

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microraproductions / Institut canadien de microreproductions historiques
(C)

1

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliograpinically unique, which may alter any of the iniages in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue ar black)/
Eircre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
TIght binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of Congress
Photoduplication Service

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Library of Congress Photoduplication Service

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniére page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniére page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour âtre reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

NOTES

on The:

NORTH AMERICAN GANOIDS,

AMIA, LEPIDOSTEUS, ACIPENSER,

CONTENTS.

I. The respiratory actions of Amia and Lepidosteus.
II. The transformations of the tall of the gar-pike Lepidosteus. 153
III. The transformations of the pectoral fins of Amia and 166 Lepidosteus.
IV. The brains of Amia, Lepidosteus, Aclpenser and Polyodon. 168

Summary.
B. NATURAL IIISTORT.

Notes on the Nortif Amehican Ganoids, Amia, Leridosteus, Acierneeland logyodon. By Burt G. Wimer, of Ihaca, N. Y.

(With three plates.)

I. - Tife nespiratony actions or Amia and Lepidosteus.

The respiratory netions of Lepilosteus have been described by Prof. L. Agnssiz and by Prof. Poey. The observations of the latter (27$)^{1}$ are reproluced by Duméril ($4, \mathrm{II}, 306$).
Prof. Agassiz' Pemurks are reported as follows:
"Thise fish is also remarkable for the large quantity of air which escapes from its mouth. The source of this Prof. Agassiz had not been able to determine. At certaln times it appronehes the surfuce of the water and seems to take in air, but he conld not think that so large a quantity as is seen adherlug in the form of bubbles to the sides of the gills, conld have been swallowed, nor could he suppose that it could be secreted from the gills themselves" (2).

During the past summer the ten young Lepidosteus mentioned in another part of this paper, were observed by me for about three weeks. They seemed to prefer keeping near the surface, probably for convenience of aerrial respiration. In emitting the bubble of air they raised the anterior end of the body a little, but I could not be sure that they intentionally protruded the head from the water. At the same moment the whole body was suddenly rolled on one side, and one or more bubbles of air eseaped from the month. Within a second or two after assuming the horizontal position, other and smaller bubbles escaped from the opercular oritice.

With the smallest gar (63^{mm}, about $2 \frac{1}{2} \mathrm{in}$. long), these respiratory movements oectured pretty regulaly at intervals of $\frac{1}{2}$ to $\frac{3}{4}$ of a minute. It rolled alnost invariably upon the right side so as to emit the bubbles from the left. The ordinary branchial respiratory movements of the jaws and opercula were $9 \overline{5}$ per minute.

Very often these young individuals of L. ossens, and more frequently the adults of the smaller species (L, platystomus), would protrude the suouts from the water in the respiratory act; but the
${ }^{1}$ See list of works referred to, nt the ond of this paper. The first figure designates the number of the work ou the list; the last, the page; the middle, when it occurs, the volume.
length of the Jaws made It impossible to determine whether this was intentional and for the purpose of huluthing as well as of exhaling the air.

Innsmuch, however, as the exhalation could be as well accompIlshed at any depth, the uniform approach of the gars to the surface goes to show that air is taken in as well as given out.
More satisfactory observations upon this point were made upon adult and uningured indlididuals of the mud-llsh, Amia, which, like Lepidosteus lase a very cellular and vascular air-bladder with large air-duct, and upon the respiratory actions of which nothing has been published so far as I am aware.
Amia seems to prefer the darker parts of the aquarium and to remaln at or near the bottom, but like Lepidosteus it comes to the surfuce at intervals to breathe. One or two very large bubbles of alr escape fiom the mouth, and on descending, some lesser ones from the operculum.

When at the surface the movement of the jaws seemed to be two-fold, first to permit the eseape of air, and second to take in a fresh supply. But the whole was so rapidly executed that I could not be certain.
The following method was adopted for cetermining thls point.
The fish was gradually accustomed to the contact of the hand, gently embracing the body at about the middle. After a time it would swim slowly in the tank with no apparent agitation on account of the contact, and come to the surface at the usual intervals to discharge a bubble of air.

Having been thus prepared, the fish was permitted to move to and fro at about six inches below the surface, but prevented from rising. It lecame uneasy and after a few not very violent efforts to disengage itself, emitted a large bubble of air which rose to the surface.
If this emission were all it required we may suppose that it would have been content. On the contrary, after a sccond or two oi quiet (perhaps resulting from the labit of being satisfied after the respiratory action), the fish became more and more uncasy ; moved rapidly to and fro, turned and twisted, and lashed with its tail, and finally escaped from the hand. It rose at once to the surface, and, without emitting any bubble whatever, opened the jaws widely and apparently gulped in a large quantity of air. It then

nine whether this as well as of ex. as well necompthe gars to the s given out. were made upon 1mia, which, like ladder with large aich nothing has
aquarium and to it comes to the large bubbles of ome lesser ones
s scemed to be ond to take in a ted that I could
ng this point. et of the hand, After a time it agitation on acusual intervals
ted to move to but prevented ot very violent air which rose
uppose that it second or two satisfled after more . uncasy ; lashed with its it once to the pened the jaws air. It then
descended and remained quiet for the usual interval. Thls experiment was several times repeated, always with the same result.

There seems no doubt from the above, that with Amia there is a true inspiration as well as explration of air. The same may be considered probable though not yet proved, with Lepidosteus. The escaping air should be chemically examined. But there can be little doubt that in these two genera, in Polypterus, and in the Dipnoans, all having cellular and vascular air-bladders, there is effected an interchange of oxygen and carbonic acid, as in the lungs of aërial Vertebrates.

Amic and Lepidosteus have no spiracle and it is small in Polypterus. The three genera have the space between the rami of the lower jaw occupied (by plates or folds of skin with underlying muscle) so as to better prevent the egress of air than would be the case with most Teleosts. But, as already stated, some air escapes from the opercular orifice of Amia and Lepidosteus after the lish has descended, and while, probably, the air is being forced backward so as to enter the air-duct.

Amia and Lepidosteus were observed to perform the acts of respiration above described more frequently when the water was foul or had not been changed.
It was noticeable that they survived removal from the water for a much longer time than Acipenser or Polyodon, whose air-bladders are simple and but slightly vascular.
II. - Tile transformations of the tail of the gar-pike, Lepidosteus.
That the tail of the young Lepidosteus is unlike that of the adult has been observed by Prof. Louis Agassiz. But although he repeatedly called attention to the transformation, little notice has been taken of it ; it is not mentioned in any systematio work in the English language.

This neglect may have been due partly to the absence of figures from Prof. Agassiz's descriptions, and partly to their brief and, to some extent, contradictory nature.

The observations of Prof. Agassiz are here reproduced.
"Zadock Thompson has described a young specimen under the name of Lepidosteus lineatus. I have ascertained, by a series of specimens, that the detached lobe formed by the upper
raylets of the caudal fin is gradually united with the lower rays," (Agassiz, 1, 263.)
"In the immature state these fishes [the species of Lepidosteus] have the upper region of the caudal separate from the lower as a distinct lobe, the body is scaleless, and the pectorals consist of nembrane arising from a fleshy tubercle; they have mostly a broad longitudinal black band along the middle line,"
(Agassiz, 9,360 .)
"The young gar-pikes are remarkable as possessing certain embryological characters. The most conspicuous of these is the prolongation of the vertebrol column in the shape of a fleshy filament, distinct from the caudal fin, which [the filament] lad at times a vibratory motion, involuntary, and quite distinct from the motions of the body itself, as is seen in some embryos."
"This singular formation shows that the caudal fin is properly an appendage to the lower surface of the dorsal column, a true second anal, and not the proper termination of the column."
) Agassiz, 2, 48.) It will be noted of the filament as sinat in this later acconnt Prof. Agassiz speaks passage first quoted. Butd not as the upper raylets, as in the statement, that it is "But he does not here correct the erroneous
"In the adult state, the I at the extremity of the Lepidosteus has a large rounded caudal placed below the extremity ; in the young, the entire caudal is anal, and the vertebral co the vertebral column, as a second along the superior border of the prolonged as a detached lobe, sists until the fish is . 200 , (2 caudal. That conformation perlength." (Agassiz, 3, 57.) (2 decimeters, about 8 inches) in

Dumeri
Agassiz, and figures (Pl attention to these descriptions by to be \& very small (P1. 24, fig. 4) the tail of what is stated the figure and the shorimen, but which, judging from the size of $200^{\text {mm. (about }} 8$ inches) long. My own observitiong young, before it assumed the character described tail in the very manner of formation of the character described by Agassiz; the of the filamentary end of the body; its regradual disappearance of the adult fish.
the lower rays,"
of Lepidosteus] m the lower as torals consist of - . they have e middle line,"

3essing certain of these is the of a fleshy filaament] had at stinct from the os." fin is properly column, a true the column."
gassiz speaks ets, as in the the erroneous r rays." unded caudal ire caudal is as a second tached lobe, rmation per3 inches) in
riptions by at is stated the size of ably at least
in the very gassiz; the rappearance 1 in the tail

The material at my disposal is as follows :-
A. Young Lepidosteus brought to me in alcohol by Master Edward Steers (nephew of the late Prof. Evans of Cornell University), whe took them from the Red River, near Shreveport, La. ${ }^{2}$

The smallest of these is shown (enlarged 5 diameters) in fig. 1. It is 18 millimeters (abont $\frac{3}{4}$ of an inch) long. The largest is $44^{\mathrm{mrr} .}$ (about $1 \frac{3}{4}$ inches) long.
B. Ten young Lepidosteus (probably L. osseus) obtained by me in the Illinois River, at Peoria, during July, 1875. These were kept alive by me and carefully watched for from three weeks to a few days each. The smallest is $63^{\mathrm{mm} .}$ (about two and a half inches) long; the largest is $300^{\mathrm{mm} .}$ (about twelve inches) long.
C. Numerous specimens and preparations of adult and partly grown L. osseus and L. platystomus in the Museum of the Cornell University.

The smallest Lepidosteus in my possession (it is apparently much smaller than any that have hitherto been examined) is 18 mm . (a little less than three-fourths of an inch) in length. In figure 1 it is enlarged 5 diameters. Unlike most young specimens it is almost colorless. ${ }^{3}$

The head is rather short and depressed like that of Polypterus. The eycs are large and dark. The nostrils are easily seen; the anterior openings look upward and outward instead of downward and forward as in the adull. The branchiostegal membranes are separate as far forward as the transverse fold which exists in all Lepidosteus. ${ }^{4}$
The ventral fins have not yet appeared. The pectorals are very large and prominent, and consist of a central lobe with a thin border or fringe. The significance of this will be discussed hereafter; see page 166.
A median fin extends from the middle of the length to the vent,
a Several of these were handed by me to the late Prof. Agassiz. Uniurtunately hia failing heaith and pressing avocations prevented any examination of them, and they have been kindiy loanod to me by Mr. Alex. Agassiz, Curator of tho Museum of Comparative Zoology.
${ }^{s}$ This is the case with two small opecimens about $\delta^{\text {mam. Jong, taken from the stomach }}$ of a amall Lepldosteus. They are probably newly hatched gare, but are not capable of determination.

I think there are reasons for regarding this fold as homologous with the hinder horder of the gular plate of Amia. But as this queation Involves the homology of ome other parts now undetermined, I reserve it for another occasion.
and thence to the end of the tail. A similar primordial fin ex tends along the hinder third of the body above. This fin is quite deep and consists of a delicate membrane supported by very numerous and slender rays in close apposition ; they incline slightly backward.

The tip of the tail is unfortunately missing from this specimen, so that its exact form can only be inferred. The larger specimens show a gradual sharpening of the caudal extremity, whence we may infer that in the earliest stage the end is not very acute.
Near its hinder extremity the body has a slight downward inclination. In all the larger individuals the body is either nearly horizontal or inclined upward at its hinder extremity.
The primordial median fin presents four points of special alteration, two dorsal and two ventral. They are nearly opposite each other, but the ventral one of each pair is a little anterior to the sul.
They appear to be somewhat thicker than the surrounding parts of the fin, and darker from a greater or less deposition of pigment granules, especially near the margin of the body.

The anterior pair (D, A), dorsal and ventral, occupy the portion of the dorsal and anal fins of the adult. But no large rays, or other structures than the delicate rays of the primordial fin, are to be seen.

The hinder dorsal spot (X) is very faint and would hardly be noticeable but for its more pronounced character in larger specimens. It has no large rays and later disappears entirely. ${ }^{5}$ It may possibly represent the second dorsal of Glyptolcemus; but more probably the upper lobe of the caudal fin of Undina and Macropoma. This correspondence will be referred to hêreafter. The spot (C) on the lower lobe of the caudal of the young Lepidosteus is evidently a developing fin. It is thicker than the rest of the primordial fin. In the centre of the thickened space are dimly seen four or five larger rays pointing obliquely downward and backward. Their attachment to the margin of the body is indicated by its thickening and by is crescentic emargination. This emargination resembles that on the lower part of the tail of Calamoichthys; but in this genus the fin so indicated is probably the true anal; the infra-caudal lobe not being differentiated.

[^0]mordial fin exThis fin is quite ported by very incline slightly
this specimen, ger specimens ty, whence we very acute. ounward inclieither nearly special alteraopposite each aterior to the
ounding parts n of pigment
y the portion arge rays, or rdial fin, are
ld hardly be larger specintirely. ${ }^{5}$ It lomus; but Undina and hèreafter. oung Lepian the rest space are downward le body is rgination. the tail of probably ted.
ing skate as size before

The specin. , above described, represents, so far as. I am aware, the earliest known stage of Lepidosteus. But there can be no doubt that at a still earlier stage the tail was simple and undifferentiated like that of Amphioxus.
A second very small specimen is no longer than the one above described, but secms to be more developed. It is darker colored; the belly being almost black while the upper half of the body is brownish. The four median fins are indicated by declded though irregular blotches, and the rays of the infra-caudal are more distinct.

White longitudinal elevations show where the ventral fins (Ve) are about to appear.

The difference in the color of these two smallest specimens is very marked. The white one is apparently the younger although a trifle the longer. But it cannot be determined at present that the color is developed only after the attainment of a certain size or stage of growth.
The specimen next figured (Fig. 2) presents the following features. Its length is 23^{mm}. Its colors are darker than the one first described, but less decided than in the second small specimen referred to.

The ventral fins (Ve) are little white buds opposite the anterior extremity of the primordial fin (1). This latter has changed but little. It seems rather thinner and its borders are ragged, as if in process of removal by both absorption and abrasion.

In addition to the interruption for the vent, the primordial fin now presents three emarginations, as follows :-1. About mid-way between the spots representing the dorsal and the supra-caudal fins. 2. Behind the spot representing the anal fin. 3. Between the primordial fin (3) on the lower border of the tail and the infra-caudal lobe, which now projects slightly and is supported by cight or ten rays split at their tips but reaching the border of the fin.
In this specimen we see the beginning of the changes which are to result in the total disappearance of the tail proper and the taking of its place and office by the greatly enlarged infra-caudal lobe.
Passing over intermediate sizes in which the head is progressively lengthened, and the ventrals enlarged we come to the specimen represented in fig. 3.

Like the one first described this is a pale individual. Its total length is $44^{\mathrm{mm} .}$ From the tip of the snout to the middle of the eye, 9^{mm}; from the eye to the vent, $21^{\mathrm{mm} .}$; from the vent to the tip of the tail 14 mm .

The primordial fin has disappeared excepting on the border of the filament ($f i$) which is the elongated and slender termination of the body. The pectoral fins are still distinctly lobate, the thin border not being more than one-half as broad as the fleshy central lobe.
The anal and dorsal fins are distinct, and bave each seven rays. The ventrals are still very small.
The rays of the infra-caudal are distinct. They are more nearly in line with the body than in the younger specimens, while the tail is slightly elevated. Both the filament and the inftra-caudal lobe have inereased in length. But the latter has also become wider, while the former is so slender as to merit the name filament. It projects about 1.5^{mm} beyoud the inftu-caudal lobe.

The specimen last described is the largest of those from the Red River. The smallest of the specimens from the Illinois River has a total length of $63^{\text {man }} ; 13^{\text {mun. }}$ from muzzle to middle of eye; $28^{\mathrm{mm} .}$ from eye to vent, and 22^{mm} from vent to tip of filament.

As in most of the Red River specimens and all of those from the Illinois, the dark lateral stripe is strongly contrasted with the white belly and brownish back. The border of the pectoral is now equal to the lobe. The tip of the caudal filament is very sleuder and projects 3^{mm} beyond the infra-eaudal lobe.

At the base of the filament, just behind the tip of the dorsal, are two pairs of slight elevations, one behind the other, and looking backward. These are the first representatives of the fulcra; a series of strong spine-like plates which, in the adult gar, cover the anterior part of the upper and lower borders of the tail.

In a specimen $108^{\mathrm{mm} .}$ long, the tips of the filament and the infracaudal lobe coincide. Both have increased in lengtl and wilth, but the lobe more rapidly than the filament.

The outlines of scales appear on the sides of the hinder half of the body, and there is an increase in the size and number of the fulera.

In a specimen measuring 142^{mm} from tip of head to tip of caudal lobe, this latter projects 8 mm . beyond the filament. Its rays, that is, the central ones, are in direct line with the axis of the body,
nal. Its total middle of the te vent to the

the border of

 r ternination bate, the thin fleshy centralh seven rays.
more nearly while the tail -caudal lobe come wider, filament. It
se from the linois River lde of eye; ainent.
those from ed with the oral is now ery slender
the dorsal, and looke fulcra; gar, cover ail. the infra1d width,
half of of the

caudal

y's, that
a body,
B. Natural mistory
while the base of the filament is crowded upward. There are now five pairs of fulera, the hindermost of which extends backward as far as the point of separation between the filament and the lohe. Behind this point the fllament is apparently undergoing strnetural degeneration and removal. It is thin, slender and ragged at the edges.
But there is evidently considerable variation as to the period of this removal. For of two specimens about $190^{\mathrm{mm} .}$ in length, one has the filmment equal to the lobe, and in the other it is but 3^{mm}. shorter.

The largest specimen in which the filament is preserved, is about $300^{\mathrm{mm} .}$ long. The lobe projects 15^{mm}. beyond the filament. The free part of the latter is much attenuated, and, during life, was but feebly and oceasionally employed. The tail of this specimen is shown in fig. 4.

In imagination we may readily supply the stages intermediate between that last described and the tail as usually represented, where the free part of the filament has wholly disappeared, and its base, covered by the fulera, seems to form only the upper border of the functional tail. This latter, however, from a morphological point of view, is really an appendage of the filament.
The movements of the filament have been well described by Agassiz. He, however (2), speaks of it as "involuntary." By this he may have meant only that, as with other very rapid vibrations, a separate volition is not required for each individual movement. In fact, during vibration, the filament is invisible. But the motion is not involuntary as is that of cilia or unstriped muscular fibres. For at times the filament is wholly at rest; it may be elevated or depressed, curved strongly to the one side or to the other, and more or less rapidly vibrated in any of these positions.
The movement may be compared to that of the wings of most insects and of the humming-bird. Still more closely with that of the tail of Crotalus. ${ }^{6}$

On each side of the cartilaginous rod, in its whole length, is a band of striated museular fibre.
It would be interesting to ascertain whether the nervous supply comes from the cord within the filament or from the permanent

- Many of the Colubride, under strong excltement, will vibrate the tall as does the rattiesnake.
portion of the cord anterior to the point of its separation from the infra-caudal lobe.
The representation of the filament in the adult tail. Agassiz' figure of the tail of Lepidosteus (5, tome II, tab. A), was probably made from a dry preparation, and his description (tome I, part II, 23), does not mention any cartilaginous prolongation of the bony vertebral column. I am not aware of any other figures or description of the tail of Lepidosteus.
Figure 5 represents (reduced $\frac{1}{2}$) the dissected tail of a medium sized L. platystomus. It will be noted that the outline of the caudal in (the infra-caudal lobe of the foregoing descriptions) is nearly though not quite symmetrical; the lower rays being a little shorter than the uppermost.

In the figures of Agassiz and Du:néril the outline is much more oblique. This however, may be due in part to the fact that the upper rays are usually less separated than the lower, so as to cover less area than the lower.

Probably too, there is specifie variation in this respect. I am inelined to think also that the same species presents different characters at different ages. But for the determination of these questions a large number of individuals should be compared after their species have been ascertained. At present the taxonomy of Lepidosteus is in a very confused state. ${ }^{7}$
The outline of the base of the fin presents a double curve like an elongated letter f. The fulcra cover the anterior two-thirds of the dorsal border and three-fourths of the ventral border. Both series are closely attached to the uppermost and lowermost caudal ray respectively. These rays not only divide and subdivide like the fin rays of Malacopteri, but also consist of two lateral halvess which are often not exactly applied to each other, as seen in fig. 6. The lateral halves of the uppermost caudal ray are separated from each other excepting at their lower border, and between them lies a tapering cartilaginons rod, whose upper surface is covered by the bases of the dorsal fulcra. The relation of parts

[^1]
ation from the

 tail. Agassiz' A), was probption (tome I, rolongation of y other figuresof a medium outline of the escriptions) is being a little
is much more fact that the wer, so as to
espect. I am ents different tion of these mpared after taxonomy of
le curve like two-thirds of vder. Both most caudal bclivide like eral halves ${ }^{8}$ en in fig. 6. e separated ad between surface is n of parts
y obtainable, in Sturgeous,
fuct that the rds it as one 1 factor of a ine are Jite.
is seen in fig. 6, which represents a vertical section of the upper border of the tail about the middle of the series of fulcra.

Posteriorly the rod may be traced to beneath the bindermost fulcra, this point corresponding nearly with the point of separation of the filament and infra-cauclal lobe in the young. . Anteriorly it descends gradually to become continuous with the hindermost vertebra.

The cartilaginous rod above described is called notochord by Huxley (7,20). A cross-section, however, shows that it really represents the whole spinal axis, as seen in fig. 6. The notochord (N) is surrounded below and on the sides by the cartilaginous and unsegmented basis of the vertebræ ($C S$) which, above, separates into two laminæ enclosing the neural canal and the spinal cord ($S C$).

The structures above described are readily seen in the tail of the adult Acipenser and Polyodon. After maceration in weak spirits for some months, the notochord of these genera may be withdrawn from the surrounding cartilage as a membraneous tube, the contents of which may be washed out.

In Polyodon the fibres of this membraneous notochordal sheath are arranged in a peculiar net-work permitting considerable extension, with contraction of the caliber, or shortening with corres ponding increase in diameter.

In Amia the cartilaginous sheath is thicker in proportion, but the true notochord and the spinal cord may be traced to the extremity.

The whole structure is much shorter than that of Lepidosteus, but in several specimens prepared by me, it comes much nearer the upper border of the fin than in the figure by Huxley, (7, fig. 6). The rod is not represented by Franque (10).

The tail of the adult Amia has, therefore, essentially the same structure as bas that of Lepidosteus. Nothing is as yet known of the earlier stages of its development. Through the kindness of Prof. H. A. Ward, of Rochester, I have recently obtained two small specimens, respectively 70^{mm} and 100^{mm}. (about thrce and four inches) long, which have the characteristic tail of the adult ${ }^{9}$

[^2] descends obliquely baokward from the eye toward the margin of the operculum.

[^3]
B. NATURAL IIISTORY.

with an even more decided upward inelination of the upper candal rnys, in strong contrast with the figures of Franque (10) and Huxley, (7, Fig. 6).

Nevertheless, so nearly does the tail of the adult Amia resemble that of Lepidosteus, that I cannot avoid inferring that it passes through a similar series of transformations. And I would suggest to those who live near the breeding places of Amia, the importance of making a complete study of its development.
As the most teleosteoid of Ganoids (its ganold nature being in fact denied by Lütken, 16, 336), its embryology will be especially valuable.
The stages through which the Lepidosteus passes are comparable with the adult conditions of various living and fossil forms.
But this parallelism is rarely or never exact in regard to more than one of the features under cousideration, the direction of the spinal axis and the subdivision of the primordial median fin.
As already stated the first stage is not represented among the specimens. But, judging from all analogy, we may infer that the young Lepidosteus of about $10^{\mathrm{mm} .}$ in length, has a continuous median fin with no differentiation of color or thickness, and with no sign of subdivision into separate fins; and that the posterior end of the body is horizontal or slightly deflected downward, separating the equal or nearly equal upper and lower caudal lobes.

In the earliest of the stages here described the spinal axis is still nearly horizontal, but the median fin showe signs of subdivision.

In botl: the tail would be deseribed as truly homocereal by most authors, as aiphycercal by McCoy and Husley, and as protocereal by Wyman.
I do not wish, on this occasion, to discuss the general subject of the nomenclature of tails. But it seems to me that all the arguments of Huxley in favor of diphycercal for homocercal ${ }^{10}$ as applied to tails like that of Polypterus, apply with even greater force toward substituting protocercal for both. For the latter term indicates that the structure under consideration exists in the earliest known stages of development of Selachians and Ganoids;

[^4]n of the upper candat f Franque (10) and le adult Amia resemsid inferring that it tions. And I would places of Amia, the development. oid nature being in gy will be especially
isses are comparable fossil forms. ; in regard to more the direction of the al median fin. esented among the may infer that the has a continuous hickness, and with that the posterior flected lownward, ower caudal lobes. the spinal axis is rns of subdivision. mocercal by most nd as protocercal
reneral subject of hat all the arguhomocercal ${ }^{10}$ as ith even greater For the latter ion exists in the Is and Ganoids;

But he applies this , the arrangoment is Whole subject, how. development of the
in certain very ancient Ganoids (as Clyptolemus and Cyroptychius); and in the generaized forms Lepidosiren and Ceratodus.
I have not been able, however, to find the worl used elsewhere than in Wyman's paper on the Development of Raia batis (11).
Upon the general subject see Huxley (6, 7, and 15), with other papers therein referred to.
This stage of the Lepilosteus may be compared with Amphioxus, the lowest known Vertebrate, with Lepidosiven, Protopterus and Ceratodus, ${ }^{11}$ where, however, the primordial fin-rays seem to have been replaced by stronger and permanent rays; Myxine, Bdellostoma and Petromyzon, where the rays are cartilaginous; ${ }^{12}$ (in some species of Petromyzon the merlian fin is continuous, with slight undulations indieating the subdivislons in other species); and with Menobranchys and Menopoma, where, as in the larve of Anoura, there are no fin-rnys at all.

The eartilnginous prolongation of the vertebral colump of Polypteris is not sloown by Agassiz ($5, \mathrm{II}$, tab. C). It is figured by Huxley and deseribed (7,20), as hardly at all bent up.
In a Calamoichthys in my possession a line drawn vertically across the tall over the end of the cartilaginous rod intersects tweive fin-rnys. Four of these lie above the rod nud eight below. Still the upward inclination of the rod is very slight, perlaps not enough to prevent the recognition of these two genera as protocercal. Some other form would have been better, however, for illustration.
Anong fossil forms with apparently protocercal tails are probably included the extinct species, of Ceratodus described by Newberry and Cope.
In all the above excepting Polypterus and Calamoichtlyy, the median fin is continuous as if formed by direct enlargeme: t of the whole primordinl fin.
But in other fossil forms, as in the two genera above named, parts of the primordial in are differentlated and bear the names dorsal and anal.
The most instructive of these is Clyptolemus, a Devonian fish described and figured by Huxley (6, fig. 1, and plates I and II). "There are two dorsal fins placed in the posterior half of the
n Commonly known as Dipnoans, but Incladed among the Ganolds by Gunther (10) GIII (12) and others.
${ }^{12}$ Perfectly distinct, althongh these have been called Dermopter! by Owen.
body. The ventral fins are situated under the first dorsal and are succeeded by a single anal. The caudal fin, whose contour is rhomboidal, is divided into two equal lobes by the prolonged conical termination of the borly; in other words, the fish is diphyeercal or truly homocereal" (Huxley 6, 3).
Huxley states that the hend, body and fin, of Gyroptychius might be described in the terns which have just been applied to Glyptolcemus.
Both these genera are comparable with the first stage of Lepidosteus. The tail is strictly protocercal (or "diphycercal"). More over there are two dorsals. If the anterior be the homologne of the single dorsal of the adult Lepidosteus, then the posterior may, perhaps, represent a development of the transitory posterlor dorsal of the young Lepidosteus. If the anals correspond in the two then the infra-cauial lobe of Lepidosteus is not differentiated from the rest of the tail in Glyptolcemus, or Gyroptychitus.
But it may be that another interpretation is more nearly correct. Certain other fossil forms, as Undina, and probably Macropoma, bave a continuation of the vertebral columa between the two equal lobes of the cnudal fin, and the prolongation of the cnudal extremtty beyond it as a fllamentary appendage (Huxley $\mathbf{6}, 15$). Lenving out of the comparison the advanced nuterior dorsal of Undina, the posterior dorsal may be compared with the true dorsal of Lepidosteus; the anals are apparently homologous. There are then an upper and n lower caudal lobe of nearly equal size, the flament projecting hetween. The lower lobe may naturally be homologized with the permanent infra-candal of Lepidosteus, while the upper lobe represents a similar development of the transitory appearance (X) of Lepidosteus.
Which of these interpretntions is correct will hardly be deter mined before the general affinities of all these forms, fossil and living, are better understood than at present. Meantime I venture to call attention to the facts, well known but not always borne in mind, that all median tins are differentiations of a single continuous primordial fold; that even in nearly nllied forms they present considerable diversity of size and position; and that no such taxonomic significance is probably to be assigned to them as to the lateral fins, of which there are never more than two pair.

Leaving out of the comparison the degree of subdivision of the median fin, the stages 8,4 , and 5 , represented in figs 2,3 , and 4 ,
B. NatURAZ History
first torsal and are 1, whose contour is the prolonged coni the flsh is diphycer.

Gyroptychius might

 en applied to Glyp.st stage of Lepidosohycereal"). More a the liomologne of tho posterior mny, ory posterior dorsal espond in the two, differentiated from chius. nore nearly correct obably Macropoma, ween the two equal the cnudal extrem. 6, 15). Lenving tlorsal of Undina, rue clorsal of Lepi1. There are then ll size, the filament lly be homologized s, while tho upper asitory appearance

I hardly be deter forms, fossil and cantime I venture ; always borne in single contintotis ms they present that no such tax0 them as to the vo pair.
adivision of the figs 2,3 , and 4,
have their more or less aceurato counterparts among various living and fossil Ganoids ant Sharks. ${ }^{13}$

Alopias liss a long upper lohe (so-called). ${ }^{14}$
In Polyodon and some species of Acipenser and In most Sharks, the upper lobe is but little the longer; in Lamna the lower lobe nearly equals the upper. I am not nequainted with any Ganold or Selachian where the lower lobe is the longer, as in the sixth stage of Lepidosteus (Fig. 5). ${ }^{15}$

The last stage (7, fig. 6), exists in Amia alono among living Ganolds, and, so fir as I nm aware, is not presented by any palreozoic forms; their talls belng elther protocereal (as in Clyptolcemus) or obviously heterocereal ns in Palceoniscus, etc.

But among mesozoic forms the amioid tail is not unusual ; and a series may easily be formed, as, for instance, of Lepidotus, Megalurus and Thrissops by which the truly heterocereal tail is apparently converted into the apparently homocerenl form. Indeed the tail of Megalurus, as figured by Agassiz (5, tab. E, fig. 4), might almost be triken for that of Amia. ${ }^{16}$
is Soveral apecies of Loricarin have the upper enulat rny grontly prolonged so an to form a flament. In an adult exambinell by me there is no prolongntion with it of the notochoru. It would be interesting to examine the young in this genus. The flament nilds another to the annlogies between the Goulodonts of South A merica and the Sturgeons of the Northern hemisphere which bave Loen pointed out by Agassiz (20,$30 ; 21$, 212, 290; 22, 351).
i4 I use the term upper lolie beemuse it ls commonly employed. strictiy apenking, however, it is not n love of tho caudal in In any auch senfe as la the lower lobe here enlled tintra-candul. It is tho prolongation of the body and is really a gignitie flament. The tall of Chimera is even more oxnggerated.
Sonething like a roversod representation of the changes In tho tnil of Lepidosteus oceurs with the developlng akate. The dorsals of Raia balis were found by Wyman (11, 4:1) to "clungo position from the mildile to the end of the tall. At the time of butehing, however, there is stili a kiender terminal portion of the tall which la after wards either ubsorited or covered up by the enlargel dorsals ns they extond back ward.n

In a young akate taken from the egg-cuse und monsuring 70 mm . In length, I And proJoctling leyond tho second dorsul a slender flament alouti 10 ma. Iong, which is atrophied as compured with the rest or the tall, anil apparently in process of removal. (In Uraptera, ne remarked by Wyman, this slender tail is persistent). Atior its removal the hinder dorsal of the skate occuples towaril the end of the body the same poestion morphologically, as if it were n supra-cnudas tobo or diferentiation of the primordial fin, corrosponding to the Infra-enudal lohe of Lepldostens. The end of the vertebral column ls not, bowever, bent downward so as to nllow the dormal to be strictly termlc:1: perhaps in adnptation to lis frequentligg tho bottom.
${ }^{18}$ There seoms to the no reason why such a form should not exist, a roversed counterpart of Alopias as ILemlrhamphus is of Xiphice.
${ }^{14}$ In the diagramamatle restoration of Negalurus above referred to, the scales are represented as rhomblo. But they aro renlly cycloid, as in Ama, in all the four spooles Bhown by Agassia In Pintes 51 nad ste of the same work. May not Aregalurus be a fossll ropresentative of the Aminde? Huxlog, however, (7,127), saya that "it is not certain that any momber or tho group occurs in a fosell stato;" and Lutken ($\mathbf{l 6}, 338$), thinks "there is no positive reasou for arranging the Megaluri (which he regards ac Teleostel) with the Amiadm."

Since Huxley (15) has shown the probability that the tails of most if not ill 'Teleostel, are really strongly heterocercal, it is not difleult to lamagine a series by whith the tail of Amia should become thant of one of the Clupeolis with which Cuvier had placed It. Indeed there are fossil Ganoths (Thrissops, Aspidorhynchus, etc.) whose talls are apparently as perfectly homocereal as those of any Salmo or Scomber, but whilh, by analogy, we may suppose to have been, In the earlier stages of developinent, distinetly heterocercal, or, perhaps, even protoceren.

But the transitlon is still better illustrated by the changes whieh occur in Gasterostens ns described by Huxley (15) and as lately seen ly te in a Silurohl.

For in the young Gasterosteus the eartilaginoiss rod (ealled noto. chorl by Huxley) is not only strongly bent upwari but also reaches the upper angle of the tall, nearly as in Lepidosteus. But in the hall-grown fish, by the growth of the fin rays the end of the notochord "no longer reaches, ly a long way, to the posterlor supertor angle of the candal fin;" this is the condition of things in Amia.
It may be saici, therefore, than the Telcostean tnil does not simply begin where the Ganoid tall lenves off, but actually overlaps it; the two enrlier stages of the former being represented by the tails of Lepidosteus and Amia, the latter genus, as has been already stated, being regarded as the most teleosteoid of Ganoils.
Lutken las remarked $(16,332)$ that "in general an evident progress from the heterocereal to the so-enlled homocereal or funlike tail may be olserved ruming parallel to the progress of the geological epochs."
The transformatlon of the tail of Lepidosteus so far as already known, would have fornished an embryological parallel to the structural and geological sertes; while the earlier condition here first described enables us to extend the comparison to the protocereal forms of which some are among the oldest known fishes and others, now living, are either the lowest of vertebrates or manifest such striking relations with other elasses as to have received the name "generalized Ganoids."
iil. - Tie transformations of the pectoral fins of Amia and Lepidosteus.
Rafinesque ${ }^{17}$ described a small gar-pike under the name Sarchi-

$$
{ }^{17} \text { Journ, ac. nat. scl., Philad., 1818, vol. I, part 1I, p. } 418 .
$$

lity thant the tails of eterocercal, it is not of Amia shonid beH Cuvier hand placed ops, Aspidorhynchur, omocercul as those of -, we may suppose to ant, distinctly hetero.
by the changes which y (15) and ns lately
ons rod (called noto. it upward but also in Lepiclosteus. But rays the end of the ay, to the posterior condition of things
tail does not simply ctunlly overlaps it; esented by the tails is has been already of Ganoids.
general an evilent homoecreal or fanthe progress of the
$u s$ so far ns already al parallel to the rlier condition here ison to the protot known fishes and brates or manifest have received the
fins or Amia and
the name Sarchi$\mathrm{x}, \mathrm{p} .118$.
n. NATURAL HISTORT.
rus becanse the pectorals consisted of a membrane rising from a fleshy lohe.
 characteristic of the young Lepilloateus. Duméril (4,320) quotes Agnssiz' observations but makes no comment napon them. No cther systematio work, so far as I know, contains any reference to the fact.
Since Huxley (6,24), has proposed a new sub-order of Ganolds, Crossopterygia, mainly "in consideration of the peculiar manner in which the fin rays of the paired fins (the pectorals and usualiy the ventrals) are arranged so as to form a fringe round a central lobe," it is desirable to ascertain whetier the carly stnges of other Ganoids exhibit similar features.
This is certainly the case with all the young Lepidosteus above deseribed, Including the largest. Moreover, in any minute description of the adult L. platystomus, the pectoral ans would be distinguished from the ventrals by the existence of a decided fleshy rounded lobe at their base.
In the smallest gar (Fig. 1, P) the fringe forms little more than one-third the whole length of the fln. As the fish grows the lobe becomes rather longer and narrower, but the finge lacrenses so much more rapidly as to render the former comparatively inconspicuous in the adult.
The pectorals of Amia, even the adult, have a fleshy lobe. In the smailest specimen already alluded to, the length of the whole fin is 10^{mm} and the basal lobe forms one-fifth of this, 2^{mm}.

So far as regards external form alone, botil Amia and Lepidosteus must be regarded as hnving lobate or fringed pectoral fins.
But the significance of this fact depends largely upon two other considerations. 1. Is the structure of the fin identical with that of Polypterus and the other forms included among the Crossopterygia? 2. Is the lobe necessarily covered by scales?
It is so covered in Polypterus and, as I infer, in the fossil genera. But I have not found scales upon the lobe in even the adult Amia and Lepidosteus.
Since, however, all those forms, like the young Lepidosteus, were probably scaleless when young, it would seem that not much weight should be assigned to the lack of scales in the adult.
IV.-On tre brains of Amia, Lepidosteus, Acipenser and Polyodon.

There is a wide difference of opinion among zoölogists respecting the limits of the group commonly known as Ganoids, and its relaticiss with the other fishes, and the higher Vertebrates. To the group as originally defined by. Agassiz and Müller, including, with many fossil forms, the living Lepidosteus, Polypterus and sturgeons (Acipenser, Scaphyrhynchus and Polyodon), Amia was soon added, and Agassiz rias even inclined to adjoin the Siluroids, the Plectognaths and Lophobranchs. Prof. Gill (12) considers that "the Polypterids (Crossopterygia of Huxley) and Dipnoans" (Lepidosiren, Protopterus and, probably, Ceratodus) exhibit so many eharacters in common that they are not even entitled to subclassical distinction. Dr. Gunther (19) considers the Dipnol as a sub-order of Ganoids, and unites these with the Selachians as a sub-class of fishes, Palæichthyes. Lütken (16) goes to the other extreme and excludes from the Ganoids not only the sturgeons but also Amia. ${ }^{18}$ Cope $(17,582)$ does not recognize the group at all.
It will be observed that, for determining the limits and relations of Ganoids, naturalists have appealed to the scales, to the dermal ossifications upon the head, to the skull and skeleton in general, to the limbs, to the spiral intestinal valve, and the multivalvular and rhythmically contractile bulbus arteriosus.
The embryology of the typical Ganoids is wholly unknown, and this most valuable aid in classification is, therefore, not at present available.
The only brain character which has entered into the discussion is the chiasma of the optic nerves. In this the Ganoids differ from the Teleosts and Myzonts, and agree with the Selachians and higher Vertebrates; but the general aspect of the brain is more nearly that of the Teleosts.
It does not, appear however that any detailed comparisons have been made between the brains of Ganoids and those of other fishes and the higher Vertebrates ; and Prof. Gill who alludes (12) to "the superior taxonomic value of modlfications of the brain and

[^5]heart in other classes of Vertebrates," does not refer to any other feature than the optic chiasma already mentioned.
Having reasons, ${ }^{19}$ other than those derived from the extreme diversity of conclusions already referred to, for believing that a careful study of their brains will throw light upon the limits and classification of Ganoids, I have this summer (1875) made inumerous preparations of the brains of the four American genera, Amia, Lepidosteus, Acipenser and Polyodon, comparing them with each other and with the figures and descriptions of Ganoid brains to which I have had access.

Since, in comparison with the preparations, none of the published figures and descriptions are wholly satisfactory, I here refer to them in detail.
Apparently the earliest figure of a ganoid brain is that by Stannius (32) of the sturgeon's brain. It seems to be a correct representation, and fairly indicates the features, which, according to the views I have reached, are characteristic of the brains of all Ganoids. But no especial attention is drawn to them, and the nomenclature of the two anterior pairs of lobes has not been accepted by later authors. Stannius calls the first pair, from which arise the olfactory nerves, the olfactory tubercles, and the second pair, which most authors call hemispheres (but which I believe to be specially developed portions of the thalami), the olfactory lobes. He thus recognizes no cerebral hemispheres at all, and makes no comparison between the sturgeon's brain and those of other fishes, or the higher Vertebrates.
It is to be noted that this nomenclature of the two anterior pairs of lobes corresponds with that which Gottsche had applied to the brains of osseous fishes, in 1835 . This author (30, 445) enumerates the various names which had been given to the hinder and larger pair, and concludes that they are the olfactory lobes, the anterior pair being olfactory tubercles. Gottsche cites Desmoulins and Serres as regarding the so-called olfactory lobes as cerebral lobes, which name has since been more commonly employed. Gottsche makes no definite allusion to the brains of other fishes than the Teleosts.

10 Based upon the probability that such an organ as the brain would be most exempt thue from modifcations by external agencies in the progress of evoiumprehensive groups manifest more uniformity of structare then or limbs. Compare Agassiz, 49, 11, 362). than would the digestive organs, the skeleton or limbs. Compare Agassiz, 49, 11, 302).

In 1844 Johannes Müller figured (18) the brain of Polypterus from above, from below, from the side and in single cross section, through the pair of lobes next to the anterior.

There can be no better illustration of the slight importance ascribed at that time to the brain for taxonomic purposes than the insuffleient of figures and very brief des--iptions, which the great ichthyologist devoted to the brain of a typical Ganoid. He says (p. 139)."Das Gehirn der Ganoiden ist eigenthumlich und unterscheidet sich von dem der Knochenfische und Plagiostomen." Yet his description of the brain ($\mathbf{p} .140$) and résumé of the characters ($p .141$) give us only the optic chiasma, a feature which the Plagiostomes share with the Ganoids. (See also 41, 24.)

Müller enumerates the cerebellum und the optic lobes, the "lobus ventriculi tertii" (corresponding to the thalamus of higher vertebrates) the hemispheres, olfactory lobes and olfactory nerves. Although commenting upon the general resemblance of the brain to that of the sturgeon he does not call attention to the different determination which he makes of the two anterior pairs of lobes.

In the following year Busch (29) published figures of several Ganoid brains.
This work I have not been able to obtain. But if the figures of the brains of the sturgeon and the Chimera, copied by Owen (24, I, figs. 173 and 179), are fair examples, the work did not materially advance the knowledge of either the form, the structure, or the homology of the ganoid brain.
The paper of Hollard (34) admits three types of brains, the teleostean, the plagiostome and the cyclostome. It is not clear to which of these types he would refer the ganoid brain.
In 1848, a pupil of Müller, H. Franque, figured (10) the brain of Amia from above and below with separate views of the optic chiasma. He makes no comparisons with other bralns, and his description is a simple enumeration of the lobes according to the usual nomenclature, the two anterior pairs being olfactory lobes and hemispheres respectively.
Duméril (4, pl. 20), copies from Phillippeaux and Vulpian figures of a sturgeon's brain from above and below. He makes no original observations. The so-called hemispheres are shown as solid rounded masses without eversion of the dorsal borders, and the olfactory lobes as solid without even the orifices distinctly portrayed, though not interpreted, by Stannius and Busch.
rain of Polypterus ingle cross section, ght importance aspurposes than the 1s, which the great Ganoid. He says umich und unterad Plagiostomen." umé of the characfeature which the 3041,24 .) optic lobes, the thalamus of higher d olfactory nerves. slance of the brain on to the different ior pairs of lobes. figures of several ut if the figures of jied by Owen (24, k did not materi, the structure, or
pes of brains, the It is not clear to rain.
red (10) the brain views of the optic or bralns, and his according to the ng olfactory lobes
aux and Vulpian jw. He makes no res are shown as orsal borders, and ces distinctly porBusch.
B. Natural history.

In 1864, Mayer (40) published figures of a large number of fishes' brains, as illustrations of his idea that by the relative size and more or less intimate connections of the brain-lobes, fish-like forms could be divided into Pisces Mesencephali (Teleosts), and Pisces Proëncephali (all others including Dipnoans). The eighty-four figures of Teleost brains are mostly original; they usually present only the upper surface and vary in the degree of their accuracy, judging by comparison with preparations of the same species.

The Myzont brain is represented by Müller's figures of Myxine and Bdellostoma, and by an original and very good figure of Petromyzon marinus. His interpretation of the parts differs from both Müller's and my own.

Among Selachian brains are copies of Galeus and Callorhynchus from Busch, and of Torpedo from Savi; the author adding a fortal Galeus, a Zygœena, Squatina, Raia Scymnus and Chimera; all are shown from above, Chimera alone shows the olfactory lobes; the separation of these from the rest of the brain in the figure is not referred to in the text or regarded by others who have copied the figure.

The brain of Protopterus is seen from the side in a copy of Owen's figure and from above in that of Peters.

Mayer copies Busch's figure of the brain of Lepidosteus semiradiatus, and by its side gives an original figure of that of L. osseus without commenting upon the great difference and form and relative size of parts ; both are inaccurate.

Similar unexplained discrepancies appear between the original figures of the brains of Acipenser sturio and Ruthenus, while that of Polyodon agrees neither with them nor with the preparations made by me. There are copies of Müller's figure of the brain of Polypterus and of Franque's of that of Amia. None of these figures indicate the existence of a lateral ventricle or a foramen of Monro.

The Ganoids together with the Dipnoans are called Hemiepencephali. The Holo-ganoidei include Acipenser and Lepidosteus, while the Hemi-ganoidei embrace Amia, Polypterus, Protopterus and Polyodon.

While sympathizing with Mayer in his attempt to follow out the earlier suggestion of Carus, and make the brain the basis for a subdivision of fishes, I am compelled to eay that his determination
of homologies and discrimination of groups, as founded upon the external aspect of preparations (some of which certainly are badly preserved) do not stand. the test of a careful structural comparison. A smaller number of figures of sections or dissections of a few typical forms would have more materially aided our comprehension of the brains themselves and of the zoölogical relations of the fish-like Vertebrates.
In 1368 appeared a paper upon the comparative anatomy and development of the brain by Miklucho-Maclay (41). 20
This author regards the brain of Selachians as typical, and bases his determination of homologies upon the comparison of vertical longitudinal sections of the brains of an embryo shark (Heptanchus) and a goat. He concludes that the cerebellum of the shark is a narrow bridge ; that the convoluted mass just in front, which is usually regarded as the cerebellum, represents the optic lobes; that the optic lobes are really the thalami (zwischenhirn); and that the hemispheres (vorderhirm) are only partly separated from each other.
Remarking, in passing, that Miklucho-Maclay offers no sufficient reason for the interpretation of the hinder lobes of the brain, I would call attention to the fact that the embryo shark was $130^{m m}$. (more than 5 inches) in length, and that, as shown by the figure, the so-called vorderhirn had already nearly filled up.
His diagram of a typleal brain (Fig. 1) is not readily or closely comparable with any fish-brain, as it seems to me; and since the author adopts Müller's statement respecting the slight extent of the ventricles in the Myzonts; and neither describes nor figures any part of the brain of a Ganoid or Teleost, we are compelled to regard his interpretation of homologies throughout the bransh as open to doubt, on account of the statement that the hemispheres of Ganoids and Teleosts are wholly separated (p. 560) ; this not being the case in any fish-brain excepting that of Protopterus, where the true hemispheres are separate as in Batrachians.
Owen (24, I, figs. 173 and 174) figures from above the brains of a sturgeon copled from Busch, and of Lepidosteus apparently original and very imperfect. In both, the masses just in front of the optic lobes are called prosencephala (hemispheres). But, as there figured, the outward aspect of the two brains is so dissimilar

[^6]founded upon the hlch certainly are careful structural sections or dissec. laterially aided our of the zoological
ative anatomy and (41). 20 typical, and bases parison of vertical yo shark (Heptanellum of the shark 1st in front, which ts the optic lobes; vischenhirn) ; and tly separated from offers no sufficient es of the brain, I shark was $130^{\mathrm{mm} .}$ own by the figure, 1 up. readily or closely e; and since the e slight extent of cribes nor figures are compelled to out the branch as ; the hemispheres p. 560) ; this not t of Protopterus, trachians. oove the brains of osteus apparently es just in front of pheres). Bat, as $1 s$ is so dissimilar The delay in publion.
B. KATURAL HISTORT.
and so little indicative of their real structure, that the eminer.t author seems not to have thought of making any comparison between them. The openings which I shall show to be the "foramina of Monro" are represented in the sturgcon's brain even too distinctly, but there is no reference to them in the text. The cerebellum of the sturgeon is described as a "simple commissural bridge or fold" according to its outward appearance, whereas, by its downward projection into the optic ventricle as \mathfrak{a} thick keelshaped mass, the cerebellum has a very considerable bulk. The cerebellum of the gar-pike is figured as smooth and described as solld, whereas it is really hollow and presents two longitudinal depressions.
The manual of Gegenbaur (14) contains several figures of fishes' brains. Three represent vertical longitudinal sections of the brains of embryo shark, snake and goat, which are apparently original, although the first resembles that of Maclay. Figures of the brain of Polypterus are copied from Müller, and of the brain of a shark from Busch.
Like many continental anatomists, Gegenbaur subdivides the brain into nach-, hinter-, mittel-, zwischen- and vorder-hirn. We have no good English equivalent for zwischenhirn, nor do the other names seem to aid the comprehension of the brain type any better than the ancient and convenient latin terms, cerebellum, lobi optici, ${ }^{21}$ hemispherce, thalami, etc.
In the preserit case the nomenclature of the several brains is not homogeneons, even according to the common interpretation that the hemispheres of the frog and other aërial Vertebrates are represented in fishes by the pair of solid lobes in front of the optic lohes, or in sharks by the single median mass from which arise the olfactory crura. The optic lobes of the shark are called zwlschenhirn, and those of Polypterus mittelhirn; and in the section of the brain of the embryo shark the term mittelhirn is applied to the larger and folded anterior portion of the cerebellum, while the hinder border is named hinterhirn.
Huxley (7, fig. 38), figures the brain of Lepidosteus osseus from above and from below. In accordance with the plan of the "Manual" it is not stated whether the figure is original.

Huxley follows the usual nomenclature in making the two pair of lobes in front of the optic lobes respectively hemispheres and

- 21Tho pondorous phrase corpora quadrigemina is rarely employed by comparative - anatomilts.
olfactory lobes. But he does not refer to the figure in the text, nor does he mention the brain as likely to aid either at present or in the future in the discrimination between the Ganoids and the other fishes.
The figures and descriptions of the brains of Myzonts (Marsipobranchs), Teleosts, and Sclachians (Elasmobranchs) are hardly more satisfactory. With none of them is any effort made to ascertain, by a structural comparison, the extent to which they conform to the type of brain commonly recognized among the air-breathing Vertcbrates.
This is the more noteworthy because by far the clearest presentation of this type is furnished by the figures and descriptions in the earlier pages of the same work. For these diagrams indeed, as for so many others which bring orderly knowledge out of chaotic detail, the anatomist is greatly indebted to Prof. Huxley. .

In this brief historieal survey, considering the general desire to ascertain the extent to which Ganoids form a natural group separable from other fish-like forms, one is struck with the absence of both any attempt to characterize the group by means of the brain and of the supposition that such characterization is possible.
Evidently the first step in such characterization should be the identification of parts, if possible, with those which uniformly exist in the brain of all aiz-breathing Vertebrates, the Batrachians, Reptiles, Birds and Mammalia.
The ganoid brains upon which this paper is based, were all prepared by myself from fish just taken from the water. The difference between these preparations and some previously made from specimens which had been transported for some distance or kept for a time in spirit before the heads were opened, has convinced me that, for the determination of doubtful points of structure, the brain should be hardened in strong alcohol before the fish has been twenty-four hours out of water.
The published figures and descriptions of ganoid brains with which I am acquainted appear to have been made from poorly preserved specimens. Moreover, none of them inclade all the views (from the side and from below as well as from above) and sections (mesio-longitudinal, and transverse at several points) which are necessary to the presentation of the real stincture of a brain. With no other organ is it less safe to trusi to the external . form end appearance of the several lobes.
 Ganoids and the

Myzonts (Marsianchs) are hardly ort made to asceraich they conform the air-breathing
clearest presend descriptions in diagrams indeed, ledge out of charof. Huxley. general desire to ral group separab the absence of ans of the brain is possible.
n should be the which uniformly the Batrachians,
ed, were all preter. The differously made from listance or kept , has convinced of structure, the he fish has been
oid brains with de from poorly inelude all the om above) and several points) sisucture of a to the external .

How far this is true of the brains under consideration, may be seen by a comparison of the representation (Plate II, fig. 7) of the mesial surface of the brain of Lepidosteus osseus with the figures of Iluxley (7, ig. 38), or of Owen (24, I, fig. 174), both of which seem to have been made from poorly preserved preparations. ${ }^{22}$

The gar-pike from which was taken the brain here represented, was a female, 1.3 meters (about four and one-half feet) in length. The brain, as is usual with this species, and, so far as I know, with all adult Ganoids, was covered by a layer of connective tissue. This envelope is fatty and yellowish in Acipenser; jet black and very abundant in Polyodon, the brain of which does not nearly fill the cavity ; moderate in amount, and light colored in Amia and Lepidosteus. In the young of these latter, less than 120^{mm} long, no envelope exists, the brain quite filling the eerebral cavity. It would be interesting to ascertain at what period commences the increase in the brain case of Polyodon.
The brain is represented enlarged two diameters. ${ }^{23}$.
The description of refer to the general type of brain as found in followed if we first refer to and Mammals.
The best figures and descriptions of this type of vertebrate
brain, are those of Huxley (24, figs. 19 and 20), which, with un-
important changes are reproduced on figure $15 \mathbf{5}^{24}$ begins as three
According
nedian vesicles, whose cavities are continuous with the central
canal of the spinal cord. The hinder vesicle thickens below to become the medulla oblongata (M). It opens above to form the fourth ventricle (4) and a bridge over the anterior part of this ventricle is the cerebellum (C). The riddle vesiele becomes the optic lobes ("corpora quadrigemina" of anthropotomy); its cavity may, as in Batrachians, remain as a wide space, the optic ventricles, or be narrowed to a mere "aqueduct of Sylvius" or passageway (I) from the fourth ventricle behind to the third ventricle in front.
as it not atrange that Europeans have been obliged to content themselvee with 2. It is not atrange that Europeamerican Ashes. Bnt it is littio to the credit of our mperiectly preastrat they have not long ago inveatigated the structure and devold astive zodlogists unst theculiar to this contlineut.
so some parts would be more advantageousiy shown if in atural size.
Ahes' brains can hardly be snderstood if agured of the nates and Lauriat of Beston. Ashes' brains can hardly be snderstood if agured Mesars. Estes and Lauriat of Beston.

This third ventricle is the cavity of the anterior vesicle, and its lateral walls become the thalami (Th). But from each side in front there is produced a hollow bud which enlarges so as to become the cerebral hemisphere (H). From the front of each hemisphere a sccond bud is produced, the olfactory lobe (Ol). The cr.vity of cach hemisphere is a lateral (first or second) ventricle, ($L V$) and the cavity of the olfactory lobe is the olfactory ventricle. The constricted communication between each lateral ventricle and the median third ventricle is known as the "foramen of Monro" ($F M$). Median dorsal and ventral outgrowths from the thalamus vesicle become respectively conarium ("pineal body," Co) and infundibulum, the connection of which with the hypophys ($H y$) is now regarded as secondary (43,92).

The thin anterior wall of the anterior vesicle between the hemis-phere-buds, remains as the lamina terminalis ($L t$) the "lamina cinerea" of anthropotomy. The corpus striatum is a thickening of the outer walls of the hemisphere (CS). The various transverse and longitudinal commissures corpus callosum, anterior commissure, fornix and pons Varolii, probably do not exist in fishes and need not here be described.

Taking for granted the sequence of principal ganglia, medulla, cerebellum, optic lobes, thalami, hemispheres and olfactory lobes, no diffleulty is met, in renognizing the three first named in the brain of Lepidosteus. But the appearance of these in the section differs considerably from the idea conveyed by the figures of the brain from above and below. The fourth ventricle (IV) extends farther back, and has no bridge across its anterior end as in Huxley's figure. In this species the hinder end is quite sharply pointed. But in a smaller gar from Wisconsin, not yet identifled, the ventricle is shorter, its borders are raised and everted, and the hinder extremity less sharp. The borders also approach each other quite nearly, just behind the cerebellum, which, with a poorly preserved preparation, might lead an artist, not an anatomist, to regard them as normaliy continuous. ${ }^{25}$
If figure 7 be held with the olfactory lobe upward, then the section of the entire cerebellum may be compared to a letter S , the lower curve larger and its substance thicker than the upper.

The lower, or, if the figure be replaced in the horizontal posi-

* Huxley's figure purports to be of the brain of L_{0} aemiradiatws, Ag. Gunther regards this as a synonym of L. osseus.
r vesicle, and its om each side in ges mo as to be it of each hemislobe (Ol). The zecond) ventricle, lfactory ventricle. ral ventricle and amen of Monro" om the tisalamus ody," Co) and ypophysts ($H y$)
ween the hemisit) the "lamina is a thickening various transn, anterior comexist in fishes
anglia, medulia, olfactory lobes, ; named in the o in the section flgures of the e (IV) extends rior end as in s quite sharply ; yet identified, verted, and the approach each , with a poorly 1 anatomist, to
, then the seca letter S , the 3 upper. orizontal posi; Ag. Guinther ro-
ion, postcrior curve, represents the cerebellum proper. The anterior curve corresponds to the "valve of Vieussens" of anthropotomy, and to the "fornix of Gottsche" referred to by Huxley in his description of the brain of Teleosts (7, 142).
This part is about one-balf the thickness of the cerebellum itself, and it becomes an exceedingly thin lamina where it joins the overhanging posterior border of the optic lobes. The cerebellar ventricle is quite extensive, its vertical diameter being more than twice and its longitudinal diameter more than thrice, the thickness of the lamina by which it is surrounded.
- About midway between the posterior rounded border of the cercbellum and the free thin edge of its anteverted portion upon the ventral aspect, is a low ridge. Laterally this is in apposition with a corresponding everted edge of the medulla.
The dorsal surface of the cerebellum presents on each side a rather deep furrow separating the median rounded portion from the peduncle on each side.

The "aqueduct of Sylvius" ($A S$) is a rather contracted passage from the fourth ventricle to the ventricle of the optic lobes.

The dorsal aspect of the optio lobes inclines downward and
forward at about the same angle as that at which the cerebellum inclines back mard. The thickness of the cut surface is about the same as that of the "fornix of Gottsche," but the anterior margin is slightly thickened and rounded. At this point the expanded optic ventricle ($O V$) opens forward by a contracted aperture surrounded by a flaring lip. The conarium or pineal body (C) lies just in front of this aperture.
So far there seems no reasonable cause for doubting the correctness of the commonly accepted nomenclature. But the anterior half of the brain of Lepidosteus presents serious difflculties in the way of strict comparison with the brains of the higher Vertebrates. ${ }^{26}$

The form and connections of the parts marked 2, 3, 4, cannot be well indicated without more figures, especially cross-sections. These I hope to present upon another occasion.
The third ventricle (III) opens bot thin upon the sides. It ex-
${ }^{2}$ Walls eay nothing here of the brains of the Myzonts, selachians and Teleosts, with
To say nothing here of the brains or the as will be shown hereatter.
which considerable rectidioation is requir (12)

B. natural higtort.

tends under nearly the whole width of the brain and opens downward he' a median slit into what seems to be a plexus of vessels.

The hollow lateral lobes are what Owen calls "hypoaria" and Huxley, with most authors, "lobi inferiores." The lower solid vagcular mass corresponds to what is commonly called the pituitary body or hypophysis. It is easily detached, and is not, so far as I am aware, represented in any figure of a Ganoid brain.

Pending an examination of the braln of Lophius, the hypophysis of which lies far in front of the brain connected with its usual attachment by a very long infundibulum, I am inclined to regard the lobi inferiores as lateral expansions ${ }^{27}$ of what is cailed in anthropotomy the tuber cinereum.
There remain to be described the two pair of masses which, in Lepidosters as in most Telcosts, are placed jusi in front of the optic lobes. They are at the present time usually regarded as representing respectively the hemispheres and olfactory lobes.

According to the type of brain as described by Huxley and generally accepted, the bemispheres should be lateral masses separate from each other and each containing a cavity, the lateral ventricle, communicating with the median or third ventricle through a foramen of Monro.

Yet, so far as I am aware, no suci' condition of things has been figured or described with respect to the brain of any fish-like form excepting Protopterus and Lepidosiren. ${ }^{28}$ (See Appendix.)
In the brain of the adult Lepidosteus, the lateral mass marked PTh is a solid lamina with its upper or dorsal border everted, as seen in the transverse section (Fig. 11). The mesial surface of its rounded dorsal aspect presents two furrows. It is joined with its fellow of the opposite side by a large commissure ($B)^{29}$ and by a thinner lamina reaching back to the optic chiasma.

27 Dr. Cleland (38, 203) regarde the hypoaria of osseons tishes as the thalaml, and atates that " in various Aehes, the optio nerves arise from them as well as from the optis lobes." Dr. Cleland's learning and accuracy are such that I would not reject his view upon less grounds than those here prasented. But I have not observed the origin of the optis nerves from the hypoaria In any Aeh.
25 Tledemann frankly admite ($\mathbf{3 5}, \mathbf{2 0 4}$), that "we And no trace of Interal ventricies in the osseous fishes;" he regarding the no-called hemispheres as the corpora strinta (p. 230). Contrset this with the loose statement of Vnlpian (31, 821), "on tronve parfoie des rudiments de ventricuies lateranx dans les lobes cérbbraux" of osseous dshes.
The so-calied ventricles of selachians will be shown hereafter to be remnants of the third ventricie; not rudiments of the Arst and second.
${ }^{63}$ This is apparently what Gottsche oalled In osseous fishea, " commissura interlob alaris."
and opens downlexus of vessels. "hypoaria" and e lower solid vagled the pituitary s not, so far as I brain.
us, the hypophyed with its usual clined to regard hat is called in
minsses which, In in front of the ally regarded as cetory lobes. by Huxiey and lateral masses avity, the lateral ventricle through
things has been ay fish-like form pendix.) al mass marked rder everted, as desial surface of t is jolned with e $(B)^{29}$ and by
us the thalaml, an Ih as from the optle not reject his piem erred the orlgla of
 corpora strintes (p . on trouve parioio. ossoous afher. - remnante of the
imisaura interiob.

Just in front of each of these lobes is a rounded orifice opening obliquely outward and forward into the base of the anterior or olfactory lobes.
This orifice is wholly invisible from above or below or froin the outer side, and, althongh figured by Stannius in the sturgeon, seems to have attracted no attention from those who have studied Ganoid brains.

It leads into a cavity which extends the whole length of the socalled olfactory lobe, and is about 1 mm in diameter.
As this is the only lateral opening from the median ventricle there seems to be no escape from the conclusion that it is the "foramen of Munro," and that the cavity into which it leads is, wholly or in part, the lateral ventricle.

Where then are the hemispheres?
The mesial border of the foramen of Monro is slightly raised, so as to be distinguishable upon close inspection from the olfactory lobe. Still it is very small, and upon a poorly preserved specimen, or under a brief examination it might escape notice altogether.

But if the corresponding parts of other Ganold brains be carefully examined, they will be seen to present the same foramen, whie in all of then the anterior lip is decidedly broader, presenting the appearance of a separate lobe. See figures 8, 9, 10.
Shall we conclude that the hemisphert and olfactury lobe are andifferentiated, or regard the lip already described as a rudimentary hemisphere. This latter is the conclasion to which I am inclined.

It involves, as a corollary, the interpretation of the lateral masses between the optic lobes and those just described, as representing the whole or some part of the thalami, or lobi ventriculi tertii.
In Lepidosteus one would be inclined to regard the lateral masses as the whole thalamus. But in Amia the distance between the front of the optic lobes and the hinder surface of these masses equals that of the masses themselves. In Polypterus likewise, as figured by Müller, it is considerable. In Chimera what seems to be a corresponding region is very much elongated. In most Selachian brains it is quite extensive.
For the sake of distinction therefore, we may call the anterior lateral masses prothalami, and the portlon connecting them with
the brain behind the crura thalami. These latter seem to correspond to the thalami of the higher Vertebrates ; the third ventrlcle lies between them, the conarium aioove and the hypophysis below.

Aside from the adverse opinions of all authors (which, however, are of less importance in view of the imperfection of the material at their disposal) the only objection to this view is, that it makes the hemispheres so much smaller than either the thalami or the olfnctory lobes.

It is to be remembered, however, that mere size is of no value for the determination of homologies. The cerebellum is recognized as such in the lamprey and the salamander because it is a bridge over the fourth ventricle, although it is oo much smaller than the corresponding organ of the bird or' mammal.
The hemispheres are hardly larger than the optic lobes in some Batrachians, while in man they overshadow all the other parts.
Now the hemispheres are, by development, mere buds from the thalami, yet, as may happen with human families, the offspring are larger than the parents. In like manner, in the Ganoid brain, the hemispheres themselves are surpassed in size by their buds, the olfactory lobes.
But while regarding the view here advanced as based upon sound morphological grounds, the large size and convoluted surface of the thalami suggests the idea that they may in some way functionally represent the hemispheres.

For the determination of this the brain should be examined microscopically and the fibres from the medulla should be traced forward into the several lobes as has been done with the frog by Wyman and Stieda. They should also be experimented upon by injury, ablation and galvanic atimulation.
To complete the evidence we ahould find, at least in young specimens, something like a lamina terminalis, conneeting the rudimentary hemispheres just in front of the foramina of Monro. No such has been found by me in Amia or Lepidosteus, but the sturgeon and Polyodon present a transverse curtain with foldings upon the deep surface resembling those of the curtain over the fourth ventricle of Batrachians and lamprey-eels. Though not, apparently, of nervous tissue, it may nevertheless, represent the lamina terminalis. For there is reason to believe that, in the course of development, many parts of the roof of the primary vesicles may become merely connective and vascular tissue.
reem to corres. ne third ventricle pophysis below. (which, however, a of the material s, that it makes 0 thalaml or the

c is of no value

 um is recognized ase it is a bridge smaller than theic lobes in some 0 other parts. e buds from the es, the offepring ne Ganoid brain, e by their buds,
as based upon nvoluted surface some way func-
d be examined lould be traced rith the frog by lented upon by
in young spec. ig the rudimenmro. No such t the sturgeon lings upon the 1e fourth ventapparently, of ina terminalis. development, ccome merely

B. NATURAL MISTORY.

In a young Lepidosteus 151^{mm}. long, the dorsal borders of the prothalaini are not everted as in the adult. For reasons which will be unilerstood when the brains of Selichians and Myzonts are deseribed, I am inclined to think that at an earlier period of devel. opment the dorsal borders were united.
Detailed descriptions of the brains of the other Ganoids are deferred until figures can be presented. That of Amia closely resembles that of Lepidosteus, especially in the cerebellum. The infundibulum is more folded. The crura thalami are considerably longer.

The brain of Acipenser ${ }^{30}$ and Polyodon are very similar in both structure und general appearance. In both the cerebellum is apparently a narrow bridge, but, as scen in the figure of Stannius, it really extends far forward into the optic ventricle, as an exaggerated fornix of Gottsche. The walls of the optic lobes are thicker in Polyodon than in Acipenesr. The brain of Scaphyrhynchus was not obtained for examination. There is no reason for supposing it to differ essentially from that of Acipenser.

Müller's figures and descriptions of the brain of Polypterus do not allude to the communleation between the median ventricle and the olfactory ventricles, but the figures are quite insufficient, and pending its examination with reference to this point, we may infer that it agrees with Lepidosteus in this respect as in the eversion of the thalami.

The brain of Ci lamoichthys is not known to me. We may even more naturally infer its agreement with that of Polypterus.

Provisionally, at least, the seven genera, Amia and Lepidosteus, Polypterus and Calamoichthys, Aeipenser, Scaphyrhynchus and Polyodon, may be associated as having rudimentary hemispheres in ths form of slightly raised borders of the foramina of Monro and much - smaller than the alfactory lobes; large prothalami connected below by a commissure but having their dorsal borders free and more or less everted; an optic chiasma; a rythmically contractile and multivalvular bulbus arteriosus.

Fig. 12 shows a mesial section of what seems to me to be a typical Ganoid brain with cross sections at characteristio points.

Let us now see whether the above deffition includes any other Vertebrates.
${ }^{80}$ Three species or this genus were examined, rublcundus, oxyrhynchue, and one as yet undetermined.

Amphioxus appears to have only a medulla with a fourth ventricle. The part in front of the ventricle may be regarded as an undifferentiated representative of the brain of the higher Vertebrates (Langerbans $(44,297)$ says he finds a small olfactory lobe).
In Myxine and Bdellostomat, Joh. Müller (37), found no ventricle in front of the fourth, and no cerebellum. In a somewhat injured preparation of the brain of Myxine, I find what seems to be a thin and rudimentary cerebellum; and a median ventricle which extends forward to the base of the anterior pair of lobes, which Müller and all other authors regard as the olfactory lobes. On each slde at this point is a slit-like orifice leading into the cavity of the olfactory lobe. These can be no other than the foramina of Monro and lateval ventricles. The hemispheres are hardly distinguishable from the olfactory lobes. The larger pair of lobes just behind, since they form the walls of a median ventricle must be regarded as the undifferentiated prothalami and thalami. They differ from those of Ganoids in being connected above as well as below. But behind them are the conarium and the orifice of the optic ventricle just as in the brain of Lepidosteus. In Petromyzon Müller found (37) the third ventricle only. In several well preserved preparations of the brain of the large sea-lamprey (P. marinus, var. Americanus), I find at the anterior extremity of this median cavity, as in Myxine, a foramen of Monro leading into the olfactory or lateral ventricle. The thalami are closed above as in Myxine. The distinct lobes which project just behind the olfactory lobes are probably hemispheres. (See Appendix.)

Müller describes the optic nerves of the Myzonts as not crossing at all. Upon this ground, as by the non-separation of the thalami above and the lack of several rows of valves in the bulbus arteriosus, they differ from the Ganoids. In figure $13(M)$ is represented a cross section of the brain of Petromyzon through the thalami. (See Appendix.)

The Selachians (here restricting the term to the sharks and skates) have a brain which is really only a complex modification of the Lamprey's. In an embryo shark (Mustelus eanis) 37^{mm} (about $1 \frac{1}{2}$ inches) in length, that part which gives rise to the olfactory crura and which has been variously interpreted as hemispheres alone, hemispheres and thalami, and thickened lamina terminalis, is a large vesicle with thin walls and a single cavity. This communicates behind with the optic ventricle and on each
ith a fourth ventriregarded as an unhigher Vertebrates actory lobe).), found no ventriIn a somewhat inwhat seems to be ian ventricle which air of lobes, which factory lobes. On ng into the cavity than the foramina eres are hardly disrger pair of lobes ian ventricle must nd thalami. They a above as well as 1 the orifice of the 3. In Petromyzon a several well pre-sea-lamprey (P. r extremity of this o leading into the losed above as in behind the olfacendix.) ts as not crossing on of the thalami the bulbus arte$13(M)$ is reprezon through the
the sharks and lex modification us canis) 37^{mm} ves rise to the reted as hemisaed lamina tersingle cavity. e and on each

B. NATURAL HISTORT.

183
side in front with the cavity of a little bud which is in contact with the nasal sack. The vesicle is evidently the expanded prothalamus closed above as in the Myzonts. In the adult Selachians (as I hope to show by a series of figures at a future time) we must suppose the original median cavity to have gradually filled up so as to leave only two slender passages, near the lower wall, which start from opposite the optic foramen behind, and diverge to enter the olfactory ventricles in front. The degree of differentiation of the crura thalami, and the hemispheres, will be more fully described hereafter. In some forms the hemispheres are distinctly constricted from the sides of the nearly solid prothalamns. Althongh, therefore, the optic chiasma and multivalvular and contractile bulbus and some other characters are common to Ganoids and Selachians, the prothalamus is open in the former and closed in the latter. In these and some other respects the ccatrast between the two groups is noteworthy. In figure $13, E S$ represents a cross section of the prothalamus of an embryo shark and $A S$ that of an adult.

The Holocephali (Chimera and Callorhynchus) are commonly arranged with or near the Selachians. They have many features in conmon and the intromittent organs upon the ventral fins aro usually regarded as very important. Being a purely sexual apparatus we may question whether their taxonomic value is equal to that of the brain. Not having had the opportunity of examining a brain ${ }^{31}$ I can only judge from the fignre by Busch, copied by

3'Just as this goes to press 1 am enabled, through the kiodnese of Mr. Alex. Agaesia, to expose and exnmine the brain of a well-preserved male Chimera in the Museum of Comparative Zoology. The cerebellam is very large and covers tho optic lobes, but ia not folled transversely as in most, if not all, adnit sharks and akates. The ornra thalami are very long and thin and anited ventrality by a delicate membrane apparentiy only pla mater. Anteriorly each crus expande into a prothnlamus, the doreal border of which is thin and aligitily everted. This prothalamus, however, instend of forming the principal anterior mass as in Ganolds, is overlapped outbile by a large and elongated hemighere abouvgom. in height and 15 man in length. On the hinder third of the
 ventricle extends forward into the olfactory fobe. Into the foramen, and occupyiog its ventrice extends forward into the olfaciory iobe. Int of the hermisphere which may ropentire area, projects a thickenilug of the outer wall of the hemisphere which may rop-
retent a primordial corpuas atriatum. Juat in front of the foramea the ventral bordera resent a primordial corpus atriatum. Just in front of the foramea the ventral bordera
of the hemispheres are connected by a tranaverse commissurc. I greally regret not of the hemispheres are connected by a tranaverse commisenro. I greatly regret not
having heen able to examine this brain before presenting this paper. It seems to furhaving heen able to examine this brain before presenting this paper. It seems to furnish an actual form intermediate between the apparently distinct typea represented by the brains of Selachians, Ganotds and Dipnoans. If I correctiy interpret the appearance of a partial sabdivision of the elongated mass behind the olfactory lobe the Chimera's brain presents a more equal proportion of hemisphere and prothalamus than uxists in Ganoide or Teleosts, where the former seems to be reduced to a rudiment hardly recognizable as such.

Owen (24, fig. 179). The cercbellum appears like that of the sharks and skates. But the elongated crura ti:alami, and what seem to be somewhat expanded prothalami, and the rudimentary hemispheres, indicate a close similarity with the Ganoid type. The brain should be carefully reëxamined, and that of a very young embryo would be especially valuable.
The figure of the brain of Protopterus (Owen, 25 and 24) might be taken for that of Menopoma or Menobranchus. It has no apparent resemblance to either the Ganoid or the Selachian type. There are also true nostrils, and, according to Huxley (7, 147), a small pulmonary auricle. These characters united with those of the brain seem to offer strong grounds against the association of the Dipnoi with the Ganoids, excepting as a very generalized type combining Ganoid and Batrachian features. The brain of Ceratodus has not been described. ${ }^{32}$
Of fish-like forms there remain the Teleostei. They may at once be distinguished from all others by the non-rythmically contractile bulbus provided with a single row of valves and by the decussation of the optic nerves without a chiasma. ${ }^{33}$
A suffleient number of Teleost brains has not yet been carefully examined to enable us to generalize with safeiy. But so far' as they are known we may characterize them as having solid lateral masses (prothalami), their dorsal borders separate and sometimes everted, and with the olfactory lobes sometimes in contact with the prothalami, sometimes in contact with the olfactory sacks and connected with the prothalami by more or less elongated crura.
Since this paper was presented \mathbf{f} have found small foramina of Monro and ventricles in Perca flavescens, Anguilla Bostoniensis and Scomber vernalis. They, however, are much smaller

[^7]re that of the ami, and what e rudimentary Ganoid type. hat of a very
and 24) might has no appar. a type. There , 147), a small those of the pciation of the heralized type brain of Cerc-

They may at thmically cones and by the
et been care-- But so far g solid lateral nd sometimes contact with ory sacks and ted crura. tall foramina illa Bostoniuch smaller
scribed, for the 5. Jan. 4th ; that some polnts it stress upon the
the descriptlon n, and also for - throw great
a of the optio iple of Clupea le structure of cocertain how es of the two
B. Natural histort.
than in Ganoids, and I give a provisional figure (Fig. 14) mainly for the purpose of calling attention to the point where they are to be looked for. Probably they are proportionally larger in embryo brains. They may become wholly obliterated in some adults, especially those with olfactory crura. They should be looked for in large species, as Esox, Xiphias, Hippoglossus, etc., where the olfactory lobes are sessile. ${ }^{34}$
The following table exhibits the above mentioned characters in a more condensed form. But it must not be inferred that the order of names indicates my belief respecting either their rank, their affinities, or geological succession. In the first place no linear arrangement can do this. In the second, while the Teleosts seem to most perfectly and abundantly embody the fish idea and their geological relations and the structure of some parts would lead us to place them highest in the fish series, yet the non-mingling of the optle nerves and the very embryonic condition of the kidneys as compared with those of Selachians, ${ }^{35}$ seem to place them next the Myzonts.
The air-breathing Vertebrates are added in order to complete the series.

Provibional Arrangement of Vertebrates according to Cerfbral and Cardiac Characters.

Leptocardir. (Amphioxus). Brain not differentiated from medulla. Heart a contractile tube.

Myzonts. (Marsipobranchii). Optic nerves do not cross (Müller). Single median nostril. Hemispheres smaller than olfactory lobes. Thalamus and prothalamus not distinctly separated. Thalamus closed forward and dorsad. Cerebellum a narrow and thin lamina; perhaps wanting in Myxinolds. (See Appendix.)

Serachians. (Elasmobranchii.) Optic chiasma-. Rhythmically contractile bulbus arteriosus, with several rows of valves. Olfactory lobes pedunculated. Hemispheres smaller than olfactory lobes. Prothalami and thalami distinct; the latter as crura. In

[^8]${ }^{3}$ As recently studied by Balfour (39, 30).

with a single rging forward. Nostrils in ransversely.
elachians, Gagated. True es. Foramen e been added
actile bulbus rudimentary. 1 and dorsad, asverse folda.
ma. Bulbus gle series of called hemis. erted as in hemispheres al ventricles tence added
hes. Heart arobably be r-breathing
ree. Heart nmissures,
ra striata
ar. Right
t quadri-
locular. Right aortic arch persistent. (Birds seem to be an aberrant group of Sauropsida.)

Mammals. Corpora striata. Anterior commisbure. Corpus callosum. Fornix. Pons varolii. Heart quadrilocular. Left aortle arch persistent.

By characters of the brain alone the Ganoids are readily separable from all other vertebrates. From the Teleosts they differ in respect to the optic chiasma; also, so if as now known, on account of the greater size of the lateral vuntricles and foramina of Monro. ${ }^{38}$ But differences of size alone are not reliable ; and our knowledge of the structure of the Teleost brain must be much extended before final generalizations can be made. Meantime it is interesting to note that some cerebral characters seem to associate the Ganoids with the Teleosts, while others, with cardiac characters, link them with the Selachians. The Teleosts are apparently an aberrant group, llke the Birds.

Minor modificatlons of the brain, together with those of the tail and air-bladder, will probably furnish the basis for subdivision of the Ganoids. The brains of Amia and Lepidosteus are very nearly alike, and both seem to agree in all essential respects with that of Polypterus, and, by inference, Calamoichthys. The bralns of the Sturgeons resemble one another more closely than they do those of the other genera, but all agree in the rudimentary hemisphese, the enlargod prothalami, and the position of the foramen of Monro.
Reserving for the present any discussion as to the separation c. Dipnoans from Batrachlans, and of Birds from the other Saurop sida, the groups seem to readily fall into five categories. The first and lowest includes Amphioxus alone. The second the Myzonte and Selachians, whose brains are differentiated, but have not. yet assumed the distinctive features of either the true aquatic or the aërial Vertebrates. They have the form and habit of fishes, but their brains are more readily comparable with those of Batrachians. For the hemispheres are distinct, though amall, and the thalamus remains closed, instead of being separated forward and

[^9]
ocephali. The brain presents ther characters
mispheres rudipt; smaller than rothalamus open ad. Dorsal borhi more or less ocular. Nostrils .
intermediate be-
ory lobes. ThalNostrils do not
t tubular.
e the palæonet it inoludes be collocated
following : lcations now st unsystemalone would us at all.
ste or final and cardiac of a previffort conld tructurally
nade some
B. NATURAL history.

189
mistakes as to both fact and interpretation, for the sake of the advantages which I am confldent will attend the careful and systematic reconsideration of our present methods of classification. These last are almost purely empirical. They bave, as in the case of the Ganoids, led to the most diametrically opposite conclusions. Would it not be worth while to enquire whether, from both analogy and experlence, cerebral and cardiac characters are not more trustworthy for the discrimination of larger groups, and whether characters drawn from the skeleton, teeth, digestive and reproductive systems are not likely to serve us better if restricted to the determination of orders, familles and genera.

When the limits of classes and sub-classes have been once ascertained by the study of the heart and the brain, most of the fossil forms may, by the correlations of their hard parts be assigned to places in them. At present, on account of the greater availability of hard parts for preparation and preservation, we practically depend upon them almost entirely, or tacitly assume that they are of greater taxonomic value than the soft parts, and that the latter are, therefore, readily correlated with the former.

Summary. 1. The smallest Lepidosteus here described ($18{ }^{\mathrm{mm}}$. long), has a primordial median fin extending over the hinder third of the body above, and its hinder half below, interrupted at the vent.
2. The locations of the dorsal, the anal and the infra-caudal fins are marked by coloration and thickening of the primordial fin.
3. A fourth or supra-caudal in is also indicated, though less decidedly. This in is not functionaliy developed.
4. The tail of this smallest Lepidosteus is nearly protocercal, the end of the body inclining slightly downward.
5. The end of the body proper is gradually forced upward by an increase of the infra-caudal lobe, and becomes the "filament" already known in the young gar-pike.
6. The movements of this flament are extensive, and vibratory, and wholly voluntary.
7. The filament exists, though evidently in process of removal, in a young Lepidosteus osseus 300^{mm}. long.
8. The infra-caudal lobe becomes the functional tail of the adult.
9. The vertebral column is then continued obliquely upward and backward as a tapering cartilaginous rod which terminates at a point corresponding with the previous separation of the flament

19. We may regard, provisionally, the seven genera, Amia, Lepidosteus, Polypterus, Calamoich: ".,., Acipenser, Scaphyrhynchus and Polyodon (together with such fossil forms as are obviously allied to them) as constituting a natural group (class or sub-clasa) characterized by an optic chiasma; a rhythmically contractile bulbus arteriosus with several rows of valves; large prothalami separate above but united below; rudimentary hemispheres; and the foramina of Monro opening apparently into the base of the sessile olfactory lobes.
20. It scems probable that by features of the brain and heart alone, all of the primary subdivisions of Vertebrates may be accurately characterized.
21. The Dipnoans, hitherto regarded as fishes and usually arranged with or near the Ganoids, agree with the Batrachians in cerebral and cardiac and other characters. This group seems to furnish a case for testing the relative taxonomic value of characters derived from the brain and heart on the one hand and from the skeleton, limbs and digestive organs on the other. In like manner the brain of Holocephali would indicate that they belon nearer the Ganoids than the Selachians, perhaps as a transition between the two.
22. While the facts and conaiderations presented in this paper canse me to doubt the correctness of all classifications of fish-like Vertebrates hitherto proposed, they do not seem to juatify the framing of another syatem. Nor is it probable that any phyllogenetic arrangement can be proposed which shall either advance science or refiect credit upon the propounder, until our knowledge of the embryology, of the brains and of fosail forms is much more extenaive than at present. ${ }^{38}$

Appendix. - Just as this goes to press I have been able to consult the admirable paper of Paul Langerhans, "Unterauchungen über Petromyzon Planeri," pp. 114, 16mo, 10 Tafeln. Freiburg, 1873. This author figures and describes (p. 83) the lateral and olfactory ventricles of Petromyzon. He also states (p.95) that an optic chiasma does exist. These statements muat be considered in connection with paragraphs upon pages $178,182,185$ of this paper.
${ }^{\sim}$ As this paper io passiog through the press, I have soen in the "Zoblogical Record" for 1872 , page 88, an abstract of a memorr by Pancori and De Sanctis "Sopra alouni organi della Cephatoptera, Napoll," 1890, tto. The anthors reoognize four types of brain besides that in Amphiosus i namely, In Cyclontomata; In Teleosta ; In four seiachian gen ora, Dicerobatte, Zygana, Lyyliobalit, Isygon i and in all other Selachiane and Ganolde.
No mention is made of the lateral ventiziolee or foramina of Moaro, and, 20 far ae incicated by the abotrast, the conclualions are very different from thome here presented.

WOItKS AND PAPERS REFERRED TO.
J. Aasssiz, Louis: Lake superior; Its phyalcal character, vegetntian, and anlmala. pp. 428; 8 plates. Boton, 1850.
2. AgAssiz, Ls: Young ear-plken from Lake Ontnrio. (Proceedinge Beston moo. nat. hlat., 1850 ; vi, 48.)
8. Aasserz, La: Obecrvations sur les metamorphoses dea poiasong, (Ann. dea sel. nat. 1805. III, B5-88.)
4. Dumariz, A.: Hietoire nat. dea poissons. (Ganoides, Dlpnoans, Lophobranches) 8vo, pp. 023. Planches.
6. Agassiz, Louis: lecherches aur len polssons fonailos. 1839-1845. \& volumes, quarto.
6. Huxbey, T. II.: Prellmisary esany upon the ayntematio arrangement of the Aahes of the Devonian epoch. (Memoirs of the goological survey of the United Kingdom. Deoade $x, 1861$.)
7. HuxLey, T. H.: Manusl of the comparative anatomy of vertebrated animals. N. Y., 1872.
8. IIUMPHREY, G. M.: On the homological relations to one anosher of the medial and lateral fins of oaseous fishes. (Journal of anstomy and phyolology, Nov., 1870. 80-78.)
9. Agassiz, L.: Notice of a collestion of fohee from the nouthern bend of the Tennessee River. (Am. Journ. of solence, new sorien, No. 21. 853-305.)
10. Franque, Henricua: Amive calvo anatomiam dencripgit tabulaqne illustravit, folio, pp. 12; 1 plate. Beriln, 1847.
11. W YMaN, Jepyries : Obsorvations on the development of Raks batis. (Memoire of Amerfoan academy of arts and aciences, Jan. 27, 1874.) 44 pagen quarto, 1 plate.
12. Gill, Theodore: Arrangement of the fumilien of Fishes. (Smitheontan miscetlancous collections. [274], 1872.)
18. GOODSIE, JOHN: Anatomical memoirs. 8vo, 2 vola, pp. 998, many plates and Agurea. Edinburg, 1868.
14. Geoknraut: Grundrien der vergleichende Anatomie. 8vo, pp. 403,820 Aguree. Leipalg, 1874.
15. Huxley, T. H.: Observation on the development of the tail in Teleontean Aehes. (Quart. Jonrnal of mioroscopioal solence, vil, 33-44; plate 111. 1850.)
28. LUTERN, C.: On the limits and clasalfoation of the Ganolde. (Tranalation.) (Annals and magazine of natiral hiatory, May, 1871. 820-339.)
17. COPE, E. D.: Observations on the systematio relations of fahes. (Proceedings Am, asao. for adv. of acience, 1871, 817-343.) [Preliminary publication, slightly difforent, In American naturalisc, 1871, 579-506.]
18. MUlLer, Johannes: Ueber den Bau und die Grenzen der Ganoiden und Uber das natirliohe Syatem der Fiaohe. (Abhandling der Koniglichen Akademie der Wiasengchaften zu Berlin, 1844. 4to, 117-216, 18 plates.
19. GUNTHER, AlBERT: Description of Ceratodus, a genne of Ganold tishen rocently discovored in the rivers of Queensland: Australia. (Phliosphical transactions, 1871, 811-571. (2) plates.).
20. Agassiz, Louis: A journey in Brazll, 8vo, pp. 640. Hlnatrated. 1808.
21. Agassiz, L.: An essay on clacbification. 8vo, pp. 381. London, 1869.
22. Agassiz, Loiis: The clasalication of the silurold fiaher. (Proc. Boston eoc. nat. hlat., Dec. 18, 1868 . p. 884.)
23. WYMan, Jeytries: Anatomy of the nervous bytom of Rana pipiens. (Smithmonian contríputiona to knowledge, \mathbf{v}, art. 4, 1855, quarto, pp. 81.2 platea.
24. Owen, Richard: Comparative anatomy and phyaiology of vertebrates, 3 volumes, 8vo, pp. 2155. 1471 figures. London, 1861-1888.
2. OwEN, R.: Deacription of Leptacairen (Protoptorus) anneotens. (Linnaan transactions, xviii, 827-361), 8 plates.
26. Newberry, J. S.: Description of toasll fighee of Ohio. pp. 110,17 platea. (Geologioal enrvey of Ohio. Vol. 1, 1878.)
97. POET, F.: Observations on different polata in the natural hiatory of Cuba. Annala of the Iyceum of nat. hist. N. Y., 1858. vl, 133. .)
97. Wilder, B. G.: The lateral position of the vent in Amphiazus and in certain 87. Wilder, B. G.: The lateral position of ueitent 1873.) pp. 25,10 Agures.
28. MULER, J.: Bericht Uber die Yortsohritte dor vergleichenden Anatomic der 20. MULLER, J.: Bericht Uber die Fortsohrite dor vergleichend.

Hrbeithiere in Jahre, 182. (Archiv fur Anat.
80. Gotracis, C. M.: Vergl. Anat. des Gehirns der Gratenfische. (Arch. fur Anat, 2850; 944-204, 488-480; Taf. Iv unal vi.
81. Vulitian, A.: Leçons sur la physiologie générale et comparative du ayntome aprveux. 1801; 8vo; pp. 20.
89. Stanntus, H.: Ueber den Ban des Gehims des Sturn. (Archlv für Anatomie, 1845, 30-4t; taf. III, II.)
33. Valkntin: Uebor das centrale Nervenayatem und dic Nebenheraen der Chi. aro monatros. (Arch. fur Anatomie, 1848, 25-45. Tat. 11.)
84. Hollard, II.: Recherches aur la structure de l'encéphale des polseons et surla ignificution homologique de ees diffirenten parties. (Robin's journal de l'anatemie, 1983. $986-235, \mathrm{pl} . \mathrm{v}-\mathrm{vili}$)
85. TIEDEMANR, F.: The anatomy of the frotal brain; with s comparative exposition of It atructure in anlmals. Eaglish tranalation. pp. 324; 14 platon, Edinburgh, 1828.

MUlLhR, Jomannes: Ueber den elgenthumifichen Ban des Gehörorganes bel den Cyclostomen, mitt Beinerkungen Uber die augleiche Ansblidung der Blinnesorjane bei den Myxinelien. pp. 84, Tat. 1-3. (Abhandiuggen der Künigllelien Akademie der Wissenschaften zu Berlin, 1897.)
87. MUller, Joilannes: Vergleiehende Neurologie der Myxinoiden. pp. 8. (Abh der KÖnigl. Akad. 24 Beriln, 1838.)
87. CLELAND, Join : Animal physiology; the atrueture and functions of the human body. London and New York, 1878.
89. Dalfour, F. M.: Devalopment of the uro-genital organi of vertebrates. Journal of anat. and phyelology vol. x, part 1, 1875.
40. Mayer, F. J. C.: Ueber den Bau der Gehirns Fische in beaiehung auf eine daranf gegrindete Eintheilung dieser Thierklasse, Mit sieben Steintafein: pp. 40 (Novorum Achoram * * Natura Curlosorum. Tom. Vicesimus 8ecundus. 1804.)
41. MULER J.; Mémoire sur les Ganoldes et sur la clasifincation naturelle des 1. polles.
4. Voot, Carl: Quelques ohbervations ant les caracteres qul servent a la olasalfication des polasons ganoldes. (Annalos des solences naturelles, t. xiv, 1845, 83-68; with 1 plate.)
43. Foster and Balfour: The elements of embryology. 10mo, pp. 972,71 Aguree London, 2874.
44. Langerians, Paul: Zur Anatomie den Amphiarus lanceolatus. (Archiv fur kroakopische Anstomie, Band xil, zweites heft, 1875; pp. 290-348; Taf. xil-xv.)
45. Mixzucho-Maclay. Beitrag zur vergleichenden Anatomie des Gehirns. pp 19, 8 gg. (Jenalachen Zeitschrift fur medioin nad Natorwiseenschaft. 1888.)
46. GUNTHER, A,: Ceratodus and ita piace in the ayatem. pp. 6,2 iga. (Annal and magazine of natnral history, 1871. Vil, 272-227.)
47. Huxley, T. H.: On Ceratodus. (Proceedinga zodl. soc. Loadon, Jan. 4, 1876.) [Montioned in " Nature," Jan. 6.]
48. Aqassiz, Louts: Contributiona to the natural history of the United states quarto, 4 vels.
A. A. A. B. voL, XXIV. B. (13)

EXPLANATION OF PLATE $\mathbf{I}^{* *}$

Fin, 1. Toung Lepldontews 18 me in leagth, eniarged 5 diamoters. The tip of the tall is misaing, and ite aupposed form is indleated by the dotted outline. N, the nostrin of the left alde; the anterior ons is more neariy upon the upper surface than in the adult. In the margins of the Jawi appear alight elevations, probably teeth. O, the opercuinm; P, the peotoral An consiating of a rounded feshy lobe L and a thin fringe P; $1,2,8,4,5$, regions of the primordial median $A n . V$, the vent. C, the commencement of the Infra-esudal lobe. The eommoneing anal Is eeen between V, and L. D, the comof the intra-baudal iobe. The comanal in; \boldsymbol{X}, indicates asilght and transitory modifioation of the primordial
 in ilke a second dormal, or, more probably, anpracaudal lobe. The ventral have net
appeared. The lines above Igures $1,8,8$ ladicate the actual leogth of the young Zept appeared
dosseus.

Fig, 9. Tall of young Lepidonseus 2yme. in length, onlarged 4 diameters. The iettering as in fg. 1. The inft. saudal (C) begins to project beyond the oatine of the primor. dial An. Vo the ventral in

Fig. S. Tall of young Lephiootous $4^{\text {mang}}$. In lensth, onlarged 1 diamotern. Lettering an in Ag.9. The primordial in existe only npon the berier of the fiamentary formina. tion of the berly (IN) which is now erowded ap by the increasing infra-eaudal lobe.

Fig. 4. Tall of young Lepidostews naseus so0mang, longatural alse. The infra-candal lobe now occuples it permanent place at the functional tall, while the flament (N) has neariy disappeared. Its base is protected by aix palr of fuiera (DF) and a similar ceries covers tho anterion half of the lower berder of the tall ($V F$).

Fig. 5. Dlsaected tall of medinm sized Lep. plafyatomus. The flamont has disap. peared and the flera oxtend backward to a point nearly correaponding with ite separation from the eandal An. 'To thie polnt may be traced ecartliaginous rod (N), the prolongation of the vertebral column (VC), and previonsly continned into the flament, This rod conaists of the notochord, the spinal cord ($S C$), and a cartilaginous abeath. NC, noural canal lald open. HC, hmmal eanal, luid open.

Fig. 8. Section of the upper margin of the tafl of L. platyatomes at a point abont mid-way between the base of the itn and the last pair of fulora; onlarged. N, notoohord; SC, spinal cord; OS, cartllaginous sheath, in which the vertebree are afterward developer. $F^{\prime \prime \prime}$, pointe of the upper fulcra; F^{\prime}, out enrfacee of the next lower fulera; F, cut enrmees of the lowest fulcra which are separated so as to embrace the npper half of the cartilage. CR', cut aurfuce of the uppermost caudal in ray, the two halves being eeparated above to enclose the lower part of the eartilage. The dark line oroasing the section indicates the commending apiltting of the ray into two. CR, the halver of the second fin ray not quite perfectly apposed, and joined by a double mombrane to the raye above and below.
${ }^{\infty}$ All the figuree were drawn, from apecimena and preparationa, by Mr. Phillip Barnard.

Fix. 2. Tull of young i.epdinatens, eniarged 4 dimineterin.

Fig. 5. Trall of udalt Lopldontens platystomus, one-half natural lengtli; dissected.

Fig. 6. Sectlon of notochord and the surounding parts.

WII.I)KIt

Fig. 12. Ningram of ganoid brain.

[^0]: This transitory fin is comparable with the temporary ansls of the young s described by Wyman (11, 85); one of which, however, attains quite a large size before its disappearance.

[^1]: ${ }^{7}$ The samo is true of many other Amorican forms which are not readily obtainable, In large numbers, by European naturailsta; as, for inatance, the American Sturgeous, the Petromyzontldx, and the tailed Batrachiana.
 ${ }^{\circ}$ Goodsir (18, II, 106) and Humphrey (9,59) have called attention to the fact that the rays of median fins consist of two lateral haivos. The latter ellthor regards it as ono of the grounds for considering each lateral fill to correspond to a lateral factor of a wise double.

[^2]: - These specimens will be described upon another occasion. For the present I will only mention that In both the markings on the body and Ins are more distinct than In the adult, and that the smaliest presents two decided black atripes on each aide of the head, one of which ruus across the eye, as in the young Lepidosteus, whllo the other

[^3]: A. A. A. S. Vol. xxiv. B.
 (11)

[^4]: ${ }^{30}$ Cope (17) hss proposed "lsecereal" for the same form of tail. But he apples thls term to the eel (Anguilla), in which, according to Hinxley (15, 42), the arrangement is really heterocercal as in mest if net all other esseous fishes. The whele subjoot, however, needs a special revisien by eomparison of several stages of development of the tall in all forms of aquatie vertebrates.

[^5]: ${ }^{16}$ Lutken makes no reference to the brain, and his characters seem to be in other respects defective. But ($\mathbf{p} .336$) he admits the possibility that fiture discoveries may some day demonstrate to us unknown bonde.

[^6]: ${ }^{20}$ This paper was not obtained by me untll February, 1876. The delay in publicetion of this paper enables me to insert a comment uponit.

[^7]: ${ }^{35}$ In "Nature" for Jan. 6th, 1876, it is atated that Prof. Huxiey described, for the first time, the brain of Ceratodus at the meeting of the Zoological Soolety, Jan. 4th; that he showed how closely it resembled that of Lepidosiren, and that in some points it resembled the Selachisn rather than the Ganold type. He laid eapecisl strese ppon the affinities of the animal with Chimera.

 Zoilogists will look with great interest for this paper on account of the deecription and figures of the brain of a form which has aroused so much discusaion, and also for the morphological and taxonomic considerations which oan hardly fall to throw great light upon the relations of the fish-like Vertebrates.
 as Gotteohe (30,476 , and fig. xxxili), refers to a remarkable variation of the optio nerves desoribed by Weber (Meckel's Archiv, 1872, p. 317). In sn example of Clupea harengus tr 3 ncrve of the left eye was plerced by that of the right. The structure of the chlasms of Ganolds and Selachiams should be carefully examined to ascertain how completely the abers oross, or intermingle, or connect the oyes and lobes of the two
 sldes together.

[^8]: ${ }^{n}$ The brains must be well preserved.

[^9]: mat the time this paper was prereated I had not been able to find these openinge in any Teleostean braln, and therefore supposed that their extstence in the Ganolde formed a iharp diatinction betreen the two groups.

