BULLETINS

OF THE

Arrial Expriment Asuriatian

Bulletin No. x
Issued YONDAY Sept. 14,1908

BEINN BHREAOH, NEAR BADDECK, NOVA SCOTIA

Heweneee0010wemenme
 - cewenewe000menewien

znut oy coumurio

2. The omaing of atre wingod oyele. The wiming of the firat Aenorican Trophy for a manmoarrying fiying

3. A sucthed of obawrying air diaturboneos prodweed by the boating of the minge of a hovering $2 y_{\text {, with }}$

4. Mr. Rumaell Thayerta propoaision to propel a balloon by wind presaure agninet arreacopic rosiatance.....17mill
5. Copy of originai agreanent to orgmige the Aorial Thporinatit Assoeiation al mad nt Malifner, Hova Seotia, 1007, Sop tenber 36.

THuatratiens.

itr. Tharollild ${ }^{6}$ a photegropha of the June Bugg, Juhy 4, 1008

Dr. Cobbts chalkmpowder boz Por obmorving the adr diaturbanesas protuced by the bealling of the winga of a hovering fly..
ILIuatrations frien \mathfrak{R}_{0}. Thayerts patent to. 367, 448

$$
\begin{aligned}
& \text { THS concme } 08 \text { \% }
\end{aligned}
$$

Macirivis by David Falrohild.

Fo have seen a man $12 y$ through the air 14150 a bird. A feet that oenturies hawe waised for has been tone, and wo have aeen it. A male in minute and forty moeonds, twonty fott hien in the sirt

Standing at ounset in the Pleasont Valley where the olever was knee high and with the last raya of the mun ilightIng the foreat and vine eeverad hilla around, we whted foz the breese to aie doum se thet turtias eould Rly.

On an old raee track a hundrod yarde amay was a big thing of yellew oleth atrotehed on atioles and atayed by wires Our ayes wore riveted on 18 and in breathleas expectation we maitod for it to move.

What ean oergare with these rirat beginnings of groat thinget the arowde the lined the Hudson when huiton firat steassed uy it have soarealy eruabled to duat; those whe liate onod in oxpeotation for the firist apozen word ovar inilea of metal wire art not yot eld; and to atond in the gathering duak of a nountain valley in your om oountry and walt to soe, not only a man but a man whom you have boen interested in for yeare fily over you, is the experionee of a difotime.

Senttered ower the fiald ware the reparters of Mew Yoris calliea with their esseras, the representatives of the Aere caub, the relatives of our friend, and the adniring wextsmen of his moter oyele faetery, while meatod on the hillaide oleae by were the hundreds of tewnompeople whe had oano so aee the hore of thoir tevm win the first Amerioan trophy for a
man oarrying flying machins.
Mixed with the expectetion was an anxiety lout aomothing happen, leat you uhould be on the point of seaing a tragedy with ali that your near aspociation with the man and your ndmirstion for him would nean.

The groupa of worksen diaoussod the provioue triula sf the aoroplane and expressed their coupidenee that olenn Curtias, the boy uhe putin aleatric doorwiolis in the villagh and bold the repaitred bioyelas of the tovm in hie $2 i t 6 l o$ whop wt the eorner of the equare, weuld earry off the trophy this tine all ridat.

Buadeniy the group of people about the mechine soutteree ince the flelda, Curtion olimbed into the soat in front of the $y 0210 w$ wingu, the asaigtant turned ower the narrew weeden propalier, there was a shary 2004 oflise and a cloud of duat and mance as the bladoe of the propelier oluurned the alr 1200 thenen minute.

The mon holding the gigomele bird $20 t \mathrm{~g} 0$. It atarted Gom the traek on ita rubber tired wheela going faster and faeter. Then, before wo roalszod what it tan doing, it gided upware inte the air and bere down upon ua at the rate of 30 milow an hour. Hearer and nearer it eame like a gigantic ochre eelored condor earrying its proy. soon the ohin, atrong feate urea of the man, his base outstretohed anas with hande on whe ateoring wheol, his lega on the bar in front, rivetod our ate tontsem. Itcanase in by betre and wirea, whth a forty horsoopowe angine axploding bohind hin leaving a trail of anoke and whth a whirling gropeller cutting the air 2200 tinea a ninute, he
aalled with forty feet of outatretohod winge twonty feet abeve our hoads.

Thirty ailee an hour in an aute somm fast geing were fence poats and wayase ghowerk mark the josed, but in the air with nothing but the distuns hisla to go by the pasange of this giant thiag eomed laisuroly and gracorut.
 done. Man siseat ali the tedious aetrile of perfocting a proeth Leal passonger oarrying mochine are forgotton. Jvon the proo Vieus ancensmos of wheh you have soon roports mean nothing and with one 2 eas the imagination builds on this one positive faet mioh your oyes are aseing, a whole auperatructure of world 2oencetien. You thank of the plovera that hatoh their young in the aurner of the Arotie cirele, toach then to rly in Labrader and apend the winter with then in the Argontine
 fishts of heming pigeons that covar so0 ailes in alowon houra and these suggest strange viaions of great sioets of airchips oreasing and remeressing beth coeane with their thousante of paesengers. In ahert we oust aaide overy pessindan and give our inaginations froe rein as we atood matching the weird bowed outline pase by.

On, why dees he ge so high de you think heongoing to make itp those ories srom itra. curtise, whe was atanding by ua, rominted wa of the dunger: of the riaght and of the frot that out in the moadsw a half mallo avway thare was a rea shag wioh marked the and of the oourne. Would he pass over itp

The machine which was twonty feet or mere above our heads soanced to alowly deaoend untal it was not more than ten ar fifteon feet hagh, but it ald not ge lower. Direothy ovor the ataise it ateexed, riaing highor as it wort, and away it aoarad over the ronsea turning to the lest and soteling gentiy dovn in a pasture over a mile many from whore it lert the race ovurse. Yelle and choera and serewns from the groups of ayectators announneed the faet that the trophy was mandaonely won and thom, ovar potate fields, through vinoyards and ont rienda and devn the rallread erowds of men ran to oheer the auceesom rul navigater and te bring baek to 1 ta tent the uningured -June Bug"。

In one minute and forty aeconda tro. Curtisc had riddent witeh fachion agtrice a moter driven bromentiak, an it wore, elagty feet more than a mile through the adr and used up in the rilght leas than a guart of guseline.

Ons thing waa misaing, the presenee of the groet Anorican atweeate of haswiezwthanmaty machines, ur. Alesumater Oraham BeL2, wheme suceese as a gioneer in another ficle makeb his prophoeies aought for in this. He ia the originator, orw gunimer and finnmeial backer of the Aorial Zorperizont Aomeodeation of whose aetivitses this gigantio "rune Bug" is the latest production. The Association has boen oarrying on twe aete of experisuents, one at 14 r . HoLi's Hova Seetia ieboratern iea with tetrahearal kites, and the othar at itr. Curtiss ahope in Hawaendepert with gliders and horisontally placed aereplanes. In the erune Bug the younger nembera of the Aseeciation, Mr. Curtias, Mr. Beldwin, Lieut, gelfridge and

Mr. MoCurdy, havo boen given sore or laan a free hand and thay have coubined in it as many as possible of the valuable pointe of provious experimonters adding aecae of their oun and working out the cetaila with grome aare.

The exeitenant of the slight being over, we bagan to aft aoriousty what the osune Bug oould be oounted on to aem earpliah, and get the clearer poxapoctive of auch students of the new att as terring, temaky, Boldwin and the mentbera of the Aerial Iaporiment Aasociation. It is an infunt new of course and in the athil air atages a grat of wind presents cirficulsies with have net been mastared. Whon I atrike is guat of wind ita 2ike hitting a ateop grodo on a motor aycios ita as aelidiac thatm, anys wr. Curtise.

This weira now oraft had mede elateen 821 ghts roeently with ecoasiona2ly a wing brulton or a niahap to the atooring goar, and when we anked itr. Curtias aa we walked back, puike Ing the avkward anroplane before us through the long graas, whether it manet norveus wark and if he wamet exhnuated, he sald, wite no mere nerveus than ruming a netor oyele, and I den't feel any unuanal exdatastion, and in atill air I donet think there ia any mare danger, but I don's know enough yet to handie it in a breese. Thore is no especial dirriculty in landing if I ean koap up my headmay, and hils time I eame down on all three wheols as eaally an anyone could with $80{ }^{\circ}$.

There ara zanny whe have lookse on an aeroplane an aonsothing which oniy un acrobat oould nonage. Thore is truth in the statemont that one nuat knew how, but shen it is conasde ered that in fourteon trialo trich Curbias mastered the ast
-6*
surfieientily to aail a sitie Fithout dirfiaulty, all the in auperable difficulties in the way of a pleasure aeroplsan havo dispoppeared and one is farced to the ooneluaion that aoroplaning as a aport, for thome the oen affose it, is raelly on the progran.

The power for the "rune Bug has been found in an elght aylinder, forty horseopowor, aireeoeled ongine, weighing only 200 pounda, soting on a six foot long by eight ino ohes wide woodon propelior. Twe herisontal ourved planes 42 foet leng by 6 feet wile of apruee lumber braeed with wise and enver*e with etrone cetton eleth rilled to make it aire tight, a horisental aloth covared oontrellar in frent to ateer it up and down, a vartieal rudder behind, to ateer it fron side to aide, with the neeesaary netmork of wire eablea, gea plpe and aink aeckete to hold the whale sogether, these make the erane Buge. of ceurse, the curves of the aurfages and the oress asetions of the frosenory are socording to earefully wericed out formulae.

Ine esfrieustses of rilght have boen dirficulties arising frea our sitem that the air is a gha and not a solid. But as Herring exproases it, eIf jou rotato a plane aurfaee rapialy onough in the air it is held botwoen the uppor and lower air maases ae rigidly as though you ran it along a araek in a briek waile. mitst the air hard onough and it row aeta lake a aclice, is ono of Pref. Langioy's atatonients, I beliowe, wat as you atand behtnd the propolior of the oyume 3uge whon it is revelving at 1800 turns to the minuto you

 of hia rathert ${ }^{\circ}$ plaee perhape the moat unique set of machine shopa in the werld for the mamufacture of noter eyclea and airahtpa motera. The fratery buildinga, mokcoomifta of bonrda, ahew the rayid develognents of this nea Industry and tomday the afribhip construetore and operntors or the country cone tel turtias rar ineir ongines and to teat out their idoas. His
 dates the cebria of all sorts of abandened alrinhip dreame. Hamionalaport haw becone, as it were, the Airathis Fown
 Juat as one has te viait a mining oany to get the gald fover.
 teachors dempair of getting them to Leasn their book leamona whan an axperinent is in progroas.

our imagination bofore wo have aetualiy much more than gotson
off the ground, but it is much amaier for mon te follow the trail than te blase the way and what has bean tone by a fow mon vili soon be atterpted by theusands.

Before inventers gave the world a bleycle ne one eould belleve that it wos peasible for a man to balanee himself on a revolving wheol. An meon sa a aingle mon athowed it to be pegatble theusands follewed and the bleycle era eane. Indepentent inventers have now given tue the winged meter cyele and have driven it through the air, and we seem to be on the verge of the winged oycie exa. Beaddes, thinge happen quiakly nowmandays and with the Vhr Bopartacent oontracting for aeroplanea which ean atay an hour in the air and eakry twe zaen, with the wight Brotherst atatement that thoy fly In an 18 wile brease, with Delagrangets public flights befere the zing of Italy, with count zeypelin's eelosaal aluninum) dirigathe that oarried twelve peoplo for houre at a tive, it aoems as though the clay of practioal exporivents in flying had arrived and that the chanees of auoeess have been inareased te the paint where meeulative oapital will invest in this new mode of leemsetson.

$\mathrm{H}_{4} \mathrm{~A}_{\text {。 }} \mathrm{COM}$ 。

 visiting at Beimin Whresph ant hum xindi．oonmentod so dictate a fev notea for the internation of tha nombera of the A．R．A． concarning isiz sathad of obaervins tis estr disturbences rom cuced by the hevering of a poouliar $12 y$ found in the tituoul on
 tavee ts ua in aux wert by enisbilnis 42 is meoertuin Ohe hsture of the 41 starboneen prodreed by \＆fotitimg propelier
 and $3 y$ Dr．Cobb．The boy and cour sides of bhe bex wege of thase upors a bracboard of wood．Thi ily navered in the rad－ ale of the box for outhidarsble eriadz ar GLut without touchink tho gidens．The bux ina sowen 1 fito a dark roan and

 Misela pabsed through the box，wh buts reeelved upen a actoon

25 sleak abserbing material．Chalicopowder was then ine

 Whe hevering zaze Dr．Cohb has chrom his noten and suth

 This as tha ramut of a macteaston Ioilosiag on one of our racani ounverniakions．

Whather thase rearcrige huve why intarost and palue in aoronambice dopendy on how ingortanis it ha bo to hove an som cierato icneviecge of that 1 s tiallnf niuea in bho if during rlicht。

Uy to she present eus observatione tavo jeon oonflned Largeny to the aaching，bhat irte thi onu bisng that wos onay so sece and，te a hisathd rusher of cotwh navigabera，te reet． During m ebservations on who clithr of plios，ua I have tald you durling our corvorasilona，I fianced to notloe a r2y of the equnae yozugothes otundines atil2 in the air undor a tuablar in Fhioh it was hold engespe．This was a oort of

hovering, as we bern it in biraig but one of thege insmote
 it with a peading siana, and thue deotphor the antonnoe und other minute soatrurea, if on has the good fortune not to fright tos the inseat awny or hag it in ongtivity as I hod. I montw Ion this readingeglaas observation so give on fea of the etocaineas of the inceet wis it etones stil2 in the adr. Frede leas to any its winge are all the time vibrating aoveral hune efred times a acound
 travole at the rute of ste 20 neters por aneond atan the ancia are vibratan at the rate of twe to rour hundred timea par soeond. I mamanting that the erigure elght demeribed by tha vingoisy in one vibration ia equal in longth to the elrounterm once of a efrele af aovon millimeters radius. or course thic is onky an apparartmation, bus it servoa to bring out the raet thas the rate of motien of the parte of an inseet wing nse in sone Inatonees canparmble with these of the propollers now belng uoed in rhyimg geohines, at any rate when the latter are besing usea st thosr lower apoeda.

One conesption of the my wh peisod in the atr is that of a partial vaeume of Ahoh the r2y is the mucleuse. of courae this partial viouven, sogether with iss inseot nuoe Leas has the awne apeeiric gravity an ohe uurrounting sir.

In form this vacuun is whet would be oxpseted froat the aotion of the winga, 1.0 .0 is has a blantoral mymotry. Hoter obeervations I have mado, and, wyeateing froes recoszoction, it

 ocies os saracco of gut

of raet \mathbf{I} anly awatt the richt opportundty to ropont and ortond

The particias nowe ae raqidiy that there is considerw able aificeukty in making the necengery obsorvations and in getting the experienee neeasisary to interypret the phenomena. gtriking invtanoes fos first observation are the results wion. c eloud of duat samyy rol2a, by, or up so, the region os atam turbance. ${ }^{2} y$ pioeing tegethar obacrvasione of this kind mah can be rude eut.
 with elyecsine is plaged in the regton of diaturbanee and ate. lowed to be bambarded with chnig or ohhor duat, witht yield graphle recorde of value, but I havo not friod thise

An inatrumont perficeted on theas 2 ine thould bo oate Lod an manenogruyhe When wade quantitative, it would nature a12y be eal2ad min Anmoneter; but ma that torn it olrosdy yrawpied for the instrument asod to meaaure ordinary moriant tale ainde, it reight be neeosarary to invent a nem sarn. Probe ably a manll and aenaltive ancrald could be used to holp in sty isterpretatsen of the anenagreyh until one become accurteved to its use. Have you over uirod an anoweld inte various position in your kitea und triod to rond the presauras frors a datanee wh th aparafgaase I have ton opernejlasn thnt rocusees fown to alx foet for auch pturpoees. If you howe not triod this and shoudd have s curiosity to know what then air io doing in anons the ceale os the kites, I beliove 15 morle be pososble to rine out aomothang this may. Againg if a kite of eolzusada or

-Rzespaçug

-6*
${ }^{\text {cpeper }}$

 practioablifty of mich should bo tested by axperinent. It

 (K. An. See. c. I. .).
-soAvus troweng
frem you on the aublect.

talse pleasure in onclosing a eopy of one of my Patents, wioh

in regard to the Gyrosedpe und Arrihips.
and oandid oriticism a diseovery that I have recently nade
and benefit of man, I denire te submit te your conalderation
est in modern Phyaies ae practienily applieable to the wante
Phihadehphias. Pace Auke 12, 1908:- Knowing jour groat intero

42

R. THAYER.

DIRIGIBLE BALLOON.
APPLIOATION FILED DEO. 26, 1907.

WITNESSES:
R. THAYER.

DIRIGIBLE BALLOON.
APPLIOATION FILED DEO. 26, 1907.

FIGİ III

FIG IV

WITNESSES

INVENTOR:

UNITED STATES PATENT OFFICE.

RUSSELL THAYER, OF PHILADELPHIA, PENNSYLVANIA

DIRIGIBLE BALLOON

No. 887,443.
Specification of Letters Patent. Patented May 12, 1908.
Application filed December 26, 1907. Serial No. 408,002.

To all whom it may concern:
Be it known that I, Russell Thayer, of Philadelphia, in the State of Pennsylvania, have invented a certain new and useful Im provement in Dirigible Balloons, whereof the following is a specification, reference being had to the accompanying drawings.
In sailing a marine vessel, the effect of the wind pressure is controllable by utilizing the 10 reactive effect of the water upon the vessel whereas, in ordinary balloons, there is no equivalent for the reactive effect of the water, and consequently such balloons must go with the wind unless provided with more 15 powerful propelling means.

Therefore, it is an object of my invention to provide a balloon with means whereby a reactive force may be created and controlled local to the balloon, at the will of the opera20 tor, so as to be similar in effect to the reactive force of the water upon a marine vessel, in that by properly utilizing it, the balloon may be progressed, solely by wind pressure, in directions oblique with respect to the 25 direction of the wind.

I have discovered that by utilizing the reactive gyroscopic force manifested upon any attempt to change the direction of the axis of a rotary body, in combination with the 30 wind pressure upon a balloon floating in the atmosphere and carrying said body; that the movement of the balloon may be variably determined and controlled by correlation of the force developed by the gyro35 scope and the force of the air current. In other words, my invention provides means whereby wind pressure tending to diverge a balloon from a predetermined direction of traverse may be variably opposed by the ${ }^{40}$ gyroscopic effect of a rotary body carried by the balloon, under control of the operator, so that such wind pressure may be utilized to propel the balloon, in directions oblique to the direction of the wind pressure, as in 45 ordinary marine navigation.

The gyroscopic reactive effect above contemplated is due to the fact that a rotary body tends to maintain constant its plane of rotation and consequent direction of its axis
50 of rotation, such effect being increased or diminished in correspondence with the speed of rotation of the body. However, it is important to note that to render such reactive effect available as herein contemplated it is 5 necessary to so mount the rotary body that its axis of rotation is free to oscillate, to a
limited extent, in a direction parallel with the direction of said axis, for, when a body rotating upon a principal axis is subjected to a force tending to produce another rotation not parallel to the former, the resultant effect is such displacement of the axis of the original rotation, with respect to its support, as is most favorable to the parallelism of the two rotations, and, such displacement is at right angles to the direction of the disturbing force.

In a balloon constructed in accordance with my invention as hereinafter described, the force due to the natural air drift, and the gyroscopic force created by controlled rotation of a suitable body carried by the balloon, may be so correlated, at the will of the operator, as to propel the balloon solely by the wind pressure, and in any direction except that directly and approximately opposed to such pressure.
I am of course aware that gyroscopes have been employed for many years and in various arts to balance or maintain the level or 80 equilibrium of structures connected therewith, and therefore note that the gyroscope element of my invention has no such function or effect in the arrangement and operation which are characteristic of my invention 85 as herein defined. I am also aware that it has been proposed to provide a marine vessel with gyroscopic wheels, but such wheels have been designedly arranged to maintain the horizontal planes of the vessel substantially stable, without opposing changes in the direction of traverse of the vessel. In other words, such devices of the prior art have been employed for a purpose radically different from that herein contemplated, and 9 have been so constructed and arranged as to be incapable of the effects which are characteristic of my invention.
My invention comprises the various novel features of construction and arrangement 10 hereinafter more definitely specified.
In the drawings; Figure I , is a side elevation of a balloon conveniently embodying my invention. Fig. II, is an inverted plan view of the balloon shown in Fig. I. Fig. 105 III, is a plan view of the car shown in Fig. I. Fig. IV, is a transverse sectional view of said car, taken on the line IV, IV, in Fig. III.
In said figures; the gas envelop 1 , which is of circular cross section, diminishing to- 110 ward its stern, is conveniently connected by the bands 2, with the main frame 3. Said
frame supports the car 5 , and has the vertical shaft 7 , which supports the frame 8 , of the sail 9 , in a vertical plane. Said sail frame 8, comprises the bearing 11, mounted to slide on the boom bar 13, so that said frame 8, is supported for transverse oscillatory movement with respect to the main frame 3. The rudder frame 15 , is mounted to oscillate transversely on the vertical shaft 16, in said frame 3. Said sail frame 8, is provided with flexible connectors 17 , which extend around the pulleys 18 , at the outer ends of said boom 13, to the rotary drum 19, in the car 5 , and, the flexible connectors 21,
15 extend from the rudder frame 15 around the pulleys 24 , to the rotary drum 25 , in said car. Said drums 19, and 25, are respectively provided with the hand wheels 27 , and 28, whereby, said sail and rudder may be
20 independently adjusted to different angles with respect to the longitudinal axis of the balloon.

Although I have shown the balloon provided with a sail and rudder which are ad-
25 justable with respect to the longitudinal axis of the balloon, at the will of the operator, as above described, so as to receive wind pressure in variable angular relation, it is to be understood that the balloon may be pro-
30 pelled in the manner described, without the employment of such adjunctive devices and solely by the wind pressure upon the balloon itself, and in this connection it may be observed that the envelop 1, is rendered more
35 effective for its progressive movement by having its exterior converged toward its stern.
The rotary body 30 , whose mass may be in any desired proportion to the mass of the
40 balloon, is carried by the shaft 31 , which normally extends substantially horizontal and parallel with the longitudinal axis of the balloon, and consequently parallel with the normal direction of traverse of the balloon. Said
45 shaft 31, is mounted to rotate in the bearings 33, of the gimbal frame 34, and the latter is provided with oppositely extending trunnions 35 , having a common axis of oscillation extending transversely above the center of
50 gravity of said wheel and frame. Said trunnions 35 , are journaled in the bearings 38 , and so constructed and arranged that the oscillatory movement of said body is limited to approximately fifteen degrees. Said bear-
55 ings are supported by the car, and may be adjusted and secured in variable relation with the longitudinal axis of the balloon, by any convenient means. The rotation of said body 30, may be effected and controlled by
60 any convenient means. However, in the form indicated, said wheel comprises the armature of an electric motor having the field frame 40 , carried by the gimbal frame 34 , and said motor is energized by suitable connec-
65 tions with the source of power 41, controlled
by the switch mechanism indicated: It is to be understood that said body 30 be rotated at variable speed, to produc control its gyroscopic effect, so that effect may be opposed to any force " to turn the balloon from a path coine with its longitudinal axis, and, that quently any wind pressure upon the hall. so received as to tend to change the phat rotation and direction of the axis of saill 30, may be opposed by the gyroscopic of said wheel, so that such wind pressure be utilized to effect the forward mown of the balloon in a direction oblique will spect to the direction of the wind, if dwthe direction of propulsion being alsin ably determinable, at the will of the oper by adjustment of the angular relation of sail and rudder with respect to the longit! nal axis of the balloon.
I do not desire to limit myself to the | cise details of construction and arrantem herein described, as various modificati may be made therein without departing fir the essential features of my invention, it fined in the appended claims.
I claim:-

1. In a balloon, the combination with le tating means; of a rotary body havine axis substantially horizontal; and mean-porting said axis, permitting free but limit oscillatory movement thereof in a directi parallel with said axis; whereby wind pi sure tending to turn the balloon from a determined direction of traverse, may be posed by the gyroscopic effect of said rot: body, so that such wind pressure may utilized to propel the balloon in directi oblique to the direction of the wind pres-s
2. In a balloon having its longitudinal : substantially horizontal, the combinati with levitating means; of a rotary body ha ing its axis substantially horizontal and posed transversely with respect to the lon tudinal axis of the balloon; and means:porting the axis of said body, permittine f but limited oscillatory movement therem altitude; whereby, wind pressure tendinturn the balloon from a predetermined dit tion of traverse, may be opposed by the scopic effect of said rotary body, so that wind pressure may be utilized to propel balloon in directions oblique to the direc of the wind pressure.
3. In a balloon having its longitudinal: substantially horizontal, the combinat with levitating means; of a rotary body 1 ing its axis substantially horizontal; ine: supporting said axis, normally prevent azimuthal movement thereof while peri ting free but limited altitudinal oscillat movement thereof; whereby, wind pres tending to turn the balloon from a prede mined direction of traverse, may be opp' by the gyroscopic effect of said rotary b,
at 42.
), may
ce anil
t said
suding 70
cident
conser
tloon,
ane of
1 bods
effect
e may
sment
th re-
sired.
vari-
rator.
f sail
iturdi-
'pre
ment
tion-
from
is de- 9
levi
g it-
sup- 95
lited
tion
ores-
pre-
op- 100
tary
\because be
ions
ure.
axis 105
tion
1av-
dis-
ngi-
up- 110
free
f in
\therefore to
ec-
en
ro-
ich
the
ion
x is 2
on
iV^{-}
n .
ng
ng
it-
it
ry
ry
re
re
ed
J,
… that such wind pressure may be utilized to propel the balloon in directions oblique to the thirection of the wind pressure.
4. In a balloon, the combination with levilating means; of a rotary body having its ani-substantially horizontal; means supportint said axis, permitting, free but limited osvillatory movement thereof in a direction parall.| with said axis; and, means adjustable "ith respect to said axis, arranged to receive "ind pressure in variable angular relation, whereby wind pressure tending to turn the halloon from a predetermined direction of Haverse, may be opposed by the gyroscopic .ffect of said rotary body, so that such wind mesure may be utilized to propel the ballow in directions oblique to the direction of the wind pressure.
ㄱ. In a balloon, the combination with a mary body; of electrical means to rotate aid body at such speed as to produce a gyrowopic effect; and, means supporting said honly, so that it has a freedom with respect to
an axis eccentric to the axis of rotation of said body, substantially as set forth.
5. The combination with a rotary body; of means to rotate said body at such speed as to produce a gyroscopic effect : and, means supporting said body, so that it has a freedom with respect to a horizontal axis eccentric to 30 the axis of rotation of said body, subatantially as set forth.
6. The combination with a rotary body: of means to rotate said body at such speed in (1) produce a gyroscopic effect: and, means sup- 33 porting said body, so that it has a freedom with respect to a horizontal axis eccentric to and above the axis of rotation of said body. substantially as set forth.
In testimony whereof, I have hereunto tol signed my name at Philatlephia, Peminel vania, this 24 th day of December 1900^{-}

RI'SELL THAIER
Witnesses:
Edwin J. Mole
Hiram Barves.
※

How therefore we the undersigned, Alexander orahom
 selfridge to horoby agree to assooiate oursalvea together under the nane of the merial kxperinont Aaseciation", for the purw pose of earrying on exporimenta relating to gerial loeomotion with the apeedal objeet of eanatrueting a muceesarul aerodrone.

We agree that the Merial Juyeriment Assoelation ahall be organised on the first day of October, 1007, and ahail exdat for the term of one year from the dato of organdsation unlese othorviae ceternined by the unandmous vete of the members.

Ve agree that the imventions relating to norial 1000 m metion rade by the inembere of the Asseciation taring the lifem time of the Agseoiation shall belong to the Asseciation; and that any applieasions for letters patent for auch Inventions shall be made in the names of all the members ae joint invente orm.

Wo agree that invontion relating to aerial leeanotion made by the members of the Association before the organigation of the Aaseciation ahask belong to the inventors, and not te the Aaseciation, uniess apecially assigned; and that only auch prior inventions ahall be olaimod by individual members as ohntl be aubatantiated by the production of written manoranda, dravim Inga, photegraphs, or medele exiatent berere the date of the organiaation; se that the proefs of prier invention shail net rast on reeolleetion alene, or upon vorbal atatarients unaupe ported by deounantary or tanglble ovidenee of eardiar date than the organiantion of the Assectation.

48

She matd Alexander Orabas Bela agreen te plaee his Laboratery at Beinn Bhreagh, Fear Badieet; Feva Beetia, at sho diapoash of the Aseselation for the purpoes of carrying on orporimonte rolating to aorial leoonotion, together with 021 the buskdinge, teos, materiaks, and apptrtonanoos bolonging to the Iraboratrory, without charge, as long as the Aasociabion desires to earry on exporimonts at Beinn zhreaght provided thet the rumning expenses of the Laberatory, inciuding the salaries of the Superintendent und mon omployed chasi be pasd by the Aasociation during thair wae of said Laboratory, the number of man ouploged ether than the tuporintondent to be at The Aiseretion of the Aaseetation, and that any nov materiak er apparatur not in the Inberatory at the date of the orgnite isation wich may be deaired for the wae of the Aasociation aha21 be aeguized at the oxpense of the Aanoekation.

Fe, the undoratgrod agree to appeint one of our nuaber as Directer of Frperimonta te be our mediun of oome runieation with the Iaberatery.

We agree that the Jatboratery worlanen whall reeeive their instruetione from the Buperintendent of the Goberatory
 his inatructione from the Dirootor of Eworimonte wane, and that the bireveter of Itoperisenta shali reeedve his instruete tons by vote of the Aeseesation of thich he is a momber.

We agree What the hosdguarters of the acrial Experie ment Abseedation ahail bo at Beinn Bhroach, Moar Beadeok; sieva Soetim, and that on or berore the first of January, 1003,

efle

the headquartera of the "Aaseoiation whall be remeved to aere place got to be deterained uithin the limita of the United 3tates.

Ints agreoment can only be nodified by unanimous vote of the underas gnod.

誰tness our hands and seals at Malifax, Nova Beotis, this thirteenth any of September, A.D., 1907. (31gned) Wh. Wo Payaunts, Yova Seotia.
(30an)
(s1gned)
Alezmender Grahrou 3ell (Benl)
(8ignad)
G. H. Curtise
(sena)
($81_{\text {gned) }}$
3. V. Baldurin (geal)
(31gned)
J. A. Dovelam MeCurdy
(Soal)
(3igned)
\%. Belfridge
(Bem2)
Let Lieut. Sth F. A., U.S.A.

Authentheated by Dawid 7. Wi2der, Conaul General of the United States, Septembor $30,2907$.

