The Institute has attempted to obtain the best original copy availaiole for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted rrom filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmèes.

Additional comments:/
Commentaires supplėmentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filınage sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

\square| Pages damaged/ |
| :--- |
| Pages endommagées |

\square Pages restored and/or laminated/

\square
Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

\square
Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-zéte provient:

Title page of issue/
Page de titre de la livraison

\square
Caption of issue/
Titre de départ de la livraison

\square
Masthead/
Gėnérique (pėriodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au zaux de réduction indiqué ci-dessous.

$10 x$	$14 x$

Originat and sithetad ganers.

NOTES ON SOME OANADIAN WATERS.
by misimy champ.
Irmfessgr of Chemistry, University Cellig', Tu;untu.
On a trip this summer round Geurgian Bay and Lake Superior, the writer collectel specimens of water from buth, when at a great distance from land. The rosult of an examination into their purity may not be withont interest, but as it was not convenient to carry any large quantity, and as they are so remarkably pure that to make a complete amalysis would reyuire the erapuration of several gallens, attention was paid merely to the total solideontents and the freedum from organic matters.
In tiae water of Superior nu trase of sulphates, or chlorides, could be detected; but the portion to which nitrate of silver hand buen added, exhibited an alnost inperceptible browning, after exposure, showing the presence of a very minute trace of orsmie matter. Oxalato of ammonia pruduced a turbidity after a considerable time, and the oxalate of lime was not deposited at the end of a weck. No precipitate was formed un boiling 4,000 grains. On eraporating a weighed quantity, 1,000 grains, it was found that a residue remained of 0.01 is grains, cqual to 1.03 grains in a sallon of 70,000 grains.
The residuc, when heated, scarcely changed colur at all, and the loss was inappreciable. It was found to be essentially carbonato of lime, which, as is well known, is soluble in about 10,000 parts of water, while 10,000 of the water cxmaned contained only 0,154 of a grain.
The water from Georgian Bay contained rather more solid contents, viz: 2.48 grains in a gallon ; but in sulphates, or chlorides; it contained, however, it little more organic mattcr than the Supericr water. The residuo was again carbonate of lime, and was not denosited on boiling, ss 10,000 of the water would contaim only 0.351 .
Lake water is almost always purcr than rain water, but that of Lake Superior is quito remarkable. The writer knows of none that can compare with it, excejet that of Lokia, in Sireden, which is said to cuntain only me-trenticth of a grain in a gallon. Lakes, in prinitive formations, are, usually, very pure : sume in Scctland contain 4 to 5 grains; some lazes contain a considerablo quantity of carthy matter-the Genera nater contains 10.5 in a gellon.
An oxnmination was then made of the Ontario Iake water, taken from a point south of the light-loouse : several analyses
were made onl the mean gavo the fullowing numbers:

In a gallon Tonlt grains of impurit, of which 5.369 is essentially carbonate of line, and 2.443 organic matte:. No precipitate is formeci in boiling, lout the water is not guite so cecar, after son:se concentration, as the quantity of carbonato is nearly as much as it can hold in solution, and it sum begins to precipitate. dio chlorides or sulphates could be detected. The great difference hetween Ontarion sum Superion is very noticeable
Wate talon fevin the midule of the lay was then casuane i, abl the atem of soveral analyses garce in uar galluna, 9 . céc tut.al residue, of which 5.502 is mii:ecal, and 4.154 organic. It will le autised that the gumatity of the later is largely increased, but otherwise, the water is rery pare. In a secund paper the writcr proposes to give on arevunt of some crperiments on the waters of uther lijes, and on specimans tahen from varivus larts of t ' 0 'Toromito Bay, and from the Water IW. fin; and to conapare the water supplied to Tus nato with that used in sume English towns.

OT EYPOPTIOSTOROUS AOM AND THE HYPOPHOSPIITES.

> Hy i:. H. SHCTTE:EWOMTH.

As the discussion apmointed for this evening is in regard to the so-called syrups of the hypoposphites, the writer has prepared a few notes on hypophosphorous acid and its salts, trastin:y that in thus sugesting a growndword for discussio:, he will in no wise interfere with or anticipate the subject on hand.
Neary haif a centmy has clapsed since the discovery of hypophosphorous acid by Dulong, bat it was not until ten or twelve years no that the hypophosphites can be said to lave occupied a place in medicine. Their introduction is to be attributed to Dr. Churchill, who suggested their employment as a source for the supply of phosphorus in tuberculosis and other diseases. "The proximate cause," says Dr. C., "or at all events, an essential cundition of talucrular dathessa, is the decrease in the syotem of the phosphones which it contains in an oxygemzable state, and that the specific remedy of the discase consists in the use of a ${ }^{\text {a }}$ reparation of phosphorus, uniting the tro conditions of being in such a state that it may be directly assimilated, and, at the same time, at tho lowest possille degree of uada.tum." These conditious are s.id to he fuhalled by the hapophosphites, which "seem to possess, in the highest degree, all the therapentical proper-

[^0]te:es finherly athrihated, by difficiat onsurvers, to phosphorons itself, without any of the danger which attends tho uso of that substance, and which has cansed it to be almost forgotten as a medicinal agent." Whether Dr. Churwhills idea in regard to the cause of consumption, or the decrease of nervo power, be conrect or not, is not the provine of the pharmacentist to determme. Wo may say, huncrer, that the assumption has been questioned and denied by many eminent mudieall authoritics. It las been afirmed that, in those diseases in which the hypothusphates ha:we been recummended, phosphorus already exists in greater quinitity in the system than wien in health. Howeverthas may be, one thing is certain, that the use of these salts has been attended with the most satisfactory results, and that few remciies cajos greater pupularity, although, bip to tho wesent tiare, becther the Britash and Canted States Plarmacopreias contain any onfonal mention of them.

Hypophusphorous acid may be represented by the furmula $\mathrm{H}_{3} \mathrm{PO}_{2}$. It is monobasic, that is, it is unly capable of exchangang one of its atoms of hydrogen for an equicalent quantity of metal. Its salts will thereforo have thic furnala $\mathrm{MPH}_{2} \mathrm{O}_{2}$. The concentrated acid is described as a thick, viscid, uncrygtallizable liguid, having a strong atid taste and reaction. It may be obtained by decomposition of one of its salts by an equivaleat quantity of any acid which forms an insolnble combination with the base present, Thus, (1) the lead salt may be decomposed by sulphuretted hydrogen-sulphydric acid; (2) or the barium salt with an equivalent quantity of salpharic acid; (3) or the lime salt by the proper proportion of oxalic acid. The latter method will bo foumd ensiest of execution, imasmuch as no previons determimation of the strength of the acid will be required, as would be necessary if a liquid acid were used. The following formula is given by Prof, Proctor :*

IHypophosphite of line.... 480 grains.
Oxalic acid 300 "
Oxalic acid... \qquad 9 fluid oz.
Dissolve the hypophosphite in six ounces of water, and tise acid in the remainder, by the aid of heat ; mix the solutions; filter; make up the mersure to ten luid wunces sad finally cvaporate to $8 \frac{1}{2}$ fluid ounces. The sohation contains about ten per sent. of the acid, and cannot be kept any length of time if exprosed to the air, as it gradually takes up oxygen, and becumes converted into a maxture of phosphurous and phosphuric acids.
Thic silts of hypophusphurons emid may be obtaiaed, directly by neutralization by bases; or by builing phophoras in solutions of the aikalies. The hypophosphites, as

[^1]a class, aresoluble in water, andsome of them in alcohol. They aroinsolublein theonls. They aro, gencrally; permanent in air; though soveral wre very deliquescont: When heated to a ligh temperature they are decomposed, phosphureted lyydrogen beug emitted and a residue of pyrophosphate remaining. Solutiuns of the hypophosphites become oxdized by exposure to air, with the production of phosphates. This chango takes placo much moru rapidly under the influence of an elevated temperature, as $212^{\circ} \mathrm{F}$. ; this fact may be advantageously bome in mind when the evaporation of asolution is to be conducted. Explosions have been known to occur during evaporation, as in tho caso of Prof. Marquart When evaporating tho sudit salt, on a sandbath ; 'l'rommsdorif at first ascribed this accident to an excess of heat, but subsequently when opurating with a water-bath, and consequently at a heat under bonling, an explosion took place with such violence as to breals all the windows in the laboratory, and severely injure the worlman who was stirring the granulating salt. Mr. I'uson "in noticing this accident, says that he has superintended the making of large quantities of the soda and lime salts, but never knew anything like an explosion to occur ; the heat emplojed was, howover, much below the boiling point of water.

The hypophosphite of calcium is that from which most of the medicinal hypophosphites are prepared, besides being, itself, largely used in medicine. Its formula is $\mathrm{Ca} \mathrm{H} \quad \mathrm{P}^{2}$ O4. It is seldom found in commerce in n decidedly crystalline form, as the evaporation is generally carried to dryness. It die solves in 6 parts of cold, and in a rather smaller quantity of hot water. Its preparation, to say the least of it, is exceedingly disagreeable, dangerous and tedious, and in the opinion of the writer, had better be left to the manufacturing chemist, as beiner altogether unsuited to be carried on in the druggists usual laboratory-the back shop. The process consists :n boiling phosphorus in milk of lime until combination is effected. The operation is best conducted in a deep iron pot, set under a hood; 10 parts of phos. phorus are added to 300 parts of water, and heat applied until the phosphorus melts; 30 parts of quick-limeare added, and the mixiture boiled until phosphureted hjedrogen isnolongergiven off-theoriginal measure of the liquid being kept up by additions of water. The pot should not be more than one-third filled. The liquid is filtereil; the residuc washed, and the filtrate concentrated to remove carbonate of lime, and fmally evaporated, untii gramulation. The yield is rever very con. stant, being sometimes as low as hali the

[^2]phogphorus omployed. The following equathon will explain the reaction:
\[

$$
\begin{aligned}
& 3 \mathrm{CaH}_{2} \mathrm{O}_{2}+\mathrm{P}_{8}+6 \mathrm{H}_{0} \mathrm{O} \\
& =3 \mathrm{Ca}_{4} \mathrm{P}_{2} \mathrm{O}_{4}+2 \mathrm{PH}_{3}
\end{aligned}
$$
\]

In reality, however, a large quantity of the phosphorus is lost as phosplate of lime, which is filtered out with the excess of lime. From oxperments made by Fredorking:* the followng disposition of the phosphorus vas proved : 14t oz. wero operated upon, and tho yield of hypophosphite was above the averatge.
$10 \% \mathrm{oz}$. hyprojhosjhite lime $=3.830$ of Ptosjh иth.
0.36 oz. jhoosphotic arH $=4.057$
l'insphurvtet ligalmgen.. $=0.683$
14600

The saits of potassium, sudiun, and ammonium, are prepared from the lime salt by double decomposition by the respective carbonates, calcium carbonate is precipitated, and the hypophosphito remains in solution, and may bo obtained by carcful evaporation, at a low temperature. The proper proportions for the decomposition will, of course, be indicated by the combining weights.
The hypophosphites of iron aro common ungredients in the various syrups occurring in trade. In two preparations-Pfizer's and the Messrs. Tilden's-the writer found both the ierrous and ferric salts. The ferric salt may be obtained (l) by dissolvineg ferric hydrateina cold solution of hypophosphorsus acid; (2) or by double decomposition beirreen a solution of sodium hypophosjhite and ferric sulphate. The precipitate is in tho form of a white powder, which dissolves sparingly in the free acid, but readily in hydrochloric acid.
Hypophosphite of quinia is occasionally prescribed, and it may be well to notice that it may be prepared by dissolviner the albaloid -obtained by precipitation from an acid solution by ammonia-in tho hypophosphorous acid; (2) or by double decomposition between sulphato of quinia and barium hypophosphite. Tho salt of quinia is said to require 60 parts of water for solution- 8 grains dissolving in a fluid ounce. A large amount of water would, therefore, be required, or the hypophosphite would fall with the precipitated barium sulphate.

Fharmacentic Items.

BY C. IEWNS MIEML

Almost every pharmacist who personally superintends the production of his preparations could, if inclined, to note the difficulties and phenomena occurring during the variuus processes, materially aid the progress of pharmacy: Unfortunately, many of us, irom various causcs, are prevented from doing this, and thus a great deal of valuable information is lost to tho pharmaceutical vorld.

- Archleres iter Di:armaric, 1809.

Among tho observant workers, a larco class will bo found who from motives of gain aro provented from publishing their observations; others again aro provented by reasun of excessive modesty, which causes them to viow their experiences is anecessary result of theic inexperience; etill others, who are not encumbered with a very largo excess of modesty in respect to making known their observa tions, are prevented by press of business or ovents totally boyond their control ; and as I havo been rather negligont of lato in fulfilling my promise to the editor of the Pharma: cist, I tale the liberty to adopt the latter plea as an excuse for tho negligence.

I design in this paper to draw attention to x number of ps parations, most of which have come under my observation within the last twelve months. Sume of them-officinals of the present Phamacopoin-I have found to admit of improvement, oither in their general character or their methods of preparation; while fo: the unoflicinals, I have in some cases canstructed furmulas deemed by me in conformity with the spirit of our national standiud.

cutiate of inon.

To prepare this preparation handsomely and properly, it is necessary to employ an excess of hydrated sesquioxide of iron, and if the process is conducted strictly in conformity with the directions of the Pharmacopoia, and the ingredients aro in tho condition intended, no difficulty exists to prepare a satisfactory article; but a strict adherence to the directions of the formula is necessary to insure unifomnly a successful product. One of the principal difficulties practically exists in maintaining the temperature of the mixture of citric acid and hydrated sesquioxide of iron at not exceeding $150^{\circ} \mathrm{F}$. I say practically, for in order to do so, constant attention is required, and this during the ordinary shop duties of the pharmacist is, to say cho least, annoying, if not impossible. By an elevation of the temperature above $150^{\circ} \mathrm{F}$., and probably approaching the boiling point of water, a portion of the hydrated sesquioxide is molecularly changed, and becoming insoluble, renders it excedingly dinicult to determino whether or not the solution has become completely saturated with iron. To overcome this difficulty, I have been in tho habit of precipitating about one cighth moro of hydrated sesquioxido of iron than is required by the Plammacoposia, and adding to about threc-fourths of the marma the citric acid prescribed. By occasionally stirring, a clear solution is obtained, which is now gently heated by a.varm lath, and fractional portions of the remaining magma added, nutil it is no longer dissolved-obserfing, howerer, to allow cach portion to dissolve perifectly before adding the next.
Manipulating in this manner, I have never failed to meet with good results, and until very recently, I liad not observed any phenomena wortli recording. During.the evaporation of a quantity, recently, it was observed that tho solution became uncommonly denso before it land been recluced to tho proper measure, and that, on diluting a portion with water, a turbid mixture was produced. As all the ingredients had been in proper condition and the manipulation correct, it was infered that a portion of uncombined hydrated sesquioxido of iron hatl been dissolved, and this was apparently substantiated by the addition of a relatirely small proportion of citric asid, which had tho effect of rendering
tho solution quite limpial and miscible with water, without the production of turpidity. I conclude that when a warm solution of citrate of iron cxercises a prolonyal action upon recently precipitated hydrutce scoguioxide of iron, it has the property of dissultiay a portion of the hyldrated buse.

Tho preparation of scales of citrate of iron is not at all difficult, even if all the citricacid has not been saturated. But to prepare the

amaroniacithati of inow.

successfully and handsomely, the complete saturation of the citric acid with hydmated sesquioxide is quito necessary. If this is not the case, the resulting salt is removed from the glass plates with moro or less difticulty, and cannot be obtamed in handsome scales, being generally of a muddy culur. Lhave beern in the habit of reserving about une-sisteenth of the solution of citrate of iron, adding to the main bulk of the solution aqua ammonia until in slight excess, and then the reserved purtion. The salt obtamed was mvanably found to be rapidly sulublo in water, and, while it is readily removed from the glass plates, to be less prone to deliquescence than the compound completely saturated with ammonia. the durection of the Pharmacopecia to use a given measure of aqua ammonia is objectionablo, on account of the inconvenience resulting from the varable strength of that article as found 10 the shops or ubtained from tho mannfacturer; and while it is a very simple matter for the skilled operator to determine the strength of equa ammonia expeditiously, it requires more time than pharmacists not skilled or prepared for these deterninations aro willing to devite to it, and as a consequence, the preparation is purchased. But if by some simple change in the manipulation we can reach the same end and at the tmeavoid the possibility of failure ly reason of inequality of the substance used and that intended to be used, wo encourase the preparation of this salt, and by similar attention to other preparations encourage the home production of many that are now exclusively procured from the manufacturers. Simplicity in the construction of formulas, and explicit directions that will enable the unskilled operator to determine the nature of the numerous dufficulties that rise in his path, will do more toward encouraging the home production of pharmaceutic preparations than the mumerous lectures that are given through the pages of journals of pharmacy, while at the same time by the practice the unskilled become skilled.

citrate of iron and quina.

This compound of the Pharmacopicoin I hare found so excessively difficult of solubility, even when licat is applied to favor it, that it has been a question with me whether its medicinal efficacy is not impaired thereby. There oxists no particular difficulty in preparing a handsome article whicn the directions of the Phamacopeia are followed. but these directions are lieble to the same objections as specified previously with regard to solutions of citrate of iron, as at good result is dependent entirely upon the acenrate attention given the preparation during the process of heating ; for if the heating reaches a certain point of temperature higher than directed when tho quinia is being d ssolved, it is apt to agglomerate into masses which are very immanagable and dificult
to dissulie. In my experience, tho dificulty is obviated by triturating tho properly precipitated and washed quinia, with a portion of the solution of citrate of iron, introducing it into a flask amd then adding tho remaining sulution. By occasional agitation, the quinia dissolves in a slort time, fosming a clear solution, which may bo concentrated un a wator bath without paymg any special, attention to temperature, and whll scalo with perfect facility. But by far the more popular salt is the
amboniogithate of hon and quinia, which appears to have replaced the officinal compound almost ontirely. This I have prepared almost succesfully by reserving about one-sixteenth of the solucion of citrate of iron and quinia obtained as above, anal adding to the remaining fifteen-sixteenths, contained in a flask, dilute aqua ammonia in fractional portions, until a permanent precipitate results. Cpon each addition of ammonia, quinia is copiunsly precipitated, but dissolves readily by agitation until toward the end of the process, when it will dissolve more slowly, and care must be excrcised to avoid an uadesirable excess of alkali. The addition of the reserved onesisteenth of solutic, will redissolve the precipitate formed, by careful manipulation; and the solution when evaporated to the consistence of treacle-which can in this instance also be done upon an ordinary watur bath rithout special care as to temperaturn -will, when spread upon glass plates, furm glass scales of a handsome garnet color, of perfect and rapid solubility, and only moderate deliquescence.
Some remarks on dispensing these results may not be out of place here, fur I have on various occasions expericnced annoyance which, by a little foreknowledge, might have been entirely obviated.

solutions of the solunle cimrates

The most expeditious method of dissolving the soluble scaled preparations consists, in my experience, in placing the salt in a mortar, adding just sufficient water to cover it, allow: ing it to stand a minute or so, and then gently triturating the mixture with a pestle, when perfect solution will result. If it is attempted to dissolve these salts by direct trituration with water, they will adhere to the pestle and sides of the mortar, and greatly delay the operation. Dispensers are in tho habit of simply ihrowing the scale into the aqueous menstrum and promoting solution by stirring, and while this is sometimes as cifectual as the method proposed, it frequently delays solution, and should therefore not be resorted to.

fills of the soluble citrates

are found by me to be most conveniuntly and cxpeditiously prepared by adding from ten to fifteen per cent. of dinely-powdered clm bark, and forming a mass by the aid of glycerine, which appears to exercise just sufficient solvent power to effect mpper cohesion. Plastic mass is olbtanel, wizich does not harden rapidy, and is readily rolled into pills.

The saffron of Pharmacy, which is prepared mainly in two or three of the provinens os France, is so light when cricil that from 35,000 to 40,000 llowers are required to 1:ake a pound. Each plant produces only three flowers.

On the Aniline or Ooal-Tar Oolors.*
BY W. H. JERKIS, Fis.S.
Cimel-Tia, Hcazul, Nitrobenzol, Anehan, and Anilane P'urple or Matre.
In this short course of lectures, it is my desire tu bring lefure zun a sumewhat condensed histury of tho artificial colouring matters, gencrally known as the "Coal-Tar Colors." By this designation it is not meant to imply that coloring matters actually exist in c anl-tar, and may, therefore, be extracted from it, but that coal-tar is the source of ces. tain products which, whon changed by various chemical processus, aro capable of ytelding colored derivatives. You will thus pereeivo that it is important iur us to consider the varivas means employed to oftann the raw materials befure giving our attention to the coloring matters themselves. We will, thercfrre, at once proceed to the consideration of "coal-tar;" its formation and constitution.

Conl-tar ennsists of the oily fluid formed by the destructive distillation of coal, and is ob. tained as a secondary product in the manufacture of coal-gas. Originally, cual-tar was a great nuismice to the gas mamuactuter, and it was often a problen to him what he shoulc' do with it. I need scarcely say that this st ate of things is now changed. In the gas works the coal is distilled in large returts, snmetimes 25 or 30 feet in leugth. They are made of fire-clay or iron, and several are arranged in one furnace or oren, as it is usually termed. Each retort is fitted with an iron mouth-piece, from which a vertical tube rises, the mouth-pieco also having a door fastencd with a cross-bar and screw.

When in use, these retorts are rapidly filled with coal by means of a proper scoop, and then the doors areluted and fixed so as to be air-tight. Distilletion commences immediately, as the retorts are constantly kept red hot. The gas and other products which form pass up the front vertical pipo (connected witin the mouth-piece), through a bend, and down nter a long horizontal tube, called the "hydianlic main." Here most of the oily products condense, and as they accumulate pass on with the gis down the general mair, and flow into a tank provided for their recer.tion. These oily products constituto "coaltar." The cual-gas, leaving this tar behind, passes on to the condensers, and deposits a second, but smaller quantity of tar, and is then purified and stored in the gas-holders. The gas, however, does not interest us now.
I an here distilling some coal in a small ghass retort, the beak of which is inserted into ono of the openings of a three-necked receiver. The second opening is connected with the tube, so that the gaseous products may be cramined, while the third and lorer one is fitted to a small bottle, in which you seo we have already obtained a quantity of an oily fluid. This is our coal-tar.

H:wing now seen how coal-tar is produced, we will consider of what it consists. Coal-tar is by $n 0$ means a definite body, but contains a great number of substances, as a glance at the following table will show:-

The Canter Iectures, delitercd Lefora the Societs of
Arth. p'uluished in the Chemisal News.

Thene I.-Phoducts of time Distillation

This list, however, docs not indicate all thic constituents of conl-tar, but only those which chemists have, up to the present tims, succeeded in separating frum it; moreover, when we consider low oreatly conl differs 1 cr composition, and also that the products bary aceordmg to the temperature to which th:c wal has been submitted, it is ovident that conltar mast be an almost endess source of chemical products. Many would, perhaps, consider this list a perfectly hopeless jumble of names, impossible to impress upon the monory, lint, fortunately; chemists are ahle fo classify theix poducte, so that thas fomidahle array of substances maty be groupced, under three or four different hesids only, and thatrefore, then relationship being once us:derstoon, little dificulty is experienced in remembering their names.
Ansong those products, and at the lower part of this table, yom will noserve a suls-
stanco called "aniline." This substance is of great interesi to us, beings one of the mincipal somurces of tho conl-tar colors. Aniline was discovered by Uverdorben, in 1S26, among the products of the distillation of indigc, and from its pioperty of forming erysstalline compounds with acids, was called "crystalline." Afterwards Range obtwining it from the distillation of conl, and becauso it gave a bluc coloration with a solution of chioride of lime, called it "liyanol," or biue oil. Fritzsche, still later, obtained aniline by the distillation of indigo with hydrate of potassimm, and gavo it its present name, derived from anil, the Portuguese for indigo. About this time Zinin discovered a remarbable reaction, by which he obtained suilme from a substance called nitrobenzol ; le called it, howover, benzidnm. Tho products obtained by these different chemsts wero not at first known to be identical; and it was not until Dr. Hofmamn investigated the subject that they were all shown to be the same body, aniline.

Zinin's process for the conversion of nitrobenzol into anilinc, consisted in treating tho nitrobenzol with an alcoliolic solution of sulphide of ammonium; this was greatly improved upon by liechamp, who enplojed a mixture of finely-divided iron amd acetic acid, in place of sulphide of ammonium.
This is a brief sketch of the history of aniline up to the time of the discovery of the mave dye ; it was then purely a laboratory product, and was prepared in very small cuantities at the time, and only when reguired for scientific research. Chemists lave always been desirous of producing matural organic bodies artificially, and have, in many instances, been successful. lt was while trying to solve one of these questions that I discovered the "mauve." I was endeavoring to convert an artificial base into the natural alkaloid quinine, but my experiment, instead of yielding the coloriess quinine, gave a reddish powder. With a desire to understand this peculiar result, a different base of more simple construction was selected, viz., aniline, and in this case I obtained a perfectly black product ; this mas purificd and dried, and when digested with spirits of wine gave the manre dye.

You will perceive that this discovery did not in any way originate from a desire to preduce a culoring matter, as is sometimes stated, but in experiments of a purely theoretical mature.

After fhowing this coloring matter to sereral friends, I was advised to consider the possibility of manufacturing it upon the large scale, and was eventually induced to make the experiment, though I must confess, not without considerable fear for the result, especially as my chemical advisers set before me anything but encouraging prospects. In starting this manufacture, the first difficulty was to decide upon the source from whin amiline could be obtained at a sufficiently low mice. It was at once evident that indigo was by far too costly a product for this purpose. Attention was, therefore, directed to the extraction of anilino from coal-tar, but after very mumerous experiments, it was found that the dilticulty of purifying it was so great that it was not practicable to prepare it at a xeasonable price from this product. There was, therefore, but one source left, namely, nitrobenzol ; but to prepare aniline from this body necessitated the establishment of a new manufacture; nitrobenzol at that time noi
boing a commercial article, and although it could be produced in emall quantitics without much difficulty, yet when tomn were required at a linuited cost, many obstacles presunted themselves.
Having spocken of nitrobenzol, it will bo neccssary, before proceeding further, to tell you sompleing of tho body it is prephred from, and also how it is made in quantity: Nitrobenzol is produced from a derivative of coal-tar called benzol-you will sec it mentioned in the list of coal-tar products. It is composed exclusively of earbou and hydrugen, and is, therefore, called a hydrocarbun.

Benzol was discovered by Faraday; in 1820, one year before aniline by Dr. Unverdorben. lis existenco in conl-tar was first pointed ont by Dr. Hofmam, in 1845, and afterwayd Mansfeld showrd that an almost unlimited supply might be obtained from this source. Denzol is a volatile oil, boiling at a temperature of $80.8^{\circ} \mathrm{C}$., nearly 20° lower than water, and is also very inflammable, burning with a smoky flame. When ignited it cannot be extinguished by water, as it floats upon its surface. Its vapor; when mixed with air, is explosive. It is also very dense. This I can ensily show you by decanting a small quantity of benzole vapor several times From one ressel into another, and then igniting it. Instances have been knom, when distilling benzole in large quantities, and some leak in the apparatus has occurred, so that its yayor has escaped, that it has run aloing tho ground, and been ignited by a furnace situated thirty or forty fect distant, and inslantly rum back to the apparatus. To illustrate this I will pour somo benzol rapor into the top of a slightly inclined trough, fourteen fect long, at the lower end of which is placed a lamp. The vapor will be seen to rum gradually down till it reachog the lamp, where it ignites and instantly rushes back to the top of the trough. One of the most remarkable properties of benzol is, that when cooled down to nearly the freezing point of water, it solidifics to a beautiful crystalline mass. This property of benzol is sometimes taken advartage of when it is reauired in a very pure state, os the impurities which accompany it are fluid, and do not freezo when cooled with ice.

Benzol is often sold under the name of benzine collas, for the purpose of removing grease from wearing apparel. But let us consider how benzol is separated from the great number of products with which it is associated in coal-tar. The first operation cousists in distilling the conl-tar just as it comes from the gas-works, in large stills, holding one or two thousand gallons cach; these are often made of old steam-boilens; at first rery volatile and light olly products come over, and are collected until their density increases to such an extent that they no longer llont upon water. These contstitute crude cunl-tar napheha. The distillation is then carried on, and leavy, or, as they are technically termed, "dead" oils are collected, a residue of comnion pitch being left in the atill. This pitch is gencrally run out, and cast into blocks; but sometmes the distillation is carried on after the dead oils have been oltained, when a mixture of solid oily products distils, nothing but a kind of coke being left behind. Theso latter substances, however, do not interest us non:

The light oil, or cuvelo coal-tar naphtha, is ihen purified by ono or two alternate distillations with stemm and treatments with con-
centinted sulphurio acid. It is thus rendored a colorless liuid. Thus purified, coal-tar naptha contains, besides benzol, at least four or five other bodics. These, however, mostly differ from benzol in being less volatile ; therefore, the naphtha is again distilled, tho first, or more volatile portions only being collected for bonzol. By ropeating this process of fractional distillation several times, commercial benzol is obtained. Some mamfacturers employ stills of a peculiar construction, which enables them to obtain a good product by a smaller number of distillations. Bonzol, when treated with fuming nitric acid or aquafortis, undergoes a remarkable change. At first tho two fluids mix and become of dark brown color and slightly warm, in the course of a fow moments red fumes appear, and the mixture onters into ebullition. During this violent action the color of the liquid becomes lighter and ultimately changes to orange. If water be now added to this product, the benzol, which is such a light body, will be seen to have completely changed into a dense yellow oil sinking in water. This oil is nitrobenzol. Nitrobenzol was discopered in 1834 by Mitscherlich. It solidifies into a crystalline mass at a temperature of about $3^{\circ} \mathrm{C}$. ; its odor is like that of the oil of bitter almonds, and before the introduction of coal-tar colors it was made in small quantities, and suld under the name of essence de Myrbane, for the purpose of scenting scap.
Fron the energy with which benzol is attacked by fuming nitric asid, nitrobenzol at first appeared to be a nost difficult product to manufacture on the larges re, and this dificulty seemed the greater when it was found necessary that it should be made at a moderate cost. Moreover, at the time I am now referring to, fuming nitric scid, sp. gr. 1.5 could not be obtained in the market, or only at such a cost as almost to preclude its use. Under these circumstances, two mixtures pero experimented with instead of the nitric acid in a very concentrated condition. The first was a mixture of nitrato of sodium and sulphuric acid, the second a mixture of ordinary nitric acid, sp. gr. 1.3, and sulphuric acid. The mixture of sulphuric acid and nitrate of sodium was preferred, and enployed on the large scale.

To be Continued.

ONTARIO COLLEGE OF PHARMEACY

President,
W.N. ELLIOT, ESQ.

The reyular mectings of the Cullege talic place on the Firbst Fridar evening of each month, at the MIechanics' $r_{\text {nstitute, when, after the }}$ transaction of business, there is a paper read, or discussion cagaged ins, upon subjects of anterest and value to the members.

The College admits as members, Chemists and Druggists of good standing, and their assistonts: and apprentices, at associates, on payment of the following fees:
Prinoipals, $\$ 400$ per Annum Assistants \& Apprentices, 200
The Joumasi is furnislued pree to all members.

Partics uishixig to join the College may! send their nancs for proposal to any of the members of the College. A copy of the Constitution end By-lancs of the College veill be furnished on application.

HENRY J. ROSE, Sccictary.

THE CANADIAN

I:. B. SHUTTLENORNH, EHIOR.
TORONTO, ONT., CCTOBER, $18 \% 0$.
Correspontence and general communicatien!s, of a chameter suited to the oljects of this Joundit, are invited, and will nlvays be welcome. The writer's name should accompany his communication, but not necessarily for publication.
Snbscriptions will not be acknowledred by letter, as our seading the paper may be taken as suflicient evidence of the receipt of the money.
All communications counceted with the paper to be aiduressed, post-paid,
 Totoxto."

In consequence of the adjoumment of the monthly meoting, we havo had to delay the issue of the Journal a few days over the usual time.

EARLY. OLOSING.

We learn that the druggists of liingstun have resolved to close their places of business at soven o'clock, during the fall and winter months. Our castern friends have, in this matter, set their western brethren an example worthy of initation, which, wehope will not go unimproved.
If there is one man more than another who requires a few hours respite from the calls of business, it is the "poor apothecary." His work is incessant; it involves no small amount of anxiety; the wear and tear on the system is greater than is the case with any other business with which we are acyuainted, and, if we might be allowed a monent's digression from the subject, the pay is worse, a state of things whicln is by $n o$ means conducive to that screnity of mind necessary to a state of health.

Druggists have always been late workers; it is, in some measure necessary that it should be so. Wo are, however, inclined to think that the amount of night-work might be much curtailed without injury cither to the druggist or his customers. The number of cases of urgent sickness are comparatively few, and the supplying of these can nerer be brought forward as an argument arainst carly closing, else we deny the right of clusurg the shop at all. The difficulty does not lie wath the public, but with the druggist. "I must not close while so and so keeps open." this is the secret of late hours, it is nut the gim which tempts-for, in common with others who are accuainted with the working of the syatim, we well kuow that the expenses of keeping open shop until alate hour frequently exceed the reccipts. It is on unhealthy and morbid spirit of competition which, in the great majority of instances, underlies this
pernicious system. It seems needless to call up illustations of the trulh of war statiomonts, as our readers will, no doubt bo ablo to do this fur themselves; wo remember however, a ciso in point, which came under our own ubservation, and which wo watched with somo interest, from beginning to end. In a city which shall bo nameless, there dwelt two druggists whose shops were lucated on the same strect ; in fact, the shop of ont was exactly opposite that of the other. We need not say that competition was sharp, and that overy effort was made by either party to display those objects which might temp, customers. All this was very laudable; but it ${ }^{*}$ soon became evident that the business dune by both was barely sufficient for one; as in consequence, our druggists had a large amount of unoccupied time at their disposal, despite their best endeavors to assume a brisk and business-liko appearance. A rivalry in prices was tried; but no sooner did Mr. A. announco his intention to sell coal oil at at price that defied competition, than his friend on the opposite side displayed , flaming placards, his willingness to part with lus stock at even steater sacrifices. This excitement listed for a time, but it was found that a prolunged contest was incompatible with a clear view of the loread and butter question, and a dram battle was the result. Hitherto, as if by mutual consent, these rival stures had been regularly closed at ninc, but in an evil luur, and perhaps, while under the influence of ency, cansed by an apparent increase in the number of customers who visited the shop, of Mir. B. - which, we may say, were daily countedly Mr. A. from an entrenched position near the window-an idea was suggested to the mind of the latter, and before long was carried to trimmphal execution. The cvening came, and at the appointed time the shop of B_-was closed, but judge of his surprise and chagrin, when, half an hour later, he beheld the establishment of his rival resplendent with the light of additional lamps, which danced among the colored bottles in the window as if in muckery at his defent. The gauntlet was now thrown down, and to make a lung stury ehort, war was continued to the litter end. Night after night have we seen these manpuy druggists, with heavy cyes, standiaglehind their custumilesscounters. The hours of ten, eleven, and twelve wero successively reached, and it was soon evident that nature or risalry must succumb. The end came; for several days tho shutters of the shop of A-had not been removed, we made encuiry for him, but were informed that he was not-profits r s. conl oil had proved too much for him.
There is another side to the story beyond that we have pointed ont; the determination of receipts and expenses alone, will not give a
truo balance, without other considerations are taken into aecount. The okl adage about "all work and no play" is a true onc, and wo know that miless time is allowed for rocroation, the mount of work done will gradually, though surely, becoma less, until mind and body become worn out, and work, as well is plity; aro rendered impossible.

The question of the employed, is, in this connection, entitled to cousideration. What can wo expect of nu npprentico, or assistant, whose timo is taken up in business until nine or ten o'cluck in the evening? Study, especially of those subjects which havo engrossod the attention during tho diay, is next to impossible, and cannot bo pursued without injury to mind and boly. A young man who spends the few remaining hours of night in siudy is in but poor condition for work next day, and the cmployer who tells his apprentice to read and qualify himself for his business, and expects him to work steadily from seven or eight until ton in the shopoccupios according to our way of thinking, a rather questionablo position. In placo of a bright, active, and willing assistant, ho will have one that is dull, languid and perhaps reluctant. Let the arrangements of the day embrace timo for recreation and study as vell as for vork, and we are certain that in the case of a conscientious and houest assistant, the employer will not be the loser.

We are well awaro that individual effort, on the part of any druggist, is not directly of much use in effecting a change in favor of early closing; a concerted movement is required and we hope that the druggists of our larger cities and towns will not pass this intimation unheeded.

Chemical Manufactures and Preparations at the Provincial Exhibition.

If the extent of the chemical manufactures of Canada was to be estimated by the display at the late Provincial Exhibition, the opinion formed of this branch of industry would not be very flattering cither to our resources or enterprise. A more meagre display it would, indeed, be difficult to imagine. Of articles strictly chemical there mere none, but under the head of "preparations" and "extras" there were a fer entries, embracing samples of white lead, gromad in oil ; putty ; lubricating oil ; inks; and essential oils; nor must we omit to mention samples of prepared glycerine, Chincse garden powder, tick destroyer, and burning guid, exhibited by Mr. Miller, of this city. Although these latter articles did not gain a prize, they were "commended" by the judgesas they have been in time $\mathrm{p}^{\text {ast }}$, by the public. Indeed it is far from oni intention to say arything at all disparaging of any of the
articles exhibited ; it is the lack of interest as shown by the small number of entries, which wo comphin of. Wo should liko to seo a littlo more pride on the part of our mamufacturers, for we know that it is from this defect, and this only, that the class of chomical proparations has, in our ammal fairs, become a mere name.

Fharmaceutical Conventions.

Tho 18th annual meeting of the Ancerican Pharmaceutical Association, was held at Baltimore, on Scptember 13th, and following days. Tho attendance amountel to considerably over one hundred, and the meeting appears to havo been, as usual, a very intercsting and successful one. Delegates from various Pharmaceutical associntions and colloges, were present ; amongst others, Messre. Wenzell and Perkins, who represented the California Pharmaceutical Society, a body which certainly gives ample ovidence of its zeal for the cause, in thus scerding delegates from so great a distance. Neither of our Canadian societics wers represented, but amongst the names of those present we notice that of Mr. W. Suunders, of London, who appears to have taken an active part in the procecdings of the association.

By a strange coincidence, the British Pharmaceutical Conference commenced its sittings on tho same day ss the American Association, and at the annual dinner of the former, held at the Adolphi Hotel, Liverpool, on tho evening of the 13 h, a telegraphic shake-hands was proposed, and carried into execution by the transmission of the following messages :
"From the President of the British Plarmaceutical Conference, at Livernool, to the President of the American Pharmaceutical Association, at Baltimore:-The most successful meeting ever held, sends hearty fraternal grectings."
"From tho Ancerican Pharmaceutical Association, Baltimore:-Fraternal greciings of American Pharmaceutical Association."
It appears that the latter message mas sent previous to the reception of the former, or as our friend the Chemist and Druggist says: "Good will and mutual sympathy ran faster than the telegraph," so that tho messages passed each other on the way.

Messrs. Iyman Brothers' Pic-Nic.

An excursion and pic-nic, given by Messrs. Lyman Brothers \& Co., of this city, to their former and present employars, took place on Saturday, September 24th. The party; which numbered about one hundred and thirty, accompanied by Piofessor 'Toulmin's brass and quadrille bands, embarked on the steamer Transit, which had been chartered for the occasion, and, about noon, set sail for Port

Credit-the placo sulected for the pie-nic. The weather was delighfully clear and bright, and the sail on tho lake was coljoyed by all. On arriving at the whare at Port Credit, the party wended its way to the grounds, which are situated in the grove by the labe-side, where overy arrangement had been mado for the convenienco and comfort of the oxcursionists. The former part of the afternoon was spont in a very pleasant manuer, and, towards ovening, tea was served in a spacious tent which had been orected for that purpose. Mh. Lyman, Jy., and ladies, woro uncemitting in their attention to the comfort of the party; and in tho matter of refreshments, their efforts were especially appreciated, as tho fresh breeze from tho lake proved decidedly appetizing. At dusk the party ro-cmbarked on the steamer, and during tho sail home, the timo was plensantly occupied in dancing, Sc. On nearing the city, a cordial vote of thanks, on behalf of the employees, was tendered to the Messrs. Lyman and ladics, by Mr. W. Hunter. Mr. Lyman replied in a brief speech, in which ho thanked the party for the very hearty expression of good feeling embodied in the remarks of the previous speaker, and shown in the happy faces of those around him. There was ono respect in which he felt particularly pleased-that was, the eutire absence of anything approaching to intemperance. It had been ropresented to him, that in eucouraging a gathering liko the present he was aiding a system which always led to an over-indulgence in intoxicating liquors. He was glad to find that this was not tho case. After speeches by Mr. Henry Lyman, Jr., Dr. Howsen, and others, the arrival of the steamer at the wharf gave the signal for separation, and the various members of the party wended their way to their respectivo homes, all expressing themselves highly satisficd with the proceedings of the day.

To our Young Friends.

In the present number we lave introduced a new feature, which we hope will be a source of pleasure and instruction to our young dmaggists. We allude to tho "Student's Columm." We purpose giving, each month, a number of chemical problems for solution. The answers . it be forwarded to us before the fifth of tue month, and when correct, will be published, with the writer's name attached, in the succecding number of the Joural. We do not intend to make these questions too dificult, and shall endeavor to confine ourselves to those having a strictly pharmaceutical bearing. We hope our young friends will enter into the matter with spirit, for we aro not aware of any method which wo can deviso by which a greater amount of information may be gained.

A Rat-prouf Wood.

Dr. Binkerd, of Pemusylvanit, commmicates the following to tho lhiladelphia Mcedical and Surgical Reportor. Ii subsequent experiments should prove tho staterients mado to bo true, in regard to the common mouse -and this seems highly probable-the fact might bo turned to advantage in the construction of druggist's drawers and bins used for containing seeds, or other articles, subject to the ravages of this littlo pest:
It is woll known that the brown rat, or Mfus deciencents of the zoologist is the most pestiferous rodent infleted upun the commercial world. It will cut its way through pine or vaken plank, with the facility of a shipcarpenter. It is the pest, alike, of merchants, importors, grocers and farmers. The sum of its combined ravages, estmated in dollats and cents, since its introduction into the United States, would materially diminish our National delit of tos-day, if not cntirely liquidate it.

Being surrounded by these animals, I found it necessary to keep fruits, butter, cheese, and other articles in boxes made of hemlock, not the conium of the botanist, but the abics cennedensis of the arborist. In those boxes I could keop the most toothsome delicacies in the cellar with impunity, even though tho box afforded freo ventilation, which, in many cascs, is highly necessary.
To test the matter still further, 1 made a box of dry hemlock boards, perforating each end of the box with a $7-8$ inch circular hole. Into this box I put a largo healthy rat, canght in a hemispherical wire trap, nailed it up securely, put in a dark, quict place and awnited the result.

On inspection at the end of 24 hours, I found he had scarcely more than touched the wood. I returned the box, leaving the rat to his cogitations, which horn of the dilemma to chonse.
At tho end of forty-eight hours I made him another visit. Ho had evidently fome to the conclusion that remaining inactive was to strand upon Scylla, while the effort to buy his liberty could do no worse than wreck hmm upou Charybdis. Ho had enlarged the hole sufficiently to get his head out, in which condition I found and dispatched him on the third morning of his incarceration.

Skeleton Lraves.

The druggist is frequently inquired of in regard to the mamer of skeltonizing leares; and wo have seen many very pretty objects, suitable for display in the shop windows mado by this method-the capsule of the poppy, or tho secd-vessels of stramoniu:a, for instance. The following process, which is taken from a forcign contemporary, will be found more in detail than anything we have hitherto seen on the subject:
Skeleton leaves are among the most beautiful objects in nature, and as they can be arranged either in groups under glass shades made into pictures, as it were, and hung against the wall, or placed in either blank books or albums, they come within the means.
of all, and can be used to decorate the palaco of all, and can be used to decorate the palaco
or cottage. The most suitable leaves for the purpose are those from what botunists call
cxoyenous plants, and may be kinown by tho voins of tho loaf branching from a central voin or midrib; thoso from calloyenous: plants rising from the b.ise and curving towards tho apex of the lear. Tho object in view is to destroy what misy bo called the fleshy part of the leaf, a3 well as the sain, leaving only the ribs or veins.

Tho most successful, and probably the simplest, way to do this is to macerato tho lenves in min-water till thicy aro decomposed. For this jurpose, when tho leaves aro collected they shonld bo placed in an earthenware pan or a wooden tub, kept covered with rain-water, and allowed to stand in tho sun. In about a fortnight's timo they shonld be examined, and if found pulply and decaying, will be rendy for slactatomizing, for which process somo cards, a camel's-hair brush, as one rather stilf (as tooth-brush for instance) will be required. When all is prepared, gently float it leaf on to a card, and with the soft brush carefully removo tho skin. Have ready a basin of clean water, and whon the skin of one side is complotely remored, reverse the card in the water, and slip it under the leaf, so that the other side is uppermost. Brush this to removo the skin, when the fleshy part will most likely como with it ; but if not, it will readily wash ont in the basin of water.
If particles of the green-colored matter still adhere to the skelcton, endeavor to remove them with tho soft brush; lut if that is of no avail, tho hard ono must be used. Grent care will bo necessary to avoid breaking the skelcton leaves, and tho hard brash should only be used in a perpendicular direction (a sort of gentle tapping), as any horizontal motion or "lorushing" action will infallibly break the akeleton. Never attempt to touch the leaves or the skeleton in this state with the fingers, as when they are soft their own weight will often break them.

A very good way of bleaching the skeletons is to preparo a solution of chloride of lime, which must bo allowed to settle, and the clear liquor poured into a basin in which the skeletons may bo put by foating them off the card. It is well to have half-a-dozen ready to bleach at onco, as they requiro watching, and if allowed to remain in too long will fall to pieces. From two to four hours will generally suffice to bleach the skeltons of all ordinary leaves, after which they shouid be washed in several clanges of water, and finally left in clean water for half an liour.

After tho leaf has been sufficiently washed, it should bo floated on to a card and dried as quickly as possible, care being takon to arrange the skeleton perfectly flat, and as near as possible to the natural shape. This can be done with the assistance of the soft brush. When dry the sheleton should be perfectly white, and should be mounted on dark backgrounds, as black velvet or paper.

Well-grown leaves should always be chosen, and be thoroughly examined for flaws before maceration. Leaves containing much tannin cinnot be siceletonized by this process, but aro generally placed in a box with a number of caddis worins, which eat away the flesly parts, when the skeictons can bo bleached in tho usual way. Holly-leaves must be placed in a separnte ressel, on account of their spines, which would be apt to damage other leaves; they make beautiful skeletons, and are sufficiently strong to bo moved with the fingers.

It is not necessary to give list of leaves
suitable ; bul tho leaf of tho poplar, the apple, tho pear, and tho ivy uny be mentioned ns casy ones to commencu with. Vartons seed vessels maty bo treated in the siame mamer, and by previsoly simila means, and thas greator varicty given to tho groups. Wishling unr roadera suceess in their experityents, wo would romind then that what is worth doing at all is worth doing woll, and that "a thingo of beathy is a joy forever."

Saparation of Nitrate of Potish from - Nitrate of Soda.

Schultz pruposes to eflect tho separation of these salts, liy talinis advantaro of their dufferent degrees of solnbilaty in nituic anid. Niikrate of sodit is, comparatively, insoluble in that menstrunm, ono part requiring sistysix of acid for complete solution, while the potash componnd dissolves in nbout one and a lalf parts of acid. The method appeas to bo impracticable, excaje for the separation of small quantities, and on the manufacturing scale would be rendered uselas3, by reason of the cost of the menstrau:i, and the loss consequent on evaporation.

Quinquina Chocolate.

The Chemical N^{r} aes contains a notico of a paper in Les Murude, by Dr. Heuze, from which it appears that the author las succeeded in preparing an extract of Peruvien bark so as to possess no umpleasant bitter tasto, and this is mixed with pure choculate paste, so as to form readily-portable, and, at the same, agreeable dictetic medicine. This preparation is (thus it was stated at a meeting of the Central Imperial Suciety of Agriculture) considered superior to tho sulphate of quinine.

Ther editor of a Pharmaceutical contemporary, on boing asked by a correspondent to give his views on Franco-Prussian difliculties, prefers leaving the task to the daily papers, on the ground that oll he is supposed to know about Prussia is prussic acid; while Solferino and Magentia are, to him, merely the names of various aniline compounds.

At the taking of the last census in the United States, there were 05,000 plyysicians, 11,000 druggists, at present there are 74,000 physicians.

OBITUABY.

It becomes our melancholy duty to chronicle the death of a much respected member of the College-Mr. William McConnell, of Cobourg. The circumstances attending his decease were of an unusually painfill char acter. It appears that Mr. McConnell came to this city on the 28th of Scptember, for the puypose of maling his fall purchases, and, while at the Union Station, his attention was attracted by ancw engino belonging to one of the narrow gauge railmays. In company with
twoolhergentlemenhesteppedoffthoplatform on to the track for the purpose of cxamining tho locomotive, and while doing so failed to notice a train which was backing up on the track on which the party were standing. All threogentlemen were struck by the hind car ; two of tho thrse escaped with trifling injuries, but Mr. McComell was thrown across tho rails, the wheels of the car passing over his arm and side. Ho was at onco removed to an adjoining house, and subsequently to the General hospital, but ath examiantion of his injuries rovealed no hope of his recovery, The unfortumsto gentleman lingered until five o'clock in the cvening-somo ten licurs after the accident occurred-when he quietly expired, letaining full possession of his montal facultics until the the last. A circular was issued by the president of the college, inviting menbers to tho funeral, which took placo at four o'clock on the following day, when the remains were talien to the train to be conveycal to Coboury for funl interment. Our friend leaves behind him a widow and four children to mourn his loss, and in tendering them the hearlfelt sympathy of the members of the college, wo would at the same time express our sorrox at the loss of a warm personal friend.

BOOKS AND PAMPHLETS.

Ahcinves of Ohmthalmology and Otoluge;
Vol. I., No. 2. William Wood \& Co., New Youk.
The second mmber of this incomparable periodical is before us. The promises of the publishers, and the expectations raised by the former number hove been fully realized in the present issue, which is he no wise behind its predecessor. The mumber concains some thenty original papers, which extend over 350 pages; and are illustrated by several plain and colored lithographs.

The Menical Tines: a Semi-monthly Journal of Medical and Surgical Science.
This is the title of a new periodical issued by the well-known publishers Messrs. J. B. Lippincott \& Ce., of Philadelphia. Amongst the list of regular contributors-which manbers over one hundred-we notice the names of many eminent medical writers; and from the first number, which is now before us, we think the Times may be, at once, assigned a place in the front rank of periodical Medical literature.

The thirtecnth caition of the Uniren States Disicasitorif, of Wood \& Bache, has been reeently isstued. As no aitemtion has been made m the U. S. Plammacopecia, since the publicition of the former edition, no material changes lave been made, but mucla additional matter las been addedsmounting in all to ofer one hundred pages.

The modifications rondered necessary by the issue of the British Pharmacoposia of 1867, hivo also been made. The work is so well known that, having mentioned these changes, any further remarks are umecessary.

Stutents' Cfotumu.

Answers must be forwardel to the Eiditor br fore the fifth of cach month.

QUESTIONS.

I. A vessol is capable of containing tro hundred cubic inches of water, at a temperature of $60^{\circ} \mathrm{F}$. What is its capncity in measures of tho apothecaries' and inyerial systems?
II. 'Two grammes of chioral hydrate :roc ordered to be dissolved in 8 grammes of water with the addition of 21 grammes of simplo syrup. What Troy weights will correspond nearest to thicso quantities?
IIl. Give the formula for sulphuric, murintic and nitric acids, according to the old and new systems: and the combining weights of cach compound?
IV. What compound will be forned by the addition of a solution of common salt to that of nitrate of silver? What will be the weight of the precipitate from one ounce of the nitrate of silver? And what will be the effect of employing an excess of the precipitant?
V. What ambunt of iodide of potissium is required to decompose 10 ounces of perchloride of mercury?
VI. Explain by an equation, the reaction which takes place between solutions of sulphate of iron and carbonate of soda?
VII. What amount of sulphate of iron is obtainable by the solution of ten ounces of the metal?
VIII. Name tho principal varieties of cinchona, in the order of their alkaloidal strength as regirds quinine?
IX. Enumerate the localities from which the supply of acacia is obtained, and give the names of tho trees producing the different varieties?
X. Name the substances incompatible with a solution of opium?

zoters mat Qurxits.

A New Vemiclz for Surpositomes.-We have received a communication from Mr. T. Carre, of Meaford, in regard to a new vehicle for the administration of opinm, or oblıer medicine, by suppository. The composition is similar to that used in printers' rollers, with the substitution, however, of glycerine for the greater part of the syrup ordinarily used. We are not prepared to pronounce upon its merits, but from trials made by Mr. Carre, and nthers, on patients suffering from
hemorrhoids, it would appear that the now composition possesses advantages over other excipients used for a liko purpose. Wo havo shown tho sample sent us to soveral of our pharmacists, and all seem to think favorably of it. As gelatin is one of the ingredionts, the composition could not be used for making suppositorics containing tranin, as an insoluble and inert substance would bo formod.

Wo appond that portion of Mr. Carre's letter in which the formula and mode of preparation are given:

"Soals the glue in the water until quite soft, then dissolvo over steam or water bath; mix tho syrup and glycerino well together, add them to the glue solution, and boil until they loso about 2 oz . in weight; then pour out on an oiled tray, or into any suitablo mould, previously removing any scum formed.
"The piece sent you is two years old, and has been kept in a dry place, exposed to tho air, and contains less water than was oricinally contained in the syrup and glycerine, consequently will not dissolve so readily as when fresh; yet it will yield even to cold water in two or three days, but when fresh would soon become soft, and, in the bowel, would dissolve quickly ensugh. In six or eight hours it would hare completely disappeared.
"Its chiof use would be as an excipient in severe cases of piles, for which its elastic texture seems to fit it, and which first caused me to try it. The action of the hot solution in the opium may have a good effect in preparing it to exert its full influence. It has * answerce well in the cases in which it has been used, and the gufferers have recommended it to others similarly affected.
"Tho syrup in the abovo night, perlaps, be omitted, and a larger quantity of glycerine used. The tendency of a larger quantity of syruy, would be to favor the formation of a tough and almost insoluble skin.
"The composition is to be dissolved in a little water with gentle heat, and the opium nixed with it, then run it into a mould. I make a monld of glazed paper, formed on a small vial, or any suitablo cylindrical body, gum down the edges, close over one end, oil well inside, run the composition into it, and when cold remove the paper, and cut into suitable lengtis. It dissolves slowly in the rectum, and is very sootling in its effects.'

ONTARTO OOL工EGE OF PHARMAOY.

The regulat monthly mecting was held at the usual place, on Friday evening 14 th inst., having been posiponed from the 7 th. In the unavoidable absence of the president, NIr. Shuttleworth was voted into the chair, and the minutes of last meeting were read and adopted, after which the following gentlemen were elected members :

Vim. Dayg............................. Tiverton.
II. A. liñowles.............Toronto.
assoctites.
Solan Templeton....................Napan:ee.
Geo Aldridge.
c......

Murdock McLeod.
iton.

The Secretery asked the Society for instruc-
tions regarding the notification to members, of tho night of meeting, as it was foumd that many, who wished to attend, often required a notice of some kind, otherwise, it escapel their attention.
It was decided that a fresh supply of handbills, something similar to the last, should be printed, and distribsted on the Mondia before each meoting.

As amounced at last meeting, the strbject of syrup of the hypophosphites, was introduced. The chaimmansaid that he had put a fow remarks on the subject on paper ; he was requested to read them.
His interesting paper (whicis will bo found in another column) was well received by the mecting.

The Secretary said that, with regard to the solubility of the liypophosphites of commerce, especially the lime salt, he had seldom found them soluble in six parts of water, while the long contimued application of heat caused a further precipitation.
Mr. Shuttleworth said that this sometimes acoso from a too hasty drying of the salt, but he had not met many samples of that kind. In some casss the addition of a small quantity of hypophosphorous acir ciused a perfect solution.

In ceply to a question as to an casy test of purity, it was suggested that the nitrate of silver test mignt be made available, as the silver salts of phosphoric acids are casily recognized by their color and appearance, while the hypophosphite of silver is at once reduced to the metallic state. Contamination of the lime salt with phosphates and phosphites might casily be proved by the presence of a precipitate on treating with chloride of barium.

As to the r-esence of iron in commercial samples of the syrup, several members present said they had always found distinct traces of that substance, and the objection that if the full quantity of iron were added, the syrup became discolorel, was not found to hold goud if proper care were used in its preparation.

After several other remarks, and questions by the members, the chaiman said he was pleased to see the interest taken in the subject of the evening, and hoped they would be able to have some such practical discussions at future meetings.

Mceting adjoumed.
H. J. Rose,

Secretary.

sitertions.

Tho Opium Trade.

A Culeatta currespondent writes on this subject as follows:

From all the accotats we receive here it appears to bo tolerabiy certain that Sir luntherf rd Acock's comprocial cngagements with the goverament will not be ratified at home. So far an fudia is concerned, this is a result to be desired. Even without his untowared assistance there is very palpable danger impending over the opium rovenue of this country. What the real aim of the Chinese govermment is I do not profess to be able to decide. Their avowed intention to foster the cultivation of opimm at home until the India trade is destroyed, and to strangle their own, by this means eaforcing total abstinence, may be what they sincerely intend, but I take leave to doulst it. It is I susplect, but a wily mode of holdine a candle to the devil, amd of securing on grouls of the loftiest morality, the fullest profts derivable fromimmorality. Admitting, however, that Chinese government is really sincere in its aim, 1 question rery much whether it is attainable. During the pro-posed-process the Chineso revenues would reap an cnormous harvest, ever increasing as the India tiade failed; and when the first act was completed and China grew all her own opium, it is at leist open to doubt whether the then government would retain sufficiency of its pristine virtue to cut itself off from a source of wealth which, by that time it wond have come to look upon as an all-important clement of tho fimances of the country. Morcover, as, on the removal of all restriction on its consumption, the national taste for opium, alieady so strong, would have been wastly stimulated, it is, to sey the jeast, problematical whether the people would or could forego the use of the drus. But be this as it my, the fact remains that the cultiration of opiun in China is already very great, and is muitly increasing, and that the drug locally produced is not far inferior to Indian opium, and can of conrse be sold at a cheaper rate. With local recognition of opium, the old argument as to the immorality of the Indian trade disappears. It will be necessary, therefore, for the Indian govermment hencoforth to fight China in her own markets, and while raising the largest revenue from opium attainable to keep the price at which it can bo sold in China so low as to prevent competition from other quarters, and if possible to midersell the Chincse growers theinselves.

To extend the cultivation of the poppy in Dengal it will be necessary to give the cultivators a higher price for their produce, and also to extend its growth to other parts of India. The altemative plan is abandoning tho monopoly of cuiltivation and manufacture, which is tho Bengal system, and introduciug the Bombay system, which levies a heary transit duty on the opium manufaciured by private enterprise in Malsa. I am, horrever, distinctly oi opinion that the Dengal system, securing the monopoly of direct purchase, preyaration and sale of the drug, should be maintained. Practically, the govermment derive something like $£ 30$ a chest more from Bengal opiem than is derived under the Bombay, or "pass" system Malwa opium. Of course, a heavier daty might be
imposed on Mahwi opium, but this would certainly at first check proluction, and a reduced supply now means an incrensed production in Chine-a consumsation religiously to be avoided. 1 have, therefore, little doubt that sooner or later' the Indima govermant will, in furthermeo of their real interest, stimulate the ativation of opiwm by the payment of a higher price to the cultinator, and, as a conscquence, extend the area over which it is produced. The enhanced mice of, say one shillu:g to ino pound, would bo all important to the cuitiyator, while the differenco it wonld mane to tho govermment would be insigniticant.Philadelphia North American.

Ood-Liver 0id.

The process of mamfacturing tho farfamed cod-liver oil at lortgual Cuve, Newfomadland, is described in the Nt. Johin's Telegraph. Tho livers of the cod are sold by the fishermen to the manufacturer of the oil at the rate of $2 \cdot 4$. a sallon. On the average it requires $2 t$ gallous of liver to produce a gillon of vil. The hivers are first carofully washed, and must be "cooked" at once, while fresh. They are first purt into a large tin boiler. This is plunged into a larger iron boiler filled with hot water, the water not being allowed to touch the livers, which are thus gently stcamed till a quantity of oil is floating on the surface. This is dipped out and filtered through blanketing first; then twice arterwards it is filtered through bags of moles.in. From tho last filtration it comes out of a beantiful crystalline transparency, and without any mplensant smell or taste. The oil is now poured into 60 gallon cask3, and forwarded to the exporting merchant. The refuse is phaced under serew preses and the remainder of the oil extracted. This is not refined, but sold as common cod oil, and is used largely on railways and for lubricating machinery. The cod-liver oil has gone up in price lately, owing to the immense demind for it in Europe, and now it is sold to the merchant at the mate of 130 cents a gailon. Last year 330 tums of it were exported, the value being 260 dols. per tun. Of the common cod oil, unrefined, 4,521 tuns were exported, the value being 144 dols. per tun. So plentiful has been the catch of coll this jear that in one factory 2,000 had been baryelled before the season was half through. The men who handle it get quito a liking for the oil. A little dog running abont the premises laps it eagerly: The sccret of making good cod-liver oil lies in the application of the proper deyrec of heat-tco much or too little will seriously injure the quality. Great attention to cleanliness is also necessary, the filtering bass requiring to be washed thoroughly every day, and the troughs scrubbed out witt. , rreat care. The rancid oil that is frequently mact with is the produce of manufacturers who are careless abont these matters. The best oil is made in the way above described; and all the pretences of quacks about refining it, and making it palatable, are, it is declared, mero moonshine, and either covers for adulteration, or such as deprive the oil of its medicinal properties. There is, no doubt, an enormous amount of achulteration practised by the retailers of cod-liver oil, but it is maintained that it is not done in Newfoundland. The greater part of the oil gooss to London, and there it is "doctored." The writer in the St. John's
paper states that were a person with competent skill and capital to cmbark in the manufacture in Newfomdland on an extensive scale, and bottle tho oil on the sport for the retailers, guardnes it by a label and other securities, and guaranteeing a pure artucle oi the best quality, his oil would speedily take the lead in the market. - Chemist cund Druygist.

Tho Alkaloids Contained in Opium.

M. O. Hesse has discovered several now alkaloids in opium. The alkaline fluid obtained by treating the opimm wath soda or lime is treated with ether, and the latter agitated with acetic acid. The acidulous liquid separated from the ether is poured slowly and with stirring into a diluto solution of soda employed in excess; a resinous precipitate is formed, and slowly agglomerates. After trenty-four hours the precipitate is separated, an excess of hydrochloric acid added, and subsequently of ammonia, which latter reagent causes the precipitation of the bases. The alkaline fluid holding the precipitate in suspension is treated with chloroform, and the latter subsequently with acetic acte. Excess of ammonia, added to the acid solution, yields a coloured resinous precipitate, which soons becomes crystalline, and consists of impurecanthopnes. After twenty-fourhours the mother liquor is treated with soda sufficient to displace the ammonia of the ammoniacal salts, when a precipitato of codeine separates. This is removed by repeated shaking with ether, codeine being more easily solable in this menstram than the other alkalods contained in the liquor. These, however, mecoudiue, codaminc, landamine, and another termed x by the anthor, may be dissolved by ether after the addition of chloride of ammonium to the fluid. By slow eraporation laudarnine crystallizes ont, the other alkaloids constituting an amorphous mass after complete evaporation. The ethereal solution shoukd, however, be separated from the crystals of laudamine before it is completeiy evaporated, and be treated with a solution of bicarbonate of sodium; by craporation the ethereal solution then readily yields crystals of codamine. As soon as the formation of these has ceased, the ethereal mother-liquor is poured off and treated with acetic acid; thas aced solution is then saturated with chloride of sodum, which throws down the chlorlydrate of meconidine, while the base x remainsin solntion. Tine suthor then describes in detail the methods of purifying the several bases, and also the propertics which chancterise them.-Chenist and Druggist.

Detection and Estimation of Arsenic in Fachsine.

Dr. Rieckher has published a lengthy zaper on this subject, the result of which ve report below. The reason for undertaking the work was the employment of fuchsine for the coloration of cximets, liquors, candics, and cren of syrup of raspberries; and as fuchsine is prepared by the aid of arsenic acid, it seemed probable that neither arsenic nor arsenions acid conld bo separated from it entirely ly washing. Fuchsine that lad been bought in tron different pleces was treated to thas cund with pare zinc and su'shuric acid, and the sis passed into a
dilute solution of nitrate of silver: A separation of metallic silver ensued, and after precipitating the remaining dissolved silver with hydrochloric acid, a yellow precinato was obtained in the filtrate with hydrosulphuric acid. Further tests proved decidedly the presence of both arsenious and arsenic acid; cach of which was deternined quantitatively, amounting in

II.

Arscnious acid $2.04 \overline{0}$ p. c. $\quad 1.008$ p. c.

Arsenic acid 8.121 p. c.
 $4.470 \mathrm{p} . \mathrm{c}$.

Fuchsine is therefore always objectionablo to use for coloring drugs or medicines, oo sny nothing of candies and swectmeats in general. -Drag. Circular.

Glucose.

Wo learn from the Grucer that glucose is fast becoming an article of cummerce. Some large parcels have been already received from the Continent, and, unless the lowness of the price obtained for it proves to be a bar to itis irce production, considerable quantities may be expected. It is offered in the form of huge blocks or cakes, but when specially prepared for the use of brewers, it indergoes a process of crushing that reduces it into small particles rescmbling grains of malt. It is not allowed by tho excise anthoritics to enter a brewery in a liquid state. By somu brewers, especially those interested in the production of pale sparking ales, it is preferred to cither malt or sugar for obtaining shund and wholesome liquors, in which there is none of that acidity, impurity, or treacly sweetness which may be frequently detected in ales and becr bre red frana the common classes of raw sugar. With confectioners, who require the addition of an almost colorlcas preparation for their more delicate manufactures, it is gradually taking the place of sugar.-Drug. Circular.

Hypochlorite of Soda in Load Poisoning.

Operatives who work in the manufacture of the various salts of lead, especially white lead, and persons who use the many popular hair tonics containing sulphur and mectate of lead, have remarked the dark precipitate which forms on the shin and its annexes. This is the black sulphuret of lead, and is quite sure, after a time, to be absorbed by the skin, and ultimately to induce saturnine poisoning. Dr. Melu, in it recent number of the Bulletin ic Therapeutique, recommends, to remove this deposit, a bath or wish of the hypochlorite of soda-a mens easy of application, and followed by prompt and immediate removal of the dark stains. He takes:

$$
\text { Dry chlorido of calcium........ } 13 \mathrm{oz}
$$

Crystallized carbonate of soda...... 26 oz
Water, about......................... 3 gralloas.
Dissnive tho chioride in the water, then add the soda dissolved also. A precipitate of carbonate of lime will be thrown dorn, ard the supermatant fluad will be a solution of hypochlorite of soda. Add this to sufficient wrater for an orilinary bath, and pour in half a drachm oi essenec of lemon, ean de cologac, or other aromatic. Tho paticnt should remain half to three-quarters of an hour in the bath, or should wash wieh it thinse parts of the body darkened by the sut| pharet.-MTcdical andNurg. Rerporier-Dental Gismos, July 18 İO.

Gingilie Oil.

The gingilie (Scsumum Indicum) is said to be an Africam plant, and is supposed to have been introduced to the West Indies by the negroes. It is now pretty generally distributed, and in this comntry it thrives admirably' in tho Newera Kalawyia district. The plant is cultivated for the seed, which yields a fixed oil. The method adopted in Ceylon of expressing the oil is rather primitive, and consequently it possesses an unpleasant dlavor and a brown muddy colour. If properly prepared, the oil would form of a very good substitute for sweet oil. The best method of preparing the oil is as fol-lows:-First steep tho seeds ropeatedly in cold water, or boil them for a short time, till they are divested of the reddish-brown colouring matter contained in the epidermis of the secds, then, when the seeds have become perfectly white, dry them in the sun, and express the oil in the ordinary way. The seed yields from 40 to 41 per cent. of a pale strawcoloured oil. When thus prepared the oil is perfectly devoid of smell, and may be used for extracting the perfume of tho jasmine, tuberose, camomile, and yellow rose. To effect this, one weight of the fle wers should be added to three weights of the oil in a bottle, which should bo corted and left in the sun for forty days, when the oil will be impregnated with the perfume of the flowers. Tho gingilic oil is soluble in alcohol, saponifies with alkalies, solidifes by nitric acid, and combines with tho oxide of lead. The gingilio oil is highly esteemed loy Egyptian belles for its properties of cleansing the skin, and of imparting to it a bloom and lustre, and also of preserving the beanty and yloss of the hair. In Ceylon it is used for similar purposes. The negrocs also use the seeds for maling a sort of beverage sontething like coffee, by roasting the seeds and infusing them in water. The commercial value of the oil in England is $£ 40$ per ton. -Jaffac Ners in the Chemist and Drugist.

Piambago in Canada

The plumbago mines in the neighbourhood of the township of Buckingham hare attractcd attention in England, and tho Ottawa Irec Piess learns that Mr. Edurard Blackwell, of the Rojal School of Mines of England, has been sent out there to report on and prove some propertics in that district. From the manner in which he spealis of the resources, it thinks that hefore long some large companies rill commence work. It secms a pity that so much mineral wealth hins so long been lyirg untonched, and it hopes that this example shown by old countrymen will soon be iollowed by some of our Canadian moneyed men. The uses of plumbaso are numerous, aml it has a large market in the United States as well as in England; it is worth at present about trenty pouncis a ton, and our Canadian varicty commands as high a price is the celebrated Ceglon plambago.

Tasteless Misturo of Cod-Liver Oil.

The Ciemsist and Druggist gires the following in regard to a nerr formula for the administration of cond-lirer oil :

It has occurred to Mr. C. Laresi, that by tranted cod-liser oil with ground roasted coffee the disagrecabic taste and odour of tho former might be removed. By experi-
ment, ho found that by the truatment the oil lost nearly the whole of its disagrecable taste and odour, a slight fishy odour alone remaining. Another advantage is that the oil preserves all its mutritive properties. The following is tho method employed :-
Cod-liver oil, 20 parts; ground roasted coffe of good quality, I pait; pura powdered ivory blacle, $\frac{1}{2}$ part.

The whole is transferred to a glass flask, carcfully mixed and heated over a water-bath to 150° or $130^{\circ} \mathrm{F}$. for a quarter of an hour, care being taken to keep the vessel corked. The heat is then removed, and the mixture allowed to stew for three days, with occasional ayitation. It is then filtered, and a very limpid oil of an aimber colour thus obtained. Its odour and taste recall that of coffee, While the fishy taste is not very , ronumed. The addition of coffee to col-liver oil may also perhaps augment the mutritive and therapeutic properties of the latter

Popsin.

It is due to the valuable experiments lately conducted by Mr. Emil Scheffer (Pharmacentical Chemist of Louisville, Ky.), that we now posses a better knowledge of his remedy, as well as how it should be prepared. Nu wonder that many observant physicians have always contended there was no therapentic value in the wine of pepsin. Their conclusions were right, for inr. Scheffer has clearly proven that the alcohol contained in the wat destroyed the pensin. (Amer. Jour. Pherr.: 1870; p. 97.) Consequently no effects can be expected from a solution of pepsin in a solrent containing alcolol. Nreither have 1 mach faith in the dry pensin, owing to tis beng mixed with half starch, which is anis to tura musty by the least attraction of moisture.
The gastric juice containing hydrochlozic acid induced Mr. Scheffer to adopit the more rational plan of preparing his liquid 1 elpin by using that acid and glycerime.
The glyecrine in this case not only acts as a preservative, but undoubtedy :lsa produces a soothing effect on the irritated mucous membrane of the stomach. The dese is from one to tro teaspoonfuls after cacla meal, in cases of dyspepsia, mdigestion, and vomiting of pregnant wumen. I :im informed that the liquid pepsin se preprered has given eatire satisfaction to many of the L-uisville physicinns who have prescribed it. It is my opmon that the profession hase heretufure been greatly deceived by the io-called wine of pepsin, usually made from the reanet instead of the pensin proper, and the little good they have seen may have been muro. owing to the slight stumulating effect of sume "old sherry" than anything eisc.

Rennet is made from the fourth stomach of the calf, and it is very doibiful whether identical with pepsin or not ; beciuse it has been proven that the most poweriul pepsin is found in the carairora, and next to them in the onnirorn. C. Schmidt has demonstrated that the gastric juice of the ding dissolves from five to six times more albumen than that oi the shecp, and Clande ISernanits experiments have also giren smidne resiats. Mr. Scheffer is still cugsged in fureher researches on this subject, nad Thope may s man be able to tell us what relations, if ans, rennet bears tormad pepsin. - Med and Surg. Reporter.

Table of Muasures.

The following table, which appears in an Fuglish exchange, will be found useful to some of our readers :
A box 24 in. by 1 bin. square, and $2 \sin$. deep, will contain at barrel.
A box 2 Gin . by 15 t in. square, and Sin. deep, will contain a bushel.
A box 12 in . by 11 in . square, and Sin. deep will contain hale a bushel.
A box 8 in. by sin. square, and sin. deep will contain epeck.
A box 8m. by Sili. square, and 4 gin. deep will contan one gallon.
A box 7 in . Wy fin. square, and 4 l in. deen will contain half a gallon.
A box 4 im . by 4 in. square, and $4 \frac{1}{1} \mathrm{in}$. deen will contain a pint.

Maxıms of Success.

The celebrated Scotch surgeon, James Syme, who died last Jume, used to give his students the following maxims to insure success in practice :

1. Never look surprised at anything.
2. Before statin! your opinion of a case on your second vist, ascertan whether your previous durections have been e momplat with.
3. Never ask the same question twice.Mred. and Sury. heporter.
eltang

Mr. George lankin, formerly of the establishment of Messrs. Lyman Bros. \mathcal{E} Co., has commenced a new business at MIarkham.
Mr. Neil C. Love hias removed to his new premises, corner of Yonge and Richmond strecis, 'loronto.
Messrs. Jones \& Jones, of Port Perry, have sold out to Messrs. Alhson © Campbell, of that place.
Messrs. Chamberlains Gibbard, of Strathroy, have dissolvedi partnership. Arr. Chamberlain coatinues.
Mr. E. N. Bromley has opened a store at Clifton.
Smathwille boasts the audition of tro new drues stores; one opened by Messrs. Hewson © Co ; the other by Mr. J. T. Miduleton.

The business at Yorkville formerly carried oa by Messra. Leshe \& Co., and subsequentlig by iIr. W. Mitchell, has agnin changed hands and is now conducted by Mr. J. C. Lander, former assistant in the establishment of aressrs. Eiliot \& Co. of this city.

A new business has been commenced at Micaford, by Messrs. W. Bell \& Có.

Fire, - A narrow escape from the mases of spontaneous combustion occurned in an upper flat over the store of Micssrs. Holorook © Stari, of Hamilton, last Thursday: The Spectator says the flat alliadel to is used as a kind of stereroom, whercia a quantity of drugs and chenicals aro heph. About ten minntes before the fire was diseorcred, Mr. Ifouldook was in the room, and at that time tiere was no sign of fire, and is there wis no fire used in the plase, its origin is
a mystery. Tho only conclasion come to is that it was epontancous combustion, caused by some rass, saturated wath oil, that wero in a box expused to tho rays of the sun. Had the fite been undiscovered a feyminutes longer, it is hard to tel! what the consequences would have been.

finl Erade zapat.

Respectng tho Fall Trade, which last month opened rery hopefully, we may now say that it behoves all business men to cu?tivate a good degree of caution, becauso it is well ascertained from reliable statenents comine from all parts of the country, that the githd of the harvest is falling largely below tho expectations which had been formed of it, and, as a necessary consequence, tho amount of moncy put into circulation will be proportionately small ; so that country traders in all departments will find mono or less dificulty in mecting paymente.
As regards goods sold by wholesale dru;gnsts, there have been, in the past few weeks, more and greater changes than usual, owing largely to the war raging between tro great Eurupean nations, which, usually, aro both great producers and great consumers of the class of goods in question. Among them the clicicf ores affected are, of course, Saltpetre, Sulphar, and the preparations of Lead, especially the first ono, which, in a few days adransed yome fifty per cent. The rise on the other tur is smaller than might havo been expected. There is quite a long list of articles which are indirectly affected in price by the terrible contest now going on; among them are Ethers, Chloroform, Bismuth, Glyecrinc, Santonine, Periumery, Fancy Articles, Glassware, \&c., (EC., nll of which are either dearer, or likely to be so before long.

Among articles which are higher in price we may mention, crade Antimung and its preparations, Vanila bems-which arealmost out of market ; cxtracts of Belladonna and Genbane, Gums Assafoctida, Giaincuan and Shellac, Micrcury with its combinations, Opium, Quinine-whicls is rery scaree, Gentian and Hellebore Roots, Vardamom Seeds, American Saffron, and among Spices, Black Pepper and Mace.
There are too, quite a mumber of articles which intor buycri, snch 23 Iodine, Leeptandran, Citrate of Mfagnesia, Incenc, Jalap, E.J. Rhubarb, Indigo, Linsecal Oils, Scal Oils, sce. Sc., which are cither lower os remain at the very medente prices they have latterly been sold at.
We are quite of opinion that in the Driog Trade, is in many others, the facilities for country dealers supplying themselres at lur rates are quite as great in Teronto as in ans cits of tlie Dominion.

WたIOIESAIE PRICES CUREEINT-OCTOBER, 1870.

[^0]: - Read before U.e Ontario Coliege of Thansmary; at the adjumed Xo::ih?s Jiectigg, Uctoler lill.

[^1]:

[^2]: -Clomical Sirma, So. 31. p. 4

