IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

\square

Covers damaged/

Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Fages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/

TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponiblePages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Douglas Library
Queen's University

The images appearing here are the best quality pcssible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last pags with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED'), or the symbol ∇ (meaning "END'), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Douglas Library Queen's University

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papiar est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premiére page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniere page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1	2	3
4	5	6

GEOGRAPHIC MONOGRAPH

NATIONAL GEOGRAPHIC SOCIETY. gardiner g. hubbard, president.

NIAGARA FALLS AND THEIR HISTORY

BY

PROF. G. K. GILBERT, U. s. GEOLOGICAL SURVEY.

NOTE.-Separate Copies of this Paper can be purchased from the American Book Company, New York Sity, at twenty cents per Copy,

NLA(iARA FALLS AND THEIR HISTORJ.

F'li, 1, - American Fiall from below.

It is a spurtarle of great beanty. Tha (leal, green, pouring stream, foreed with growing sued againat the air, parts into rhythmir jets which hurst and spread till all the greell is lost in al white clome of sumy, on which the rainbow Hoats. Itsenams are the theme of many a giftert hard :and antist, hat the fascinaltion of its ever-varied yet contimume mution, and the awe that waves rathur tham wanes with familiarity, are not to be felt at seromil-hand ; and wor the work, in long procession, goes to see. Among the minltitule there are some whose apmeciation of its power has a utilitarim phase, so that they think most of the myriad wheels of industry its energy may some day turn; and there are a tew who remeg-

 Itse asthetio and utilitarian asperts med no expmonler, but its
 Thavors to tell in simple lathenger some of the lore of the pros fosional geographer and ereologist, in ordor that the layman mat gain phasime not mhly from the heanty and errandeme of
 the great dramat of mature.
 Hower to-dare: the leat that wats hroad and green in summer, in athtmon is chaveled and hrown; the hash we knew in childhood

 to all. Progrose in the inomanio world is so sow that it is loss
 aro cormasting amd mathaging. 'This impussion is false. Not only hills, hut momatams, plains, amt valleys, are pelpetually ardod on he heat and wold, smathe amd rain, wind and stream,

 and hy shel adents it will exombally he transfomed into a
 has all migin and a history. To meate thes is to explan it. This momograph may he regarded as and explatory aceount of Niagara Fills amt the asweriatom mathal features.

THE HIAANEGE NYGTEM.

The Aramase somen of the St. Lawrence is of exeeptional rhanamer. In most regions the freshly fallen min qathers into rills: these, as they rm, foin omw with amothor, making brooks; breoks alre mited into rivers; amb rivers flow to the sea. In all its jommer frem the hillside to the sea, the water moves forward withont halt. This unintermped jommer is rembered possible be a womberna adjustment of slones. The ehammel of the rill dopes toward the brook, the bed of the brook slopes toward the river, and the river bed slopes toward the seab. Impelled by gravity to flow downhill, the water moves comtimally forward from the begiming to the end of its jommey. In the dranage
district of the st. Lammere there is no surh continnty of sope. The district is eomposed mandy of a gromp of geat hasim-like hollows, in eath of which the surfare slopes towatd some rentral point, and not toward the moutl of the river. Each basin is filled with wated to the level of the lowest point of its rim, and bach of the lat: : thas fomed is a stome resemode receiving a group of streams from the surpomming romutry, and poming an "rell diseharge over its rim to one of its neighbors. lakes
 Hows to Erio: and Eric, having thes received all tho omttow of
 arato Ontario. The Niagara River is thas, from one point of View, at stait commerting two imamd sats f foom another joint of
 ing two great expansions. Viewad either way, it doparts so widely from the ordinary or nomal river that its name is almost misleading.

In a nomal dramage system the sone is not everywher "fually stemp: it is gentlar in the ber of the main strean than in the leeds of tributaries, and it valdes from point to jeint or that the aurent, experially at lew water, : abows all altomation of rapid and quict reamber. The streame of the Lamentian -ystem not only exhibit these altarmations. hat hawo many atamats where the water easades down a row staimery or lealy from the brink of a relift.

A nomal river respives mont of its water directle from rain or melting show, and varios with the seasom, welling to a flood in time of storm or at the spring sum melting, and dwindling to relative insignifieather in time of drought. The water of Niagam comes only remotely froms somm ame thaw. The flooks of the tributaries are stored bey the lakes, to whose bood smfanes they add hat a thin layer. The volmone of Niagrata depents only on the height of Lake Erie at Buffalo, and from seatson to seaten this height varies but lithe. On tano oreasions a westerly gate will erowd the lake water toward its eastern end, and the river will grow lare. On still rarer orcasions a winter storm will so pile up or jan the lake iee at the entrane to the rivar as to make a dam, amd for a day or two the river will lose most of its water.

A normal river, with its eontinums enment, rolls forward the pebbles loosened by its tribntaries till they read its month.

The mans that make its floods dislodge partirles of soil, ame wash them into tha tributaries in surlo multitule that they diseobor the water. 'The pehbles of its bed and the murl with whirh it is discolored are the rivers load, which it tramsorts from the fare of the land to the here of the sea. 'The tributaries of Niagam ranty their loats only to the lakes, where the loads sink, and leave the water pure. 'Thas Niagata is ever elear. Sometmes, when
 head of the river, amb camind downstram; semetimes a little mond is washed into the river ber the small ereaks that rearh its hamks. Thans Niagam is not absolately devoid of lomed, hat its barden is so mimute that it is hamel to detecet.

THE TWO PLAMSN.

Fron Lake Erie to Lake Untario the Niagara runs nopthward. 'The longer axes of the lakes trend nearly east and west,

Fitg. ㄹ.-Niagaral River and Vicinity. and the lakes lap past each other for a distame of forty miles, inchuding between their parallel shores a strip of lame abont twentr-five miles wide. This strip, where the river Crosses it, comsists of two plains, sharply separated hy a clift or exearpment. The relations of the plains to the escarpment ant to the lakes are shown by the map (Fig. \quad) and the birds-ree view (Fig. 4). The upper and broader plain las a gently molnlating surface, which does not differ greatly in height from the surface of Lake Erie. Along the shone of that lake it rises in a low ridge, and there is also a gentle rise toward the escarpment. Its middle part is draned hy two slaggish (reeks, - the Tonawanda, flowing to the river from the east; and the Chippewa, from the west. The lower and narrower phan follows the shore of Lake Ontario, and rises gently thence to the foot of the excapment. Its upper part is of rolling contont, like the upper plain; its lower is remarkably smooth and even, having onee been the bed of a lake. The escarpment is a steep slope about two humdred feet high. Near the top it is gemerally a rocky
rliff, giving a sham definel homblary to the mper plain; at the hottom it merges insemsibly with the lower phan.

These surfare features are definitely relatem mot mis to the permbinitios of the river, hat to the reoky framework of the combtre. The rooks are flat layers of strata resting one upon mothere and of meally miform thiekness for what distameres. Nearly hat not quite level, they slope gently toward the south; the desedent, of dip, amoming on the average to thirty-five feret per mile. Thair arrangement is illustrated herig.: which gives a north-and-south protile, with surlo at sextion of the formations

Fita. 3. - Protile and seetion from Lake to Lakn.

 lake. The heave line at the left, and the helt below divided into borks, remesent limestomes, beks motally hand and strom,
 whiclo are relatively sont and wak. Originally all the formations extemem firther to the month, but the have berm wom away; and, sine the seft rocks were remoned mome maty than the hare, the edges of the hard are laft somewhat perminent. This assoriation of hard rorks with mplats and diffe is mot mone but is bather the rula in hilly and momatainoms districts. In the last preeding mongraph of this seriar, Mr. Willis desurbes the plateans ame ritges of the Appalachian distrist, showing how frost and stom showly hat persistently ate out the soft reeks, and the rerk waste was washed into strems, till vallerse and lowland plains were made.

The higher of the two limestomes perented in the diagram is ralleel the (omiterons limestome. It makes a low riger along the nowth shore of Lake Eries, and dijs bemath the lake. There Salina shales orever the midede part of the upher phain, and dip beneath the Comiferous. The seromblimestome, ralled the Niagata limestome , romstitutes the bortheren part of the nymer plan, and the esempont werywheremes its nemthern limit. Its full thimeness is about a humded and forty feet, lut in somb phaces it has bero greatly redued he the wasting of its unprer surface. Below it is a great sorice of mul rooks or shales, a

 batid of the wall

Wrar all this porky lommation lios a maththat bose material．

 ngeney be whirl it was deposited was moving iore，as will he explained a litto later．

TIE HIVER INH THE（：ODAFE，

 rocky billum，it is lappid and dis－
 it flows ahowe shalse，hat rames tonderes them，the hanks and herl
 whamel is hoad，allad the water odides alonge with molliftlerl sm－ tarr．Tham，a litale helow tha month of Chippewa（romk，thw
 berl，amd the whole hathit of the stream is rumelly challow．For a thonsamd yands it is a broad．
 ledge after allothor with thanultu－ ous haste；and then it foum－ wer a precipiar to thr lontom of a marrow，dect，sterp－walled gorge．Fors suren milas it commes， with altermation of deep，boiling pools and narow，violont bubls． through this gorqe，whose steep walls of rock then thrn abruptly
 ment. Thernee to lake Gutando the width is monderate, alled the
 (aljerd with drilt.
 river thands on top of the plain, alled then for the remainime

 portanere is mot randile werestmaterl.
 and are there seren to be composed of the same limestome that modedies the phatn. The limestone eliffs are of nomerate height,

Pria, 5. - Crois Spetions of Niaghta River.

 ane of the gorge is farly illustated be the viow in Fig. $\overline{7}$. Inar. alled there the tallus is seallit or altogether alsemit, su that the stratal call beseen; and wherever the wan be seren, examination shows the two sides to hater the same herls, in the simme order, and at the same heights. Finst eome wray shales abont fifty fere thiek; then a blar-gray limestone fall of fossit shalls, aml tem or fifteen feet thiok. This is the (linton limestome of emologiste: and it is so firm, as compared with the beds immerdiately abore and below it, that min and frost have afferted it hess, and it projerts beyomb its remohoms. There are several patos where

 shales, with thin limestone beds, and a soft, glate sambstome, the whole oreupring a rartioal shate of about thirty fert ; and then the rolor ehanges to a hright red, which whanderizes the lower beds. These are ehietly shaldes, hat there are soft sambatomes among them; and there is one hamd samblone hem, of a pale
gray color, which stands out prominently like the Clinton limestone, and for the same rason. It is twenty feet or more in thickness, liss one humdred and twenty feet below the Clinton limestone, and is called the quart zose sandstone (see Figs. 10 and $\because 1)$. The observer' who sees these varions rocks, hard and soft, gray and red, matched bed for bed on the opposite sides of the

F'ui. $\mathbf{6}$. Cliff und Talus of American Bank nbove the Whirlpool. The Niagaril limestone appears in the upper eliff: the Clinton, in the lower. The quartzose sandstone lis not seen, being below the water.
grorge, and who studies them at the angles of the walls, so as to realize that each is a great level plate, whirh, it contimed throngh the air, would bridge the chasm to its companion in the opposite wall, never doubts that the roek heds were originally routinuons, and that the gorge is of later origin. As to the way in which the gorge was made, there has heen some differeno of opimion. One or two witers have thonght it was a erack of the earth violently rent apart, and one or two others have thought it was washed ont hy orean tides; but the prevailing opinion is that it was mate hy the river that flows through it, and this opinion is so well gromeded that it is hardly worth whild to consider its rivals in this plare. The agency of the river is shown by the modern recession of the eatarant, by banks, temaces, ermvels, aml shells, marking earlier positions of the river bed, and by a cliti
over which part of the river once poured as a cataract. It is qualified by a buried chamel belonging to an earlier and different system of hainage. As these evidences are intimately conneeted with the history of the catamet and river, they will be set forth somewhat fully.

THE RECESSION OF THE CATARACT.

Modern Recession.-The cataract is divided unequally by Goat Island. The part on the southwestern or Canadian side is the broader and deeper, and is called the Horseshoe Fall; the

Pbi, T.-The Gorge below the Whirlpol, with Part of the Whintrood in the Fortgroumb.
wher is the Ameriran Fall, As Wown lay mat (Fig. 1.5), the Horseshoe Fall is at the end of the gerge; the Ameriant, at its side. The cliff ow which the water jours is from one hundred and forty to ofo hunder amd seventry feet high, measured from the water of the river lomow. It is commened of the Niagata limestone at top, from sisty to eighty fere thicer: and the shales,
ete., beneath, as already describect. At the edge of each fall, where one ean look for a distance under the sheet of deseending water, the limestone projects like a "omiee beyond the wall of

Ftg. 8. - The Horseshoe Fall, from the Cand dian bank.
shale; so that there is a strip of the upper rock which is not directly supported by the lower, but is sustained by its own strength. From time to time portions of this cornice have been seen to break away and fall into the pool of water below, and other fallings have made themselves known by the earth tremors

Pra. 9. -The American Fall, from the Cimmath Bank.
they proluced. Usually the falling masses have heen large; so that their subtraction has produced conspicnous changes in the contour of the cataract, and their dimensions have been estimatel in scores of feet. Nearly all have broken from the clift muler, or at the edge of, the Horseshoe Fall. As these catastrophes depend on the projection of the limestone withont sup-
port, we are warranted in supposing that it is gradually depred of support by the removal of the softer rocks bemeath; ant, although it is impossible to see what takes place amid the fearful rage of waters, we mav properly infer that that vary violenee makes the cataract an engine of destruetion by which the shales are battered and worn away. Under the middle of the Horseshoe, where the pouring sheet is at least twenty feet thick, its foree is so great as to move most, or perhaps even the largest, of the fallen blocks of limestone, and by rolling them abont make them serve as weapons of attark.

In 18.9 Capt. Basil Hall, of the British Navy, made a careful drawing of the Horseshoe

Fig. 10. - Protile and Section al Middle of lowseshoe Fall, showing Arangement of liocks and Probable Bepth of Pool under Fall.
N.L., Niagaral limentone; C.L. Clinton limestone; (Q.S.O quartzose sindistome. scathe, stone; Q.S.. quartzose sinht 30% feet $=1$ inch. Fall by the aid of a camora lucilla. The use of that instrument gives to his drawing a quality of accuracy which constitutes it a vahabhe record. Sixtr-aight Years afterward, in 189., a photograph was made from the same spot, and our illustrations (Figs. 11 and 1-3) bing the two pictures together for eomparison. The bushes of his foregromm have grown into tall trees which restrict the view, int the region of greatest rhange is mot combealed. A reetical lint has been drawn through the same point (Thim Sister Ishand) in each pirture to aid the eye in making the comparison. The eonspicbous changes are the broattening of the gorge hy the fallingaway of its nearer wall, and the emargement of the Iforses hoe curve both ber retreat to the right and by retreat in the divertion away from the spectator. In 1ste Professor James Hall, Stato geologist of New York, made a careful instrumental surver of the eataract for the purpose of recording its outline, w that subsequent recession might be arourately measured by means of future surveys. His work has been repated at vamons times since, the last survey being hy Mr. A. S. Kibhe, assistant state engineer, in 1890. The outlines, as determined hy these survey, are reproduced in the chat on page 216 (Fig. 13), which shows that the greatest change has oremored in the midnle of the IIorseshoe curve, where the thickness of the dereembing stream is

greatest. In that region about two hamdred and twenty feet of the limestone bed have been carried away, and the length of the gorge has been increased by that amomit. From these data it has been computed that the cataract

Fig. 13. - Outlines of the Crest of the Horseshoe Fall.
The vertical and horizontal lines is making the gorge longer at the rate of beiween four and five feet a year, and the general fact determined by the observation of falling masses and the comparison of pictures thas receives a definite expression in the ordinary terms of time and distance.

The agent which has wrought such important changes during the briet period to which carcful observation has been limited is manifestly able to hollow ont the entire gorge if only granted enough time, and the theory Which ascribes the making of the gorge to the work of the falling Water is thas strongly supported.

Mone of Recession. - Before passing to other facts bearing on this point, it is well to call attention to certain peculiarities of the process whereby it differs from the normal process of 'ataract erosion. Pure water has little power to erode solid rock. It can pick up loose particles or roll them along; but firm, coherent rock camot be broken by so soft a tool. Rock is, incled, worn away by rivers, and the erosion accomplisherl in this way is enormons; but the water does it indirectly by "arring along rock fragments which rub and pound the solid rock of the river bottom. The rock fragments are of the same material, generally speaking, as the solid rock, and they wear it away just as diamond dust wears the solid gem. As already pointed ont, the Niagara is peculiar in that its current carries no rock fragments. The geographic work performed by the cataract is practically dependent on the tools furnished by the blocks of fallen limestone. It is therefore of prime importance to the work of the cataract that it shall be able to roll the limestone fragments about, and thas grimd them against the river bed. A study of the different parts of the cataract, comparing one with another, shows that the water has this power only where its body is great ; namely, in the middle part of the Horseshoe curve. Under each edge of that fall and under the Amer-
ican Fall ereat bocke of limestome lio as they have fallen, manifestly tow large to le moved by the modrate strams that beat against them. Some of these are shown in the wemal viow of the Horseshoe Fall (Fig. S), and more cloarly in tho view of tho American Fall (Fig. 9). The bock at the extreme right of the American Fal' salsopictured in Fig. 1t. 'The resistance opposed by these blocks makes the mate of pasion of the Amerioan Fall eomparatively slow. In fact, it is so slow that attempts to measure it have thas far been msuccessful, betallse the changes which have taken place in its outline lootwern the dates of survers have bem little greater than the inacenratejes of the survers. Where the heaviest boty of water pous down, the Works are not merely moved, but are male to dige a lerp hollow in the

 of Niagran Limestone at the Somblhern Elaco "1 the Amerivan Jall.
shale. 'The precise depth camot lo measured, beramse the motion of the water is there too violent for sombling but a little farther sown the river, where the autanat perfomed its work only a few eenturies ago, the phommet shows a depth of wearly two humdred feet, and it is probable that the hollow directly under the Horsestme is not shallower than that. The semeral fact appears to be that in the renter of the main stream the water digs deeply, and the brink of the fall rerodes raphelle After the gorge has been lemgthened her this proess, it is somowhat widened by the falling in of its sides; and this falling in is in a measure aided by the thimere water streams mear the banks, which elear away the smaller limestone fragments, though leaving the harer. Aftor the matart has altogether bassed, the eliff is further motified by frost. The wall of thalr, being wet by spray or man, is exposed to the rold air of winter, and the water it contans is frozen. The expansion of freezing breaks the rook, either armbling it or eansing fakes to fall
away. In this way the shate is eaten batek, and the limestone above is mate to fall, until enongh fallen fragments have been acemmated to protect the remamber of the shale from firost, atter which time the process of change beromes exceedingly slow.

Thns two different morles of cataract recession are illustrated by the two falls of Niagara. Ther resemble each other in the most essential particular, - that thar soft shate beneath is worn away, and the hard limestone abore falls for lark of support, - hut they differ widely in other pos spects. In the recession of the Horseshoe Fill, the blocks of limestone are pestles or grinding tools by which the shale is beaten or scoured away. In the recession of the American Fall, the limestone blocks have no activa share, but are rather obstructire. The falling water, striking them, is splashed against the chift, and this splashing is the only forme continually applied to the shale. In the spring, ice cakes are drifted from Lake Erie into the entrance of the river, and float to the falls. Borne with the water, they, too, must be dashed against the "liff of shale, and, though sotter than the shale, they probably help to dislodge it. The recession in one case is far more rapid than in the other, the difference being explained primarily by the differente in the volume of the water.

Old River Banks and Gravels. - As just explained, the rertreating cataract lengthens the gorge most rapidly in the midelle of the stream, where the water is deepest. As the gorge is extended, the current turns toward its head from both margins,
and pertions of the river hed on either side ane thas quadnally abamboned by the water. After these strips of river berl hate
 be reerogizad. Usmally the wholo of the drift is washed away as far as the water extembed, so that the rork is hare, or manly bare; and the edge of the madistmbed drift at the maroin of this strip of bared rock has a sterle shan. which so elosely resembles the modern banks of the river abose the ratamat that the imagiantion realily restores the formor antline of the water (sme lig. lif).

Fig. 16. - Old River Bank atd River Bed, Ghe Mile North ol American Fall.

Sometimes the river, attur rmming for a while at one level, has been drawn down to a lower level, and the change has rathed a second bank to be produred, the space botween the first and second banks stamding as a beorl of land, or termare. It some points there are two or three surh termores. Slong the greater part of the gerge these old hames can be found on both sides, and there are few spots where ther do not survive on one sibe or the other. The farthest point to which they eall be traced downstrean is about halt a mile from the end of the worge, and
they thus serve to show that all the remaimer of the gorge has been wrought daring the life of the river for it is evident that the river could not rum on the mpand while the gorge was in existence.

In a trw eases, where the top of the limustome lies rather low, the old river beds are mot exavated down to the rock, but their torrares are partly carved in drift. In yet other phaces the old rivar not only carried away material, but made additions, leaving a deposit of gravel and sand that had beren wolled along by the rmorent. In this gravelly deposit, sheds have heon fommat a momber of places, and they are all of such kinds as live in the quirter parts of the riser at the prosent timb.

On the what on jage 218 (Fig. 1is) the most impertant of the old river bamks are shown, and also a momber of spots at which shells have been fomd in the river gravels.

Foster Flats. - Ahont two miles amd a half sonth of the escanment the gorge assmmes a peculiar phase not elsewhere seen. It is musually wide at the top; but the river is quite narrow, and runs close muder the rliff on the eastern or American side. On the Canadian side an irregular lowland lies between the cliff and the river, but this is encroached on by a quadrangular projection of the clift. The lowland is Foster Flats; and

Fini. 17. - Birdineye View of Fosler Flats, Jooking Sonthwest (Forests omittet).
the eliff projextion, Wintergrem Flat. These and other leatures of the locality are pertrased in the hirds-erge vinw (Fig. 17), and akso in the map (Fig. 18). The map represents the :lopes of the land by mems of "ontenu lines, on lines of "equal height, drawn at reetial intervals of twenty fent.

Wintergrem Flat is a phatform of limestome a little Below the gememal level of the phain, and selarated from the phan by a strep bluff. This huff is one of the ohd river hamks, very similar to the oure piotured in Fige. 16, and the platem is part of the riwers bed. Following the direstion of flow- pamallel to the bank-to the point I (Fig. 1s), the wherver finds himself ant the hrink of a dift one which the watere evidantly deserembend in a wataract ; am before him, extenting from the foot of the diff to the peint D, is a a lesemending valley with the form of a rivelbed. From Wintergreen Flat miny its gememal shape (am be made out, as it is dotheed with forest; but when one gets down to it, he finds it a borthward-sloping plain, bomuded byy steep sides, and strewn hereand there with great tallen blocks of limestone whith the river carrent could mot remove. The laft

Fia. 18. - Map ol' Foster Mats. bank of this chamel has the ortinary profile of the wall of the gorge, -a cliff of the Niagara limestome at top and a tahus some below, covered hy bocks of the same reok. The right wall is lower, rising at most hut fifty feet above the chamel, and gramally disenprating nor hwarl. It is memy the side of a low ridga which separates the abandoned damed from the river bed at the bast. Its surface is exeredingly muged, being covered by hage hoorks of limestome, so that the ridge seemingly consists of a heap of them; but there is dombless a mumens of andisturbed shale, with a remmant of the (linton ledge. Eastward from Wintergreen Flat there is a "ontinuons deswent frem the limestone eliff to the river; hont this is less strep, than the ordinary talus slope of the gorge, and it is combered, like the ridge, by
horks of limestome. There is an obseme termate at abont the level of the 'linton limestone, and there are other irregular terraeres on the sonthward prolongation of the slope.

The history which appears to afford the best explamation of these fatames is as follows: When the catamet, in its reeression from the esmement, had reached the point $I P$, it was a brome waterfall. Jast ahove it, orebpying the position $(\prime-I$, was a anow ishand, dividing the river as Gont land now divides it. On rearhing the island, the catamet was separated into two purts comesponding to the present Homeshoe and Ameriean falls, only at that epord the greater body of water passed on the American side of the ishand, so that the American Fall retreated nostream the more rapidly. When the Camelian Fall reached the head of the ishand, the Amerivan had just passed it, and part of the sheet of water on Wintergreen Flat was dmaned eastward into the gorge opened by the Amerioan Fall. The Canadian Fill, throngh the loss of this water, becane less active, and soon fell ont of the race, leaving the cliff at A to record its dofeat. For a time there was a cataract at E falling over the west wall of the gorge just as the monlern Ameriom cataract falls over the east wall. The ishand was not broad emongh to survive as a momment. After the eatamets hat passed, its pedestal of shale was (rmmbed by the frost, and the manpurited limestone fell in ruins. As the main fall retreaterd still farther, the western portion of the water wheet was with trawn from Wintergreen Flat, oroupying a position at l, and at the same time the stream near the Canalians shore arepured greater solume, so as to revede mandy toward (i and thas broaden the chamel. Probably at abont the same time the whole amome of water in the river was increased in a mamer to be considered later.

When the reader next visits Niagara, he will find himself fully repaid for his pains if he will go to this spot, and examine these features for himself. It is peculianly impressive to stand on the silent brink of the old waterfall and look down the dry chamel, and it is no less impressive to enter that chamel and wander among the loocks of rock which record the limit of the torrent's power to transport. It is evident that here the cataract did not hollow ont a deep pool, as under the Horseshoe Fall of to-day, but was rather comparable in its mode of action to the American Fall, thongh perhaps somewhat more vigorous. The slope eastward from Wintergreen Flat probably corresponds
closely with what one wonh find mbler the Ameriam Full if the river were stopped and the pool deatimed.

Thens Foster and Wintergreen flats repent the story told beve the old river hanks and the shell-bearing graves. There was a time when there was no gorge, hat when the river rum orer the top of the phin nearly to its elger and sinde that time the gernge has been gradually dug ont be the power of the phanging water.

Beanning of Recession. - When the gomempher notes that some batmal proess is produring changes in the foratures of the land, he matmeally looks larkward, if he ran, to soe what wore the emriter fentures whidh preaded the changes in progress, and looks formard to see what will be the aventand condition if changes of the same sort are contimed. The tracing of the history of change in aither direetion is apt to be differnlt, becanse it is mot ensy to tell what allowamees to make for rhanges of aibcmastane of eondition. In tranding the maly history of Niagara such diffionlties as these arise, hut there is one ditfieulty which is not altogether mitortmate, beranse it leans to the diseovery that the Niagara history is detinitely related to one of the most interesting events of the geographic development of the rontinent.

Having learmed from the watarat that it is engager in the work of gorge making, and having learmed fiom the odd tiver beds along the margins of the gorge and from the old catamat cliff at Foster lilats that this work of greare making has beom raried on throngh the whole length of the grove, we are camber back in imagination to an eporl when the river traveded on the uppre pain all the way from Lake Erie to the eseapment, and there desermded. Tho gemeral history is deally traced back to that point, but there it seems to stop abmithe. Wo may erompare the river to arartisan sawing the phatean in two. The work goes on mer aly and the salw rat is still short. As geoblogists reeken time, it is mot long since the takk was bogm. But Natures artisans eamot stame inlle; while they live they must work. So, betore this task was begm, cither the streath had some other task or else there was no Niagam Rivers. It sembs impossible to suggest any othor task, and all geographers are agreed that there was nome. The rivers first work was the digging of the gorge, and the date of its begiming was the date of the river's begiming.

The mature of this begiming, the series of avents which led
up to it, or, in other words, the eatuse of the river, wats long sought in vain; and an interesting chapter might be written on the firuitless seateh. 'The needed light was an moderstanding' of the origin of the drift ; and it was not till a young Swiss geologist, Louis Agassiz, bromght from the Alps the idea of a driftboaring jee field that the diseovery of Niagata's pedigere berame possible.

DENELOMMENT OF THE LADRENTIAS LAKEN.

The Ice Sheet. - The history of the grat Camanlian gharier is a large subjert, to which some future monograph of this serims will doubtless be devoted. Ans aceome of it which can he given here must meds be inadergate, ret a fall moterstamdinge of Niagara camot be reached without some knowledge of the glacier. In the batest of the geologite periosh the rlimate of Sorth America mulerwent a series of remarkable rhamges, heroming alternately eodele and wammer. While the gemeral temperatare was low, there was a larere area in Canarla ower which the fall of snow in winter was so deep that the heat of simmer did not fully melt it ; wo that vach yeara rertain amount was left
 a depth of thomsands of feet. By pressure, and by melting and fleezing, the snow was parked, and wedded into ice. Whan the climate again berame warmer, this ior was gratually melted away; but while present it performed an important woographic work. Ico in large masses is plastie; and when the ire sheet had become thick, it did not lia inert and motionless, but spread itself ontward like a mass of pitcin, its emeses slowly pmalinge away from the central trat in all directions. This motion carried the ire border into regions of wamer elimate, where it was melterl; and for a long perion there was a slow but continuous mowement from the cemtral region of acommakion to the marginal region of waste her melting. The prineipal region of arCommation was noth and mortheast of the Great Lakes, amb the flowing jore passed wer the bake region, invading all our
 ared bowhers, pebbles, amd whateror lay loose on the surface: and as it moved forwarl, these were camied with it, leeing draged over the solid row, and seraping it. Thens the comentry was bot merely swept, hat sorateled and plowed, with the result that its suffare was worn down. The amount of weal was not
everywhere the samte, but variod from phace to place, amd many basins were hollowed out. When the general elimate berame gradnally wamer, the waste of ire near its margin exererled the supply, and the extent of the sheet was diminisherl. When the ine was gone, the stomes amb calth it had pirked ip and gromma up remained on the land, bint in mew pasitions. They were spread and heaped irogulaty over the surfare, equstituting the mantle of drift to whieh referenere has abrealy heen made. Thas by the domble proeese of hollowing ant heaping, the fare of the land was remorlaled; so that when the rain onee more tedt on it, and was gathered in strams, the old water will were lost, and new ones had to be foumb.

This remoreling gara to the Lamrentian system of water Ways its abomal \cdot hanaroter, sulplying it with abmadant lakes and waterfalls. Not only were the deat Lakes reaterl, but a moltitude of minom lakes, lakndets. ponds, amb manshes. If tha reader will study some gromblme of the ['nited states or of North America, he will ser that this lake distriat inelados Ners Figglath also, and ber tracing its extent in other dipertions he ("all get a fair idea of the magniturlo of the iere sheret.

The lakes have had a matred inflarnor of the history and industries of mankind. Still water makes an easy romdway, and the chain of (heat hakes not only ginded explonation and eanly settlement, but has determinad the chiot rontes of rommeree ever simer. The most casterly of the iere-mathe hasims, insterad of holding lakes, recotio arms of the sor, wiving to New York and New England some of the hest harbors in the world. Larth cataract is a water powro, and the lakes and ponds upstram are matural stomge reservoirs, holding hatk floods, ant doling the
 are the conters of trale, and Now England is a lant of homming spindles and lathes, beraluse of an insasion lone age hey (amadiandice.

The distriot of the Niagatal lay far within the extreme limit of the ioe, and the drift there lying on the roeks is patt of the great iee-spread mantle. Whererer that drift is freshly removed, whether hy the natumal excavation of streams or the artificial exeavation of quarramen and halders, the roek beneath is fomm to be polished, and rovered beymallel seratehes, the presult of rubbing ly the ioe alme its gritty load. Therse seratelates show that in this partieulan distriat the iter moved in a direction ahont
30° west of sonth. They ram he seen on the western brink of the gorge four humdred yards below the railroad suspension bridge, in the beds of several areeks near the Whirpool, and at varionis quarries above the escarpment. The best opportmity to study them is at a gromp of guaries near the brink of the ascarpment, abont two miles west of the river.

Ice-damaed Lakes. - During the period of final melting of the ice sheot, when its southern margin was gradually retreating arross the region of the Great lakes, a number of temporary lakes of peculiar character were formed. In the aceompanyines

Fig. 19. - The Great Lakes and their Dramage Districfs.
The watersheds homding the drainage distriets are represented hy dotied and hroken lines. sketch map of the Great Lake region (Tig. 19) the broken line warks the position of the sonthern rim of the St. Lawrence basin. It is the watershed between the distriet draining to the St. Lawrence and the contiguons distriets draming to the Mississippi, Ohio, Susquehama, and Hudsom. When the ice sheet was greatest, its sonthern margin lay south of this watershed. The rain which fell on the ior, miting with the water mande by melting ioe, ran from the ice firld on to the land, and flowed away with the rivers of the land. Afterwarl, when the extent of the ice had been somewhat redued, its margin lay partly beyond and partly within the basin of the lakes; but the water from it could not flow down the St. Lawrence, beranse that valley was still ocerbpied by the ire. It therefore gathered hetween the ide front and the watershed in a serios of lakes, earh of which fomm outlet sonthward across some low point in the watershed. To see this clearly may require some effort of the imagination. The reader slould bear in mind that the watershed is not a simple ridge, but a rolling upland of varying height, with here and there a low pass. The St. Lawrence basin is not simple and regular in form, hut is made up of many smaller basins separated by minor mplands or watersheds. Some of these watersheds are shown on the map. When the ice oceupied part of minor hasins, it acted as a dam, holding the water lack, and making
it fill the basin until it conkl flow in some other direction. As the position of the ice front changed, these lakes were changed, being made to unite or separate, and often to abandon one channel or ontlet when mother was opened at a lower level. Sonetimes there were chains of lakes along the ice margin, one lake draining to another across a minor watersher, amd the lowest discharging across the main watershed.

Wherever water ran from a lake, it modified the surface. The loose drift was easily moved ly the current, and each stream quickly hollowed ont for itself a chamel, -a trough-like passage with flattish bottom and steep sides. When the lakes afterward disappeared, the chamels lost their streams, hut their forms remained. They are still to bee seen in a hundred passes among the hills of the Northem States. The larger and longer-lived of the lakes carved by their waves a still more conspicuons record. In ways explained ly Professor shaler in the fitth monograph of this series, the waves set in motion hy stoms rut out strands and cliffs from the drift and built up barier beaches, so that after the lake waters hat departed there were termess and ridges on the hillsides to show where the shores hat heen. Many of the old chamels have been fomd, some of the old shore lines have been traced out and marked on maps, and hes such investigation the history of geographic dhanges in the (ireat Lake region is gradually being lemmed.

At one stage of that history there was a hong lake ocempring the western part of the Ontario basin, much of the Erie, part of the Huron, and prohably part of the Michigm. Its outflow (rossed the main watershed at (hicago (r', Fig. 19), and its castelln extremity was near Batavia (B) in westrin New York. The ice mass filled the greater part of the Ontario basin, and hipt the water from eveaping eastward. Whan it molted from that region, the water shifted its ontlet from Chicugo to a low pass at Rome (R), where it discharged to the Mohawk valley. This change lowered the lake surface several humdred feet, and, ly mocovering watersheds that had hefore been submergen, sepalrated the Huron, Erie, and Ontario hasins, and three lakes took the place of the single long lake. In the Huron hasin was a lake half walled by ire; in the Erie hasin, Lakn Erie; amd in the Ontario basin, Lake Iroquois, an ire-dammed lake with its outlet at Rome.

The draining away of so lange a horly of water oreupied some
time, so that the lake level was gradmally lowered. When it reached the pass between the Erio and Ontario basins at Butfale, and lakes Erie and Iroquois, were thereloy parted, the Eria level ronld fall no lower, hat the Irognois contimed downward. As soon as there was a difference of level, a stream hegan to flow from Lake Erie, and that stream was the infant Niagata, newly horn. It was a short stream, becalmse the edge of the Iroploois water wats dose to Buffilh; hut it grew longer day hy day, as fast as the Lropmois edge recedent. It had no chamel motil it mande ome, lout its growing end, in foliowing the retreating lake, sidected at eachl instant the direction of steepest slope; and as the shopes had heen formed by the gharier, it may be said that the glacerer predeterminem the eomse of the river.

During some erenturies or millemmims of its arly life the river was shorter than now, hecanse the Irocmosis Lake flooded more lamd than the (antario, and kept the river nearer the escarpment; lant in comse of time the jue dim disanpeared, the lake outlet was removed from Rome to the Thonsand Iskands, part of the lake bottom was laid bare bey the retiring water, and the river stretehed itself owe the broadmed pain. It grew, in fadt, to he a few miles longer than now, and there were other changes in length: hat the rentire story is too long and intricate for these page.

The ('axtinco of Basis. - The geographers who have mapred the glacial lakes be tracing their shore lines have also measured the heights of these lines at many peints. From these measmements they have fomed that the lines are not level. The surface of each irer-lammed lake was, of course, level, and its waves, beating ont the shores, carven beaches and strames all at the samberel. But these abandomed strands, peresered as terrawes on the hasin slopes, are not herel non; and it is therefore inferred that the carth itself, the rooky fomblation on whid the termaes rest, has dhanged its form. 'The idea of earth movements, the slow rising of some districts and the sinking of others, is not new: but, mentil these old shome limes were studied, it was not known that sum changes had recently affected the lake ragion.

The departure of the ohd shore lines from horizontality is of a systematio character. There all rise toward the north and east, and fall towarl the sonth and west. The amome of this tilting or inclination is not the same ererywhere, nor is it arapwhere in precisely the same direation; but the gemeral fand planly
appears, that the northeastern portion of the Great Lake distriot has been raised on the southwestern portion has been lowered, or both, several humdred feet since the epoch of these ire-dammed lakes, i.e., since the time when the Canadian iere sheet was slowly melting away. The rfferet of this ehange was to tip or rant eard lake basin, and the rffere of the canting was similar to the effect of canting a hath hasin containing water. In the hand basin the water rises on the side towad which the hasin is tipped, and falls away on the opposite side. In tha lake basin there was a constant supply of water from rain and streams, so that it was always filled un, to the level of the lowest point of its rim, amt the surplas of water flowed away at that point ; so. When it was eanterl, the changes in the extent of the lake were partly controlled by the outflow. If the ontlet was on the northeastern side of the basin, the sonthwesterly ranting wonld make the water rise along its sonthwestern shore, the shlmerged ane a being thereby enlarged. If the ontlat was toward the somthwest, then the canting would draw the water away form the motheastern sopes, and diminish the summered area. If the lows point of the rinn was originally on the mortheast side, the eanting might lift this part of the rim se high that somm point on the sonthwest side would beeome lowest, and the pint of outlet might thus be changed from north or east to sonth or west. 'The exidente of the ohd shores and ehamels shows that all these possible - hatnges have aetually oeromed in the lake hasins, and that somm of them were related in an important way to tha history of the Niagam River.

The gradual ranting affereted the size of Lake Eire, Latke Ontario, and the temporary Lake hoquois, making mah gow towad the sonthwest. When Lake Erit was bom, its length could not have hern more than haff as great as now, and its area Was mach smaller. The original Lake Hmon may haror han whont the same size as tha present lake, hat its form and position were different. Less land was eovered at tha south and west, more land at the morth and east, and the outlet was at North Bay (N, Fig. 19). By the tiphing of the hasin the lake was made gradually to expamd toward the west and south till at last the water reached the pass at the head of the St. Clair Rivar. Soon afterward the water ceased flowing throngh the North Bay outlet. The water then gramally witherew from the northeastern region till finally the shores aswmed their present position.

At an earlier stage, while the North Bay district was blocked by the ice shere, it is probable that the basin had an outlet near Lake Simeoe (S), hat the evideuce of this is less complete. If the Huron water "rossed the hasin's rim at that point, it followed the Trent valley to Lake Iroquois or Lake Ontario; when it crossed the rim at North Bay, it followed the Ottawa valley to the st. Lawrence; and in each case it reached the ocean without passing through Lake Erie and the Niagara River. Thus there was a time when the Niagara River received no water from the Huron, Michigan, or Superior basins, lmat from the Erie basin alone. It was then a comparationy small strem, for the Erie basin is only one eighth of the whole district now tributary to the river; and the catanact more nealy resembled the American Fall than the Horseshoe.

THE WHIRLPOOL.

The Whirlporl is a peculiar point in the rouse of the river. Not ouly does the chamel there make an abrupt turn to the right, but with aftal abruptness it is palarged and again contracted. The pool is a deep oval basin, rammunieating through narrow gateways with the gorge above and the gorge below. The torrent, rushing with the speed of an orean greyhound from the steep, shallow passage known as the Whirlpool Rapids, anters the pool and courses over its surface till its headway is rherked. The initial impulse prevents it from torning at onse toward the chamel of exit, and the current cireles to the left instead of the right, following the colved margin of the pool, and finally desernding und a the entering stremm so as to rise beyond it at the outlet. Thus the water describes a romplete loop, a perolianity of "ument quite as remarkable and rare as the feats of mialway enginering which bear that name. In the chant of the Whirloos (Fig. ㅇ(1) the surfare courents are indicated by arows ; and some idea of the appearane of the curents may be obtained from the view in Fig. $\overline{7}$, where the swift inconing eurrent crosses the foregrom from right to left, and the exit current occupies the middle of the picture. In the smoother tract hetween these two visible "urrents the water rises after passing monder the nearer. These currents wom watched from any of the smromding eliffs, and there is a fascination about them akin to that of the cataract itself and the Whirlpool Rapids.

The gorge above, the gorge below, athl two siden of the Whirlpool are walled by rock; but the pemanines siele, that opposite to the incoming stream, shows no rook in its wall (Figs. $\mathfrak{2}$ (and $\because 1$). On the north side, the edge of the Nitgand limestonn can be traced to A (Fig. © () with all its usual chandotrs, but there it disappears heneath the duift. The (linton limestone disappears in a similar way just below it, and the quartoose sandstone, which there skirts the margin of the water, is a little more quickly covered, being last seen at B. On the south bank the Niagara limestone can he traced farther. Its edge is visible almost continmonsly to E, , and is laid bare in the bed of a small rereek at F^{\prime}. The Clinton hed is similanly traceable, with slight interruption, to D; and the quartzose samdstone passes moler the

Rock la indiented by erosshateloug ; atrit, by tots. Irrown indiate thay direction of marront. drift at C. Where aboh rock ledere is last seen it points towarl the northwest, and betrays no tendeney to empa aromd and join its fellow in the opposite wall. In the interveming spare the side of the gorge seems to be eomposer emtirely of drift. Sand and clay, pebhles and bowlere, makr up, the shere; aml a beach of bowhlers margins the water foom B to (${ }^{\prime}$. It is infermed from this arrangement of rook and drift that there was a dowp hollow in the plain before the drift was spead ley the iere the drift being depositer in it and ovor it matil it was filled and covered. The parallel directions of the rowk ledges suggest that the hollow was part of a stream rhamel buming northwest watd; and this interpretation is home ont mot only ber watn topmgraphic features two or three miles away, hut be a study of tho bed and banks of Bowman (reek (Fig. 1.)). That stream, whirlı rises two miles away, has carved a ravine where it approardos the Whirlpool. The northeast hank of the ravine (Fig. © ()) seems to be composed entirely of drift ; hut the opposite hank, thomgh rhiefly of drift, hays bare the rock at a mmber of places, revaling a sloping wall descending toward the mortheast. The herl of the stream in general shows nothing hat dritt ; hat there is one place where the creek swerves a little to the southward, ind
for a few rools presses against the rook slope; and it has there mand a small wat into the rock, rasaming at one point over a sambledge that is harder tham the assordated shate.

With the adol of this intormation, it is easy to molerstand the perenliar features of the Whirlpool. The Niagara River did not seek this ohd chamel and thas find an vasy way northward, but ran mpon it acoidentally at one point. Its eomse on the plana was determined for it by the slopes of the drift, and the arongement of these slopes happened to guide the water aross the haried rhamm at the Whirlpeol. In making the gorge firom the Whirlpool to the asampment, and ako in making the mpere part of the grorge, the river found hard roek to be removed; and it worked as a dinaryman, digesing down helow in the softer rocks with surb tools as it had to mse, and thus mulemining the limestone aply. It the Whirlpool there was mo meed to quarry, beranse there was no limestome "ap; and, to "arly ont the homely figur, the river merely dug in a gravel pit, shoveling the loose drift quickly away. This work of excavation did not rease when a chammel of the usmal width hat heen opened, because the angle in the conse of the river set the remrent strongly against the bank of drift, and cansed it to clear ont a basin in the old chamel. Harl the drift been wholly, as it is partly, of sand, still more of it would have been carried ont; but it inchuded lange bowhlers, and these were sorted out and acemmated until they mate a sloping wall or sheathing, which covers all that part of the sand below the level of the pool, and resists further encroathment hy the water. So the peculiar form of the river at this bace was cansed by the ohd chamel with its filling of loose sand and gravel. The looped (anrent evidently depends on the peentiar shape of the ehamel. The water anters the pool with sueh impertus that it is carried past the out bet, and the return eurrent follows the bottom of the pool hecanse that route is the easiest.

TINE.

Jnst under the escarpment where it is divided by the river stand two villages, - the American village of Lewiston, the C'anadian village of Queenston. Lewiston is built partly on an old beach of Lake Sroquois, and near its stemboat wharf is a gravel pit where one can see the pebbles that were worn romm by rolling up and down the old strand. That part of the escarp-
ment which orerlooks lewiston is somewhat toratered, or divided into steps, amd was called "The 'There Mombtains" a century ago, when loads that lad been brought by boat to the lamding (Lewistom) ware toilsomely anried mp the sterp aserent on tian way to other hoats plying on the uper Niagam.

The exearpment above (Quednston is called Quednston Heights ; and from its rrest rises Brork's momment, a skomere shalt rommemoratise of a hattle between British amd Ameriath soldiers. Within this shaft is a spiral stamease, and trom a littlochamber near the top one (an look throngh pertholes far away in all diredtions. Bast wad and westward roms the asompment, and the ere follows it for mamy miles. Sonthward stretrhes the uperer plain, diversifiol by low, rolling hills, and divided in the foregromm ly the gorese. In the still air a clond of spay howers over the cataract, amd a chome of smoke at the horizon tedls of Buffalo. Northward lies houe Ontario, amd straight to its shore flows the derp-e hammeded, majestic Niagma, dividing the smooth green lowland into parts eren more elosely kin than the brother mations by whirh they are tilled. Beyome the water, ame torty miles awity, gleams Somboro ('liff, where the lake waves are undermining a hill of drift; and twenter or thirty miles farthere the imagimation may supply-what the earth's rombluess eonreals from the ero-a highor mpland that bommes the Ontario basin.

The Brock monmment, the Niagara gorge, and the Ontario hasin are three prorlucts of haman of of mataral work, so related to time that their magnitudes help the mind in grasping the time factor in Niagata history. The momment, measured indiameter hy feet and in height by soores of feet, stamds for the epoelt of the white man in Amerian. The gorge, measmed in width hy hundreds of yards amd in length by miles, stambe for the eporlo since the ire age. The hasim, measmed in width hy seores of miles and in length hy homedreds of miles, stamds for a period before the ier, when the mpands and lowlands of the requion were canver from a still groater upland. The momment is half a rentury oht ; the gorge was hegun some tens or hambers, or possibly thomsands, of eenturas ago: and the loblowing of the basin consmmed a time so far beyome ome romprelnemsion that we can only say it is related to the worqe poreh in some surh way as the gorqe epooh is related to the momments half entury.

The graciar mate changes in the Ontario basin, hat they were
small in comparison with its origimul size, and the hasin is chiefly the work of other agents. Before the ghatial age it was a rixer valley, and we may obtain some iden of its origin by thinking of the Niagara gorge as the begiming of a river valley, and trying to imagine its mode of growing broader. It has abremb been exphaned (p. $\because 18$) that the gorge walls fall hack a little after the cataract has hewn them ont, but seem to remin to rest as some as all the shale is covered by talus. So memely do they apmond rest that their profile is as stere) near the mouth of the gorge as it is one mile below the cataract; hat, in tade they are not monchanging. Water trickling over the limestome diff dissolves a minuterquantity of the rock. This makes it porous, and lichloms take root. Lichens and other plants add something to the water that inceases its solsent power. The fragments of the talus are eaten faster beranse ther expose more surfare. Each winter the frest disturbs some of the stones of the talus, so that they slowly move down the slope; and wherever the shate is laid bare, frost and min attark it again. Thus, with almost infinite slowness, so slowly that the entire age of the gorge is too short a mit tow its measurement, - the walls of the gorge are retreating from the river. At the same time exery areek that falls into the gorge is making a narrow side gorge. The strongest of them has worked back only a few humdred feet (Fig. 1.)) ; hut in time they will trench the phan in many directions, and eard trench will open two walls to the attack of the elements. Space forbids that wo trace the process fiuther; hat enough has been said to show that valleys are made far more slowly than gorges, and that the anciont shaping of the land into valley and upland was a fill greater task than the comparatively modern digging of the gorge.

The middle term of our time seale, the age of the gorge, has excited great interest, because the visible work of the river and the risible dimensions of the gorge seem to afford a means of measming in years one of the periods of which geologic time is composed. To measure the age of the river is to determine the antiquity of the close of the ice age. The principal data for the measurement are as follows: (1) The gorge now grows longer at the rate of four or five feet a year, and its total length is six or seven miles. (2) At the Whirlpool the rate of gorge making was relatively very fast, becanse only loose material had to bee removed. Whether the old chamel ended at the Whirlpool, or
extended for some distance southward on the line of the river, is a matter of doubt. (3) Part of the time the volmme of the river was so much less that the rate of reeession was more like that of the Americun Fall than that of the Horseshoe. Some suggestions as to the comparative extent of slow work and fast work are to be obtained from the profile of the bottom of the gorge. While the volume of the river was lurge, we may suppose that it durg deeply, just a it now digs under the Horseshoe Fall (see p. 216); while the volume was small, we may suppose that a deep prool

Fig. el. - Longitudimal Section of the Niagnra Gorge, with Diagram of the Western Wall.

The bane llie is ut aea level. It in divided into milles. Water, black; drift, doted; Nhagara
 W, whirlpool ; Foster, Foster Flate; E, escarpment.
was not made. Fig. 21 exhibits the approximate depth of the water ehamel through the length of the gorge ; and by examining it the reader will see that the repth is great near the mouth of the gorge, again from the heud of Foster Flats to the Whirlpool, and then from the bridges to the Horseshoe Fall. It is sman, indicating slow recession, in the neighborhood of Foster Flats, and also between the Whirlpool and the milroad bridges. The problem is complicated by other fartors, but they are probably less important than those stated.

Before the modern rate of reression had been determined, there were many estimates of the age of the river; but their basis of fact was so slender that they were hardly more than gnesses. The first estimate with a better foundation was made by Dr. Julius Pohlman, who took aceonnt of the measured rate of recession and the influence of the old chamel at the Whirlpool; he thought the river not older than 3,500 years. Dr. J. W. Spencer, adding to these factors the variations in the river's volume, computes the river's age as 32,000 years. Mr. Warren Upham, having the same facts before him, thinks 7,000 years a more reasonable estimate. And Mr. F. B. Taylor, while regarding the data as altogether insufficient for the solution of the problem, is of opinion that Mr. Upham's estimate shonld be multiplied by a number consisting of tens rather than units. Thus estimates founded on substantially the same facts range
from thousands of years to hundreds of thousands of years. For myself, I am disposed to agree with Mr. Taylor, that no estimate yet made has great value, and the best result obtainable may perhaps be only a rough approximation.

BOOKS OR REFERENCE.

Hath, Basil, R.N. Forty Etehings, from Sketehes made with the Camera Laelda in North America in 1827 and 1828. Bdhburgh and London, 1899.
ILall, James. Niagara Falls: its Past, l'resent, and l'rospectlve Condition (Nat. Hist. of Now York, Geology, Part IV.). Alhmy, $18+3$.
Luelle, Cilables. Travels in North Amerion. London, 1845.
Tyndall, Jonn. Some Observations on Niugura (Popmlar Science Monthly, vol. iii., 1873).

Pohlman, Juhus. The Life-History of Niagara (Trans. Am. Inst, Mlining Engineers, 1888).

Gilbent, G. K. Tho History of the Niagara River (Sixth Amm. Rept. Commissioners State Reservation at Ningara). Albany, 1890.
Kibbe, Aug. S. Report of the Smycy to determine the Crest Jines of the Fulls of Niugura in 1890 (Seventh Aun. Kept. Commissioners State Reservation at Niugara). Albany, 1891.
Silaler, N. S. The Geology of Niagara Falls (The Niagara Book). Buffalo, 1893.
Spencer, J. W. The Duration of Niagara Falls (Am. Jour. Seience, 3a Series, vol. xlviii., 1894).

Tavlon, F. B. Niagarn and the Great Lakes (Am. Jour. Science, Jd Series, vol. xlix., 1895).

