans were aided by the Frenoh, and the result was, that they achieved their independence, the northern and southern states uniting together in one federal republic.

The European nations were not inattentive spectatore of the struggle between Britair and her colonien. The French coldiers who had been employed in assist ing the American reveltern, retivinad to Irances

208

strpngly imbyed with the principles of ciyil liberty and much predispoged to resist the despotic suthority of their omp monarohs. Accordingly, almost imyle. diately after the termination of the Anglo-A merican war, a regolution begap in Hrance, which did not ead, till the reigning family, af Frapoe, like that of England in the former century, was driven from the throne: Frayce, for a short season, became a republio, and compenced a system of enaroachment on the neigh bouring states, the results of whigh belong to the history of the folllowing gentury.
In Asia, the most Important, and to Auropegns, the most interesting object during this century, is the gradual rise of the British empire in India. In ponsequence of the syperiority of the British pary, when any war broke out between Britain and any of the other powers of Europe, she was im mediately able to take oossession of their foreign colonies or settlements. She chus graduglly superseded the Danes, the Duich, the Portuguese, and the Frengh, in India and the adjacent uslands; and, partily by a train of events over which she had no control, and partly by able measurea, mili: tary and diplomatical, she gradually extended her agthority and influence over a vast torritory in India nd the Asiatio jelands.

SIXTH ERA.

, Rensh Repolution.

This era Ands Napolegn Bonaparte, on native of Orfice mielding the government of France, as the head of a triumyirate, pith the title of First Consul; and, in consequence of a series of victories, possessing the ohief influenee in Furope. Britain, his great oppongnt, is miftrast of the ea, and pogseases a large

mrious parts of the world.n Spain and Portugal are in possession of extensive empires, in South Amoricma: Three new important states have risen since the former era, namely, the United Stater of America formedi of: British settlers; Holland, whioh had formerly belonged. to the crown of Spain; and Russia, which has (ariaen, from. a state of barbarism, to a place amoxt the civilized nations of Europo Prussia, also, from boing ais electorate of the German empire, has become an inde. pendent kingdom; and Austria has aequired extensive territories. On the other hand, Poland has been pare titioned between Russia, Prussia, and Austria; by i a series of acts of the basest treaohery and violetoo. Further to the east, the Turkish empive still existo, but weak and obvionsly sinking to its dissolution still further to the east, Russia is encroaghing on the mone routhern states of Asia, and is now conterminous with China and Persia. In Hindoostan; tho Mogul empire oxists but in name; its, territory being nearly all in the hands of the British, or under British influenoe.

NINETHENTH ORNTURY

The French republicans had, at the close of the former century, entered on a carcer of conquest and uggandizement, and having taught the poople to regard military exploita as the glory of France, laid open their republic to be subverted by any military leader of: uafficient talent to command the admiration of the nation. Such a leader soon appeared in Napoleon I.s a Corsican, and a subaltern officer in the French arymy He entered with all his natural enthusiasm into the revolutionary sentiments of the day; and, by his military skill, soon rose to eminence, and so dazzled the peoplo by what they were taught to regard as the glory of his exploits, that he attained to the chief power in the re publio, whioh he soon overturned, and was orowne omperer.

[^3]his ground only by the same means. He carried forward the system of national aggrandizement which the republic had commenced, till the greater patt of Europe was, directly or indirectly, under his control. Meanwhile England offered to him a determined resistance, and, by her naval power, at once confined him to the continent of Europe, and obtained possession of a large proportion of the commerce of the world. The powers of Europe had been repeatedly roused to resist the encroachments of Bonaparto, but in vain; till he broke the power of his own arm, by a mad attempt to conquer Russia. The Russians retired before him. He advanced as far as Moscow, which the Russians evacuated and burned. The winter was approaching; he could neither maintain himself in Moscow, nor advance further. He was at length compelled to retreat, surrounded and harassed by the unbroken armies of Russia, and an inveterately hostile population. Winter assailed him in all its rigour, and the consequence was, that of nearly half a million of men, whom he had led into Russia, but a few thousands found their way back to their own country.

The European powers saw this to be a fit opportunity for regaining their own authority and influence, and assailed Bonaparte on every side. He continued to offer a vigorous and dexterous resistance, till, overpowered by numbers, he was subdued, and forced to resign the crown. He was permitted to retire to the island of Elba, in the Mediterranean. From that island he very soon issued, marched to Paris, was hailed by the French soldiery, and reinstated in the empire. The other powers of Europe were açain leagued against him, and began to assemble their armies on the northern frontier of France. He marched against them, dispersed the Prussians, but was almost immediately afterwards met by the British army at Waterloo, and there defeated, A.D. 1815. The result was, that he again resigned the crown, surrendered hinself to a British ship of war, was sent to confinement to St. Helena, where he remained till he died, A.D. 1821. The Bourbons were then recalled to the throne of France.
carried fort which the t of Europe Meanwhile ace, and, by the contia large proθ powers of ist the one broke the to conquer He adevacuated ; he could nce further. ounded and und an invehim in all of nearly nto Russia, o their own
opportunity luence, and ued to offer jverpowered resign the e island of and he very the French The other st him, and ern frontier spersed the rwards met re defeated, esigned the of war, was emained till en recalled

This oentury has already also been distinguished by the rise of several independent States in South America. The colonies of Spain and Portugal, which had long been impatient of the rigorous control exercised over them, finding that the convulsions of Europe opened a favourable opportunity of attaining to independence, promptly availed themselves of it, and successfully resisted all attempts of the parent country to maintain authority over them.

There are three features of this period, which must not be overlooked.

The first is the rapid advancement of science, and of the useful arts. Mathematics have been carried to an extent, and have attained to a power and facility of investigation, of which the ancients formed no conception. Astronomy, by the aid of Mathematics and of Optics, has opened up the system of the universe; subjected the various heavenly bodies to weight and measurement ; and accounted with mathematical precision, not only for all the phenomena known to the ancients, but for ten thousand other phenomena, that have been discovered by the more powerful instruments which Optics have placed at her disposal. Mental phenomena, also, and all departments of knowledge, that relate to the direction and cultivation of the understanding, have been investigated on the principle of sound philosophy; and many important practical truths have been established. Natural History, in all its branches, has been cultivated with a zeal and success altogether unprecedented. New subjects of investigation have been opened and pursued to a surprising extent. The sciences of Folitical Economy and of Chemistry may be regarded as the creations of this period; and Geology is only yet attaining to the form and consistency of a science. Geography, also, 'has explored the surface of our planet in almost every direction. And along with the increase of knowledge, have come increase of human power, and addition to human comfort and convonience. Machinery, in evary department
of labour, has been carried to great perfection. The invention of, the Steam-engine has placed a power to which it would be difficult to assign limits, at the disposal of men: and this mighty instrument has been applied to manufaeturea and latterly to water and land carriage, with the most gratifying results. The more delicate machines too, such as clooks and watches, although not the invention of this last period, have been brought to a high perfection in it; and the recent dis covery of gas-light has added much to the comfort and safety of cities and towns. The power of intellect, that is still employed in improvements in every department of art, is unexampled in the history of mankind.

The second feature of this period, to which we have alluded, is the great progress that has been made in translating the Sacred Soriptures, into the various lan guages of the world. The Seriptures had been previously translated at different times, into most of the languages of Europe, and had existed from very early period in Syriac, Arabic, and Coptic; but a great addition to such translations, chiefly into eastern languages and dialects, belongs to the present period. Men of different nations have thus been furnished with opportunities of becoming acquainted with each others' languages; and of learning to act on similar principles to a greater extent than has ever before been witnessed. And when this fact is conthected with the amazing facilitios for communication among the different nations of the world that are now in progress, it is impossible to form any conception of what may be the result.

The third remarkable feature of this period, is the abolition, first of the slave trade, and afterwards of slavery in the British colonies. A traffic in human beings, from the west coast of Africa, to the American continent and islands, early commenced. The cupidity of the European settlers in the New World, impelled them to seek for labourens to cultivate the land, to work the mines, and otherwise to render their new acquisitions profitable, bofore a sufficient population had grown up on the oni for theq purpeen. With thin intept, they voing thoir ship to tho coge of A friga, to got, as thoy
fection, The d a power to ts, at the dislent has been ter and land The more and, watches, od, have been e recent dis. comfort and intellect, that I department kind.
hich, we have eon made in various land been pre most of the from a very ; but a great eastern lansent period. rished with each others' ar principles n witnessed. mazing facit nations of mpossible to ilt
riod; is the terwards of in human e American he cupidity d, impolled nd, to work acquisitions grown up intept, they Wh they
could, men, women, or children, and convey them acrosy the Atlantic, to the European settlements. The prosecotion of this nefarious traffic created a mass of human misery, partly in Africa, partly during the middle passage, and partly ini America, suph as scarcely had at any former period been known : and it is humiliating to think, that the agents and abettors of this traffic were natives of countries professing to have adopted the benign principles of Christianity.
The zeal of a few benevolent individuals was chiefly instrumental in opening the eyes of the British public to the enprmous, crimes, to which they were rendering themselyes parties, by sapctioning the slave trade and by the condition of the slaves in the British West India inlands The result was, that the nation was roused to ipdignation at the fearful recitals, and became determined to wash its hands of the foul stain. And after a determined struggle against the parties interested, humanity triumphed, and first the slave trade, und afterwards slavery itself Was abolished. The manner, in which this last act of justice was effected is, perhaps, unique in the history of the world. The British nation purchased the freedom of the slayes from their master subjects of the empire, and advanced to tem trenty milions of pounds sterling to set the metched captivers at liberty:
vide they such nour 10f p nin and

IYSIOLOGY.

veen minerals, the latter aro several funcature. These ure, but more re composed: ooth surface, s are rough, f geometrical
rgans have to er may be enl or chemical the addition inations with hey have no ature. Orgaed in size, by of a naturb nilate to thel.
the principa of organizer tion.
ed a stomach ence they ars rgan is essen. supplied with ir feet; they they not pro-
vided with such store-house, in which to lay it up, they would be frequently in danger of perishing.

Vegetables have no stomach; they do not require anch a magazine, since they find a regular supply of nourishment at the extremity of their roots. The food of plants is not of a complicated nature, like that of animals; but consists of the simplest materials-water, and the solid and gaseous matter contained within it.

The second distinction between the animal and vegetable creation is, that the latter are not endowed with aensibility.

Some ingenious experiments have, however, been recently made, which tend to favour the opinion that plants mas be endowed with a species of sensibility; and seem to reader it not improbable, that there may exist in plants something corresponding with the nervous system in animals. There are certain vegotable poisons, which are known to destroy life in animals, not by affeoting the stomach, but merely by acting on the nervous system. These poisons were administered to different plants, either by watering them with, or steeping the roots in, infusions of these poisonous plants. The universal effect was, to produce a sort of spasmodic action in the leaves, which either shrunk, or curled themselves up; and, after exhibiting various symptoms of irritability, during a short time became flaccid, and the plant, in the course of a few hours, died. When we see plants thus acted upon by regetable poisons, which are known to be incapable of desuroying the animal fibre, or of injuring the frame, but through the medium of the nerves, we may be led to suppose, that certain organs may exist in plants, with which we are totally unaoquainted, and which bear some analogy to the nervous system in animals.

It is certain that some plants possess a power of irritability or contractibility. There are some flowers, such as those of the barberry, whose stamens will bend and fold over the pistil, if the latter be pricked with a needie; and there is one instance of a plant the leaves of which move without any assignable casuse; this is the hedysarum gyrans, which growi only on the banks

314

 all of whitu are in constant frregalar mpotion. Tho Whewes of t the' suintdew, Hear the 'robt, "are 'bovored with
 on the upper' suiffice of the leaf, it is 'at firtst detainted "by this olaminy liquird, wiva then the ledf olloses, ind holdro it fast, ctinl it aies. Plante in goneral, turn their

 If they were tochsible of the beridita "they darive froum light and air.

 put in motion; But aftor sobine nithe, it becorim thoustomed to ft, the contriction ceases, and the teave - axpatid.

Plants, wheh are Brought from the soithef themis phere, fithful to the' seato its of thieir natilve coonthty, molke Tvin attempts to bua aira brosoom, fotring our frowty winter; and seem to expect their sultity summer Ct Christmas.

These, ruid mata, other phenbonik, gahibited by plaits do not permit us positively to say, that plantu Wire wholly devoid of sensibilitity; btat the evidence "proof. Had Providénce endowed plants with the sen. bations of pleasure and of "pain," it would, ht the same time, tave aftorded the mexns of Toeking the ohe, ahd of aroiding the other. Kastinet "Es given to uhimals for that exproess purpoose, dind reasot is to tuan; bat a plant rooted in the carth is a poot, patient, paseive being: its habito, ite irritability, and itb cortrudtibility, aill pe pending on mefe physical caubibs.

The properties of plasts may be separatea into two olasses : firts, those which relate to the tr structure; suoh as their elaiticifty, their by troimetric po wer: "ure;

 Whioh, conisequentry, oan oftit shit as contracibibility;
 The ddineitary bryan of vegex aci aie of tifioe
kinc
celle repa cons are 1 to b from mint for T tary they plant the to 0 degre tions.
sap as of ore peithe seppara
The trache and f elagtio promo it is s that of The masses except are all system egainst
system.
The
branch
zones o
The
the oor
ontiod?
kinds. First, the cellularisystem; ©onsisting of minute cells, of an hexagonal form, apparently closed and eparated by their jpartitions, somewhat similar to the construetion of a honeycomb. These cells in plants are marked by : mall spots, which have been oonjeotured to be apertares, through which fuids are transmitted from one cell to another; but these marks cares so minute, as to render it hazardous to yenture on cleciding for what purpose they hreidesigned.
The vascular syatem forms the second wet of elementary organs. It consists of tubes, open at both ends: they are always. situated internally. The organs of plants are so extremely small, that, though aided by the most powerful microscope, it is frequently difficult to examine the structure of their parts, with a sufficient degree of accuracy, to be able to ascertain their functions. It has long beepa a disputed point, whether the sap ascends through the vascular or the cellular systems of organs ; the latest ppinion is, that it pasees through neither; but that it riges through the interstices which separate the different oells.
The third system of elementary organs, is the trachee: so alled from their conveying air both to and from the plant; they are composed of very minute elastic spizal tubes. Air is fo essential an lagent, in promoting the nourishment and grawth of plants, that it is scarcely less necessary to their existence, than to that of animads.
The whole of the vegetable kingdom consists of masses of these several elementary organs, with the exception of fungi, mosses, and lichens, whose vessels are all of aellular form; they have no vescular system whatever; and this affords a strong argument against the passage of the sap through the vascular system.

The layers of wood, whioh are seen in the stem or branch of a tree cut transversely, consist of different zones of fibres, each the product of one year's gronth.
The bark consiste of three dietinct owtot, the cillicie, the eortex, and the liber or inner bark; of these, the entich is that which is sxternal. It eovers the lemres

216

and Howers, with the exception of the pistils and anthers, an woll as the stem and branohes. The outicle of a young shoot, after it has been for somo time exposed to the atmosphere, becomes opaque, dries, and boing distended by the lateral growth of the branches, splits, and after a year or two, falls off.'. A second membrane is then formed, by the desiccation of the external part of the cellular integument; but it differm from the former, in being thicker, and of a comrser texture. This envelope is distinguished from the former by the namie of epidermis.

ROOTS.

The root not only supports the plant by fixang it in the soil, but affords a channel for the conveyance of nourishment. At the extremity of each fibre of root, there is an expansion of the celullar integument, called spongioie, from its resemblance to 2 small sponge; being full of pores, it absorbs the water from the eoil. There are pores in every part of a plant, above ground, but they are almost wholly for the parpose of exhalation. The roots have no pores, exoept in the spongioles at the extremities. It would be useless for them to be furnished with evaporating pores, since they are not exposed to the atmosphere, where alone evaporation could take place.

The tendrils of vines, and of other climbing plants which serve to fix them against a wall, or the trunk of 2 tree, cannot be considered as roots; since, though they answer the purpose of sustaining the plant, they are unable to supply it with nourishment. But ther are some parasitical plants, such as the mistletoe, which having no immediate communication with the earth, strike their fibres into the stems or branches of a tree, and derive their nourishment from this riohly prepared woil: yot, as the abworption in thit ease is not carried of
he piotile and minohen. Tho been for some somes opaque, growth of tho 0 , falls off.' 1 the desication cament; but it ker, and of 1 uguished from
by fixung it in convejance of oh fibre of , integument to $a \mathrm{amal}$ be water from rt of a plant, holly for the ve no porea ies. It mould h evaporatiog - atmospher, mbing planth the trunk of since, though ae plant, they t. But then thetoe, whioh th the earth hes of a treat ohly preparad not carried os
by the regular mode of spongioles, their fibres are not denominated roots.
The spongioles aot only by capillary attraction, and mok up moisture, just as, a lump of sugar absorbs the water into which it is dipped. As a proof of this it has been shown, that if roots, saturated with moisture, bo transplanted into, very dry earth, the latter will aboorb the moisture from the roots.
Absorption does not immediately cease upon the death of a plant, as the blood ceases to circulate upon the expiration of animal life; but when the vessels, through which the fluid should pass, have lost their vital energy, that susceptibility of irritation and contraction, which enabled them to propel the fluid upward, ceases, and it can no longer ascend into the roots, but remains stagnant in the spongioles, which coon become saturated. Disease and putrefaction follow; and that nourishment, whioh was designed to nustain life now serves only to accelerate disorganisation. The fluid is, howevor, still performing the part assigned to it by the Creator, for if it be necensary to supply living plants with food, it is also necessary to destroy those which have ceased to live, in order that the earth may not be encumbered with bodies become useless, and that their disorganized particles may contribute to the growth of living plants. Thus, the putrefaction of leaves, straw, \&o. which reduces the bodies to their simple elements, prepares them to become once more component parts of living plants.
Botanists distinguish several kinds of roots. The radix fibrosa, or fibrous root, is the most common in it form: it consists of a collection or bundle of fibres. The roots of many grasses, and most annual herbs, are of this description. The couch-grass is an example of the radix repens, or creeping-root. If an attempt be made to eradioate such roots, a succession of bunches of fibres are met with, springing from an apparent root whioh grows horizontally, and appears to be endless. This long horizontal fibre is, however, not a soot, but a subterraneous branch, for it has no P ${ }^{5}$. .
sponginles; the real roots are the small bundles of fibres which spring from it.: Such a root is very tenacious of life, as any portion, in which there is an articulation, will growr. The ox-eye, whose strong penetrating runts strike deep into the earth, furnishes an exaluple of the rudix fissifiormix, or spindle-shaped. It is also called the tap-root from its tapering so :unsiderably towards the end. The radix bulbisa, or bulbous-rwot, such as that of the lily, the hyacinth, or the onion, is improperly so called, for the tufts of libres, pendant from the bulb, are the roots. The bulb constitutes the stem of the plant. The potato belongs to the class of tuberous, or knotted routs, which are of various kinds, comprehending all such as have fleshy knobs, or tumours. In all cases they are to be considered as reservoirs of nourishnent, which enable the plant to sustain the casual privations of a barren or dry soil.

The root of the orchis is deserving of notice, from its singularity. It consists of two lobes, somewhat similar to the two parts into which a bean is divided. One of these perishes every year, and another shoots up on the opposite side of the remaining lobe. The stem rises every spring from between the two lobes, and since the $\because 2 \mathrm{w}$ lobe does not occupy the same place as its predecessor, the orchis every year moves a little on wards.

The duration of roots is either annual, biennial, or perennial. To the first belong plants the existence of which is limited to one season, such as barley, and a vast number of garden or field flowers. The biennial root produces, the first season, only herbage, and the following, summer, flowers and fruits, or seed; after which it perishes. To the perennial belong plants which live to an indefinite period, such as trees and shrubs.

STEMS.

Every plant has a stem through which the sap circulates, and from which the leaves and flowers spring. This stem is not always apparent : it is sometimes concealed under ground, sometimes disguised under an extraordinary form : the stem of the tulip, for instance, is contained within the bulb, which is commonly, but improperly, called its root; that of the fern is subterraneous. The functions of the root and stem are totally different: the former merely sucks up nourishment from the soil, and transmits it to the leaves; the latter is supplied with organs to distribute it, variously modified, to the several parts of the plant, the leaves, the flowers, \&cc.
The stems of plants are divided into two classes; those which grow internally, hence called endogenous; they are also called monocotyledons, from their seed having only one cotyledon, or lobe; and those which grow externally, called exogenous, or dicotyledons, from their seed having two lobes.

There is 2 third class, denominated acotyledons, which have no cotyledons, and no vascular system, such as fungi, lichens, \&c.
The date, the palm, and the cocoa-nut tree, the sugar-cane, and most of the trees of tropical climates, belong to the monocotyledons, or endogenous plants. Their stems are cylindrical, being of the same thickness from the top to the bottom. Their mode of growth is this: a hollow stem shoots up to a certain height, and there stops; layer after layer grows in the interior of this hollow stem, till at length a period arrives when the outer coats are so hardened and distended, as to yield no longer, the stem has then attained its full growth in horizontal dimensions, and offers a broad, flat, circular surface to view, which has scarcely risen in height above the level of the ground. In this stage it resembles the stump of the trunt of a tree, whici has been cut dowu. The following spring, thoro boing no room for a new layer of wood to aztond
itself horizontally, it shoots up from the centre of the stem vertically; fresh layers every year suçcessively perforate this central shoot, till it becomes hard, compact, and of the same horizontal dimensions as the base; the second period of growth is then complete.

The leaves and fruit of this class of plants grow from the centre of the last shoot, and form a sort of cabbage at the top of the tree, on cutting off which, the tree perishes.

Endogenous plants have no real bark, the external coats of wood are so much hardened as to render such a preservation unnecessary. When an European woodcutter begins to fell a tree of this description, he is quite astonished at its hardness. "If I have so much difficulty with the outside," says he, "how shall I ever get through the heart of the wood?" But as he proceeds, he finds; that, contrary to what he has been accustomed to, it gets softer This circumstance renders it very easy to perforate them, and makes them peculiarly appropriate for pipes, for the conveyance of water, and such like purposes.

These plants have usually no branches. Corn, and all gramineous plants, the lilaceous tribe of flowers, and bulbous roots, are all endogenous. Some of these send forth shoots, but they are not from the stem, but from a knot or ring upon the stem. The sugar-cane, which grows in this manner, is the largest of the gramineous plants.

The structure of the exogenous plants, or dicotyledons, to which the trees of our temperate climes belong, is much more complicated.

The stem is composed of two separate parts : the one ligneous, the other cortical, in other words, it is formed of wood and bark.

The wood consists, in the first place, of the pith, a soft medullary substance, which occupies the centre of the stem, and is almost always of a cylindrical form. This soft, pulpy body, does not grow or increase in nize with the tree, but retains the same dimensions it pricinally had in the young otom.
e of the cessively hard, as as the lete. ats grow Aort of f which, external der such an woodn, he is so much 11 I ever he prolas been

umstance

 makes he con-orn, and rers, and f these tem, but jar-cane, of the

The first layer, surrounding tho oentral pith, grow freely during a twelvemonth, but the following year it is enolosed by a new layer; being, by the pressure of this layer, prevented from extending laterally, it makes its way where there is no pressure; that is to say, vertically. When during the third year, a third layer surrounds and compresses the second, this, in its turn, escapes from the bondage by rising vertically. This process goes on year after year, so that the stem grows in height; at the same time that it increases in thickness. This mode of growing renders the form of the stem conical; the number of layers diminishing as the stem rises.
These layers of wood attain a state of maturity, when they become so hard by continued pressure, as to be no longer susceptible of yielding to it. $;$ Previous to this period, the layers bear the name of alburnum, signifying white wood, for wood is al ways white, until it reaches this degree of consistency. The length of time requisite to convert the alburnum into perfect wood, varies from five to fifty years, according to the nature of the tree.
The vegetation of the bark is precisely the inverse of that of the wood; that is to say, it is endogenous, its layers growing internally : the new soft coat of bark, therefore, lies immediately in contact with the new soft layer of wood. The outer coats of bark, when they become too hard to be further distended by the pressure of the internal layers, crack, and becoming thus exposed to the injury of the weather, fall of in pieces: it is this which produces the ruggedness of the bark in some trees. The other layers, as they become external, and exposed to the same sourees of injury, experience the same fate.
It has long been a disputed point, what part of the stem the sap rises through; some have maintained the opinion, that it ascended through the pith: others, that it rose through the bark, but they have both boen proved to be wroug. By colouring the water, with Which the plant was watered, it, has boon traced within
the stom, and found to asoend almost wholly in the alburnum, or young wood, and particularly in the lateat layern.

THE FUNCTIONS OF LEAVES.

If the leaves of a tree be stripped off, the fruit comell to nothing, which is exeraplified every year in goosoberry bushes, the leaves of which have been devoured by caterpillars; and though the fruit trees of warm climates, partly naturalized with us, grapes and peaches, for instance, ripen their fruit sooner, perhaps, if partially deprived of their leaves; yot if that practice be curried too far, the fruit perishes. The white mulberry, indeed, cultivated in the south of Europe, for the food of silkworms only, bears wonderfully the loss of its foliage three or four times a year.

These facts have led some to think, that leaves were merely a clothing, or a protection against cold and heat. Though this is undoubtedly true, still it is a very small part of the use of leaves.

That leaves give out moisture, or are organs of insensible perspiration, is proved, by the siniple experiment of gathering the leafy branch of a tree, and immediately stopping the wound at its base, with wax, or any other fit substance, to prevent the effusion of moisture in that direction. In a very short time, the leaves droop, wither, and are dried up. If the same branch, partly faded, though not dead, be placed in a very damp cellar, or immersed in water, the leaves revive, by which their power of absorption is also proved.

The great annual sun-flower is said to have lost by perspiration, 1 lb .14 oz . weight, in the course of twelve hours, in a hot dry day. In a dry night, it lost about throe ounces; in a moist night, searcely any alteration was observable; but in a sainy night it gained
tro or three ounces. The cornelian cherry is most romarkable in this respect: the quantity of fluid which evaporates from its leaves, in the course of twenty-four hours, is said to be nearly equal to twice the weight of the whole shrub.

The perspiration of aquatie plants seems to be remarkably copious. Of these some grow constantly immersed in water. Their leaves are peculiarly vascular, and dry very quickly in the air, withering in a. few minutes after exposure to it. Other aquatics float with only the upper surface of their leaves exposed to the air, which surface is so contrived, that water will scareely remain upon it. These leaves, though extremely juicy, dry with great rapidity, as does every part of the plant, when gathered. It is probable that they imbibe copiously by their under sides, and perspire by their upper.

Light has a very powerful effect upon plants. The green colour of the leaves is owing to it, so that plants raised in the dark, are of a sickly white; and it is well known that the blanching of celery is effected by covering the plant, so as to exclude the light.

Light acts bencficially upon the upper surface of leaves, and hurtfully upon the under side; hence, the former is always turned towards the light, in whatever situation the plant may happen to be placed. Plants, in a hot-house, present the fronts of their leaves to the side where there is most light, not to the quarter where most air is admitted, or to the lue in scarch of lieat. It has been found, that vine leaves turn to the light, even when separated from the stem, if suspended by a thread.
Nor is this effect of light peculiar to leaves alone. Many flowers are equally sensible to it, especially the compound radiated ones, as the daisy, sun-flower, marizold, de. In their forms, Nature seems to have delighted to imitate the radiant luminary, in the absence of whose beams, many of them do not expand their blonoms at all. The stately annual sun-flower uisplays this phenomenon more conspicuously, on secount of its aize: the flower follows the sun all day
and returns, after sunset, to the east, to meet his ous. beams in the morning. A great number of leaves, likewise, follow the sun in its course. A clover field is a familiar instance of this.

The chemical actions of light, heat, and the com. ponent parts of the atmospheric air, upon leaves, are now tolerably well understood. It is agreed, that in the day time, plants imbibe, from the atmosphere, carbonic acid gas (which is a compound of oxygen and carbon), that they decompose it, absorb the carbon, as matter of nourishment, which is "added to the sap, and emit the oxygen. The burning of a candle, or the breathing of animals, in a confined space, produces so much of this gas, that neither of these operations can go on beyond a certain time; but the air so contaminated, serves as food for vegetables, the leaves of which, assisted by light, soon restore the oxygen, or, in other words, purify the air again. This beautiful disoovery shows a mutual dependence of the animal and vegetable kingdoms, and adds another to the many proofs we have of the wisdom, and wonderworking power of the Creator of all things.

In the dark, plants give out carbonic acid, and absorb oxygen; but the proportion of the latter is small, compared to what they exhale by day, as must likewise be the proportion of carbonic acid given out; else the quantity of carbon added to their substance, would be but trifling, especially in those climates, in which the proportion of day to night is nearly equal, and which, notwithstanding, we know to be excessively luxuriant in Vegetation.

There can be no question of the general purpose, answered to the vegetable constitution by these functions of leaves. But when wo attempt to consider, how the peculiar secretions of different species, and tribes of plants are formed, how the same soil, the same atmosphere, should, in a leaf of the vine, or sorrel, produce a wholesome acid, and in that of a spurge, or manchineel, a most virulent poison;-how sweet, and nutritious, herbage should grow, among the acrid crow-foot, and aconite:-wo find ourselves
tota
won
an'
vita
thor
The
and
mov
to
evid
but
coml
take
$T 1$ be in but prete

Thi
which
olight1
from
growir
Thi
monsts
totally unable to comprehend the existence of such wonderful powers in so simall and, "eeemingly, simple an organ, as the leaf of a plant. The agency of the vital' principle alone can account for these wonders, though it cannot, to our understandings, explain them. The thickest veil covers the whole of these processes; and so far have philosophers hitherto been from removing this veil, that they have not even been able to approach it. All these operations, indeed, are evidently chemical decompositions and combinations: but we neither know what these decompositions and combinations are, nor the instruments in which they take place, nor the agents by which they are regulated.
The vain-glorious Buffon caused his own statue to be inscribed, "Q genius equal to the majesty of nature;" but a blade of grass was sufficient to confound his pretensions.

Sir J. E. Smith.

THE SAP.

The sap of trees may be obtained by wounding a branch, or stem, in Spring, just before the buds open; or in the end of Autumn, though less copiously, after a slight frost, yet not during the frost. It hass always been observed to flow from the young wood, or alburnum, of our trees; not from the bark. A branch of the vine, out through, will yield about a pint of this fluid, in the course of twenty-four hours. The birch also affords much sap. It flows equally upward and downwa;d, from a wound.
This great motion, called the fowing of the sap, Which is to be detected principally in the Spring, and dightly in the Autumn, is, therefore, totally distinct from that constant propulsion of it going on in every growing plant.
This flowing of the sap has been thought to domonstrate a cireulation; beoause, thore being no leavem

206

at the time to carry it off by perrapiration, is is oviden that, if it were at these periods running up the mp veasels, it must run down again by other channele But as soon as the leaves expand, its motion is an longer to be detected. The effusion of sap from plants, when cut or wounded, is, during the greater part of the year, comparatively very small. It is thought, therefore, that this flowing of the sap, is nothing more than a facility of the sap to run, owing to the peculiar irritability of the vegetable body, if that period; and that it runs only when a wound if made-being naturally at rest till the leaves open, and admit of its proper and regular conveyance.

As soon as the leaves expand, insensible perspiration takes place, very copiously, chiefly from those organy; but " ;, in some degree, from the bark of the young stem and branches. The perspiration of some plana is very great. The large annual sun-flower is said b perspire about seventeen times as fast as the ordinay perspiration of the human skin.

The sap, in its pessage through the leaves and bart, becomes quite a new fluid, possessing the peculiu flavour and qualities of the plant; and not only yielding woody matter for the increase of the vegetabl body, but furnishing various secreted substances mon or less numerous and different among themselvea These, accordingly, are chiefly found in the bark. I herbaceous plants, the stems of which are ouly d annual duration, the perennial roots frequently contain these fluids, in the most perfect state; nor are they, iv such, confined to the bark, but deposited througtry the substance, or wood, of the root, as in rhubarb and gentian.

Gum, or mucilage, a viscid substance, of litth flavour or smell, and soluble in water, is a very com mon secretion. When superabundant, it exudes froal many trees, in the form of large drops, as in the plum cherry, and poach trees, and different species of th mimosa, or sensitive plants, one of which yields th gum arabic, others the gum senegal, \&o.

Resin is a substance oluble in spirits, as the
turpe exud
muci spirit more natur
aroma
of t oxist, of tlo spirit of th Ac plants may! tanni unito
Su_{1} plants and kind,
It
secret from virtue differe peach this and f nothin is rep bat wi secreti far arc which discor
The
essenti
ready
T'O
added
tion, is is ovideal ning up the mp other channeli its motion is an on of sap from ring the greater ry small. It i of the sap, tap to run, owing getable body, phen a wound leaves open, and ance.
sible perspiration m those organy; ark of the young of some plana flower is said in as the ordinary
leaves and bark, ng the peculiur and not only of the vegetable substances mon ong themselva the bark. I ch are ouly d equently contain nor are they, in ited through x in rhubarb and
stance, of litth ; is a very com it exudes frou as in the plum, species of hioh yields the
tarpentine of the fir and juniper. Most vegetable oxudations partake of a nature between resin and mucilaces, being partly soluble in water, partly in spirits; and are therefore called gum-resins. The more refined and volatile secretions, of a resinous nature, are called essential oils; and are often highly aromatic and odoriferous. One of the most exquisite of these is afforded by the cinnamon bark. They oxist, in the highest perfection, in the perfumed effluvia of flowers, some of which, eapable of combination with spirituous fluids, are obtainable by distillation, as those of the lavender aud rose.
Acid secretions are well known to be very general in plants. The astringent principle is a species of acid; it may be derived from various sources-for instance the tanning from the oak, willow, \&e. An acid is found united with even the sugar, in the sugar cane.
Sugar, more or less pure, is very generally found in plants. It abounds in various roots, as the carrot, beet, and parsnip; and in many plants of the grass or cane kind, besides the famous sugar cane.
It is curious to observe not only the varions secretions of different plants, by which they differ from each other in taste, smell, qualities, and medical virtues, but also their great number, and striking difference, frequently in the same plant. Of this, the peach tree affords a familiar example. The gum of this tree is mild and mucilaginous: the bark, leaves, and flowers abound with a bitter secretion, than which, nothing can be more distinct from the gum. The fruit is replete, not only with acid, mucilage, and sugar, bat with its own peculiar aromatic and highly volatile secretion, on which its fine flavour depends. How far are we yet from understanding the vegetable body, which can form, and keep separate, such distinct and discordant substances!
The odour of plants is, unquestionably, a volatile, essential oil. Its general nuture is evinced by its ready union with spirita or oil, not with water.
I'o all the foregoing secretiuns of vegetables, may be added those, an which their various colours depend.

We can but imperfeotly nocount for the green, universal in their herbage; but we may gratefu aoknowledge the beneficence of the Creator, in clothin the earth with a colour the most pleasing, and the le fatiguing to the eye. We may be darzled with brilliancy of a flower garden, but aur eyes repose leisure on the verdure of a grove or meadow.

Abridged from Sir J. E. Smith

THE FLOWER.

The flower consists of several parts.
The calyx, or flower cup, forms the external inte, ment which protects the bud, before it expands: consists of several parts, called sepales, resembit small leares, both in form and colour. These sep are, in general," more or less soldered together; 80 times so completely, as to form a cup apparently of o pièce.

Above and within the calyz, rises the corolla, whit is the coloured part of the flower. It is composed several petals, either separate or cohering, so \& form a corolla of one single piece: in the latter the flower is called monopetalous. When the pe first burst from the calyz, and expand in all 6 beauty, they still serve to protect the central parts the flower. They are at first curved inwards, fort a concavity around the delicate organs which ow the centre. This not only shelters them from ternal injury, but reflects the sun's rays upon the like a concave mirror; thus rearing them, as it in a hot-house. When these parts are full grown, artificial heat being no longer necessary, and admission of light and air, being not only safe advantageous, the petals expand; leaving the intio organs exposed to the free agency of these elementa'

At the base of the petals is genierally nituated
an, ca bee d The m ans wl d_{1} whic sel ca pmit \mathbf{r} ich, at ece, de ma wh immedi mens ; porting with anth rated t hout wl It some the p ils are on is C he winc means sses of or thei led bu alight rabbec ever e] its pa rerse. Pervi iration, erred, ering, trees, 0 over ${ }^{88}$ in er. Were we intuat
for the green, wo may gratefu Creator, in cloth asing, and the le dazzled with ur eyes repose ceadow. Sir J. E. Smith
external intey re it expands: epales, resembir oir. These sepll d together; apparently of o the corolla, wif It is composed ohering, so \& in the latter c When the pet papd in all e central parte I inwards, form uns which odirn them from rays upon they them, as it re full grown, ocessary, and not only safel ving the intan Lese elementi crally gituated
an, called the nectary. This is the store whence bee derives honey.
The most important parts of the flower are those ans which occupy the centre. It is here that the d_{1} which is to propagate the plant, is lodged, in a sel called the ovary, or seed-vessel. From its amit rises a little threadlike stalk, called a style; ich, at its extremity, sapports a small, spongy subace, denominated the stigma. These three parts m a whole, which bears the name of carpel.
Immediately surrounding the pistils, are situated the mens ; each of which consists of a slender filament, porting a little bag, or case, called an anther, d with pollen, which is a species of dust or powder. anthers, when ripe, burst; and, being more ated than the stigma, shed their pollen upon it; hout which no seed can be perfected.
on some regetables the stamens are in one flower, the pistils in another; in others, the stamens and ils are upon separate plants. In these cases the en is conveyed from the one to the other, by means he wind, or by winged insects, which, in penetrating, means of their long and pliant proboscis, within the sses of the corolla, in order to obtain the nectar, er their downy wings with the pollen. This unled burden they convey to the next flower on which alight; and in working their way to the nectary, rubbed off and falls on the stigma. Erery insect, ever ephemeral, every weed, however infignificant, its part assigned in the great system of the verse.
${ }^{3}$ Persia, very few of the palm and date treep, undor ivation, have stamens, those having piatile being arred, as alone yielding fruit. In the meason of ering, the peasants gather branches of the wild a trees, whose blossoms contain stamens, and spread nover those which are cultivated, so that the pollen er in contact with the pistils, and fartilizes the dere were two remarkable palm trees in Italy. The mituated at Otranto, had no otamenn ; the other.
at Brindisi, which is about forty miles distant, had uo pistils; consequently, neither of those treen bore seed. But when, after the growth of many years, they not only rose supcrior to all the trees of the neighbouring forests, but overtopped all the buildings which inter. vened, the pollen of the palm-tree at Brindisi waswafted by the wind, to the pistils of that of Otranto; and, to the astonishment of every one, the latter boro fruit.

THE SEED.

The seed, from which the future plant proceeds, is the sole end and aim of all the parts of fructification. It consists of several parts, the most essential of which is the embryo, or germen, called by Linnsous, corculum, whence the life and organization of the future plant originate.

The cotyledons, or seed lobes, are immediately attached to the embryo, of which they form, properly speaking, a part. They are commonly two in number, and, when the seed has sufficiently established its root, generally rise out of the ground, and form a kind of leaves. Hilum, the scar, is the point by which the seed is attached to its seed-vessel, or receptacle, and through which alone nourishment is imparted for the perfecting of its internal parts; it is also the point through which the radical is protruded in the first stage of germination.

There is no part of the vegetable kingdom, which offers so many striking proofs of admirable contrivance as the seed. The care which Providence has bestowed upon it is astonishing.

Independently of the innumerable means, which are adopted for maturing and protecting the organs, on Which the production of the seed depende, and which frem part of the usptem of provigion for perfonting itm:
mepeponder lighly arti ,-the m patured, e ines it is ough and od nuts, nclosed in is plum ithin a sl od pears, ibstance ; ce of a rist in wh asees ;-i the sel echs, as is ent pods, so, not se stended I veloped Des, betw barricad likes and pathouse; af; or, wl e find th tached to each plar inses. Equally dispersi d sunny the expl down of vere, till cistening the same odiately p
e moit $e=$ How litai
tant, had no - bore seed. rs, they not zeighbouring which inter. Brindisi was of Otranto; latter boro
proceeds, is ructification. ial of which s, corculum, uture plant
immediately m , properly in number, hed its root, a kind of
which the ptacle, and ted for the - the point e first staga
dom, which contrivanco as bestowed
which aro organs, on and which coting it
hdependently, too, of the countleas contrivances, some ighly artificial, for the immediate purpose of perfecting , -the mode in which this organ is preserved after it is patured, evinces consummate care and wisdom. Someines it is packed up in a capsule, a vessel composed of pogh and strong coats; sometimes, as in stone fruits fod nuts, it is closed in a strong shell, which again is folosed in a pulp; sometimes, as in grapes and berries, is plumped overhead in a glutinous syrup, contained fithin a skin or bladder; at other times, as in applen pd pears, it is embedded in the heart of a firm fleshy abstance; or as in strawberrics, pricked into the sarce of a soft pulp. These, and many other varietios, kist in what are called fruits. In pulse, and grain, and rasses;-in trees, and shrubs and flowers,-the variety the seed-vessels is incomputable. We have the eds, as in the pea-tribe, regularly disposed in parchent pods, which completely exclude the wet; the pod so, not seldom, as in the bean, lined with a fine down stended like a blown bladder; or we have the seed reloped in wool, as in the cotton plant; lodged, as in nes, between the hard and compact scales of a cone; barricadoed, as in the artichoke and thistle, with ikes and prickles; in mushrooms, placed under a enthouse; in ferns, within slits in the back part of the af; or, which is the most general organization of all, 0 find them covered by a strong close tunicle, and tached to the stem, according to an order appropriated each plant, as is seen in several kinds of grain and of hases.
Equally numerous and admirable are the contrivances 7 dispersing seeds. Who has not listened, in a calm d sunny day, to the crackling of furze-bushes, caused the explosion of their little elastio pods, or watched e down of innumerable seeds floating on the Summer peese, till they are overtaken by a shower, which pistening their wings, stops their further flight, and the same time accomplishes its final purpose, by imodiatels promoting the germination of caoh cood is moitt earth?

meeds of tho dandelion, or stick burs in sport on each others clothes, that they are fulfilling one of the great ends of nature.

The awns of grasses answer the same purpose.
Pulpy fruits serve quadrupeds and birds as food, while their seeds, often small, hard and indigestible, pass uninjured through the intestines, and are deposited, far from their original place of growth, in a condition perfectly fit for vegetation.

Even such seeds as are themselves eaten, like the various sorts of nuts, are hoarded up in the ground, and occasionally forgotten, or carried to a distance, and in part only devoured.

The ocean itself serves to waft the larger kind of seeds from their native soil to far distant shores. M‘Oullooz's Course of Reading.

ANIMAL LIFE.

Living bodies are usually divided into the Animal and Vegetable kingioms. It may seem at first sufficiently easy to make the distinction between an animal and a plant; and, as long as we confine our views to the higher orders of animated beings, there is no room for doubt. But when we descend in the scale to the re diated animals, which present no distinct nervous system, no organs of sensation, no observable mode of commu. nication with the external world; it then becomes necessary to inquire more accuratoly into the peculiar points, which should decide us to arrange them ander the one class, or the other. Perhaps the most certain of these, is the presence of a digestive organ. Cuvier mentions three other marks of distinction, which however are by no means so general. They are, the, presence of nitrogen, as one of the chemical components of all animal bodies; the existence of a cireulationg and reapiration. Nitrogen, it in true, oxiotn in all animal bodien,
bat side cru the anir the of P of a Veg
well. of 0 they our may and
powe Li whic the labou from hard any almay cond the s thins shoe a thi raised ten w Lif to its which a hig affinit sulphi are gi happe
sport on each e of the great arpose. irds as food, indigestible, are deposited, n a condition
ten, like the e ground, and tance, and in irger kind of tores. Reading.

- Animal and st sufficiently animal' and a views to the no room for le to the re rous system, e of commu. hen becomes the pecaliar them ander most oertain gan. Cavier hich howerer 3 presence of inents of all Lation; and nimal bodien,
bat all regetables, likewise, contain it, and some in considerable quantities, as the extensive classes of funyi ana cruciformia; in cafein, a principle extracted from coffee, there is actually a greater amount of it, than in most animal substances. Circulation is not found to exist in the lowest class of animals. As for respiration, the leaves of plants so exactly resemblo, in their action, the lungs of animals, that they are now familiarly spoken of by Vegetable Physiologists as respiratory organs.
What life is, we know not; what life does, we know well. Life counteracts the laws of gravity. If the fluids of our bodies followed the natural tendency of fluids, they would descend to our feet, when we stood, or to our backs, when we lay. The cause, why thicy do not, may be referred immediately to the action of the hoart and vessels; but it is evident, that they derivo that power from life.
Life resists the effects of mechanical povers.-Friction, which will thin and wear away a dead body, actually is the cause of thickening a living one. The skin on a labourer's hand is thickened and hardened, to save it from the effects of constant contact with .rough and hard substances. The feet of the African, who, without any defence, walks over the burning sands, exhibit almays a thickened covering; and a layer of fat, a bad conductor of heat, is found deposited between it, and the sentient extremities of the nerves.-Pressure, which thins inorganic matter, thickens living matter. At tight shoe produces a corn, which is nothing more than 2 thickened cutiole. The same muscle, that with ease raised a hundred pounds when alive, is torn through by ten when dead.
Life prevents chemical agency. The body, when left to itself, soon begins to putrefy; the vereral parts of which it is composed, no longer under the influence of a higher controlling power, yield to their chemical affinities; new combinations are formed; ammonia, sulphuretted, with carburetted hydrogen, and other gases are given off, and nothing remains but dust This gepeer happens during life.
Life medifies the power of heat. Beneath a tropical
sun, or within the arctic circle, the temperature of the human body is found unaltered, when eramined by the thermometer. Some have exposed themselves to air, heated above the point at which water boils; yet a thermometer, placed under the tongue, stood at the usual height of about 98°; and the sailors, who, under Captain Parry, wintered so near the north-pole, when examined in the same way, constantly afforded the same results.

Finally, life is the cause of the constant changes that are going forward in our bodies. From the moment that our being commences, none of the materials, of which we are composed, continue stationary. Foreign matter is talien in, and, by the action of what are termed the assimilating functions, becomes part of our composition; while, on the other hand, the materials, of which our frame had been built up, being now unfit any longer for the performance of the necessary duties, are dissolved, as it were, into a liquid or gaseous form, conveyed by the absorbents from the place which the new matter comes to ocoupy, and finally expelled from the system.

Peroleval B. Lord.

THE INTEGUMENTS.

The integuments form that substance, which coven eyery part of the surface of the body. They constitate what is termed the hide, in various animals, and consist of three parts; the scarf-skin, a mucous net work below, and the true skin.

The scarf-skin, or cuticle, which is intended to protect the parts beneath, and to preserve their sensibility, is itself insensible. A blister will raise the cutiole, and render it apparent. Strong work will harden it, as in the hands of labouring people; and, after many severo complaints, the scarfoskin peels off, just as it does in nome animals, as serpents, whioh cast their akin oritain periods.
iperature of the ramined by the mselves to air, or boils; yet ${ }^{2}$, stood at the ors, who, under orth-pole, when y afforded the it changes that he moment that erials, of which Foreign matter are termed the ar composition; , of which our t any longer for , are dissolved, n , conveyed by he new matter m the system. B. Lord.
o, which coven They constitute rals, 'and consist cous net work
ntended to proir sensibility, is he cuiticle, and harden it, as in er many severs at it does in thair Bkin \#

The scarf-skin has in it numerous minute holes or pores, by means of which perspiration is effected, and through which the air issues.

The color of the scarf-skin varies very little in the different races of mankind : even in the negro it is very little darker than in the European. The seat of colour is, in fact, a very thin layer of soft substance, which is interposed between the scarf-skin and the cutis, or true skin, and is termed the mucous net-work. In the negro it is of a very dark colour : and the colouring matter is capable of being communicated to water. The true skin, and the parts below, are of the same colour, both in whites and blacks.
There are five principal varieties of colour in the human species, and all of them dependent on the different shades of the mucous coat: the first is the European, or white; the second is the Mongolian yellow, or olive; the third is the American red, or copper colour; the fourth is the Ethiopian, or black; the fifth is the Malay brown, or tawny.
The true skin constitutes the organ of touch. This power exists in the greatest degree at the ends of the fingers, in slight elevations of the skin, called papillæ. The immediate organs of sensation are, however, small white threads, called nerves, which are more or less immediately derived from the brain, and these are diffused very plentifully over the ends of the fingers, and particularly over the papillm, which, by this means are calculated to communicate minute impressions with great accuracy.

Most animals have, independently of the general diffusion of sensibility over the surface, some particular part which possesses the sense of touch in a pre-eminent degree. The nose or snout is a very common organ for this purpose, in many animals; and in the elephant, large and unwieldy as it appears, the extremity of the trunk is provided with an organ, as small and delicate as the human finger, and capable of taking hold of very small objects, as peedles or pins, with grout facility.
Some animals have an exceedingly thius epidermis os marfiskin, the elophant and thippopisamia, Thou
that live in the air, have their cuticle dry and horny; fish, on the contrary, have it mucous, or oily, so as to prevent injury by the action of the water upon it. Some animals, as has already been observed with regard to serpents, cast their cuticle once a year, and this in so perfect a way, that even the rotundity of the eye is discoverable in the exuviæ. The greater part of silkwornis, and of the caterpillars of butterflies, cast off their cuticles seven times, and some insects even ten times, before they pass into a state of chrysalis.

There is a peculiarity in the attachment of the skin of the frog and toad to the body, which is not found in other animals. It is only adherent at a few points; being in other respects a loose bag inclosing the body; whereas, in most animals, it is closely adherent to the muscular surface beneath.

TIIE BONES.

The bones form, as it were, the foundation of the body; and, besides being a basis or ground-work for tive soft parts, are intended to inclose and support some organs, which are of the first importance in the aniual frame.

The sEnll or cranium, which contains the brain, is fixed at the top of the vertebral column, or boues of the back: in the centre of these bones, is a hollon space, destined for the reception of the spinal marrow, a substance which is a prolongation of the brain, and resembles it a good deal in nature and function.

At a little distance from the skull commence the ribs, which are all fixed behind to the bones of the back, and the greater number to the breast-bone before. Their curvature forms a cavity, which is called the chest, and to tuins the heart and lange.

At the lower part of the vertebral column is placed - firm, thiak, strong, and irregular, bony stactury
called terme At into jointe lated Th vary, to ser partic and le In the rous j the wl portan motio In motion joints, should is only
The
of the
ball a the sh bone, clavicl The stance, synovi preven which
The origina a men harder, sufficie person old p:o natter. of earti
and horny; ily, so as to on it. Some regard to this in so e eye is disart of silk. es, cast off ts even ten lis.
of the skin ot found in few points; g the body; erent to the
ation of the work for tive apport sowie the ani山al
he brain, is or bones of is a hollon nal marrow, e brain, and ion.
nce the ribs, e back, and fore. I heir e ohest, and mn is placed y structury
called the hips, which encircle a sort of hollow space termed the pelvis or basin.
At the upper part of the ribs, are the shoulder blades, into which the upper extremities are articulated or jointed; and at the lower part of the pelvis are articu. lated the lower extremities.
The form, magnitude, and mode of junction of bones vary, according to the-design which they are intended to serve. Where strength is required, with flexibility at particular parts, we have bones, like those of the arm and leg, of firm texture, with joints at certain intervals. In the hand and foot, there is, by means of the numerous joints of the fingers and toes, and the mechanism of the wrist and ancle, a facility given to the various important actions of the hand, and to the more linited motions of the foot.
In the back, great solidity is required, and the motion in any one part of it is very small. In some of the joints, the power of motion is in all directions, as in the shoulder and hip; while n the elbow and knee, there is only the power of bendiug or extending them.

The joints which compose the shoulder and hip are of the description which is called, in mechanics, the ball and socket. The bone of the arm is attached to the shoulder blade, which is connected with the breast bone, by the intervention of the collar bone, or clavicle.
The ends of bones are covered with a gristly substance, called cartilaye, which, together with the oil, or synovia, as it is called, which is secreted in every joint, prevents them being injured by the constant friction to which they are exposed.
The bones, hard and substantial as they appear, were originally nothing more than soft pulp, contained within a membrancous covering, which gradually became harder, and, at the proper period, acquired solidity sufficient for all the purposes of life. The younger a person is, the greater is the quantity of jelly; and in ild piople there is m much lurger proportion of osifict natter. Some fish have their bones composed eatively of eartilage, as the shark, skato, aturgeon.

In some amimals the bony, struciure is on the outside of the body, as in all the testaceous tribes, which are enclosed in one or more shells; as the oyster, snail, whilk, \&o.; and also in the crustacea, which comprise the crab, lobster; shrimp, \&re.

In the crustaceous, as well as in the testaceous, there is a power of renewing the shell in case of injury, which in. the former, not only extends to the shell, but likewise to the limb itself. Lobsters and crabs, are sometimes, after thunder-storms, found to be entirely without wheir claws, which require some time for reproduction. The jar communicated to the water, and perhaps terror on the part of the animal, have the singular effect of making these animals throw off their claws. The effect seems to be voluntary, for some of the younger of these animals will drop their claws, on an attempt to take them, even though they have not been touched. In these animals, the blood-vessels have the power of secreting the matter of the shell. Crabs and lobsters lose their shell annually, anc seek retirement till the new shell is sufficiently consolid sted; being aware of their defenceless state at such times.

MARKS OF DESIGN IN THE HUMAN BUDY.

I challenge any man to produce, in the joints and piyots of the most complicated, or the most flexible machine that was ever contrived, a construction more artificial, or more evidently artificial, than that which is seen in the vertebre of the human neck. Two things were to be done. The head was to have the power of bending forward and backward; and, at the same time of turning itself round upon the body to a certain extent. For these purposes, two distinat contrivances are employed. First, the head rests immediately upon the uppermost pari of the vertobre, and is united to it BJ a fingajoin, upen whioh jointy the head play:
freely
motion the he duced of the and th bone
2 proj tooth ; sooket which suppor perfect nod the the hes the hea runs b No one design.
The
wonder firm, t to allon curvatu convey substan not to suscept it is fo was not of the out, in being a the nar the pow also to precedi muscles in whio bonas likewise rent upo
he outside which are ter, snail, comprise ous, there rry, which , but likeare somely without roduction. perhaps ular effect aws. The e younger attempt to toughed. power of ad lobsters ill the new e of their

BUDY.

joints and st flexible tion more hat which [wo things e power of same time a certain ntrivances ately upon rited to it loed play
freely forward and backward. But then the rotatory motion is unprovided for : therefore, secondily, to mako the head capable of this, a farther mechanism is introduced; not between the head and the uppermost bone of the neak, where the hinge is, but between that bone and the next underneath it. This second, or uppermost bone but one, has what anatomists call a process, viz. a projection, somewhat similar in size and shape to a tooth; which tooth entering a corresponding hole or sooket in the bone above it, forms a pivot or axle upon which that upper bone, together with the head which it supports, turns freely in a circle. Thus are both motions perfect without interfering with each other. When we nod the head, we use the hinge-joint, which lies between the head and the first bone of the neek; when we turn the head round, we use the tennon and mortise, which runs between the first bone of the neek and the second. No one can here doubt of the existence of counsel and design.

The spine, or back-bone, is a chain of joints of very nonderful construction. It was to be firm, yet flexible: firm, to support the erect position of the body; flexible, to allow of the bending of the trunk in all degrees of curvature. It was further also to be a pipe for the safe conveyance from the brain of the spinal marrow; a substance not only of the first necessity to action, if not to life, but of a nature so delicate and tender, so susceptible of injury, as that any unusual pressure upon it is followed by paralysis, or death. Now the spine Was not only to furnish the main trunk for the passage of the medullary substance from the brain, but to give out, in the course of its progress; small branches, which being afterwards indefinitely subdivided, might, under the name of nerves, give, to every part of the body; the power of feeling and motion. The same spine was also to serve another purpose, not less wanted than the preceding, vid. to afford:a basis for the insertion of the muscles, which are spread over the trunk of the body, in which trunk there are not, as in the limbs, cylindrical bores to which they oan be fastened. The spine had likewise to furnish a support for the ends of the ribs to rent upon

Hon admirably is all this accomplished! The spine is cout ,osed of a great number of bones (in unan, of twenty-four), joined to one another, and cumpacted by broad buses. The breadth of the bases upon which thic parts sceerally rest, and the closeness of the junction, give to the chain its firmness and stability; the number of parts, and consequent frequency of joints, its fuxibility. This flexibility varies in different parts of the chaill ; is least in the back, where strength more than flexure is wanted; greater in the loins, which it was necessary should be wore supple than the back; and greatest of all in the neck, for the free motion of he head. In order to afford a passage for the descent of the spinal marrow, each of these bones is bured through in the middle in such a nanner, as that, when put togrether, the hole in one bone falls into a line, and corresponds with the holes in the two bones contiguous to it. By which means, the perforated pieces, when joined, form an entire, close, uninterrupted channel; at least, while the spine is upright, und at rest. But as a settled posture is inconsistent with its use, a great difficulty still remained, which was, to prevent the vertebre slifting upon one another, so as to break the line of the canal as often as the body moves or twists. But the vertebres, by means of their processes and projections, and of the articulations which some of them form with one another at their extremities, are so locked in and confined as to naintain, in the surfaces of the bones, the relative position nearly unaltered; and to throw the change and pressure produced by flexion, almost entirely upon the intervening cartilages, or gristle, the springiness and yiclding nature of whose substance admits of all the motion which is necessary, without any chasm being produced by a separation of the parts. For the medullary canal giving out in its course a supply of nerves to different parts of the body, notches are made on the upper and lower edge of each vertebra; two on each edge. When the vertebre are put together, these nutulics, exactly fitting, form small holeg through which the nerves issue out in pairs, in ander to nend their branches through overy part of tho

The spine in man, of upacted by pon which the juncbility; the of joints, crent parts ength more s, which it the back; motion of the descent is bured that, when a line, and contiguous ces, when
channel; t. But as e, a great event the break the 3 or twists. cesses and e of them es, are 80 urfaces of ered ; and by flexion, ilages, or of whose necessary, aration of out in its the body, e of each tebre are sm small pairs, in art of the
body, and with an anqual bounty to both sides of the body.
The structure of the spine is not in general different, in different animuls. In the serpent tribe, however, it is cunsiderably varied; but with strict reference to the convenience of the animal. For, whereas in quadrupeds the number of vertebree is from thirty to forty, in the serpent, it is nearly one hundred and fifty: whereas in men und quadrupeds the surfaces of the bones are flat, and these flat surfaces laid one against the other, and bound tight by sinews; in the serpent, the bones play one within the other, like a ball and socket, so that they have a free miotion upon one another in every direction; that is to say, in men and quadrupeds, firmness is more consulted; in serpents, plimey.

Paley's Nat. Theology.

TIIE MUSCLES.

The muscles are distinct portions of flesh, capable of contraction and relaxation. They are composed of fibres of two kinds; the one soft and irritable, of a red colour, from the blood that is in them : these generally constitute the body of the muscle; whilst the other sort are found, for the most part, in the extremities, and are of a harder texture, and of a white glistening colour: if these are formed into a round, slender cord, they are called tendons. What we commonly term ficsh, as the lean of meat, is the substance of the muscles. The fibres of which they are composed are exquisitely fine.
The muscles are generally attached to the bones, by means of tendons, and are so artfully situated, that Whatever motion the joint annexed is capable of performing, the muscle is adapted to produce it. The knee, and the elbow, furnish examples of this agree ment. Both being hinge joints, formed to mote buatmards or forwards, the muscles belonging to them are placed parallel to the boae, wo an, by their contruo.
tion or relaration, to effect that motion, and no other. The shoulder and the hip joints, by their construction, admit a sort of sweaping or circular action, and are accordingly supplied with musoles adapted to it.

A joint unfurnished with suitable muscles rould be motionless; muscles deprived of the joint, would be unavailing. They are necessary to eaoh other ; and their union displays the highest marks of wisdom and goodness

The red colour of the muscular or fleshy parts of animals is owing to innumerable blood vessels that arg dispersed through ther substance. When wo soak the fibres of a muscle in water, it becomes white The blood vessels are accompanied by nerves; and they are both distributed so abundantly in the feshy parts, that in endeavouring to trace the course of the blood vessels in a muscle, the muscle would appear to be formed altogether by their ramifications; and in an attempt to follow the branches of its nerves, they would be found to be equally numerous.

When a muscle is in aetion, the fibres become shorter, and the body swells. Experiments show that the nerves, and a regular supply of blood, are essential to this contraction; and that it is regulated by the mind, at least in the voluntary muscles, vir: those muscles that move the limbs, or any other part dependently upon our will: but there are others, called the involun. tary muscles, which operate withqut even our consciousness of the action that is continually going on within us ; such is the heart, which is itself a muscle: and the muscular fibres that ocgasion the necessary motions of the stomach and the intestines.

Most musclea have others opposed to them, which act in a contrary direction, and are called antagonists. Some of these act in succession, as when one muscle, or one set of musoles, bends a limb, another extends it; one elevates a part, another depresses it; one draws it to the right, another to the left. By these opposite powers the part may be kept in a middle direction, ready to ohey whep called to act.
 deanghod, and their mes arcortained. It ham been said
that 1
We b
vitho
and o
The 1 the g inestii sensib The parts our w
it perf togeth What that I long Have ority 0 trivanc
Tho which many mall, the tor plicate capnot never vayious other : is pres they li one an and ev liberty rupting The situatio the bod position of fachil namblin
nd no other. onstruction, on, and are it.
scles would it, would be r; and their ad goodness hy parts of sels that arg we spak the white. The nd they are parts, that lood vessels be formed attempt to ld be found
res. become 3 show that re ossential ted by the those musdependeptly the involunx conscious5 on within le: and the motions of
hem, which antagonists one muscle, er extands ; one draws ese opposite e direation, hava beaí been mid.
that not less than a hundred ere omployed overy time we breathe: yet we draw our breath every moment, vithout considering, or even being sensible of the vast and complicated apparatus that is necessary to effect it. The least impediment to our breathing, throws us into the greatest distress; but how little do we value the inestimable blessing, till disease or accident makes us sensible of its enjoyment.
The exquisite and delicate management of different parts of the frame claims our highest admiration ; but our wonder is greatly increased, when we consider, that it performs its different functions for fifty or sixty years togethor, with very little diminution of its power, What hinge could the most skilful workman contrive, that might be used as often as our elbow-joint is, for so long a term, without being disordered or wprn out? Have we not here a strong proof of the vast superiority of the works of God, to the most ingenicus contrivances of man?
Those important faculties of sight and hearing, Which are of so much, use, and whieh procure ps so many enjoyments, depend upon muscles so extremely small, that they must be magnified to be visible. In the tongue the muscles are very numerous, and so implicated with one another, that the nicest dissectors cannot trace them; yet they are so arranged, that they never interfere with eaph other, aor interrupt the various offiges of speaking and swallowing In the other parts of the body, the samo admirable economy is preserved. The muscles are avery where diffused; they lie close to each other, in layers, as it were, over one another, after crossing, sometimes passing through, and even imbedded in one another, yet each at perfect liberty to perform its peculiar office, without interrupting the power of its neighbour.
The action of muscles is often required where their situation would be inconvenient. In such a case; the body of the muscle is placed in some commodious position at a distance, and communicates with the point of action by means of slender tendons, or strings, re rombling wires. If the musdes, whioh move the fingere
had been placed in the palm or baok of the hand, they would have enlarged it to a olumsy and very incon. venient thickness. They are, therefore, disposed in tho arm, and even up to the elbow; from this position they act by long tendons, strapped down at the wrist by ligaments, beneath which they pass to the fingers. Tho same artful arrangement is observed in the muscles that give motion to the toes, and many of the joints of the foot. Instead of swelling and distorting the foot, they form a graceful enlargement of the calf of the leg. The variety in the figure of the muscles, according to their situation and ofice, is likewise beautifully con. trived: some have double, some triple tendons; others none: in some places, one tendon belongs to several muscles; in óther places, one muscle to several tendons.

One set of muscles enables us to move a certain part one way, and a different set enables us to move it another way. That we have the power to frown, smile, cough, breathe, to lift up or close our eye-lids, raise or bend our heads, stoop, incline to one side or the other, move our fingers or toes, raise or depress our limbs, walk or sit down, speak, or sing, swallow, open or shut our mouths, or perform any action whatever, we owe to particular muscles, which are appointed to set that part in motion.

Surely no one can be acquainted with the art and wisdoin so wonderfully displayed in the structure of the human body, without acknowledging that there is a God, and that the work is his: for nothing short of infi. nite intelligence, could have produced any thing so complicated and so perfect.

TIIE TEETH.

The functions of circulation and of respiration are carried on by means of organs situated in a cavity which is called the chest, or thorax. The organs which are converned in the preparation of the fuod, and in mutrition, lie in a cavity bencath, called the cavity of
ho hand, they very incon. sposed in the position they the wrist by fingers. Tho muscles that joints of the he foot, they he leg. The according to utifully condons; others gs to several eral tendons. certain part to move it frown, smile, -lids, raise or or the other, is our limbs, open or shut ver, we owe d to set that
the art and acture of the there is a short of iufi. ny thing so fuod, anui in ho cavity of
the abdomen. The ohest is ocoupied ohiefly by the heart and the lungs ; the abdomen by the stomach, the incestines, the liver, the spleen, and the pancreas or sweet-bread. These two cavities are separated by a partition, called the diaphragm, or midriff, whioh is partly of a tleshy, and partly of a membraneous nature, and readily gives way, by its laxity, to the alternate expansion and contraction of the chest in the action of breathing, to which its muscular power eminently coutributes. The stomach is connected with the mouth, by means of a long tube, which is called the cosophagus, or gullet, by means of which, it receives the food from the mouth.
The trist action, to which the food is subjected, is masticacion, or chewing, and for this purpose, most animals are provided with teeth. When there are no teeth, ocher resources are provided in the stomach itself, for that sort of preparation which it is necessary that the food should undergo, previous to digestion. Birds have no teeth; and with various other animals, as fish, and serpentw, the teeth seem to be adapted only to provent the escespe of that prey which is swallowed whole.
The nature of the teeth depends on the nature of the food which the animal is designed to use; namely, Whether it is animal, vegetable, or of a mixed nature. By the inspecuon of the teeth, therefore, we are able to form an opinion as to some of the most material habits of the animal. The teeth which first exhibit themselves, are called milk, deciduous, or temporary teeth, from their being intended to continue only a few jears. Those which supply their places when they are shod, are, from their never being shed, called permanent.

The teeth in man are composed of two parts; a bony, which constitutes the body of the tooth, and is very similar to real bone, and a bright, smooth, thin external covering, oallod the enamel. The part which is out of the jaw, is called the crown and neck: while the fangs, or roots, are planted deep in the jaw. There is a small cavity in the body of the tooth, which descends in the form of a small tube into the fangs, and contains the vesiels and nerves, which were omployed
in the original formation, and subsequently in the nu. trition of the tooth. This is the sitructure of the teeth in the omnivorous and carnivorous animals; but in the graminivorous, the enamel descends into the body of the tooth, and by forming several perpendicular layers, enables the tooth to resist the attrition necessary in mastication; if there were only one layer of enamel, it would be soon worn off. Between the teeth of the omnivorous, and carnivorous animals there is also a difference. In the carnivorous, the teeth fit into each other very micely; whereas in the omnivorous, there is a certain latitude of motion permitted, for the operation of grinding the food.

The temporary teeth, in the human race, are twenty in number, and are divided into three kinds; the front, called also incisors, or cutting teeth, of which there are eight, natpely, four in each jaw ; the canine teeth, called dog teeth, or cuspidate, which are four in number, one on each side of the incisors, and are of a pointed or conical form; and the grinders, or molares, which amotant to eight, being two back teeth, above aid below, on each side. The permanent teeth are thirtytwo in number. These are, as in the temporary, eight incisors, and four cospidate; two bicuspidate, or tropointed, next to the cuspidate on each side, amounting to eight; and three molares on each side, above and below, making twelve, of which the four hindermost are denominated dentes sapientise, or teeth of wisdom, from their not appearing till adolt age. The cause of this increase of teeth, is, that there is a very great disproportion between the magnitude of the jaw, in the ycung and adult; and as the teeth, from their nature and mode of growh, do not admit of any increase of size, it was necessary, when the jaw became larger, that not only s supply of larger teeth, but additional teeth should be given.
Many of the carnivorous animals are beasts of prey, and their ceeth are part of their natural weapons of
 finke, and itdeed in some others, as the nog very tumiadible tilstrumenta of offence.
ntly in the nu. ure of the teeth als; but in the to the body' of ndicular layers, n necessary in yer of enamel, e teeth of the here is also a th fit into each rorous, there is r the operation
ace, are twenty nds; the front, which there are ne teeth; called n number, one f a pointed or nolares, which th, above and eth are thirty. mporary, eight oidate, or troide, amounting. de, above and hindermost are wisdom, from cause of this great disproin the ycang ir nature and crease of size, arger, that not ditional teeth
easts of prey, al weaponis of in such nihe nob vary

Cattle and sheep, whose front teeth are confined to biting the grass; have them shasp; and the enamel of these teeth covers their outside only, as in man; but neither cattle nor sheep have incisorsy in the upper jaw. In horses, where both the front teeth and the mblares are employed as grinders, the enamel is distributed through the body of the tooth, in both descriptions of teeth, in the same way as in graminivorous animals.
There is a very curious difference in the disposition of the enamel in the African and Asiatio elephant, which is worth notice. In the African, it is alweys in the form of transverse lozenges, which touch each other in the middle of the tooth; in the Asiatio, it is in the form of tranisverse flatteried ovals; and this difference is so constant, that it may be always known; by 2 olight. inspection, whether the tooth has belonged to the one or the other of these sipecies.
In the shark, whose teeth are spear-shaped, and very sharp, notched at the edges, and covered with enamel, several ranges of them are formed and continually forming in the jar, to supply such ase are brokera or torn away. The same is the case in aispecies of skate, which has teeth of a similar kind, and is apt to have them injured, by breaking the shells of lobiters, crabs, \&o. whioh are ith chief food. There is also, a singular power of renewal in the teeth of renomovis iserpents. These unimala are distinguished by having asharp, hollow tooth, or fang, in the upper jaw' on each side, the : base of whioh communicates with a poison gland situated below the ege. This tooth, in ordinary circumstancss, lies flat: but it is capable of being erected; and then, either on biting, or by the action of the same muscles which erect it, the poison glañd is pressed upon, and a minute portion of the poison forced through the hole of the tooth into the wound. The poison fang is very apt to get entaingled and broken; but there is a provision for its supply, in the germs of future fangs, Which exist as pulp; in little bags in the jaiw the new
 ovec.

THE DIGESTION.

During tho action of chewing, the food is mized with the saliva or spittle. The food is then carried backwards into the pharynx, which is a sort of pouch at the back part of the mouth, from which it immedi. ately descends, into the cosophagus, or gullet, at the extremity of which is the stomach, into which the food is deposited.

We may here mark a wouderful contrivance. The passage from the mouth, to the windpipe, lies immediately before the passage to the stomach: wo might suppose that the food would pass into the first opening, viz. the passage to the windpipe, before it reacbed its own proper passage.-And this would be the case, were it not that there is a little valve standing orect before the passage to the windpipe, which the food in its way to the gallet, presses down, and thus closes the anterior opening of the gullet. Were this passage left open, we would be in danger of being choked by every morsel we endeavoured to swallow.

The stomach is a kind of membraneous. bag, not very unlike the bag of a bag-pipe, lying across the body, and having two openings: the upper, towards the left side, by which it receives food from the gullet, called the cardia; and the lower, on the left side, called the pylorus or janitor, by which the food passes into the intestines. Its inner surface consists of a soft membrane, called the mucous, or villous coat, which is carried through the whole alimentary canal; its middle coat is muscular, and, by means of this coat, the stomach has the power of emptying its contents; its outer is a membraneous covering, common to the stomach, intestines, and all the other organs contained in the cavity of the abdomen. At the pylorus is a contraction, which prevents the too ready passage of the food downwards. Between its coats are various small glands which secrete, and pour into the stomach, a fluid called the gastric juice, which dissolves the substances taker into the atomach, converts them into a uniform, greyish
pulpy mass, called chyme, and thus fits them for becoming nourishment. Digestion is totally independent of any pressure which is exercised by the coats of the stomach, for it has been found that if portions of food were placed in silver balls, and these swallowed, such portions would be dissolved.

When food has undergone the change which it is meant to suffer in the stomach, it passes through the pylorus or lower orifice, into the intestines. When the food has passed into the intestines, it receives the bile, which is a secretion from the liver; and the pancreatic juice, which is the secretion of the pancreas, or sweetbread. By the mixture of these substances, the food is so far altered in its nature as to be capable of affording chyle, which is a fluid like milk. This fluid is taken up by small vessels, called lacteals, spread upon the surface of the intestines. These lacteals, uniting together, sonvey their contents into one of the large blood-vessels of the body, and thus supply the means of nourishment to the whole system. That part of the food which cannot afford nourishment, is carried off as excrementitious matter.

All carnivorous animals have stomachs of the same kind: and in them the digestive organs are of the more simple kind, as animal food is more easily converted into chyle. Many birds not only take in portions of gravel to assist their digestion; but, as they have no teeth, and can divide their food in but a very imperfect manner with their bills, the gizzard is given them for the purpose of doing so. The gizzard is a muscle in the stomach with two bodies, called therefore the digastric, calculated to press any substance very strongly between the two parts of which it consists. But as the gizzard could not perform the whole of the duty at once, there is a bag, or enlargement of the gullet given to many birds, called the crop, which is situated in the front of the chest, at some distance from the gizzard. In this the hard and dry food is macerated; it is then let into the gizfurd, where it is hruised and divided, and mixed with the gastris juice, which in necreted by glands near the oantrames of the
gizard; and thus the changes are produocd upow the food, which fit it for nourishment.
The curup, in such birds have it, is principally to be viewed as a repository, in which the fond is first softened, and then transferred to the gizzard But in all birds of the dove kind, and it is supposed in parrots; mucaws, and cockatios, the crop, both in the male and female; is endowed with the power of secreting a "fuid, which coagulates into a whitish curd, and is cemployed to feed the young for two or three days after hatching. It is then found to be mixed with some of the coumion fond; and us the pigeon grews older, the preportion of common foud is increased; so that by the time it is eight or nine days old; and able to digest common food, the secretion of the food in the old bird ceases. In some of the crustaceous animals, as the tobster and crub, the division of the food is accomplished by means of teeth placed in the stomach: These teeth are of the uolaris or grinding shape, and are one on each side. Immediately behind them, is a single projecting tooth, which answers the purpose of preventing the food frous passing on till it is sufficienily divided. The stomach of these aninnals is also lined with a hard substance, similar to the external coat, so that it is never collapsed : and it is a curious circumstance, that this coat, as well as the bard coveting of the teeth, is parted with, when these apimals cast their shells: 7 the tooth. like processes at the entrince of the mouth, which are sometimes represented an teeth, are nothing more than a kind of pincersy to grasp the food, and eonvey it into the mouth.
Teeth are likewise met with in come of the worm tribe; aud such is also the lease with various inseets, particularly the Cape grasshopper, and mole oricket. The most curious apparatus for the convertion of vegetable food inte nourishinent, is that which belongs to the, cow, the sheep, the deer, the camel, and other nimals which usually chew their cud. In these animals there are fout atomachs which are concerned in digention The fryt atemath recoive the got wifor y alight mantication; thonew is poey into the moónd
ond upow tha principally to fond is first card: ${ }^{\text {But in }}$ sed in parrots, the male and eting a lluid, 1 is comployed fter hatching. the colimion proportion of he time it is gest common ird oeases. ag the lobster onplished by These teeth d are one on a cinglé proof preventing enily rivided. 1 with a hard so that it is instince, that the teeth? is shells.? The mouth, which dething more aind convey it

of the worm

 rious inseets, oricket.onversion of hioh belonga elf and other

In these re eoncerned he fogt y the moond,
called the Wroprano; and when it has bsen mangafod for some shme, it is carruet up into the montit is then chewed, and paisel into the third stonaoh or manyplies, whence it goes into the forth, or real, the proper digesting stomach, Where its conversion in to chyme is complefed. The animal seems to have the power of serding the food at once into the second, third, or forth; and this they do according, to the facility with which the diferent kinds of food may be digested. For instance, cows in the north of Scotland, and the Hebrides, are ocoasionally fed on fish, which does not require a second mastication and is therefore receited at one into the third stomach; and calves, when fed on mill, receive it into the furth stomach. In the camel, the second stomach consistis of cells, and is solely appropriated to the reception of water. By means of a curious mnscular atructure the orifices of these cells are closed, and the water, proserved from being mixed with the food It is this peculiar structure, which in the camel dromedars and lama, fits them to live in sandy deserth, where the supplies of water are oo precarious. Bruce, mentions that four gallons were taken out of the stomagh of a camel, during one of his journeys in the deserte when there was much distress for want of Fater.

THE HEART.

The heart is the grand reservoir of the blogd, whepce it flows through the arteries to the atmost extremities of the body, and is conveved bat again by the veins. This organ is situated in the thorax, or chest, between the two lobis of the lungs. In man it is placed almost cross-wise. The base or hroad part, is diredted towards the right side, and the poiat towads the left. It is securely inclosed in a mem. braveous sack, or pouch, which contains a fuid that gives ampothyeft to it wítace, and ease to ito motions. Who
musoular. Its basis, from which the great blood veasels originate, is covered with fat, and it has two hollow appendages, called auricles. Within, it is divided into two cavities, or ventricles, separated from each other by a fleshy partition. The use of these ventriclem and auricles is to circulate the blood through the whole body, by means of the power of contraction and enlargement which the heart possesses from its numerous fibres, that surround it in a spiral direction. When these fibres are contracted, the sides of the muscular cavities are necessarily squeezed together, so as to force out of them any fluid which they may contain. By the relaxation of the same fibres, the cavities become dilated, and of course prepared to admit any fluid which may be poured into them. The great trunks, both of the arteries, which carry out the blood, and of the veins, which bring it back, are inserted in these cavities. By dilating the fibres, which anatomists call diastole, the cavity of the ventricies is opened to receive the blood from the auricles: on the contrary, when the ventricles are contracted, which is called systole, the auricles are expanded; and by this alternate action, they carry on the wonderful operation of supplying with blood the most distant parts of the body.

The blood, which has been ejected from the auricles and ventricles, is prevented from returning, by valves, or little doors, placed between the auricles and ventricles, and at the mouths of the great arteries. These valves open inwards, but not in the contrary direction; of course when the blood has passed through them the valves close, and a return is thus rendered impossible.
You may perceive, by this account, that there is a continual exchange of the blood that fills the heart. It is no sooner emptied into the arteries, than it is filled again from the veins; and this contraction and dilatation succeed each other with great rapidity; and by its re-action causes that beating at the wrist, and other parts, that is called the puls...

It fuypheed that the qumatiof of bloon contained the body amounts to bet\%esu 25 and 85 pounds;

and

each
min
mini
quau to b abou 480 proe mind Whal princ diam of th of bl

Th the b in m in th
gener the good this : young to flo and fins, of a branel throug of the direct chann stream
Som examit chain bodies ample, The $* 1$
great blood it has two it is divided from each se ventriclen hrough the contraction es from its direction. des of the together, so they may fibres, the repared to them. The rry out the back, are the fibres, of the venauricles: contracted, anded; and wonderful ost distant
he auricles by valves, and venes. These direction; them the possible. there is a the heart. than it is action and idity ; and wrist, and contained 5 pounds;
and that about two ounces pass on from the heart at each pulsation. In this way, at 70 pulsations in a minute, 140 ounces will pass through the heart in a minute, or 8400 ounces in an hour. Hence the whole quautity of bluod contained in the body, supposing it to be 25 pounds, will pass through the circulation in about three minutes, or about 20 times in an hour, or 480 times in a day. When we consider the same process in the larger species of animals, it strikes the mind still more forcibly. Dr. Hunter dissected a whale; and he relates that the aorta, which is the principal artery of the body, measured a foot in diameter. Ten or fifteen gallons of blood are thrown out of the heart at a stroke; what then must be the quantity of blood circulating through the whale in a day !
The structure of the heart, and the circulation of the bloid, seem to be conducted on the same principles in man and in quadrupeds. We have just seen that in the whale it is similar; and probably in fishes in general. The circulation of the blood, as it appears in the newt, a species of lizard, when seen through a good microscope, will illustrate what we have said on this subject. The bodies of these animals, when very young, are so transparent, that the blood may be seen to flow briskly through every part, even into the toes, and to return from them. The newt has three small fins, near the head, which are divided like the leaves of a polypody or fern; and in every one of these branches, the blood may be traced, running to the end through the artery, and conveyed back again, by a vein of the same size with the artery, and laid in the same direction. In this part may be seen above thirty channels of blood running at once, like the divided streams of a great river, diffusing life and vigour.

- Some insects have several hearts. If silk worms be examined; when full grown, there will be perceived a chain of hearts, running the whole length of thoir bodies; whilst many amphibious animals, froge for ax ample, have but one ventricle to the heart.
The ofiof distinction between the arteries and vines *- Inin, that the arterien convey the blood from the

 effect "thiis' purtiose, the velitis' are continued wmitho extrefinities "of the arterieis, and, in generv, orary artery It adoompanied by its correesponding veic.
That we may olearly underistand the subjut bofore us, let us auppose two tries united to eath whor by the extregities bf their brabiches at this top, and thoir
 each being hollo from the rootis the thips of thiom sufallest fuig , and filled with a fluid whioh oircuncos inceesaítly from one through the other. Luc wa imabline this, and we shill have' a tolerahly our rect ider of the eircutation of the llood througbst the
 which all thie reés proceed, pass owit from the base of the heart; two of these are arter :es, and thie other two veing The apita is the priticipat artry, that dis tributes the maip streath of the blood through in nuiterabte raniifications, to all parts of the body lit arises friom thê left ventricte of the heart. The pulmonary arfory ofigiviates from the right ventricle, ande' enters the lunge, whetre its braikches are spread out 2 m the dir- ve esseff : ' by this means the blood is acted: apon by the air which we inhiale, atid undergoes's certait ohafge which is essedential to our well-being All the Veins, whioh britg the blowd from the upper extrépitiek, a and from the head and beart, pass 'finto a latge veitp called the descendirig beitia cuiva 5 ' those veins, which oring the blobd froin the lower extretilties, 'pase
 The 3e two large veins unite as "they" approach the hêart, and" oplen by onid coniimon" orifice into the right auficle. The return of the blood is. prombted by the action of the muscles, the' puilsation of the arteries, and the valve which are formed in the veing "These vaves are so nicely" adipfed to their desigh', that they adinit tife blaba to fow frowit the' extronition, but

The sirculation of the "Blobd way' iret aidertatind by Hene

RESPIRATION.

In forming the orgate of respiration in the bigher orders of, animals, the Creatori has had two great objects in view : the one, that of forming the voice; the other, that of completing the ohanges whioh are requisite for adapting the blood to the funotions, which it is intended to perform in the animal economy:
The organs of respitation consist of the larynx, the trachea, or windpipe, and the lungs. The larynx is the projecting part, which you can see and feel at the upper part of the throat.? It is the commencement of the windpipej and is the organ in which the voice is formed. The wiadpipe is the tube which is connected with this, and is divided first into two, and then into smaller branches, called bronehia, which at last terminute in small cells, that form the minute structure of the lungs. These organs can only be considered as subservient to the mare immediate functions of respiration. There are: other parts, which are necessary for carrying on the meohanical process of admitting and ejecting the air from then lungs, and these in man and quadrupeds are principally a very large and strong muscle, called the diaphragm, which separates the cavity of the abdomen from the thoraz; and various small muscles which lie between the ribs.
The mechanism employed in dilatation and expansion is exceedingly simple. The contraction of the diaphragm forces down the abdominal viscera, and thus enlarges the cavity of the chest downwards, while the action of the muscles between the ribs raises them, and produces'an expausion in another direction. The necessary effect of this increase of size is, that the air rushes into the windpipe, to supply the void which would otherwise occur; and when the diaphragm and intercostal muscles ceare to act, and becoune relaxed; the elasticity of the cartilaginous parts of the chest, but more particularly the tendency of the muscles of the abdonen to recover themselves; bave the effeet of diminishing the cavity in the chumit; and of thum farcing out from the luugas tho:
air which has been received by inspiration. The altornate dilatation and contraction of the chest, which thus taker place, constitutes the act of respiration, which is partly dependent on the will, and partly independent of it. The lungs are of a light, spongy texture, one in each cavity of the chest, capable of swimming in water, separabic isto sub-divisions called lobrs, and covered with a uembrane called the pleura, which doubles back, and lines the cavity of the chest, as the peritoneum does the cavity of the abdomen. The lungs are very largely supplied with blood-vessels, of which some appear to be desined for the numishmeat of the organ; but by far the primeipal part convey the blood from the right side of the heart, in order that it may, after minute division, and diffusion over the air cells, be exposed to the influruce of the external air, and be carried back to the heart in a proper state for nourishing the body.

The blood which passes from the right side of the heart into the lungs, is of a dark red colour. After circulating through the lungs, it becomes of a florid red, and has then been rendered ${ }^{4}$ for nutrition. In this progression through the lungs, it has been freely exposed to the air of the atmosphere, which is continually received and thrown out, by the alternate actions of inspiration and expiration.

Atmospheric air is composed of about twenty-one parts by measure of oxygen, or the respirable part ; and seventy-nine parts of azote, called also nitregen; or the unrespirable part, with a small portion, not exceeding two per cent. of carbonic acid gas. When an animal is sonfived in a certain quantity of atmospheric air, a part of the oxygen disappears, and an augmented quantity of carbonic acid gas is found to have been produced. Now, it. is supposed by. Physiologists, that part of the oxygen is absurbed by the blood, giving it its Horid red colour, and is carried through the body, that by its union with other elements it may form a species of diffused combustion. This preserves a more uniform temperature than if the animal heat were produced on $/$, in the lungs, which ore ot a comisiderable uliatunce frou tiue extremition, and ane not united with them by subst noces well calons
lated t
venous
formint
passing
will be lime.
Phys
tity of appear, taken it that we during 53:3 cub of oxyg dering the man earth, at quire a consume ever, ba noxious, Carbonic and whi combusti is also, it Which it danger 0 Wise, wh oxygen, the absor part of th had been
The in coonomy, the nude to man a fortant blood in t cuphibiou the whole
nags, anc

REGPIRATION.

The altorwhich thus n, which is pendent of re, one in g in water, ad covered ubles back, neum does ery largely ppear to be but by far right side e division, e influence e heart in
ide of the r. After Llorid red,

In this ly exposed y received inspiration
wenty-one part ; and on, or the exceeding animal is air, a part 1antity of ed. Now, exygen ed colour, nion with combus. ure than e lungs, remities, oll calous
lated to transmit heat. The remainder changes the venous blood in the lungs. by abstracting carbin, and forming carbonic acid; this may be easily shown by passing the air from the lungs through line water, which will become turbid by the formation of carbonate of liue.
Physiologists have differed very much as to the quantity of air taken in at each inspiration. It would appear, however, that about forty cubic inches of air are taken in at an ordinary inspiration; and if we suppose that we respire sixteen times in a minute, we shall respire, during the twenty four hours, 921,600 cubic inches, or 533 cubic feet of air. This is an immense consumption of oxygen ; and it may seem extrao-dinary, that, considering the prodigious dellands on the atmosphere, by the many millions of human beings who inhabit the earth, and the countless numbers of animals which require a constant supply of air, the oxygen should not be consumed, and the air itself contaminated. God, however, has wisely provided for the removal of what is noxious, from air, and for the supply of what is wholesome. Carbonio acid gas, which animals produce in respiration, and which likewise originates frons fermentation and combustion, is capable of being absorbed by water. It is also, in certain circumstances, taken in by plants, of Which it furus a part of the food, so that there is no danger of any deleterious superabundance. Plants, likewise, when exposed to the rays of the sun, exhale oxygen, which seems to arise from the deconsosition of the absorbed carbonic acid gas, the carbon forming ${ }^{\circ}$ part of the substance of the plant, and the oxygen, whicb had been united with it, being thrown out.
The influence, exercised by respiration, in the animaeconomy, is pretty much the same in all animals; but the nude, which we have described, principally applies 10 man and quadrupels. In birds, there are some important modifications; in fish the air is applied to the blood in the gills, through the medium of the water; in touphibious animals, the principal characteristic is, that the whole of the blood does not circulate through the fange, and that they can bear the interruption of respi-.
ration without injury; but in the inseot tribe, and mont: of ther infevior animals; there are various tubes, or trachees, which ramify over the body, and open externally by aportures; or stigmata, an they are called, by means of which the air is received and expelled: no that wo witness over the whole oreation, an admirable accordanco to the modex, for the support of life and health which God has thought fit to adopt.

The peouliaritien, in the funotions of respiration in birds; are exceedingly curious. In this class of adimals, the lungs are small; flattened; and lie close to the breast, but there is no diaphragm, and there is no alternato expansion of the lunga, as in mammalia. In them, the lungs have several openings, by means of which they communicate : with various air-bags, or cells, which fill the whole of the cavity of the body from the neok downwards: These cells are filled by air which passery into, and out of them, through the lungs. and which; in its passage, produces those changes on the blood circulating through the lungs, which are necessary for the health of the animal. By admitting different quantitiow of air into these cells, and also into the bones, which are hollow, for the purpose of admitting air into them from the lungs, birds have the power of increasing or diminishing their specifle gravity, so that they can, not only walk on the earth, but soar in the heavens, in all the varieties of density of atmosphere, which a greator or smaller proximity to the earth necessarily occasions. No strength of wing could poise' a terrestrial animal in air, unless there were the power of admitting air into the inmost recesses of the body, as happens" in birds; and this has been so carefully attended to in them, that the cells extend even among the muscles of the body, where they are particularly large in the soaring aniunuls, as the eagle, hawk, atork, and lark. Those birds that pounct and those that dive, are enabled to do so with great velocity, by suddenly compressing their body, which drives air out, and increases their specific gravity. The barrels of the quille in birds, too, are hollow, and contair ait therporer of diwiniwhing or increusifig the contained
ibe, and mout ius tubes, or en externally led, by meana : no that wo le accordance health which
respiration in ss of atimals, to the breast, no alternate In them, the which they 18, which fill m the neok which passey ind which, in blood cironssary for the ont quantitices bones, which ir into them increasing or they can, not avens, in all ch a greater ly occasions. al animal in air into the birds; and em, that the body, where iunuls, as the that pounct with great body, which ravity. Tho and contain ure owing to is contained
grantity, that ther turkoy, ibulfinohyrtor ant tble teiptoin duoe the quick and voluntary ereotion of their plynagair? Wo may mention. horej that the power whioh birde have n of adutittitg a large quantity of air into their budidey easbley thew to keep upla muoh atronger; and mionals contrued etrrent of air through the lingrix, than anjis other animali dan $\mathrm{do}^{\prime \prime}$ ' and gives them, theroforo, a voluine a of roice, which is very great, compared with their inall ? dimionsionar
In flshes, as already stated, the air is applied to the gille throtigh the medium of the water: The gilles are covered with a' large fap, or operculum, which jis edged with : fridgo which can be acourately implied to the part beteaihy so asreitirely' to shiut up theolitiporiopening no the gillas When the animal breathei, that is, when It wishes water to be applied to the gills, it acts with the musoles of thil flapino at to render itconvex; this can. hot be done, it is clear, withouti producing a vacuina: quder 'the flap; and as the caniuisl py in water, and there on opening in the mouth whioh dommunioate arith the gills, the water rusher in among the gilla, filling up) the aproce mader by the changed forme of the flap, and hus appljing itsolf to the minute ramifioations of blood. ressels diffused over the gills. When the air contained In this water is no longer equal to its purposi, the water rastes away through the air-opening at the edge of the perculum, whioh the animal has the power of making; lad by a repetitiot of the proceis, a fresh supply of ater is obtained, and the funetionlof respiration lept 4p. Fishoould not live in water from which the ain has pon expelled by boiling; and when a mall pond is rozen over, the fish die unless an opéning is made to duit the air.:
There is, it fish, a part of structare somewhat anaogous to the air-cells in birds, namely the dimbladders. or swimminy-bludders, which are given to them, as the pells are to birds, for the purpose of increasing, or dimihishing their huoyancy. These bladders are placed close othe buek-bone; they vary in size, shape, and number; tad are wauting, or very small, in such fish as are perally confined to the luwet depths. They form

What is called the sound of fish; a part which gourmands rize highly. When the air-bladder is ruptured, tho animal loses the power of raising itself, and lies on ita baok, from the additional weight given to that part of the body, by the removal of the sir. The air, in the air-bladders of fish, cannot be admitted and thrown out at plousure, as in the case of birds. The air is procured from the vessels ciroulating in the memtrane which composes the air-bladders; these vessels having the power of secreting air. The air-bladder is ordinarily full, and is then capable of being acted upon, and com. pressed, either by the abdominal muscles, or by a muscular structure peculiar to this organ; and thus the air in condensed pursuant to the will of the animal, and an alteration made in the specific gravity accordingly.
It is a curious fact that the nature of the air varies very much, according to the depth which fish generally inhabit. Those which live in shallow water, have azote, with a very small proportion of oxygen. As the depth increases so does the oxygen; and after the depth of 150 feet, the average proportion is as much as 70 per cent., while the mean result afforded by fish caught at less depth, is only 29 per cent. Pike, carp, roaches, and perch, which are fresh-water, and therefore shallow-water fish, have only from 3 to 5 per cent. of oxygen.
There is a curious mode of respiration employed by frogs, toads, chameleons, and some others of the amphibious tribe, which is, that the animal, instead of breathing through its mouth, keeps its mouth shat, receives aif through its nose, and by means of the muscles of the jaws forces it into the lungs, from which it is returned, through the nostrils, by the action of the musoles of the abdomen-there being no diaphragm. With this conformation, those nuimals would be suffocated if their mouths were kept open. that is into t (whic of dist investi second bodies, objecte perties one al Anato dtructu ouman animal Medici means $200 \log _{1}$ and thi includi arrange of plan the arr in whic these m three 1 ${ }^{4} \mathrm{~m}^{2}$ they the olin

Hitiodoonion to ratulal philosopay. 261

hioh gourmands 5 ruptured, tho and lies on its to that part of The air, in the and thrown out air is procured emt rane which els having the er is ordinarily upon, and comor by a muscular thus the air is animal, and an ordingly.
f the air varies
fish generally ter, have azote,
As the depth the depth of auch as 70 per f fish caught at rp, roaches, and e shallow. water cygen.
cmployed by the amphibious 1 of breathing tt, receives air muscles of the it is returued, muscles of the With this concated if their

SECTION IV.

INTRODUOTION TO NATURAL PHILOSOPHY.

Natural Philosophy, in its most extensive sense, has for its province the investigation of the laws of mattes; that is, the properties of matter; and it may be divided into two great branches. The first and most important (which is sometimes called Natural Philosophy, by way of distinction, but more properly Mechanical Philosophy) investigates the sensible motions of bodies. The second investigates the constitution and qualities of all bodies, and has various names, according to its different objects. It is called Chemistry, if it teaches the properties of bodies with respect to heat, combination with one another, weight, taste, appearance, and so forth; Anatomy and Animal Physiology, if it teaches the dructure and functions of living bodies, especially the uuman;-for, when it treats of the functions of other animals, we term it Comparative Anatomy. It is called Medicine, if it teaches the nature of diseases, and the means of preventing them, and of restoring health: $200 \log y$, if it teaches the arrangement or classification, and the habits of the different lower animals: Botany, including Vegetable Physiology, if it teaches the arrangement or classification, the structure and habits of plants: Mineralogy, including Geology, if it teaches the arrangement of minerals, che structure of masses in which they are found, and of the earth composed of these masses. The term Natarral Hixtory is given to the three last brancher taken together; but chiefly, as far, th they teach the classifioation of different thingt. or the obrorvation of the remomblances and differencen of
the various animals, plants, and ungrowing substanow in nature.

Here we may make two observations. The first is, that every such distribution of the sciences is neces sarily imperfect; for one runs unavoidably into another. Thus, Chemistry shows the qualities of plants with relation to other substances, and to each other: and Botany does not overlook those same qualities, though its chief object be arrangement. So Mineralogy, though principally conversant with classifying metals and earth, yet regards, also their qualities in respect of heat and moisture. So Zoology too, beside arranging animals describes their structures like Comparative Anatomy. In truth, all arrangement and classifigation depend upon noting the thing in which the objects agree and differ and among those thing in which animals, plants, wod minerals agree or differ, must be considered the ant tomical structure of the one, and the chemical qualities of the other. Hence, in a great measure, follows the second observation, mamely, that the sciences mutually agsist ceach other Thus arithmetic and algebra id geometry, and the purely mathematical sciences if mechanical philosophy ; mechaniaal philosophy, in lito manner, assists chemistry and anatomy; especially tho latter: and chemistry very greatly assists physiolog medicine, rad all the branches of natural history.

The frrs great head, then, of natural science, is mechanical philosophy; and it copsists of various unh divisions, each forming a science of great importaum The most essential of these, which is indeed fund mental, and applicable to all the rest, is galled D ynamia from the Greek word signifying power or force. teaches the laws of motion in all jts varieties. Th application of dynamise to the calculation, production and direption of motion, forms the science of Mechanian sometimes called Practical Mechanics, to distinguish i) from the more general use of the word, which compy hends every thing that relates to motion and foree. Th The application of dypamics to the pressure y motion of, fuids constitutes seience Whioh reaely diffiont mppellajions mocording on tho fuide nh bwo
owing substancm
ns. The first is, ciences is necesably into another, of plants with each other: and qualities, though ineralogy, though metals and earth, pect of heat and rranging animals rative Anatomy. tion depend upon agree and differ imals, plants, med asidered the ant hemical qualitien sure, follows the aiences mutually and algebra aid ical sciences aid hilosophy, in lity I\% especially tha ssists physiolog, al history. tural science, of various outh reat inportame is indeed funder called Dynamios er or force. Varieties. Thw tion, production. ace of Mechaviay to distinguish i d, which compe 1 and force. as pressure Which receiv fuide ath ham
and liquid, like water, or light and invisible like air. In the former case it is called Hydronlynamics, from the Greek words signifying water and perwer; in the latter Pneumatics, from the Greek words signifying breath or air. And hydrodynamies, is divided into Hydrostatics, which treats of the weight and pressure of liquids, from the Greek words for balancing of water, and Hydraulics, which treats of their motion; from the Greek word for several musical instruments played with wuter in pipes.

> Library of Useful Knowledge.

GENERAL PROPERTIES OF BODIES.

There are certain properties, which appear to be common to all budies, and are bence called the essential praperties of buliex: These are, Impenetrability, E_{x} telssion, Figure, Divisibility, Miertia, and Attraction. is Impenetrubility is the property, which bodies have of occupying a certain space, so that, where one budy is, another cannot be, without displacing the former;-for two bodies cannot exist in the sume place at the same thime. A liquid may be wore easily moved than a colid body; yé it is not the less substantial, since it is mpossible for a liquid and a solid to occupy the same spuce at the same time. For instance, if a spoon be put into a glass full of water the water will flow over to make room for the spoon.
Air is a fluid differing in its nature from liquids, but no less impenetrable If we endeavour to fill a phial by plunging it into à basin of water, the air will rush out of the phial in bubbles, in order to make way for
the water.
If a nail be driven into a piece of wood, the nail penetrates between the particles of the wood, by forsing
 Wood romaizic in the space which the nail oooupion,

Extension. A body whioh ocoupies a oertain appac, must necessarily heve extension; that is to say, lenyth, breaulth, and depth: these are called the dimensions of oxtension, and they vary extremely, in different bndion. The length, breadth and depth of a box, or of thimble, are very different from those of a walking stick or of a hair.

Height and depth are the same dimensions; if yor measure a body, or a space, from the top to the bottom, it is culled the depth, if from the bottom upwards. it is called height. Breadth and width are also the samo dimensions.

The limits of extension constitute figure or shane; a body cannot be without form, either symmetrical a irregular.

Divisibility is a susceptibility of being divided into an indefinite number of parts. Take any small quas. tity of matter, a grain of sand, for instance, and cut it into two parts; these two parts might be again divided, had we instruments sufficiently fine for the purposs; and if, by pounding, grinding, or any other method, me carry this division to the greatest possible extent, pet not one of the particles will be destroyed, and the boay will continue to exist, though in this aliered state A single pound of wool may be spun so fine as to ertend to nearly a hundred niles in length.

The melting of a solid body in a liquid, also afford a very striking example of the extreme divisibility of matter; when you sweeten a cup of tea, for instancen with what minuteness the sugar must be divided to te diffused throughout the whole of the liquid. Odority rous bodies afford an example of the same thing. The odour or smell of a body is part of the body itself, and is produced by very minute particles or exhalativen, which escape from odoriferous bodies, and come in actual contact with the nose.

When a body is burnt to ashes, part of it appears a be destroyed; the residue of ushes, for instance, is ver maall compared to the coals which have been consuud In this case, that part of the coals, which one wull suppose to be destrosed, goen off in the form of mudht.
is to say, lenyth, he dimensiona of different bndion, a box, or of se of a walking nensions; if yon op to the bottom, om upwards: it is e also the sana
figure or shane; symmetrical a
ing divided into any small quan. ance, and cut it be again divided, or the purpose; ther method, mo sible extent, ye troyed, and the his altered state so fine as to er a. juid, also affords e divisibility of ea, for instances be divided to to iquid. Odorith me thing. The body itself, and or exhalation, 3, and come in
of it appears 4 instance, is ven been consumed hich one moul Eorm of mudne
which, when diffused in the air, becomes invisible. But ve must not imagine that what we no longer see no lonyer exists. The particles of smoke continue still to be particles of matter, as much so as when more closely united in the form of coals. No particle of matter is ever destroyed; this is a fact which must constantly be remenbered. Every thing in nature decays and corrupts in the lapse of time. We die, and our bodies moulder to dust; but not a single atom of them is lost.
It should be observed, that when a body is divided, its surface or exterior part is augmented. If an apple be cut in two, in addition to the round surface there will be two flat surfaces; divide the halves of the apple into quarters, and two more surfaces will be pro-
duced.
Though divisibility is very often included among the essential properties of matter, chemistry teaches us that the ultimate elements of bodies are incupable of further division; yet they are material substances.

Inertia expresses the resistance which native matter makes to a change of state. Bodies appour to be not only incapable of changing their actual state, whether it be of motion or rest; but to be enduwed with a puver of resistiny such a change. It requires furce to put a body which is at rest in motion: an exertion of strength is also reçuisite to stop a body which is already in motion. The resistance of a body to a change of state is, in either case; called its inertia. In playing at cricket, for instance, considerable strength is required tw give a rapid motion to the ball; and in catching it We feel the resistance it makes to being stopped. Inert matter is as incapable of stopping of itself, as it is of putting itself in motion. When the ball ceases to move, theretore, it must be stopped ${ }^{-}$by some other cause or power, which you will understand better after we have treated of the next and last general property of bodies.
Attraction is the general name under which we may include all the properties by which atoms of matter act on euch other, so as to make them approach or continue uear to oue another. Bodies consist of infinitely grall partisles of matter, each of which possenses the © 8.50
power of attracting or drawing towards it, and uniting with any other particle sufficiently near to be within the influence of its attraction. This power cannot be recognized in minute particles, except when they are in contact, or at least appear to be so: it then wake them stick or adhere together, and is hence called the attraction of cohesion. Without this power solid bodies would fall to pieces, or rather crumble to atoms.

The attraction of cohesion exists also in liquids; it is this power which holds a drop of water suspended at the end of the finger, and keeps the minute watery particles, of which it is composed, united. But as this power is stronger in proportion as the particles of bodies are more closely united, the cohesive attraction of solid bodies is much greater than that of fluids. It is owing to the different degrees of attraction of different substances, that they are hard or soft ; and that liquids are thiuk or thin. The term deasity denotes the degree of closeness and compactness of the partioles of a body; the stronger the cohesive attraction, the greater is the density of the body, whether it be solid or liquid. In philosophical language, however, density is said to be that property of bodies, by which they contain a certain quantity of matter, under a certain bulk or magnitude. Rarity implies a diminution of density, thus we should say, that mereury or quicksilver was a very dense fluid; ether, a very rare one. We judge of the density of a budy by the weight of it; thus we say, that metals are dense bodies, wood, somparatively a rare one.

Capillary attraction is an interesting varinty of the attraction of cohesion. In tubes of small bore, liquids rise a certain height within them, from the cuhesive attraction between the parficles of the liquid and the interiur surface of the tube. The smaller the bore, the higher will the liyuid rise. Ail porous substances, such as spouge, bread, lisen, de. may be considered as colleretious of capillary tubes. If you dip one end of a luinp of sugar intis water, the water will rise in it, and wet it cuasiderabiy above the surfiace of that intu which you dip it. Capillary ateractiou probably coutributes to

, and uniting

 to be within er cannut be en they are t then wakes ce called the r solid bodies oms.n liquids; it suspended at inute watery
But as this les of bodies tion of solid
It is owing lifferent subit liquids are he degree of 3 of a body; greater is the liquid. In s said to be y contain a ain bulk or of density, zsilver was a We judge of it ; thus we omparatively aricty of the bore, liquids cuhesive atuid and the or the bore, substances; onsidered as ne end of: e in it, and it intu, which untributers to
the rise and circulation of the sap in the bark and weod of vegetables.

Attruction of gravitation differs from that of coliesion, inasmuch as the latter influences the particles of bodies: at imperceptible distances, whereas the former acts upon masses, and at any distance, however great. Let us. take, for example, a very large body, and observe whether it dues not attract other bodies. What is it that occasions the fall of a book when it is no longer supported? You will say that bodies have a natural tendency to fall. That is true; but that tendency is produced by the attraction of the earth. The earth being much larger than any body on its surface, draws. to it every other, which is not supported.
Attraction being mutual between two bodies, when a stone falls to the earth, the earth shoudd rise part of the way to meet it. But when, on the other hand, you consider that attraction is in proportion to the mass of the attracted and attracting bodies, you will no longer expect to see the earth rising to meet the stone. There are, however, some instances, in which the aittrection of a large body has sensibly counteracted that of the eartli. If a man, standing on the edge of a perpendienlar side of a mountain, hold a plumb line in his hand; the weight will not fall perpendioularly to the earth, but incline a little toward the monntain.
If the air did not impede the fall of bodies, attros tion would make them all descend with equal veloois. It may be objected, that since attraction is proportionvd to the quantity of natter which a body contains, hae earth must necessarily attract a heavy body wo strongly, and consequently bring it to the ground n ore mpidly than a light one. In answer to this, it mnom beobserved that bodies have no vatural tendency to fall any more than to rise, so that the force which brings them down, must be in priportion to the quantity of moter it has to wove. Thus a body oonsisting of y thou sund particles of matter, requires ten times the foroe or atu
 lime, that a budy copesitivg of only a heredred poncichas.

There are some bodies which do not appear to gravitate : smoke and steam, for instance, rise instead of fall, but it is still gravity which produces their ascent. The air nearer the earth being heavier than sinoke, steam, or other vapours, not only supports these light bodies, but, by its own tendency to sink below them, forces them to rise. The principle is just the same as that by which a cork, if forced to the bottom of a vessel of water, rises to the top as soon as it is set at liberty. Balloons ascend upon the same principle, the materials of which they are made, are heavier than the air, but the air with which they are filled is considerably lighter; so that, on the whole, the balloon is lighter than the air which is near the earth, and consequently rises.

ON THE LEAWS OF MOTION, AND THE CENTRE OF GRAVITY.

The science of Mechanics is founded on the laws of motion ; it will therefore be necessary to explain these laws before we examine the mechanical powers. Motion consists in a change of place. A body is in motion whenever it is changing its situation with regard to a fixed point. Now, as one of the general properties of bodies is inertia, it follows that a body cannot move without being put into motion. The power which puts a body into moiion is called force; the stroke of the hammer is the force which drives the nail; the exertion of the horse in pulling, that which draws the carriage. Gravitation is the force which occasions the fall of bodies, cohesion that which binds the particles of bodies together, and heat a force which drives them asunder. When a body is acted on by a single force, the motion is always in a straight line, and in the direction in which it received the impulse.

The rate at which a body moves is called its velocity; and it is one of the laws of motion, that the velocity of the moving body is proportional to the force, by which it is put in motion. The velocity of a body is called
 to that of other bodiet. When, for instance, a horm

WATH: OP MOTTOX AND OJNTEIS OP GBAVTEY. 209

to gravio d of fall, nt. The steam, or dies, but, ces them by which ff water, Balloons of which t the air hter; so the air
goes fifty miles in ten hours, his velocity is fivo milés an hour. It is termed relative, when compared with that of another body which is itself in motion. Thus a man asleep in a ship under suil, remains at rest relatively to the vessel, though he partakes of its absolute motion. If two carriages go along the same road, their relative velocity will be the difference of their absolute velocities.
The motion of a body is said to be uniform, when it passes over equal spaces in equal times. It is produced by a force having acted on a body once, and having ceased to act, such as the stroke of a bat on a cricketball. It may be said, that the motion of the ball is neither uniform nor in a straight line. In answer to this objection, you must observe that the ball is inert, having no more power to stop than to put itself in motion; if it fall, therefore, it must be stupped by some furce superior to that by which it was projected; and this force is gravity, which counteracts and finally overcomes that of projection. If neither gravity nor any other force opposed its motion, the cricket-ball, or even a stone thrown by the hand, would continue to proceed onwards in a right line and with a uniform velocity. We have no example of perpetual motion on the surface of the earth; because gravity, the resistance of the air or friction, ultimately destroys all motion. When we study the celestial bodies, we find that uature abounds with examples of perpetual niotion, and that it conduces as much to the harmony of the system of the universe, as the prevalence of it would be destructive of all stability on the surface of the globe.

Retarded motion is produced by some force acting on a body in a direction opposed to that which first put it in motion, and thus gradually diminishing its velucity.

Accelerated motion is produced, when the force which puts a body in motion, continues to act upon it during its motion, so that its velocity is continur l_{y} increased. Let us suppose, that the instant a stc 4 is let fall from a high tower, the force of gravity we annibilated: the stone would neverthelews descend; for a
derky, shaving ingce, recoived mompalso, will not mop, hine move om, vith uniform velucity. If, then, the force of gravity be not destroyed, aftor having given the first impulse to the stone, but contipue to act upon it during the whole of its descent, it is easy to undertand that its motion will be thereby accelerated. It has been ascertained, both by experiment and calenlations, that bodies descending from a height by the fireo of gravity, fall about sixteen feet in the first seoond of time, three times that distance in the next, five times in the chird second, seven times in the fourth; and so on, regularly increasing according to the number of econds during which the body has been falling. Thus the height of a building, or the depth of a well may be known, by observing the length of time which a stone takes in falling from the top to the bottom. If a stone he thrown upwards, it takes the same length of time, ancending that it does in descending. In the first case, the veloeity is diminished by the force of gravity; in the seacond, it is accelerated by it.

The momaentum of bodies is the force or power, with which one body would strike another. The mouentum of body in measured by the product of its weight and relocity. The quiaker a body moves, the greater will be the force with which it will strike against another body; and we know also, that the heavier a body is, the greater is its force; therefore the whole sponer or momentum of a body is composed of these tho properties. It is found by experiment, that if the weight of a body be nepresen ted by the nuuber 3 , and its velocity also by 3, its momentum will be nine.

The aryaction of bodies is the next law ot motion to be explained. When a body in motion strike another hody, it meets with resistance; the resistance of the body at rest will be equal to the blow struck by the body in motion; or in philosophieal lanyuage, action and reaction will he equal and in opposite directions. Birde, in flying otrike the air with their winge, and it in therremotion of the sir which onubles them to cise or admurce forwards.

retu) will noti C^{\prime} two in 0 force strik angle a 89 equa towa y to these the
one
the
not
they
.8troy
other
fore the
it w
betwe
time
the fo
be d
produ
descr
two
[Fi
stance
as y;
Dall
segue
will
the 1
will
it ai
of the

LAWS OP MOTION AND OENTRE OF GRAVITY. 271

seturn of the ball is owing to the reaction of the rill against which it struck, and is called reflected notion.

Compound motion is that produced by the action of two forces. If a body be struek by two equal forces, in oppusite directions, it will not move. But if the forces, instead of acting on the body in opposition, strike it in two directions inclined to each other, at an angle of 90 degrees, it will moze in the diagonal of a square ; thus [Fig. 1,] if the ball A be struck by equal forces at x and at y, the force x would send it towards B , and the force
y towards 0 : and since these forces are equal, the body cannot obey one impulse .rather than the other, yet as they are not in direct oppusition, they canuot entirely destroy the effect of each other ; the body will therefore move, but, following the direction of neither,
 it will move in a line between them, and reach D in the same space of time that the force x would have sent it to B , and the force y would have sent it to c . Now, if two lines be drawn from D to join B aud c, a syuare will be produced, and the oblique line e, which the budy describes, is the diagonal of a square. Supposing the two forces to be unequal [Hiy \%] that x, for instance, is twice as great as y; then x will drive the dall twive as far as y, consequently the line a B will be twice as long as the line $A 0$; the body
 will in this case unove to i ; and if the lines be drawn from that point to B and o, the ball will move in the diagunal of a restangle.

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

Let us now suppose the two forces to be nnequal, and not to act on the ball in the direction of a right angle but in thát of an acuite angle. The ball will move [Fig. 3] from 1

tion in the diagonal of a parallelogram. Froduce moif the body set out from B instead of A, and be iuppelled by the forces m and n, it will move in the dotted diagonal в \mathbf{C}.

Circular motion is produced by the action of tro forces on a body, by one of which it is projected forward in a right line, whilst by the other it is continually directed towards a fixed point. For instance, if I whirl a ball fastened to my hand with a string, it is acted on by two forces, and has a circular motion; one of the forces is that which I give it, which represents the force of projection, the other force is the string which confines it to my hand. If during its motion the string were suddenly to break, the ball would fy off in a etraight line, and this, because it would then be acted on by only one force; for, as we have said, motion produced by one force is always in a right line. The point or line, to which the motion of a body is confined, is called the ceitre or axis of motion. This centre or axis remains at rest, whilst all the other parts of the body move round it : when a top is spun, the axis is stationary, whilst every other part is in motion round it. There is one circumstance in circular motion, which must be carefully attended to; which is, that the further any part of a body is from the axis of mution, the greater is the velocity. The force, which continer a oudy to a centre, round which it moves, is cullod the centripetul force: and the force,

LAWB OP MOTTON AND OENTRE OY GRAVITY. 27

which impels a body to fy from the contre, is callod the rentrifingal force. In circular motion these two forcen bulance each other.

If a ball be thrown in a horizontal direction, it is acted upon by three forces, viz. the force of projection; the resistance of the air through which it passes; and the force of gravity which finally brings it to the ground. Rodies thus projected describe a curve line in their descent. If the forces of projeotion and of gravity both produced uniform mution, the ball would move in the diagoual of a parallelogram: but the motion produced by the force of projaction alone "is uniform, that produced by gravity is accelcrated; and it is this acceleration which makes it fall in a curve instead of a straight line. The curve line which a ball describes, if the resistance of the air be not taken into consideration, is called in geometry a parabrola.
The middle point of a body is called its centre of maynitude, that is, the centre of its mass or bulk.
The centre of gravity is the point about which all the parts of a body exactly balance each other, in every position of the body; if therefore this point is supp .ted, the body will not fall. 'When a boat is in dangu. of being upset, it is dangerous for the passengers 4 . rise suddenly; this is owing to their raising the seutre if gravity. When a man stands upright, the centlu of gravity of his body is supported by the feet. If he lean to one side the will no longer stand firm. A ropa-duncer performs all his feats of agility, by dexterounly oupporting his centre of gravity; whenever be finu's hirself in danger of losing his balance, he shifts the hear" pole which he holds in his hands, in order to throw sha weight towards the side that is deficient; and thus by changing the situation of the centre of gravity, restores his equilibrium. A person carries a single $\rho^{\prime \prime}$, of water with great difficulty: owing to the centre of gravity being thrown on one side; but two jails, out hauging on each arm, are carried with much sivator tavality; bequuse they balance each other.

When two bodies are fastened together, they are in be considered as forming but one body. If the two bodies be of equal weight, the centre of gravity will be in the middle of the line which uuites them; but if one be heavier than the other, the centre of gravity will be proportion. ably nearer the heavy body than the light one.

ON TIE MECHANICAL POWERS.

There are six mechanical powers, viz. the lever, the pull $r y$, the wheel and acle, the inclineal plane, the weilje and the srrew. One or more of these enters into the composition of every wachine.

In order to understand the power of a machine, there are four things to be cunsidered. Firstly, the piwer that acts; this consists in the effort of men on horses, of weights, springs, steam, acc. Derimilly, the resistance which is to be overcome by the power. Tho effect of the power must ulways be superior to the resistance, otherwise the machine could not be put in wotion. For instance, were the resistance of carringe equal to the strength of the hutses empluged to draw it, they would not be able to draw it. Thirilly, we are to cousider the centre of motion, or, as in it termed in mechanics, the fulirum, which neans : prup. And Instly, the respective velocities of the purret, and of the resistance.

THE LEVER.

Mhe tever it an inflesible rod or beam, ohat is to fat, oun which is not supponed to bond in any direction fio
hotape ruded pended of mot florum empty, $m^{m e}$ nquent Qther. that uqual togethe fanity middle pongeat of grav midelle being s Yé pint in remain, pot the them it The re iustend litule al matas? mill fore fol liberty, mediute nuiliby maders reighig reights the sen
er, they are n as forming but the two bodies ight, the centre e which uuites one be beavier er, the centre be proportion. 1e heavy body one.
the lever, tho ane, the weillye aters into the
of a machine,
Firstly, the fort of wen os Serimilly, the e power. Ithe uperior to the d nut be put esistance of utses emplinged it. Thirilly, n, or, as it is hich means : s of the purmet,
at in to saty, oum tirection
hetapest thal gteel, rody to whioh a pair of scales is susronded, is in devefy, nnd the point by which it is susponded, called the prop or fulcrum, is also the centre of motion. The two parts of a lever, divided by the fulorum, aye ;alled itr arms. Now, both scales being empty, thed are of the mpe weight, and conrquently hoglange oach ather. We bhave stated that if tano drodien of ugnal wright ere fastened tegether, the centre of gariky will be in the middje of the line thet
 songeete them; the centre of gravity of the scales must, therefore, be in the middle patween tham, as the fulcrum is, and, this being supported, the geiles balance each other.
Yay reoolleot, that if a budy be suspended by that peint in which the contye of gravity is situated, it will cremain at trast in any position indifferently; which is not the gase, with ithis pair of scales, for when we hold thom inclined, they inutinntly regain their equilibrium. The reason of this is, that the centre of suspension, instand of geactly coinciding ith that of gravity, is a itule above it., If, therefore, the equilibrium of the mandes be diuturbed, the centre of gravity moves in a mill circle sound the point of suspension, and is therefore forced to rise; and the instant it is restured to liberty, it descunds and resureses its situation immediutely beluw the point of uspennion, when the guilibrinm is reatored It is this pruperty which naders the halapge accurate an instrument for reighing, soods. If the scales contain different neights, the centre of gravity, will be removed tuwards the fale which is henvier and being mo longer supported, the hgevier geale will descend. If the lever We, taken of the puyp and favteued on in anuther point, Che pther point then becoupes the fulorum. In

mirya book.

heaviest, the lover in The centre of gravity is not supported, becuuse ify is no longer immediately below the point of sus pension. But if we cat bring the centre of gro vity immodiately belon that point, as it is nor situated, the scales will again balance each other. Thus if a heavy weigh be placed in the scale suspended to the shorter am of the lever, and a lighter one into that suspended io the longer arm, tho equilibrium will be 10 stered. It is not, then fore, inpracticable to make a heavy body bu lance a light one; and by this means an im. position in the weight of goods is sometimes ef. fected. An ingeniou balance, called a stat. yard, has been invented, on the principle that weight increases in effect in proportion to its distana from the iulcrum.

When a lever is put in motion, the longer arm, a acting part of the lever, must move with greats velocity than the shorter arm, or resisting part of the lever, because it is further from the centre of motion When two boys ride on a plank drawn over a $\log d$ wood, the plank becomes a lever, the \log which spp ports it the fulcrum, and the two boys, the nower ad the resistance at each end of the lever. When boys are of equal weight, the plank must be support in the middle to mare the two arms equal; if to aiffer in meight, the plant must bo drawu over ${ }^{2}$ prog, 20 as to make the arms unequal, and the lightix
bos muss is order wampens vas to that the resistano his pus round firom it fion to 1 the powe perform of the le Δ lev it can n

Non. I pendicu in a stra Tepenti frent
tho lover and descende. - of gravity is rted, becuuse it ger immediately point of sur But if we ch centre of gn rediately belon , as it is not the scales will woe each other. heavy weight he shorter anm at suspended to er arm, the a will be in is not, then practicuble leavy body be ght one; and means an im. the weight of sometimes af An ingenion salled a stent rinciple that to its distana
longer arm, a e with gretis ing part of the ntre of motion 1 over a $\log d$ \log which sup the power ad er. When ist be supporte equal; if th irawa over ${ }^{2}$ and the light
wor must be placed at the extremity of the longer arm, in order that the greater velocity of his motion may wimpensate for the superior gravity of his companion, was to render their momentums equal. But we know, that the action of the power must be greater than the mistance in order to put a machine in motion. For this purpose each -boy at his descent touches the rond with his feet; and the support he receives from it diminishes his weight, and enables his companion to raise him ; thus each boy alternately represents the power and the weight, and the two arms alternately perform the function of the acting and the resisting part of the lever.
Δ lever in moving, describes the are of a circle, for it can move only around the fulcrum or centre of mo-

don. It would be impossible for one child to rise perpendicularly to the point A, or for the other to deacend ih a straight line to B ; they each describe ares of their repeotive nirolen ; and it may he judged from the dife firent dimensions of the circle how mith greater the

278

volocity of the little chilla must be thin that of lis biguer one. Bincrucous wotghta may bo raieda by levens of this description, for the longer the acting pait of tife lever is in comparison to the resisting part, the greater is the effect prodnced by it ; beokuse the greater is the velocity of the poimér compared tolthut on the tóightu"

We have all seen a hény barrot or tup rolled ove by thrupting the end of sis
 strong stiol bedleaty it and resting it agingt $=\log$ of wood, or any other object Which tan give it supporta near the end in contiof with the barrel. The stidy in this case, is to lever, the support, tife prop or faloram; and the neafer the latitit is to the resistance, the more easily will the power be able to move it.

There are three different kinds of levers; in the first, which comprehends the several levers we have doscribed, the falcrum is between the pener, and tho weight. When the fulcram is situated equally bo tween the power and the weight, as in the balance, the power must be something greater than the veight, in order to move it ; for nothing can in this case! be gained by velocity. The twe arms of the lever being equal, the velocity of their extrentities must be sollikewise. 'Tho balunce is therofore of no mindract an mechanied power, but it is extremely useful to eatimate the res. pective weights of bodies. But wher the fulopom, i, of a lever is nut oyually distant from the power and the weight, and that the power,
 p, acts at the, oztremity of the longer arm, the power may then be less than tho weight; w, it deficienoy being cumpeusated by its creater velicity ; á we of cerved in atacmitig the sembute. Therefors when of great weicht is to raised if nfait bey funhed of

the ln the end be req The pol if rests fire, is the lev the coa longer mose is : ode con we scre Thich tremitie cuitting the lev hurter they ou stance i screw : pincers, force of lever be
In le being a the fulc the vel must n than th it is m centre o soinetim
by weat ode of náder
the gr वinues birrel i cioved, Hidus
 aisat by lever ag' part of the itithe greation greater is tion the ine eirghe: an roilled ont the ond of it eneatet it it mod imat $x=1 \log$ of othtrer objet oit sapporit d is cont is m^{2} lever, the Here the lutitit the power bo
vers; in the 3. me heve do. mer, and the equally bo balance, the eight, in ordes be gainied by ng equal, the kewise. The a: meohaniel nate the rese fulapum, ower and the hat the power, 1, extrewity of m, the powor less than the its deficiency unsated by its ity i d we of foro when i
 5 H
the innger arm. But, if the oase will admit of putting the end of the lever under the weight, no fastening will be required, as you may perceive by stirring the fire. The poker is a lever of the first kind: the point, where if rests against the bars of the grate, whilst stirring the fire, is the fulcrum; the short arm, or resisting part of the lever, is employed in lifting the weight, which is the coals; and the hand is the power, applied to the longer arm, or acting part of the lever. A pair of soismon is an instrument composed of two levers, united in one common fulcruin; the point at which the two levers we screwed together, is the fulorum; the hanilles to Which the power of the fingers is applied. ars the oxtremities of the reting part of the levers; and the citting parts of the scissurs are the resisting parts of the levers: therefore, the longer the handles, und the ahurter the points of the scissors, the more easily will they cut. Thus, when pasteboard, or any hard substance is to be cut, that part of the scissors nearest the sorew or rivet is used. Sinuffers, and most kinds of pincers, are levers of a similar description, the great force of which consists in the resistiog part of the lever being very short in comparison of the acting part.
In levers of the second kind, the weight, instead of being at one end, is situated between the power and the fulcrum. In moving it, the velocity of the pitwer must necessarily be greater than that of the weight, as it is mure distant from the centre of motion. We may solletimes see a barrel moved
 by weaus of a lever of the senond kind, as well as by one of the first. The end of the stick that in thrust onder the barrel reste on the ground, which be oimes the fulorum; the birrel is the weif to be unved, and the puwer the Hand appifed to to gotier

ond of the lever. In this insitance there is an immensen difference in the length of the nrums of the lever, the weight being, almost close to the fulcrum, and the advan. tage gained is proporti, nal. The most common examplo that we have of levers of the second kind is in the doors of our apartments; in these the hinges represent the ful. crum ; the hand, the power applied to the other end of the lever; and the door, or rather its inertia, is the weight which occupies the whole of the space between the power and the fulcrum. Another very common in. stance is found in an oar ; the blade is kept in the same place by the resistance of the water, and becomes the fulcrum, the resistance is applied where the oar passes over the side of the boat: and the hands at the handle are the power. Nut-cruckers are double levers of thin kind: the hinge is the fulcrumi ; the nut-crackers the resistance, and the hands the power.

In levers of the thirll kind, the fulcrum is also at one of the extremities, the weight or resistance at the other, and the power is applied between the fulcrum and the resistance. Thus the fulcruus, the weight, and the power, each in its turn, occupies some part of the tever between its extremities. But in this third kind of lever, the weight being further from the centre of miotion than the power, the difficulty of raising it, instead of being diminished is increased. Levers of this description are used when the object is to produce great velocity. The aim of mechanics, in general, is to gain foree by is. changing it for time; but it is sometimes desirable to produce great velocity by an expenditure of force. The treadle of the commion turning lathe affords an example of a lever of the third kind employed in gaining time, or velocity, at the expense of force. A man, in raising i - long ladder perpendicularly againsi a wall, cannot place his hands on the uppor part of the ladder; the power,
there the the ft ais we in th way the b ployed lifting arm b the f
power hand the w that w that w for it obstacl art

The
 sdvanta weight somethi it. \mathbf{A} ing the practioa by draw But 7
an immenes he luver, the ad the adran. mon' examplo in the doors esent the ful. other end of is the weight between tho common in. in the same becomes the e oar pusses t the handle evers of this crackers the
m is also at tance at the the fulcrum ance. Thus the weight, r, each in its s some part between its But in this f lever, the further from motion than sad of being scription are locity. The force by ex. desirable to force. The an example ing time, or in raising a cannot place the power,
therofore, is necessarily placed nearer the fulcrum than the weight, for the hande are the power, the ground the fulorum, and the ladder the weight, which, in this, as well as in the door, may be considered as collected in the centre of gravity of the ladder, about half way up it, and consequently beyond the point where the hands are applied. This kind of lever is employed in the structure of the human frame. In lifting a weight with the hand, the lower part of the arm becomes a lever of the third kind; the elbow is the fulcrum; the muscles which move the arm, the power; and as these are nearer to the elbow, than the hand is, it is necessaty that their power should exceed the weight to be raised. It is of more consequence that we should be able to move our limbs nimbly, than that we should be able to overcome great resistance; for it is comparatively seldom that we meet with great obstacles, and when we do, they can be overcome by art

THI PULLET.

The pulley, which is the second mechanical power we
 are to examine, is a circular flat piece of wood or metal, with a string running in a grouve round it, by means of which a weight may be pulled up. Thus pulleys are used for drawing up curtains, the sails of a ship, \&cc. When the pulley is fixed, it gives no mechanical advantage. If P represent the power to raise the weight W, it is evident that the power must be something greater than the weight in order to move it: A fixed pulley ia useful, therefore, only in altering the direction of the power; and its most frequent practical application is to evable us to draw up a weight by drawing down the string, connected with the pulley. But a movable pulley affords mechanical assistance. The maid whiok mutaing the oank by moans of the Trim
cord D massing round the movable pulley a o, does it more easily than if it held the cask suspended to a cord Fithout a pulley; for the fixed hook H, to which one end of the cord is fastened, bearing onechalf of the weight of the cask, the hand has only the other half to sustain.

Now, it is evident, that the nook afords tho same assistance in raising, as in sustaining the cask, so that. the hand will have only one-half of the weight to raise, But observe, that the velocity of, the hand must be double that of the cask; for in order to raise the latter one inoh, the hand must draw the two strings (or rather the two parts, D and E, into, which the string is divided by the pulley) one inch each ; the whole string being shortened, two inches, while the cask is raised only one./ Thus the advan. tage of a movable pulley consists in dividing the difficulty. Twice the length of string, it is true, must be drawn, but one-half, the strength is required which would be necessary to raise the weight withaut. such assist ance; so that the diffculty is overcome in the same manner as it would be by dividing the weight into two equal parts, and raising them successively. The pulley, therefore, acts on the same principle as the lever, the deficienoy of strength of the power being compensated by superiot velocity; and it is on this principle that all mechanical power is founded. In the fixed pulley, [p.281,] the line A may be considered as a lever, and B the ful. crum : then the two arms A B and B o being equal, the lever will afford no aid as a mechanical power; since the power must be equal to the weight in order to balance. it, and superior to the weight in order to raise it. In the movable pulley you mugt consider the point a as the fulcrum ; A B_{2} or half the diameter of the pulley, as
 suspended ook . H , to one-half, the other
tho same k, so that at to raise, must bo in order the hand (or rather which the ulley) one ing being the cask he advan. consists in [wice the , must be trength is ecessary to uch assist is overas it would parts, and refore, acts: ficiency of by superiot mechanical 281,] the B the ful-- equal, tbe ; since the to balance aise it. In point a a le pulley, a造等
longer arm. It may, perhaps, be objectod to pulloye, that a longer time is required to raise a weight with their aid than wichont it: Than in structifor it is a fundamental law in mochanics, that what is guined in. porer is loat in timeji this applies not otily to thio pulves, but to the Idever and ally tho otbers mochanoicly pownin. It, would be, wrong, howetorj; to stuppoiai thity the ilowe Tres equivalent to: the gain, anid that we derived no adrantage from the mechinical powers; for since we aro inempable of augmenting ouri strength, that scienct is of Nonderful) utility, whioh eniables us to reduce tho rop distanse or weight of any body to the lovel of out. atrength. This wer aocomplinhy by dividing the siet. tauce of a body into parta, which we cin juccuripity overcomes and if, it require a sacriffo of tiot attain this end, you must i bei senishlo hot very ed vantageonely it, is exohanged for powtr. The, greater the number of pulleys conneeted by is, string, the more easily the reight is raised; as the diffioulty is divided amongst the nupber of atriagey or rather of parts, into which the string in divided by the pulleys. Several pulleys thusiconnectrad forp what is oalled a system, or tackle, of pulleye. You may haveitieen them suspended from cranesi to raise goods into warehouses, and in shipe to draw up mails, Here both the advantages of an inosi crease of power and change of direction are united; for the sails are naised up the masts by the sailors on deck; from the ohange of direction whioh the pulleys effect; and the labour is facilitated by the mechanical power of a combination of pul-
 leys. Pulleys are frequently conineoted, as. doseribed, both for nautical and a variety of other purposes; but, in , whatever mapner pulleya are cobl nected by a; aingle, string the meghanioal portanis ithe amp in it priciple. When thore are tro, three, tocy

THE WHIEG AND AXt.

The thind mechanical power is the wheel and axcle. Let us muppose the weight w to be a bucket of water in a well, which is to be raised by winding the rope, to which it is attached, round the axle; if this be done without a wheel to turn the axle, no mechanical assistance is received. The axle without a wheel is as im. potent as a single fired pulley, or lever, whose fulcrum is in the centre; but add the wheel to the axle, and you will immediately find the bucket is raised with much less difficulty. The axle acts the part of the shorter arm of the lever, the wheel that of the longer arm. The velocity of the circumference of the wheel is as much greater than that of the axle, as it is further from the centre of motion; for the wheel describes a large circle in the same space of time that the axle desoribes a small one, therefore the power is increased in the same proportion as the circumference of the wheel is greater than that of the axle. If the velocity of the wheel were twelve times greater than that of the axle, a power nearly twelve times less than the weight of the bucket would be able to raise it.

THE INCLINED PLANE.

The fourth mechanical power is the inclined plane. This is nothing more than a slope, or declivity, froquently used to feoilitate the draving up of weighto It is not difficult to underatand, that 2 weight may with gról erentar ane bo dravit up a olope than it cat be
nil
T
ch
mo
an

Yov
if a
be
wel
the
line

con

by

T

com

ime the
Whis
nised the mame hoight perpendicularly. But in thic, as roll as the other meohanical porerre, the facility is purchased by the loss of time; for the reight, instead of moving directly from A to 0 , must move from B to 0 , and as the height of the plane is to its length, 80 is the

power to the weight which it is intended to raise. Tive, if a pulley be fixed at r , so that the string from r to F riay be parallel to BO, and a string fixed to the weight w were connected with another weight P; then if P bear the same proportion to W that the line $A C$ does to the line B o, the two weights will balance each other, a considerable portion of the weight w being supported by the plane $\boldsymbol{B} 0$, and only the residue by the power p.

THE WEDGE.

The roedige, which is the next mechanioal power, in composed of iwo inclined planes. Woodoutters nomeless than se it.
timee nse it to oloave wood. The renirtance constis fi the coherive attrection of the wood, qeany othr hed Whigh the wodjo is omployed to eaperatos ant the
ancintrigy ined by

 Whe fropertiow stateds is that which oxpresset iks power o when weting loy preturio only.

All cutting instruments are constructed upon the principle of sthe inclined plane, or the wedge. Those that have orie edge loped, like the chisel, may be referred to the inclined plane; whilst the axe, the hatchet, and sthe knife (when used to chop or split asunder) act on Athe principle of the wedge. But a knife outs best when drawn across the substance it is to divide, as it is nsed in cutting meat; for the edge of a
 Whan used 14 h hat instrument.

+ 1 HI ECREW.

The screro, which is the last mechanical power, is more complicated than the others. It is composed of two parts, the sorew and the nut. The screw s is a cylinder, with a spinel prótubernace coiled round it, called the thread; the nut N is
 iperforited to icontain the sucfev; send the cinside of the hut hass a spiral grocve, made to fit the spinal thread of the screw; just Ife the lid of a box which screws on. The handle which projects from the rut is lever, without Whleh, of ornething equivalent, tho sonet, is never ysed as a mochātion powner. The nut, With \& larer L attached to it , is commonly called a winch. The power of the screw,

 tholined plane, end wound round a pencil, which will represent the cylinder, it will describe a spiral line corresponding to the spiral protuberance of the setew. The nut then ascends an incliped plane, but ascends it in a spiral instead of a straight line. The closer the thread of the serew, the more ensy
 is the ascent; but the greater are the number of revoJations the winch must make; so that we return to the old prisciple, what is saved in power is lost in time. The power of the screw may be increased, álso, by lengthening the lever attached to the nut; it is employed either for compression or to raise heavy weights. $1 t$ is nsed in cider and wine presses, in coining, in bookbinding, and for a variety of other purposes.

All machines are composed of one or more of the six mechanical powers we have examined. One more remark must be made relative to them, which is, that friction in: a considerable degree diminishes their effect. Friction is the resistance which bodies meet with in rabbing against each other. There is no such thing as perfect smoothnéss or evenness in nature. Polished metals, though they wear that appearance, more than any other bodies, are far from really possessing it ; and thair inequalities may frequently' be perceived through a good magnifying glass. When, therefore, the surfaces of two bodies come into contact, the prominent parts of the one will often fall into the hollow parts of the other, and ocsasion more or less resistance to motion. In proportion as the surfaces of bodies are well polished, the friction is diminished; but it is always considerable, and it is usually computed to 0° destroy one-third of the power of a machiue. Oil or grease is used to lessen friction; it acts as a polish by filling up the cavities of the rabbing surfaces, and also prevents them from being so immediately in contact, which makes them slide more easily over each other. It is for this reason that whels are greased, wid the rotizs and hinges of doors oiled. In these instances, the contact of the rubbing suffaces is so close, and the rubbing
$s 0$ continual, that, notwithstanding their boing polishod and oiled, a considerable degree of friction is produced. It is a remarkable circumstance, that there is generally less friction between two bodies of different substances than of the same. It is on this account that the holes in which the spindles of watches work, are frequently made of jewels; ${ }^{-}$and that when two cog-wheels work in ene another, the cogs of the one are often made of wood, and the other of metal.

There are two modes of friction; the one occasioned by the sliding of the flat surface of a body, the other by the rolling of a circular body. The friction resulting from the first is much the more considerable; for great force is required to enable the sliding body to overcome the resistance which the asperities of the surfaces in contact oppose to its motion, and it must be either ifted over, or break through them; whilst, in the other kind, the friction is transferred to a smaller surface, and the rough parts roll over each other with comparative facility. Hence it is, that wheels are often used for the sole purpose of diminishing the resistance of friction. When, in descending a steep hill in a carriage, we fasten one of the wheels, we decrease the velocity of the carriage, by increasing the friction, that is to say, by converting the rolling friction of one of the wheels into the dragging friction; and when casters are put to the legs of a table, the dragging is converted into the rolling friction.

A fly-wheel, which is a large heavy wheel attached to the axis of one of the principal wheels of the machinery in steam-engines and other large machines, acts in the first instance as a heavy weight to impede their free and uncontrolled motion. However paradoxical this mode of improving machinery may appear, it is, nevertheless, of great advantage. The motion of a machine is always more or less variable. Whether the power consists in wind, water, steam, or the strength of animals, it cannot be mude to act with perfect regularity, nor can the work which the machine has to perform bo aiways uniform. Yet in manufactures, and most casen in which machinery is employed, uniformity of action in

conot

 the m The action effect with slacke of the tolerab manne of par as at their b the fly which rated. is hoa -read the mThe
motion of mal which All are ca propor body 0 to the is, the mater in vact this i power the air

In a nomy,
sing polished is producod. is generally nt substances hat the holes re frequently wheels work ten made of
accasioned ly, the other tion resulting le; for great to overcome surfaces in either lifted other kind, ace, and the comparative used for the of friction. ge, ive fasten ocity of the s to say, by e wheels into e put to the to the rolling

1 attached to e machinery s, acts in the le their free doxical this it is, never. f a machine r the p ower strength of at regularity, o perform be 1 most cases of ackion is
montially requisito, both in order to provent injury to the machine, and imperfection in the work performed. The fly-wheel answers this purpose, by regulating the action of the machine; by its inertia it diminishes the effect of increased action, and carries on the machine with uniform velocity when, the power transiently slackens; thus, by either checking or impelling the action of the machine, it regulates its motion so as to render it wherably uniform. It is not difficult to understand the manner in which a fly-wheel acts.-The vast number of particles of which it consists may lose, or gain, taken is a whole, a considerable quantity of motion, without their being, individually, much affected; that is, without the fly-wheel, or-by consequence-the machinery with which it is connected being sensibly retarded or accelerated. Thus it is in reality a magazine in which motion is hoarded up, when it is not wanting, or is injurious -ready, however, to be given out again precisely at the moment it is required.

There is another circumstance which diminishes the motion of bodies, and which greatly affects the power of machines; this is the resistance of the medium in which a machine is worked.
All fluids, whether of the nature of air, or of water, are called mediums: and their resistance is generally proportioned to their density; for the more matter a body contains, the greater the resistance it will oppose to the motion of another body striking against it. It is, therefore, more difficult to work a machine under mater than in the air. If a machine could be worked in vacuo, and without friction, it would be perfect; but this is unattainable. A considerable reduction of power must, therefore, be allowed for the resistance of the air.

ASTRONOMY.

THE EARTI'S ANNUAL MOTION.

In attempting to give some general notions on Antronomy, we thall not begin by entering into an explaino.
ation of the system of the celestial bodies, but releat that portion which is most interesting to us, the earth, and when we have formied a distinct idea of the part which it performs in the general system, we shall bo able to form some conception of the grandeur and immensity of the universe. Let us suppose the eaith at its creation to have been projected forwards. Wo iknorr, from the laws of motion, that if no obstacle impeded its coutse it would proceed interminably in tho xsame direction, and with uniform velocity. Liet A represent the learth, and the sun. We shatl suppose the earth arrived at the point in which it is represented in the figure, having si: velocity which would carty it on to B in the space of one month; whilst the sun's attraction would bring its to cin the same space of time. Reasbning upon the laws of uniform motion we might hastily conclude this sthe earth would move in the diagonal $A^{\prime} D$ of the park. lelogram a B D c, as a ball istruck by two forces will da But the force of attraction is continually acting upon curiterrestrial ball, and producing an incessant deviation from a course in a straight line, and thus converts it into a course in a curve line.

Let us detain the earth a moment at the point D; and consider how it will be affected by the combined action of the two forces in its new situation. It still retain its tendency to fly off in a straight line; but a straight line would now carry it away to F, whilst the sun would attract it in the direction D s. In order to knor exactly what course the earth will follow, another paril. lelogram must be drawn in the same manner as th first ; the line D describing the force of projection -mdethe dinespiscthat of atiraction; and it will be foud
thit the pathe p oxt the With 'to ind anb projectio outre lit hes com of the ' Writh'to force wh in the co $W^{W}{ }^{3} \mathrm{~h}$ merely ratity proportio turth's alliptical
Let jectile countert powers the tart forrié' puadier 4 s thandes What tpproac wiedrer ivito it; increase towards Hesing sor. proaché tion of Uthactio Afth projoctiv Whathe
dies, but selow o us, the earth, dea of the part m, we shall bo grandeur and ppose the eaith forwards. if no obstache rminably in the

on would brig oning upon the Iy conclude thit D of the parich o forces will da Hy acting upon essant deviation hus converts it
he point D, and combined action It still retaim ; but a straight t the sun would order to knoot , another pant manner as the of projection it will be fout

Giat the earth will prodeed in the surve hite D o piven futhe paralle bgram vi dr; Madifio go dn thtough oit thie whole of"the circle, aftwing" line from the Whth to the sun, to repreteit the fore of attinction, ind another at a right mole to it, to desoribe that of projection, we shall trid that the earth will proced in' a Cutve line pasisidg chrough stmilar paralfelograms tin it has completed "the whole be the cifcle. The extraction of "the "bun "is "the centripetal "Porte, which courines" the Weth to a centre; and the impuse of projection, or the force which impels the eafth co quit the sun dad fy ory, is the coutrifygal forco.
We have descrided the earth as moying in a birclo, merely to tenter the explayition more enmple, or in reatity the centripetal and centrifugal forces aro not so proportiotied as to produce circullar motion; and the tarth s orbit or path tound ctie pun is not"circulat, but alliptical or otal.
Let us suppose that when the earth is at A, its projectite force does rot give it a velocity sufficient to counterbalanee that of gravity, "so as to enable these powers conjoindy to carry it rown the oun in e circle; the tarth instead of describing the tine A fortér figare, will approach pratier the sun in the rine $A^{\prime} \mathrm{B}$. tnder these circumtuances it winl be adsked, that is "to prevent cur ppproaching onearer afid fiedrer the "san Ttill we fall into it; for its atitaetion increases as we advaviee torards it. There tialso fiecill to be ariotler canger. As lthe rearth ap.

 uthation, but timelines hiore nearly to it. When the

 towarde thin contro of destruotion, it would imposesible for us to escape. But with God nothing impossible. The earth continues approaching tho in with an aocelerated motion till it reaches the point : When the projectile force impels it in the direction I) Hero then the two forces act perpendicularly to an other, and the earth is situated as in the prooction figure, yet it will not revolve round the sun in a wirn for the following reasons. The centrifugal forow creases with the velocity of the body; or, in ote words, the quicker it moves the stronger is its tendeng to fly off in' 2 right line. When the earth arrives $2 t 1$ its acceleratod motion will have so far incressed velocity and consequently its centrifugal force, that 14 latter will prevail over the force of attraction, and dn^{2} th.e earth away from the sun till it reaches G. It is the that we escape from the dangerous vicinity of the mut and as we recede from it, both the force of its atthm tion, and the velocity of the earth's motion diminid From a, the direction of projection is tovards B , the of attraction towards s , and the earth proceeds betimem them with 2 retarded motion, till it has completed it revolution. Thus the earth tranole round the sun, min^{2} in a circle, but an ellipsis, of which the sun ocoupit one of the foci; and in its course the earth alternuthe approaches and recedes from it, so that what at int appeared a dangerous irregularity, is the means by which the most perfect order and harmony are produal The earth, then, travels on at a very unequal rato, it velocity being accelerated as it approaches the sun, wl retarded as it recedes from it.

That part of the earth's orbit nearest the sun is cllis its perihecion, that part most distant from the sunit aphelion. The earth is about three millionis of mil nearer the sun at its perihelion than at its apholian Some are surprisod to learn that during the height d our summor, the earth is in that part of itw orbit whit is most distant from the sun, and that it is during everity of wintar that wo are neareet to it. diferecing howeras, of tho curth'a distance from
n by the otb it would God nothing roching the if es the point 1 ed direction $\overline{1} 1$ icularly to ad the precolih o sun in a cinn ifugal foroo ; or, in oth r is its tendeme th arrives at i ar increased force, that the action, and dre es a. It is the aity of the mus ce of its atthem sotion dimininh to wards E, the roceeds betrom completed it nd the sun, wid he sun occupin arth alteratich at what at the means if ay are produal unequal rato, ict es the sun, α
the sun is callid rom the sun silliong of mil at its aphelia g the heighte its orbit nlin it is during it to it It inemer from
\rightarrow in nummer and winter, whon compared with ity m diatance from the sun, is but inconsiderable, for Itw suillions of miles sink into insignificance in comtion of 95 millions of miles, which is our mean thace from the aun. The change of temperature, iving from this difference, would in itself soarcely be cuible, and it is completely overpowered by other whe which produce the variations of the seasons; $\$$ the explanation of these must be deferred, till wo vo made some further observations on the heavenly dies.

PLANETS.

The planets are celestial bodies which revolve round so sun, on the same principle as the earth. They odivided into primary and secondary. Those, which rolve immediately round the sun, are called primary. hay of these are attended in their course by smaller naets, which revolve round them: these are called condary planets, satellites, or moons; such is our con, which accompanies the earth, and is carried with roand the sun. The sun is the gencral centre of thotion to our aystom of planets; but the eatailitem filvo cound the primay planeti, on mcopuint of theis
greatef, proximity The force of aftrangion is, not only proporifional to the quantity of matter but to the degree of prozimity of the attraeting bady. The power of attraction diminishes sas, the squares of the distance increase; so that a planett situpted at trion the distance at which, me are from the sun, would graviatate four times lese than icc do. The more distant planets, therefore, move alower in their orbits, fpr their projectile force must be proportioned to that of attraction. This, diminution of, attragtion, by the increase of distance, also accounts for the motion of the secondary round the primary planets, in preference to the sun; for the vicinity of the primary planeth renders their attraction stronger than that of the son. But since attraction between bodies is mutual, the primary planets are also attrected by their satelliten. The moon attracts the earth, as well as the earth the moon; but as the latter is the smaller body, her attraction is proportionally less. The result is, that neither does the earth revolve raund the moon, nor the moon round the earth; but they both revolvo round a point, which /s thbir cominon centre of gravity and which is is much/ nearer the eatch's centre of gravity than that of the moon, as the weight of the former exceeds that of the latter.
The earth then lies three different motions; it in volves round the sun, -it revolves upon its axis, -and it revolves round the point towards which the moon attracts it; and this "s the case with every planet which is attended by satellites. The planets act on the gur in the same manner as they are themgelven acted on by thair satellites; but the gravity of the planet (even when talen collectively) is, so trifing isi compurd with that of the sun that they, do not cause it to mone so much as one-half of its dameter. The plapeth therefore, do not revolve round the, centre of the sim but round a point at a small distanes from its centry about whioh the man ale revolveg The sun likeme revolve on its anis. This motion is apertaiped h

Mercury is the planet nearest the sun; his orbit in consequeptly contained within ourd; but his vicinity to : the sun occasions his being nearly lost in the brilliatioy of his rays; and when wo do see this planet; the sun ins w dazzling, that very accurate observation cannot bec made upon him: He performis his revolution round tha sun in about eighty seven days, which is conse quently the length of his year; the time of his rotation on his axis is not accurately known; his distance from the sun is computed to be 37 millions of miles, and his diameter 3,224 miles.
Venus, the next in the order of the planets, is 68 millions of miles from the sun; she revolves about her xis in 23 hours and 21 minutes, and goes round the rap in 224 days 17 hours. The diameter of Venus is 1,687 miles. The orbit of Venus is within ours; luring nearly one-half of her course we see her before un-rise, when she is called the morning star; in the orresponding part of her orbit, on the other side, she ises later than the sun. We capnot then see her: ising, as she rises in the day time; but she also sets ater; so that we perceive her approaching the horizon fter sun-set; she is then called, Heesperus, or the rening star.
The Eurth is next to Venus. At present we shall aly observe that we are 95 millions of miles distant rom the sun-that we perform our annual revolution in 65 days 5 hours and 40 minutes,-and are attended our course by a single moon.
Mafe, comet, nezt. He can never be betireen ti: nd the nun, like Morcury and Venus. His diatanon
from the sun is 144 millions of miles, he turas on his axis in 24 hours and 89 minutes; and he performs hit annual rovolution in about 687 of our daya: bin diameter is 4,189 miles. Then follow four very small planets-Juno, Ceres, Pallas and Vesta, whioh havo been recently disoovered, but whose dimensions and distances from the sun have not been very accurately atoertained.

Jupiter is next in order. This is the largest of all the planets; the is about 490 millions of miles distant from the sun, and completes his annual period in nearly twelve of our yearis, he revolves on his axis in about ten hours ; he is about 1,400 times as large as our oarth, his diameter being 89,170 miles. He is attended by four moons.

Saturn oomes next, whose distance from the sun is about 900 millions of miles. His diurnal rotation io per. formed in ten hours and a quarter; his annual revolution is nearly thirty of our years ; his diameter is 79,000 miles. This planet is surrounded by a luminous ring, the nature of which astronomers are much at a lose in conjecture ; he has seven moons.

Georgium Sidus, or Uranus, or Herrechel (for all these names have been given to this planet) is the lest It was disoovered by Dr. Hersohel in 1791. It is attended by six moons. It is the most distant planet from the sun that has yot been disoovered; being ata distance of no less than 1800 millions of miles from that luminary. Its diameter is about 35,000 milen. It takes about 83 years and a half to complete ith revolution round the sun.
Comets are supposed to be planets. The reappeas. anoe of some of them at stated dimes proyes that they revolve round the sun; but in orbits ero arasaric, and running to such a distance from the sua, inat they disappear for a great number of years. . They aro distinguishod from the other celestial bodies, by their xuddy appearance, and by a long train of light called the 1.2% The length of these tails is often many miluc: of miles. Some somete have beon aesertaind to ruvo in long parsow ollipece or ovala, sound the
nan, fro
that th have oc ystem, en, is coloulat

The formed namees. heavens of a hi might b appear constella which revolutic They oc heavens. and pass constella stellatior sirele in passes t] Ediptio.
We b the fixe in the situated through Zodiac. and bril grees of astronom them as not vary them.
turas on his performs his daym: bin r very amall which have ensions and I accurately
argest of all niles distant od in nearly xis in about arge as our is attended
the sun is atibn is per. al revolution or is 79,000 ninous ring at a lows io
hel (for all) is the last 791. It is stant planet ; being ata miles from ,000 miles. omplete its

10 reappear. g that thej anic, and , that thej They aro es, by their light called often many aweertaind sound th.
nua, from which it has been inferred, perhaps hastily, that they all do so. . The number of comets which have occasionally been seen within the limits of our syatem, since the commencement of the Chrintian ens, is about 500, of which the paths of 98 have been calculated.

FIXED STARS.

The ancients, in order to recognize the fixed stars, fermed them into groups, to which they gave particular names. In order to show their proper situations in the heavens, they should be painted on the internal surface of a hollow sphere, from the centre of which they might be viewed. We should then see them as they appear to be situated in the heavens. The twelve constellations, called the Signs of the Zodiac, are those which are so situated, that the carth, in its annual revolution, passes directly between them and the sun. They occupy a complete circle, or broad belt, in the heavens. Hence, a right line, drawn from the earth, and passing through the sun, would reach one of these constellations; and the sun is said to be in that constellation in which such a line would terminate. The sircle in which the sun appears to move, and which passes through the middle of the Zodiac, is called the Eoliptic.

We have no means of ascertaining the distance of the fixed stars. When therefore they are said to be in the Zodiac, it is merely implied that they are situated in that direction, and that they shine upon us through that portion of the heavens which we call the Zodiac. Whether the apparent difference of the gives and brilliancy of the stars proceeds from various dogrees of remoteness or of dimension, is a point which astronomers ure not able to ascertain. Considering them as suns, we know no reason. Why they should not vary in ceize, as Fell as the plazets belouging to them.

U J. ı.

It may, perhaps, ie objeoted to this ayatem of the universe, that it is directly in opposition to the evidence of our senses, to which, it is plain and obviqus, that the earth is motionless, and that the sun and stars revolve round it. But our senses sometimes deceive us. When sailing on the water with a very steady breeze, the houses, trees, and every object appoar to move, whilst we are insensible of the motion of the vessel in which we sail. It is only when some obstrcle impedes our motion, that we are conscious of moving; and were you to close your eyes while suling on calm water, with a steady wind, you would not bo sensible of your motion; for you could not feel 15 , and you could see it only by observing the change ot place of objects on shore. So it is with the motion of the earth : every thing on its surface, and the air that surrounds it, accompanies it in its revolution-it meets with no resistance, therefore, we are insensible of motion. The apparent motion of the sun and stars affords us the same proof of the earth's motion, that the crew of 0 vessel have of their motion, from the apparent motion of the objects on shore. Imagine the earth to bs sailing round its axis, and successively passing by every star, which, like objects on land, we suppose to be moving, instead of ourselves. Persons who havo ascended in balloons, tell us that the earth appears to sink beneath the balloon, instead of the balloon rising above the earth. What an immense circuit the sun and stars would make daily, were their apparent raotions real! Why should these enormous globes traverse such an immensity of space, merely to prevent the necessity of our earth revolving on its axis? The motion produced by the revolution of the earth on its axis is about thirteen miles and a half in a minute to an inhabitant of London. A person at the equator moves much quicker, and one situated near the poles much slower, since they each perforto a revolution in twenty-four hours. But in performing its revolution sound the sun, every part of the earth move; with an equal velocity; and this velocity is no less than : thousand miles a minute. -

1665

conts
he 0
led
of w
first
the
how
befor
its te
or te
here
possi
tend
mann
that
balan
her
the 0
towa
gravi
that
moul
mark
and
mind
with
witho
yatem of the ition to the is plain and that the sun ses sometimes with a very every object of the motion y when sqme conscious of while suding would not bo theel 15 , and ange ot place motion of the the air that ion-it meets ole of motion. urs affords as the crew of arent motios earth to be
passing by e suppose tu as who have th appears to balloon rising cuit the sun eir apparent rmous globes ely to prevent s axis? The earth on its a minute to the equator ear the poles revolution in its : revolution ove: with an less than :

In angept times, the earth was supposed to oocupt the centre of the universe; and the sun, moon, ara stars to revolve round it. This was the system of Ptolemy; but since the beginning of the sisteenth century, that system has been discarded, and the solar system, such as we have described, was established by the celebrated Astronomer Copernicus, and his followers, and is thence called the Copernican system. But the theory of gravitation, the discovery of the source whence this beautiful and harmonious arrangement flows, we owe to the genius of Newton, who lived at a much later period.
During the prevalence of the plague, in the year 1665, Newton retired into the country to aroid the contagion. When sitting one day in his orchard, he observed an apple fall from a tree, which it is said led to that train of thought, whence his grand theory of universal gravitation was ultimately developed. His first reflection was, whether the apple would fall to the earth if removed to a great distance from it; then how far it would require to be removed from the earth, before it wculd cease to be attracted; would it retain its tendency to fall at the distarice of a thousand miles, or tep thopsand, or at the distance of the moon-and here the ides occurred to him, that it was not impossible that the moon herself might have a similar tendenoy, and gravitate to the earth in the same manner as the bodies on or near its surface, and that this gravity might possibly be the power which balanced the centrifugal force implied in her motion in her orbit. It was then natural to extend this idea to the other planets, and he considered them as gravitating towards the sun, in the same manner as the moon gravitates towards the earth. Who would imagine that the simple circumstance of the fall of an apple would have led to such magnificent results? It is the. mark of superior genius to find matter for observation and research in circumstances which, to ordinery minds, appear trivial, because they are common; and With which they pre satisfied, because they are natural, withont refroting that vature is opr grand fiate of
olveryation-that within it in containod our whole thate of knowledge: in a word, that to study the worke natare, is to learn to appreciate and admiro the wisdom of God.
our whole the work admire the
G ave most the effects ns; but for ake yon aoobe. This

nuctial line; ie equator is south of the small circle ed the arctic the antarctio len, between ho north, IK, Q mouth HM
oulled the tropic of Capricorn. Lastly, the cirolo the, which divides the globe into two equal parts, crossing the equator, and extending northmard is fir as tho tropio of Cancer, and southwards, as far as the tropic of Capricorn, is called the Feliptic. The delineation of the ediptic on the terrestrial globe may convey false ideas; for the ecliptic is an imaginary circle in the heavens, passing through the middle of the Zodiac, and situated in the plane of the eartb's orbit. In order to understand the meaning of the earth's orbit, let us suppose a smooth, thin, solid plane cutting the sun through the centre, extending out as far as the fixed: stars, and terminating in a circle which passes through the middle of the zodiac. In this plane the earth moves in its revolution round the sun; it is therefore called the plane of the earth's orbit ; and the cirole in whioh this plane cuts the signs of the zodiao is the ecliptic.
The spaces between the several parallel circles on the terrestrial globe are called zones; that which is comprehended between the tropics is distinguished by the name of the torrid zone; the spaces, which extend from the tropics to the polar eircles, the north and south temperate zones; and the spaces, contained within the polar circles, the frigid zones.
The several lines which are drawn from one pole to the other, cutting the equator at right angles, are called meridians. When any one of these meridians is exactly opposite the sun, it is mid-day, with all places situated on that meridian ; and with the places situated on the opposite meridian, it is conscquently midaight. To places situated equally distant from these two meridians, it is six o' clock. If they are to the east of the sun's meridian, it is six o'clock in the afternoon, because the sun will have previously passed over them; if to the west, it is six 0° clock in the morning, and the sun will be proceeding towards that meridian.
Those circles which divide the globe into two oqual
 reat circles-to dirtingaish them from thooe which divido it into two unequal parta, as the tropic and polír

802

gitcles, which aro colled small oirole. An oircles aro divided into 360 equal parts, callod degrees ; and these degrees into 60 equal parts, called minutes. The diameter of a cirole is a right line drawn across it, and passing through the centre; the diameter is equal to a little less than one-third of the circumferenoe, and consequently contains a length equal to nearly 120 degrees. A meridian, reaching from one pole to the other, is half a circle; and therefore contains 180 degrees; and the distance from the equator to the pole is half of a meridian, or a quarter of the circumference of a cirole, and contains 90 degrees.

Besides the usual division of circles into degrees, the ecliptic is divided into twelve equal parts, called signs, which bear the names of the constellation through which this circle passes in the heivens. The degrees, measured on the meridians from iorth to south, or from south to north, are called degrees of latitude; those measured from east to west on the equator, or any of the lesser circles parallel to it, are called degrees of longitude. These lesser circles are called parallels of latitude; because being everywhere at the same distance from the equator, the latitude of every point contained in any one of them is the same.

The degrees of longitude must necessarily vary in length according to the dimensions of the circle on which they are reckoned: those, for instance, at the pelar circle, will be considerably smaller than those at the equator. The degrees of latitude, on the contrary, never vary in length; the meridians, on which they are reckoned, being all of the same dimensions. The length of a degree of latitude is 60 geographical miles, which is equal to $69 \frac{1}{2}$ English statute miles. The degrees of longitude at the equator would be of the same dimensions as the degrees of latitude, were the garth a perfect sphere; but its form is not exactly spherical; being somewhat protuberant about the equator, and flattened towards the poles. This form moneede from the enperior eotion of the centrifugl power at the equmbor The motolution of the arth of

the
prop
movi
rircl
parti
mucl
faste
the
decre
poles
cease
dang
of g
centr
Bo
Ther gravi from incre drive the p
oircle ato and these Che diamohd passing to a little and conse0 degrees. other, is grees; and half of a f a circle,

- degrees, arts, called nstellations. rens, The iorth to degrees of 3st on the to it , are circles are overywhere latitude of he same. ily vary in circle on nce, at the an those at e contrary, which they sions. The hical miles, iles. The be of the e, were the not exactly about the This form centrifugel be erth on ay of firm
the centre. This tendency is stronger or weaker, in proportion to the velocity with which the particle moves. Now, a particle situated near one of the polar sircles makes a rotation in the same space of time as a particle of the equator; the latter, therefore, having 2 much larger circle to describe, travels proportionably faster, so that the centrifugal force is much stronger at the equator than at the polar circle: it gradually decreases as we leave the equator and approach the poles, where, as there is no rotatory motion, it entirely ceases. Eiven at the Equator, however, there is no danger of our being thrown from the earth, the force of gravity being there 288 times greater than the centrifugal force.
Bodies weigh less at the equator than at the poles. There are two causes for this, -the diminution of gravity at the equator, it being at a greater distance from the earth's centre than the poles,-and the increase of the ceutrifugal force; whioh, as it tends to drive bodies from the centre, must necessarily decrease the power of gravity.

THE SEASONS.

We shall now explain the variation of the seasons, and the difference of the length of the days and nights in those seasons-both effects resulting from the same cause. In moving round the sun, the axis of the earth is not perpendicular to the plane of its orbit; in other words, its axis does not move round the sun in an upright position, but slanting or oblique. This you will understand more clearly, if you carry a small globe round a candle which is to represent the sun. You must consider the ecliptio drawn on the small globe as representing the plane of the earth's orbit; and the equator, which crosses the ecliptic in two place, thows the degree of obliquity of the axis of the Mrth in that orbit, Which in nearly 28\% degrepar The
points in whioh the ecliptic intersects the equator are called nodes. The globe at A is situated as it is in

t) : midst of summer, or what is called the summer snlstice, which is on the twenry-first of June. The north pole is then inclined towards the sun, and the northern hemisphere enjoys much more of his rays than the southern. The sun now shines over the whole of the north frigid zone, and notwithstanding the earth's diurnal revolution, it will continue to shine upon it as long as it remains in this situation, whilst the south frigid zone is at the same time completely in obscurity.

Let the earth now set off from its position in the summer oulstice, and carry it round the sun : observe, that the asis must be always inclined in the same direction, and the north pole point to the same spot in the heavens. There is a fixed star situated near that spot, which is hence called the North Polar star. The earth at b has gone through one quarter of its orbit, and is arvived at that point at which the ecliptic cuts or crosses the equator, and which is called the autumnal equinox. The sun now shines from one pole to the ouber. At this period of the year, the days and nights are equal in every part of the earth; but the next step she cakes in her orbit involves the porth pole in total darkness, whilst it illumines that of the wouth. This change was gradually preparing an the as it is in
the summer June. The un, and the of his rays er the whole tanding the ue to shine ration, whilst completely in sition in the un : observe, in the same same spot in ed near that ur star. The : of its orbit, ecliptic cuts called the rom one pole tar, the days e earth; but res the porth that of the aring as the
carth moved from summer to autumn. The instant the oarth passes the autumnal equinox, the long night of the north pole commences, and the south pole begins to enjoy the light of the sun. As the earth proceeds in her orbit, the days shorten and the nights lengthen throughout the northern hemisphere, until it arrives at the winter solstice, on the 21st of December, when the north frigid zone is entirely in darkness, and the southern enjoys uninterrupted day-light. Exactly half of the equator, it will be observed, is enlightened in every position, and consequently the day is there always equal to the night.
Observe, that the inhabitants of the torrid zone have much more heat than we have, as the sun's rays fall perpendicularly on them, while they shine obliquely on the temperate, and almost horizontally on the frigid zone; for during their long day, the sun moves round at no great elevation above their horizon, without either rising or setting.
To a person placed in the temperate zone, the sun's rays will shine neither so obliquely as at the poles, nor so vertically as at the equator; but will fall upon him more obliquely in autumn and in winter than in summer. Therefore, the inhabitants of the earth between the polar circles and the equator will not have merely one day and one night in the year, as happens at the pole; nor will they have equal days and equal nights, as at the equator, but their days and nights will vary in length at different times of the year, according as their respective poles incline towards or from the sun, and the difference will be greater in proportion to their distance from the equator.-During the other half of her orbit, the same effect takes place in the Southern hemisphere, as what we have just remarked in the Northern. When the earth arrives at the vernal equinox, D, where the ecliptic again cuts the equator, on the 22 d of March, she is situated with respect to the sun, exactly in the same position as in the autumnal aquinoz; erocptiag that it is now autumn in the

Southern hemisphere, while it is spring time with ur: for the half of the globe, which is enlightened, extende exactly from one pole to the other. On the two dayr of the equinox the sun is visible at both poles; bat only half of it is seen from either, the other half being soncealed by the horizon.

ON THE MOON AND ECLIPSES.

Let us now turn our attention to the moon. This satellite revolves round the earth in the space of twenty. seven days eight hours, in an orbit nearly coinciding with the plane of the earth's orbit, and accompanies yi in our revolution round the sun. Her motion, there fore, is of a complicated nature; for, as the earth advances in her orbit, whilst the moon goes round her, the moon proceeds in a sort of progressive circle.

The moon always presents the same face to us, by which it is evident that she turns but once upon hy axis, while she performs a revolution round the earth; so that the inhabitants of the moon have but one day and one night in the course of a lunar month. Since wa always see the same hemisphere of the moon, tho inhabitants of that hemisphere alone can see the carth. One half of the moon, therefore, enjoys our light every night, while the other half has constantly nights of darkness; and we appear to the inhabitants of the moon under all the changes, or phases, which the moon exhibits to us.

When the moon is in the same direction from us as the sun, we cannot see her, as her dark side is towards us; but her disappearance is of very short duration, and as she advances in her orbit we perceive her under the form of a new moon. When she has gone through one-sixth of her orbit, one quarter of her enlightened hemisphere will be turned towards the earth, and the

जill th one qua onlighte that ful ugain g graduall and diss new mo
Wher to the s At each earth ar the eart woond, An ecli and ear the moc intercep on the tintes the con moon, it 1 shador riew, an Why, lunar ec the orbi wincide, moon ge When sh the son; or produ then thi parts of nodes of ve both man. A prasing hidow.
will then appoar horned. When she has, performed one quarter of her orbit, she show us one half of her enlightened sida She nezt appears gibbous; and athor thet full, As ahe proceeds in her orbit she becomes ugin gibbous, and her enlightened hemisphere turas gradually away from us, till she completes her orbit and disappears ; and then again resumes her form of a nem moon.

When the moon is full, she is always in opposition to the sun-when a new moon, in conjunction with it. At each of these times, the sun, the moon, and the earth are in the same right line; but in the first case, the earth is between the sun and the moon: in the moond, the moon is betweon the man and thie caithi An eclipue can only take place when the sun, moon, and earth are in a straight line, or nearly so. When the moon passes between the sun and the earth, she intercepts his rays, or in other words, casts a shadow on the earth : this is an eclipse of the sun, and it contintes whilst the shadow is, passing over us. When, on the contrary, the earth is between the sun and the mopn, it is we, who intorcept the sun's rays, aad cast a shadow on the moon : she then disappears from our rien, and is eclipsed.
Why, it may be asked, have we not a solar and a lnar eclipse every month? Because the planes of the orbits of the earth and moon do not exactly coincide, bat cross or intersect each other; and tine moon generally passes either on one side or the other, Then she is in conjunction with, or in opposition to, the sun ; and therefore does not intercept the sun's rays, or produce on edipse: for this can only take place, When the earth and moon are in conjunction near those parts of their orbits which cross each other (called the nodes of their orbits), because it is then only that they are both in the same plane, and in a right line wich the ou. A partial eclipse takes place when the muon, in pasing by the earth, does not entirely escape her hadow. Whon the eclipse happens precisely at the
nodes, they are not only total, but last for tome length of time.
When the sun is eclipsod, the total darkness is conaned to one partioular spot of the oarth, as the moon's

shadow is not large enough to cover the earth. The Junar eclipses, on the contrary, are visible from every

part of the earth, where the moon is above the horison.

THE TIDES.

The tides are produced by the attraction of the moon The cohesion of fluids being much less than that of solid bodies, they more easily yield to the power of gravity, in consequence of which, the waters immediately below the moon are drawn up in a protuberance, producing a full tide, or what is commonly called highwater, at the spot where it happens. According to this theory, you would imagine we should have full tide only once in twenty-four hours-that is, every time that we are below the moon-while we find that wo have two tides in the course of twenty-four houng and that it is high-mator with wa and with our antipod at the mame time.

some length

luess is conis the moon's

earth. The le from every

is above the of the moon than that of the power of waters imme protuberance, ly called high. cording to this have full tide is, every time we find tha ity-four hours, ove antipodu
ahis opposite tide is rathor more diffioult to explain an that whioh is drawn up beneath the moon. In onber to render the oxplanation more simple, let us suppore the earth to be everywhore covered by the ocean. x is the moon, $\boldsymbol{A B O D}$, the earth. Now, the waters on the surface of the , earth about 4, being more atrongly attracted than in any other part, will be elovated, the attraction of the moon at \mathbf{B} and 0 , being less ; but still it will be greater there than at D , which is the part most distant from the moon. The body of the earth will therefore be drawn away from the waters at D, leaving a protaberanof similar to that at $\mathbf{\Delta}$; so that the tide \mathbf{A} is produced by the waters receding from the earth, and the tide D by the earth receding from the watern.
The influence of the sun on the tides is less than that of the moon; for observe, that the tides rise in consequence of the moon attracting one part of the waters more forsibly than another part; it is this inequality of attraction which , produces full and ebb tides. Now the distance of the sun is so great, that the whole globe of the earth is comparatively but as a point, and the difference of its attraction for that part of the waters most ander its influence, and that part least subjeot to it is bat trifing; and no part of the waters will be much elevated above, or much depressed below their general surface by its action. The sun has, however, a considerable effect on the tides, and increases or diminishes them as it acts in conjunction with, or in opposition to, the moon.
The moon is a month in going round the earth; twice during that time, therefore, at full and at change, she is in the same direction as the sun. Both then act conjointly on the earth, and produce very great uides, called spring-tides, as represented at A and B;
bet whop tho peon is at the intprmediato part of he

orbit，the sun，instead of affording assistance，weakens her povier by aoting in opposition to it；and amaller tides are produced，called neap－tides．

Since attraction is mutual between the moon and the earth，we produce tides in the moon；and these an more considerable，in proportion as our planet is larger． Neither the moon nor the earth in reality assume 4 oval form，for the land which intersects the water dee troys the regularity of the effect．The orbit of the moon being nearly parallel to that of the earth，she in never vertical but to the inhabitants of the torrid zone； in that climate，therefore，the tides are greatest，and they diminish as you reoede from it and epprosoh tho poles；but in no part of the globe is the moon immedi－ ately above the spot where it is hich tide．All mattey by its inertin，offirs same resistance to o change d otate；the waters，theratore，do not readily yield to th销 is not complete until bome time after isho has peed the moridian．

in mart of how

tance, weakens t; and smaller

o moon and the and these un planet is larger. lity ragumes a s the water des co orbit of the ie earth, she is the torrid rone; - greatest, and d approach the moon immedi. 1e. All mathe to o change d ily yield to to of her infinmm the has pesm

The earth revolves on its axis in about twenty-four hours: if the moon were stationary, therefore, the camo part of our globe would, every twenty-four hours, return beneath the moon; but as during our daily revolution the moon advances in her orbit, the earth must make more than a complete rotation in order to bring the came meridian opposite the moon: we are about three-quarters of an hour in overtaking her. The tides, therefore, are retarded, for the same reason that the moon rises later, by three-quarters of an hour every day. This, however, is only the average amount of the retardation. The time of the highest tide is modified by the sun's attraction, and is between those of the tides which rould be produced by the separate action of the two laminaries. The action of the sun, therefore, makes the interval different on different days, but leaves the average amount unaffeoted.

ON THE MECHANICAL PROPERTIES OF RLULDS.

The science of the mechanical propertios of fluids is called Hydrostatics. A fluid is a substance which yields to the slightest pressure.
Fluids are divided intn two classes, distinguished by the names of liquids, and elastic flaids or gases, which latter comprehends the air of the atmosphere, and all the various kinds of air with which chemistry makes us eqquainted. We shall confine our attention at present to the mechanical properties of liquids or non-elastio fuids.
Water, and liquids in general, are little susceptiblo of being compressed, or squeezed into a smaller space than that which they naturally oocupy. This is due to the mutual repulsions of their partiales, which, nither than submit to compression, force their way throngh the pores of the Bithtē̃ we wiok Goüutue them, as was shown by a celebrated experiment, made
at Florence many years ago. A hollow globe of gold was filled with water, and on its being submitted to great pressure, the water was seen to exude through the pores of the gold, which it covered with a fine dew. But more recent experiments, in which water has been confined in strong iron tubes, \&c., prove that it is susceptible of compression.

Liquids have spaces between the particles, like solid bodies, but they are too minute to be discovered by the most powerful microscope. .The existence of spaces in liquids can be ascertained by dissolving solid bodiesin them, If we melt some salt in a glass full of water, the water will not overfiow, and the reason probably is, that the particles of salt will lodge themselves between the particles of the licuid, so that the salt and water together will not occupy more space than the water did alone. If we attempt to melt more salt than can find room within these pores, the remainder will subside to the bottom, and, occupying the space which the water filled before, oblige the water to overflow. A certain proportion of spirit of wine may also be poured into water without adding to the bulk, as the spirit will introduce itself between the particles of water.

Fluids show the effects of gravitation in a more perfect manner than solid bodies; the strong cohesive attraction of the particles of the latter in some measure connteracting the effect of gravity. In a table, for instance, the strong cohesion of the particles of wood enables the four slender legs to support a considerable weight Were the cohesion so far destroyed as to convert the wood into fluid, no support could be afforded by the legs; for the particles no longer cohering together, each would press separately and independently, and would be brought to a level with the surface of the earth.

This deficiency of cohesion is the reason why fuids can never be formed into figures, or maintained in heaps; for though it is true the wind raises water into waves, they are immediately afterwards destroyed by gravity. Thus liquids always find their level. The definition of the equilibrium of a fluid is, that every part of the sur:
face
tends
Henc
rical
dent
spher rende Th partic when elevat of the fluids partic fluid fluids surfac rise to up by here

consist and co is not end, w end, al does \mathbf{n} the lev ment, Solis cohesio while
separat resistar solid b penden not oul "ayy
globe of gold submitted to exude through d with a fint which water bce., prove that cles, like solid sovered by the e of spaces in bodiesinthem the water will at the particles particles of the ether will yot alone. If we room within to the bottom, r filled before, proportion of water without troduce itself
a more perfect esive attraction measure coun. e, for instance, wood enables lerable weight to convert the fforded by the together, each and would be earth.
son why fuids cined in heaps; ter into waves, ed by gravity. he definition of part of the su:
face is equally distant from the point to which gravity tends; that is to say, from the centre of the earth. Hence the surface of all fluids must partake of the spherical form of the globe, and bulge outwards. This is evident in large bodies of water, such as the ocean; but the ${ }_{3}$ sphericity of small bodies of water is so trifling as to render their surfaces apparently flat.

The equilibrium of fluids is the natural result of their particles gravitating independently of each other; for when any particle of a fluid accidentally finds itself elevated above the rest, it is attracted down to the level of the surface of the fluid, and the readiness with which fluids yield to the "slightest pressure, will enable the particle by its weight to penetrate the surface of the fluid and mix with it. But this is the case only with fluids of equal density, for a light fluid will float on the surface of a heavy one, as oil on water; and air will rise to the surface of any liquid whatever, being forced up by the superior gravity of the liquid. The figure here represents an instrument called a level, which $A \longrightarrow$ is constructed upon the principle of the equilibrium of fluids. It consists of a short tube, $\Delta \mathbf{B}$, closed at both ends, and containing a fluid and a bubble of air; when the tube is not perfectly horizontal the fluid runs to the lower end, which makes the bubble of air rise to the upper end, and it remains in the centre only when the tube does not incline on either side. It is by this means that the level of any situation, to which we apply the instrument, is ascertained.
Solid bodies, therefore; gravitate in masses, the strong: cohesion of their particles making them weigh altogether, while every particle of a fluid may be considered as a separate mass, gravitating independently. Hence the resistance of a fluid is considerably less than that of a solid body. The particles of fluids acting thus independently, press against each other in every direction, not ouly downwards but upwards, and laterally or sideFage; and in contioquence of this equality of pressure,
every particle remains at rest in the fluid. If you agitate the fluid, you disturb this equality, and the fluid will not rest till its equilibrium be restored.

Were there no lateral pressure, water would not flow from an opening on the side of a vessel; sand will not run out of such an opening, because there is scarcely any lateral pressure among the particles. Were the
 particles of fluids arranged in regular columns, there would be nolateral pressure, for when one particle is perpendicularly above the other, it can only press it downwards; but as it must continually happen that a particle passes between two particles bencath, these last suffer a lateral pressure; just as a wedge driven into a piece of wood separates 0 O the parts laterally. The lateral pressure is the result, therefore, of the pressure downwards, or the weight of the liquid above; aud consequently the lower the orifice is made in the vessel, the greater will be the velocity of the water rushing out of it. The annezed figure represents the different degrees of velocity with which a liquid flows from a ressel furnished with three stopcocks at different heights. Since the lateral pressure is entirely owing to the pressure downwards, it is not affected by the horizontal dimensions of the vessel, which contains the liquid, but merely by its depth; for as every particle acts independently of the rest, it is only the column of particles immediately above the orifice that can weigh upon and press out the liquid:

The pressure of fluids upwards, though it seems in direct opposition to gravity, is also a consequence of their pressure downwards. When, for example, water is poured into a tea-pot, the water rises in the spout to: a level with that in the pot. The particles of water at the bottom of the pot are pressed upon by the particley ehtre them; to thie proweug thet will field if thentif
uid. If you and the fluid ould not flow sand will not e is scarcely Were the alar columns, for when one the other, it t as it must between two ral pressure; ood separates ressure is the iwards, or the itly the lower. eater will be of it. The epresents the of velocity id flows from d with three rent heights. pressure is the pressure orizontal di. le liquid, but le acts inde. n of particles igh upon and.

1 it seems in nsequence of xample, water a the spout to es of water at the particler Id, if there iv
tuy arode of making way for the superior partioles, and * they cunaot descend, they will change their direction, and rise in the spout.
Suppose the tea-pot to be filled with columns of particles of water similar to those described in the figure annezed, the particle 1 at ${ }^{2}$ the bottom will bei pressed laterally by the particle 2 , and by this pressure be forced into the spout, where; meeting with
 the particle 3; it presses it upwards, and this pressure will be continued from 3 to 4 , from 4 to 5 , and so on, till the water in the spout has risen to a level with that in the pot.

SPECHIC GRAVITY.

The specific gravity of a body means simply its weight compared with that of another body of the same size. When we say that substances, such as lead and stohes, are heavy, and that others, such as paper and feithers, are light, we "speak comparatively; that is to uy, that the first are heavy, and the latier light, in comparison with the generulity of the substances in nature. Mahogany is a heaivy body when compared to many other kinds of wood, but light when compared to stone. Ohalk is a hetry body compared to coal, but light if compared to metal. Thus our notions of light and heavy are vagtie and undefined, and some standard of comparison is 'required, to which the weight of all other bodies: may be referred.: The body which has been adopted as a standard of : reference is distilled rater. When the specific gravity of bodies is to be eximated, it is necessary simply to weigh the body under trial in water. If a piece of gold be weighed in a glase of watet, the gold will displace just as much Whee iag is equal to its own bulk; a cubie inch of

nothing to do with the quantity of water displaded; for, a cubic inch of gold does not occupy more space, and therefore will not displace more water, than a cubic inch of ivory; or any other substance that will sink in water.

The gold will weigh less in water than it did out of it, on account of the upward pressure of the particles of water, which in some measure supports the gold, and, by so doing, diminishes its weight.. If the body under trial be of the same weight as the water in which it is immersed, it will be wholly supported by it; if it be heavier, the water will offer some resistance to its descent; and this resistance will in all cases be the same to bodies of equal bulk, whatever be their weight. All bodies of the same.size, therefore, lose the same quantity of their weight when completely immersed in water. A body weighed in water loses as much of its weight as is equal to that of the water it displaces; so that were this water put into the scale to which the body is suspended, it would restore the balance.

When a body is weighed in water, in order to ascertain its specific gravity, it may either be suspended to a hook at the bottom of the basin of the balance, or, taking off. the basin, suspended to the arm of the balance. Now,
 supposing that a cubic inch of gold weighed nineteen ounces out of water, and lost one ounce by being weighed in water, the cubic inch of water it displaces must weigh that one ounce; consequently gold would be nineteen tinles as heavy as water.

The specific gravity of a body lighter than water cannot be ascertained in the same manner. If a body were absolutely light, it would float on the surface, without displacing a drop of water; but bodies have all some weight, and will, therefore, displace some quantity of wator. A body lightor than water will not oink to :
splaced; for, - space, and. a cubic inch vill sink in
it did out f the parti. rts the gold, If the body ter in which by it; if it tance to its. ases be the r be their erefore, lose completely ater loses as f the water to the scale restore the
n order to her be susbasin of the ded to the nce. Now, cubic inch d ninetoen er, and lost ing weighed bic inch of must weigh be nineteen
than water If a body the surface, lies have all me quantity eot mink tos:
loval with the surface of the water, and therofore will not displace so much water as is equal to its bulk, but a quantity equal to its weight. A ship sinks to some depth in water, and the heavier it is laden the deeper it sinks, the quantity of water it displaces being always equal to its weight. This quantity cannot, however, afford a convenient test of its specific gravity, from the difficulty of collecting the whole quantity of water dis. placed, and of measuring the exact bulk of the body immersed.
In order practically to obtain the specific gravity of a body which is lighter than water, a heavy one, whose specific gravity is known, must. be attached to it, and they must be immersed together: the spectfic gravity of the lighter body may then be easily calculated.

Bodies which have exactly the same specific gravity as water, will remain at rest in whatever situation they are placed in water. If a piece of wood, by being impregnated with a little sand, be rendered precisely of the weight of an equal bulk of water, it will remain stationary in whatever part of a vessel of water it be placed. If a few drops of water be poured into the vessel (so gently as not to increase their momentum by giving them velocity;) they would mix with the water at the surface, and not sink lower.

The specific gravity of fluids is found by means of an instrument called an hydrometer. It consists of a thin glass ball, \mathbf{A}, with a graduated tube, \mathbf{B}, and the specific gravity of the liquid is estimated by the depth to which the instrument sinks in it; for the less the specific gravity of the fluid, the further will the instrument sink in it.-There is a smaller ball, 0 , attached to the instrument below. which contains a little mercury; but this is merely for the purpose of equipoising
 the instrument, that it may remain upright in the liquid under trial:
The weight of substance, when not sompared to that of 3y other, is porfêtly arbitrary; and when water
 by any number we please; but then the woight of all bodies tried by this standard must bes signified by proportional numbers. If we call the weight of $/$ water, for example, 1 , then that of gold would he 19 ; or, if we call the weight of water 1000 , that of gold would be 19,000. In short, the specifio gravity indicates how much more or less a body weighs than mn, equal bulk of wator. atmosphere. s it is morp 20 sun caused d lakes, but rises till it grevity, and ent accession 10 as to form clounds; and - the air to rain. If the vapour, they tratum of air Ig their fall, a the sphere he form of: rmed into: atmosphere, Obeerve, that f yhe couth
vegetation would be destrojed by the excess of moisture; if, on the other hand, the plants were not nourished and refreshed by occasional showers, the drought would be equally fatal to them. Were the olouds constantly in a state of vapour, they could never fall to the ground; or were the power of attraction more than sufficient to convert the vapour into drops, it would transform the cloud into a mass of water, which, instead of nourishing, would destroy the produce of the earth. We cannot consider any part of Nature attentively without being struck with admiration at the wisdom it displays: we cannot contemplate these wonders without feeling our hearts glow with admiration and gratitude towards their bounteous Author.
Water, then, ascends in the form of vapour, and descends in that of rain, snow, or hail, all of which ultimately become water. Some of this falls into the various bodies of water on the surface of the globe, the remainder upon the land.- Of the latter, part re-ascende in the form of vapour, part is absorbed by the roots of vegetables, and part descends into the bowels of the earth, where it forms springs. The only difference between rain and spring water consists in the foreign particles which the latter meets with and dissolves in its passage through the various soils it traverses. Spring water being more pleasant to the taste, and more transparent, is commonly supposed to be more pure than rain water. Excepting distilled water, bowever, rain water is really the most pure we can obtain: it is this which renders it insipid, whilst the various salts and different ingredients dissolved in spring water, give it a species of flavour, without in any degree affecting its transparency; and the filtration it undergoes through gravel and sand in the bowels of the parth cleanses it from all foreign matter which it has not the power of dissolving.
When rain falls on the surface of the earth, it continues making its way downwards through. the pores and crevices in the ground. Several drops meet in their subterraneove pasege, unite, and torm aí litut
rivulet : this, in its progress, meets with other rivulets of a similar description, and they pursue their course together in the interior of the earth, till they are stopped by some substance which they cannot penetrate; for though we have said that water under strong compression penetrates the pores of gold, when acted upon by no other force than gravity, it cannot make its way even through a stratum of clay. This species of earth, though not remarkably dense, being of great tenacity, will not admit the passage of water. When, therefore, it encounters any substance of this nature, its progress is stopped, and the pressure of the accumulating waters forms a bed, or reservoir.

The next figure represents a section of the interior of a hill or mountain. A is a body of water such as has been describ 1 , which, when filled up as high as B (by the continua. accession of waters it receives from the ducts or rivulets a, a, a, a, finds a passage out of the

cavity; and, impelled by gravity, runs on, till it makes its way out of the ground at the side of the hill, and there forms a spring, 0 . The spring, during its passage from B to c, rises occasionally, upon the same principle that water rises in the spout of a tea-pot, but it cannot mount above the level of the reservoir, whence it issues; it must, therefore, find a passage to some part of the surface of the earth that is lower or nearer the centre than the reservoir.-Water may thus be conveyed to every part of a town, and even to the upper stories of the houses, provided that it be originally brought from a height superior to any to whioh it is conveyed.
cer rivulets of their course till they are cannot peneunder strong when acted not make its is species of ing of great ater. When, his nature, its accumulating
he interior of - such as has high as B (by ves from the ge out of the
till it makes the hill, and og its passage me principle but it cannot r, whence it some part of or nearer the thus be con. to the upper be originally which it is

Reservoirs of water are seldom formed near the summit of a hill, for in such elevated situations there can scarcel ; be a sufficient number of rills to supply one; and without a reservoir there can be no spring. In such situations, therefore, it is necessary to dig deep wells, in order to meet with a spring; and then it can rise in the well only as high as the reservoir whence it flows.
When reservoirs of water are formed in very elevated situations, the springs which feed them descend from higher hills in the vicinity. There is a lake on the very summit of Mount Cenis which is supplied by the spring of the higher Alps surrounding it.
A syphon is an instrumént commonly used to draw of liquids from large casks or- other vessels which cannot be easily moved. It consists simply of a bended tube. If its two legs are of equal length, and filled with liquid, if held perfectly level though turned downwards, the liquid will not flow out, but remain suspended in the tube; for there is no pressure of the atwosphere above the liquid, while there is a pressure frow below upon the open ends of the tube; and ${ }^{80}$ long as this pressure is equal on both ends, the liquid cannot flow out; but if the smallest inclisation be given to the syphon, so as to destroy the equilibrium of the water, it will immediately flow from the lower leg. When syphons are used. to draw off liquids, the legs are made of unequal length, in order to render the pressure of the liquid unequal; the shorter leg is immersed in the cask, and the lifuid flows out through the longer. To accomplish this, it is however necessary to make the liquor rise in the shorter leg, and pass over the bended part of the tube, which is higher than the level of the liquor in the cask. There are two modes of doing this; one is, after immersing the shorter leg in the liquor to be drawn off, to suck out the air of the tube from the orifice of the longer leg; then the liquor in the cask, which is exposed to the pressure of the atmosphere, will be forced by it into the tube whioh is relieved from pressure. 4 .

Jong ar the tube continnes full, no air can gain admit tnnce, the liquor will, therefore, flow on till the cask is emptied. The other mode is to fill the syphon with the liquor, then stopping the two ends with the finger, immerse the shorter leg in the vessel, and the same effect will follow. In either case, the water in the highest part of the syphon must not be more than about 32 feet above the reservoir; for the pressure of the atmonphere will not support a greater height of water.
The phenomena of aprings whioh flow occasionally, and wocasionally cease, may often be explained by the primeiple of the syphon. The reservoir of water which supplies a spring may be considered as the vessel of liquor to be drawn off, and the duot the syphon, having its thorter log opening in the reservoir, and its longer at the surface of the earth whence the spring flows; but is the water cannot be made to rise in the syphon by either of the artificial modes which we have mentioned, the spring will not begin to flow till the water in the reservoir has risen above the level of the highest part of the syphon: it will then commence flowing upon the principle of the equilibrium of fluids; but it will continue upon the principle of the syphon; for, instead of ceasing as soon as the equilibrium is restored, it mill continue flowing as long as the opening of the duct is in contact with the water in the reservoir. Springs which do not constantly flow are called intermitting, and are occasioned by the reservoir being imperfectly .mpplied.

ON THE MECHANICAL PROPERTIES OF AIR.

We shall now examine the second class of fluids, dis tinguished by the name of aëriform, or elastic fluids, the principal of which is the air we breathe, which surrounds the earth, and is called the atmosphere. There is a greut variety of elastic fluids, but they differ only in

It in th
of cob that tl conten therefo diminu essenti by its increas of mo almost

> The distanc meh, subtain mould contaio which and rel tho eq enables ve can conside meight the at tribute whilst, of the as hund the otl externs tend h confine of the, is esser the sw taking quence

A phare
san gain admit till the cask is e syphon with ith the fingers, and the same r in the highest than about 32 e of the atmo? water.
w occasionally, plained by the of water which vessel of liquot 10n, having its d its longer at g flows; but is the syphon by ave mentioned, e water in the highest part of wing upon the ut it will con. for, instead of restored, it will ; of the duct is rvoir. Springs d intermitting, ng imperfectly

ES OF AIR.

3 of fluids, dis clastic fluids, breathe, which sphere. There y differ only in Noperticos ; कity

His the lattor me are to oxamine. Thero is no attractiop of cohesion between the particles of elastic fluids, so that the expansive power of heat has po adversary to contend with but gravity; any increase of temperature, therefore, expands elastic fluids prodigiously, and a diminution proportionally condenses them. The most essential point in which air differs from other fluids is by its spring or elasticity: that is to say, its power of increasing or diminishing in bulk, according as it is less or more compressed-a power of which liquids are alpoet wholly deprived.
The atmosphere is thought to extend to about the distance of 45 miles from the earth; and its gravity is moh, that a man of middling stature is computed to mustain the weight of about 14 tons. Such a weight would crush him to atoms, were it not that air is also contained within our bodies, the spring or elasticity of which counterbalances the weight of the external air, and renders us insensible of its preasure. Besides this, the equality of pressure on every part of the body enables us more easily to support it; when thus diffused, ve can bear evon a much greater weight, without any considerable inconvenience. In bathing we support the meight and pressure of the water, in addition to that of the atmosphere; but this pressure boing equally distributed over the body, we are scarcely sensible of it Whilst, if the shoulders, the head, or any particular part of the frame were loaded with the additional weight of a hundred pounds, we should feel severe fatigue. On the other hand, if the air within a man met with no external pressure to restrain its elasticity, it would distend his body, and at length bursting the parts which confine it, put a period to his existence. The weight of the atmosphere, therefore, so far from being an evil, is essential to our existence. When a person is cupped, the swelling of the part under the cup is produced ly taking away the pressure of the atmosphere; in consequence of which the internal air distends the part.
A column of nir reuching to the top of the atmon-

when the air is heaviest. The rule that fuids prem equally in all directions applies to elastic fluids as well as to liquids: therefore, every square inch of our bodies sustains a pressure of 15 lbs . and the weight of the whole atmosphere may be computed by calculating the number of square inches on the surface of the earth, and multiplying them by 15 :

The weight of a small quantity of air may be ascer. tained by exhausting the air from a bottle, and weighing the bottle thus emptied. Suppose that a bottle sis cubic inches in dimension, weighs two ounces; if the air be then introduced, and the bottle re-weighed, it will be found heavier by nearly two grains, showing that sir cubic inches of air (at a moderate temperature) weigh about two grains. In estimating the weight of air, the temperature must always be considered, because heat, by rarefying air, renders it lighter. The same principle indeed applies, almost without exception, to all bodies. In order to ascertain the specific gravity of air, the same bottle may be filled with water, and the weight of six cubic inches of water will be nearly 1667 grains: so that the weight of water to that of air, is about 833 to 1 .

A barometer is an instrument which indicates the state of the weather, by showing the weight of tho atmosphere. It is extremely simple in its con.
 struction, and consists of a glass tube, $\triangle \mathrm{B}$, about three feet in length, and open only at one end. This tube must first be filled with mercury, then stopping the open end with the finger, it is immersed in a cup, 0 , which con. tains a little mercury. Part of the mercury which was in the tube now falls down into the cup, leaving a vacant space in the upper part of the tube, to which the air cannot gain access. This space is, therefore, a perfect vacuum; and consequently the mercury in the tabe is relieved from the pressure of the atmosphere, whils that in the cup remains exposed to it; therefore the pressure of the air on the mercury in the cup support that in the tube, and prevent it from faling; thus tion
hat fuids prem c fluids as well ch of our bodies weight of the calculating the e of the earth,
may be ascer. e, and weighing at a bottle sis ounces; if the -weighed, it will howing that sir jerature) weigh ight of air, the jecause heat, by same principle a, to all bodies. rity of air, the 1 the weight of 1667. grains: so about 833 to 1 . b indicates the weight of the mple in its conlass tube, $\triangle \mathrm{B}$, open only at be filled with n end with the , \mathbf{c}, which coinof the mercury s down into tho the upper part ir cannot gain fore, a perfed in the tabe is osphere, whils therefore the he cup supporte Hing ; thus tive
quilibrium of the mercury is destroyed only to preserve the general equilibrium of fluids. This simple apparatus is all that is essential to a barometer. The tube and the cup or vase are fixed on a board, for the corvenience of mspending it ; the board is graduated for the purpose of ascertaining the height at which the mercury stands in the tube; and the small movable metal plate serves to show that height with greater accuracy. The weight of the atmosphere sustains the mercury at the height of, on an average, about $29 \frac{1}{2}$ inches; but the exact height depends upon the weight of the atmosphere, which varies much according to the state of the weather. The greater the pressure of the air on the mercury in the cup, the higher it will ascend in the tube. The air, therefore, generally is heaviest in dry weather, for then the mercury rises in the tube, and consequently that in the cup sustains the greatest pressure; and thus we estimate the dryness and fairness of the weather by the height of the mercury. We are apt to think the air feels heavy in bad weather, because it is less salubrious when impregnated with damp. The lungs, under these circumstances, do not play so freely, nor does the blood circulate so, well: thus obstructions are frequently occasioned in the smaller vessels, from which arise colds, asthmas, agues, fevers, \&c.
As the atmosphere diminishes in density in the upper regions, the air must be more rare upon a hill than in a plain; and this difference may be ascertained by the barometer. This instrument is so exact in its indications, that it is used for the purpose of measuring the height of mountains, and of estimating the elevation of balloons. Considerable inconvenience is often experienced from the thinness of the air in such elevated situations. It is sometimes oppressive, from being insufficient for respiration; and the expansion which takes place in the more dense air contained within the body is often painful: it occasions distension, and sometimes causes the bursting of the smaller blood-vessels in the nose and min. Besides, in such situations, the body is more -
exposed both to hoat andid cold; for though the ntmow phere is itself transparent, its lower regions abound with vapours and exbalations from the earth, which float in it, and act in some degree as a covering, which preserves us equally from the intensity of the sun's rays and from the severity of the cold.

Now, since the weight of the atmosphere supports. meroury in the tube of a barometer, it will support a column of any other fluid in the same manner; but as mercury is the heaviest of all fluids, it will support a higher column of any other fluid; for two fluids are in equilibrium, when their heights vary inversely as their densities: as, for instance, if a cubic foot of one fuid weighs twice as much as a oubic foot. of the other, a column of the first ten feet in height will weigh as: much as a column of the other twenty feet in height:Thus the pressure of the atmosphere, which will sustain a column of mencury of thity inches, is equal to sustaining a column of whter about thirty-four fett in height. The weight of the atmosphere is, therefort, as great as that of a boidy of water surmounding the globe of the depth of thirty four feet; for a column of air of the height of the atmosphere is equal to a columu of water of thirty-four feet, or one of mercury of twenty. nine inches, each having the same base.

The common pump is constructed on this principle, By the act of pumping, the pressure of the atmosphere is taken off one part of the surface of the water: this part therefore rises, being forced up by the pressure communicated to it by that part of the water on the surface of which the weight of the atmosphere contirues to act. The body of a pump cousists of a large tube or pipe; whose lower end in immersed in the water whioh it is designed to raise. A kind of stopper, called a piston, is fitted to this tube, and is made to slide up and down it, by means of a metallio rod fastered to the centre of the piston.

The various parts of pamp are here delineated

We the atraco jons abound earth, which ering, which he sun's rays
ere supports ill support : ner; but as ill support : fluids are in sely as their of one fuid the other, ill weigh w in height.which will es, is equal rty-four feet is, therefore, ounding the a column of to a columin of twenty.
is principle: atmosphere water: this he pressure ater on the phere contiof a large sed in the of stopper, tade to slide fabtered to

delineated:

 pintom $\frac{5}{\top}$\& valve, or little djor in the piston, which, opening upwards, admits the vater to rise through it, but prevents its returning; and y a similar valve in the body of the pump. When the pump is in a state of inaction; the two valves are closed by their own weight; but when, by drawing down the handle of the pump, the piston ascends, it rises a column of air which rested apon it, and produces a vacuum betreen the piston and the lower valve, y; the air beneath this valve, which is immedjately over the surface of the
 mater, conserquently expands, and forces its way through it; the water then, relieved from the pressure of the dir, ascends into the pump. A few strokes of the handle totally exclude the air from the body of the pump, and fill it with water, which, having passed through both the valves, flows out at the spout. Thus the air and the water successively rise in the pump on the saue principle that the mercury rises in the barometer. Water is said to be drawn up into a pump by suction; but the power of the suction is no other than that of producing a vacuum over one part of the liquid, into which vacuum the liquid is forced by the pressure of the atmosphere on another part. The action of sucking through a straw consists in drawing in and confining the breath, so as to produce a vacuum, or at least to lessen materially the quantity of air, in the month : in consequence of which, the air within the straw rushes into the mouth, and is followed by the liquid, into which the lower end of the straw is immersed. The principle is the same; and the only difference consists in the mode of producing a vacuum. In suction, the muscular powers answer the purpose of the piston and valves. The distance from the level of the water in the well to the valve in the piston ought ath to Excued thirty-two feet, otherwise the watery routd rot bo suxe to riso thendo that valve, for the
weight of the air is sometimes not sufficient to raise a column of mercury more than twenty-eight inches, or a column of water much more than thirty-two feet; but when once it has passed that opening, it is no longer the pressure of air on the reservoir which makes it ascend-it is raised by lifting it up, as you would raise it in a bucket, of which the piston formed the bottom. This common-pump is, therefore, called the sucking and lifting pump, as it is constructed on both ćnese principles.

The forcing pump consists of a forcing power added to the sucking part of the pump. This additional power is exactly on the principle of the syringe: by raising the piston, the water is drawn up into the pump; and by making it descend, it is forced out. The large pipe, \boldsymbol{A} B, represents the sucking part of the pump, which differs from the lifting pump only in its piston, P, being unfurnished with a valve, in consequence of which the water cannot rise above it. When, therefore, the piston descends, it shuts the valve y, and forces the water (which has no other vent) into the pipe, D; this is likewise furnished with a valve, v, which, opening outwards, ad. mits: the water, but prevents its return. The water is thus fint raised in the pump, and when forced into the pipe, by the alternate ascending and descending motion of the piston, after a few strokes of the handle to fill the pipe, whence the water issues at the spout.

ON OPTICS.

Optics is one of the most interesting branchen of Natural Philosophy; it is the science of vision, and trashen wo how wo ane objosta. In this moiones, bolitu
are A lun the shine When nous light the cl all suc to pas which glass. freque pass : Light, nous every not on but ev which is $: 8$ jected and a tion 0 any on Phil Some of deta bodies, conceiv other each sound, througl obedier appear course seem never:
of expr
ient to raise a ght inches, or irty-two feet; it is no longer hich makes it ou would raise the bottom. te sucking and ese principles. power added his additional e syringe: by nto the pump; t. The large ts the sucking which differs no only in its ruished with a e of which the ve it. When, descends, it and forces has no other D; this is with a valve, outwards, ad. prevents its is thus first p, and when nding and doew strokes of rater issues at riones, bollim
tro divided into huminovis, opaque, and transparent A luminous body is one that shines by its own light-as the sun, the fire, a candle, \&ic. But all bodies that shine are not luminous; polished metal, for instance, when it shines with so much brilliancy, is not a luminous body, for it would be dark if it did not receive light from a luminous body; it belongs, therefore, to the class of opaque, or dark bodies, which comprehend all such as are neither luminous nor will admit the light to pass through them; and transparent bodies are those which admit the light to pass through them, such as glass : and water. Transparent or pellucid bodies are frequently called mediums; and the rays of light which pass through them are said to be transmitted by them. Light, when emitted from the sun, or any other luminous body, is projected forwards, in straight lines, in every possible direction ; so that the luminous body is, not only the general centre whence all the rays proceed, but every point of it may be considered as a centre which radiates light in every direction. A ray of light is a single line of light projocted from a luminous body; and a pencil of rays is a colleotion of rays proceeding from
 any one point of a luminous body.
Philosophers are not agreed as to the nature of light. Some maintain the opinion that it is a body consisting of detached particles, which are emitted by luminous bodies, in which case the particles of light must be inconceivably minute; since, even when they cross each other in every direction, they do not interfere with each other. Others suppose it to be produced like sound, by the undulations of a subtile fluid diffused throughout all known space. In some respects, light is obedient to the laws which govern bodies; in others, it appears to be independent of them. Thus, though its course corresponds with the laws of motion, it does not seem to be influenced by those of gravity; for it has never been discopivaed to have weight, though a varioty of experiments have poenl made with a view of ances. W J. L.
taining that point. We are, however, no ighomint of the intimate nature of light, that we shall contine our attention to such of its properties as are well ascer. tained.

To return then to the examination of the effects of the radiation of light from a luminous body;-since the rays are projected in straight lines, when they meet with an opaque body through which they are unable to pass; they are stopped short in their course; for they cannot move in a curve line round the body. The interruption of the rays of light by the opaque body prociuces, therofore, darkness on the opposite side of it; and if this darkness fall upon a wall, a sheet of paper, or any object whatever, it forms a shadow; for shadow is mothing more than darkness produced by the intervention of an opaque body, which prevents the rays of light from reaching au object behind it.

If the luminous body, A, bo larger than the opaque body, $\mathrm{B}_{\text {, }}$ the shadow will gradually dimis: nish in size till it terminates in: point; if smaller, the shadow will continually inorease in size, as it is more distant from the object which pro-
 jects it. The shro dow of a figure, a_{1} varies in size, 20. cording to the dirtance of the several surfaces, $\mathbf{B}, \mathbf{O}, \mathrm{D}, \mathrm{E}$, on which it is described.
Now what sucsomes of the rays of light which opayus bodies arrest in their course, and the interruption of which is the occasion of shudows? This leads to a very important property of light, Reflection.
When rays of light encounter an opaque body, which they cannot traverse, part of them are absorbed by is and part are reflected, and rebound as an elastic ball Which is struck against a wall. Light, in its reflection, is guverged by the same laws as solid perfectly elastio budien. If or of light foll perpendioularly on at
opaque the po reflecte angle 0 If the admitte a mirrc one ra reffecti directio therefo compos and the

directio dence, angle of angles It is Lamino ejes; b invisible transmi
Let u produce proceedi which is the figu complet ceed.
aduitte
seen on peated o miniatuI perfect by the ? in the
ighormint of 1 contine our e well ascer.
the effects of ;-xince the hey meet with nable to pass, r they canot interruption oriuces, thero ; and if this paper, or any or shadow is the interven. rays of light
s body, A, bo aque body, , radually dimis erninates ina uailly increas et which pro. The abt a figure, i in size, 20 to the dire of the seienal $8, B, C, D, E, 0 n$ it is described which opaya terruption of sads to a a ver
body, which sorbed by is, n elastic ball its reffection, feotly elastio malarly on:u
opaque body, it is reflected back in the same line towardy the point whence it proceeded; if it fall obliquely, it is reflected obliguely, but in the opposite direction, the angle of incidence being equal to the angle of reflection. If the shutters be closed, and a ray of the sun's light admitted through a very sinall aperture, and reflected by a mirror, on which the ray falls perpendicularly, but one ray is seen, for the ray of incidence and that of reffection are both in the same line, though in opposite directions, and thus are confounded together. The ray, therefore, which appears single, is in fact double, being composed of the incident ray proceeding to the mirror, and the reflected ray returning from the mirror. These
 may be separated by holding the mirror, M , in such a manner that the incident ray, A B; shall fall obliquely upon it; then the reflected ray, B c, will go off in another direction. If a line be drawn from the point of incidence, B, perpendicularly to the mirror, it. will divide the angle of incidence from the angle of reflection, and these angles will be equal.

It is by reflected rays only that we see opaque objects. Laminous bodies send rays of light immediately to our eyes; but the rays which they send to other bodies are invisible to us, and are seen only when reflected on transmitted by those bodies to our eyes.
Let us now examine by what means the rays of light produce vision. They enter at the pupil of the eye, and proceeding to the retina, an expansion of the optic nerve, which is situated at the back of the eye-ball, they describe the tigure, colour, and (with the exception of size) form a oomplete representation of the object from which thes proceed. If the shutters be closed, and a ray of light admitted through a small aperture, a picture may be seen on the opposite wall similar to that which is delineated on the retina of the eye; it exhibits a picture in winiature of the garden, and the landscape would be perfect were it not reversed. This picture is produced by the raye of light reflected from the various objects in the garden, and which are admitted through tho hole
in the window shutter. It is called a camora obscus, (dark chamber,) from the necessity of darkening the room in order to exhibit it.

The rays from the glittering weathercock at the top

of the building A, represent it at a; for the weatheroock being much higher than the aperture in the shutter, only a few of the rays, which are reflected by it in an obliquely descending direction can find entrance there. The rays of light moving always in straight lines, those which enter the room in a descending direction will continue their course, in the same direction, and will, consequently, fall upon the lower part of the wall opposite the aperture, and represent the weathercock reversed in that spot, instead of erect in the uppermost part of the landscape; and the rays of light from the steps, B , of the building, in entering the aperture, ascend, and describe them in the highest instead of the lowest part of the landscape; whilst the rays proceeding from the part which is to the left, describe it on the wall to the right. Those which are reflected by the walnut-tree, 0 D , to the right, delineate its figure in the picture to the left, $c d$. Thus the rays, coming in different directions, and proceeding always in straight lines, cross each other at their entrance through the apertures; those from above proceed below, those from the right go to the left, those from the left towards the right; thus every object is represented in the picture as occupying a situation the very reverse of that which it does. in nature, excelting the flower-pot, E F, whieh though its position is reversed, does not change in towards the e picture as hat which it E F, whieh t change it
situation in the landscape, for being immediately in front of the aperture, its rays fall perpendicularly upon it, and consequently proceed perpendicularly to the wall, where they delineate the object. It is thus that the picture of objects is painted on the retina of the eye. The pupil of the eye, through which the rays of light enter, represents the aperture in the window-shutter; and the image delineated on the retina is exactly similar to the picture on the wall.
The different apparent dimensions of objects, at different distances, proceed from our seeing, not the objects themselves, but merely their image on the retina. Here is represented a row of trees, as viewed in the camera

obscura; the direction of the rays from the objects to the image is expressed by lines. Observe that the ray which comes from the top of the nearest tree, and that which comes from the foot of the same tree, meet at the aperture, forming an angle of about twenty-five degrees; this is called the angle of vision, being that under which we see the tree. These rays cross each other at the aperture, and represent the tree inverted in the camera obscura. The dimensions of the image are considerably smaller than those of the object, but the proportions are perfectly preserved. The upper and lower ray from the most distant tree, form an angle of not more than twelve or fifteen degrees, and an image of proportional dimensions. Thus two objects of the same size, as the two trees of the avenue, form figares of different sizes in the camera obscura, according to their distance, or, in other words, according to the angle of vision under which they are seen.

In sculpture we copy Nature as she really exists; in painting we represent her. as she appeats to ū-that is co saj, wo do not oopy the objects, but the image they form on the retime of the eye.

We cannot judge of the velocity of a body in motion unless we know its distance; for, supposing two men to set off at the same moment from A and B, to walk each to the end of their respective lines c and D, if they perform their walk in the same space of time, they wust have procecded at a very different
 rate ; and yet to an "eye situated at e, they will appear to have moved with equal velocity, because they will both have gone through an equal number of degrees, though over a very unequal length of ground.-Sight cannot be implicitly relied on; it deceives us both in regard to the size and the distance of objects-indeed our senses would be very liable to lead us into error, if experience did not set us right. Nothing more convincingly shums how requisitc experience is to correct the errors of sight, than the case of a young man who was blind frow his infancy, and who recovered his sight at the age of fourteen, by the operation of couching. At first he had no idea either of the size or distance of objects, but inagined that everything he saw, touched his eyes; and it was not till after having repeatedly felt them, and walked from one object to another, that he acquired an idea of their respective dimensions, their relative situations, and their distances.

Since an image is formed on the retina of each of our eyes, it would seem that we ought to see objects double, In fact; however, we do not; and perhaps the best 80 lution which has been offered of the difficulty is this, that the uction of the rays on the optic nerve of each eye is 80 perfectly similar, that they produce but a siugle sensation; the mind, therefore, receives the same ides from the retina of bath eyes, and conceives the object to be single. Besides, each eye refers the object to exactly the same place, from which we unconsciously conclude that there can be but one object. Yersons afticted with u divense in one eyo, which prevontes the
nyt of 1 other, f The i verted, mall $\dot{1}$ orifice of When from his lleoted i they hai the sam an image situated it. Thi falling p -Thus, reflected there in if it hav point the same 0 is in in A man the right falling ob in the 0 reflection

There plane or mirrors, two latter
The pl the direc bind the for it fol the same is before together convex m mys: dive
in motion wo men to walk cach f they perthey wust y different situated at ave moved sause they rough an 3s, though length of implicitly s both in e distance nses would rience did gly shums rs of sight, 1 from his ge of four. he had no 3, but innaes; and it them, and ciquired an tive situa.
ach of our cts double. te best soIty is this, ve of each ut a siugle same ides the object object to consciously

Persons eventi tho
nyt of light from affeeting it in the aame manner as the other, frequently seo:double:
The inage of an object in a looking-glass is not inrerted, because the rajs do not enter the mirror by a small zpertare," and cross each other, as they do at the orifice of a canera obscura, or the pupil of the oye.
When a max views himself in a nirror, the rays from his eyes fall perpendioularly upon it, and are reflected in the same line; they proceed, therefore, as if they had come from point behind the glass, and the same effect is produced as if they proceeded from an image of the object described behind the glass, and situated there in the same manner as the object before it. This is not the case only with respect to rays Enling perpendicularly on the glass, but with all others -Thus, a ray proceeding froci the point σ to D is reflected to A, and arrives there in the same wavner as if it had proceeded from E , 2 point behind the glass, at the same distance from it as 0 is in front of it.

A man cannot see himself in a mirror if he stand to the right or to the left of it, because the incident rays falling obliquely on the mirror will be reflected obliquely in the opposite direction, the angles of incidence and reflection being equal.
There are three kinds of mirrors used in optics; the plane or flat, which are the common mirrors; convez mirrors, and concave mirrors. The reflection of the two latter is very different from that of the former.
The plane nirror which, as we have seen, does not alter the direction of the reflected rays, forms an image- bebind the glass exaotly similar to the object before it; for it forms an image of each point of the object at the same distance behind the mirror, that the point is before it; and these images of the different points together make up one image of the whole objoct.: A convex mirror has the property of making the reflected: nyse diverge, by which means it dininishes the inage; mid a conceve mieror maked the rayn converge, nidy

246

FIFTL BOOK.

under certain circumstances, magnifies the image. Let us begin by examining the reflection of a convex mirror, when this is formed by a portion of the exterior surface of a sphere. If several parallel rays fall upon it, that ray only which, if prolonged, would pass throuigh the centre, or axis of the mirror, is perpendicular to it. In order to avoid confusion, we have drawn only three parallel lines, $\mathbf{A B}, \mathrm{OD}, \mathrm{MF}$, to represent rays falling oi the convex mirror, MN;
 the middle ray, you will observe, is perpendicular to the mirror, the others fall on it obliquely.The three rays being parallel would all be perpendicular to a flat mirror; but no ray can fall perpendicularly on a spherical mirror, whiok is not directed towards the centre of the sphere, just af a weight falls perpendicularly to the earth when gravity attracts it towards the centre. In order, therefore, that rays may fall perpendicularly to the mirror at B and F, the rays must be in the direction of the dotted lines which meet at the centre, 0 , of the sphere, of which the mirror forms a portion.

Now let us observe in what direction the three rays $\mathrm{AB}, \mathrm{OD}, \mathrm{EF}$, will be reflected. The middle ray falling perpendicularly on the mirror will be reflected in the same line; the two others falling obliquely, will be reflected obliquely to G and H, for the dotted lines are perpendicu. lars, which divide their angles of incidence and reflection, or they will proceed as if they came from the point l ; and since we see objects in the direction of the reflected ray, we shall see an image, answering to that which would be produced by a body placed at \mathbf{L}, which is the point at which the reflected rays, if continued through the mirror, would unite and form an image. This point is equally distant from the surface and centre of the: aphere, and is called the imaginary focus of the mirrou. 4 foous is a point at whioh rays unite:- the focus to
image. Let nvex mirror, or surface of pon it, that throuigh the ar to it. In only three s falling on mirror, MN ; ray, you will erpendicular r, the others obliquely.rays being uld all be r to a flat no ray can licularly on nirror, whioh here, just as hen gravity erefore, that at B and F , dotted lines e, of which

- three rays

 ray falling I in the same be reflected perpendicuad reflection, the point L ; the reflected that which vhich is the aed through This point ontre of the: the mirrow the focus toWhioh parallel rays converge is callod the principal focus. In the present case the focus is called an imaginary focus, because the rays only appear to unite there, or rather proceed after reflection in the same direction as if they came from behind the mirror, from that point; for they do not pass through the mirror, since they are reflected by it.
A concave mirror is formed of a portion of the internal surface of a hollow sphere, \&c., and its peculiar property is to make the rays of light converge. If three parallel rays, $\triangle \mathrm{B}, \mathrm{OD}, \mathrm{E} \mathrm{F}$, fall on the concave mirror, $M N$, the middle ray will be reflected in the same line, being in the direction of the axis of the mirror, and the two others will be reflected obliquely as they fall obliquely on the mirror.
 The two dotted perpendiculars divide their angles of incidence and reflection; and in order that these angles may be equal, the two oblique rays must be refiected to I, There they will unite with the middle ray. Thus when any number of parallel rays fall on a concave mirror, they are all reflected to a focus; for in proportion as the rays are more distant from the axis of the mirror, they fall more obliquely upon it, and are more obliquely reflected; in consequence of which they come to a focus in the direction of the axis of the mirror; and this point is not an imaginary focus (as with the convex mirror), but the true focus at which the rays unite. If rays fall convergent on a soncave mirror, they are sooner brought to a iocus, L , than parallel rays; their foous is therefore nearer to the mirror M N. Divergent rays are brought to a more distant focus than parallel rays,
 where the focus is, at \mathbf{L}; but the principal focus of mirrors, either convex or concave, is equally distant from the centre and the surface of the sphere. If a metallic concave mirror of polished tin bo exposed to the sun, the rays will be oollooted into a vary brilliant foeus; and a piece
of paper held in this focus will take fire; for rnys of light cannot be ooncentrated without accunulating a proportional quantity of heat; hence concave mirrors have obtained the name of burn.
 ing mirrors. If a burning taper be placed in the fucus, the ray which falls in the direction of the axis of the mirror will be reflected back in the same line; but two other rays, drawn from the focus, and falling on the mirror at B and P, will be reflected to A and E.Therefore the rays which proceed from a light placed in the focus of a concave mirror fall divergent upon it, and are reflected parallel ; it is exactly the reverse of the former figure, in which the rays fell parallel on the mirror, and were reflected to a focus. In other words; When the incident rays are parallel, the reflecied rays converge to a focus; when the incident rays proceed from the focus, they are reflccted parallel ; this is a very important law of optics.
the the devia but i the cours bave meri by ite by sc would water jectil canno these instea impli so ths If bottol the t from bide visibl witer reys direct when its att to ent the r ation in the in th shillit ray at water see th fleots, into t than
; for tays of cumulating a cave mirrom rame of burn. burning taper ucus, the ray
direction of lirror will be he same line; , drawn from lling on the A and E.light placed rgent upon it, he reverse of iarallel on the other words; reflecied rays rays proceed this is a very

JRS.

rent mediums em. Upaque odies transmit sing from one fall obliquely, which causes derstood; but (supposing it ich is for this onsidering tt) strongly than ediums to be from air into racted by the arly on watef
the attreotion of the water icto in the zame direction as the conure of the ray; it will not, therefore, cause a deviation, and the ray will proceed straight on to \mathbf{z}; but if it fall obliquely as the ray $\mathbf{C B}$, the water will attract it out of its course. Let us suppose the ray to bave reached the surface of a denser medium, and that it is there affected by its attraction. If not counteracted by some other power, this attraction
 would draw it perpendicularly to the water at E , towards E; but it is also impelled by its projectile force, which the attraction of the denser medium cannot overcome; the ray, therefore, acted on by both these powers, moves in a direction between them, and instead of pursuing its original course to D, or being implicitly guided by the water to E , proceeds towurds s ; so that the rays appear bent or broken.
If a shilling be placed at the bottom of an empty teacup, and: the teucup at such a distance from the eye that the rim shall hide the shilling, it will become visible by tilling the cup with witer. In the first instance, the rays reflected by the shilling are
 directed higher than the cye, but when the cup is filled with water, they are refracted by its attraction, and bent downwurds ut quitting it, so as: to enter the eye. When the shilling becoumes visible by the refraction of the ray, you do not see it in the situation which it really occupies, but an image of it higher in the cup; for as objects always appear to be situated in the direction of the rays which enter the eye, the shilling will be seen in the direction of the refracted ruy at B. The manner in which an oar appears bent in water is a similar effect of refruction. When we see the bottom of a clear stream, the rays which it reflecte, being refracted it their passage from the water into the uir, will make the bottom appear more elevated that it really in, and the whter will goonequently appens
more shallow. Accidents have frequently been occar sioned by this circumstance; and boys who are in the habit of bathing should be cautioned not to trust to the apparent shallowness of water, as it will always prove deeper than it appears.
The refraction of light prevents our seeing the heavenly bodies in thir real situation. The light they eend to us being refracted in passing into the atmosphere, we see the sun and stars in the direction of the refracted ray. If the sun were immediately over our heads, its rays falling perpendicularly on the atmosphere would not be refracted, and we should then see it in its true situation. To the inhabitants of the torrid zone, where the sun is sometimes vertical, its rays are then not refracted. There is, however, another obstacle to see the heavenly bodies in their true situation, which affects them in the torrid zone as well as elsewhere. Light is about eight minutes and a half in its passage from the sun to the earth, therefore, when the rays reach us, the sun has quitted the spot he occupied ou their departure; yet we see him in the direction of thoss rays, and consequently in a situation which he had abandoned eight minutes and a half before. In speaking of the sun's motion, we mean his apparent motion, produced by the diurnal rotation of the earth, for the effect being the same, whether it be our earth or the heavenly bodies which move, it is more casy to represent things as thes appear to be, than as they really are. The refraction of the sun's rays by the atmosphere renders the days longer, as it occasions our seeing an image of the sun, both before he rises and after he sets; for below the horizon he still shines upon the atmosphere, and his rays are thence refracted to the earth. So likewise we see an image of the sun before he rises, the rays that previously fall upon the atmosphere being reflected to the earth.
If light radiating from a luminous body continues to pass through a medium of the same density its direction remains unchanged; but if it passea from one mediun to another of a different, its direction becomes differont; and the angle formed by ligen reprosenting the formet
and lat refracti
Whe
they ar if any, when t medium dium $t]$ dense n that sul are refle of the carve; atmospb dium al but afte former the rays directio tion had
AAr When at 0 it of cont directio D; at air, it but in ceeds to parallel, refractio into anc two ref no sens same, a one sid medinm little to when parallel fraction the raya
been occa are in the trust to the ways prove
ng the healight they atmosphere, te refracted heads, its trere would in its true one, where ien not ree to see the bich affects

Light is e from the reach us, their dothose rays, abandoned ing of the , produced effect being enly bodies gs as they refraction s the days of the sun, below the nd his rays ise we see s that prected to the
ontinues to ts direction e mediun different; the formet
and latter directions makes what is called the angle of refraction.
When rays of light fall perpendicularly on a surface they are not at all refracted -the exceptions to this rule, if any, are so rare that they need not be noticed. But when they fall obliquely on the surface of the second medium, if they pass from a less to a more dense mndium they are turned towards, if from a more to a less dense medium, they are turned from a perpendicular to that surface. If, however, they fall very obliquely they are reflected, instead of being refracted. If the density of the medium gradually increase they will describe a carve; as, for instance, when they pass through the atmosphere. When the two opposite surfaces of a medium are paralle, the direction of the ray is changed, but after passing the medium it becomes parallel to its former path. Thus in passing through a pane of glass; the rays suffer two refractions, which being in contrary directions, produce nearly the same effect as if no refraction had taken place.
a a represents a thick pane of glass seen edgeways. When the ray B approaches the glass at 0 it is refracted by it; and, instead of continuing its course in the same direction, it passes through the pane to D ; at that point, returning into the air, it is again refracted by the glass,
 but in a contrary direction, and in consequence proceeds to \mathbf{x}. Now the ray bo and the ray de being parallel, the light does not appear to have suffered any refraction; for if a ray of light passes from one medium into another, and through that into the first again, the two refractions being equal and in opposite directions, no sensible effect is produced; for the direction is the same, and the little space by which the ray is thrown to one side, is necessarily less than the thickness of the medium, and the thickness of a pane of glass is toc little to be worth considering. But this is the case only when the twe surfaces of the refracting medium are parallel to each other; if they are not, the two refractions may be made in the same direction, and may oause the rays to come to a focus at a point beyond the medinm.

Iennes are of various forms as here representod. a is called a plano-convex, fron having one side flat, und the other rounded; \boldsymbol{B} is a planoconcave, having one side hollow; c is a double-convex,
 and has both sides rounded; D is a double-cotcave, with both sides hollow; E is a meniscus, (so called from its moon shape), and has one side conver, and the other concave. The property of those which have a convez surface is to collect, rays of light to a focus; and those which have a concave surface to dis. perse them.

The following diagram will give some idea of the manner in which light is affected by being transmitted through inedia of greater densitv and bounded by planc, convex, or coucave surfaces:

The following will show how parallel, \&c., rays at brought to a focus by convex, or made to diverge by concave lenses :

It is evident that convergent rayn become more convergent with convez lenses, and divergent raya wore divergent with concave lenses.
We shall next explain the refractions of a triangule piece of glasis called a prism. The widem are flat; it

THRAOKION AND COROURE

cannot, therefore, bring the rays to : fricus, nor can its refraction be similar to that of a flat pane of glass, because it has not two sides parallel. The rofractions of the light, on entering and on quitting ths prism, are both in the same direction.* On entering the prism P, the ray is refracted from B to σ, and on quitting it, from 0 to D. If the window-shutters be closed, and a ray of light, admitted through a small aperture, fall upoi a prism, it will be refracted, and a spestrum, \triangle B, representing all the colours of the rain-
 bow will be formed on the opposite wall. It is difficult to conceive how a piece of white plass can produce sunh a variety of brilliant colours; but the fact is, that the colours are not formed by the prism, but existed in the ray previous to its refraction; for the white rays of the sun are composed of coloured rays; which when blended together, appear colourless or white.
Sir Isaac Newton, to whom we are indebted for the most important disooveries respecting light and colours, was the first who divided 2 white ray of light, ana found it to consist of an assemblage of coloured rays, which formed an image upon the wall, such as is ex. hibited, in which are displayed the following series of colours-red, orange, yellow, green, blue, indigo, and violet. Now a prism separates these coloured rays by refraction. It appears that the coloured rays have different degrees of refrangibility; in passing through the prism, therefore, they take different directions, according to their susceptibility of refraction. The violet rays deviate most from their original course; they appear at one end of the spectruin, a B. Contignous to the violet are the indigo rays, being those which have somewhat lees refrangibility; then follow, in

[^4]succession, the blue, green, yellow, orango, and lastly, the red, which are the least refrangible of the coloured rays. The union of these colours, in the proportions in which they appear in the spectrum, produces in us the idea of whiteness. If a card be painted in compartments with these seven colours, and whirled rapidly on a pin, it will appear white. But a more decisive proof of the composition of a white ray is afforded by rouniting these coloured rays, and forming with them a ray of white light. This can be done by letting the coloured rays, which have been separated by a prism, fall upon a lens, which will mike them converge to a focus; and when thus re-united, they will appear white, as they did before refraction. The prism, \mathbf{p}, separates a ray of white light into seven coloured rays; and the lens, ${ }^{2}$, brings them to a focus at F, where they again
 appear white. Thus by means of a prism and a lens, we can take a ray of white light to pieces, and put it together again.

This division of a ray of white light into different colours, being caused by the unequal refrangibility of the different coloured rays, must take place, more of less, whenever the ray suffers refraction. Thus tho rainbow, which exhibits a series of colours so analogous to those of the spectrum, is formed by the refraction of the sun's rays in their passage through a shower of rain, every drop of which acts as a prism, in separating the coloured rays as they pass through it.

A body appears to be of the colour which it reflects: as we see it only by reflected rays, it can appear but of the colour of those rays. Thus grass is green, because it absorbs all except the green rays; it is, therefore, these only which the grass and trees reflect to our ejes, and which make them appear green. The sky and flowers, in the same manner, reflect the various colours of which they appear to us: the rose, the red rays; the violet, blue; the jonquil, the yellow, \&o. If any ond should imagine that these are the permanent colonis of
the gr^{2}
evar
illumir coods; coloure every have n We ca posed colours colour become
Bodi Which tremes the qua of a pa it there them.
rays to
approac more t and det bodies c of light spectrul brillian their ni ape of a black t tendenc appeérs pure th prism, misture abundar

The red ray them p the main
und net
and lastly, the coloured oportions in s in us the in compart d rapidly on cisive proof rded by ro pith them a letting the by a prism, nverge to a ppear white, \mathbf{P}, separates
to different ingibility of ce, more or Thus the 30 analogous refraction of ower of rain, parating the
it reflects: ppear but of een, because s, therefore, to our eyes, he sky and rious colours ad rays; thr If any opo at coloun of
the grase and flowers, ho would be mistaken. Whenarer wo those colours the objects must be illuminated; and light, from whatever source it procoeds; is of the same yature, composed of the various coloured rays, which paint the grass, the flowers, and every coloured object in nature. Objects in the dark have no colour, or are black, which is the same thing. We can never see objects without light. Light is composed of colours, therefore, there can he no light without colours ; and though every object is black, or without colour in the dark, it becomes coloured as soon as it becomes visible.
Bodies which reflect all the rays are white; those which absorb them all are black. Between these extremes they appear lighter or darker, in proportion to the quantity of rays they reflect or absorb: A rose is of a pale red: it approaches nearer to white than black, it therefore reflects rays more abundantly than it absorbs them. Pale-ooloured bodies reflect all the coloured nyss to a certain degree, which produces their palenessi, approaching to whiteness; but one colour they reflect mone than the rest; this predominates over the white, and determines the colour of the body. Since, then, bodies of a pale colour in some degree reflect all the rays of light, in passing through the various colours of the spectrum, they will reflect them all with tolerable brilliancy, but will appear most vivid in the ray of their natural colour. The green leaves, on the contrary; are of a dark colour, bearing a stronger resemblance to black than to white: they have, therefore, a greater tendency to absorb than to reflect rays. Blue often appears green by candle-light, because this light is less pure than that of the sun; and when refracted by a prism, the yellow rays predominate : and as the admixture of blue and yellow forms green; the superabundance of yellow giveis to blue bodies a greenish hue.

The sun appears red through a fog, owing to the red rays having a greater momentum, which gives them power to traverse so dense an atimosphere. For the same reason the sun generally appears red at rising uad netting: a the increased quantity of atmosphere
which the oblique rays must traverse, loaded with the mists and vapours which are usually formed at thios times, prevents a large proportion of the other rays from reaching us. The colour of the atmosphere, commonly called the sky, is blue;-now since all the rays traverse it in their passage to the earth, it would be natural to infer that it should be white; but we must not forget that we see none of the rays which pass from the sun to the earth, excepting those which meet our eyes; and this happens only if we look at the sun, and thus intercept the rays, in which case, we know it appears white. The atmosphere is a transparent medium, through which the sun's rays pass freely to the earth; but when reflected back into the atmosphere, their momentum is considerably diminished, and they have not all of them power to traverse it a second time. The momentum of the blue rays is least; these, thero: fore, are the most impeded in their return, and are chiefly refected by the atmosphere; or it may be that; without any question of momentum; the colour which the particles of air most readily reflect is blue-just as grass reflects the green, or a rose the red rays. This reflection is performed in every possible direction; so that wherever we look at the atmosphere, some of these rays fall upon our eyes; hence we see the air of a blue colour. If the atmosphere did not reflect any rays though the objects on the surface of the earth would be ilumined, the skies would appear perfectly black: This would not only be very melancholy, but it woald be pernicious to the sight, to be constantly viewing bright objects against a black sky.

When bodies change their colour, as leaves which wither in āutumn, or a spot of ink which produces san iron-mould on linen, it arises from some cheminal change, which takes place in the internal arrangement of the parts, by which they lose their tendency to reflect certain colours, and acquire the power of flecting others. A withered leaf thut ao longer reflects the blue rays: it; appearn, thereforg; yellow, or has is alight temioncy to reflect severo: was: which producet ding brown colous. An insergot on linon at fin
ded with the ned at thow e other rays atmosphere, since all the urth, it would but we must 8 which pass e which meet k at the sun, e, we knowt rent medium, to the earth; ere, their mohey have not d time. The these, there turn, and are may be that colour which blue-just as d rays. This direction; so some of these air of a blue ect any rays, cearth would ifectly black: but it would antly viewing lesves which 1 produces 40 me chemical I arrangement tendency to power of longer reflects low, or has ich produse linop at and
absorbe all the raya ; but exposed to the air, it undergoos a ohemical ohange, and the spot partially regains its tendency to reflect the yellow rays; and such is the colour of the iron-mould.

ON THE STRUCTURE OF THE EYE.

The body of the eye is of a spherical form. It has tro membraneous coverings; the external one, aaa, is
 called the sclerotica: this has a projection in that part of the eye which is exposed to view, $b b$, which is called the cornea, because, when dried, it has nearly the consistence of very fine horn, and is sufficiently transparent for the light to obtain free passage through it. The second membrane which lines the cornea, and envelopes the eye, is called the choroid, $c c$: this has an opening in front, just beneath
 the cornea, which forms the pupil, $d d$, through which the rays of light pass into the eye. The pupil is surrounded by a coloured border of fibres, called the iris, ee, which by its motion, almays preserves the pupil of a circular form, whether it be expanded in the dark, or contracted by a strong light. The construction of the eye is so admirable, that it is capable of adapting itself, more or less, to the circumstances in which it is placed. In a faint light the pupil dilates so as to receive an additional quantity of rays; and in a strong light it contracts, in order to prevent the intensity of the light from injuring the optic nerve. The eyes suffer pain, when, from darkness, they suddenly come into a strong light; for the pupil being dilated, a quantity of rays rush in before it has time to contract. And when we go from a strong light into obscurity, we at first imagine ourselves in total darkness; for a sufficient number of rays cannot gain admittance into the contraoted pupil to enable ne to diutinguish objects; but in a few minutes it dilates, and wo dlearly parseive what wae bofore invisiblo. IThe

348

ohoroid, $e c$, is oovered with \& blaok substance, whioh servee to absorb all the rays that are irregularly reflected, and to convert the body of the eye into mo more perfecit camera obscura. When the pupil is expanded to its utmost extent, it is capable of admitting ten times the quantity of light that it does when most contracted. Ir cats, and animals, which are said to see in the dark, the power of dilatation and contraction of the pupil is still greater; it is computed that their pupils may receive one hundred times more light at one time than at another. -Within these coverings of the eye-ball are contained three transparent substances, called humours The first occupies the space immediately behind the cornea, and is called the aqueous humour, $f f$, from its liquidity and its resemblance to water. Beyond this is situated the crystalline humour, $g g$, which derives its name from its clearness and transparency: it has the form of a lens, and refracts the rays of light in a greater degree of perfection than any that have been constructed by art: it is attached by fibres, mm , to each side of the choroid. The back part of the eye, between the crystalline humour and the retina, is filled by the vitréous humour, $h h$, which derives its name from a resemblance it is supposed to bear to glass or vitrified substances. The membraneous coverings of the eja are intended chiefly for the preservation of the reting, $i i$, which is by far the most important part of the eye, as it is that which receives the impression of the objects of sight. The retina consists of an expansion of the optic nerve, of perfect whiteness; it proceeds from the brain, enters the eye at n on the side next the nose, and is finally spread over the interior surface of the choroid The rays of light which enter the eye by the pupil, at refracted by the several humours in their passage through them, and unite in a focus on the retina.

Rays proceed from bodies in all possible directions. We must, therefore, consider every part of an object which sends rays to our eyes as points from which the rays diverge, as from a centre. Ditvergent rays, on entering the pupil, do not cross each other, the pupil, bowever, is nuffeiently large to admit a small pencil of

bro

ima
hav
, perr
cave

gen

exa
of
fall
obje

ima

Tho
lat,
оде
which serres flooted, and ore perfect nded to its times the tracted. Ir n the dark, pupil is still may receive ne than at eye-ball are ad humours behind the $f f$, from its fond this is derives its it has the in a greater constructed side of the etween the led by the ame from a or vitrified of the ejo f the retina, f the eye, as e objects of of the optic m the brain, nose, and is the choroid he pupil, an heir passag etina.
e directions. of an object m which the ent rays, on ; the pupil, all pencil of
tham; and these, if not refracted to a focus by the hnmourn, would continue diverging after they had passed the pupil, would fall dispersed upon the retina, and thus the image of a single point would be expanded over a large portion of the retina. The divergent rays from every other point of the object would be spreed over a similar extent of space, and would interfere and be confounded with the first, so that no distinct image could be formed on the retina. The refraction of the several humours unites the whole of a pencil of raye, proceeding from any one point of an object, in a corresponding point on the retina, and the image is thus rendered distinct and strong.

That imperfection of sight which arises from the ojes being too prominent, is owing to the crystalline humour being too convex; in consequence of which it refracts the rays too muoh, and collegts them into a focus, before they reach the retina. From this focus, the rays proceed diverging, and consequently form a very confused image on the retina. This is the defect of short-sighted people; and it is remedied by bringing the object nearer to the eye; for the nearer an object is brought to the eye the more divergent the rays fall upon the crystalline humour, and consequently do not so soon converge to a focus. This focus, therefore, either falls upon the retina, or at least approaches nearer to it , and the olject is proportionally distinct. The nearer, therefore, an object is brought to the crystalline or to a lens, the further the image recedes bohind it. But short-sighted persons have another resource for objects which they cannot permit to approach their eyes. This is to place a concave lens before the eye, in order to increase the divergence of the rays, the effect of a concave lens, being exactly the reverse of a convex one. By the assistance of such glasses, therefore, the rays from a distant object fall on the pupil as divergent as those from a less distant object; and, with short-sighted people, they throw the image of a distant object back as far as the retina. Those who suffer from the orystalline humpur being too flat, apply an opposite romedy: that is to say, a convex one to make up for the defioiency of convexity of the
oryatalline humour. Thus olderly proph, the hamecin of whose eyes are decayed by age, are under tho necessity of using convex spectacles; and when deprived of that resource, they hold the object at a distance from their eyes, for the more distant the object is from the crystalline, the nearer the image will be to it. These two opposite defeuvare are easily comprehended; but the greatest difficulty rowains, namely, how any sight can bo perfect; for, if the crystalline humour be of a proper degree of convexity to bring the image of distant objectu to a focus on the retina, it will not represent near objeets distinctly; and if, on the contrary, it be adapted to give a clear image of near objects, it will produce : very imperfect one of distant objects. Now to obviate this difficulty, and adapt the eye either to near or to dis. tant objects, power is given to us to increase or diminish in some degree the convexity of the crystalline humour, and also to project it towards, or draw it back from the ubject, as circumstances require. In a young, well-constructed eye, the fibres to which the orystalline humour is attached, have so perfect a command over it, that the focus of the rays constantly falls on the retina, and an image is formed equally distinct both of distant objeots and of those which are near. We cannot, however, see an object distinctly if we bring it very near to the eye, because the rays fall on the crystalline humour too divergent to be refracted to a focus on the retina. The confusion, therefore, arising from viewing an object too near the eye, is similar to that which proceeds from a Aattened crystalline humour; the rays reach the retina before they are collected to a focus.
We conclude this subjeet with the following beautifal observations on the eye from the pen of Addison:
Our sight is the most perfect and most delightful of all our senses. It fills the mind with the largest variety of ideas; cenverses with its object at the greatest distance. and continues the longest in action without being tired, or satiated with its proper enjoyments. The sense of feeling can indeed give us a notion of oxter ion, shapo, and all other ideas that entor at the eye excopt colourr; but at the same time it is vay muoh ntrintoad add
oonfined in its operations, to the number, bulk, and diatance of its partioular objects. Our sight seeme dosigned to supply all these defects, and may be considered as a more delicate and diffusive kind of touch, that spreade itself over an infinite multitude of bodies, 00 m prehends the largest figures, and brings within our reach some of the most remote parts of the universe.
It is this sense which furnishes the imagination with its ideas. We cannot, indeed, have a single image in the fancy that did not make its first entrance through the sight; but we have the power of retaining, altering, and componnding those images, which we have once received, into all the varieties of picture and vision that are mont agreeable to the imagination; for by this faculty 3 man in a dungeon is capable of entertaining himself mith ssenes and landscapes more beautiful than can be found in the whole compass of nature.
A heautiful prospect delights the soul, as much as a demonstration; and a description in Homer has charmed more readers than a chapter of Aristotle. Besides, the pleasures of the imagination have this advantage, above those of the understanding, that they are more obvious, and more easy to be acquired. It is but opening the eje, and the scene enters. The colours paint themselves on the fancy with very little attention of thought or application of mind in the beholder. We are struck, we know not how, with the symmetry of any thing we see, and immediately assent to the beauty of an object, without inquiring into the particular causes and occasions of it. A man polite imagination is let into a great many pleasures, that the vulgar are not capable of receiving. He can converse with a picture, and find an agreeable companion in a statue. He meets with a secret refreshment in a description, and often feels a greater satisfaction in the prospect of fields and meadows, than another does in the possession. It gives him, indeed, a kind of property in every thing he sees, and makes the most uncultivated parts of nature administer to his pleasures; so that he looks upon the world, as it were, in another light, and discovers in it a multitude of charms, that conoel thempelves from the generality of mankind.

SECTION V.

ON ELEOTRICITY.

The word Electricity denotes a peculiar stato, of which all bodies are susceptible, and which is suppow to depend upon the presence of a substance called the electric fluid. Some of its phenomena were known to the ancients, particularly those attractions and ro pulsions whioh a piece of amber, after being rabbed, exhibits, with regard to hairs, feathers, and other light bodies; and it was from its power of draning light substances to it when rubbed, that the Greeks gave amber the name elektron, which is the origin of the word Electricity. Thales, who lived six centuries beforo the Christian era, was the first who observed the electrical properties of amber; and he was so struok with the appearances, that he supposed it to bo animated. Mr. Boyle is supposed to have heen one of the first persops who got a glimpse of the electrial light, or who seems to have boticed it, by rubbing 8 diamond in the dark. Sir Isaad Newton was the frst who observed, thât excited glass attracted light bodiex on the side opposite to that on which it is rubbed.

An electrio is any substance, which being expited or rubbed by the hand, or by a woollen oloth, or other means, has the power of attraoting light bodies. If a piece of sealing-wax be rubbed briskly with the sleeve of your coat, a silk handkerchief, \&c., for some time, and then held near hair, feathers, bits of paper, or other light bodies', they will be attracted; 'that is, they will jump up and some of them will adhere to the wax. If a tube of glass, or small phial, be rubbed in a similar manner, it will answer much better. If this operation be performed in the dark, something luminqus will h seen, which is called the electric matter or furid; and all bodies that we are acquainted with have move of
lues thipg of colle than may rabbr found more one 1 mme whiol tricit terme gless, ambe feath all Thos not e conve fore, of h those in con condy princ; excep atony by m W1 this : and w to be ere other; thay plus, aly is

Lues of it in them; though it soems to lie dormant till it bo put inso action by rubbing. The air, and every thing, is full of this fluid, which appears in the shape of sparks; the rubbing of the glass with the hand collects it from the hand, and the glass, having now more than its natural share, parts with it to any body that may be near enough to receive it. The substance rubbed, and that with which it is rubbed, are always found to be oppositely electrified-thé one body having mare and the other leas than its natural share; indeed one kind of Electricity is never obtained without, at the mme time, the productions of the other. Those bodies which have boen called Electrics, will not convey electhicity from ono body to another, and, therefore, they are termed Non-Conduotoris. The most remarkable areglass, and all vitreous substances, precious stones, resins, amber, sulphur, baked wood, wax, silk, cotton, wool, hair, fenthers, paper, white sugar, air, oils, metallic oxides, all dry vegetable substances, and all hard stones. Those bodies, which, when rubbed ever so much, do not exhibit electricity, are called Non-Electrics. They convey electricity from one body to another, and, therefore, are denominated Conducrors; they are as capable of having electricity developed upon them by friction as those bodies which have been called "electrics," but it in conducted a way as fast as it is produced. Some of them monduct electricity much better than others. The principal oonductors are the metals, charcoal, all fluids exoopt dry airs and oils, most saline substances, and stony substances. Woollen and silk, when wet, will, ly meanis of the water, conduct electricity.
When a body has more than its natural quantity of this fluid, it is said to be electrified positively, or plus; and when it has less than its natural quantity, it is said to be electrified negatively, or minus. When bodies ere electrified either of these ways, they repel each ather; but if some be electrified plus, and others minus, they mutually attract; or if one body be electrified phes, and the other not electrified in oither way; they gha attract eaph other.

Thare are tome fisher which ponsens tho extrin ordina, faculty of being able, at pleasure, to com municate shooks, like those of an electric battery or galvanio pile, to any animal that comes in consesot with them. They are called the torpeda; ths gymnotus electricus, and the silurus Indicus. The most remarkable of these is the Gymnotus Electricus or Electric Eel, which is frequently found in the ma.shes and stagnant pools of Guiana, and other countries of South Amerioa. The shocks they give are exoeedingly severe; and Humboldt mentions a road which has been totally abandoned, because the mules, in crossing a wide ford, were, by these violent attacks, oftan paralysed and drowned. Even the angler on the Lank was not exempt from danger, the shook being conveyed along his wetted rod and fishing line. The Elictric Eel is sometimes twenty feet long. The electricity of all those fishes is exerted by them only when they please, and of course only while they are alive. After the animal has discharged its electrical matter, the next shock is weaker; and when the animal is exhausted, it has lost all the power of producing aiy effect for some time.

There is no longer any doubt that the cause of thunder is the same with that which produces the ordinary phenomena of electricity. The resemblance between them is indeed so great, that we cannot believe thunder itself to be any other than a grander species of electricity.

GALVANISM.

Galvanism is so intimately connected with olectricity, that it may be considered as a branch of that scienoes. It was first accidentally discovered in the chemial laboratory of M. Lewis Galvani, Professor of Anatomy in the Univerity of Bologna, upos the following occasion. The lady of the Professor, being of a delicata habit, was cocosionally supported by woup mude from
theg
for th laborat machi sccide nerves the co set in Byal as far investi afforde treatise Bologn work,
Europe time necessa after sc the aln in : eve publica siderab new far that it discove to what
Galv substan presenc frog w by a ni inquirie were p ployed. only pr the me time it須酎 and tha to the

1) the extro are, to como battery or s in contrat he gymnotus he most relectricus or the ma.shos. countries of exceedingly ich has been crossing : tacke, often fler on the shook being line. The long. . The y them only ile they are its eleotrical a the animal roducing any
be cause of roduces the resemblance we cannot n a grander
troge as a reatorative. Some of these animals, akinned for that purposie, were lying upon a table in the laboratory of the Professor, in which stood an electrical maohine. One of the assistants, in experiment, by secident brought the point of the scalpel near the crural nerves of a frog recently killed, lying not far from the conductor; the muscles of the limb were instantly set in motion, being agitated with strong convulsions. By a long series of new experiments, the law of nature, as far as respects the influence of this principle, was investigated; of which mere accident had at first afforded him a glimpse only. Galvani published a treatise on the subject, addressed to the Institute of Bologna, in the year 1791. On the appearance of this work, the universal attention of the Philosophers of Europe was arrested. This discovery was made at a time when something more than hypothesis was necessary to satisfy the mind of the inquisitive inquirer after scientific truth.- To this desire may be referred the almost innumerable experiments which were made in: every district of Europe, in consequence of this publication; by which means the science became considerably enriched by the addition of a great variety of new facts, by contemporaries and successors, insomuch that it is said, the labours of Galvani, the original discoverer, bear but a comparatively small proportion to what have been since adduced for its illustration.
Galvani found that, by the mere agency of a metallio substance, where he had no reason to suspect the presence of electricity, the limbs of a recently killed frog were convulsed; and having ascertained the fact by a number of experiments, he in the course of his inquiries found, that the convulsions or contractions were produced only when dissimilar metals were employed. It was now inferred that electricity is not only produced by the friction of bodies, but even by the mere contact of certain substances. At the same time it was admitted, that these substances must have Bint chemioal agency or action upon each other, and that the effect produced seems to be proportionate to the degree of chemical action. The following well
known facts were now supposed to be explained by thin science. Porter, taken from a pewter pot, has almay: been held by connoisseurs in that liquor to be better than when taken from China or glass: this was now said to arise from a certain decomposition effected by means of the liquor in the vessel-the porter, and the saliva on the under lip coming in contact with the metal. Pure mercury retains its metallic splendour a long time, but its amalgam with tin, \&c. is almost immediately oxydated or tarnished. Inscriptions of very ancient date, on pure lead, have been found in : perfect state, while others of modern times, made on compound metals, are corroded and scarcely legible. Works of metal, whose parts are soldered together by means of other metallic substances, soon tarnish, or are oxydated about the places in which the different metals are joined. So likewise is the copper on ships, which is fastened on by means of iron nails. Zinc also may be kept a long time under water, with scarcely any change; but if a piece of silver touch the sine while under water, there will be very soon a sensible oxydation. Take a piece of zinc and place it under the tongue, and lay a piece of silver as big as half a crown on the tongue, and no particular taste will be observed; but bring the outer edges of the metals together, and a very disagreeable taste will be perceived, which is said to arise from the decomposition of the saliva, a watery fluid. The same thing may be noticed with a guinea and a piece of charcoal. These facts have been thus explained, and the theory generally admitted:-The conductors of electricity, however they may differ from each other in their conducting powers, may be divided into two classes." The firt class, which are denominated the $d r y$ and more perfect conductors, consist of metallic substances and charcoal: the second class, called also imperfect conductors, aro water, acids, \&c. From these, or some of them, all Galvanic Circles, as they are named, are formed.

Hitherto this influence or agent had been ohiefly investigated with reference to its operation on animal substances. Hence its popular name was for a long
time, al湆 agen not ind the ret mord G tension new d quarter generall among made b in its Volta se that the the dif likely to obtaines the elec the dise pieces o the ele These Galvani science coveries
The tambler sulphuri a piece other ; all in t and bot the firs occasion
The of zine, of copp of pape: of salt paper, whole
ained by thin t, has almay to be better this was now n effected by orter, and the act with the splendour: co. is almost scriptions of n found in : nes, made on rcely legible.
together by a tarnish, or the different per on ships, nails. Zine water, with ver touch the very soon \& and place it ver as big as rrticular taste edges of the taste will be decomposition thing may be rcoal. These eory generally ity, however ir conducting s. The firit more perfect and charcoal: inductors, an of them, all ormed. been chiefly on on animal as for a long
time, animal electricity: but it being soon found that idengen was more extensive, that it possessed powers not indicated by this denomination, and that of course the retention of this name would lead to error, the word Galvanism was adopted in its stead. This extension of the Galvanic principle was connected with new discoveries; and improvements from various quarters ; these, however, for a considerable time; were generally small, and unimportant in their nature. But among all the recent discoveries in Galvanism, that made by Professor. Volta; in 1800 , is most remarkable in its nature, and most interesting in its relations. Volta set out with the idea, contrary to that of Galvani, that the electricity did not belong to the animal, but to the different metals employed. Galvani was not likely to produce any greater effect than what could be obtained, by two pieces of metal, because he believed the electricity to be in the animal. Volta was led to the discovery of the battery, by combining a number of pieces of metal together, because he was persuaded that the electricity was in the metals or fluids employed. These repeated combinations obtained the name of Galvanic, or more properly,-Voltaic batteries : and the science itself is usually denominated, from the discoveries resulting from these batteries, Voltaism.
The simplest galvanic apparatus consists of a set of tumblers, containing water slightly mixed with nitric or sulphuric acid, which are connected by bent wires with a piece of zinc at one end, and a piece of copper at the other; connect the tumblers by placing these in them all in the same order-one metal in the first and last, and both metals in each intermediate one:-touching the first copper and the last zinc with the fingers, will occasion a shock.
The pile is made thus; take twenty or thirty pieces of zinc, each as large as a penny. Get as many pieces of copper about the same size, and also as many pieces of paper or cloth, which are to be dipped in a solution of salt and water. In building up the pile place zinc, paper, copper, \& s.c. constantly in the same order until the Whole be finished. The sides of the pile may be sup-
ported with rods of glass, or varnished rood, fixed in tho board on which it stands. The following experiments may then be performed :-

Having wet both hands, touch the lower part of the pile with one hand, and the upper part with the other; a slight shock of electricity will be felt as often as one hard is removed. If the hand be brought back, a similar shock will be felt. Put a basin of water near the pile, and put the left hand into it, holding a wire; the one end of which touches the top af the battery or pile; then put the end of a silver spons between the lip and the gum, and with the other end of the spoon touch the lower part of the pile; \& strang shock is felt in the gum and in the hand. Take tha left hand from the water, but still keep hold of the wire, and then perform the last experiment in the same manner, and a shock will be felt in the gam only. Hold a silver spoon in one band, and touch with it the battery at the lower part, then touch the upper part with the tongue, the bitter taste is extreme. In performing the above experiments, if, instead of the two ends of the pile, the one end and the middle of it be touched, the sensations will not be nearly so strong.

The Galvanic trough is a very powerful apparatus; it is composed of zinc and copper plates placed in pairs, so that all those of one metal lie toward the same end. The end plates have connecting wires; and when the trough is filled with water, impregnated with nitric or muriatic acid, and the points of the wires brought together, the action is remarkably powerful; any number of troughs may be united and made to act at once. In this way substances have been decomposed on which the strongest fires had no effect.

Modern research has considerably augmented our know. ledge of Galvanism. It was, after some time, discovered that the efficiency of a Galvanic Circle depends on its being formed of three bodies, two of which have a power ful effect on each other, but neither of them, if possiblo any, on the third. Hence perfectly pure zinc, or (what
 cury, platina, aud diluto anid; on harcoal, kino, and
nuid, f from batteri upon 1 connec some portion nects t
Gal and \mathbf{u} process perfect plates, silver, trated of ung immer plate (sulph connec gradua copper The rating are use of ama and th tion of medal being cell is the ple covered will de which of it and be the me mane

fixed in tho experiments p part of the th the other; as often as be brought a basin of land into it, touches the id of a silver ith the other the pile; hand. Take eep hold of ment in the in the gum 1 touch with h the upper xtreme. In d of the two dle of it be strong. I apparatus; s placed in toward the wires; and gnated with the wires y powerful; made to act decomposed
our know. , discovered jends on ite tre a power , if possiblo ac, or (what
 1, exinc, and
nud, form batteries which are very effective, and which from their long continued actions are called constant batteries; indeed the zinc in them is not at all acted upon by the acid in which it is immersed, unless when connected with the platina, \&c., by means of a wire or some other conductor; and then only to an extent proportioned to the goodness, of the conductor which connects them:
Galvanic action is now applied to a very interesting and useful purpose, which is called the Electrotype process. This enables us with great facility, and the most perfect exactness to copy medals, engraved copper plates, \&cc., and to cover almost any substance with gold, silver, copper, \&c. In its simplest form it may be illustrated by a small Galvanic battery, consisting of a vessel of unglazed porcelain, within which is a piece of zino immersed in dilute sulphuric acid, and outside of it a plate of copper immersed in a solution of blue vitriol (sulphate of copper); when the zinc and copper are connected together by a wire, \&c., the former will be gradually dissolved, and the latter covered with fine copper deposited from the blue vitriol.
The experiment will be more perfect, when a generating cell (a constant battery) and a decomposing cell are used. Let us suppose the generating cell to consist of amalgamated zinc, platina, and dilute sulphuric acid; and the generating cell to be a vessel containing a solution of blue vitriol, in which a plate of copper and the medal intended to be copied are immersed, without being in contact. When the zinc of che generating cell is connected with the medal, and its platina with the plate of copper, the medal will in a few hours be covered with a plate of pure copper, whose thickness will depend on the time used in forming it, \&c., and which being removed from the medal, and placed instead of it in the gendrating cell, will constitute a matrix, and be covered with copper, thus affording a copy of the medal, than hish nothing can be more exact. The same matrix will, it is evident, be sufficient for the p̄rutution of an inçê̂nite numier of copies.

MAGNETISM, \&c.

The production of magnetism by electricity is another of the important resulta which have arisen from our increased knowledge of Galvanism.

Almost every one lnows that property of the magnet which causes it to attract iron and a few other substances. This attractive power may be communicated temporarily to soft iron; and permanently to steel, either by the natural magnet (the loadstone) or the artificial (a magnetized bar of steel). If a magnet be suspended freely it will arrange itself north and south; that is, one pole or extremity will point almost north, and the other in the opposite direction. This directive power, as it is called, is what makes the mariner's compass so useful to the navigator. By its aid he may traverse the pathless ocean, during the darkest night, in the utmost security; and yet it consists merely of a needle (a smali bar of steel magnetized) balanced on a fine point, so that it can move in every direction over a circular card, marked with 32 divisions (called points), in its circumference.

If a bar of steel is carefully balanced on a point, and then magnetized by rubbing it to a magnet, or by any other means-except in a part of the earth just midway between the magnetic poles-it will no longer remain in equilibrio, but will form an angle with the horizon, which is called the angle of dip. Hence to make the needle of the mariner's compass assume and preserve a horizontal position, we are obliged to render one end of it heavier than the other. We have already said that the needle does not, when left to itself, point due north and south; the angle it makes with a horizontal line lying in the meridian of the place is called the angle of variation of that place. It is to be remarked that this angle is not always the same "even at the same place Both "dip" and "variation" arise from that cauis Which makes the needle point to the magnetic poles, namely, the earth being a great magnet and acting as such on the needle. We may illustrate both dip and rariation by placing a magnetized bar of steel undor
the needle, in such a way as that it will occupy the same positions with reference to it, as the magnetio zxis (a line passing through the magnetic poles) socupies.
It only remains to show why the earth acts towards the needle as if it were a great magnet. The earth is what is called an electro-magnet; that is, one formed by the circulation of electrical currents around it. The bonneotion between electricity and magnetism was long known; but that electricity circulating around the needle will cause it to be deflected from its ordinary position, and that the same current passing round a bar of iron would magnetize it, are facts which constitute 3 reeent and very important disoovery.
The currents which produce the magnetism of the garth are due to the enormous evaporation from its surface, and to the constant change of temperature cansed by revolution on its axis, which exposes difforent parts of it in succession to the sun's rays.-Electricity developed during change of temperature has been designated thermo-eloctricity.
We are not to suppose that only ferruginous substances (although the best for the purpose), or even metals alone, are capable of being magnetized by means of electricity.
We may illustrate the most interesting facts in electromagnetism by covering copper wire with worsted, cotton, or some other bad conductor of electricity, and then coiling it round a bar of iron. On connecting the extremities of the wire-coil or helix, as it is termed, respectively, with the plates of a Galvanic circle, the iron bar will be found to be highly magnetio. It is necessary to cover the wire with some non-conducting substance, or the electricity instead of traversing the length of it, and so passing round the iron, would pass directly from one part of the wire to another, selecting, as eleotricity always does, the shortest path.
The helix is capable not only of producing magnetism in iron, but also elecirieity in another helix placed around or intertvined with it; and it is found, whethor used by itself, or in combination with another, to give to the electricity derived from a single Galvanio eirole Y J. Ln
aro intonsity whioh conid scartooly be obtained foum tho combination of a very great number of circles-this sino of one being connected with the copper or platins of the next; which is the mode of arrangement repuired, When we desire to give to Galvanic electricity a grenter or less degree of intensity; that is a capability of producing mechanical or physiological effecte, and tho power of traversigg bad; or imperfect conductors.

caloric.

Heat, strictly speaking, is the name of a sensation, though it is customary to speak of the heat of the sun, or the heat of the tire, just as readily as of the helt which these bodies are cupable of exciting. It mu with a view of avoiding the confusiun which arom from thus confounding the cause and effeet, that modern ehenists adupted the pew word calluric, to denote the principle which produces heat.
The nature os caloric is not yet well understood, it being still doubtful whether it be a naterial substances, or a mere property of mutter. It is generally regarded; however, as a fluid of great tenuity which pervades the whule system of nature.
Galuric is produced in various ways; by combustionby friction,- by percussiom, -by the misture of two or minre substinures, as when sulphuric aoid is poured upon wuter or magnesia-by electricity and galvanism. But the prineipal source of caluric is the sun.
Culuric is either latent or free. All bodies are sup. posed to contuin caloric, but when it is neitier pervepp tible by the senses, nor affects the thernometer, it is terwed latent heut; if by any meaps we can ascertain its presence, it gets the name of froe caloric. Broe calurio always tends to diffuse itself equally; in other words, whée two bodien are of different temperatures, the waruer gradually parts with itw eclloric to the colder, till they are both brought to the same tant peisture Thua, What i thomomother in applinat wa
not
to it receiv arive diainin marbl exper your broug a piec contrea by th Th bodies specie with Bubstia them, liiguid wood, put ol suon? of wo cuinst ab to touch, appare to hol purt b but of eviden is to i as pos the te of the the to roundi cuñtrin tima nool, ivin
thot boty it reociva caloric, when to a cold one it gives to it part of its 070 oaloric; and this giving and receiving gies on uath the thermometer and the body orrive at the same temperature. Cold is merely a dituinution of heat. When you lay your hand on a marble table you indeed feel it cold, but the cold you experience consists merely in the loss of caluric that your haind sustains whilst its temperature is being brought to an equilibrium with the table. If you lay - piece of ice upon the same table, you will find that a contrary effect wiil take place, the ice will be melted by the caloric which it abstracts from the marble.
The facility with which caluric enters or leaves bodies, depends much on the mature of the body; some species permitting the passage of caloric through them with ease, and others with much difficulty. Those substances which permit caloric to pass readily through them, are called good conductors; thus metals and liguids are good conductors; but silk, cotton, wool, weod, dic. are bad conductors. For cxample, if we put one end of a poker intu the fire, the other enci will suon becowe hot, but this will not happen with a piree of wood of the same length, and under the same ci:oumstances. A person may stand so near the ifre, as to make the metal buttons on his coat too hot ti touch, whilst the temperature of the cloth will be apparently scarcely altered. When there is occasion to hold any metallic instrument, we take care that the part by which it is to be held shall not be made of metal, but of wood or bone. Good conductors of heat would evidently form bad clothing. The object of clothing is to intercept the heat, and preserve the body as much as possible at a uniform temperature. In cold weather, the temperature of the atmosphere being lower than that of the body, clnthing formed of non-conductors prevents the too rapid escape of heat from the body to the surrounding air; und, in very hot weather, it answers a ountrany purpose,-preventing the too rapid onmmuniontion of beut to the body. Animalo are vothed io fur, wool, feuthers, de. all non-conductors; and man bortow hin thething, it a grait deyree, from thom.

One of the most remarkable properties of calorio is the repulsion which exists among its particles. Henoe it happens, that when this principle enters into a body, its first effect is to remove the integrant molecules of the substance to a greater distance from one another. The body, therefore, becomes less compact than before, occupying a greater space, or, in other words, expands. Now this effect of caloric is manifestly in opposition to cohesion-that force which tends to make the particles of matter approximate, and which must be overcome before any expansion can ensue. It may be expected, therefore, that a small addition of caloric will occasion a small expansion, and a greater addition of caloric, a greater expansion; because in the latter case, the oohesion will be more overcome than in the former. It nay be anticipated, also, that whenever caloric passes out of a body, the cohesion being then left to act freely, a cons traction will necessarily follow; so that expausion is only a transient effect, occasioned solely by the aocumulation of caloric. It follows, moreover, from this view, that caloric must produce the greatest expansion in those bodies, the cohesive power of which is least; and the inference is fully justified by observation. Thus the force of cohesion is greatest in solids, less in liquids, and least of all in aëriform substances; while the expansion of solids is trifling, that of liquids much more considerable, and that of elastic fluids far greater. It may be laid down as a rule, the reason of which is now obvious, that all bodies are expanded by heat, and that the expansion of the same body increases with tho quantity of caloric which enters it.

INTRODUCTION TO CHEMISTRY.

Chemistry is the science which makes known to us the nature and properties of all bodies, whether these bodies be simple or compound-solid, liquid, or aëriform.

The importance of the science of chemistry is evident from the following considerations. In aequiring a know-
lodge gating of ten snow, guide. becaus mind, mical explai In miner essenti inquir ${ }^{1}$ In purify all the and po and bl the p most 0 The onable import source ages. linen non u cheape dry bo preser their of life once c ceptibl
remote palatak and a tritive Che \#hioh, 10 T
calorio is les. Hence into a body, cules of the other. The an . before, ls, expands. pposition to he particles e overcome e expected, ill occasion of caloric, \& e, the coheer. It nay asses our of reely, a con. xpausion is the accumuthis view, sion in those st; and the

Thus the in liquids, the expanmuch more greater. It hich is now at, and that with tho

Y.

nown to us ether these liquid, or
y is evident ing a linow.
lodge of the constitution of the atmosphere, in invastigating the changes to which it is subject, the variations of temperature, the laws of winds, dew, rain, hail, and snow, chemistry is our principal, our only satisfactory guide. These remarkable changes-changes, which, because familiar, do not produce any emotion in the mind, though in themselves truly wonderful-are chemical operations on a magnificent scale, and can only be explained on chemical laws.

In examining the various objects which compose the mineral, vegetable, and animal kingdoms, chemistry is essentially requisite for the successful prosecution of our inquiries.
In the art of extracting metals from their ores, in parifying and combining them with each other, almost all the processes are purely chemical. The arts of glass and porcelain-making-of tanning, soap-making, dyeing, and bleaching-depend entirely upon chemistry; and all the processes of baking, brewing and distilling, and most of the culinary arts, are chemical operations.
The transformations of chemistry, by which we are enabled to convert materials apparently useless into important objects of the arts, are opening up every day sources of wealth and convenience unknown to former ages. Who, for instance, would have conceived that linen rags were capable of producing more than their oron woight of sugar, by the agency of one of the cheapest and most abundant acids-the sulphuric? -that dry bones could be a magazine of nutriment, capable of preservation for many years, and ready to yield up their sustenance in the form best adapted to the support of life, on the application of stea:n, or of an ucid at once oheap and durable?-that sawdust itself is susceptible of conversion into a substance bearing no remote analogy to bread; and though certainly less palatable than that of flour, yet no way disagreeable, and at once wholesome, digestible, and bighly nutritive?
Chemistry makes us acquainted with many facts, of जुich, without it, we must have remained in ignorance. Low woideried that the dianoad ohould be mado of

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic Sciences

Corporation
the sabne material with coal; thet the ahowitpentroly bulk, of water should be an inflaminable substamee; that acids should be alunost all formed of difforeat kinds of air; and that one of those acids, the strength of whioh can dissolve almost any of the metals, should be mado of the same ingredients with the common air that ine breathe.
If we consider chemistry purely an a science, we shall find no study which presents more interesting subjects of research, and none which lafford more striking proofs of the wisdom and beneficence of the Crentor of the universe. In all the singular and sur prising changes which every where present themaelves, the more closely we examine them; the mere we shath admire the simple means by which they are acuouplished, and the intelligent design and perfect wisdom displayed in thom.

CIIEMICAL AFFINITY.

That property of matter which occasions the combination of heterogeneous bodies, is the cause of the principal phenomena of ohemistry, and is, therefore, culled chemical affinity or attraction. It is also sometimes termed electric attraction, and the attraction of couposition, to distioguish it from cohesive or aggreguive attraction.

Obemical attraction may be defined to be that epergs, in consequence of which different kiuds of matter uyite to furm compounds, having properties often dissiuilar from those of their component parts, so that the result of cheunical combination can only be ascertained, at least in the first instance, by experiment. / Thus, if irun Gilings be dissolved in sulphurio auid, or as it is commonly called, oil of vitriol, u substance will be produced which bears no kind of resemblance to either of its component purts, it is called by chemists sulphate of irve, and vulgarly, copperas, or green vitriul-a greenish, semi-unusparent crystallizad mubstanca, haviny uuthing of the appearance of the metal, mor of the swar tance of Tho wich Avetie maid wr thy roid yf piemear, in the mum

Than (cananti name lignid тадйе dentruc pound, or die
bo 10 gaseow Thus, by'ohe togeth white
amman
The by the
1.1 by ditit 2. 1 and he tipn, ta and in
8. nerally 4.1 thays b. 1 cules, of one with uniting 6. modes anothe and a be pre +ry: ill b

- mapaperdivolves coprar, sad conotitates with it tho blen efforentont alt eelled verdigric. Caustio vogotablo alknii (cunutic poteshb) in a deliguenonat substanco, whioh, es it name implien corrodes flesh; and culphuric soid is: liguid whiah, when concentrated, atts mpeh in the eame. manguer on tleah; bat from the anion of thene bodive, oce deutructive to apimal matter, resples the chemicel come pound, sulphate of potmeh, a salt whieh, whether solid or diesplved in watar, does pat sat on the akin, and may bo srallowed with enfety sometimes tro liquide or gaseous bodies, by their union form of solid compound, Thus, the gua that rises from spirit of haitshora, called by "ohemists ammonia, and muriatio acid gas, if mized cogether in an empty jar, becane condensed into a white salite solid, called muriate of ammonia, or sal mmopia.
The phenomena of chomional attraction are regulatod by the folloming laws:

1. This attruetive force is arerted in difforent degrem by difuerant bodies.
2. It operaten oply on very minute partioles of bodies; and hence chemical action is promoted by previous solntion, trikuration, or other mechanieal methode of diviaion and intermixture.
3. When bodiescoubbine, an alteration of temperaturegenerally tukes place, nometimes with the ext pition of liyht.
4. Rodies which have an attraction for each other are atways foupd to display opposite states of electrioity.
5. All bodies ane oomposed of certain atoms or molocolen, and dhemical coubination consists of the union of one or more atoms on ne of the upiting bodien, with nuime doterminate number of atoms of the other uniting body.
6. Chemical attraction taken placo in three different modes:-1. When one simple body is presented to another for whieh it has an affinity, a union takes pluoe, and a compound is formed. 2. If a simple body, A, be preseited to a complund, $B C$, and if A thave a trutut efinity for B then 0 hen the fompopnd B O vill be decumpomen, and a nat compound A B, will

another compound, $O D$, though neither A nor B woula alore decompose C D, yet a mutual decomponition may take place between the two compounds, and oc. oasion the formation of two new compotinds $A D$ and C B. The first and second modes of attraction are styled instances of simple affinity, or simple elective attraction; and the last mode is styled cotmpound affinity, or compound elective attraction.
7. All compounds, when they enter into union with other bodies without being decomposed, act in the same manner as simple bodies.
deprowt the wam to the of fitur this cla
Somé abundal nature, others have hi in few stances prehend entire: thirteen all rega propert racteriz bodies,
nally ap
The
tary su fluorine phosph
$0 x y$ bodies. of gas. atmosp into a
oxygen
most n
Oxyger
tasteles
commo

any in
it burn
doproathente some of these bodies to be compounds. At. the same time, it is probable that additions may be made. to the class of elementary substances, in consequence of fiture discoveries-several of those now admitted into this class having become known to us but very recently:

Somée of these elementary bodies are widely and abundantly dispersed throughout the three kingdoms of nature, either alone or in a state of composition, while others appear to be of very rare occurrence, or at least have hitherto been met with only in small quantities, and in few situations. The whole of the elementary substances may be arranged in two divisions; the first comprehending those which are not of a metallic nature, the entire number of which, now known, smounts to only thirteen ; the remaining forty-two elementary bodies are all regarded as metals, though some of them exhibit properties differing considerably from those which oharacterize gold, silver, mercury, lead, iron, aud other bodies, to whioh the designation of metals was originally applied.

The following are the thirteen non-metallic elementary substances: oxygen, chlorine, iodine, bromine, fluorine, hydrogen, nitrogen, carbon, boron, silicon, phosphorus, sulphur, selenium. Book of Science.

ON SIMPLE BODIES, CONTINUED.

Oxygen is one of the most important of the elementary bodies. In a simple state, it is obtained only in the form of gas. It is an exceedingly abundant body; the air of the atmosphere contains one-fifth, and water is resolvable into a mixed gas, one-third of which, by bulk, is oxygen, and the remainder hydrogen. It also ezists in moat natural products-animal, vegetable, and mineral. Oxygen gas is, like common air, colourless, invisible, tasteless, inodorous, and elastic. But it is heavier than common air, In the proportion of $11 \frac{1}{2}$ to 10 . It is a poterful givppottor of combistion; that is to say, whon any inflamed body, as a lightod candle, is put into it, it burnesting vigotbaly-muck nore to than when in
ounmen sir ; indoed is in ofving to the oxggen it cmatem that common air upports combuation oll In presence is also necessury for the continuance of maimat life. We cinnot breathe air whioh hat boen dequired of its ozygen.
Ifydrogen is known only in tho state of res, and is sometimes callod inflammable air. It is tho lighteat off all bodies that can be weighod. It is ona af che ingredients which form water-from whioh it can be easily procured. Hydrogem gas, whan pune, pow sesses all the mechatical properties of cammon air. It does not support sombustion, though it in itmall one of the most conspustible of all bodies; for if lighted candle be put tnto o vesad cantninine hydrogen, the candle will be instantly extinguished, white the gow itself will be inflamed Itris not fit for respitnion, fon animals which breathe it die alinost inatintaceomely. If pure oxygen and hydrugen be mixed hogether, and the mixture set fire to, it explodes with grent violence, and forms water. Hence we see the origin of the term hydrogen, whioh literully-oignifies the waterformer. Hydrogen gas is, on aucount of ita greater levity, apployed to fill bulloone.

Nitrayen, called alus azote, is a gaseous body, rather lighter than common air; of which it forms four-ifith parts, the remaining one fifth being oxygen. It has neither culour, smell, nor taste. It does not support combustion, nor is it oombustible itself, for if a lighted candle be put into a vessel containing nitrogen, it is instautly extingui,hed, and the gas itwelf duen not take fire, as is the case with hydmgen. Nitrogen is fatal alsu to auimul life; any animal put into it dies in a vers short time.

ON SIMPLE BODIES, CONIINUED.

 CAABON.When wood is heated to a certain degree in the open air, it takes tire, and forms whilat burning, water and carbonic ucid gas, till the whole of it is cousumed A anull guriou of mhom io sho molonvive सhe if tin
athinospl quancit.
polleds called 0
Ohat the irol prideeat called le Fegetab vemeols.
fromist spitit bented
covered
of char
Wis em ariour pait of nvarie and di intre p water, serte poind
mure n bodiew, Cha priticip Wheta tdae? ientionar render water

Sul
parts o
volcans
in brywtul binatio
vicisiv
 athospherio air ounnot have free acoess to it, a lerge quancity of gassouns and other volatile mattors in ax. polledjsand a Whick; hard, porous isubstance is loft, oalled charcoal.
ai. Ohatcial may be peocured from other souroes. When the ivolatile mattery are driven off from coal, ass in the proceas of making coal gas, a peeuliar kind of charooal, colled icoke, remains in the retort. Most animal and Negetable zabatanees yield it, when ignited in close vemels Thue a very pure obarooal may be prooured fromistarch or sugar, and from the oil of turpeatize or spitit of mino, by passing their vapour through tubes bented to redness. Whem bones are made red hot in a coverol orucible, a black inass remains, which consists of chansoal mimed with the earthy matters of the boma. Wh is celleat itory blaek, or animal charooul. ariCurtion is the anme given to the pure inflammable part of oharcoal, of whieh substance the diamond is only a variety lin a pure crygatallized state; for pure charcool aud ditumond, wher sherted in the sume manuer, prodicee procisely the same results. Caroon is insoluble in water, and intusible by the most intense heat, provided wistoreseladed. Aniumal and vegetuble oils are counpoind aturost entirely of ourbon und hydrugen. The miue may be observed of gun, sugar, and staucch. Them bodieg, however, contain oxygen.
To Oharoeal absorbs the udoriferous and oclouring priscipter of unost animal and vegotable substuncea. When eoloured iufusions of this kind are digested with ndre quantity of charcool; a sulutive is sobtuined, which imently if pot quite coolourlese. Taiuted Alesh way be rendered sweet and eatuble by this meuns, and soul Water may be puritied by fittering through charcoul.

Sulphure oceurs as a mineral production in some parts of the earih, particularly in the neighbourhood of volcanoes, as in Ltaty and Sicily. It is oumumouiy found in minssive atate; but is sometimes wet with in a brynullized form. It is procured mbundantly it comebination with several movels, such we silver, cupper,

quantition by exposing the common iron pyrites to a rod heat in close vessels.

Sulphur is well known under the name of brimstone. It is a brittle solid body, of a greenish yellow colour, omits a peculiar odour when rubbed, and has little taste. It is insoluble in water; but if poured into it when liquified it retains its softness, and is in this state employed for taking impressions from seals and medals.

Phosphorus was discovered about the year 1669, by Brandt, an alchemist of Hamburgh. It is a semitransparent yellowish matter, of the consistency of wax. It is procured, in general, by the decomposition of bones. It is exceedingly inflammable. Exposed to the air at common temperatures, it undergoes a slow combustion'; it emits a dense chite smoke, which has the smell of garlic, appears luminous in the dark, and is. gradually consumed. On this account, phosphorus should always be kept under water. On accunat of its very combustible nature, it requires to be handled vith great caation; gentle pressure between the fingers is sufficient to kindle it. It burns rapidly, emitting a splendid white light, and causing an intense heat.

Oflorine was discovered in 1770 . It is substance of much importance, being, in combination with other substances, extensively used in the arts. Chlorine is a yellowish-green coloured gas, which has an astringent taste, and a disagreeable odour. It is one of the most suffocating of the gases, exciting great irritability in the wind-pipe, even when considerably diluted with air. When strongly and suddenly compressed, it emits, both heat and light-a character which it possesses in common with oxygen gas. Under considerable pressure it assumes the form of a limpid liquor of a bright yellow colour. Chlorine is a supporter of combustion. If a lighted taper be plunged into ohlorine gas, it burns with a small red flame, and emits a large quantity of amoke. Phosphorus takes fire in it spontaneonsly: Several of the metals, such as tin, copper, arsenic, antimony, and zino, when introduced into ohlorine in the atate of powdor, or in fine lonveng are muddonly
infom possense does it acids. d ohlorin vegetab when t restorec water purpose fever h destroy mitted
disease.
Todi
some of and po sulphur coloure vessel, orystals are the pour it forming little hence i of each perman lours, t dicine: large d able em

To t bromini spar), a of less them i shall on
infiomed. Chlorine, though formerly oallod an acid, possesses no aoid properties. It has not a sour taste, nor does it redden the blue colour of plants, which nearly all scids do. One of the most important properties of chlorine is its bleaching power. All animal and vegetable colours are speedily removed by chlorine; and when the colour is once discharged, it can never bo restored. Chlorine, however, cannot bleach unless water be present. Chlorine is useful also for the purposes of fumigation, and is used to purify the air in fever hospitals. The infection of the shall-pox is also destroyed by this gas, and matter that has been submitted to its influence will no longer generate that disease.

Iodine is a substance much resembling chlorine is some of its properties. It may be procured by drying and powdering common sea weed, and heating it with sulphuric acid and peroxide of manganese: a violet coloured vapour rises, which, if received in a cool vessel, will condense on its sides, and will form scaly orystals, of a somewhat metallic lustre. These orystals are the substance: from the violet colour of its vapour it is called codine. It has the property of forming a beautiful blue colour, when mized with a little powdered starch, diffused through cold water; hence iodine and starch are used as tests of the presence of each other. Iodine stains the fingers yellow, but not permanently. Like chlorine, it destroys vegetable colours, though not so powerfully. Iodine is used in medicine: in small doses it increases the appetite; but in large doses, or continued too long, it produces remarkable emaciation.

To these simple non-metallic bodies we might add bromine, selenium, boron, fluorine (the base of fluor spar), and silicon (the base of flint). But as they are of less importance, and as the nature of some of them is still a subject of dispute with chemists, we shall omit the oonsideration of them for the present.

Now And b Alone Which

Thit
And k First TROUE LIBERTX. The m All elo
True Tibeiry wan Citristian, enhetifed,
Binptized, and found in Christiant heinrew alnit.
Fithit-burn of Virtue ! daughter of the Aliet!
Nurvling of Truth divine! sister of all
The Grices, Meeknens, Holiness, and Lotr:
Giving to God, aide uila, and hill below,
Thiat gijuptomin show'd of seninible existende,
Theír due unisk'd, fest to whoni feur wats they ton frict
To all, resipeci, benevolencé, and love.
Cowilipuniou of Religlon; where she otims,
Thirb Mreedom bame; wherd dwelt, there Freetoith dwèlt
Ruled whete shër rulted, bxpired where she expired. has
"He was the freemán whion the truth niude frioe;". ?
Who first of all the bunde of Sutin broke; , ta anthat a
Whu broke the bunds of Sin; and for his sout,
In spite of fonls, contaulted seriously; yow ads buid at
In spite of fanhion, peninevered in pond;
lis spite of wicalith or poverty, upright;
Who did as Reason, not as fancy bade;
Whio heurd Teniptution sing, nid yet tumed vot ur ent
Aside; sum Sin bedeok her flowery bed, quida a,4 3
And yet would not go up; felt ist his heart derte-men sul?
The sword unsheathed; get would not wetl the thetbg Who, haviug power, had not the will to hurt;
 Whu blush'd at nought but kin; feardd LDughitsulv God Who, tinually, it strong integrity

Uplifted calmly mat, and beard the wavee ©

Thil on
Who b
Toil or
With
Your
And y
Ye're'
A fabr
Ye bin
The oo
Fresh
Like t
The tu
O'er th
The se
And
Berint
The w!
There
'Mid
There
Thoro'
 Anc buth deuphed inficerely; wolligg thit Alono-the approbation of his lod, Which atill whit oondidienét Mibesod to hith paiot.

> This, this is Afoedom, fruch wingels uls, And kindred to the libierty of ired.
> Firat-born of Virtife! daughtect of the stios! The man, the state in whow she ruled, was froe; All elee woite alaven of Suth, sing and. Denth.

Posioun.

TUE CORAL INSECT.

Thil on ! toil on! ye ephethes I train, Whn build in the toasing and Ireacherous main, Toil on,-for the wisdoh of a an ye nuok,
With your sandi-bwed atruttu es and donies of rook;
Your colunuse the fatioulless surntaine lave;
Aud your arched apring ap- en the erested wato;
Ye're' a pung raue, thas buld to to folat
Δ fabric so watt in eyewh so dreaf.
Ye bind the deep will your seanet rofis;
The ocean is seal d, wnd the su ge a ntorid;
Fresh wreathe froin the eorail pi vene ent spritg Like the terraded pride of A pivia's king;
The turf looly gueell where thi breakers roll'd; O'er the whirlpool dpeile the ridi of gola; The sea-snateled isfe in the home of ment: And mountuind exule where the wive hith been.

The wrod fog reve for tho pallinet burk?
There are stinto ericuibl on the conted fidla,

There are afyatu wod, ow tne fiowers du poj

There aro foes that watoh for his oradtabreithy
And why need yo sow the flocds with death?
Ye build,-ye build,-but yo enter not in,
Like the tribes whom the desert devourd in thoir sin;
From the land of promise ye fade and die,
Ere its verdure gleams forth on jour weary eje y 10 As the Kinge of the cloud-orown'd pyramid Their notaless bones in oblivion hid;
Ye slumber unmark'd 'mid the desolate main, While the wonder and pride of your works remain. SICOURIET.

The keener tempents rise; and fuming dun, From all the livid Hast or piarcing North
Thick clouds ascend, in whose capacious womb A vap'ry deluge lies, to snow congeal'd. Heavy they roll their fleeoy world along, And the sky saddens with the gather'd storm. As thus the snows arise, and foul and fierce All winter drives along the darken'd air, In his own loose-revolving fields the swain Disaster'd stands; sees other hills ascend, sify chet Of unknown joyless brow, and other soenea, Of horrid prospeet, shag the trscklees plain; Nor finds the river nor the forest, hid Reneath the formless : wild, but wanders on From hill to dale, still more and more astray, Impatient, flouncing through the drifted heaps, Stung with the thoughte of home; the thoughts of home Rush on his nerves, and call their vigour forth In many a vain attempt. How cints bis coul! What black despair what hornor fills hir heat Whon, for the duaky spot yhigh faney felgad His tufted cottage, rising throdigh tho anol

Ho mooter the noughmen of tho middlo watte Bic x nim: Far from tho crack and blea'd abode of man; While round him pight resintlem oloner frats And ov'ry tompent, howling o'er his hends Ronders bememange vildaemane mare rild:
Then throng the brey shapee into hin mind Of conezd pith unfathomebly deep,
A diro docoent, beygad the yom r of froat;
Of faithlow begev of procipioer high
Smooth'd up ith mnow ; and what if hand unk agmat it
What water of the still ygtropen nprimgeawn rier glifit of?
In the loopo marsh or solitary lake,
Where the frenh fountrini, from the hottom boils,
Theso oheck his femand atere, and doma ho sinka
Beneath the ahelter of the ahapalee drift
Thinking o'er all the bittarmem of deuth,
Mix'd with tha tendor anguigh natnue ahoots
Through the wrang bopomo of the dring man,
His wife, his chilidran, and him frienom unspen.
In vain for him th' oftoigoth wif prenarge
The fire fir blitine and the reement armm In vin hin liticto ohildren, jepping ont.
Into the mingling ptoryo, demend their rire, \quad vigs iniz With tears of ariem innocence. Aliel Nor wife, nor childran, maro ahall ho behold, Nor friend, nor mared homer On evzs neive The deady wipter caizer, ahota up mepse, And or'r his inmost vitht creapipg cald Lays him along the shomis, \& gtifitend cogipea, Stretch'd out and bleching in the northern plath 10 THOMBRN:

qua lu BRNAITS OP ABLHCTION.
 Leade to the land where corrom it unknown. Jio thaveliter over remohed that biemod sbode, Who found pot thoras and bries in his sond.

The world may dance along the fowery plain,
Cheered an they go by many a sprightly strain;
Where nature has her mossy velvet spread,
With unshod feet thoy yet securely tread:
Admonished, scorn the cantion and the friend,
Bent all on pleasure, heedless of its end.
But He, who knew what human hearts would ptoves
How slow to learn the dictates of His lovi, si
Fhat hard by pature, and of stabborn will, ivensin bta
A life of ease would make them harder still,
In pity to the souls his grace designed
To rescue from the ruin of mankind,
Called for a cloud to darken all their years,
And said, "Go spend them in a vale of tears.
0 balmy gales of soral-reviving air!
0 salutary streams that murmur there!
These, flowing from the fount of grace above; atw 却T
Those breathed frem lips of everlasting love,
The flinty soil, indeed, their feet annoys,
Chill blasts of troable nip their springing joys;
An envious world will interpose itt frown, dor
To mar delights superior to its own;
And many a pang, experienced still withing femeat
Reminds them of their hated inmate, Sin.
But ills of evary shape, and every name, intarmach
Transformed to blessings, miss their cruel aimy
And every moment's calm that soothes the breast,
Is given in earnest of eternal rest.
Ah, be not sad, although thy lot be cast
Far from the flock, and in a boundless waste y asterh th
No shepherds' tents within thy view appear,
But the chief Shepherd even there is near.
Thy render sorrows and thy plaintive strain,
Flow in a foreign land, but not in vain;
Thy tears all issue from a source divine,
And every drop bespeakis a Siviour thinean hot gtul k
So onoe in Gideon's fleece the dewn wera found,
And drought on all the drooping herds around

Be wis
Next d
Thus 0
Procra
Year
And to
The va If not
That 't
Of mar
The pa For eve All pay They 0 On thi At leas How e Time That 10 The thi 'Tis no And se
All pro
And th In full
Unanxi As dut At thir Knows At fifty Pushes In all t] Resolve And All me Themee
larikem

PROORASTIVATION.

Be wise to day; 'tis madness to defer; Next day the fatal precedent vill plead, Thus on, till wisdom is pushed out of lifel
Procrsstination is the thief of time;
Year after year it steals, till all are fled,
And to the mercies of a moment leaves The vast concerns of an eternal scene. If not so frequent, would not this be strange?
That 'tis so frequent, this is stranger still, Of man's miraculous mistakes this bears
The palm; "That all men are about to live,"
For ever on the brink of being born:
All pay themselves the compliment to think
They one day shall not drivel, and their pride
On this reversion takes up ready praise;
At least their own ; their fature selves appland,
How excellent that life they ne'er will lead!
Time lodged in their own hands is Folly's vails;
That lodged in Fate's, to windom they consign ;
The thing they can't but purpose, they postrone.
'Tis not in folly not to scorn a fool;
And scarces in human wisdom to do more.
All promise is poor dilatory man,
And that through every stage. When young, indeed,
In full content we sometimes nobly rest,
Unanxious for ourselves, and only wish,
As duteous sons, our-fathers were more wise,
At thirty, man suspects himself a fool;
Knows it at forty, and reforms his plan;
At fifty chides his infamous delay,
Puskes his pradent parpose to resolve;
In all the magnanimity of thought
Resolves and re-resolves ; then dies the same.
And why ? Because he thinks himself immortal.
All men think all men mortal but themselves;
Themelves, when zome alariming shook of fate
tiviken through their wounded heasts the sudden dreme.

But their hearts wounded, like the wounded air,
Or yie Soon close; where, past the shatt, no trace is found. As from the wing no scar the sky retains, The parted wave no furrow from the keel-
So dies in human hearts the thought of death:
Even when the tender tear which natare sheds
O'er those we love, we drop it in their grave.

TASTE.

What then is taste, but these internal powers, Active, and strong, and feelingly alive
To each fine impulse? A discerning sense Of decent and sublime, vith quid disgast From things deform'd, or disarranged, or gross
In species? This, nor gems, nor storts of gold,
Nor purple atate, nor culture, can bestow;
But God alone, when first his active hand
Imprints the secret bias of the soul.
He , mighty Panent ! wise and just in all,
Free as the vital breeze, or light of heaven,
Reveals the charms of nature. Ask the swain
Who journeys homeward from a summer day'
Long labour, why, forgetful of his toils
And due repose, he loiters to behold
The sunshine gleaming as through amber couds,
O'er all the western sky; full soon, I ween,
His rude expression and untutor'd airs,
Beyond the power of language, will unfold The form of beauty smiling at his heart.
How lovely! how commanding! But though Heaves
In every breast hath sown these early seeds
Of love and admiration, yet in vain,
Without fair calture's kind parental aid,
Without enlivening suns, and genial thowers,

The tender plant ahould reir ive blooming Neat,

Nor y
Repay
His wi
The ol
Inclin
The v
Anoth
And g The ar When And 0 Heave Amid The na From The el All on To spr Of pla The ta
Resour
Consen
Joins
And h
Such:

Now,
Hath
Than
More
Here f
The se
And ol
Whioh

Or yield the harvent promitod in in apprigg. Nor yet will every sinil with equal atoren Repay the tiller's labour; or attend His will obsequious, whether to produce The olive or the laurel. Different minds Incline ćo different objeots; one pursuen The vast alone, the wonderful, the wild; Anothór sighs for harmony, and grace, And gentlest beauty. Hence, when lightning fires The arch of heaven, and thanders rook the ground, When furious whirlwinds rend the howling air, And ocean, groaning from its lowest bed, Heaves his tempestuous billows to the sky; Amid the mighty uproir, while below The nations tremble, Shakeppeare looks abroad From some high, oliff saperior, and enjoys The elemental war But Waller longe, All on the margin of some flowery stream, To spread his careleses limbs amid the osol Of plantain shades, and to the listening deer The tale of slighted vows and loves disdain'd Resound soft-warbling all the live-long day: Consenting Zephyr sighs; the weeping rill Joins in his plaint, melodious; mute the groves; And hill and dale with all their echoes mourn, Such and so various are the tastes of men.

Akrnstiz.

DEMACHED PIEOES.

Now, my cormates, and brothers in exile,
Hath not old custom made: this life more weet
Than that of painted pomp? Axe not these woods
More free from peril than the envious court?
Here feel ve but the penalty of Adema,

And ohurlish obiding of the mintar's wind;
Whioh, when it bitee and blown upon mJ body,

> Evon till I dhrink with cold, I millo, and my-
> This is no flattory; these are councollost,
> That foelingly persuade me what I am.
> 8weet are the uses of adversity;
> Which, like the toad, ugly and venomous,
> Wears yet a precious jewel in its head;
> And, this our life, oxempt from publio haunts,
> Finds tongues in trees, books in the running brooks,
> Sermona in atones, and good in overy thing.

Shareppiase.

What you do
Still betters what is done. When you speat sivoof, I'd have you do it over: when you sing, I'd have you buy and sell so, so give alma, Pray so; and for the ordering your affaim, To sing them too. When you do dance, I vish you A wave o' the sea, that you might ever do Nothing but that; more still-still so, And own no other function: each your doing So singular in each particular,
Crowns what you are doing in the present deods,
That all your acts are queens.
SEaxgpara:

Let me play the fool
With mirth and laughter; so let wrinkles come, And let my liver rather heat with wine, Than my heart cool with mortifying groans. Why should a man, whose blood is whrm within, Sit like his grandsire cut in alabanter?
Sleep when he wales, and oreep into the jaundice By being peevish? I tell thee what, Antonio, (I love thee, and it is'my love that ajeakn,)

Do orcam apd mantlo like a standing poad,

And do a cilful gtillnew ontartin,
With purpoo to bo dremed in an apinioa
Of wisdom, gravity, profound conceit; As who should nay, I am Sir Oraclo, And when I ope my lipg, let no dog bark!
Ill tell thee more of thir another time;
But fish not with this molancholy bait
For this fools gudgeon, this opinion.
Come, good Lorenzo, fare you well a whila;
I'll and my oxhortation after dinner.
SHarepting.

A fool - fool - I met a fool i^{\prime} th' forest-
A motloy fool; - miserable varlet :-
As I do live by food, I met fool ,-
Who laid him down and basked him in the sun, And railed on Lady Fortune in good torms,
In good set terms, and yet a motley fool.
Good-morrow, fool, quoth I: No, Air, quoth he,
Call me not fool, till heaven hath cent me fortune:
And then be drew a dial from hir poke;
And looking on it with lack-luatre oje,
Says, very wisely, It is ten o'olock:
Thus may we see, quoth he, how the world wags:
And after one hour more 'twill be eleven;
And so from hour to hour, we ripe and ripe,
And then from hour to hour, we rot and rot,
And thereby hangs a tale. When I did hear
The motley fool thus morat on the time,
My lungs began to crow like chanticleer,
That fools should be so deep-contemplative;
And I did langh, sans intermission,
An hour by his dial. 0 noble fool!
A worthy fool I' Motley's the only wear.

 Nor oustomary suity or woldmenthath, the the semessaf
 No, nor the frultifel river in the ojey

Were
As wl
Berot
From
Oh , t] Now 1 Together with all forms, modoy; thow of grite, avo bas
 For they are motions: that a miat migher play; But I have that within which yaseethenow, These bat the trappings and the suits of woe.

Why get thee gonel horroratha night go whth late. $1 / \mathrm{A}$ Sisters of Acheron, golhand in haind,
 And tell them that II mont youtito walutesthem. ?
 And breath of cjemanino, let heimloth bhacketn, And deadly utightstowe poibonsthe the air: For the sweet nighitingill, may rivehe uroals, tat twidy Toads pant, and addorn tacile throtigh thelenven es A. at? May serpents winding ap the trien let int Their hiaging frecks wipon theis fivariabove, And mingle kiseeswinuch ind I wuld give them.

Tounc.

Why have those bunioherd and ororiden legs
Dared once to touch edust of Dighatides efotind
But more than why - why kive they darie to Hithe
So many miles upon ther peavofuli boovin';
Frightening her pale-fecond will tgen with whe And ostentation of despised arms?
Comest thou because the anointed king is hence γ Why, fooligh boy; the king is teft behind; And in my loyal bowom lien hio power.

Whon
Hro
And

Many
In an
Extall
And t
A Mud
Obned
Wichi
Ienio
Butw
Iittla
Hatrl
Unlow
Some
Searet
Aadif

And
Lral
Torser
I6

 Bewotad the Blaok Phince, that ajoung Martiof mete, From forth the recies of mary thotmand Mroneh; Oh , then, how quivk by would this ever iof mine; Now prisoner to the paly,y, chwative theo;
And zinititer corrootion to thy fault.
Shaksprare.

Many atenthe asyings of the wise,
In ancient and in modern booke énrolled,
Inxtolling patience as the truest fortitude;
And to the bearing wioll df all calamitios,

 Vemiont of griciand marionsithought; ; triy wis ?

 Hatherad of dimsonat mood trom his complaint ; bent Unien ho faelo withimy Some sotroe of reconolation from above, bisk alis a saci : Eeoret refreahing. that repair his virength, Amd faintiag pivita uphold.

MELTON. (bygoz

ON MLITON'S BLINDNESS.

Whon I rondider how my light is spent,
One helf rex daye in thin dark world and wide,
Avid that one tolent whioh is denth to hide,
Inolgeil tithyme umeoes, though my inoul more bent,
To-sertre therevith my Maker, and present
My'true mobuat, latet ho revarning dide;
"Deth Gen oteot dey heow, light Iniou p"

 Rhther man'e wort, or his own gifts ; who bontere od Bear his mild yoke, they corro him huet; his thatooso Is kingly, thoumand at his bidding apoed; $4 x$ in duenems And pases o'or land and ocean without rent, sis bcork They aloo serve. Who only atand and, waito.

Minmos.

OAPTANN BOBADIU'S METHOD OF DFFHATLNG AN ARMY.

I will tell you, sir, by way of private and under seal, I am a gentleman, and live here obeoure and to pyrelf; but were I known to his Majesty and the Lords, observe me, I would undertake, apon this poor head and life, for the public benefit of the atate, not only to spare the entire lives of his subjects in general, but to save the one-half, nay three-fourths of his yearly charge in holding war, and against what enemy soever. And how would I do it think you?-Why thus, sir:-I would select nineteen more to myself, throughout the land: gentlemen they should be; of good npirit, strong and able constitution. I would ohoose them by an instingt that I have. And I would teach these nineteen the special rules; as, your Punto, your Reverse, your Stoccata, your Imbroccata, your Passada, your Montonto, till they could all play very near, or altogether, as well as myself. This done, say the enemy were forty thousand strong. We twenty would come into the field, the tenth of March, or thereabout, and we would challenge twenty of the enemy; they could not in thoir honour refuse us. Well-we would kill them: challenge twenty more-kill them: twenty more-kill them: twenty more-kill them too. And thus wonld we kill every man his ton ia day-ton a day, that's ton goore : ton geore that'e two hundred. twe hundred a day:-five daye a thousand-forty thousand-forty timen

Avo-fivo fitine forty-tivo hundrod dayn, hill them all by computation. And this I vill venture my poor gentiemai-like carcise to perform (provided there be no treason practiced upon us) by firir and disoreet man. hood; that is, civilly - by the aword.

Bin Jowson.

the post arrives in the village.

Hark 1 'tis the twanging horn 10° er yonder bridge,
That with its wearisome but needful length
Bentrides the wintry flood, in which the moon
Soees her unwrinkld face reflected bright,
Ho comes, the herald of a noisy world,
With apatter'd booto, strapp'd waist and frozen looh
Nows from all nations lumb'ring at his baok,
True to his oharge the olose paoked load-bohind,
Yet careless what he brings, his one concern
Is to conduct it to the destined inn;
And having dropp'd th' expected bag, pass on.
He whistles as he goes, light-hearted wretch,
Cold, äd yet cheeiful; messenger of grief
Perhaps to thousands, and of joy to some;
To him indifferent whether grief or joy.
Houses in ashes, and the fall of stocks,
Births, deaths, marriages, opistles wet
With tears that trickled down the writer's cheeks
Fast as the periods from his fluent quill,
Or charg'd with am'rous sighs of absent swains,
Or nymphs responsive, equally affect
His horse and him, anconscious of them all.
But oh, th' important budget ! ushered in
With such heart-shaking music, who can say?
What are its tidings; have our troops awak'd?
Or do they atill as if with opium drugg'd,
Snore to the murmurs of th' Atlantio wave?

पnd jovilld tarban with a smilo of peaco;

88

Or do we grivd her mill? The grand slebatey nailinetrit
Swoe

The logio, and the wisdom, and the mit,
And the loud laugh-I long toiknow thon all;
The
That
Catar
I burn to set th' imprison'd wranglens freo, sudrc? $\mathrm{m} / 2$
And give them voice and utterance onee again.
Now stir the fire, and close the shattern fast,
Let fall the curtains, wheel the sofa round;
And while the bubbling and lond hiosing urn $2 \infty 515 \%$
Throws up a steamy column, and the oupmeir s'pmat
That cheer not to inebriate, wait on emoh,
So let us weloome peaceful eviningin.
Not such his ev'ring, who with ahining face,
Sweats in the crowded thentre, and equoenid sin roersito it
And bor'd with ellbow pointa through both hiossidet mas 3
Outscolds the ranting eotor on the dtage. rivytuch
Nor his who patient mtands till his feot throb
And his head thumpn, to feed upon the breath wrol wid at
Of patriotos i burating with heroic rage,
Or placemen, all tranquillity and smiles.
This folio of four pages, happy work!
Which not e'en oritios oriticise, that holds
Inquisitive attention, while I read,
The 1
In \quad l
Whil
With
The I
But
And
Teeth
Heav
Neeta
Serme
Anthe
And 1
At his

RMP
Fast bound in chains of silence, which the fair,
Though eloquent themselver, yet fear to break,
What is it but a map of busy life,
Its fiuctuations, and its vast concerns?
Here runs the muuntainone and orngey ridge
That tempts ambition. On the aummit, sec ra
The seals of office glitter in his oje;
He climbs, he pants, he graspe tham. At his healo, Close at his heels a demagogue asconds,
And with a dext'rove jerk soon twists him dome
And wins them, but to lose thom in his turn.
Here rills of oily eloquence in soft
Meanders labrionte the courve they take.
The modest spaiker is saham'd and griev?a
TV engrose a moment'a notice; and jet
Bege a propifione atr for hie poos: lioughth,
However trivial all that he egnevinem ons

Mepoir of an abjuband OAgm.

Swoot bashfulven it olaime at least this praiso:
The dearth of informacion and good sense
That it foretells us, always comen to pas.
Catarnots of declsmation thunder here;
The forests of no-meaning spread the page
In चhich all cómprehension wanders lost;
While fiolds of plotionitiry amuse us there
With merry descants on a nation's woes.
The rest appeart a wilderness of strunge
But gay confusion-roses for the oheeky
And lilies for the brows of faded age,
Teeth for the toothless, ringlets for the bald,
Heaven, earth, ardocean plunderd of the sireets,
Nectareous essences, Olympian dew's;
Sermonis, and city feasts, and faverite airs,
AAthereal journeys, submarine exploits,
And Katerfelto, with his hair on ond
At his own wronders, woad ring for his bread.
Cowrite.

REPORT OF AN ADJUDGED CASE, NOT TO BE FOUND IN ANY OF THE BOOKS.

Between Nose and Eyes a strange contest arose, The spectacles set them unhappily wrong;
The point in dispate was, as all the world knows,
To which the said spectacles ought to belong.
So the Tongue was the lawyer, and argued the cause,
With a great deal of skill, and a wig full of learning,
While chief baron Ear sat to balance the laws
So famed for his talent in nicely discerning.
In behalf of the Nose, it will gaiokly appear, And your lordship, he said, will undoabtedly find
That the Nose has had speetacles always in wear,
Which amounts to possession, time out of mind.
Then holding the ppectacles on to the Cont-

[^5]Tour lordehip obsorres they are made with a atruddly w
Whe As vide as the ridge of the nose ist in short Designed to nit oloce to it, just liko a maddle. Again would your lordship a moment suppono
(This a case that has happened and may be again) That the visage or countenance had not-1 Nowe (1ict adtI Pray who would or who could weur speotaces thon? is A On the whole it appears, and my argument athownj pownil With a reasoning the Court will nover condomn, espeensas? That the appectaoles plainly were made for the Nose, And the Nose was as plainly intended for thom: Then shifting his side, as the lawyor known how He pleaded again in behalf of the Eyes: ince, ifinotel But what were his argumente for penple kuow, disalt For the Court did not think they reere equally wise: Froty So his lordehip decreed, with a grave solemn tone, Decisive and clear, without one if or butThat whenever the Nose put his spectacles on, By day-light or candle-light-Eyee should be shat.

Cowper.
\qquad

THE DESERTED WIEE.

He comes not-I have watched the moon go down,
But jet he comes not.- Once it was not so:
He thinks not how these bitter tears do flow,
The while he holds his riot in that town.
Yet he will come and chide, and I shall weep,
And he will wake my infant from its sloep,
To blend its feeble wailings with my tears!
Ok, how I love a mal ary watch io reep,
O'er those sleepit, yos that smile which cheers
My heart, though sunk in sorrow fized and deep.
I had a husband once who loved me-now,
He ever wears a frown upon his brow, And feeds his passion on a wanton's lip,
As bees from laurel flower a poison sipl
But yot I canpot hate- 0 I those were hourn

And
Strew
I love
Still
The n
And
Veno
Cares
Thoug
His m
It pa
I woul
Until
How
: Se.

On Sw
Alth
And ro
Of
Yet
That se
Swe
And pa
Whose
Delight
The
But fee
$\mathrm{Or} \mathrm{Bl}^{1}$
From
With ti Thy 1
And ay
Would

arazudi or Wrouma.

What I woild hang for over on his eys, And Timo, whe atole with wilent madrict by, Strew'd, as ho hurried on, his path with fiowers. I loved him then, ho loved me too-my lienit Still finder ity fondrese kindle if he omile. The memory of our loves will ne'er depart ! And thodgh he ofton ating mo with a dart, Venomid haid barb'd, and waste upon the vile Caressos, whieh his babe and mine should share; Though he ahould spurn me, I will calmly bear His madnew-and should sickreses come, and lay It paralyning hand upon him; then I would, with kindiess, all my wrongs repay, Until the penitont ohould weop and say. How injured and how faithful I had been.

Peroival.

GERTRUDE OF WYOMING.

On Susquehanne's side, fair Wyoming!
Although the wild flawer on thy ruin'd wall,
And roofless homes, a sad remembranoe bring
Of what thy gentle psople did befal,
Yet thou wert once the loveliest land of all That see the Atlantio wave their morn restore.

Sweet land I may I thy lost delighte reoal, And paint thy Gertrude in her bowers of yore Whose beauty was the love of Pennaylvania's shore.

Delightful Wyoming ! beneath thy okies,
The happy shepherd awains had nought to do,
But feed their flooks on green declivities,
Or skim perchanco thy lake with light oanoe,
From morn till evening sweeter pastime grem:
From morn till evening sweeter pais brown,
With timbrel, when beneuth the foreitis brown,
Thy lovely midens would the dence zeviow,
And aye thoow mininy mountaint balf why down, ar adik Would witho fagrolet from nome romantio town.

Then where of Indian hills, the daylight thea His leave, how might jon the flamingo aep:
Disporting, like metoor on the lakeo,
And playful squirrel on his putgrown treo; And every sound of life wes fill of gleo,
From merry mock-bird's sang; or hpm of men, While hearkening, fearing nought their revalry, The wild deer arch'd his neck from gladen, and then, Unhunted, sought his woods and wildernemagain.

And scarce had Wyoming of war or arime
Heard, but in trans-atlantio story rungs
For here the exile mot from every elime, And spoke in friendship every diatant tongue, Men from the blood of warring Europe sprungo
Were but divided by the running brook; And happy where no Rhenish trumpet sung, On plains, no sieging mine's volcano shook,
The blue-eyed German changed his aword to pruning. hook.

Here was not mingled in the city's pomp Of life's extremes, the grandepr and the gloom, Judgment awoke not here her dismal tromp, Nor seald in biood a follom-encatnro's doum, Nor mourn'd the cartive in a living tomb.
One venerable man beloved of all,
Sufficed, where innocence was yet in bioom,
To sway the strife that celdom might befal;
And Albert was theit judge in patriarehal hall.
How reverend was the look, serenely aged;
He bore, this aged Pennoglvatisn sime,
When all but kindly fervoure ware asaunked,
Undimm'd by weaknees' shede or trathid ine!
And though, amidst the calm of thought entire,
Some high and haughty features might hetriy
A soui impetuous once, 'twas earthly fire,
That fled composure's intolleotual reys
As AXtna's frep grow dim hofore the vicing day.

How
Natu
Her
Of
How
Yon
O'erh
The
The 1
Immo
'Tis b
Did w
From
And a
With
Now
The sl
The ${ }^{2}$
Or ch
One si
The
With
The be
Is now
The su
Arrest
And to
Nough
Were a
Surviv Myself
That hi
Surveys Appear Purgnit A worlc

How drear and awful is this solitude! Nature herself is surely dead, and o'er
Her cold and stiffened corse a winding sheet,
Of bright unsullied purity is thrown.
How still sho lies ! she smiles, she breathes no more.
Yon drooping elm, whose pale and leafless boughs O'erhang the stream, hath wept itself to death. The stream that once did gaily dance and sing The live-long day, now, stiff and silent, lies Immovable-congeal'd to glittering shingles,
TTis beautiful in death ! Thât grove, which late
Did woo the merry stream with beapeless music,
From morn till eve, with potes of thousiand songsters,
And all the night with those melodious strains;
With which lone Philomela tells her love,
Now silent stands a bleached skeleton.
The sky itself is hrouded; now no more
The rosy blush of health, the glow of rapture,
Or cheerful smile of peace her face illumines;
One sickly vivid hue is spread o'er all.
The vell of air wont not to hide, but show
With mild and softening aqure tint more sweet
The beauteous aspect of the varying heaven,
Is now beeome a forl and dense disguise.
The sun, that glomious source of warmth and light,
Arrested in his course, flares through the dun And turbid atmosphere, as if expiring. Nought else appearm it seems as though this spot Were all creation, and myself the sole
Sarvivor. Oh $!$ how awful thas to find Myself alone wish God -to know and feel That his all-seeing, his all-searching eye, Surveys my inmost thoughts! How little, now, Appear the mighty joys, the hopes and fears, Pursuits and pleapyref of a traigiont worid! A world wherein, till now, like other men,

I'vo triled and grieved, with many anxioun casce,
But where 1 too have luved mud been beloved;
With muire of huppiness than oft is found
In this probationury state. With Him
Who gave tue all, und day by day, hath otill,
With lind parental care my life preverved,
fo stand alone is awful, but not dreadful.
Nuy, sure, 'tis more than earthly blise, here, thne
To hold oommunion with my heavenly Father.
Witness this heart, with gratitude o'ercharged,
Which pleads and presses to present its thanks:
Witness these tears whith thus uncall'd obtrudes,
And half congeal'd, fall to the frosen earth,
An humble offering at the throne of grace:
Witness the wroet; serene, and holy calm,
At onco berpenking and befitting for
The presence of my Maker; semblance faint
Of happiness to come, when blime supreme
Shall be the portion of these ransom'd saints,
Who through eternity shall join to raise
Loud hallelujalis to their heavenly King.
Anomymote.

ON TIE EFFECTS OF TIME AND OHANGE.

Of chance or change 0 let not man complain, Elise shall he never, never cease to wail; For, from the imperial dome, to where the swain Rears the lone cottage in the silent dale, All feel the assault of Fortane's fiokle gale; Art, empire, earth itself, to change are doomed ; Earthquakes have raised to heaven the humble vale, And gulfs the monntain's mighty mass entombed, And where the Atlantio rolls, vide continante hat bloamed.

But sure to foreige dimes me nocd not ringes. Nor search the ancient records of our pres, To learn the dire effecte of time and ohing. Which in ounalvoe, ala! IVe deily traen

Yot at the darkeried eye, the withered taco;
Or hoary hair I never will repine:
But apare, oh time; whate'er of mental grase; Of candour, love, or sympathy divine, Whate'er of fancy's ray or friendship's tame is mino.

Beattie.

MUTUAL FORBEARANCE, NECESSARY TO TIIE HAPPINESS OF THE MARRIED STATE.

The Lady thus address'd her spousoWhat a mere dungeon is this house !
By no means large enough; and was it, Yet this dull room, and that dark closet, Those hangings, with their worn out graces, Long beards, long noses, and pale fuces, Are such an antiquated scene, They overwhelm une with the spleen.

Sir Humphrey, shooting in the dark, Makes answer quite beside the mark;
ano doubt, my dear; I bade him come, Engng'd myself to be at home, And shall expeet him at the door, Precisely when the clock strikes four.

You are so deaf, the lady cricd, (And rais'd ber voice, and frown'd beside,) You are so sadly deaf, my dear; What shall I do to make you hear! Dismiss poor Harry! he replies, Some people are more nice than wise; For one slight trespass all this stir! What if he did ride, whip, and spar?
(t) Wir never look one hair the worse.Well I protest, 'tis past all bearing! hewobld Child, I am rather hard of hearing!

Yes tady-one mast seream and baml, val tut
 Then with a voice exceeding low, No matter fif you hear or no.

Ho
An
Th
An
Ser
An
On
O_{r}
Bri
Pas
Wb
Mu
Pav
Oh
Nig
Hu
Tre:
Ano
Loo
See
Brig
Lik
Wh
Spre
Alor
Apl
That
And
Who
Rem
Boso
Heal
Or d
The
'Tis
Like
Gaily
With

Full to the breese ahe unboscms her sail,
And her pennon streams onvard like hope in the gale;
The winds come around her, in murmur and eong,
And the surges rejoice as they bear her along, See she looks up to the golden edged clouds, And the sailor sings gaily aloft in her shrouds.
Onward she glides amid ripple and spray, Over the waters, a way and away!
Bright as the visions of youth ere they part, Passing away, like a dream of the heart!
Who, as the beautiful pageant sweeps by, Music around her, and sunshine on high,
Pauses to think amid glitter and glow,
Oh! there be hearts thiat are breaking below!
Night on the waves! and the moon is on high, Hung like a gem on the brow of the sky,
Treading its depths in the power of her might, And turning the clouds, as they pass her, to light; Look to the waters! asleep on their breast, Seems not the ship like an island of rest? Bright and alone on the shadowy main, Like a heart-cherished home on some desolate plain, Who, as she smiles in the silvery light, Spreading her wings on the bosom of night, Alone on the deep, as the moon in the sky, A phantom of beauty, could deem vith a sigh, That so lovely a thing is the mansion of sin,
And souls: that are smitten, lie bursting within? Who, as he watches her silently gliding,
Remembers that wave after wave is dividing
Bosoms that sorrow and guilt could not sever,
Hearts that are parted and broken for ever?
Or dreams that he watches, afloat on the wave,
The death-bed of hope, or the youpg spirit's grave?
'Tis thus with our life, as it passes along,
Like a vessel at sea, amid sunshine and song,
Gaily Fe glide in the gemo of the Foulu,
With intremanamost, and with canvas unfurled;

All gladnow and glory to wondering eyens
Yet chartered by sorrow and freighted with sighs:
Fading and false is the aspect it:wears, ane some
As the smilen we put on, just to cover our tears,
And the withering thoughts that the world cannot know;
Like heart-broken exiles lie burning below,
Whilst the vessel drives on to that desolute shore,
Where the dreams of our childhood are vanish'd and o'er.
T. K. Hervey.

CHRISTIAN BENEVOLENOE.

Wouldst thou from sorrow find a sweet relief?
Or is thy heart oppressed with woes untold?
Balm wouldst thou gather for corroding grief?
Pour blessings round thee like a shower of gold.
'Tis when the rose is wrapt in many a fold Close to its heart the worm is wasting there
Its life and beauty; n tt when, all unroll'd,
Leaf after leaf, its bosom, rich and fair,
Breathes freely its perfumes throughout the ambient air.
Some high or humble enterprise of good,
Contemplate till it shall possess thy mind,
Become thy study, pastime, rest, and food,
And kindle in thy heart a flame refined.
Pray Heaven for firmness thy whole soul to bind
To this thy purpose to begin, pursue,
With thoughts all fixed, and feelings purely kinc
Strength to complete, and with delight revien, And grace to give the praise where all is ever due.

No good of worth sublime will Heaven permit To light on man as from the passing air; The lamp of genius, though by nature lit, If not protected, pruned, and fed with care, Soon dies ir runs to waste with fitful glare;
And learring is a plant that spreads and towers Slow as Columibia's aloe, proudly rare.
That 'mid gay thousands, with the sưas and showess
Of half a contury grow alone before it flowers.

2 ans sing duvicuthe

Bownse leat thou from aloth that would appent But lowlines of mind, with joy prochim Thy want of worth; a charge thou couldst not bear From other:lips without a blush of shame, Or pride indignant; then be thine the blame, And make thyself of worth; and thus enliat The amiles of all the good, the dear to fimme; aTis infamy to die and not be miss'd,
Or let all soon forget that thou didst o'er exist.
Rouse to some work of high and holy love, And thou an angel's happiness shall kniwShall bless the earth while in the world avove, The good begun by thee shall onward fiow, In many a branching stream, and wider grow, The seed that in these few and fleeting hours, Thy hands unsparing and unwearied sow, Shall dook thy grape with amaranthine flower, And yield thee fruit divine in heaven's immortal bowers.

THE LAST MINSTREL.

The way was long, the wind was cold;
The Minstrel was infirm and old; His withered cheek, and tresses gray,
Scemed to have known a better day;
The harp, his sole remaining joy,
Was carried by an orphan boy;
The last of all the Bards was he, Who sung of Border chivalry.
For well a day! their date was fled, His tuneful brethren all were dead; And he neglected and oppress'd, Wished to be with them and at rest.
No more on prancing palfrey borne,
He carolled; light as feriz at motu;
2nir No longar courted and curassed,
High placod in hall, a welcome grent,

Ho poured, tolord and lady gay,
The unpremeditated lay;
Old timies were changed, old manuers gones
A stranger filled the Stuart's thronit,
The bigots of the iron time
Had called the hariless art a orime:
A wandering Harper, soorned and poor,
He begged his bread from door to door,
And tuned, to please a peasantisicar,
The harp, a king had loved to hear.
He passed where Newark'b stately tower
Looks out from Yarrom'a binchen bawer;
The minstrel gazed with wishful eyd,
No humbler resting place was nigh;
With hesitating step, at last,
The embattled portal arch he passed,
Whose pond'rous grate and masesy bar
Had oft rolled back the tide of war,
But never closed the iron door
Against the desolate and poor.
The duchess marked his weary pace, His timid mien, and reverend face, And bade her page the menials tell,
That they should tend the old man well; For she had known adversity,
Though born in such a high degree;
In pride of power and beaity's bloom,
Had wept o'er Monmouth's bloody tómb !

THE MORAL CHANGE ANTICIPATED BY HOPE
Hope, when I mourn with eympathising mind, The wrongs of fate, the woen of humian kind, Thy blissful omens bid my spirit siee The boundless fields of rapture yet to be ; I watch the wheels of Nature's mazy plany And learn the future by the pastio man. Come bright improvement 1 on the car of Time, And rule the ppaciout world from clime to difine,

Th Tra
On
An
Wh
An
The
Anc
Eac
Sha
And
The
Wh
Trui
Wh
Fror
Trua
And
Har
And
Fier
And
"No
To b
To m
Ar
'Twa
As d
Or, a
It
" 0 ,
Negle
Thou
F_{oj}

Thy handmaid trta thall ovory wild oxplore, Trace every wave; and eulture every shovo: On Friet banki There tigeri atoal along. And the drend Indian chants a diomal song, Where human fiends on midnight errands walk, And bathe in braine the murderouts tomalawle. There shall the flocks on thymy pastarees stoy; And shepherds dance at anmmer's opponing day; Each wandering genius of the loneliy glen, Shall start to viem the glittering haunts of men, And silent watohy on woodland heights atound The village ourfer as it tolle profound.
Where barbarous hordes on Soythian mountains roam, Truth, Mercy, Freedom, yet shall find a home; Where'er degraded natute bleeds and pinies,
From Guinea's coast to Sabir's dreary mines,
Truth shall pervade the unfathomed darkniess there, And light the dreadful foatures of despair-
Hark ! the sterh captive epures his heaivy load, And asks the imago back that haaven boutowed; Fierce in his eye, the fire of valour burns, And as the slave departs, the man returas.

Campbele.

THE SNOW FLAAKE.

"Now, if I fall, will it bo my lot
To be cast in some low and lonely spot,
To melt, and to sink unseen or forgot?
And then will my course be ended?"
'Twas thus a foathery snow-fake anid,
As down through the measureless space it strayed,
Or, as half by dallianoe, half afraid,
It seemed in mid air susponded.
" 0 , no," said the Earth, "thon shalt not lie, Neglected and lone on my lop todis?
Thou pure and deliogte ohild of tho oky;
Fort thou wilt be mate in my keeping:

But，then，I munt give thee a lovolier form ； Thou＇lt not be a part of the wintry etorm，
But revive when the sun－beams aro yollow and varm． And the floweri from my bosom aso pooping
＂And thei thou shalt have thy choiee to be
Restored in the lily that deoks the lea，
In the jessamine bloom，the anemone，
Or aught of thy spotlem whitenes；
To melt and be cast in a glittering bead，
With pearls that the night scatters over the mend， In the cup where the bue and the firefly foed， Regaining thy dazeling brightness．
＂Or wouldst thou return to a home in the sties，
To shine in the Tris，I＇ll let thee arise，
And appear in the many and glorious dyes
A pencil of sumbeams is blending．
But true fair thing，as my name is Earth，
I＇ll give thee a new and vernal birth，
When thou shale recover thy primal worth，
And never regret descending！＂
＂Then I will drop，＂said the trusting fiake；
＂But bear in mind that the choice I make
Is not in the flowers nor the dew to awake，
Nor the mist that shall pass with the morning； For things of thyself they expire with thee， But those that are lent from on high，like me， They rise and will live，from thy dust set free，

To the regions above returning
＂，And if true to thy word，and just thou art，
Like the spirit that dwells in the holiest heart，
Unsullied by thee，thou wilt let me depart， And return to my native heaven；
For I would be placed in the beautiful bow，
From time to time，in thy sight to glow，
So thou mayst remember the flake of unow，
Ey the gromite that God hath givon．：

TO A WATERFOWL.

What Whither midst falling dow,
While glow the heavens with the last steps of daj, Far through their rosy depths dost thou pursue

Thy solitary way?
Vainly the fowler's eye Might mark thy distant flight to do thee wrong, As darkly painted on the crimson sky,

Thy figure floats along.
Seek'st thou the plashy brink Of weedy lake or marge of river wide, Or where the rocking. billows rise and sink

On the chafed ocean side.
There is a power whose care Teaches thy way ming that pathless coastThe desert and il itable air-

Lode virlering, but not lost.
All day tn mings have fanned, At that far height, the cou, thin atmosphere: Yet, stoop not, weary, to the welcome land,

Though the dark night is near.
And soos that toil shall end; So shalt thou find a summer home, and rest, And scream among thy fellows; reeds shall bend

Soon o'er thy sheltered nest.
Thou'rt gone, the abyss of heaven
Hath swallowed up thy form ; yet on my heart Deeply hath sunk the lesson thou hast given,

And shall not soon depart.
He who from zone to zone
Guides through the boundless sky thy certain fight,
In the long 言等 that 1 turt tread ulone, anvou Will lead my ateps arighto.

Bazarr.

WuTR B00K.

THE BLIND MOTHER.

Gently, dear mother, here: The bridge is broken near thee, and below
The waters with a rapid current flowGently, and do not fear; Lean on me, mother-plant thy ataff before thee, For she who loves thee most is watching o'er thee.

The green leaves we pais Lay their light fingers on thee unaware, And by thy side the harel clustors fair, And the low forest grass
Grows green and lovely, where the wood paths wind, Alas, for thee, dear mother, thou art blind.

And nature is all bright;
And the faint grey and crimson of the dawn,
He li

- To

April
Yet b

And
For th
Peruse the sad expromsion in thy face, And the child btops amid his bounding race,

And the tall stripling bends Low to thine ear with duty unforgotAlas, dear mother, that thou see'st them not!

But thou canst hear-and love May righly on a human tongue be poured, And the slight cadence of a whispered word

A daughter's love may prove; And while I apeak thou knowest if I smile, Albeit thou dost not see my face the while.

Yes-thou canst hear-and He Who on thy sightless eye its darkness hang, To the attentive ear like harps hath strung

Heaven, and earth, and mea!

Up the And ol

And 'tis a lesson in our hearts to innom, With but oue sense the soul may everforl

cona rom matyay.

SONG FOR MAT-DAY.

It is May ! it is May!
And all earth in gay,
For at last old Winter is quite away; He linger'd a while in his coloak of snow, To see the delicate primrose blow;

He saí it, and made no longer stay-
And now it is May! it ia May! -
It is May! it is May!
And we blees the day
When we first delightfully so can say. April had beams amid her showors, Yet bare were her gardens, and oold her bowerrs;

And her frown would blight, and her smile betray But now it is May! it is May!
It is May! it is May!
And the alenderest epray
Holds up a few leaves to the ripening ray;
And the birds aing fearlessly out on high;
For there is not a cloud in the calm blue. sky,
And the villagers join in their roundeley-
For, $0!$ it is May ! it is May !
It is May! it is May!
And the flowers obey
The beams which alone are more bright than they : Up they spring at the touch of the sun,
And opening their sweet eyes, one by one,
In a language of beauty thes soem all to pay-
And of perfumes 1- tis May! it is May!
It is May ! it is May!
And delights that lay
Chill'd and enchdined beneth Winter's sway,
Break forth again o'er the kindling soul; And soften and soothe it, and bless it whole;

Oh thoughts more tender thai words conn
Sigh out-It is May ! it is Mhy !
Arontrious.

TIIB SILENT GLEN.

This silent glen, this silent glen, Oh how I love its solitude !
Far frow those busy haunts of men,
Far from the heartless multitude;
No oye save nature's sovereign beam; No breath, but heaven's, to break the dream; No voice, but yonder babbling stream, Dares on the ear intrude.

The peace-the peace of graves is here ; 0 that it would but last! .
But man lives like the waning year,
Till joy's last leaf is past:
His bliss, like autump plants, of power To flourish for a transient hour,
Ere the bud ripens to a flower,
Dies on the printry blast.
Yon alder tree-see how she courts The zephyrs as they struy;
Yet every breene with which she sports Scatters a leaf away:
So man will wreaths of pleasure orave, Though with each fower a thorn she gave,
And the last leaves him in the grave To coldness and decay!

How fearfully that hollow blast Raved round the mountains hoar:
Ruffled the wave, in fury pass'd The heath-and was no moral
Such is the fame of mortal man-
In pride and fury it began, na. apo $\frac{1}{}$ and W
Yat sooner even than liféa brief span, wi)
The empty noise was o'er.
And even to those for whom in sprepdit
Joy's banquet richly orown'd athest wit
 arGMherein fant alumber bound,

Fomp's gaudy trappings spread beneath Thay areajn away life's fleeting breath, Till mugh comes closing in, and desth
umane lis dark drapery round.
Henry litula

सHO IS MY NEIGHBOUR?

Thy neighhons? It is he whom thou Hast porer th aid and bless, Whowe achirg reart ar burning brow Thy soothing haced may press.
Thy neighbour? reis the fainting poor, Whose eye with wavl is dim, Whom huager sende from demr to door; Go thou and succour hiv.

Thy wioh Whose years are at their brim:
Bent low with sickness, cares, and paie. Go thou and comfort him.

Thy neighbour? 'Tis the heart beren Of every earthly gem;
Widow and orphian, helpless left:Go thou and shelter them.
Thy neighbour? Yonder toiling alave Fettered in thought and limb, Whose hopes are all beyond the grave Go thon and ransom him.
Oh , pase not, nace not heodleas by
Perhape thon onnst redeem by ;
The breaking heart from mieory:
Oh ahare thy lot with him.
aspontione.

[^0]: *Ahà ITebrem mothor

[^1]: * Ahariah and Jehoghas are sulustututiliy ko same name, the
 anothor namo by which ho was known.

[^2]:

[^3]: As he rome by his military talent, be could maintain

[^4]:

[^5]: - Kanurtitio, io colbibratod jugciós.

