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PREFACE.

Toe course of algebra cmbodiod in the present work is substantially

that pursued by students in our best preparatory and scientitie schools

and cplleges, with such extensions as seemed necessary to afford an

improved basis for more advanced studies. For the convenience of

teachers the work is divided into two parts, the first adapted to well-

[irepared beginners and coniprising about what is commonly required for

admission to coll(,'ge ; and the second designed for tlu; more advanced

fjenoral studimt. As the work deviates in several points from the models

most familiar to our teachers, a statement of the principles on which it is

constructed may be deemed appropriate.

One well-known principle underlying the acquisition of knowledge is

tiiat an idea cannot be fully grasped by the youthful mind unless it is

3
presented under a concrete form. Whenever possible an abstract idea

i iimst be embodied in some visible representation, and all general theorems

I nuist be presented in a variety of special forms in wliich they may be

I seen inductively. In accordance with this principle, numerical exam-

]
pies of nearly all algebraic operations and theorems iiave been presented.

: For the purpose of illustration, numbers have been preferred to literal

I symbols when they would serve the purpose equally well. The relations

I
of positive and negative algebraic quantities have been represented by

f
lines and directions from the beginning in order that the pupil might bo

I
able to give, not only a numerical, but a visible, meaning to all algebraic

I
quantities. Should it appear to any one that we thus detract from the

jgenerality of algebraic quantities, it is sufficient to reply that the system

jis the same which mathematicians use to assist their conceptions of

ulvanced algebra, and without which they would never have been able

to grasp the complicated relations of imaginary quantities. Algebraic

^
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operations with pure numbers .-iro made to precede the use of symbols,

and the latter are introduced only after the pupil lias had a certain

amount of familiarity with the distinction between al^t'jebraic and numer-

ical operations.

Another, but, uiifoitunat<;ly, a li^ss familiar fact is, that all mathematical

citiicc|iii()ii.s icijiiin; tiiau to become engrafted iip(jn the mind, and Oic

more tiiiK! tin; greater tlieir ab.strusenesa. It is, the juithor conceives,

from a failure to take account of this fact, rather tliuii from any inherent

defect in the minds of our youtli, that we are to attrilnite the backward

state of mathematical instruction in this country, as compared with the

continent of Europe. Let us take for instance the case of the student

commencing tlie calculus. On the system Avhich was almost universal

among us a few years ago, and which is still widely prevalent, he is con-

fronted at the outset with a number of entirely n(nv conceptions, such

as those of variables, functions, increments, infinitesimals and limits.

In his first lesson he finds these all combined with a notation so entirely

(litTerent from that to which he has been accustomed, that belbre the

new ideas and forms of thought can take permanent root in his mind,

he is through with the subject, and all that he has learned is apt to vanish

from his memory in a few months.

The author conceives that the true method of meeting this difficulty is

to adopt the French and Grerman plan of teaching algebra in a broader

way, and of introducing the more advanced conceptions at the earliest

practicable period in the course. Accordingly, the attempt is made in the

present work to introduce each advanced conception, disguised perhaps

under some simple form, in advance of its general enunciation and at as

early a period as the student can be expected to understand it. In doing

this, logical order is frequently sacrificed to the exigencies of the case,

because there are several subjects with which a certain amount of famil-

iarity must be acquired before the pupil can even clearly comprehend

general statements respecting them.

A third feature of the work is that of subdividing each subject as

minutely as possible, and exercising the pupil on the details preparatory to

combining them into a whole. To cite one or two instances : a difficulty

which not only the beginner but the expert mathematician frequently

meets is that of stating his conceptions in algebraic language. Exercises

in such statements have therefore been made to precede any solution of

^
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problems. In general eacli i)rincipl»' whidi in to be presented or used Ls

ptntt'd Hingly, and the pupil i.s practiced upon it before })rocoeding to

another.

Subjects liave for the most part been omitted whirli do not find appli-

cation either in the work itself or in Hubscquent parts of the usual courbo

of mathematics, or which do not cmulure to u mathematical training.

Sturm's Theorem has been entirely omitted, and a more simple process

substituted. The subject of the greatest common divisor of two polyno-

; ,ials has been i)osti)nned to what the author considers its proper jdace,

in the genwral theory of equations. It has, however, been presented in

Biich a form that it can be taught to pupils preparing for colleges where

it is still required for admission.

Thoroughness at each step has been aimed at rather than multiplicity

of subjects. It is, the autlior conceives, a great and too common

mistake to present a mathematical subject to the mind of the student

wiUiout sufficient lulnoss of explanation and variety of illustration to

enable' iiim to comprehend and api>ly it. If ho has not time to master a

complete course, it is better to omit entirely what is least necessary than

to gain time by going rapidly over a great number of things. Some

liints to those who may not have time to master the whole work may

therefore be acceptable.

Part I is essential to every one desiring to make use of algebra. Book

VIII, especially the concluding sections on notation, is to be thoroughly

mastered, before going farther, as forming the foundation of advanced

algebra ; and affording a very easy and valuable discipline in the language

of mathematics. Afterward, a selection may be made according to cir-

cumstances. The student who is pursuing the subject for the sole

purpose of liberal training, and without intending to advance beyond it,

will find the theories of numbers and the combinatory analysis most

worthy of study. The theory of probf-bilities and the method in which

it is applied to such practical questions as those connected with insurance

will be of especial value in training his judgment to the affairs of life.

The student who mtends to take a full course of mathematics with a

view of its application to physics, engineering, or other subjects, may, if

necessary, omit the book on the theory of numbers, and portions of the

chapter on the summation of series. Functions and the functional notation,

the doctrine of Umits, and the general theory of equations will claim his
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cspocial ationtion, whilo tho tluory of irnaf,'inftry qiinntltioa will bo studied

uiaiiily to hocuio tlior<)ui,'linos.s "n siibse(iuonf, parts of lii^ ciourse.

As it luw fruquoiitly bfcii a pi'Xt of the author's duty to ascortain wliat

is n.-ally left of a course of matlieinatical study in tlio minds of tlioso

who have been throui^ii colleg(3, sonio hints on thu l)t'st methods of

study in connection witli tlic present worii may be excused. If asked

to point out tlie j^reutest error in our usual system of mathematical

instruction from the common school upward, he would reply that it con-

sisted in expending too much of the mental power of tho student upon

problems and exeicises above his capacity. With the exception of the

fundamental routine-operations, problems and exercises should be confined

to insuring a proper understanding of the principles involved : this onco

ascertained, it is better that the student should go on rather than expend

time in doing what it is certain he can do. Problems of some difficulty

are found among the exercises of the present work ; they are inserted

rather to give the teacher a good choice from which to select than to

require that any student should do them all.

It would, the author conceives, be found an improvement on our usual

system of teaching algebra and geometry successively if the analytic and

the geometric courses of mathematics were pursued simultaneously. Tho

former would include algebra and the calculus, the latter elementary

geometry, trigonometry, and analytic geometry. The analytic course

would then furnish methods for the geometric one, and the latter would

furnish applications and illustrations for the analytic one.

The Key to the work contains not only the usual solutions, but tho

explanations and demorstrations of the less familiar theorems, and a

number of additional problems.

The author desires, in conclusion, to express his obligation to the many

friends who have given him suggestions respecting the work, and espe-

cially to Professor J. Howard Gore, of the Columbian University, who

has furnished solutions to most of the problems, and given the benefit of

his experience on many points of detail.

Note.—Answers to exercises, rcquiriinj ralculafion or icritten irork, ar<?

published separately in pamphlet form, and will be supplied without

charge when applied for by teachers.



1
11 be studied

rse.

jortiiin what

ids of tliose

motliods of

1. If asked

iiatheiiiatieal

r that it eon-

;tudent upon

ption of the

1 be confined

d : tills onco

than expend

me uiffieulty

are inserted

3lect than to

on our usual

analytic and

ously. The

elementary

ytic course

atter would

ns, but the

urns, and a

bo the many

, and esi»«;-

orsity, who

ic benefit of

n iroric, are

ed without

^

I

1

TABLE OF CONTEXTS.

PART I. —ELEMENTARY COURSE.

HOOK I.—THE AUJEBRAIC LAN(UTAGE.

I'llAPTKU I.—Al,(iKnilAIC NUMBEKS AND Ol'EHATlONS, ',]. (Jcncfal

Dcnnitions, U. Algebraic Numbers, 4. Algebraic Addition, G.

Subtraction, 8. Multiplication,!). Divibiou, 11.

CiiAPTEU II.—Algebraic Symbols, 13. Symbols of Quantity, 12.

Signs of Operation, 13.

CiiiU'TER III.—Formation op Compound Expressions, 17. Funda-

mental Principles, 17. Definitions, 11).

Chapter IV.

—

Construction of Algebraic Expressions, 23. Exer-

cises in Algebraic Language, 25.

BOOK II.—ALGEBRAIC OPERATIONS.

General Remarks, 28. Definitions, 28.

Chapter I.

—

Algebraic Addition and Subtraction, 30. Algebraic

Addition, 30. Algebraic Subtraction, 33. Clearing of Parenthe-

ses, 35. Compound Parentheses, 37.

Chapter II.

—

Multiplication, 38. General Laws of Multiplication, 38.

Multiplication of Positive Monomials, 40. Rule of Signs in

Multiplication, 41. Products of Polynomials by Monomials, 44

Multiplication of Polynomials by Polynomials, 47.

Chapter III.

—

Division, 53. Division of Monomials by Monomials, 53.

Rule of Signs in Divisicm, 53. Division of Polynomials by Mono-



VIII VONTKNTS.

mlals, r»|. Factors nnd MuItiplrB, 55. FftctorH of IMnf)inialH, W,

LfiiHt Coimnoii Miiltiplt", 01. Division of one Polynomial by

niiotluT, (i'J.

CiLM'TKii IV.—Of Ai.okuuaic Fkactions, 07. Nc^nitivc ExiMnicntH, 71.

Diwsi'ction of Fraotionti, 7J1. Ay^^rogution of FractioiiH, 71. I'-actor-

in^ FractionH, 78. Miiltiplicution and DiviHion of Fractious, IW.

Division of one Fniction l>y atuHluT, 82. Kcciprocal Hoiations of

Multiplication and Division, H;J.
'

1

.<?

BOOK III.-OF EQUATIONS.

CuAPTKn I —Tfik Reduction of E(iUATioNw, 85. Axioms, 87. Opera-

tions of Addition and Subtraction—transposing 'IVrnis, 87.

Oj)cration of Multiplication, 89. Reduction to the Nonnal Form,

90. Degree of Ecjuations, 9J3,

CnAPTEii II.

—

Equations of the First DKonEf'; with One Un-

known Quantity, 94. Problems leading to Simple Equations, 99.

Problem of the Couriers, 105. ProbleniH of ('ircular Motion, 108.

Chapter III.—Equations of the First Degree with Several

Unknown Quantities, 109. Equations with Two Unknown

Quantities, 109. Solution of a pair of Simultaneous Equations

containing Two Unknown Quantities, 109, Elimination by Com-

parison, 110. Elimination by Substitution, 111. Elimination by

Addition or Subtraction, 112. Problem of the Sum and DiflTor-

ences, 113. Equations of the First Degree with Three or More

Unknown Quantities, 116. Elimination, 116. Equivalent and

Inconsistent Equations, 121.

Chapter IV.

—

Of Inequalities, 123.

:/;

BOOK IV.—RATIO AJ^D PROPORTION.

Chapter I.—Nature of a Ratio, 128. Properties of Ratios, 132.

Chapter II.

—

Proportion, 133. Theorems of Proportion, 134. Tlie

Mean Proportional, 138. Multiple Proportions, 139.



I

iiir)inialfl, r»S.

•lynMrnial liy

x|K)ii('nt8, 71.

, 74. Factor-

Kractioim, ?.>.

HuIatioiiH of

9, 87. Opera-

Terms, 87.

onnal Form,

n One Un-

j^quations, 99.

lotion, 108.

ni Several

vo Unknown

IS Equations

ion by Com-

imination by

11 and Diffor-

iree or More

uivalent and

coyThwm IX

BOOK v.—OF I'OWFltS .WD R()OTft.

Cn.\i*TEii I.— iNVfi ,t'7i()N, IM. Involution of ProduotH and (^uotientH,

114. Involution of Powrrn, 145. Cane of Ni'ifativc KxponcntH, 147.

Alj^fbrair Si^'u of Powers, 148. Involution <»f Hinoinialh—the

IJinoniial Theorem, 1 18. S<iuare of a Polynomial, l.'jiJ.

CriAPTER II.—Evolution and Fuactfonal Exponents, 155. Powers

of Exprec«ions with P'nu-tional Exponents, 157.

Cuaptkk III.—Reduction of Ihuatujnal Exprehhions, 159. Defini-

tions, 159. Ag^^regation of Similar Terms, HiO. Factoring Surds,

101. Perfect S<juarea, 100 To Complete the Square, 107. Irra-

tional Factors, 109.

BOOK VI.-EQUATIONS REQUIRING IRRATIONAL OPERATIONS.

Ciiaiter 1.—Equations witu Two Terms only. 170. Solution of a

Binomial Equation, 170. Special Forms of Binomial Equations,

171. Positive and Negative Roots, 172.

Cuapter II.—Quadratic Equation.s, 174. Solution of a Completo

Quadratic Equation, 175. Equations wliicli may be reduced to

Quadratics, 179. Factoring a Quadratic Equation, 184. Equations

having Imaginary Roots, 188.

Chapter III.

—

Reduction of Irrational Equations to the Noumal

Form, 189. Clearing of Surds, 189.

Chapter IV.

—

Simultaneous Quadratic Equations, 193.

tios, 132.

n, 134. The

BOOK VII.—PROGRESSIONS.

Chapter I.

—

Arithmetical Progression, 200. Problems in Pro-

gression, 202.

Chapter 1 1.—Geometrical Progression, 207. Problems of Geo-

metrical Progression, 208. Limit of the Sum of a Progression,

211. Compound Interest, 217.



X CONTENTS.

PAirr II.-ADVANCED COURSE.

BOOK VIII.—RELATIONS BETWEEN ALGEBRAIC QUANTITIES.

Functions and their Notation, 331. Equations of the First Degree

between Two Variables, 334. Notation of Functions, 330. Func-

tions of Several Variables, 3533. Use of Indices, 333, Miscellaneous

Functions of Numbers, 335.

BOOK IX.—THE TIIEJRY OF NUMBERS.

Chaptek I,—The Divisibility of Numbers, 338. Division into Prime

Factors, 839, Common Divisors of two numbers, 340. Relations

of numbers to their Di^ts, 345. Divisibility of Numbers and their

Digits, 845. Prime Factors of Numbers, 3^18. Elementary Theorems,

351. Binomial Coellicionts, 351. Divisors of a Number, 254.

Chai'TEK II.

—

Op Continted Fractions, 258. Relations of Converging

Fractions, 367. Periodic Continued Fractions, 370.

^i

BOOK X.—THE COMBINATORY ANALYSIS.

Chapter I.—P^iRMUTATiONS, 373. Permutation of Sets, 275. Circular

Permutations, 877. Permutations when Several of the Things

are Identical, 379. The two classes of Permutations, 381. Sym-

metric Functions, 884.

CnAPTER II,

—

Combinations, 285. Combinations with Repetition,

387. Special Cases of Combinations, 289. The Binomial Theorem

when the Power is a Whole Number, 396.

Chapter III,—Theory of Probabilities, 299. Probabilities depend-

ing upon Combinaiions, 300. Compound Events, 305, Cases of

Unequal Probability, 310. Application to Life Insurance, 316.

Table of Mortality, 318.

BOOK XL—OF SERIES AND THE DOCTRINE OF LIMITS.

Chapter I.—Nature of a Series, 321. Notation of Sums, 324



CONTENTS. XI

UESE.

lAIC QUANTITIES.

»f tli(3 First Decree

mctious, 230. Fuuc-

, 283. Miscellaneous

dBERS.

Division into Prime

jors, 340. Relations

f Numbers and their

ementary Theorems,

L Number, 254.

itions of Converging

270.

\LYSIS.

Sets, 275, Circular

eral of the Things

itations, 281. Sym-

i

CUAPTEU II.—Development in Powers of a V^vkiabij;, 3,N»,

Method of Indeterminate Coefficients, 327. Multirillcaticn of Two

Infinite Series, 333.

CuAPTEit III.—Summation of Series. Of Figurate Numl)ers, 336,

Enumeration of Triangular Piles of Shot. 33!>. Sum of the

Similar Powers of an Arithmetical Progression, 311. Otlier Series,

345. Of Difl'erences, 350. Theorems of Diii'erences, 355.

CuAPTER IV.

—

The Doctrine of Limits, 358. Notation of the

Method of Limits, 301. Properties of Limits, 304.

CuAiTER V.—TuE Binomial and Exponential Theorems. The

Binomial Theorem for all values of the Exponent, 30y. The

Exponential Theorem, 373.

Cuapter VI,

—

Logarithms, 378. Properties of Logarithms, 378. Com-

parison of Two Systems of Logarithms, 384.

BOOK XII.—IMAGINARY QUANTITIES.

Chapter I.

—

Operations with the Imaginary Unit, 301. Addi-

tion of Imaginary Expressions, 393. Multiplication of Imaginary

Quantities, 393. Reduction of FuLctious of i to the Nonnal

Form, 390.

Chapter II,—The Geometrical Reprei^^entation of Imaginar?
Qu.vntities, 404.

3 with Repetition,

I Binomial Theorem

robabilities depend-

nts, 305. Cases of

ife Insurance, 316.

E OP LIMITS.

of Sums, 324

BOOK XIII.—THE GENERAL THEORY OF EQUATIONS.

Every Equation has a Root, 416. Number of Roots of General

Equation, 418. Relations between Coefficients and Roots, 43').

Derived Functions, 427. Significance of the Derived Function, 430.

Fom)s of the Roots of Equation, 43 1. D(;composition of Rational

Fractions, 433. Greatest Common Divisor of Two Functions, 438.

Transformation of Equations, 443. Resolution of Numerical Equa

tious, 447.





4

FIRST PART.

ELEMENTARY COURSE.



1\

m%

trej

vail

ina(

ma

bus

are

M
tioi

ho\

its

kir

Tin



BOOK I.

THE A L GE B RAI C E A NG UA GE

.

CHAPTER I.

OF ALGEBRAIC NUMBERS AND OPERATIONS.

I

General Definitions.

1. Definition. Mathematics is the science wMcli

treats of tlie relations ofmagnitudes.

The magnitudes of mathematics are time, space, torce,

value, or other tilings which can be thought of as entirely

made up of parts.

2. Be/. A Quantity is a definite portion of any
magnitude.

Example. Any definite number of feet, miles, acres,

bushels, years, pounds, or dollars, is a quantity.

3. Def. Algebra treats of those relations which

are true of quantities of every kind of magnitude.

4. The relations treated of in Algebra are discovered

by means of numbers.

To measure a quantity by number, we take a certain por-

tion of the magnitude to be measured as a unit, and. express

how many of the units the quantity contains.

Remark. It is obviously essential that the quantity and
its unit shall be the same kind of masrnitude.

5. Bef. A Concrete Number is one in which the

kind of quantity which it measures is expressed or

understood
; as 7 miles, 3 days, or 10 pounds.



4 77/ a; ALUHIJUAIC LA\(iL'Aat\

<>. Def. An Abstract Number is one in whicli no
paiiicular kind of unit is expressed ; as 7, 3, or 10.

Kkmakk. An abstract number may be considered as a

concrete one expressing a certain number of units, without

res})ect to tlie kind of units. Tlius, 7 means 7 uniLs.

Alj»'el)riiie Nmnbcrs.

7. In Aritliraetic, the numbers begin at 0, and in-

crease witliout limit, as 0, 1, 2, 3, 4, etc. But the

qiuintities we usually measure by numbers, as time

and si)ace, do not really begin at any point, but extend

without end in opi)osite directions.

For example, time has no beginning and no end. An
epoeii of time 1000 years from Christ may be eitlier 1000 years

after Clirist, or 1000 years before Christ.

A heavy body tends to fall to the ground. A body which

did not tend to move at all when unsupported would have no

Aveight, or its weight would be 0. If it tended to rise upward,

like a balloon, it would have the opposite of weight.

If w: have to measure a distance from any point on a

straiglit line, we may measure out in either direction on the

line. If the one direction is east, the other will be west.

One who measures his wealth is poorer by all that he owes.

If lie owes more than he possesses, he is worth less than

nothing, and there is no limit to the amount he may owe.

8. In order to measure such quantities on a uni-

form system, the numbers of Algebra are considered as

increasing from in two opposite directions. Those in

one direction are called Positive; those in the other

direction Negative.

9. Positive numbers are distinguished by the sign

+ ,
%lus ; negative ones by the sign ~, minus.

If a positive number measures years after Christ, a negative

one will mean years before Christ.

If a positive number is used to measure toward the right, a

negative one will measure toward the left.

AV
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If a positive number measures weight, the negative one

will imply levity, or tendency to rise from the earth.

If a ])03itive number measures property, or credit, the nega-

tive one will Imply debt.

1(). 'V\w series of algebriiic nnmbers will therefore*

% be considered as arranged in the following way, the

series going out to infinity in both directions.

-S» NEGATIVE DIRECTION.

Before.

Downward,
Debt,

etc.

POSITIVE DIRECTION. l^T

After.

Upward.

Credit,

etc.

-tc. -5, -4, -3, -2, -1, 0, +1, +2, +3, +4, -t-5, etc.

Rem. It matters not wliich direction we take as the

2)ositive one, so long as we take tlie opposite one as

negative.

If we take time before as positive, time after will be nega-

tive ; ii we take west as the positive direction, cast will be

negative; if we take debt as positive, credit will be negative.

11. Positive and negative numbers may be conceived

as measuring distances from a fixed point on a straight

line, extending indefinitely in both directions, the dis-

tances one way being ])Ositive, and the other wjiy

negative, as in the following scheme :

-

etc. —7, -6,-5,-4, -3,-2,-1, 0. +1. +2, +3, +4, +5. +6. +7, »^tc.

I I I

In this scale, the distance between any two consecu-

tive numbers is considered a unit or unit step.

12. Def. The signs + and — are called the Alge-

braic Signs, because they mark the dirc^ction in which

the numbers following them are to be taken.

* The student should copy this scale of numbers, and have it before

'iim in studying the present chapter.
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The sign -f may ])C omitted before positive numbers, wlien

no jmibiguity is tiius j)ro(liiced. The numbers 2, 5, Vi, taken

jilone, signify -\-'Z, -+-5, -{-I'Z. But the negative sign must

always be written when a negative number is intended.

13. Def One number is said to "be Algebraically-

Greater tlian another when on the preceding scale it

lies to the positivi^ (j'ight lumd) side. Thus,

— 2 is algebraically grc^ater than — 7

;

5 (.<

u u

a -5.

Alg:ebraic Addition.

14. Def. In Algebi-a, Addition means the combi-

nation of quantities according to their algebraic signs,

the positive quantitic^s being counted one way or added,

and negative ones the oj^posite way or sul)tracted.

15. Def. The Algebraic Sum of several quantities

is the surplus of the positive quantities over the nega-

tive ones, or of the negative quantities over the positive

ones, according as the one or the other is the greater.

The sum has the same algebraic sign as the prepon-

derating quantity.

Example.
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Hero, starting from 0, we measure 9 to llio ri<,'lit, tlien 7

to tlie left, then 1 to the riglit, then to the left. The result

Avould bo 3 steps to the left from 0, that is, — 3. Thus, — 3

is the algebraic sum of +9, —7, +1, and — G.

Ex. 2. If we imagine a person to walk back and forth

along the line of numbers, his distance from the starting-

point will always be the algebraic sum of these2)arate distances

he has walked.

Ex. 3. A man's wealth is the algebraic sum of his posses-

sions and credits, the debts which ho owes being negative

credits. If he has in money 81000, due from A 81200, due to

X $500, due to Y 8350, his possessions would, in the language

of algebra, be summed up as follows

:

Cash, ..... + 11000

J)\\Q from A, + 1200

Due from X, ....,— 500

Due from Y, ,....— 350

Sum total, . . . . + 81350

[In the language of Algebra, the fact that he owes X 8500

may be expressed by saying that X owes him — $500.]

16. Def. To distinguish between ordinary and
algebraic addition, the former is called Numerical or

Arithmetical addition.

Hence, the numerical sum of several numbers
means their sum as in aiithmetic, without regard to

their signs.

17. Rem. In Algebra, whenever the word su7n

is used without an adjective, the algebraic sum is

understood.
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A I jifobrn iv Subtract ioii.

1 8. Memorandum of arithmi'tical dejinitionfi and operations.

Tlic Subtrahend is the (niiintity to l)o siibtriictod.

Tlie Minuend is the qiumtity from which the subtriihciid

is tukt'ii.

'V\\v Remainder or Difference is Avlitit is left.

If wo subtract 4 from 7, tlio .•enmiiKU'r 3 is the numbor of

unit steps on the scale of iiim.bers (§11) from 4-4 to +7.
This is true of any arithmetical dilference of numbers. In

Algel)ra, the o})eration is generalized as follows:

19. Dcf. The Algebraic Difference of two nnm-
bors is reprosented by the distance from one to the

other on the scale of numbers.

The number from which we measure is the Subtra-

hend.

Tliat to which we measure is the Minuend.
If the minuend is algebraically the greater (§ 13),

the difference is positive.

If the minuend is less than the subtrahend, tlie dif-

ference is negative.

In Arithmetic we cannot subtract a greater number from a

less one. But there is no such restriction in Algebra, because

algebraic subtraction does not mean taking away, but finding

a difference. However the minuend and subtrahend may be

situated on the scale, a certain number of spaces toward the

right or toward tlie left will ahvays carry us from the subtra-

liend to the minuend, and these spaces make up the difference

of the two numbers.

30. The general rule for algebraic subtraction may be

deduced as follows : It is evident that if we pass from the

subtrahend to on the scale, and then from to the minuend,

the algebraic sum of these two motions will be the entire space

between the subtrahend and minuend, and will therefore be

the remainder required. But the first motion will be equal to

the subtrahend, but positive if that quantity is negative, and

vice versa, and the second motion will be equal to the minuend.

1
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mil
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Hence tb.c remainder will be found by cbanfrin.i; the algebraic

fiign of the Mubtraliend, and tlu-n adding it algebraically to tho

minuend.

EXAMPLES.

Subtracting +5 from -f-
S, the dilTerence is S — 5 — :?.

<'__5_S = — i:;.

'' 5H 8= -I- 1:5.

''
0, ''

<< (\ K ii a

(t

(<

n

ft

+ 8

— 8

- 13

5.
a

n — v.).

0, '' '' '' +1;}.

21. By comparing algebraic addition and subtraction, it

Avill l)e seen that to siibtract a ])ositive numl)er is the same

thing as to add its T'egative, and rice versa, Thus,

To subtract 5 from 8 gives tlie same result as to add — 5

to 8, namely 3.

To su])tract — 5 from 8 gives 8 -f- 5, namely 13.

Henc(\ algebraic subtraction is oquivahmt to the

algebraic addition of a number with the oi)posite

algebraic sign. Algebraists, therefore, do not consider

subtraction as an operation distinct from addition.

Algebraic ^lultiplication.

22. Memorandum of arithmetical definitions.

The Multiplicand is the quantity to be multiplied.

The Multiplier is the number by which it is multiplied.

The result is called the Product.

Factors of a number arc the multiplicand and multiplier

which produce it.

23. To multiply any algebraic quantity by a posi-

tive whole number means, as in Arithmetic, to take it a

number of times equal to the multiplier.

Thus, 4x3zrr 4 + 4 + 4=+ 12;

-4x3 = -4 — 4 — 4= — 12.

The product of a negative multiplicand by a positive

multiplier will therefore be negative.
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)i\. It' th<' iimltiplior is no^ativo, the sign of tlic

yn'odiict will bu the ()p))OHite of wliat it would be if tin*

luultiplicr were positive.

TiiiH, 4.4 X -3 = - 12;

—4 X -.'3 = + VZ,

The prodtict of two negative fac5t()rs is tben^fore

positive.

^5, The Jiiost f5imi)U' Wiiy of mastoriiig tiio use of algi'bniic

fiigns in niitltipliciition is to think of thu nign — ns nicmiiii.ijf

opposite in directioii. '^riiiis, in ^ 11, — 4 is opposite in

direction to + 4, the direction being tiiut from 0. If we mul-

tiply this negative factor hy a !iegative multiplier, the direction

will he the opposite of negative, that is, it will he posi/ii'c. A
third negative factor will make the product negative again, a

fourth one i)ositivc, and so on. For example,

-3 X -4 = + 12;

_2 X -3 X -4 = -2 X +12 = -24;
—3 X —2 X -3 X -4 = -3 X -24 = + 72

;

etc. etc.

Ilencc,

36. Tlieorem. The continued product of an even

number of negative factors is positive ; of an odd num-
"ber, negative.

Rem. Multiplying a number by —1 simply changes

its sign.

Thus, 4-4 X —1 = —4;
-4 X -1 := 4- 4.

EXERCISES.

Find the algeljraic sums of the following quantities :

1. 4 _ G + 12 — 1 — 18.

2. —0—3 — 8.

3. _ G — 10 — 9 + 34.

4. Subtract the sum in Ex. 3 from the sum in Ex. 2.

5. Subtract the sum 5 — 6-f3 — 1 — 16, from the sum
2 — 7—4-1-8.
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Ex. 2.

»m the sum

6. Siil)lmct the sum 5 — 04-3 — 1 — 10, from tlii' sum

; _ ;j _ H + 4.

7. Form tljo product — 7 x H.

8. Form the product — H x 7.

9. Form tilt' product (i x — 5 x 7 x — 4.

10. Form the product — f) x — 1 1 X H x — 2.

11. Form the product — Ix— Ix-lx— 1.

12. Subtract the sum in Jv\. 1 from tlie sum in Kx. :), and

multiply the remainder hy the sum in Kx. 2.

I ^ Subtract H from ~ '.), — 3 from —1,-1 from H, and

find the sum of the three remain(h>rs.

14. Subtract 7 from — U and tho remainder from 'Z, and

multii)ly tho result by tho j)roduct in Kx. 7.

Alpf(^brai<^ Division.

27. McNionitnlmii of arilhnu'tical drfntiHons.

The Dividend is the (piantity to be divided.

The Divisor is the number by wliicii it is divided.

The Quotient is the result.

*^8. Jlftle of Signs in Dlrl.slon. The reqnirement

of division in Algebra is the same as in Aiitlinietic
;

nanndy,

T/ie ])}'o(hi,ct of the (pwticnt hy the divisor Diusb he

Cf/icnl to the dividend.

In Algebra, two (piantities are not cfpud unless they have

the same algebraic sign. Therefore the i)roduct,

quotient x divisor

must have the same algebraic sign as the dividend. From
this we can deduce the rule of signs in division.

Let us divide G by 2, giving G and 2 both algebraic signs,

and find the signs of the quotient 3

:

+ 3 X +2 = 4-G; therefore, -f-G divided by +2 gives +3.

+3x— 2 = — G; " — G '' *' —2 '' +3.
— 3 X +2 =: — G; " — G '' " +2 '' —3.
— 3 X — 2 = -fG; '' 4-G " '' —2 "' —3.
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nonce, the rule of signs is the same in division as in mul-

tii)lication, namely :

Like si^ns in dividend and divisor give +. Unlike

signs give —

.

EXERCISES,

Execnte the folloAving algebraic divisions, expressing each

result as a whole number or \ ulgar fraction •

Dividend, — 7 + 10 — 11 + 25 ; divisor, 20 — 3.

Dividend, 12 — 3 + 15 — 10 ; divisor, 3 — 10.

Dividend, 25 — 3G + G — 20
;

Dividend, — 7 x — 8
;

Dividend, 5G + 8 x — 3
;

Dividend, — 24 x — 1

;

I.

2.

3-

4-

5-

6.

7-

divisor, —3 + 8.

divisor, — 8 + 4.

divisor, — 4 — 4.

divisor, — 3 x — 3.

Dividend, —13 x —10 x — 8; divisor,

8. Dividend, — 1 x — 1
;

divisor,

•4x5 X — G.

3 X -3.

eh.

nil'

--

CHAPTER II.

ALGEBRAIC SYM BOLS.

Symbols of Quantity.

29. Algebraic quantities may be represented by
letters of tlie alx)liabet, or other characters.

The characters of Algebra are called Symbols.

30. Def. 'rhe Value of an algebraic symbol is the

quantity which it represents or to which it is equal.

The value of a symbol may be any algebraic quan-

tity whatever, positive or negative, which we choose to

assign to tlie symbol.

31 . The language of Algebra differs in one respect from

ordinary language. In the latter, each special word or sign

I
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-8 + 4.
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has a definite and invariable meaning, wliicli every one who

uses the hinguage must learn onee for all. But in Algebra a

.^vnibol may stand for any quantity which the writer or spejiker

chooses, and his results must be interpreted according to this

meaning.

\\2, The same character may be used to represent several

(|uantities by applying accents or attaching numi)ers to it to

disringuisii the different ([uantities. Thus, the four symbols,

a, a, a", a'", may represent four different quiuititics. The

symbols ^i, (ti, «.,, ^^4, «5, etc., may be used to designate any

number of ([uantities which are distinguished by the small

number written after the letter a.

Signs of Operiitioii.

8,3. In Algebra, the signs +, — , and x are used,

as in Arithmetic, to represent addition, subtraction, and
multiplication, these operations being algebraic, not

numerical.

84. Signs of Addition and Siihtractlon. The com-
bination a-\-h means the algebraic sum of the quantities

a and ^, and a — h means their algebraic difference.

EXAMPLES.
If ^? = + 4 and h = + ^, then

If c/ ~ + 5 and b =: — 7, then

li a— — Q> and h = +
'^, then

a-\-J)= +;, a— h — +1.

a-{-h= —2, a— h = +12.

a-\-b= —3, a—h— —9.
If rt =: — (5 and J = — 3, then rt + J = —9, a—h = —3.

The signs of addition and subtraction are the same as those

used to indicate positive and negative quantities, but the two

a[>})lieations may be made without confusion, because the

op})osite positive and negative directions correspond to the

opposite operations of adding and subtracting.

,85. Sign of Multiplication. The sign of multipli-

cation, X , is generally omitted in Algebra, and when
different symbols are to be multiplied, the multiplier is
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written before the multiplicand without any sign be-

tween them.

Tims, 4a means a x 4.

ax " X X a.

Mthmy "
1/ X }n X h X a X 3.

If numbers are used instead of symbols, some sign of mnl-

tiplication must be inserted between them to avoid confusion.

Thus, 34 would be confounded witli the number thirty-four.

A simple dot is therefore inserted instead of the sign x

.

Thus, 3.4 =: 4x3 = 13.

3- '2.2 = 72.

1.2-3.4.5 = 120.

I.2.3.4-5.G = 720.

The only reason why the point is used instead of x, is

that it is more easily written and takes up less space.

36. Division in Algebra is sometimes represented

by the symbol -^, the dividend being placed to the left

and the divisor to the right of this symbol.

Ex. a -^h means the quotient of a divided by h.

But division is more generally represented by writing

the dividend as the numerator and the divisor as the

der ominator of a fraction.

Ex. The quotieiit of a divided by h is w^'itten •

It is shown in Arithmetic that a fraction is equal to the

quotient of its numerator divided by its denominator ; hence

this expression for a quotient is a vulgar fraction.

37. Powers and Exponents. A Power :>f a quan-

tity is the product obtained by taking that quantity a

ceru..:n number of times as a factor.

Def. The Degree of the power means the number
of times the quantity is taken as a factor.

If a q aantity is to be raised to a power, the result

may, in accordance with the rule for multiplication, be

.,?!



SIGNS OF OPERATION. 16

ly sign Ibe-
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exi)ressed by writing the quantity the required number

of times.

m Examples. The fifth power of a may be written

If axa xaxaxa
and the fourth power of 7,

To save repetition, the symbol of which the power is

to be expressed is written but once, and tlie number of

times it is taken as a factor is written in small ligures

after and above it.

7.7.7.7 = 2-101.

Thu: aaaaa is written

7.7.7.7 " "

XXX " "

a""

7^

D(f. A figure written to indicate a power is called

an Exponent.

Def. The operation of forming a power is called

Involution.

.*58. Hoots. A Root is one of the equal factors

into which a number can be divided.

D(f. The iiguie or letter showing the number of

equal factors into which a quantity is to be divided is

called the Index of the root.

The square root of a symbol is expressed by writing

the sign ^ (called root) before it.

Ex. I. V'l'J means the square root of 49, that is, 7.

Ex. 2. "s/x means the square root of x.

Any other root than the square is represented by
writing its index before the sign of the root.

Ex. I. v'x means tlie rube root of .r.

Ex. 2. \/ X means the fourth root of x.

Def. The operation of extracting a root is called

Evolution.

31). The operations of Addition, Subtraction, Multi-

])lication, Division, Involution, and Evolution, are the

six fundamental operations of Algebra.
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4(). Def. An Algebraic Expression is any combi-

nation of algebraic symbols made in accordance witli

the foregoing principles.

EXERCISES.

In the following expressions, suppose « = — 7, ^ = — 5,

c = 0, VI = 3, n = 4, J)
=: 9, and compute tlieir nnmerictil

values.

I.
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iiy combi-
iance witli

, ^ = — 5,

numerical

- a.

? — m.

: — 3, and

. —5, etc.,

es of each

= -ff.
:g.

CHAPTER III.

#
m FORMATION OF COMPOUND EXPRESSIONS.
Si

g Fundaiiieiital I'rinciples.

^ 41. The following are two fundamental principles of

tlie algebraic language

:

* First Frmciple. Every algebraic expression, how-

ever coni])lex, represents a quantity, and may be

operated upon as if it were a single symbol of that

quantity.

Second Prhiciple. A single symbol may be used

to represent any algebraic expression whatever.

I
4'-^. When an expression is to be operated upon as

' a single quantity, it is enclosed between parentheses,

but the parentheses may be omitted, when no ambiguity

or error will result from the omission.

I Example. Let us have to subtract /; from a, and multiply

the remainder by the factor m. The remainder will be ex-

pressed by a — h, and if we write the product of this quantity

by m, in the way of § 35, the result will be

ma — h.

But this will mean h subtracted from ma, which is not what

we want, because it is not a, but a — b which is to be multi-

plied by m. To express the required operations, we enclose

a — b in brackets or parentheses, and write m outside, thus :

m [a — b).

NUMERICAL EXAMPLES.

T(8-:i) =r r-O r^ 42; but 7-8 - 2 ==: 5G — 2 = 54.

12(3 + 4) = 12-7 = 84.

(G +3) (2 4- n) = 9-8 = 72.

(7 _ 4) (1-5) (2+ 7) = 3 X -4-9 = -108.
2
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Example 2. Suppose that tlie expression a — h -\- c is to

be added to /;/, subtracted from m, multiplied l)y ;//, divided

by III, raised to the third power, or have the cube root extracted.

The results will be written:

Added to m.

Subtracted from iiiy

Multiplied by m,

Divided by ?«,

Cubed,

Cube root extracted,

VI -\- {a — h -\- c).

m — {a — b -\- c).

m {a — b + c).

{a — b -\- c)

{a — b + c)^

\/{a — b + c).

There are two of these six cases in Avhieh the parentheses

arc unnecessary, although they do no harm, namely, addition

and division, because in the case of addition,

m -[- {a — b -\- c)

is the same as m -\- a —b \- c.

[For example, 10 + (8 - 5 + 4) = 10 + 7 == 17,

and 10+8—5 + 1 =17 also.]

Again, in the case of the fraction, it will be seen that it has

exactly the jame meaning with or without the parentlieses.

43. An algebraic expression having parentheses as

a pai-t of it may be itself enclosed in parentheses with

other expressions, and this may be repeated to any
extent. Eiich order of parentheses mnst then be made
larger or thicker, or different in shape to distinguish it.

Examples, i. Suppose that we have to subtract a from

I, the remainder from c, that remainder from d, and so on.

We shall have,

b — a.

c — {b —- a).

d _ [6- _ {b - d)\

c-Xd-lc-ib-fi^W.
f^\_e-\cl-ic-{b-a)-\\\

First remainder.

Second,

Tiiird,

Fourth,

Fifth.

'•',

1
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2. Suppose that we have to multiply the dilTerenco of the

quantities a and b hy ;; and subtract the product i'roni ni. The

result or reniaindei will be

7n —p(a— b).

Suppose now that we have to multiply this result by p-\-q.

We must enclose both factors in parentheses, and the result

will then be written :

(i> + q)[m-2^{a-b)'\.

EXERCISES.

In the following expressions, suppose

r/ — — 1, Z* = 3, m = 5. X =z — 3, — 1, -f 1, 4- 3,

and calculate the foUx' values of each expression which result

from giving x the above four values in succession.

X {x — a) {x — 2a) {x — 3a)
I.

2. -

3-

4-

l.^-3--4

[a {b — x) — b{a — x)f
m [b — x) -\- b {m — ;/•)

[ax + b {x — rt)2 4- 71) {x

l^{mx^ + b) - ^{mx^

X — m
' -^ X -\- m

].

XoTE. VVlien the square root is not an integer, it will be sufficient

to express it without computing it in full.

Til us, for a* = — 8, we shall have

^(wa;2 + 5) _ ^{rriT^i - 6) = y'^S - V^^-

This is a sufficient answer without extracting the roots.

Definitions.

44. Coefficient. Any number which multiplies a

quantity is called a Coefficient of that quantity. A
coefficient is therefore a multiplier.

Example. In the expression 4r;^.r,

4 is the coefficient of ahx,

^a " " " bx,

Aab " " " X.
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Dr/. A Numerical Coefficient is a simple number,

as 4, in the above exaiii])le.

I)('/. A Literal Coefficient is one containing one

or more letter's used as algebraic symbols.

Rp:m. Any quantity may be considered as having

the coefficient 1, bec^ause Ix is the same as x.

Reciprocal. The Reciprocal of a number is unity

divided by that number. In the language of Algebra,

1
lleclproral of X N

Formula. A Formula is an exi)ression used to

show how a quantity is to be expressed or calculated.

Term. When an expression is made up of several

parts connected by the signs + or — , each of these

])arts is called a Term.

Example.—In tlie expression,

a + bx 4- '^mx^,

lliere are three terms, a, bx, and 3mx^.

When several terms are enclosed between parentheses, so

as to be operated on as a single symbol, they form a single

term.

Thus, the expression

{a + bx 4- 3mx^) (a + b)

(^^Tl/)!^ —Y)
forms but a single term, though both numerator and denom-

inator are each a product of several terras. Such expressions

may be called compound terms.

Aggregate. A sum of several terms enclosed be-

tween parentheses in order to be operated upon as a

single quantity is called an Aggregate.

Algebraic expressions are divided into monomials
and polynomials.

A Monomial consists of a single term.
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A Polynomial consists of more than one term.

A Binomial is i\ polynomial of two t<'rms.

A Trinomial is a polynomial of three tenns.

Note. The last three words are coinnioiily a|)})li(.'d only

to suras of sinii)ie terms, formed of single symbols or i)roducts

of single symbols.

Entire. An Entire Quantity is one which is ex-

pressed without any denominator or divisor, as 2, 3, 4,

etc. ; a, 5, .r, etc. ; 2(ih, 2mp^ ah {x — ?/), etc.

A Theorem is the statement of any general truth.

45. Other Alyehraic Signs. Besides the signs al-

ready defined, others are of occasional use in Algebra.

>, the Sign of Inequality, shows when placed be-

tween two quantities, that the one at the open end of

the angle is the greater.

'^ Ex. I. rt > J means a is greater tlian h.

Ex. 2. m <Cx <Cn means x is greater than m, but less

than 71.

: , another Sign of Division, is placed between two
quantities to express their ratio.

* Thus, a : b means the ratio of a to b, or the quotient of a

divided by b.

i
.'. means Hence, or Consequently; as,

rt + 2 = 5
;

.-. a -~ 3.

QC means a quantity infinitely great, or Infinity.

, tlie Vinculum, is sometimes placed over an
aggregate to include it in one mass, in lieu of paren-

theses.

Ex. a — b c — d h the same as {a — b) {c — d).

It is mostly used with the radical sign. We often write

\^a -{- b -\- c insteafl of V{n -]- b -\- c).
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CHAPTER IV.

CONSTRUCTION OF ALGEBRAIC EXPRESSIONS.

4(>. All operations upon ulgobruic (piuiititic's, liowovor

roinplux, consist in eombiiuitiuns of tlic cleiiicnhiry operations

ulreiuly descrilK'd. The rcaiilt of each single operation will he

jin iig^M'e^^tite, ;i product, ii quotient, or ji root, and every such

result may, in subsequent opci-ations, be o])erated upon as a

single sytnbol. There are only three '"'ses in which an expres-

yion needs any modification in order to be operated upon,

namely

:

Case I. An aggregate must be enclosed in parentheses, if

any other operations than addition or division are to be jier-

fornied upon it. (§ 42.)

Case II. When a product is to be raised to a power, or to

liave a root extracted, it may be enclosed in parentheses in

order to show that the operation extends to all the factors.

If wc take the product abc, and write an exponent, 3 for

instance, after it thus, ahc^y it would ap[)ly only to c, and

Avoulv'. mean a x h x c^. So with the radical sign
;
^abc

might mean only ^(( xbxc. To indicate that the power

or root is that of the product as a whole, we may enclose it

in parentheses, thus :

Square root of abc = ^^{ahc).

Square of abc = (abc)'^.

But a root sign is commonly made to include the whole

product by simply extending a vinculum over all the factors

of the product, thus : Square root of abc = Vctbc.

Case III. If negative quantities are to be multiplied,

merely writing them after each other would lead to mistakes.

Thus, the product ax —bx — c, if written without the x
sign, Avould be a — b — c, and would not mean a product at

all. But, l)y enclosing —b and —c in parentheses, we have

a{-b){-c),
which would correctly express the product required.

br
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17. The following example will siiow how ()[)eration8 may

be combined to any extent.

The ((iiantity f/ is to be subtracted from /y, and the dilTcr-

cnce multiplied by y, forming a product P.^ The ([uotient of

p _ /• divided by 7 is to Ije mullii)lied by ///, aiul the i)r(»duet

subtracted I'roni l\ The dillerence is to form the numerator

.\' oj" a fraction. To form the denomiiuitor, /,* is to be added

to (( and subtracted from it, and the i)roduct Qo['{\\q sum and

dill'ereuce Formed. The quantity q is to be added to and sub-

tracted from p, and the product R of the sum and difference

formed. The (juotient of Q divitled by R is to form the de-

iU)unuator of the fraction of which the numerator is 1\

The f|uantity h subtracted from (i leaves h — a.

]\Iultii»lyiug it by y, the product J* is y {h — a).

Quotient of p — r divided by y

Multiplying it by m,

p — r

VI

(1

P — r

,

Q

[If instead of multiplying the fraction as a whole by ni,

we had mulli})lied its numerator, we should have had lo

m{p — r)

'I

enclose the p — r in parentheses, thus: But

when the multiplier is written at the end of the line, between

the terms of the fraction, as above, it indicates that .he frac-

tion, as a whole, is multiplied by ?«.]

p — r
Subtracting the last product from /*,itis y(J)

—
(()— }u

Adding b to a, a + b.

Subtracting b from a, a — b.

The product Q of the sum and difference, {a -\- b) {a -

The product B oi' p -\- q by p — q, {p + O) {p
[a -f b) (a

The quotient of Q divided by Ji,

b).

-7).

b)

ij> + Q)ip — 'j)

* Tn matliomatical ]anp'uaf;e, n-licn a substantive is followed by a

symbol in this manner, the latter is used as a sort of proper name to

desifi^natc; the substantive, so that the latter can ho afterward referred to

by the letter without ambiguity.

bi the i)resent case, the capital letters are used in accordance with
the second general princii")le, § 41.
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u
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Tlio fraofion luivin^ iVfor its numerator und this quotient

lor iLs (Icnouiiimtor i.s

{nj- h) {a - h)

48. By tlio second general prineiple, § 41, a sin^jle sym-

bol may be written in place of any al<,'('braie ex))ressiou whatever.

When several symbols indieating sueh exi)ressi()ii8 are eom-
bined, the original ex'iiressions nuiy be substituted for them.

And be treated m aeeordauee with the first prineiple.

a — hx

EXAMPLES.
Suppose P = a -\- Ix

; Q
T — X — ij\ V ~ )npq.

It is re([uircd to form the expression

PQ - TV
PT-QV'

The answer is

{a -f- bx)
a hx

m
— (^ - y) ^npq

(a 4- bx) {x — 7/)
— a bx

m mpq

2.

A-

EXERCIS"!:S

Form the expressions:

I. P-T.
P^Q.
Vp.

v(^ - n
VK
VP-QT

II

IS-

IS-

Q2_ rp2

(P+ T)(P-T)
{Q + V)(Q- V)'

P^- T

T- P.

Q-V.
6. ViP -i- T).

8. P^T^.

lo. T^V\

PJ^

{SP- 2T)^

2(P+ TY

12.

14

1 6.
{2T-VY
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19.

/•(r»-r)

r-(()2- r)2

18. -r.

20.

22.

23 ^*-(c^+na>-r)
24.

Qi — r»

__11±Q'
(r- r)(r-f 7')'

F~ (/ + 7'

EXEnCISES IN ALGEBRAIC LANGUAGE.

The fdllowiiip (jiicstionH arc proposed to i)nictic(' tlic Mtiidciit in ex-

pressing tlu' rcliitioiis of (jiiimtitifH in al^a-bniic luii/^Mta^'f. Slioiild any

of tljt'iu otter diincultifs, h(! i.s reconiinended to Hubtstitute luunhorH for

the al^'-i'hraic k'ttfrs, cxamino the proccHS by wliicli he proceeds, and then

Bpl'Iy tlic same process tt> tlie letters that he aj)plicd to the luinihers. No
ioliitions of equations are recpiired.

1. TIow many cents arc tlicrc in m dollars ?

2. How many dollars in m cents?

3. A man had d dollars in one ])oekel, and h cents in the

other ; how many cents hiid he in all r How many dollars?

4. The Slim of the ((iiantities n and h is to be miiUiplied

by m. Express the product, and its square.

5. A msin liaving h dollars p;iid out m dollars to one per-

son and }i dollars to another. Express what he had left in

two ways ?

6. How many chickens at k cents a })ieee can he purchased
for in dollars?

7. A man walked from home a distance of m miles at 4
miles an hour, and returned at the rate of 3 miles an hour.

How long did it take him to go and come ?

8. A man going to market bought tomatoes at h cents per

peck and potatoes at k cents a peck, of each an equal nund)er.

They cost him m cents. How many pecks of each did he buy ?

9. How many minutes will it require to go a miles, at the

rate of h miles an hour ?

10. A man bought from his grocer a pounds of tea at x
cents a pound, h pounds of sugar at y cents a pound, and c

pounds of coffee at z cents a pound. How many cents will

the whole amount to ? How many dollars ? How many mills ?

11. A man bought / pounds of Hour at m cents a pound,
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jiiid hand' ;l tlie ;,a'ocL'r an :r-dollar bill to be changed? IlmV
many cents onght lie to receive in cliange ^

12. From two cities a miles apart two men started out at

the same time to meet each other, one going m miles an hcur
and the other ^^ miles an hour. How h^ng before they will

meet? How far will the first one have gone ? How faV will

the second one have gone ?

13. A man left his n children a bonds worth x dollars

each, and h acres of land worth y dollars an acre ; but he
owed })i uoUars to each of q creditors. What was each child's

share of the estate ?

14. Two numbei-s, x and y, are to be added together, their
sum multipl'L'd by s, that product divided by ct + b, and the
quotient subtracted from I:. Express the result.

15. The sum of the numbers p and q is to be divided by
the sum of the numbers n and b, forming one fpiotient. The
difference of the numbers /; and q is to be divided by the dif-

ference of the num))crs a and b, forming another quotient.
The sum of the two (piotients is to be multiplied by r + s.

J^lxpress the product.

16. The quotient of x divided by a is to be subtracted
from the quotient of y divided by b, and the remainder multi-
])lied i)y the sum of x and // divided by the dilference between
X and y. Express the result.

17. The number x is to be increased by G, the sum is to be
muhii)lied by n-{-b, q is to be added to the i)roduct, and the
sum is to be divided by r — 6\ Express the result.

18. A family of brothers a in number each had a house
worth a thousand dollars each. What was the total value of
all the houses in dollars ? What was it in cents ?

19. A grocer mixed a pounds of tea worth x cents a pound,
and b pounds worth y cents a pound. How much a pound
was the mixture worth ?

20. x + y houses each had a + b rooms, and each room
in + n pieces of furniture. How many pieces of furniture were
there in all ?

21. In a library were p-\-q volumes, each volume had p-\-q
pages, each page p-\-q words, and each word on the average
8 letters. How many letters were there in all the books of the
b'brary ?

_
22. A post-boy started out from a station, travelling k

miles an hour. Throe hours afterward, another one started
after him, riding ni miles an hour. How far was the first one

go
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23. Two men started to make tlie same joiiriiev of }ii miles,

one going r miles an hour, and the other s miles an hour.

How mueli sooner will t!ie man going /• miles an hour make
Ids journey than the one going .v miles an hour? How much
sooner will the one going ,s' miles an hour make his journey

than the one going /• miles an hour ?

24. One train runs from Boston to New York in h hours,

at the rate of u miles an hour. How long will it take another

tram running miles an hour faster to nerfo tlperiorm me journey

25. If a man bought h horses for / (hjllars, and )i yoke of

oxen for m dolhu's, how much more did one horse cost than one
voke of oxen ? How much more did one yoke of oxen cost

than one horse ?

26. A train making a journey of 'b,v miles goes the first

half of the way at the rate of /' miles an hour, and the second
half at the rate of x miles an hour. How long did it take it to

go ? What was the average speed for the journey 'i

27. Two men, A and B, started to walk from Hartford to

New Haven an(l back, the distance between the two cities

being a miles. A goes p miles an hour and B q miles an hour.

How far will A have got on his return journey when B reaches

Hartford?

28. A man liaving k dollars bought h books at ^H each.

How many books at $4 each can he buy with the balance of

his money ?

29. A man going to his grocer with m dollars, bought .s'

pounds of sugar at a cents a pound, and r pounds of coll'ee at

b cents a pound. How many barrels of tlour at q dollars a

barrel can he buy Avith the balance of his nujiiey ?

30. A man divided m dollars Cijually among a poor (.'hinese

and n dollars equally among h orphans. Two of the C'hinese

and three of the orphans put their shares together and bought
X Bibles for the heathen. How much did each Bii)le cost ?

31. A pedestrian having agreed to walk the a miles from
Boston to Natick in h hours, travels the first k hours at the

rate of m miles an hour. At what rate must he travel the

remainder of the time?

32. A train having to make a, journey of ./• miles in h hours,

ran for k hours at the rate of r miles an hour, and then made
a stop of m minutes. How fast must it go during the remain-

der of its journey to arrive on time ?

' \Jv.:



BOOK II

ALGEBRAIC OPERA TIONS.

G e 11 e r a 1 W e iii arks.

The algebraic expressions formed in accordance with the

rules of the preceding book admit of behig transformed and

sim])lifled m a variety of ways. Tliis transformation is etrccted

by operations which have some resemblance to the arithmetical

operations of addition, suljtraction, multiplication, and division,

and which are tiierefore called by the same names.

In performing these algebraic operations, the student is not,

as in Aritlimetic, seeking for a result which can be written in

only one way, but is selecting out of a great variety of forms of

expression some one form which is the simplest or the best for

certain pur[>()ses. Sometimes one form and sometimes another

is the best for a particular jjroblem. Hence, it is essential

that the ji^gebraist, in studying an expression, should be able to

see the diil'erent ways in which it may be written.

Dofiiiitioiis.

49. Function. An algebraic expression containing

any symbol is called a Function of the quantity repre-

sented by that symbol.

Ex. I. The expression Zx^ is a function of x.

2. The expression is a function of x and also a
n — .7'

function of a.

When an expression contains several symbols, we may
select one of them for special consideration, and call the ex-

])ression a function of that particular one. For instance,

although the expressions,
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m + nV-^,

contain other symbols besides z, they are both functions

of 2\

i)0. An Entire Function is one in which the quan-

tity is nsed only in the operations of addition, subtrac-

tion and multiplication.

Example. The expressions

ax + >/,

{cfi — if) a-3 — (//•^ -\- y)^^ — ^ + (h

are entire functions of x. But tlie expressions

ax -\- y 1 o /—- and 3v^
ax — y

arc not entire functions of .r, because in the one x appears as

part of a divisor, and in the other its square root is extracted.

An entire function of x can always be expressed as a sum

of terms, arranged according to the powers of x which tliey

contain as factors. The form of the expression will then be

A + Bx + Cx^ + /):r3 + E^c^ + etc.,

where A, B, C, etc., may represent any algebraic expressions

wliich do not contain x.

51. Like Terms are those which are formed of the

same algebraic symbols, combined in the same way,

and difier only in their numerical coefficients.

Ex. The terms ax, 2ax, —6ax are lilvc terms.

5*^. The Degree of any term is the number of its

litend factors.

Examples. The expression abxy is of the fourth degree,

l^ecausc it contains four literal factors.

The expression .r^ is of the third degree, ])ecausc the letter

X is tal^en three times as a factor.

The expression ah^x^ is of tlie sixth degree, l)ecause it con-

tains a once, b twice, and x three times as a factor.

When an expression consists of several terms, its

degree is that of its highest term.
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CHAPTER I.

ALGEBRAIC ADDITION AND SUBTRACTION.

Algebraic Addition.

5I>. By the language of Algebra, the sum of any number

of ({uiuitities, positive or negative, may be expressed by writing

them in a row, with the sign + before all the jiositive quan-

tities, and the sign — before the negative ones.

Ex. A.-\-B—D—X'\-Y,(itQ., is the algebraic sum of the

several (quantities A, B, —D, —X, Y, etc.

54. To siiiiplify an e.vpressioji of the siun of several

quantities.

1. AYhen dissimilar toiins are to be added, no sim-

plification can be effected.

Ex. If we require the sum of the five expressions, a, — xi/,

mp, nq, and —hhs, we can only write,

a — xy -\- mp -\- 7iq — hhs,

according to the language of Algebra, and cannot reduce the

expression to a simpler form.

2. If mere numbers are among the quantities to be
added, their algebraic sum may be formed.

Ex. The sum of the five quantities —8, ah, 5, mnj), —15,
is found to be — 18 -f ah -\- mnp.

8. When several terms are similar, add the coeffi-

cients and affix the common symbol to the sum.

When no numerical coefiicicnfc is written, the coefficient

f 1 or —1 is understood. (§ 44.)

EXAMPLES.
a + a =: '^a [because 1 -f 1 — 2].

3rt — a = a [because 2 — 1 := 1].

4
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3^ 4. 4rt _ 7a = [because 3 + 4-7-0],
a + -ix — 'da — hx = —2a—3x [adding the <('ti and the i-'s].

— 'Saxi/ + -ihii — 2axij -\- hm z=z — haxij + hhm.

Add tlie expressi<uis,

I. ;./• + bbif, 2x — obip, — 4:X — bbtf, bx — hif, x — bif.

WORK.

7.K + r)/>?/2

5^'

For convenience, the several t(Tnis may bo

written under eacli other, as in the margin. The
r-oeliicients of x are 7, 3, —4, 5, and 1, of which

the algebraic sum is 11. The coefficients of 2/'^

are 5, —3, —5, —1, — 1 ; the sum is —5. Hence

the result.

Sumy l\x — bbif

2. ^ax — y — 2y -{- 5, 7ax—y— 9-\-a)>i, 2ax—y— '3-{-bj).

Here 2.7", am, and p,

2x — 'Aby'^

4:X — 6 b I/'

x- b\f

all being different sym-

bols, the terms contain-

ing them do not admit

of simplification (§ 54,

1). The numbers 5,

—9. —3, are added by

WORK.

8(7.^2 — y — 2x -\- b

"t'ax'^ — y — + (17)1

(fX^ —
1/

•» + 5;j

Sum, — ']y — 2x — 7 -{ am + bp

the rule (§ 54, 3). The coefficients of ax"^ cancel each other (8—7—1 = 0).

3. Add G (a: + y\ 5 {x + y) + a, 2 {x + //)
- 3a.

Here the aggregate, x + y, enclosed in

parentheses, is treated as a simple symbol.

Note. When the student can add

the coefficients mentally, it is not neces-

sary to write the expressions under each

other. Nor is* it necessary to repeat the

symbol after each coefficient.

WORK.

c {x 4- y)
5 H

3 -3
a

Sum, \3 {x -{- y) — 2a

EXERCISES,

1. 3a + 7^* — 8r + d, 3a — 2b~{-c — o, —a — b — c—d.

2. 7rt - {x + y), 8« - {X + y), 3 (.^• + y) - IGrt.

3-
-j'2 _ 2x — b, 2x'^ — 3x + 8, — 9.r2 + bx + 3.

4. .r^ + 2x — y, 4.r-^ + 7x — 2y, — 2j^ -\-x — 9y, — 3x^
— X — y.

5. 9 {a + bf, 10 {a + bf, {a + bf, 2 {a-\-bf, -x-y-::.
6. 2 {m + n) + 3 (« + b), {a i- b) — {in + 11), {a + //)

— (ni + n).

7. '^a^-.2a^ -{-3ax, (7,3 — f(2 ax, — Cut^ + 3a"- — 2ax.
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{m -\- ny — y.

10. (kt {x — i/), i)a{.^—i/), 2a {x— I/), a{x — i/).

11. 2 (in -- u) X -\- 'Z, 3 [in + ?i) x' -- 5, 5 (//i + n)x — (i,

y y ^^ ^ 1
12. 3";', 3'' + 3-/,

'^

a a a

X in ^ X
13. , 2
^ y n' y

2^,3^ ^m X m
3 — , 4 4 —

?i ?/ /i

rw -f- n m + ?i wi + w ?/i + ^a

15. Of two fjirincrs, tlio first had 2x — 3y acres, and the

second liad x — y acres more than the first, llow many acres

luul they botli?

16. A had 2x dollars, B had ?/ dollars less than A, and C
had 2?/ dollars more than A and iJ togecher. How many had
they all ?

17. A father gave his eldest son x dollars, his second 5 dol-

lars less tlian the first, his third 5 dollars less than his second,

and his fourth 5 dollars less than his tiiird. How much did

he give them all ?

55. Addition with Literal CQefficients. When dif-

ferent terms contain the same symbol, multiplied by
different literal coefficients, these coefficients may be

added and the common symbol be affixed to their

aggregate.

EXAMPLES.

1. As we reduce the polynomial

i)X -\- 5,<; — 2x

to the single term (G + 5 — 2) x =. 3a',

so we may reduce the polynomial

ax \- hx — ex

to the single term, {a ^h — c)x.

2. Tiie expression

mx 4- ny — hx \- dy { a -\- h

may be expressed in the form

{ni — b) X + (« -I- (/) y -f- a -f- h»

\)VV.

fi
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\-y)-

n

3rcs, and the
V niaiiy acres

an A, and C
w many had

econd 5 dol-
I his second,
3W much did

When clif-

Itiplied by
ts may be
d to their

EXERCISES.

(A)lloct the coefficients of x and y in tiie following ex-

pressions:

1

.

ax + 1)1/ -\- mx + «//.

2. uuix + 'Zbij -\- p([x — \hy.

3. ;3./; — 9^1 + i')bx — -i// 4- '\ax + m -f n.

4. 8r/y + 8^.<' + ^v/ + 7^' — 5^ + :c — 5^.

5. ax -\- djj -{ cz — w:c — 711/ — pz.

6. 2dx + 3f^ 4- 4/2 — 2fx — 'Sdy + -iez.

7.
j^

r/^
—

-^o; 4- ^ ^i/ + Oa:c.

8. 2ax — /;?/ — 'Sbx — 4^^.

1 2, 1 3
9. ,^ax + ,_^bi/ - -mx -\- ^ny.

2 1
10. ^mx -\-2y — '6ax — (jcx 4- ay — . ?//.r 4- <Z,c.

.1 II. babx — 3^/i?i?/ — abx 4- 4c^/7/ — ^/x*.

12. 3f/^ 4- 2bx— (Ix 4- 2ay — '6bx.

I3.

14.

15-

16.

17-

1
ay — 3.r 4- - ?/ ay _ 5^ 4- 2/.

3;?z:i — «.-« — - ay 4- .1: 4- dx — y.

'^abx — my 4- 26•A/.^' — f/// 4- '^x.

bmVy — 6x -{ -^Vy — dVx — y 4- V;?/.

4^/2; — G^ 4- rtV^ 4- ex — Vy — ^ctVy 4- Vx.

Alj?ebr?iic Subtraction.

,10. Def. Algebraic Subtraction consists in ex-

pressing tlie difference of two algebraic quantities.

Hide of Subtraction. It has been shown (§ 21) that

to subtract a positive quantity, 5, is the same as to

add, algebraically, the negative quantity, —h. Also,

'hat to subtract —h is equivalent to adding 4-^. Hence
the I'ule

:

CJimidp the algehvaic sign of all the terms of the

suhtrahend, or conceive them to he changed, and then

proceed as in addition.
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NUMERICAL EXAMPLES.
Min,, 10 + C==l(j 10+ G==1G 10+ (5= 10 10+ C, =
Sill)!., = \) 0— 4= 5 _[>— 8= 1 9— 12 =
Kfiii., 1+0= T 1+10= 11 1 + 1-4= 15 '~^"

k;

1 + 18= 111

ALGEBRAIC EXERCISES.

I. From
Subtract

ox — hnj + ,")/> + c,

X — ^lUij — 8Z» + cl.

WORK.

Minuend, Zx — ^ay + 5Z» + c

Subtrahend with signs clianged, — a; + '^ay + Sb — d

Difference, 2x + 'Say + 13b -{- c — d

Next we may simply imagine the signs changed.

2. From Ix — 4J:?-// — VZcy + 8^ + 3«c

Take 2.r + 7^.i-?/ + 8r;?/ — 5b — 2d

Diff., 5^ — Ubxy — 20cy + 13/^ + 3ac + 2(/

From
Take

From
Take

Sa + 9^ — 12<? — 18^? — 4^ + 3*:?^/

Wa — 7b— 8c — 25r7 + 3x — 4y

257;? + 201:22 ^ 92^ + 35^^a: — G

140;2 — 82z^ + 20?/ + d2f(X + 14

5. From 8a + 14^ subtract 6a + 20b.

6. From a — ^ + 6- — d take — a + Z> — c + r/.

7. From 8a — 25 + 3c subtract 4a — GZ* — c — 2^7.

8. From 22-2 — 8,r — 1 subtract 5x^ — 6x + 3.

9. From 4:X^—'Sa^ — 2x^ — 7x + 9 subtract a;^— 2a;3

+ Hx - 9.

10. From 2:^ — 2a.i' + 3a^ subtract x? — ax + a\

11. From a3 — 3a^ + SaZ'^ — b^ subtract — a^ + Sa^T*.

12. From ;,v3 — 2.r2 + 22' + 2 subtract 4^:3. ^22-2— 2a;— 14.

13. From 5{x — y) + 7 (a; — 2;) + 9 [z—x) take 9 (a; —
;?/)

+ 7 (.'K — ^) + 5 (/: — .r).

14. From 12 (a — Z^) - 3 (a + ^) + 7a — 2J take 7 (a— Z»)

— 5 (a + Z>).

15. From
X

II

11
//

15 take
X

5-^ + C-"
iC Z*

f

I i
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0+ fi
—

\)— VZ —
1 + 18 = lu

U + c

(1.

) + 'Zd

-d

y

d.

— 2d.

(A

+ 3a^.

r2—2x—U.
B 9 {x — y)

ke '){a-b)

X

Clejiriiij^ of Par<»iithese.s.

57. In g 4-.', :2, it WHS shown that an iiLTC^rc^iilc of tonus iii-

(•liidt'd bi'twecii jtaronlliC'SC'S might Ix' addi-d or .suhtrai'tod by

giuipiv writing + or — hot'oiv tiic iiui'untht'SfS.

When an aggregate not multiplied by a factor is to be added

or subtracted, the paror. theses may be removed by the rules

lor addition and subtraetioUj as follows:

5S. Flits Sign before Parentheses. If tlio paren-

theses are preceded by tlu; sign +, tliey may bo

removed, and all the terms added without change.

Example i. 27 + (8—5-4 + 7) -27 + 8-5-4+ 7 = 33.

2. VI + {a ~ X — y -\- 7^ — m -\- a — x — y -^ z.

3. 2x + (- 3^; - 5//) + (3//-4^0 + -2//)

= 2x — 3a; — 5y + 3^ — 4rt + 2y — 2a

= — X — (ja.

The sign + which precedes the parcnlhosos should also be

considered as removed, but if the first term within the ])arcn-

thesis has no sign, the sign + is understood, and must be

written after removing the parentheses.

EXERCISES.
Clear of parentheses and simplify

1. x — y-{- {x + y).

2. a:-}- y + (y - x).

3. 3rt& — 2mp + {ab — ox — 2mp).

4. 2ax — 3by + {inx — 2ax — j}z + V)y).

5. ='^(^^^)+(^^^)•
59. Minus Sign before Parentlieses. If the paren-

theses are preceded by the sign — , they may ])e

removed and the algebraic sign of each of th(^ inchided

terms changed, according to tlie rule for subtraction in

%m.

I.

E X A M P I- E S .

that is, 27 — 6 = 21.

(8 -5-4 + 7) = 27 -8 + 5 + 4-7
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i 1

2. m — {— a — }) -\- y -\- o-) =. m -\- a •{- p — y ^ oc.

3. '^a + ./; — (:irt — ox) — (:)./• — a) — '•Sa + x — '^a -\- 5/
— 'Jx + a.

JSiinpIifying u.s in § .Jir, this rt'duces to ^a — ',ix.

E X E F< C I S E S.

Clear the following cxpres.sions of ptironthcsos and reduce

1 1)0 resulLs to the simplest form by the method of § a-i.

1. ab — {7)1 — 3ab + 2ax) — "tad.

2. X — {a — x) -\- (x — a).

3. 2b -\- {b - :lc) ~{b -{- 2r).

4. ix — ;}// + 2z — ( - 7x + 5^ — 3z) — {x — tj),

5. ''iitx ~ 21)!! — {'(^((x {- Wbji) — {^ax — '6by),

C. {a — x) — {if 4- .?') + ;i.''.

7. — (re — /y) — (/; — (') — {r — a).

8. — (oy/i + 2t/) — (.'Jyy? — :i;y) + iWi.

(U). We may reverse (he process of clearing of parentheses

by collecting several terms into a single aggregate, and chang-

ing their signs when we wish the parentheses to be preceded

by the minus sign, 'riic proof of the operation is to clear the

parentheses introduced, and thus obtain the original expression.

EXERCISES.
Eeduce the following expressions to the form

X — {an ayyrcyate).

1. X — a — b. Ans. x — {a -\- b).

2. X — m. — n.

3. a + X — 3x -\- 2y. Ans. x — {— a -\- 3x — 2y).

4. — 3b -It X -^ 2c -\- bd.

5. 2x — 2a + 2b. Ans. x — {— x -i- 2a — 2b).

6. 2x -i a — b.

7. 3x — 2m + 2n.

8. 3x -{ ab — m — 3ab -\- 2m.

9. X — 2m — {3a — 2b). Ans. x

10. X -\- 3 — {a -j- b).

11. X '\- a — {b — c) -f- {m — n).

12. X — {am -\- b) — {p — q) — {am — n).

{2m -f 3« — 2b),

13- X — {a + b) — {]) — q) — {ni — n).
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X.

^s and reduco

t' § 54.

-y)'
).

jf parontliGses

0, and L'lian<i-

) be preccdcMl

is to clear the

lal expression.

- 3a: — )ly).

2a — 2b).

- 3a — 2b).

Conipouiid Pare 111hcses.

r>l. When parentheses of achlition or subtraction nvr cn-

josid lietNveen others, they may l)c si'parati-lj reniowd \>\ tli.-

)reci'illn^^ rules.

We may either bc^in witii tlie outer ones and go inward,

or lu'uin witii the inner onus and <(o outward,

it is connnon to begin with the inner ones.

EXAMPLES.
Clear of parenilieses:

1. f-b-\d-[r,-{b-a)]\l
Beginning witli the inner parentheses, the expression takes,

in succession, the following forms

:

f-\e-\d-[c~b-{-a]\]
= /-]'<'- 1'/-^' + ^-^'}]

= f - \'' -d + c - b -^ ((']

= f — e -\- d — c + — a.

2. X — [— {a -}- b) -h {m + n) — (.6- — ?/)].

Eemoving the inner parentheses, one by one, we have,

X — [— fi — b ~\- m -}- n — X -\- y]

= X + a -\- b — 7)1 — n -{- X — y.

EXERCISES,
Eeniove the parentheses in the following expressions, and

combine terms containing x and y, as in §§ 54 and 55

1. m + [- (p - q) -t- (rt - Z.) -j- (- c 4- ^0]-

2. m — \—{a — b) — (2) + q) + (u — k)\.

3. Hax — [{2ax -\- by) — {3ax — by) + (— 7ax + 2by)].

4. a — {a — \a — [a — {a — a)] \].

5. p — [a— b— {s -{- t -i- a) -\- {- m — 71)].

6. 2ax — [3((x — by — {^iax -|- 2by) — {bax — 3by)\

7. ax-\-by-\ cz + {2ax—3cz — {;2vz-]-bax) — {7by—dcz)].

8. X— \ 2x — y— [3x — 2y — {4x — 3y)] \.

9. ax — hz — \ ax -{ bz — \^ax — bz — [ax + bz)]\.

10. my — \x + 3y + [2)ny — 3 {x — y) — 4rti] + 5 [.
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11. ax -I- icx — {inx -f ex — y) -h [fn-^' — ((^x + y)].

1 2. '>i((X — '>\0x — ( — .hit/ — Ihtz '\- ^hij) — Whz.

13. i:J^/.r 4- -'7/ — d — [^:(«t f ('/y ^- '/)] — 4ry.

14. m + 4.r — [— 4// -(- :i.« + (<^// — ./•) + ))].

15. :iaV.y — 3//i — [^Va; — G/i -)- (V// — ^a///)].

-- :,
:)!•

I

CHAPTER II.

M ULTI PLICATION.

03. The product of several factors can always Im^

ex])ressed by writing them after each other, and enclos-

ing those which are aggregate's within parentheses.

lac

EXAMPLES.
The product oi a -\- h hy c =1 c {a -\- b).

The product of —~ by x — y = {.r y)
X -\- y

The product of n j- b by c -\- d = {c -\- d) {a + b).

Such products may be transformed and sinipHfied by tho

oiK'ration of algebraic muhipHcation.

General Laws of Multiplication.

03. Law of Commutation. Multiplier and multi-

plicand may be interchanged without altering the

product.

This law is proved for whole numbers in the following way.

Form several rows of quantities, each represented by thy

letter «, with an equal number in each row, thus,

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

J

I
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I always bo
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[itheses.
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and multi-
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MULTIPLICATION. 39I
V Let m Ikj tho minilKT of rows, and n llie huhiIkt ot (i\ in

cacli row. TIkii. counting by rows there will bo

m X n (juuntitiud.

Counting l)y columns, there will be

n X »ii (|uuntitics.

Tilen '{'ore, tn x n = )t x tn,

-,!• nm =. 7nn.

'A <U. Lf'W of Association. Wlicn tlioro are tlirce

factors, w, //, and a,

/// {ua) = {mn)n.

Example. 3 x (5 x 8) = 3 x 40 = 120.

(3xr))x8 = 15 + 8 =: im
Proof f07' Wliolc yinnhcrs. li a in the {il)ovc schomo

represents u number, tlie sum of eacli row will be riK. Because

there are ;;/ rows, the whole sum will ))e /// (;/^/)-

But the whole number of r«'s is iniL Therefore,

7n [na) = {vni) a.

(>;;. The Dislrihutiiy' ,'jaio. Tho i)rodnct of an ac;-

gr(^<iat(^ by a factor is equal to the sum of the ])r()(lu('ts

of each of the parts which form the aggregate, by the

same factor. That is,

|H t^ip -\- q -\- r) = mj> 4- }nq + wr. (1)

Prooffor ]\lioIe Numhcrs. Let us write each of the (juan-

tities ]), q, r, etc., m times in a horizontal line, thus,

2^ + P -\- P + etc., m times = mp.

mSk q + q + q -\- etc., m times = mq.

r -\- r -{- r -\- etc., m times == mr.

etc. etc. etc.

If we add up each vertical column on the left-hand side,

the sum of each will be 2^ -{ q + r { etc., the columns being

all alike.

Therefore the sum of the m columns, or of all the quanti-

ties, will be

wi (j5 -f (7 + r, etc.).
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i' ,

P ("

m

\ \

m

The first horizontal line of p'B being mp, the second mq,

etc., the sum of the right-hand column will be

mp + 7nq + mr, etc.

Since these two expressions are the sums of the same quan-

Lities, they are equal, as asserted in the ecjuation (1).

Multiplication of Positive Mononiijils.

GO. Rule of Exponents. Let us form the product

a:"' X x\

By § 37, X''' means xxx, etc., taken m times as factor.

X'' means xxx, etc., taken n times as factor.

The product is xxxxx, etc., taken {m-\-n) times as factor.

TJierefore, .^•"' x x" — x"'+\

Hence,

Theorem. The exponent of tlie product of like s^.i

bols is tlie sum of the exponents of the factors.

07. As a result of the laws of com mutation and

association, the factors of a product may be arranged

and multiplied in such order as will give the product

the simplest form.

(>S. Any product of monomials may be formed by
combining these principles.

ExAMi'LE. Multiply ^m,n^x^\f by Ihnx^y.

By the rules of algebraic languag:, the product maybe put

into the form
bmn^x^ ij'^lhnx^y.

By interchanging the foctors so as to bring identical sym-

bols together,

5 • 7 Z» m n^ n a9 x^ if y.

Mijltiply ing the numerical factors and adding the exponents,

the product becomes
^blmrt^ofiy^.

/^"

1.

2.

4-

6.

8.

TO.

I I.

12.

14.

^"^IP
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le second mq.

lie same quan-

niials.

loduct

as factor.

IS factor.

es us factor.

of like S3/.1

ors.

utation and
be arranged

the product

formed by

!t maybe put

lentical svm-

le exponents,

Of). Wc tlms derive the following

l^Li:. Miilliplij the unDicricnl cnnjficicnts of the

fttrf (>/'.<, (ifp-y f(U the litei'dl parts of the factors, and ^ive

ii) r/'ch the sicni of its exponents in the separate factors.

EXERCISES.
1. .Aliiltijil;,' xij by x'^ip

2. ]\inltii)ly 3ra' by 'iahx'^. 3.

4. ^\\\\\i\Ay "llmji hy 'iifim. 5.

6. Multiiily hx'ifz by x'-ifz. 7.

8. ]\Iiiliiply 'iahni by "2iuha. 9.

10. .Mu]ti[)ly 2-(j)Hj)fjr by .l-Cjpqrs.

11. ]\Iultii)ly l'2((.ri/ by Vlxijz.

j'^if.Ans.

?vrultiply hm'^y by '^m^x.

Multijtly 'Zcwi by 2ma.

Multiply ^xyz ])y .'3.r//,?.

Multiply '^ah\fi by ia3\i\

3
13. Multiply '-.n'^Jc by •i;;?^*.12. Multiply [ /^i^a.-^ by "//i^//'.

/i O 1.

7
14. Multiply ^:^abcd l»y 4rZ^/^.

70. When we have to find the product of tlirec or more

(|uantities, we multiply two of them, then that product by the

third, that product anain Ijy the fourth, and so on.

Ex. 2((b X 2a^ x 3«^*2 x 3bmx7j — SOa^b^nixt/.

ExEKcisES. Multiply

15. urxxmij xinz. 16. axxbxxcxxdx.
1 7. oc'^m X ib'n X uni. 18. ab x 2bc x 7ca.

19. 'ilmn^ X Unj)^ x 9pnr*:

20. (lb X ac X ad x (nn'i^ X y X 2yz x zx.

2 1

.

aiiix X anx x amxy x anxy x anixyz.

22. ah: X a^y x ax^ x ay^ x «V x a'y"^ x xhf.

23. 2am X 'dan x a^ x vi^ x ^mx x 2hx.

Rule of Signs in Multii)li<ation.

71. It was shown in § 25 that a product of two factors is

])()sirive when the factors have like signs, and negative when
they have unlike signs. Hence the rule of signs,

+ X + makes 4->

+ X - '' -,
- X + " -,
— X — " +.
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•ill

Examples. The quantity a

w^
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The proilncts by the same factors will be

'IS. Suppose

timetre from

1.

_(-3 to —3

— rt X 'J,
I 1

I

— rt X 2,
I I

— a x^•, i"""

— rt X 0,

— « X — 1,
I I

— rt X — 3,
I I I

— ax — 3, ill!
These results are embodied in the following two theorems :

1. Multiplying a magnitude by a negative factor,

multiplies it by the factor and turns it in the opposite

direction.

2. Multiplying by —1 turns it in the opposite direc-

tion without altering its length.

Note. When more than two factors enter a product,, the

sign may be determined by the theorem, § 2G.

I

3

4

5

6

7

8

9

10

II

12

13

14

15

EXERCISES,
am X ab X ac X ad. 2. ax x —hxxcxx dx.

X X —ax X —ahx x —obex.

?>ax X —'^aW X — bahnx.

— 7 11)^1/ X —M^y^ X hax.

— 2nzn X —5n^x"' x —n^yz — xPK

2m X n X —a x ~2b.

—3ax X —2km x — 7.r x —^hmx,
—ny X (jy x —2y x 3bm.

xy X 2y^ x y^x x 2ayx^.

5 7/2 X —%?/ X —2z^x —ax^z,

'utx X anx X '']z x bby.

— ibz X —xzx —yz X agz.

2chz X 2xh X —z^ X —b(jz\

—e^x X 3a; X eb^ x ay.
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I

11

1 6.

17-

1 8.

19.

20.

21.

22.

23-

24.

25-

26.

27.

28.

29.

30-

— 2e X —2^ X « X Z*:*;.

— 4r)'.v; X 'My x —2a^y x — a:^.

«\<; X — ^//y^ X ax^ x — a;'-^?/.

rt,/;^ X —?/^ X —1 X 3«:c X — «*^.

m\v X — >^'^^ X —inn^ x w«.t x —w^

— rti.« X —((jl' X «.?^" X a\c^.

px' X (/'/ X xi/ X — a.T.

^^ic X —d^ X «.i'^ X —1 X 3«a:.

ax X 3c:6' x — ,)W^r x —4i/^x Gm.

— Guix X —2n^x X ;t«c x
u

m^.

—« X be X ~1 X ^ X 3«2 X 4a:y x y.

—1 X ax X a^x x a^x^ x bx x d.

—an X 2am^ x —3nin x bn^y x —m.
—mx X nx X —mil x —xy x — 1.

— 2])x X —3qx X -m^x X jy^ X —1.

Products of Polynomials by Monomials.

73. The rule for multiplying a polynomial is given by the

distributive law (§ G5).

Rule. Multiply each term of the polynoinial hy the

Dionornial, (uul take the algebraic sum of the products.

Exercises. Multiply

1. 3.f^ — 4:xy — oy^ by — Aax.

Ans. — 12ax^ + IGax^y + 20«jyl

2. 3.?:2 — xy 4- y^ by 3.1'.

3. x' + xy + 7/2 by 3.t. 4. ax \- by -{- cz by uxyz.

5. 3fta.'3— 5r(?/2— 7 by 9r<5.r. 6. 4mp — Gnq hy —dmq.
7. oa^y^ — ^a^y"^ — 7a'^y by Sab.

74. Tlie products of aggregates by factors are formed

in the same way, the parentheses being removed, and

each term of the aggregate multiplied by the factor.
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,1

1

dais.

ven by the

lal hy the

roducts.

3y ((xyz.

— 'dmq.

e formed

ved, and
ictor.

Example. Clear the following expression of parentheses

:

am {a — b + c) — p [a — {h — k) — /// {<( — l))\.

Bv the rule of § 73, the first term will be reduced to

ahn — amb + amc, (1)

The aggregate of the second term within the large paren-

theses will be
a — U \- k — m (a — b)

z^a — h -\- k — ma + mb, {"l)

because, by the rule of signs in multiplication,

— m [a — b) =z —ni x a — m x —b=z — ma -\- mb.

Multiplying the sum {'i) by — p and adding it to (1), wo

have for the result required:

a^m — amb + amc — /ja +2^^^ — P^ + pma — ^;?«^.

EXERCISES.
Clear the following expressions of parentheses :

1. p {a + m — p) + q(b — c) — r {b -\- c).

2. {in — an) x - - {m + an) y -f- {an — m) z.

3. a {x — y)c — b{x — i/)d-\-f{x-\-y) cd.

Here note that the coefficient of a; — y in the first term is ac.

4. am [x — a{b — c)] — bn \(ix + b{c -{- d)^^.

5. p\^— a{m+ n)-\-b{m— n)^ — q{b(vi— n)—a{m-\-n)\

6. 3.r (2(7 — nc) + ^ {^^^ — 3t') — z {2m -f 7n).

7. am [m {a — b)c — 3h {2k — id) -f- 4;^].

8. 2pq [3(7 — ob — Gc —pq {2m — 3;0].

9. bn [— 7« -^(a — c) — (3 -a — b)\

10. p{q — r)+q{r — p)-\-r{p — q).

15. The reverse operation, of summing several terms into

one or nu)re aggregates, each multiplied by a factor, is of iVe-

(pient application. Tiius, in >^ (!5, having given

inp + mq + mr,

we express the sum in the form

m {p + q \- r).
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*i

The rule for the operation m

If the sitni of seueral terms having a cmnninii factor

is to he fomned, the eocfficiciits of this factor may be

added, and their aggregate he niiiltiplied by the faetor.

Note. This operation is, in principle, identical with that of g 55.

EXAMPLES.
abx — hex— ady-{-^(lfj— 3dx-\-4ady -f- ?))>/— ami/ —^cmx-\-bmx.

Collecting the coefficients of x and y as directed, we have

{ah — he — 3/; — ^cm-\-bm) x -\- (

—

ad -{-^d+ Aad+ m—am) y.

Applying the same rule to the terms within the parentheses,

we find

ah — hc — U = h{a — c — 3).

— ?icm + hm =z m {h — 36').

— ad + od + Aad — dad + 3d

= (Sa + 3) d

= d{a-{-l)d.

m — am = m (1 — a).

Suhstituting these expressions, the reduced expression

becomes

[/> (^ _ c — 3) + in (b — 3c)] X + [3 {a + 1) d + m (1 — a)] y.

The student should now be able to reverse the process, and

reduce this last expression to its original form by the method
of § ;-i.

EXERCISES,
In the following exercises, the coefficients of y, z, and

their products are to be aggregated, so that the results shall

be expressed as entire functions of x, y, and z, as in § 55.

1. ax 4- bx — 3ax + 3bx + G.r — 7;?'.

Ans. {— %a -\- ^b — 1) X.

2. my -\- py — my — 2py — 3gy.

3. iiix — n.y -f 2^x — gy -\- rx — sy.

Ans. {m -i- p -^ r) X ~ (n + g -}- s) y.

4. 3az — y — ^az -\- z — az -\- y.

lias

I
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oil factor

r VI ay ho

factor.

t of § 55.

•mx-\-bmx.

we have

II—am) y.

rentheses,

jxpression

1 - a)] y.

Qcess, and

e method

y, z, and

suits shall

— 1) X.

i

1

5. abxy — hcxy -+- bd.ry.

6. 'Kxib.ry — 'Z^x — ax — 7xy.

7- ('!/ ~ % — ^^^^'1/ ~ '^^1/ + '^'^'

8. rt///// — /J*/;/// + any — buy.

9. ;>y2; — 'iqrz ~ A])j)z + Sf///z.

10. rw:K -f /'/^.v — (Dfiy — 2bny.

KJ. An entire function of two quantities can be regarded

iis ;in (Milirc function of either of them (§§ 40, 50), and wlien

expressed as a function of one may be transformed into a func-

tion of the other.

Example. The expression

{'>a + 3) x^ — (4«2 _ 2a) .7.2 + {n^ - 2a + \) x - a^

luis the form of an entire function of x. It is required to

ex})ress it as an entire function of a.

Clearing of i)arentiieses, it becomes

2ax^ -\- 3.r3 — 4:a^x^ + 2ax^ + a^x — 2ax -{- x — a^.

Now, collecting the coeflticients of a^, a^, etc., separately, it

becomes

(_ 4.,;2 ^ x — 1) a^ + {2x^ + 2.1-2 _ 2x) a + 3^-3 + x,

which is the required form.

EXERCISES.
Express the following as entire functions of y :

I.
(3^2_4,^)^3_^(y_Oy2^1)^^.2 4.(2?/3+ 5?/2— 7).T— ?/2— G.

3. (y5 _ 2tf) .x-3 + (^4 _ 2^2) ^2 _|_ (^3 _ 2?/) X -\.if — 2.

4. {y' + 3y^) x^ + (?/4 + 3 f/3) X' + (^3+ 3y ) ,,2 + (^2 _^ 3 ) ^.

3Iultipliccitioii of Polyjioiiiials by Polynoiiiiiils,

17. Let us consider the product

{a 4- b) {p-{-q + r).

This is of the same form as equation (1) of § 05, (a + b)

taking the place of 7n. Therefore the product just Avritten is

equal to

(a -\-b)p + {a + b)q -\- {a-{-b)r.
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K

( .V

N ^1.

i.

«!

But {ii 4- h)]) = ap -f- Up.

{a -\- b)q =i cq -\- hq.

{a -\- d) r = ar + br.

Therefore tlic product is

aj) + hp + aq -f- Iq + ar -f- ir.

It would have been still shorter to lirst cleiir the paren-

theses t'roin {a -f h), putting the product into the form

« {P + '1 + r) + h {p -\- q -\- r).

Clear! n<^ the parentheses again, we should get the same

result as ])efore.

We have therefore the following rule for multiplying aggre-

gates :

1<S, Rule. Multiph/ each term of the inuUiplicdiKl

hy eacli term of the vndtijjJier, and add the products

with their proper algebraic signs.

EXERCISES.
1. {a -f h) {2a - bn^ — Vni^).

2. {a — b) (3?/i + 2m — r)abm7i).

3. {m^ — 9t^) {2?nn + pm + qn).

4. {p"^ + Q^ ^- r^) {P^l + (/' -t- n^)'

5. (:1a — ^b) {2a f 2b).

6. {mx — vy) {mx + ny).

79. It is frocpiently necessary to multiply polynominls

containing powers of the same letter. In this case the begin-

ner may find it easier to anange multiplicand, multiplier, and

product under each other, as in arithmetical multiplication.

Ex. I. Multiply 7.r3

The first line under

tlio multiplier contains

the products of the sev-

eral terms of tlie multi])li-

cand by "ii.v'^. Tlie second

contains the products by
— 4.r, and the third by —5.

Like terms are ]>]aced

under each other to facil-

itate the addition.

o.- G.t'2 -f 5a: — 4 by 32-2 — ^x

WORK.

7.r3_G.^2+ 5a;—

4

3.^2—4.?: —5

— 28.6-4^ 34;^-3_ 2o./:2 .^ 1 Cyj.

—352:3^ 30.r2— >ir).g+ 20

21x5_46:c4^ 4ar3_ 2;<;2_ 9^4.20

^s
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Ex. 2. Multiply m + nx + ;;2^ by a — da:.

r tlic pare II-

furiii

^t't the sumo

plying aggrc-

ulfiplicaiul

10 products

polynomials

B the begin-

iltiplier, and

iplicatioii.

- ^x — 5.

}-\C)x

- 9.T+ 20

m 4- 7/.^ + 2>x^

a — bx

am 4- a}ix -f- «;o.f2

— bmx — bnx^ bpx^

am 4- {a7i — bm) x + {ajJ — Z'/i) ^ — //jya--^

In the following exercises arrange the terms according to

;iie jiowers and products of the leading letters, a, b, x, y, or z,

MuUiply

?ui^ + 5rt + 7 l)y 'id- — 'ia + 4.I

2

3

4

5

6

7

8

9

10

II

12

13

14

15

i6

17

i8

19

20

21

22

23

24

25

26

^/^ + r;6 4- b^ Ijy « — J-

(fi 4- rf^ 4- r/./'-^ 4- .^-3 by r^ .T.

a' a' 4- r/ — 1 by a^ — a -\- 1.

.6-* + ax^ 4- «''.?:2 -|- (i?x 4- «.* by :r — a.

a 4- Z'^ 4- cz^ 4- ^/;2;^ by m — nz 4- ^2;^.

3^2 f 5^ 4- 7 by 2r;2 + 3« — 4.

«'- — ab + b^ by « 4- Z*.

a^ 4- r/2^ 4- r<a;2 ^ x^ by a — x.

a'^ — a'^ -\- a — 1 by <«2 ^ ^ _ 1.

ar* 4- ax^ 4- alT^ _|_ ^3^. ^ ^4 ijy a; _j_ «.

r^^ 4- J2; 4- cz^ 4- ^/;2;-^ by wi 4- nz — /^^^^

(rt 4- J.?;) (?w 4- ?<a:).

[a 4- Z*.?: 4- c.f2) {m 4- wa; 4- j?:^^).

[if - ^ + 2) if - 2).

(//^ 4- 2/' 4- 2/ 4- 1) (i/2 4-
Z/

4- 1)

{y' - '^f + 3// - 4) (/ + 2/ 4- 3^ 4- 4).

3rt>a; — 3«2^ 4- 'id^" by «"' — a"

a^ 4- Grti 4-
., b by r« — -b.
3 -^ 3

(f/ + /;) 4- {(( — b) by {a + b) — {a — b).

(,2 _ Z,3 + (rt _ ^,) by f^2 _^ ^,2 ^ (,^ ^ ly

a -\- b -\- c hy a — b -\- c.

«2 ^ J3 _ (3^2 ^ J2) by 2« + 2/^ — 2 (« - Z*).

'Z (a — b) -]- x — y hy a -\- b — {x + y).

ax""' 4- Z»^" — abx by «;/;2 4- Z/a:3^

«"' — d>" by «"' 4- b".
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A

27. _ ir,.A/ + Wxif - I'Mf by - hxy,

28. JJ^-2 .^ 3^,.,. _ ^^2 i)y o.r' — ^/.r — -a2.

NoTK. Aggregates cnteriijg into either factor should bo

sinipliliocl bel'ore niultii)l}'iiig.

Si)OciJil Forms of Multiplieatioii.

8(). 1. To find the square ol' a biuoniial, as a + h. We
multiply a -\- b hy a -\- b.

a (a -f />) = a^' -]- ah

h (a + b) — ab + b^

(a + b) {a 4- b) = ifi + 'Zab + b^

Hence, {n + bf — a^ + 'lab -\- b^ (1)

2. We find, in the same way,

{a - bf = a^ - 2ab + bK (2)

These forms may be expressed in words thus:

Theorem. The square of a binomial is equal to the

sum of the squares of its two terms, plus or minus twice

their product.

3. To find the product of « + ^ by a — b.

a{a -\- b) = a^ + ab

— b(a + b)= -ah-W
Adding, {a + b) {a — b) = 'cfi — b\ (3)

That is;

Tlxorem. The product of the sum and difference of

two numbers is equal to tlie difference of their squares.

The forms (1), (2), and {'**>) should be memorized by the student, owing
to their constant occurren';e.

When i = 1, the form (3) becomes

{a + 1) (« - 1) = «2 _ 1,

The student slio:ild test those formulae by examples like

the following:

(9 + 4r^ = 92 4- 3.9.4 + 42 = 81 + 73 + 16 = 169.

(9 - 4)2 = 92 - 2.9.4 + 42 rz: 81 - 73 + 16 =. 35.

41

r

ineni

I

3

5

7

S

it l\)l

li

11

/

a — '

S

1]

1

nc^fi

whic

this I

wliie
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should b(j

1.

+ b. We

(1)

ml to tlio

iius twice

(3)

3rence of

squares.

dent, owing

nples ijke

169,

25.

I

(f, + 4) (0 - 4) = 1)2 - 4- = C5.

Prove these three e(iiuition.s by computing the left-luind

nieuil)er cUrecLly.

EXERCISES.

Write oil sight the viiUies of

I. {lit -f -^n)^. 2. (m — 2nY.

5. C^^: + ij) {2x - y). 6. {'.Ix + 1 )
{:]x ~ 1).

7. (4.t2 + 1) (4a;'^' - 1). 8. (5rJ - 3) (o.f^ -f IJ).

SI. necaupo the product of two negative factors is positive,

it follows lluit the s((u;ire ot*a negative (puuitity is positive.

Examples. (— of = a-^ z= {-\- af.

{b — r/)2 = (fi — 2ab + Z>2 = (« - by.

Hence,

'f/ie (!xprcc?ir„i a^ — '^ab -\- Ir is Ihc Sijiuivo both of

(( — b (Hid of b — a.

S*i. We have — a x a ^= — a^.

Hence,

TJie product of equal factors with opposite signs is a
nc'J>(ibive square.

Example. — {a — b) {a — b) = — (fi -f 2r/J — Z^l

whicli is the neg."^ive of ('2). Bet, use — {a — b) =z b — a,

this efpiation may b^ written in the form,

(J)
_ a) {a — b):=—n^-{- 2ab - b\

which is readily obtained by direct multi[)lication.

EXERCISES.
Write on sight the values of

1. —{a + b) X — (rt + b).

2. {x - y) (//
- x). 3. (.r + y) (- X - //).

4. (2rt — Zb) (3^ — 2rt). 5. {U — 2a) (— '6b + 2a).

6. (am — hn) [bn — am). 7. {xy — 2) (2 — xy).
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CHAPTER ill.

DIVISION.

83. Tlio prohlom of alf^obniic division is to find huch an

oxpivssion that, M'lu'ii multiplied by llio divisor, tlie product

Hliiill be the dividend.

This oxi)ression is called the ([uotient.

]n Ali(ebni, the (jnotiont of two quantities may always be

indicated by a fraction, of which the numerator is the divi-

dend and the denominator tho divisor.

Sometimes the numerator cannot be exactly divided by the

denominator. The expression must then be treated as a frac-

tion, by methods to be exjdained in the next chapter.

Sometimes the divisor will exactly divide the dividend.

Such cases form the subj(>ct of the present chapter.

#

'I,

}

Division of Moiioniiiils by 3roiioniijil.s.

81. Ill order that a dividend may bc^ exactly divisi-

ble by a divisor, it is necessary that it shall contain tlie

divisor as a factor.

Ex. I. 15 is exactly divisible by I), because 3'5 i= 15.

2. The product ab'c is exactly divisible by ac, because ac is

a factor of it.

To divide one expression by another which is an exact

divisor of it:

IvULE. BcmovG from the (Jividencl those factors the.

])ro(hict of ivhicli is equal to the divisor. The reiiiaiu-

zn£> factors will he the quotient.

8.1. Ride of Exjwnenls. If Loth dividend and divisor

contain rbe same symbol, with different exponents, say m and

n, then, because the dividend contains this symbol m times as

a ftictor, and the divisor n times, tho quotient will contain it

m — n times. Hence,
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In iVividin^, c.vpnticntfi of like syDihoU are to he sub'

EXERCISES.

1. Divide 'l^lnj by 'iy. Ants. lo.c.

2. Divide '^U(^c by Ik.

3. Divide j^ by x^. Ans. x.

4. Divide \M' by Grt. Auk. Wa.

'$ 5. Divide Uui'in by 3rt. Ans. bam.

6. Divide Ib/W l)y '^nm.

I 7. Divide l(VA/*4 by 8rrW. 8. Divide ^iO.rifz^ by O./v/^.

9. Divide •lOa'-V'^s i)y 10aV2«. 10. Divide '^oul/^ hy^7nL

Rule of Sij?i!s ill Division.

8(>. Tbe rule of .signs in division corresponds to that in

multiplication, namely:

Ifdiridciul ftnd divisor have the same si^ii, the (fuo-

iiciit is positive.

I // tJicy have opposite signs, the qaotienb is negative.

Proof.

-\-mx -^ (4-^/') = +:i»', because -\-x x {-\-'>n) = -[-nix.

'. -\-hix -^ {— hi) = —X, " —X X {— )'i) = i-)iix.

# —mx -r- ( + iii) = —^', " —X X ( + »') = —nix.

—mx -^ {-ni) = -[-X,
" -\-x X (— hi) = —in.r.

The condition to be fulfilled in all four of these cases is

tluit the product, qiioiicfit x dicisor, shall have the same alge-

braic sign as the dividend.

EXERCISES.
Divide
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8.

9-

lO.

II.

12.

13-

14.

'5-

16.

17.

— 18rt"*/;« by — (;«"y;. Ans. 3«»^-«;;»-i.

— UkfixP^yn by Aax'ij'K

Ul/pi h\ — To''pi.

— VZb>'H"k-"' by — Ah^l^kn,

12 (a - //)'^ r* by 13 (- - /y)2 r. Ans. 4 (r^ - ^.) c^

42 (a: — //)»' by — 7 (.7; — yy.
_ 44rt'' (7: - iiY ])y 11^/' (.f - yy.

— 48 {m + 7)y> ])y — 8 (m + 71)'^.

04 (a + hy {x - yy> l)y 4 {a + /y) (.?: — y).

It I

='»
!

Division of I*i,lyiioiiiiiils by Monomials.

87, By the distriljutive law in miilti[)licati()ii, whatcvci'

quaiitiiics tiie symbols in, a, b, c, etc., may rei)resenl, we have:

{((-]- h -¥ c -\- etc.) X m = ma -\- vih + mc + etc.

ThiTcfore, by the condition of division,

{ma + mh + mr 4- etc.) -^ m =: a ^ b -\- c + etc.

Wc therefore conclude,

1. In order that a polynomial may be exactl}' divisi-

ble by a monomial, each of its terms must be so

divisible.

2. The quotient will be tlie algebraic sum of the

se])arate quotients found by dividing the different terms
01 the polynomial.

EXERCISES.
Divide

I. :>r/2 + (vAr — M^x^ by 2^/2. j{j^^^ i ^ 3^^^. _ ^^3^.3^

i\ni'^u — Vhn^n^ — \'6mn^ by ijmn.

<\,(%^ _ i(\a'^i,i 4. .Sr/s^-'i by 4^/3^3,

4r//'' — ^x^y^ 4- Ax^ii by — 4.r//.

Viabx — U(tbx'^ by — \2abx.

^lamh"" — Ua^uiir^' + 2Sa^ni''x^ by — ^atnx^

'\'ia'ir 4- 2Aax + 48r?.?-2 by 24r/r.

a (b — (•) -^ b(c -' a) -{- r{a — b) + abe by abc.

27 (^^ _ by - 18 (rr. - />)' + 9 {a - by by "o (a - Z»).

r/»* (rt — Z*)" — r«« (« — b)"^ by ^i" (« — by.

2.

3-

4-

5-

6.

7-

8.

9-

10.

i

^ N'V,
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m-n ))7i-lf

- h) c\

ials.

whatever

., we liave

:

- etc.

- etc.

tlj' divisi-

st be so

n of i\w

ent terms

— 4:a^xK

abc.

{a - h).

J

1 1

.

12.

I.)-

(,/ 4_ IjY {a - by + {a+ by {a-hy l.y {a + b) {a-b),

10 (i; + yy''{x - y)'^ - h (./• + y)'' (-^ - nf
by 5(.i' + i/) (-'•-//).

(,, + /,) (,r _ /,) l,y (fi — b\

Factors and 3Iultii)les.

88. As in Aritiimetic some iiiun])ers arc composite and

otliers prime, so in Alg('l)ra some expressions admit of beinu^

divided into algebraic factors, wliile otiiers do not. The latter

are by analogy called Prime and the former Composite.

A single symbol, as a or x, is necessarily prime.

A product of several symbols is of conrse composite, and

can be divided into factors at sight.

A binomial or polynomial is sometimes ])rime and some-,

times composite, but no universal rule can br given for dis-

tinguishing the two cases.

8i). When the same symbol or expression is a factor of all

the terms of a polynomial, the latter is divisible by it.

I.

2.

J-

EXAMPLES.
ax -\- (ibx^ 4- a\'x^ = a {x + bx"^ + (fc^).

((^lAc + (t^U^x^ = (tVA<: (b + ax).

«"^" + (("X" = a't {a'i + X").

EXERCISES.
Factor

I. (ix^ + ((^x. 2. aWcy -\- aVjc^j/ -}- abh^ij.

3. r<''« b'' 4- «« b-''. 4. «3" .f" — «2n .r"" + «« .^•3«.

5. a'' b'" c^'^ + a^'^ b^" c" + rt^w fjn c'in,

*,}(}. There are certain forms of composite expres.'-ions

which should be memorized, so as to be easily recognized.

Tile following are the inverse of those derived in § 80.

1. (/2 + '^ab + b'^ = {a + b)\

2. a'i — •>ab + b^ = {a — b)\

3. r/2 - />2 ^ (,, _^ /,) (,, _ ^,).

I'lie form (3) can be api)lied to any difference of even

powers ; thus,

s'
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I*

"1

wi

a'

«'

and, ill otiictuI, a-

-b* = (^2 + P) («2 _ /,2) .

— /j'^ = {a-^ + 0^) {a-^ — ^3) .

— 0'-" = {(>" -\- 6") {((" — />").

If the expoiic'iit icj u iiuiUij)l(.' oi' 4, llic second luc-tor can be

airain divided.

EXi^. MPLES.

a^ -1/ := {a^ + b^) {a^ - t^) = {d'-^b'') {a+ b) (a-b).

a^ -b^= [a^ + b') {a^ - b') ^ {a^-^-b^) (a'^-^b^) {a-}-b) (a-b).

When b is equal to 1 or 2, the forms become

a^-1 = {a + l)(a-l).
d^-4: = [a + 2) (a - 2).

(i^ 4- 2rt + 1 := [a + ly.

d^ -t- Aa -\- 4: =z {a + 2)-'.

ai _ o^^ ^ 1 ^ (^^ _ 1)2 ^ (1 _ a)\

a' — 4^/ + 4 = {a — 2)^ =z (2 — ^^)2.

By initling 2b for Z*, they f'ive

a' - 4/y2 z:z {a + 2b) (a - 2b).

a2 _j. 4ab + 4/^2 zr: (« -|- 2^)2.
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•r ciiii be

){a-b).

I
•if

2-. a-iw _ 'Zx-i'^yn ^ ^-z*. 26. aH'« — ;>./;•-''" + 1.

27. .f2 + a; + ^- 28. x'2'« + ./;'" 4- •

*.)1. By combining tlie preceding forms, yet other forms

iiiuy l)e found.

For example, the factors

(di 4. ah + Z-^) (^2 - ab + Z/2), (i)

are respectively the sum and diU'erence of tlie quantities

«' + li^ and ab.

Hence the product (I) is equal to the difference of the

f^quares of these quantities, or to

Hence the latter quantity can be factored as follows:

Lctors as

-2).

+ 3)2.

f y^)\

&
^
s

Factor

I. x^ + xhf 4- ?/4.

EXERCISES,

2. ^4+ 8rt2Z>2 4. ir,/A

4. rt^" + d''^ U^" + Z/'".

6. «« + 8rt4^2 ^ 1(;^^2J4.

3. r(4 + 9^<2i'2 + sir".

5. rtU-2 4. 4^;2^2,.2 ^ 1(3^4^2.

7. r<;5« + x^^ f^ + 2;^' //'«.

8. ?//2 __ ^2 ^_ O^//; _ /^2_ J^;^s.^ (;;^ — rt + Z/) (//< + r/ — //).

Here the last tliree terms are a negative s(iuare. Compare j; 82.

9. «2 _ 4^2 _[_ 4^^. _ ^.2, 10^ ^,3 _ 4f,^2 _j_ 4^,^^. _ ^/,.2_

1)'^. The following expression occurs in investigating the

;u'e;i of a triangle of which the sides are given :

{a-\-b^ c) {a^b- c) (.'« -b-\- r) {it - b - c), (1)

By § 80, 3, the product of the first pair of factors is

{(I + hf _ ^.2 r= ^2 4. 'l(^JJ -t-
^ - f2

;

and that of the second pair,

{a - bf - r2 = r?2 _ "lab + i'^ _ r^.
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By the smiie principle, lliu product of tlicsu products is

(«2 + Z,2 _ ^..)3 _ 4.^2^2^

uliicli we readily find to be

a^ ^ (jx + ,.1 _ -Zdib"' — 2/A'^ - Jir2(i2. (2)

Hence this expression (2) can be divided into the four

factors (1).

Factors of Binomials.

(>3. Let us multiply

OI'EUATION.

a; — a

rt«

Prod., x"^ «"

The intermediate terms all cancel eacli other in the product,

leaving only the two extreme terms.

The p'^'oduct of the muUi])lieand by x — a is therefore

^ — iV^. Hence, if we divide a;'* — i(^ by x — a, the (luotient

will be the above expression. Hence the binomial x^^ — «"

may be factored as follows

:

- ri" = {x — a) (:^;«-l+ r^r"-2 4.^/^,•«-3 4_ ^a^-z^^a'^-i).X

TV
riierefore we have.

Theorem. The dift'erence of any power of two niiin-

bers is divisible by tlie difference of the numbers

themselves.

Tllustuatiox. The dilYerence between any power of T

and the same power of 2 is divisible by 7 — 2 := 5. For

instance,

72 _ 22 =: 45 = 5.9.

73 _ 23 - 335 = 5.G7.

7'« - 2^ = 2385 = 5.477.

etc. etc. etc

04.

x"~

Ny X -i

Ki:.M

ilint —
, icllieiei

: n.)\vers »

; The

:; arcurdii

X

X

I'rod., X

I
III uiult

% onus —
lh>n«

\ ;ulniits i

i
.'"' - (-

i If a

[in
V*'

1* ^i'he

I Th(:
tit

i uivisih



niVL^lON. m
cts is

the four

^ x — a.

— a»

— rt^

l)roduct,

therefore

quotient

X"' — ««

^o nuni-

umbei's

ver of i

: 5. For

<)4. Let us multiply

,v .1- + rt = X — {— a).

I Ki:.M. 1Miis expre-siou is exactly like the i^'ecediug, rxeept

f il,;,( ._ ^ IS substituted for ^. It will he uotieed tiuit liie

I ( iclKeients of the powers of x in the niultiplieund are I he

j),)\vers of — a, because

{-af = +ai,

( - ^0' - - ^^^

etc. etc.

The sign of the last term will be positive or negative,

iururding as n — 1 is an even or odd nun^ber.

OPERATION.

:/;'*
-1— rta;«-"2 _j_ dic'^-^—a^c'^-i 4. .... + (_ ^^)« -2

;r+ (_ a)''-^

a: -j- a = X — (— a)

+ «a;^~^ — ^'^^-""^ + a^x^-'^ .... — (— (/)^^-^ .6- — {—(!)"

k

I
4

I'rud., j«

The multiplier a; + a is the same as x — {— a) (§ )'.)).

Ill nmltiplying the first terms, we use + ((, and in the last

onus — (— ((), because the latter shows the form better.

Hence, reasoning as in (1), the expression x"- — {— (/)"'

adniits of being factored thus :

/" — (— aY'- ^ {x + a) [.6" -1 — (ix>^-^ + ah'>-'^ —
.... 4- (— rt)"'^.'' + {—(')"~^]-

If n is an even number, then (— (z)'^ = (t'^, and

a;« _ (_r/)" = ./;« — (I'K

if N is an odd number, then (— a") =: — rt«, and

a?» — (— (()"' — xJ^ 4- ri".

Therefore,

Theorem. 1. When vi is odd, the binomial x^^-\-a^ is

divisible by x-^a.
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I I

i

^ '

TJieorem 2. When n is even, the binomial x'^—w^ is

divisible by x-\-a.

Note. T'.iese theorems could have been deiUicecl imme-

diately from that of § 03, by changing a into — (i, because

X — a would then have '»een changed to x -\- a, and x^ — ^/''

to X"' 4- 11"- or 2" — a'\ according as )i was odd or even.

The forms of thu laetors in the two cases are :

AVhen n is odd,

x"^ + aP — {x + a) (a;»-i — rt.r^-^ ^ ^-x^-z _
. . .

. -frtn-i).

When n is even,

xn _ ffU z= {x ^ a) (.t;"-l — fir'^-'i 4- «2i.n-3 _
. . .

. ._^^n-l).
(^,)

In the latter case, the last factor can still be di\ idcd, Ijc-

canse x^ — a'^ is divisible by x — a as well as by x + a. We
find, by multiplication,

{x — a) {x"-'^ + rt22-w-4 _j- a^x^-^ + .... + fC^-^)

— x""-^ — ax^-^ + «2.^-«-3 — a^x^-^ + .... + a"-lv — a«-i.

Therefore, from the last equation (a) we have

:

When n is even,

x^ - rt« = {x-\-a) (x—a) (^"-2-|-rt2.c«-4+ a^x^-<^ — .... + a""-').

EXERCISES.

Factor the following expressions, and when they are purely

numerical, prove the results.

I.
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jed imnie-

/, because

(I .6" — a''

ividetl, br-

.. + «"--).

are purclv

(5 - 2).

Least (U>iHnioii 3Iultii)lc.

: <).">. Def, A Cornmon Multiple of several quanti-

itirs is any expression of which all the quantities aiv

liiu'toi'S.

$ iix.vMPLE. The expression arti^n^ is a c(fmnion innhiple of

liiir quantities «, m, n, am, amn, ain^, m'n% etc., and finally of

lilir expression itself, ani^nK But it is not a multiple of r/^, nor

'i<>t'/. uur of any other s'-ubol which does not enter into it as a
i
llactor.

ihf. Tlie Least Common Multiple of several

([unntities is the common multiple wliich is of lowest

+ a. Wu .^dcLcree. It is written for sliortness L. C. M.

I KuLE FOR FINDING THE L. C. M. Fitctoi' the seuevul

lijiiiiiiHtics as far as possible.

' 7/ tJie quantities have no common faetor, the least

%c()innion niultiple is their jjrodact.

5 //' several of the quantities lave a coimnoib faetor,

Hltr uinltiple required is the jn'oduet of all the frtetors,

cncJi of tilem being raised to the highest power which it

Jtds in any of the given quantities.

Ex. I. Let the given quantities be

^ab, We, (Sac.

'4 The factors are 2, 3, a, b, and c. The highest power of h is

\lf', while a and c only enter to the tirst power. Hence,

I L. C. M„ = Qal)^c.

%
Ex. 2. «2 _ j2^ ^2 ^ 2ab -f b\ a^ — 2ab -f b^ a^ — b*.

I'aetoring, we find the expressions to be,

I {a -^h)(a- b), {a + b)\ {a - bf, {a^+ ^M«+ h) {a - h),

V>)- the rule, the L. C. M. rerpiired is

{a^by{a-bf{a'^-\-y^).
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EXERCISES,
Find the L. C. M. of

2. d^b, V^c, chl, d^cu

4. d^, ab^, bc'K

I. i)'i/, :rz, ijz.

3. a, (lb, ubc, abed.

5. a.-2 — if, X + t/, x — y.

6. x" — 4, -c' — Ax + 4, .^2
-f- 4a: 4- 4.

7. 1(1^(1^2 — 4^/1^^ "^ax -\- in, 2ax — ?ii.

8. r^ — 1, .T^ + 1, .r2 — :.^A' + 1, x"- + 2x + 1.

9. 4r/ {b + r), Z* (r^ — r), '^r/5.

10. :3 {a by, V (« f Z;)2, ^ (r« — b) {a + Z*).

11. 3{x- •» (a:-//), 3(^;3 + y3).

12. a — b, "^ - ' «^ — Z*^, rt* — i*.

13. X -\-y, x — y, ; , b, a — b.

14. a*' — a*, x^ + «^ a?^ — (i% x -\- a.

15. of — (j-iu% x^ — KkiS i-2 — 4rt2.

16. a-{- b, a"^ + ^^/^ + b'^, a^ — b*.

Division of one Polynoniiiil by another.

If the dividend and divisor ;irc both polynomials, and entire

functions of the same symbol, and if the degree of the numer-

ator is not less than that of the denominator, a division may

be performed and a remainder obtained. The method of

dividing is similar to long division in Arithmetic.

96, Case I. Wlicii there is only one algebraic syin-

hoi in the dividejuI mid divisor.

Let us perform the division,

3ar* — 4.f^ + ^ix^ + 32' — 1 ^ x^ — x -\- 1.

We first find the quotient of the highest term of the divi-

sor a^, into the highest term of the dividend ^x\ multiply tiio

whole divisor by the quotient 'dx/^, and subtract the product

from the dividentl. We ivi)eat the process on the remaindtr,

and continue doing so until the remainder has no power of /

so high as the highest term of tlie divis(jr. The work is must

conveniently arranged as follows:

•1

^ ,V' * DiviH

<i Fir-t Uciiin

i -X < Uivir

I
Scctiiid Ucii

Divis

% Third and li

I Tiie

fi hoeause

ill Arilh

the linn

t divisor.

3/'

I This

' by I he d

Thei

I respond i

ill wliicl

the (lent

,, Aritlinu

I lUDider

I i iuu nia_

I ] Iroper i

Exec

to the IV

1. 11

2. D

3- 1

4. E

5. I



'a.

ther.

, and entire

the numer-

visiou may

method of

raic 57/7? i-

3f the divi-

ultiply the

le prodiier

remainder,

power of .."

rk is must

,3j' X DiviHor,

Fir>t lU'niainder,

_,( < Divisor,

Second Kcmaiiider,

.-•i .; Divifor,

Thin! luid last Koinaiiulcr,

DIVIHION.

Dividend.

3.^4 _ 4rJ + U^ + 3u- — 1

3.,-4 _ 3.^3 ^ 3.t;2

6:3

Divisor.

X' ^• + 1

- X'
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6. Divide j'^ — 1 l)y x—\.
When terms lire wanting in the dividend, tlicy may Im' roiiHidiTcd ;i>

zero. In tliiw liiHt cxerciHf!, tlio trrniH in r\ a*-', and x arc wanting. Hm
tlie beginner may write the dividend and i)erf()rni the operation tliuH :

X* + 0,r^ + 0/'' + Ox - 1 I x - 1

I

T* a^ + x"^ + X + 1

a^ + 0/^

ra- ce^

x' + Ox

x' — X

x^l
x-1

6

Tlio operation is tlms assimilated to tliat in which the expression is

complete; l)iit tlie aetual writing of tlie zero terms in tliis way is uii

necessary, and sliould Ik; dispensed with as soon as the student is ahli-

to do it.

7. Divide a^ — 'h( + 1 l)y a — 1.

8. Divide x^ -\- I by x + 1.

9. Divide %a^ + l;i5 by 'Za -f 5.

10. Divide a^ + 1 1)y (t + 1.

11. Divide «' + 'Za^ + by (fi -|- 'Za + 3.

12. Divide «" — 1 by a^ + 'hfi + 2a + 1.

13. Divide .t" — 1
*./•• + 'Mkc^ — 3;2 by x^ — 2.

10.14. Divide (.r3 — 'Zx + \) {.i^ — I'Zx — 10) by x^

For some purposes, we may equally well perform the operation by

bejifinning with tlio term containinjj; the lowest power of the (juantity,

or not containing it at all. Take, for instance, Example 9 :

125 + ^n^
I

5 + 2a

125_+ 50a 25 - 10a + 4a-'

-50a
- 50a - 20a^

20'^-' + 8a3

20r/'' + 8a3

15. Divide 1 + 3.r + 3;^-2 + 3^ by 1 + x.

16. Divide 1 — 4.r + 4.r^ — .t^ by 1 — x.

17. Divide 15 + 'Za — o(fi + (fi -\- Za^ — w' by 5+ 4« — (r.

18. Divide 1 — if by 1 + 2?/ + 2?/^ + if.

19. Divide 04— 04:?-+ lG.v2— 8x•3+"4.^•4— .?:«by —4+ 2:r4-2-l

20. Divide 04 — lG:/2 ^ .^ ^y 4 _ 4,^. ^ .^2.

ImJs ill t

Let u

10 power

to be .r, i

Let 1

the divid

dividend

Let 1

the divis

thiit tiie

Tiieii

nec
Iv (livis

1. T
ill tlio '

1VS])01U

2. T
sliall 1)(

tlie (livi

tlie quot

L T
iiiultiplj

est term

2. T
plyinp; t

tiie quot

Rem,

aeeordin
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i.sidcrcd ;i>

tin^'. I5iit

\ tliuH :

)reH8ion i>

way Ih nil

ent is ubli'

-10.

oration l)y

J quantity

,

• 4rt — ((\

\-2x+ x\

*.)7. Cask II. IVhru there are several alj^chraic syni-

IhJ.s in the ilirisnr and (tir'utciKl.

Let US HU])])ose thedivideiul and divisor arniiiiiicd acc(»rdin«T

10 powers of some one of the symbols, wliich we may suppose

to be .r, as in J^ TG.

Let us call A the coetlieient of the iiij^hest power of w in

the dividend, and // the term independent of x, so that the

dividend is of the form

^'1.'" + (terms with lower ])owers of.?') + //.

TiOt us call a the eoellieient of tbe highest power of w \\\

I lie divisor, and h tbo term of the divisor independent of .r, go

that tbe divisor is of the form

r/.r"* + (terms with lower i)0\vcrs of .r) -f h.

Then we have tbe following

Tlieorem. In orch'r that the diviclc'iKl may bo exact-

ly divisible by the divisor, it is necessary :

1. That tlie term containing the highest power of x
in tlu^ dividend shall be exactly divisible by the cor-

resi)onding term of the divisor.

2. That the term indopendont of x in the divid(Mid

sliall be exactly divisi])l(i by the corresi)onding term of

the divisor.

Rcamn. Tbe reason of this theorem is that if wo suppose

tlio quotient also arranged according to the powers of .r, then,

1. Tbe highest term of the dividend, Ax?^^ will be given by

nniltiplying tbe highest term of the divisor, ra-*", by the high-

est lerm of the (piotient. Ilenco we must have.

Highest term of quotient =

2. The lowest term of tbe dividend will l)e given by multi-

plying the lowest term of the dividend by the lowest term of

tlie rpiotient. Hence, we must have.

Lowest term of cpiotient = H
h

Rem. 1. Since we may arrange tbe dividend and divisor

according to the powers of any one of the symbols, the above

f
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thooroni must bo true wlmtevor 8}'nibol wo tiiko in [\\v place

of J'.

Rkm. '?. It (looH not follow tliat uli(>n tho conditions «»f

the tlu'oivnj are riillilU'd, the division can always be performed,

'ri.'is (|uef>tion can \)v decided only by trial.

Wc uow reaeh the followin*^ rule:

\. . Imtinjc hotli diridrnd (tiid di visor (ir.cord'nt'^ lo

ihc (tsrciidiifj^ or descending jxnrers of sonic comnKm
St/ in ho/.

II. Forn/ the prst term of the (jnotient hf/ diridhrj
the /irst term of the diridend Inj the Jirst term of the

dii'isor.

in. Afnlff/)7f/ the lehole dirisor hif the term thus

foinni, iind sulitroet the jn'oduct j'nnn the dirhtend.

IV. Treat the reniffinder rts o, iieir diridend In the

Sffnie ii'fui, and repeat the process an til a rcniftliidcr is

found irltlch Is not dlrlslIjJe hr/ the r/aotlent.

Ex. I. Divide x^ -\- 'Sax^ + oah: -f «=' by x + a.

OfEHATlON.

2ax^ -\- 'Sale

2ax^ + 2uh:

a\c 4- a^

a^x 4- a^

Ex. y. Divide x^ — ax^ + a {b -^c)x — alc—hx^—cx^-i-Ijcr

by 2- — <(,

Arranging acconMnff to § 76, we have the dividend as follows:

•'^ — (f(-{-b-\- c) x' + {(d) + be+ c(f) X — abo
\

x — (t

x^— (b-\-c)x -{- hex^ ax^

— (/; + c) .r2 4- {ab + be+ ca) x
— {b + c):}"^-^ {ab-\-ac)x

bcx — (the

hex — abc
0~

i

I.

2.

3-

4-

5-

s.

10.

1 1.
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EXERCISES.

I.

2.

3-

4-

5.

Div

Div

Div

Div

Div

6. Div

7. Div

S. Di\

9. Div

10. Div

II.

12.

Div

Div

Div

ido

ifk'

ido

ido

ido

ido

ide

ide

id(!

ido

ido

ido

ido

tlio dividond of Kx. 2 ultovo l)y j' — h.

tho dividend of Kx. 2 above l>y ./ — r.

(!•' ^ />:«
-f. Wah — 1 |)y a J^ h— 1.

(t^li^ + 'iahyi — {(('^ f l)i)x^ by ^^Z* + (^/ — //) .r.

(r,2 _ hr)^ -f S//V-1 l)y ^t'J + lir.

[a -f /> -f- r) {ah 4- /yr + m) — ahr by ^/ -f h.

\(( j^ b — v) {h -¥ c — a) {r -f a — h)

l)y (fl — Ir — r^ \- 'ihr.

f(^ -^ /;' 4. r'' _ 3^//*r' by ^^ 4- /; -f- c.

./ « + 4«» l)y :/•« — 2r/.r -f- 2a-.

a"^ {b -\-x) ^ 1/ {x — «)+(« — h) x^ 4- «i^

by X -\- a -\- U
:,-3 _ ^,.r2 _ hh- 4- ^//r' l)y (x — «) (.r 4- //).

UaKc^ — i\a\i^ 4- Oi^Ki'^— a' bv :>/f2,^a — a\

---

CHAPTER IV.

OF ALGEBRAIC FRACTIONS.

OS. Def. All Algebraic Fraction is tho (expression

of Jin indicated quotient when the divisor will not ex-

actly divide the dividend.

Example. The quotient of ;; 4- q is the fraction -•

Def. The numerator and denominator of a frac-

tion are caUed its two Terms.

Tr.ansforniatioii of Sinj»:le Fractions.

1)9. Reduction to Loioesl Terms. If the two terms

of a fraction are multiplied or divided by the same
(inantity, the value of the fraction will not be altered.

I
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ExAMPLi;. Consider th(^ fniction
ax

ay
X

If wc divide both

terms by a, the fraction will become -
J

y
ax _ X

'^y ~ y

Corollary. If the niinierator and donomiiiator con-

tain common factors, they may be cancelled.

D(f. When all the factors common to the two

terms of a fraction are cancelled, the fraction is said to

be reduced to its Lowest Terms.

To rcdncc a fraction to its Joircst terms, foctor both

terms, when necessary, and cancel all the coinnwn,

factors.

Ex. I. —-^ = -.
acny* en

The factor ay^ common to both terms is cancelled.

Ex. 2.
a'W' «=

The factor aW common to both terms is cancelled.

a'^x
Ex. X. Keduce -V

a^x

Here ({"x is a divisor of both terms of the fraction. Di-

viding by it, the result is .j* Ilcncc
(6 (Ox

1

a*-

Ex. 4.

Ex. 5.

a'i -(- ^al -^ 11 _ {n_±hY « +
a'- - b^ {a -f- h) (a — b) a — b

w a — nu _ {in — n ) u _
mx — nx {in — u) x

u
— a

X

%.
J)

I I.

13-

>.^-

EXERCISES,
Reduce the following fractions to their lowest terms

lOpqr

ayn

ahnx

I2axy
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30 {(i^ — 'Zax -\- .c2)

(ijl
— by— - - •

bxax

U' - Z>2

ai _ 'lab 4- -^

01^ -f y^
I I .

—7

13-
(f* b*

17-

a- - //-^

,,.:, __ y!)

axui — axn
_— - . — ,

/y ///;/, — byn

6.

8.

10.

12.

14.

16.

18.

:20(^r 4- .t)(?/? — w)

(l^f^-^bhl'

ay — by
'

r/2 + Aax + 4j2

rt2^4arJ

r/3 4- 8/y3

a^ -\-jib 4-^

)nx — nx

\a -\- b) (m — n)

lOO. Rule of Siynx i)i Frartioiix. Since a fraction i.< an

indicated (|U()tiont, tiiu rule of signs corre.s])ond.s to that for

division. Tlie following theorems follow from the laws of

]mdtiplicatlon and division:

1. If the tenns are of the same sign, the fraction is

positive ; if of oi)posite signs, it is negative.

2. Changing tlie sign of either term changes the

sign of the fraction.

8. Changing the signs of hoth terms leaves the frac-

tion with its original sign.

4. The sign of the fraction may he changed by
changing the sign written before it.

n. To these may be added the general principle that

an even number of changes of sign restores tlie fraction

to its original sign.

Ex.
a — a a

I. .
=

h -b
,^ a —a —a

Ex. 3
a — h

m — n

b_-a
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T

(

i

^

9

i

EXERCISES.
Express (lie following t'ruetiuns in Coiir din'crent ways with

respect to si^nis:

X — V
I .

'^
.

a

m
V

5- - II

2.

4-

6.
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1)0S.<1-

Ex. If wo wish to express tlic qnaiitity «A as a fraction

hiiviug xy for its denominator, wo write

ah.iif

xy
'

If tli(' (quantity is fiactioiuil, hotli terms of tiie

tVaetioii must be multiplied hy that factor wliich will

])i(Kluee the rtn|uii<'d denominator.

lv\. To express with tiie denominator nlfl, we niultijily

holli nieinhers hy nlr^ -^ h = nl?. Tiuis,

a _ a)ib^

b ~ nU^
'

This [:' cess is the reverse of reduction to lowest terms.

EXERCISES.
Exj)ress the quantity

1. a Avith the denominator h.

J-

4-

5-

6.

7-

8.

ax

ab

ni

n

- 1

in {n — p)

X -\- y
X — II

X + 1

a — i

a u

a ((

ti a

it

it

u

«

«

«

ax.

ab'K

n {x - y),

X.

a2 _ bK

u^ - f.

.r2 + 2a; + 1.

r/« - 1.

Noj»a(r.>» Exi>()ii(»nts.

lOo. By tiie principle of j^ 85, we ha\e

((a

(t>^

= rt"~*.

If we have k > n, the exponent of the second member of

tiie e(|nation will •" .u'<j;ativ«', and the first meml)er, hy can-
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i
'^'

1 i

celling n factors from each term of the fraction, will become

(V
k-n

Hence
ak-n

^ — ««-*.— a

By i)'itting for shortness k — 7l = .v, the equation will be

i = a-',
a"

Hence,

,4 nc^ativG cx])nncnt iiu/icdtcs the recipvocdl of tJir

coJ'resjwfKling (jiiaiitlty irith n positive e.r]>oneiht.

ffH

If in the formula «""* = . we suppose k = w, it will
(('^

a^
become «" = -, or ^^ — [. Hence, because a may be any

(|uantity whatever,

,///// f/fiajhtiti/ irith the rxponeiit /.s' f(inifl to iniitif.

This result nuiy l)o made more cloar })y suc-

cessive divisions of a ]»ovver of a h\ a. Every

time wo clfcct. tliis division, we diminish the rx-

ponent hy t, and we may PU])pos(' this diniiniition

to contimuf al^el)raically to negative values of

the exponent. On the left-hand side of the

equations in the margin, the division is etlected

symholienlly l)y diminishing the exponents ; on

the right the result is written out in the usual

way.

E X E R C J
'"- K S

.

In the following exc^'cisep. urii" 'he quotients which arc

fractional both as fractions reduced to their lowest terms, am!

as entire ((uantities with negative exponent -;, on the principle

r/3
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II become

ti "will be

a
t.
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. .r

iF't

E ^; n: R c I s E s

.

St'paratc into sums of fractions,

ahc -\- bed + cda -\- dab

((bed

— xj/zd + x^yz}(^ + xijh'U — x-if^z^u^

(("' - b^ ((h- - /ry
3- - „A— 4.

2.

5-

6.

7-

(y// — i() {n + y)
—

i>'f + >0 (;> — v)^

{m — n) {/) — (/)

(
' - ^0 (// - ^>') + {•>' - !/) {(f - b) + {x - h) (// - a)

rr'^ —
!l^

{a + />>) (w — n) — {a — b) {m -\- n)

'r/'-"^- b^

Ajy^'ojyatioii of* Fi'ju'tioiis.

105, When several fractions liave eqnal donomina

tors, their sura may be expressed as a single fraction

by a<]^gregating tlit^ir nnmei'ators and writing the com-

mon denominator under them,

A
Ex. I

Ex.

m
B CI _ A - n +_c
m m

~
m

a ~ h b — c c — (I

2. H H
X — y y — X X — y

X — 7 -^ — y ^ — y
~~

^ — .'/ -'' — //

Rem. This process is the reverse of that of dissecting a fraction.

EXERCISES.
Aggregate

a ab abc- a

abc abc abc

"x'— ff- ,y — ^ a -\- b x — y
((\z ah' a^x a^x

(a - bf {tt - by

3-

a — b b — a

a

III

c d

a — b b — a

a — c c

n m
b c -\- a

n n — m n — m
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100. Wlioii all llu' fractions iiavc tiot tht- same tlcnoiniiia-

tor, IIk'}' niiist be rt'duccd to u common denominator l»y the

process of § 102.

Anv common nuill )[)!(' of the denominators may i)e taken

;i- the common dcnomiualor, hut the least common multiple is

till' .<inii)lest.

To UKDUCK TO A COMMON DeNOM IN ATOi;. C/lonsr f(,

colli III itii III nil }pic of the (Iciioni'nuitdi'K.

,]//illi /ill/ htitli Icrnis oj' (t/r/i fntctlnn hif l/ie iiiiilti-

plii'i' ncccssKrij to cliaiiga its dcnoini iidtor In Ihc vliosrii

III lilt
}
pie.

Notf: 1. ^riie rei|nired multipliers will he the ([uotients of

I he chosen multiple by the denominator of each septirate

fraction.

KoTt: 9.. ^Vhcn the denominators have no commcm fac-

tors, the multi))lier for each fraction will he the product of the

denominators of all the other fractions.

XoTK 3. An entire (puintity must bo regarded as having

the dcnonunator 1. {% lO-.'.)

I

(

EXAMPLES.

— y
ction.

by

I. Aggregate the snm111 1
1 1

J.

a ab abc abed

in a single fraction.

The least common multiple of the denominators is abcil.

The separate multii)liers necessary to reduce to this com-

mon denominator are

abed, bed, cd, d, 1.

The fractions reduced to tlu' common denominator ^/i^'i/ arc

abed — bi-d -f- rd — d

abed' abed'' abed' i^^S^*^bcjiL*u^,

abed — bed 4-

ab(^ .

Hy disse(!liiig this fraction Ks in >< iBftHrTiiay 15c reduced

to its original lorm.

The sum is

t
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I

2. llcduce the sum

to a siiiKlu fraction.

1 a b G

a b c" d

Tlu' mnltii>liors are. ))y Note 2, bed, acd, nbd, abc.

Using tlicsc niultiitliery, the fractions l)ccome

bed — d'cd a/j^d — abc^

abcir abed ' aberr abed '

from which tlic required sum is readily formed.

3. Kcducc the sum

1 X
^

.r - 1 ^ :/; + 1

Tlie least common multiple of the denominators is x^

The multipliers are, by Note 1,

x^ — 1, X {- 1, X — 1, 1.

The sum of the fractions is found to he

x^ — 1 + X -\- 1 -^ x^ — X -\- a^ _ 3x^
-.2 _ 1

— ^_~i*

— 1.

EXEF^CISES.

Reduce to a single fraction the sums,

I

3

5

7

9

10

II

1 u X— 1

1 1

2. 1 —

1 — X 1 -^ X

X
ax x"

a -\- X a -i- X

a X

4

6.

X {a — x) a {a — x)

1 2?/

X -{- }j
:?-^ — y/2 :.—

If

1 1 1

a — b b — c c — a

a a

X + y x-y 12.

X -\-l

1 1
+

1 —X 1 -{- X

a b

a — b a -\- b

52x-.b
• 8- 4^2Tn +

2a; -1
3

X

a -\- b a— b
.— , „ I., — «

a — b a \- b

1



a;2— 1.

3— a

X

13-

14.

15-

16.

iS.

19.

20.

21.

22.

23-

24.

25-

26.

27.

28.

29.

30-

- (

1

FRACTIONS.

a

Tl

ai _ //a
rt — ^

"^
r/ + 6'

a (a; - 1) 'Z {x + 1) a;2

rt _ ^ \ a — bl

1- «

17. y '" -^ y
m'^ m (w — y)

yi

a

a — X d^ — x^

/> Z» — C 6" — r/. (r^ — //) {h — r) [c — a)

a'+O b~^~c c~^7t "^ (^+ /*) (/> + r)l;c^rt)*

m — (x — a) 7)1 — (./• 4- a)

X ^ y ~~ X — y

r?^ ^c «c

a

(^^ _ b) (^, _ "^ + {h _ ^^) (<r^^
"^

(c — r/) (6- -T)'

a; + 1 :?; — 1

x—V a; + 1

a X

X -\- a X — a

2x^ — 2a;?/ + ?/-

a;2 -f- ?/2

/y^^«2 _|_ ^y2

J^ 1 1

"(rt + Z*)'^
"^

{a - bf ^ d^ - 6«

r I

.
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¥i\v{in'\\\)x FriK'tioiis.

I()7. Tf scvcrjil terms of the immenitor ronlaiii a
roiuiiioii ra('t( th 'fncieiits of this WivU I)•oiuiiioii i.'icioi-, tiK' coenicKMiTs or tins ijictor tikiv ne

.'Hhh'd, jiiid tlicir a«i;i;i'('<i'{it(' iuiilti])li('(l hy the factor for

a new form of the inimeratoi".

I.

EXAMPLES.

ii.r — hx -|- c.r + dx __ {a — h -\- c ^ d) x

m m
X= {a-h-\-c + (/)-' (§101.)
in

nhx -f hex 4- (icji — ahjj _ {dh -f hr) x (ac — n/))
//

((On ((On fffni

= {n + c)
•'- + (c - /.) .^.

Kc'ilncc

EXERCISES,

a/)f/ — heII
— acy mnn, + ?»yt;?^ -\- pnu

aba
'

mu

3-

4-

5-

6.

8.

10.

aba

ax — /;// — 3Z>.r — 4^/?/

"Zma

Amx -f 2// — ^ax — Ora; -f rry

xyz

a^ 4- 2rt2^» + al)^ a^x — 4aZ'c — (3// — 4r) ^«

.T// J) + y

:r3?/ — [4./- + X (2b — -U;) -j- .^r/r]

r^r.?'^ — 4ra: — 3 [w./: + ?m (« — x) — atn]

2a — U
iaVx — 2cVx + 2bVj' — 2 {mn'^x — 4\/:r),

(ilor

lie II I)

3rt — \h
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?/—

«

On

MuUil>1i<'ii(i(>ii aiKl Division oC FnicrMMis.

|(),S. FnufhtntiiUal Thcon in.s in the M filfipliciUion.

and Diri.siou of Fractions :

Thi'orciii I, A fVnction may !)(» iriulti]tli(Ml hy any
.'liuiiitity l)y citlicr iiniltiplyiiiL;- its niiiiu'ratordrdix idiiio-

its (ieiKUiiinator by that ([uantity.

Cor. 1. A fnictioii iiiiiy ho mullipiit'd hy its (li'Moiniiiutur

l.y simply cjiiuH'lhii^^ it.

('or. 'i. ir the (It'iioiuiiiutor of the iVaction is u factor in

till' iiiiiltipiicr, cancH'l tiu' ili'iioniiiuitor to iiiiiUiply hy liii.s

factor, and tiien inidtii)ly the miiiu'rator hy this otliiT factors.

Ex.
7)1

X (ii (,ci — l)^) — am (./: -f />),

a [x — b)

hccausc tlic imdtiplicr r/-' (.<:' — /A') = a (x — Ij) n (./; + V).

Theorem II. A fraction niay^ Ix' divided by (dthcr

dividing its nnnu'rator or niuiti])]yin,i2: its dcnondnator.

Theorem III To multiply by a fraction, the multi-

plicand must be multi})licd hy the numerator of the

fraction, and this ])roduct must be divided by its de-

liOMUUatol'.

Let us multinlv , liv —
We multiply hy /// hy multiplying^ the numerator (Th. I),

and we divide hy n hy multii»lying the denonunator (Th. II).

Hence tlie ])ro(luct is ,
•

bn

That is, fhc product of the miDicrnfors is the nmner-
(itor of the ir(/iiirc(l frortion, (did tlic /ji'odnct of f/ia

daiioiniiuttors is its dciioniiiuitor.

Multiply

I. hy :>•

EXERCISES.

X — a

ah

— a.

— X
hy xy.

ah , X
2. - OV •

X '^ a

ac .

4. hy X
^ x — a^

2 a\

I
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I'-

i

i *,

aim

a — h

by mf
m

m by
a + b

ill

6. -^- by rta;3

8. a +

??i — a
• —

' (

X — m
m
]i

n

X
9. ab - ^ ))y ay +

If— ah

X
10.

??? + ?i

III — n
- by

oy ?i H

n — 111

m + ?i

/>.c , a
II. Multiply r« + -- by y + - +

?yi «

12. Ilea ace | in H 1 in 1

.

V in — n! \ m + nl

13. Reduce ia \ih ~\

14. Multiple b ~ by -•
^ -^ a '' X

711

15. Divide — by p.

16. Divide 7 hy a 4- h.
a — ''

Ans. —
np

17. Divide _ by re — 1.
a; + 1

-7

18. Divide 4-^-1 by 1 + x\
X — L

TA . 1 T "" r^a — oin , -,

19. Divide ---^-j-^^^- by i'* - fl^'^.

109. Reciprocal of a Fraction, The reciprocal of

a fraction is formed by simijly inverting its terms.

For, let ^ be the fraction. By definition, its reciprocal

will be

a

b

Multiplying both terms by b, the numerator will be b and

the denominator - x b, that is, a.

TT hHence the reciprocal required will be -, or, in algebraic
language, ^

I.
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a

b

a

110. Def. A Complex Fraction is one of vvliich

eitlier of the terms is itself fnictional.

a

h
Example.

Xm A—
y

(( X
is a complex fraction, of which is the numerator, and m +
tlio denominator. ^

The terms of the lesser fractions which enter into the

numerator and denominator of the main fraction may
he called Minor Terms.

Thus, b and y are minor denominators, and a and x are

minor numerators.

To reduce a complex fraction to a simple one, mnlti-

phj both terms by a multiple of the minor denominators.

Example. Reduce

am
y.

b h
y'^ X

Multijilying hoth terms by xy"^, the result will be

amx

winch IS a simple iraction.

EXERCISES.
Reduce to simple fractions :

I.

1+5
y

1

a
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I f*".

*.

1^ 'T

•il

IT.

13-

1 +
n — l

il -\- 1

1 - n — l

n + 1

am -



FllACTIONS. 8^}

EXERCISES,
D
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4. When the numerator or denominator of a fraction

is a proddct c^' several factors, any of these factors may
be ti-aiisferred from one.* term of the fraction to the other

by changing it to its reciprocal. That is,

1

air

'pqr

he p
ahc

1

a

Or,

jjqr

be

qr
etc.

etc.
abc __ be p~^abc

2)qr
~ (r^pqr ~ qr '

5. MiiUlpUcation by a factor

greater than unity increases,

less than unity diminishes.

Division by a divisor

greater than unity diminishes,

less than unity increases.

6. («) When a factor becomes zero, the product also

becomes zero.

1/3) AVhen a denominator becomes zero, the quotient

becomes infinite. That is,

X rt — « X == 0.

a
infinity.

Note. The following way of expressing what is meant l)y

this last statement is less simple, but is logically more correct:

If a fraction has a fixed numerator, no matter how
small, we can make the denominator so much smaller

that the fraction shall be greater than any quantity we
choose to assign.

EXERCISE.
If tlie numerator of a fraction is 2, how small must the

denominator he in order that the fraction may exceed one

thousand? That it may exceed one million ? That it may

exceed one thousand millions?

I
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BOOK III.

OF EQUA TIONS.

CHAPTER I.

THE REDUCTION OF EQUATIONS.

it>.

Definitions.

')ef. An Equation is a statenK^nt, in the han-

guage of Algebra, that two expressions are equjil.

111:. Def. The two equal expressions are called

Members of the equation.

115. Def. An Identical Equation is one which is

tiue for all values of the algebraic symbols wliicli enter

into it, or which has numbers only for its members.

Examples. The equations

14 4. 9 - 29 — G,

5 + 13 _ 3 X 4 - G = 0,

which contain no algebraic symbols, are identical equations.

So also are the equations

X = X,

X — X = 0.

{x 4- a) {x — (() — x^ — (fi,

(1-f y)(l-y)-l+.V^ = 0,

because they are necessarily true, whatever values "we assign to

.r, a, and y.

Kem. All the equations used in the preceding two books

to express the relations of algebraic quantities are identical

ones, because they are true for all values of these (pumtitics.

I

1 I',.

.f '
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*..

I, :j^ ,

^ :n

110. Dcf. An Equation of Condition is one wliicli

can 1)(^ true only when the algebraic symbols are equal

to (Certain quiuitities, or have certahi relations among
themselves.

Examples. The cijiiulion

x-\-i) = 22

can be true only when x is equal to 10, and is therefore an

equation of condition.

The e(iUiitioii

X -i- b = a

can be true only when x is equal to the difference of the two

quantities a and b.

Rem. In an equation of condition, some of the quantities

may be supposed to be known and others to be unknown.

117. Drf. To Solve an equation means to lincl

some number or algebraic expression which, being sub-

stituted for the unknown quantity, will render the

ec nation identically true.

.'his value of the unknown quantity is called a Root
Oi the equation.

EXAMPLES.
1. The number 3 is a root of the equation

2.6'2 _ 18 z= 0,

because when we put 3 in place of x, the equation is satisfied

identically.

2. The expression is a root of the equation

2cx — i:a + zh = 0,

when X is the unknown quantity, because when we substitute

this expression in place of .t, avc have

0,

2c

'

or 4fl! — 26 — 4rt 4- 2b

which is identically true.
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RvM. It is common in Elenu'iitiiry Al<]^cl)rii to r{>))ro.S('iit

unknown qiuintitict-i l)y tlio lust letters of tlio iilj)lialu't, und

(liumtitii'S siipixjsed to he known hy tlio first let tors. \h\t this

is not at Jill necessary, and the student should accustom him-

self to regard any one symhol as an unknown quantity.

Axioms.

118. Def. An Axiom is a proposition which is

taken for granted, without proof.

Equations are solved hy o})erati()ns founded npon the fol-

lowing axioms, which arc self-evident, and so need no proof.

Ax. I. If equal quantities be added to the two

members of an equation, the members will still be equal.

Ax. II. If equal quantities be subtracted from the

two members of an equation, they will still be equal.

Ax. III. If the two members be multiplied by equal

factors, they will still be equal.

Ax. IV. If the two members be divided by equal

divisors (the divisors being different from zero), tiny

will still be equal.

Ax. V. Similar roots of the two members are equal.

These axioms may he summed up in the single one,

SiniiUn^ opcroMons upon eq^ial quantities ^ivo equal

Tcsults.

119. An algebraic equation is solved by performing

such similar operations upon its tw^o members that the

unknown quantity shall finally stand alone as one

member of an equation.

Operations of Addition and Subtraction—Trans-
posing Terms.

130. Theorem. Any term may be transposed from

one member of an equation to the other member, if Its

sign be changed.

•I

M'

t

I
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Proof. Let us ])ui, it) uccoroliince will g 41, Jid IVin.,

/, any term of eitluT nic'inl)er ol' the L(|iiatiuu.

rt, all tlio other terms of tlie bamo member.

b, tlie opposite member.

The ecpuitiou is then

a-\- t = h.

Now subtract / from Itoth skies (Axiom II),

a ^ t — I := h — I ','

or by reduction, a -— h — I.

Tiiis e(|uation is the same as the one from wliicli wc started,

cxcejjt tliat / has been transposed to the second member, Avith

its sign changed from 4- to —

.

If the e(puition is

h — t =. n,

wc may add t to both members, wliich would give

h = a -\- t.

NUMERICAL EXAMPLE.
The learner will test eacli side of the Iblluwing equations :

19 + 3-0 + -1 =: 7 + 10.

194_.3_0 - 7+10-4.
19 + 3 — 7 + 10-4+ 0.

3 = 7-1-10-4+ 9-19.

= 7+ 10—4+ 9-19-3.

All the terms of either member of an
equation may be transposed to the other member,
leaving only on one side.

Example. If in the equation

h = a-\- t,

we transpose h, we have = « + ^ — J.

By transposing a and t, we have

J) — a — t =z 0.

133. Clianging Signs of Members. If we change the signs

of all the terms in both members of an equation, it will still

be true. The result will be the same as multiplying both

Trans[)osing 4,

« 19,

3,

131. Rem.
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iiu!iiibers by — 1, or tninsposinj^ all tlio Utiiis ol' each member

to the other side, iiiul then exeluing.ag the terms.

ExAMPi.K. Tlie efiiuition

J ; + 8 = 1 1 + 1

4

may 1^' transformed into = ll-fl-i — 17 — 8,

or, 0~ —11 — 14 + 17-1-8,

or, -17 — 8 = - 11 - 14.

.

Oper.ation of 3Iiiltiplieation.

1*33. Clear in(j of FradioHK. 'I'ho operation of multii)li-

ciition is usually performed upon the two sides of an e(puition,

ill order to elear the ('(piation of I'raetions.

To clear an equation of fractions:

First Method. Multlphj its nivnihcrs hij the least

roninwJb multiple of all Us: (loioDuiiafoj's.

Second Method. Maltiphj its inemhci - hy each of
the (leiioniiiiatnrs in succession.

Rem. 1. Sometimes the one and sometimes the other of

these methods is the more convenient.

Rr.M. 'I. Tlio operation of clearinf]^ of fractions is similar

to tluit of reducing fractions to a common denominator.

Example of First Method. Clear from fractions the

eqnatioix XXX
4 + + 8 = *"•

Here 24 is the least common multiple of the denominators.

Multiplying each term by it, we have,

e.-r + 4.r + 3;c — G24,

or 13a; zn 624.

Example of Second Method. Clear the equation

a a c

X a
+ ' = 0.

X + a X

Multiplying by x — a, we find

ax — «2 (^x — ea „
a [ 1 = 0.

i:

\ H

n

X -{• a X
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Mul(ii»lyiiif? l)y x -f a,

(IX + (I- -j- ((.r. — a^ -\ -
X

\ivd[iv'u\<i; antl iniiltijdyiui,' l)y x,

"iax^ + cx^ — cit^ = 0.

EXERCISES.
Clear tlic following cfiiuitioiis of fniofioiifs

= 0.

— G = 0.
x — -n

2
+ = 0.

//

ah
+ • 4- , =:

(( (m
X x

X — a X \- a

X -\- a x'^ -i- 2ax

1.

a a

x

%

X — (I X — a

a
II. — =

10.

12.

X — (i X -[• b

X — 'i _x + 'i

X — 5 X + b

X — a X -j- (I

y X -\- a a
+

a
0.

13-
X

+ //

a — b I) — a
— = z.

Here tlie second term Ih the same as
-y

a — b

14.
X + a

a a

Iletluetioii to the XoriiuU Form.

12t. Dff. An equation is in its Normal Form
wlion its terms are reduced and arranged according to

the 2)owers of the unknown quantity.

In tlie normal form one member of the e(|mition is expressed

as an entire funetion of the unknoAvn quantity, and the other

is zero. (Compare §§ 50, 70.)

To reduce an equation to the normal form

:

I. Transpose all the tcnns to one nvemher of the equa-

tion, so as to leave as the other meviber.
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= 0.

II. CIrat' the cqiKtHoii, af fntctinnfi.

III. i'lrar flic njndthni of ftftrcnUusrs hij perform imi
(ill llir opi-nifions inilirn,

IV. ('ollrcf ((irii. net of firms ronfdiniiifj like /jowrrs

oj' till' itiiknoirii i/fiKufifi/ info a sinjjlr our.

\ . Diriilr hij an if ronnnoii fuvlor wiiirli dors not ron-

hiiii flir iinK'iioirn, (/iKtnfifi/.

llVM. Tliis order of o[)orjiti()ii.s nuiy hv deviiitt'd fV(»ni

:i((nrdin«f tocirciiiiistant'cs. Afteru littk' prjictice, tlie HtiuU'iit

iii;iy take tho shortest way of reaching the result, without re-

tfpcet to rules.

EXAMPLES.
I. lieduce to tiio normal Torin

(x - 2) (./• - li) ^ {x + 2) (a: + 4)_

X — X + ij

X Clearing of fractions,

(x + 5) {x — 2){x — 3) = {x — 5) {x f 3) (x + 4).

)l. Performing the imlicated operations,

0^ _ lo.f 4- ;}() =: jf^ + .t2 — nx — 40.

3. Transposing all the terms to tho second member and

reducing,

=z X? — ^x — 70,

Avliicli is tho normal form of tho equation.

Rem. Had we transposed the terms of the second member
to the first one, the result would have been

_ a;2 _^ 3^ + 70 = 0.

Either form of the equation is correct, but, for the sake of

uniformity, it is customary to transpose the teiais so that tho

coetJicient of tho highest power of x shall be positive. Ii it

comes out negative, it is only necessary to change the signs of

all the terms of the equation.

Ex. 2. Reduce to the normal form,

bmx'^ 2nx Smx^

X — a x + a x^ — cv^

%mx — 5rt.

•i

'
'

' .

» » !1

" 'i \
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\n

1. Transposing to the first member,

bmx^ 2ax 'Sinx^—
, ,,—

7i
— 2mx + oa = 0.

X — a X -\- a x^ — a^

2. To clear of fi-actions, we notice that the least common
mnltiplc of the denominators is x^ — tfi. Multiplying each

terra by this factor, we have,

bmx^{x+a)—Zax{x—a)—^mx^—)lmx{x'^—(e)^ba{x^—a^) = 0.

3. Performing the indicated ojierations,

5)ux^ + bamx^— 2ax^ + 2a^x—3mx^—2mx^ + 2ahnx y bax^— 5a^=z0.

4. Collecting like powers of x, as in § 7G,

(3ff + 6am) x^ + {2a^ + 2a^m) x — 5a^ = 0.

5. Every term of the equation contains the factor a. By
Axiom IV, § 118, if both members of the equation be' divided

by a, the equation will still be true. The second member
])eing zero, will remain zero when divided by a. Dividing

both members, we have

(3 + 5m) x^ + 2a (1 + m) x — 6a^ = 0,

which is the normal form.

EXERCISES.

i.'»i

Reduce the following equations to the normal form, x, y,

or z being the unknown quantity :

I.

3-

4.

5-

6.

7-

'df±2y _ y-J
7

~ 2 *

x-H _ 2x + 6

2a; + 10
"~

4a; — 2"

of _ 'Sa^x + 2«3

2.
X — a X -\- a

— '" — - '

X -\- a X

2x -\- a
x^ — bax = 7a;^ — bax^

2x — a

a-y a + y ay-

a \-'b h -Y z a ^ z
0.

+
aH

a —z a^ — x^ z^ — a^
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7 + - + -V, + -3 = 0.

a
+

a'
+

«•

X — a x^ — aJ^ x^ — a^
= 1.

10.

II.

13-

14.

15-

+
b^

+
b* ¥

c — z <? — 'i? d^ — '^ & — z^

16.

a b

, 1 X — a

X
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An oqnation of the third degree is also called a

Cubic Equation.

Example. The o(iiiation

ax^ -\- bx^y^ - y^ + «^z =
is a qnadra^ic eqiuition in x, because x/^ is of the higliest power

of ^ which enters into it.

It is a cubic equation in y.

It is of the first degree in z.

-^-•-t-

CHAPTER II.

EQUATIONS OF THE FIRST DEGREE WITH ONE
UNKNOWN QUANTITY.

136. Remark. By the preceding definition of the degree

of an equation, it will be seen that an equation of the first

degree, Avith x as the quantity supposed to be unknown, is one

which can be reduced co the form

Ax -\- B = 0, (a)

A and B being any numbers or algebraic expressions whicli

do not contain x.

Such an equation is frequently called a Simple Equ.'iciuii.

Solution of Equations of the First Dc',5ree.

137. If, in the above equation, we transpose tbo term B
to the second member, we have

Ax — —B.
If we divide both members by A (§ 118, Ax. IV), wv have,

B
AX =

Here we have attained our object of so transforming the

equation that one member shall consist of x alone, and the

other member shall not contain x.
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JJ .

To prove that is the required value of x, we substi-

tute it for X ill Uie equation {a). The equation then becomes,

or, by reducing, - B + B = Q,

B
an ei|uation which is identically true. Therefore, 7 is

the required root of the equation {(i). (§ 117, Dvf^

138, In an ecjnation of the first degree, it will be unneces-

sary to reduce the equation entirely to the normal form by

transposing all the terms to one member. It will generally l)e

more convenient to place the terms which do not contain x in

the opposite member from those which arc multiplied by it.

Example. Let the equation be

mx -\- a ^ nx 4- h. (1)

"We may begin by transposing a to the second member and

nx to the first, giving at once,

or

mx — nx =. h — a,

{m — n) X = Z> — a,

without reducing to the normal form. The final result is the

same, whatever course we adopt, and the division of both

members by m — n gives

X = h-a
m — n

131). The rule which may be followed in solving equations

of the first degree with one unknown quantity is this:

I. Clear the equation of fractious.

II. Transpose the terms which are imdtipliecl hy the

unhnoivn quantity to one member ; those which do not

contain it to the other.

III. Divide hy the total coefficient of the unknown
quantity.

i;

4'

si

'i^r

f '

\

I
' ^1

' if

1 ,'i
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Note. Rules iu Algebra are given ouly to eiiublc the beginner to go
to work in a way which will always be sure, though it may not always

be the shortest. In solving equations, he should emancipate himself

from the riiUis as soon as possible, and be prepared to solve each equa-

tion presented by such jjrocess as appears most concise and elegant. No
operation upon the two members iu accordance with the axioms ^§ 118)

can lead to incorrect results (provided that no quantity which becomes
zero is used as a multiplier or divisor), and the student is therefore free

to operate at his own pleasure on every equation presented.

I. Given

EXAMPLES,

ax

bij
= 1.

It is required to find tlie value of each of tlie quantities a,

h, X, and y, in terms of the others.

Clearing of fractions, we have

ax =1 ly.

To find a, we divide by x, which gives

dy

X

To find hf we divide by y, which gives

ax— = 0.

y

To find x, we divide by a, which gives

by

a

To find y^ we divide by h, which gives

ax

T = 2'-

Thus, when any three of the four quantities a, b, x, and y,

are given, the fourth can be found.

2, Let us take the equation,

x-7 _ 2a; + 6

2a; + 10 ~ 4:x — 2

Clearing of fractions, we have

4?;2 _ 30x + U = ^x^ + 33a; + 60.
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Transposing und reducing,

— Q'2x = 46.

Dividing both members by — 02,

^ _ _ 4(3

62 ~ ~
62

X = 33
"1

This result should now bo proved by computing the value of both

members of the original equation when

X X ax 1

"^ m. n

23 .

31
is substituted for x.

b m
Proceeding in the regular way, we clear of fractions by

multiplying by vinh. This gives

nbx -\~ mbx = amnx — nb.

Transposing and reducing,

{nb + mb — amii) x = — nb.

Dividing by the coefficient of x,

nb _ 7ib

nb + mb — amn amn — ynb — nb

These two values are equivalent forms (§ 100).

But we can obtain a solution without clearing of fractions.

Transposing -r- , we have

X X ax 1

m n b ~ 7u'

which may be expressed in the form

n 1 a\ 1
(- H y)^ =
\tn n bl m

Dividing by the coefficient of x,

1

m
x =

1^ 1

m n

a

b

This expression can be red. ced to the other by § 110.

7

I !

iij

'(

I.'! :|

!'

.r\ i]
4<

n !
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EXERCISES.
Find the values of x, y, or u in the following equations

:

o — 3.^ 8,/- — !)

I.

3-

5-

7-

9-

1 1.

12.

13-

14.

18.

19.

20.

2 3

X X X

1 + a + 3 = ^«-

" + !-" = 1.
C^ 6* C

i« ?« if.

o 4

2. — X = a

X -\~ ^ f

)

4-

6.

x — 1

?^ — 5

= 9.

- 15.

1 1
- J

8. rt — kv = h + nx.

10. ^X H -— z=z X,
o

_a _ c

c — X ~ a — x'

X — 1 _a; —

2

X ~2~ x~3
-y - a — b.

1 1

r?; —

5

^ —

G

1

x — 6

1

.r — 2 a; — 4 a; — 6 a-' — s'

^- ^(-l)-3(-^-4)+i(^-I) = 0.

16.
f- =:

a b — a b ^ a

X 1
17. ax -\- b :=! - -v- -.

a b

II ~ a u — b u
-|— - _j

—

~ _ u — {a J^b ^ c)

abc

m + n.

h c a

m (x + a ) n {x + b) _
X -\-b

"^
X -{- a~

{.v-ay -^-{x-br + {x-cY =. 3 (rr-a) (.',_^) ^x-c).

Find the values of each of the four quantities, a, b, c, and
d, 111 terms of the other three, from the equations

d - ah21.
a

b - c
+ r^-^ = 0. 22.

^^J+1=.0.
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ONE UNKNOWN QUANTITY.

Frobleins leading- to Simple Eciuations.

1)9

i;>(). Tlie first difficulty which the beginner moots witli in

(lie solution of an algebraic problem is to state it in the form

of an equation. This is a process in which tlie student must

(Ie})end ui)on his own powers. Tlie following is the general

phiti of proceeding :

1. Study the ])roblem, to ascertain what rinantities in it

are unknown. There may be several such quantities, bnt the

])roblems of the present chapter are such that all these (|uan-

tities can be expressed in terms of some one of them. Select

that one by which this can be most easily done as the unknown
([uantity.

'I. Represent this unknown quantity by any algebraic sym-

l)ul whatever.

It is common to select one of the last letters of the alpha-

bet for the symbol, but the student should accustom himself

to work ec[ually well with any symbol.

3. Perform on and with these symbols the operations re-

quired b) the iiroblem. These operations are the same that

-would be necessary to verify the adopted value of the unknown
((uantity.

4. Express the conditions stated or implied in the problem

In' means of
fThe

equation,

solution of this equation by the methods already

explained will give the value of the unknown quantity. It is

always best to verify the value found for the unknoAvn (quan-

tity by operating upon it as described in the equation.

'. 1

[x—c).

c, and

EXAMPLES,
I. A sum of 440 dollars is to be divided among three people

so that the share of the second shall be 30 dollars more than

tliat of the first, and the share of the third 80 dollars less than

those of the first and second together. What is the share of

each ?

Solution. 1, Hero there are really three unknown quantities, hut

it is only necessary to represent the share of the first by an unknown
evinbol.
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i-

2 Tlieref(iru let us put

X =. share of the first.

8. Then, by the terms of the statement, tlie share of the second will be

X ^- 30.

To find the share of the thu \ we add these two together, which makes

1x + 30.

Subtracting 80, we have

'Xx — 50
as the share of the third.

We now add the three shares together, thus,

Sharo of first, x
« " second, a; + 30

" " third, "Ix — 50

Shares of all, ^x — JiO

4. By the conditions of the problem, these three shares must together

make up 440 dollars. Expressing this in the form of an equation, we

have
4^• — 20 = 440.

5. Solving, we find

a: = 115 = share of first.

Whence, 115 + 30 = 145 = share of second.

115 + 115 _ 80 i:= ISO = share of third.

Sum = 440. Proof.

Ex. 2. Divide the number 90 into four parts, snch that

the first increased by 2, the second diminished by 2, the third

multiplied by 2, and the fourth divided by 2, shall all be equal

to the same quantity.

Here there are really five unknown quantities, namely, the four parts

and the quantity to which they are all to be equal when the operation of

adding to, subtracting, etc., is performed upon them. It will be moi^t

convenient to take this last as the unknown quantity. Let us therefore

put it (Hjual to u. Then,

Since the first part increased by 3 must be equal to w, its value will

be u — 2.

Since the second part diminished by 2 must be equal to ti, its value

will be u + 2.

11

Since the third part multiplied by 2 must be w, its value will be ^
•

Since the fourth part divided by 2 must make u, its value will be 2m,



ONi: UXhWOWN QUANTITY. 101

Adding these four [uirta up, tlicir sum is found to \w
0'/

\\y the conditions of the problem, this sum must make up the nam-

]mi- UU. Therefore we huvo

9w

2
= 90.

Solving this equation, we find

It = 20.

Therefore

1st part = u — 2 = 18.

2d " = K -{-2 = 22.

3d " = u-^2 = 10

4th " — 2u - 40.

The sura of the four equals 90 as required, and the first part increased

by 2, the second diminished by 3, etc., all make the number 20, as re-

el ui red.

PROBLEMS FOR EXERCISE.

1. What number is tliat from whicli avo ohtain the same
result Avhelher we multiply it by 4 or subtract it from 100?

2. What number is that which gives the same result when
^\Q divide it by 8 as when we subtract it from 81 ?

3. Divide 284 dollars among two people so that the share

of tlie first sluiU be three times that of the second and $10
more.

4. Find a number such that \ of it shall exceed \ of it

by 12.

5. A sliepherd descrilies the number of his sheep by saying

tliat if he had 10 sheep more, and sold them for 5 dollars each,

lie would have G times as many dollars as he now has sheep
lluw many sheep has he ?

6. An applewoman bought a number of apples, of which
GO proved to ne rotten. She sold the remainder at the rate of

2 for 3 cents, and found that they averaged her one cent each
for tlie whole. How many had she at first?

7. If you divide my age 10 years hence by my age 20 years
ago, you will get the same quotient as if you should divide my
present age by my age 26 years ago. What is my present age ?

8. Divide 1500 among A, B, and C, so that B shall have
$20 less than A, and C $20 more than A and B together.

'I : j ,J

.J

ii

n^^
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'if

9. A fiitluT left 810()(>() to l)L' (lividtd amon^' his five cliil-

dreii, (liivc'tiii,!,^ llitit oacli shoiikl ivcoive !?<,">()() iiu»i-o than thf

next younger one. What was the share of each ?

10. A man is years older tlian his wife. After tliov hiivc

been married 1^ years, 8 times lier ji^'e would make )' tinu^
liis acfe. Wiiat was their a^re when married?

11. or three brothers, the vounijest is S vers vonnffer thiiii

the second, and the ehlcst is as ohi as tiie othe • two to;^i'ther.

In 10 years the sum ol' tiieir ages will be l^iO. What are their

present ages*''

12. The head of a fish is inches long, the tail is as lon:r

as the head and hall' the body, and the body is as long as the

head and tail together. What is the whole length of thelishr

13. In dividing a year's profits between three ])artners, A,

B, and C, A got one-fourth and SlOO more, B got one-thini

and '^'M){) more, and C got one-lil'th and ^^^ more. What was
the sum divided ?

14. A traveller in([uiring the distance to a city, wiis told

that after hv liad gone one-third the distance and one-lhiid

the remainii.g distance, he would still have 30 miles more to

go. Wliat was the distance of the city?

15. In making a journey, a traveller went on the first day
one-lil'th of the distance and 8 miles more ; on the second day
he Avcnt one-lift h the distance that remained and 15 miles

more; on the third day he went one-third the distance that

remained and VI miles more ; on the fourth he went 35 miles

and finished his journey. What was the whole distance

travelled ?

16. WHien two partners divided their profits, A had twico

as much as 15. [f he paid R ^'.W), he would only have half as

much again as B had. What was the share of each ?

17. At noon a ship of war sees an enemy's merchant vessel

15 miles away sailing at the rate of miles an hour. How fast

must the ship of Avar sail in order to get within a mile of the

vessel by o'clock ?

18. A train moves away from a station at the rate of U

miles an hour. Half an bour afterward anotber train follows

it, running w miles an hour, llow long will it take the latter

to overtake it ?

19. What two numbers are they of which the difference is

9, and the difference of their squares 351 ?

20. A man bought 25 horses for 12500, giving $80 a piece
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f(ir poor liorsos and ^\'M) cnicli for p^ood ones. ITow many of
(,;i(li kind did iio hiiy ?

2\. A man is 7^ yt'ars older lliiin lii. wife. In IT) years llio

sums ol' their a.ir*-''^ u ill be (liree tiii'.es {\\v present a^e ol" llie

wiiV. What is tlic a^a' of'oaeli y

22. IIow r.ir can a pei'son utio lias S hours to spare ritie in

\{ coaeli lit the rate of <i miles an hour, so that he can return at

the rate ol* -l miles an hour ami arrive home in time?

23. A workin<Tf alone can do a piece of work in 15 days,

iuid B alone can perform it, in \'l days. In what time can thiy
jierl'orm it if both work together ?

Mktiiod of SoiaTiON'. Tn (m<> day A ran do ,V. of Ihc wlmlc work
and H can do ,',.. Hence, both together can do (,ij+

,V,)
of it.

If both together can do it in x daya, '.^'en they can do (jf it in 1 day.

1 1

la
"^

15
Hence,

is the e(i nation to be solved.

24. A cistern can bo fdled in VI minutes by two pipes wliieh

niu into it. One of them alone will fill it in )iO minutes. In
what time would the other one alone till it ?

25. A cistern can be emi)tie(l by three pii)es. The second
])ipe runs twice us much us the first, an<l the third us much as

the first and second together. All three together can ein))ly

the cistern in one liour. In what time would each one sepa-

rately empty it ?

26. A marketwoman bouglit apples at the rate of 5 for two
cents, and sold half of them at 2 for a cent and tiie other half

ut ;] for a cent. Iler profits were 50 cents. How many did
.she buy ?

27. A grocer having 50 pounds of tea worth 00 cents a

pound, mixed Avitli it so much tea ut 60 cents u pound that

the combined mixture was worth 70 cents. How much did

he add ?

28. A laborer was hired for 40 days, on the condition that

every day he worked he should receive; $1.50, but sliould for-

feit 50 cents for every day he was idle. At the end of the

time $52 were due him. How many days was he idle ?

29. A father left an estate to his three children, on the

condition that the eldest should he paid -$1200 and the second
-^SOO for services they had rendered. The renuiinder was to be

eijually divided among all three. Under this urrangement,

"I, !

, \

''
I

f

.(

i:

>' '}
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the yoniifjcsf. ^ot onc-fourtli of the estate. Wluit was tho
amount divi<h'(l ?

30. A person hiivin<( a .sum of money to divide umon;;
three pcoidc '^x\\(\ llic lir-l one-third aixi '^'10 nmre, tlic second
oiie-tliii'd of wiiat was left and %<•.'() ninri', and tiie tliird one-

(iiii'd orwiial, was then Kd't and ><•.'(> more, whiedi exliunsleil ihe

uinonnt. How nnndi had they to divide?

31. One shepherd spent $7'*0 in sheep, and another <,'ol tlie

panie !inniher of shi'cp for ^48(», paying' %'l a i)iece less. What
priee did each pay?

32. A crew which can ])ull at the rafe of !) miles an hour,

finds that it takes twice as h)n;^^ to ;^o up the river as to go
down. At what rate (hjes the river How ?

33. A person who ))ossesses ^1:^()00 employs a porti(»n of

the money in huildin<^ a house. Of the money Avhich I'cmains,

lie invests one-third at four jx-r cent, and the otlier two-thirds

at live per cent., anil ohtains from these two investments an
annual income of ^'.VXl. Wiiat was the cost of the iiouse ?

34. An income tax is levied on the condition that the fh'st

$000 of every income shall he untaxed, the next 80OOO shall

be taxed at two ])er cent., and all incomes in excess of $l)(i(M»

shall he taxed three ])ereent.on the excess. A person linds

that hy a unilorm tax oftwo^jjer cent, on all incomes he would
save $"-iOO. What was his inco' -c ?

35. At what time hotween IJ and 4 o'clock is the mhmte-
hand 5 minutes ahead of the hour hand?

36. One vase, holding;' d gallons, is full of water; a second,

liolding /; ^^allons, is full of brandy. Find the cai)acity of a

di))per such that whether it is tilled from the first vase and tho

water removed replaced by bmndy, or tilled from the second

vase and the latter then ill led with water, the strength of tho

mixture will be the same.

37. Divide a number w into four such parts that the first

part increased hy a, the second diminishetl by (t, the third

multiplied by a, and the fourth divided by a shall all be eipuil.

38. J3ivido a dollars junong five brothers, so that each shall

have u dollars more than the uext younger.

39. A courier starts out from his .station riding 8 miles an
houi'. Four hours afterwards he is followed by another riding

10 miles an hour. How long will it rerpiire for the second to

overtake the first, and what will be the distance travelled?

If X be the nuiuln'r of hours required, the serond will liave travelled

X hours and tho first (,?' + 4) hours when they nieu't. At this time thej

must have travelled eciual distances.

T^et
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Problem of i\w Couriers.

Ijot us fifoncnili/.L' the prcct'din^' problem llius :

ltd. ./ cniirirr shu'ls out from his shiHoit riiUn<J e

itiilrsitii lioiw; h /tours luhr.hr is j'olloiriil liij iiiiolher

villi ii'J ft milrs an /tour. How /otto' iril/ //ir /iit/rr /if in

tirrrt(t/\'ifto' /Itr jirst, (fti(/ ii'/iul iri// /ir l/ir (/istaiici' froit)

tlir />oiiit of (Irfirtrtitrr.

Lot lis ])ut t for the lime re<juiiT(l. Tluii llie first courier

will liiive travelled (/-f//) hours, und the second / hours.

Since the lirst travelled r miles an hour, his whole distunce at

the end of /-f/i hours will l)0 (/ + //) r. In the same way, tlie

distance tr.ivelled by the other will he of. When the hitler

overtakes the former, the distances will be ecjual ; hence,

at = /•(/ + //).

Solving this cfjuation with respect to /, we llnd

r/t
t =

n — ('

(1)

c^)

Multiplying by a gives us the whole distance travelled,

which is

Distance = —

•

a — c

This equation scdves every problem of this kind by substi-

tuting for rt, c, and // their values in numbers sujjposed in the

problem. For example, in Problem 39, we supjwsed (i = 10,

(- = 8, Ji = 4. Substituting these values in equation (^i), we

lind

which is the number of hours required.

To illustrate the generality of an algebraic problem, wo

shall now inquire what values t shall have when we make dif-

ferent suppositions I'cspecting n, r, and //.

(1.) Let us suppose <( = r, or a — c -= 0. that is, the rates

of travelling equal. Then equation (^) will become

c/i
t = ' i

0'
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M- :

fill expression for infinity (§ 112, G), showing tliat the one coiiriur

Avould never overtake the other. This is phiin enough. But,

(2.) Let us supjiose tliat the second courier does not ride

80 fast as the lirst, that is, a less than c, and a — c negati\('.

Then tlie fraction —— will not be infinite, l)ut will he neija-
a — c

°

tive, because it has a positive numerator and a negative denuin-

iuator. It is plain that the second courier would never overtake

the first in this case either, because the latter would gain on

him all the time
;
yet the fiaction is not infinite.

What does this mean ?

It means that the problem solved by Algebra is more gen-

eral, that is, involves more particular problems than wei\'

iin})lied in the statement. If we count the hours af/er the

second courier set out as positive, then a negative time will

mean so many hours before he set out, and this Avill bring out

a time when, according to our idea of the problem, the horses

were still in the stable.

The explanation of the difficulty is this. Suppose S to be

the point from which the couriers s arted, and AB the road

{lion
Of which they travelled from AS

8 toward B. Suppose also that mm^^m^^^^^mmm^^.^^

the first courier started out

from S at 8 o'clociv and the second at 12 o'clock. By the rule

of positive and negative quantities, distances towards A arc

negative. Now, because algebraic quantities do not commence

at 0, but extend in both the negative and positive directions,

the algebraic problem does not suppose the couriers to have

really commenced their journey at S, but to have come from

the direction of A, so that the first one passes S, without stop-

ping, at 8 o'clock, and the second at 12. It is plain that if tli-

first courier is travelling the faster, he must luive passed the

other before reaching S, that is, the time and distance arc

both negative, just as the problem give< them.

The general principle here involved may be expressed thiv;:

In Ahjchi'K. roads and journey.^, like (line, have no hegln'

ninfj and no end.

B
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(3.) Let us suppose Ihnt the Cv)uricr,s start out at the same

lime and ride with the same speed. Tlien li and a — c are

both zero, and tlie expression for / assumes the Ibrm,

t =

Tliis is an expression •\vhicli may luive one value as well as

another, and is therefore indeterminate. The result is correct,

Ijucause the couriers are always together, so that all values of

/ are equally correct.

The equation (1) can be used to solve the problem in other

fi)rms. In this equation are four quantities, (f, c, h, and /, and

wlicn any three of these are given, the fourth can he found.

There are therefore four problems, all of which can be solved

IVom this equation.

First Photilem, that already given, in which th(> time

required for oue courier to overtake the (>thcr is the unknown
quantity.

^^ECOXD Problem. A courier sets out from a station,

riding c miles uu hour. After h liours another folloivs

Jiini from the same station, intending to overtake him
ill t hours. How fast must he ride ?

The problem can be put into the form of an equation in

tlie same way as before, and we shall have the equation (I),

only a will now be the unknown quantity. If we use the

numbers of Prob. 39 instead of the letters, Ave shall have, in-

stead of equation (1), the following :

IGa = 8 (10 + 4) z= 8-20 = IGO,

whence a = 10.

If we use letters, we find from (1),

c {f + h)
a =

t

and the problem is solved in either case.

Third Problem. The second courier can ride Just a
miles an hour, and the first courier starts out h hours

t; .

I

'

I 1

t ;
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m

hefore li'nn. How fast must the latter vide in order that

the other may take t hours to overtake him?

Here Cy the rate of the first conricr, is the unknown quan-

tity, and by solving equation (1)^ j tind

at

t + h

FouitTiT Problem. The swiftest of two couriers can

ride a miles an hour, and the slower c Tuilcs an Jtour.

How long a start must the latter have in order that tlte

other Diaij require t hours to overtake him?

Here, in ecjuation (1), h is the unknown quantity. By
solving the equation with respect to h, we lind,

^ cd. — ct
h = —-,

wiiieh solves the problem.

11

PROBLEMS OF CIRCULAR MOTION.

40. Two men start from the same poirt to run repeatedly
I'ound a circle one mile in circumference. If A runs 7 milt's

an hour and B 5, it is required to know

:

1. At what intervals of time will A pass B ?

2. At how many different points on the circle will they be

together?

We reason thus : since A runs 3 m.'les an hour faster than B, he <jieta

away from him at the rate of 2 miles a; hour. When he overtakes him,

he will have gainnd up )n him one cirenmterence, that is, 1 mile. Thin

will require 80 minutes, which is therefore the required interval. In

this interval A will have gone round ii^ and B 2^^ times, bo that they will

be together at the point opposite that where they were together 'M

minutes previous. Hen le, they are together at two opposite points oi

the circle.

41. What would be the answer to the preceding ques-

lioii if A should run S mi^.es an hour, and 1> 5?

42. Two race-horses ruii round and I'onnd a course, the

one inakin^^ the circuit in 30, the other in 35 seconds. If

thev start out too;ether, liow lono- before they will l>e

to<>-etlier ao-ani 'i

Note. In x seconds one will make .'
. circuit and the other „_.

43. If one planet revolves round the sun in T and the

other in T' years, wliat will be the interval between their

conjunctions^ i

tity.
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CHAPTER ill.

EQUATIONS OF THE FIRST DEGREE WITH SEVERAL
UNKNOWN QUANTITIES.

Case I. Equations tvith Two Unknoivn Quan-
titles.

\ti2, Def. An equation of the first degree with two
unknown quantities is one which admits of being re-

duced to the form

ax -{- bi/ = c,

in which cc and y are the unknown quantities and cr, &,

and c represent any numbers or algebraic equations

which do not contain either of the unknown quantities.

Brf. A set of several equations containing the same
unknown quantities is called a System of Simulta-

neous Equations.

Solution of a Pair of Siiiiiiltaiieoiis E<iuatioiis

containing^ Two Unknown Quantities.

133. To solve two or more simultaneous equations,

it is necessary to combine them in such a way as to

iorm an » equation containing only one unknown quan-

tity.

134. Def. The process of combining equations so

that one or more of the unknown quantities shall dis-

a])pear is called Elimination.

The term "elimination" is used because the unknown

quantities which disappear are eliminated.

There are three methods of eliminating an unknown quan-

tity from two simultaneous equations.

•
I

-;]
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'ti'

i

Eliiniiuitioii by Comparison.

1*^5. Rule. Solve each of the equations with respect

to one of the unhnouni quantities and put the two values

of tlie wnknown quantitij thus ohtaineil equal to each

other.

This will give an equation with onlij one unhnou-ii

quantitij. of ivhicJi the value can he found from the

equation.

TJie value of the other unknown quantitij is then

found hy substitution.

Example. Let tlie equations be

ax \- ly =1 c,
\

ax -\- h'y = c .
S

From the first equation we obtain,

c — hy

(1)

X =
a

From the second we obtain,

X = c — Vy
a

(2)

(3)

Putting these two values equal, we have

c — hy _ c — h'y

a a

Reducing and solving this equation as in Chapter II, we

find,

ac' — a'c

y = 'I. '

ah' — a'h

which is the required value of y. Substituting this value of
//

in either of the equations (1), (2), or (3), and solving, we shall

find

~
ahl — cih

If the work is correct, the resi.it will be the same in which-

ever of the equations we make the substitution..
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Numerical Example. Let the equations be

x-^l/ = 28, )

3x — 21/ — 29. )

From the first equation we find

X = 2S — ij,

_ 29 + 2y
Xand from the second

from whicli we have 28 — ?/ =

3
'

o J

w

2/ = 11.

Substituthig this value in the first equation in x, it becomes

a: = 28 — 11 = 17.

If we substitute it in the second, it becomes

29 + 22 51
X = 17,

3 3

tlie same value, thus proving the correctness of the work.

I

'

H

; ,,..

Eliiniiiation by Substitution.

136. Rule. Find the value of one of the unlaiowiv

(/naiittties in terms of the other from either equation,

((tid suhstUute it in the oth^er equation. The latter will

have but one unknown quantity.

Example. Taking the same equations as before,

ax -{- hij ^^ c,

a'x + h'u = c',

tlic first equation gives x =
a

Substituting tliis vahie instead of x in the second equation,

it becomco
a'c — a'bii ,

a

Solving this equation witli respect to y, we get the same

result as before.

; (

Vr

.*

I

.' ii
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t

Numerical Example. To solve in this way the last nu-

merical example, we have from the first equation (4),

x = 28 — y.

Substituting this value in the second equation, it becomes

84 — 3// — 2?/ == 29,

from which we obtain as before,

84 - 20 .

,

y-^ =11.

This method may be applied to any pair of equations in

four ways :

1. Find X from the first equation and substitute its value

in the second.

2. Find x from the second ef[uation and substitute its

value in the first.

3. Find ?/ from the ^rst equation and substitute its value

in the second.

4. Find y from the second equation and substitute its

value in the first.

Eliiiiiuatioii by Addition or Subtrtictioii.

137. Rile. Midbiply each equation hij siirJi a factor

that the coefficients of one of the unlcnoicn quantities

shall I)ecoj)he nmnericaUii equal in the tiuo equations.

Tlien, by adding or subtracting the equations, irr

shall have an equation with but one unknown quantity.

Rem. Wc may always take for the factor of each equation

the cocfi'cient of the unknown quantity to be eliminated in the

other equation.

Example. Let us take once more the general equation

ax -{- by = c,

a'x -\- h'y r= c'.

Multiplying the first equation by a' , it becomes

aa'x + a'hy = a'c.

Multiplying tho second by a, it becomes

aa'x -\- ah'y =. ad.
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The unknown quantity x has the same cocfllcient in tlic

hist two equations. Subtractinr them from each other, we

obtain
(a'b — ah') y = ci'c — ac'y

__ a'c — ac'

Rem. "We shall always obtain the same result, whichever

of the above three methods we use. But as a general rule tlic

last method is the most simple and elegant.

Problem of the Sum and Difference.

The following simple problem is of such wide application

that it should be well understood.

138. Problem. Tlte sum and difference of two iium-

hers heiii^ given, to find the nnnibers.

Let the numbers be x and y.

Let s be their sum and d their difference.

Then, by the conditions of the problem,

x-\- y = s,

X — y := d.

Adding the two equations, we have

2x =z s + d.

Subtracting the second from the first,

2y = s — d.

Dividing these equations by 2,

X = s
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I

P

This result can be illustrated geoinctriciilly. Let AB and

BC be two liiK's placed end to end, so that AC is their sum.

To tiiid their (llllerence, we

cut oil' fruni aU a Icnglh
| _f ^ j

AC = BC ; then C'B is the

dillVrence of the two lines.

If P is half way between C and B, it is the middle point

of the whole line, so that

AP = PC = |AC = ^ sum of lines.

C'P = PB = tC'B = I dilTerence of lines.

If to the half sum AP avc add the half ditferenco PB, we

have AB, the greater line.

If from the 1 alf sum AP we take the half difference C'P,

we have left AC'j the lesser line.

EXERCISES,
Solve the following equations:

1. 3.r — 9,1/ = 33, 2x — 3ij — 18.

2. 3^: — 5// — 13, 2x + 7y = 81.

3. 7^ + ('>y = ^, Gx -{
(')i/
= b.

4. 2x -}- bi/ = 7)1, 2x — ?)!/ = n.

5. ax -^ hy — p, ax — by = q.

8.

X y
6+7 =^«'

X

X

V

X

X

y
7

y+ ^ = 18, 5 + :> - 29,

y

8

X y
3

9. ' {^ + ^/) -f 3 {X -y) = 102,

^(•^^ + ^)-3 0^--v/) = G6.

Note. Solve this oquation first as if x+y and x—y were single sym.

Lois, of which tlu3 values are to bo found. Then find x and y by § 1:>H

preceding.

10. X + y + {x — y) = 14, x + y — [x — y) 10.

II.
X + .= X
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Note. Equations in this form can bo b(\st solved as if - and - were

the uulinovvn (luuntities. See next exercise. ^

3 2
12.

X y

n 4 5

10' x'^ y

n
O.

Soi-UTION. If we multiply tl»e first equation by 4, and the second by

;j, we have
12 _ 8 _ 44 _ 22

X

12
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1 8. + = c, — = a.

' X — ij a 4- 3

a -\- h a — h 4ab
= 1.

-1

'1

Case II. Equations of the Fh'st Drffvee irith

Three or 3Iore Unknown Qttantfties,

l.*51). Wlicn tlie values of sevcriil iiiiknowti (jiiMiititics aic

to be found, it is necessary to luive as many equatious as un-

known ([uantities.

If tliere are more unknown quantities tiian equations, it,

will be impossible to determine the values of all of them from

the equations. All that can be done is to determine the vahie

of some in terms of the others.

If the number of equations exceeds that of unknown quan-

tities, the excess of equations will be superfluous. If there

arc 71 unknown quantities, their values cau be found from any

n of the equations. If any selection of n eciuations we choose

to make gives the same values of the unknown quantities, the

equations, though sUj»erfluous, will be consistent. If ditfereuL

values are obtained, it wmII be impossible to satisfy them all.

Elimination.

140. When the number of unknown quantities exceeds

two, the most convenient method of elimination is generally

that by addition or subtraction. The unknown quantities arc

to be eliminated one at a time by the following method :

I. Select an unlcnoivn quantity to he first eliminated.

It is best to he^in with the quantity which appears in,

the fewest equations or has the simplest coefficients.

II. Select one of the equations containing this un-
known quantity as an eliminating equation.

III. Mifninate the quantity between this equation

and each of the others in succession.
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We shiill then liavo a secoiul system of eqiuitioiis le?s by

our ill iiumlter than llio orii^iiuil HVstL'in uiul contain iii;^' a num-

hcr of iiiikiiuwii (juaiitities one k'ss.

I V. J\('}K'(ft the process on the nrtr sj/sfmi of rt/u/ffions,

(tnd roitfiufie the vcprtition until on/ijone cf/Kf/fion with

our iinkiioirii qiKintitij is left.

V. Jlorin^ found the vulue of this hist uuIkuowu.

(/uftntitf/, the vulues of the others run tte founil hij suc-

eessire sultsiitution in one equation^ of rueh system.

Example. Solve the equations

(1) 4:X — '.\ii— z ^ n— r = 0,

(:)) X — y -\- 'Zz '\- 'III — \0 — 0,

(;5) 'Hx + 'ly — z~2n — 2 = 0,

(4) X -\- 2y -^ z -}- u — 1!) = 0.

('0

Wo shall Bolpct .?' as tlif first quantity \n be climiiiatfMl, and tnkt» the

last fciuation as the (.'liniinatinf^ one. We first multiply this (Mjuation by

threo such factors that the coefficient of x shall become ecjual to the co-

etliciont of x in each of the other equations. These factors are 4, 1, and 2.

We write the products under each of the other (-(luations, thus :

Eq. (1),

(4) X 4,

E(i. (2),

(4) X 1,

Kq. (3),

(4) X 2,

4.r — 3// — .ir + ii — 7 = 0,

4:X + 8
// + 4z + 4u — 76 = 0.

X— y + 2z -f 2ii — 10 = 0,

X -h 2y -\- z -{- u — \U = 0.

z — 2i(2x-\-2y-

2x + 4// -^ 2z -\- 2u

2=0,
38 = 0.

By subtracting the one of each pair from the other, we obtain the

equations,

11// + 5^ + Su — G9 = 0,
)— z— n — 9 = 0, V

3G = 0. )

3//

2y -^^z -\- 4:U

(*)

The unknown quantity x is here eliminated, and we have three equa-

tions with only three unknown quantities. Now eliminating ?/ by means
of the last equation, in the same way, and clearing of fractions, we find

the two equations,

23z + 38?^

Uz -\- Uu
- 258 = 0, )

— 90 = 0. j

(c)

ri\
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'J'lic pniltlcni is now reduced to two eciimtions with two unknown
qiumtitie?*, which we huve aln-iuly nhowu how to boIvu. Wo lind hy

holvin^ them,

« = — ^,

u — 8.

Wo next find the value of y by Huhstirutln^' these vnlueH of « and u

in eitlier of tlie e<|iuitionH yh). The tir.st of tlieni tlius heconien:

from wliich we find,

11//— 10 + '.U — 01) = 0,

^^'e now Hul)stitntc the values of y. z, and u in either of equations {a).

Die ^ie(•oIl(l of tlu> latter liecoines

X _ T) — 4 + 10 — 10 — 0,

and tlie fourth becotne.s,

X + 10 — 'I + 8 — 10 = 0,

cither of which ^^ivoH

X = 3.

We ran now prove the results by substituting: tlie values of T,i/,z,

and u in all four of (M|uationH iif), and seeinj:^ whether they are all satibfied,

EXERCISES.
1, One of the ])cst oxorciscs for tlie student will lie thnt of

resolvini,^ tiie previous eqiuitioiis {(() by tiikiM<jj the jjist e((ua-

tion as tlie eliininatiii.u^ one, iiiid perforniini^ tiie eliniiuatioii

in (liU'erent orders: that is, beo;in by eliniiiiatinr^ tf, then
repeat the Avholc process beginning with z, etc. The linal

results will always l)C the same.

2. Find the values of x^, Xc,, x^, and x^, from the equa-
tions,

X,

•Tg -f~ '^3 '^4 — 0,

X,

This exam]ile requires no multiplication, but only addition and sub.

traction of the dill'orent c(iuation.s.

3. 2x -{- by -i- 3z = 13,

2x -\- 2y — z =^ I2j

bx + by — 2z = 20.
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g. A l)oy bought 42 apples for a dollar, giving 3 cents each
for the good ones and 2 cents each for the poor ones. How
nuiny of each kind did ho l)U,y?

10. Find a fraction which becomes equal to ^ when its

denoniinuror is increased by 1.'3, aiul to f when 4 is subtracted
from its numerator.

11. Find a fi'aciion which will become equal to | l)y addinu'

2 to its uumerator, "r by adding to its denominator o, will hi -

come ^.

12. A huckster bought a certain number of chickens at

32 cents each and of turkeys at 75 cents each, paying 814 for

the whole, lie sold the chickens at 48 cents each, and the

turkeys at 11 each, realiziug 820 for the whole. How many
chickens and how many turkeys had he ?

13. An applewoman bought a lot of a]>ples at 1 cent each,

and a lot of pears at 2 cents each, paying 81. lO for the whole.

11 of the apples and 7 of the pears were bad, but she sold the

good a})})les at 2 cents each and the good pears at 3 cents each,

realizing 82.00. How many of each fruit did she buy?

14. When Mr. Smith was married lie Avas | older than his

u'ife ; twelve years afterward he was \ older. What were their

ages when married ?

15. A and B together can do a piece of Avork in dnys, but
A working alone can do it davs sooner than B working;

alone. In what time could each of them do it singly ?

16. A husband being asked the age of himself and wife,

replied: "If you divide my age G years hence by her age

years ago, the Cfuotient will be 2. But if you divide her age

12 3'ears hence l)y mine 21 years ago, the ((uotient will be 5.

17. The sum of two ages is 1) times their difference, Inif

seven years ago it was only seven times their difference. What
are the ages now ?

18. Two trains set out at the same moment, the one to go

i'rom Boston to Springfield, the other from Springfield to )3os-

ton. The distance behveen the two cities is OS miles. They
meet each other at the end of 1 hr. 24 min., and the train fri»m

Boston travels as far in 4 hrs. as the other in 3. What was the

speed of each train ?

19. A ^'rocer bought 50 lbs. of tea and 100 lbs. of coffee for

oO. He sold the tea at an advance of ^ on his price, and the

coffee at an advance of j^, realizing 877 from both. At what
price per pound did he buy and sell each article ?

Note, If x and y are the prices at which he bought, then Ja* and |y

are the prices at which he sold.
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20. For p dollars I can piuTbase eitlier a pounds of tea and
h pounds of cott'ee, or ))i jjounds of tea and ii i)ounds of colfeo.

What is tlie i)rice })er pound of each ?

21. A goldsmith had two ingots. The first is composed of

equal parts of gold and silver, while the second contains 5 parts

of gold to 1 of silver. He wants to take from them a watch-
case having 4 ounces of gold and 1 ounce of silver. How
much must he take from each ingot ?

2 2. A banker has two kinds of coin, such that a pieces of

the first kind or b i)ieces of the second will make a dollar. If

he wants to select c i)ieces which shall be worth a dollar, how
many of each kind must he take ?

23. A has a sum of money invested at a certain rate of

interest. B has 81000 more invested, at a rate 1 per cent,

jiigher, and thus gains $80 more interest than A. C has in-

vested -i^oOO more than B, at a rale still hif^her l)y 1 per cent.,

and thus gains $70 more than B. What is the amount each
person has invested and the rate of interest ?

24. A grocer had three casks of wine, containing in all

311 gallons. He sells 50 gallons from the first cask ; then
pours into the first one-third of what is in the second, and
then into the second one-fifth of what is in the third, after

which the first contains 10 gallons more than the second,

and the second 10 more than the third. How much wine did

each cask contain at first ?

r

I I

>'

Equivalent and Inconsistent Equations.

141, It is not always the case that values of two unknown

quantities can be found from two equations. If, for example,

we have the equations
X -\-'2ij

=z 3,

2.r + 1?/ := G,

we see that the second can be derived from the first by multi-

plying both members by 2. Hence every pair of values of x

and y which satisfy the one will satisfy the other also, so that

the two are equivalent to a single one.

If the equations were
a; 4- 2?/ = 5,

2a: + 4y = 6,

there would be no values of x and y which would satisfy both

equations.
't
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%.

(1)

For, if \VQ multiply the first by 2 and subtract the second

from the product, we shall liave,

Ist C((. X 'I, 2x + 4?/ = 10

2d eq.

,

2x + 4// z= (>

Remainder, == 4,

an impossible result, which shows that the equations are incon-

sistent. This will be evident from the equations themselves,

because every pair of values of x and ;/ vvnich gives

2x + 4?/ = G,

must also give a* + 2^/ — 3,

and therefore cannot give x -\- 2i/ =^ 5.

142. Generalization of the preceding result. If we take

i.ny two equations of the first degree between x and ij which

we may represent in the form

ax + hy = c, )

a'x + b'lj = c', \

and eliminate x by addition or subtraction, as in § 137, we have

for the equation in y,

(a'b — ah) y = a'c — ac'.

Now it may happen that we have,

a'b — ab' = identically. (2)

In this case y will disappear as well as x, and the result

will be

a'c — ac' ~ 0.

If this equation is identically true, the two equations (1)

will be equivalent ; if not true, they will be inconsistent. In

neither case can we derive any value of?/ or x.

If we divide the above equation, (2), by aa! we shall have

h V
a a'

Hence,

TJicorem.. If the quotient of the coefficients of the

unknown quantities is tlie same in the two equations,

they will be either equivalent or inconsistent.
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This tlicorem can l)c expressed in (lie foUowiiif^ form:

If the terms contai/u/ig the uiilawii'ii r/itfuititi/ in the

one eqitatioii cnn he j}iitlti/)Iie(/ hi/ suc/i n fiietor that

{hcij sJndl hotli heeonie eqiidl to tlic eorres/jondino' /r;7;?.s'

of tJie otlier eijuatioib, the tico equations will he either

('(jitivalent or iiicoiisistent.

Proof. If there be sucli a factor m that multiplying the

first equation (1) by it, we shall have

ma ±=i a,

nib =z b'.

Eliminating m, we find

a'h — ab' = 0,

the criterion of inconsistency or equiv.alence.

143. When two equations are inconsistent, tliere are no

values of the unknown quantities which will satisfy both equa-

tions.

When they are e(|uivalent, it is the same as if we had a

single equation ; that is, we may assign any valne avc })lease to

one of the unknown quantities, and iind a corresponding value

of the other.

--<--

CHAPTER IV.

OF INEQUALITIES.

144. Def. An Inequality is a statement, ia tlie

language of Algebra, that one quantity is algebraically

greater or less than another.

Def. The quantities declared unequal ai'<3 called

Members of the inequality.

The statement that A is greater than B, or that A — B is

positive, is expressed by
A > B.
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Tlijit A is less than B, or that A — B 19^ negative is

expressed by
A <^ B.

The form ^ > ^ > C

indicates that the quantity^ is less tlian A but greater than (

.

The form A^ B
indicates tliat A may be either equal to or greater than B, bui

cannot be less than B.

Properties of Inequalities.

145. Theorem I. An inequality will still subsist

after the same quantity lias been added to or subtracted

from each member.

Proof. If the inequality be A ^ B, A — B must be posi-

tive. If we add the same quantity // to A and B, or snbtnu 1

it from them, we shall have A ±^ If — (l^^II), which i-

equal to A — B, and therefore positive. Hence, if

A> B,

then A±Hy B ±11.

Cor. Tf any term of an inequality be transposed

and its sign changed, the inequality will remain true.

TJieorem II. An inequality will still subsist after

its members have been multiplied or divided by the

same positive number.

Proof, li A — B is positive, then {m or n being positive)

m (A — B) or mA — mB will be positive, and so will

B
n
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It may be shown in tlie same way that if m or n is negative,

A B
viA — )nB or will be negative. Hence,

n n °

T/ieorem III. If both members of an inequality be

multiplied or divided by the same negative number,

the direction of the inequality will be reversed.

That is, if A > B,

then — mA < — mB,

n ^ n
aiHi

Theorem IV. If the corresponding members of

several inequalities be added, tlie sum of the greater

members will exceed the sum of the lesser membei's.

Tlieorein Y. If the members of one inequality be

subtracted from the non-corresponding members of

another, the inequality will still subsist in the direction

of the latter.

That is, if

then

Ay B,

^> y,

-y y B — x.

The proof of the last three theorems is so simple that it may be sup-

plied by the student.

Theorem VI. If two positive members of an in-

equalit}^ be raised to any power, the inequality will

still subsist in the same direction.

Proof. Let the ineqnality be

A> B. (a)

Because A is positive, we shall have, by multiplying by A
(Th. II),

A^>AB. (1)

Also, because B is positive, we have, by multiplying (a)

AB > i?2. (2)

- h'

\ ' I

.! ' '.I

•:]•
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Therefore, from (1) and (^),

A'' > 7i2, (3)

Mu]t;-^ivmg the last inequality by A,

A^ > Air^. (.1)

Miiltii)lying (2) by i^,

yiJ52 > BK {:>)

Whence, A^ > M
Tlie process mr^y be continued to any extent.

Examples of the Use of Inequalities.

140. Ex. I. If « and h be two positive quantities, such

that

a"^ + 1)^ - 1,

we must have a -\- h y 1.

Proof. If « + /^ < 1,

we should liave, by squaring the members (Th. VI),

a^ -^ 'lab ^ U^ ^\
',

and by transposing the product ^ab (Th. I, Cor.),

6'^ + Z»2 ^ 1 — "lab.

Because a and b are positive, 'lab is positive, and

1 — lab < 1.

Therefore we should have

«2 -f ^*2 <-
1^

and could not have c^ -^-W- =z\, as was originally supposed.

Ex. 2. If a, b, m, and n are positive quantities, such that

am
b-^n (^0

a A~ 771

then the value of the fraction will be contained between
a + 71

771

the values of y and — ; that is,

n

Top

is positi^

Fron

by the p

That

with thii

as assert

The

I. P
j;ero, anc

2.
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a a {- m m
I b + n n

(1)

C'i)

(:0

To prove tlie first iiie([uulity, we must .show that

a It + in

b b -{• n

is positive. Redueing this expression by § lOG, it becomes

an — bin

Vi/TTn)'

From the original inequality (a) we have, by multiplying

by the positive factor bn,

an y bm.

That is, an — bm is positive ; therefore the fraction (:})

with this positive numerator is also positive, and (2) is iJositi\ e

as asserted.

The second inequality (1) may be proved in the same way.

EXERCISES.

1. Prove that if a and b be any quantities different from

j:ero, and 1 > a; > — 1, we must have

a2 _ 2abx + ^(2 > 0.

2. Prove that ( -^^— I y ab.

3. If ^x — 5 > 13, then x > G.

4. If (jx > ^^ + 18, then x > 4.

5. If ~ - 5^ > ^ - 3, then xyb.

J) ffi

6. If m — nxyp — qx, then x > ~
^ ^ q — n

7. If ^ < 1
J
and wi and y of like sign : x < y.'my ./ c:> .

8. If rt^ + J2 _|_ c2 r= 1, and a, b, and c are not all equal,

then ab -{ be + ca < 1.

Suggestion. The squares of a — h,h — c, and c — a cannot Lo

negative.
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A^A TI O A ND PROPOR TIO N,
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CHAPTER I.

NATURE OF A RATIO.

147. Def. The Ratio of a quantity A to another

quantity ^ is a number expressing thi; value of A when
compared with B as the standard or unit of measure.

Examples. Comparing a
tiie lengths A, B, C, D, it ^^
will be seen that '

'

A is '^\ times D\ ^
B is \ of Z>; 2)

| | | , |

C is I of D.

We express this relation by saying,

9
The ratio of A io D \% %\ or -.\

I i

I I I

<<

it

'' B to D is

'' C to D is

1

2'

3
— •

4

(1)

148. The ratio of one quantity to another is expressed l)y

writing the unit of measure after the quantity measured, and

inserting a colon between them.

The statements (1) will then be expressed thus :

A:D = ^ = p ^''^ = \'^ ^''-^ = 1'

Def. The two quantities compared to form a ratio

are called its Terms.



RATIO. 129

Def. The quantity measured, or the lirst term of

the I'litio, is calh'd tlie Antecedent.

The unit of measure, or tlie si'cond term of tlie ratio,

is called the Consequent.

liKM, When the antecedent is greater tluiii tiie conse4iient,

I lie ratio is greater than unity.

When tlie antecedent is less than the consequent, the ratio

is less than unity.

149. To find the ratio of a qnantity A to a standard Uy

we imagine ourselves as measuring otf the (juantily .1 with (7 as

a carpenter measures a board with his foot-rule.

There arc then three cases to be considered, according to

the way th measures come out.

Case 1. AVe may find that, at the end, A conu out an

exact numl)cr of times U. The ratio is then a whole number,

and we say that U exactly measures A, or that A is a

multiple of U.

Case II. We may find that, at the end, the measure does

not come out exact, but a i)iece of A less than U is left over.

Or, .1 may itself be less than U. We must then llnd what

traction of U the piece left over is equal to. This is done by

dividing U up into such a number of equal parts that one of

these parts shall exactly measure A or the piece of A wiiich is

left over. The ratio will then be a fraction of which the num-
ber of parts into which U is divided will be the denominator,

and the number of these parts in A the numerator.

Example. If we find that

by dividing U into 7 parts, -i of

these parts will exactly make A,

I lien A =.^ oi U, and we have for the ratio of A to CT,

A '.U-^ Y
If we find that A contains U 3 times, and that there is

then a piece equal to f of [7 left over, we have

25

I I I I I

= U

= A

u = ^=
^

-t ! !

I |. i I

,

|i fl

9 .' ti!
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f

^^

The 3 U*ii aro equal to ^^^ of U, so that wc may also say

A ,
of U, or A : U =

wliich is simply the result of reducing the ratio ']^ to an iin-

j in (per traction.

Ill general, if wo llnd that by dividing U into n jiarts, J

will be exactly /// of these parts, then

A
n

whether in is greater or Ics'^ than n.

When the nnignitude of A measured by U can be exactly

expressed by a vulgar IVaction, A and U are said to be com-
mensurable.

OAvSE III. It may happen that there is no number or frac-

tion which will exactly express the ratio of the two magnitudes.

The latter are then said to be incommensurable.

150. Theorem. The nitio of two incommensurable

magnitudes may always l)e expressed as near the true

value as we please by means of a fraction, if we only

make the denominator large enough.

Examples. Let us divide the unit of measure into 20

parts, and suppose that the antecedent contains more than :28

))ut less than 20 of these parts. Then, by supi)osing it to con-

tain 28 parts, the limit of error will be one part, or -^ of the

standard unit.

In general, if we wish to express the ratio within 1 n^^ of

the unit, we can certainly do it by dividing the unit into n or

more parts, or by taking as the denominator of the fraction a

number not less tiuni n.

Illustration l)y Decimal Fractions. The square root of 2

cannot be rigorously expressed as a vulgar or decimal fraction.

But, if we suppose

•\/2 = 1.4 = \^, the error will be < jV 5

a/2 — 1 414 — li-iA '' " <r' —1—
etc. etc. etc. etc.

we mear
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Since the docimalH may bo continuod withoul end, ilio

>(|iuirc' root of 'I can l)t! cxpiviised as a dccinnd fraction with lui

crrov Ic'HS than any us.signublc (juaiitily. This general laet id

expressed hy -saying:

Tkc limit of f/ie error irltick ice make hij representing

aiiy iiicoimnensardblo ratio as a fraetioii is zero.

151. lidfio as a QhoHchI. From Case II and the cxi)lana-

tions which precede it we see that when we say

4
A : U = V

we mean the same thing as if we had said,

yl is 4 of U, or .1 = 4 C7.

If A and U are mimbcrs, we may divide both sides of this

L'ljuation by U, and obtain,

A -i
u ~

1

We therefore conclude that when A and U are numlicrs,

That is,
A '.U = j^'

Theorem. The ratio of two numbers is equal to the

quotient obtained by dividing the antecedent term by
tlie consequent.

In the case of magnitudes, tlie relation of a ratio to a quo-

tient may be shown thus :

Let us have two magnitudes M and V, such that M is

4 times V. Then we may write the relation,

M = 4F.

Dividing by 4, we have

4 - ^•

Since F is not a number, wt cannot, strictly speaking,

multiply or divide by it. But we may take the ratio of M to

F without regard to number, and thus find,

M '. F = 4.
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; >l(

Rem. The theory of ratios the termtj of which are magni-

tudes and not nund)ers, is treated in (Geometry.

In AljLjehra we consider the ratios of numbers, or of nuig-

iiitudes represented )»y numbers.

15*^. Def. If w(i intorcliange the terms of a ratio,

the result is called tlie Inverse ratio.

If

then

That is, U '. A ia the inverse oi A '.U,

m
U'. A

n

U = — A,
n

m
and wc have, by dividing l)y

,

7h

A = '^U,m

or A : V
n

m
71 Tfl

Because — is the reciprocal of — , wc conclude

:

m ^ n

Theorem. The inverse ratio is the reciprocal of the

direct ratio.

Properties of Ratios.

153. Tlieorem I. If both terms of a ratio be multi-

plied by the same factor or divided by the same divisor,

the ratio is not altered.

Proof. Katio of ^ to ^ = ^ : ^ =

If m be the factor, then

Ratio of mB to w^ = mB : mA

the same as the ratio of B to A,

B
A

mB _B
mA ~ A

'

154. Tlieorem II. If both terms of a ratio be in-

creased by the same quantity, the ratio will be increased

if it is

(hat is

EXA
1 til botli

m rit'W of

lacli of w

Gem
both tei'

ratio «4

If ^i

in,!? that

the ([uan

iished by

155.

more ra

Since

least four

Bif.

are calle

If a:

portion w
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if it is less tlian 1, and diininishod if it is greater than 1

;

that is, it will be l)r()Ujj;lit ncaivr to unity.

ExAMiM.K. lii't tlioorigiiml ratio bo 2 : 5 = ^ If wo rt'|)out«'dly add

1 to both nuiiu'rator and dcinoiiiiiiator of tho fraction, we hhall huve tho

Hi'iicH of IVactioiiH,
- !' ' " etc

cMcli of which ia greater than tho preceding. becuuBO

K = ft"(T
; whence, % > |.

" • whence, i
7 ~ it — 4a •

etc.

whence, ^

etc.

General Proof. Ix't a : b l)e the original ratio, and lot

Iiotii tonus be increased by tho quantity n, luaiunj; the new

ratio «-f « : b-^u. The now ratio minus tho old one will be

{b — a) u

> 4- bu'

If b is greater than a, this f(nantity will be positive, show-

ing,' tliat the ratio is increased by adding v If /> is less than ^/,

tho ([uantity will bo negative, showing that the ratio is diniin-

isliod by adding u.

•-

CHAPTER II.

PROPORTION.

155. Def. Proportion is an equality of two or

more ratios.

Since each ratio has two terms, a proportion must have at

least four terms.

Def. The terms which enter into two equal ratios

are called Terms of the proportion.

If rt : J be one of the ratios, and p : q the other, the pro-

portion will be,

a : b ^=. 2) '. q. (1)
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I.

I**

A proportion is sometimes written,

a : h : : p : q,

which is road, " As a is to b ho' is jt to 5." The first form is to be pre.

Icrred, because no other slg'n than that of equality is necessary, but the

ecjuation may be read, " As a is to 6 so is p to g," whenever that expres

Bion is the clearer.

Def. The first and fourth terms of a proportion arc

called the Extremes, the second and third are called

the Meeins.

Theorems of Proportion.

150. Theorem I. In a proportion the product of

the extremes is equal to the product of the means.

Proof. Let us write the ratios in the proportion (1) in tlic

form of fractions. It will give the equation,

a _'p
b~q (3)

Multiplying both sides of this equation by Iq, we shall have

aq = bp. (3)

Cor. If there are two unknown terms in a propoi--

tion, they may be expressed by a single unknown
symbol.

Example. If it be required that one quantity shall be to

another as p to q, we may call the first px and the second qx,

because

2)X '. qx z=z p \ q (identically).

157. Theorem II. If the means in a proportion be

interchanged, the proportion will still be true.

Proof. Divide the equation (3) by pq. We shall then

have, instead of the proportion (1),

or a '. p ^= b : q.

De,

changi

2)ortioj

The

and the

158
or dim
conseq

still be

EXAA
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that 18,

IntH
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Def. The proportion in wliicli tlie means are inter-

changed is called the Alternate of the original pro-

portion.

The following examples of alternate proportions should be studied,

and the truth of the equations proved by calculation :

1:2= 4:8, alternate, 1:4 =2:8.
2:3=6:9; " 2 : G = ;3 :

<».

5 : 2 = 25 : 10; " 5 : 25 = 2 : 10.

158. Theorem HI. If, in a proportion, we increase

or diminish each antecedent by its consequent, or each

consequent "by its own antecedent, the proportion will

still be true.

Example. In the proportion,

5 : 2 = 25 : 10,

the i^.itecedents are 5 and 35, the consequents 2 and 10 (^ 148). Increasing

each antecedent by its own consequent, the proportion will be

5 + 2 : 2 = 25 + 10 : 10, or 7 : 2 = 35 : 10.

Diminishing each antecedent by its consequent, the proportion will

become,
5 - 2 : 2 = 25 - 10 : 10, or 3 : 2 = 15 : 10.

Increasing each consequent by its antecedent, the proportion will be

5 : 2 + 5 - 25 : 10 + 25, or 5 : 7 = 25 : 35.

These equations are all to be proved numerically.

General Proof, Let us put the proportion in the form

b q ^ ^

If we add 1 to each side of this equation and reduce each

Bide, it will give

a -{ b _ p -}- q ^

h ^ q '

that is, a -\- h : h = p -{- q : q, (5)

In the same way, by subtracting 1 from each side, it will be

a — b : b = p — q : q. (6)

' <i

[
»' 1'

(.
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If we invert the fractions in equation (4), the latter will

become

a 2J

By adding or subtracting 1 from each side of this equation,

and then again inverting the terms of the reduced fractions,

we shall lind,

a : h -{- a = p : q -h P',

a : b — a = p : q —p-

The form (5) was formerly designated as form<^d " by composition,"'

and (6) as foniied " by division." But these tenns are now useless, be-

C'iuse all the above forms are only special cases of a more general one to

be' now explained.

151). Theoiem IV. If four quantities foi-m the pro-

portion
a : I = c : d, (a)

and if m, n^ ^?, and q be any multipliers whatever, we
shall have

ma + nb : ^?a -^ qh — mc -\- nd : 'pc + qd.

Proof. The projiortion {a) gives the equation,

a _ c

b~'d
p

Multiplymg this equation by - and adding 1 to each

member,

^ + 1 - ^- 4- 1qb^^- qd^ '

Reducing each member to a fraction and inverting the

terms,

qb qd

pa -{- qb pc -\- qd

Dividing both members by q,

-J— = -A (7)2M + qb jw -\- q^^

The original proportion {a) also gives, by inversion.



PROPORTION. 137

h

a

d

from which we obtain, by multiplying by ^, adding 1, etc.,
P

qb -\- pa _ qd + pc

pa ~ pc '

a c

pa -\- qb~ j)c + qd

(8) X m + (7) X w gives the equation,

ma + nh _ mc -\- nd
pa -{ qh ~ 2>c + qd

*

or ma + nh : pa ^ qh — mc + nd : pc + qd,

which is the result to be demonstrated.

(8)

(9)

160. Theorem V. If each term of a proportion be
raised to the same power, the proportion will still

subsist.

Proof. If a

or
a

b

V

V

q

then, by multiplying each member by itself repeatedly, we
shall have

«2 rpl

^

¥ 72 »

a^ _ i>^

T3'

Hence, in general.

etc. etc.

a'^ q^.

Cor.

then

and

If

in — p
a : b =1 p •

q,

a^ : a^ ±b"' = p^ : p^ ±q^',

a^ ±b^ : b^ = p^ ± ^'* : q^.

Theorem VI. When three terms of a proportion
are given, the fourth can always be found from the
theorem that the product of the means is equal to that
of the extremes.

i

I. I

ii
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"'^/"e have shown that whenever

a '. b z= p : q^

then aq = bp.

Considering the different terms in succession as unknown
([nuntities, we find,

hp

1 = ^-^1,

P

V =

-7
=

aq

'b'

bp

a

Cor, 1. If, in the general equation of the first

degree
ax + hy — c,

the terfn c vanislies, the equation detennines tlie ratio

of the unknown quantities.

ax -{- by =: 0,

ax = — bi/,

X _ b

y~~a'
X \ y =. — b \ a.

Cor. 2. Conversely, if the ratio of two unknown
quantities is given, the relation between them may be
expressed by an equation of the first degree.

Proof. If

then

and

or

The Mean Proportional.

KM. Def. When the middle temis of a proportion

are equal, either of them is called the Mean Propor-

tional between the extrenn^s.

The fact that b is the mean proportional between a and c

is eXj^^ressed in the form,

a '. b :=^ b '. c.
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Theorem I then gives, b^ = ac.

Extracting the square root of both members, we have

Hence,

Theorem VII. The mean proportional of two quan-

tities is equal to the square root of tlieir product.

Multiple Proportions.

163. We may have any number of ratios equal to each

-^ther, as

a \ 1) = c '. (I =. c \ f, etc.

G : 4 = 9 : G := 3 : 2 =1 21 : 14. {a)

Sucli proportions are sometimes written in tlie form

G : 9 : 3 : 21 '^ 4 : G : 2 : 11. (i)

In the form {b) the antecedents are all written on one side

of the equation, and the consequents on the other. Any two

numbers on one side then have the same ratio as tlie cor-

re>^pondinij; two on the other, and the proportions expressed by

this equality of ratios are the alternates of the original propor-

tions («). For instance, in the proportion {V) we have,

G, which is the alternate of G

2, '' " " G

14, " " " G

14, " ''
" 9

6
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will express the same relations between the quantities a, h, c,

d, e, f, etc., that is expressed by

a : b = c : d = e : f, etc., {a)

or a : c : e : etc. = b : d : f : etc. [(/)

It will be seen that where r enters in tlie form (c) there is one more
equation than in the first form (a). [In this lorui each = represents sm

eciuatiou.] This is because the additional quantity r is introduced, by

eliminating which we diminish the nuniber of equations by one, as iu

eliminating; an unknown quantity.

164. Tlieorem. In a multiple proportion, the sum
of any number of the antecedents is to the sum of tlie

corresponding consequents as any one antecedent is to

its consequent.

Ex. We have ^ — zr:L= .^— -^' Then„, , 2 6 10 12Wehave- = ^=^^ = --

302 + 6 + 10 + 12

5 + 15 + 25 + 30

which has the same value as the other four functions.

75'

General Proof. Let ^, B, C, etc., be the antecedents, and

«, hy c, etc., the corresponding consequents, so that

A : a = B : b = C : c, etc. (1)

Let us call r the common ratio A : a, B : b, etc., so that

A = ra,

B = rb,

C = re.

etc. etc.

Adding these equations, we have

A -\- B + C -}- etc. z=zr{a-\-b-{-c-\- etc.),

A + B -\- C 4- etc.
or = r;

a -\- b -\- c -\- etc.

that is, the ratio A -{- B -\- C -\- etc. : a -\- b + c -\- etc. is equal to

r, the common value of the ratios A : a, B : b, etc.

W '

PROBLEMS
I. A map of a country is made on a scale of 5 miles to

3 inches.
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(1.) What will be the length of 8, 12, 17, 20, 33 miles on
the map?

(2.) How many miles will be represented by (I, 8, IG, 20,
21) inches on the map 'i

Rem. 1. If X, y, z, u, v be the required spaces ou the map, we sliall

have
5 : S = 8 : X = 12 : y, etc.

If a, b, c, etc., be the required number of miies, we shall have

3 : 5 = 6 : a = 8 : 6 - 16 : r, etc.

Rem. 2. When there are several ratios compared, as in this problem,

it will be more convenient to take the inverse of the common ratio, and

multiply the antecedent of each following ratio by it to obtain the conse-

quent. In the first of the above proportions the inverse ratio is g, and

cc = ^ of 8, y = § of 13, etc.

In the second, a = f of 6, 6 = | of 8, etc.

2. To divide a ^iven quantity A into three parts which
shall be proportional to the given quantities a, b, c, that is,

into the parts x, y, and z, such that

X '. a z=i y '. h =^ z : c,

or X : y : z =1 a : h \ c.

Solution. By Theorem IV,

X y z _x -\- y -^^ z A
a b c a -\- b \- c a -\- b ^ c

Therefore,

aA _ ^^ _ ^^
X

3. Divide 102 into three parts which shall be proportional

to the numbers 2, 4, 11

4. Divide 1000 into five parts which shall be proportional

to the numbers 1, 2, 3, 4, 5.

5. Find two fractions whose ratio shall be that of a :b, and
whose sum shall be 1.

6. What two numbers are those whose ratio is that of 7 : 3

and whoso difference is 24.

7. What two numbers are those whose ratio is m : 71, and
whose difference is unity ?

8. Find x and y from the conditions,

X : y =z a : bj

ax — by = a + b.

.

}

r
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9. Show that if a : b — A \ By

c : d = C \ D,

we must also have ac : bd = AC : BD.

10. Ilav ing given x — ay, find the value of

II. Having dven
to to'

X + %y
-'yX —

fiud the value of
yX

12. If a h = p \ q,

prove

and

d^ + b^

CfP- + />"

ft-' p^

a + />

rt
re+l

= />^ + //'' : - —

« 4- (^

2)n _j.. ^?

13- Tf
r? + /^; 4- <• + d a b + c — d

a + b d

show that «

a — b — c + d''

e : d.

14. A yenr's profits were divided among three partners, A,

B, Mild C, pro})(>rtional to the numbers 'i, 3, and 7. If Lnum
woulshould pay B $1250, their shares would be equal. What w

he amount divided ':*

ras

Ii15. in a fii'st year's partnership between A and B, A had
2 shares and B had 5. In the* second year, A liad 3 and B had 4.

In the second year, A's profits were ^320(' greater and B's were
$1700 greater than they were the first. What was each year's

profits!^

16. In a poultiy yard there are 7 chickens to every 2 ducks,

and 3 due s to every 2 geese. How many geese were there to

every 42 chickens?

17. A drover started with a herd containing 4 horses to

every 9 cattle. He sold 148 horses and 108 cattle, and then

had 1 horse to every 3 cattle. How many horses and cattle

had he at first ?

18. If a bowl of punch contains a parts of water and b

parts of wine, what is the ratio of the wine to the wliole

punch ? What is the ratio of the water ? What are the sums
of these ratios ?
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19. One ingot consists of equal parts of gold and silver,

wliile another has two parts of gold to one of silver. If I

combine e([ual weights from these ingots, what proportion of

the compound will he gold and what [)roportion silver';*

20. What will he the proportions if. in the preeeding proh-

leni, I combine one ounce from the Wv»t ir;got with three from
tiic second?

21. One cask contains a gallons of water and h gallons of

alcohol, while another contains m, gallons of water and u of

alcohol. If I draw one gallon from each cask and mix them,
what will be the ([uantities of rdcohol and water r"

22. What will be the ratio of the JKpiors in the last case, if

I mijx two parts from the first cusk with one from the second ?

23. What will it be if I mix p parts from the first with //

parts from the second ?

24. A goldsmith has two ingots, each consisting of an alloy

of gold and silver. If he combines two parts from the first

ingot with one from the sec(md, he will have e(|ual parts of

gold and silver. If he combines one ])art from the fir«t with

two from the second, he will have 3 parts of gold to 5 of silver.

AVhat is the composition of each ingot ?

SuGGESTiox. Call r the ratio of the weight of gold in t'ne first ingot

to the whole weight of the ingot ; then 1—7' will be the ratio of tlie sil-

ver in the first to the whole weight of the ingot. See the following

question.

Note. Problems 18-24 f^r™ a graduated series, introductory to the

processes of Problem 24.

25. Point out the mistake which would be made if the

solution of the preceding problem were commenced in the fol-

lowing way :

If the first ingot contains p parts of gold to q parts of silver, and the

second contains r parts of gold to a of silver, then

Two parts from the first ingot will have 2p of gold and 2q of silver.

One part from the second ingot will have r of gold and s of silver.

Therefore, the combination will contain 2p + r parts of gold, and

'iq + s parts of silver.

Show also that if we subject p, q, r, and s to the condition

the process would be correct.

- 26. Show that if the second term of a proportion bo a

mean proportional between the third and fourth, the third

will be a mean proportional between the first and second. f

,, Mfl



BOOK V.

OF POWERS AND ROOTS.

CHAPTER I.

INVOLUTION.

Case J. Involution of Products and Quotients.

UJ5. Def. Tlie result of taking a quantity, A,

n times ati a factor is called the i/*'* power of vl, and
as already known may be written either

AAA^ etc., n times, or A^.

Def. The number n is called the Index of the

power.

Def. Involution is the operation of finding the

powers of algebraic expressions.

The operation of involution may always be expressed by

the application of tlie proper exponent, the expression to be

involved being inclosed in parentheses.

Example. The n^^ power oi a -\- h \b (« + ^)"

The w"^ power of aJ)c is {abcY.

166. Involution of Products. The n^^ power of the

product of several factors a, &, c, may be expressed without

exponents as follows

:

ahcabcabc, etc.,

each factor being repeated n times.
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Hero thoro will bo alto^'cthcr n a% n b\, and n c's, so

that, using exponents, the whole power will be a^b'^c^^ (g GG, G7).

Hence, (abt)»' = a^b'^c^.

That is,

Tfieoreni. The power of a product is eqiuil to the
product of the powers of the several factors.

107, Invohdion of Quotients. Applying the same mcthotls

to fractions, we find that the w^'' power of - is — • For
y T

/xV^ X X X ^

\) = ~ — , etc., n times;
^y' y y y

XXX, etc., n times

yyy, etc., n times (§ 109)

;

tin
o

EXERCISES
Express the cubes of

, ab
I. abc. 2. —

•

c

mn a 4- b

pq ^ a~b
Express the n*f^ powers of the same quantities, the quanti-

ties between parentheses beinnr treated as siiigr., symbols.

3. abc'"^.

, mn {a -f- b)

Case II. Involution of Powers.

1G8. Pkoblem. It is required to raise the quantity a^ to

the n*^ power.

Solution. The n*^ power of a"' is, by definition,

a"i X n"^ X a% etc., n times.

By § 66, the exponents of a are all to be added, and as the
exponent m is repeated n times, the sum

m -\- 7n -{ m i- etc., n times,

is mn. Hence the result is a^^, or, in the language of Algebra,

10

V

\

•\
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Ilcncc,

Thmrom. If any power of a (iiiantity is itself to Ijo

raised to a i)ower, the indices ( f the powers must be

multiplied together.

EXAMPLES.

Note. Tt will l)o pocn tliat tins thof)n'ni coinoidoa with thnt of Cawe I

when liny of thi; factors havu tlu) cxpoiii'iit unity uniJeratoocl.

EXERCISES.

Write the
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Hkm. The pi'occdiii^' tlu'oiviii liiids w practical a|>}>licati()U

when it is nccestiary to raiso ii small iiuiiiIut to a lii^^'h power.

If, lor cxaniplc, we luivc to raise 'i to the ;iOih power, wo
fihoiilil, without this theorem, have to multiply by '4. no le^S

than v'.J times, lint we may also proeeeil thus:

t^ = 4,

2< = a^-5i3 = 4.4 = in,

216 _ 28.08 _ o,-,(ja _ oSolJO,

2?! ~ ^m.-i^ - 2i«.:>r)G = lOTTT'^'lf;,

280 _ 2*«.;efl = :>24.G4 = i():;jr4i8-.>4.

Case of Noj^jitivo Exponents.

109. Tlu! })rec'e(lin^- theorem may be applied to negative

exponents. My the delinition of such exi)onents,

aP
-,- = aPlni. (1)

liaising the lirst member to the n^^ i)0wcr, we have,

(nvY a»P ,

\b'i I Im

This is tho same result wc should get by ai)plying I ho

theorem to the second member of (1), tmd proves the proposi.

tion.

EXERCISES.
Express the Gth powers of

I. alr^.
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I

Algebraic Signs of Powers.

170. Since the continued product of any number of posi-

tive factors is positive, all the powers of a positive quantity are

positive.

By § 20, the product of an odd number of negative fac-

tors is negative, and the product of an even number is positive.

Hence,

TJieorem. Tlie even powers of negative quantities

are positive, and the odd powers are negative.

EXAMPLES.

(— ((f = a^; {— a)^ = — a^\ (— ay = a*, etc.

i

Find the value of

1. (-2)2.

4. i-oy.
7. {-n-hy.

lO. i-a)
13. (-1)

'an

2?i

EXERCISES,

2. (-3)3.

5. (-5)^
8. {—v}?iy.

2n- 1

2n+l

11. (-/.)

14. (-1)

3- 4^.

6. {-by.

9- i-pqy-
{-a-h)12. 1n-\

15- (-1)2n-\

Case III. Iiivolutiou of Binomials—tlie Bino-
mial Theorem,

Ivi. It is required to find the 7//^ power of a binomial.

1. Let a + i be the binomial ; its w^ power may be written

(« + ly.

Let us now transform this expression by dividing it by (0\

and then multiplying it by «", which will reduce it to its orig-

inal value. We have (§ 1G7),

{(I + hy (a 4- hy L
,

by

Multiplying this last ex])rcssion by ««, by writing this

power outside the parentheses, it becomes

a"
(^ ^ T (1)
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which is equal to {a -f h)'K Next let us put for shortness x to

represent - , when the expression will become

{a + l)^ = cO^ (1 + xyK (2)

2. Now let us form the successive powers of (1 + ^y. We
multiply according to the method of § 70:

Multiplier,

(1 j^xy = l+x
I +x

Multiplier,
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V

%
If

First power, n -— 1, coefficients, 1, 1.

Second
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preceding one, until we come to the s^'* or last, which will be

n — s + 1.

Such a i)roduct is written,

u (n — 1) {n — 2).... {)i — s -{- 1).

The dots .stand for any nnniber oi" omitted factors, because

6^ may be any number. \Vc have written 4 of the s factors, so

flijit .§ — 4 arc left to be represented by the dots.

Tire denominator of the fraction is the product of the s

factors,

1.2.3 . . . . s,

each factor being greater by 1 than the preceding one, and tlie

(lots standing for any number of omitted factors, according to

the value of s. Thus, tlie s^^ coefficient in the 7i^^ line will be

11 (n — l){n — 2).... {n — .s + 1)

If s is greater than ^n, the last factors will cancel some of

the preceding ones, so that as s increases from yi to n, the

values of the preceding coefficients will be repeated in the

reverse order. Thus, suppose n = C. Then, by cancelling

common factors,

6-5.4.3 _ G.5 _
1.2.3.4 ~ r^ ~ '

6.5.4.3.2 _ C _
1.2.3.4.5 ""

1
~

6.5.4.3.2.1 _
1.2. 3. 4. 5.0 ~ •

If we should add one more factor to the numerator, it

would be 0, and the whole coefficient would be 0.

The conclusion we have reached is embodied in the follow-

ing equation, which should be perfectly memorized :

(1 + a;)» = 1 + vx +

+

n(n-l)^^
,
n{}>-l){n-2)

1.2
x^-}-

1.2-3.4

1.2-3

1 ,L,.'«

I
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EXERCISES.

1. Compato from the formula {d) all the binomial coefti-

cients for n = G, and from them express the development ol

(1 + :<f.

2. Do the same thing for 7i = 8, and for n = 10.

17*^i. To find the development of {a + i)", we replace x

by , and then multiply each term by «".

[See equations (1) and (2).] We thus have

{a + Z»)" = a» + na^'-^b + -^.—r— a»-^ifi -f etc. to i«

The term? of the development are subject to the following

rules

:

I. Tlie exponents of b, or the second term of the hlno-

Diial, are 0, 1, 2, etc., to n.

Because U^ is simply 1, a" is the same as a»b'^.

II. The sum of the exponents of a and b is ft in each

term. Hence the exponents of a are

91, n — 1, n — 2, etc., to 0.

III. Tlie coefficient of the first term is unity, and of
the second n, the indero of the power. Each foUoirin^

coefficientmay be found from the next preceding one by

multiplying by the successive factors,

n n

2 3

w - 3—^-, etc.

IV. If b or a is negative, the sign of its odd powers

ii'iU be changed, but that of its even powers will remain
the same.

(Compare § 170.) Hence,

'ff (fi \\
{a — b)"^ = «" — 7ian-^ -]

^—-

—

'- aP'-W — etc.,
1 • /i

the terms being alternately positive and negative.

3. Cc

coctiicieu

4. W
{a + by^

5. ^v

{"iam + •

6. W

h^
7. W

{a - x)

8. W
g. W

following

(1

1_

^ax

lo. ^^

ments, (l

II

13

\ax

Case

173.

be any pc
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E X E R C I S E S — Continued.

3. Compute all the terms of {a + hf, using the binomial
roefficients.

4. What is the coetMciunt of b^ in the develoi)ment of

[a + by^.

5. What are the first foui terms in the development of

{•him + 3w)8.

6. What are the first three terms in the development of

jl + -I ? What are the last two terms?

7. What are the first three and the last three terms of

8. What is the development of la + -) •

9. Wliat are tlie first four terms in the development of the

following binomials:

(1 -f X^Y ; (1 + 2:6-2)" .

(1 _ ^i-^2)n .

10. What are the sum and difference of the two develop,

ments, (1 + .r)^ and (1 — a-)^?

Case IV. Square of a Polynomial,

173. 1. Square of any Polynomial. Let

a-\-b-\-c-\-d-\- etc.,

be any polynomial. We may form its square thus

:

a -\- b -\- c -\- d -{ etc.

(I + b + c -\- d -\- etc.

;'" + ab -\- ac + ad + etc.

ab i-b'^ -\- be + bd -f etc.

ac -f- be + c^ -f- cd -f- etc.

ad + bd -\- cd + d- + etc.

«2 ^ ^^ 4- (;2 + d^ 4_ etc.
~~

+ 2ab + 2«c H- 2ad + etc.

+ 26c -f 2bd + etc. + 2cd + etc.

. ^{ 1

ii

U^

ht
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U

We thus rciicli tlic following conclusion

:

Tlwortm. The squja-e of a polynomial is equal to

the riiim of the squares of all its terms })lus twice the

pi'odu(;t of eveiy two terms.

y. S(iit((rc of <ni Knlirc Fundiyn. Sometimes we wish h.

arrange tiie polynomial and its sfjiuiro as an entire function ot

some (juantity, for exam[)le, ol'./-.

Let us form the s(j[Uiirc of a -\- hx -\- coi? \- dx^ -|- etc.

a -\- hx -i- cx^ + dx^ + etc.

a -\- bx }- cx^ + dj? + etc.

a^ + ahx -\- ncx^ + adx^ -f etc.

abx 4- ^2^-2 4- hex- + hdx^ + etc.

acx^ + hcx^ + rV + etc.

(uh^ 4- hdx^ + etc.

a^ 4- 2ahx + (2rtc + V^) x^ 4- ('^r/f/ 4- 'Ibc) 0^ 4- etc.

We see that

:

The coefficient of x^ is ac -^ hh -\- ca.

" " " a? is ad + he + eh 4- da.
" " "

:c^ is «p 4- /yf/ 4- cc -f ^//> 4- ea.

etc. etc.

The law of the products ae, hd, cc, etc., is that the first

factor of each product is composed successively of all the co-

efficients in regular order up to that of the jiower of a; to which

the coefficient belongs, while the second factor is composed

successively of the t^ame coefficients in reverse order.

EXERCISES.
Form the squares of

I. 1 4- 2;f 4- ^i-^. 2. 1 4- 2:r 4- 3ir2 + 4.^8.

3. 1 4- •2x 4- 3.^2 4- 4.?:3 4- 5:6-5.

4. 1 -f 2.r 4- 3a;2 4- 4.^3 4- 52-5 4- {jx\

1 _ 2x 4- 3.t2 _ 42-3. 6. a—h^-c — d.

3rt -\-U — c-\-d.
8.

1 ,

« 4- —b
a

1
— t

b

EVd

number

Whe
Whe

Exam

As the

There

now descr

175.
root of a^.

li\ itself, V

tity is a^,

Thesq

In the

The fo

Tlieor

])ressed 1

dividing

170. .

nal definil
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CHAPTER I i.

EVOLUTION AND FRACTIONAL EXPONENTS.

174:. Dif. The «i"* Root of a quantity q is such a

iminber as, being raised to tb»* ^''* power, will produce q.

When n = 2, the root is called the Square Root.

When 71 = 3, the root is called the Cube Root.

Examples. 3 is the 4tli root of 81, because

3.3.3-3 = 34 = 81.

As the student already knows, wo use the notation,

«''* root of q = ^'q.

There is another way of expressing roots wliich we shall

iKjAV descril)e.

175. Division of Exponentfi. Let us extract the square

root of a^. We musi find such a quantify as, being muUiplied

hy itself, will produce a^\ It is evident that the required (|uau-

tity is a^, because, by the rule for multiplication (§§ GG, IGG),

a^ X a^ = a^
n

The square root of ((^ will be a^, because

n II n n

n

In the same way, the cube root of «" is a^, because

n n 71.

The following theorem will now be evident:

Tlieorem. The square root of a power m.ny be ex-

l)ressed by dividing its exponent by 2, the cube root by
dividing it by 3, and the n^^"- root by dividing it by n.

170. Fractional Exponents. Considering only the oiigi-

nal definition of exponents, such an expression as «'- would
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If 'I
ft

*

w>.

liavo no meaning, because we cannot write a 1^ times. But

by what has just been said, we see that a- may be interpreted

to mean the square root of a^, because
3 3-

a^ X a- = ifi.

llonce,

A liactional exponent indicates the extraction of a

root. If the denominator is 2, a square root is indi-

cated ; if 3, a cube root ; if n^ an n^^ root.

A fractional exponent ;"\s ; '.reforc the same meaning as

the radical sign V? and m:-; f,c <:^od in place of it.

E X E r. C I S :.
"-

Express the following roots by exponents only :

I. V';". 2. a/(w + n). 3- -Vict + Hf.

4. ^/{a + bf. 5. 'Vm^ • 6. ^a«.

7. v^rt^ 8. ^/{a + ^)«. 9. \/(rt 4- ^)'".

177. Since the even powers of negative quantities

are positive, it follows that an even root of a positive

quantity may be either positive or negative.

This is expressed by the double sign ±

.

EXERCISES.
Expr.'ss tlie square roots and also the cube roots and tlie

n^^ roots of the following:

I. {a + bf. 2. {a + bf. 3. a^b.

4. {x + y)^- 5. (^+?/)^- 6. Cc + 7/)\

178. If the quantity of which the root is to be ex-

tracted is a product of several factors, we extract the

root of each factor, and take tlie product of these roots.

Example. The n^'^ root of am^p is a^ni^p^, because

{ro'm^p^f z= am% by §§ 168 and 17G.

If the quantity is a fraction, we extract the root of

both members.
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Proof. ©"= a
(§§1G7, 108.)

.A

Because -r taken n times as a factor mukcs r, therefore,
ih b

l>v dellnition, it is the n^'' root of
n

EXERCISES.

4a;2.

Express the square roots of

^'
49wi

Express the cube roots of

4. 27- G4.

G4«*2^
2/,3

5. 27rt97^/3

Shnj/^fj

6. 64.27«3i6.

7. ahh^d^. 8.
8^m

125icy»

Express the n*^ roots of

10. 4.7.

12.

15.

6)112)"'
13- Ga^b^^'

II.

14.

10.

Grt2/;^

m
C'«i/«

16. 35« «-^'* {a + J)^'^ (a: — ?/)« 4^ (J — c + </)-'*«.

Reduce to exponential expressions

:

17. \^a (b - (y^. 18. \/a¥c\

19. '^^aPb^.

ml{a 4- ft)»

20.

21.
(r^ — bf'

Powers of Expressions with Fractional Expo-
nents.

179. Theorem, The j)^^ power of the

equal to tlie n^^ root of the p-^ power.

Ah

\

S^l

;.
, Sl
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I

In iilgebruic language,

{^/ay = vV.

or (a")" = (a")",

Example. {^/>^f = 5i2 = 4,

or, in words, tlic square of the cube root of 8 (that is, llut

square of 'Z) is the cube root of the square of 8 (that is, of 01).

General Proof. Let us put x = tlie ?i^^ root of a, so that

a;« = n. (1)

Tiie y^ power of this root x will then be xp. (2)

Raisijog both sides of the equation (1) to the p^^ power, we

have
x^P z= aP — pf^ power of a.

The n*^'' root of the first member is found by dividing the

exponent by w, whieli gives

n^^ root of p^^ power = xp,

the same expression (2) just found for the p^^ power of the

n^^ root.

This theorem leads to the following conclusion

:

1. The expression ;,

a"

may mean indifferently the p^^ power of a'^, or the Tith

root of aJ', these quantities being identical.

2. The powers of expressions having fractional ex-

ponents may be formed by multiplying the exponents

by the index of the power.

EXERCISES.

Express the squares, the cubes, and the n^^ powers of the

following expressions

:

I.

4-

1

aK

2. a^.

5. abK

2

7. a

9. ('

II. a

Re(lu('(

.3. (.

(I15. (

'(I

REC

6. ab^ c^.

180.

the syml

divided.

All the

(if roots, ha

Def.

of a root

Exam

or, in the

In or
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7. a^P.
m

9. {a + /y)" (r? — A)-» 10. /r »^«.

II. « «^'\ 12. ^- -•'''-„-,

(^ — y)
'^

KlhIucc to simple products and fractions:

X^ij "7 . 14. {(nfj^^c ")'*.

15. (rr^i")''- 16. Vf "/ *?.

17 18.

»•

CHAPTER III.

REDUCTION OF IRRATIONAL EXPRESSIONS.

Definitions.

180. D(f. A Rational Expression is one in wliicli

the symbols are only added, subtracted, multiplied, or

divided.

All the operations wo have hitherto considered, except the extraction

of roots, have led to rational expressions.

Def. An expression which involves the extraction

of a root is called Irrational.

Example. Irrational expressions are

or, in the language of exponents,

a^, [a + b)K 27i

In order that expressions may be really irrational,
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hi,

\W

they must lu' Irreducible, tliat is, incapable of beiiif:

t'Xprcsscd witliout tlio radical sign.

KXAMl'l-E. The CXJU'C'SsioilH

mv not properly irratioiiiil, hccausc they are equal to a + //

and respectively, whicli are rational.

7V/'. A Surd is the root which enters into an

irrational ex])ression.

KxAMPLE. The expression a -f bVx la irrational, and the

surd is 's/x.

Def. Iri-ational terms are Similar wlien they con-

tain the same surds.

Examples. The terms v^HO, 7v^30, {x + ;/) a/;}0, are

similar, because the ((uantity under the radical si^i^ni is 30 iu

each.

The terms {n + V) ^/x -\- y, 3Va: + y, m'^x + y arc

similar.

AjfftTej»ati()ii of Similar Teniis.

181. Irrational terms maybe aggregated by the rales of

^§ 5-t-5G, the surds being treated as if they were single sym-

bols. Hence

:

iy7i('n similar iin'atiniutl trnnfi arc connected hy the

signs -}- or —, the corjficicnts of the similar surds mdij

he added, and the surd itself affixed to their sum.

Example. The sum

aV{x -f y) - h\/{x + y) -f ^^/{x + tj)

may be transformed into (r? — J -f 3) \/{x -f y).

exerci.es.
Reduce the following expressions to the smallest number

of terms

:

I. 7a/3 - 5^/2 + G\/3 -f lahV^.

2. r,

3-
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4

5

6

7

8

9

lO

II

12

- 3 (a + b) V{x - d).

(^/ -f /v) 's/j'ij -f- (rt — ^) y/xy.

Vx {a ~ h) 4- {fi — r) \/x + {r — a) \/x,

a'\/x — ^x + "ia^/x — {a -y b) y/x,

'. y/x — ay/x -\- (jVx — c^/x -f- „- y/x.
4 J

—~- Vx — QWx Vx + V.-r.

3 / / , ,, / 2 (a — A) /

^ ^/x _ Va: + (rt - />) V .'• + -^Tj- - V a:-

V« —bVa—\/x+ -^—^ Vfl — ., va.
4 **

^ V^a; — Vx -\- -^g—-' Va;.

Wx — - \/^- + {a — b) Vx.

Faetoriiiff Surds.

183. Irrational expressions may sometimes he transformed

so as to have different expressions under the radical sign, hy

the method of § 178, applying the following theorem:

Theorem. A root of the product of several factors

is equal to tlie product of their roots.

In the language of Algehra,

Vabcd, el . = Vci Vb Vc Vd, etc.

_ ffk f,k f,k flk^ (3tc.

Proof. By raising the members of this equation to the

n^^ power, we shall get the same result, namely,

a X b X c X d, etc.

Example. -y/SO = Vo Vs.
11
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EXERCISES.
Prove tlic following equations by computing both sides;

Proof. V4 a/40 = 2-7 = 14, and \/lOG = 14.

V4 a/'J = a/.'30.

1/4 V^'o = \^4.i>5.

a/u a/IG =: v'iirTf;.

A/;i5 a/^jo =: v;^rj.;3o.

ExpresH with a single surd the products*

I. V{a + b) V{(i — b).

SoLiTiox. ^/{a + b) V(a - b) — \/T(i'^b) {a — b)

2. Vt V'), 3.

4. V^ VC^ + y). 5.

6. V(.<: f 1)a/(.^--1).

7. V(.r2 +!).</(./•+ I) \/(.f-

8. |> + /.)l(r/_/.)lJ''.

9. [(.r2 +!)?.(.• 4. l)^(.r-l)^.]'

A/rt V'^ V{(i + />).

1).

IS.*?. If wo can s«^parate the quantity under the

radical sii^n into two factors, one of wliicli is a perfect

square, wi» may extract its root and affix the surd root

of the remaining factor to it.

EXAMPLES.

V^ = Va"^ y/b — aVb.

y/ab \ar —_ \/ifibc = aVbc.

\/l3 a/h = A/r-2 = A/3n V3 = Ga/2.

a/(4«=' + S(Cb - Ki^r^r) -. v/4^^ (^+" 2^—lac)
— 2^a/(^ + "lb — 4ac).

{x^— 4.r// f 4,yv/-)
^ = (.r — 2^) x^.
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EXERCISES.
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3. {a + Vh) {n — vVy). 4. {Va+ ^/h + a/^+ \/d)\

7. (« + a~^)^. 8. (rt^ — a i')^.

9. \(i + SV(a: + 2/)] \ct — bV{x + 2/)]-

10. [w -f wa/(« -|- ^)] ['« — wVi^ — ^)].

11. {x+ \/{x^ — 1)] [x - ^/{x^ - 1)].

12. l{b'^J^l)^ + b] [(i2 + l)i-^].

Expressions may often be transformed and factored In-

combining tbe forc'going processes.

Example. To factor ax^ + hx^ + cx^ + dx^, we notice

tbat 7 1 o fi 1 n J

a:2" = a;=i;i-3, tr^ — a-^a:^, etc.

so tliat the expression may be written,

ax^x's -\- hx^x- -\- cxx- + dx- = {ax^ + bx^ -f ex -f- d) x^.

EXERCISES.

Reduce the following expressions to products:

13. 2 + ^^. 14- 32-f2.3i

15. {a^r hf. ^ 16. Vi/ 4- ay^'^hf,

11
— V^^'17. X — }j — V .r — y.

Reduce to the lowest terms

18.

21.

2

« — 3: 4- Vfl^

19.
A/ff 4- &

a 4- 6

a:

« — \/«

20.

22.

«^^ 4- bx^~

B , 1

aa;^ — ox^

X

V a^ —
a ^ b

w

18.1. Rationalizing Fractions. The quotient of

two surds may be expressed as a fraction with a rational

numerator or a rational denominator, by multiplyiL,

,

both terms by the proper multiplier.

\/5
Example. Consider the fraction

MuH

Mult

numerat

The
rationa'

both of

Let I

in which

or nume:

merator

will beco

The]

so that i

Redui

denomin;

I.

V7
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Multiplying both terms l)y V?, the fraction becomes
/or

—^ , and has the rational denominator 7.

Multiplying by y'5, it becomes —

—

numerator 5.
'^ '^'^

, and has the rational

The numerator or denominator may also be made
rational when they both consist of two terms, one or

both of which are irrational.

Let us have a fraction of the form

in which the letters A, D, P, Q, and R stand for any algebraic

or numerical exjiressions whatever. If we multiply both nu-

merator and denominator by P — Q^R, the denominator

will become
P2 - Q^R.

The numerator will become

AP + PD\^B - A QVR - DQy/~BR.

so that the value of the fraction is

AP -\r PD^/B - A QVR -DQVBR
in_ Q2j[i

I (

EXERCISES,

Reduce the following fractions to others having rational

denominators:

4.

7.

7\/3

9\/5"

a + Vb
a — Vb

2. —

5-

8.

3\/6
*

" — Vx
a -if -v/a;

3-

6.
bVu
2\/2

V'x — Vy
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10.

PEIiFI'JCT SQUAR/^S.

a + 2V(x + y) . . ''2V3 -{- TV's

n5 + \/(a; + y)

II.

Vj — V3

X ^/x^ a*

14.
«" + (a + 1)2

15-
.2; a\/'x + g + V-

V^ + ft — V2; — ft

Perfect Squares.

l^>(>. Def. A Perfect Square is an expn^ssion of

wliicli the square root can be formed witliout any surds,

except sucii as are already found in the expression.

Examples. Am\ hfi + 4ft + 1 are perfect squares, be-

cause tlieir square roots are 'Zm\ 'Za + 1, expressions without

the radical sign.

The expression a -\- "Z^/ah + b, of which the root is

may also be regarded as a perfect square, because the surds

Vft and V^6 are in the ])roduct 2\^ab.

Cntcrion of a Pfrfcct Square. Tiie question whether a

trinomial is a perfect s((uare can always ha decided by compa.

ing it with the forms of i< 80. namely:

cfi -f 2ftZ> -i- b^ — (ft + h)\

or ft/2 — 2((b -\-h^ — {( ~ h)\

We see that to be a perfect square, a trinomial muit*^ fulfd

the following conditions:

(1.) Two of its three terms must be perfect squares.

(2.) Th(» remaining term must be equal to twice the

product of the square roots of the other two terms.

AVlien these conditions are fuliilled, the square root

of the t''*viomial will be the sum or dilf(»rence of the

square roui^^ of tiie terms, according as the product is

positive or negative.

The rC'* may bav^ eitlier sign, 'jecause the squares of posi-

tive and ncu".?'*vo q.iuntitics have tlie same sign.

If tl

the trin

Fine

and ext

I.

3-

5-

7.

9-

T 1.

n-

IS-

such a

the trii

Thi

Pro

s(piare,

term, S(

Adc
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If tlie torms whieli are perfect squares arc both negative,

the trinomial will be the negative of a perfect scpiare.

EXAMPLES.
^/TF+Jab'^ b^ = a + b or — (a + b).

Va^ — 'Zab -\- b'^ = a — b or b —a.
_ a^ _|_ 2ab -b'^= - {a - b)^ = - (b - af.

EXERCISES.
Find which of the following expressions are perfect squares,

and extract their square roots:

I.
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•^ *

This is a perfect square, namely, the square of

« + :

that is, a' + m +
4a2

Hence tlie followiiief

Rule. .Idd to the hinoniial the square of the secoiul

term divided bjj four times the first term.

Example. What term must be added to the expression

3? — ^ax (1)

to make it a perfect square ?

The rule gives for the term to })e added,

{—4:(txf

4txi
4:a\

Therefore the rc(|uired perfect square is

a;2 _ ^ax + 4r^2 = {x — 2a)\

We may now transpose 4«2^ so that the left-hand member
of the equation shall be the original binomial (1). Thus,

a;2 — ^ax — {x — 2aY — 4^2.

The original binomial is now expressed as the difference of

two S(iuares. Therefore, the above process is a solution of the

problem : Having a bi?iomial of irhich 07ie term is a perfect

square, to express it as a difference of tivo squares.

EXERCISES.
Express the following binomials as differences of two

squares

:

I. x^ + 2xy.

3. x^ -\- Qax.

5. A:X^ -\- 4'ry.

7. Ux^ + ^2mx.

9. «2«2 _|_ 2a2a;.

II. m^x'^ 4- 1.

7. X? -\- 4:xy.

4. 4:^2 -|- 4:xy,

6. dx^ + ax.

8. x^ -f 4x.

10. Ir^x^ + 2.

12. 9p^j(^ 4- bx.

Ga\14
1
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IrraticMiiil Factors.

• 188. When we introduce surds, many expressions can bo

factored which have no rational factors. The following

theorem may be ap])lied for this })urpose

:

Theorem. Tlie difference of any two quantities is

eqnal to the product of sum and difference of tlieii'

square roots.

In the language of algebra, if a and h be the quantities, we

shall have

which can be proved by multiplying and by § 80, (3).

Factor
EXEF^CISES,

I. m — 71.

3. a?n — hn.

2. m — 1.

4. ^ahn — 0.

5. x^ — m. 6. x^ — {m -(- «).

7. {x — «)2 —
J
(m — 7i). 8. x^ — {m — w).

Find the irrational square roots of the following expressions

by the principles of § 186 :

11. a — 2 -{- a~K Ans. a^ — a~K
12. X — 2x^-1'!/ + l/' 13. 4 -f- -iVS + 3.

14. 9 4- 5 — r)\/5. 15. 'Ui -\- f) — -^ahK

16. a-^b-\-2{a-^b)h--{-x\ 17. 3 -\- -.'^15 + 5.

18. 3-1- T) — 2 a/15.

20. a — %y/a -f 1.

i 1
22. a -\ 2rt* -I- i-

as

M^ jfg + g-

a6. a" -H 2 -f- a-^.

t8. rr + /> — 4 +

ai. « — 2a*^ + as.

23.
7

4

4_

''• 16 + 4"^ 4*

27. 4jr3 — 8 + 4a:-«.

t

r
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EQUATIONS REQUIRING IRRA
TIONAL OPERA TIONS.

I 4

CHAPTER I.

EQUATIONS WITH TWO TERMS ONLY.

189. la the present eluipter we consider equations which

contain only a sinijle i)ower or root of tlie iinknowii (juantity.

Such an e(iuation, when reduced to tlie nornuil form, will

be of tlie form
J.r« + B 0.

By transposing />*, dividing })y A, and puttin or

B

the equation may be w xitten,

ocP' — a = 0.

or X"' — a, (1)

Here n may be an integer, or it may represent some fraction.

Such an equation is called a Binomial Equation, because

the expression ocP' — a is a binomial.

Solution of ii Biiioniial Equation.

190. 1. When the exjwnenf of x is a {Dhole number. If we

extract the ?i^^ root of both members of the equation (1), these

roots will, by Axiom V, still be equal. The n^^ root of :r« being

Xj and that of a being a", we have

and the equation is solved.

X or

,^*5I.
•

•
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8. When the cxjwucnt is/ractionuL Lut Ihu efiuatioii be

m
a^ = a.

Raising both menibers to tho n"^ power, wc havo

Extracting tlio 7«"^ root,

n

X = </'".

If the numerator of tlio exponent is unity, we only have lo

suppose ?» = 1, wliieli will give

X = a"'.

Hence the ])inoniial ecpnitioii always admits of solution by

forming powers, extracting roots, or both.

Special Foriiis of Biiioiniul Equations.

Def. AVhen tlie exponent 7i is an integer, the e(iiia-

tion is called a Pure Equation of the decree n.

When 71 = 2, the equation is a Pure Quadratic

Equation.

When /i = 3, the equation is a Pure Cubic Equa-
tion.

EXERCISES.

Find the values oi x in the following e([uations

P
x^
= n-

Ans. X = P'

a -\- b a= c.

9

X

X*

7?

8.

X

X^

yl

•2

mi

a

nx^ — ()

.r^ -
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In tho Inst oxnnii)l«, cleariog the equation of fractionn, we shall have

V'j'
- rt* = 6« - «»,

or (T' - n*)^ rn i« - a\

We Hfiiiiirc both sides of this fquution, which gives another In which

'jt- only apix-ars.

lo. (./• — ^/):' = b^. II. (/^ — (fi)^ = mx.

12. {'^X — V/5»)^ = UXK

Positive and Xoffativc Roots.

101. Since tlic s(|U{ire root of a quantity may bo eitlier

positive or negative, it follows that when we have an equation

such as

^ = a,

and extract the square root, we may have either

X = + a5,

or X z= — aK

Hence there arc two roots to every such equation, the one

positive and the other negative. We express this pair of roots

by writing

X = ± nK

the expression ± «« meaning eitlier + n^ or — ah

It might seem that since the S(iuare root of x"^ is either +.r or —a*, we
should write

having the four equations,

± .T = ± a*,

X = a*,

X = — «*,

— X = + rt*,

— X = — tiK

But the first and fourth of these equations give identirnl values o. x

by simply changing the sign, and so do the second and third.

PROBLEMS LEADING TO PURE EQUATIONS.

1. Find thro' numbers, such that the second shall be
double the first, the third one-third the second, and the sum
of their squares 19G.

2. The sum of the squares of two numbers is 3G9, and tho

difference of their squares 81. What are the numbers?
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3. A lot of hud rniituins Uit,") f!f|u;iro foci, imd its l('n.i;(!»

rxrocMJs its breiulth hv 1'^ tVct. What arc tljo length iiud

bivadll:?

To solve tills equation ns u biiionrial. take the mean of the lengtli

and breadth as tht; unknown <iuantity, ho that the lenj^th Bhall be ar* inueh

greater than tin." mean uh the breadth is less.

4. V\ui\ a iiuii»l)cr siicli that if !» l)c added lo and sulitractcd

from it, thi' product of the siiiii and difl'i iviicu .shall ho ITo.

5. Find a inuiibor such that if rHtc added to it and suh-

tractod from it the product of tlio sum and dill'croncc shall ho

'^(( + 1.

6. One numhor is double another, and the diltcn?ncc of

their s(|uaro8 i.s lU'^. Winit are the numbers ?

7. One number is 8 times another, and the sum of their

t'ube roots is 1'^. What are the nund)er.s ?

8. Find two numbers of which one is 3 times the other,

jind the s(|uare root of their sum, multiplied by the lesser, i.s

e(|ual to I'iS.

9. Wiuit two numbers are to each other as 2 : 3, and the

sum of thi'ir scpuires = [i'i^y?

Note. If we represent one of the numbers by 2/, the other will be 3x.

10. What two numbers are to each other as in : n, and
the s(|uare of their dilferenee equal to their sum ?

11. What two numl)ers are to each other as 1) to 7, and the

cnbe root of their ditferenee niulti{)lied by the square root of

their sum e(|ual to 1(! ?

12. Find j: and y from the expiations

ax^ -\- liif^ = c,

a'x^ + b')/ = c'.

13. The hy])otlienusc of a ri<;ht-aup:lcd trianirlo is 20 feet

in length, and the sum of the sides is 34 feet. Find each si<U'.

Note. It Ih shown in Geometry that the wjuafe of the hyi)othenuso

of a rifjht-angled trian<rle is equal to the sum of the squares of the other

two sides. In the j)resent problem, take for the unknown i|uantity tin;

amount by which each unknown side ditters from half their .sum.

1.4. Two ]K)ints start out tofrethcr from the vertex of a

right angle along its res})oetivc sides, the one moving?// feet

])er secoiul and tlie other 71 feet per second. How long will

they recpiire to be c feet apart?

15. By the law of falling bodies, the distance fallen is pro-

portional to the sfpiare of the time, and a body falls IG feet

the lirst second. How long will it require to fall h feet?
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I'

CHAPTER II.

QUADRATIC EQUATION S.

103. Def. A Quadratic Equation is one wliicli,

wlien reduced to the normal form, contains the second

and no higher power of the unknown quantity.

A quadratic ecjuation is the same as an equation of the second degree.

Def. A Pure quadratic equation is one which con-

tains the second power only of the unknown quantity.

The treatment of a pure (quadratic equation is given in the preceding

chapter.

Def. A Complete quadratic equation is one which

contains both the first and second powers of the un-

known quantity.

The normal form of a complete quadratic equation is
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Solution of a Complete Quadratic Equation,

193. J. quadratic equation is solrcd by adding such

(I quantity to its two niemhcrs that the niemher contain-

iii<;> the unknown quantity sliall he a perfect square.

(§m.)

\Vc first transpose q in the general equation, obtaining

x^ -^ px -=1 — q.

We then add ^ to both members, making

x^ ^px -^-'-^ ='- — q.

The first member of the equation is now a perfect square.

Extracting the square roots of both sides, we have

...f
= ± 7i

From this equation wc obtain a value of x which may be

put in either of the several forms.

. = -|±
n~
-1-

X

X

p Vp^ — '^q

2 2

= '^{-p± Vp^-^q)'

If instead of siibstituting^ and q, we treat the equation in

the form (3) precisely as we liave treated it in the form (8), we

shall obtain the several results,

1 h^ 1 J2

X^ ^ -X -{- -r-, =
a 4 a^ 4 ci^

«

and * = -2^,± /(5 -
«)

_ —b± V(h- - iac)

J-;: 1:1

»^r..,

I
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4

'J 4

i '*

194. The equation in the normal form, (1), may also bo

solved by the following process, wliich is sometimes more con-

venient. Transposing c, and multiplying the equation by a,

we obtain tiie result

a'^x^ + ahx = ac.

Z.2

To make the first member a perfect square, we add - to

each member, giving

U^ ^
a^x^ 4- ahx -\- -- — ~ ac.

4 4

Extracting the square root of both sides, we have

from which we obtain the same value of x as before.

195. Since the square root in the expression for x may be

either positive or negative, there will be two roots to every

quadratic equation, the one formed from the positive and the

other from the negative surds. If we distinguish these roots

with .Tj and a^g, their values will be

— - ^ + Vjb'^ - 4:nc)

';
} W

x^ =

x^ —
2a

We can always find the roots of a given quadratic equation by sub-

stituting the coefficients in the preceding expression for x. But the stu-

dent is advised to solve each separate equation by the process just given,

which is embodied in the following rule :

I. Reduce the equation to its normal or its general

form, as may he most convenient.

II. Transpose the terms which do not contain x to the

second member.
III. // the coefj/iciejbt of x^ is unity, add one-fourth

the square of the coejficient of x to both members of the

equation and extract the square root.

IV. // the coejficient of x''^ is not unity, either divide

by it so as to reduce it to unity^ or multiply all the terms
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hy such a factor that it shall become a perfect square,

and complete tlie square hij the rule of § 187.

Solve tlie equation

X

EXAMPLE,

— 1 = 'Zx.

Clearing of fractions and transposing, we find the equation to become

2a;2 - 412; + 1 = 0, (5)

„ 4Ax _ _1
^

'"'Z
~~ 2'

Adding | the square of the coefficient of x to each side, we have

2 ^^
,

1G81 1081 1

2

1G73

2
"^

' 10 ~ 10 2 10

Extracting the square root and reducing, we find the values of x to be

:, := ^ (41 + ^1073),

and

X.

X. = l(41-\/lG73).

Using the other method, in order to avoid fractions, we multiply the

equation (5) by 2, making the equation,

4:X^ — 82:c = — 2.

Adding — = —— to each side of the equation, we have

412 1681 ^ 1673
4:^2 _ 82a; + -^ = -4- - ^ = -^'

Extracting the square root.

v.'honce we find

^^—
2 — V 4: ~~ 2

'

41 ± a/1673
X =

the same result as before.

EXERCISES.

Reduce and solve the following equations

2 x-{-'Z~ q' ' y-^ y + ^ ^

12

I.
X

'( \\

i
I

I" ' 11

! I

il
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8. A liiickstcr Imuf^lit a ccrt;iin nunibor of chickens f<»r

li^lO, iiiul II nimilxT of turkeys for >!l5.Tr). 'I'lu-re were 4 riioro

rhickeiiH tliaii turkeys, l)ut tlu\v . acli cost him o.'> cents a piece

li'ss. How many of eacii did he buy?

9. A farmer sold a certain numher of shei^p for $'Mn. ]f

lie liad sold a numher of sheep greater for the same sum, iiu

would have received $4 a i)iece less. How many sheep lid he
R'll ?

10. A party having dined together at a hotel, found the

hill to be 80.60. Two of the numher having left before i)ay-

ing, each of the remainder had to pay :i4 cents more to make
up the loss. What was the number of the I)ai1y ?

11. A pedler bought $10 worth of ap])les. ,'K) of them
])roved to be rotten, but he sold the renuiinder at an advance
of 2 cents each, and made a profit of -ii'S.^U. How many ditl

he buy ?

12. In a certain number of hours a man traveled 48 miles
;

if he had traveled one mile more pt'rhour, it would have taken
him 4 hours less to perform his journey ; how many miles did
he travel pur hour?

13. The perimeter of a rectangular field is 160 metres, and
its area is 1575 sq_uare metres. What are its length and
Ijreadth ?

14. The length of a lot of land exceeds its breadth by
a feet, and it contains m"^ square feet. AVhat are its dimen-
sions ?

15. A stage leaves town A for town B, driving 8 miles an
hour. Three hours afterward a stage leaves B for A at such a

speed as to reach A in 18 hours. They meet when the second
has driven as many hours as it drives miles per hour. What
is the distance between A and B ?

Note. The solution is very simple when the propei- quantity is taken

as unknown.

Equations which may be Reduced to Quad-
ratics.

196. Whenever an equation contains only two

powers of the unknown quantity, and the index of one

power is double that of the other, the equation can be

solved as a quadratic.

!••

I

If



180 QUAmUTW EQUATIONa.

I
I

'li,

Special Example. Let us take tlic oquution

(1)

Transposing c and adding .U^ to each side of the equation,

it becomes

4 4

The first member of this equation is a perfect square,

namely, the square of a:^ + - ^. Extracting the square roots

of both members, we have

a;3 -v\i = \/'{^^b^ -c)^ ±\ V{b^ - 4c).

' = l[-b±V{l^'-^c)].Hence, x

Extracting the cube root, we have

X

General Form. We now generalize this solution in tlie

following way. Suppose we can reduce an equation to tlie

form
ax^^ -f- bx"^ -]- c = 0,

in which the exponent n may be any quantity whatever, entire

or fractional. By dividing by a, transposing, and adding

1 b^
to both sides of the equation, we find

4a2

a 4 a^ 4 «^ «

The first side of this equation is the square of

lb

Hence, by extracting the square root, and reducing as in

the general equation, we find

x^' = ^j^[-b± V{b' - 4a.)].

.s
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Extracting tlie m''* root of both sides, we have

4*^ (r

={
— b± y/¥ —^ic\^

a

If tlic exponent w is a fraction, the same course may be

Inllowed.

Suppose, for example,

Dividing by a and transposing, we have

4 5 3 c
x-^ + x^ = •

a a

Adding - j>. ^^ both sides.

4 ,
J a ,

J^ U^ c
xt J— x^ -\ = •

The left-hand member of this equation is the square of

b

Extracting the square root of both members,

! A — ( ^ _^\^ - (<^^ — 4^g)^

whence, x^
2 _ —b± (Z>3 — 4:ac)^

2a

Kaising both sides of this equation to the | power, we have

- b ± (b^ - 4.ar)V
X

2a

EXERCISES.
1. Find a number which, added to twice its square root,

will make 99.

2. What number will leave a remainder of 99 when twice

its square root is subtracted from it.

^I»rffiA

'.

fi

•f

:•'.
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^ I

f

^% Ono-fiftli of a cortiiin number exceeds its square root

>)V J}<). Wliat, is tlie nuinbcr?

4. What nunil)ei' added to its square root makes liOd ?

5. II' Trom '.i times a eertuin number we subtract 10 times

its scjuare root and 9(5 more, and divide the rcuuiimlcr by the

number, the quotient will be 2, What is the number?

Solve the equations

:

6. li/-2i/^ 15. 7. dy* - 7^2 = 25.

8. 5^^ — Sy^ = 13.

m m
9. {x^ + n^Y _ 4 (a;2 4- fl52)2« = ^^2 _ 2 + 1^

a2

11)7. AVHien the unknown quantity ai)pears in the form

x^ +2, the square may be completed by simply adding 2 tu
^

. 1 .

this expression, because x^ -\- 2 -\—^ is a perfect square,

1
^

namely, the square ot x -\- - Tlie value of x may then be

deduced from it by solving another quadratic equation.

Example. 3x^ + -, = 23.
x^

We first divide by 3 and add 2 to each side of the equation,

obtaining 0^1 ^2 ^ /CO

^ + 2 + :;^
= T + ^ = T

Extracting the square root of both sides,

1 2\/7
X -i-- = —— 2V21_2 .

-3~ - 3
^^^-

By multiplying by x, this equation becomes a quadratic,

and can be solved in the usual way.

Let us now take this equation in the more general form,

^ + - = ., («)

which reduces to the foregoing by putting 6 = V21. Clear

ing of fractions and transposing,

a^ — ex -\- 1 = ;

whic'l
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wliicli being solved in the usual way, gives

e ± ^(^2 - 4)
X =

'Z

The two roots are therefore

e + ^{i'i - 4)

(

x« = e _ ^/{c^ _ 4)

2

If in tiic first of these equations we rationalize the numer-

ator by multiplying it by e — V{e^ — 4) (§ IS-j), we siuiU tiiid

it to reduce to
2

1

that is, to
X.

Therefore,

x^ =: — idc7itic((Ufj.

X,

x^

Vice versa, x^ is identically the same as

This must be the case wlienever we solve an equation of the

form ia), that is, one in whicli the value of x + - is given.

50
Let us suppose first that e = y, so that the equation is

1 50

X 7

It is evident that x = 7 is a root of this equation, because

when we put 7 for x, the left-hand member becomes 7 + ^

,

which is equal to -—
• If we put -^ for x, the left-hand mem-

ber will become
1 1^

7
"^

1
+ 7.

\ h

.1 -

; \.

'

I

» I

Hence x and - exchange values by putting ^ instead of 7,

so that their sum x -\r
~ remains unaltered by the change.
X

i ,

'!)



u

If

u-

184 Q UA I)HA TfC h'Q VA 7'IOXS.

The goiioral rosiilt may ho expressed tlius:

I

Becuiisi; the value of the expression x -f- remains im.

1
'

altered when we elianpfe x into , therefore the reciproeal of
'C

any root of the e([uation

1
X 4- - = e

X

is also a root of the same ecpuition.

EXERCISES.

Find all the roots of the following' e<|iiations wiihoiit elcar-

in;:: <he fj;ivcn equations from denoniinalons:

3- ^'^f +
\f

17
2. <i'^x^ 4- -- - = vi^ — 2.

f(h-^

28.
in'

4- -^2-^1/' = ^''^''

5. Show, without solving, that if r he any root of the

equation i

X''

then — 7\ , and — will also be roots.
r r

Factoring a Qiuidraiic Equation.

108. 1. Special Case. Let us consider the equation

x^ — 2a: — 15 = 0,

or

or

X* 2a: + 1 — IG rzz 0,

(.c _ 1)2 _ 42 ^ 0.

Factoring, it becomes (§ 90),

{x-1-^ 4) {x - 1 _ 4) = 0,

or {x + 3) (x — 5) = 0.

Therefore the original equation can be transformed into

(x + 3) {X - 5) rr 0,

a result which can be i^roved by simply performing the multi-

plications.
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This last c(iuation inuy bo satirifu'd by putting either uf itd

factors eqiiul to zero ; that is, by supponing

a; -f 3 = 0, whciico x —. -- 3
;

or j; — 5 = 0, whence a* — + 5.

Tlicsc are the same roots which we sliouhl obtain by solving

the original equation.

5.\ FacforitHj the General Qufulratir Kqnatlon. Let us con-

siiler the general (quadratic equation,

a^ -\- por -^ ([ = 0. {a)

Now, instead of thinking of ./• as a root of this c(|uation,

lot us suppose X to have any value wiiatever, and let us con-

siiler the expression

x' + px^-q, (I)

wiiich for shortness wo shall call T. Let us also in(|uirc how
it can be transformed without changing its value.

First we add and subtract -. />", so as to make part of it a

perfect square. It thus becomes,

1

V 4
X=x'^+px^\p'^-\p'i + q',

or, which is the same thing.

Factoring this expression as in § 188, it becomes

X = ^4- o\p + Q;>^ - rjf^ [x + \p- Q;>2 - ry)-^].

The student should now prove that this expression is really equal to

if + px + q, by performing the multiplication.

Let us next put, for brevity,

1 /I , \\

(2)

»

>'
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m

The preceding value ofX will then hecome,

X = {x — «) (x — (3), (3)

an expression identically eqnal to (1), when we put for « and

(3 their values in (2).

Lot us return to the supposition that this expression is to

be etpial to zero, and that x is a root of the equation.

The equation (a) will then be

{x ~ cc) {x-13) = 0. (4)

But no product can be equal to zero unless one of the fac-

tors is zero. Hence we must have either

X — a =: 0, whence x = «
;

or X — 13 = 0, whence x = (X

Hence, u and ^ are the two roots of the equation (a).

The above is another way of solving the quadratic
equation.

To compare the expressions (1) and (3), let us perform the

multi[)lication in the latter. It will become,

jr = x^ —{((-{- [3) X + ccf3.

Sir. '30 this expression is identically the same as x^-j-px+ q,

the coefficients of the like powers of x must be the same.

That is,

a-:-f3=~p,)

which can be readily proved by adding and multiplying the

equations (3).

This result may bo expressed as follows :

Theorem. Wh( n a quadratic equation is reduced

to the general form

x^ ^ px -\- q — 0,

the coefficient of x will be equal to the sum of the roots

with the sign changed.

The term independent of x will be equal to the

product of the roots.

The student may ask why can we not determine the roots of the

quadratic equation from equations (5), regarding a and j3 as the unknown
quantities?

IE
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We can do so, but let us see what the result will be. We elimiuate

either « or (3 by substiintion or by comparison.

From the second equation (5) we have,

, '- (

Substituting this in the first equation, we have

P-

Clearing of fractions and transposing,

„ + ? =
a

«- -f pa + ^ = 0.

We have now the same equation with which we started, only « takes

the place of x. If we had eliminated a, we should have had the same

equation in j3, namely.

So the equations (5), when we try to solve them, only lead us to the

original equation.

199. To form a Quadratic Equation when the Roots are

given. The foregoing principles will enable us to form a quad-

ratic equation which shall have any given roots. We have

only to substitute the roots for « and /3 in equation (4), and

perform the multiplications.

EXERCISE fi.

Form equations of which the roots shall be

:

I. +1 and — 1. 2. 3 and 2.

_ 3 and - 2. 4- 3 + 2\/l0 and 3-2\/l0.

7 + 21/3 and 7—2V3. 6. +1 and + 2.

— 1 and +2. 8. — 1 and — 2.

-f 1 and — 2. 10. 2 + Vs and 2 — VS.

3-

5.

7.

II.

IS-

17-

3 A 4
7 and -•

4 5
12.

'^ A^
2
^^^ 2"

2+1/2 and 2-a/2. 1+ 9 + ^^2 and 9 - 2\/2

5 + 7^5 and 5— 7^/5. 16. a + 5 and a — h.

a + V«^ — y^ and a — ^/a^ — b^.

I

f i

• I

'

i

i^-

il

1
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!

Equations having: Imaginary Roots.

200. When wo complete tlio square in order to solve a

quadratic equation, the quantity on the right-hand side of the

equation to which that squ ire is equal must be positive, else

there can be no real root. For if we square either a positive

or negative quantity, the result will be positive. Hence, if

the square of the first member comes out equal to a negative!

quantity, there is no answer, either positive or negative, which

will fulfil the conditions. Such a result shows that impossible

conditions have been introduced into the problem.

EXAMPLES.
1. To divide the number 10 into two such parts that their

product shall be 34.

If we proceed with this equation in the usual way, we shall

have, on completing the square,

xi — lOx -f- 25 = - 9,

or {x — 5)2 — — 9.

The square being negative, there is no answer. On con-

sidering the question, we shall see that the greatest possible

product which the two pavts of 10 can have is when they are

each 5. It is therefore impossible to divide the number 10

into two parts of which the product shall be more than 25 ; and

because the question supposes the product to be 34, it is im-

possible in ordinary numbers.

2. Suppose a person to travel on the surface of the earth to

aiiy distance ; ho tV far must he go in order that the straight

line through the round earth from the point whence he started

to the point at whi)h he arrives shall be 8000 miles?

It io evident that the gre?test possible length of this line is

a diameter of the earth, namdy, 7,912 miles. Hence he can

never get 8,000 miles away, and the answer is impossible.

In such cases the square root of the negative quantity is

considered to be part of a root of the equation, and because it

is not equal to any positive or negative algebraic quantity, it

is called an imaginary root. The theory of such roots will be

explained in a subsequent book.

RE

in

W(

(^

a
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CHAPTER III.

REDUCTION OF IRRATIONAL E( UATIONS TO THE
NORMAL FORM.

201. An Irrational Equation is one in which the

unknown quantity appears under the radical sign.

An irrational equation may be cleared of fractions

in tlie same way as if it were rational.

Example. Clear from fractions the equation

Vx + a + \/x — a 2a

V^ + a — ^/X a Vx^ a"

Multiplying both members by \/^^ — «^ = V^-f a \/x—a,

we have

(x + a) Vx — a + {x — a) ^/x \- a _
^/x -\- a — ^/x — a

Next, multiplying by V^ 4- « — V^ — «, wc have

(.^•+ rt) ^/x — a 4- {x — a) ^/x + « = lay/x^a — 2flV'.?; — a.

Transposing and reducing, we have

{x + 3«) ^/x^a + {x — 3a) V^M^ = 0,

and the equation is cleared of denominators.

Clearing" of Surds.

203. In order that an irrational equation may be solved,

it must also be cleared of surds which contain the unknown
quantity. In showing how this is done, we shall suppose the

equation to be cleared of denominators, and to be composed of

terms so*ne or all of which are multiplied by the square roots

of given functions of x.

Let us take, as a first example, the equation just found.

Since a surd may be either positive or negative, the equation

in question may mean any one of the following four

:

I i-

I?

n
ii'

\ (
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[x -\- '6a) ^Tc^a + (.?; — 3r/) ^Jx + a =: 0,

(./; + 3«) ^/x — a — {x — 6a) ^/x + « = 0,

{x. + 6a) Vx^a + {x — 6a) \/^+7i = 0,

(1)

(•5)

(•i)— (ic + 6a) V-^ — a — {x — Sr*?) V^ H- « = 0.

But the tliird equation is merely the negative of the second,

ai)d the fourth the negative of the first, so tliat only two have

dilfercnt roots. Let us put, for brevity,

F = (x + 3a) V^ — a + {x — 3a) y/x + a,

<2 = ('^ + 3a) ^/x — a— (x — 3a) 's/x + a,

and lot us consider the equation,

pq = 0.

Since this equation is satisfied when, and only when, we
have either P =: or (> = 0, it follows that every value of .6-

whiel) satisfies either of the equations (1) or (3) will satisfy (G).

Also, every root of (G) must be a root either of (1) or (2).

If we substitute in (6) the values of P and Q in (5), we

shall then have

{x + 6aY {x — a) — (x — 6af {x -^ a) = 0,

which reduces to hx^ — 9«2 — 0,

3a

(5)

(G)

and gives x= ±
\/5

It will be remarked that the process by which we free the

equation from surds is similar to that for rationalizing the

terms of a fraction employed in § 185.

As a second example, let us take the equation.

Va; -{- 11 + V^ — 4 — 5 = 0. (a)

Wc Avrite the three additional equations formed by combin-

ing the positive and negative values of the surds in every way:

— ^/x + 11 -f ^/^ 4 - 5 = 0,

V^+ 11 — A/.r — 4 — 5 = 0,

— \'x + 11 — ^/x — \. — 5 = 0.

The product of the first two equations is

.-,;!

I tlii^^-
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0)

CO

(i)

(V^i 5)2 _ (,; + 11) = 0,

(5)

0^
10 - 10\/a;^^ = 0. (1)

The product of the last two is

10 + loVi^^^i = 0. (^)

The product of these two products is

100 — 100 {x-4:) = 0,

which gives ^ = ^'

It will be remarked that (2) differs from (1) only in having

the sign of the surd different. This must be the case, because

tlic second pair of equations formed from («) djlTer from the

first pair only in having the sign of the surd Vx - 4 different.

ITcnee it is not necessary to write more than one pair of the

equations at each step. The general process is as follows

:

I. Change the si^n of one of the surds in the iivcn

equation, and imtUiply the equation thus formed by the

original equation.

XL Reduce this product, in it ehange the sign of nn-

other of the surds, and form a new product of the tiro

equations thus formed.
^

III. Continue the process until an equation without

surds is reached.

Example. Solve

y'8'^T^ 4- V'^x. + 6 -f Vx~^ = 0.

Changing the sign of Vx + 4,

The product is

{Vh^T^ + V2iT6)' - (.^• + 4) = 0,

or, after reduction,

9a: + 11 + 2\/8^+^ V'^o: + 6 = 0.

Changing the sign of V'ixVQ, we have

9x q- 11 - 2V«^+9 V^x-{- G = 0.

^'

,,
'<

> ',
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ll

'I 4i

.''I



f

1

'^

I:

(1,

192 IliliA TIONA L EQ UA TIONS.

Tlie product of the last two equations reduces to

I'^x^ _ 66a; - 95 = 0,

33 ± 52
which being solved gives X =

17

Remark. Equations containing surds may often reduce to the form

treated in § 196. In this case, the methods of that section may be fol-

lowed.

EXERCISES.

Solve the equations:

1 1 2'v/«-2V.^
I.

2.

Vx; + V(i Vx — V a X — a

Vx'-\-a X
—
a

3. a/o; + 3 — a/^c — 4 = 1,

4. V'>' + i-i 4- \/.<'"^T4 = 14.

5. (3_a;)5_(;3 + :^;2)1 - 0.

6. V^ +
-v/'^'

+ Va — ^/x = 'ZV^ + -7

7.

8.

+
V;X

Vx-j-'Z ^' — 4 Vx — 2

5ar — 9 _ ^ _ V'^' — 3^

\/5^ + 3
~

2

= 0.

). V(^^ — ^x +
a;

b.

10.

II.

X + V^; _ x{x — 1)

a; — Va; ^

a/i + « _ 1

V^ — a + V^a; — 1 V^ — 1

L. A.
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CHAPTER IV.

SIMULTANEOUS QUADRATIC EQUATIONS.

Between ji pair of simulbineous general quadratic equations

one of tlie unknown quantities can always be eliminated. The

resulting equation, when reduced, will be of the fourth degree

Avith respect to the other unknown quantity, and cannot bo

solved like a quadratic equation.

But there are several cases in which a solution of two equa-

tions, one of which is of the second or some higher degree,

may be eifected, owing to some of the terms being wanting in

one or both equations.

203. Case I. When one of the equations is of
the first deffree onlt/.

This case may be solved thus :

Rule. Find the vahte of one of tJie unJcnoicn quan-
tities i'l terms of the other from the equation of the first

degree. TJus value being suhstituted in the other equa-

tion, we shall have a quadratie equation from which the

other unhnown quantity may he found.

Example. Solve

=1:1
27? + ^xy — 5if — X — by — 2G,

2x — 'Sy

From the second equation we find

3.V + 5
x

Whence, X2 —
2

0?/2 4. 30^^/ + 25

(^)

if>)

Substituting this value in the first equation and reducing,

we find

4if + IQy + 10 = 26.

Solving this quadratic equation,

13

\''

iM

'

: t

H!

,..! !
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y = —2±VS = - 2± 2\/2.

This value of y being substituted in the e({uation [b) gives,

— 1 ± 3\/8 — 1 ± Oa/2
X =

2 J3

Tlie same problem mny be solved in the reverse order by eliminating

ii instead of x. The second equation (a) gives

y
2x 5

3

If we substitute tliis value of?/ in the first equation, we shall have a

quadratic equation in x., from which the value of the latter quantity can

tje found.

EXERCISES.
Solve
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{ad — ad') x + {i('c — ae') >j + a'/— af — 0.

Solving this equation with respect to x^ wo lind

{ ae' — a'e) y + (if — a'f

a'd — ad'
X = (*)

By substituting this value of x in either of the equations

{(i), we shall have a (quadratic ecjuation in ?/. Solving the

latter, we shall o1)tain two values of y. Substituting tliese in

{b), we shall have the two corresponding values of x, and the

solution will be complete. Hence the rule,

.'liminate the term of the second decree hi/ addition

or suhtractioii, and use the resulting eqitation of the first

decree with either of the original equations^ as in Case 1.

Example. Solve

2xy — 4:r -f 5?/ — 23,
)

^xy + 7.^- + ^ = 41. f

Multiplying the first equation by 3 and the second by 3,

and subtracting, we have

— 2Qx + 13// = — 13
; (h)

(a)

wlieuce,
1 1

•'^ =" 2^ + 3 W
Substituting this value in the first equation, we find a

quadratic equation, which, being solved, gives

?/ == - 2 ± a/20.

Substituting these values in {c), the result is

X = -|±iV30.

The two sets of values of the unknown quantities are

therefore

X, = -^ + 1^29,

y^ r= - 2 + V29, ^29.^8 =— _
We might ha\'e obtained the same result by solving the equation (c)

with respect to y, and substituting in (a). The student should practice

both methods.

/ .

»

;

!

\ I,

I



100 HIMULTANEOUH qUADUAlW J'jqrATIONS.
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EXERCISES.

I. Ca;2 — ^x — Ay = 25,

xi -f ^Zx — lif/ z=z 18.

a. 2//2 + 2/ = 28,

y2 _^ 3^. — 4^ =z 18.

3. xfj + (5:c + 7// = GG,

3;ry -\- 2x -^ 67/ = 70.

305. Case III. When neither equation coU'
tains a term of the first degree in x or y.

Rule. EliDiiiiatG the constant terms by niultipliji'i^

each c(/nation by the constant term of the other, (did

adding or suhtraeting the two products. Tlie result will

be a, quadratic equation, from whicJi either unJamirn
quan,tity can be determined in terms of the other. Then
substitute as in Case I.

Example. Solve

14xlsi: eq.,

5 x2d cq.,

Subtracting,

X? -f ^y y
2 — 5,

^x? — 3.7;y + 27/^ = 14.

14:^2 ^_ i4^y _ uf — 70.

10j;2 — Ibxy + 10//2 = 70.

(1)

4.^•2 + 29.?'?/ — Ua/ = 0.

This is a quadratic equation, by which one unknown quan-

tity can be expressed in terms of the other without the latter

being under the radical sign.

Transposing, 4:X^ + 29xy = 24:y\ (2)

841
Completing square, 4:X^ + 29a;^ + ^-^^ =

1225

16 r

Extracting root.

Whence, X =

29
,
35

^^ + 'jy = ±'^y'

29 ± 35

g y = ^y o^' - %•

Substituting the first of these values of x in either of the

original equations, we shall have

2/2 = 16;
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whence, y = ± 4 ; x=z ±:].

Substituting the second value of x, we have

I

^ - 11'

Therefore the four possible vuUies of the unknown (luanti-

ties arc,
g

x= +'S, -3, +^^, -^-
1 ^ 1_

Etich of these four puirs of vahies satisties tlie original

equation.

A slio-ht change in the mode of proceeding is to divide the

equation" (2) by either x^ or y^ and to tind the value of tho

(,notient. Dividing by y^ and putting

X

y

the equation will become

4?*2 + 20^6 — 24 = 0.

This quadratic equation, being solved, gives

_ 29 ± 35 _ 3
g

1

».i

' il

I :

#

4
!' i-i

Putting - for it, and multiplying by y,

X = -y or ~Sy, as before.

Solve

I.

2.

EXERCISES.

^^2 _ a-y + 2/2

a;2 _ 2xy + 42/2
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200. C.vsi: IV. When fho crprcssfons rontnht'-

inn ''''' *(n/>uoirH qunntUies in the tiro eqiidfions

hdvr coiHitioii /'actors,

UiLi]. Diride one of the rqitofious which can he fac-

tnrcd 1)1/ the- other, and cancel the coninion, factor:^.

Then ctear of frnction,^, if necessary, and ice shall have
an equation of a lower deo'ree,

EXAMPLES.
1. a^^ + / = 01, ./• + v/= 7.

Wo have seen (§ 94, Th. 1) tlifit cfi-\-y^ is divisible by x-{-}/.

So dividing the first C([ii{ition by tbe second, we have

a;8 _ X1J 4- .y^ = 13.

This is an equation of the second aepfrcc only, and when
combined with tlie second of the original cf|iiations, the solu-

tion may be effected by Case I. The result is,

X = 3 or 4, y = 4 or 3.

2. xtf 4- !l^ = 133, .1-2 — ?/2 = 95.

Factoring the first member of each equation, the equations

become

y {x + y) = 133, {x + y) (x - y) = 95.

Dividing one equation by the other, and clearing of fractions,

IV

12?/ = 7.r, or y = ~^x.

The problem is now reduced to Case I, tliis value of y
being combined with either of the original equations.

207. There are many other devices by which simultaneous

equations may be solved or brought under one of the above

cases, for which no general rule can be given, and in which

the solution must be left to the ingenuity of the student.

Sometimes, also, an equation which comes under one of the

cases can be solved much more expeditiously than by the rule.

Let us take, for instance, the equations,

x^ -\- y^ = G5, xy = 28.

These equations can be solved by Case III, but the work

would be long and cumbrous. We see that by adding and
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Bubtmcting twice tlio second cMjiiation to and from tlic fii-Hl,

ue am lorin two pcrloct Hiiuans. Kxtrjuliiig tlu! nxtts of

tlu'Si' s(iUiiiTS, wc shall liuve two siinplc c'(iMatioiis, which sliall

i-ive the sohitiou at once. Eacli unknown <|uantitv will have

four value.><, namely, ± T ± *1.

PF<ODLEMS AND EXERCISES.

Tho foUowiii'j^ eiiuatioiirt cJin nil bo solved l)y hoiuo nhort and cxpf.

ditious combiuution of the ci|Uutioii8, or by fuclonng, without ^oiii^

through thti coiupU'X procoas of Case HI. Tho student is rccomimndcd
not to work upon the (-(lUtttioiiH at raiidoni, but to study enc'li pair until

he sees how it can bo reduced to a simpler ecjuation by addition, multi-

plication, or factoring, and then to go through tho operations thu« BUg-

gested.

1. y"^ -\- xy = 14, x^ -\- ory = 35.

2. 4a?2 — 2xy = 208, 2.ry — y/2 =r 39.

3. x^ + y = '\x, ?/2 + J- = 4y.

If we subtract ono of these e(i nations from tho other, the difTerenco

will be divisible by x — y.

4. .^•3 4-
Z/'' + 3.r -|- 3// = 378, x^ + y/3 _ 3^ _ 3^ _ 324.

5. x^ + ?/2 = 74, x^y zzz 12.

6. x^ -\- xy = G3, x^

Vx + Vy
4,

i/2
= 77.

X2 — 7/2 _ 544^

8.

9-

10.

II.

12.

14.

15.

5.

Vx — Vy
x^ + xy =. a, 2/2 .j_ ^y z= b.

ai^ 4- xy^ =10, ?/^ + x'^y

X = aV^v -\- y, y = hVx + y.

xVx + ?/ = 12. yV'x -\- y = 15.

2x2 _|_ 2y^ = X -\- y, x^ i-
y'^ = X — y.

63^ — 5?/2 =z X ]- y, 3a;2 — 3^/2 = x — y.

x^+ y^-\-z^ z='dO, xy-j-yz-{-zx = 17, x — y — z = 2.

\Jx-

x-\-y

6;?/

y
-^xr-^-y- =

Gy
2,

-Vi- y

y

8

^ — 2/

(
. „

( I

I ll

1 i
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i6. A principal of 65000 amounts, with simple interest, to

$7100 after a certain number of years. Had tlie rate of inter-

est been 1 i)ercent. bigherand the time 1 year longer, it would
have amounted to -^7800. What was tlie time and rate?

17. A courier left a station riding at a uniform rate. Five

hours afterward, a second followed him, riding 3 miles an
hour fast( r. Two liours after the second, a third started at

the rate of 10 miles an hour. They all reach tlieir destination

at the same time. Wiiat was its distance and the rate of riding ?

18. In a right-angled triangle there is given the hypothe-
nuse = (If and the area = h^', find the sides.

19. Find two numbers such that their product, sum, and
difiereuce of squares shall be equal to each other.

20. Find two numbers whose product is 21 G ; and if tlio

greater be diminished by 4, and the less increased by 3, the

product of this sum and difference may be 2-40.

21. There are two numbers whose sum is 7-4, and the sum
of their square roots is 12. What are tho numbers ?

22. Find two numbers whose sum is 72, and the sum of

their cube roots 0.

23. The sides of a given rectangle are m and n. Find the

sides of another wliich shall have twice the perimeter and twice

the area of the given one.

24. A certain number of workmen require 3 days to com-
plete a work. A number 4 less, working 3 hours less per day,

will do it in G days. A number G greater than the original

number, working 6 hours less per day, will complete the work
in 4 days. What was the original number of workmen, and
how long did they work per day ?

25. Find two numbers whose sum is 18 and the sum of

their fourth powers 14096.

Note. Since the sum of the two numbers is 18, it is evident that

the one must be as much less than 9 as the other is greater. Tlie equa-

tions will assume the simplest form when we take, as the unknown quan-

tity, the common amount by which the numbers differ from 9

26. Find two numbers, x and y, such that

a;3 _|_ 2/3 : ^ __ 2/3 : : 35 : 19,

xy = 24.

27. Find two numbers whose sum is 14 and the sum of

their fifth powers 1G1204.
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PROGRIi SSIOiVS.

CHAPTER I.

ARITHMETICAL PROGRESSION.

308. Def. When we have a series of numbers each

of which is greater or less than the preceding by a con-

stant quantity, the series is said to form an Arithmet-

ical Progression.

Example. The series

^h, etc.,

7, 12, 17, 22, 27, 32, etc.

7, 5, 3, 1, -1, -3, etc.

a -\- b, a, a — h, a — 2b, a -

are each in arithmetical progression, because, in the first, each

number is greater than the preceding hy 5 ; in the second,

each is less than the preceding by 2 ; in the third, each is less

than the preceding by b.

Def. The amount by which each term of an aritli-

metical progression is greater tlian the preceding one is

called the Common Difference.

Def. The Arithmetical Mean of two quantities is

lialf their sum.

All the terms of an arithmetical progression except

the iirst and last are called so many arithmetical means

between the first and last as extremes.

Example. The four numbers. 5, 8, 11, 14, form the four

arithmetical means between 2 and 17.

; f
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EXERCISES.
1. Form four terms of the aritlimotical progression of

wliich the first term is 7 and common difference 3.

2. Write tlie first seven terras of the i)rogression of wliieli

tlie first term is 11 and tlie common difference — 3.

3. Write five terms of the progression of wiiich tlie first

term is a — ^n and the common dilference 'Zn.

Problems in Progr^ession.

309. Let us put

u, the first term of a progression.

d, the common difference.

Uy the number of terms.

I, tlie last term.

2, the sum of all the terms.

The series is then

a, a-\-d, a -{-2d, . . . . I.

Any three of the above five quantities being given, the

other t;vo may be found.

Pkoblem I. Given the first term, the coimnon differ-

ence, tutd the nmnher of terms, to find tlie last term.

The 1st term is here cf,

2d " " a + d,

3d " " a-\- 2d.

The coeffiGicnt of d is, in each case, 1 less than the number

of the term. Since this coefficient increases by unity for every

term wo add, it must remain less by unity than the number of

the term. Hence,

The i^'^ term is .'> f {i — 1) d,

whatever be i. Hence, when i = n,

I ~ a Jr (n — 1) d. (1)

From this equation w^e can solve the further problems

:

Problem II. Given the last term I, the common dif-

ference d, ctnd the number of terms n, to find the first

term.
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The solution is found by solving (1) with respect to a,

vbich gives
a=:l-{n- 1) d. C-i)

Problem III. Given the first and last terms, a and I,

and the number of terms n, to find the common differ-

ence.

Solution from (1), d being tlie unknown quantity,

cl = tzl. (3)

Problem IV. Given tlie first and last terms and the

common difference, to find the number of terms.

Solution, also from (1),

I

» = -^- + 1 =
^

(4)

Problem V. To find the sum of all the terms of an

(irithmetical progression.

We have, by the definition of 2,

1. — a -\- {a + d) -\~ {a -\- '2d) + {I — d) }- I,

tlie parentheses being used only to distinguish the terms.

Now let us write the terms in reverse order. The term

Ijcfore the last is I — d, the second one before it / — M, etc.

We therefore have,

S — ? + (^ — f/) 4- (/ — 2r7) + {a + ^0 + a.

Adding these two values of 2 together, term by term, we

find

2v =, {a + l) + (rt+ + (rt + + + (« + /) + (« + /),

the quantity {n^l) being written as often as there are terms,

that is, n times. Hence,

25: = n {a + 0^

a + I

n (5)

a + I

Remark. The expression —J-, that is, half the sum of

the extreme terms, is the mean value of all the terms. The

. *i

if

» J! i

I 'I !1
n

' 11
; I

i\

I

\ i'

.)
':

!ti

'^
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sum of the n terms is therefore the same as if each of them
had this value.

*^10. Ill the equation (5) we are sujjposed to know tlic;

first and last terms and the numher of terms. If other quan-

tities are taken as the known ones, we have to substitute lor

some one of tlie quantities in (5) its expression in one of the

e([uations (1), (2), (Ij), or (4). Suppose, for example, that wu

have given only the last term, the common difference, and the

number of terms, that is, /, d, and n. We must then in (5)

substitute for a its value in (2). This will give,

(«)

1

( n— 1 \ n{n — 1)
2 — n\l :r— a] = nl — —^—r a.

\ 2 / 'Z

EX ERCISES.

In arithmetical progression there are

1. Given, common difference, -j- 3; third term = 10.

Find first term. Ans. First term =: 4.

2. Given 4th term = b, common difference = — c.

Find first 7 terms, their sum and product.

3. Given 3d term z=z a + b, 4th term = a + 2b.

Find first 5 terms.

4. Given 1st term = a — b, 9th term — da -\- lb.

Find 2d term and common dilference.

5. Given, sum of terms = 108.

Find middle term and sum of 1st and 0th terms.

6. Given 5th term — 7x — hy, 7th term = 0:c — 'dy.

Find first 7 terms and common difference.

7. Given 1st term = 12, 50th term = 551.

Find sum of all 50 terms.

8. To find the sum of the fiivf 100 numbers, namely,

1+2+3 +99 + 100.

Here the first term a is 1, the last term I 100, and the number of

teiTDS 100. The aolution 'vj> by Problem V.

9. Find the sum of the first n entire numbers, namely,

1 + 24-3.... + n.
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10. Find the sum of tlio lirst n odd numbers, namely,

1 + 3 4- 5 ... . + 2?i — 1.

Here the number of tc^ruis ib /i.

1 1. Find the sum of the first n even numbers, namely,

2 -f- 4 + . . . . + 'Zn.

12. In a school of m scholars, the highest recei\'ed 134

iin'i-ii marks, and each succeeding one G less than the one next

aiiove him. How many did the lowest scholar receive? How
many did they all receive?

13. The first term of a series is m, the last term 2/><, and

the common difFerence d. What is the number of terms?

14. The first term is k, the last term 10^• — 1, and the

number of terms 0. What is the common difference ?

15. The middle term of a progression is s, the number of

terms 5, and the common dilference — h. What are the first

and last terms and the sum of the 5 terms ?

16. The sum of 5 numbers in arithmetical pi .gression is

20 and the sum of their squares 120. What are the numbers?

Note. In (questions like this it is better to take the middle term for

one of the unknown quantities. The other unknown quantity will be

thi' common difi'iTcnce.

17. Find a number consisting of three digits in arithmeti-

cal progression, of which the sum is 15. If the number bo

diiiiinished by 792, the digits will be reversed.

18. The continued product of three numbers in aritiimet-

ical progression is 640, and the third is four times the first.

What are the numbers ?

19. A traveller has a journey of 132 miles to perform. lie

goes 27 miles the first day, 24 the second, and so on, travelling

3 miles less each day than the day before. In how many days

will he complete the journey ?

Here we have given the first term 27, the common difference —3, and

the sum of the terms 132. To solve this, we take eciuation (5), and sub-

stitute for 1 its value in (1). This makes (0) reduced to

rt + rt 4- (n — 1) d n in — \) d
2 = n ^'———- = na -\

2, a, and d are given by the ]iroblem, and n is the unknown quan-

tity. Substituting the numerical value of the unknown (quantities, the

equation becomes

; fi

i

1
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!,

• f:

^

\

V-yi =z 2'7}i — 3
n (n - 1)

2

This rcduretl toa(iuadriitic ccjuation in n, the solution of wliioh f,'ivtH

two values of n. Tlic ntutl»,'iit ishoulil explain this double answer liv

CDutiiiuiiit,' the progression to 11 terms, and allowing what the negative

terms inilicate.

20. Taking the same question as tlie last, only suppose the

distance to be 140 miles instead of 132. JSJiow that the answer

Avill be imaginary, and explain this result.

21. A debtor owing $100 arranged to pay 35 dollars the

first month, 23 the second, and so on, 2 dollars less each

month, until his debt should l)e discharged How many puy-

ments must he make, and Avhat is the explanation of the two

answers ?

2 2. A hogshead holding 135 gallons has 3 gallons poured

into it the first day, G the second, and so on, 3 gallons more

every day. How long before it will be filled ?

23. Tlie continued product of 5 consecutive terms is 12320

and their sum 40. AVhat is the progression?

24. Show that the condition that three numbers, p, q, and

r, are in arithmetical progression may be expressed in the form

'J -p = - 1.

q — r

25. In a progression consisting of 10 terms, the sum of the

ist, 3d, 5th, 7th, and 9th terms is 90, and the sum of the re-

maining terms is 110. What is the progression ?

26. In a progression of an odd number of cerms there is

given the sum of the odd terms (the first, third, fifth, etc.)^

and the sum of the even terms (the second, fourth, etc.).

Show that wo can find tlie middle term and the number oi"

terms, but not the common difference.

27. In a progression of an even number of terms is given

the sum of the even terms = 119, the sum of the odd terms —
105, and the excess of the last term over tlie first = 2G. Wluit

is the progression ?

28. Given a and /, the first and last terms, it is required to

insert i arithmetical means between them. Find the expres-

fcion for the / terms required.

IS a
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CHAPTER II.

GEOMETRICAL PROGRESSION.

*2ll. Def. A Geometrical Progression consists of

,1 series of terms of which each is formed by multiply-

ing the term preceding by a constant factor.

All aritlimetical progression is formed by contiiiiuil iiddi-

tioii or subtraction; u geometrical progression by repeated

iiiultiplieation or division.

D(f. The factor by which eacli term is nuiltiplied

to form the next one is called the Common Ratio.

The common ratio is analogous to the common dilference

in an arithmetical progression.

In other respects the same definitions ai)ply to both.

EXAMPLES.
3, G, 18, 54, etc.,

is a progression in wliich the iirst term is 3 and the common
ratio 3.

3 1 1 ^ -^

' ' r 4' 8'

is a progression in which tlie ratio is -•

etc.,

tr

f !

.,
'

I '<

|i
'

I

+ 3, — 6, 4- 12, — 24, etc.,

is a progression in Avhich the ratio is — 2.

Note. A progression like the second one above, formed by dividing

pfidi term by tlie same divisor to obtain the next term, is included in tlie

gt'iieral definition, because dividing by any number is the same as multi-

plying by the reciprocal. Geometrical progressions may therefore \>x:

divided into two classes, increasing and decreusing. In the increasing

progression the common ratio is greater tuan 1 and the terms go on in-

creasing ; in a diminishing progression the ratio is less than unity and

the terras go on diminishing.

Rem. In a progression in which the ratio is negative, the

terms will be alternately positive and negative.

.
ii
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Dcf. A Geometrical Mean between two quantities

is the square root of their product.

EXERCISES.
Form five terms of each of the following geometrical pro-

gressions :

1. First term, 1 ; common ratio, 5.

2. First term, 7 ; common ratio, — 3.

3. First term, 1 ; common ratio, — 1.

2 3
4. First term, -

; common ratio, j-

4 1
5. First term, -

; common ratio, ^'

i\

I

Problems of Geometrical Progression.

^12. In a geometrical progression, as in an arithmetic!! 1

one, there are live quantities, any three of which determini'

the progression, and enable the other two to be found. They

arc

a, the first term.

;-, the common ratio.

??, the number of terms.

I, the last term.

2, the sum of the 71 terms.

The general expression for the geometrical progression

will be
a, ar, ar% ar% etc.,

because each of tliese terms is formed by multiplying the pic-

ceding one by r.

The same problems present themselves in the two progro.;-

sions. Those for the geometrical one are as follows

:

Peorlem I. Given the first term, the coimnon ratio,

and the niniiher of terms, to find the last term.

The progression will be

a, ar, ar^, etc.

We see that the exponent of r is less by 1 than the number

of the term, and since it increases by 1 for each term added, it



(jmMETRICAL PUOOIIESSJON. 201)

must remain less by 1, how many terms so ever we take.

Hence the n"'- term is

1 = r^?-«-i.
(1

)

Problem II. Given the last trviti, the comnioti ratio,

and the nuinber of terms, to jiiid the first term.

Tiie .sohition is found by dividing both members of (I) by

,.?i-i^ which gives
7

a
rtl-l

Problem III. Given the first term, the last term, and
the number of terms, to find the comDion ratio.

From (1) we find /f>n—\ -—

a

Extracting the {n — 1)^'* root of eaeli member, we have

r ^r-
[The sohition of Problem IV requires us to find n from

equation (1), and belongs to a higher department of Algebra.]

Problem V. To find the sum of all n terms of a geo-

inetrieal progression.

We have S := a -{ ar -\- ar^ -^^ etc. -f- «r"~^

Multiply both sides of this equation by /'. We then have

r2 = ar 4- ar^ -\- ar^ + etc + r/r'*.

Now subtract the first of these equations from the second.

It is evident that, in the second equation, each term of the

second member is equal to the term of the second member of

the first equation which is one place farther to the right.

Hence, when we subtract, all the terms will cancel each otiier

except the first of the first equation and the last of the second.

Illustration. The following is a case in wliioh a = 2, r = '6, n =:G:

1 - 2 + G + 18 + 04+162 + 48G.

32 = 6 + 18 + 54 + 162 + 486 -1-1458.

Subtracting, 3S-2 = 1458 - 2 = 1456,

or 22 = 1456, and 2 = 728.

14

I

»'

4 I

1 ;i'

I
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«.

w

Iicturning to flic general prol)lem, we Imvo

(r - 1) 1 — rn-" — a ::=z a (/•» — 1) ;

whcneo,
/"r" — 1 1

r — 1 1 — r (4)

It will l)e mosiconvi'uicnt to use the first form wlieii r > 1,

and tlie seeond when r < 1.

By tliis fonnulii wo are enabled to conipnte the sum of tiie

terms of a geometrieul jjrogression without autuully forming

all tliu terms and adding them.

EXERCISES

3 lifN'f!-

1M.

I.

2.

3
Given '.]d term = 0, eommon ratio = ~.

Find first 5 terms.

33 o
--, common ratio = — .-«

^7 o
Given 5th term =
Find lirst 5 terms.

3. Given ath term r= .r'//''', 1st term == fj\

Find common ratio.

4. (Jiven 1st term = 1, 4t]i tenn =;i aK

Find common ratio and lirst 3 terms.

5. Given 2d term = in, common ratio := — 711.

Find first 4 terms.

6. A farrier having told a coachman that he would charge

liim $3 for shoeing his horse, the latter objected to the prii-e.

The farrier then oflFered to take 1 cent for tlie first nail, 2 for

the second, 4 for the third, and so on, doubling the amount

for each nail, which offer the coachman accepted. There were

32 nails. Find how much the coachman had to jDay for the

hist nail, and how much in all. (Compare § 1G8, Rem.)

7. Find the sum of 11 terms of the series

2 -f- + 18 + etc.,

in which tlie first term is 2 and the common ratio 3.

8. Tf the common ratio of a progression is ?•, what will be

the common ratio of the progression formed by taking

I. Every alternate term of the given progression ?

II. Every 71^''' term ?
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9. Tho sumo \\\\\\^ hcin;^' supposed, wluit will 1)0 the com-

mon ratio of the progression of w liich every iiiternate term is

e([iial to every third term of the fj^iven prot^ression ?

10. Sliow that if, in a geometrieai pro<iression, each term

lie added to or suhtraeted from tliat next following, tiie sums

(ii- renniinders will form a geometrical progression.

ir. Show that if the arithmetical and geometrical means

of two (pumtitios i30 given, tlie (pnmtitiis themselves may be

found, and give the expressions for them.

12. The sum of the first and fourth terms of a progression

is to tho sum of the second and third as 'ZV \ b. What is tho

common ratio?

13. Express the continued product of all the terms of a

geometrical progression in tei-ms o\' ti, r, iiiid n?

Limit oftlRvSiim of a Projj^ivssion.

2Ui, Tlieorem. If the common ratio in a geonictri-

cal 2>i'ogression is less tlian unity (more (\\actly, if it is

contained between the limits —1 and +1), then there

will be a certain quantity which the sum of all the

terms can never exceed, no matter how many terms we
take.

For example, the sum of 'he progression

111,
^ + - + ^ + ete.,

in which the common ratio is -, can never amount to 1, no

matter how many terms we take. To show this, suppose that

one person owed another a dollar, and proceeded to pay him a

series of fractions of a dollar in geometrical progression,

namely, 1111
etc.

1

2'

1

4^

1

8'

1

16'

When he paid him the ^ he would still owe another ^,

when he paid the t he would still owe another -, , and so on.
4 4

. ?

I ;

r

.
.

I

Ml



f)
212 GKOMHTniC. I /. PliOGRKSSION.

t

•ki

That is, at evi-ry i)avrntMit lie would (liscliar;,^' ono-lmlf tlic n

mainiiig tk'l)L Muw thcrt' jiru two propusitioiis to bo undii-

stood in re ft' IV lieu to this suhject.

I. 7%P' enfirr <frht ran. never be (iisr/ifiro'ed hi/ fiiirh

prnjinefUs.

l\)y, since the dc'))t is halecdni every payment, if there \v,i^

any payment wliieh diseliar^cd tlie whole reinainin<; (U'ht, tip

lialf of a thin^jf would he ('(jual to the whole of it, which is

im])ossil)lc.

II. The (h'ht e(t\i he redueed hehnr nnij nssi^nah/r

limit l)ij rontinitin^ to junj Indf of if.

For, however small the debt may he made, another pay-

ment will make it smaller by one-half; hence there is Ud

smallest jimount below which it cannot be reduced.

TlicH(^ two propositioiiH, wliicli poem to oppose oncli othor, hold tlir

triitli Ix'twrcn tlicm, ns it woro. Tlicy ronptaiilly outer into tlio liiglin-

luatlionintif's, nnd hlioiild l)f' well undt'rstood. W« thereforo prerttni

anotlier illustration of tho same subject.

B
I I

i i tV

Suppose AH to be a line of given length. Let us go onc-

lialf the distance from A to B at one step, one-fourth at the

second, one-eiglith at tlie third, etc. It is evident that, at each

step, we go hi "^ the distance which remains. Hence the two

principles judt cited apply to this case. That is,

1. We can never reach B by a series of such steps, because

we shall always have a distance equal to the last step left.

2. But we can come as near B as we please, because every

step carries us over half the remaining distance.

This result is often expressed by saying that we should reach B by

taking an infinite number of steps. Tbis is a convenient form of expres-

sion, and we may sometimes use it, but it is not logically exact, becaase

no conceivable number can be really infinite. Tbe assumption that in-

finity is an algebraic quantity often leads to ambiguities and difficulties

in tbe application of mathematics.
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ise everv

Def> Tli«> Limit of tlio Huiii 1 of a poomptricnl

progresHion is a (jujintlty wliicli 1 may appioacli so

tliat its diflVn^ncc shall ho Iohh than any (juaiitity we
choose to assign, but wliich i can nt'vcr n'ach.

EXAMPLES.
1. Unity is tliu hmil of tiic smn

l + i + « + l7:
+ ^*<'-

2. Tlio point W in tho procodin^ fipfuro it< the limit of all

the steps that can ho taken in the nianncr desr-rihed.

The following principle will enahle us to find the limit of

the sum of a progression :

*Z\V, Principle. Tf r < 1, the pow«'r r" ran ho made

as small as we please by increasing the value of 7/, but

can never be made equal to 0.

Suppose, for instance, that

_ 3 _ 1

^ ~ 4
~ 4'

1

Then every time we multiply by r we diminish r'* by

of its former value ; that is,

r2 = ^^r={\ -^)r-r-^r,

8 3 .

~ 4
•8 2 ^ 2

^ 4' '

fA — ^3 — /i*o

' - 4' - '

etc. etc.

4''

etc.

Now let us again take the expression for the sum of a

series of n terms, namely,

1 _ ^n

X = a- ,

1 — r

which we may put into the form

a a
E =

1 — r 1 — r
fth

t

.hi

1

f

Ml
i

.11
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If ?• is less than unity, wc can, by the principle just cited,

make the ([uantity r'* as small as we i)leasc by inereasing n

indefinitely. Krom this it follows that we can also make the

term -—— r" as small as we please.
1 — r

Proof. Let ns pnt, for brevity,

a

1-r'
so that the term under consideration is

If we cannot make kr'^ as small as we please, suppose s to

be its smallest possible value. Let us divide s by k, and put

No matter how small s may be, and how large k may be,

v, or f, will always be greater than zero. Hence, by the pre-
rC

ceding principle, we can find a value of fi so great that /"

shall be less than /. That is,

'" < I-

Multiplying both sides of this inequality by ky

Tern < s.

That is, however small we take s, we can take n so large

that kr'^ shall be less than s, and therefore .s cannot be the

smallest value.

a
Since 2 = — ^•r^

and since we can make hr^ as small as we please, it follows

that
Limit of 2 = --'—

1 — r

This is sometimes expressed by saying that when r < 1,

« + «r 4- ar^ + ar^ + etc., ad injinitnm.

his is a convenient

us into error in this case

a

1-r'
and this is a convenient form of expression, which will not lead
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EXERCISES.
Having given the progression1111

'2 + 4 + 8 + 10 + '^'"

of whicii the limit is 1, find how many terms we must take in

order that the sum may differ from 1 by less than the follow-

ing quantities, namely

:

Firstly, .001 ; secondly, .000 001 ; thirdly, .000 000 001.

To do this, we must find what power of
^^

will be less than .001,

what power lesa than .000 001, etc.

What aie the limits of the sums of the following series

:

I.

2.

4-

6.

- + — -|- -g + etc., ad iufinitiim.
o o o

2 4 8 ^ 1 . -s- + - -f
-

-^ + etc., ad innnitum,

- — --g + as
~ ^^^"> ^^^ infinitum.

4 4'^ 43
- + —, + —3 + etc., ad infinitum.
9 ' 92

1

93

1 1 ....

a a

h

1

Vo +
a

etc., ad infinitum.
1 {h- 1)2 ' (^, _ 1)3

2 12 1
7. 1

1 ^ -„ H ;: — etc., ad infinitum.
m m^ m^ m'^

8. What is that progression of which the first term is Vi

and the limit of the sum 8.

d c B

9. On the line AB a man starts from A and goes to the

point c, half way to B ; then he re-

turns to d, half way back to A ; then ,

turns again and goes half way to c,

then back half way to d, and so on, going at each turn half

way to the point from which he last set out. To what point

on the line will he continually approach ?

I

I
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i

^ I

i#
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\

4
I

-J

If' il

ri; i

215. As an interesting application of the preceding theory,

we may examine the problem of finding the value of a circu-

lating decimal. Such a decimal is always equal to a vulgar

fraction, which is obtained as in the following examples

:

I. AVhat is the value of the decimal

.373737 ?

We find the figures which form the period to be 37. Dividing the

decimal into periods of these figures, its value is

_37 3_7
, _37

100 ^ 1002
"^

1003 + etc.

= ^^a 303 + e*^')-
100 "^

1C02
"^ 1003

The quantity in the parenthesis is a geometrical progression, in which

a = :rx^ , r = ^7^77 • The limit of its sum is therefore zr^ • Therefore the
100' 100 99

alue of the decimal is
37

99

This result can be proved by changing this vulgar fraction to a

decimal.

2. In the case of a decimal which has one or more figures

before the period commences, we cut these figures off, and

find the value of them and of the circulating part separately.

Thus,

56363 etc. = ~ + -^ + , "Ln + etc.
10 1000

63

100000

= -'- +
10 ^ 1000 (^ + 160 + m^ + '^')

63
"^

To "^ 1000* "99" ~ 10
"^ 990

EXERCISES.

558

990

31

55*

To what vulgar fractions are the following circulating deci-

mals equal

:

.111111 ? 2. .2222 ?I.

3. .9999 ?

5. .454545 ?

7. .108108 ?

4. .09999 ?

6. .2454545 ?

8. 72454545 ?

\t

:

i
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ction to a

Coinpouiid Interest.

316. When one loans or invests money, collects the inter-

est at stated intervals, and again loans oi invesU this interest,

and so on, he gains compound interest.

Compound interest can always be giuned by one who con-

stantly invests all his income derived from interest, i)rovi(kd

that he always collects the interest wiien due, and is al)le to

loan or invest it at tlie same rate as lie loaned his principal.

Problem I. To find the (unount of p dollars for ti

years, at c per cent, conipouiid interest.

Solution. At the end of one vear the interest will be

i--, which added to the principal will make py- -r- r^A/'

If we put p == — - =: the rate of annual gain,

the amount at the end of the year will be 7? (1 + p).

Now suppose this whole amount is put out for another

year at the same rate. The interest will be j) (1 + p)p, which

added to the new principal /> (1 \- p) will make /> (1 + py.

It is evident that, in general, supposing the whole sum
kept at interest, the total amount ot the investment will be

multiplied 1)y 1 -f p each year. Hence the amount at the ends

of successive years will ba

P (1 + P)^ P (1 + pY, ;? (1 + pY, etc.

At the end of 71 years the amount will be

^ (1 + pY.

Problem II. A person puts out p dollars every year,

letting the whole siom constantly accurnulate at coni-

pound interest. JVJiat ivill the amount be at the end of
n years?

Solution. The first investment will have been out at

interest n years, the second 71 — 1 years, the third 71 — 2 years,

and so on to the 71^^, which will have been out 1 year. Hence,

from the last formula, the amounts will be

:

'
-

' i

' t

I ,

ti
.
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Amount of 1st payment, ^? (1 + p)'

kl.
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BOOK VIII.

RELATIONS BETWEEN ALGEBRAIC
QUANTITIES.

Of Algobrair Fiiiictioiis.

317. Def. When one quantity depends upon an-

otlier in such a way that a change in tlie value of the

one produces a change in the value of the other, the

latter is called a Function of the former.

This is a more general definition of the word " function " thiin that

given in ^ 49.

Examples. The time required to perform u journey is a

function of the distance because, other tilings being equal, it

varies with the distance.

The cost of a package of tea is a function of its weight, Ijc-

cause the greater the weight the greater the cost.

An algebraic expression containing any symbol is a func-

tion of that symbol, because by giving different values to the

symbol we shall obtain different values for the expression.

Def. An Algebraic Function is one in which tlie

relations of the quantities is expressed by means of an

algebraic equation.

Example. If in a journey we call / the time, .9 the average

speed, and d the distance to be travelled, the relation between

these quantities may be expressed by the equation,

(I = st.

Any otie of these quantities is a function of the other two,

defined by means of this equation.

An algebraic function generally contains more than one

r'

M

I I,

I Ml
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r<

i; i

»

i;-,"ii I

i J

letter, and thoreforo dejionds upon sevonil quantities. But wo

may consider it a function of any one of tiiese (juantities, t^i-

lected at pleasure, by .supposing all the other (piantities to

remain constant and only this one to vary. For example, the

time refpiirod for a train to run between two points is a func-

tion not only of their distance apart, but of the speed of the

train. The speed beinp^ sn})posed constant, the time will be

greater the greater the distance. The distance being constant,

the time will be greater the less the speed.

Def. Th(3 quantities between wliich the relation ex-

pressed hy a function exists are called Variables.

riiis term is nsfd because eucli quantities in; vary in value, as in

the preceding examples.

D(f. An Independent Variable is one to which we
may assign values at jdeasure.

The function is a dependent variable, the value of which is

determined by the value assigned to the independent variable.

Def. A Constant is a quantity which we suppose

not to vary.

RE>r. This division of quantities into constant and varia-

ble is merely a supposed, not a real one ; we can, in an algebraic

expression, suppose any quantities "we please to remain constant

and any we please to var}^ The former are then, for the time

l)eing, constants, and the latter variables.

Illustration. If we put

d, the distance from New York to Chicago
;

,v, the average speed of a train between the two cities

;

/, the time required for the train to perform the jour-

ney,

then, if a -nanager computes the different values of the time /

corresponding to all values of the speed x, he regards d as a

constant, ,s' as an independent variable, and / as a function of,v.

If he computes how fast the train must run to perform the

Journey in different given times, he regards t as the independ-

ent variable, and s as a function of /.
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AVlien we liavo any C(iiuitiun between two viiriuMoi^, we
may ivyard eitluT (•!" tliein as an independent variable and tho

(itlier as a t'unction.

KxAMi'LK. From tlio eqnation

ax ^- by — c,

ne derive x =. ''H
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i-

r,

Moreover, r^ liiuuir function is the only one jrJiich pos-

sesses this jn'oprrt!/.

2. Drf. A Homogeneous Function of several va-

j'iablcs is one in wliieli each term is of the same degree

ill the variables. (Compare § C)2.)

ExAMPLi:. Tlio expression ajfi -{• bx'^ij -{- cifz -\- dz^ is homo-

f^eiieous and of tlie third degree in the variubles x, ?/, and z.

Ukm. a Hneur function is a lioinogeneous function of tlie

first degree.

Fundamental Property of Homogeneous Functions.

If all the variables he maltlpUcd bij a, eoninion faetor,

ami hjODiogencous fanetioii of the n*'^ degree in, those va-

ri((bles will be nuiltiplied by the i<"* power of tJiat factor.

rroof. If we take a homogeneous function and put rx for

.r, ry for ?/, rz for 2;, etc., tlien, because each term contains .r,

y, or z, etc., n times in idl as a factor, it will contain r n tiuK-s

after the suljstitution is made, and so will be multiplied by r'K

3. D<f. A Rational Fraction is tlie quotient of two

entire functions of the same variable.

A rational fraction is of the form,

a -]- hx -\- r.7-2 4- etc.

m -\- nx -f px^ -\- etc.

Any rational function of a variatle may he expressed as a

rational fraction. Compare § 180.

Equations of the First Dej?ree between Two
Variables.

219. Since we may assign to an independent variable any

values we please, we may suppose it to increase or decrease by

regular steps. The diiference between two values is then

called an increment. That is,

Def. An Increment is a quantity added to one

value of a variable to obtain another value.
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Rem. If we (liininish the vuria])lo, the increment k
nogiiti\e.

llieorem. In ;i function of tlic first droTci', (Hiual in-

crenuMits of thi? independent viii'labh' cause etnuil inciv-

iiieiits of the function.

Example. Let x be an iiidcpondeut vuriublo, and call xl

3
tliL' Tunc'tion ^^x + 11, so tiuit we liavo .

Xi = X + 11.
/V

If we give x the successive vahies —2, —1, 0, 1, 2, ctc.y

and find tlie e()rre,s[)onding vahies of tlie runcliou ii, they

\vill bo

Values of 2-, —2, —1, 0, 1, 2, 3, 1, etc.

" " x(., 8, 0^, 11, 12^, U, l-H, 17, etc.

We see that, the increments of x being all unity, those of

ij are all 1 U

General Proof. Let an + bx = c be any equation of ihe

iirst degree between the variable x and tlu' function i(. St)lving

this equation we shall have

_ c — bx _ c h

~ a ~~ a a
'

Let us assign to x the successive values,

r, r -\- h^ r + 2//, etc.,

the increment being // in each ease. The corresponding values

of the function u will be

c b c b b^ c b 2b-,
r, r n, r n, etc.,

a a a a a a a a

of which each is less than the preceding by the same amount,

h. Hence the increment of u is always //, which proves

the theorem.

320. Geometric Constrxiction of a Relation of the First

Degree. The relation between a variable x and a function v,

of this variable may be shown to the eye in the following way;

15

»'
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Take a base lino AX, mark a zero point, upon it, and from

tills zoro ])()int lay off any vahu'S of x wo ploase. 1'iien at each

l)oint of tlie line ('orrt's})()n(liii<jj to a value of .7-- erect a vertieal

line e(|ual to the correspond! n<,^ value of //. If n is ])ositive, tin;

value is measured upward; if nen;;itive, downward. Tiie line

drawn tiiroui^h tiie ends of these values of u will show, by th.-

distance of each of its points from the base line AX, the values

of u eorres})onding to all values of x.

'Lai us take, as an example, the ecpiation

5?^ + 3^ = 10,

the solution of which gives w

Computing the values of w corresponding to values of x

from — 3 to -f G, we tind :

X =z -3, -2, -1, 0, +1, +2, +3, +4, +5, +G.

u= +3|, +3], 2|, 2, If, i i, -I, -1, -If.

Laying off these values in the way just described, we have

the above figure. Wherever we choose to erect a value of //,

it will end in the dotted line.

We note that by the property of functions of the first de-

gree just proved, each value of w is less (shorter) than the pre-

3
ceding one by the same amount; in the present case by -• It

o

is known from geometry that in tliis case the dotted line

through the ends of 7i will be a straight line.

We call this line through the ends of y the equation line.
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*i2i, Wljoii we can onci' driiw this ritnii/^lit lino, wo can

liiid t.lio vuliu' of y t'orrcsjXJiuUn^^ !<> cvoi'V value of ./• without

iisiii;jf tiio o({uatioii. \\ »• have only to take tlif point in I lie

li;isi' lino coiTi'spoinlin^' to any value of ;;•, ami by nu.'usurin<5

ill.' distance to tiie line, we wliall Iuinc liie cniresjiondin'; value

•if ti.

Now it is an axiom of fT^eomelry that o\n\ straifi^ht liin', and

only one, can he drawn helween any two points. 'I'herefore,

to form any rehition of the lirst (le<j^reo we please between ./;

and X, we may take any two values of j; assi«j^!i to I hem any

iwo values of u we jjlease, plot these two pair of values of // in

a (lia<jfram, draw tlie e(|uation line (hrou<;li them, and (hen

measure olf, by this line, as nuiny more values of // as we

please.

EXAMPLK. T.et it l)p required that for ^ = -f I w(^ shall

have u = -f- 1, and for x = -1-5, u = -|- -i. What will be the

values of?/ eorrespondiiif^ to x = —'.], — '^, —1, 0, etc.

Drawing the l)ase lino AX below, we layoff from 1 the ver-

tical line -f 1 in len^jth, and from the point 5 the vertieal line

Then drawinjj: the dotted line throuj;!! the ends, wi

measure olf dill'erent values of «, as follows'

;r = -3, -2, -1, 0, +1, -f 3, +3, +4, +5, +{), etc.

1, +li +2, +X>i, +3, -f-3J, etc.

"»

—H
EXERCISES.

1. Plot the equation 2u -f ^x — (\.

2. Plot a line such that

for X = — G we shall liave u = +4,
for a: =r + G '•' " u = — 4:,

and find the values of w for a; = 1, 2, 3, 4, and 5.

I
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333. The algebraic problem corresponding to the con-

struction of § 220 is the following:

Having given tivo values of y corresponding to two

given values of X, it is required to construct an equation

of the first degree such that these two pairs of values

sliall satisfy it.

Example of Solution. Let the requirement be that of the

equation plotted in the preceding example, namely,

for a; — 1 we must have w = 1,

for 2: =: 5 " " u = 3.

The problem then is to find such values of a, b, and c, that

in the equation
ax + bu = c, (1)

we sh.'ill have u = 1 for x = 1, and u = 3 for x = 5. Sub-

stituting these two pairs of values, "ve find that we must have

axl -^ bxl = c,

axT) + Z»x3 = c;

or a -\- b — c,

5a + 3b = c.

Here a, b, and c are the unknown quantity s whose values

are to be found, and as we have only two equations, we cannot

find tliem all. Let us therefore find a and b in terms of c.

Multiplying tlie first equation by 3, and subtracting the

j)roduct from the second, we have

9/la =i 2c or a = — c.

Multiplying the first equation by 5, and subtracting the

second from the product, we have

2b = 4:0 or b = 2c.

Substituting these values of a and b in (1), we find the re-

qivred equation to be
2c?* — ex =z c.

We may divide all the terms of this equation by c (§ 120,

Ax. Ill), giving

2u~x = 1,
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thus showing that there is no need of using c. The solution

of this equation gives

1 + X
u

'Z

from which, for x = — 3, — 2, — 1, etc., we shall find the same

values of u which we found from the diagram.

EXERCISES.

Write equations between x and y which shall be satisfied

by the following pairs of values of x and y.

1

.

For X =1 'H, y =: 1', and for x = 5, y = — 1.

2. For X =: — 2, y = — 1 ; and for x =z -{-2, y = +1.

3. For X = — 5, y =z -f-2; and for x = i-5, y =: — 2.

4. For a; =: 0, y = — 7 ; and for x = 15, y = ^.

5. For X = 26, y = 2 ; and for x =z 30, y =1 3.

333. Geometric Solution of Two Equation?, ivitli Two Un-

known QnantitieH. The solution of two equations with two

unknown quantities consists in finding that one pair of values

Avhich will satisfy both equations. If Ave lay off on the base

line the required value of x, the two values of // corresponding

to this value of a; in the two e(|uations must be the same ; that

is, the two cf/uatfon lines must cross each other at the

point thus found. Hence the following geometric solution:

I. Plot the two cqu<ttions from the same base line and
zero point.

II. Continue the equation lines, if necessary, until

they intersect.

III. Tlie distance of the point of intcj'section from the

h((se line is tlie value of y irhich satisfies hoth equations.

IV. TJie distance of the foot of the y line from the

zero point is the required value of x.

EXERCISES.
Solve the following e([uations by geometric construction

:

1. X — 2u = 3, 2x 4- u = 5.

2. 2u }- Hx = 4, 3u + X = 1,

i'

'

, !

r

I 1

' il

i'

"!
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224. Geometric Explanation of Equivalent and Incon.nfit-

e)/t Equations. If we have two equivalent equations (§ 200),

each value of x will give the same value of the other quantity

u or
I/.

Hence the two lines representing the erjuation will

coincide and no definite point of intersection can be fixed.

If the two equations

au -\- bx r= c,

a'u -\- b'x = c',

are inconsistent we shall have (§ 142),

b _ b^^

a ~ a'

If ?i be any increment of .r, the increments of u in the two

equations (§219) will be A and ,h Therefore these
^ a a

increments will be equal, and the two equation lines will be

parallel. Hence,

To iiiconsisteiht equations correspmid parallel lines,

which have no point of intersection.

If the two equations are equivalent (§ 141, 143), their lines

will coincide.

Notation of Functions.

225. In Algebra we use symbols to express any numbers

whatever. In the higher Algebra, this system is extended

thus

:

We may use a,ny symbol, having a letter attached to

it, to express a function of the quantity represented hy

that letter.

Example. If we have an algebraic expression containing

a quantity x, which we consider as a function of x, but do not

wish to write in full, we may call it

F{x), or 0(;r), or [.r], or Ax,

or, in fine, any expression we please which shall contain tlie

symbol X, and shall not be mistaken for any otiier expression.

In tlie first two of the above expressions, the letter x is enclosed in

l)arenthcseH, in order that the expression may not be mistaken for x mul-

tiplied by F, or (p. The parentheses may be omitted when the reader

knows that multiplication is not meant.
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The fundamental principle of the functional notation is

this

:

Wlien a symbol with a letter attached represents a

fuiictlorhtheri,if we substitute any oilier (/uanfity for

till' letter attached, the combination will represent the

function found by substituting that other quantity.

Example. Let us consider the expression ax^ + I as a

function of x, and let us call it {x), so that

^ (x) — ax^ + b.

Then, to form {ij), we write y in place of x, obtaining

<A {y) = f^ + ^•

To form (p {x + y), we write x-\-ym place of x, obtaining

(a; 4- ?/) = a {x + yf + b.

To form (p {a), we write a instead of x, obtaining

(}) (a) = cfi 4- b.

To form </> («/), we put ay^ in place of x, obtaining

0(«2/3) = a{ay^f + b = ay + b.

The equation (p {z) = will mean

az^ ^ b = 0.

; 1! f

!

i '
1

EXERCISES.

Suppose (p {x) = ax^ — a% and thence form the values of

I. cp{y). 2. (p{z). 3' "Pi^y)-

4. <p{x-\-y). 5. (p{x-\-a). 6. (/jCt-^).

7. rp{x-{- ay). 8. </) (a: - rti/)- 9- "P i^")-

Suppose i^(.i') = xa^, and thence form the values of

10. F(ij). II. F{2y). 12. /M'3//).

13. F{'>-^y)- ^4. F{x-y). 15- ^(1)-

Suppose /' (:c) = a;2, and thence form the values of

16. /(I). 17. /O-^). ^8- /(•'')•

19. /(.2;4). 20. f{jJ'). 21. /(2;'0.

- i

J

i'!

^;H
•

r'l
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4

v^»
^*«i

?-r

2 2. Prove that if avo put (t>{x) =. «*, we shall have

Let us put {m) = m (m — 1) {7n — 2) (??? — 3) ; tlieuce

form tlie values of

23. 0(G). 24. 0(5). 25. (?)(4).

26. 0(3). 27. 0(2).

29. 0(0). • 30. 0(— 1).

28. 0(1).

31. 0(-2).

Functions of Several Variables.

22Cu An algebraic expression containing several

quantities may be represented by any symb(^l having

the letters wliicli represent the quantities attached.

Examples. We may put

{x, y) = ax — hj,

the comma being inserted between x and y, so that their

product shall not be understood. We shall then have,

(???, n) = am — hn.

{y, ^) = ay — bx,

the letters being simply interchanged.

(p(x + y, x-y) = a {x + ?/) -h{x- y)

= (a— b) X + (« + §) y,

(a, b) r=r a^ - b\

[b, a) = ab — ba — 0.

^ [a -\- b, ab) = a {a + b) — ab^.

(a, a) = a^ — ba.

etc. etc.

If we put {a, b, r) = 2« + 36 — 5c, we shall have

(.r, z, y) = 2x + 3^ — 5y.

{z, y, x) = 2z + 3y — 6x.

(f)
(m, 7/1, — m) = 2m -{- 3m + 5m = 10m,

0(3,8, 6) = 2-3 +3.8-5.6 = 0.

EXERCISES,
Let us put 0(-^', y)

f(^> y)

f{^,y^z)

3x — 4y,

ax 4- by,

ax + by abz.
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Thence form the expressions

:

I. (f){y,x). 2. (I){a,b).

4. 0(^,3). 5. 0(10,1).

7. ./(^«)- 8. f{y,x).

10. f{q, -p)' II- /(2!, ^,y)'

13. f{a,b,c). 14. f{a\bKc'^).

15. /(— «, — ^ — «J).

w(m — l)(m-
Let us put (m, ?i) = —7

t-^t
—

Find the values of

16. (3,3). 17. (4,3).

19. (0, 3). 20. (7, 3).

22. (2, -1). 23. (3, -2).

Use of Indices.

233

3- (3, 4).

6. y(a, ^>).

12. /(^ a, 2).

l2)

18. (5, 3).

21. (8,3).

24. (4, -3).

S^Oa. Any number of different quantities may be

represented by a common symbol, the distinction being

made by attaching numbers or accents to the symbol.

EXAMPLES.
1. Any n different quantities may be represented by the

symbols, Px, p^, p^, - > ' > Pn-

2. A producer desires to have an algebraic symbol for tho

amount of money which he earns on each day of the year. If

he calls q what he earns in a day he may put

:

q^ for the amount earned on January 1,

q^ ''
" " '"

2,

etc. " " " " etc.,

q.,
- " " " 31,

q.^„
<* " " February 1;

and so on to the end of the year, when

^3 5 5 will be the amount for December 31.

Def. The distinguishing numbers 1, 2, 3, etc., are

here called Indices.

A symbol with an index attached may represent a

function of the index, as in the functional notation.

i

r

^:i

Ml I
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f f

H

I.

EXERCISES.
Let us put at = t{t + 1). Then find the vahie of

1. (Iq + r/i + f^2 + + «io-

2. Prove the following C(in;ition8 by computing both mem-
bers:

^1 + ^^2 = .> ^^8-

4

;3

G

If we put iS'i =: 1 -f 2 + 3 . . . . + i", we shall have

8^ ^ 1.

iS-g = 1 + 3 = 3.

^'3 = 1 + 2 + 3=:= 6, etc., etc.

Using the preceding notation, lind the values of the ex-

pressions :

5. 2>V5 - «g. 6. S^Vg - r/g.

337. Sometimes the relations between quantities distin-

guished by indices are represented by equations of the tirst

degree. The following are examples:

Let us have a series of quantities,

yio, ylj, J 2, J 3, A^, etc.,

conn(?ctcd by the general relation,

Aix — Ai + Ait. {a)

' It is required to express them in terms of Aq and A^.

We put, in succession, / = 1, i =z 2, i = 3, etc. Then,

when i = 1, we have from (a),

Aq = A^ -\- Aq.

AYhen i = 2, A.^ = A., -{- A^ = 2.1, + A^.

i = 3, A^ = aI + A., = 3yl, + 2Ao.

i = 4, A^=^ A^ + ^13 = 5J, + 3^0.

/ = 5, J« r. Jg + .1^ = 8.1, 4- 5ylo,

and so on indefinitely.
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EXERCISES.
I. If Ai^\ = Ai — -ii-1,

wliiit will be the values ot A^ . . . Aw, and in what way may
all subsequent values be determined?

2. If Ai^t = 2Ai — /io,

riiiu A 2 to J 5 in tenns of .i^ and ^Ij.

3- If An = iAi + Ai_i, find A^ to ^g.

4. If Ai = Ji_i 4- h,

lind the sum J „ + J ^ -f .Ig -f . . . . -(- J^, in terms of J,,,

// and n. (Comp. § 209, Prob. V.)

5- If Ait = rAi,

find ^1 + Jg -f- /I3 4- . . . . + yl„, in terms of Aq and r.

6. If yJifi = ilvli + ylj-i,

find A2, A^, . . . . Aq, in terms of ^^ and A^.

I Mi !' I

Miscellaneouti Fuiictions of Numbers.

338. We present, as interesting exercises, certain elemen-

tary forms of algebraic notation much used in Mathematics,

and which will be employed in the present work.

1. When we have a series of symbols the number
of which is either indeterminate or too great to be all

written out, w^e may write only the first two or three

and the last, the omitted ones being represented by a

row of dots.

Examples. a, h, c, . . . . t,

Xj ^9 O9 • • • • /vO^

J • /C* • • • • ftm

n being in the last case any number gi-eater than 2.

The number of omitted symbols is entirely arbitrary.

EXERCISES.
How many omitted expressions are represented by the dots

in the following series:

I. i., /v, O, • • • • it* 2. X, /4, Of . . • • ?i — /V»

r i

i
-

i

!

J !

i! il
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4. w, )i — \y n — 11, .... n — 5.

5. ;/, )i — Ij u — 'Z, . . . . n — .s — 1.

6. n, n — l, n — 2, . . . . n — s + 1.

What will be (hu last term in the series:

7. 2, 3, 4, etc., to n terms.

8. n, ?i — 1, 71 — 2, etc., to s terms.

9. 2, 4, G, etc., to k terms.

2. Product of the First n Numbers. The symboi

is used to express the product of the first n numbers.

l'2-3 . . . . n.

Thus, 1 ! := 1.

2! = 1-2 = 2.

3! = 1.2-3 = G.

4! = 1.2.3.4 = 24
etc. etc.

It will be seen that 2! = 2-1!

3! = 3.2!

And, in general, n\ =:z n {71 — 1)

!

whatever number n may represent.
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(:)•

the parentheses being used to show that what is meant
71

is rot the fraction -•
s

EXAMPLES,

: 3.
(?) = I

(D " i. 2.3.4.5

n

= 21.

(i)

n {n — 1) {71 — 2)

1.2.3

n(7i — 1) .... 2.1 _ ^

i. 2.3 .... w ~
{71 + 4) {}i + 3) {71 -t- 2 )

1.2.3

EXERCISES.

Compute the vahies of the expressions

:

•• © -^ (!) - it) - (D H- (!) -^ (!) - (!) + Q'

'
(I) ^ (!) ^ (I) - (!) - (!)

Prove the formulae

:

^' V2/~2!3!
/^^ + 1\ _ ^M^ 1 /w\

5- Vs^l) — 7+1 \5/'

^ (")+(;:)-m

«• (3) + c) =
m-

s) ~ s\ in — .s)!

(f) - (1) = ("4-)'

i

,

,4-

ri

i
;

I'f
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'«• BOOK IX.

rifE THEORY OE NUMBERS.

I, '

CHAPTER I.

THE DIVISIBILITY OF NUMBERS.

?*il). Def. The Theory of Numbers is a branch

of nuitlR'inatics wliicli treats of the properties of integers.

Ihf. An Integer is any whole number, ijositivc or

negative.

In the tlicory of numbers the word number is used to ex-

press an integer.

Def. A Prime Number is one which has no divi-

sor except itself and unity.

The series of prime numbers are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, etc.

Def. A Composite Number is one which may be

expressed as a product of two or more factors, all

greater than unity.

Rem. Every number greater than 1 must be either prime

or composite.

Bef. Two numbers are prime to each other when
they have no common divisor greater than unity.

Example. The numbers 24 and 35 are prime to each

other, though neither of them is a prime number.

Rem. a vulgar fraction is reduced to its lowest terms when

numerator and denominator are prime to each other.
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DIviHioii into Prime* Factorrt.
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^30. Every composite niniil»i'r may hy tlclinition 1)0 di-

vided into two or more factors. If any of these factors are

c'oinposito, they may be again divided into oilier factors.

When none of the factors can be further divided, tlicy will ail

lie prime. Hence,

Tni;oREM. Every composite nimthc?' may be divided

iitfo prime factors.

Example.

Whence,

180 = 0-20,

9 = ;^3,

!^0 = 4-5 = 3.3-5.

180 = 2-3-;3-3-5 = 22.32.5.

Cor. 1. Because eve.ry numljer not prime is composile,

;ind because every composite number may be divided into

prime factors, we conclude: Every number is cither prime
iir divisible by a prime.

Cor. 2. Every number, prime or composite, may be ex-

pressed in the form

2)'^(fn etc., {a)

where p, q, r, etc., are different prime numbers

;

«, /3, y, etc., the exponents, are positive integers.

Rem. If the numl)er is prime there will be but one factor,

namely, the number itself, and the exponent will be unity.

EXERCISES.

Divide the following numbers or products into their prime

factors, if any, and thus express the numbers in the form {a) :

I. 24. 2. 72. 3. 200. 4. 109. 5. 22o.

6. 250. 7. 91. 8. U3. 9. 300. 10. 217.

II. 3072. 12. 1.2-3-4-5.0.7-8.9.

Rem. In seeking for the prime factors of a number, it is

never necessary to try divisors greater than its square root, for

if a number is divisible into two factors, one of these factors

will necessarily not exceed such root.

> 1'

t
i

f

^ F ' li

' '
' .

i ' 'il

I

f

.,111
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•*i

Coiniiioii Divisors of* Two Niiiiilx'rs.

*y»\\, TiiKORKM I. //' tivo nitinbers liarc <l common
factor, their siuii will hauc that same /'actor.

rruuf. Let a ha tho (.'Oiunion I'jictor
;

?/i, the })r()diict of nil tho other factors in tho

one nuiiiher;

Hi tlie correspoudiiig product in the otlicr

niiinbcr.

Then the two niunbers will bo

am and an.

Their sum will be a {tii + n).

Because m and n are whole num))er.s m-^n will also be u

whole number. Therefore a will lie a factor of am -{-an.

Theorem II. If two numhcrs have a codidioh factor,

their difference will have the same factor.

Proof. Almost the same as in the last theorem.

Cor. If a number is divisible by a factor, all multi})les will

be divisible by that factor.

Rem. The preceding theorems may be expressed as foil ;ws

:

If two numbers are divisible by the same divisor,

their sum, difference, and multiples are all divisible bij

that divisor.

Rem. If one number is not exactly divisible by another, u

remainder less than the divisor will be left over. If we put

Z>, the dividend;

d, the divisor;

q, the quotient

;

r, the remainder;

I) = dq -\- r,

D — dq = r.

Example. 7 goes into GO 9 times and 3 over. Hence

this means
G6 = 7-9 + 3, or 66-7-9 = 3.

we shall have,

or
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joniinufh

2li*i, Pkomlkm. To find Ike greatest lunninnii divisor

of tiro numhcrs.

Lxit m uiid n be the niiinhers, and let m bo the ^rciilcr.

1. Divide ;// by n. If tlie reinuinder is /ato, n will !)«• llic

divisor re(|iiired, because every nund)er divides itself. 11' tlicii'

IS a reinuinder, let q be the (juotient and r the remainder.

Then m — nq = r.

Let (I be the common divisor r('((uired.

Heeause in and // are both divisible by rf, m — uq must

also be divisible by d (Theorem II). "therefore,

r is divisible l)y d.

TIcnce every common divisor of m and n is also a common
divisor of ;i and r. Conversely, because

m = nq -\- r,

every common divisor of n and r is also a divisor of m. There-

fore, the greatest common divisor of m and ii is the same as

the greatest common divisor of n and r, and we proceed with

these last two numbers as we did with ni and n.

2. Let r go into 7i q' times with the remainder r'.

Then 7i —. vq + r',

or n — rq' = r'.

Then it can be shown as before that d is a divisor of r', and

therefore the greatest common divisor of r arid r'.

3. Dividing r by ?•', and continuing the process, one of two

results must follow. Either,

«. We at length reach a remainder 1, in which case the

two numbers are prime ; or,

(i. We have a remainder which exactly divides the pre-

ceding divisor, in which case this remainder is the divisor

required.

To clearly exhibit the process, we express the numbers m,

n, and the successive remainders in the following form :

16

M !

K»' .

I ;
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HI*

m = n-q + r,

u = r-q + r',

r =z r'-q" + r",

r' = r"'q"' -\r"',

etc. etc.

{r < n)
;

(r < r)
;

(/"<r');
(/•'" < r")

;

etc.,

until wo reach a remainder equal to 1 or 0, when the series

terminates.

EXERCISES.
I. Find the G. C. D.* of ^40 and 155.

Dividend. Div. Quo. Rom.

240 = 155-1 + 85.

155 = 85-1 + TO.

85 — 70.1 + 15.

70 - 15-4 -f 10.

15 = 10-1 + 5.

10 = 5-2.

Therefore 5 is the greatest common divisor.

Note. Let the student arrange all the following exercises in the

above form, first dividing in the usual way, if he tinds it necessary.

Find the greatest common divisor of

2. 399 and 427. 3. 91 and 131.

4. 8 and 13. 5. 1000 and 212.

6. 799 and 1232. 7. 800 and 1729.

8. 250 and 025. 9. 1000 and 370.

10, If p be a number less than n and prime to /?, show that

11 — p is also prime to n.

II. If p be any number less than u. the greatest common
divisor between n and p is the same as that between n and

n —])•

12. If n is any odd number, -— and — ;r— are both

prime to it.

Corollarieff. 1. When two numbers are divided bv their

greatest common divisor, their quotients will be prime to each

other.

* The letierrf O. C. D. are an abbreviation for Greatest C-ommon Divisor
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ion Divisor.

2. Conversely, if two numbers, )i and //, prime to each

otlier, are eaeli multiplied by any number (/, then d will be tlie

(i.C.D. of dn and dn.

!^iJo. (rearing of WhceU. An interesting problem con-

nected with the greatest com-

mon divisor is afforded by a

Ciijumon pair of gear wheels.

Ia'I there be two wheels, the

(tiiu having m teeth and the

otlier n teeth, gearing into each

otlier. If we start the wheels

with a certain tooth <»f the one

a,2;iinst a certain tootli of the

other, then we have the questions:

(I.) TIow many revolutions must each wheel make before

the same teeth will again come together ?

(i.) With how many teeth of the one will each tooth of the

otlier have geared?

Let q be the required num])er of turns of the lirst wheel,

having m teeth.

Let^j he the required number of turns of the second, hav-

ing n teeth.

Then, because the first wheel has m teeth, qm teeth will

have geared into the other wheel during the q turns. In the

same way, pn teeth of the second wheel will have geared into

the first. But these numbers must be ecpial. Tlierefore,

when the two teeth again meet,

^M — qm.

Conversely, for every pair of numbers of revolutions p and

'/. which fulfil ire conditions,

pti = qm,

the same teeth will come together, because eacli wheel will

liiive made an entire number of revolutions. This equation

gives

p _ m

q n

}'i^

'III

i
'

H
i

: J

'i

t
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h

W

7)1

Tlcnce, if we reduce the fraction — to its lowest terms, we
71

'

sliall liave the smallest number of revolutions of the respective

v/hcels which will bring the teeth together again.

To answer the second question :

After the first wheel has ma(r> q revolutions, qm of its teeth

have passed a fixed point. Any one tooth of tlie other wheel

gears into every 7i^'^ passing tooth of the first wheel. Thcrefuiv

any such tooth has geared into — teeth of the first wheel,

that is, into j) teeth, because, from tlie last equation,

or



NUMBERS AND TilFAR DIGITS. 245

Relations of Numbers to their Digits.

234. Ill our ordinary method, of expressing numbers, the

second digit toward tlie right expresses lO's, the third lOU's,

etc. That is, each digit expresses a power of 10 correspond-

ing to its position.

Def. Tlie number 10 is the Base of our scale of

iiunieration.

Note. The base 10 is entirely arbitrary, and is supposed

to have originated from the number of the thumbs and fingers,

these being used by primitive people in counting.

Any other number might ec^ually well have been chosen as

,a base, but in any case we sliould need a number of separate

cliaracters (digits) equal to the base, and no more.

Had 8 been the base, we should have needed only the

digits 0, 1, 2, etc., to 7, and ditl'erent combinations of the

digits would have represented numbers as follows

:

1 =. 1,

7 = 7,

10 = 1-8 + = eight.

17 = 1-8 + 7 = fifteen.

20 r= 2-8 + = sixteen.

56 = 5-8 + = forty-six.

234 = 2-82 -f 3-8 + 4 = one hundred fifty-six,

etc.

Let us take the arbitrary number z as the base of the scale.

As iu our scale of lO's we have

234 = 2-102 + 3-10 -f 4,

so in the scale of z's, the digits 234 would mean
2^2 + 3;^ + 4.

In general, the combination of digits abed would mean

az^ + hz^ + cz + (L

il

f 'I

I

A

Divisibility of Xumbers and tlieir Dij.vits.

*^.*J5. Theorem. // the sum of the dibits of any niim

her he suhtracted froDi the niunhcr itself, the remainder
will be divisible by z — 1.

;.j
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The factors of «, h, and c are all divisible by z-{-\ (g§ 1)3,

'j-i), whence the result itself is so divisible.

Applying this result to the case of z = 10, we conclude:

//' on Hubtrdcting the siun of tlir. digits in the piace

itf units, liundreds^ tens of tfionstaids, etc., j'roiii tin' sinii

iij' the (dtcrnate ones, the renufinder is dirisil)Ie tnj II,

t/ir niondjer itself is dirisHtlc Itij 11.

If m be anv factor of z, it will divide all the terms of the

imniber

az^ + hz- -[ cz -\- d,

except the last. Hence, if it divide tiiis last also, it will di-

vide tiie number itself. Applying this result to tiie case of

: = 10, we conclude:

If the la*^ digit of any niunher is divisible by a fac-

tor of 10, the niind)er itself is divisible by tJutt factor.

The factors of 10 being 'i and 5, this rule is true of these

umubers t)nly.

It will be remarked that if the base of the system iiad been

an odd nund)er, we could not have distinguished even and odd

numbers by their last figure, as we habitually do.

For exam})le, if die base had been !), th' figures 72 would

have re])resented what we call sixtv-tive, which is odd, and 73

wuuld have represented wiiat we call sixty-six, which is even.

The use of the base 10 makes it easy to detect when a num-
ber is divisible by either of the first three })rime numbers, 2,3,

and 5. If the last ligure is divisil)le bv 2 or 5, the whole num-
lier is so divisible. To ascertain whether 3 is a factor, we find

\vlietlier the sum of the disi'its is divisible bv 3.

III taking the sum, it is not nccopsary to includo all the dibits, but in

abiding we may «miit all 8'r and 9's, and drop 3, (>, or 9 from the sum as

often as convenient. Thus, if the number were

92 1042 7 12,

we should perform the operation mentally, thus:

Drop 9 ; 3 + 1=3, which drop ; (), drop ; 4 + 2 = 0, which drop;

T + 1 = 8 + 3 := 10, which leaves a remainder 1.

EXERCISES.
1. Prove that if an even number leaves a remainder 1 when

divided by 3, its half will leave a remainder 2 when so divided.

* i

r
:

i; Jl
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2. If from any number we sul)tract the sum of units' digit

j)lus the ])r()(luet oi' the tens' digit by i, plus the product of

the iiundreds' digit by i^, etc., the remainder will be divisible

i)y H) — /. (/ may be any integer, ])ositive or negative.)

NoTK. When i — 1, this gives the rule of 'J'.s and when t - — 1, tlic

rule of 11 'a.

I'riiiKi FiK'tor.s of Niiinbcrs.

2.*UJ. First Fundamental Thkouhm. .4 product can-

not be (livldcAl by a prime niunber itiiless one of the few-

tors IS divisible by that prime niunber.

Note. This theorem is not true of composite divisors. For exam-

]»le, neitlier 8 nor is divisible l)y 0, but the product 8-9 = 72 is so

divisible. But if we take as many numbers as we jilease not divisible liy

7, we shall always find their product to leave a remainder when we try

to divide it by 7.

To make the demonstration better understood, we shall first take ii

special case

:

The product GGr? is not divisible by 7, unless a is divisibh'

hj 7.

Proof. Sui)pose (50« div. by T

7 goes into GG times and 3 over, because 7-9= G3, iV.\a div. by 7

Therefore, l)y Theorem ll,%'Z'd\, 3rt div. ])y 7

2

3 goes into 7 2 times and 1 over, ^lultiply by 2, (i« div. by 7

Subtracting, 7« div. by T

We have left, . ^^ div. by 7

Hence, if GGrt is divisible by 7, then a is divisible by 7.

Gauss's Demonstration. If it be possible, let am be the

smallest multiple of m whicli is divisible byy;, when neither //

nor m is so divisible. If a is greater than p, then let p go

into a b times and r over, so that

a = bp -\- r,

or a — bp = r.

Then, am div. by p.

Subtract bpm '' "

Remainder, {a — bp) ni "' "

Or rm '• "
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That is, if am is divisible hy ;;, so is ?•?//, whore r is less

tliiin p.

Therefore the smallest multiple of in which rullils tlie con-

ditions must be less than pm.

'Ihercl'ore, let a < p. Let (t go intoy^ c (iiues and n over,

io that

p — ca -\- s,

,,!• p — ca — .v.

Then pm div. by p.

cam. '' " (by hypothesis).

«
{p — ca) m "

a
Subtracting,

Or, sm

Therefore, s being less than a, a is not tlu' smallest mul(ii)lo;

wlience the hypothesis that a is the smallest is impossible.

General DemouHtration. Suppose

Pj a prime number
;

a, number not divisible by 7;;

am, a product divisil)le by 7;.

We have to prove that m must be divisible by p.

Let /J go into rf q times. Because a is not divisible by^;,

a reiuainder r will be left. That is,

a ^ pq + /', <>!' « — pq = ''.

Let r go into p q times and leave

11 remainder ;•'. Then,

p = qr ^ r',

and hccause pm and q'rm are both di-

\isil»le by ^j, rm is so divisible.

In the same way, if r' goes into p
<j" times, and leave the remainder r",

r'ln will be divisible hy p. Mince each

of the remainders ;*, r', /•", etc., must

1)0 less than the i)receding, we shall at

length reach a remainder 1, which will give

711 divisible by p. Q. E. D.

am
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Jvxtcusion to Several Fadors. If tn is a product h x n, aiul

h is not, divisible by p, tlien we may show in the same way tliut,

n must be so divisible. 11' n ^ cs, and r is nat divisible, tlitu

*' must be divisible, and so on to any number of factors.

Hence,

Theorem, //'ft prodiwt of dini nnnihrr of jncltivi^ is

divisih/e hij a prinir niunhrr, then one of t/ie factors

must be dirlsibie by t/w same prime.

This theorem is the loj^ical equivalent of the one ju,-t

enunciated as the iirst fundamental theorem.

Note. Tlu* atudont will remark why tlio preceding demonstratinti

applies only when th<! divisor ;? is a prime niiml)er. If !• were compo.-iic,

^.e mijrht reach a reniiiindcr which would exactly divide it, uud tlieii llit-

conclusion would not follow,

2'il, Se(^oxi) Fundamental Theoiiem, ./ nunilnr

can be dii'ided into jnirie factoids in, oiil if one way.

For, suppose we could express the number N in tlu; two

v:ays (§ 204, Cor. 'Z),

N = p"- 7^ i-y,

N = (C^ b" 6"^,

where 7?, q, r, etc., a, h, r, etc., are all prime numbers. Then

If common prime factors ai>peared on both sides of this

ecptation, we could divide them out, leaving an equation in

which the prime factors p, q, ?•, etc., are all different from

(I, h, c, etc.

Then, because a, h, c. etc., are all prime, none of them ;iiv

divisible hyp. Therefore, by the first fundamental theorem.

their products cannot be so divisible. But the left-hand meiii-

her of the equation is divisible by p, because p is one of its

factor,-:. Therefore the equation is impossible.

Rem. This theorem forms the basis of the theory of the

divisibility of numbers.

The preceding theorems enable us to place tlie definition

of numbers prime to each other in a new shape.
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I'monstration

Two numbers are said to be prune to each other

when they have no common prime factors.

Example. If one number i.s p'^ffr'*, and the other is

tif'b''c'' {p, q, r, etc., and a, h, c, etc., bein<jf ])rinic nunihers),

tlicn, if;;, <y, r, etc., are all ditferent from a, by r (. ., the two

numbers will be prime to each other.

Elementary Theorems.

238. The following general theorems follow from the t.vo

piveeding fundamental theorems, and their demonstration is

in part left as an exercise for the student.

I. Jfo power of an irrcO^'cihle vulgar fraction can he

a whole nuniber.

Note. An irreducible 'ilgi Traction is one which is re-

duced to its lowest terms

II. Corollary. Jfo roob of a whole number can he a
vulgar fraction.

III. // a number is divisible hi/ several divisors, all

prime to each other, it is also divisible by their product.

Cor. To prove that a number ^V is divisible by a number

B = p'^q^ ry, it is sufficient to prove that it is divisible sepa-

rately by p'^f by q^, by rv, etc.

Example. If a number is divisible separately by 5, 8, and

1), it is divisible by S-S- 9 = 3G0. Hence, to prove that a num-

ber is divisible by 300, it is sufficient to show that 5, 8, and 'J

are all factors of it.

IV. If the numerator and denominator of a vulgar

fraction have no common prime factors, it is reduced to

its lowest terms.

Binomial Coefficients.

239. TJieorem. The product of any n consecutive

numbers is divisible by the product of the numbers
1- 2-3 .... 71, or n !

I
%

\'\

i i)i



i}ni UINOMIA L COEFFICIENrS.

fltf:

Hem. The theorem implies that all binomial coefficients

arc whole numbers, becauso they are (|Uotient8 formed by di-

viding the product of n cousecutive numl)ers by h\

Proof. 1. We have lirst to tind the prime factors of the

product
1.2. 3. 4.50 n = n\

l)cginning with the factor l.

I. The numbers divisible by 2 are the even numbers 2, 4,

'n
G, etc., to n or n — 1, the number of which is

2

Note. The expression
n

2
here means the greatest whoJi'

n~ 1
mtmhcr in - , which is ^ itself when n is even, and —

r

2 2 2

when 71 is odd.

The quotients of the division are

X) liy (i, 'X, • . . .

n

2

71

4
Of these (quotients,

second set of quotients,

X
J

fV^ tJ y • • • •

The next set of quotients will be

X, /V, ...

are divisible by 2, leaving the I we nh

71

4

71

8

The process is to be continued until we have no even num-

bers left.

Therefore, if we put a for the number of times that the

factor 2 enters into n ! we have.

« =:
n

2
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; a factor are

(.f wliich tlie number is .. • The quotients obtained by di-

viiliii*,' them by 3 are L.' J

1 *> nX y /Vy tjy • • • • PJ

Of these quotients, arc again divisible l)y 3, and so

(111 as before. Hence, if we put /i for the number of times n I

contains 3 as a factor, wo liavo

»-[«]* p] +
n

+ etc.

In the same way, if k be any prime number, n\ will con-

tain k as a factor

mn j I
n

7. I
+

I ^, +
11

k"
+ etc. times.

Note. This elegant process enables us to find all the prime

factors of nl without actually computing it, and thus to ex-

hibit 71 ! as a product of prime factors. If we suppose n = 12,

Wii fehcill tiud,

12! = 1.2.3 12 = 210.35.52.7.11.

2. Next let us find the prime factors of the product

(rt + 1) (« + 2) (a + n),

wliich contains w factors. Dividing successively by 2, 3, 5, 7,

etc., it is shown in the same way as before that the prime fac-

tor j) is contained in the product at lead

+ etc. times.

whatever prime factor /) may be. Therefore the numerator

((^4-1) (a + 2) . . . . {a-\-n) contains all the prime factors found

in n\ to at least the same power with which they enter wl

Hence (§ 238, III), the numerator is divisilde by n\

Cor. If the factor a-\-7i in the numerator is a prime

number, that prime cannot be contained in til because it is

rw"i
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(;

greater than n. Ilencc tho })iaonuul factor will be divisilile

by it.

„ 5«(i' 7 .,...,, , „
ExAMi'LK. , ,, ., IS uivisil)k' by 7.

We may .sliow in the same way that the l)iii()niial coellicicnf

is divisible l)y all the prime numbers in its numerator whi( h

exceed n.

DiviHorH of ii Number.

240. Def. The expression

(P{m)

is used to express how many numbers not greater than

•m are i)rime to iii.

Example. Let us find the value of </)(0).

1 is j)rime to 9, because their G. C. D. is 1.

Q « « (f U « U

3 is not prime to 9, because their 0. C. D. is 3.

4 is prime to 9.

5 " "

6 is not, because G and 9 have tho 0. C. D. 3.

7 is.

8 is.

9 is not.

Therefore, th^ numbers less than 9 and prime to it are

1, 2, 4, 5, 7, 8,

which are six in number. Hence,

(9) = 6.

The numbers less than 13 and prime to 12 are 1, 5, '«• H-

Hence,

0(12) = 4.

We find in this way,

0(1) =1, 0(2) = 1, 0(3) = 2,

0(4) =2, 0(5) =4, 0(0) = 2,

0(7) = 6, etc., etc.
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Cor. 1. The numbt'i I in prime to itself, but no other

number is prime to itself.

Cor. 2. If m be a prime num1)er, then

0(m) = m — 1,

licciuise the numbers 1, 2, 13, .... m — i are tlien all prime

t(» ///.

The following remarkable theorem is assoeiated with the

functions <!> (///).

*Z-i\, Theorem. If iV bo any nnmhcr, and c7,, r/.^,

^/g, etc., all its divisors, unity andxVinclud(^d, then

0(^i) 4- 0(^2) + 'Al^^a) + ^'tc. = N.

Example. Tjct the number be 18.

The divisors are 1, 2, 3, G, 9, 18. We find, by counting,

0(1) = 1

0(2) = 1

0(3) = 2

0(1;) = 2

0(9) =
0(18) = ^

Sum, 18.

To show how this comes about, write down the numbers

1 to 18, and under each write the greatest common divisor of

that number and 18. Thus,

Num., 1 2 3 4 5 G 7 8 9 10 11 12 13 U 15 IG 17 18.

G.C.D., 12321G12921G1232118.
Necessarily the numbers in the second lino are all divisors

of 18 as well as of the numbers over them.

The divisor 1 is under all the numbers prime to 18, so

that there are

0(18) = div.'sors 1.

If n be any number over tho d" visor 2, then - and — , or

!», must be prime to each other. (§ 232, Cor. 1.) That is, the

'f

!
I

1,1

Ml
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M

numbers w arc all those which, when divided by 2, are prime

to 9.. So there arc

0(0) divisors 2.

The divisor 3 marks all numbers which, when divided by 3,

18
are prime to — = G. Hence, there are

o

(p (0) divisors 3.

In the same way there are <p (3) divisors G, 0(2) divisors !),

and 0(1) divisor 18.

The total number of these divisors is both 18 and 0(18)
-}- (9) + etc. Hence,

0(18) + 0(9) +0(G)-f-0(3) + 0(2) +0(1) = 18.

General Proof. Let m be the given number;

fZj, f/g' ^^35 ^'tc, its divisors;

7i' 72' '73' the quotients . , .- , etc.

"l "2

The quotients (7,, 5*2, etc., will be the same numbers as r/,.

c?2. etc., only in reverse order. The smallest of each row will

be 1 and the greatest m. We shall then have

m = f/i <7i — r/g 72 = ^^3 '73' etc.

From the list of numbers 1, 2, 3, .... ?/?, select all tho^^o

which have r/, (unity) as the greatest common divisor with ;/^

then those which have (/^ as such common divisor, then those

which have r/3, etc., till we reach the last divisor, which will

be ??? itself, and which will corresi)ond to tn.

The numbers having unity as G. ('. D. will be those prime

to in, by definition. Their number is 0(wO-

Those having (L as G. C. D. with ?// will, when divided bv
CD 1^ ' *

^7g, give quotients prime to j- or to q^. Moreover, such (iiu)-

tients will include all the numbers not greater than r/j, ami

prime to it, because each of these numbers, when multipliid

by r/g, will give a number not greater than >«, and having d»

as its G. C. D. with m. Hence the number of numbers not
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greater than ???, and lKivin,i:f lU as its G. C. D. with m will

1.0 0(^2).

Continuing the process, we shall reach the divisor m, which

will have m itself as G. C. D., and which will count as the

iiiinilx^r corresponding to </> (1) = 1 in the list.

The m numbers 1, ^, 3, . . . . m are therefore ec^ual in num-

ber to

0O'O + 0(V2) + 0(73)4- .... +0(1);

or. since the ((uotients and divisors are the same, only in re-

verse order, we shall have

0(1) -f 0(^/3) -f qi{d^) + ....+ 0(/») = w.

24'^. Fkumat's Tiieoukm. If p he ait// /trijne nurn-

hn\ and a ha a luuiibcr prima to p. Ilirii tiJ'-^ — 1 will be

divisible by p.

Examples, n'^ — 1 is divisible by 5 ; a^ — 1 is divisible by 7.

Proof. Develop ai' in the following way by the binomial

theorem,

a* [i + («-i)F

= 1 -\-p{a - 1) -f- [{^
(.,_ 1)2 + .... + {a - If.

Because p is prime, all the binomial coelTicients,

P>
2 '

etc., to
(.-^-.>

are divisible by p (§ '230, Cor.). Transposing the terms of the

last member of the eijuation which are not divisible by ^>, wc

liiul

a^' — (a — 1)'' — 1 = a multij)le of;).

or a^ — a — [(« — 1)^' — {a — 1)] = a multiple of p.

Supposing X = 2, this equation shows that 'Z^* — 2 is a

multiple of />; then, sn])])osing a; = 3, wo show by § )i'M,

Til. H, that ',]'' — .3 is such a multiple, and so on, indelinitely.

Hence, a** — a = a multiple of p.

whatever be a. But a'' — a ~ {aP"^ — l)a, and because this

l>roduct is divisible by p, one of its factors must be so divisible

(§ 23G). Hence, if a is prime to^, a^^~* — 1 is divisible by 7;.

17

M-

r

i t

»*
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CHAPTER II.

OF CONTINUED FRACTIONS.

^43. Any proper fraction may be represented in the form

— , where x^ is greater than unity, but is not necessarily a whole

number. If a^ be the greatest whole number m x.^, we can put

^1 == ffi +--,

where ^g will be greater than nnity. In the same .ay wc

may put
1

2^8 = fl'a H '

2^3 = ^3 +

etc.

X,

etc.

If for each rr wo substitute its exi _ssion, the fraction

"will take the form

J^ I _J

^h +
Vi

«i +
rto H , (Jtc, etc.

X

If the substitutions are continued indefinitelv, the form

will be 2

«i +
a., +

1

^3 + -

''- + 7u

Such an expression '
> called a continued fraction.

Dcf. A Continued Fraction is one of which the

denominator is a whole number plus a fraction ; the

denominator of this last fraction a wholo number plus

a fraction, etc.
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A continued fraction may cither torniinate with one of its

di'Hominators or it may extend indefinitely.

Def. When the number of quotients a is finite, the

fraction is said to be Terminating.

344. Problem. To find the value of a continued

fraction.

We first find the vaUie when we stop at the first denomina-

tor, then at the second, then at tlie third, etc.

Using only two denominators, the fraction will be

X,

1

^1 + --
a^r^ + 1*

F l)eing put for the true value of the fraction.

To find the expression with three terms, we put, in the

preceding expression, a^ -\ in place of x^. This gives

«2 + —
F=:

X3 a.x^ + 1

a.
f'l^z + ^ + 1

(a^a^ + l);'-3 +«i
X,

To find the result with the fourth denominator, we 8u))sti-

tute x^ = a^ -\-

X,

F

The fraction becomes

;

(«2^3 +1)^4 + ^2

[(r/j^g + 1) «3 + ^1 J a^4 + «i«2 + 1
{<')

To investigate the general law according to which the

{Successive expressions proceeil, we put

P, the coefliicient of x in any numerator;

F, the coefficient of x in the denominator;

Q, the terms not multiplied by x in the numerator
;

Q', the terms not multiplied by x in the denominator

;

and we distinguish the various expressions by giving each P
and Q the same index as the x to which it: belongs.

i
'

I
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»

(^)

Tlien \vc may represent each value of F\n the form,

~ P' 0' -I- (/'

where / may take any vahie necessary to distinguish the frac-

tion. Comparing with the fractious as written, we see that

:

p^ = i, Q, = o, p; ==-.«,, (>2 = i; (')

P3 =: f'2> Q3 = ^ ^'a -- ('tf(2-^^^ Q\ = «i

;

To show tliat this form will r-ontinuc, how far soever wi

carry the comi)utation, we put in the expression {b) the geneml

value of Xi,

Xi = Hi -\ ,

Xi+\

which gives, F («i Pi + Vi) 3*if3 4- Pi
(•/)

To show the general law of succession of the terms, let ii<

comi)are the general equatior- pj) with (d). Putting i+1 lor

i in {b), it l)eeomes,

P. .-r, . _L n. .

~"
P' r 4-0'
^t+r ill ^ '»^ifi

CcMiparhig this with (r/), we find

Ai =z aiPi+ Qi,

whence, Qi = Pi-\.

Substituting this value of Qi in the equation previous, it

bectjmes

P,+, = fti Pi + Pi-i. (0

Working in the same way with the denominators, we find

P;,, = a. P; + /-„,. (;/)

By supposing i to take in succession the values 1, "Z, 3, Qic,
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llicse fonnulae show that the successive vahies of P may bo

Lomi)uted thus

:

P, =.0,

P2 = h
(from c)

;

Also,

P, = a,P, + i'3,

etc., to any extent.

P' — 1

p; = n,p'^ + p;,

P' — // /*' a- />'

etc. etc.

Since each vahio of Q is equal to the value of P havinf^ the

next smaller index, it is not necessary to compute th<; ^/s sep-

arately.

If the fraction terminates at the n'^ value of (u we shall

liave

Xn = an, exactly.

If it does not terminate, we have to ne^lri i ail ihe denom-
inators after a certain point; and calling '\v) last denominator
we use the n^, we must suppose

In either case, the expr am {b) will give tlie value of tho

fraction with which we stoi by putting i = n and 3'n — «,»•

Therefore, yp fin Pn H- Qn
^ ~ W ^' '

an Pn + Qn

or, substituting for Q^ and Q'^ their vahses in (^),

anPn + Pn-\

But the general expressions (/) and {(j) give
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dn Pn + Pn-\ = J'n+1-

Pn'r\F =

Tlierefore, to find the value of the fraction to the n'^^

term, we have only to compute the values of Pnn and
Pnh ifithout taking any account of Q.

Example. Take tlic fraction,

1+-

2 +
3 +

4 +
1

5 etc.

Here, a^ = 1, a.^ =2, a.^ = 3, . . . . m =: i.

We now have, by continuing the fomiulse {c) and (/), and

nsing thosf? vuhies of a^, a^, etc.:

P, = 0,

P2 = h
P^ r= a^P^ -h Pi = a^ = 2,

P4 -^«3^3 + Pg =3.2 + 1 = 7,

P, = a,P, -h Pi = 4.7 + 2 = 30,

P, ^ a,P, + P4 = 5-30 + 7 = 157,

etc. etc. etc.

p'jj = «, = 1,

p; =:a^p'^ + p; = v.i + 1 = 3,

K = '^3/*s + p; = 3.3 + 1 = 10,

/>; = a^p\ + p; = 4.10 + 3 .= 43,

p; rr rt^r; + p; = 5.43 + 10 = aafi.

Therefore, supposing in succesaioii, n = 1, « = 2, « = 3,

etc., we have, for the successive approximate values of the

fraction.
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For 71 = 1,

For 71 = 2,

For n = 5,

p
2

* 2 — '/>'

3

PP — ^ ^

6

2

3

157

225'

Tliege successive approximate values of the continued frac-

lioii are called Converging Fractions, or Convergents.

345. The forms (/) and {(j) may he expressed in words as

follows:

The iiuvicrntor of each eonvct'^cnt is formed hij mul-

tiplying the preceding numerator hi/ the corresponding

a, and adding the second numerator preceding to the

product.

The successive denominators are formed in the same way.

Example. Tlie ratio of the motions of the sun and moon

relative to the moon's node is given by the continued fraction:

\

124-i-.
1 +

2 +
1 +

4-fi-
3 -f etc.

TiCt us find the successive convergents. We put the de-

jiominators a^ — 12, a^ — 1, etc., in a line, thus:

a r= 12, 1, 2, 1, 4, 3.

i' 12 ~ ~P' = 13' 38' 51' 242' 777

Under n^ we write the fraction . , which is always the one

with which to start, because P^ = and P'l = 1 (§ 244, c).

Next to the right is — , because P^ — \ and P'g = n. After

this, we multiply each term by the multiplier a above it, and

t

•
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rv

add tho term to the loft to o])tain the term on the riglit.

Thus, a-l -f 1 = 3, '^.13 + 1-^ == 38, etc.

Ex. 2. To compute the convergents of

1

2 +
1

4 +
1

5i +
1

4 etc.

^ = 2, 4, 2, 4, 2,

Numerators, 14 40

Denomimitors, i' 2' 9' 20' 8U' 198'

4, etc.

89
;^. , etc.

EXERCISES.
Reduce the following continued fractions to vulgar frac-

tions :

1
I. 2.

3 +
7 + J-.^ 16

3 + 1-

Ji +
3 + ^

3 +
1 +

3 +

3 +
5-

« +
^ + .- ^'4-

1 +
1

246. Problem. To express a fractional quantity n^

a continued fraction.

Let K be the given fraction, less than unity. Compute .r,

fiom the formula,

1

Let a^ be the whole number and E' the fraction of x^.

Then compute

_ 1
^8 - j^r
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Tx^t r/g be tho whole nnmbor and R" the fraefion of rg.

\Vc continue this process to any extent, unless some value

of X comes out a whole number, wiien we stop.

T. T, '-in . , „ .

±iXAMPLE. ±!iXprcss ^^ as a contiuueu fraction.

_ 1 _ 73 _ ^ ,
21

^' - 7^ - 20 - ^ "^
20

'

- 1 _ ?? - 1 j.i
^^ ~ W ~ 21 ~ ^ "^21'

. _ 1_ _ 211 _ 1

It

^A 7-,./,

5'

5
-5;

* ~ R" ""
1

So the continued fraction is

1

.•. rt, = 2

.-. «2 = 1

«3 = 4

^4 = 5

72' =

R' =

R'" =

i?' = 0.

21
20"

21'

1

2 +
1 +

1

4 + i.

It will be seen that the process is the same as that of find-

ing the greatest common divisor of two numbers.

EXERCISES.
Develop the following quotients as continued fractions:

I.
113

355'
2.

1040

3^320'

028

925'

247. The most simple continued fraction is that arising

from the geometric problem of cutting a line in extreme and

mean ratio. The corresponding numerical proV)lem is:

To divide unity into two such fractions that the less

shall he to the greater as the greater is to unity.

Let r be the greater fraction. Then 1 — r will be the

lesser one. We must then have

\ — r ', r : : r : 1,
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wliifh givos
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8 : 13 = 0.01538....,
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j>m m m'

'i
v

I

(/3) Let

be three consecutive con\ orgcnts, in which

mn' — m'n = ± 1. (l)

By (/) and [g) we shall have

m" = am' + m,

n" = an' + n.

Multiplying the second equation by m! and subtracting the

product of the first by n', we have

m'n" — m"n' = m'71 — mn',

which is the negative of (1), showing that the result is ^ 1.

The theorem being true of the first and second fractions,

must therefore be true of the second and third ; therefore of

the third and fourth, and so on indefinitely.

Corollaries. Dividing (1) by nn', we have

m m! . 1 T,
; = ± —)• Fence,

n n nn

I. Tlie difference between the tivo successive conver^-

ents is equal to unity divided by the product of tJic

denominators.

Becaase the denominator of each fraction is greater than

that of the preceding one, we conclude

:

II. Tlie difference between two consecutive convergenis

constantly diminishes.

Combining these conclusions with Th. I, we conclude :

III. Each value of a convergent always lies between

the values of the two preceding convergents.

For if R^, R^, R^ be three such fractions, and if R^ is

greater than R^, then R^ will be less than R^. But it must

be greater than R^, else we should not have Rg — Rq numer-

ically less than R^ — R^. Hence, if we arrange the successive

convergents in a line in the order of magnitude, their order

wall be as follows

:

-ft4j Jig? Rs' .... /tj,, it^j Ag,

each convergent coming nearer a true central value. Hence,
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IV. Tlie true value of the continued fraction nl-

irays lies between the values of two consecutive con-

vergents.

Comparing with (I), we conclude :

V. Tfie eiTor which we make by stopping at mni con-

vergent can never be greater than unity divided Inj f/w

product of the denominators of that convergent and, the

one next following.

EXAMPLE.
Referring to the table of values of ^{V5 — 1) in

we see that

:

247,

Error of 2 : 3 < ^--

;

o •
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;!;

i

Putting this value of x in (1) and again in the denominator,

and repeating the substitution indefinitely, we find

Va = 1 + ^-

T

2 +
2 + —^

^ "^
2 etc.

Forming the convergents, we find them to be

1 2 5 13 29 70 169 408

2' 5' 12' 29' 70' 169' 408' 985'
etc.

Adding unity to each of them, we find the approximate

values of a/2 :

? ! IZ ^ ?? i?? 5-^ 1??_^
2' 5' 12' 29' 70' 169' 408' 985~'

etc.

Rem. The square root of 2 may be employed in finding a

right angle, because a right angle (by Geometry) can be formed

by three pieces of lengths proportional to 1, 1, 'v/2. If avc

make the lengths 12, 12, 17, the error will, by Cor. V, be less

than r^r-TTi, or less than -— of the whole length.
12,29 o48

EXERCISES,
Develop the following square roots as continued fractions,

and find six or more of the partial fractions approximating to

each

:

I. Vs. 2. Vs. 3. Vg. 4. VlO.

5. Develop a root of the quadratic equation

x^ ax — 1 0,

commencing the operation by dividing the equation by x.

Periodic Contiiiued Fractions.

349. Def. A Periodic continued fraction is one in

which the denominators repeat themselves in regular

order.
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Example, A continued fraction in which the succe&sive

denominators are

2, 3, 5, 2, 3, 5, 2, 3, 5, etc., rtfZ infinitum,

is periodic.

A periodic continued fraction can be expressed as

the root of a quadratic equation.

EXAMPLES,

1 +
2 +

l + o2 + etc.

If we put X for the value of this fraction, we have

1
X =

1 +
We find the value thus

:

1, 2 + x.

1

1' 1'

2 -f- ic

2 -\- X

3 + x

Because this expression is x itself, we have

_ 2 + X

^~3+x'
which reduces to the quadratic equation

x^ + 2x = 2.

2. Let us take the fraction of which the successive denom-

inators are 2, 3, 5, 2, 3, 5, etc., namely,

1
X =

2 +
3 +

5 +
2 + 7

3 -f etc.,

^ ,n

iII;

t'J

- I ! i

I ,i f
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i

i

1».-

or, X =
2 +

3 +
We compute thus

:

2, 3,

1

1' 2'

5 + a;

a; + 5.

3 Sx-\- 16

7a; + 37

Hence we hove, to determine x, tlie quadratic equation,

3a; + 16
X =

7a; + 37'
or 7a;2 + 34a; = 16.

350. Development of the Root of a Quadratic Equation,

A root of a quadratic equation may be developed in a continued

fraction by the following process. Let the equation in its

normal form be (§ 192),

mx^ + wa; + JO = 0, (1)

771, n, liud j9 being whole numbers. We shall then have

a;

— n ± Vw/^ — ^Tnp

2ni

Let a be the greatest whole number in x, which we may
find either by trial in (1) or by this value of x. Then assume

1
a; = a + —

,

and substitute this value of x in the original equation. Then,

regarding x^ as the unknown quantity, we reduce to the nor-

mal form, which gives

{ma^ + na -\- p)x^^ + {2ma + w) a^i + w = 0. (2)

If a^ is the greatest whole number in x^, we put

and by substituting this value of x^ in (2), we form an equa-

tion in Xq. Continuing the transformations, we find the

greatest whole number in x^, which will be called ^g? ^^^ so on.

The root will then be expressed as a whole number a phis

the continued fraction of which the denominators are a^, «jj,
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THE COMBINATORY ANALYSIS,

CHAPTER I.

PE R M U TATI N S.

351. Def. The different orders in which ta number
of things can be arranged are called their Permuta-
tions.

Examples. The permutations of the letters a, h, are

ah, ha.

The permutations of the numbers 1, 2, and 3 arc

123, 132, 213, 231, 312, 321.

Problem. To find Jiow many permutations of any
^Iven number of things are possible.

Let us put

Pi, the number of permutations of i tilings.

It is evident from the first of the above examples that there

are two permutations of two things. Hence,

To find the permutations of three letters, «, h, c, Ave form
Hiree sets of permutations, the first beginning with a, the sec-

ond with h, and the third with c.

In each set the first letter is to be followed by all possible

permutations of the remaining letters, namely

:

In 1st set, after a write he, ch, making ahc, acb.
ii

a
2d

3d

a

a

a

a
h

c

18

ac, ca,

ah, ha,

a

a
har, hca.

cah, cha.

k>

(1

.. f

? I
!

J

.) :>

A 'I

''(
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I

M

Hence, Pg = 3-2 = G.

The perm u tut ions of n thinfrs can l)e divided into sels.

The tirst set befj^ins with tlie first thing, followed by all po.s.si-

ble permutations of the remaining n — 1 things, of which tln'

number is Pn -i. The second set begins with the second thiuir,

followed by all possible permutations of the remaining n — 1

things, of which the number is also Pn-h ^inJ so with all //

sets. Hence, whatever be n, there will be n sets of Pn-i per-

mutations in each set. Therefore,

Pn = nPn-\.

This equation enables us to find Pn whenever we know

Pn-\i and thus to form all possible values ( f P„, as follows:

It is evident that

We have found

Putting ?z = 4, we have

n = 5, "

etc.

P, = 1.

Pi = 2-

P3 = 3.2-1 -31 = 6.

4! = 24.

Pg = 2-1 = 2!

P, = 4P3
(( i( P, = 5

etc.

P^ = 51 = 120.

etc.

It is evident that the number of permutations of n things

is equal to the continued product

1.2.3.4 n,

which we have represented bv the symbol n ! so that

Pn = n !

1^

i

,

1%

• II

EXERCISES.*

1. Write all the permutations of the following letters :

bed, acd, abd, abed.

2. What proportion of the possible permutations of the

letters a, e, in, t, make well-known English words?

3. Write all the numbers of four digits each of which can

be formed by permuting the four digits 1, 2, 3, 4.

4. How many numbers is it possible to form by permuting

the six figures 1, 2, 3, 4, 5, 6.

* If the student finds any difficulty in reasoning out these exercises,

he is recommended to try similar cases i'' which few symbols are involved

by actually forming the permutations, until he clearly sees the general

principles involved.
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5. At a (linnor party a row of G pliilos is set for tlio liost

jind T) quests. In how iiitiny ways may they he seated, siihjcot

111 the condition that tiie hosl nuist iiave Mr. Brown on his

rii::ht and Mr. Hamilton on his left ?

6. Of all numbers that can be ftjrmed by permuting the

seven digits, 1, 2 .... 7:

((/) How many will be even and how many odd ?

{!)) In how many will the seven digits be alternately even

and odd ?

{c) In how many will the three even digits all be together ?

(</) In how many will the four odd digits all be together?

7. In how many permutations of the 8 letters, a, b, c, d, Cj

f\g,h,wi\\ the letters d,e,f, stand together in alphabetical

order ?

8. In how many of the al)0ve permutations will the Avord

(Iccf be found ?

9. In how many of the permutations of the first letters

^vill the words ar/e and bid be both found?

10. A party of 5 gentlemen and 5 ladies agree v/ith a math-

ciiKitician to dance a set for every way in which he can divide

them into couples. How many sets can he make them dance?

11. In how many of the permutations of the letters a, b, c,

(/, 0, \f'\\\ d and no other letter be found between a and c.

12. In how many of the permutations of the six symbols,

Hj b, c, d, e,f, will the letters dbo be found together in (^no

group, and the letters dcf'ni another?

13. How many permutations of the seven symbols, a, b, Cy

(I (', f, g, are possible, subject to the condition that some per-

mutation of the letters ahc must come first ?

14. The same seven symbols being taken, how many per-

mutations can be formed in which the letters cd}c shall remain

together ?

Periniications of Sets.

353. Def. When permutations are formed of only

s things out of a whole number 7^, they are called Per-
mutations of it things taken s at a time.

r*

',

r'

;ti!i

ip

'
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i

Example. 'IMr' permutations of thu three letters a, />, r,

taken two iit a time, are

ah, ha, ac, ca, he, ch.

The i)ennutiitiuns of 1, !;J, 3, 4, taken two at a time, are

1-v*, i;i, 14, ^1, n, 'i\, ;U, '.VI, 34, 41, 4-.>, 43.

Pkohlkm. To pud the miinbev of pcrinutatLoiis oj'

n thiiiils taken s at a time.

Suppose, first, that we take two tilings at a time, as in the

above examples. We may choose any one of tiie n things as

the first in order. Whiei) one soever we take, we shall ha\i'

n — 1 left, any one of which may be taken as the second in

order. Hence, the permutations taken 2 at a time will be

[Compare with the last example, where n = 4.]

To form the i)ermutations 3 at a time, we add to each per-

mutation by 2's any one of the n — 2 things which are lei'L.

Hence, the number of permutations 3 things at a time is

n (n — 1) {71 — 2).

In general, the permutations of )i things taken s at a time

will be equal to the continued product of the s factors,

n {71 — 1) {n — 2) . . . . {n — s -{- 1),

n!
which is equal to the fiuotient -.

{n—s)\

It will be remarked that when s = 7i, we shall have the

case already considered of the permutations of all n things.

EXERCISES.

1. Write all the numbers of two figures each which can be

formed from the four digits, 3, 5, 7, 9.

2. Write all the numbers of three figures, beginning with

1, which can be formed from the five digits, 1, 2, 3, 4, 5.

3. How many different numbers of four figures each can

be formed with the digits 1, 2, 3, 4, 5, 6, no figure being re-

peated in any number ?
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4. Expliiin 'ow all the mi!n))ers in tlio preceding exercise

ijiiiy be written, sliowing how many niiinheiy hi'^nn witii 1,

jiitw many with 'i^ etc.

5. In lunv nnmy ways can .'^ gcnth'tnen select tlieir partners

froni 5 ladies?

(). How many even nunihers of 3 diilerent digits each can

be formed from the seven digits, i, 'Z, . . , . I'i

7. How many of these nunihers will consist of an odd

diuit between two even ones ?

Circular I'ermutatioiis.

*25I{. If we have the three letters a, h, r, arranged in i\

circle, as in the adjoining figure, then,

however we arrange them, we shall lind

them in alphabetical order b> beginning

with a and reading them in the suitable

direction. Hence, there are only two

(lilferent circular arrangements of three

letters instead of six, namely, the two

directions in which they may be in al-

l)habetical order.

Next suppose any number of symbols, say a, b, c, d, e, f, g,

//, and let there be an equal number of positions around the

circle in which they may be placed. These positions are num-
bered 1, 2, 3, 4, 5, 0, 7, 8.

For every arrangement of the sym-

bols we may turn them round in a body

without changing the arrangement.

Eiich symbol will then pass through all

eight positions in succession.

By performing this operation with

every arrangement, we shall have all

possible permutations of the eight things

among the eight positions, the number
of which is 8!, which are therefore eight times as many as

the circular arrangements.

iv

I

I 1

HI
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8_!

Hence tlic miml)or of diHereiit circulur arrangements U

, wliicli is the suiiie as 7!

rv

In <^('ru'riil, if we represent the nuniher of circulur urran<5f(>

iiR'iits of n. tilings i)y ('«, we siiull lia\e

C„ = {n-\)\

The same result nuiylje reaelieU hy the following reasoniiiu.

To I'orni a circular arrangement, we may take any one symhol,

a for example, put it into a ilxed position, say (1), and leave it

there.

All possihlc arrangements of the symbols will then he

formed by permuting the remaining symbols among the w-

nmiuing positions. Hence,

as before.

iVi = {n-\)\

EXERCISES.
1. In how many orders can a party of 7 persons take their

places at a round table?

2. In how many orders can a host and 7 guests sit at a

round table in order that the host may litive the guest of higii-

est rank npon his riglit and the next in rank on his left?

3. Five works of four volumes each are to be arranged on

a circular shelf. How many arrangements are possible whidi

will keep the volumes of each set together and in proper order,

it being indifferent in which direction the numbers of the

volumes read.

4. In how many circular arrangements of the 5 letters 0, b,

e, (1, p, will a stand between h and d ?

5. If the 10 digits are to be arranged in a circle, in how

many ways can it be done, subject to the condition that even

and odd digits must alternate ? (Note that is even.)

6. The same thing being supposed, how many arrange-

ment's are possible, subject to the condition that the even digiiS

must be all together ?

7. In how many circular arrangements of the first six let-

ters will the word deaf he found? What will be the difference

of the results if you are allowed to spell it in either direction?
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PeriP'itatioii.s wlifii Sc'vcrjil of the Tliiii^^s are
hli'iidt'ul.

!:i5-l, li' tlu! suiiK! thinj,^ iippcurs scvcriil tiiiios iun()M<T the

lliin«(s to bo inTimited, (he iiiimlicr oi' ililTcrcnt i)eriuutatioiis

will bo loMS tliiiii wlion the things are all (lilleront.

ExAMi'LE. The iiorinuhilions of (laM lire

((((bb, alxih, nhba, baab, buba, bbaa, (1)

which jiro only six in number.

Pu()Hij:>r. Tt> /ufd Ike nitnihcr of pevviatidiuiLS icIlcil

scvei'fd <)/' the thing's (we ulcntictd.

Lot us first examine how all Ji-1 ))('rmutations of 4 things

may i)0 formed from the above permutations of adbb. TA't

us distinguish the two a^s, and tlie two //s by accenting one of

each. Then, from each permutation as written, four may 1)0

formed by permuting the similar letters among themselves.

For exam})le, taking abbtt^ and writing it abb'a', wo have, by

permuting the similar letters,

ab'ba, a'b'ba. abb'a', a'bh'a. {'I)

In the same way four permutations, differing only in the

{UTangement of the accents, may be formed from each of the

G j)ermutations (1), making ;i-4 in all, as there ought to bo.

(§ ;>51.)

Generalizing the preceding operation, we roach the iollow-

iiig solution of our problem. Let the symbols to be permuted

be a, b, c, etc.

Suppose that a is repeated r times,
i( i( h '^ '< V '^

it il - << it f ii

etc. etc. etc.

and let the whole number of symbols, counting repetitions, bo

11, so that

?i r= r + -s' + / + etc.

[Li the preceding example (1), 7i = 4, r = 2, .s = 2.]

Also put Xn, the required number of different permutations

of the n symbols.

II
»

n
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Suppose tliese Xn different pornmttitions iill written out,

and su})pose tlie symbols wliicli are repeated to be distingiii.shed

])y aeeents. Tiieu

:

From each of the Xn permutations may be formed P,- = r I

permutations ))y permuting the a^s among themselves, as in

(2). We shall then have r!X«, permutations.

From each of the latter may be formed .s! permutations l»v

permuting the i's among themselves. AVe shall then have

til r\ X X'n permutations.

From each of these may be found f\ permutations by in-

terchanging the (fa among themselves.

Proceeding in the same way, we shall have

Xn X rl X s\ X f\ X etc.

possible permutations of all 71 things. But this number has

been shown to be n\ Therefore,

Xn X r\ X si X tl X etc. =z n

I

By division, An — n
(•>)

rl si tl etc'

which is the required ex])ression.

We remark that if any symbols are not repeated, the for-

mula (o) will still be true by supposing the number corresi3on(l-

ing to r, s, or t to be 1.

EXAMPLES.
lo The number of possible permutations oi aabh are

4' 24
—,---: =: ——

- = f), as already found.

2. The possible permutations of aanhhcd arc

7

!

5040

3! 2! 0-2
420.

EXERCISES.
Write all the permutations of the letters:

I. aadb. 2. aahc. 3. aaabc.

4. How many different numbers of seven digits each can

be formed ))y permuting the figures 1112225 ?
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3 number lias

5. If every different pernmtation of letters made a word,

liow many words of 13 letters eauli couid be formed from the

word Masmch usetts.

The Two Classes of Pennutations.

255. Tlie n\ possible permutation-' of h tlii..gs are divisi

ble into two classes, commonly distin^^uisbed as even permu-

tations and odd })ernuitations in tlie following way:

We suppose the n things first arranged in alphabetical or

munerical order,

a, h, c, d, . . . . or 1, 2, 3, 4, ... . n,

and we call this arrangement an even pcrmntation.

Then, haying any other permutation, we count for each

thing how many other things of lower order come after it, and

take the sum.

If this sum is even, the permutation is an even one ; if odd,

an odd one.

EXAMPLES.
I. Consider the permutatiim 265143.

Here 2 is followed by 1 number of lower order, namely, 1.

'•' C '' " 4 '' " " '' 5,1,4,3.
ii 5 '' " 3 " " '' " 1,4,3.

a -\ '( ^< n << >• '<

(( A. " ^' 1 *' '* " ** 3

Then 1 + 4 + 3 4-0+ 1 = 9. Hence the permutation is odd.

?.. Consider cdbea.

Here c is followed by 2 letters before it in order, namely, ha.

u
^i

,i i: 2 " " " " "

ha.

a

a

((

i( a a

i(

((

((

a

(<

a
a.

c •'
'•

1 ••
*• *• •' a.

Then 2 + 2 + 1 + 1 = 0. Hence the permutation is even.

Def. The total number of times winch a thing less

m order follows one greater in order is called the

Number of Inversions in a permutation.

•

i

I, !

i
;

i

f

1 ;i

1.

,.i
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Example. In the preceding permutation, !^G5143, the

nuinl)er of inversions is 'J. In cdbed it is (J.

JtEy. It will bo seen that the ehiss of a permntation is

oven or odd, according as the iiumljer of inversions is even or

odd.

I'jiKOiiEM I. //, iti a pcnnutdbloii, t.'vo tldiigs arc,

interchcDigcd, the class will he chaiigcd from even to odd,

or from odd to even.

Proof. C^)nsider first the case in which a pair of adjoiiiiii'f

things are interchanged. Let ns call:

ik, the two things interchanged.

Ay the collection of things which precede i and k.

C, the collection of things which follow them.

The first permutation will then be

yia-6'.* [a]

After interchanging i and k, it will be

AkiO. {!>)

Because the order of things in A remains undisturbed, each

thing in A is followed by the same things as l^efore. In the

same way, each thing in C is preceded by the same things as

before.

Hence, the number of times tiiat each thing in A or C is

followed by a thing less in order remains unchanged, ami,

leaving out the pair of things, /, k, the number of inversions

is unchanged.

But, by interchanging i and k, the new inversion kl is in-

troduced. Therefore the numb','r of inversions is increased

by 1.

•^' This fdrrti of algebraic notation differs from those already used in

that the .symbols A and C do not stand for quantities, but mere coll;*-

tions of letters. It is an application of the general princijilf^ that a sitigli'

symljol may be used to represent any set of synd)ols, but must represent

the same set throughout the same (luestion. A and C are hero used to

show to the eye that in forming the permutations of (6) from {a), all the

h>ttera ou each side of ilc preserve their relative positions unchanged.
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If the first arrangement is ki, this one inversion is removed.

Ilcnce, in either case the number of inversions is changed by

1. and is therefore changed from odd to even, or vice versa.

lllastration. In the permutation

205143,

the inversions, as ah-eady found, are the following nine :

21, 05, 01, 0-i, 03, 51, 54, 53, 43.

Let us now interchange 5 and 1, making the [)ermutation

201543.

The inversions now are

21, 01, 05, 04, 03, 54, 53, 43,

the same as before, except that 51 has been removed.

Next consider the case in which the things interchanged

do not adjoin each other. Suppose that in the permutation

b a d e h c f
wo interchange a and h. We may do this l)y successively in-

terchanging a with d, with e, and with h, making three inter-

changes, producing
h d e h a c f

.

Then we interchange h with e and with d, making two

interchanges, and producing

b h d G a c f y

which effects the required interchange of a with h.

Tlie number of the neighboring interchanges is 3-f 2 = 5,

an odd number. Because the number of inversions is changed

from odd to even this same odd number of times, it will end

in the opposite chiss with which it commenced.

Theorem II. TJic possible permutations of n tilings

are one-half even and one-linlf odd.

Proof. Write the n ! possible permutations of tlie 7i things.

Then interchange someone pair of things {e.g., the first

two things) in each permutation. We shall have the same

})ermutations as before, only differently arranged.

I
»'

I-.!

IM

1

..'
, .1

•i

i-i
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?'fe
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By tlic change, every even permutation will be changed \

odd, and every odd one to even.

Because every odd one thus corresponds to an even ono.

and vice versa, tlieir numbers must be e(jual.

Illustration. The permutations in the second column I'nl

lowing jire formed from those in tlie first by interchanging the

first two figures :

1 2 8 even, 2 1 3 odd.

13 2 odd, 3 12 even.

2 13 odd, 12 3 even.

2 3 1 even, 3 2 1 odd.

3 12 even, 13 2 odd.

3 2 1 odd, 2 3 1 even.

EXERCISES.
Count the number of inversions in each of the foUowinir

permutations:

I. hcdngef. 2. hcagdef. 3. 325941.

4. 5432. 5. 829173G4. 6. 82971364.

3^0 Def. A Symmetric Function is one which is

not changed by pei'iiiuting the symbols which enter into it.

An Alternating Function is one which, wdien any two

of its symbols are interchanged, changes its sign without

changing its absolute value.

EXERCISES
Show which of the following functions are symmetric and

which are alternating

:

I. a -\- h -\- c. 2. ahc.

3. a{h + c) ^- h{c + a) + c{a + h).

4. a" (b-c) + h' {c-a) + c' (a - b).

5. a' {b + c) + ¥ {c+ a) 1 c' {a -f h).

6. (a—b) (6 — c) {c — a).

7. ab -{- be + ca.
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even one.

metric ami

CHAPTER II.

COMBINATIONS.

35T. Def. The number of ways in which it is pos-

sible to select a set of s things out of a collection of it

things is called tlu.* Number of Combinations of s

things in n.

Ex. I. From the three synihols a, h, c, may he formed the

couplets,

ah, ac, he.

Ilciice there are three combinations of 2 things in o.

Ex. 2. P^rom a stud of four horses may be f(jrmed six dif-

ferent span. If we call the horses A, B, C, D, the different

s})un will be

AB, AC, AD, BC, BD, CD.

Rem. 1. A set is regarded as different when any one of its

separate things is different.

Rem. 2. Combinations differ from permutations in that,

in forming a combination, no account is taken of the order of

arrangement of things in a set. For instance, ah and ha are

tlie same combination. Hence, we may always suppose the

letters or numbers of a coml)i nation to be Avritten in alpha-

betical or numerical order.

Notation. The number of combinations of s things in n

is sometimes designated by the symbol,

Problem. To find the niunher of combinations of s

things in n.

If we form ever)' possible set of .<? things out of n things,

and then permute the s things of each set in every possible

way, we shall have all the permutations of n things taken s at

a time (§ 252). That is,

; I

.r .1

! t

^r

fi;

.,.

'

I

f»

il
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exprt'ss (lie number of pL'rnnitatioiis of u tilings taken s at a

time. But we luive found this number to be

n{)i — i) {n — 'Z) . . . . (?^ — s + 1).

We liave also found

1' — .s'! r= 1.2.3.4 .9.

Ileuec, Cg X 6- ! =^ n {11 — 1) {n — 'l)....{n—-s-\- 1),

..nrl r'« - '' ('^ - 1) (« - 2) {n-s + 1)

l-^-J.-i . . . . a;

=
(^]

(i5 228, 3) ;

or
n\

s\ {n-s)y

Avliicli is the reqnired expression.

Rem. For every combination of s things which wo
can take from n things, a combination oi n— s things

will be left.

Hence, C^ = Cls.

This formula? may be readily derived from the expression

for the number of combinations. For, if we take the equation

this formula remains unaltered Avhen we substitute n — s f(jr

s, and therefore also represents the combinations of n — ,v

things in n.

Def. Two combinations which together contain all

the things to be combined are called two Complement-
ary combinations.

EXERCISES.
1. Write all combinations of two symbols in the five sym-

bols, a, b, c, il, e.

2. Write all combinations of three symbols in the same

letters, and show why the number is the same as in Ex. i.
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3. A spun of horses being dilTeretit when cither liorsc is

('hanged, how many different span may be formed from a stud

of 3? Of 7? Of 9?

4. If four points are marked on a piece ol paper, how many
distinct lines can be formed l)y joining tliem, two and two?

Itow many in the case of ?^ points?

From each one of the points can ))c drawn n — I lines to

other points; then why are tiiere not n{n — l) lines?

5. If iive lines, no two of which are parallel, intersect each

other, how many points of intersection will there be? llow

many in the case of n lines ?

6. If n straight lines all intersect each other, how many
(litferent triangles can be found in the figure?

7. In how many different ways may a set of four things be

tlivided into two pairs ?

8. In how many ways can a party of four form partners at

whist ?

9. In how many ways can the following numbers be thrown

with three dice

:

(a) 1, 1, 1

;

{h) 1,2,2; {c) 1,2,3.

10. A school of 15 yoi ng ladies have the privilege of send-

ing a party of 5 every day to a picture gallery, provided they

do not send the same party twice. How many visits can they

make ?

Combi^iations with Repetition.

358. Sometimes combinations are formed with the liberty

to repeat the same symbol as often as wo please in any set.

Example. From the three things a, h, c, are formed the

six combinations of two things with repetition,

ab, ac, hi, he,aa. cc.

Problem. To find the numher of combinations of s

tilings in n, luhen repetition is allowed.

Solution. Let the n things be the first n numbers,

1, i«, O, 4;, . . • . 11.

\v

:i>4

11

j'!^

.,» 1
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•p.,:
Form all ])ossi})le sets of s of these numbers with repetition,

the numl)ers of each set being arranged in nunierieal order.

Let lis ho the re(|uired number of sets. Then, in each set,

Let the first numl)er stand unchanged.

Increase the :^d number by 1.

" " ;jd *' "2.
" " 4th '' " 3.

t( (( i-th a 8 —

|i>'

•
t

j

:, "%

!*•

"We shall then have Eg sets of s numbers, each without rep-

etition.

Example. From the numbers 1, 2, 3 are formed with repetition,

11, 12, 13, 23, 23, 33.

Then, increasing the second numbers by 1, we have

13, 13, 14, 23, 24, 34.

The greatest possible number in any set after the increase

will be n -\- s — 1, because the greatest number from whieii

the selection is made is n, and the greatest quantity added i.s

s — 1. Hence all the new sets will consist of combinations of

s numbers each from the n -\- s — 1 numbers,

1, 2, 3, 4, . . . . ?i . . . . 7i + s — 1. (n)

No two of these combinations can be the same, because then

two of the original combinations would have to be the same.

Hence the new sots are all diiferent combinations of s numbers

from the n -\-

s

— 1 numbers {a). Therefore the number of

combinations cannot exceed the quantity C^.

Conversely, if we take all possible combinations of s differ-

ent numbers in n -\- s — 1, arrange each in numerical order,

and subtract 1 from the second, 2 from the third, etc., we

shall have different combinations from the first n numbers

with repetitions. Hence the number of combinations in the

second class cannot exceed those of the first class.

Hence we conclude that the number of combinations of s

things in n with repetition is the same as the combinations of

s things in n -[- s — 1 without repetition, or



COMBINAriONS. 289

7?;= C"-^ = C--7~ )

)t {n + 1) {n ^- ^^) . . . . {n -f- .s 1)

i--^.;3.4

EXERCISES.

. . tS

1. Write all possible conibiiiatioiis of o numbers with repe-

tition out of the three numbers 1, '1, 3 ; then inerease the seet)n(l

of eaeli combination by 1 and the third by 2, and show that

we have all the combinations of three different numbers out of

1, 2, 3, 4, 5.

2. IIow many combinations of 4 things in 4 with repeti-

tion? Of H things in u ?

In the last question and in tin* following, reduce the result to itH

lowest ternas.

3. How many combinations of n-{-l things in w — 1 with

repetition ?

Special Cases of C/Oiubiiiatioiis.

359. It is plain that

cr = n,

l)ccause eacli of these combinations consist simply of one of the

n things. Hence, also,

Cl-i = n,

because in every such combination one letter is omitted.

It is also plain that

because the only combination of 71 letters is that comprising

the n letters themselves. Hence we write, by analogy,

C^o - 1,

although a combination of nothing does not fall within the

original definition of a combination.

360. The formulee of combinations sometimes enable us

to discover curious relations of numbers.

1. Let us inquire how we may form the combinations of

1

1 if

»,.•:;

'•:i I .' I
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5+1 tilings when we liave those of s tilings. Let the n

things from which the combinations are to be formed be the

letters

a, b, c, (I, pyf, (J,
etc (n in number).

Lot all the combinations of .s+ 1 of these n letters bo writ-

ten in alphabetical order. Then:

1. In the combinations beginning with r/, the letter a wi'l

be followed by all possible combinations of .s letters out of tin.*

n — \ letters b, c, d, etc., of wliich the number is f'a
^'

)i. In the combinations beginning with b, tiic letter b is

followed by all combinations of s letters out of the n — 2 let-

ters c, d, e, f, etc. Therefore there are 6'"'^ combinations

beginning with b.

3. In the same way it maybe shown that there are 6'" '^

combinations beginning with c, CT beginning with d^ etc.

The series will terminate with a single combination of the last

s + 1 letters.

Since we thus have all combinations of 6'+ l letters, W(!

find, by summing up those beginning with the several letters

a, i, c, etc.,

pn-\ pn-2 ^n-3
i r^ — r'>^ /„\

Substituting for the combinations their values, we find

'n — 21
I + I f -4- .... 4- I - I = Ii^) ^ c^) +c^v • • •- (i)

=

m-
By the notation (§ 228, 3), all the terms of the first member

have the common denominator s\, while the numerators arc

each composed of the factors of s consecutive numbers. Mul-

tiplying both sides by si and reversing the order of terms in

the first member, we have

1.2-3 s + 2.3-4 s + 1 + etc. 1

etc. etc.

+ {n — s — 1) . . . . {71 — 3)(n — 2)

+ (n — s) . . . . {n — 2){n — 1)

_ (n — s) . . . . (n — 2) {n — l)n
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The student Ib now recomiuonth'd to go ovor the prccodinfj: process

with spcriul simple nuinericul vultu's of n and h whicli ho may seh^ct for

himself.

EX.AMPLES.

If n =z6 and .s = "Z, \vc have

l.o ^ 0.3 ^_ 3.4 _

If 7i — 7 unci 5 = 3.

1-^.3 + 2-3.4 -f 3.4.5 4- -l-S.G =
If n = 7 and s = 4^,

1.3. 3. •4 + 2.3. 4.5 + 3. 4.5.0 =
If n = and s = 3,

3.4.5

4.5.fi.7

3.4.5.0.7

5

1.2.3+ ^.3.4+ 3.4.5+ 4.5.0 + 5.0.7 + 0.7.8 = 0.7.8.9

Prove these efjiiations by computing both members.

SOI. Another cnrious example is the following:

Let lis have p + q things divided into two sets, the one

containing p and the otlier q things. Then, to form all possi-

ble combinations of s things out of the wliole 2> + (/>
^^'^ n^^iy

take

:

Any s things in set 7;

;

Or any combination of s — 1 things in set^; with any one

tiling of set q ;

Or any combination of 5 — 2 things in set^; with any com-

bination of 2 things m q
',

Or any combination of 5 — 3 things in j) with any 3 out

of y, etc.

We shall at length come to the combinations of all s things

out of q alone. Adding up these separate classes, we shall

have

:

C^s + cu c\ 4- CU CI + .... + C? CU + CI

This sum makes up all combinations of s things in the

whole p-\-q, and is therefore equal to C^s^^. Putting the

numerical expressions for the combinations, we have the

theorem

:

I

!;''

'11

t'

,.i
I

lifll

> : ill
ni |i|

ii.;
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f-!,-

\¥

If, as an oxamplo, wo put s = 3, j> = 4, q = 5, tliis tlico

rem will i>ivun'

!).S.7

1.^.3 "^
l-a' I

*
TT."^

"^
1.5JV3'

the coiTOctucaH of which is caHily proved hy computation.

EXERCISES.

1. Write all the conihiuations of three letters out of the

five, a, h, c, d, c, juul show tiiat i'\ of tlieiu Ix'^iu with ^/, {"\

with h^ and C\ with r, according to the reasoning ol' g :i(j().

2. Prove that C\ - C\ + C\,

fifi — en I f^a

m gonoral, ( g = (\ -{- ( n-i-

In the "ollowing two ways

:

(1.) Let all comhinations of .s letters in the 7i letters

a, b, c, .... 71

be formed, tlioir numl)or being (.^g. Then suppose one letter

added, making the nnml)er n + 1. The combinations of .s

letters out of these 71 + 1 Avill include the Cg formed from

the 71 letters, plus each combination of the additional (^z + l)"^

letter with the combinations of .s — 1 out of the first 7i letlei's.

(2.) Prove the same general result from the formula.

c:
(:)•

3. If we form all coml)inations of 3 things out of 7, how

many of these combinations Avill contain a 7, and how many

will not ?

4. If we form all the combinations of s letters out of the n

letters

a, h, c, . . . . ft,
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how many of tlioseconibinatioiis will contain ^/, and how many

will not ?

5. In tlio ])n'C't'(lin^ case, how many of the combinations

will contain the three letters a, b, c^

*HVl. Tirr.oiiKM T. 77ir fohtJ nifmhrr of r>)ni/u'nafionn

irliich cm/ he j'oriiicd from n thiiujs, InrhuliiitJ 1 zero

roinhiiKition, is :i".

Jn the lan.<;na^^t' of Aljxi'hra,

' + ' 1 4" ' 'i + • • . . + f' rt 1 + ' rt = * •

Proof. Let us be<rin with 'A thin<,'s, n. h, c, and let us call

the formal zero combinaliou, 1 = Cq. Then we have

blank, Number =. 1

a, b, c, " = 3

ab, ac, be, " =: :j

abr, « =
]_

Sutn =:: S = '2^

Now introduce a fourth letter d. The combinations out ot*

the four things, a, b, c, d, will consist of the above 8, plus the

S additional ones formed by writing,' d after each of the above

eifjjht. Their number will therefore be 10.

In the same way, it may be shown that we double the pos-

sible number of combinations for every thinf^ we add to the

set from which they are taken. We have found, for

n = 3, Sum of combinations = 8 = 2^;

n = 4, « " = 2-8 = 2<;

n = 5, « " = 2'2*= 2^;

etc. etc.

which shows the theorem to be general.

Theorem II. // tJic signs of fJir nUernate comhinrr-

tions of n things ho changed, the algebraic sum will he

zero.

^3

6"8,

In algebraic language,

Cl - Cl + Cl - C'l + etc. ±Cl--^0. {a)

t I

I

•

!
'\

f]

If

'f.
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Proof. If in tlie formula of § 1^01, Ex. 2, namely,

wc put n — 1 for n^ it becomes

Putting 6' successively equal to 0, 1, 2, ... . n, wc have

fin f,n -, ,

'iU-lcir + ( 1

fU-l

n-1
1 + cV

I*

O n-1 — L/ ,t_2 -r ^ n-l — '^ ?J-8 i" -!•

Substituting these values in the expression (a), it becomes

1 - (i + cr') + (6'r + cr') - {cv + cr') + ....

::^ 1 _ 1 _ or' + CT' + CV - CV - CV + etc.

How far soever we carry tliis process, all the terms caned

each other except the last. Therefore, if we continue the addi-

tions and subtractions until we come to Cn-i , the sum will bo

C'l - C\ + C\ - etc ± Cl-^ =r ± cVx = ± 1.

The last term will be =F C^ — T 1, and will thercfuro

just cancel the sum of the preceding terms.

Note. Theorem I may be demonstrated by these same fonmiljp,

since the sum of all the teruis taken positively will be duplicated every

time we increase n by 1.

30.3. Independent Combinations. There is a system ol

combinations formed in the following wav :

lb is required to furni a emnhination of s things, hij

taking one oitt of each of s different collections, lloic

incinij coinhinations can he formed ?

Let the 1st collection contain a things,

" 2d " '' h "
a 3d " " c

"

etc. etc.
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Then we may take any one of a things from the first col-

lection.

AV^ith each of tliese we may combine any one of the h things

ill tlie second collection.

With each of these we may combine any one of the c things

of the third collection.

Continuing the reasoning, we see that the total number of

combinations is the continued product

abc .... to 5 factors.

If the number in each collection is equal, and we call it «,

the number of combinations will be a*.

This form of combinations is that which corresponds most

nearly to the events of life, and is applicable to many questions

concerning probabilities. For example, if any one of five dif-

ferent events might occur to a person every day, the number
of different ways in which his history during a year might turn

out is 5^^, a number so enormous that Ji5a digits would be re-

(|uired to express it.

EXERCISES.

1. A man driving a span of horses can choose one from a

stud of 10 horses, and the other from a stud of 12. Ilow

iiumy different span can he form ?

2. It is said that in a general examination of the public

schools of a county, the pui)ils spelt the word scholar iu a530

different ways. If in spelling they might replace

ch by c or k',

by an, aw, or oo;

1 by U;

a by e, o, ii, or ou',
'

r by re
;

in how many different ways might the word be spelt ?

3. If a coin is thrown n times in succession, in how many
different ways may the throws turn out ?

4. If there are three routes between each successive two of

the five cities, Boston, New York, Philadelphia, Baltimore,

Wasliington, by how many routes could we travel from. Boston

lu Washington?

I

''
I

I

•I I

M 1
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The Binomial Theorem when the Power is a

Wlioki Number.

204. ''-I 'I binomial tlieorem (S IT-), when the power i.>^ a

positive integer, can be demonstrated by the doctrine of com-

binations, as follows:

Let it first he required to form the product of the n

hiiiuDiial factors,

To understand the form of the product, let us first study the special

case when w = 3. Performing the muhiplication of the tirsst three fac-

tors, the product will 'consist of eight terms

:

This product is the expression (a) developed when n — Z.

00

We conclude, by induction, that the entire product (</)

when developed in this same way, will be composed of a sum

of terms, each term being a product of several literal factors.

When (a) is thus multiplied out, we shall call the result

the developed expression.

The developed expression has the following properties :

I. Each ^erin coutaius n literal factors, as and x's,

and no more.

For, suppose x^^a^, x^=ia^, to Xn = ((n. Then the

expression {a) will reduce to

and tiKj developed expression must assume lue same value

:

that is, it must consist of terms each of which reduces to the

jxprci^sion

when we change x into a. Noav if it contained any term with

either more or less than 71 factors, it could not assume this

form.
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vver IS a

II. TJie factors of each tani have all the n indices

1 '^ '\ »

For, the index figure of no term is iiltercd by eh;ni<ring x

into a, as in I. Hence, if in jiny term tiny index ligure were

iiiissinf,' or re])cated. th;d term would not reduce to tlie form

( ), whence tiierc can Ijo neither omission nor repetition of

;iny index,,

III. Because each term has n factors, it must either

liare

n factors a;

n — 1 factors a and one factor x

;

n — 2 factors a and two factors x;

In general, a term may have the factor a repealed

n — i times, and x repeated i times.

IV. In a term winch contains i factors x, tlieso i factors

must be affected with some combination of / indices out of tlie

wliolo number 1, 2, 3, . . . . ?i ; and the n — i r/'s must be

uifected by the complementary combination of n — i indices.

We next inquire whether there is a term corresponding to

every such combination. Let

be any combination of i indices, and

/v, 0, 0, o, . . . .

the complementary combination of n — i indices.

Since the developed expression must be true for all values

of a and X, let us put in {a),

rtj — 0,

«4 = 0,

a^ ~ 0,

etc.

0;

0;

0;

0;

00

etc.

The product {a) will then reduce to the single term,

x^a„x^x^a^a^x^a^ (0

By tlie same change the developed expression must reduce

to this same value, and it cannot do this unless the expression

{o) is one of its terms.

I'
I

t

\-\

H H
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Hence the developed expression imist contain a term,

corresponding to every combination.

V. Since every oombinution of i fif^ures out of 1, 2, 3, .... /^

will, ill this way, give rise to a term like (i^;), containing llu'

symbol a i times, and the symbol x n — i times, there will be

6'f such terms.

Now suppose «j ~ f/g = «3 = . . . . ctn = a.

The expression {a) will then reduce to {a + xy.

In the developed expression, all the 6'f terms containing x

i times and a n — i times will now be equal and their sum

will reduce to C'l ^~' x\

Hence, putting in succession i = 0, i = 1, etc., to i = n,

we shall have

(a+xY = a^-\- Cia^-^xi- Cla^-^x^ -\- -l-Cl tax^~'^-{-x^

Substituting for Ci its value, we shall have

{a + x)» —a^-{- 7ia^-^x+y jr^"-V+ .... +/—-. jax''-^ + (' j-'",

which is the Binomiid Theorem, enunciated, but not demon-

strated, in Book V, Chapter I.

Note. If the student has any difficulty in understanding the ste])s

of the preceding demonstration, he should suppose n — 3, and refer tlio

demonstration to the developed expression (it').

«$
"

-#•'
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CHAPTER III.

THEORY OF PROBABILITIES.

205. Def. The Theory of Probabilities treats of

the chances of tlie occUxTence of events which cannot bo

foreseen with certainty.

Notafion. Let a l)ag eonhini \ bulls, of which 1 is white

and 3 black. If a ball be drawn at raiidoiii from the bag, we

!:liould, in ordinary language, say that the chances were 1 to 3

in favor of the bah being white, or 3 to L in favor of its being

black.

In the language of probabilities wo say that the probability

1 3
of a white ball is -, and that of a black one ,

•

4 4

In general, if there are m chances in favor of an event, and

n chances against it, its probability is
m— • Hence,

m -\- n

Def. The Probability of an event is the mtio of

the chances which favor it to the whole number of

chances for and against it.

Illiistraiions. If an event is certain, its probability is 1.

If the chances for and against an event are even, its prob-

ability is -,'

If an event is impossible, its probability is 0.

Cor. 1. If the probability that an event will occur

is^?, the probability that it will fail is 1 — 2^-

Cor. 2. A probability is always a positive fraction,

greater than and less than 1.

2(U>. Mrlhodof Prohahililics. To find the probability of

an event, we must be able to do two things

:

^:l'

•

!
'

.*"

^i*

; ti ,

,
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1. Eninn crate all possihle ways in irhicJi the event

Tuaij occur' or fail, it hciiii> supposed tJiat these waija

are all equally /rrobabJc.

2. iJetcnrlfie hnir many of these ivays u'ill lead to

the event.

If n be the total number of ways, and m the number which
1)1

lead to the event, the probability required is — •

EXERCISES.
1. A die has 2 white and 4 black sides. What is the prob-

ability of throwing a white side ?

2. A bag contaiup n balls numbered from 1 to w, the even

numbers being while and the odd ones black. What is the

probability of drawing a l)lack l)all when n is an odd number?

What, when n is an even number ?

3. A bag contains 3;i + 2 balls, of which numbers 1, 4, 7,

etc., are white ; 2, 5, 8, etc., are red; 3, G, 9, etc., are black.

What are the respectiye i)robabilities of drawing a white, red,

and black ball ?

Rem. In the last example the probabilities are all less than ^ ; thcro-

fore, shoiiid one attempt to guess the color of the ball to be drawn, Ik;

would be more likely to be wrong than right, no matter what color lie

guessed. This exemi/iifies a lesson in practical judgment to be drawn

from the theory of probabilities. If there are three or more possible re-

sults of any cause, it may happen that the best judgment would be more

likely to be wrong than right in attempting to predict the result. Thus,

if there are three presidential candidates with nearly equal chances, the

chances would be agrinst the election of any one that might be named.

Gamblers of the turf are nearly alwavs found betting odds against

every horse that may be entered for a race, though it is certain that one

of them will win.

Hence, if a natural event may arise from a number of causes with

nearly equal facility, it is unphilosophical to have any theory whatever

of the cause, because 'the chances may be against the most prohaI)le

cause being the true one.

Probabilities clependiiif? upon Coiiibiiiatioiis.

267. Prohlem i. Two coins are thrown. What arc the

respective probabilities that the result will be : Both heads?

head and tail? both tails?
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he event

,ese u'dijii

[I lead to

.ibcr wlilcli

s the prob-

n, the even

Vhat is the

(1 number?

)crs 1, 4, 7,

,
are bltick.

L white, red,

han 2 ; there-

of causes with

"ovy wliatt'vn-

liiost probal)le

At first siglit it miglit uppeiir that tiie cliances in favor of

these tliree r :ults were equal, and tliat therefore the probabil-

ity of each was ' But this would be a mistake. To find the
o

probabilities, we must combine the possible throws of the iirst

(•(•in (whicli call A) with the possible throws of the second

(which call B), thus :

A, head
;

B, head.

A, head
;

B, tail.

A, tail
;

B, head.

A, tail

;

B, tail.

These combinations are all cqnally probable, and while

tliere are only one each for both heads and both tails, there are

two for head and tail. Hence the probabilities are . , -, -v*

The sum of these three probabilities is 1, as it ouglit always

to be when all possible results are considered.

Proh. 2. Five coins are thrown. What are the respective

probabilities: o heads, 5 tails?

1 head, 4 tails?

2 heads, 3 tails?

etc. etc.

Let the several coins be marked a, h, c, (h p. Coin a may
be either head or tail, making two cases. Each of these two

cases of coin a may be combined with either case of b (as in the

last example), making 4 cases.

Each of these 4 cases may be combined with either case of

coin c, making 8 cases.

Continuing the process, the total number of cases for five

coins is 2^ = 32.

Of these 32 cases, only one gives no head and 5 tails.

There are 5 cases of 1 head, namely : a alone head, ^ alone

head, etc., to c.

2 heads may be thrown by coins a, b; a, c, etc. ; b, c ; b, d,

etc.; c, d, etc. ; that is, by any combination of two letters out

of the five, a, b, c, d, e. Hence the number of cases is

ri = 10.

I >

I
I

, I

• 9

11

lii

\l
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In the same way the minibt'i- of cases corresponding to 3,

4, and 5 heads are, respectively,

Cl = 10, 6't = 5, Cl = 1.

Dividing: })y the whole number of cases, we Hnd the respec-

tive probabilities to be

J^^
5 K)^ 10 5 1

3^' 3:e' JW' iW' 32' 3^'

The following general proposition is noAv to be proved hv

the student

:

Theorem. // thei^e are n coins, the probability of
throwing s heads and n — s tails is

2«"

From this result we may prove the theorem in combimi-

tions of § 2G2. If we suppose, m succession, 5 = 0, 5 = 1,

s = 2, etc., to s = n, the respective probabilities of head,

1 head, 2 heads, etc. , will be

cl
2n 2n'

O 2

2 71
etc., to 2n'

Because the sum of all these probabilities must be unitv,

we find

Proh. 3. Two dice are thrown at backgammon. What are

the respective probabilities of throwing 5 and G and two 6's?

If we call the dice a and h, any number from 1 to 6 on n

may be combined with any number from 1 to 6 on h. There-

fore, there are in all 3G possible combinations.

In order to throw two 6's, a must come 6 and h al^D.

Therefore there is only one case for this result, so that its

probability is ^- •

To bring 5 and G, a may be ,5 and h G, or h 5 and a 6. So

there are two cases leading to this result, and its probability is

?' - L
30 ~ 18*
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Note. That 5 and G are twice as i)robiible ns a douM*' may be

ck'arly neon by supposing that the two dice are tlirown in suoceMsion. If

the first tlirow is eitlier 5 or (>, tlicro is a cliancc for tlic combination 5, 0,

but there is no chauce for a double (> unh:ss thi; lirst llirow is 0.

Prob. 4. If three dice ure tlirown, what are the respective

probiibihties that the nunibcrs will be:

The sohition of this case is left as an exercise for the

.student.

Prob. 5. From a bag containing 3 wliitc and 2 lilack l)alls,

•^ ijalls are drawn. Wiiat are tlic respective probabihties of

Both balls white?

1 white and 1 black ?

Both black ?

Since any 3 balls out of 5 may be drawn, the total numlior

of eases is Cg.

Only one of these combinations consists of tAvo white lialls.

C-i of the cases bring both l)alls black.

A white and Idack are formed by combining anyone of the

three white with any one of the two black.

The respective probabilities can now be deduced by the

student.

EXERCISES.

1. It takes two keys to unlock a safe. They are on a

bunch with two others. The clerk takes three keys at random

from the bunch. What is the probability that he has both the

safe keys?

2. A x)arty of three persons, of whom two are brothers, seat

llieinselves at random on a bench. What are the ])robabilities

('') that the brothers will sit together, (b) that they will have

the third man between them ?

3. If two dice are thrown at backgammon, what are the

jn'obabilities

(a) Of two aces ?

(b) Of one ace and no more ?

4. In order that a player at backgammon may strike a cer-

>i

I', 'r

\ ;

r;

l.'
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tuiii point, the sum of the mim})ers thrown must be 8. What
are his chances of succeeding in one throw of his two dice ?

5. A ptirty of lU persons sit ut a round table. Wiuit is I'lc

probubiUly that ]\Ir. Taylor and Mr. Williams will bu next k.

each other? (See § ^5;J.)

6. An illiterate servant puts I wo works of 2 volumes endi

ui)on a siielf at random. What is the probability that both

pair of companion volumes are together?

7. A gentleman having three i)air of boots in a closet, scut

a blind valet to bring him a pair. The valet took two boots at

random. What are the chances that one was right and tln'

other left ? What is the probiibility that they were one pair?

8. If the volumes of a J3-volume book are placed at rjinddiii

on a shelf, what is the i)robability that they will be in regular

order in either direction ?

9. A man wants a particulpr span of horses from a stud

of 8. llis groom ])rings him 5 horses taken at random. What

is the probability that both horses of the span are amongst

them ?

10. From a box containing 5 tickets, numbered 1 to 5,

3 are drawn at random. What is the probability that numbers

3 and 5 are both amongst them ?

11. The same thing l)cing supposed, what is the probability

that the sum of the two numliers remaining in the box is C ?

12. Of two purses, one contains 5 eagles and another in

dollar-pieces. If one of the purses is selected at random, .iiul

a coin taken from it, what is the probability that it is an

eaefle ?

13. From a bag containing 3 white and 4 black Dal

5 i
9

3 balls are drawn. What is the probability that they arc of

the same color ?

14. The better of two chess pla3Trs is twice as likely to win

as to be beaten in any one game. Wh;it chance has his weaker

opponent of winning 3 games in a match of 3 ?

15. From a bag containing m white and n black balls, two

balls are drawn at random. What is the probability that one

is white and the other black ?
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arc amon;rst

1 6. From a bag coiilaiiiing 1 white, 2 red, and 3 l)la('k

bulls, 3 balls aro drawn. WliaL is the probability that tlu'v am
nil of ditrerent colors ?

17. If n coins are thrown, what is the chance that there

will be one head and no more ?

18. From a Congressional committee of Iicpublicans and

Democrats, a snb-eommittee of 3 is chosen by lot. What, is

the probability that it will be composed of two Kepublicans

and one Democrat ?

Coiiipouiid Events.

208, Theorem I. The prohfthilifi/ thrtt hro indrpcjid-

riit events will both lutppeii is e(pi<tl lo llie ])V(Hhiet of
tlirir separate prohahilities.

Proof. For the lirst event let there bo m cases, of which

y/ arc favorable; and for the second w cases, of which q are

liivoraljic. Then, by definition, the respective probabilities

will be - and -•
m n

When both events are tried, any one of the m cases may bo

combined with any one of the qi cases, making in all in x n

cnnibinatious of eqnal probability.

The combinations favorable to both events will be those

only in which one of the p cases favorable to the first is com-

liiiiod with one of the (j cases favorable to the second. The
niinil)er of these combinations is p x (p

Therefore the probability (hat both events will happen is

Q

m X II III ?i'

which is the prodnct of the individual probabilities.

If there arc three events of which the probabilities are p, q,

and r, and we Avish to find the probability that all three will

happen, we may by what precedes regard the concurring of the

rivst two events as a single event, of which the probability is

pq. Then the probability that the third event m\\ also con-

cur is the product of this probability into r, or

pqr.

i

't

f

'

'1

1M

20

it
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rrocTcdiii;^ in tliu tjauic way willi 1, .">, (I, .... events, wo

rciuli the ^a'licnil

'I'liKoiuiM II. Tlic, i>r()hahnitii flutt ni/f/ number of in-

(Ir/trmirnl crrntu will (ill orr/ir in c(/iutl to the etHitinKetl

in'iidiiet of their indiridital fir<t/)((f)i/itie8.

liii.M. 'riiid thooivm is of grcut })nicti('iil U8o us a giiick- lo

our oxpoc'tiitions. It Uaclius that if Hucccsa in an ontcrpriso

rt'(|niros the concurrence of a givut nunihcr of favorable cir-

cumstances, the chances nniy he greatly against it, altiioiigii

eacii circumstance is more likely than not to occur.

This is illustrated by the following

ExAMi'LH I. A traveller on a journey by rail has 8 connec-

tions to make, in order that lie may go through on time.

There arc two chances to one in favor of each connection.

What is the probability of his keeping on time ?

The probability of each connection l)cing „ , the probabil-

ity of successfully making the first two connections will, by the

.J
, the first three (^) , and all eight

Therefore there are ^5 chances to 1 iigainst his going

through on time.

On the other hand, if, instead of any one accident being

fatal to success, success can be prevented only by the concur-

lence of a series of accidents, the probability of failure ui:iy

become verv small.

Ex. 2. A shiji starts on a voyage. It is an even chance

that she will encounter a heavy gale. The probability that

9
she will not spring a leak in the gale is ^ri' If ^ ^^^^ occurs,

9
there is a probability of jr- that the engine will be able to

pump her out. If they fail, the probability is -r that the coni-

r 1.
.

,
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parlincnls will keep (lie slilp alloal. If mIk' .siiikn, it is lui I'vun

clKiiiL't' timt any one piissi'ii^^^cr will l»o saved by the hoatn

Wliiit is the prohability lliat uny iiiUi vicinal passenger will bo

lufii at aeu?

The probability tluit

tln' sliip will inei't a heavy gale is

m

tlic ship will Spring a leak in (be gale is ~

thc engines cannot pnnip her ont is —

the compartments cannot keep her ulloat is
4

tiu' bouts cannot save the passenger is -

Tlie CMitinncd product of these probabilities is y.v*

which is the probability that ti'e passenger will be lost.

'^01). The preceding tlieorem as enunciated supposes that

the several events are indcjKinilody that is, that the prol>al)ility

(il'thj occurrence of any one is not affected by the occurronco

or non-occurrence of the others. To investigate what moditi-

cation is required when the occurrence of one of the events

alters the probability of another of the events, let us distinguish

the two events as the first and second. \Vc then reason thus

:

Let the total nnmber of equally possible cases bo ?/?,, and let

/) (tf these cases favor the first event. Its probabiHty will

then be —

•

m
It is certain that the events cannot both happen unless the

first one happens. Hence the cases which favor both events

can be found only among the p cases which favor the first.

Let q of these p cases favor the second event. Then the prob-

ability of both events will be —m
In case the first event happens, one of the p cases which

I
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fiivor it must occur, and the i)robiibility of the second event

will then be • Then

Pro])iibility of both events = — = — x •

•^
III 711 ])

Hence,

Theorem. The prohahil Ity fJiat tiuo events will both.

occur is equal to the jn'ohdhilitij of the first event iiiu/li-

plied by the probability of the second, in case the Jir4

occurs.

By continuing the reasoning to more events, we reach the

general

Theorem. Tlie probabiliti/ that a number of events

will all occur is equal to the product

i X Prob. of second in case first occurs.

Prob. of first \ x Prob. of third in case first two occur.

( X Prol). of fourth in case first three occur,

etc. etc. etc.

Example. From a bag containing 2 white and 3 black

balls, 2 balls are drawn. What are the probabilities (1) that

both balls are white, (2) that both are black?

This problem has already been solved, but we are now to

see how the answers may be reached by the last theorem. It

is evident that we may suppose the two balls drawn out one

after the other, and the probabilities of their being Avhitc or

black will be the same as if both were drawn together.

I. Both balls white. The probability that the first liall

2
drawn is white is -• If it really proves to be white, there will

o

be left 1 white and 3 black balls. In this event, the probability

that the second also will be white is -

11 Hence the probability that both are white is

2 1 _ ^
5 ^ 4

"" 10*
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second event II. Both halls Mack. Ai)i)lyiiig the same rcasoniug, we
fiud fur the probability of ihis case,

3 1 _ '3

5 ^ 2 ~ l6'

EXERCISES.

1. Two men embark in separate commercial enterprises.

Tlie odds in favor of one are 3 to 2; in favor of the otlier, 2

to 1. What arc the probabilities (1) that both will sncceed?

{2) that both will fail?

2. The probability that a man will die within ten years is

,, and that his wife will die is --• What are the respective

probabilities that at the end often years,

(«) Both are living?

((3) Both are dead ^

(y) Husband living, l)ut wife dead?

(6) Husband dead, but wife living?

3. The probability that a certain door is locked is ;.

2

3
The

andkey is on a bunch of -1. A man takes 2 of the four key.-

goes to the door. What are the chances that he will be able or

unable to go through it?

4. Two bags continn each 4 black and 3 white l)alls. A
]icrson draws a ball at random from the first bag, and if it ]ie

^vhite he puts it into the second bag, mixes the balls, and then

draws a ball at random. What is the prol)ability of drawing

a white ball from each of the l)ags ?

5. If a Senate consists of ni Democrats and n Republicans,

Avhat is the probability that a committee of three will include

'I Democrats and 1 Republican ?

6. A bag contains 2 white balls and 5 black ones. Six

]H'ople, A, B, C, D, E, F, are allowed to go to the bag in alpha-

betical order and each take one ball out and keep it. The
first one who draws a white ball is to receive a prize. What
are their respective chances of winning?

Note. A's chance is easily calculated, because lie haa the draw from
all 7 balls.

It »

I !

1 ' '

'
I

i

.i i
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In ordor that B may win, A must first fail. Therefore, to find B'h

probability we find (1) the probability that A fails, (2j the probability that

if A I'uila then B will win. Wo then take the product of these probabili-

ties.

In order that C may gain the prize, (1) A must fail, (2) B must fail,

(;))
(

' himself iuust gain. So we find the successive probabilities of the:^e

occurrences.

Continuing to F, we find that he cannot win unless the 5 men before

liiiu all miss. lie is then certain to gain, because only the two white

b;'.l!;s would be left.

7. Two men liave one throw oach of a coin. X offers a

prize if A throws head, and if he fiiils, but not otherwise, B
nijiy try for tlie prize. If both fail, X keeps the prize himself.

Whut are the respective chances of the three men having the

prize ?

8. A and B are alternatelv to throw a coin until one of

them throws a head and becomes the winner. If A has the

first throw, what are tlieir respective chances of winning?

9. A crowd of n men are allowed to throw in the same way

for a prize, in alphabetical order, the game ceasing as soon as a

head is thrown. What are the respective chances of the con-

testants ?

10. Three men take turns in throwing a die, and he wlio

first throws a G wins. What are their respective chances?

11. If -I cards are drawn from a pack of 52, show that the

probability that there will be one of each of the four suits is

39 26 13

5l'50'49'

12. One purse contains 5 dimes and 1 dollar, and another

contains G dimes. 5 pieces are taken from the first purse and

put into the second, and after being mixed 5 are taken from

the second and put into the first. Which purse is now most

likely to contain the dollar ?

13. Of two purses, one contains 4 eagles and 2 dollars, the

other 4 eagles and 6 dollars. One being taken at random, and

a coin drawn from it, what are the respective probabilities

that it is an eagle or a dollar?
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Cases of Unequal Probability.

270. Dff. If two or more possible events fire so

reltit(*d that only one of tlieni can happen, tliey are

called Mutually Exclusive Events.

TfiEOREM. The prohahility tJutt some one of several

ixehtsive events, we care not ivhieh, will occur, is equal

Id the sum of their separate prohahilities.

Proof. Let tliGro be m possible and equally probable cases

in all ; let p of these cases be favorable to one event, q to the

P (I T
second, r to the third, etc., so that — , — . — , are the re-

>pective probabilities.

Since only one of the events is possible, the p cases which

favor one must be entirely different from the q cases wliicli

fiivor the second, and these cases 'p-\-q must be entirely differ-

ent from the r Avhich favor the third, QiQ.

Hence there will be 7; -}- ^ + r+ etc. , cases which favor some

oii(> or another of the events. Hence the probability that some

one of these events will occur is

;> + 7 + ^' + otc.

which is equal to the sum of the probabilities,

P q r
-^ + — H + etc.
w m m

RE^^. If the concurrence of some two events, say the first

niitl second, had been possible, some one or more of the p cases

which favor the first would have been found among the q cases

which favor the second. Then the whole number of cases

which favored either event would have been less than p-\-q,

and the probability that one of tiie two events would happen

li'ss than the sum of their respective probabilities.

271. General Problem. To find the probability that

an event of luhicli the probability on any one trial is p,

will happen erectly s times in n trials.

k»'
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Tliis problem is at the V,[xd\i of some of the widest apph'ca-

tioiis of the theory of iirol)ability to i)ractical questions, espe-

cially those associated with life and lire insurance. The con-

ditions which it implies are therefore to be fully comprehended.

Wc may conceive a trial to mean giving the event an opj^or-

tunitg to happen. The simplest kind of trial is that of throw-

ing a coin or die. At each tiirow, any side has an opportunity

to come up. Then, if we throw 50 ])ieces, or Avhicli amounts

to the same thing, throw the same piece 50 times, there will

be 50 trials; and we may iiupiire into the probability that a

given side will be thrown exactly 9 times in these trials.

The same conception occurs in another form if we have 50

men, each of whom has an equal chance of dying within

6 years. Waiting to sec if any one man will die in the course

of ^\^ 5 years is a trial, so that there are 50 trials in all, and

wc may inciuire into the probability that 9 of the men will die

during the trials, just as in the case of 50 throws of a die.

Let us distinguish the several trials by the letters

«, i, C, d, Cy .... Uy

which must be n in number.

1. In order that the event may not happen at all, it must

fail on every one of the n trials. The probability of this

(§ 208, Th. II) is (1 —p)''. This is therefore the probability

that it will not happen at all.

Because the probability of the event happening on any one

trial is p, the probability of its failing is 1 — p. We now

compare the possible results.

2. The event may happen once on any one of the n trials,

a, hy c, etc. In order that it may happen only once, it must

fail on the other n — 1 trials. The probability that it will

happen on any one trial, say e, and also fail on the remaining

n — 1 trials is, by the same theorem.

Because there are n trials on which it may equally happen,

the probability that it will happen once and only once is

np (1 — p)^-\
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3. The event may luippen twice on any two trials out of the

n trials. In order that it may happen twice only, it must fail

on the otlier w — 2 trials. Taking any one combination, say

Happen on h, d;

Fail on a, c, e, n,

the probability is p^{l — py^~^.

But it may happen twice on any combination of two trials

out of the 71 trials, a, b, c, . . . . u. Because these com])in;i-

tions are mutually exclusive (§ 270), the total probability of

liappening twice is

0^2 p' (1 - P^''-

4. In general, in order that the event may happen Just s

limes, it must happen on some combination of s trials, and fail

on the complementary combination of n — .s- trials. The
probability on any one combination is ;/(! — p)'^~^ ^i^id there

are 6^^*^ such combinations. Hence the general probability of

happening s times is

C^ p'^ {1 - p^-s. (a)

If there is on each trial an equal chance for and against

the event, then p = -. and l—p = ^' The probability of

the event happening s times then becomes

2'^"

This case corresponds to that already treated in § 267,

Problem 2, and the result is the same there found.

EXERCISES.

I. A die having two sides white and four sides black is

thrown 5 times. What are the respective probabilities of a

white side being thrown 1, 2, 3, 4, and 5 times?

Note. Here p, the probability of a white side on one throw, Is ^ , and

1 — jt) = T • The number n of trials is 5.
o

\ I

,!

i 1

' it
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IV.

2. Of healtliy men aged 50, the probability that any one

will live Lo 80 is ,
• What is the i)robtibility that three or

more of them will live to that age ?

3. A chess-player whose chances of winning any one game
from his opponent are as 3 to 1, undertakes to win 3 games

out of 4. What is the probability that he will be able to do it?

Note. It would be a fallacy to pn<)pose that the probability required

is that of winning exactly 3 games, because lie will equally win if he

wins all four games.

^ZTZ. Evcnis of Afaximiim Prohahility. Returning to the

general expression {a), let us inquire what number of time^i

the event is most likely to occur on 11 trials. The required

number is that value of x for which the i)robability

is the greatest.

If we call Pg tho pro!;:t,bility that the event will happen

exactly .v times, and if s is to be the number for which the

probability is gTv-^atest, we must have

Ps > Ps-U

Ps > P.fl.

Substituting for these quantities the corresponding forms

of the expression {a), which is equal to Ps, we have

C'sp^ (1 - pY-' > cUp^' (1 -pY-'^\ ^ ,j.

r;'^;/(i -pY~' > C'snp'^' (1 - pY-'-\ )

The general formula for 6'« in § 257 gives

C" = ^ "I" 1 ri^

^s+1 —
n S ^n

(c)

Cl\
s + 1

Hence we have, by dividing both terms of the first in-

equality (b) by C's-ip"-^ (1 —pY~^
n—s+1 . .

p > I— p.
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Multiplying by s, this becomes

np — sp -f- ^; > ,s — .^p.

Interebunging the members and reducing, we have

.s- </>(// + I). {(l)

Now divide the second inequality {li) by C'^p^ {\ — pY~^^,
und reducing by the second e(|uation {c), we have

Multiplying by s + 1 and reducing, we find

.s- > p{n+ 1)-1. (e)

Comparing the ine(iualities {d) and (<), we sec that ,s lies

lietween the two quantities j) {n -\- 1) and p {n + 1) — 1;

that is,

,s ifi the greatest luhole iiiniihrr 'ui p [n + 1).

If the number of trials )i is a large numbei-, and j) is a snuill

fraction, p (n + 1) and pii will differ only by the fraction jt.

We shall then have, very nearly,

,s- = pn.

That is :

I'liKOREM I. I7ie most pjvhaMe nuiuher of times that

(Hi event ivill Jiappen on a great niunber of trials is the

prodact of tJis niunber of trials hy the j)robabititij on
('((eh' trial.

Example. If a life insurance company lias GOOO members,

and the i)robability that each member will live one year is on

the average — , then the most probable number of deaths

(luring the year is 100.

Rem. It mast not be supposed that in this case the num-
ber of deaths is likely to be exactly 100, but only that they

will fall somewhere near it.

There is a practical rule for determining what deviation

must be guarded against, the demonstration of which requires

more advanced mathematical methods than those employed in

this chapter. It is

:

t !

I t

• 1

\

n

,1 i

ii .
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I'll icoiiEM J 1. JJcriatioiis from the vinst probable num-
ber of (leoths, etfiKil to the sf/uare root of iJiat iiinnher,

will he of fretjueiLt occiwrence,

Uevlations nineh greater than this sf/uai'e root will

be of infrecfneut oeearrenee, and devlatioiis viore iJnai

tu'iee as great will be rare.

Examples. In a coniptiny of wliicli tlie probable annual

number of deaths is 10, the actual number will commonly fall

between 10— a/10 and 10 + VlO, or between 7 and i;j. 1(

will very rarely happen that the number of deaths is as small

as 4 or as large as IG.

If the company is so large that the most probable number
of deaths is 100, the actual number will commonly fall betw( a

100 — VlOO and 100 + VlOO, or between 1)0 and 110.

If the most i)robable number of desiths is 1000, the actual

numl)er will commonly range between 908 and 1032.

We now see the following result of this theorem:

TJie 'Jrenter the nuinhcr of deaths to he expected, the

greater will he the proludtle deviation, hat the less irill he

the ratio of this deviation to the wh^ole number of deaths.

Examples. The reductions of- the cases just cited are

shown as follows

:

ectod number
of deaths.
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Therefore, by dividlncr Hu' whole niinihcr of times the event

lias luippened by tlie wliole nunibe'r of trials, the ([uotient is

the most probable value of the probability on one trial.

ExAMPLK. If Me take 50,000 peoi)le at the age of 25, and

reeord how many of them are alive at the end of one year, this

is making 50,000 trials whether a i)erson of that age will live

ohc year.

If 41»,G50 of them are alive at the end of the year, and 350

are dead, we would conelude:

Probability of living one year, .... 0.993

rrobal)ility of dying within the year, . . 0.007

The proba))ility for all ages may he determined by taking a

great number of infants, say 1' 00, and counting how many
die in each year until all arc cicad. If n are living at the age

?/, and )\! at the age y -\- \, then the prol)ability of dying

within one year after the age y will be , and that of

living will be
n

n

n

It is not, however, necessary to wait through a lifetime to

reach this conclusion. It is suflticient to find from observation

what proportion of the people of each age die during any one

year. Suppose, for instance, that the census of a city is taken,

and it is found that there are 2500 persons aged oO, and 2000

aged 50. At the end of a year another in(iuiry is made to

ascertain how many are dead. It is found that 20 of the 30

year old people, and 30 of the 50 j-ear old people have died.

This would show:

At age 30, probability of dying within 1 year = O.OOS,

" 50, '' " " " " = 0.015.

This same probability being obtained for every year of life,

the probability of living 1 year at all ages would be known.

Then a table of mortality could l)e formed.

A table of mortality starts out with any arbitrary number
of people, generally 100,000, at a certain age, fre(juently 10

years. It then shows how many of these people will be living

at the end of each subsequent year until all are dead. The
following is a specimen of such a table.

i!
••

I !

I

I i<

!

'I
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e. Aged 70 will live to 80.

/. " 80 " ** 90.

//. '* 90 ** " 95.

)/. *' 9') * ' 100.

2. Wliiit a^jc is lliiit lit which it i.s an evuii (.'ImncT whi'thcr

a |)('rsi»M i\<xv{\ 40 will be, living or deuil ?

3. Show Ihat the piohahility that a pcrHoti a<,'('(l '{() will live

to TO is C(jiial to the j)ro(lu('tor the i)rohal)ility that he will live

to 00 multiplied by the proluibility that 11 man agetl GO will

live to 70. (Ai>i)ly the theorem of § :*(;9.)

4. What j)r('miiim ought a man of Go to pay for insuring

Ills life for *7000 for 1 year ?

5. Ten young men of "25 form a clul). What is the proba-

l)ility that it will be unbroken by death for ten years ?

6. The probability that a planing mill will burn down

Avithin any one year is .- AVhat ought an insurance company

to charge to insure it to the amount of $3000 for 1 year, for

"ii years, for 3 years, and for 4 years, respectively ?

7. If the probability that a house will burn down in any

one year is ;>, what ought to be the premium for insuring it

for s years to the amount of a dollars?

Note. In casea like the last two, it is assumed that only one loss

will be paid for.

8. What is the probability that if a man aged 25 marry a

wife of 20, they will live to celebrate their golden wedding?

9. A company insures the joint lives of a husband aged 70

and a wife aged 50 for sJ^SOOO for 5 years, the stii)ulation being

that if either of them die within that time the other shall be

paid the money. What ought to be the premium, no allow-

ance being made for interest ?

10. A man aged 50 insures the life of his wife, aged 35, for

$10,000 for 20 years, with the promise that the money is not

to be paid unless he himself lives to the ago of 70. What
ought to be the ])romium?

Note. In computations relating to the inanap:cmcnt of 11 fe insurance,

it is always necessary to allow compound interest on all paymcmta. But

the above exercises are intended only to illustrate the application of the

theory of probabilities to the suliject, and therefore no allowance for in-

terest is expected to be made in tlie answers.
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CHAPTER I.

NATURE OF A SERIES.

275. T>et\ A Series is a succession of tcnns follow-

iiig each otluT according to sonic general law.

Examples. An arithmetical progression is u series tleier-

iiiined by the law that each term shall be greater than the

preceding one by th( same anion nt.

A geometrical progression is a series sui^^ocl to the law

that the ratio of every two consecntive terms is the same.

These two progressions are the sim[)lest form of series.

A series may terminate at some term, or it may continue

indefinitely.

Bef. A series which continues indefinitely is called

an Infinite Series.

Def. The Sum of a series is the algebraic sum of

all its terms. Hence the sum of an intinitc; series will

consist of the sum of an intinite number of terms.

27(5. The law of a series is generally such that the n^^

term may bo expressed as a function of n.

For example, in the scries1111,
3+3+4 + 5 + ^'^-

1
the n^^ term is

21

w + 1

•• c

'I ,

1

•I'
'
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In the series -— + -— + 7^,^ + etc.,

the n^^ term is
11 {n + 1)

D(f. 'I'he expression for the ??/'^ term of a series as

a function of 71 is called the General Term of the

series.

EXERCISES.

Express the n*'^ term of each of the following series :111^
• 4 4 • 5 o •

2. 1-2 + 3.4 + r).G + etc.

« (C^ «^ «^

4- ^."^ + ;3r22 + 4723 + 5V2* + ^^^-

Write four terms of each of tlie series having the followiiii^'

general terms

:

4/^2 _ 1
15. The n^''' term to be t—

,

-•

6. The i^^' term to be i (/ + 1) (/ + 2) 2;^

7. The (?i + IF term to be --——-^.-^ —^^'

8. The (?i — 1V< term to be ,
1^ ~ "^

277. The most common nse of a series is to enable ns to

compute, by approximation, the values of expressions which ir

is difhcult or impossible to c()m})ute directly. Suppose, fur

1 4- X
example, that we have to compute the value of \ when .''

is a small fraction, say ^, and to have the result aocnrate to

eight decimals. We shall see hereafter that when x is less than

1, we have
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1 +a: = 1 + J3^ + Hx^ + 'Zx^ + etc., ad infinitum.

Suppose X = -.

50
.02. We compute this series thus

:

2 X .02 =
Multiplying by .02,

a
<(

^ 1.02

.04

.0008

.000016

^0000032

1.0-1081032

which IS much more expeditious than dividing 1 02 by .98.

It will be seen that every term we add makes the tiuotient

accurate to one or two more decimals, so that there is no limit

to the precision which may be attained by tlie use of the scries.

If, however, x had been greater tlian unity, the series would

give no result, because the terms 2x, 2x^, 2x% would have gone

on increasing indefinitely, whereas the true value of the frac-

1 -{- X
tiun would have been negative.

1 — x

This example illustrates the following t :7o cases of series

:

I. There may he a certdin limit in irliich the stnu of
the series shall approaeli, as we increase the ninnher of
terms, but which it can never reach, how great soever the

number of terms added.

For example, the series we have just tried,^222
^

50
"^

502
"^

503 + 504 + etc.,

1.02
approaches the limit j^^j but never absolutely reaches it.

II. As we inerense the nanvber of terins, the sum
maij increase witliout limit, or mail vibrate back and
]ovth in consequence of some terms being positive and
others negative.

Those two classes of series are distinguished as converrient

and divergent.

k

\ i'

< <

I
1 ,

I
I

n
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Def. A Convergent Series is one of which the sum
approaches a limit as the number of terms is increased.

Refer to § 213 for an example of infinite series in geometrical pro-

gressions which have limits.

Dif. A Divergent Series is one of whicli the sum
does not approach a limit.

Examples. The series 1 + 2-f 3 + 4+ etc., ad infimUiin,

IS divergent, because there is no limit to the sum of its terms.

The series 1 — 1 + 1 — 1 + 1 — etc., is divergent, because

its sum continually fluctuates between +1 and 0.

Eem. When we consider only a limited number of term?,

the question of convergence or divergence is not important.

But when the sum of tlie whole series to infinity is to be cou-

sidered, only convergent series can be used.

Notation of Sviins,

278. The sum of a series of terms represented hy

common symbols may be expressed by the symbol i,

followed by one of the terms.

Example. The expression

means "the sum of several terms, each represented by a."

AVhen it \i^ necessary to distinguish the different

terms, different accents or indices are affixed to them,

and represented by some common symbol.

Example. The expression

lat

means the sum of several terms represented by the symbol a

with indices attached ; that is, the sum of several of the (|uaii-

tities «j, flfg, «3, ^4, etc.

When the particular indices included in the summa-

tion are to be expressed, the greatest and least of them

are written above and below the symbol 2.
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Examples. The expression

i=5

rn.cans: "Sum of all the symbols a, formed by giving i '^\ in-
gral values from i =. 5 to i = 15. " That is,

'

i=15

.
i^^m means + .>i + ^,^ + 3,,, _^ 4,,^ ^ 5^^^^

^2 (/,i) means (1,./) + (o,y)
_,_ (3,y) + ^^^^y

.^i (^y) = (,, 2) + (,, 3) + (/, 4) + (i, 5) + (/, 6).

2 ;.! = 1! + 3! + 3! + 4! = 1 + 2 + 6 + 24 = 33.

11

^li ^^ 7 + 8 + 9 + 10 + 11 = 45.

J--

n-4

n-

i=5

If = 02
-I- 32 + 42 + 52 = 54.

EXERCISES.
Write out the following summations, and compute their

vaJucs when they are purelv numf^ripnl •

I.
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CHAPTER il.

DEVELOPMENT IN POWERS OF A VARIABLE.

219. Among the most common series employed in math-

ematics are those of which the terms are multiplied by tiie

successive powers of some one quantity.

An example of such a series is

1 + 2.; + 32;2 + 4:Z^ -|- hz'^ + etc.,

in which each coefficient is greater by unity than the power of

z which it multiplies.

A geometrical progression, it will be remarked, is i series

of this kind, in which the terms contain the successive powers

cf the common ratio.

The general form of such a series is

in which tlie successive coefficients «„, a^, a^, etc., are formed

according to some law, but do not contain z.

Such a series as this is said to proceed according to the

ascending powers of the variable z.

Rem. The sum of a series is often equal to some algebraic

expression containing the variable. Conversely, we may find u

series the sum of all the terms of which shall be equal to a

given expression.

Def. A series equal to a given expression is cal]( d

the Development of that expression.

To Develop an expression means to find a seri(^s

the sum of all the terms of which are equal to the ex-

pression.

The most extensively used method of development is tliiit

of indeterminate coefficients.
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IS a series

iient is tliiit

Method of Iiicloterniiiiate Coeffieioiits.

380. The method of indeterminate coefficients is based

iipon the following principles :

Let us have two e(iual expressions, each containing a varia-

ble z, and one or botli containing also certain incletennu/aie

qiianfitieSy that is, quantities introduced hy])othetically, and not

given by the original problem, the values of which are to be

subsequently assigned so as to fultll a certain condition.

The condition to be fultilled by the values of the inde-

terminate quantities is that the two exi)ressions containing z

and these quantities shall be made identically equal.

Then, because tlie e([uations are to be identically equal, we

can assign any values we please to z, and thus form as many
equations as we please between the indeterminate quantities.

If these equations can be all satisfied by one set of values of

these quantities, then by assigning these values to them in the

original equation, the latter will be an identical one, as re([uired.

The student should trace the above general method in the following

examples of its application.

381. Theorem I. // a series proeeeclin^ aeenrdiii^

to the ascending poicers of ci quantity is equal to zero for

all values of that quantity, the coefficient of each sepa-

rate term must he zero.

Proof, Let the several coefficients bo «„, «i, Wg? ^'^^"> ^^^^

z the quantity, so that the series, put equal to zero, is

Because the equation is true for all values of z, it must be

true when z = 0. Putting z = 0, it becomes

ffo = 0.

Dropping a^, the equation becomes

a^z + ac,z^ + a^z^ + etc. = 0.

Dividing by z, a^ -f a^z + f^gZ;'^ + etc. = 0.

From this we derive, by a repetition of the same reasoning,

flj = 0.

I .1

1. I

\
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Continuing (he process, we find

a. = 0, ffg = 0, etc., indefinitely.

Theorem II. // two series proceeding by ascending
poivers of a (juantity arc equal for all values of that

quantity, the coefficients of the equal powers must he

equal.

Proof. Let the two equal series be

«(, + «i2:+ «22!^+ etc. = bQ+h^z-^-h^z^+ Qtc. (a)

Transposing the second member to tlie left-hand side and

collecting the equal powers of z, the equation becomes

«o — *o + («i — *i) ^ + (^^2 — ^2) ^^ + etc. = 0.

Since this equation is to be satisfied for all values of z, the

coefiBcients of the separate powers of z must all be zero.

Hence,

or a.

a. b, =0,
Oo = be

etc.

etc.

(t^ Oj 0, Kg lyg

= ^0' ^1 ^= ^If "2 — ^2>

Exercise. Let the student demonstrate these last equa-

tions independently from («), by supposing z = 0, then sub-

tracting from both sides of (a) the quantities found to be equal

;

then dividing by z ; then supposing z =z 0, etc.

Rem. The hypothesis that (a) is satisfied for all values of

z is equivalent to the supposition that it is an identical equa-

tion. In general, when we find different expressions for the

same functions of a variable quantity, these expressions ought

to be identically equal, because they are expected to be true

for all values of the variable.

Theorem III. A function of a variable can only he

developed in a single way in ascending powers of the

variable.

For if we sliould have

Fz^ A^^- A,z + A^z^ + A^z^ -f etc.,

and also F^ = B^ -{ B^z + B^z^ + B^^ -f etc.,
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these two series, being eacli idontically equal to Fz, must he

identically equal to each other. But, by Tli. II, this cannot be

tlie case unless we have

Aq z=z Bq, a
I
= 7?j, Ac, = B^, etc.

The coefficients being equal, the two series are really one

and the same.

38'^. Expansion by Indeterminate Coefficient f<. The above

principle is applied to the development of functions in powers

of tlie variable. The method of doing this will bo best seen

by an example.

1. Develop ;
in powers of x.

Let us call the coefficients of the powers of x Oq, a^, etc.

Tlie series will be known as soon as these coefficients are

known. Let us then suppose

= «Q -f a^x + a^x'^ + a^x^ + etc.

Here we remark that, so far as we have shown, this equa-

tion is purely hypothetical. We have not proved that any

such equation is possible, and the ([uestion whether it is j'^ossi-

ble must remain open for the present. We must find whether

we can assign such values to the indeterminate coefficients, a^,

f/j, a^, etc., that the equation shall be identically trne.

Assuming the equation to be true, we multiply both sides

by 1 + X. It then becomes

1 =z a^ -i- (a^ -{- ai)x + (r^i + a^) x^ + etc.

;

or transposing 1,

== «o — 1 +(«o + ^i)^ + {a^-\-az)x^ -\- («2+^3)^ + etc.

By Theorem I, the coefficients must be identically zero.

Hence,

«o — 1 =0, which gives a^

«i + «o = 0,
a a

«2 + ^'l = 0,

«3 + ^'S = 0»

etc.

a a

a

.
= 1;

«i == — «o = — 1

;

^2 = — «i = 1;

-1;
etc.

a^ — —a^

f1

m
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Substituting tlicse values of the coefficients in the original

equation, it becomes

1— x-\-x'^ — x'^-\-x^ — etc.
l-\-x

This same metiiod can be applied to the development of

any rational fraction of which the terms are entire functions

of some one quantity. Let us, for instance, suppose

a + hx

ni -\- nx -\- px^
— Aq }- A^x -\- A^x^ + ....+ AnX^,

Multiplying by the denominator of the fraction, this equa-

tion gives

a -{- bx = diAq -}- (uAQ-^mAi) X -\- (pAQ-{-,/A^-\-mAQ)x^

+ (pA 1 + nA 2 + 7nA 3) x^ -f- etc.

We now see that when i > 1, the coefficient of .r* in this

equation is rnAi -f }iAi_i -}- pAi^Z'

Equating the coefficiouts of like powers of x,

mA,
a

a, whence A^ = —

;

711

mA^ + 71A Q = h,

inA 3 + nA ^
4- pA = 0,

mA 3 + w^ 2 + pA1=0,

(<

ti

i(

^'.
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3 fuiictiuus

3-

5-

7-

1
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Tliis question is answered in Iho following way:

If there be such factors, let us call thcni /// and 71. If wo

multiply the first ecjiUition by 7n, tin; second by ;/, and add llie

product to the third equation, we shall have

+ {bm + b'n + b") yl= hn -\- h'u + //".

+ {cm 4- c'n + c") z

{I'

In order that the quantities y and z may disappear from

this equation, we must have

bm -\- b'n -hb" = 0,

cm + c'n -\- c" = 0.

Since we have these two equations between the quantities

m and n, we can determine their values.

Solving the equations, wo find:

DC — Cm =

n = -,—
be

bc'~- b'c
'

b"c - be"

b'c

These are the required values of the multipliers. Substi-

tuting thorn in the equation {b), we find that the coefficients

of y and z vanish, and that the equation becomes

'aib'c" -b"c) + a'{b"c-bc")
X

- h{b'c"-b"c') + h'(b"c- be") „
-

be' - b'c
"^ '' '

Clearing of denominators and dividing by the coefficient of

X, we find

_ h jb'c" - b"c') + h' {b"c - be") + h" {be' ~ b'c)

a {b'c" - be') + a' {b"c - be") + a" {be' - b'c)'

EXERCISES.

I. Find the values of y and z by the above process for

finding x.

X
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For this purpnso \vv miiy ho^xn with tlic equation (h) and r.iul vnhios

of in and // such that the coctlirionts of x and 2 in (/*) Mhall vanish. Those
v;iluea will he dlflTercnt from those |,^iv(?n in (r). By Huijstitutiiifj; tliem In

[bs, X and z will be eliniiiMtod, and wo Hliall obtain tho value of//.

Wo thon find a *air(i sot of valiios of m and «, purli .hat tho cocffl-

cienta of x and y onall vanish, and thus obtain tin; valiio of 2.

2. Solve by the motliod of imlctrrniiiiate mr.ltii)liers tho

exercise 3 of § 140.

Miiltipliciition of Two Infinite Series.

284rt, pROBLKM. To express the product of the two
series

and

^0 +- ^1^' 4- f^^'^ 4- «3^ + etc.,

The metliod is similar to that by which the scjuarc of an

entire runction is formed (§ 173, 'i).

We readily find the first two terms of the product to be

The combinations which produce terms in 0(y^ are

Those v/hich produce terms in 1^ arc

In general, to find the terms in x^^ we begin by multiplying

r/fl into the term hnxV- of the lower series, and then multiplying

each succeeding of the first series by each preceding term of

the second, until we end with anh^o-^- Hence, if we suppose

Product = Af^ -{- A^x + A^x^ -\- . . . . -\- .4„.i" + etc.,

we shall have, for all values of n,

An = a^bn + a^bn-i + a^bn-z + . . . . + «nJo*

By giving nail integral values, we shall form as many values

as we choose of An, and so as many terms as we choose of the

series.

' I
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I

'
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EXE RC I S ES.

1. Form the product of the two series:

^ .r* r^ .««

7^ X^ X^
,

2. Form t!)0 square of each of these series.

3. Can you, })y adding the S(|nares together, show that tlirir

sum is equal to unity, whatever he the value of a;?

To etTect this, imilti|>ly each coelllcient of x" in the sum of the RquariH

by n\, Hul)8titiit(' for each terra its value C" given in
J5 257, and ai)|)ly

§\>62/ni. II.

285. Scries proceeding according to the Poivers of Two
VariubJes. Sucli a series is of tlie form

^0 + ^o'' + (^y + ^0^^ + i>x^y + ft'ijp + etc.,

in whieh the products of all powers of x and // are comhincd.

By collecting the coefticicnts of each power of a;, the series will

become
^0 + «i// + f^-jf + ^3//^ + . . . .

+ (*o + '\y + h^y"^ + b:if 4- )^

+ (^'0 + C\y + c^y^ + c^y^ +— )x'^

+ etc., etc., etc., etc.

Hence, the series is one proceeding according to the powers

of one variable, in which the coefRcients arc themselves series,

proceeding according to the ascending powers of another

variable.

Let us have the identically equal series proceeding accord-

ing to the ascending powers of the same variables,

/!„ + A^y^A^'if+
+ {B^ + B^y + B^y'^ + )x

+ etc., etc., etc.

Since these series are to be equal for all values of x, the

coefficients of like powers of x must be equal. Hence,
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«o 4- a^y -f n^if -f. etc. = A^ + .1
, y + .|gy.> -|- i-tc.

*o + ^y + h^if -f etc. = //„ -h li.if + /y^y 4- etc.

etc. etc.

Again, since tlicse scries are to be ecimil for all values of v,
wo must have

f^Q — ^U» f(\ = '1,, (ffi = A„, etc.

b^ = /y^, b, = //j, /5»8 = //j, etc.

etc. etc. etc.

Hence, //^ order that tiro ficrics prnrrrdiin^ ar^ni'dincs
to the ascending powers of two ruriafj/rs ntrn/ he identf-
r((Uij eqiud, the coefficients of every like product of the
pow'crs must be equal.

i ,1

:

f ,i;

'
i

4 *
I

i

;U)

i«
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CHAPTER III.

SUMMATION OF SERIES.

Of Figiirate Numbers.

286. The numbers in the following columns are formed

acco'-ding to these rules :

1. The first column is composed of the natural numbers,

J.J /vj Oj etc.

2. In every succeeding column each number is the sum of

all the numbers above it in the column next preceding.

Thus, in the second column, the successive numbers are

:

1, 1 + 2 = 3, 1-f 2+3 = G, 1 + 2 + 3 + 4 = 10, etc.

In the third column we have

1, 1+3 = 4, 1 + 3 + 6 = 10, etc.

1
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sent numbers of points which can be regularly arranged over

triangular surfaces.

The numbers 1, 4, 10, etc., in tlie third columns are called

pyramidal numbers, because each one is composed of a sum
of triangular numbers, which being arranged in layers over

each other, will form a triangular i)yramid.

All the numbers of the scheme are called figurate num-
bers.

The numbers in the i''^ column are called tigurate numbers

of the i^^ order.

287. If we suppose a column of I's to the left of the first

column, and take each line of numbers from left to right in-

clined upward, we shall have the successive lines 1,1; 1, 2, 1

;

1, 3,3, 1, etc. These numbers are formed by addition in the

same way as the binomial coefficients in g 171, 'I. We may
therefore conclude that all the numbers obtained by the pre-

ceding process are binomial coefficients, or combinatory expres-

sions. This we shall now prove.

Theorem. Tlie n^ nmnher in the i^^ column is equal

to C
yn+i-l

07' to

n (?i 4- 1) (?i + 2) . . . . (w + / — 1)
0)

1 • 2* o . . . . t

Proof. Because the combinations of 1 in any number are

equal to that number, we have, when i =1,

71^ number in 1st column =z n = 6'",

which agrees with the theorem.

When i — 2, we have, by the law of formation of the

numbers,

71^^ number in 2d column = T'l + C'l -f 6'i + . . . . + T'l,

« -J-

1

which, by equation (a) (§ 260, 3), is equal to ('2 .

Therefore the successive numbers in the second column,

found by supposing n = l, ti =2, etc., are

'r3ri^i r'^ r^ f',rni

92

I f

I I:

I I

»
' ;
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r

Since tho ii^^ number in the third column is equal to the

sum of all above it in the second, we have

71^^^ number in 3d column = Cl-\- 6'!+ Ct-\- C'l^ = Cl'^

which still corresponds to the theorem, because, jvhen i = ;{,

n -{- i — \ =z n -j- 2.

To prove that the theorem is true as far as ^ e choose to

carry it, we must show that if it is true for any value of /, it is

also true for a value 1 greater. Let us then suppose that, in

the r^^ column the first n numbers are

/^iV /-iTil fit '-2 r^r>rn-\

Since the n*^ number in the next column is the sum of

these numbers, it will be equal to

which is the expression given by the theorem when we suppose

* = r + 1.

Now we have proved the theorem true when i := 3; there-

fore (supposing r = 3) it is true for i =i 4. Therefore (su[)-

posing r = 4) it is true for i =z 5, and so on indefinitely.

If in the general expression (1) we put i = 2, we shall

have the values of the triangular numbers ; by putting i = 3,

we shall have the pyramidal numbers, etc. Therefore,

The 7?*^ triangular number

The 71^ pyramidal number =

^_7i(n-]-l)
1-2

n (71 + 1) (n + 2 )
~'

r2.3

By supposing n = 1, 2, 3, 4, etc., in succession, we find

the succession of triangular numbers to be

1:1 I'l 1'^
r.2' 1.2' 1-2'

and the pyramidal numbers,

1.2-3 2.3.4 3.4.5

etc.

;

etc..
1.2.3' 1.2-3' 1.2.3'

which we readily see correspond to the values in the scheme (A).
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Enumeratioii of Triangular Piles of Shot.

288. An interesting applicution of the preceding theory is

that of linding the number of cannon-shot in ti pile. Tliere

lire two cases in which a pile will con-

tain a tigurate nnmbei :

I. Elongated projectiles, in which

each rests on two projectiles below it.

II. Spherical projectiles, each rest-

ing on three below it, and the whole

forming u pyramid.

Case I. Elomjated Projectiles. Here

the vertex of a pile of one vertical layer will be formed of one

shot, the next layer below of I wo, the third of three, etc.

Hence the sum of 7i layers from the vertex doAvn will be the

n^^ triangular number.

It is evident that the number of shot in the bottom row is

eijual to the number of* rcnvs. Hence, if n be this num' <.'r,

and N the entire number of shot in the pile, we shall have,

n{n-\-\)

If the pile is incomplete, in consequence of all the layers

above a certain one being absent, we lirst compute how many
there would jc if the pile were com|)lete, and subtract tiie

luimber in that part of the pile which is absent.

Example, "^rhe bottom layer has 25 shot, but there are

oidy 11 layers in all. How many shot are there?

K the pile were complete, the number would be -
25-26

2

There being 14 layers w^anting from the top, the total number

of shot wanting is -—— • Hence the number in the pile is
2

N- 25-20-14.15 (14 + 11) (15 -f 11) -14- 15

2 2

_ 11(14 + 15 + 11)

2
nz 220.

'

J

'

V

I

'

i \

. !:
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^ers are w

2 If from a Iriangiiljir jnraniid of ;/ courses k courses be

removed from the top, how many bails will l)e left ?

3. How many balls in the frustum of a triangular pyramid

luiving 71 balls on eacli side of the base and m on each side of

the upper course?

Sum of the Similar Powers of an Arithmetical
Progression.

'^90, Put ^1, the lirst term of the progression;

d, the common difference;

??, the number of terms;

m, the index of the power.

It is required to find an expression for the sum,

(C + (rti + d)"" + (^1 + 2r/)'» + ....+ [«j + (,i _ 1)
,/]m

which sum we call Sm'

Let us put, for brevity, a^, a^, a^, a^, . ... an for the sev-

eral terms of the progression. Then

(tz = «i + ff>

flfg = rtj -\- 2d =: rtg -f d,

an = fli -i- (« — l)d = ttn-l + d.

Raising these equations to lUe (m + l)'^' power, and adding

the equation finn = f'n + d, we have

f,mn - arn^-i + {ni + ^)fifd + ^l±~^^— a^'-hP + etc
* 1 1 1 • ^ ^

amt = a^^^ + {m + l) a^d + ^±-}^— af-hP + etc.

ay^i = a^'-^ -i- {m + l)afd -+- i^^ii:^ r^m-1^2 + etc.

. • • •... •

«-;i := ^"'+1 + {m -I- 1) ff^d + ^i±-^-li'' a^-kP + etc

If we add these equations together, and cancel the common
terms, r/^'M- ^^ '* + ..•• + a^^^, which appear in both

members, we shall have

i

I'f* .

I

I

! I

\

1
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r-

1

li

m

[m + 1) m (//? — 1) „„
+ ^—^iT^Ta -(^^^m-2, etc.

From this we ol)taiii, by solving with respect to >s';„,

S
fiin ^ 1 fim 1

1

« ti
,-\

1.2 -3 ^--ffl-2— g^^'v r.')

wliicli will enable us to find aS^ when we know Si, iS'g, ....

*Sm-i. that is, to find the sum of the n^^ powers when we know
the sum of all the lower powers. It will be noted that >',

means the sum of the arithmetical series itself, as found in

Book VII, Chap. I ; and that S^ = n, because there are n

terms and the zero power of each is 1.

By § 209, Prob. V,

To find the sum of the squares, we put m = 2, which gives

^2 = «Li - «'
fP

3d --"•''i-3'\- (3)

201. The simplest application of this expression is given

by the problem;

To find the STun of the squares of the first n natiir/iJ

ufCDibcrs, mnnely,

r-^ + 33 + 32 + 42 + -f lA

Here d = l, an = n, etc., S^ = 1 + 2 -i-n = —^—̂ -
,

so that (3) gives

^. _ (u +1)3 — 1 71 (n + 1) ft

' 2
-

3 2
3*

Noting that n + 1 is a factor of the second member, we

may reduce this equation to

n {?i + 1) {2n + 1)
*S'n

6
(i)

"which is the required expression for the sum of the squares of

the first /( numbers.
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/ n natural

member, wc

2i{yZ. To find the sum of the ca])es of any progression,

we pnt ir, = 3 in the e(juiition {2), whicii then gives

.93 =.
a

('!)

Applying this as before to tlie case in whieli ^,, n„, a^,

etc., are tiie natural numbers, 1, 2, 3, etc., we lind

c ''^ + 1)'* — 1 3 ^ ^
*^3 = 1 .) ^^2 — '^1 4-«

— (^^ 4-1 )
^ — 1 _ ^< (w + 1) (2y? + 1

) _ n {n + 1 ) ?/

— 4
~~

4 a
4*

Separating the factor n + I and then reducing, this equa-

tion becomes

S. = n {n + 1)"

2
(5)

But —~T—^ is th'^ sum of the natural numl)ers

1 + 2 + 3 + etc.,

and S^ being the sum of the cubes, we have the remarkable

relation,

13 _}_ 23 4. 33 + _^ ,^3 ^ (m_ 2 -^ 3 + + nf.

That is, the sum of the euhe.'^ of the first n numbers is

equal to the square of their shiH'.

We may verify this relution to any extent, thus :

When n =2, 13 +23= 1 4-8 = 9 = (l+3)'2.

When 71 = S, P + 23 + 33=: 1^8 + 27:= 36 = (1+2 + 3)*.

When r?=4, 13 + 23 + 33 + 43 = 1+8 + 27 + 04 = 100 = (1 + 2 + 3 + 4)'^

etc. etc. etc. etc.

293. Emimerafion of a Jlecfanf/nlar Pile of Balls. Tiie

preceding theory may be applied to the enumeration of a pile

of balls of which the base is rectangular and each ball rests on

four balls below it. Let us put p, q, the number of balls in

two adjacent sides of the base.

»'

i. ii

I J

^r

t'
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4. A rectangular pile of bulls is started with a base of y;

balis on one side and 7 on the other. How many balls will

there be in the pile after 3 courses have been laid ? How
many after .s courses ?

5. Find the value of the expression

2 {a 4- hx 4- cx^).

6. Find the value of

2 {a -^ bx -\- cx^).

394. To find the sitDV of n terms of the series

1_ 1_ 1_ 1 _
L^ ^ 'Z-'d

"^ 3-4"^ ^ n{r + •)*

Each term of this series maybe div' ^d > 3 two parts,

thus

:

j_ _ i_i JL _ i_l
1-2 "12' 2-3 ~ 3 3'

1 1 1

nn {n +1) ti ?t + 1

Therefore the sum of the series is

(l-2) + (3--|) + (3-4)+----+Cl-i7Tl)'
in which the second i)art of every term except the last is can-

celled by the first part of the term next following. Therefore

the sum of the n terms is

1 - n
71 -\- I W + 1

If we suppose the number of terms n to increase without

limit, the fraction -r will reduce to zero, and we shall have
n -\- 1

r"2
"^ 2^ "^ 3.1 "^ ^^^*' "^^ *^{A^"*^2^^i = 1-

This is the same as the sum of the geometrical progression,
^y + a + o
-V ^ V

H

!

• ' •

' t

.'11

• I

1 • -H

,

i

1
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+ <'tc., nd iitfinltum. It will be interesting to compare the lirst fow terms
of the two aeries. Tliey avi'.

111111
2 12

"^

20 'M 42111111
2 4 H ^ 10 ^ 83 ^ 04

We see that the lirst term is tlie same in botli, while the next three

are larger in the geometrical jjrogresHion. Aft<'r the fourth term, tin-

terms of the progression become the smaller, and continue so.

*^il)5. (renerdUzdlion of the Preccdiufj liesidf. Let us take

tho series of which tlie w^^ term is

V
(i + n-\){j -\-n-\)

The series to n terms will then be

E
if
+ + p

(/ + 1) ij + 1)
-^
a + ^)-(7 -H

2~)

+

[ • • •

p
(/ + w-l)0- + w-l)

If we suppose ; > i, and put, for brevity,

^ =J - h

the terms may be put into the form

;; _pa _ n
a ~ k \i ir

p ^ ^

J(*'+i)(y + i)

- P I

A

!__)

etc. etc.

io

(* + w -l)(y-fw+"l)
= P 1-^-1 L—).

^• \t + ?2 -— 1 ^ + ?i — 1/

When we add these quantities, the second part of each term

will be cancelled by the first part of the k'^'' term next follow-

ing, leaving only the first ])art of the first k terms and the

second part of the last ^-terniii. Hence the sum will be

+
k\i 1+ 1

+ ....
y+1

J.
i-{-n i + W— 1'

J + fi•i-1/'
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5t few leriiiH Example. To find the sum of h terms of the series

^.5 "^
:t.(] "^4.7 "^ 5.« "^ {n-^ ^){n -f-

4)*

Each term may 1)0 expri.'.'isiMl m \\w i'urm

•,].6 ~ ;j\;} li/'

--- V^ -')
4.7"~;i\4 ;/'

1 ^V.J JLV
(« + l)(w 4- 4) ;J\;/ 4-1 n -h 4/

'rherefore, separating the positive and negative terms, we

liiid tile sum of the series to ha

l/l 1 1 1 1 1

•P^ 3 4 O 71 91 -\- I

_ 1 _ 1 _ _ 1 1 ^1 1 _1 V

5 G "" 91 71 + 1 71+ 2 ti + 'S ii + Aj'

or, omitting tlie terms wliich cancel each other,

1/1 1 1 1 1 1_\
3 U "^

3
"^

4 n'+'} 7i + 'S ?i + 4/'

When 71 is infinite, the sum hecomes

1/1 1 1\ _ 1 1=^ _ li^

3\2 "^
3

"^
4/ ~ 3'12 ~ 36'

EXERCISES.

What is the sum of w terms of tlie series

:

111,
I. -- 4- TT + T^. + etc.

3-4 ' 4.5 ' 5-0

_1_ 1_ J_
3.5

*"
5-7 "^ 7-n

1 1 1
2. :^-^ + —- 4. —- -f 4-

{2n 4- l)(2n + 3)

1

1

I .

! I

\
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i-

3 3 3 3
^' TlJ "^^.-t "^li-O

^••"
'^'n{n -f-^r

5. Sum tlie scries

1
,

1 __ . 1 J. f /
• /

«(« + 1)
"^

(^^ + 1) (« 4- ^)
"^

(^« + Ji) {a + 3)
"^ ""•' '"•^•

1^9(5. To sum tl»c series

.V = 1 + '.>;• + 3?-3 + 4r3 -I- etc.

Let us first lind tlie sum ul" /< terms, wliicli we slmll call

*s;. Then

Sn = 1 + 2/- -f '^r^ + l''^ + nr''-'^'

Multiplying by r, we have

r,Sn = r + 'ir^ + 3/'3 + 4/*'»
-f- . . . . + ?</«.

By subtraction,

(1 — r) Sn = I + r + 7-2 + 7"3 + ?•"-! — ///•"

1 — r"

1 —

r

1 — r^

— nr^ i^'lVl, Prob. V).

Therefore, *S'„ = ^ _ ,.)2
~

1 _ ^

Now suppose n to increase witliout limit. If ?• > 1, tlio

sum of the series will evidently increase without limit.

If r < 1, both r" and nr'^ will C(mverge toward zero as n

increases (as we shall show hereafter), and we shall have

V- —1-
"^ -

(1 _ rf

EXERCISES.

Find m tMie above way the sum of the following series to n

terms and o iniinity, supposing /• < 1

:

1. a -\- '.iar + 5ar^ + ^nf^ . . . . + (2?i — 1) r/r"-^

2. 2a 4- 4«/- + ikir^ + 8rfr3 . . . . + 2nar^-'^.

3. (r< + ^') r + (rt + 2^) ;'2 4. -\- {a + nb) r^.
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29t. Sura tl>c series

_1_ 1 1

1

(")

uf wliich tlio L'ciioral term is —

,

,, . .,-^
>/ {n + 1) (w + 2)

Tit't us flud wliothcr wo cuu express this series as the 8uni

( r two series. Assume

A
+

n
n (/< + 1) {n 4- 2) /' {n + 1) (^^ + 1) {n + :e)

'

nliere, if possible, the viilues of the indeterniiuate ('ocflicieuts

J jiiul /> are to be so chosen tliat this e(iuation siiall he true

identieally.

U'educing the second member to ii common denominator,

wo liuvo

1^ (.1 + Ii) n -I- 2 J
n (// V\)\n 4- -»)

~ n {n + 'l)"(7/ + >)'

In order tiiat tliese fractions may l)e identically C([ual, we

in list have
{A + B) n -i- 'ZA = 1, identicitUy,

which recjuires that we have (§ 281),

A + B = (t, 2/1 = 1.

This gives

Tlioreforc,

1

1

r

n {n + 1) {h -f 2) 2 n {n + 1) 2 (?i + 1 ) (/i + 2)

'

so that each term of the series (a) may be divided into two

terms. The whole series will then be

\ (r5 + 3^ + ri + ''') -
\ (.'^ + iii + 4^ + ''')

We 8(0 on sight, that by cancellirig equal terms, the sum of

n terms is
Sn = -.

—
4 2(/i + l)(/i + 2)*

and the sum to infinity is ^

i

•!"

w

1 11
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I >

*• ,

'^1)8. Consider tho h.'innoiiic series111.
of wliicli the ??/'* term is

1

n
'i'liis series is divergent, because

we may divide it into iin unlimited number of parts, each

equal to or greater than
^^

, as follows:

Ist term := 1, >

2d term =

1

^

3d and 4th terms > J^ ;

etc. etc.

In general, if we consider the )i consecutive terms,

1

(a)

the smallest will be t-- , and thereibro Ijieir sum will be greakr

than -- X fi, that is, greater than -
'-in

^ '4

Now if in (a) we suppose n to take tho successive values.

1, 2, 4, 8, IG, etc., we shall divide the series into an unlimited

number of parts of the form {a), each greater than -• There-

fore, the sum has no limit and so is divergent.

Of DUrereiiees.

309. When wo have a series of quantities proceeding m

-

cording to any law, wo may take the ditferenee of every two

consecutive quantities, and thus form a scn'ies of ditFerenccN

The terms of this series are called First Differences.

Taking tho dillerence of every two consecutive diiTcrenco'.

we shiill have another series, the terms of which are eailc*!

Second Differences.

The process may be continued so long as there are any dil-

ferences to write.
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ssive values.

Example. In the second column of the following table

are given the seven values of the expression

X* _ lor^ -I- :]{)x^ — 4(U' + '2') = (px,

for X =z Q^ \, 'Z, 3, 4, 5, 0.

In the third column a' are given tlic diU'ereiices,

G — ;>5 = — \U, \ —r> — —'), _ 14 — 1 = — 15, etc.

In column a" are given the differences of these dilferenees,

iiamelv,

5 - (- [!)) ^ + 14, 1.) -(-:,) ^ li>, etc.

X
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To invesli<j;ate tlic relation among (he di (Terences, let uh

rei)resent the .sueecssive numhers in eaeli colnmn l)y tiie indiees

1, 'Z, .'3, etc., and let us })ut Aj, Ao, Ag, etc., for the values of

(f>x. We shall then have tiie i'ollo\vin<^ scheme of diflerences,

in which

a; = a, — Ao, A'j = Ag — Aj, a; =r A3 - Ag ;

a; = a;-a;, a';=.a;-a;, a;=:a;-a;;

^: = ^;-^^ a7 = a:-a';, a:=.a;-a;;

etc. etc. etc.

the n^''- order of differences Ijeing represented by the symbiji A

with n accents.

a;

^1
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or

Substituting the values of Ao, Ao, etc., from {b), we liavc

A3 == Ao 4- 'M'o + a'o

+ a; + ^a; + a;

A3 := Ao + ."iA; + 15a; + a'; (r)

A3 = A„ + 2a„ + A,

:f a'o +2a;+a'o^

^0

A'3 rr: a'o + JJA^ + IJA^ + A'J

Forming A4 = A3 + A3, etc., we see that the coefficients

of Ao, a'o, etc., which we add, are the same as the coefficients

of Mie successive powers of x in raising 1 -f x to the n^f' power

•/ successive multiplication, as in § 171. That is, to form A^,

A'^, etc., the coefficients to be added are

13 3 1

1_ 3 3 1

1 4 G 4 1

and these are to be added in the same way to form Ag, and so

on indelinitely. Hence we conclude that if i be any index, the

law will bo the same as in tlie binomial theorem, namely.

A; == Ao + /a; + Q a; + (!,) a'o' + etc. 1

a; ^ A'o -f ^'A'o + (!,)
A'; + ('3) A'o' + etc.

)

i^f)

To show rigorously that this result is true for all values of

/, we have to prove that if true for any one valu(», it must be

true for a value one greater. Now we have, by definition,

whatever be i,

Ai^i = At + Ai, Ai-i = Aj -}- Ai, etc.

Hence, substituting the above value of Aj and Aj,

!. Ai.i = Ao + (/ + i)a; +
1 (^) + 'J

a;

r+ '_Q+(;)J^o4-etc. (.)

23



If. , '

354: SERIES.

We readily j rove tliaL

etc. etc.

Substitufiiii^ these values in (e), the result is tlic same given

!>y the e(|uati()ii {(/) when we put / + 1 lor /.

'I'lie form (r) sliows tiie tbrmuhi to be true for i = 3.

'Therefore it is true I'or / = 4.

Tlieretbre it is true for / = o, etc., indefinitely.

EXAMPLES AND EXERCISES.

I. Ilavino- rriven A^ = 7, A^ — 5, ill — — 2. and A'", A'\

etc. = 0, it is rerinirod to find the values of Aj, Ao, A3, etc.,

indefinitely, both by direct computation and by the formula {>/).

We start the work thus:

The nuinlxTs in coliuun A" are all

oqiial to - 2. IxTuus,' A'" = 0.

Kach munb(>r in coluinn A' after

the first is found by adding A" or — 3

to the one next alxive it.

Eacli vahie of Af is then obtained

In 'III tlie one next al)ove it by addin;.^

the apj^ropriate value o*" A^

.

This jM-ocesH of ; ddJticv -"dn be
curried to any exti'nt. Continuing it

to i:= 10, we tshu'; liud A,,, . --'A'o.

Next, the nronera! formula y^:) nrivcs, ])y putting A^
A'^ — 5, A'^^ = — 5i, and all following values — 0,

2 '

I
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f

EXAMPLE.
To find tlie siiccossivo clifTLTonci's of the function

u = n.r^ + bx\

By the iorninla (a), \\v have

An = a (./• -f 1)3 ^- /y (r -f- 1 )2 _ ^rx^ — hx^
;

and, by dc'V('k)|)iiig,

Ml = :](ix^- + (:3r^ + 2b) .r -{- a -\- b.

Taking tlie difference of this last e(juation,

Aht = 3a [x + ly -{- {3a + )ib) (.r -f- 1) + a + b

— 3ax^ — {'3a + 2b) x — a - b

— Gnx -I- C)a -f 2b.

Again taking the difference, we liave

A^u — Cm (:r + 1) — (Ufx = On.

This expression not containing x, A*u, A^w, etc., all vanisli.

EXERCISES
Compute the differences of the functions

I. .r + tnx^ -\- )ix -]- ]).

3. 5./-3 -\- 10^'^ -f 15.

2. 2x* -^ 3.^2 ^ 5.

4. In the case of the fast expression, prove the agreement

of results by comjMiting the values of An, A'^ti, etc., frx- x = 0,

x = I, and ;r =r: ;}, and comparing them with those obtaini^d

by the metiiod of § 209. The latter are shown in the follow-

in sr tablo:

X

u = 5a^+ 10.^2 -1- 15.

ti

15

30

95

240

A2l

15

65

145

255

Ahi

50

80

110

A^u

30

ao
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5. Do the same thing fur exercise 2, luul for the fiinclioii

tahii lilted in § 'VM.

myZ, It will he seen hy the ])receding exiimples aiid exer-

cises, that for each dilfereiice of an entire function of ./• whitdi

we form, the degree of the function is diniinislieil hy unity.

This result i.s generalized in the following theorem:

T/ir n^ dijfrreiiceH of the J'linction a*" ai'e constcuit

and cqiud to n !

Proof. If u = a-'\ we have, hy the definition of the sym-

bol A,

A« = (^ + J )" — .r",

or C^ii = n.r» » + ( J.r"-'^ + etc.0'
That is, //// takin<J the di/fcrcnrc, the highest po/rrr of

x is luuUiplied hi/ its eA'poucnt (did the fatter is diitiin-

ishect hi/ luiity.

Continuing the process, we sliall lind the u"^ diil'erenco

to be

n{)i - !)(// -'I) 1 = //!

Cur. If we have an entire function of x of the degree n,

ax'^ + />.r« » + r.r" **

-f etc.,

the {ii — iy diiTerence of hx» K the {n — 2)'^ difference of

rx"''^ etc., will all be constant, and therefore the n^^^ dilference

of these terms will all vanish. Therefore, the n^^ dilference of

the entire function will be the same as the u^^ difference of

ax'^ ; that is, we have

A" (ff.2" 4- *^""^ + etc.) = nji !

Hence, the n^'- di/fer'ence of a function of the n^^ de-

cree is constant, and equal to u\ maltiplied hy the coeffi-

cient of the highest power of the variable.

»'
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CHAPTER IV.

THE DOCTRINE OF LIMITS,

\\

IM)^. The doctrine nf limits oml)ni(!C.s a set of principles

.'ipplicablo to cases in wliieii the usual nietliods of calculation

fail, in coiiseciuence of some of \\\v (piantities to be used van-

ishing or inereiusing without limit.

We have already made extensive use of some of (he ]>rinei-

pies (»r I his (h)etrine, and Ihus familiarized the student with

their ap[>lieation, but our further advance requires that they

should be rigorously develojx'd.

^\.\i()M I. \\\y (iiiMiitity, however small, may Ix*

multiplied so often as to exceed any other iixed quau
tity, however g;i'oat.

Ax. II. CoitremcJi/^ any (jiiantity, however pT(»at,

may be dividfnl into so many ])arts that each juirt shall

be h'ss than any^ other fixed ([uantity% howev(^r small.

Dcf. An Independent Variable is a. quantity to

wiii(di we may assign any value we please, however

small or great.

Theorem I. If a fraction have any finite nunirrator,

and an, independent rariable for its denominator, we

mail assign to this denoTninator a i-aUtr so £reat that

the fraction shaft tie less than any quantity, hoivevcr

sm(dl, irhich we may assi^'n.

Proof. Let a be the numerator of the fraction, x its de-

nominator, and tc any (juantity, however small, which we may
chooso to assign.

Let n be the namber of times we must multiply « to make
it greater than a. (Axiom I.) We shall then have

a < na.

a
rottijseenentlv,

n
< «.
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ITonce, by taking x greater tlmn w, we sliiill have

(I

< «.

Example. Let a = 10. Tlicn it" wo take for « in succes-

1

777-, ete., we liave only to take
100 10,000 1,000,000

X > 1,000, x > 100,000, X > 10,000,000, etc.

i(» make less than
X

«.

In the language of limits, the above theorem is expressed

liiis

(/

T/ic /i III it of , if/irn x is iiuLcjinitcl ij incrcdscd, is

zero.

' t

vmrrntor.

Thkohrm it. Ifdfnirtion havcany fiuiti' innnrrfitor,

and an iftdr/wNf/cnt raridhir for i/s dcnoiniiuitor, trn

linn/ ((ssio/i to fin's dcnoni iuffto/' (t raliic so sinnil tliot

t/ic, fraction, s/ifd/ exceed atifi (/itafititij, lioirerci' grcjit,

I'-hieh ice mat/ assign.

Proof. Pnt as Ix'fore for tlie fraction, and let A be any

number however great, wliieh we choose to assign.

Let n be a number greater than .1. Divide a into n parts,

and let « be one of tiiesc parts ; then

a = im.

('onse((uently,
a

=1 n.
iC

Tiierefore, if we take for;f a ([uantity less than «, we shall

ave

a
- > n > A,
X

or
a
- > A.
X

Rem. If we have two invlependent variables, x and y\

We may make x any number of times greater than y.

i I

t
!
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«iir

i,

TIr'h wo miiy make ?/ any minibor of times preater tliaii

this valiif «»r ./•.

'riiiii we may make ./• any niimlMT <>f limes greater than

this value i>\' i/.

And wi- can thus continue, mai\injj: eacii varial)Ie outstrip

the other to any extent in a I'ace toward inllnity, wilhout

either ever reaching the goal.

'I'lllioiiKM III. //' / /k' <nni /i.vcfj qmiii/ih/. hoirrrn

great, itud « a (jttdntii ij ii'hicli ire nmij intikc <is snmll

(IS ICC jilcnsc, ICC nun/ nutk'c the prodnet kn less thdnduij
(issijiiiahic (/iiftiititi/.

Proof. If tliere is any smallest value «)t' /vc, let it be a.

Because we may make re as small as we please, let us ])ut

« < I'

^lultiplying by k, we llnd

k(c < s.

So that ktt may ])o made less than s, and .s' cannot be ilic

smallest value.

Dcf. Tlie Limit of a vnriahlo (iiiantity is a value

wliich it can never reacli, l)ut to which it may a])])i-()ac|i

so nearly that tlui dill'erence shall be less than any

assignable cjuantity.

Hem. In order that a variable J^ may have a limit, it must

be a function of some other variable, and there must ho cert;iiii

values of this other variable for which the value of X eannni

be directly computed.

EXAMPLES.

I. The value of the expression

Y __ ofi ~ a^
'"

X — n

can be computed directly for any pair of numerical values of x

and a, except those values which are equal. If we supiwiso

X = a, the expression becomes

o..
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0» — ff" _
(t — a — 0'

which, eoiisidcivd hy ilsclf, iius no meaning.

2. Thu sum of any linitr nimiluT <i|' tt rnis uf a pcotiu'trioal

jiro;rrt'8sion may be cuinputrd hy n<l<lin<,' Ihi'in. lint if thr

iiuniluM- nt'tirnis is intinite. an intinilc time would l>e r(M|uiivd

lor the direct calculation, which is thefelon' inipossildc.

3. The area of a |)<»ly;j;on of any nnmher of sides, and hav-

ing a given aitothegm, may he romputed. Mut if the nnmher

of sides hccomt's inllnite, and (he polygon is thus changed into

a circle, the ilirect computation is not practicable.

EXERCISE,

Tf we have ihe fraction, A' = ,'
, . show thai we maf

dr — 1

7 1

make r so great that J' shall dilfer from ., by less than -r —

»

^ 3 -^ KM)

''*» "'""
Tol.^noo'

'^''''' "'»"
MMiiooi,

, and so on inddinitely.

Notation of the Method of LiniitH.

iU)l. Put X, tlie (pnintity of which the value is to be

foumi ;

Xy the indcj)end(Mit variable mu which .V de-

pends, so that A' is a function of./-;

a, the particular value of x for which we can-

not compute X;
L, the limit of A\ or the value to which it

ap})roaches as ./• approaches to n.

Then the limit L must be a quantity fultilling these two

conditions

:

1st. Supposing X to approach as near as we please to a, we
must always l)e fible to tind a value of x so near to a that the

difference L — X shall become less than any assignalde quan-

tity.

M. X must not become absolutely equal to />, however

near x mav be to n.

i t

I

1
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Rem. The qnantity a, to^vard wliicli i>- approaches, may be

either zero, infinity, cr some liiiitc quantity.

Example i. Suppose

A zz:

A' — a

I3y § 93, this, expression is equal to

except when a; = rt. But suj^pose 'S to be the ditlerence be-

tween X and a, so that

Substituting this value iu the expression (a), the equation

becomes
'vS n^

X — ^f

Now we may suppose 6 ^o ymall that 3«f5 -[- (52 shall be less

than any quantity we choose to assign. Hence we may choose

a value of x so near to « that t lie value of
x^ — a^

X — a
shall differ

from ?)d'^ by less than any asrii^tial>]e cirsantity. Hence, if

ji.^ — a

then

X — a

r' aP
or 3«'^ is the limit of the expiepsion -^ — as x approaches a.

*v (.V

X
Ex. 2. The limit of -_-, wbon x becomec indefinitely

great, is unity.

For, subtracting this expression from unity, we find the

difference to be

By taking x suflBciently grea*,, we may make this expression

less than any assignable quant'ty. (§ 303, Th. I.) Therefore,

x
approaches to unity a-j x increases, whence unity is its

X -|" 1

limit.

W
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Xotalion. The statement tluit L is the limit of X as x

approaches a is expressed in the form

The conclusions of the last two examples may be ex-

pressed thus

:

Lim.
X - a

{r=a) 3rt2.
X

Lim. ---
, C'-^x) z=z 1.

X 4- 1

l^KM. This form of notation is often used for the follow-

ing purpose. Having a function of x wliich we may call X,

the form X{x=^a) means, '' the value of X when x = «."

0.

EXAMPLES.
(x^ + a)(3'=„) = a^ + fi. (./2 — a^)^j'^a)

If we require the limit of a fraction wlien both terms be-

come zero or infinite, divhlc hotli terms hij some common
factor which becomes zero or in.finitf/.

Rem. If the beginner has any difRrnlty in nnderstanding the pre-

ceding exposition, it will bi mllicient for him to think of the limit as

simply the value of the exi)ression when the (fuantity on which it de-

l>pnds becomes zero or infinity.

J'

For instance, Lim. "
. (.r = oo),

.» + 1

tlic value of which we have found to be unity, may be regarded as simply

tli(^ value of the expression, oo

x> + 1

Although this way of thinking is convenient, and generally leads to

C'liToct results, it is not mathematically rigorous, because neither wro
nor infinity are, properly speaking, mathematical quantities, and people

arc often led into paradoxes by treating them as such.

Find the limit of

X — a

EXERCISES.

X
when X approaches infinity.

2.

Divide both terms by x.

V when X approaches infinity.

mx^

px^ ax
when X approaches infinity.

P
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4.

5-

6.

X

1 — ax
when X approaches infinity.

X^ — «2

X — a

a + 2;

a — .r

- when X approaches a.

when .T approaches infinity.

Properties of Limits.

SOili. Tni:oiiEM I. // ^/fo functions are equal, thcij

must Jia^ve the same limit.

Proof. If possible, let L and L' be two different limits for

the rcspL'otive functions. Put

z = \{L-L'),

so that L aiid V differ by '^z.

Because Z is the limit of the one function, the latter may

approacli this iimit so nearly as to differ from it by less than z.

In the same way, the other function may differ from L'

by less than z. Then, because L and L' differ by 2^:, the func-

tions would differ, which is contrary to the hypothesis.

Theorem II. The limit of the sum of several func-

tions is equal to the sum of their separate limits.

Proof. Let the functions be X, X', X", etc.

Let their limits be L, L', L'\ etc.

Let their differences from their limits be «, a, a', etc.

Then X = L - a,

X' = IJ - «',

= Xy — « ,

etc. etc.

Adding, we have

X4-.r + .r" + etc. = Z + Z' -I-
Z" + etc. -(« + «'+ «" + etc.)

The theorem asserts that we may take the functions so near

their limits that the sums of the differences «+ «'
-f ec" -|- etc.

shall be less than any quantity we can assign.
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Let k be this qnanUfv, wliicli may be ever so small

;

n, tlie number of the quantities «, a', a", etc.
;

«, the largest of tlicm.

Because we can bring the functions as near their limits as

we please, we may bring them so near as to mjike

or na < I:

Then «-}-«' + fc" + etc. < na (because ^c is the largest)

;

whence, « + «'4-«" + etc. < k.

Thereforo the sum X-\-X' -{-X" -\-ctc. Avill approach to

(lie sum L -{- L' -\- L" -f etc., so as to cHlTer from it by less

than k. Because this ((uantity k may be as small as we please,

A -{-L' + L" + etc. is the limit of x\ X' + X" + etc.

Theorem III. TJic limit of the ]}rodiLct of two func-
tions is equal to the product of their limits.

Proof. Adopting the same notation as in Th. II, we shall

have

XX' = LL' - aL' - (c'L + ««'.

Because L and L' are finite quantities, we may take « and

k' so small that aL' + a'L— aa shall be less than any quan-

tity we can assign. Hence XX' may approach as near as we

please to LL', whence the latter is its limit.

Cor. 1. Tlie limit of the prodnet of any niimhcr of

functions is equal to the product of their limits.

Cor. 2. Tlie limit of any power of ci function is equal

to the power of its limit.

Theorem IV. TJie limit of the quotient of tiro fnne-

fions is equal to the qitotient of their limits.

Proof. Using the same notation as before, we have for the

quotient of the functions,

X' L' — «
' - - -^- -X (C

V
while the quotient of their limits is y

•r

' %
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TIiu diilerencc between the two quotients is

L' IJ — fc' ha — X a

L L — a L{L — «)

If L is different from zero, wc nuiy make the quantities «

and a so small that this expression shall be less than any

(puintity we choose to assign. Therefore, y is the limit of

-'
, that is, of ^«

f^n fiTi

3<)(>, Problem. To find the limit of
'

as x
' X ct

approdches a.

Case I. When n is a positive lohole number.

We have from § 93, when x is different from a,

rfTh flTl

X — a

Now suppose X to approach the limit a. Then .t"~^ will

approach the limit «^ ^ x^~^ the limit a^~\ etc. Multiplying

by a, (fi, etc., we see that each term of the second member

approaches the limit aP'~'^. Because there are n such terras,

we have
x^

Lim. -^ (x=a) na^-1
X — a

Case II. When n is a positive fraction.

Suppose n =^ , p and q being whole numbers. Then

V p
x^ a' _ x9 — n^

X — n X — a

Let us put, for convenience in writing,

^ = y,

then

and

X f,

x^ — a:
n

X a

a^ =.!)',

a = b^i

v^~V _ >i-b

y

b'^
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the limit ol'

As X approaches indefinitely near to a, and consequently y
to by the numerator of this fraction (Case I) aj)[)roaches to

pbP~^ as its limit and the deuominn,tor to qb^r'^. Hence, the

fraction itself approaches to

qb^-^ q

Substituting for b its value a , we have
'to

x^ — rt"

X — a

X'l' rt» n
Lim. '-^

(^-a) = ''- bP-'J =' a ^

p~q

ndn-\

Hence the same formulae holds when n is a positive fraction.

Case III. When n is negative.

Suppose n =. —p, ji itself (without the minus sign) being

supposed positive. Then

xn — an x~P — (rP „ la^ — x^\— — x-p crP I 1

X — a X — a \ X — a /

x^'-a^
z=i — x~P a~P

X — a
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CHAPTER V.

THE BINOMIAL AND EXPONENTIAL THEOREMS.

The Biiioiuiiil Tlu'oreiu for all Values of i\w
Exi)oneiit.

307. We have sliown in §§ 171, J3G4, how to develop

(l+.r)"' when n is a positive whole number. We have now to

ilnd the development when n is negative or fractional. Assunu'

(1 + x)»' = Bq -^ BiX + B„x^ + B.^x^ + etc., {a)

Bq, B^, etc., being indeterminate coellicients. Because tliis

e([uation is by hypothesis true for all vahies of x, it will remain

true when we put another quantity a in place of x. Hence,

(1 + aY — ^0 + ^h^'' + ^2«^ + ^3^*^^ + e<^c. {b)

Subtracting {h) from (r/), and putting for convenience

X = 1 + x, A — 1 -{ a,

the difference of the two equations («) and (h) will be

X" - A"" = B^(x — a) + B., {x'^ - a^) ^ B^{:i^- a^) + etc.

The values we have assumed for X and A give

X— A = X — a.

Dividing the left-hand member by X— A, and the right-

hand member by the equal quantity x — a, we have

a;2 — «2yn in

X— A ^ ^ X — a ^ X

a.^ — a^

a
+ etc.

Now suppose X to approach a. The limit of the left-hand

member will be 7iA^~'^. Taking the sum of the corresponding

limits of the right-hand member, Ave shall have

7iA^-^ = B^ + 2B^a + ^B^a^ + ^B^a^ + etc.

Replace A by its value, 1 + «, and multiply by 1 + a.

We then have
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«(1 -f nY = Bt (1 + «) 4- 2/i8rt(l + a) + ',^,(^^{1 + ^0

+ in^a^ (1 -f- r/) + etc.

Multiplying the c'(|iuition (b) by n, wo imve

« (1 H- f^'* = '^^0 + ^^B\a + ^iA'g^/'^ + uB^al

Eqiiatiii^jj the cocllicients of the like powers of a in these

iMjiuitious (§ ;^81), we luive, first,

By putting a =. in etiuution (/>), we find //^ = 1, whence

«..= «^ =
c;).

Then we find suecessivelv,

^)i?2 = {n-\) B„ whence Z^g = ^^~~^ B^ = ^* ^'^ ~ ^^

1.^

3/;3 = (71-2) B,, a n — 2 _n{H— l){u-2)
B, = V- B,

3 ~"^ l.;i.3

Substituting these values of Bq, B^, />„, etc., in the eciua-

tion (a) and using the abbreviated notation, v>., obtain the

e(iuation

(1 + xY = 1 + nx 4-
(!J)

x'^ + (!;)
.^3 4- etc., (c)

which equation is true for all values of u.

308. There is an important relation between the form of

this development when u is a positive integer, as in §§ Vti and

^01, and when it is negative or fractional. In the former

case, when we form the successive factors 7i — 1, n — 2,

// — 3, etc., the ti^''- factor will vanish, and therefore all the

( oellicients after that of .^•" will vanish.

But if n is negative or fractional, none of the factors

u — 1, 71 — 2, etc., can become zero, and, in consequence, the

Scries will go on to infinity. It therefore becomes necessar}^

ill this case, to investigate the convergence of the development.

If X > 1, the successive powers of x will go on increasing

indefinitely, while the coefficients ( ), ( ), etc., will not go

24

t*

»

I I

<
•' IP.

't

'I'
:

! Ay
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I.

< \Vt

oil diniiuishin;.'; indefmitGly in tlio samo ratio. For, let \\a

consi lor two Huccessivo terms of the duvelopiiient, the (?'+!)",

and tl.o {i + 2)"", namely,

(;.').. ana [.ly^.
The quotient of the second l)y tiie first is

I n \ in\ n — /

As i increases indefinitely, this eocfllcient of x will approach

the limit — 1 (§ '304), while x is by hypothesis as ^eat as 1.

Therefore, by continnins^ the series, a point will l)e reached

from which the terms will no longer diminish. Therefore,

Tlie development of (1 + .r)" iii pojrevs of x is not coti-

vergent luiless x < 1.

In consequence, if we develop {a + />)« when n is negative

or fractional, we must do so irj ascending powers of the lesser

of the two quantities, a or h.

EXAMPLES.

I. Develop (1 + x)^-, or the square root of 1 + a;.

Putting n = ,- , we have

(f) = ^•

1(1-1
)

1-2
1:1
2-4'

^G-OQ-) .u
1.2.3 2-4-6

/n\ _ 2 (n\ _ _ 1-1-3- 5

W ~ 4 \3/
"~ 2-4-6-8*

etc. etc. etc.
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X is not coil-

Whence,

(14. .;)i ^ 1 + ^.. _ ^^^^2 + ^^^^^ - ----^^^^.^ -I- ot(..

li* .f is II siiiall IViiclion, \hv terms in ^:2, r\ etc., will bo

!nueli .siiuiiler than -x itself, und the first two terms of tlic

scries will give ii result very near the truth. We therefore

eonoludo:

T/ir sqnnrr root of 1 f)las a. snudl frncMoih is (ij)j)ro.i'i-

uKitrhj equal to 1 plus luilf that fraction.

2. To develop VlO.

W^e sec at once that VlO is between 3 and 4. We put 10

in tlie form

32 + 1 = 3-^(l +
^),

when VlO == 3(1 + ]^' •

Then, by the development just performed,

/ 1V^_ , J 1 _} 5__
U "^

U/
~

2.9 8.92
"•"

1G".93 128.94
^

We now sum the terms :

} t

1st term,
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\ f

3. To (levcloi) V'"^.

Wo sue thiit 3 is till' nearest wliule number of the root. S»»

we put

Vs = V(:!»- 1) = a/:!-'(i - ') = ;i (i -
I)',

rnjui which the development may be eilected as before.

EXERCISr, s.

1. Compute the square root of 8 to decimals, and from it

lind the S([uare root of ^ by § 1H;5.

2. Develop (1 — .?•)-.

3. Develop (I —x)'K iind I'Xpress the term in xK

, 1 1-3 ., ,
1-3.5 „

,
.

Am. ^+^ + ^71^+^:^,^^''-^^^'

4. Develop r and cxi)ress the general term.

(1 + ^)^

/ 1\"*

5. Develop ( 1 + .) ii"(l express the general term.

6. Develop (1 — xy\ and express the general term.

7. Develop the m^^ root of 1 + m.

8. Develop {a — h)-\ when a <, b.

9. Develop (1 — x)'»\ when x > 1.

Because the development will not be convergent in ascend-

ing powers of x when x > 1, we transform thus:

1 —X = —xll— -J,

and so put (1 - x)-''' = (- x)'"' \l -
^j

•

10. Develop the in^''' power of 1 H

11. Compute the cube root of 1010 to six decimals.
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12. Dcnclop {\/n + ^/<'>')^

13, Uising the riujc'tiunul notation,

multiply tlu' two seriL'S, (p^tn) uiid 0(y/), and sliow by tlic for-

iiiiiKV ot'^ •.*<)! that the pruiliict i.s e(pial to f/>(m 4- }i).

The Exponential Theorem.

J501). Let it l)e ro([uire(l, if jxissihle, to (U'veh)p a^'' in

powers of .1', a being any quantity whatever. Assume

«•'• = (\ + C\x + rV^:- + C'gi:^' + etc. (1)

1.) he true tor all values ot'.i^. Putting any other (luantity ij in

jtlaee of .f, we shall have

a'J = a, + C\y 4- (W + <"3Z/" + etc. (2)

By the law of exponents we must always have

Now the value of a^^y is found by writing x -\- y for .t in

(1), which gives

a^^y = C\ + C\ {x+ij)^ C\ {x^iifJr C^ [x+ yf^QiQ. (3)

On the other hand, by multii)lying equations (1) and {'i),

we Ihid

a^ay == (7,2 + C,C,y + C\C,y^ + CoC'3/ + etc.

+ C\i\x + r.'i^A-?/ + C\C^xff + etc.

+ 6; (73,^2 ^ C'^ (72.i2^ + etc.

4- Co Cg^r^ _|_ etc.

By § 285, the coefficients of all the ])roducts of like powers

ef./'and ?/ must bo e([ual. By equating them, we shall have

more equations than there arc quantities to be determined,

and, unless these equations are all consistent, the development

is impossible. To facilitate the process of comparison, we
luive in equation (4) arranged all terms which are homogeneous

in X and y under each other.

(^) i
»'
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By iiutting x =() in (1), we find

u'O = 6V, whence C\ = 1. (§ 103.)

Comj)a]"ing the terms of the first degree in ./• iind y in (3)

and (4), we find

Coefficient of a;, C^ —- CqC^;
(I II

y^ c. C/qCj.

These two equations are the same, and agree with Cq — 1

;

but neither of them give^i a vaUie for 6'j, which must tlierefore

remain undetermined.

Comparing the terms of the second degree, we find, by de-

veloping {x + y)S

C^ {x^ + 2xy + y^) = C,x^ + C.^xy + C„jf,

which gives 2C„ — C\%

whence ^' - 1.1
^'''

Comparing the terms of the third order in the same way,

we have

C, (^+ 3xh/+ 3xy'^+ y^) = (\x^ -f C^ C\xhj + C^ C\xf+ C,y\

whicii gives

whence

Q n _.- n n — ^ n i.

P — -
'^ - 1.2.3

_ rr 3
o ^1 •

If the successive values of C follow the same law, we shall

have

and in general.

n _ r' 4.
f

4 — 41^1 '

(5)

Let us now investigate whether these values of C render

the equations (3) and (4) identically equal.

Let us consider the corresponding terms of the n^^ degree,

71 being any positive integer. In (3) this term will be

Cn {x -\- yY-
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law, we shall

EXPONENTIAL THEOREM.

Expanding, it will be

875

(<;)

.
In (4) the sum of the corresponding terms will be, putting

The first terms in Hie two expressions are identical.
The comparison of the second terms gives

nOn = C\Cn^i, whence Cn = -- G-i

This corresponds with (5), because (5) gives

t'/i-i —
(n-l)

1 rrn~l

and if we substitute this value of C.., in the preeedino- ex-
pression for Cn, it will become

^'

6f «7f^n —
71 \

which agrees with (5).

The third terms of (6) and (7) being equated give

Substituting the values of C^, C,, and Cn-^ assumed in the
general form (5), v/e have

l^^\ J_ r'^ - 1 1 n

and we wish to know if this equation is true.

Multiplying both sides by nl and dropping the common
factor d , it becomes

(n\ __ n \

\%1 V. (71 -2)1'
^vhich is an identical equation.

In the same way, the comparison of the following terms in
(0) and (7) give

('^] ^ ^}

'

/n\ _ n !

\3/ 3 ! (^ _ 3)
!

' \47 ~ Tr{^^'4^\ ' ^^^•'

vi i

\ f

T'l



376 EXPONENTIAL TRiiOREM.

all of which are identical equations. Hence the conditions of

the development, namely, tliat (G) and (I), and therefore (;3)

and (4), shall be identically oqnal, are all satisfied by the values

of the coefficients C in (5). Substituting those values in (1),

the development becomes

d'^ = \^CyX^-^-- C^j? -f \ ,
C\^c^ + etc. (S)

X.' lii 1 ' <i' O

This development is called the Exponential Theorem,
as the development of {n + b)"' is called the binomial theorem.

310. The valne of C\ u hUll to be rietermined. To do

this, assign to x the particular valine -:-,-- • Then the equation

(8) becomes '

1 111
«^> = 1 + 1 + :r-7, + i-a-.7 + r-,- .T-7 + etc., Cfd iuf, (0)

The second meml)er of this equation is a pure number,

without any algebraic symbol. We can readily compute its

approximate valne, since dividing the third term by 3 gives

the fourth term, dividing thii by 1 gives the fifth, etc. Then

1 + 1 =-

1-^1.;^:

1 -=- 1 o

1 ~ i.2-;3.4 -
1 _^ 1.2- 3.4. 5 —
1 _^ 1 c.;]-4.5.n =
1 ^ 1..2.3.1-5-G.T :rr

1 ^ ;.2.3.4.o.G.T-8 =:

1 _!_ 1.2.3.4.o.6.r-8.9 —

2.000000

.500000

.1GGGG7

.041GG7

.008333

.001389

.000198

.000025

. 000003

Sum of the series to G decimals, 2.718282

This constant number :s extensively used in the higher

mathematics and is called tne Naperian hase."^ It is rei)re-

sented for shortness by the symbol e, so that e = 2.718282....

The last equation is therefore written in the form

e.

* After Baron Napier, the inventor of logarithms.
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Raising to the (\^f^ power, we luive a = e<^'. Hence :

The quantity C\ is the e.vpoiipiit of tJie power to ivliicli

we DUist revise the constant c to produce the nmnber n.

We may assign one value to a, nann\v, e itg^K, whicl) -will

load to an interesting result. Putting a =: c, we have L\ ~\.

and the exponential series gives

X T'

If we put «:=:], we have the series for c itself, and if wo

put X -— — 1, we luive

- = I
e

1

^ I'^z 1.2.;3
"^ 1.^.3.1

— etc.

AVe thus have the curious result that this series and (i») arc

the reciprocals of each other.

'•
i[

EXERCISES.
1. Substitute in the first four or five terms of the expres-

sions (G) and (7) the values of C^^ C\, Cn-2, etc., given by (5),

aud show that (6) and (7) are thus rendered identical ;y equal.

Note. This is merely a slijjht modification of the ])rocess we have

actually followed in comparing the coefficients of like powers of x and y
in (0) and (7).

2. Compute arithmetically the values of 2.71832, 2.7183-1,

and 3.7183-2j and show that they are the same numbers, to

three places of decimals, that we obtain by putting x = 2,

X — — 1, and X = —'Z in (10), and computing the first eight

or ten terms of the series.

3. Since e^'^"' = e^, the equation (10) gives, by substituting

the developments of e^"*"^ and e''^,

(1 + xY (1 + .r)3 (1 + xY
1 + 1 + :^ + —It-- + -^T-- + -^TT— + etc.

2! 3! 4!

I X^ X^ X^
, \= .(l + .- + ^; + 5-, + j-, + etc.)

It is required to prove the identity of these developmentSf

by showing that the coefficients of like powers of x are equal.

(

'

1

t

1
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CHAPTER VI.

LOGARITHMS.

M^'

I.

i511. To form the logarithm of a number, a constant num-
ber is assumed at pleasure and called the base.

Def, The Logarithm of a number is the exponent

of the power to which the base must be raised to pro-

duce the number.

The logarithm of x ig written log x.

Let us put a, the base
;

X, the number
;

I, the logarithm of x.

Then a^ =z X.

Eem. For every positive value we assign to x there will be

one and only one value of I, so long as the base a remains un-

changed.

Def. A System of Logarithms means the loga-

rithms of all positive numbers to a given base. The
base is then called the base of the system.

Properties of Logarithms.

313. Consider the equations,

(fi =1', \ Mogl = 0;

a> = a\ >• whence by definition, < \oga = I',

«^ = «2
; ) ( log cfi = 2.

Hence,

I. TJie logarithm of 1 is zero, whatever be the base.

II. TIte logarithm of the base is 1.

III. The h'jarltlnii of any number between 1 and the

base is a positive fraction.

IV. The logarithms of powers of the base are integers,

but no other logarithms are.
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•

i

onstant num-

Again we have

«-i =

a-2 =

1

a

1

rt2

cr^ =
an

Hence,

log -- = - 1

;

a

whence by definition, ! log - = _ o

.

log — = — n.6 a"

) ..

.«

iS the loga-

L base. The

1
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or

Hence, by definition, h — k = log '\

log;;- log r/ = log^'.

IX. Theorem. The logarithm of any power of a num-
ber in equal to the logaritlnn of the number multipl'i'd

by the exponent of the pou'er.

Proof. Let h = log /;, and let w be the exponent.

Then «'* = p.

Euiding both sides to the )i^^ power,

a^fi = p^.

Whence 7ih = logj>",

or n log 2^ = log ;?".

X. Theorem. TJie logarithm of a root of a number
is equal to the logarithm of the number divided by the

index of the root.

Proof. Let s be the numlier, and let p be its n^^ root, so

that

Hence,

Therefore,

or

p =^ \/s and s = ;;".

log s = log ;;«• = n log ^j. (1X1^

log s
logp =

n

, n/ l02f s
log V5 — -

n

— onNote. We may also apply Th. IX, since p = A Con-

sidering - as a power, the theorem gives
n

^ogp = - logs.

EXERCISES,

Express the following logarithms in terms of hg p, hg q,

log X, and logy, a being the base of the system

:
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ts n^^ root, i^o

1. Log p^q.

2. Log jXj^.

3. Log/vV

Alts. 'Z log 2) + log q.

4. Log })q^xhf.

5. Log- = log 07;"^ and cx})lain the identity,

6. Log -— = lo

V<1

1/7-1ga-y^; ^q

Ans. Log .T + log y — log ^j — log q.

7. LOGf

Log Va^:

8. Î 0£f -a;"//
o ^//ly3

10. Log V^ V^.

II. jO or
;^

12. Log V'«.

13- I^og

^5- Log

rt:r.

a"'

1 4. Loi

16. Loo:

a

(0n-,fn

17. Log Vf(^ — x' A71S.

18. Log VT a^**

Log {a + ;g) + log ((^ — rg)

19. Log (a/^ — .r^).

Logaritliinic Series.

318. Rem. The logaritlim of a number cannot he devel-

oped in powers of the number. For, if possible, suppose

log X = Cq -\- C\x + C^x^ + etc.

Supposing x =: 0, we have

Co = log 0,

HV'hich we have found to be negative infinity (§ 312, VI).

Hence the development is impossible.

But we can develop log (1 + ^) in powers of y. For this

purpose, we develop (1 + yY by both the binomial and expo-

nential theorems, and compare the coefficients of the first

power of X. First, the binomial theorem gives

/-. , s^ -, xix — 1) ^ X (x — 1) (.r — 2) o ,
,

1-2 1.2.3

il k-

I *

I

i

'

I

i'!

!rt
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m

If wo develop the coefficients of ip, if, etc., by performing

the niuitiplicationa, we liave

.r^ — X
Coef. of if

1.2
part in .T = X

2

In general, in the coefficient of ?/", or

x{x—l){x — 'Z).... (x — n + 1),

the term containing the first power of x will be

Hence,

±l-2-3 (m— l).r _ .r

l')i''3 . . . . n ~ u

(1 4-^)-^' = 1 +:?• (y/ - I
4- ![-

- |-+ etc.) + terms in x^ A etc.

On the other hand, the exponential development, § 309, (8),

gives, by putting 1 4- ;y for a.

(1 + yY = 1 + C^x -\- terms in x% x^, etc.

Equating the coefficients of x in these two identical series

we have

_ y
yS r + etc. (1)

The value of C^ is given by the theorem of § 310, putting

1 + // for a ; that is, Cj is here defined by the equation

eC, =: 1 + y.

Hence, if we take the number e (§ 310) as the base of a

system of logarithms, we shall have

C^ = log (1 + y).

Comparing with (1), we reach the conclusion

:

Theorem. Assuming the Kapevian hase e as a base,

iv6 have

log {{+y)=y~ t +
I'
_ t + etc., ad inf. (•^)
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AA Lorrarithms to the hasn e aro caHed Naperian
Logarithms, or Natural Logarithms.

Tl.o appellation " natural " is used, because this is the simplest Hy.ste.n
of logantlmis. ' j v...

Kem. The series (2) is not convergent when y > 1, and
tlierefore must be transformed lor use.

Putting ~y iov y in (2), we have

log(l-y)^_^_|^_|^_ete.

S' btracting this from (2), and noticing that

log (1 + Z/) - log {l~y) = log
J:±-^

(Th. VIIT),

we have log ^^ ^ 2, + f + ^ + etc. (.)

Kow w being any number of which we wish to investigate

the logarithm, let us suppose y = -— This will give
^ ft ~'Y' J-

1 +y _ n + 1

1 — y
~ n '

whence ^^^ r-y = ^^^ —I- ^ log (^^ + 1) - log ^?.

Substituting these values in (3), we have

log {71 + 1) - log n = —1— -i. ? I ?_6
2;i-M ^3(2/1 + 1)3^5(27^ + 1)-^

+ etc. (4)

This series enables us to find log {n + 1) when we know
log n. To find log 2, we put n = I, which, because log 1

= 0, gives

7 5^7 '
^''^*

/
log 2 ~ 2

(

1111
+ +

^3 ' 3.33 "^ 5-35 "^
7-3^

Summing five terms of this series, we find

log 2 = 0.G93147

»

•

'III

t ,'1

"
f : : !f|

fi

\ 1
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Pill ting w = 2 in (4), wo have

loft :! = log 3 + a
(^^
+ 3 ',., + J-^ + ±^ + etc.),

wiiich ^nves log 3 = 1.09801'^.

Because 9 = 3'^, log \) -— 'Z log 3 = 53.197224.

Pnttin;,' 11 = in (4), wo have

log -.0 = log 9 + 'i
(V + ^J^.,- + _1_. + etc.),

whence log 10 = 2.302585.

In tliis way the Njiperian logarifiinisorall numbers may 1)0

computed. It is only necessary to compute the logaritimis (<!'

the ju'ime numbers from tiie series, bec-ause those of the coni-

])Osite numbers can be formed by adding the logaritlims of

their prime factors. (§ 312, Xil)

81.4, Definitive Form of the Exponential Sericfi. We arc

now prepared to give the exponential series (§ 309, 8) its deli-

iiite form. Since the coellieient (\ is defined by the equation

c^'< = a,

tlie quantity (' is tlie Naperian logarithm of a. Hence, the

exponential series is

«^ = 1 + ^-'og-'^ + (£:-l|£«J' + {^JfJ^^ + etc.,

which is a fundamental development in Algebra.

By putting a = e, we have log « = 1, and the series l)c-

comes that for e^ already found.

By putting x=zl, we have an expression for any number

in terms of its natural logarithm, namely,

^-^^
1 + 2! + 3! + 41 ^^^^^*

Comparison of Two Systems of Logarithms.

315. Put e, the base of one system
;

a, the base of another;

n, a number of which we take the logarithm

in both systems.
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:arithms.

Putting / and / for tlie lu«,'iiritlini8 in tliu two nystcms, wo

have

and tin'rcforo ai'. (1)

Now ])ut k for the logarithm of a to the base e. Then

e* = rt,

and raising both members to the l'^'^ power,

c^v — iil\

Comparing with (1), / = kX

^

or V = 1 X
1

C^^)

This C(iuation is entirely independent of n, and is therefore

tlie same for all values of n. llenee,

Theorem. // we inulti/)Iij the lo^^drUhDh of (unj

number to the base a by t/ir logdvitJim of a to the b(tse e,

ice shall have the lo^arlthiii of the iiumber to tue base e.

310. Although there may be any mimbei of systei is

of logarithms, only two are used in practice, namely :

1. The natural or Naperian system, base = c —
2.718282 ....

2. The common system, base = 10.

The natural system is used for purely algebraic

purposes.

The common system is used to facilitate numerical

calculations.

Assigning these values to e and a in the preceding section,

the constant k is the natural logarithm of 10, which we have

found to be 2.302585.

Therefore, by (2), for any number,

uat. log = common log x 2.302585,

and
nat. log.

common log = ^;^^^^^

Hence,

= nat. log X 0.4342944....

25

|i »

1

I

I'
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Titkouj:m. 77//! ronininn In^nrifhin of ftnij nunihrr
vufi/hr J'onyiid hij inidtiitliiiiid ifs imturdl hnjnrithni hif

OA'.U'V.m .... //;• //// ////' reciprocal of the JWiftcr'nin loi^i-

rif/ini, itf 10.

Jhf. The number 0.4842944 is called the Modulus
of the eoiniiioii system of logjirithms.

EXERCISES.
1. Show that if a and b he any two hascs, the lop^arithm of

a to the haso b and tho logarithm of h to the base a are the n-

ciprocals of caeh otlier.

2. Wliat docs this theorem express in the case of the natu-

ral and common systems of logarithms ?

I,

Coiniiioii Lo^iii'idims.

317. Because

10'^ = 100,

10^ = 10,

100 _ 1,

10-1 ^ 1

10'

10-2 — __L-
^" - 100'

etc.

we have to base 10,

log 100 "
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of the luitu-

10 =
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whence, by subtraction,

com. log (w + 1) — com. log??, z=z il/'[nat, log(w + l)— nat.log?^];

and, by substituting for nat. log (m 4- 1) — nat. log n its

value, § 313,

com. log {n + 1) = com. log u -f 'ZM
^1

I _^

By means of this series, the comjiutations of the successive

logarithms may be carried to any extent.

Tables of the logaritluns of numbers up 100,000, to seven places of

decimals, are in common iise for astronomical and matliematical calcubi-

tions. One table to ten decimals was published about the beginning of

the ])resent century. The most extended tables ever undertaken wore

constructed under the auspices of the French government about 1795, and

have been known under the name of Les Grander Tables du CaddHtn.

Many of the logarithms were carried to nineteen places of dccimalH.

They were never published, but are preserved in manuscript.

Ji20. It may interest the student who is fond of computa-

tion to show how the common logarithms of small numbers

may bu comiiuted by a method based immediately on first

principles.

Let n be a number, and let - be an approximate value of

its logarithm. We shall then have,

n = 10^,

or, raising to the q^^ power,

n'i = lOP.

Hence, could we find a power of the number which is also

a power of 10, the ratio of the exponents would at once give

tlie logarithm. This can never be exactly done with whole

numbers, but, if the condition be approximately fulfilled, we

shall have an approximate value of the logarithm.

Let us seek log 2 in this way. Forming the successive

powers of 2, we find

2^0 = 1024 = 103(1.024). (1)
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the successivo

mate value of

the successive

Hence, 3 : 10 — 0.3 is an approximation to log 2. To
find a second approximation, we form the powers ot! 1.0'M

until we reach a numl)er nearly equal to 2 or 10, or the (|Uo-

tient of any i)ower of 2 hy a power of 10. Suppose, for instance,

that we find
1.02-1'^' = 2.

Because 1.024 = 2^^ 4- 10^, this equation will give

2, or 2^0'" -- 2.103^, or 2i"-'^-i = 10">^,

which will give log 2 =^ 102' -

If we form tlie powers of 1.024 by the binomial theorem,

or in any other way, we shall find that x is between 29 and 30,

from which we conclude that log 2 = 0.301 nearly.

To obtain a yet more ex-ict value, we form the 30th power

of 1.024 to six or seven decimals, and put it in the form

1.024-* — 2 (1 + a),

where « will be a small fraction.

Then Ave findwdiat power of 1 + « will make 2. L(>t y be

this power. Raising the last e<|uation to the ijth power, we

luive

1.02430y - 2i'(l + a)y = 2i'*i.

Putting for 1.024 its value, 2^*^ -^ 10^ this equation l)ecomes

2300y

10902/

— 07/

n

or

whence. log 2 = o

lO^J,

299// — 1

By a little care, the value of y can be obtained so accurately

that the vahie of log 2 shall be correct to 8, 9, or 10 }tlaces of

decimals.

The power to which we must raise 1 + r« to produce 2 will

,
. . 1 Nap- log 2 , . „

be approximately —-—-— , when « is very small.

I'

I t

i i
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EXERCISES.

1. In the common system {a —. 10) we have

log 2 = 0.30103, log 8 ~ 0.47712.

Ilcncc find the logarithms of 4, 5, 0, 8, 9, 12, 12|-, 15, in,

inf. 18, 20, 250, 0250.

Note that 5 = V, '^^ ~ H^> 1Q§ = -'},", and npply Tu. VIII.

2. How many digits are there in the Inindredth power of "^ ?

3. Given log 49 = 1.690190 ; find log 7.

4. Given log 1331 — 3.124178; find log 11.

5. Find tlie logarithm of 105 and 1,05 from the above data ?

6. Find the logarithm of 1.05'*^.

7. If $1 is put out at 5 per cent, per anLum compoiiiid

interest for 1000 years, how many digits will be required to

express the amount? (Compare § 210.)

8. Prove the equation

1 1
log .7; =r - log {X i- 1) + ^ log {X - 1)

r__j^ i_ _ 1
"^

L''^^'*^'"^^
"^ H^h^-'iy

'^'
5 {2xi - ly "^ ^^^•

9. If
If

—. log .?, of what iiumbers will y -{- 1, 7/ -^ 2, y — 1,

and y — 2 be the .'ogarithms ?

10. Find X from the equation c^' — //.

Solution. Taking the logarithms of both members, we have

X log c = log h ;

log A

logc
whence, X

II. "OJ'
71. 12. (PX ^ 1.

Ill

13. h^
1

P
14. h~'' = p.

Sliow that the answers to (13) and (14) are and ought to be identical.

15. (f<-'^^ = m. 16. b(F' = i\

17. Find X and y from the equations

a^'by — p, lOJl"^- — q.
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IMA GINA RY O UA N TITIR S.

e above data ?

to 1)6 identical.

CHAF'TER I.

OPERATIONS WITH THE IMAGINARY UNIT.*

3^1. Since the square of either a negative or a positive

quantity is always positive, it follows that if we have to extract

the square root of a negative quantity, no answer is possible,

ill ordinary positive or negative numbers (§§ 170, 200).

In order to deal with such cases, mathematicians liave been

k'd to siqrpose or imagine a kind of numbers of which the

sijuares shall be negative. These numbers are called Imagi-

nary Quantities, and their units are called Imaginary
Units, to distinguish them from the crdinary positive and

negative quantities, which iire called real.

333. T/ie Imaginary Unit. Let us have to extract the

square root of — 9. It cannou be equal to -f 3 nor to — 3,

because the square of each of these quantities is + 0. We
may therefore call the root V— 9, just as we put the sign -v/

liL'tbre any other quantity of which the root cannot be extracted.

But the root may be transformed in this way :

Since — 9 = -f 9 x —1,

it follows from § 183 that

a/—~9 — a/9 V—"l = 3\/~l.

* It ia not to be expected that a beginner will fully understand this

subject at once. But he should be drilled in the mechanical process of

operating with imaginarios, even though he does not at first understand

their significance, until the subject becomes clear through fauiiliarity.

>
•

I
!
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Def. The surd V— 1 ia the Imaginary Unit. Tlie

imaginary unit is commonly expressed by the symbol /.

This symbol is used because it is easier to write i than

V-l.
The unit i is a supposed quantity such that, when squared,

the result is — 1.

That is, i is defined by the equation

i2 = - 1.

Theorem. Tlie square root of any negative quantity
maij he expressed as a nnniher of inuiginary units.

For let — n be the number of which the root is required.

Then V— n = V -\- n V— 1 = \^ni.

Hence,

To extract the squa.re root of a negative quantihj,

extract the root as if the quantity were positive, and
affix the syjuhol i to it.

323. Complex Quantities. In ordinary algebra, any num-

ber may be supposed to mean so many units. 7 or a, for

example, is made up of 7 units or a units, and might be writ-

ten 7-1 or «1.

When we introduce imaginary quantities, we consider them

as made up of a certain number of imaginary units, each repre-

sented by the sign «', j'lst as the real unit is represented by the

sign 1. A number h of imr.ginary units is therefore written bi.

A sum of a real units and b imaginary units is written

a + bi,

and is called a complex quantity. Hence,

Def. A Complex Quantity consists of the snm of

a certain number of real units plus a cei'tain number of

imaginary units.

D(f. When any expression containing the symbol

of the imaginary unit is reduced to the form of a com-

plex quantity, it is said to be expressed in its Normal
Form.
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Addition of Comijlex Expressions.

334:, The algebraic operations of addition and subtraction

are performed on imaginary (juantities according to nearly the

same rules which govern the case of surds (§ 181 j, the surd

being replaced by i. Thus,

aV— 1 + bV— 1 = <(i + bi = (a + b) i.

Hence the following rule for the addition and sul)traction

of imaginary quantities

:

Add or subtract all the real terms, as in ordinal-!/

algebra. Then add the coefficiejits of the iina^i/iftrij

unit, and afji.v the symhol i to their sum.

Example. Add a + bi, G + Ti. 5 — lOi, and subtract

0(1 — :ibi + z from the sum.

Wo may arrange the work as follows

:

a + bi

+ 7i

5 — iOi

— z — oa -f- 2bi (sign changed).

Sum, — z — U + 11 + (S^* — 3) i.

EXERCISES.

1. Add 3;/' H- 42/i + m, "2m -\- bni, Gni — Gyi.

2. Add 4ai, 17?*, oa + Gbi, x + yi.

3. From the sum a -\- bi -\- m — ni — }) -\- qi subtract tho

.sum -\- yi — z — ui.

Txcduce to the normal form

:

4. a -{- bi — (m — 7ii) — {x }- yi).

5. m {a — bi) — 71 {x — yi).

Multiplication of Complex Quantities.

335. Theorem. Ml the even powers of the ima^i-
narij unit are real units, and all its odd powers are

iniaginarrj units, positive or negative.

•-, (

. ifl

iil
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Proof. The imaginary unit is by definition such a symbol

as when squared will make — 1. Hence,

i^ = - 1.

Now multiply both sides of this equation by i a number of

times in succession, and substitute for each power of i its value

given by the preceding equation. We then have

i^ = — ?',

i'^ = — i^ = + 1 (because i^ = — 1),

,;5 —

V = — (^ = 4- /•' = — i,

etc. etc. etc.

It is evident that the successive powers of i will always

have one of the four values, i, — 1, — i, or -\- 1.

i,
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'u

nary units are reduced to the normal form, so that the equation

shall be in the tbnu
A + /;/ = J/ f Ni,

Avc must have the two e({uatious,

A = M, B z= NT.

For, by transposition, we obtain

^ -J/+ {B-N)i = 0,

whence the theorem gives A — 31 = 0, B — N=0. Hence,

Every equation hetween coinjjJex qiuuUiUes liivoli'cx

tuH) equations between real quantities, fornied hy equatin<J

the numbers of real and imaginary units.

lieductioii of Functions of i to the Normal
Form.

3!38. 1. If we have an entire function of /,

a + hi -\- ci^ + di^ + ei^ -\-fi^ + etc.,

we reduce it by putting

and the expression will become

{a — c -{- e — etc. ) -j- [b — d +f— etc. ) /

;

which, when we put

X = a — c -{ e — etc., y = h — d -\-f— etc.,

becomes x + yi, as required.

2. To reduce a rational fraction of / to the normal form,

we reduce both numerator and denominator. The fraction

will then take the form
a + bi

m + ni

Since this is to be reduced to the form x + yi, let us put

a + bi
, .—-—

• = X { yi,m + ni ^

X and y being indeterminate coefficients.

Clearing of fractions,

a -\- bi := mx — ny + {wy + iix) i.
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Comparing tlie iiunibur of roul and imaginary units on

cacli side of the equation, we have the two e((uatious

mx — ny = a, nx + my = b.

Solving them, we find

X = ma \- nh
y

mb iia

rj.. n rt 4- bi ma + 7ib
,
mb

Therefore, —;—. = —r——^ + -
.,

71a
I,m -\- ni m^ + /i^ ni'^ + n^
'

whieh is the normal form.

le Normal

EXERCISES.

Reduce to the normal form :

I. 7 _ 3i _ Oi"2 + 2/3 + i^ - ^•5.

2.

7-

1 + 'i-

C — 5/:'

1- i

2 + 4^'

1 + A

5-

8.

1 — 4

a 4- i/

3.

6.

i- 1

wu' (.f — ai)

X + rti

(rt + ii) {a— hi)

a — bi

10. What is the value of the exponential series which gives

the development of e*? We put x = i in § 310, Eq. 10.

11. Develop (1 + xi)^ by the binomial theorem.

12. What are the developed values of

(1 + bi)» + (1 - ^'0"

and (1 + bi)^ — {1 — bi)^?

13. Write eight terms of the geometrical progression of

which the first term is a and the common ratio i.

14. Find the limit of the sum of the geometrical progres-

sion of which the first term is a and the common ratio -•

329. To reduce the square root of an imaginary expres-

sion to the normal form.

Let the square root be \/a 4- bi.

We put X -\- yi = V« + U.

Squaring, x^ — y^ -{- 2xyi = « -f bi.

! I

' M

t

'

I

,

'
I
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Comparing- units, x^ — ip = n,

%ry — I).

Solving tliis pair of quadratic e([uation.s, we Unci

_ V_{V¥Tt/^ + a)

Therefore,

^/ai 4- i2 _ aV
EXERCISES.

Reduce the square roots of the following expressions to tlu'

normal form

:

I. 3 + 4i. 2. 4 + 3i. 3. 12 4- 5i.

4. Find the square roots of the imaginary unit i, and

of — i, and prove the results by s({uaring them.

Note that this comes under the preceding form wlien « = and

6=±1.

5. Find the fourth roots of the same quantities by extract-

ing the square roots of these roots.

8.30. Quadratic Equations ivith hnaginanj Roots. The

combination of the preceding operations will enable ns to solve

any quadratic equation, whether it does or does not contain

imaginary quantities.

Example i. Find x from the equation

x' + 4a: 4- 13 = 0.

Completing the square and proceeding as usual, we find

a;2 + 4-2: + 4 = — 9,

whence a; -f 2 = V— 9 = ±
and

Ex. 2.

Completing the square,

3/.

X = — 2 ± 3*.

x^ + bxi — C z=: 0.

, ^ . b^ ^
x^ -\- bxi — - =r r — - •

4 4
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Extracting the root,

.r
^

hi _ V4c~ b^

'Z 2

wlionce X = ±^V(4.-/;^)-^.

±lsi!i) i

•essions to tlio

12 -f- 5t.

y unit i, aiitl

vhen a = and

ics by extnu't-

Roots. 'riio

jle us to solve

s not contain

lal, we find

EXERCISES.

Solve the quadratic e([uatioii8:

I. x^ -^ X -\- I = 0. 2. .^2 _ a; -(- 1 — 0.

3. a-2 + 32- 4- 10 = 0. 4. a:2 _^ iq^. ^ 34 _ 0.

Form quadratic equations (^ 109) of wliicli tlie roots shall he

5. a 4- hi and a — hi. 6. ai -\- h and ai — h.

3.'51. Expnnetitial Fii7icfi(ms. When in the exponential

function a^ we suppose 2 to represent an imaginary expression

./• 4- yi, it becomes

This expression could have no meaning in any of our pre-

vious definitions of an exponent, because we have not shown

what an imaginary exponent could mean. But if we suppose;

the effect of the exponent to be detined by the exponential

theorem (§§ 309, 314), we car develop the above exi)rcssion.

First we have, by the fundamental law of exponents,

f^x+yi — a^avK

Xext, if we put c = Xap. log a, we have

a = e^;

whence, av^ = e<^*.

If we put, for brevity, cy = u, we shall now have

The value of a^ being already perfectly understood, we
may leave it out of consideration for the present, and investi-

gate the development of e"*. By the exponential theorem

(§ 310, 10),

, ^ .
?/2^*3 ^^3|;3 ^^4|4 ^/5^'5

«"' = ! + »' + Tr + "3
!
+ IT + Tr + "'"•

» }•

1 I

>!

'i: it
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Siibstituliii<; for the powers of / their values (§ 325),

•^ = 1 - ai + 41
- 0"! + ^•'"- + i» - a !

+ 5!
-

"'^-l
'•

These two series are eaeh fuiiclions of ii, to which special

namen have been given, namely

:

u* It; n6 ir
Dof. The series 1 — j-i + ji ~ Ft + ut

~ ^^^'' ^^ called
^» "Xt ')• 0»

the cosine of*/, and is written cos n.

w 11° w ti^

Def. The series ^^ — ni 4- r ,

—
^Tf + (Ti

~ ^^^'^ ^^ tjalled

the sine of vf, and is written sin it.

Using this notation, the above development beeomos,

f,Ul — COS 11 + / sin n, {")

whieh is a fundamental e<puition of Algebra, and should 1m'

memorized.

Remarks. These functions, cos u and sin ?^ have an ex-

tensive use in both Trigonometry and Algebra. To familiarixc

himscir with them, it will be well for the student to compuir

their values from the above series for w = 0.25, i« = 0.5(i,

M=],w = 2, to three or four ])laces of decimals. This c;ui

be done by a process similar to that employed in computiug c

in § lUO. If the work is done correctly, he will find:

1 1
For
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Sinco cos H IucIikK's otily even powiTs of i/, its vuliir will

remain uiichiin^ad when we cluiiigi' flic sign of n IVoiii -}- lo

— , or vice i'i'r.s((. 11 ence.

cos (— ?/) = c08 If. (I)

Since sin u contains only odii powers of it, its si«^n will

clmnire with that of u. Hence,

sin (- ") = - sni II. {'^)

Tf in the cqnation (a) we chnni^c the sign of ?/, wc luive

hy(l)un(l(-^),

or

c"^'* = cos (— n) -f i sill (— n),

g~Ui — coy ^i _ / {<in y.

Now multiply this etpuition l)y (^0- »Siiice

nUi )—uifiUl V ^>"~M» ZHZ ('"'' Xui
>ui
= 1,

ehAve nave

or

1 = (cos u)'^ — i2 (sin yy

1 = (cos 7^)2 + (sin ?/)2.

It is cnstomary to write cos^ w and sin^ //. instead of (cos uy
and (sin uy, to express tlie sipiare of the cosine and of the

sine of n. The last e(puiti()n will then be written

cos^ u -\- sin^ u = 1. {()

Although we have deduced this equation M'ith entire rigor,

it will be interesting to test it by s([uaring the equations (0).

First squaring cos ti, we lind (§ 284),

cos^ u = 1 — 2C'^ + 21* (-r-. 4-
2!2!

+ :)- etc.

The coefficient of w** is found to be

1 11
+

7i\
'^

2! {n - 2)!
'^

4-1 (n- 4)!
"^ '^ n]

wlien n is double an even number, and to the negative of this

expression when w- is double an odd number.

Again, taking the square of sin ti, we find

sin""^ 11

26

^'' + ^^'(-iT3-i-rn3-:) + ^^^-

if >

f'

» I
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ing a simple conclusion of this kind in such a wny, the mathe-

matician always likes to test its correctness by a direct i)rocess,

wiicn possible.

Let us now resume the fundamental equation [a), Since

u nuiy here be any quantity whatever, let us put mi for ic.

TIic equation then becomes,

^md — cos 7iu + i sin nu.

But by raising the equation (a) to the ??''* power, we have

gnui — (cos II
-'-

i sin ?/)".

Hence we have the remarkable relation,

{c^s u + i sin n)"- = cos 7in + / sin 7i2/.

Supposing 71 zzz 2, and developing the first member, we

iiave

cos^ 71 — sin^ 71 + 2/" sin 7i cos h = cos 2u + / sin '2u.

Equating the real and imaginary parts (§ 327, Cor.), we have

cos'^ 71 — sin^ t( = cos 2?/,

2 sin 7C cosu = sin 2u,

relations which can be verified from the series representing

cos u and sin 7(, in a way similar to that by which we verified

sin^ u -f cos^ ic =. 1.

EXERCISES.

1. Find the values of cos^ 7i, sin^ 7(, cos' w, and sin^ u by

the preceding process.

2. Write the three equations wdiich we obtain by putting

u = a, 7i = b, and 7c — a -{- b in equation (a). Ulien equate

the product of the first two to the third, and show that

cos (n -\- b) =z. cos a cos b — sin a sin b,

sin (a -\- b) = sin a cos b -\- cos a sin b.

3. Reduce to the normal form,

{x — i) {x — 2i) (x — Si) {x — ii).

4. Develop {a -f bi)^ by the binomial theorem, and reduce

the result to the normal form.

i'
•

:

,

'

I'
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CHAPTER 11.

THE GEOMETRIC REPRESENTATION
QUANTITIES.

OF IMAGINARY

o3t5. In Algol )ra and allied branches of the higher maHn'-

nuitics, the fundamental operations of Arithmetic are extended

and generalized. In Elementary Alge1)ra we have already hml

several instances of this extension, and as we are now to liavi'

a much wider extension of the operalions of addition and mul-

tiplication, attention should be directed to the principles

involved.

In the beginning of Algebra, we have seen the operation u{

addition, which in Arithmetic necessarily implies increase, so

used as to produce diminution.

The reason of this is that Arithmetic does not recognize

negative quantities as Algebra does, and therefore in employ-

ing the latter we have to extend tlie meaning of addition, so ;i,s

to apply it to negative quantities. When thus applied, we

have seen that it should mean to subtract the quantity which

is negative.

In its primitive sense, as u.-^ed in the third operation of

Arithmetic, the word Dudfip/f/ means to add a quantity to itself

a certain number of times. In this sense, there would be no

meaning to the words ''multinlv 1)V a fraction." But we ox-

tend the meaning of the word multiply to this case by defining];

it to mean taking a fraction of the quiintity to be multiiiliid.

"We then find that the rules of multiplication will all apply t"

this extended operation.

Tliis extension of multipli(Mition to fractions does not tiike

account of negative multipliers. In the latter case we ran

extend the meaning of the operation by providing that the

algebraic sign of the (juantity shall be clianged when the mul-

tiplier is negative. We thus have a result for multiplicnli 'ii

by every positive or negative algebraic number.

Now that we have to use imaginary quantities as multi-
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lies increase, m

pliers, a still fnrthcT extension is necessary. Hitherto our

operations with imaginary units have been jiurely symbolic
;

that is, we have used our symbols and ])erformed our operations

without assigning any delinitc meaning to them. We shall

now assign a geometric signitication to operations with imagi-

nary units, subject to these three necessary conditions :

1. The operations must be subject to the same rules as

those of real ([uantities.

2. The result of operating with an imaginary qnantily

must be totally ditTerent from that of operating with a real one,

and the imaginary f[uantity must signify something which a

real quantity does not take account of.

3. If the imaginary quantity changes into a real one, the

operation must change into the corresponding one with real

quantities.

834. Geometric Reprcseiifcdion of Tmafiinary Units. Cer-

tain propositions respecting the geometric representation of

multiplication have been fully elucidated in Part I, and arc

now repeated, to introduce the corresponding representations

of complex quantities.

I. All real numbers,, positive and negative, may be arranged

along a line, the positive numbers increasing in one direction,

the negative ones in the opposite direction from a fixed zero

point. Any number may then be represented in magnitude

by a line extending from to the place it occupies.

We call this line a Vector.

II. If a number a be multiplied by a positive multiplier

(for simplicity, suppose +1), the direction of its vector will

remain unaltered. If it be multiplied by a negative multiplier

(suppose —1), its vector will be turned in the opposite direc-

tion (from — « to + (7, or vice versa). Compare § T3,

where the coarse lines are the vectors of the several (luantities.

— a + a

itlties as multi-

Ill. If the number be multiplied twice by — 1, that is, by

(—1)2, its vector will be restored to its first position, being

twice turned, and if it be multiplied twice by -f 1, that is, by

(-f l)"'^, its vector will not be changed at all. Its vector will

»

'

f

* >l
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m

-t-la

— a- — +«

—ia

therefore be found in its first position, whether we multiply it

by the square of a pcsitive or of a negative unit; in othei-

words, both squares are positive.

]V. To multiply the line + a twice by the imaginary unit

«', is the same as niultii)lying it by i^ or — 1. Hence,

Midti/f/ijii/o' hij the inutgbiarij itiiit i must 'Jirr the

vector sitch a Diotioii as, if repeated, will cJiau^e it from
-\- a to — a.

Such a motion is given by turn-

ing the vector through a right angle,

into tlie position + ia. A second

motion brings it to the position

— a, the opposite ql -^ a. A third

motion brings it to — ia, a position

the opposite of + in. A fourlii

motion restores it to tJic original

position + a.

If we call each of these motions multiplyiny by i, we have,

from the diagram, a =. a, ia — ia, tki =z — a, i^a =. — i<t,

i% = a, which corresponds exactly to the law governing the

powers of i (§ 326). Hence :

// a q-itantity is represented hy a vector extending

from a zero point, the midtiplicatioii of this quantity hi/

the imaginary unit maybe represented by turning the

vector through 90°.

V. In order that multiplier

and multiplicand may in this op-

eration be interchanged without

alTecting the product, we must
suppose that the vertical line

which we have called ia is the

same as al, that is, that this lino

represents a imaginary units.

TVe have therefore to count

the imaginarjf units along a
vertical line on the same system that wecoivnt the real

units on a horizontal liihe.
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(Hint the real

hi

bi

a-hbi

bi

^^
a

/

-a~bi

bi

J>35. Gpometric Representation of a Complex Quantit//.

We have shown (§ 15) tliut algebraic addition may be repres«entud

by putting lines end to end, the

zero point of each line added be-

ing at the end of the line next

preceding. The distance of the

(lid of the last line from the zero

point is the algebraic snm.

On the same system, to repre-

sent the algebraic snm of tlie real

and imaginary quantities a -\- bi,

we lay off a units on the real (horizontal) line, and then b

•nits from the end of this line in a vertienl direction. The

end of the vertical line will then be tne position corresponding

to a -\- bi.

It is evident that we should reach the same point if we

first laid off b units from on the imaginary line, and then a

units horizontally. Hence tliis system gives

/;/ -\- a =z a -\- hi,

as it ought to, to represent addition.

If a or h is negative, it is to be laid off in the opposite di-

rection from the positive one. We then have the points cor-

responding to — « + bi, — a — bi, and a — bi, shown in the

diagram, which should be carefully studied by the pupil.

The result we have reached is the following

:

Every complex quanfifqj a + bi is considered as he-

lon^in^ to rt certain point on the plane, namely, tliab

point which is reached by laying off from the zero point

a units in the horizontal direction and b units in the

vertical direction.

Of36. Addition of Com-

plex Quantities. If we have

several complex terms to

add, as a -\- bi, m — ni,

p + qi, we may lay tlieni

off se]wrately in their ap-

propriate magnitude and di-

-

1

I
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f : I

roction, as in the figure, the last line terminating in a

l)()ii)t K.

If we first add the quantities a + bi, etc., algebraieally

(§ 22-1), the result will be

a -|_ ,n ^ p ^ (7) — n + q) i.

AVe may lay ofE this sum in one operation. The sum a-{-m

\-p will carry iis from to jVI, and the sum {h — n + q) i

from M to R, because MR == i — n + q. Therefore we shall

reach the same point R whether we lay the quantities off sepa-

rately, or take their sum and lay off its real and imaginary

parts scpjirately.

*i*Mi, Vectors of Complex Qiiantitirs. The question now
arise:^ by what straiglit line or vector siiall we represent a sum

of C(3mplex quantities ? The answer is

:

Tlie vector of a sum of sev-

eral vectors is the strai£7it line

from the h'^giunin^ of the first

to the end of the last vector

added.

For example, the sum of the

quantities OX — a and XP = hi is the vector OP.

It miglit seem to the student that the length of the vector represent-

ing tlic &um shouhl he equal to the combhied lengths of all the sepaiutc

vectors. This difficulty is of the same kind as that encountered hy tlu'

beginner in finding the sum of a positive and negative quantity less than

cither of them. The solution of the difficdty is simply that by addition

we now mean something difTerenc from both arithmetical and algebraic

addition. But the operation reduces to arithmetical addition when the

quantities are all real and positive, because the vectors are then all placed

end to end in the same straight line. Therefore there is no inconsistency

between the two operations.

Two imaginary quantities are not equal, u- less botl' their

real and imaginary parts are ecpial, so that tiieir sum shall tei--

minate at the same point P. Their vectors will then coincide

v.ith each other. Hence

:

Two vectors are not considered equal unless they a^rce

in direction as well as length.
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itmg in a

Ijrubraiciilly

D sum a 4- /?'

) — w + (/) i

ore we sluill

ties off sepa-

(1 imaginary

^ucstion now

resent a sum

&i

X

P.

ector rcproscnt-

all the st'piinitc

liuntercd by tlu;

aiitity less tluui

hat by addition

lal and algebraic

llition when tl-.e

then all placed

LO inconsistency

less both Hu'lr

5um sball trv-

Itlien coincide

\ss they a^ree

111 other words, iih ordrr to dctcrnune a rector com-

pletely, we viust know Us direction as 'cell as its (enjjt/i.

This result embodies the theorem of the i)receding' chapter (j^ 327),

tliat two cotnpU^x (luantities are not e(]ua) unless both their real and
imaginary parts are ecjual. It is only in case of this double ('(juality that

the two complex quantities will belong to the same j)oiut on the ].lano.

Because OXP is a right angle, we have by the Pytbagoreati

theorem of Geometry,

(length of vector)'-' = a^ + />'-,

or length of vector =: \^a'- -\- /A

We arc careful to say longfit of vector, and not merely vec-

tor, because the vector has direction as well as length, and the

direction is as important an element as length.

To avoid repeating the words ''length of," we shall put a

dash over the letters representing a vector when we consider

only its length. Then OX will mean ioif/fh of the line OX.

Def. The length of the vector, or the expression

Va- + b'\ is called the Modulus of the complex ex-

pression a + bl.

The modulus is the absolute value of the expression, con-

sidered without respect to its being positive or negative, real

or imaginary. Thus the different expressi(Uis,

— 5, +5, 3 -f 4/, 4 — ?ri, bi,

all have the modulus 5 (because ^/'.V^ + 4^ = 5). The points

which represent them are all 5 units distant from the zero

point, and so lie on a circle, and their vectors arc all 5 units in

length.

The German mathematicians t'^erefore call the modulus

the ((hmlute value of the complex quantity, and this is really

a better term than the English ex])ression modidus.

Def. The Angle of the vector is the an.2;le which it

makes with the line along which the real units are

measured.

If OA is this line, and OB the vector, the angle is AOB.

I I

s

i in

i

i

'

" 'jf'l
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EXERCISES,

Lay off the following complex quantities, draw the vectora

corresponding to them, and find the modulus both by measure'

mcnt and calculation :

I.
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the vectors

3y measure

-

t + 3i.

4?.

-7/.

4i.

- i.

ark several

icasnremciit

•aw the sev-

this exerciso

IS and their

leases, bat a

1 next arises

of complex

multipliea-

aws.

Bf
.^

B

I—-A -^

net ma, and

AB are both

md A'B', we

Therefore tlie triangles OAH and OA'IV arc siniilai' and

('(^iiiangular, so that

angle A'OB' ^ angle ' OB.

This shows that the linos i)\\ and OB' coincide, so that

I'»IV is the continuation of OB iu the same straight line. More-

over, the above proi)ortioii gives

OB' = w/OB,

or, from (1), vector (*B' = m vector OB.

Therefore. inulti])hjim2 a vector hti a veal factor

vhauges its length ivithont altering its dirretion

.

II. To multiply a vector hij the ii)iftginary unit.

Multiplying- -f- bi by i, the q
result is

— b-{- ai.

The construction of the two

vectors being made as in the fig-

ure, we have

OB = a 4- hi,

OQ =: - Z* 4- <n\

Because the triangles OPQ and OAB are right-angled at P

iuid B, and have the sides containing the right angle e([ual in

length, they are identically equal, and

angle POQ = angle OBA = 00° - angle BOA.

Hence the sum of the angles POQ and BOA is a right

angle, and because POA is a straight line, therefore,

angle BOQ - 9C".

Therefore, the result of iivuUiplyiiig the vector OB by

the imaginary unit is to turn it 90° without changing
its length.

We have assumed this to he the case when the vector represents a

real quantity, or lies along the line OB ; we now see that the same thing

holds true when the vector represents a complex quantity.

If instead of the multiplier being simply the imaginary

unit, it is of the form 7ii, then, by (I), in addition to turning

the vector through 90°, we multiply it by w.

H •

f :

I

t I

I
t

'I ,
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III. To niiUtiplij a vector hy a complex quantlly,

m + ni.

This will consist in inultii)lying separately l)y m and ;//,

and uddiii*^ the two products. Put OB = a ]- di, the vector

to he miilliplied ; ON =
7n + Hi, the inulti[)licr.

To multiply OB hy w,

we take u length OC, deter-

mined hy the proportion,

OC : OB = m : 1, (I)

whence hy (I),

OC = m-OB
= m {a + hi).

To multiply OB hy ni, we take a length CD determined

hy the condition,

length Q\) =: n length OB,

or CD : OB n 1;

and to multiply hy i, we i)lace it perpendicular to OB. (11)

We then have,

CD r= OB X ni.

In order to add it to OC, the other product, we place it as

in the diagram, and thus lind a point D which corresponds to

the sum
OC + CD = OB X m + OB x ni

;

that is, to the product

{m -\- ni) {a + hi).

Now because OC = OB x m and CD = OB x n, we havo

OC : C D =m'. n = OM : MN,

and because the angles at M and C are right angles, the tri-

angles OCD and OMN are similar. Therefore,

angle COD = angle MON.

Hence the angle AOD of the product-vector is equal to the

sum of the angles of the multiplier and multiplicand.

For the length OD of the product-vector we have.
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D determined

length Ol)-^ = OC^ + Cir

Extractinf^ the squjiro root,

length OD = V)^ +T' . (Tn

= ^/'nl^l^n^ . V^^ + /A

Therefore the length of the prodnet-vector is e(|ual to the

])rodnets of tlie lengths of the vectors of the factors.

Combining these two results, wc reach tho conclusion:

The vwdulusnf tlie j)7'oditct oftiuo coinp/c.v /actors is

equal to the product of their moduli.

Tlie an0e of tlie product is equal to the sjitti of the

angles of the factors.

.'J.'JO. The Roots of Unity. We
have the following curious problem:

Given, a vector OA, which call a;

it is rerpiired to find a comj)lex factor

r, such that when we multiply d n
times by x, the last product siiall be a

itself. That is, we must have

xHi a.

A.

The required factor must be one

Avhich will turn the vector round without changing its length.

Let us begin with the case of n = 3.

Since three equal motions must restore OA to its original

position, the condition will be satislied by letting x indicate a

motion through 1:^0°, so that OA shall take the position Oli

when angle AOB = 120°. Then, P being the foot of the \k'Y-

pendicular Irom B upon AO produced, we shall have angle

FOB = 60°, and angle PBO = 30°. Therefore,

PO = ^«, PB = ^.
and vector OB = xa = — ^^a -(-

V3

!' *

i I

t

^ I

. !

• •

ai.
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' ^^'4

l^'Ciiusc tlio rii('tor.r linn not C'ljim«i^('(l lliu Icu^'llj of tlu' lino,

the iikhIiiIus of u; is iinilv, mid Ix'causo it lias turned the line

tliroui-li Vi^°^ its unfile is l:iO". 'riicret'ore its value is

- OP + IMi/

on a scale of numbers in whieli 01> = 1; that is,

Reasoning in tiie same way with respect to the product x^a,

which produces the vector OC, we lind

an equation whicli we readily ])rovo by squaring the jireceding

value of ./' and reducing.

Multiplying these values of .r and ^r^, v,e find

a^ = 1,

which ouglit to be the case, because :v^n = a. Hence,

1 \/'\

Tlic coin])le,v qitantity — - H

—

^^i is (t cube root of

iLiiity.

But the vector OC, of wliich tlie angle is 340°, also repri

-

sents a cube root of unity, if we 8ui)})()se 00 = 1, becauM'

three motions of 240° each turn a vector through 720°, or two

revolutions, and thus restore it to its original position. This

also agrees with the algebraic process, because, by squaring the

above value of x^, we have

/ 1 V3V_1 i!,^-_ z_L^_-
V~2

~
2 7 ~ 4 ~ 4

"^ o * - - o + o ^ -^y
3 V3
4

"^
2

1 \'^ .

2
•

2

and by repeating the process we find

Since 1 itself is a cube root of unity, because P = 1, we

conclude :

TJiere are three cube roots of unity.

'
I :
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We ivudil} liiul, l)y tlic procfs.s of 5« :VM, IV, tluit

/, — I, — /, ami J,

aiv nil fourth roots of unity.

liy ti course of fi'a8oiuii«]j similar to the alxivc for any value

of ;/, wo conclude :

The n^^ roots of ii/ilh/ are n in niunbcr.

EXERCISES.

1. Form the first eight powers of the expression

1 ]_ .^

8liow that the eiglith power is I, and lay off the vector corre-

sponding to each power.

2. Form the first twelve powers of

V3 1 .

and show thattlie twelftli power is +1.

3. Find the fifth and sixtli roots of unity hy dividing the cir-

cle into five and six i)arts, and either computing or measuring

the lengths of the lines which determine the expression.

Note. The student will remark the similarity of the gen-

eral problem of the n^^ roots of nnity to that of dividing the

circle into 71 equal parts (Geom., Book VI).

{

I 1

*id



BOOK XIII.

THE GENERAL THEORY OE EQUA-
TIONS.

Every Equation has a Root.

340. In Book III, equations containing one unknown
quantity were reduced to the normal form

Jrc« 4- Bx^-"^ + Ca:«-2 _|_ _,_ ^ __ q.

If T^'e divide all the terms of this equation by the coefficient

A^ and put, for brevity,

Vx
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one unknown

ed the Coeffi-

Rem. The theorem that every equation has ii root is demonstrated in

special treatises on the theory of equations, but the demonsiration is too

long to be inserted ht.'re.

If we suppose tlie values of the coefficients Pi,Pc,, etc., to

vary, the roots will vary also. Hence,

Theorem II. The roots of an (dgehraic equation are

fiuictious of its coefficients.

Example. In Chapter VI we have shown that the roots

of a quadratic equation are functions of tliu coefficients, because

if the equation is

the root is X = — P ± Vp^—^(j

2

^vhich is a function of ^; and q.

343. Equations ivhich can he solved. If the degree of the

eriuation is not higher than the fourth, it is always possible to

express the root algebraically as a function of the coefficients.

But if the equation is of the fifth or any higher degree, it

is not possible to express the value of the root of the general

e([uation by any algebraic formula3 whatever.

This important theorem was first demonstrated by Abel in

1825. Previous to that time, jiiathematicians frequently at-

tempted to solve the general equation of the fifth degree, but

of course never succeeded.

This restriction applies only to the fjcncral equation, in

Avhich the coefficients /?i, p^, p^, etc., are all represented ])y

so})arate algebraic symbols. Such special vahtes may be

assigned to these coefficients that equations of any degree slutU

be soluble.

34:3. The problem of finding a root of an equation of tlic

higher degrees is generally a very complex one. If, however,

the equation has the roots — 1, 0, or + 1, tlicy can easily be

discovered by the following rules

:

I. If the algebraic snm of the coefficients in the equa-

tion vanishes, then +1 is a root.

211
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II. If the suin of the coefficients of the even powers of
X is equal to tluit of the coefficients of the odd powers,

then — 1 is a root.

III. // the absolute term p,i. is wanting, then is a
root.

These rules are readily proved by jmtting x= +\, then x=—{,
then a; — in the general equation {a) and noticing what it then reduces

to. The demonstration of II will be a good exercise for the student.

m

iu

Number of Roots of General Equation.

344. In the equation {n), tlie left-band number is an en-

tire function of x, wliicb is equal to zero wben tbe equation is

satisfied. Instead of supposing an equation, let us suppose x

to be a variable quantity, wbicb may liave any value wbatevcr,

and let us study tbe function o^ x,

.r« -^p^x^-^ + p^x^-''- + +pn^ix +^;n,

which for brevity we may call Fx.

Whatever value we assign to x. there will be a correspond-

ing value of Fx.

Example. Consider the expre,«sion

Fx = a-3 - 7cf2 + 3G.

Let us suppose x to have in succession the values — 4,

— 3,-2, — 1, 0, 1, 2, etc., and let us compute the corre-

sponding values of Fx. "We thus find,

9

0.

X = - 4, - 3, -

Fx = — 140, — 54,

- 1,

+ 28,

0,

+ 36,

7, S.

+ 3G, + 100.

X = 1, 2, 3, 4, 5, G,

Fx =1+30, + 16, 0, - 12, - 14, 0,

We see that while x varies from — 4 to +8, the valuo of

Fx fluctuates, being first negative, then changing to positive,

then back to negative again, and finally becoming positive once

more.

We also see that there are three special values of x. namely,

— 2, +3, and + G, which satisfy the equation Fx = 0, and

which are therefore roots of this equation.
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theiv is a

345. EcpresentaliOH of /> />// a Curve. In i3i)()k VIII it

was shown liow :i function of ii variable of tlio first degree miglit
be represented to the eye by a struight Jine. The relation

between a varialjle and any function of it nuiy be represented
to the eye in the same way by a curve, as shown in (}conietry,

Book VII. We take a base line, murk m. zero point upon it,

and lay oflf any number of equidistant values of ./•. At each
point we erect a perpendicular proportional to the corresponding
value of Fx at tliat i)oint, and draw a curve through the ends.

o; / The fluctuations of tlie vertical ordinates

of the curve now show to the eye the corre-

sponding fluctuations of Fx.

A\'lien Fx is negative, tlie curve is below

the base line. When Fx is positive, the curve

is above the base line.

The roots of the equation Fx =:0 are shown by the points

at which the curve crosses the base line. In the present case

these points are — 2, +3, + G.

In order to distinguish the roots from the variable (juantity

u\ we may call them «, (3, y, d, etc., or x^, x,,, x.^, etc., or a^,

«3, ^3, etc., the symbol x being reserved for the variable.

The distinction between x and the roots will then be this:

X is an independent variable, which may have any value

whatever.

Fx is a function of x of which the value is fixed by that of x.

a, (3, y, etc., or x^, x^, x.^, etc., are special values of x which,

being substituted for x, satisfy the equation

Fx = 0.

Theorem. t4ii equation irith, real coeffidents, of ivhieJt

file decree is an odd iiiunhcv, Diust Jtave at least one real

root.

^
»'

. I
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Proof. 1. When n is odd, x'^ will have the same sign (+
or — ) as X.

2. So large a valiio, positive or negative, may be assigned to

X that the term x'^ shall he greater in absolute magnitude than

all tile other terms of the expression Fx. For, let us put the

expression Fx in the form

Fx x"^
\ X X^ XV 1)

If we suppose x to increase indefinitely either in the posi-

live or negative direction, the terms —
, ^, etc., will all'^ X x^

approach as their limit (§ 303, Th. I). Therefore the expression

1 + "7 + ^ + etc. will approach unity as its limit, and will

therefore be positive for large values of x, both positive and

negative. The whole expression will then have the same sign

as the factor x'^, and, n being odd, will have the same sign as x.

3. Therefore, betAveen the value of x for wiiich Fx is negative

and that for which it is positive there must be some value of x

for which Fx = 0, that is, some root of the equation Fx = U.

For illustration, take the preceding cubic equation.

Cor. t^ln equation of odd degree has an odd nmuhcr

of real roots.

For, as Fx changes from negative to positive infinity, it

must cross zero an odd number of times.

846. Theohem I. // we divide the expression Fx by

X — a, the remainder will he Fa, or

Remainder = a^ -\- p^a^~'^ 4- p^a^'"^ 4- . • . . + Pn-

Special Illustration. Let the student divide

})y X — a, according to the method of § 90. He will find the

remainder to come out

a^ + 5^2 ^_ 3rt -f 1.
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Ave infinity, it

iression Fx by

[e will find the

General Proof. When we divide Fx by x — a^ let us put

Q, the (juotieut
;

R, the remainder.

Then, because the dividend is ecjual to the product, Divi-

sor X Quotient -f Remainder,

{x -a)Q-\- R =1 Fx.

Two things are here supposed:

1. That this equation is an identical one. true for all values

of X. This must be true, because we have made no supposition

respecting the value of x.

2. That we have carried the di\'ision so far that the remain-

der R does not contain x.

Because it is true for all values of x, it will remain true

Avhen we put x = a on both sides. It thus reduv;es to

R = F{a),

which is the theorem enunciated.

The value of x being still unrestricted, let us in dividing

lake for a a root « of the general equation Fx = 0. Then,

1)y supposing x = «, the equation («) will be satisfied, or

F(c =z 0.

Therefore if we divide the general expression Fx hy x — «,

the remainder Fa will be zero. Hence.

Theorem II. // we denote hy a a root of the rqnatiorb

Fx = 0, the expression Fx icill he exacthj divisible hy

X — fc.

Illustration. One root of the equation

:^ — x'^ — ILi- + 15 —
is ?). If we divide the expression

a^ ^ x^ — \lx + 15

hy X — 3, we shall find the remainder to be zero.

347. When we divide Fx by x — n, the highest power of

X in the quotient will be x^~'^. Therefore the quotient will be

an entire function of x of the degree n — 1.

fe
it

,

t 1

1

v\
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i »

I.

lUtistraiion. The quotiont from tho last division was

X- + 2x' — 5,

v.hicli is of tlie second degree, while the original expression was of the
third degree.

If ve call this quotient /\a', wc .shall have, by multiplying

divi If and quotient,

Fx = (x — a) F^x.

Kow suppose i3 a root of the equation

then F^x will, by the preceding theorem, be exactly divisible

by X — j9.

The quotient from this division will be an entire function

of X of the degree n — 2. This function may again be divided

by X — y, representing by y the root of the equation obtained

by putting the function equal to zero, and so on.

The results of these successive divisions may therefore be

expressed in the form

Fx = {x — «) F^x .... (Degree n — 1), \

F^x z= {x — (3) F^x (Degree n - 2), >
(1)

F<^x = {x — y) F^x .... (Degree n — 3), )

etc. etc. etc.

Since the degree is diminished by unity with every division,

we shall at length have a quotient of the first degree in x, of

the form

x — e,

f being a constant.

Then, by substituting in the equations (1) for each func-

tion of x its value in the equation next below, we shall have

Fx = {x — a) (x — (3) (x — y) . . . . {x — e),

the number of factors being equal to the degree of the original

equation. Hence,

Theorem I. Eveivj entire function of x of the mh

degree maij he divided into n factors, each of the first

decree in x.
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Since a product of several factors becomes zero whenever

any of the factors is zero, it follows that the equation

Fx =
will be satisfied by putting .r r.jual to any one of the quantities

(c, (3, y, . . . . e, because in either case the jtroduct

{x — «) (.r — /3) {x — y).... {x — e)

will vanish. Therefore the (piantitics

are all roots of the original equation Fx = 0. Hence,

Theorem II. .In algchvdic equation of the n^^ decree

has n roots.

We have seen (§ 105) that a quadratic equation has I wo

roots. In the same way, a cubic equation has three roots, one

of the fourth degree four roots, etc.

Moreover, a product cannot vanish unless one of the factors

vanishes. Hence the product

Fx or {x — ((,) {x — 13) {x — y) . . . . {x — e)

cannot vanish unless x is equ.d to some one of the quantities,

tc, (3, y, . . . . f. Hence,

All equation of the n^^ decree can have no more than

n roots.

348. We may form an equation of which the roots shall

be any given quantities, a, h, e, etc., by forming the product,

{x — a) {x — b) {x — f), etc.

Example. Form an equation of which the roots shall be

— 1, +1, 1 + 2/, 1 — 2i.

Solution. We form the product

[x H- 1) (x — 1) (a: — 1 - 2i) (x — 1 + 2/),

which we find to be

x* — 2x^ + 4:^2 + 2x — 5.

Therefore the required equation is

^•4 _ 0,^3 ^ 4., 2 ^ Oj. 0.

i'

1

1

i 1

I I

11

! 1
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( I'l

f'

t- »

f;'

1
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i-S

EXERCISES.

Form pqut.tioiis with the roots:

1. 2 4- a/'3, '^ - Va, - 2, + 1.

2. ;} + Vo, 3 — a/5, - 3.

3.
o, _ o, 4 + y 7^ 4 _ V7.

4. 1 + V3, 1 - V3, 1 + \/5, 1 - \/5.

849. When we can find one root of an equation, then, hv

dividing the c([uation by x mums tliat root, we sliall have an

equation of lower degree, the roots of which will be the remain-

ing roots of the given equation.

Example. One root of the equation

a^ — x^ — Ux + 15 =
is 3. Find the other two roots.

Dividing the given equation by x — 3, the quotient is

-c'i -^2x — 5.

Equating this to zero, we have a quadratic equation of

which the roots are

— 1 + VC and — 1 — VG.

Hence the three roots of the original equation arc

3^ _ 1 + Vo, — 1 — Ve.

EXERCISES.
f . One root of the equation

a;3 _ 3.^2 _ Ux + 12 =
is— 3. Find the other two roots.

2. Find the five roots of the equation

ci^ — 4:X^-{- 122;3 + 4:X^ — ISx — 0.

(Compare § 343.)

v}50. Equal Roots. Sometimes, in solving an equation,

several of the roots may be identical.

For example, the equation

X'' 6a;2 + Ux — S z=:

i
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has no root except 2. If we divide it by x — H, and solve flic

resulting quadratic, its roots will also be 2. Hence, when we

factor it the result is

(.r - 2) (x - 2) (./• - 2) = 0.

In this case the equation is said to have three equal roots.

Hence, in general,

I7te n roots of an equation of the n^^ dr^fee arc not all

necessarily different from each other, hat two or more of
them may be equal.

Relations between Coefficients and Koots.

i^al. Let us suppose the roots of the general equation of

the n*''' degree

oc'^ + 2h^"'~^ + ;>2^"~^ 4- . . • . + Pn-\ X 4- /)„ =
to be «, |3, y, . . . . £.

We have shown (§ 341) that these roots are functions of

the coefficients jt^, p.^, .... pn- To find these functions is to

solve the equation, which is generally a very difficult i)rol)leni.

But the coefficients can also be expressed as functions of

tlie roots, and this is a very simi)le process which wo have

ah'cady performed in some special cases by forming ecjuations

luiving given roots (§ 348).

If we form an equation with the two roots, « and (3, the

result will be

= {x — (c) {x — 3) = x^ — {a + ft) X + fcft.

Comparing this with the general form,

x'^ + p^x -hPz = 0,

we see that p^ = — (a -\- ft),

a result already reached (§§ 198, 199).

Next form an equation with the three roots, «, ft, y.

^lultiplying {x — «) [x — ft) by x — y, we find the equa-

tion to be

.r3 _ (« + ft + y) X? + {aft + /3y + y«) x - afty = 0.

t I

1 t! '
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J'

if^f

I i

So in this case, p^ = — (« -f /3 -f y),

p„ = «^ + /'iy -f y«,

Adding another root 6, we find the result to be

;?j =:-(« + /3 + y -f (5),

;>„ = rc/J + «y + fcrj -|- /'^y + /3(5 -f- r^^. (2)

;>3 = — «/3y — ICJ36 — tcy(] — fiyd,

Pa = f^fh'^'

Generalizing this process, wo reach the following conclu-

sions:

The coefficient p^ of the second term of the general ccjua-

tion is equal to the sum of the roots taken negatively.

The coefficient p^ of the chird term is e((ual to the sum of

the products of every comhination of two roots.

The coefficient /;, of the fourth term is equal to the sum
of the products of every combination of three roots taken

negatively.

The last term is equal to the continued product of the neg-

atives of the roots.

352. Symmetric Funcfions. It will be remarked that the

preceding expressions for the coefficients /?,, p^, etc., arc all

sy)nmetric functions of the roots «, (i, y, etc. (§ 250.)

The following more extended theorem is true :

Theorem. Every rational syinnnctric function of the

roots of an equation, may be expressed as a rational

function of the coefficients.

Example. From the equations (2) we find

P.^-'lp. = fc3 + /:i2 + y2 -f (52,

^PiP2 - Pi^ — ^iH — «' + (^^ + y^ + ^^•

We thus reach the curious conclusion that although v>-o

may not be able to find any individual root of an equation, yil

there is no diificulty in finding the continued product of tlic

roots, their sum, the sum of their squares, of their cubes, etc.

The genoral demonstration of tliis tlioorcm, and the methods by wliicli

nny rational symmetrical function of the roots may be determined, arc

found in more advanced treatises.
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c't of the no"f-

Dorivc'd FiiiK'tioiis.

353. D(f. If in the ('Xi)ri'ssi(ju

Fx = .(" + / >

,

./'
/i-

1

+ /'S'
n-2 + -h Pn-\ r + /}„,

WO substitute x+ h for a?, and tlien deveh)p in powers

of //, tlie coefficient of tlie first power of h is called tlie

First Derived Function of x.

To find the Firs/ Derived Function. Putting x -f // for x,

the result is

Developing the several terms of the seeond nicniber by the

binomial theorem, wo have

(x + /O" = •'" + ii^^-^/f 4- ^-^P-^ x'^-^i^ -f. etc.,

{x + //)«-i = :>^-'^
-f (n — 1) x'^-^h 4- etc.,

{x 4- //,)"-2 = j;'*-2
-f {n — 2) x'^-^h 4- etc.,

etc. etc. etc.

Substituting these expressions in the equation {a) and

leaving out the terms in h^, h% etc. (because we do not waul

them), we have

F{x 4- h) = a;" 4- Pi^"''^ + Pi^""'^ + + Pn-i x 4- Pn

A-[nx*^-^-^{n— l)p^x^^-^+ (n— T)PzX^~^-\- +Pn-\\ h

4- omitted terms multiplied by h^, h^, etc. (b)

We see that the first line is here the original Fx, while the

coefficient of h in the second line is hy definition the derived

function. So, if we put

F'x, the derived function of Fx,

we have F{x 4- h) = Fx -\- h F'x 4- terms x //^ Ii^, etc.

Let the student, as an exercise, now find the derived function of

r* + 8x3 _ 5r2 + 7.C - 9

by the process just followed, commencing with equation (a).

Examining the coefficient of f/ in (/>), we see that the de-

rived function is formed by the following rule :
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.lfiiJfi/)Jif('/frh trvni hij tltr rxpniirnf of the rai'iahlr in

that tcvni , aiut (liniinis/t the rxponcnt hij (iiiiti/.

Tlie lust or constant term ilisappeiirs entirely from the ex-

pression.

EXERCISES.

Form the derived function of I lie following expressions :

1. a:» + 5.r« + 8r» — 'Ix^ — .r -f 1.

Ahs. 5.H 4- ^0.?;3 4. Ux^ — 4^—1.
2. x' — tr'^ — t(^ — 'If.

3. :i^ + l:>.7-»-24./-3 -|- x^ + 7.

4. .r* — 2f(:i^ 4- l]()ir:i -j- ((^bx.

5. x^' — 5 ///./•' 4- l^iHji^ — Ibnij^.

liEM. The student Hliniild nUtain \\\o roault by substituting y + A f«»r

X in each equation und devclopiu^^, uniil he is maater of the procesH.

854. Second Form of the Derived Funclion. If, as be-

fore, we ])ut «, /3, y, (5, etc., for the roots of the equation

Fx = 0, we shall have

Fx = {x- «) (.7: — ft) (x - y) (a- - e). (<•)

Let us form the derived function from this expression.

Putting X -i- h for x, it will become

{h + X — it) {h 4- .T — /3) {/i 4- .6' — y) ... . {h + x — t:).

Studying this expression, and forming the products which

contain h when three or four factors only are included, we see

that the coefficient of the h in the first factor is {x—ft) (x—y)

. . . . , in the second factor {x— «) (x— y). . . . , etc. That is,

the total coefficient of h will be

(x — ft) {x — y) . . . . {x — e), omitting first term ;

4- {x — a) {x — y) . . . . {x — e), omitting second term ;

etc. etc. etc,

4- (x — «) (x — ft) (x — y) . . . . omitting last term.

But comparing with (r), we see that the first of the^e

Fx Fx
products is —'-—

, the second is ——7^ , etc., to the last,^ X — et X — ft

which is
Fx

X — n
Hence,
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Rr Fx Fx Fx
X — (c X — ii X — y j; — « ^ '

IllHsfralion. litt u.s tak(3 once more tlie expression of

8 344,
/It = j^ - r^a -f :j(;,

of which the three roots are — 'i, 3, and G. Its derived func-

tion, hy metliod (1), is

;5.r2 - \\x.

Expressing Fx as a product of factors, it is

Fx = {x + 2) {x - :]) (./• - fl).

By {>!) the derived function is

(X - IJ) (./; - G) + (.r + :>) (.; - G) + (/ + 2) {x - 3),

wliich reduces to 3a;^ — 14:^,

the same value as by the first method.

355. Thi:oui;m I. \l 'It en the derived funetinn is pnsi-

tlve, the original function increases with x; when it is

negative, the function decreases as x in creases.

Proof. When we increase x by tlie ((uantity //, Fx is

changed to F{x -f- h), and is increased by the difference

F{x ^ h) - Fx.

But, by {h) and {h'), we have

F{x -\- h) — Fx = h F X + h^ x other terms

= h [F'x \- h y. other terms). {r)

Now we may take the increment h so small that h x oilier

terms shall be less than F'x, and then F'x -i- hx otiier terms

will have the same sign ( + or — ) as F'x.

Then, supposing h positive, the increment

F{x + h) — Fx

will be positive when Fx is positive, and negative when it is

negative.

Theorem II. // an equation has equal roots, such root

will (dso he a root of the derived function.

)» .

. II .

!
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Proof. Let /3 be the root wliich Fx = has in duplicate.

Then wiien Fx is factored, it will be of the form

Fx = {x — a) {x — j3) (x — 13) {x — y) . . . . (x — e).

Now when we form F'x by method ('.*), the factor {x — (3)

will be left in all the terras. Therefore x — [3 will be a factor

of Fx. Therefore, when x = 3, then F'x = 0, so that (3 is

a root of the ecj nation F x = 0.

3<>G. If the equation Fx = contains no equal roots, and

if we suppose x = a in equation (*/), all the terms except the

first will vanish, because the common numerators Fx contain

x — a as a factor.

In the case of the first term, both numerator and denomi-

nator vanish when x := a ; therefore we must find the limit of

Fx
when X approaches «. This is easy, because

X — «

Fx = {X - [3) {X - y) {x — e).
X — (c

Therefore, by supposing x to approach «, wo shall have

Fx
Lim. (a;=a) =: (« — (3) (« — y) ....(« — e).

Therefore, by changing x into « in (d), we find

F'cc =z (cc _ /3) (ff _ y) ....(« — e).

Hence

TJie derived function of a, roof ichich lias nn other

root equal to it is the continued product of its difference

from cdl the other roots.

Significance ol the Derived Function.

357. Theorem. TJie derived^ function expresses the

rate of increase of the function as compared with that

of the variable.

Proof. The equation (c) may be expressed in the form

F{x + //) = f!r 4- h{F'x -f nit).

H-\
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where Bh^ is tlie sum of the remaining terms of the develop-

ment in powers of h.

We then have
Increment of x = h.

Corresponding increment of Fx = F{.v -{- h) — Fx
= h{Fx-^ Bh).

Ilatio of these increments, —^

^;
= F x+ Hh,

If we suppose the increment h to approacii zero as its

hmit, the product Bh will also ai)proach zero, and the ratio will

approach F'x as its limit.

But this ratio of the increments may be considered a-; tlie

ratio of the average rate of increase of the function /' to tliat

of the variable x.

Hence, when we plot the values of Fx by a curve, as in

§345, the derived function shows the slope of the curve :it

each point.

AVhen the derived function is positive, the curve is running

upward in the positive direction, as from .Tr=— 3 to .r — o,

and from x z=i +5 to x z= -f-x.

When the derived function is negative, the curve slo])es

downward, as from a* = to a* = +4.

When the derived function is zero, the curve at the corre-

sponding point runs parallel to the base line, as at and -f4j.

If this point corresponds to a root of the equation, the curve

will coincide with the base line at this point, and will there-

fore be tangent to it. Hence, from § 350, Th. II,

A pair of equal roots nf an cqaatioii arc indicated hi/

the curve touching the hase line icifJimit intersecting it.

k
'

Forms of the Roots of Equation.

358. Theorem I. TiiKt^inary mots enter an equation

with real coefficients in pairs.

That is, if a -f- hi he a root of such an e([uation, then

a — bi will also be a root. ' !• t
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Proof. Let

.r« ^ y,j.,.»-i + ^,2.r«-2 + + 7'n-i .r + />„ 1= (1)

be the equation with real cocflicieiits, and let us su])pose tliat

a + hi is a root of this equation. If we substitute a \- hi for

.r, we shall have

p^x^~^ = p^a^"'' + /;i(rt

—

l)a"~%i — etc.

If we substitute all the terms thus formed in equation (1),

and collect the real and imaginary terms separately, we shall

have a result

A -4- Bi :_*».)

(§ 324), A signifying the sum of all the real terms,

)i ()i — 1) ,, ,„

SI
Pia^~\ etc..

and Bi the sum of aA the imaginary ones.

I?^ order that this equation may be satisfied, we must have

identically

A =0, B = (§ 327).

Next let us substitute a — hi for x. Since the even povors

of hi are all real, and the odd })owers all imaginary, this

change of sign will leave all the real terms in (1) unchanged,

but will change the signs of all the imaginary terms, llciuv

the result of the substitution will be

A - Bi.

But if rt! 4- bi is a root, then, as already shown, A =
ami ^ = ; whence

A - Bi =
also, and therefore a — hi is also a root.

Def. A pair of imaginary roots which differ only

in the sign of the coefficients of the imaginary unit Jire

called a pair of Conjugate Imaginajry Roots.

Theorem II. Iti tlic expression Fx every pair of conju-

gate ima0}iary factors form a real product of the second

deforce in r.

;i ..)'•/
.
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wc must have

Proof. If in the expression

Ft — [x — a) {X — /3) {x — >')... (.r — f),

we suppose « and /3 to be a pair of conjugate imaginary roots,

which we may represent in the form

a z=L a -\- hi, fi =z n — hi,

then the product of the terms {x — a) {x — h) or of

{x — a — hi) {x — a •+ hi),

will be {x — ay + h'^,

or x^ — 2ax + a^ -f h^,

a real expression of the second degree in x.

Cor. Since Fx can always be separated into factors of the

first degree, either real or imaginary (§ 347, 'Vh. I), and since

all the imaginary factors enter in pairs of which the product

is real, we conclude

:

Every entire functioii of x icifJt real eoejficients iiiny

he divided into real factors of the first nr second, decree.

'i

i •

'11

he even povcrs Decomposition of Rational Fractions.

359. D(f. A Rational Fraction is one which may
he reduced to the form

ax"^ + hx'n-^ 4- cr"^''^ -\- . . . . -\- I

If the exponent m of the numerator is equal to or greater

than the exponent n of the denominator, we may divide the

numerator by the denominator, obtaining a quotient, and a

remainder of which the highest exponent will not exceed

n — 1. If we put

fx, the numerator of the above fraction

;

Fx, its denominator

;

Q, the quotient;

(Px, the remainder

:

we shall have. Rational fi-action = •;

fx

Fx
(> +

0:r

Fx {% 96.)

28
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V 1

»

i ;

!i

jf

1

Q will be an entire liinction of x, witli which we need no

now further concern ourselves.

The problem now is, if possil)le, to reduce the fractioi

(bx
-^- to the sum of a series of fractions of the formFx

+
B

+
C

+ +
E

X — a X — /3 X — y x

A, B, C, etc., being constants to be determined, and a, (3, -)

etc., being the roots of the equation Fx =l 0. Let us thei

suppose
4)X _
Fx

~ 4_ __^
— « X —

E
{!>)

Multiplying both sides by Fx, we have

AFx BFx CFx EFx
0.r = -\ H + +

X — « X — p x — y X — e
(^')

We rcfiuire that this equation shall ])e an identical oin'.

true for all values of .r. Let us then suppose x = a. 'YAww

because by hypothesis « is a root of the equation Fx = 0. we

have Fa — 0, and the terms in the second member will all

vanish except the first. If there is only one root «, we lui\c'

(§ 357),

Fx
Lim. (.rr=oi) ~ F'a.

X — «

Therefore, changing x to «, we have

0« = AF'(c,

A = ^-.
F'fc

which gives

In the same way we may lind

B =

C =

etc.

03

<f>y

F'y'

etc.

(<•)

Substituting these values of A, B, etc., in the equation {I),

it becomes

.'^^
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we need net

the fraction

[, and «, 3. ")

'

Let us then

E
i'^}

f
EFx ,j.

X — £

identical <>ii''.

X = «. 'J'li'ii

on Fx = 0. we

nember will nil

root «, we lijuo

(^)

[lie equation (i).

03^ 0fC
f

0/3
+ 0y

/'o;
~ {x- a) Fa ' (^ - i3) F'li '

(.i' - ) )
/'

>
+ etc.

Note. The critical student i^liould remark that in the

])recc(ling analysis we have not proved that the expression of

the rational fraction in tlie form (/;) is always possil)le, hut

have only proved that if'it be possible, tlicn the cootlicients J,

//, C must have the values {<). To prove that the form is

possible, the second member of {b) may be reduced to a com-

mon denominator, which common denominator will be Fx,

and the sum of the numerators eijuated to <px. By equating

the cocfHcients of the separate ]K)\vers of .r, we shall have n

equations to determine the ;/ unknown quantities A, B, (\

etc. Since n quantities can, in general, be made to satisfy n

e([uations, values of J, i?, C, etc., will in general be possii)le.

It will be instructive to solve the following exercises, both

directly and by the common denominator.

I. Decompose

EXAMPLES,

=lx^ — Wx -f 5

We have already found the roots of the 'enominator to be

— 2, 3, and G. Using the formulae (r), we find

<^x — 2x^ — :u + 5,

Fx = .7-3 - T.t;2 ^_ ;3(; = (^ -\- 2) {x - 3) {x - G),

F'x =z 3.^2 — 14?:

;

« = - 2, ft = S, r = G

;

0« = 19, 0/3 = 14, 0y =: oO;

F'fc = 40, F'f3 = - 15, F'y ^ 24.

22-2 — 3x -\- 5 10 14

•A\
"^

•>.

50

x^ — 7;i-'^ + 30 40 {x + 2) 15 (r - 3) ^ 24 (.r — r.)

2x^ — :.r + :} 2.12 _ ;.,. ^ ;>

2. Decompose -^

:C^ _ Ojfi _ .^; + :> (^-4- 1) (.<;_ 1 )
(.(•— 2)

Here the roots of the denominator are — 1, 1, and 2. Let

us effect the decomposition by the following method. Assume

*
tl

» »

• > I

.1 !
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{'^)
c

denominator,

minator, tluir

,
after arran«i-

we equate the

X - 2'

3

&2)

or more cqiv\l

le terms of thf

In Ave suppose /

se we must pro-

If

we suppose

0.r A
Fx

Fx = (.r — (c)m (r _ f^yi (.,. _ y^p^

c— ayn-i-^
= 1_ _ - ' I

(,,• _ (tyn ^ (,,. _ f^yn 1 ^
(

,

J_ ^L ^ 4. i^l _ 4. 4. ^>'* 1

^
(.i- - /3)"

^
(.r - ^)'-i ^ • • • • "^

.^ ._ /j

4-
hn 1

+
(.c - yV>

-^
{X - r>~-i + •••• +

.^- - y*

etc. etc. etc.

In tlie case of m, n, or p = \, this form will be the same

as (i), as it should.

By reducing the second meinber to a common denominator,

and equating the sum of the numerators to (px, we shall have,

as before, a number of equations the same as the degree of x

ill Fx.

EXAMPLE.

Decompose
S.7-3 — n.r2 — 2.r — 1

of which the roots of the denominator are — 1, — 1, I, 1, 'i.

Sohdion. Because of the roots just given, the expression

to which the fraction is to be equal is

A A. B B, r/A^ B_ B,

(^X — 1)2
"^

;c _ 1 "^ {X + ly '^
X + X'^X

Reducing to a common denominator, and e(|iiating the co-

efficients of the powers of x to the coefHcients of the corre-

sponding powers in the numerator 8.*:^ — 4:X^ — 2x—], we

have

A, + B, -f ('= 0,
,

— A^ + .4 - 3/>\ ^ B :=: 8,

- 3Ai + /?! - 47i - -2^ = - 9,

A^ -;]A + :/?! + ')f^ = -2,
2A^ — 2A + 2/i, + 2B + C = —I.

Solving these equations, we find,

A = 1, B = 2, 0=3.
A^ =z -2, /;, = - 1.

V

I*'..

» >
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Tlic fjivcii fmc'tioii is tliL'i'cfore e([ual to

1 %
+

a
' +

•'

(.7; _ 1)2 X — 1 ' (.r + 1)2 a: + 1 ' /; - 3

EXERCISES,

,. Decompose ^^~^^^^^^

.r- 1

1
J?/.v. —^ 4-

3- ;;5Tr:t;2-^^"i

^ -{- X^ — X — I

=1.

Greatest Coiiunon Divisor of Two Functions.

,^(>1. When ',ve have two cHiuations, some values of tlir

unknown quantity may satisfy them l)otli. 1'liey are tlieii said

to have one or more cimimon roots. Sueli e(iuati()ns, wlicii

factored as in § JU7, will ha' e a common factor or divisor for

each common root. Hence,

Theorem. TJie connnoii -"onts of two equations maij

be fouled from their greatest coninioii divisor.

Problem. To find the greatest coimnon divisor of two

equations.

Tliis problem is solved ]>y dividing the two polynomials hv

the methods of ^§ 96, 07, and 'i?yl.

Example i. To find the greatest common divisor of the

two polynomials,

and or* — 2x^ -\- A:X? + 2:r — 5.

FIRST DIVISION.

x^ — ^x^ + 12.^ + 4:r2 — 133*
: x^ — 2a;» + ix"^ + 2.r — 5

.^5 — 2:r> + 4.r3 + 2./-2 — bx
|

a; — 2

— 2.c» + 8.c3 + 2a;2 _ Sx

Zl'^1
-1- ^^(^^ — 8.r=^ — 4:g + 10

4.^3 -|. io.r2 _ 4a; _ :;.o = first remainder.
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Functions.

BECONU DIVISION.

ar» — 2.r3 + 4a;2 -f 'Ix — 5 4./-=' -\- 10^' — 4./- — 10

ot^ -\- Iji^ — j'i — L,

— H.r' + 5.^2 -\- U — T)

— 5/ = second reiuu'ni'er;04!L.^•3

or, */(.?'2 — 1) = second remainder.

In the next division, we may omit the fractional factor ^-,

l)tcause every value of x which satistics the C(iuation x^— 1 =
will also make ^^ {x^ — 1) = 0, so that these two equations

have the same roots. In this process we may always multiply

or divide the terms of each re? 'inder by any factor which will

make their coefficients entire.

divisor of two

4.r^ + lOx'2 -

4./'3
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I •

The rules for throwing out factors from divisor or dividend

are as follows:

I. /y' hot/i o'iirit polunom'utls vontdin the same fdctor

ill all. i/icir hrius. rcDwre /his factor, (fud (ij'lrr llic

(I. (\ I), of tlif rciriainin^ factors of the two polijnoniials

is foand, niulti])hi it lnj this factor.

Proof. If a be sucii a factor, and X and }' the quotients

after tills factor is removed from the two polynomials, the lat-

ter, as given, will be

aX and a Y.

Since a is now a common divisor of both given polynomials,

if wc call D the G.C. D. of Xand )', it is evident that aD will

be the G.C.D. of aX and aY.

II. Any factor connnmi to all the terms of ami rliri-

,sor, and not contained in tit e dividend, may he thrown

out.

Proof. If this factor were any part of the G.C. D. sought.

it would, by § ^'32, be a factor of each dividend. Since the

only factors we require are those of the G.C.D, factors in a

divisor only may be rejected.

EXERCISES.

Find the G.C.D. of the following polynomials:

1. x^ — 1 and x^ — 1.

2. x^ — I and .r' — I.

3. a^ _ 0^^ _ a^ + 'dd^ — 2rt!— 15 and a^- a^—4«2_^^ + 5.

4. 25:/"* 4- 5.^3 — .T — 1 and SOa:^ 4. ^-^ — 1.

5. a^ -V 2rt2 + 9 and «* + "la^ — iui — 9.

6. m^ -i- Sy/i^ + 3m -|- 1 and ;/?^ — 1.

7. x^ — ar3 + 21.1-2 _ oQ.r + 4 and 2.r3 — 12.r2+ 21.r-10.

8. a^ -f a^ — a — 1 and (V + a'^ — a — \.

*MVZ, The giveu polynomials may be functions of two

or more symbols, as in § 97. We then arrange them aeeonl-

ing to the powers of one of the symbols, and perform the divi-

sions by the precepts of § 97.
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11 polynomials,

it that aD will

fi.C.D. sought.

1(1. Since tlio

factors in n

Kx. Finil tlic j^ri'iitest common divisor of

j.r^ — ax' -j- a{d -{- c) x — abc — bx^ — r/^ -f brx

and r' — ttx"' — a (/> -f f) .c — aiw + /*/- -f r.^'- + Ocx.

Tiio (juoticnt of tiio lirst division will ho unity, so wv write

lilt* two functions under each other, thus:

x^ — {f( -\- b -\- r) x'^ -\- {(lb + be -f c(() x — nbr

Q^ -\- {— (I + b -\- r) x'^ — {(lb — be -\- I'd) x — (the

— 2 (/; + c) x^ 4- 2 (ad 4- ac) x — 1st rem.

Dividing this remainder by — v' {b 4- c), we h;ive the next

divisor. We then perform the next division as follows:

x^ 4- {— ((-[-b-\-(') x^ — {(ib—bc-\-ca) x — nbc i x^ — ax

nx^ x 4- {b+ r)

{b-\-<-) /^ — {lib— be -{-('(() X — (tbc

{bJ^(^x- — {(lb 4-m).r

hex — abc = 2d rem.

Dividing this hv the factor be, whicli is eontained in all its

terms, we have ./; a for the next divisor, which we iind to

divide the lust divisor, and therefore to be the G.C.D. rc(iuired.

'
I

EX.ERC1SES,

^3_4rt2_^,-^5.

12a:2 4-21:r-10.

nctions of two

re them aveord-

Find the G.C.D. of

1

.

.r3 4- Ucx 4- b^ — 6-3 and x^ -^{c— b) x^ -]- {IP -\- be + r^) x.

2. a'^ + :i(ix 4- (v^ — I and x^ — («2 _ 2a) x -I- a — 1.

3. {a-\-b-\-e) {ab -{- be -{- ea) — abe and a- + ab — (le — be,

4. .r* 4- 4rr» and x^ — 2«'<r -f 4^/3.

5. x^ — ax^ — l)^x 4- (lU^ and .''-' — a^.

6. a:3 _^ ^^3 4_ ^»3 _ 3^^^^. ^m] .,;;! _|_ o^,,^ ^ ^^a _ ^,2.

7. x^ — 2a:2 _^ 2
0(^

4-
1

md 2 r' 4- —

8. x^ — x^y 4- xf — // and .j:^ + x^if 4- .V^
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TriiiisCoi'iiiiitioii of l]<iiiiin(>iiH.

*MV,\. Drf. An ('(lujilion is said to be Transformed
wIkmi ji second ('(lualion is Toiind wliosc I'ools bear a

known relation to those of tiie given equation.

Tki:M. Soinolimcs wo may be iiblo to find a root of tlit

traiisforinod (.(iuatioii, {iiul tiieiu'e the c'orresj)()ndin<,' root of

the original equation, more easily tlmn by a direct sohitioii.

Problem I. To change the signs of all thr roots of an.

equation.

Solution. By changing x into —x in a given equation,

the signs of the terms containing odd ])o\vers of x will bo

changed, wliile those of the even powers will be unchangcl.

Hence, if « be any root of the original C(iuation, — « will !.•

u root of the e<|Uatioii after the signs of the alternate terms arc

changed. Hence the rule:

Ciutnge the signs of the (dtenutte te?'nis, of odd and

even degree, in the e</iuitioii.

PnonLKM TI. To diminish all the roots of an eqim-

tion InI the same quatititj/ It.

Solution. If the given e([uation is

xn + ;,^.cn-l + p^xn-2 _^ . . . . + y,„ = Q,

and if// is the unknown quantity of the required equation, wr

must have

y =: X — h.

Therefore, x =i ij \- h.

Substituting this value of a; in the equation, it will becoii

r+(;^i+^'^O.y""'+ ^,„4.(;,_l);j^7, 4-^7,2 |^«-2+ etc. [a)

When //, n, and the //s are all given quantities, the coeffi-

cients of y become known quantities.
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ransformed

he roofs of an

s of an cqii'i-

E y E RCI S ES.

1. 'rninsiorm tlic CMHuition /• — ;{,'• — 1 = into ouo in

wliiclj tilt' routs .slijill Ik' I^'s-^ liy 1.

2. 'rransroriu ./•' — .')/-' + 0^7* —7 = ijito oiio in wWu-h

tlu! roots sliall bo ^'rcater by 5.

IHii, Ju'fuoriiuj Tc.nns from Equdtlons. Tbf iiuanlil;. //

may bo so uiioson that any recjuirod term after tlio lirst in tlio

transtbrnicd ^filiation slmil vanish. i\»r, il" wo wish the second

term of the eciuation {(i) to vanish, wo have U) suppose

p^ + nh = 0,

which orivcs _ /'t

n

\Vc then substitute tliis vahie of // in tlio ofpiation (n),

whicli gives an e((uati()n in wiiicii ti»e seco.^d term is wanting.

If wo wish tiie tiiird term to vanish, wo must determine h

by the eoaditiou

Qh-i^{n-l)p,Ji-^p, =0,

whicli requires the solution of a (juadrntie equation. Eacli

consieutivc term is one degree iiigher in tiie unknown (|U!in-

titv h, and the last term is of tlio same decree as the oricfiiiul

equation.

This method is principally applied to make the second

term disa])])ear, which re([uires that we put

n

Example. Make the second term disa])pear fnmi the fol-

lowing equation,

x^ + px -f- r/ = 0.

Solution. Hence, n =2 and y>, =^ p, so that

h
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Making this suljstitution, the f<{Uutioii becomes

wliich is the required e(tuati()ii.

Hk.m, Tliis process aifords tin additiouul elegant metbod oC

S(dving tbe ({uadrutic equation.

Tlie hist equation gives

II

1

4 ~ '^ "^
2
^^^ ~ ^^'

The vaUie of x, being eciual to y -\- h, then becomes

which is the correct solution.

EXERCISES.

Remove the second term from the following equations :

1. x^— 0.1-2 ^ cw — 1 =: 0.

2. .74 _ 4^^;5 ^. ;3,,.2 _ 8 = 0.

3. x^ — ir.ir^ + 22-3 + 2x^ — ;}.6- = 0.

4. x^ — U>;f5 -\- -Zx^ — X = 0.

Rr:M. ^rbe theory of the above process will be readily com-

prehended by recalling that the coetheients of tbe second term

is e([ual to the sum of tlie roots taken negatively, or if <(, /i, y,

etc., be the roots,

« + /3 + y + . . . . + e = — />!

It is evident that if we subtract the arithmetical mean of

all the roots, that is, — -^ , from each of them, their sum will

vanish, because
n

n n n * n
(>.

ITence, when we put ?/ — — for x in the equation, thetium

of the roots, and therefore the second term, vanish.
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it nietliocl of

)e readily com-

e second term

y, or if «, ^' )•

iieticul lueiiu uf

,
their sum will

i}G5. Pkohlk.m. To trail sj\)fm f/iici/iifi/ i(jn so t/uit t/ie

foots sluill he iiiiiIti/)liL'd bij (C jjircii factor m.

Solution. Since the roots iir( to be niiiltiplied hy ///, the

lu'W unknown (lunntily must \iv e(juul to iiix. So if \\v cull

this (|u;mtity (/, we luive

w liich ffives

y = ill.

V
in

Suhstituting this in the general equation, it becomes

/«-l /j/71-2yn yn-i yr

0.

Multiplying all the terms by tn", the e(iuati()n becomes

y" + iiip^y"-^ 4- />'~/>oV/'*-~' + + ni"/h, = 0.

lleuce the rule,

MuUiplii tJir rnrjficieiit of the srcoiid trrni hi/ in, that

f)f t/is third till n>'\ and so on to tJir last trrni. irhirli irill

hr niiilfipiird liij m".

If the roots are to be divided, we divide the terms in tlie

liame order.

EXERCISES.

1. Make the roots of x^ — 'Z.v -f 3 == four times as great.

2. Divide the same roots by 2.

3G6. Piu)bli:m. To transform an equation so that its

•uots shalt be sqiiftred.

Solution. Let the given equation be

If y be the unknown ([uantity of the new equation, we

iiii-t have

which LHves x= ± yK

If we substitute x =: y'-^ in the given e<[ualion, it nuiy be

rodueed to the form

y^ + p^z!/ + iu -I- iPii/ + p^) y' = ^-
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If we substitute x — — i/'', tlie ivsult will bo

f + />2!/ + JU - {Pill -i- Ih) !/' = ^'

Since ilk' v.-iliic (»l' // must satisfy one or the oilier of tlic^c

o(|uatioiis, it mu-i reduce llieir product to zero; we therefore

multiply tliein together. Considering tliem as the sum ami

ditrereiice of a pair of expressions, tiie product will bo

{f+ihv + /^4)'' - {PxU \- IhYy = ^y

or

y^-i-{''Pi-Pi'')f+{P2^+ -PA--PiP^)!f-i-(:'P2Pi-P3')!/-^P
— 0.

EXERCISE
IVansform the (piadratic,

x^ 5x -f G.

of which the roots are 2 and 3, i to m) equation in which tlu

roots shall be the s([uare8 of 2 an' 3, using the above process.

2. Transform in the same w; ly

a^ + VZx^ + Ux + 48 0.

foiransiorm

aP — ix^— 10a;3 -f 40xi -f Ox — 3G = 0.

Geiioralizatioii of the Preceding Problems.

367. I'uoiJLKM. Given, an equate jii of any (lc<Ji''r

in an unknown </H,((nfit[/ x ;

Required, to transform this ii/itation into anotltcr of

which the root shall he a ^iirn fiuic^ion of x.

Sdhtlinu. Let y bo a root of the required equation, and

the given function. We must then have

f'^ = !/•

Solve this equal ion so as to obtain .r as a function (^f //.

Substitute this value of •"
i the original ef^uation, and form a?

many ecjuations as there are values of//.

The ])roduct of these equations will be the required e<|n!i-

tion in y.
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0.

olbcr of tlu'f>c!

wo tlierefoiv

the sum iind

ill be

:0,

— 0.

n in AvbicU tlu"

above process.

= 0.

Problems.

/ any dc^nc

ito another of

X.

([nation, and ''

function of //.

ion, and form a.>

re(iuirecl etinti-

EXERCISES.
1. Transform

a,-2 _ 7x + 10 =
so that the roots of the new e([uation shall be ox^.

2. Transform x^ — 3.1'- -f '^x =z

.<o that the roots shall be ax + b.

3. Transform x'^ — 0./; + 18 =

so that the roots shall be - -^'^ — 3.
o

Ilesoliitioii of Niiinorieal Equations.

3G8. Gouvniient ncfhod of voniputiixj (he nioncriad rahic

of an entire function of x for an assumed value of x.

If wo have the entire function of .r,

Fx — ax^ + Ijx^ + ex' + dx + c,

we may put it in the form

Fx = \[{ax + h)x + c] X -^ d\x -^ e.

Therefore, if we put

ax + /> = //, h'x -\- c z=: r\

c'x -\- d :=. d', d'x -\- e z=z e',

wc shall have Fx — e'.

Numerical Example. Compute the values of

Fx = 'ZqP — a^-t — (Jx^ + Sx — 9

f(jr X = 3 and x = — '^.

We arrange the work thus

:

.3 -G
^-G +9 -fO

T3 +3 +9

Fl] = 00.

2 -3 - (;

+U -10
-I- Is —10

F{-'i) =^ -89.

CociHcients, 2
Prod, by (:^-=3),

Ilenco,

Fur X = -2,

Hence,

3
4

+ 8

+ 35

+ 8

+ 32

+ 40

—
+ 105

+ ~T)o

80

89
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] I

r» I

i

.

Tliis, it will b" noticed, is ii wxovo convenient proceHS than that of

Ibrmini; th(! i)o\ver.-> of x and nuiltijilying and adding.

309. 11(11 inrj an oil ire function of x,((nd puffinfj x— r-\.li^

it IS nqdircd to ik'vdup the function in jviwers of ft.

It will he remarked that tins proijlem is Hub.stantially identical with

tliat of ?' 'M')2, and iL • sohition >>*' this will be the holutior. of the foimcr.

lint in tl.e former cane h was su )|)OHed to be a given (juantity, whereas ii

is now the unknown »iuantity cjrreisponding to y in the former problt-ni.

Example of the 1 kohlkm. IT wc luivc the expression

Fx = -Ir^ + ;j^;2 + 4,

and ))iit X — ;2 + //, it will become, by (icv eloping the sepa-

rate terms,

F{'l + h) = '2P + 1:)//=^ -f dUh + 32.

(rllVKKAL IJl'LE FOI{ TllK PiUn.KSS. First CODlplUr tlir

vat It r of Fr f)// the procesfi rnr/itoifcd in ^ 3Gf».

Thru rvpcdt tJic process, nsin^ the sitccessire sums oh-

tai //('(/ iih t/ic first process instead of ihe corresfmnd in 'J

eoejjirirnts, mid stop])iiig one I'ni hcforc the tost. Tliv

result irill In' the coeffwiiol of h.

lirpeot the process iriiji the neiv sums, stopjdn^ ijit

one trrnt sooner. Tiie re.uf/i irill he the coeffrieut of Ir.

Coiitiimr the ref)etition frntll n^e have the first tern}

(full/ to o])ernte upon, ' Ic/i will Itself he the coejfieicnt

of the hiI
'h est ])ower of h.

E:V i. r le example above given is performed as folloAv.-:

+ 3rocfRcientft

Product by ?

,

First sums,
Second j»roductB,

Second sums.
Third product,

+ 3

J 14

7 14

i ?!
h 86
4

15

2//3 4-ir)// (-;w< + 32.

+ 4
28

32

Result, Fi:l-\-h)

Ex. 2. In the I'nnction.

let ns put X — ;) 4 //, and exjnvss tjic result in powers of//.



s than that of

',t}(J J'— r-\-fi,

/.

identiral with

of tht' forimr.

tity, whrrnis ii

riuLT problem.

expression

iig the scpa-

•ontputr flir

ii rr siu)it< ob-

)j'rrs})nn(liiiij

r last. Tlir

Sf0pj)7n[> Ijrf

cir.iU of Ir.

he first term

lie cocffidcut

cd us f()llo^?=:

+ 4

28

32
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('ootBcicnts, 3
Products by 3,
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^

1) Ir + c.

u' nrccciliii;j;

1, the n aepa-

Ik

nich of IIksc

coellieicut c.

)tc., the- sum

lent, is a iigu-

The sum tit

are ?? — 1 <>f

nal result is

)

roetheienls ef

ioYiv the eo

-. [, I flM-'"'

me. US those of

mefTlclents nro

|g table, wiiero

tlio one on ha

m
etc.

etc.

etc.

m 1

¥ 1

¥ 1

^« 1

etc. etc.

•4 10

10

:30

etc.

etc.

'tc.

•tc.

etc.

left. We have earrird tlie table as far us ;/ = ('», and tlie ex-

pressions at tlie Ijottom of eacli ei<hinni will, wlicii ti — C, he

formed from the numbers in this tal)le, taken in reverse ordi-r,

thus

:

Column under h, iUfr + />»;

il, :>0^/r'+lO///'' + 4rr + il]

p, 15r^r'+ lO^/'H'I'V'^.Vr 4- c)

/; O^/r*+ :)/»/•' + -Irr'+ l^/z'-^ -f 'Zcr +y'

;

«

it

tt

((

«

(.'

(t

Now the numbers of the above selieme are tlie tifjurate

numbers treated in § 287, where it is shown that the n'^ num-

ber in the i'^ column after the column of units is

n{n 4- l)Oi + 2) {n -f /-I)
l-'Z'l]

= (^i-')'

Comparint^ witli the coeffii-ients in the ecpuitions (-/), we

-ee that the two are identical, which i)roves the correctness ot

I lie method.

370. Application of the Precfdinf/ Oprratioti to thr Ex-

tt'oction of the llootx of Nnnicrical Equatioufi, Let the e([ua-

tion whose root is k^ be found bo

ax^ + /Af»-i + cx^ '^ 4- + // ^ <»•

We tind. bv trial or otherwise, the irreatciit whoK- number

ill the root x. Let ;• be this number. We .substitute r-f // for
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\ i

.r ill I lie above expression, and, i)y tin* jjrcccdiiif,' ))rocc8s, got

an ('i|uation in //, nliieh we may ])iit in tlie form

all" + ///i" -»
-f ^''//« ^ + r/'A" -'*

-f . . . . -I- // r=: 0.

Jit't ;•' he the first decimal of //, We put r'-^li' lor// in

this ('(piation, and, hy repeat irifj the proces>!, get an equation

to determine //', which will he less than 0.1. If r" he the

greatest niiniher of hundredths in //', we put //.' = r" -\-h', and

thus get an ecjiiation for the thousandths, etc.

371. 'I'Ih' first operation is to liiid the number and appro\--

imate values of the real roots. There are several ways ofdoini;

this, among whi(,'h Slurni's Thcorpin is the most celebrated,

1)ut all are so lalxtrious in application that in ordinary eases it

will be found easiest to i)roceed by trial, substituting all entire

numbers for T in the ecpiation, until we find two eonseeutive

numbers between which one or more roots must lie, and in

ditiicult eases ])l()tting the results by ^ 345.

It is, however, necessary to be able to set some limits h •-

tween which the roots must be found, and this may be done

by the following rules:

T. . /// rtiiiatioii in which ull thr cnrfjiciciits, indudiirj

(he iihsohttc term, are positire, caui have no positive nuil

root.

For no sum of positive quantities ean be zero.

II. //' /// comjnUing the vdlue of Fx for any assnninl

])ositiir value of x, hy the process of § 3fi6, ive find all the

sums j)ositirr, there can he no root so great as thut

assumed.

For the substitution of any greater num])cr will make all

the sums still greater, and so will carry the last sum, or /v,

still further from zero.

III. Tf the sicDis are alternately positive and negn-

tive, the value of x ive employ is less than any root.

IV. // two values of r 6ii^e different signs to Fx, there

must he one or some odd number of roots between these

values (comjiaJN' ^ ^U.l).
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V. Th'o raJurs of x wliirli hunl to fJir soiiir siri/t of /•>

include cither no roots or an, cren nitntfjrr of mots f}c-

tivccn them.

Lot us take as a first cxaiiiijlc tlic ("filiation

2-3 - T^ + 7 = 0.

Let us first assume or = 4. We compute as follows :

Cooflk'ieiits, 1 —7 +7
Products, _4 16 36

Sums, +4 +!> -f-43

So F (A) — +43, and as all the cooHicicnts arc positive,

there can he no root as great as 4.

Ptiltin*,' Xz=—\, tlu! sums, iiiclu(iiii«i: (he first coeflicient.

1, are I, —4, +9, —V.). Tlu-se hein;; iiltcrniitcly positive and

nep^ative, there is no root so small as — I.

Suhstitiitiii<; all inte^xers between —4 and -(- 4, we lind

/'(-4) =
/'(-;}) =4-1,
/'(-:>) = +i:5,

F{-\) ^ +1:5,

/•'(I) - + I,

F{'i) - + 1,

/'(:)) =. +1:3.

w

If we draw the curve correspond ini;- lo these values (Jj ;J4r)),

e shall find one root hetween —'.\ and —4, and verv near

—3.0.'), and the curve will dip helow the base line hetween -f- I

and +2, showing that there are two roots ht'tween these niiin-

l)ers ; that is, there are two roots of the form 1 +//, h heinir a

positive fraction. Transforming the equation to one in //,

by putting \ -\- li for x, we find the equation in // to be

7^3 ^ 3/^2 _ 47/ f 1 :^ 0. (1)

Substituting h = 0.2, 0.4, O.C. O.S, we find that there is

one root between 0.3 and 0.4, and one between 0.0 and 0.?.

Let us begin with the latter.

If in the last equation we put /t — ()J\-irh\ we Mnd the

transformed equation in //' to be

Fh' — h'^ -\- 4.8/; "-J + O.r.8// - 0.104 = 0. (2)

If we substitute different values of //' in this equation, we

^9
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S

bIi;iII fitiil that it mu«t cxcct'd .<)'.», and uh it must l)o Icsh tliuti

0.1, wo conclude that It is the li«(ur(' souglit, and put

W = XV,) 4- //'.

Transforming tlie c([uation (:,*), wo lind liic eciuation iu /t'

to he

h"^ -f .J.OTA' '^ -f i.o(;8;j/< ' — o.oo;u'ji - o. (:5)

Since h" is necessarily less than 0.01, its lirnt iligit, whieh

is all we want, is easily found, hecause the two tirgt tenns of

the ei|iiation are very snuill compared with the third. So we

Biniply divide .OO.'jr.H hy l.nfjs:], and tind that .00::i is the re-

quireil digit of h". We now put

h' = .002 + //'",

and transform again. The resulting e(|uation for A" is

h""^ 4- ."i .<»:(;/< "-J -1^ i.5.sH5i)2A"' — o.oo()o;ui 12 = o. ( i)

The digits of ./•, //, //', and h" which we have found show

the true value of .c to he

X = 1.002 + //".

Hy continuing this process, as many tigures as we please

may he found, liut, after a certain i»oint, the operation iH.iy

be ab])reviuted hy cutting off the last tigures in the coetllcients

of the powers of /^

Tlic work, so far as we have performed it, may be arranged

in the following form (see next page).

The numbers under the doidtle lines are the coefllcients of

the powers of //, h\ h", etc. It will he seen that for each digit

we add to the root, we add one digit to the coetllcient of //-,

two io that of //, and thi'ce to tlie altsolute term. We lunc

thus extended the latter to nine places of decimals, which, in

most cases, will give nine figures of the root correctly. If litis

is all we need, we add no more decimals, hut cut oflf one fioin

the coetllcient of //, two from that of A^, and soon for cad)

d'^cimal we add to the root.

We shall tind the next figure after 1.092 to be zero ; so wo

cut off the figures without making any change in the eoclH-

cients. The next following is 2, so we cut off again for if, and

multiply as shown in the following continuation of the process:
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bo less thttti

)Ut

luatiou iu /t''

: 0. CO

lirst lenns ol'

liinl. So we

0*^ is the rc-

r h'" is

VZ := U. (I)

c found show

us wf pleiise

)|K'nitioii niJiy

lie coL'llicii'iits

ly be iin'iin<re«l

cocfllcients (tf

lor eiicli dii^it

L'llieieiit of //-,

riTi. We bii\('

nils, whicli. ill

vctly. ll'iliis

(ifV our I'lKiii

s(» on lor each

)0 zoro ; so wo

ill the coctli-

siiii i'ur it, and

o[' the process:
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I

increase it liij 1 // the figure following the one carried

would have hecii 5 or greater.

For instance, we hi'd to ninltiply by 7 the number 15i888.

If we entirely omit the figures cut off, the result would be lOo,

But the correct result is lll|;il6; we therefore take 111 in-

stead of 105.

Again, in the operation preceding, we had to muldply

158i88 by 4. Tlie true product is G35,52. But, instead ol'

using the figures 635, we use 636, because the former is too

small by |5^, and the latter too great by |48, and therefore the

nearer the truth. For the same reason, in multiplying 1.588,8

bv 1, we called the result 1589.

Joining all the figures computed, we find the root sought

to be 1.69;>02U71.

Let us now find the negative root, which we have found to

lie between — 3 and — 4. Owing to the inconvenience of

using negative digits, and thus having to change the sign of

every number we multiply, we transform the equation into one

having an equal positive root by changing the signs of the

alternate terms. The equation then \s x^ — Ix — 7 = 0.

The work, so far as it is necessary to carry it, is noAV ar-

ranged as follows

:

3

8
8

6
3

-7

18

-7

6
3.0489173395

9.00

_4
9.04

4

9.08

_jL
9J[20

8
9.128

8

9.136

8_

19.1144

20.onoo
.3616

20.3616
.3632

20.724800
73024

20.797824
73088

20.8709112

82310

20.87914|2
823

2078873^

9

201.8181715

-1.000000
814464

-0.185036000
.166882592

- .19T53408
18791228

-362180
208875

^53305
146213

^'092
_6266
-8'26

627

-199
188

11
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000
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580000
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153408
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362180
2(»88T5

T53305
146213

-7092

J266
-826"

_637
'-199

188

-11
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The negative root of the equation is therefore

— 3.048'Jir;j;)!)5.

EXERCISES,
Find the roots of the following eqnations:

I. .9-3 _ 3.^2 -(- 1 = (;3 real roots).

2.

3-

4-

5-

45r.f

x^ — 3x + 1 iiz (;} real roots).

.7-4 _ ix^ -\- 2 — {•} positive roots).

.r2 -f- .1; _ 1 — 0.

Prove that when we change the algebraic signs of the
alternate coeflticients of an equation, the sign of the root will

be changed.

373. The preceding method may bo applied without
change to the solution of nunu>rical (juadratic equations, and
to the extraction of square and cu])e roots. In fact, the S(juare

root of a number w is a root of the ccjuation x- — n = 0, or
x'^ -{-Ox — n = 0, and the cube root is a root of the equation
x^ + 02-2 -\-Qx — n = 0.

Ex. I. To compute V^.

1^

1

1_
27o

0.4

2.4

_4_
2":80

1

2.81

1

27820

4
2.824

2^8280
2

2.8282

-2

1

1.41421356

-1.00

_ .90 _
-70400

___281_

-11900
11296

-60400
56564

-3836
2828

-1008

__8J9
-159

141

-18
17

H

fi < ; n A

•j

S|.8!3 8i4
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3 APPENDIX.

SUPPLEMENTARY EXERCISES.

lii



r

Note. Tlie following additional exercises and problems are of the

same general character with those in the body of the book. Tliey are

partly original, and partly selected from 'he best recent German col-

lections of problems. They are arranged under the section numbers

to which they pertain, so that the teacher, on arriving at those sections,

will be able to select as many of them as he deems necessary for the

drill of his class.

f



SUPPLEMENTARY EXERCISES.

Algebraic Atltlitiou aiul Subtraction.

§15.

Supposing one to start from a certain point on tlie scale
of numbers, and then move over positive and negative spaces
as follows, It is required tc find his stopping-point in each
01 the loilowing cases:

1. Starts from + 4, and moves through + 2 — 3-|-9--7— 2 units.

2. Starts from + 9, and moves through - l - g - 9 4- 5+ 8 units.

3. Starts from — 1, and moves through + 2 — 3 + 4-5
+ 6 units.

4. Starts from — 8, and moves through — l + 3_5_i_7
— 9 units.

5. Starts from — 12, and moves through —9-6 + 8 + 5
+ 8 units.

§31.

I. How far is A from B (positively or negatively) when
they have severally made the following motions from the same
point on the scale of numbers:

A
, , B

,

a. -2-3-5 + 7. +1 + 2 + 3 + 4 + 5.

b. -5 + 5-6 + G. +5 + 6-2-4 + 12.
c. -2 + 7 + 8 + 9 + 10. -7-3 + 4-5-6.
./. -1-2 + 6-2-1. +3 + 4 + 5-8-3. Ans.~l

*1

In
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\

2. What is the int'iiuing of the following expressions :

That man is — 6 years older than his wife ?

Kichmonii is — 70 miles uorth of Washington ?

You arc — 3 inches taller than your brother ?

3. The Autocrat of the Breakfast 'J able tells of a Par^oi'

Turrel who, dying in the last century, bequeathed a noted

chair to the oldest member of the Senior class in llarvanl

College, which was to be passed down from class to cIjihs

indelinitely. Tiie first Senior who got it was to pay 5 crowns,

but each succeeding one was to get it at a price 1 crown ks.s

than that paid by his predecessor. How would the require-

ment of the will work at the end of 7 and of 100 years?

§34.

I. Find the value oi a — b and of ^ — rt when a and h have

the following sets of values :

(1) (2) (3) (4) (5) (G) (7) (8) (9) (10)

«= +2, +7, -0, -5, -17, + 8, -33, -18, +12, +22
h= -3, -9, -3, +8, -29, +14, +13, -19, -12, -22

a-h= +5
h—a= —5

2. Com])ute the values of 1 + 3a: and of 1 — 3^ for the

following 11 values of x :

a: = - 5, - 4, - 3, - 2, - 1, 0, + 1, + 2, + 3, + 4, + 5.

3. Compute the values of « + 25 and of a — 26 for cacli

of the 10 sets of values of a and b in Ex. 1.

§56.

1. How much is a + 2a; greater than a — dx, and vice

versa '?

2. How much \s, a — b greater than b — a?

3. TTow much is greater tluin a — 2b ?

4. How much is greater than — x? Than + a; ?
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poured from into 15 ; a (luantity fcjiuil to what was left in {]

WHS pourcMl fntiii 1) into C ; ami, liually, Ji (iiuiiitity equal to

wluit was k'fL ill I) was poured from A into J). J low mueli

was then left in each cask ? I'rove as before.

12. Tliree traders, A, ii and C, had a, b and c dollars

res{)ectively. A bought c dollars' worth of goods from \\ ; li,

a dollars' worth from C ; and C bouglit b dollars' worth from
A. When each ]»aid the other for the goods, how mueh
money had each left ? What was the sum-total of money
j^ossessed by the tliree ?

13. Giveu a quadrangle the lengths of whose sides arc a,

b, c and d respectively. Enough
of the side b is cut o(f and added

' to a to double the latter; (he re-

mainder of /; is then doubled bv

cutting of! from c ; and the re-

mainder of c is doubled by cnttiuf

off from d. How long will each side then be ?

14. Of two men starting out from the same point, A
walked m miles west the first day, and k miles more each fol-

lowing day than he did the day before ; B walked p miles

west the first day, and x miles less each day than he did the

day before. How far was A west of B, and how far was B
west of A, at the end of the first, second, third and fourth

days respectively ?

15. If, on this line, we suppose the point B to be at the;

B C
East. West.

distance h west of A, and C to be ut the distance c west of A,

then, in .'ilgebraic language:

IIow f:ir is A west of B ?

How far is A west of C ?

How fur is C west of B ?

How for is B west of C ?

How far is the middle point between B and C west: of A ?

How far is the middle point between C and A we?t of B ?



CLEAiiiya or iwiiKyriirsh's. 105

B to be at t!u!

IIow far is tliu middli! point hi'tweeii A ami \\ west of (' ?

What, is the algobniiu suiri of tlit'su last tlircc; (lislincts 'f

NoTR. Should tlu! stiidciil fmd luiy dilliculty in this or the iir\t

(iwt'slioii, he slioiild bci^iii by cxiircsr-iiiu: the disliiiiccs a and /mii nuiii-

bur.s, mid iioUciuLj the processes by wliich {\\v nuasu'vs are found.

1 6. 'iMio three points A, B and C arc at the respective

i

B
"

iI I

distances n, h and c west of a fourth jioint, M. Express alge-

braically the three distances

B west of A ; A west of C ; C west of B,

and take their sum. Ex[)ress also the distances

A west of the middle point between M and B,

B
C

ii

a ((

i(

tt

M and C,

M and A,

and find the sum of these three distances. Then express

A west of the middle point between B and C,

B
C

a

((

((

((

tt

tt

and A,

A and ]i.

and find the algebraic sum of the three distances. Express

also the three mutual distances between the middle points of

lines AB, BC and CA respectively—that is :

Mid. point betw. A and B west of mid. point betw. B and C,

etc. etc. etc.

ce c west of A,

§61.

Clear the following expressions of parentlieses, and com-

jino the terms by addition:

1. 3 7)1 — [h — 2m — (h -\- rn) — {h — m)].

2. {a — d) — {a -\- b) -\- {a — 7n) — {a — ni).

3. ^a + b)-{a- h) - [{a - b) -{a + /.)].

4. 2h - {3/i - \Jch — (5/i -m)-\- m] + 2m\.

5. 3c - 2(1 - {2(1 - Sc) + [- {c - (I) - (3r+ 2^Z)].

6. 4A - 7/i - (4A + 7w) - [3/i + {-im - (i) - (oz/i + h)].

1 1.
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h.l

If

I- '*

7. x+\x- a- {}ln - 'ix) -\- \(t — {a -x)]].
8. Gfl + I

ha -'Zx-\-\ \a - '6x - (3« - 4a:)
j |

.

9. {a f h - <;) ^{n-b-{- c)-\-{-a -\- h -^ r)-{ft -f- /y -f r).

« o. nr -f dx - i'^a + :>./) - {;ia -f a,') -
I

^^ - {a - ./) |.

II. /; + [
- ii^ - :i6' - (3r - Z-) - ;j /y j.

12. -[- (;}m-^>/<)-h('i//<-;i//)j + [{r>m-4n)-{'.]N-\iN)\.

Muitipilciitioii iuul A<lcntio]i.

§74.

Clear the following expressions of parentheses:

1

.

/j\a {c — x) + b (.-; -\- x) -\- ax [d - c{x -a)]\.
2. »f \x - n (/> - y) -^b{n-\- y) + y {n + b)\

.

3. <ni [an (1 — a^;) -f- (I'n'* (1 — «7i)].

4. h\i^h[i^-h{l-{-h)]\.

5. a; |1 — a; [1 — a; (1 — x-)](.

6. X \p -^ x\fi-\-x{r -{-x)']].

7. a;{;;-a:[// -a:(r-a:)]i.
8. n\[{ax-{-b)x-\-c]x-\-(l\.

9. <<:
{
[(rt.r — b)x — 6'] a: — (/|.

10. p \[{px -^ p') x -^ p']x -\- p'\,

11.
I
[(//?a: — w') a; — ?;i'] x — 7>i* | war.

12. [ce {b - C) + b' {C - «) +C^ (rt - Z.)] ^7Z>6'.

13. m [a' (a; + y) -^ b' {x - y) ~ x{a' + b')] + (a' - b') ym.
14. a 1^^ — Z* [rt — c(« — (/)]}.

i6. (« + a-)(^-y/) + (a-a:)(i + 2/).

1 7. (?« 4- n) (a; + ^) — (m - n) {x — y).

(§ '76.)

Arrange the following expressions according to powers
of a:

:

1. (,;'_a;»4-l)a'4-(a:'-a;H-l)rt'+a\

2. l + a;-a;"-a;'-«(l+a;-a;») + r7'(l - a-) - a'.

3. ma'~na\x - 1) -?/i«'(a;'- a;+ 1) - wa(a;'-a-'+a: ~ 1).

4. a — X [b — x\c — x [d — x)'\\.



f (a' - b') ym.

ing to powers

DIVLHION.
4(57

Write out the rosiil'^s nf n.r. /• n
bluets on sight:

^'""^'"'^ i^«^^^'« ^"^1 i'l'-

'. {ax-^b,/)\

7. (^^'^ + ;%)».

II. x{x-^y)\

<3. «(^-;y)(:r+ y)

2- {flX-hn)\

6. (f(,r - i>b,^)\

14. '^'M'^ - ^) (« + .r).

17. (a + by-\-(a-~b)
3w/ + u) (ihn ~ n).

Form the VJll

r8. (« + /^)» _ („ __
/^^

according to powers of

^Inesof the following (quantities.

^, y and 5;

and iir'JUinre

20. {ax + dy)« _ (/,,. _ ^yy

(^^^'^ - nyf - (,/,:^ __
//)'

24. {ax -^byJ^ cz) {ax + by - ,,)

(.^r - /;^ -|. ^^) (,,^. _ ^^ _ ^_^^^

I. 6«V^c' -4- 2«a:'^.

Wvision.

§(S5.)

24a x'Uj ~ {:>a'x
3,1^2

y
rn

3. 12««.c='y -^ 4f;V_?/

4. ff" T{c-^d)-^ax{c-{-d).
S. rr(:c-y)-^,^(^_^^^^
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:Wi l'
*'

.1

6. ^6- (a;+ y) -T- 6» (:?; + y).

7. a;"?/ (rt — ^) -^ X {a — b).

8. 10.^^ (a - h) + G.?;' (« + ^') -^ ^.

9. .T" + ^ - .r"-^ + 2-"-2 + 2;" -T- a;"-'.

10. 10 (a + by - 15 (rt + by - 10 (a + Z*)

11. 0(a -\-by ^4.{a-\-by.

12. {a + .i-y {a + yy -4- («+ x)* {a -\- yy.

13. - 12rt"'^" -^ 4rf ^^'^.

5 (rt + J).

14. «m+ l am +2 an» + 3_^^3

Factoring.

§89.
Factor the following expressions:

I. ab'c' + rt^Z^'c + a'bc' - a'b''e\

2.



f i) - 5 (« + h).

e out all monomiiil

in § 89, and factor

X.

x\

taV;^ + 4f/Z*\

^' + z'x').

PACTOn/XG, .

3. 2 (rr'y' + f,^ + ^r^.) _ ,^, _ , _ ^,

4. 8a^b^ + 32^V-' + 8r«^ - a^ _ le^^ J igc\

§94.

J. a'-i- 4«V + 4«^;r\ Ans. a^ (a -f o ,n.

A?is. a {a + x) (a - .r) (,,' _|_ ^^^ _^ _,,,^^

4- ay- ~ ay.
6. {a + ^)^ _ ,.^

2. r/." - r^V

3- «V - X

5- (« - dy ~ c\

7. :?^* {x - ?/)^ _ a;*.

9. (« 4- ^,)3 _|_ ^3^

II. a^-^ + y".

13- «" + 04wV.
15. .'^•' + ^^
17. «' + 216.

19- ^* + ^*.

21. 8a' ~ 27b\

23. a;'' + l.

25- «' + «i'.

27. ab* ~ b\

29. 32^'" + 1.

31. 2.t'+16.

33. {x-\-yy -(^x-yY
35. (a: + I/)* _ (a.. _ ^)*

8. :?' + 8xij\

10. rt (« 4- ly ^ ^.^

12. a' Jr (ib\

14. /«" + ^Am'x\
^6. r.'^" + 8.

18. 64.?;'-[- 12oc'.

20. :2-' — a\
22. fJ4m' — 8/^'.

24. Ua'-\-h\
26. « - 2r«\
28. rt' _ 243.

30. KJr/' — ^^

32. 27«^-f 8ar'.

34.

36. 1

(^ + ;/)" 4- (.r - //)'

(f + 0^.:i;
-_ x'

Factoring Trinomials, A trinomial of the form

X + ^ix 4- /;

cuii always be
sum is « and wh
numbers, the tr

factored

lose p
nomi

whenwG can find two numbers wh

whicli

odiict is b. For if

i is

+ (>/* 4- n) X 4- 7nn,

ose

?« and n are these

is <\\\ii\ to

(^ 4- «0 (-^ 4- «)•
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\ »

Factor:

I. a-^ -\- {a + i) a: + ah. Ana. {x -\- a) {x -\- h).

3-

5-

7-

9-

II.

IS-

;'/' -!- ^11 + 2. Ans. (?y + 1) (y + 2).

f f- 4y + ;3. 4. ^' -f 5:r + 4.

'/i' + bn + G. 6. w' -j- G?i 4- 8.

a'' -h '''^^ + 10- 8. a' + 8r? + 12.

wi* + 7m 4- VZ. lo. w." -t- 8w + 15.

a:' + Tx' + lOrr. 12. ?/^ + G//^ + 8?/.

.T^ + Ix' -f 12:r' 14. a' -^ 8rt' + 15rt'.

a:^ -f- 19.c' + 88. 16. a' + 12^' + 35.

17. x'»H- 9a;" + 20. 18. y»+5^^" + 6.

19. x"^ -\- {m — n)x — mn. Ans. {x -f tn) {x — n).

From this last example it is seen that Avheii the quantitit's

m and n have opposite signs the last term of the trinomial

will be negative, while the middle term will have the sign (if

the greater of those quantities, being equal to their algebraic

sum or nuraerical difference.

20. X X - Q. Ans. {x - 3) (x -r 2)

21. x' - x" - 12.

23. a' -\-a- 30.

25. 7/i' + 2m — 8.

27. n"" ~ 3^' - 40.

29. a;' + (2rt — 35) a; — 6a5.

31. a;* -f- ax* — 6a'.

22. y - 2/ - 15.

24. a^ — a — 30.

26. wi" — 2wi — 8.

28. m* + 3m' - 40.

30. x^ — 3«a: — 4rt'.

32. x"-- — 45a;" - 125'.

If the quantities m ?ii,d 7i are both negative, the sum

m-\-n will be negative and the product positive, because

[x — m) (x — it) = X* — [m + n) x -f- mn.

35-

37-

39-

41.

43-

45-

47-

rr' — {a -\-h)x -\- ah.

,f
- 37/ + 2.

x" - 13a; + 40.

ax"^ — ^ax -f 2t7.

?7i'a;' — 5??? a; + 4.

??^^r' — 3m.-c + 2.

aV - 7rt^T + 12^7.

n'lf - Wf + 10?j'.

34. y^ -by -^ 6.

36. a;' - Ix + 10.

38. .9:' -. 8.T + 15.

40. ax* — Qax.^ -\- 8a.

42. 7n'^x^ — 5ma; + 4

44. m'.'/:' — 4m.?; + 4.

46. m\T' - 7?>?V + 12w'.

48. ?•"//' - IrY + 12?-'7/'.
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en the quantitit's

of the trinoniiul

have the sign of

to their algebraic

egative, tlie sum

tive, because

111 the following exercises trinomials of all the precedincr
classes are contained: °

x" -\-

.?;' —
a c -

a' —
.3

I

3

5

7

9-

II. .7-' +
13. a' +
15. a' +
17. :i-^ +
19. X* —
21. a:'* —
23. (a +
24. .'^' -}-

26. .t'

IO2: + ?4.

Sx - 30.

7.^;' + 12.

- IQabc 4- 3!)/*-^

12a + 20.

^x - 32.

«' - 132.

17«' - 390.

X - 72.

39.r + 108.

7.7; - 60.

*r-llc(« + ^)

4.r - 77.

14.« + 48.

2. .t' — 6.?^
-f- 8.

4. :c* + 3.c^ 4- 2.

6. 2:^' - 27.17/ -f 2G.

8. a'b- — 24^f'(^;?; -f 143.r'.

10. .T-' + 50.r + 49.

12. a' - ^ui ~ 18.

14. r?^Z»V + Oa'b'c' - 22.

16. a' ~ 7a i- 12.

18. x' ~ I2x + 27.

20.

22.

-h 306-\

25.

27.

.^- - ;*• - 12.

lox' - 17x' + 4.

x' -{-ex~ 135.

2;' -f 122: + 35.

I.

3-

5-

7-

9-

II.

15-

'7-

19.

21.

23-

27.

Miscellaneous Exercises in Factorinj?.

ax" - 2bx -f ex. 2. a.T - 2Z».r + dn/ - ^.r + 2//.

«':i- - 2c^/f/ - 4.T - y -f. a;. 4. a*".? -f- a2»»^' _ 'S(f^\v\

ax'- 2bx'-}- cx\

ex' - abx''' ~ 2y + Tiaif.

'Zc'x'if - 2-''?/'« + dx'y\

{x^ - 4).

,^,Vy' - a'b' +
a.'*'

6. i,^''— 2iqx^ -\- px"".

8. «6\r?/ + 2xy - 3x\fj\

10. 42-'^ — 3.T'*?/"'4- 2.<;"'_y'.

12. (.-r' — 9.r).

14. 4.r' - 12.7:'^ + 0//'.

16. «V _
2/^

1 8. 9rt» - 1.

4rt' + 1 - 4a.

.r' + 2.2:> + xy\

20. a:^'" -f a;'" + ^.

22. 16a>" — 1.

25aV - 30a.<y + 9x'y\ 24. 12a^ - 3Ga'2:y + 273;'y\

-:!''_ -5 4. i_ . a' a 1

4 3?/
"^

9?/^'

4// 6//^ + 187*

.a' a ,

c (ib ^ 18//"

28. a'

i

'I
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» (

m

!r

f

29. 2ia'b - 72a y + 54a*'. 30. x'* - y'\

31- (4-171). 3-- mV + 2mV + mV.

33. ^SOaV/^" + lOSaJV-'^/ + ^'c'cT.

34. 12 la" - 286a'^' + U%\ 35. 98a'Z»' - bC>abx + 8a;'.

36. Ux' 4- 8^' + a;*
37- H^' - 2/'

39-
a

a + 1.

40. Uab {dab' - lObc) + 20c (5c - 4aZ»').

42. 2^xy - 13lxyz\

43- (« - l^y - (« + ^Y- 44. (2a - /;)^ - (a + 2/>V.

(a + by

41. — — Sax

I

45 46. (a + by - (a' -2aZ» + h').
4 (a - Z»)''

47. (a - Z*)" - (4a' - 12a6 + 9^*').

48. (a + by - (4a' + 12a6 + %').

50. a' — 2a7/" -h f/''".

52. a'/^' - 2ac^» + c'.

54. IGa' - 4c'.

56. 16a:' - 24a;' + 9a;.

U 5

49. -.- - ^ + -.-

51. a;2m _4^^.»H^yn_^ 4^/2n

^2» ;,,2n
53. x-'~y

9a^'r"'

55
ICr'y

* 25^y 4aV'

57. 4a;' — 4.t' + a;*.

59. (2a; + ^)'- 4 (a; + 7/)'

58. 4a'i' - (a' + ^'' - c')'

Products of Two Binomials.

We have

(a + b) {x-\-y)= ax + bx + a?/ + ^y.

Hence a polynomial of four terms may sometimes be ex

pressed as a j)roduct of two binomial factors. We can do tliis

when, two terms of the polynomial {ax -\- bx for exanipk)

l)eing divided by a common factor {x), and the two remain-

ing terms by a common factor {y), the quotients are equal.

We can thus factor the following:

1. ax — bx -\- ay — by. Ans. {a — b) {x -f- y).

2. ax -\- bx — ay — by. 3. ax — bx — ay -{ by.



DIVmON BY POLYJSOMIALS.

4. w' + mw + w' + 71. 5. mn - m' + ?i' - n'm.
6. 1 -f « -f-

«' 4- rt'. 7. 1 _ 3, __ ^> _^ ^3^

8. l-^-x-x"- x\ 9. «3 _^ ^,^ _^ ^^., _^ ^,^

10. {a ~ nx) {a + nx) ~ {71 - ax) {71 + ax).
11. b'- Wx + ^»^' - '6x\ 12. a' -f- rt' - r/^ - a'
13. wi" - 3m^ + m^ - 3///'. ,4. 771^ + 3^/?/ - m^

_'
3m

473

hi

ometimes be ex

We can do tliis

hx for exainpU)

the two remain-

tients are equal

Division by Polynomials.

§97.
1. «' + 4:ax 4- 4.r' ~ a-^2x.
2. 6r<* - r,//" ^^>«' _ :>^,».

3. ^^ - 3«V;» -f 'da'b' -b'^a'- 3a^'b + 3«^' - b'
4. «=> _ 9rt' 4- 27« - 27 ^ ^r - 3.

5. 48a' - 7Grt'(^ - eiab' + 105^*^ 4- 2a - 35
6. ia' + a*+ ta + f -f- i-a 4- 1.

7. 33«'Z/' - 77a'Z.^ 4- 121^7/ - 3^"^^ - 7ab' 4- l]a5»
8. lOOrt^ - 440a^Z* 4- 235a'b' - dOa'b' -f- 5a' - 2a'b
9. 37a'^'' - 26a'b + 3a* - 14a5' -- 3a^ - 6ab 4- 2b\

10.
..nt + l 4- a-my ^xij'^-^ym + 1 ™fi + !/'

I I. «*« 4. f^2»^2H _^ ^4» _^ ^2n
_^ ^„^n

_|_ ^
12. 10a* - 27a'b 4- 34a^<5*' - ISai' - 8b' ~ 20" - Zab 4-W
13. 4.rl — 3%i — 7/ -^ xi — yi.

14. 8a* — Ga} -\- ai -i- 2ai — aA.

15. 9a-24-12a-^4-4-4-3a-i4-2.
16. 4x - lO.ti - Q>2xl - 30.ri ~ 2xi 4- 5.

17. x'y-''-{-x-^if ~
18. x^^' —f

X 'y-\-xy

X" y
19. 4.7;' 4-f?. - Tox' 4. 58:^;* - 7O2;' - 23:r - fj:^;' - 5:r 4- 2 -
20. .r' - ^ «"^' +

:x\
2a' c/

+ ,T
-^./'^ — 2aa:4-

-'
(f

21, («' - 2a/; + b'-c'){a + b-^c)~a-b-
{ax 4- %)^ 4- {ay - i:r)' -f- a' 4- /*'

23. 12.7;* - 14.r' - ll:c' 4- 19.r - G -^ 3: oa; + 2.

24. W¥ ~ 35* 4- llab' 4- 12a* - 34a'5 - 5^ 4- Ga^ - 5a6.
25. Gabc' - Wc' 4- 4a'5' - a^c' -4- 35c - ac 4- 2a5.
26. 25c - 1 4- a' + 2c - 5^ - 25 - c' - a + c - 1 4- J.

in
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U i

16 2x

4

z

2'27. 3^'- 82:2- ^-7/ + - ^ . g

28. a; -y -z _-^ + —- + -^--.^-3. + -^.

29. !:> {x - yY - 3.6- iy-z)- 2y {x + z) - 20z {y + 3z)

-- 5 (;r + 2z) — Sy.

30. {Ax' - 9/) (8./;' - 27y') ^ {2x - 3//)\

31. 12 + S2a'' + 100^^' - lOa' - ll2a' - 38 ^ 3 - ba + 7a\

32. «,' {b + r;) + ^'^
(>t ~ r) + c'"' {a - b) -{- abc -^ a -{- b -^ c.

33. «' + Z>' + 6'-' — '^abc -^ a ^ b -{- c.

34. :c' — (a + ;;) /' -f ('7 + ^Jf^) '^' — crq ^ x — a.

35. rt' - ]3f/.' + 30 ~ a"' + 6a + 6.

36. .T* + -^'y + .'/' ~=~ •''*' ~ '^7/ + //"•

37. 3rt' - 8rt'^^ + 3r7V + 5^^ - bv-' -=- a' - b\

38. y' - ^y\v' + 3?/'a-^ - x' ~ y' - 3//1?; + 3?/^' - :r^

39. IGrt'a:;"— 7rt6c — c'— 4:a'bx — 6rtV/' -f Br^t'.c -^ 8^2; — Gab — c.

40. a:" + {a' - 2b') x' - {a' - b') x' - a' - 2a*b' - a'b'

-^x' - a' - b\

41. 6 {x'^tf) + (18.r// - 4) (.T+?/) - 8 (a:' 4- 2/') - l(jxy - 120

- x' + f/" + 2a- (1 + ^) + % + G.

a' - J' -T- «? - 5t.

43. a'b''^ + 2rt6'Z>"' + '* + 2axb'^ -f c'6"*+ 2c.rh'' H- ^t'

^ ab"" + 6'J" + .'T

44. (.t' - .?/') (r^;^ - f) ^x' + /.

45. 20a''V - 208rt^6'*' - 121a''b'' + 132a"^»* + 245a"6"

46. 1 + 34 a:** — 20.r' + 20.t' - 4^:' -[- 12.1- 3l2;«

-^ 2:c + 4rc' - 3.c' + 1.

47. 22;^" — e.r'^y" + ea;^/'" — 2?/^" -^ 2;" - ?/'

48. a{a-l)x' -{- [a* + 2« - 2) a;" + (3a aV- rt

-r- ^a;" — 22; — fl^'

49. «^?y' — b {a' -{ b) y -{- aV -r- ^?/ — b.

50. (rt + ^) (a + c) — (a + ^) {dArC)~-a — d.

51. x' + {4:ab - b') x - {a - 2b) {a' + 3b'') ^x-a-\-2b.
52. x' — y~^ — x^ -\- y~^.

53. i - C^' + 21z' -^ii -h 2^ + dz\

54. a^"* - ""b'^Pc — a^"' + " - ^Z»^ -^r" -f a " "^ " ^c"* + «'"• "
"J^'' + V

— a2m + 2)1 — 17,3,.2)1 — 1 + /^
;) + 1 .,m t n — 1

rt
n/i-P-1 4-5cn-1



z {y + 3^)

3 - 5r^ + la\

^ax — 6ab — c.

? - a'U

^x' - a' - h\

') - Uxy - 120

-f2/) + 2;y + 6.

-I-
^'^

f 245a"6''

IGa^*" + \la'b\

- 4rc' - 32;' + 1.

a^) X — a"

- ax^ — 2x — a\

d.

- X — a -{- '^h.

FRACTIONS.
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Fractions.

§ 108.
Execute the following multiplications of fmct ions l,y en( iroquantities by dividing the denominators-

^

(i + b

" a~b

x' - 4.y

X a- b.

XX- 2?/.

w?'

a' - b'

""'

7^~l;^^'' + ^'

A P" + (?'

1 +X

7)1 71'

X l-{-x.

Execute the following multiplications by dividing the.lenominator by one factor of the nuUtiplier/when d nomnntor and multiplicator have a commoli di isor '^ndTenn;ultiplying the numerator by the other factor rf^rernuU;.

m
a' ~ 2ab + y ^ ^' ~ ^'

ler is

Here tl,e denominator is (a - by, and the multipl
{a - i) (« + J). We multiply by (o. - i) by dividing thedenommator, and by « + J by multiplying tl numefator!
TT^„«^ ^T -, > • 7n(a4-h'\Hence the product is

{a_±b)
a — b

h
711 -\- 2m7i -j-

h

n'
X wi' - n'

m'

a ~ a

4:7nn
-f- 471

~, X 771' ~ W
4. -5^—, X (« + xy

a' ~ X

a ~ x

« + a'^x - ax'3^ X {a' - x') {a + xy

1

rr-;-r- X a'ax + n'?/ + bx + /^;
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1

ax — ny -{- bx — by

FRACTIOUS.

X a' + h\

8.
1

w.r — nx — my -f vi^

a —

X wio; + w*2/ — ?i^ — W7/.

'• «=' + ^'
X rt' + Jir/^ + h\

Execute the following divisions by dividing the numerator

by us many factors of the divisor as possible, and multiplying

the denominator by the remaining factors:

ax X

3

5

7

9

II

-V- ar. Afis.
mn mnr
ah ^

7nn

my
2. -—- -T- 7nq.

«' + ^^ J

a —
m p m^

4 4^ -i-m —p.

-ir-x^ — y^.
ex -f- cy

ax — ay

_____ ^ (« 4. ^6) .

ac — be

6.
^+2/

a: — 2xy -f- //'

i'.

-4-
a'

//

ca: — c,7/

8. -^
——-r- -5- (^' — y)

10.

Z»a: + Z*?/

a
T- rt' - b\

ax -\- bx
-=-«'- b\

Execute the following indicated multiplications or divi-

sions, and aggregate each product or quotient into a single

fraction

:

wi nJ \m nj
' (-

-
1)

-•
\a bJ c

m m

5-

7.

9-

II.

a -\- b a — bl a

m 711 \m n

1 + x

(1 + ^
\ m

+
1

•T

'^'-111

i>

V 1 — ml 1 -f m

8. ^(,;i»4.2 + i).

X

a

a — XI X

m



g the numerator

anil multiplying

a'-
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i ' •

'I

i'l

iir:-

%
i

i

f

i

'
-I-

'^ + ^

1

:. + 77 +
ft

7'
-f- S

' + '
T -{- s r — s

r -f- .9

1 +
ir.

7* — .«?

13- ^^ ^

1 4- m
4. ^-.

6.

8.
m

lO.

12.

14.

1



svith One

ONE UNKNOWN QUAyTlTY.

(y.

7.

8.

9.

,
he

, (i'x

V X

a I a^b = 1.

ox
,
rx

,
(fx

- ad -{.~nc~~ ex = ^ac + 2ab - Gcx.

X _ 1
dx

I T.

12.

14.

15-

.'• X

^n^x _ . __

^-' x'

+ SrtZ" = 0.

c — a -\-

1

m {a — x)

~:ia'+x~

X -j- a

X + rt X ~ a a' — x^

7.?-' (]x
n f 1

17.

,7; - 1

X- 4

-f.r" 3.7:"+r).?-« +
'

cc + l

a; 6 .7:
•>
= 0.

a +
a

J7,a

+ * ' (a + b)
rT3 +

(2(^ 4- ^) b'x

a {a + Z*)'

OCX H .

a

a'c
18. {a + 2:) (^> + .7;) -a{b-\- c) = -~ + X'

19.

20.

X — a
, a: — 5

a
+ +

a; — c
+ 3 = 0.

x-^ a x-{-a^
, ^'-\-a^ x-\- a

a rr
-- +

a a
a

21. {ax + (5i) (Z>.r — a) - {ax - Z») (^.r -\- a) = a H- /^.

22. rt'^ — a -\- x ~a¥ - b-{-x

a

m — 71
+
m ~ n

X m -\- n +
m-\-n

24. _ P
{m^ny m-\-n 2 {m + 71)'

f P

479

^
'
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f I

X
H

, X — tn

^
1 — nix

p 4- X nx
26. in — -.— = — -. m.

<l
-\- f q -f- X

1
" +

1 1

ab — ax be — b.v ac — ax'

(ill'' — ;<') m
2cS. {ill 4- ny = 3//i' -f- n'

X

( I
\i n 1 , 9 ,

ni{)n''-n^)
29. {ill -f- ;i)'' = .inr -\- 7i -]

-

„ b'-c' b<'(b-\-c)
30. b' = r ^

—

—^'
b — c X

VI 7n

31-
l-\-x 1 X

n
+

71

= 1.

a;

/?i -|

—

32. = 2m.

14-^ 1 — «

.r — re

1 +
z:-,-

X -\- a

m

1 +

1 - X — a
= A. 34.

X

X — a

X -{- a

"0 -\- a
1 +

X -{- a

X — a

= Vi.

Eciujitions of the First Decree with Two
Unknown Quantities.

§§137-140.
Spx-{- qy = a.

I
X — y = b.

j mx — ny = 0.

( X -{- y = a.
2.

3-

5-

\ax-\- a^y = ap.

a b

b + // 3« + ^
ax -\- 2by = d.

7. i

X y
a b _
X y ~ '

6.

8.

y ^3
x-\-y 3

•

-^=3.
bx-\- y = a.

x -|- by = 2a.
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TWO UNKNOWN qVAyTlTIK!^.
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481

lo. I< y"^'

i;v ax-{-b = my -\-d = c,

15. m{x-^y) = n{x~y) =r.
' X y _ 1

16 J « + *
~

(^ -b " ^Tfl*

II

h (.r - ,/) 4- a
{,f
-

/,)

X - a \ y - h =z h ; ,t.

14. mz = ny — p =: X -}- //y.

1

+
1

17.
1-x-^y 1 ~x-y 3*

1 ]___ ^ 4

1 — ;i; 4- // 1 _ ;/: _ ^y
— 3

•

•«l

'

I

vith Two

EquatioiiH with Tliree or More Unknown
Quantities.

7.

m:c —. ny.

py =qz.

x-\-y = a.

y -\-z = 2a.

z -i- X = 3a -\- b,

Ux = j^y.

] y = iz.

ip =-^x-\-l.

X — z — am.
y -\- z = bm.
X — y = cm.

X = y ~ 2z.

y =i''Sz — 2x.

z=y-^l.

2.

6.

8.

10.

m _ n __ p
X y ~ z'
X -\- y -{- z =z s.

X -{-
y -{- z = 30.

Sx + 4v -\-2z- 50.

27:?: -\-9y-\-3z= 64.

'x-\-y -\- z =
X -j- y = bu.
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*3

I I,

T^Z-

15-

17.

X + 2?/ = 8.

y -\- iz = U.
z \- u = 8.

JO -\- X = 4.

( ax -\- by -\- cz = d.

\ a^x -f- b'^y -\- c'z =. iV,

[ a'x + b'y + c'z = d\

( 2x + 3^ + 5^ = r;7.

\
- 2.C + :3?/ + 4^; = 35.

(
- 2a; - 3?/ + 5:2 = 13.

' X + y ~ ct'

y Vz^b.
z -\- u = c.

u — X =. d.

rx y
a a — r

12. ^

+ ----- - 1.
a — s

:>' V Z

b ^ b -r^d- S

Si

14. i

16.

V z

.T y «

X z b

i + Ui.
(3.r+ 2/+ 2 = 3.

j
a; 4- 4?/ H- ^ = 4.

( ^ + 2/ + ^^ = ^'

r= 1.

X

18. ^

+

+
b -\- c c — a

y . ^

c -\- a
z

^^ = a-{-b.

a — b

X

a -\- b b — c

= b + c.

= c -{- a.

19. S

f
bx -^ay _ a — b

b-c
c

cy --
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PliOBLL'MS. 4^5

which one is

i, and the re-

3 number and

1 2 fcec more,

more, leaving

. the length of

urs, going one

[id the remain-

What was the

cents a pound,

a pound >vith

pounds of each

Qe part shall be

:e. Ten years

age of the wife

:arts in a coach

rate of n miles

:ime»?

nd the sun in 1

nterval between

which the earth

?ars; of Saturn,

in conjunction

they be in con-

g a tower, B he-

half way up lie

8 times as high

le tower?

of a carriage is

has the carriage

I

driven when tlic front wheels have made rn turns more than

the hind wheels?

22. The members of a club have to raise a certain sum of

money. If each member contributes $2, there will l)c ^)IS too

much; if $1.25, there will be $32 too little. How many mem-
bers are there, and what is the amount to be raised?

23. If a dealer sells a piece of cloth at vi cents a yard, ho

gains d dollars; if at 71 cents a yard, he loses c dollars. What
is the ler.gth of the piece, and the purchasing price per

yard?

24. A merchant by the profits of trade increases his capi-

tal each year by 20 per cent of the aiiount at tlie beginning,

but takes out $1000 at the end of each year for his board. At
the end of the third year he has increased his capital by $200

more than -^ of its original amount. With what amount did

he start?

25. A boat which steams 12 miles an hour makes her trip

in 3 kours going down stream, and in 5 hours going up stream.

Wliat is the speed of the current and the length of the trip?

26. A number is increased by ??, and the sum multiplied

by ;r, this product is then increased by n, and the sum multi-

plied by n, with tlie result 2«'. Wluit is tlie number?

27. A number is diminished by v. and the remainder multi-

plied by n ; the same operation is repeated on the product,

and again repeated on the second product, with the result

— ?i'. What is the number?

28. What number is that whose fourth part exceeds its

sixth part by 2?

29. If you add 4 to a certain number, the sum is 2 less

tlian twice the number. What is it?

30. Divide $.";20 among tliree people so that the first may

liave $20 less than the second, and the second $10 more than

one fourtli the share of the third. What must each receive?

31. Divide c dolLars among three people so that the first

may have a dollars less than the second, and the second m
dolhirs more than one fourth the share of the third. What

nmst each receive?

32. A left a certain town at G miles an hour, and in 8
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lb

hours after was followed by C at 8 miles rsr hour. In how
many hours did C overtake him?

T,T,. A left a certain town at b miles an hour, and in n

hours after was followed by D at c miles per hour. In how
many hours did D overtake him?

34. A farmer said, if he had 5 more sheep, and sold them

at $4 each, he would have 5 times as many dollars us he now
has sheep. IIow many sheep has he?

35. A farmer said, if he had a more sheep, and sold them

all at n dollars each, he would have c limes as many dollars as

he now has sheep. How many sheep has he?

36. If you divide my age 10 years hence by my age 10 years

ago, you will get the same quotient as if you should divide

my present age by my age 15 years ago. What is my present

age?

37. If you divide my age c years hence by my age a years

ago, you will get the same quotient as if you should divide

my present age by my age d years ago. What is my present

age.''

38. Divide $415 among A, B and so that A shall have

$-10 less than B, and C $20 more than half as much as A and

B together.

39. Divide %a among 0, D and E so that C shall have %m
less than D, and E ^n more than one third the share of C and

D together.

40. A can do a piece of work in 20 days, B in 24 days, and

C in 30 days. In what time can they .ogether do the work?

41. A, B and C can do a piece of work in 4 days, A alone

in 12 days, and B alone in 10 days. How long would it take

C to do it?

42. A, B and C can do a piece of work in 6 days, A alone

in 9 days, and B alone in 12 days. How long would it take C

to do it?

43. A can do a piece of work in a days, B in b days, and

C in c days. In what time can they together do it?

44. A man is 12 years older than his wife; four years ago

8 times her age was 5 times his. What are their present

ages?
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45. A man is a years older tlian his wife; b years ago c

times her age was in times his. What are their present

ages?

46. Divide $1200 prolit so that A may have one fourth

and SlOO more, B $o'0 less than one tliird, and C §250 more
than one sixth.

47. The interest on
i*^

of a certain capital at 5 i»er cent

added to the interest on the remainder at G per cent is equal

to $1680. What is the capital?

48. A person, asking the distance to a certain city, was

told that after he had gone one fourth the distance and two

thirds the remaining distance, he would still have 20 miles to

travel. What was the distance?

49. How far can a person who has 5 hours to spare ride

at 6 miles per hour so as to walk back in time at 4 miles per

hour?

50. How far can a person who has n hours to spare ride

at h miles per hour so as to walk back in time at c miles pc-*

hour?

51. A man bought 15 horses for $16G5, paying $120 for

each good horse, and $75 each for the poor ones. How many
of each did he buy?

52. The difference of the squares of two consecutive num-
bers is 15. What are the numbers?

53. The difference of two numbers is 2, and the difference

of their squares is 28. What are the numbers?

54. The sum of two numbers is 12 ; the square of tlie

greater is 48 more than the square of the less. What are the

numbers?

55. The product of two consecutive numbers is 4 more

than the square of the less. What are the numbers?

56. Divide 60 into three such parts that one third of the

first, one fourth of the second, and one fifth of the third shall

be equal to each other?

57. Divide 80 into four such parts that if the first be in-

creased by 3, the second diminished by 3, the third multi})]iL'd

by 3, the results siiall be equal.

58. The greater of two numbers is 4 times the less; if each
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be increased by 3, the greater will be 3 times the less. What

are the numbers?

59. A mun is 10 years older than his wife; in 10 years

twice the sum of their ages will be G times her present age.

What is the age of each?

60. A man bougiit a certain number of sheep for $1500;

he reserved 80, and sold the remainder for $960. How many
did he buy?

61. A father aged 48 years has a son aged 12. In how
many years will the age of the father be three times that of

the son?

62. A merchant has two kinds of tea; one cost $1.50 a

pound, and the other $2. He wishes to mix them so as to

have 50 pounds worth $1.80 a pound. How much of each

must he use?

63. In a certain quantity of mortar the sand was 15 pounds

more than |of the whole, the lime 9 pounds less tlian I of the

whole, and the plaster- of-paris G pounds less than | the sand.

What was the amount of the mortar?

64. A laborer agreed to work 50 days on the condition

that he should receive $1.50 for everyday he worked, and for-

feit $0.75 for every day he was idle. At the end of the time

he received $48. How many days did he work?

65. A grocer having GO pounds of coffee worth 15 cents a

pound mixed it with so much coffee at 18 cents a pound

that the mixture was worth IG cents. How much did he use?

66. The interest on a certain capital at 5 per cent is $20

less than the interest on $900 more at 1 per cent less. What
is the capital?

67. A woman bought 200 apples at 5 for 3 cents, and sold

part at 2 for a cent, and part at 5 for 4 cents, thereby making

10 cents. How many of each kind did she buy?

68. A and B play at cards. A begins with $120, and B
with $180 ; when they stop playing B has four times as much
as A. How much did B win?

69. From a cask of wine one fourth leaked out, then 20

gallons were drawn, when it was found to be 10 gallons les-^

than half full. How much did it hold?
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PROBLEMS. 480

70. An estate of $4G80 is to he divided among 4 sons smd

3 daughters. Each son is to receive $40 more than tiie next

younp^r; the eldest daughter is to have $20 less than tiio

eldest .^on. and each of her sisters $20 less than the next

older. What did each child get?

71. A sum of $2880 is to be divided among A, B and C.

Five times A's share is to be e([ual to three ^imes C's, and B is

to have twice as much as A and 0. What does each receive?

72. Six plasterers, 8 journeymen and 12 apprentices re-

ceive at the end of a certain time $387.50. The plasterers

receive $2 a day, the journeymen $1.25, and the ap])rentices

75 cents. How many days did they work?

73. In the above problem, what should each class of work-

men receive if each plasterer worked 3 days more than the

journeymen, and the apprentices G days less?

74. A man Avished to give 10 cents eacli to some beggars,

but found he had not enough of money by 14 cents; he then

gave each one 8 cents, and found that he had 10 cents re-

maining. How many beggars were there?

75. A post is 6 feet more than \ in the mud, 2 feet less

than \ in the water, and 4 feet in the air. What is the length

of the pole?

76. A and B begin trade. A has $1000, and B $1210.

The former gains a certain per cent on his investment, and

the latter loses the same per cent, when their capitals are found

to be equal. What was the amoant lost and gained?

77. A person in play lost \ of his money, then won $G0,

after which he lost | of what he then had, Avhen he found he

had but $350 remaining. What had lie at first?

78. In a camp of 3294 soldiers there were 3 cavalry to

every 2G infantry, and half as many artillery as cavalry.

What was the number of each?

79. The right-hand digit of a certtfin number is 2 less than

the second; and if the number be divided by the sum of the

digits, the quotient will be 7. What is the numbei'?

80. The length of a town lot exceeds its width by 12 feet.

If each were 3 feet greater, there would be an increase of G45

square feet in its dimensions. What is the lengtli?
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,id he travel by

less be divided

lan when the

are the nuni-

e times A's age

nee. What is

times out of 5,

s. How uiany

mm is 13, and

makes 50?

in 6 hours. No.

y it in 9 houv^^.

:imo, how long

Ivels at the rate

linutcs after, B

starts at the rate of 10 Tnih\s in \ liours. IIow far will they

tra\ol before B overtakes A?

93. Two i)er.sons start from the same place at the same
time, going in the same dire';tion. One travels "^l mik'S

an liour fa.si<>r than the other. Afu-r they had gone as manv
hours as the slower goes miles per hour, their distance ajiart

was equal to half tiie distance travelled by the faster, liow

long did they travel?

94. Two men travel in opposite directions; the rate of

one is 1 mile more than two thirds the rate of the other.

When they had gone 4 hours the distance iipart was equal to

44 miles. What were their rates?

95. An officer in arranging his men in the form of a scjuare

found that he needed 5 men to comjileto the square, and hy

increasing the file by 6 and diminishing the rank by 5 he had

5 men too many. How many men had he?

96. A coach that travels G miles an hour starts 50 niiiiutes

after another that goes 5 miles an hour. How far will the

iirst-named travel in order to be 11 miles ahead of the other?

97. A merchant withdrew from his caj)ital 8500 at (he end

of each year for current expenses; his profits e.ich year were

33^ per cent of his unexpended capital. In 3 years his

oi'iginal stock was doubled. What was his original stock?

98. What fraction is that whose denominator is 2 more

than the numerator, and if 3 be subtracted from both numer-

utor and denominator the friiction Avill be |?

99. Divide 40 into two such parts that the greatei' dimin-

ished by 4 and divided by the less increased by G shall

be nj
100. On a note interest is ]iaid at per cent. At the end

of the first year $200 is credited on the princi])al, and the lato

of interest is reduced to 5 per cent, when the annual interest

is diminished by one fifth. What was the face of the note?

loi. The difference between the simple and compouinl in-

interest of a certain principal during the second year at 5 ]ttr

cent is 810. What is the principal?

102. The fore and hind wheels of a carriage have circum-

ferences of 12 and IG feet. IIow far will the earriaae have
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rnonuiMs. 4on

by the wheels

20 per cent on
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li.s re-inci-e:iseil

•jlO more tluiu
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iind part dimes,
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•earn, and retaracil
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the distance?

113. A and B liave tli^same income. A spends
I of liis,

and B by 8i)ending i&2()0 a year more tiian A finds Iiimsclf at

tiic end of years )5^4."i() in debt. Wiiat was their income?

114. A farmer i)oug]it 22 cows at a certain ])rice; liad ho

])aid S per (;ent less lie conld have pnrciiased 1 more cow and

had ^21 left. Winit was tlie [)ri(!e of each cow?
1 15. A son is i the age of iiis father, and 1 1 years ago lie

was I of his age. How old is each?

1 16. A man rows 5 miles an hour in still water. How fai

can ho row n}) a stream and back in 3 hours, the stream

ilowing a mile an hour?

1 17. A man bought some sheep for ^94. Having lost 7 of

them, he sold { of the remainder at lirst cost for»^2(>. How
many did he buy?

118. The pe4'imeter of a rectangle is 28 feet; if 2 feet be

taken from its length and added to its breadth, its area is in-

creased by 12 square feet. Find its original breadth?

119. A man can row 9 miles an hour with the stream,

and 3 against it. How far can he go so as to be back in

(1 hours?

1 20. The first digit of a certain number exceeds the second

by 5, and if the digits be inverted the new number will be %

of the original number. What is the number?

121. Divide $900 in two such parts that the interest on

one part at 4^ per cent may exceed that on the other at 3i per

cent by 50 cents.

122. How much foreign brandy at 18 a gallon and whisky

at $3 a gallon must be mixed together so that the compound

may be sold for $9, and the merchant thereby gain 30 i)er cent.

123. A person has two kinds of coins. Four pieces of one

make a dollar, or 10 pieces of the other. How many of eacli

must be taken so as to have 7 pieces equala dollar?

124. Find two numbers Avhose product is 72, and wliosc

(lifTerence multiplied by the greater is found by subtracting

the product from 18 times the greater.

125. A person after spending $200 more than \ of his in-

come had remaining $75 less than \ of it. What was his in-

come?
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126. Divide 77 into two siicli |)!irt.s tliat tlio quotient of

the first divided by 8 added to tlie ({uotieut of the second

divided by .siiuil be 0?

127. The sum of tliroo num))ors is 155. If llie sooond be

divided by the (irnt, tiio (|U()tient is )l, and 2 I'or u reniaiudei".

tiiul the tliird divided by the secoiul gives 13 for u (|UoLieMt jin.l

'A for a reiuuiiider. Wbiit are tlio numbers?

uS. At a ball there were twiee as many gentlenuMi as

ladies. When 8 cou[)les danced tiiere were remaining three

times as many gentlemen as hidies. What was the number of

each?

129. A can build 7 cubic yards of wall in 4 days, li 12

yards in 5 days, and C 9 yards in 2 days. How long will it

take all three to build 850 yards?

130. Each of the Hiree digits of a certain number is greater

than the next following by 1; when the digits are inverted,

the new number will be 18 more than ^ the first number. What

is the number?

131. A farmer bought 30 sheep and 10 calves for the same

sum. If the sheep had cost 25 per cent more and the calves

35 ])er cent less, 7 sheep would have cost $;3 more than 4

calves. What did each sheep cost?

132. Ui)on withdrawing from the business A takes ^ of

the capital and $100 more, B ^ of the new remainder and

<;100 more; C gets $300. What was the ca])ital?

133. What number i- that which gives the same continued

product when divided i'lco 3 ecpuil parts as when divided into

4 equal ])arts?

134. Find a number of two digits, the first of which is 4

times the second, and the number is 2 less than 3 times tlu'

number formed by inverting tlie digits.

135. In going fi'om one town to another a traveller found

at a certain })lace that the distance travelled was ^ the wliolo

distance, and when he had gone 11 miles further he had
I
of

the whole distance yet to go. What was the distance?

136. A wine-merchant has wine in casks of two sizes. One

containing 2| gallons he charges $8.50 for; the other, .'J|
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gallons, la priced at 1<1(>.00. What is tlio price of (lie ca.sks,

supposing Lliem to cost the sanu'?

137. A nmn's income was >i>%\\() tlie first year, :ui 1 increased

$50 each sucuteding year. At the end of :) ycar.s he had
Liived «»ir).T5. What were his annual expenses?

138. If A ^ives B *1(> he will liave twice as much as B;

but if 13 i;ives A ^BlU he will have ^ as nuich as A. llow miicli

had UMiiii

(M«o.)

PriOTiLEMS INVOLVING EQUATIONS WITH
MOKE IJNKNOVVN WUANIMllia.

TWO OH

1. It is found that when a ship steams VI knots (sea-miles)

an hour witli the waves she pitches 1 in 15 seconds, and

steaming at the same si)eed against them she ])iti'hes 1 in G

seconds. What is the speed of the waves, and how many
w:ives arc there in a sea-mile?

2. 'Vwo men start at the same time to make the same
journey. The tlrst goes 10 miles the first day, and goes a cer-

tain fixed distance more every following day than he d.d the

(lay before. He overtakes the second at the end of the 8th

day, and finishes his journey at the end of the 1 1th, while the

second finished at the end of the Vli\\. What is the length

of the journey, and how far did the second go each day?

3. A cannon being fired while a heavy wind was blowing,

it was found that the sound required 4|- seconds to go a miio

with t)ie wind, and 4|- seconds to go a mile against the wind.

What was the velocity of the wind, and what time would have

i)L'en required for the sound to go a mile in still air?

4. The greatest distance between Venus and the earth i:j

I'lO millions of miles; the least, 22 millions. What is tlu! dis-

tance of each from the sun, supposing tlu.'t each moves around

the sun in a circular orbit having the sun in its centre?

5. A ])rother and sister being .isked how large the family

was, the brother replied, "I have as many brothers as

sisters." The sister rei)lied, '' I have twice as many l)rothers

us sisters." llow many boys and girls were in the family?

.11
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one being 3 miles an hour greater than that of the slow one.

A man who went 58 miles down the river on the slow boat

and 30 miles back on tiie swift one found that he had been

9 hours on the water. IJut when he went 87 miles down on

the slow boat and 90 miles back on the swift one, he found

that it took 18 hours. What was the speed of each boat and

the flow of the river?

17. A quadrilateral has four sides, a, h, c and d. If } of

a be added to b, then \ of the extended b be added to c, and

then |- of the extended c to d, the four sides will each be

equal to m. What was the length of each sidr at first?

18. Three pedestrians started on a journey. The first

performed it in a certr'ii time; the second, going 1 mile an

hour slower, took l;i hours ^onger; the third, going 2 miles

an hour slower than the first, took 33 ho\u6 longer. What
was the distance, and the speed of each?

19. The perimeter of a triangle whose sides are a, b, c, is

m feet. If | the side a be added to b, then | of the prolonged

b be added to c, and then \ of the prolonged c be added to a,

the sides will be equal. What is the length of each side?

20. Divide 232 into three parts, A, B and C, sucli that,

whether we subtract A from the sum of B and C, B from \
the sum of A and C, or C from ' the sum of A and B, the

remainders shall all be equal.

21. Find two quantities whose difference and product are

each equal to n.

22. The quotient of two niinil)ers is 2, and 2 times their

sum is equal to 6 times their difference. What are the num-

bers?

23. A man has a saddle, worth 850, and two horses. If tlio

c;.udie be put on horse A, he will equal B in value; but if })ut

on B, his value will be double that of A. What is tho value

of each horse?

24. What number of two digits is equal to 4 times their

sum and 12 times their difference?

25. What number of two digits is equal to 4 times their

sum, and when the digits are reversed equal to 7 times their

K'lim?
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26. Fiiul a number of two digits tli.it is equal to 4 times

the sum of its digits increased by 3, and if 9 be added to the

iiiiniber tlie digits will be reversed.

27. Find a number wliicli is greater by 3 than G times the

sum of its digits, and if 9 ije subtracted from the number the

digits will be reversed.

28. What number is that which is 4 times the sum of its

digits, and is 3 greater than 11 times their difference?

29. What fraction is thtit wiiich becomes -^ whr,n 2 is added

to the denominator, and
J^

if 5 be subtracted from the numer-

ator?

30. Two drovers went to market with shee]>. A sold 90

and then had left J- as many as B. Then B sold 72, and had

f as many as A reuiaining. How many did eacli have?

31. A woman bought GO apples for a dollar, giving 3 cents

for every 2 bad ones and 2 cents each for the good ones. Ilow

many of each did she buy?

32. Find a fraction that becomes J- when 4 is added to its

denominator, or 2 subtracted from its numerator.

2,2,- A marketman had 4 more ducks than chickens. Tie

sold the chickens for 30 cents apiece and the ducks for 40

cents apiece, gaining 40 cents more than if the prices had

been reversed. How many of each had he?

34. A boy bought a number of apples at 2 cents each aiul

peaches at 3 cents each, paying $4.36 for the whole; 12 of the

api)les were bad and 9 peaches were rotten. Ho sold the good

a[)])les at 2 for 5 cents and the peaches 3 for 10 cents, receiv-

ing 14.50 for the whole. How many of each fruit did he buy?

35. When I was married I was I older than my wife; 10

years after her age was | of mine. What were o\ir ages when
we were married?

T,6. A and B can do a piece of work in 12 days; but if A

worked twice as fast they could do it in 84 days. In what

time could each of them do it singly?

37. B and can do a piece of work in 12 days; with the

assistance of A they can do it in 9 days. In what time can A
do it alone?

38. A farmer sold GO fowls, a part turkeys and a part
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chickens; for tkc turkeys he received ^1.10 apiece, and for

tlie cliickens 50 cents apiece, receiving for the whole st^-ll.r.O.

How many were there of eacii?

39. A tank has 4 pipes. A, 15, C and D. A, ]> and C ca-i

fill it in <) hours; B, C and D, in 8 hours; C, D and A, in 10

hours; 1), A and B, in 12 hours. How long will it take each

and all to lill it? Ex})lain the negative result for I).

40. A tank has two pijies, of which one may be made to

run either in or out. If both run in the tank is filled in 2

hours; if one in and the other out, in 5 iiours. In what

times would the separate pipes fill it?

41. A grocer bought 50 pounds of sugar and 100 pounds

of coffee for I2(!. He sold the sugar at an advance of :25 per

cent and the cofi'ee at a discount of 10 per cent, receiving

$25.50 for the whole. What was the buying and selling price

of each ?

42. Find the sum of two numbers the difference of whose

squares is equal to the difference of the numbers.

43. Divide 168 into three such })arts that the second divi-

ded by the first gives 5 as a quotient and 10 for a remtiinder,

and the difference between tlie third and second muliiplic'd

by 3 is equal to 4 times the first.

44. A father is 5 times as eld as his son. Six years hence

he will be only 3 times as old. AVhat are their present ages?

45. The sum of the ages of two persons is § of what it

will be 12 yejirs hence. The dilTerence between their ages

is ^ of what it will be 24 years hence. What are their

iiges;

46. A farmer sold to one person 40 bushels of oats and 30

})ushels of wheat for ^44.50, and to another the snme atnouiit

of oats, at 10 cents a bush'^] more, and wheat, at 5 cents a

bushel less, for $57. What was the price per bushel of each?

47. There is a number of 3 digits whose sum is 10. The

first and second is 4 times the third, and if 207 be added tlio

be reversed. What is the innnber?

48. There is a numljcr of 3 digits wliose fii'st and third

digits aie 6 more than the second. Four times tlie lii'st is

11 more than the dilfeience between the second and third; and

digits wi
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if 97 be udded to the nunilier the digits will be reversed.

AVhat is the luiniberi'

49. A certuiu minibor of 3 digits is 34 times the sum of

its digits, Hiid also 102 times the dilference between the first

and seeond; and if 30 be iidded to the number the second luul

third will exchange places. Wliat is the number?

50. An oarsman who can row ^0 miles and back in T

hours linds that he can row 10 miles with ihe current iu ilic

same time that it takes him to go 4 miles in the contrary

direction. Find the rate of the current.

51. A merchant has two kinds of sugar; one cost 8 cents a

jiound, and the other 11 cents. How much of each must be

taken to make 120 pounds woj'th 9 cents per pound?

52. A grocer mixed tea that cost $1.10 a i)ound with tea

that cost 95 cents per pound. The cost of the mixture is

$101. He sells it at $1 a pound and gains $2. How many
pounds of each did he use?

53. A, B and can earn $25 in 5 days; B and C, $28 in T

days; A and C, $22 in 8 days. What does each man earn in 1

day?

54 A and B can do a i)iece of work in 2 days; A and C, 4

times as much in 9 days; A, B and C, 11 times as much in is

days. In how many days could each do it alone?

55. A sum of money at simple interest amounted in 5 years

to $1500, and in 8 years to $1080. What was the principal

and rate?

56. A person has $1200 invested at a certain rate and for

a certain time; had the rate been 1 per cent less and the time

2 years more, he would have had $24 more interest; while

with a rate 2 per cent less and a time 1 year more he would

have had $144 less interest. Find the rate and time.

57. A sum of money at simple interest for c years

amounted to t dollars, and the same for b 3'ears amounted l<>

i?. dollars. W^hat was the princi]>al and rate?

58. In a race over a course 4000 feet long A gives B 300

feet start, and wins by 1 minute and 20 seconds. In a seconl

trial A gives him 40 seconds start, and Avins by 900 feet.

What was the rate of each?
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59. A, B and C promised to give $1000 to a chuvch. A gave

one liiird less tliau he agreed to, so B increased liis by one

fourth, wliich left 855 more for C. Now if B had given one

fifth less than ])roniised, and C $T0 more, A's share would

have been his original subscription. What was the amount

of the first pledge?

60. The fore wheels of a carriage are 10| feet in circum-

fcrciiue, and the hind wiieels 13. In going a journey the

fore wheels nnikc ;25O0 more revolutions than the hind wheels.

What was the distance?

61. A coach has 2 more outside passengers than inside.

Six outsiders could travel at an expense of $1 more than -i in-

siders. The fare of all amounted to $30.50. At, the end of

half the journey 2 were added to the outside and 1 inside,

Avhich increased the total fare by $2.50. What was the num-
ber and fare of each class?

62. A person has two creditors; at one time he pays chem

$680, giving to one f of the sum due him. and to the other

$40 more than \ of his debt; at another time he pays them

$580, giving to the first f of what remains due to him, and to

the other ^ of what remains due to him. What was the

amount of each debt?

63. If a certain croquet-ground were 5 feet longer a'^] 3

feet broader it would contain 320 more feet; but if it were 3

feet longer and 5 feet broader it; would contain 310 more feet.

What is its present area?

64. The suni of two numbers is 12, and the difference of

their squares is 24. What are the numbers?

65. Two boats, 320 and 300 feet long respectively, are

moving with uniform speed. If they go in opposite directions

it requires 10 seconds to pass each other; but if they go in the

same direction it takes 90 seconds for them to pass. What is

the speed of each boat?

66. A train runs a certain distance at a uniform rate. If the

rate be increased bv 5 miles an hour the distance would be

travelled in f of the time; but if the rate be diminished by 5

miles an hour the time would be increased by 3 hours. What
is the rate and distance?



603 SIMPL IC KQ UA TIONS.

67. Wliiit number of 3 digits is gro'^.tcr by 09 when its

digits are reversed; greater l)y 270 tliaii the sum of its digits;

iuid gresiter by 45 thun when the second jind third ure truiis-

posed ?

68. A ;ind I5 could luive completed u certain ])iece of work

ill I'-i duys; but ul'ter both h;id worked 4 d;iys B was left to

linisli it alone, which he did in 'l\ days more. How long

would it have taken each to do it alone?

60. A number consists of il digits whose sum is 13, and if 15

be subtracted from the uunii)er, and the remainder bedivideil

by 3, the digits w'll be inverted. What is the number?

70. A boy spent his money in oranges. If he had bought

5 more, each orange wouhl have cost a half-cent less; if 3 less,

a half-cent more. How much did he spend, and how numy
did he l)uy?

71. A person bought apples at 4 cents a dozen, and U
times as many peaches at 12 cents a dozen; after mixing them

ho sold them at 8 cents a dozen, losing 4 cents on the whole.

How many dozen of tj'ch did he buy?

72. Fi«nd a fraction that becomes | when 2 is added to

its numerator, and \ Avhen 4 is added to the denominator.

73. Five pounds of tea and 12 ])ouiu]s of sugar cost $7.44.

If tea Avere to rise 10 per uent and sugar fall 25 j)e: cent, 8

])ounds of tea and pounds of sugar would cost $11.10. What
is the price per })ound of each?

74. A's income is half as much again as B's, while his ex-

penses are twice as great as B's. A spends $60 more than his

income, and B $00 less than his. What is the income of eaeli?

75. A invested some money at 5 ])er cent, and B at G per

cent, both receiving the same amount of income. If A had

invested $1000 more than he did, his income would have been

11 per cent on B's investment. What did each invest?

76. An oarsman can row 9 miles up stream and 13 miles

down in 4 hours, or 13 miles up and 9 miles down in 5 hours.

What is the rate of the stream and of the rowing?

77. Six years lience the ju-oduct of two people's ages will

be greater by 348 thjm it is now. What will then be the sum

of their ages?
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78. A invests money at 4 i)cr cent, B at 5 ])er cent, and (J

at 6 per cent. A and IJ together receive $5(;o, B and C $52(»,

and A and C SOOO. How much does each invest?

79. Find the fpiotient of two numbers wliuse sum is ;/.

times their dillerence.

80. A and B can tinish a job in 12 days. A worked 2 days,

and B 3. How long will it take C to liiii.sh it if he could have

done the whole in 15 days with B's assistance, and iu 10 davs
with A's?

81. A carpenter and apjU'cntice received $10.^0 for 7 days'

wages, the carpenter getting 20 cents more for 2 days' woik
than the boy for 3 days'. What was the daily wages of eacji?

82. A man paid $50 for 7 photograi)hs aiul 12 i)rints; if

he had paid $1 more he could have had 7 })rints and 15

photographs. What was the i)rice of each?

Ratio jiiid Proportion.

i? 104.

1. Divide 120 into three parts that shall 1)0 projiortioual

to the numbers 3, 4, 7.

2. Find two fractions that shall be to each other ;is 3:1.
and whose sum shall be %.

3. Divide .0444 into three })arts that shall be to ea< h other

as -^ : i : |.

4. Find two numbers which are to each other as 4 : 3, and

whose difference is ^ of the less ?

5 If a- : // :: 6 : 8 and 4.^; — 3_?/ = 7. what is the value of

X and //?

6. A year's profits were divided among two ])artncrs in the

proportion of 3:4. If the second should gi' l' $425 to the

first, their shares would be Cfpud. AVliat was the amount

divided?

7. In a first year's partnership A hnd 3 .-Imres. and I> 4.

In the second, A had I, and B 2. In the first year A gained

$300 more than he did the second, and B gained $200 less

than he did the second. What were the i)rofiis each vear ?
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8. 111 .1 fiirni-yard there are 4 sheep to every 3 cattle, Jind

5 cuttle to (j hogs. How many hogs are tlu'i-e to every :^0

sheep?

9. A drover started to market with a herd of 7 horses to

every 5 mules, lie sold 'Z'7 horses and bouglit 13 mules, and

then had 13 horses to every 4 mules. J low many of each had

he at first?

10. Find two quantities whose sum, difference and product

are i)roportional to 5, 1 and 12.

11. Wh.it number is that to which if 2, 6 and 12 be sever-

ally added, the first sum shall be to the second as the second

is to the third?

12. What two numbers are to each other as 3 to 4, and if

4 ])e added to each the sums will be as 4 to 5?

13. Wiiat quantity must be taken from each term of the

ratio m : n that it may C([nal the ratio c : d?
14. U a : I) be the S(juare of the ratio of r^r -|- <^ • ^

show that c is a mean proportional between a and I).

15. If n : b = b : c, show that a : a -\- b — a — b \ a

16. And under the same conditions show that

{a' + h') {b' + c') = {ab + bc)\

17. li a \ b = c \ d, show that

a {a -^ b -\- c -\- d) = {a -{- b) {a \- c).

18. In a milk-can, the quantity of milk is to the entire

contents (milk and water) as 5 : 6. Five gallons are sold, and

1 gallon of water is added; then the ratio of the milk to the

whole is 4 : 5. How many gallons of each were there at first?

19. In a two-mile race between a bicycle and a horse, their

rates were as 5 to 6. The bicycle had 1 minute start, but

was beaten by 312 yards. What was the rate of each?

20. A line is divided by one point into two parts in the

ratio of 3 : 5, and by another point into two parts in the ratio

of 1 : 3. The distance between the points of division is 1

inch. What is the length of the line?

21. The sum of the two digits of a number is 6, and the

numbar is to the number expressed by the same digits reversed

as 4 : 7. What is the number?

22. One ingot contains two parts of gold and one of silver,
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and another two parts of gold and three of silver. If e({ual

parts are taken from each ingot, what will be the proportion

of the gold to the silver in the alloy?

23. If two ounces be taken from the first and t...ce from

the second, what will be the ratio of the gold to the silver?

24. A cask contains \ gallons of water and 18 g;dh)ns of

alcohol. How many gallons of a mixture containing 'I parts

svater and 5 parts alcohol must be put in the cask so that thei"e

may be 2 ])arts of water to 7 of alcohol?

25. Which is the greater I'atio, I -\- a : \ — a or I -\- a'' :

1 — (1.^, a being positive and less than 1?

26. Which is the greater ratio, a"^— ah -f // : c/" -|- ab -f- //

or «^ — d'W + b^ ' «* + c^b"^ + ^\ f^ ii"d b having like signs?

27. What number must ^ taken from the second U-rm <.r

the ratio 2 : 34 and added the first that it may ('(pial 5 : G?

28. What number must be taken from each term of the

ratio 19 : 30 that it may equal the ratio 1:2?

29. 11 (f :b = e : d, show that d :
//' = a'^ -{- c^ : b'' -^ d\

30. A bankrupt owed two creditors $1800. The sum of

their credits is to the less as 3 : 1. What did he owe each?

31. Discuss the general i)roblem: To divide a given quantity

iVinto parts proportional to the given numbers ?/?, ». p, etc.

32. Divide the number N into three parts, .r, 1/ and z, such

that X shall be to 1/ as 2 : 3, and z to the difference between .r

and ?/ as 3 : 2.

^;^. The speed of the steamship Scrvia is to that of the Both-

nia as 13 to 10, and the first steams 5 miles farther in 8 hours

than the second does in 10 hours. AVhat is the speed of each?

34. The speed of two pedestrians was as 4 : 3, and the

slower was 5 hours longer in going 36 miles than the '-ister

was in going 24. What was the rate of each?

35. A chemist had two vessels, A, containing acid, and B, an

equal quantity of water. He poured one third the acid into

the water, and then poured one third of this mixture back into

the acid. What was then the ratio of acid to water in A?

36. If 24 grains of gold and 400 grains of silver are each

worth one dollar, what will be the weight of a coin containing

equal parts of gold and silver and worth a dollar?
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37. Wlitit common quantily juust l)c subtraclod from tlio

four (jiiiuititics m, «, x and // tluit tlic rt'iiiiiiiidors nuiy form

H i)ro[)ortioii?

38. A chemist has two inixtiireH of alcoliol and water, tlie

one containiiif,^ IH) ))er cent, of alcohol, the other 50 per cent.

How much of the lirst must he add to 1 litre of the seconil to

make a mixture contiiininf,' 80 per cent, of alcohol?

39. It is a law of mechanics that the distaiuies throui^h

which heavy bodies will fall in a vacuum in dilTerent times am
pi-o[)ortiomd to the sfjuares of the times. If a body fall -is

feet farther in 2 seconds than in 1 second, how far will it fall

in 1 second? How far in t seconds?

40. Find jin expression such that if you subtract m -f '^

and m — /^ the ratio of the remainders shall be n : m.

41. On a line are two points whose distance is a. The
first point divides the line into parts whose riitio is 2 : 3; the

second into })arts whose ratio is 5 : 7. What h the length of

the line?

42. If a lino is divided into two parts whose ratio is m : n,

what is the ratio of the length of the whole line to the distance

of the }>oint of division from the middle point?

43. A lino is divided into three segments ])roi)o rational to

the numbers m, p and q. What is the ratio of the parts into

which the middle point of the line divides the middle segment?

44. Divide $:3.sr) among three persons, A, \\ ami C, so that

the share of A shall be to that of B as ('»
. 11, and that of C

shall be $oO more than those of A and B together.

45. A sailing-ship loaves port, and 12 houi's later is fol-

lowed by a steamshi}>. Jf the ratio of the si)eeds is W : S

how long will it take the steamer to overtake the ship?

46. A courier started from his post, going 7 miles in o

hours. Two hours later ajiother followed, going 7 miles in 2

hours. IIow long will the second be overtaking the lii'st?

47. IMie aroiis of the openings of two wator-faucets jiro in

the ratio o : o; the sj)eefls of flow of the water thi-ougli the

openings are in the ratio 3:4. At the end of an hour I'^^I

gallons more have flowed through the second than through the

first. Wliat was the How from each?
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48. 'rhe (lows from two fauccls into two 0(iual vessels is in

the ratio -l : 7, and both vessels were placed under them at

tlie same moment. When the vessel under the hir^er faucet

was full, it waH renu)ved and the other put into its place. In

80 seconds from the time of beginning both vessels were lillcd.

How long would it take each faucet, to iill one of the vessels?

4(;. 'riiree numbers, a, b and c, arci so related that

in : n,

P ' (/•

Find the ratio c : a -{- 0. Kind a, b, and then a -|- b, in terms

of ('.

50. If, in the preceding ])roblem, the sum a -\- b -j- <' = -V>

express each of the numbers a^ b and c in terms of N.

51. The speeds of two trains, A and li, arc as m : n, and

the journeys they have to nuike as p : q. It took train B i

hours longer to nnikc its journey thtin it did train A. What
was the time required by each train for each journey?

52. A street-railway runs along a regular incline, in consc-

fpience of which the specils of the cars going in the two direc-

tions are as 2 : 3. The cars leave each terminus at n gular

intervals of 5 minutes. At what intervals of time will a car

going up hill meet the successive cars coming down, and vice

versa ?

53. The same thing being supposed, two cars starting out

simultaneously from the termini meet at the end of 30 minutes.

How long in time is the journey for each car?

54. The same thing being again supposed, a rider gallops

up hill at sucli a rate that he passes the successive cars going

up hill at the same time that they meet the successive cars

coming down, so that every time he passes a car going up Ik;

meets one coming do\tn. What is the ratio of his speed to

tliat of each of the cars?

55. Give the algebraic answers to the three preceding

questions when the ratio of the speeds is m : n.

56. Three given points. A, B and X, lie in a straight lino.

A and V> are ttiken as base- . »

points from which distances
B
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r

I (

arc nieiisiircd. Having given

Distance AB = h,

Distance AX = x,

it is rofjuircd to find the i)08iti<)n of a fourth point, Y, between

A an(i r», 8uch that we shall have

AY : YH =-. AX : liX = x : x ~ b.

Do tliis by finding the distance of Y from A in terms of //

and X.

57. Show that in the preceding construction we liavo

AY ^ AX A13

58. Sliow tluit, in tlic ])receding problem, tlie })roduct of

the distances of X and Y from the middle point of the line

AB is -l/j\

59. If, instead of the jmint X, the point Y is given, find

the distances AX corres])onding to the following values of

AY, in order that the same proportion may hold true, and

explain the results when negative:

{a) AY = lL

{ft) AY = % b.

Ans. ^' = :r 0.
o

b.(r) AY =

(r^) AY = (i + .r)/;.

(0 AY = \ A.

(^) AY = \ A.

(//) AY - % A.

m AY = -A.
' n

Hemark. WJien foin* points on a straight line fulfil tlic preccdini;

proportion, they are called four liarmonic points, and the line AB is

said to be divided harmonically.

60. It is a theorem of mechanics that, in order that two

masses, V and W, at the ends of a lover, AB, may bo in equi-

librium, the distances of their points of suspension, A and B,

from the fulcrum, F, must be inversely pro2)Oiiio}ial to their

weights; that is, we must have

Weight V : weight W = FB : FA.
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V and W arc respectively w and n, express the leiigihsAF

and FH of the arms of tlie lever.

6i. The weights at the ends of a lever are 8 and 13 kilo-

graiiunes, and the fulcrum is 3 inches from the middle of the

lever. What is the length of the lever?

62. The sum of the two weights is 25 pounds, and the

ratio of the distatu^e of the fulcrun» from the middle point to

the length of the lever is 2 : 0. What are the weiuiits?

63. '^rhe weights are m and n {ni > ;/), and one iirni of tlu'

lever is h long* r than the other. Express the lengtii (»f the

lever.

64. A lever was balanced with weights of 7 and kilo-

grammes at its ends. One kilogramme being taken from the

lesser and added to the great-er (making the weights G and lU

kilogrammes), the fulcrum had to be moved 2 inches. \\ hat

was the length of the lever?

65. A line is divided into three ])arts ])roportional to the

numbers 3, 4 and 5. What is the ratio of the parts in which

the middle point of the line divides the middle segnu'nt?

66. To 300 pounds of a mixture containing 2 parts of zinc,

3 of copper and 4 of tin was added 200 ] ounds of another

mixture of the same metals, when it was f(;und that tlie ])ro-

])ortions were now as 3, 4 and 5, What were the proi^ortions

in the mixture added?

67. Find two numbers whose sum, difference and product

are to each other as the numbers 5:1:18.

68. Find two numbers in the ratio 7 : 3, the ratio of

whose difference to their product is 1 : 21.
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69. Find two numbers such that the first shall be to the

second as their sum is to ?)\, and as their difference is to ^5.

70. Find three numbers whose sum is 73, and such tliaf, if

2 be subtra(3ted from the lirst and second their differences will

be to each other as 1 : 3, and if 2 be added to the second and

third their sums will be to each otiier as 4 : 5.

71. Two boats start in a race. Tlie second boat rows 25

stroices to the first's 28, but 10 strokes of tiie second are equal

to 12 of the first. If the distance between the jjoats at starting

is 30 strokes of the second boat, how many strokes will it

make before reacliing the first?

72. One cask contains 18 gallons of wine and 6 gallons of

water; another contains 12 gallons of wine and 18 gallons of

water. How much must bo taken from each to form a mix-

ture coiiiaining 8 gjJlons of wine and 8 gallons of water?

73. Two mixtures of wine and water contain respectively

\ and I wine. How much of each must l)e taken to form 44

gallons of a mixture of which the wine is to the water as 5:0?

74. A and B ran a race in G minutes. B had a start of

20 yards; but A ran 5 yards while B ran 4, and won by

10 yards. AVhat was the length of the race, and the rate of

running.''

75. A jeweller has three ingots of metal. A pound of the

first contains 7 ounces of gold, 3 ounces of silver and G

ounces of copper; a pound of the second contains 12 ounces

of gold, 3 ounces of silver and 1 ounce of copper; a pound

of the third contains 4 ounces of gold, 7 ounces of silver and

5 ounces of copper. He wishes to form an alloy weighing 1

pound, which shall have & ounces of gold, 3f ounces of silver

and 4;^ ounces of copper. How much must be taken from

each ingot?

76. The king of Syracuse gave a g(ddsmith 10 pounds of

gold with which to make a crown. When it was finished tlie

king gave tlie crown to Archimedes to ascertidn if it was pure

gold. The philosopher knew that gold weighs .948 as much

in water as in air, and silver .901. When the crown wns

weighed in water he found it lost 10 ounces. What was the

quantity of gold and silver in the crown?
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IliliATIONAL EXl'lU•:s.^lO^\<.

IrratioiiJil Expressions.

nil

Execute the following divisions:

I.

2. 27.?:«Z/"r'3 -^ \)aU^c.

3. 12aS/yfi ^U^-bh.
."'-

,

4. X'^'t/Zi H- X'st/'Z" i.

5. a

6. X

7. a

— 3

j
- 7 A — 1

.

a
_ 1 ;. _ b

-'z-\

8. da'b~'c-' -Iba'c-'-^Sa-'bc

9. 24x'i/'z -{-Ibx-yz'-')xi/
1 0. ^bx'yz

-
' - 2lx\ij - h' + 7// -'z' ~

1 1

.

20x''y - 'z' - 4:y''z' - 12a; -'y-' ~ 4.^

12. 2Sx'^yz-' -f Wxy-'zi — Ux-'iy-'z-' -=- Lv'iy

13. ai — aib^ -=r a^.

14. x^ — xUi^ +^'' -•- ^'»-

15. 12^^^ — 30f4 ~ I2ai.

m
16. 2x'^ — (jx-''^2x\

n

17. 82-^— 4.r* ~ 2x-K

§182.

Express the following products of irrational quantities

with a single fractional exponent by reducing the fractional

exponents to a common denominator, and then reversing the

process of § 182

:

X V Z 1

Prove the equation rtn/>«c» = {(fb^c'^Y.

aibki. Aus. amri^ = {n'b'c)K

7)ihnhpl. 4. 24;U. Ans. \2k

2K3i. 6. aibi.

I.

2.

3-

5-

j_ 1

8. .?;"'//".

II. a77iK

7. hh'isi.

9. 32ir?i/^^

12. c'ib's.

V^-TV5"^^G.10.

13. 7*. 5i.

14. A-V;V3 1 2-i;ji. 16. (^S12- i.
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1"

§183.

Reduce tlie following expressions to monomials:

I. VSi-]- V2I+ '/'*}. Ans. 4/0 ( 4/9+ 1^44-1)= GI/g!

4. V2- Vi^ + 1^3:3. 5. V75 + V-is - i^a;

6. '/ili 4- ^ /^+ 3 1^5 - 9 t^48.

7. I^ir^ - V\ki + f/25«. 8. l/^Zx' + i^//^- V7^:.

licduce the following to their simplest form and factor:

9. Vl^l? -^ Vb{)a^\ 10. {hrhy - {c^hY.

11. (2'V'^>V)1 - (4.5V^/V)i + (4.GVZ;V)*-

12. (54rr + ''/'=')i - (IGrt^'-^Z/^'^i + (:2«*'" + »)J + (:3ri'V)i.

13. (c/'"V' -f a\/)i.

15
2> i^+f/

16.

184.

14. [{a + h)\x + ij)-\K

7)1 — nf vfp

m -\- n \7u'— ;>> nin -f- n

'

Multiply:

I. {c + hVT) {c - a V7). 2. {m + \^i) {m - VTi).

3. {am + 'i ^(i' — z){}i — VI Va — z).

4. (4 + 3 i^'^) (4 - 3 V^). 5. (5 - G>^ V-.^) (5 + Gm ^2).

6. j.^[l-(7> - IKHI + '^{p_-jn

7. {Vp-\-q-^Vp-q){Vp-^q-Vp-q).
8. (rt + x^ + yi) (« - ^i + 7/^).^

9.

Vm. Vn—— "4~ —'^^^^

V)i Viii Vn V)ll

Aggregate the following fractional expressions and sim-

plify when possible:

74 ai
II. — + —

.

a r

7)ih mi m

12.

14. r - / +
fr - i
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Equations of the Second Degree.

1-1)= {jVii.

4/125.

- V7^..

,11(3 factor:

2rt"'c')^.

mp
'Zmn-\- n

m — Vn).

:)(5 + G7i V2).

0.

sions and sim-

" {c+xy

§g 195-'40'^.
9>'' + 1- 110. <..! <>./• ('4.

3. x^ - \^x + G =

5. x'' + ^x = 7.

7. a;^ — mx = — w.

4. X' - o7.': — _ :io20.

6. x'^

8. 2; +

8.<; = - 12.

1 1

15 72 - Ct

II.

x

4/^

Oo-*
= 2.

l-x

10. 2; — rt.v;

12. 2' — OV.i'

6.C ab.

18.

[3. 3:6-* + .r = 7. 14. 4.x
3G -

4(>

15-

17.

40

X ~ o

2:c + 3

-, 4- ^i = 13.
48 105

'ix

a; + 3 x + 10

6^-. 18. {x - 3) (.r ~ 8) = 0.

10 — a: 25 — 32;

19. {x — a) [x — b) = 0.

20. (.T + 4) {CC + 1) = 6 {x' + 1) - 8.r

21. 3 {x' - 1) - 24 = 4 (2; + 5) {x - 3).

O ^,2

22. {x - 2) (32; + 1) = 10 - (22; + 1) {x - 3).

X X - 3 X - 8
23-
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ITY.

_7
c - 5*

;-30.

+ :

20

dx

— 4

Ix ~ :>

2U"

= 0.

Cf/-^i)7e.l77(7
Agi^^77^,v^,

56. ?? + _
3 4a; — 3

57. x-\- V;„^'

?£_:il 5 5;c __ 3

515

^ _ 2xj~ 4

4

58. i/M^+ i/^^=.l^^

59. ^+l/a:^:=r4^ 8^ 5^ __
i/^^ -;• 00. -- t — 1 ,

61. Va; 4- 3 4- V'T;^ 17 -,

.

"^

+ ''~' = ^«- «-^ ^- + *'r+^=.A.
63. -. L 9 4/^;*

Vi)x — 1

^ + ^2'^x^ X - 4/;;) :|."
a;

- = m.

64- -T-
a: — 7a: + 3

6.C. -

•'^ + 4^ ^.»X' ~ X
X — 4/,

2a:'
66. :ri __ 5a:

3
^-\-':^ ^tt^51

a;'

67. ^8a:» + 10

21

12

j£l+ 4 _ 3a:'

Sa:" — 4 "8~

^^- ^iMr^_|_|/-^

4^
'9- - - _ + 3 |/;

16^_

^^x'^

Vx -^l |/,

-_ Va- + 5

70. |/.

a- + o

X + ^ - -^^J^rx^-^.^^ = « f/-
a:

'ni + ^^a:

+
71. -Srj}^ ^ a -{. ex

Jl_^+_1 __ a- 4- 3

+ 5a:
-I- G ~ ^ipg*

4^^

T2.
^\-^x

73.

--HJr _ 2' + 2

a;'

74.

12

- 400^2: = f/.

75. — - 8
.^4-3.

C
2-c - ^ 2a: -3' 76. 3.6-' -- 4a- =:



516 Q UA 1)11A TIC h'Q UA TIOJ^S.

"%
77. ox — iX

o

9
^x.

79-

81.

82.

84.

86.

88.

90.

91.

92.

93-

94.

78. (.T _ 3) (a: - 4) = 2.

80
l^.r + I ^x - 1

\x - 3 2:^-a + i = «-

5

3.C + 2

5

1^

2

3

a; + l

1 __ 7

- 1 =r
X \

x-1 ^ x — 'S

5.r + 3 2x-\- o

83.

.85.

87.

_1 3+ = - -^

1 3

7
"^

3 (a; - U)
= 1.

Gx -{- b 2x -\- 5 _
.J

r ;5

2a; + 5 3(.r + 2)

3.6- - 3
I

13 _ 1 - bx

4a; - 1
"^ ¥ ~

^^c + 3

i-
'^-

'dx + 4

4:c X — 5

IX r 3

42;+_7
"'

19 •

7x' -x-b VJ + 4x' + 4 = 42; + 7.

x' — Qx + 13 + Vx' + ijx + 9 = 5.

O7.2 - 3./; + 4/.*;^ - re + 7 =
'6x - 3 4/./:' + 3.f + 9 = 30 -

•)9

a;'

95. 3.1-' 4- 7:c - 31 = .?; + Vx:" -^ 3x + 7.

96. V:

97-

3.r + 3 -



- 4) = 2.

( v]i-2y
^'Vj: - 1

5 (2; - {))

2x 4- 5

2x

5 _^3"
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12. X -f- // = 'J'.

U -\- V =1.
X + ?<' = 8.

y -f f ' = 4.

14. a:K = yv.

x + 7/ = U.

?+-!^= 4.

13-

15-

a: + // = 9.

w -\- V — 9.

a;' + u' = 52.

y" + r' = 41.

a,w/ = 35.

?^r = 18.

a--f- ?< = 13.

y + '^ 0.

Problems Loiidin^ to Quadratic Equatious.

1. A i)rincip{il of $0000 umoiints with simple interest to

$7800 after a certain number of years. Had the rate been 1

per cent, higher and the time 1 year longer, it would have

amounted to $720 more. What was the lime and rate?

2. A courier left a tov/n riding at a uniform rate. Three
hours afterwards another followed, going 1 mile an hour

faster. Two liours after tiie second another started, going 6

miles an hour. Th.;y arrive at their destination at the same
time. -What was the distance and rate of riding?

Alls. Dist. = 00 or G. Speeds, 4, 5 and 6 or 1, 2 and C>.

3. In aright-angled triangle the hypothenuse is 5 and the

area G. What are the sides?

4. Find two numbers whose product is 180, and if the

greater be diminished by 5 and the less increased by 3, the

product of the sum and difference will be 150.

5. Find two numbers whose sum is 100 and the sum of

their square roots 14.

6. Find two numbers whose sum is 35 and the sum of

their cube roots 5.

7. By selling a horse for $130 I gain as much per cent, as

the horse cost me. What did I pay for him?

8. What is the price of apples a dozen when four less in

20 cents' worth raises the price 5 cents per dozen?

9. The sum of tlie squares of three consecutive numbers is

149. What are the numbers?

10. If twice the product of two consecutive numbers be

divided by three times their sum the quotient will be 4* What

aj*e the numbers?

i
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11. A woman bought a numiier ( f oran^'cs for DO cents.

If slio had bought 4 more for tiie same money she would have

])aid t <->f ti cent less for each orange. How luauy did nhe buy.'

12. In mowing GO acn^s of grass, 5 days less wouM iiave

been suflicient iT 2 acres more a day had been mown. Uow
many acres were mown per day?

13. A broker bought a certain number of shares (par SlOO

each) at a discount for $0400. When they were at the same

j)er cent. j)remium, he sold all but ^0 for ii<T::i00. IIow many
shares did he buy, and at what })ricc?

14. If the length and breadth of a rectangle were each in-

creased by 2, the area would be JilJH; if both were each dimin-

ished by 2, the area would be 130. Find the length and

breadth.

15. Twice the product of two digits is equal to the number
itself; and 7 times the sum of the digits is equal to the number
formed by the same digits reversed. What is the number?

iC\ The sum of two numbers is ^ of the greater, and the

dilTerence of their S([uarcs is 45. What are tiic numbers?

17. The numerator and denominator of two fractions are

each greater by 2 than those of another, and the sum of the

two fractions is 2|; if the denominators were intercliangcd,

the sum of the two fractions would be 3. What are the frac-

tions?

18. A man starts from A to go to B. During the first half

of the journey he drive? \ mile an hour faster than the other

half, J; d arrives in 5f hours. On his return he travels a mile

slower uuring the first half than wiien he went in going over

the same portion, and returned in 6^ hours. What was the

distance and rate of driving?

19. A person who has $8800 invests a part of it in one

enterprise and the rest in another; the dividends differ in rnfo,

but are equal in amount. If the sums invested had exchang(Ml

rates of dividends, the first would have yielded $200 and the

other $288. What were the rates?

20. Divide 50 into two such parts that their product may
be to the sum of their squares as G to 13.

21. A company at a hotel had $12 to pay, but before set-
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tling «J left, wlien tlioso romiiinin^ liiul 30 cents apieco more

to puj tliun before. How many were there?

22. A (h'over bought a number of sheep for $180; after

kee[)ing 10 i»o sold the rest for $1*00, and gained Mo^ cents

a})ieco. How nuinydid ho buy?

23. Two partners, A and B, gained $140 in speculation;

A's money was .'J months in trade, and his gain was $G0 less

tbiin liis capital; \Va money, which was $50 more than A's,

was in 5 months. What was each man's caj)ital?

24. Divide .'JO into two such parts that their product may
bo 30 times their diiTercnco.

25. A and B set out from two towns which are VH) miles

apart, and travelled until they met. A went 8 miles an hour,

and the number of hours they travelled was 3 times greater

than the number of miles B travelled an hour. What wero

their hourly rates? Ans., in part, B's rate, /aS — 4.

26. In a purse containing 538 ])icces of silver and nickel,

each silver coin is worth as many cents as there are nickel

coins, each nickel is worth as many cents as there are silver

coins, and the whole are worth $1.50. How many are there

of each ?

27. Find two such numbers that the product of tlieir sum
and difference may be 7, and the product of the sum and dif-

ference of their squares may be 144.

28. A grocer received an order for 12 pounds of sugar at

12 cents a pound. If he should have none for that price, ho

was to send as many pounds more or less tlian 12 as the sugar

cost less or more than 12 cents a pound. The bill amounted

to $1.35. IIow many pounds had he sent, and what was the

price per pound?

29. A grocer sold 50 pounds of pepper and 80 pounds of

ginger for $26; but he S')ld 25 ]>()unds more of pepper for $10

tiiau lie did of ginger for $4. What was the price per pound

of e;ich ?

30. A and B's shares in speculations together amounted to

$075. A had his money invested 5 months and B \\ months,

and each receives in cajutal and profits $455. What did each

begin with?
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apiece more 31. A person rents Ji rertuiti nmnbor of nores of land fui*

ItTiU; lie retains 10 iiercs, and suldcts the rest at W vvnta an

ucro more tiian he }jjave, and receives ^\'-l more than lie \m\n

foi- thu wliole. How many acroa were there, and how niueU

per aerc?

32. A person bonglit a certain nr.niber of shares for as

many dollars per share as the nninher he buys; after they rose

as many cents per share as he iiad shares, he sold them and

gaine(l $4. How nniny shares did lie buy?

;^;i.
The income of a certain railway company wouhl justify

a dividsnd of 5 per cent, of the whole stock; but as ^150,000

of the stock is prefe^'red^ guaranteeing; (I [)er cent., the divi-

dend for the remaining' stock is reduced to 4| per cent.

What is the wliole amount of stocJv?

34. The length of a rectani^uhir farm is to its width as t

to .3; I is in grass, and the remaining 45 acres is cultivated.

What are the dimensions of the field?

35. If a straight lino be divided into two sucli parts that,

the rectangle contained by the whole line and one ])art ise(|ual

to 6 times the square of the other part, what will be tiie ratio

of these two parts?

36. Out of a sj)here of clay whose diameter is 10 inches,

two spheres arc formed with radii of 3 and 5 inches respec-

tively. If the volumes of spheres vary as the cubes of their

radii, what will be the radius of the sphere that can be made

of the clay that remains?

37. The two digits of a certain number differ by 1, and

their product is \ of the next higher numl)er, what is the

number?

38. Find five numbers having equal differences, and such

that their sum shall be 40, and the sum of their cubes 3520.

39. A merchant bought a barrel of wine for $(50; he re-

tained 13 gallons for his own use and sold the rcnuiinder at

an advance of 80 per cent, on each gallon and giiined 2<) per

cent, on the whole. At what price per gallon did he sell it?

40. Find two numbers that are to each other jis 9 to 7;

and the square of tl eir sum is equal to the cube of their dif-

ference.
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41. The panel in a door is 12 by 18 inclies, and it is to he

SHiTounded by a margin of uniform width and equal surface

to the panel. How wide must tiie margin be?

42. The fore wlieel of a coach makes G more revolutions

than the hind wlieel in going ICiO yards; but if the circunifei--

cnce of each wheel be increased bv 4 feet, the fore wheel will

make only 4 more revolutions in IGO yards. What is the cir-

cumference of each wheel?

43. Tiie sum of three numbers is 15; the difference between

the lirst and third is 3 more than the difference between the

second and third, and the sum of their squares is 93. What
arc the numbers?

44. The product of two numbers is 15, and if their differ-

ence be added to the difference of their squares tlie sum will

be 18. What are the numbers?

45. A certain number consists of two digits; the number
is 4 times the sum of its digits; and 3 times the number is

equal to twice the square of the sum of its digits. What is

the number?

46. Find two numbers whose sum is 14, and if their prod-

uct be added to the sum of tlieir squares the result will be

1-18.

47. Two brokers begin business with a joint capital of

810,000. A withdraws at the end of 12 months and receives

1^4900 in capital and profits. B remains 3 months longer and

receives $7800 stock and gain. What was the oi'iginal capital

of each ?

48. Find five equal numbers whose sum is equal to their

continued product.

49. A jockey bought a horse and sold it at a certa'u per

cent, profit; with the money he bought another horse and

sold it at the same per cent, profit, and with lli(> proceeds he

was able to buy 2 horses each costing 2 ])er cent, less than the

first. What i)er cent, did he make on each transaction?

50. Two travellers start from the same place at the same

time, one goes due north IG miles a day, and the other due

cast 21i^ miles a day. How long must they travel in order to

be IGO miles apart?

%3
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51. What is the length of a side of a square wliose area is

increased by
J
of its amount when 4 feet is added to each side?

52. Find the length of the side of a square such that (lie

number of square feet in its area exceeds the number of linear

feet in its perimeter by 12.

53. The perimeter of a rectangle is 34 feet; if its length

were increased by 4 feet, while its perimeter remained the

same, the former area would exceed the doui)Ie of the second

by G feet. What were the original dimensions?

54. If 3 feet be taken from one side of a rectangle whose

perimeter is 14 feet and added to the other side, the area

would be doubled. What were the first dimensions?

55. A man invests his money at a certain rate of interest

for two years, and finds that ho will get 1 per cent, more for

it if he reckon by compound interest compounded annually

than by simple interest. What is the rate of interest?

56. A person bought a certain number of shares when (liey

were at a discount and sold them when they rose to a premium

of the same rate ])er cent. His profit on the first investment

was Ji percent, more than the common value of the premium

and discount. What was the latter and the rate of profit?

57. A regiment of 2196 soldiers is formed into two scpiare.^,

one having G more men on a side than the other. How many

men are there on a side of each square?

58. Find two numbers who.^e })roduct is twice their sum,

and the sum of their squares 45.

59. Find two numbers whoso product is 8 times their dif-

ference, and the dilTerence of their squares 48.

60. Find two numbers whose difference is G, and | of their

product is equal to the square of the less.

61. Find two numbers such that their product added to

twice the square of the greater is G5, and the product aihied

to the square of the less is 24.

62. Find two numbers such that their sum multiplied by

the sum of their squares is 715, and the difference multiplied

by the difference of their scpiares is 99.

63. Two trains start at the same time from two towns and

run at a uniform rate towards the other town. When they
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meet it is found that one train has travelled 00 miles more
liian the other, and that if they continue Jit the same rates

tiiey will linish the journey in G and 13^ hours. What arc

the distance and rates?

64. A man receives $2200 a year interest. If he liad in-

vested his capital at I per cent higher, he could have lessened

nis investment by $4000 and received the same income as be-

fore. How much had he invested?

Progressions.

Note.—The abbreviations A. P., G. P., C. D., aiul C. R. arc but for

Aritliinelical Progression, Geometrictvl Progression, Conunon Difference,

and Common Ratio, respectively.

1. If the first and last terms of an arithmetical progression

are a and I and the number of terms n, express the sum of

all the intermediate terms.

2. If the first and last terms of an A. P. are 4 and 28

respectively, what possible values may the sum of the inter-

mediate take?

3. Sum to n terms distinguishing the cases when n is even

and odd, when necessary:

1-3+5-7+....
4. 2-4 + 6-8+....
5. p^p + n,p + %n,

6. If the square of the fourth term of an A. P. is equal to

the ))roduct of the first and sixth, show that the tenth term

must vanish.

7. If the square of the second term of an A. P. is equal to

the product of the first and fourth, show that the square of

the sixth is equal to the product of the fourth and ninth.

8. Oeneralize the preceding result by showing that, in

order that the square of the nth. term may be equal to the

])roduot of the first and ;^'th, and the square of the mi\\ to

the product of the ?/th and m'lh, it is necessary and sufficient

that m, m\ n and w' fulfil the conditions

m' = 2 {)n — )i) + 1; :.'/.'' — /ii + u

9. Find three quantities in A. P. whose sum shall be 3a

anil the sum of whose squares shall be \l(i\
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hen n is even

lu ^^luiU be 3(1

10. Find 7 terms of an A. P. such that their sum shall

be 14 and the sum of their squares 84.

1 1. In an A. P. the product of the first and eighth terms is

less by k than the product of the second and seventh. How
much less is the product of the third and sixth than that of

the fourth and fifth?

Expi th of12. i^xpress tne sum ol n terms of an A. P. in terms of

the first term and the C. D.

13. It a and b are the first two terms of an A. P., express

the last term and the sum of 71 terms.

14. Prove that if the sum of m terms of an A. P. be w,

and tiie sum of 71 terms be w, we siiall have

2 {m -\- 7i) -\- tmid = 0.

15. If a", F, c* be in A. P., then,
1

a -\-b' c -\-a' b -\- c

will also be in A. P.

16. The sum of the first three terms of an A. P. is 15 and

the sum of their squares is 83. What is the sum of n terms?

17. In a progression of 9 terms, the third term is 10 jjid

the sum 153. Find the first term and common difference'.

18. In an A. P. a certain term is ^; there are '2n terms

before k and n terms after it, and the sum of all the terms is

'6n + 1. Find the C. D.

19. Two men start simultaneously from the same point in

the same dir'^ction. The one walks 711 miles the first dfiv,

and diminishes his walk bv h miles each dav; the other walks

n miles the first day, and increases his walk // miles each day.

How far will the latter be ahead at the end of i days?

20. Express the sum of the G. P.'s:

a'' + f/^" + rr^"* + . . . .

1 + v/3 + 3 + + 3*

lOw,

21. The sum of the first and seventh terms of a (1. P. is

li, and the sum of the second and eighth is k. Find the first

term and the C. R.

22. The sum of the first and fifth terms of a G. P. being
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added to twice tlie third term gives a sum which is times

tlic lii'st term. Find the C. E.

23. The fifth term of a G. P. exceeds the first by IG, and

the fourth exceeds the second bv 4 V'i. Find the first term

and C. R.

24. In a Ct. p. the sum of 71 terms is *S'and the sum of 2?i

terms is dS. Express tlie C. R. and first term.

25. In a G. P. of 2n + 1 terms, whose first term is 5, tlie

sum of the first and hist terms is 125 greater than twice ihe

middle term. Find the C. R.

26. The first term of a G. P. is 2, and the continued

product of the first 5 terms is 128. What is the C. R. ?

27. Find tliat G. P. of wliich the product of tlie first and

second terms is 3, and that of the third and fourth terms is 48.

2<S. A })erson who each year gtiined half as much again as

l)e did the year before, gained $2050 in 7 years. What was

his gain the first year?

29. A man who had a principal out at 5 per cent, per

annum compound interest for 4 years found that the interest

gained during the second and fourth years was greater by

$84.10 than that gained during the first and third years.

Wiuit was the principal?

30. Show that \ia,h,c,d. . . . k, I bo in G. P. we shall have

{a ^ b -{- c -\- . . . . -\- k){b -\- c + d + . . . . -\-l)

= i(/; + f + .Z + . .. . + /r.

31. If a, b, c, d be in (1. P, prove that

(«' 4- // 4- c') {b' -h
(" + d') = {ah 4- 'r + cdy

(/, _ ry -f {c - ay + {d - by = {a - dy.

32. Gene»"aii/,e the Orst of the preceding results by allow-

ing that if we multiply the sum of the squares of the lirsi //

t<'i"ms of a G. P. by the sum of the squares of the n ternjs

following the first term, the ]U'odnct will be equal to the

s(iuare of the sum of all the products formed by multiplying

each term from the first to the nth by the term following it.

^^. Sum to 71 terms

7N
in

)ll
;m Hi
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34. In a G. P. of terms are given:
The sum of all the terms except tiie first = 33-
The sum of all the terms cxcei)t tiie hist — —'22.

Find the series.

35. Find two quantities of wiiicb the Jirithmetioal mean is

a and the geometrical mean is ^, and ])rove the result.

36. In a G. P. of 8 terms the product of tiie four alternafo
terms beginning with the first is 1, and the product of the
four alternate terms from the second to the eightli is 10.
Find the progression.

37. A party of m persons have .«? dollars unequallv divided
among them. Each simultaneously divides his moiu-y equally
among his m - 1 fellows. If one of the partv had a dollars
in the beginning, how much will he have after 1.2, and p
such divisions.^

'

s
Ans. —

?n 111 — 1 \///
"V. i--J. -if(£-")^

Find the limits of the sums of the progies:iiuns:

4 3
38. -- + , + _ + ....

'°- ' + «+,?-+•

71 ' n

42. I -f (r +

43- 1 - r-f

11

+ 1'' + ^)"%...

1
\-'

-f r +
44. r-^{\^ay^{\-^a^n'y^{\-^a\-a'-\-a')y'-{-

r and ar being each less th;m unitv

45. r-\-{\-a)r'\-{\-n^i-,r)r'^{\-a \-(r -a')r' -[
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\l .1

46. r-{\-ny^{\-n-\-a'y-{\-a-^n'-a'y+

^7 1
:

'^
-

1 4. ('^ - ^y
,

48.

49.

7i n 71

I + (»_:ii)! + (" - !)•
,

n - 1 (/i - 1)' {11 - 1)+M + 1 (^'-f-ir O' + i)

?i*

50. ?i
+ --—- +

/r

r, + . •
.M+1 ' {n^\y

51. r+(a+i{»)rHK+^//>4-'^')'-'+('''+«'*+«^''+^')^-*+..

I I

Functional Notfition.

Prove

:

1. {^n)\ = 3" (1.3.5 .... 2m- 1) .;/!

2. (2^)! = 2" (1.;J.5 .... 15) (1.3.5.-;) (1.3).

Using the notation [w] = 1.3.5.7 .... ;//

k = 2'*

Sliow that we have

3. ^•:== 2^-' [/;-!] 1-'
"I

-
1] [3J.

^4u
4- lr>

'2;A _ [4;/ - IJ

'ji/ \ )i I
~~

[2h, —ly
5. If S{n) represent the sum of the first u terms of a

geometrical progression wliose C. U. is 7', show that

,S'(2;/) = (/•" + 1)<S'(>0-

r
.<^{A») = {r"-\-l)i^^-^^j.S{n).

6.

denoc
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y~v—

+/.');•* -f...

;}).

. [3J.

terms of a

[Kit

norators and

If >S'„ represent the sum of tlie first n natural ninnberjj,

that is,

'^n = 1 + 3 -f 3 + + /i,

show tliat:

9- 'S'„ + ^S'„,, = («+ 1)'.

10. Sn : «S'„ + 1 = /^ : ;? -f- 2.

11. .% X *S; X /S'e = 3! [7J.

12. S. X 8^ X *S; . . . . X *%„ = ;/! [2;i + 1].

13. 'S^ X '\ X >S\ . . . . X iS^„ + , = {n + 1)! [;>;* + 1].

14- *^'« X *Ss X Si X *S„ = (27i + 1) (/i.7 l^n - \]\
15- ^svf >s; + 6', + -i-x,^

16. S\ + S, + S,-i- + *%ufi
=. r 4- 3' + 5^ + . . . . + {In + I)'-'.

17. If d = k + 56;_i find tlie values of C^, ('„ C\, and (\

in terms of //, .s- and Co, and find tlie value toward which (\

approaches as i increases indefinitely, assuminfr s < 1.

18. Apply the preceditii; notation to the following problem:
A person having a full and an empty cask pours half the con-

tents of the full one into the otlior; thou half of this last one
back again. lie rci)eats this double operation an indefinite

number of times. Find what fraction of the liquid Avill re-

main in the first cask after 1, 2, 3, 4, and i such double opera-

tions.

To do this assume that d and 1 — d ropresont tlic frarlions of tho
liquid \\\ tlie two casks after the ith ope ratio u, and then fuul the fractions

alter the (t + l)st operation.

19. A vintner has one cask containing a gallons of wine
and another containing b gallons of water. He pours half tho

wine into the water, then half that mixture back into tho

wine, and so on iiulefinitely. Find an ox))rossion for tho

quantities and proportions of wine and water in each cask

after 'In and also after 2m -j- 1 such o])oiations.
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l*«riiiiiiatioiis and Combinations.

1. A regular cube is to have its sides numbered 1, 2 .... T,.

In liow many ways may the numbering be done?

2. In how many ways might the numbering be done in

the hist ])roblem if only three of the six sides were to be

numbered?

3. A party of 3 boys aiul -l girls has to walk in single file,

the boys ahead. In how many ways can they be arranged?

4. Wiiat would be the numl)er of arrangements in the last

])roblen. f th ;ily condition were that the boys must be to-

gether i) nir p:">up and the girls in another?

5. If ti.i'3 €r;ju/;ination of any three dilferent letters in any

order made a word, ,. ow many words of thr(.ie letters could be

formed from tlie 2G letters of the alphabet?

6. If in the last problem the words thus formed were

divi<led into sets such that the different words of a set should

be formed of the same letters, how many sets would there be,

and how many letters in a set?

7. Six men with their wives arc to stand in a row. In

how many ways may they De arranged subject to the condition

that each man must remain alongside his wife?

8. What would be the answer to the last problem in case

each man had to keep his wife on his right?

9. A boy has the letter blocks which form the words you

are mad. In how many of the arrangements will all three

words be recognized, supposing that any word may be rocog.

.

nizedwhen its lirst letter stands first, and its other letters fol-

low it in any order?

10. If every permutation of two or more letters made a

word, how many words could be formed from 10 letters?

11. In how many permutations of n letters will the first

letter retain its place? The second letters retain their second

places? The last letter retain the last place?

12. If we write under each other all ])ossiblo ])ermutations

mof the lirst n numbers 1, "Z,

of each column?

n what will be the su

Ans. l{n-\-l)\
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13. What will be the sum of each cohiiun if the ]i()ssiblo

permutations of the ligures 1 'l 'I ;j ;} ;} 4 are all ^\^iUell under
each other?

14. From a collection of .") capital letters and 7 small ones

how many combinations of 1 capital witii 'I small ones can be

formed?

15. The driver of a four-horse coach can choose his horses

from a stable of G white and 8 black horses, but he must not

pair 2 horses of dilTerent colors. In how many dillerent ways

may he choose his -i horses?

16. Uow many of the ])ossible combinations of .'3 letters

in the first 10 will contain the letter c'i How many will con-

tain both the letters c and r/?

17. Of the jiossiblu combinations of s things in u, how
many will contain a designated thing? How many 2 desig-

nated things? How many k designated thir .' ?:

18. A party of G meet for whist, 2 waiti» 't W: i the other

4 play. Each 4 must jday one game witl. t> ah possible ar-

rangement of partners. How many games ":d be played in

all; how many will each person play, a' d how many times

will any two designated persons have me^. :^ partners?

19. From a collection of 5 letters and G numbers how
many combinations, each consisting of 1 letter and 2 num-
bers, can be formed? How many consisting of 2 letters and

3 numbers? Of 5 letters and 4 numbers?

20. From a collection of ;// letters and n numbers how
many combinations of /• letters with .v numbers can be

formed?

21. In how many wjiys may a pile of 20 balls be divided

into two piles, the one having 15 balls and the other 5?

22. How many dillerent signals may be made with 4 fl.'igs

of dillerent colors, it being assumed that each difl'erent ord(a'

of each combination forms a dilTerent signal, ])ut that the

siernal remains the same when the order is reversed?

23. What would be the answer to the ])receding ])ro])]em

if each combination of several flags could be ai-ranged either

horizontally or vertically, and an inversion of each vertical

arrangement nuule a dlilereiit signal?



Il

r)'M rKRMUTAriOS.H AND COMlUNATIONFi.

24. Ilosv niuny difforont aipfiiiils oiiii be niiide with 10 fluc^a,

of wliicli 'Z iU'O white, '<) red, mid 5 blue, nil lioisLed together

in u vertical row?

2<^. How iiiiiny different arrangoments can bo made of a

base-ball " nine, ' supposing that only one man can pitch, and

only two can catch?

26. Supposing tliat, in a game of cliess, the first player

always nas a choice of two good moves and the second player

of tiireo, how many games of ^0 moves each are possible?

27. If the 8 i)ieces at chess could be arranged in any onkir

on the 8 sfpiares of the first rank, how many different arrange-

ments would be possible?

28. In how many different ways can 4 pawns })o arranged

ni)on the G-t squares of a chess-board? How many different

ari'.ingernents can be made witii a king, queen, knight, and

rook? Explain the relation of the two answers.

29. In how many ways may \'i balls be divided into throe

piles, containing, the one 3 balls, tiie second 4, and the tliird5?

30. l\\ how many ways may n balls bo divided into 3 piles,

containing, the one /;, the second 7, and the third /• balls

{p -\- q ^- r = n)^

31. What must bo the value of r in order that

/-'" _ n^ ^

32. Tiio ratio of the number of combinations of 2n things

in 4:11 to that of Ihc combinations of n tilings in 27i is

(2m + 1)(2?^ + 3) .... (An -3)(4n- 1)

1.3.5 .... (2 ?i— 1)

33. Show that the sum of the 7i\ different numbers that

c;in be formed by permuting any w different digits is divis-

ible by {n — i) times the sum of the digits, and that tlie

(juotient is 111 . . . .

34. If we define a magic square as an arrange-

ment of m" numbers in a square such tliat the sum
of every line and every column is equal to the same

quantity; sh.ow that if one such arrangement is ])os-

sible with given numbers, then (w!)' are possible.

6 1 S

i 5 .>

2 9 4
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,vith lOfliiirs,

See murgiu for exiiini)le of sciiiiiic wluii n — H, and uolc that we
leave out of ouusideration the diaguiiul liiicd of uutiibors.

35. Givoji m (litTcrent loiters uiul n dilTi'ient numbers,

find tlio ntiHil)or of ditlurent jK'rniutiitions i-ucli containing' /•

letturs and .s' nunihtTs.

36. (liven n nnequal stvai^lit lines; how many non-identi-

cal rectangular |)arallelo[»ipeds may be formed, eaeii of wiiose

edges must be e({ual to some one of these hnes in the two

cases; (I) Wiien tho same line cannol be repeated in a

figure and (2) When it can l)e re])eated without restriction.

37. The same tiling being supposed and case (1) taken;

how many dillerent parallelopipedons may be built u])()n the

same horizontal i)lane as a l)aae, with their vertical faces

toward the four points of the comj)ass ; two figures being

regarded as dilferent when they cannot be brought into coin-

cidence without turning them art)und or over.

38. Given vi— I sets containing respectively 2r^ 3re . . . . na

different things; show that the number of combinations com-

prising a of the first set, 2« of the second, etc., is , ,/.

Series.

Indeterminate Coefficients.

Develop the following exi)ressions in powers of x by tho

method of indeterminate coeOicients:

1 + nx
I.

3-

5-

7-

9-

1 1.

\-x'
1 -\- mx
1 -\-nx'

a {a -f x)

"a' 4-
^''

x' + a'

X* -\- a
«•

X

(1 - c.r)
(1
_fv

C /

1

11^ -\- ax -f- X
3'

2.

4.

6.

8.

10.

12.

1_-M
1 — nx'

X -\- a

c — x'

a -1- :/•

"

X

[l -:r) {I - bx)'

1 -\-x
,»•

a'

\

ax -\- XX
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PllO DUCTS OF SeUIEH.

Form I lie products:

,. (1 _ ., .|. .,'^_ ,;=•+ . . . .) (1 + ,. _^. ^'_|_ .r'+ . . . .).

,. (i + «^4.«v-f....)(l + ^ + ^ + ^+....).

5.(l-«. + «V-....)(l-^ + ^-^+....).
6. (1 H-^>x + .V + 4.c'+ ....)'•

7. (1 -:2x'4-3a;' -Ax' -{ . . . .)\

Carry tlio products as far as .f* and express the n^^ term

of the [)roduct in terms of n m cacli case for which you can

form it.

FiGURATE Numbers.

1. Enumerate an incomplete \n\Q. of cylindrical shot (§ 288)

having n shot in its bottom row, and as many in its top row

as there are rows.

Show tliat in this problem the number n must be odd.

2. The toj) and bottom rows of an incomplete pile of cylin-

drical shot, havinn^ 8 rows in all, contain 9 shot less than one

third the pile. How many shot are in the i)ile?

3. Tn an incomj)leto pile of 03 cylindrical shot 35 are in

the interior of the pile, so as to be com})letely surrounded by

others, and 28 form the top, bottom and sides. Describe the

)>ile, and show that two piles may be formed which fuITil the

conditions.

4. Tn a triaiifi^ular pyramid of balls the ratio of the wliole

number of balls to the number in tlie bottom layer is 14 : 3.

How many balls form the ])ile?

5. In a trianjjular pyramid having n balls on each edge,

how many balls orm the four faces?

6. If 20 balls in a triangular jiyramid are completely sur-

rounded by others, how many form the entire pyramid?
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.s/i7k7/;.S. r);a

' 7. A rectangular i)ilc has 15 balls in its top row utid its

lesser side has lU balls. Ki'umerate the balls iti the pile.

8. If one side of the base contains m balls atid the other ;/,

{m > h), how many balls will the pile contain; how many
layers, and how many b;dls in the toj) row?

9. If -195 l)alls form a complete rectangular jule, bavin*''

10 balls on one side of the base, how many will the other side

comprise?

10. How many balls in a square i)yrami<l Iniving U balls

on each side of the base?

11. A rectangular pile has 84 shot in its bottom layer and
GO in the next layer, ilow many in the whoh; pile?

Prove:

12. 1.2 + ^.3 + 3.4+ .... 4- n{n-\- 1)

13. l7i + i>(M- 1) -f- 3 (?i- :>)+.... + n[it-{n- 1)J

= '' ('' + ^
) 0' + -)

3!

14. l.^-f 2.4 + 3.0-1- . . . . -{- n.2n

;"3

15. 1 (2 - w) + 5i (4 - n) + 3 (0 ~ /O + • • . . + n'

_n{n-\- i) {n + '^)

3!

16. If we multiply the corresponding terms of the two

progressions:

a, a -{- hf a -f- 2A, . . . . (f -{- iJi,

b, b — h, b — 2h, . . . . b — ih,

the sum of the products will be

{i-\-l) \ah +
ih {b - ^0 _ i{2i-{-^ ) Jr

2 6

17. Find the sum of the products when, in [lie second

series, the C. D. is + h instead of — h.
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r)'i8 SERIES.

% H

\ .

Express tlie values of

icS. ab + (a + h) [b + k) + {a + 2//) {b + U) + . . . .

to n ternirf.

19. 1 .:J f 3 .5 + 5 . T + . . . . + i (/ 4- ^).

20. 1« + 3 {a — 3) -f- 5 (^e — G) -f • • • to n terms.

21. 1 .r< -f- 3 (^r -f 3) + 5 (rt + 6) -f- . . . . to ;i terms.

22. Prove the eiiuutions:

1.2.3 + 2.3.44-3.4.5 + 4.5.0 = ^-—

(1) + e) + (!) = (D-

by subtrjicting from the second member tlie successive terms

of tlie first member, beginning Avitli the hist.

23. Generalize the preceding result by ju-oving in the same

way the general e(iuation:

;) + (^-'
1

+

• + 1-7
}(

S

,l-^r 1

Note thiit tlie first operation will be to deduce

\s+ 1/
~ U/ V+ l)-

By means of the preceding formuljB write, on sight, the

values of:

24. 1 .2.3.4 + 2.3.4.5 + 3.4.5. G + 4.5.6.7

^^'
1^2.3 "^1.2.3"^ lT2".3

"^ OV3 "^ 073'
26. 1.2.3.4 + 2.3.4.5 + . . . . + 7/(7^ + 1) (?i+2) (;/+3).

27. Show tiiat the sum of the ])roducts of tlie first n natu-

ral numbers taken bv 2's is (j^_Z: ^ LZi(^+ 1) (3//. + 2)

2
•

2<S. In the following scheme we start with a column of /y's

on tlic left, and with the top line a, (3, y, S, etc. Then, eacli

number foHowing, in each column, is formed by adding the

Dumber ai)Ove it to the luimber on the left of the latter. It



to n torriH.



rA(> LIMITS.

Sum to n terms:

13. ce-{-{a^-iy^-{a-\-^iy-\-

14. 2 + 5 + 9+ 14 + -1-
n{n-\-':\)

15. 3 + 8 + 15 + 24 + . . . . + ;/. {n + 2).

16. 1 + ^• + 2 (2 + /t-) + 3 (3 + Ar) + . . . . + vi (;i + ^•).

iGa, Show liiiit the scries:

2^3 4^5 •
• •

•

may be tniusformod into eitiier of the tlirec forms:

Jl , _i _lJ_ ,

1.2'^3.4"~^5.G^ • • •
•

2.3 4.5 (5.7 •
• •

•

1 . _1_ I __L . ._J_ 4. _L_ ,

2 ^1.2. 3 ^3. 4. 5 ^5.0. 7^7. 8.
9^' ' *

'

17. How do two of the i)recei.ling results enal)lo us to sum

T'i
'*"

2~:J
"^ 3~4 "^ * ' * * ^^'^ i^'fi^^itum?

18. What nuuiber is equal to the co.ntinucd product:

2i.4i..Si=c.K;a'j.32A
. ... ad infinilnm?

19. To \vhat limit ai)i)roachcs the indcriuitely continued

])ro(luct:

' ?_ 'L 1_

«'^cr"'.^/'i'.a"' . . . . ?

or

or

Limits.

Find the limits of

{.r + ffY
as X increases indelinitely.

ax

nx

a (<

ii. a

i<

((

tl

it
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ais:

ible us to sum

urn?

product:

m?

,ely continued

LIMITS.
.041

X — a
4- -j

^
its rr api)rouclics c? iudelinitely.

(< ((

X a

x" - a '

x' - (?

^, 2;

G. — '' '*

<<

((

(i

t(

{(

(C

7.

8.

9

:f — «

{x-\-(fy - (.r - ^/)«

,:;i-r ^if^ -'' increases imJuiinitely.

(1 + /A'f

(I — a.r)"

a ((

10.

II.

12.

•

(1 -Ijj'^

V + ^'^ + 3'^ + 4^ + .

(< ((

((

«

. n"

n'
as w increases indelinitely.

r -f-
2^ 4- 3" -f -^n'

n'

Jr-h -"'
H- 3"* + 4"* + + «•

/i'"+i
(( (t

13. The first term of a series is -, the second ~ ?-, and
'*

cacli succeeding term oi.e lialf the sum of the two whicli i)rc-

cede it. To wliat limits will the nth term and the sum of

the series rpproach as n increases indefinitely?

14. Find the limit toward which the ni\\ term approaches
when

First term = a -{ 2b; second term = a — b;

1;
it i(

a:

each term after the second being half the sum of the two
preceding terms.

15. The first term of a series is a, the second h, and each
following one the geometrical mean of the two i)receding it.

Show that, as^iincreases indefinitely, the ?ith term apiU'Oiiclies

the limit a'ibl.
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24. .Show tliiit the ratio of tlic nth U-rni to tlie {n — l)tli

in the ex])rcssioii of (1 — .r)~" is "Xx.

Of what (juantities are the following scries the develop-

jnents?

27.

1.3.5 ¥^
I . i.;j 1.3.5
+ >)

- -^
4.0

1.3
1 -h T ^^ + f\. /''+

1 + 7.- +

4.8

1 . 1.3

1.3.(1

4.s,l:
¥^ • • •

+
1.3

G.L-i ' <;.iv>.is
+

ill the fnrni

Express the general term of the r(»ll()wing developinents;

29

3'

34

35

3^'

,'\n

3\|J

(1 + 2.r + .r')

(1 - v>.M-./-')

( L 4- .r 4- .r' -f .r' -f . . .

(1 -.r + .r'-a:'+ . . .

(1 - 'lx^'l\e -2V +

a \ ~ n

30. (1 +;.'.. + .r)-

32. (1 -•.'./• + .

'••^

^/^/ iiijiiiiliony

<< a \-

rove that

2"* - m .)m — 1 + f (- ir=i

37. If, in the development of (1 + r)" we call the second

term a and the third h, express n and x in terms of a and />.

Of what expressions are the following series the develoi)-

ments?

39'

41,

m
3*"+

.
3— '-f ( J3— » +

ui

+ 1.

(^)

i)>
3'""'+

-T
3'"-''-

40. 1 4- 1 -I-
- 4-

4^5 , 4.5.G
+

1 + .'^ +
n hi,, («-f- !.)(«- 2)

2>i
.r' +

'^'// 3^/

•+

42. If tr 1 " the 7"ih term in the expansion of (1 -f x)n \r

show that

^-f/2-h^-h = (1 - ^r (n » 8)
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Exponential Tlu'oroni.

1. Find two exprcstiions each for tlie coeflicients of ./•', .r\

and ./" in the dcvelopnienr of e"c', and show tJieir identity.

2. Develo}) e"" in ])owers of x to six termy.

3. What is the coeHicient of x"*//^ in the development of

e^+«? In tliat of c'-"?

4. Multiply the two developments:

,S 3

C- :^ 1 + ;r -f •',, + ;'- +
1 .: • )

;

,3

and show by what relations among the coefficients the prod-

uct reduces identically to unity.

5. Show by what relations the development of c^-^ becomes

identical with the s(|uare of that of e".

IjojJTiiritlinis and Lojj^aritliniic Series.

I. Express the logarithm of the continued product of all

the terjiis of a geometrical progression.

Calling b the arbitrary base of the system of logarithms,

solve the following equations so as to express x in terms of //:

2. log X = y,

4. log 'Ix — y.

6. log nx = my.

8. log .r" — my.

10. y — r*'"*^'

3. log ;r - ay.

5. log mx = a -\- y.

7. log .r' = y.

9. ,/
= Z;'°«f^

-logj
II. ma'"*'-' = y

Ueduce to their simplest form the exj)ression8:

a
12.

lope

»3- Ort^HIO.. (;1.>K'^.

Pr



^v/i^s.

3nts of .r\ .i'\

ir iilentitv.

ivclopmcnt of

311 ts tlie prod-

of e^^ becomes

Series.

product of all

)f logarithms,

in terms of //:

: n?/.

-- a -\- y.

'- !/'

-- //"«*.

= ?/'•

ns:

,loK n

LOGAUrniMii ASD LOGAlilTJIMlC i^tJJUh'S. ;-)4.")

i6. If a, h, and c be the mth, pt\\ and qih terms of a geo-

metrical ])i'0{,n-essioii show that

{p — q) log a -f (r/ — yu) log A -f- (/// — p) log 6- = 0.

17. Prove that, the value of the exprej^sion

is independent of n and e<iual to h)g n.

18. Prove tiie eiiuation:

53 log X — h)g {x -f a) - h)g (,r — n)

I \
^

(

+ 1
a

.0 -f
I ^/

1.:. +

19. If <t, b and c are tliree conseciiiivc iiiiihIkts A\o\\' tliat

2 l„gA - l,>g« - log r = IH\ ^-^- + .|-,5j. 4.-1^5 + •••[•

20. Prove:

o

Nap. log 4 - 1 + ^-- -f 3_^-_-5 + ^-^^ + . . . .

21. If ^/, /y, r, ^i, etc., are in geometrical progresaion, then,

in order the equations

I I » I

am =: b" = CP = (I'l — . . . .

may be satisfied, the quantities in, ?^ p, q, etc., must be in

arithmetical progression.

22. If // = ]0i-»"<?^ and 2 = 10»-'"K<', show that

^1

X =: lor-'oK^

23. Prove the development

log (I -2.r + .r') = -2(.r4- lar'-f .y;r'-f-_^.r'4- . . . .)

and by making the development m another f(<rm and com-

paring the coeMlcients of .r" prove the identity

n

n -3
>» — * J-

(«-4)(« -r.).,„_
) II — fi

1.2.3

the sj'ries terminating with the last exponent which is not

negative.
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HINTS UN A COURSE IN Ab\ ANCi;i) AL(;i;i',RA.

For the Ix'nt'fit of students who nmy n)ut('!iii)liit«' ii nmrsc of rcniiiii;;

in tlic various Ijianclics of Advanccil Alj^cltrii. tin- tollowin;,' list of miI)-

j«'ctH and books Iiuh l)ct'H prepared. As a ^MMnral rule, the most eKteuded

mid tlioroujfli treatises are in tlie (Jennau Lan^nuiije, while the Kreuch
works arc noted for cleganco and simplicity in treatment.

To pursue an,v of these suhjects to advauta^'e, tiie stu(h'nt nhould lie

familiar with tho l>illi'ren'ial Calculus.

I. TllK (JENMWAJ. TIIF.ORY OF P:(2UATI0NS.—In Enfrli.-h. ToD-
iiUNiKii's is tho work most road.

Seruet, A/'/rhir Si/prnn/ir, 2 vols., 8vo, is the stnnda'd French work,
covering all thi^ collatt'ral sid)jects,

Jordan, Tluuric dcs Subditufitiiis ct dtx Aqimti'iun A/f/i'hiif/ii<fi, 1 vol., tto.

is tho hu-j^c^st and most exhaustive treatise, but is too abhtruae for

nny but experts.

II. DETEllMIXANTS—Hai.tzeh. T/ienrir ih r Ihtrnuiinnitm, is the

standard treatise. There is a French but no F.u^lish translation.

A recent Knglish work is Hoiti;i{T F. Scott, T/ic 'f/fon/ of Ihtvr-

minaiits <tiid their ApplicdtioitH in Antdi/nia itml divmetrf/.

III. THE MODERN IIKJIIEU ALOEBHA, resting o)i the the(.ri.".s of

Invariants 'ind Covariants.

Salmon, Lr.swns iidrDdarfori/ to (he Modern IIi'jh(r A^fjiftni, is the

standard English work, and is espirially adapted for instruciion.

Clebsch, Theorie der him'iren AUjeliraiHrhen Fornim, is more exhaustive

in its special branch and recjuires more lamiliarity with advanced

systems of notation.

IV. TIIE THEORY OF NUMBERS. There is no recent tiratise in

En<,dish. Gauss, Dinquidtiones Arithmctinp, and liKOKNOUK,

Theorie den Nomhres, an^ the old standards, but the latter is ran;

and costly. Li-:,iki:nk Di!{ICIII,f:t, Vorlennngen iiher ZahJeidheorie,

is a good (Jerman Work. There is also a chaiiter on tht- subject in

SKitiiET, Alf/rbre Snpericnrc.

V. SERIES.—This subject belongs for the most i)art to the Calculus, but

Catalan, Trade elhncnUdre des S'rii.s, is a very convenient little

French work ou those Series which can be treated by Elementary

Algebra.

VI. QUATERNIONS.—Tait, Elemrnfari/ Treatise on Quaternions, is

prepared especially for students, and contains many exercises. The

original works of ]\\}>iu.TO'S, Lectures on Quaternions and Elemcnta

of Quaternions, are more extended, and the latter will be found

valuable for both reading and reference.




