

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the teat original copy available for filming. Foatures of this copy which may be bibliographically unique. which may alter ariy of the imagee in the reproduction, or which may significantly change the usual mothod of filming, are checked below.

Coloured covers/
Couvarture de coubeur

Covers damaged/
 Couvertire endommagde

Covers reatored and/or laminated/
Couverture restaurde ot/ou pelliculde
Cover title missing/
Le titre de couverture manque
Coloured mape/
Cartes ghographiques on couleur
Coloured ink (i.e. other than blue or black $/$ /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured piates and/or illustrationa/
Planches at/ou illustrations en couleur
Bound vith other material/
Relis avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Larellure serríe peut causer de l'ombre ou de le distorsion le long de la marge interieure

Blank leaves added during restoration may appear within the sext. Whenover possible, these have been omitted from filming/ II se peut que cortaines pages blanches ajoutíes lors d'une restauration apparaissent dens le texte. mais, lorsque cela útait possible, ces pages n'ont pas dto filmses.

Additional commenta:/
Commentaires supplémentaires:

L'Institut e microfilind le meilleur exemplaire qu'll lui a dés possible de se procurer. Les détaila de cot exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqubs ci-dessous.

Coloured pages/
 Pagee de couleur

Pages damaged/
Pages endommagtesPages restored and/or laminated/
Pages restauries et/ou pelliculdea
Pages discoloured, stained or foxed/
Pages decolordes, tachetbes ou piqudes

Pages detached/
Pages dd́tachdes

Showthrough/
Transparence

Quality of print varios/
Qualit' indgale de limpression

includes supplementary material/
Comprend du metdriel supplémentaire
Only edition avaliable/
Seule stition disponible
Pages wholly or partially abscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un fouillot d'errata, une pelure. etc., ont dté filmdes nouveau de facon à obtenir la meilloure image possible.

This item is filrned at the reduction ratio checked below/ Ce document est filme au taux de reduction indiqué ci-dessous.

The copy filmed here has been reproduced thanka to the generosity of:

Library of the Pubilc Arghives of Canada

The images appearing here are the best quality possiblo conaidering the condition and legibility of the original copy and in leeping with the filming contrect specifications.

Original copies in pririted paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impresslon, or the beck cover when eppropriate. All other original copies are flimed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the aymbol ∇ (meaning "END"), whichover appiles.

Maps, plates, charts, etc., may be filmed at difforent reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, ioft to right and top to bottom, as many fromes as required. The following diagrams iliustrate the mathod:

L'oxomplaire filmb fut raprodult grace it in génbrositd de:

La bibliothique des Archives publiques du Canada

Les images suivantes ont oft reproduites avec is plus grand soin, compte tenu de la condition et de io nottot' de l'uxempiaire filmb, et en conformith avec les conditions du contrat do filmagr.

Les exemplaires originaux dont la couverture on papier est imprimée sont filmés on commençant par le premier piat ot on terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres oxempiairss originaux sont filimés an commençant par la premiàre page qui comporte une emprointe d'impreasion ou d'illustration at en terminant par Ia dernidre page qui comporte une telie empreinte.

Un des aymboles suivants apparaitra sur la dernière lmage de chaque microficho, selon le cas: Io symbole \rightarrow signifie "A SUIVRE", Io symboio ∇ signifio "FIN".

Les cartes, planches, tableaux, etc., peuvent ütre filmés des daux de réduction différents. Lorsque is document est trop grand pour etre reprodult en un soul cliche, il est filmé a partir de l'angle supérieur gauche, de gauche à droite. ot de haut on bas, on pronant ie nombre d'images nécessairs. Les diagrammes sulvants illustrent la móthode.

Canadian Society of Ceivil Engineers.

incorporatein inst.
TRANSAOTIONS.
N.B.-TLie soclety, as a body, doen not hold linelf rapmonible for tho fnete and epinions tatod in any of tia pabilcalions.

THE CONSTRUOTION OF COTEAU BRIDGE

HY
Geo. A. Mountain, M. Can. Soc. C.E
To be read Thursday, 每th Mareh

In the autumn of 1888 the Canada Atlantic Railway Company deeided to replace the ferry used tor the trumsportation of "res, ucross the river St. Lawrenee, between Coteau Landing and Valieysield, by a bridge, the ferry being fond inadequate for the com- : pany's constantly increasing busiuess.
After numerous carclinl surveys extending over a period of threê.: seasons, the site timally selected for the bridge was at the head of: the Cotean Rapidy, 37 milhes west of the eity of Montreal. This. site, while it possessed many advantages of importanee to the com- : pany on the seore of economy, on account of the islands situated on the line of the proposed bridge, also possessed many difficu'ties from an engineering point of view, prineipally the depth and veloeity of:. the water.

The width of the river, which at the hridge site is narrower than at any other print in the vicinity, is divided liy two islands into three distinet ehamels. 'The morth or stemmbat ehannel from the north shore to tiroux Ishand lweing s8is leat in width. The centre channel from dirwox Sland to Romal Island being 2210 feet in width, and the sumth chamel from hound Island to the sonth share beiag 930 feot in width. The length acooss tiveux fsland being 905 leet, and across Romed hand leiso feat, making a total length of 6150 teet from turth to sumth slure, with 4025 fiet of bridging.

The banks of tha riser on either side of the bridge site and the interveniag islands are how, and shping toward the water, and it was ont this account that a bow hevel hridge, with a aring ofer a portion of the nurth or stemmbat "hamel, wats devided nom.
'Ilhe elevaliun of the rail hevel at the l.ridge, which is a through truss frome end to cond, is 2 a teel abow the ordinaty smmer water hevel, and the aligment of the bridge is at tangent from shore to shore, and is divided into spuns, as thllows: Ther i reth or steamboal.
 centre, whe of 1330 feet exutre to erntre, and one swing span of 355 . feet eentre to centro of the seate, piving an mphing on either side of the pivot pier of 16 bit feet in the elrar. 'The emene chamel is conposed of ten fixed spans of 218 feet meh ementre to centre, and the south chamed of fimu fixed spans of exes teet each eentre to eentre. The islamels arr at present crossed by trestle work, whieh it. is the intention of' the company to fill and torm a solidembankment.
In the north ar ateambat channel adjoining the Cotean shore, the velocity of the current is seven miles per hour, and on accoont of navigation the course of' steambeats and rafts passing down had to be kept elear, and the dredges, harges, and plant usid in the corrstruetion were in constant danger of being ran into and sank. The veloeity of the current in the centre elannel was between five and six miles per hour, and the sloal water 1000 leet above the bridge. line rendered the narigation of the tugs and barges very difficult.s In the sonth chamel the veloeity of the current being six miles per hour, and the bed of the river above the bridge line bare roek, great diffieulty was experienced in the anehorage.
The maximum depth of the water in the north ohannel; in whict

Tere placed four. plers, lnoluding the pivot nier :nd two abutneats, is 30 feet, the minimum being 24 feet, and the borings showed a sovering of from 4 to 6 feet of cemented gravel and buulders above the bed rock.

The maximun depth of the water in the centre chanuel, iu which were plaoed nine piers and two abutments, was 26 feet, the miniumu depth being 20 feet, and the borings here showing a covering of fron 3 to 8 foet of cemented gravel and boulders above the bed rock.

The maximum depth of the water in the south ohnunel, in which wera placed thres piers and two abntments, was 24 feet, the minimum dopth being 20 feet, with a covering of frous 3 to 6 feet over bed roak of a aimilar material to that found in the other channels.

No trouble whatever was experienced from the variation of water. le rel, the rise aud fall not exceeding is' 6 ".

It might be in place lere to meation the namer in which the triangulations were performed to obtain the widthe of the difficrent obanogle, and in which the positions for the piers were urrived at.

The inatruments used were an eight iuch transit, a 300 foot steel tape, and piekets.
Owing to the marshy ground on the uorth shore on cither side of the bridge site it wan no casy matter to obtain a base line, and advantage was taken of the winter when these uarshes were a solid level field of ice; on them a base line was measured at right augles to the line of bridge, and from this base the width of the north or steamboat chanoel was calculated. The hypothenuse of this right angle triangle was then used as a calenlated base line to establishi a poiut on Maple Islend, situated mid-way in the eentre chanvel, and about 1200 below the lin' of bridge, by connecting this point with a point on line of bridge in the south shore of Gironx Island, gave a calculated base from which the width of the eentre ehannel was obtained; these operations were carrisd in in a similar manner from the sonth shore, and the point on Maple Islamel was again estublished from this side, giving the adjoining side of the centre triangle, taking this silde as a calculated bare, the distance across the centre channel was again obtained, cheeking with the distance calemlated from the north side to withiu 06 of a fiot. The poiut thus established on Maple Island was uaed in laying otf the angles for the position of each of the nine piers in the centre chamnel. A point was similarly established on Swan Island situated in the south chamel about 1000 feet below the line of bridge, and trom which the angles were luid uff for the position of the three piers in the south channel. A point was also eatablished on MeIntyre's Island, situated in the north chamel about 1200 feet above the bridge line, and from which angles were laid off for the position of the fow piers in the worth chamncl. The angles were taken by (wo engincers, and by the method known as repeating the angles and the mean of this repretition taken, any little variation found in the three angles af a triangle from 180° was divited proportionately anomg the three ancles. 'T'wo months were spent in this manner during the winter, uutil the engineers ware fully sutisfied that the widths of the chanels and the position of the piers were accurately obtained. A plan was then made on a scale of 50 feet to the inch, and with all distraces and augles warked on it, little trouble was necessary to fix the position of a pier at a few momenta' notice.

The apecifications for the substructure required a bottomless caisson 20 ' in width and 67 ' in length over ull, and pointed at both ends, the bow being a right angle and the stern somewhat more acute; this was done for the parpose of steadying the caisson in the rapid current, and also to prevent the formation of an eldy. The walls of these caissons were built of $12^{\prime \prime} \times 12^{\prime \prime}$ pine timber, and were stiffened by means of 30 uprights fastened to the wall on the inuer side, and tied acrose by 45 cross ties placed about 4 foot eentres, all of the same material and dimeusions, they being heavily spiked and bolted together.

The caisoon used for the pivot pier was designed in the slnape of an octagon 36^{\prime} in width with sides of 17^{\prime} in length, and was built of similar material and dimensions as used in the eassons for the other piers.

The apocifoatlona for the mawoory in the bridge ubutmenta and piers required to bo first oluss in every reapeot, and of the beat and largest stone that the quarries afforded. They required to be sound and durable, free from all drya, shakes, or tawe of any kind whatever, and must be of auoh a character ae to withatand the aotion of ths weather. No onurne losy than $15^{\prime \prime}$ in thickness wan allowed. I'be beds of all stone for faoe work, and the backing, where required to reeeive headera, wero dressed purallel throughout, so as to form quarter inch joints, and the vertical joints of the faoe atone were dresed back aquare for $9^{\prime \prime}$, so as to form quarter inoh joints.

Headers were built in every course not more than 6^{\prime} apart, and wo arranged with the adjoining coursen as to leave them equally distributed over the faces of the structure; they have a length in the face of work of not less than $24^{\prime \prime}$ and a depth of at least two and one half timee their beight.

Stretchera required to be not less than $30^{\prime \prime}$, and their breadth must be at least one and ous half times their height. I'he vertical joints must be so arrangel an to overlap thoge in the course below at least 1 foot.

Tie copiage aud bridge seats of all piers and abutments required to be 24" in thickness, and dressed aquare throughout to quartar inoh jolints.

The vertical joints of the eutwater stones were dreased baek square to the full depth of the stone. Irod clamps of $10^{\prime \prime}$ in leagth were used in clamping the cutwaters. Dowella of an inoh and one half round irou were let through one course and one half of masoary. Over the cutwaters nose pieces of $\frac{3}{4}$ inch steel were placed 12^{\prime} in length and ranniag back 2^{\prime} on either side, bolted by means of for wedges to the masonry.

All masoary was laid in fresh ground Porland cement, thoroughly mixed with good, clean, sharp, course river sand, in the proportion of one part of cemeut tn two parts of sand. The cutwaters and bridge scats were laid with mortar in the proporion of oue part of cement to oue part of sand. 'The cement was tested from time to timo by a Fairbauks cemeut testing machine, and after setting from 10 to 20 daya stood a breakiag straia of frum $\mathbf{2 7 5}$ to $\mathbf{4 1 0}$ pounda to the square inch.

The dimensions of the piers which are shown in the acoompanying sketch are $48^{\prime} \times 11^{\prime} 6^{\prime \prime}$ at the basc and $24^{\prime} \leq 8^{\prime}$ at the bridge seat, the vivot pier differing from the others in being a cylindrical column of $2 \mathbf{7 月}^{\prime}$ in diameter, with a fonting eourse of $29^{\prime} 8^{\prime \prime}$.
Towards the end of the autumb of 1888 the eontract for the sub. structure was awarded to Messrs. Neelon, MeMahon \& Shen, of St. Catharines, and during the following winter quarries were opened, stone was eut, barges built, dredges overhauled, and all necesmary plant put in readinens for tho ondertaking.
On the 1st of April, 1889, ground was brokell in excavatiog the foun dution for the abutment on the north shore, and this was carried ou while waiting the breaking up of the ice on the lake above. The iee having passed down ou the 2 1st and 22nd of A pril, a dipper dredge way brought down to the bridge site on the morning of the 24th, and ranged up into position to prepare the foundation for pier adjoining the north shore, dredging down stream. This operation occupied 15 days, and the dredge was then moved over to the position of the next or pivat pier. It was while working at the foundation of this pier that an accident befell the dredge, a raft, composed of nine drams, passing down in the early morning, atruck the dredge, smashing a hole in the stern of about $15^{\prime \prime}$ in diameter, and notwithstanding that every effort wan. made to save her she sank a half an bour later, in 28^{\prime} of water, the bow being piuned up on her apuds held ber partly above water at that point, which greatly facilitated the operation of ruising her, which was succesbfully done in n very short period. A similar dredge was placed iu position on the pier adjoining the south shore, and worked tewards the centre. It wad not permitted to make the cxeavation for the caissons more than a week abead, when they should be placed in order to avoid any danger of the excavation filling up.

To do this dredging successfully in from 20^{\prime} to 30^{\prime} of water, and a ourrent of from 5 to 7 milea per hour, required very careful management and extraordinary precaution. Frequently during the progrem of thia work oak apude of $18^{\prime \prime} \times 20^{\prime \prime}$ were anapped off.

The niext'operation was the placing of the enissons. These when completed were phed betwern two barges, on earl of which was erected a

 eribs on the derk af the hatrows hut this methoul was fonmed to be extrencly show, mut was ahambued lior the boek and tacklo system ubowe deseribril.

 wivie colbles.
'When the ixenvorimionas ready the aisan and harges were towed out into the eurrent liom where they wre built, abont 1 mile above

 ing in quick surowsinn. Wht the anchors laking hold the thigs were let

 way irom, and lowerol for within a few lieet if the bottums. The caishnen wan Them cased back motil it was liromght ha the exact positiun pievionsly fixed ly trianglation; all that wan than mereswary to sink
 bearinge in the hed rowe.

Should it wot set in lrue pristion the tirst time some of the weight was romived, and the strain taken upon the taskles, when it conld be

 When it was fimally setted in pusitime it wat mhlitionally weighted with railway iren, and the tomtine romme of manolny was ulso plared

 dralt, and tor this purpose the lhonh and tachle system was finnd exceedingty suretestin).

 30^{\prime} and the velouity uf the commen, "hish at this puint is the switest in the vicinity of the hritere and hoine in chase proximity

 ing a bew one to replare it. A dradge Was atain hromeht down to

 cult one of the brides to at.

 heing mable to luld it in the switt watre, stanehorn rath huse with a
 the eatbles slackel away and the eainoth dropled bank into pusition.
 fast near the buttom of the caisson, athe faken to timber herats on leck, iu urder to lwht the raisom in all upripht pusition, and prevent its being carried out of plumb by the still curront

It was at this pier that the only latal aceidend durine the eomstruetion of the work was sustaned, rexulting in the loss of the lises of two then; both by drowning,--wne during the eonstrmetion of the substructure and the other during the areerioin of the supersiructare.

Owing to the current striking the hridge line nearly at right angles, the caissons for the piers in the erntres of the chanmels were subject to little or no side current ; but those atjacent to the shores and islauds
roesived the full forceol' the current on ne side of the bow, and great preaation had to be taken tu prevent them from laing swept out of position ; this was done by means of anchors placed on the inshore side, and from which the eables were brought to the eapstans fixed at both bow and stern of the barges, and in this manner ludd in pusition till sunk.
It was not fumel nemesary to serile the lontoms of the eniswens, as they invariably fitted close to the lmel roek, which was remarkubly level and dredged thormghly elan.
At the enrly stages of the mulertaking if took threre duys to place and siuk a caissum, bun "w the work prugressel they wore placed and nuak in a day.
On the caisson finally th ing wertled and weighted in its position, the loarges npoon which it was tramport al were dern removed. Divers were then sent down, und a ennvas curtuin, if fiet wide, which had been previnusly mailed un ther inside of the caisson 2 feet from the bottom, was unrolled, and unin this were piled bugs of concrete to prevent any wash to the conervte afherwarids to be dipusited. Once commaneed the conereting was earried wn enutimounly day and night, until compluted. A flating deetric light phan finminhed the light for the night work. A derrick spow was placed alongside the caisson, and as the conerete was mixed it was deposited in iron boxes with false bottoms hulding from one to two cubic yards, and lowered slowly into the enisson, and the bottom tripped, than preventing the separation of the mat rials which would 'insue from allowing the concrete to tall muprotected throngh the water.
The empunition of: the cemerte was: one part of Binglish Portland rement, three liffirn :nt brands being ased,-White's, Johnson's and Union,-one purt of sand, and betwern thre and four parts of broken stone of '2" "ulte.
 12^{\prime} and all bronght to the miliorm height of 12^{\prime} helow water level, at which point the masemry in all cames was started from.

After allowing the comerrete to hours for sucting, the eaisson was puouped ont with an $\mathrm{s}^{\prime \prime}$ hurizontal centrifugal pamip driven by a 30 horse puwer engine, luith una senw alongside and conneeted with the caisson by a rubber suction hose. The pumping of a caisson usually touk from 20 (1) 40 minutes, and little or mo trouble was experienced in kreping them dry, they beine thunully canked from tup to bottom. When this wat aremplishod the masmry was commeneed and carried on to complition.

The ennerete was finmol in all rases to have ser thoronghly set an to make it as diftioult to dresw it trererive the masoury as an ordinary fouting comers.
 af the conemere.
'Nlue stome 1 -rid for the piows and athiments is lime stome, and was taken from the gnarries at Aplle Jill and Ganghmawaga, the last
 eight munh his and six hays in tha remstruetion of the suhatrueture.

The guantities were som enbic yarls of mavomry, and 7000 cubie : yards of concrete, in which were used 25,000 burrels of Portland cement.

In the winter of 1 Nss, the rontract fir the construction and erection of the superstrueture was awarled to the Dominion Bridge Company of Lachinc, and preparations were at onee commenced for the undertaking.

Specifications prepared by the railway company for the superstructure required that it be of the rivetted lattice type, and the general desigu tinally ulopted had a double system of triangular or inoliued web members, inclined batter ar end posts extending over one pancl and girdets of the swing span, and the loager fixed spans of varyiug depth, only the central upper chord parel of the fixed spans being horizootal, the chords sloping each way from the central panel to a junction with the batter posts, the depth of the girders at ends being anade just aufficient to give the required elearance between track, and portal bracing.

The use of inclined ehords results in small ceonomy of material, reduces wind surface, and gives good lepth at centre of apan with
corrosponding anall defections when Inaled, and hence amall necondary atraina at and near the connections of' wit members on chords.
The depth of water, foree of eurrenf, mid nuture of the bottous were suoh, that the setting of fillse work und the assecolling of the metal work ln plaen in the usual way woulil have hern diffientt, and attended with groat risk of displacementat by the heary waves ofton runnlug down from the lake just above the loridge.
The contractors for the superstrueture deceiled to creet the spans in a nheltered bar, about three miles dixtunt from the bridge, and when fully completed to take them on harges, float inte phace, nud lower on to the mamonry.
This was doue in the lollowing mamer: Two neows bailt for this purpose, 90^{\prime} long by 40^{\prime} in width, were provided with 4 hagge trestle beats on each ; these seows were lashed together with a spuce of 70^{\prime} between them. By meuns of valves, water could be uduitted into the bulls, so as to sink them nbout ' 2 '. When these seows were Immediately underneath the span, the water was siphoned out, und the scows rising lifted the span oll its false workw, allowing the two peuels on either end of the apan to project over them.
They were then towed to the bridgo site, plaeed in position between the plers, and by sinking the seows again the spun was howered to its permanent seat on the piers. The details of the scows and trestles used, and the nethod of placing the span in position butween the plers, are fully shown in the necompanying sketell.
Notwithstanding the velocity of the carrom, the work was very sucoenafully varricd out. The 14 spmas for the south and middle channel having been floatad and pluced on piers in te days, from Ucto ber 12th to November 23rd.

Provision was made fir storing a numbur of phans in the bay, when erected, by building the false work or stagiug, wh which to creet them along the shore of the bay, and at right angles to this stagiag building out into the water two pile piers, or trestles, spaced the length of the spans apart. On these trestles a number on' linus of' railway iron were lald, and as the erection of each spun was completed it was moved sidemays out on to the treatles slidme on the railway iron.

Before the work of floating the spaus into place began, seveu spans had been amembled and rivetted complete, and moved stleways on the treatles into position, to bo taken off in turn by the barges, thus enabling the work of assembling and rivetting to progress without interruption.
Spans have before been thoatell on bareres inter position, but it is thought this is the firat instance in which a large number of spans hare been made ready and stored until it was desired to place them on the masonry, and also the tirst time talse work has beell su built that the apans when assembled could be moved oft it and haded on barges, without tearing down uny purt iom of the falsw' work ir interrupting the work of erection, the usual course harings heen to ereet the span on staging built over the water, and to takid diwn emongh of the trestles to admit of the barges being placed beneath the span.
The erection of the superstructure was commenced on the 1st Sepcember, 1889, and the last span was floated into position on the 19 th . Bebruary, 1890. Trains going over the entire structure on the following merning. The entire bridge thus oceupying ten months and twonty daya in construction.

