The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or blaこk)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

\square
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated!
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pages detached/ } \\ & \text { Pages détachées }\end{aligned}$

Showthrough/Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The Canada School Journal. AND WEEKLY REVIEW.

Vol. X .
TORONTO, SEPT. 10, 1885.

Gable of dontents.

The Canada School Journal and Weekly Review.

An Eilucational Jomrnal dewoted to the adoancement of Literature. Science, and the teaching profession in Canada.

IIf RMSS.0——
 annum, strictly in adeance.
 any person after the oxpiration of the time for wheth payment has been made.

FEI:NESVATM of subseriptions should be made promptls

 terms. Sce schedule of mates in another columa.

CANADA SCHOOL JOURNAL PUB. CO. (Limited)
Publishers.
The calorto.
The Young Men's Liberal Club of loronto is just now re. ceiving a flattering amount of public attention. The idea seems to be rife that at the approaching meeting some bold, almost revolutionary, course will be adopted and sanctioned. The proposal in favour of a custom's union with the United Stats which, it is understood, is likely to be made a plank in their platform, is itself a starting one. Such an arrangement, should it prove feasible, could scarcely fail to give a great impulse to Canadien progress.

Shall Riel's sentence be carried out, is just now the foremost questoon in politicai circles in Camada. It is positively painful to see such a question, involving the life of a fellow-being, made the toot ball of patty spirit, and debated on the low ground of poltical expediency. It seems clear that if the man is nanged, he will be hanged because that is considered best for the party, and if he is repricved, or has his sentence matigated, it will be for the same reason. It is a bad state of affairs when all mportant public maters, even those involving life, are discussed and decided not in the light of great, fundamental prancuples, but with a view to political effect.

Mr. Parnell has caused a good deal of excitement in political circles in England by recent speeches, in which he is represented as declaring that Ireland wanted independence and would accept nothing less, and that it was the intention of himself and his followers to render parliamentary legislation impossible until this was conceded. We cannot but think his meaning must have been in some way misunderstood, or misrepresented, as he must know that such a demand would be hopeless and would make both politucal parties a unit in their refusal. Meanwhile the statement of this attitude on his part has had the effect of a bumb shell in both political camps. Lord Harcangton, the Whig leader, boldy declares it out of the question. The justice of Home Rule is now within reach of the Irish people and it would be a suicidal policy on their part to spurn it and reach after the unattainable.

The new-born colonizing mania of the Great European Powers may, perhaps, be of good omen in one respect. It seems prophetic of a speedier civilization of the world. But it is, on the other hand, full of menace to the peace of Europe And, surely, it is humiliating so near the close of this boastful century to see the foremost Christian nations engaged in a game of grab for the birtanights of the uncivilized tribes, for purposes not of benevolence but of selfaggrandizement. The latest in stance is the seizure by Germany, of the Caroline Islands, long nom:nally at least appendages of Spain. The imsignific.unce of the islands themselves serves but to heighten the turpitude of the uncalledfor aggression. These hatle islands may be found by careful seatch in a suod map, almost hadden in the bosom of the great Pacific. The total area is given in some of the Cyclopedias at 872 square miles. They have always been clamed by Spain, as a part of the Phillipines to which they are adjacent. What ulterior purpose the "man of biood anditun" has to serve by annexing them does not yet appear, but it would be inconsistent with all Bismarck's record to suppose that the game is for no richer prize than the insignificant islands themselves.

The Sehool.

We have during the last few weeks received from subscribers an unusual number of complaints of irregularity in the arrival of the Journal. Some of these apparent irregularities are explained by the faci that during the holiday months (July and August) the paper was issued only on alternate weeks. Our amouncement in regard to this seems to have been overlooked by some. But in many other cases we are quite unable to explain the non-appearance of the Journal, which is carefully mailed to all subscribers. In one instance, the week before last, the issue was unfortunately deiayed for several days, owing to a combination of causes, one of which was a breakage in the press-room, which made it necessary to send the paper to
another office to be printed. Any failure of the paper to reach subscribers in tume is a matter of annoyance and regret to us as well as to them and we promuse to do our best to render them as few and far between is possible.

Mr. Glashon's paper on Science in the bchcols, given in our last issue, is worthy of the careful perusal of every teacher. It will be seen that Mr. Glashan does not mean by the teaching of Science simply the manipulation of chemical agents in a few curious experiments, much less the study of dry formulas and compheated classuficatoons, or conjur ag with Latin or Greck compounds a toot and a halt lung. There can be no longer a doubt that the study of science proper has a true educational value equal to that of any other branch of learning. It has moreover, this distunctuve ment, that whie it strengthens the powers of reasomng, abstraction and generalization equally with almost any other branch of study, it is eminently adapted 0 quicken those perceptive faculties which minister so largely to both pleasure and profit in every sphere of life, and which the exclusive study of langunge or mathematics tends ic blunt rather than sharpen, by disuse. We are by no means of the number of those who would have the new science cast out and supersede the old classics and philosophy, but we cannot doubt it has made good its claim to stand side by side with any of them. The extravagant demands of some of tis enthusiastic votaries have perhaps retarded rather than helped recogmation of its real merits, but the time has fully come when science should take in every school and college curriculum the prom$i_{n e n t}$ place chamed for it by competent and mocerate advocates, such as Mr. Glashan.

All indications scem to point to a great and swift development ot the technical school idea. Schools and colleges based upon this idea are multuplying in the Unted States and Great Britain. The School Gucrdian, in a late number, chronicles the completion of the Merchant Venturers' School at Bristol, one of the most extensive institutions get established for the purposes indicated. This school replaces the British Trade School, which was itself a great success, giving instruction to 500 boys. But "on the recent agitation in favour of Technical Schools," says the Guardian, "it occurred to the wealthy guild of Merchant Venturers that it would be a good use of their money to crect a building worthy of their city and to endow and furnish it on a large and liberal scale. This they have done. There is accommodation for 900 students, with everything in the way of lecture-rooms, laboratory, museum, and other appliances, that the best institutions of this kind seem to require. Having erected the splendid building on the sitc of the old Grammar School, at a cost of $£ 50,000$, the Merchant Venturers generously handed it over to the corporation complete n all its equipment, and prepared to do a noble work for the industrial and commercial classes of the West of England. In this way we are growing rich in institutions of the nineteenth century, which may reasonably be expected to confer immense benefits upon the ages yet to come."

Colonel Carrol D. Wright, Chief of the Massachusetts Bureau
of Statistics and Labour, devoter sixty pages of his last annual report to facts bearing mainly upon the effects of study and college life upon female graduates. From answers given by tleven colleges to questions asked, Col Wright concludes that the female graduates of American Colleges and Universities do not show any marked difference in their general health from the average of women engaged in other kinds of work, or from women generally. This will surprise few. The chief matter for surprise is that statistics should be needed to prove that brain work, which in itself, within reasonable limits, has been proved to be conducive to longevity rather than the opposite in men, should be injurious to women. Were the latter found to eahibit less power of endurance in ordinary life than the former, there nught have been ground for such an inquiry. But the fact is we beleve that the arerage woman works harder, for longer hours and endures mo'e nervous strain and more fatigue of body and brain than the average man.

THE NEW REGULATIONS.

In our news columns will be found this week that portion of the new Regulations of the Department which contair,s the course of study laid down for High Schools and Collegiate Institutes. Next week we will give the requirements for teachers certificates, non-professional and professional. The assimilation of these requirements with the matriculation. work of the High Schools will greatly simplify the programmes of these schools and lessen the difficulties of Head Masters. It will also pave the way to the University for many teachers, ond no doubt an increasing number of the more ambitious of these will be found taking a full or partial University course. This will be a good thing for the teachers themselves and for the country. Whether it will be a good thing for the Public Schools will depend mainly upon the ability of the School Boards to retain such graduates in the profession. This again will depend largely upon the liberality of the parents and other contributors to the school funds. We hold it to be easily demonstrable, if not axiomatic, that, other things being equal, the more thorough the education of the teacher the better work will he be able to do in the instruction of even the youngest pupil. If a Master of Arts dues not understand both the workings of the child-mind in general, and the idiosyncracies of the individual mind with which he has to deal, far better than the average teacher whose opportunities have been limited strictly to the course prescribed for his certificate can possibly do, then there is no virtue in intellectual training and no value in education per se. We premise, be it observed, "other things being equal." The fact of course is that other things are often not equal. Many a second or even third class teacher ay be a more successful educator of the young than many a University graduate. This only proves that the former possesses natural qualifications denied to the later, and affords an additional reason why the former should, if possible, secure all the benefits of thorough collegiate training. We believe the day will come, though we may not hope to see it, when the equivalent of an arts course will be required of every teacher in the

Public Schools, but a great advance in remuneration and other marks of appreciation of the teachers' high calling will have to be made before that happy day can arrive.

The provision that a degree in Arts with honours in one department may be accepted in lieu of a first certificate of the highest grade is reasunable and wise, as is also the awarding of a dipluma by the bducation Department to all who pass the examinations in any of the courses prestribed. We do not attach so much value in the introduction of a commercial course, as to the provision for the study of Agricultural Chemistry. If either were to be left optional it should have been the former, rather than the latter. Education by the State at public expense can be justified only as it can be shown to be essentual to the welfare of the State, i.e., of the whole people One of the greatest hindrances to prosperity in this Western world is the forsaking of the country for the town, or city. On every hand the young men are abandoning the grand independence and sure competence of the farm, for the abounding hazards and scanty rewards of the office or counter. Nowhere can this mischievous tendency be counteracted so effectively as in the Public Schouls. Special prominence should be given in these to those subjects which tend to toster a taste for rural life and agricultual and horticultural pursuits. The scientific inventor is doing much to lessen the severity of the farmer's toil, and increase ats productuveness. The scientific teacher should do much to enhance the attractiveness of agricultural pursuits, by: enlarging the intelligence of the coming farmers and elevating the general conception of the dignity of their calling. Agricultural Science should be taught, in the most practical manner possible, at least in every country school in in the Province.

Sprcial zatiiles.

EDUCATION IN REFERENCE TO CHARACTER.

Mr. President and Mcmbers of the Onterio Teadhers' Association:
I must confess to some amount of resitation in accepting the invitation of your secretary to read a paper before this association. Whist profoundly grateful for the honor you have thus done me, I folt atrongly that one comparatively unacquainted with the detail of the Ontario system of education, had little right to read a paper before an assemblago such as this, composed of sentlemen whose whole lises are devoted to the working out and the improvement of that system. I was led, therefnre, to select a subject bearing upon education in general, viz.: its influence upon the fermation of character, and I must crave your kind indulgence if, in treating of a somowhat well-worn, yOi, I venture to think, most important subject, I, of necessity, suggest thoughts familiar to you in your own educational experience, as also for the somowhat fragmentary way in which, from the pressure of varied engagements, I have been compolled to discuss the subject.

According to one numerous and influential school, the offico of education is not so much to develop character as to procure for it in the future an enviromment at least relatively favorable to that development. It has been urged that the chief dangers to the social order arise from tho hard pressure of poverty and want. By the diffusion of knowledge, especially of a technical or scientific charac(er, it should be the aim of education to increase the power of the
individual, and thus to paise him abovo the stratum of temptation in which the lot of poorly romunorativo labor is inevitably cast. Now, whatever partial truth thero undoubtedly is in the contention, it cannot bo donied that the optimistic viows founded upon it, and largely current at goneration ago, as to the solvent offect of education upon crime, have not been confirmed by uxperience. Insteal of meltury away under the gentle influence of knowlodge, erme has largely mereased. If wo fi.tter ourselves that it has at least become more refined, we are startled from time to time by tho revelation of the grossest crime, rampant among it educ.ated mon. Fraud and dishonesty threaten to invade with ove wholming force every class and overy necupation ; and there seoms to mo no small peril that, in disgust at the utter faituro of unreasonable expectiItions, education may, in tho not distarit future, be unduly discredited | for an $18 s u 0$ wheh might from the first have beon clearly fureseen.

The prmal fallacy undorlying this wholo position is the assumption that any condition of lifo is comparatively freo from tomptation, so that by increasing the power of an individual we enable him to rise to any great extent above its influence. On the contrary, the truth seems to be that with the increased power which education brings, as well as with that which multiplied invention, rapid communication and locomotion has supplied. temptations dangerous to socicty have become far more intense as the chances of sucessa, as well as the prizes to be obtained, have been proportionately greater. To quote a recent writer in the Cenlury:-"The greater temptations of the present day demand greater conscientiousness to resist them, and this greater conscientiousness is not always fortheoming."

Experience is every day demonstrating with increasing forco, that if education has wo other ameliorating influences at her command than the mero negrative ono of improved material surroundings, then the outlook for society is undoubtedly dark, and the results of 'io teacher's work hopelessly unsatisfying. It is the deop convic. tion of the present writer that only by recognizine and fostering the direct inthence of education upon character can an adequate remedy be found-whilst from this influence rightly exercised the best results may under the Divino blessing be expected. The subject is at least a practical one, and it may bs that tho present tims is not unsuitablo for its discussion. A moment's reflection seems suffi iont to prove that the direct influence of school lite unon after character must bo unquestionably great. Whether wo consider the receptive nature of the young life, or the fact that school forms a joy's tirst introduction to that wider social life which lies outside the family circle, and that therefore at school the foundation of those social virtues which regulate the intercourse of man with man will be lait, or necessarily the seeds of the opposite vices will be sown; if we consider further that school introduces a boy into the conscious work of life, and that the spirit with which he addresses himself to his school work will, in the majority of cases, stick to him through life, and though little stress be laid upon the direct beariug of mental conceptions and bias upon the moral and spiritual character, it is clear that as he passes through tho microcosm of school life, the boy becomes for the most part the father of the man.
Regarding education, then, not as the mero mechanical receiving of knowledge with a view to increasing individual power for the purpose of acquiring wealth, but rather as the living development and training of the manifold faculties and powers which cach man possessus latent within him, the studies which are most fruifful for this purpose are undoubtedly those which are directed towards the past, sach as literary, historical, classical studies, and the like, rather than those directed immediately to the needs of the present, such as technical, professional, and, to a large extent also, scientific studies, although in this last case such studies as actually bring the pupil face to face with Nature, and not with more dogmatic state.
ments about her laws and methods, may exerise a der p and lasting influence upon character. This distinction has been ably drawn in a paper read befure the present mecting of the association, so that it is altogether unnecessary for mo to further develop it. A single practical suggestion only I throw out in illustration, viz, with re gari to the strengthening of the powers of observation, and therofure of the capacity for the enjoyment of Nature, and of reverent fellowship with her, which cim bo effected outside the walls of the schuol. A botanical excursion, or vivid explanation of the way in which geolere.ally the various features of some landscape actually in sight have been formed, may open up in the mind now interests and ideas to bo gladly followed up in after life. This mothod of teaching by occasional excursions is strongly recommended by Milton in his Tractato on Education, and prretised to a consider able extent in Germany. The successful introduction of Arbor Day, thruagh the wise foresight of the M.nister of Education, proves the possibility of such occasional lessuns in Nature. Tu return, however; without underrating for ons moment the practical importance of Modern Languages, it is und ubtedly to the thought and history of the ancient world that we m.st turn for educational influences of the highest kind. Acquain'ance with French and German literature can no mure equal in educational value living cuntact with the thought and motives of the aucient wo rld than a tour in our own fair Province can supply the ad vantages of extended travel. J thust that I shall not be misunderstood as detracting from the great practical utility, and therefore importance, of the modern languages. Tt is unnecessary at the present day to plead for what is universally accepted. I speak only of their value for purpose of education in the strict sense of the term. It is, of course, it trusm to assert that our modern thought and existing society hatwo been profoundly influenced in every part by the three great streams of culture we inh rit from the Greek, the Roman, and the Jew. 'So gain, however, any real insight into the nature of this influencets see how the self-culture and analysis of the Greek, the consecration to law and the orderly discharge of the duthes of cutizensha, which forms the distmguishing characteristic of Romu, the reveliation of man's capacity for fellowship with God, and for cos-operating with him for the building up on earth of a divine kingdom, which is the special dguity of the Jew, formed three indispensatble fuctors in the necessary education of the race in its duties to seli, to suctety, and to God; further, to gain even a faint glimpse of the way in which the mingled waters of these three streams flow on together in the Christian culture of to-day, because they have been urited and harmonized in the person and mfluence of the perfect Mlan, is to gain an insight into the divine plan on which the education of the race has actually been based, the educational value of which can hardly be over-estimated.

I would not be supposed for one moment to undervalue the im. purtance of the advaice u hich has been made by tl. a great improve ment made of recent years in the various departments of professional and technical training. In this way has been rolled back a reproach often too justly leveiled against our educational systems, that they failed to yualify their students for the actual uccupation in which they were to engage. To fit men to discharge in the best and most efficient manuer the various duties whel devolve upon them is a side of education the neglect of which brings swift retribution with it. So far from minimising, I would strongly advocate the increase of these practical subjects of training; such subjects as book. keepung, hygiene, and the elements of sanitary science, the practical application of chemstry, and, for girls, dumestic economy in its various departments, appear to be emmertly deserving of more systematic treatment than they yet have received. I simply claim that such subjects do not exert the sane influence upon character
as is dunc ly classie:n, historical, and scriptural studies, whose foundations lie deep town in the past development of the race: and that the derelopuent of character is a part of education of vital inpurtance to the well-beng of society. The true strength of a state undubledly lies in the character of its citizens, or, to quote the Century once more: "'The primo causo of commercial dishonesty and political corruption is a false ideal of life; an idenl that puts the material intercsts of man above the spiritual, and makes riches the supreme efiort of human endeavor, and the only efticient remedy is the establishment of a higher and mare spinitual ideal." Such an ideal it is the function of education in its widest and most comprehensive sense to give, and I trust that the sevoral types of education may be so harmoniously blended in our ()ntario system that we may lead the van of progress towards this ereat and all-important end.

The treatment of my subject would hardly bo complete without a few thoughs, however fragmentary, upon the direct bearing upon character for good or evil of the actual methods of impartine knowledge. The qualities which it is specially given to school life to develop are, I supynse, courtesy, fidelity and thoroughess in work, truthfulness and integrity, together with reveronce for all that is really deserving of its bestowal. The grand old adage, maxima $1^{\text {wer }}$ is rehefirr rerercutia, which even the most degraded of men in some sort recogmize, reca!ls the fact that the personal character of the teacher or teachers will largely repromes itseli in such matters amongret the pupils. A thoroughly enthusiastic teachei, who is scrupuluusly conscientious about his nwn preparation, will become a very fountain of energy to dissipate that mental apathy of which boy-mature is often paintully conscious, and against which it often struggles manfully to but littlo purpose. Youth responds eagerly to enthanasm, and the fact is worth remembering. It is impossible to exasecrate the importance of the bearing upon character of thoroughucss and freshness in mothods of teaching, togother with every precantion for absolute integrity and impartial ty in all matters aifectung exammations, etc. Even tritling careiessness in such matters is like the opening of a sluce-gate, ani sets free a torrent which it may be next to mpossible to stem. For example, the boy who crams up by rote the translation of a Greek or Latin author, and sutceeds in imposug upon an examiner thereby, has recoived a lesson in dishonesty wheh it wall be well for soclety and himself if he does not afterwards turn to further account.
Une element for which sufficient allowanco is perhaps not always inade in regard to its tendency to foster carelessness in work is the necessary ignorance of scholars either as to the nature or the importance of the subjects which they are required to study. A short oxplanation with reference to these points before begimning a now subject, especially if it be well illustrated with a fow striking examples, may do much good; e.g., if in beginning a classical author a few extracts in some good translation illustriting the most impurtant ecatures in the book were read to tho class, their interest would be areused and quickened. As:d again, in beginning Euclid, instead of allowing a child to flounder hopelessly by hmeclf amidst the maze of definitions, postulates, and axioms, or to sink amid the difficulitics of the pons asinorum, the attention of the class was called to the great practical utility of being able to construct accurately certain figures, cg., by the aid of a pair of compasses, to trace out on a board an equiateral triange, etc., and the sciolars are encouraged to attempt in various ways to soivea problem apparently so easy, an insight into tho mavels of Plane Geometry will bo gained, which will go far to surmount later perplexities. It is, perhaps, hardly too much to say that children should never bo sent to the dry pages of a lionk to make out for themsolves some new object of stedy-the living voice of the teacher winn a bright,
cheory mothod of explanation boing an aid to which children are the presont circumstances of the country, bo loft to the authorized really entitied m meoting now and unknown difticulties. Hunting ${ }^{\text {spmertual quides of tho various religions bodius, provision for which }}$ out tugethor in class the numbor of aorists, perfects, imporfects, is so carefully mado in the now regulations. One suggestion I otc., in a given passage soften a pleasant relaxation from the actual head work of momorizing or repotition.

Irroverence and thppancy in all its forms should be strictly dis. couraged, as the uniform indox of a shallow mind, and the cloak of grnorance vaun:thg itself benoath a fancied and fictutious superiority. 'Whe law holds good in every dopartment of knowledgo that great | thinkers receive back the mstinctive roverence of childhood, only deopened and intenstied by tho manifold expertence of varted knowledge. Thus wo are led into the developmont of that revorence for purity, for holmess, for Gud, whel is the crown and stay of human character. After the brilliant and exhamstive way in which tho subject was treated from the presidential chair of thes association by Mr. Archibald MacMurchy some two ycars ago, and the omphatic action takon by the association thereon, madvocating the ofticient use of the Bible in schools, as well as that of smaller associations of teachers in various paits of the Province, it will be quite unnecessary for me to dwoll upon the supreme :mportance of Bible study as the best of all studies to the formation of a devout and noble character. My when vews on this matter have been repeatedly expressed, and are woll known both to the public and tho educational authorities. I an sure that the vast, the overwholming majority of tho people of the Province were profoundly grateful for the manistakeable testimony at that time given by this great association, that the heart of the Teachers' Association of Ontario beats sound upon this great question, and that you thoroughly oudorsed the dictum then laid down, I think by your president, that a inan who could not or would not teach the Bible was not fit to teach children at all.
It may bo bettor for me, instead of speaking further upon a subject upon which most happily no diviston of opinion in this body exists, to offor a few remarks in reference to the volume of Biblical selections lately issued by the Minister of Education. Apart from the great advance made by the recugnition of the Holy Scriptures as an integral and necessary part of our educational system, much of the educational value of the book appeas to me to lie in its character as a volume of Biblical selections. Wo are thus forced to recognize the composite character of that Library of Revelation, including a literature extending ovor thousands of years, and tho historical character of which it seems to me so important to teach. By means of this selection our scholars can hardly fail to recognze the gramal development of the Kingdom of Gud from the call of Abraham, as it camo successively in contact with the varied civilizations of Egypt, of Phomicia, of Assyria, of Babylon, and of Porsia; how by the continuous demonstration of the inability of the chosen people to reali\%e their desting by themselves, tho way was being gtadually prepared for the coming of the Christ, whilst the hopes and fears and the devotional aspiration of each successive crisis are enshrined in the literature of the period, of which the most striking passages havo been selected. Thus the student is led up to behold the Person and to study the teaching of our Lord in all thor mages sublimaty and tenderness, yet so accuratoly fultilling the hopes of the generations of the past: and ragenerating the future by the foundation of the Christian Chureh rising majestically under the work and teaching of apostolic builders. It certainly seems to me that as our youth has thus unfolded bofore it in each generation the grand central panorama of all lustory, it will be best qualitied to protit by its searchmg analysis of human character, so pure and honest, yet withal permeated with the quickening breath of a higher and nobler life, or to receive its moro distinctly dogmatic and spiritual teachings. Such teachings must, undoubtedly, in
who have several sohools in their parishes if provision wore made by autherity that the same readings should bo used at the same time in all the schnols.

I sea nothing whatever in the way of the use of a small haudbook to the Selactions, to be used either by the teacher alone or to be placed in the hands of the childron, giving supplementary information with regard to the several solections as may be necessary for the completo understandiag of their meaning and setting from an historical point of view. Nor do I belicvo that if such a book wero edited in the same spirit as the volumes of the Cambridge Bible for Schools series, that any difficulty would be raised to its adoption. Of one thing I feel certain, that it only needs the subject to bo thoroughly understood and placed fairly before thom, and that then the Christian people of this Province will not long brook any obstacle which really stands in the way of the imparting throughout our educational system of a wiso and liberal but at the same time Christian oducation ; and that they are thoroughly in earnest in domanding that the education given to their children shall not merely fit them for the duties of this life, but shall also, as far as education can do so, mould their characters for Gud, for righteous. ness, and for truth.
C. W. E. Bony.

ELEMENTARY EXPERIMENTAL CHEMISTRY.-II.

In the last Number we showed how the principal characteristics of chemical affinity nay be deduced experimentally. In the prosent Number we shall investigate some of the fundamental propositions of chemical science.

Indestructibility of Matter.

Exp. 2. Take a piece of phosphorus about as laryo as a small pea, put it into a little wator in a test-tube, and gently hoat till it molts. Place the point of a thin wire in it and let it cool. The phosphorus will then ba supported on the end of the wire. Band the lower und of the wire into a spiral s. that it will stamd upreght. Select a thin, light berker, and a large, thin, and light flas of about 1500 cubic centimotres (about 21 pints cacity.) Put about 400 cubic centmetres (3 of a pint) of water, culored blue with htmus, into the basor, plase tho wire in it, and invert tho flask over the phosphurus with its mouth reashing alm,st to the bjtom of the colored water. In this condition phace the whole apparatus on a parr of scales and oxactly balance it by weights in the other pan. In absut forcy-cight hours we shall find that the water has risen into the flasi as if part of the air hal beon ammihilated, and its color has changed from blue to red. The phosphorus has evidently wasted alway as if part of its substance also had been destroyed. Yovertholess the apparatus weighs ex ictly as much as at finst, show as that no loss can be detected. And yet, if the substance which has disappeared had beon destroyed, the apparatus would woigh at least . 43 of a gram less, which a good common balanco would easily detect. What has taken place is this: the phusphorus has combined with the oxygen, which is one of the constituents of the air in the flask. The compound formed has been absurbed by the water, and remains unseen, but indicates its nresence by changing the color of the water. This new substance contanns all the oxygen and all the phosphorus which seemed to have been lost.

Hence we infer that No loss of matter ocins in Chemical Combination.
Exp. 12. Pat a 2.16 grams of mercuric oxido into a test-tube, not too thin, which is provided with a bent tube, reaching just through the cork of a flask of about 200 cubic centimetres capacity, Let tho flask be joined to another of equal size, by means of a bent tube which reachos almost to its bottom, but only just through the cork of the other. The first flask is to bo noarly or quite full of water, and nust be quite air-tight at the cork, whilst the second is empty and loosely corked. Place tho whole apparatus, which must
be perfectly dry ontside, upon the scales and accomately batance it by weights. Then bean the test-tube and decompase the mereurie oxide. The red powder will gradually waste away, globules of mer. eury collect on the side of the lube above the heat, white the oxjgen passen moto the first thask and drives the water wer motu the se cond Leave f e a benont:s cold, and it will be found that the batance is undisturbed. The whole weight is just the same as the tirst.

Hence we mfer that No loss of matter tules phace in Chemeal Decomposition.

First Great Principle in Modern Scienco. Many accurato experments imilar to the preceding have been madro by chemsts, and have proved beyond doubt that matter is never destioged. Substances may disapprar and seem to he lost, but the lass of mat ter is only apparent. During all the chemical changes through which substances may wo, the badace shows that the weight remains the same; and when weight remains the samo wo are only following to its legitimate consequences the great pinciple cstab. lished by Newtons IHh.a wrinht wmains we are pensumded that the matrerial ramain. The indesin urthility of mather is the first areat principle of medern science, and to Lavoister belongs the glony of having first distinctly asserted it.

The second areat praciphe of mudern science is that encrey, which has buen la finted to be "Tho capact:y, or power, of :any body, or system of bodies, when in a grven condition to do a meat surable quantity of work," is also indestructible ; but the consideration of this belongs to Playsies rather than to Chemistry.

Constant Composition. The first :rrat lan concernin. i Chemi cal combination discovered by the nse of the babance is that of the invaiable proportions of the censtituents in any rlemical wom pound. In whate, er way any given chemical compeond may he prepared, or in whatever manser its compesition may ho armataly ascertained, it is foumd always to comtain a fixed and defimut. quantity of each of its constituent elcments, ap, thes is ""is timguishing characteristic of a chemical compound, as un'pined to al merc mehanioul mis the, the rensthuents of uhich mu! 's j"wiot in' auy rorging mopotions. Thus in the last experment the $\because 1 \boldsymbol{I}^{1}$ stams of mercuric onide will yeld two grams of mencuny and. 16 of a gram or 112 cubic centmetres of oxygen, and alihnugh the oxile can be pepated in several ways, the weight if mete iy mad volume of uxygen ubtamed are always found to be the same fom the same weiglit of the cxide.
A great many experiments have been made in the same direction, and it has been fund that ceery chemical cobipuand whin pussesses a group of characters seaving to define it, ant wo dishmewsh, it from :ill other forms of matter, exhbits the remarhable constancy of composition exhbited by mercuric oxide. The mference clearly
 composition.

Law of Definite Proportions. - The admussion of thr constancy of composition of chemral compounds leads us to suspect that chemical combmar ionstakes place in deftute propurtans. Weie it utherwise it would be mpnossible to give amy adergate explamation of the fact that the constituents of mercuric oxide are atwatys foumd \min that body in fixed proportoons. This may be put to the test by the following experiment:-

Exp. 13.-Ir.ts a small beaker pour about fifty cubic centimetres of hydrochloric acid, and drop into, it little by little, powdered sorlium carbmate. Eflerversence takes place, showing that gas is escaping, and that chemical action is going on. Continue until the last smali quantity of the sodimm carbonate produces no cfferescence. The acid is then all neutralized. Then carefnlly stir in drups of the acid until with the last drop the last of the smail quantity of solid carbonate disappears. The slightest quan tity of either, beyond a certain definite proportion, remains unchanged. Hence we are led to the followng law; --
First Law of Chomical Combination.-The proportions in uhich bodies unite together chemically are definte and constant.

Chemical Compounds and Mechanical Mixtures.-We find a variety of compound bodies in many cases closely resembing chemeat conppounds. T'u these varivins names are apphed accurd ing to the nature of the substance, such for instance as mechenical misture, solution, alloy, etc. Bat there is always a marked difference between them and true chemical compounds. The following experiment will illustrate this:-

Exp. 14.-Make a mixture of iron filings and sulphur in the proponitin of thirty-six parts by weight of sulphur. A sreenish
gray powder results, but (J) distmet particles of both iron and sulphat can easoly ho recenomzed by a good mayuifying glass. (2) Gently stir a portion of theppowder into a tumbler of water. Tho heary particles of iron fall quickly to the bottom of the tumbler, while tho lighter sulphur more slowly subsiden and collects as a distuct laver. (3) Stur the mixture with a small magnet, and tho particles of the rom will firmly adhere to the magnet, while the sulphur can easily bo blown away.

Hence we see that, The constituents of the miature can easily be separated lyy mechanical means, and that it partalies of the mopertics of both roin and sulphur.

Exp. 15. - Heat a small portion of the mixtare of iron and sulphu in a test-tube. Tho minture becone es pasty and then glows tor a short tume, showing that chemeal action is t.king place Break the text-tube and grind up, its contents in a moriar. (I) When exammed with a masulyang glass me particle of iron or sulphur can be detected. (2) It is mo lunger attrict ed by the masnet, or at least very lattle, and therefore contains little or no freo aron. (3) The ron and sulphur are no louger separable ly mechanical means. (4) If a small quantity be put into a test-tube and dilute sulphuric acid be added, a gins possessing a very offensive odur is evolved. Neither iron nor sulphur pussess the property alone, of evolving thes gas. The ron and sulphur have clemeally combined formang ron sulphade, wheh pussesses a difunte group of characters wheh not only serve to distinguish it from the free elements aron and sulphur, or a mixture of them, but from all other budies.

Hence we can distnguish a chemicul computul from a mechanical mixture hy the following characteristics:-
(1) The properties of a chemicall compumal diffier entirely from those of its constatuents.
(\because) No purely mechanecal means will suffice to sepatate the constutuents of a ihemical compennel from each other.
The constituents of a mechenical misture can always be separated by mechanical means.
(i) A chemacal compound always comsams a fixed and definite quantity of each of its constatuents.
The constitlents of a mechanical mixture may bo present in any varying proportions.
The last characteristic is the one wheh, above all uthers, enables us to assert positively that a given budy is or is not a chemeal compound.
Exp. 16.-Tahe two copper wires, each about twenty centimotices miength, thatten an end of each, and to the flatened ends solder a stryp of platmum, about two centmetres long by five mallimetres broad. When these wires are connected with the wires ; foom the b.ttery they are usually spoken of as the poles of the battery. Dip the jires in melted paraftine, and wrap round each of the:m a thread of lamp-wiek, previously soaked in parattine. This will photect the copper from the action of the acid. Taku a tumbler threce fourths full of water and add to it a teaspuonful of sulphuric acd for the purpese of anchasing the conducting power of the water. bend the copper wares wer the sides of the tumbler so that the tops of the platinum strips may be about two centimetres below the sumface of the water. Fill two test tules with water, acniulated wath sulphuric acid, and place them over the platinum strups, keeping the tubes as near together as possible. C muect the wires with the galvanic battery and mmute bubbles of gas will immedately be gien ofti. It will soon be seen hat twice as much giss is given off from the pole connected with the zinc end of the battely as from the pole connested with the platinum end; when I the tormer is full the latere is only half full. As soun as the tube connccted with the anc end of the battery is full, close its mouth with the thamb, rase it out of the water, and examme its contents.
(1). Observe that the gas is colorless.
(2). Invert the tube and apply a match to its mouth; the gas takes fire and burns with a pale bluc flan:3.
(3. Refill the tube. Turn its mouth upvard and smell is. No odor is perceived. Hold the tube in this pusition for a few seconds, and then apply a heghted match to its mouth, io combustiblo gas is found in it. The gas has escaped, iat is, thescfure, lighter than air.
The gas possessing the above properties is called Hydrogen. It is considered to be an elementary body. It will be fully treated of in a future mumber.

If the gas in the other test-tuve bo eamined in the same way, it will be found that it will not take tire. Immerse in a glowing
sp'int of wood. The wood will instantly take firo and burn with great brilliancy. Hence the gas has the same charncteristic as that obtaned by heating mercuric oxide and is therefore Oxtyen.
The above process is called electrolysis and is frequentiy employod in decomposing clemical compounds.
When the alove experiment is carofully made, it is frund that the only substance that undergoes permanent change is the water. The weight of the water is diminished in exact proportion to the amount of gas evolved. Besides, if the operation is continued the water will be completely resolved into the two gajes.
Exp. 17.-Take a strong glass tube, about thirly centimetron long and ono centimetre in diamutre. Chouse a good, sound cork, pass two short copper wires through it, comecting thoir extrenaities within the tube with tine platinum wire. Insert tho curk tightly in the tube and cover it with sealing was. Such a tube is called n Suthomefer, of which there are many forms. Now, fill the tube with acidified water, and place it over the platinum strips, taking care that they do not touch each other. When the tube is about two-thirds full of water, press it firmly against an indiu rubber or paper pad on the botton of tho tumbler, wrapping a towel loosely rourd the tube, and connect wires in the cork with the battery. The fine platinum wire will soon becomo red-hot and explode the gases. On raising the tube from the pad, the water will rush up and fill the tube, showng that the two gases have united to form water which appears as vapor on the tubo before it 18 rased from the pad.
-Vater is, therefore, composed of two gasos, Oxygen and Hydrogen, in the proportion of one volume of the former to two volumes of the latter.
Combination by Volume. - In the preceding experiment if the union of the oxygen and hydrogen be effected in an apparatus so arranged that the gases before explosion are heated beyond the temperature of boing water and kept at the same teniperature after explosion, it is found that the two volumes of hydrogen and one volume of oxygen which were mixed together have become chemically united into two rolhmes of steam. It is found in other cases nlso that Whatever the number of volumes which enter into combination, the resulting sompound is two volumes.
Exp. 18. -Take two glass tubes, about one metro in longth and five millimetres in diameter. Close one end of each anid bend so that the short limb may bo about twenty centrimetres long. Fill one of them with acidulated water, colored with litmus or cochineal, and phace it over the pole from which the hydrogen is escaping, until enough is collected to half fill the short himb of the tube' Turn the short limb uppormost and the gas will pass into it. Hallf fill the short limb of the other tube with oxygen in the same mamner.
(1). Observe that when both limbs are full of water the gases are equally compressed.
(2). By means of a pipette, to which a piece of rubber tabing or a prece of fine glass tuling is attached, adjust th, water in each tube su that it may stand at narivus heights, but always at the same height in each tube. Observe that the gases expand equally as the water is removed.
(3). If you have mercury pour an equal quantity into oach tube, and wbserve that the gases contract to the same extent.
(4). Plunge the tubes ints boiling water. Observe that the gases expand equally.
(5). Plunge the tubes into ice-cold water or a freering mixture, and the gases contract to the same extent.
Hence wo infor that Oxyyen and Mydrogen gases uhen compared under the same cunditions are uffected in the sume uxay und to the same extent by equal alterations of piessure and temperature.
When the same mode of investigation is applied to other gases, whether elementay or compound, the following importunt characteristics are observed :
(1). All true gases obey the same law of compressibility.
(2.) Equal volumes of all trie gases expand equally on the same increase of temperature.
The conlusion that must necessarily be drawn from the preceding facts is, that all gases, however different chemically, must bo physically constituted alike. Upon these facts an Italian chemist, Avogadro, based a most inportant hypothesis. Ho assumed that all substances, solid, liquid, and gaseous, are made up of an innumerable number of littlo particles which he called molecules, and was thence led to the enunciation of the following law

AYOGADRO'S LAW. When in the condition of a perfect gas, all snbstances under like conditions of temperature and pressure contain in equal volumes the same number of molecules.
Relative Weight of Moleoules. The above lav, enunciated by Alogadro, in 1811, is considered ono of the most impo tant in the whole range of chemical science. It is to tho chemist what the law of ginvitation is to the astronomer. Wo have indicated only one of tho ovidences in its favor. It is in reality a goneralization from a large mass of fucts, an d the best proof of its ralidity is to כo found in the circumstance that it not ouly explains tho known facts of chemistry, but also, that it is constantly loading to new discovcries. It gives at once the means of determining directly the relative woight of the molecules of all substances that cim exist in the state of gas. For it is obvious that The ratio of the weight of volumes of gases, compared at the same pressure and temperature, must ropresent the relative woight of the molecules of these gases. Now it is found by experment that given volume of oxygon is sixteen times heavier than an equal wolune of hydrogen, under the same conditions; therefore, the molecule of oxyyen is sixtecn times lieurier than the molecule of hydroyen.
Atomic Weight of Elementary Gases. - It has been shown that two volumes of hydrogen unite with one volume of oxygen to form two volumes of steam; and by Avogadro's Law wo know that the two volumes of steam contain the same number oi molecules as the two volumes of hydrogen, hence we have-

2 vols. hydrogen +1 vol. oxygen $=2$ vols. steun,
or 2 mols. " +1 mol. $"=2$ mols. "
Now, in the tho molecules of steam there is but one molecule of oxygen ; therefore in one molecule of steam there can maly be half a mulecule of oxygen, nud the weight of the cxygen corresponding to the semi-molecule is the smallest quanity of chast gas that can tahe part in any chemical clange, and as it cannot be furthur divided by any chemical menus it is called an atom. We shall tind that the molecule of hydrogen can also bo divided into two parts, and thit one of these parts is the least quantity of hydrogen known to tako part in any chemical action, and is, therefore, called an utom of hydrogen. It-bas been fomm convenient to take 1 is the atimic rcieyht, or weight of a semi-mul ccule of hydrogen. The weight of the molecule of hydrogen is, therefore, 2 ; and sinco oxygen is sixteen times heavier than hydrogen, the molecule of oxygen is 32 , and consequently its atomic woight is 16 .
Hence, To find the atomic weight of an elementary gas, it is only necessary to flud its weight compared with hydrogen as the unit.
Speciflc Gravity of a Compound Gas. -Suppose that in a given volume of stean there is a certain number of molecules, then by Avogadro's Law the same volume of hydrogen will contain the same number of mulecules. Therefore, the weight of a given volmine of stean has the same ratio to the weight of an equal yolume of hydruyen that a mulecule of steam has to a mulecule of hydrogen. But the mulecule of steam is mado up of twe atoms of hydrogen and one atom of oxygen; its molecule weight is therefore, 18, and the mulecule weigh of hydrogen is 2 , or the ratio is 9 to 1 . Therefure, tho specific glavity of steam compared with hydrugen as the unit is 9 .
Hence, The specific gravity of a compound gas compared with hydrogen as the unit is found by taking half its molecular weight.
Conversely, To find the molecular weight of a gas it is only necessary to find its specific gravity referred to hydrcıgen as unity, and then multiply it by 2.
Definitions. - From the preceding paragraphs we have the following definitions:-
Molecule..-A molecule is the smallest partide of a compornd ar elcment that can exist in a free state.
Atom.-An atum is the smallest portion of a chemical elcment that is haven to take part in a chemicil change, and is almost invariably the semi-molecule.
Atomic Weight. - The atomic weight of an element is the smallest proportion, by weight, in which it enters into or is expelled frum "chemicai compound, the weight of hydrogen being taken as unity.

Molocular Weight.-The moloctular ucight of an element or compound is the sum of the utomic teights of the element or clements comprising its molecule.

Chomical Notation. - Instead of writing the names of the eloments in full, chomists have agreed to ust a set of symbols to ropresent them. Theso symbols, howover, not only represent the particular olemont but also a certuin definite quantity of it ; thus, the letter H always stinds for 1 atom, or 1 part by weight of hydrogen; the letter \mathbf{O} stands for 1 atom, or 16 parts by woight of oxygon. Compounds are in lika mamer represonted by writing the symbols of their constituent elements side by side, and if more than 1 atom of each element is present, the number is indicated by a numeral placed on the right of the symbul of the clement below the line. Thus water is represented by the symbol $\mathrm{H}_{2} \mathrm{O}$, that is, a compound of 2 atoms of hydrogen with 1 atom of oxygen, or 2 parts by woight of hydrogen with 10 parts by wcight of oxygen. Again, sulphuric acid is represented by the formula $\mathrm{H}_{2} \mathrm{SO}_{4}$, which is a stitement that it consists of two atoms of hydrugen, one atom of sulphur, and four atoms of oxygen, and consequently a cortain relative weight of these oloments. A figure placed to tho right of a symbol only affects the symbol to which it is attached, but when placed to the left all the symbols are affected by it; thus $2 \mathrm{H}_{2} \mathrm{O}$ means two molecules of water.
The preat value and cumprohensiveness of the symbols in chem. stry ma, bo illustrated by the amount of information condonsed into the concise expression H., O. We learn from it :-
(1.) The number and names of the elements entering into the composition of rater.
(2.) The ratio in which the elements are united in this compound by queight.
(3.) The ratio in which the elements are united thercin by rolume.
(4.) The ratio in which the volume of the compound when formed stands to the volume of the comstituents befire combination.
($\overline{0}$.) The relative volume-keight or specific gravity in the state of מas (water-gas), hydrogen being taken as unity.

Chemical Equations. Chemecal symbuls give at once a simple means of ropresenting all chemical changes. As these changes almost invariably result from the reaction of ono substance on another, they are called Chemical IReactions. When the symbols of the elements are written with a figure to the right, this indicates a molecule of the element, the symbol alono ropresenting an atom. Suce, in all cases of chemical change, the change is necessarily between molecules, such symbols should, when possible, be employed. Thus, the formation of steam (water gas) from hydrogen and oxygen is correctly represented by the equation :-

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}
$$

that is to say :
(1.) Two molecules of hydrogen and one molecule of onygen give tro molecules of stean.
(2.) That a certain dofinite weight, say four grams of hydrogen, and thirty-two grims of oxygen, furnish thrty-six grams of steam or water-gas.
(3.) Four volumes of hydrogen and tro volumes of oxygen furnish four volumes of steam or water gas. A simple equation like the above, therefore, when properly interpreted affords a large amount of information, whilst the equation-

$$
\mathrm{H}_{2}+\mathrm{O}=\mathrm{H}_{2} \mathrm{O}
$$

merely represents the relative welghts of the elements which enter into the mixture, and is not is complete expression of what is supposed to tuke place.

In every chemical reaction the substances which are involved in the change are called the factors, and the substances produced the products of the reaction. As mattor is indestructible it follows that the sum of the weights of the products of any reaction must clicays be cqual to the sum of the factors, and further, that the number of atoms of each clement in the prodicts must be the same as the number of atoms of the sume hind in the factors.
If It is necessary to bear carcfully in mind that a chemical equation differs essentially from an algebraic equation. Any inference that may be legitimately drawn from an algebraic equation must, in some sense, be true. It is not so, however, with chenical equations. These are simply expressions of observed facts, aud, although mportant inferences may sometimes be drawn from the mere form of the expression, yet they are of no value whatever unless confirmed by experiment. Moreover, it is important to discriminate with the greatest care between the facts directly stated or expressed by the equations, and the inferences drawn from them.

practical Bepartmont.

DRAWING.

hy william hursg, brawing mastrib, hioh scicol, bigamion.

The aim of this series of papers will be to sot before such of our public-school taichera as may not proviously havo taught the sub. ject of Drawing, an outline of a course sufticiently extensivo to onable n class commoncing this branch to qualify, at least, at tho December untrancu to Ifigh Schools. It will obvionsly bo impossible to enter into minute details in the space and time available, but should difficultios ar: so the author of these lessons will be glad to reply to any queries through the culumns of the Jocinal, as it not unfrequently happens that a doubt or question which suggests itsolf to one mind has already bson present in many others, and therefore becomes of moro than individual interest in the answering.
Lot me remark at the outsot that teachors should take courage in undertaking this cumparatively new branch of common school education. How often during the past few months has the exchamation been heard from good and evon experionced teachers-" I can never teach Drawing ; I can nover be an artist." The latter may bequite true, perhaps, but it should be remembered that a good artist is not necossarily a good teacher of Drawing. What the Department has in view in thas bianch is obviously the training of the children to observe what they seo; and any one can direct their attention to numerous facts of which they were quite aware before and which they had seen many tanes and yet had nover properly observed. I's this consideration I would more espocially urge our teachers to pay great attention. From experience I can assure them that all such time is well spent. Again, how much more interesting is a Reading lesson if the teicher can explain pict.sially as well as verbally. Of this fact the numerous engravings in our new Readers are a sulticient recugnition, and still more interesting and instructive to childsen are even rough sketches on the board of the ubjects mentioned to them. This fact alone makes Drawing deserve the fullest attention of the teacher.

It is usual in commencing to givea series of elaborate "cautions" to the pupil, but here it will be suficient briefly to mention the points to which attention shoukd bo specially directed at first by the teacher. Perhaps others may be mentionod in the course of these papers.

1. Let the pupils be provided with pencils, properly sharpened. Bo vory careful not to allow use of small fragments of pencil. It is a bad habit and tends to encourage carelessness. The paper ishould be of fair quality and not highly glazed. The use of eraser should be discouraged, it is apt to inducs carelessness in work. Occasionally let the work be givon in with all the lines of construction or errors remaining intact.
2. Do not be too exacting from your pupils. In 1:othing so much as in Drawing will you find differences even in a class of equal averago ability. So long as progress in idea, nealness, correctness and knowledge is mado, be sure that no part of your time has been wasted. If a drawing is badly executed, and the pupil can show you the fault himself, you have gained one very great point, viz. you have taught him to judge of correctness by eye alone; and this in itself is the first great step towards improvement in the next copy. Gradual progress will be more marked in this than in any other subject.
3. Let the drawing lesson be connected with some other branch of school-work and accessory to it. Every one can see how fractions can be shown pictorially by a divided line, and so it is with
othor arithmutical ideng. All the definitions of geometrical figures can be learned by the pupils bofore they begin Euclid. Nbovo all I would recommend the use and explanation of scales in the work. 'This will very materially lighten the teacher's labor, as it will enablo him to use the diagrams published in so many works on Drawing. I am only speaking from oxperionce whon I say that many of our pupils already know, practically, the use of tracing. paper ; and it will require all the care of the teacher to counteract this practice. The best plan is openly to explain it,-then set the oxercise on another scale, say twice, thrice, one-hnlf, \&c., the scale of cony. This knowledge becomes of great practical use in geogra. phical explanations of distence.

Try to provent slavish copying even of your own Blackboard exorcise. A little praise betowed on originality of work, on a reversed copy, or on some additional ormment, dic., will soon cause your pupils to try and gain this approval, and they will tind far more pleasure in pursuing their own fancy than in merely conymg yours.

In conclusion, lot mo remind younger teachers, that repetition is the essence of trie instruction. By this I do not mean the use of the same exercise over and over again wathout change or variety, but that the subject in hand must be repeated constantly till it is part of the pupils mind, without thought. By short lessons, and long time for practise; by continually going over the old ground ; by making slow advance on the new,-this repetition can be casily obtained. It is not an inadvisable plan to have a fow patterns on some unused portion of the board which can be drawn in their tooks.by pupils, at those leisure moments that occur in most schools, and which are too often a great source of anxicty to tho teacher ; and thus may be gained the two ends of quiet work and progress in study tugether with the necessary time to devote to another class or portion of class according to the exigencies of the case.
In the next paper will be commenced a practical course on "stratght-hne" driwing, and figures which maty bedrawn by means of straight lines only.

SCHOOL GOVERNMENT.

The following principles aro adapted from Benthan, who, first among English lawyers, enumeinted the basis on which all governments should be administered:

Lisits of control.

1. Authority exists for the benefit of the pupils.
2. Restraints should be as few as possible.
3. Duties and offences should bo clearly expressed.
4. Offences should be graduated according to degree.
5. The teacher should observe due formalty in exercising authority.
6. The teachor should avoid occasions of disorder by organiz. ation.
7. Those in anthority should cultivate a benign character.
8. Rensons for discipline should be made intelligible.
9. Punishments should be rogulated according to certain principles, as, -
a. Tho punishment should be such as is best adapted to the offence.
10. Never punish in anger.
c. Excopt in extreme cases, nevor ndminister corporal punishment without tho cansent of parents, atc.
measure of punishment.
11. It sinould not outweigh the profit of the offence.
12. The sensibility of the offender should be considered.
13. It case of two offences, the punishment should bo such as to mako tho less preferrod.
14. The punishment should not be greater than is neoded.
15. The greater the offence, the greater the expenso it is worth whils to be at in the way of correction.
16. 'The punishment must be increased as it falls short of cortainty.
17. When the offence indicates a habit, the punishment should bo adjusted to counteract that habit.
18. In adjusting the measure, account should be taken of the circumstances that rendor all punishment unprofitable.
19. In administering punishment, omit all those things that do more harm than good.
All the motives that result in a given offence may not be ob sorved at π glance and readily reforred to a classitied list, and the means and measure of correction are not always obvious.- Our Country and Fillaye Schools.

WRITTEN SPELLING AND LANGUAGE WORK.
 by hattie: m. houlke, muscatine, if.

The subject of spelling, like nearly every other matter pertain. ing to the public schools, has been worn threadbare ; and as I can not add anythuy to make what has been said stronger I will simply give the plan. that I have been using. It might bo called tho sontence method. Most of us agree that written spelling in whatever form used gains the practical results. We all know it to be a fact that children can spoll whole columns of words, many of them catch words, and yet camuot without practice write half a dozen scutences from dictation without misspelling a dozen words. It has been my custom in using the written spelling to let the pupils choose the words for the 'esion. At tirst using three, now five words aday. For instance, five scholars, selected at randon give each one a word, which if correctly spelled I place on the blackboard. No word is put dorn unless correctly spelled by the one giving it, and as thoy are all anxious that their words should be used they usually give them correctly. Thus one word a day is dearned in such a way that it will not soon be forgoten. The five worda on the board are then given to the class to be placed in sentences, either a sentence for every word or as many words as possible in one sentence. They are also required to spell as many of the other words of the sentence correctly as possible.

They enjoy making these sentences and try to get one that they think no one else will have. This calls for originality. Give a chald any thing he likes to do and he will invariably do it well. Ono would be astonished to note the improvement in composition in the course of a fers weeks, and the success of the plan depends very much on the composition. For instance, when we first began the sentences were nearly all like these: "I see a chair," "I see a dosk," giving no variety of words to be spelled. Near the beginming of our sentence spelling the word "nittens" was given. Nearly all had the sentence "I have a pair of mittens," pair being spelled without excepion pare or pear. Afte: some weeks the word rubbers was given and ayain all used tho word pair, and with the excertion of chree in a class of eighteon or twenty all spelled it cortectly and naturally.

I have the spelling exorcises the last thing in the forenoon, and on going home the slates are left on the desk for correction. When I find a word misspelled I anark it and place the correct word boluw su that when the pupils return in the afternoon they can change the word for themselves. After currection, the sentences' are read before the sehool. Sometmes they aro allowed to tell which they think best, and if the sentences aro ungrammatical sume we in the class mahes the correction.

This sentence writing has another advantage, that of teaching the correct use of language. In the usual routine of daily work a child has little :chance for expressing himself so that has language may be currected. The sterentyped plaraseq, "I ain't got no pencil " and " 3 and 2 is five" is about the only chance the poor chald has in the schoul roum fur usug has orra language eten to abuse it. In this written work they have all variety of words, consequently all kinds of subjects upon which to oxpress themseln 3. On3 day the word pong was used in the lesson, and one' little fellow had the sentence "My ! but I wish I had a pony." For an illustration of our work I will take one of our lessons for last week. The wurds given were " lamp," "times," "hundred," "Cleveland." When the lessun was duno one sentence read, "Cleveland had a lamp lit when he was elected, and a fire in his stove and he had put wood in three times ; and there were a hundred men in the office." Another had, "Write Cleveland, lamp and stove a hundred times." And another "I think a hundred gears ago little children were burned many times by a lamp and with a stove two; I think Cleveland was burned.: ()thers had three or four sentences for the different words. One hatd "I can not write sentences with times." There is a great variety of sen tences rad the readng of them is quite an interesting exercise which all enjoy. I have also once a day writuen spellag from dict. ation, keening a list of words used and writing them as a review Also a drill once a week on words of different meaning and spelling and similar sound, as write, hetr, there. pair, etc.

Our aim in all schoul work should be, not to teach pupils to spell a certain list of werds, work a certain set of examples. or to read to the end of a curtan surics of readers. But we should nim tnl make children intelligent. Lipon this os:e point depends our nuly hope of practical success.-Iura Teacher.

Educational Notes and Aldus.

[^0]Siss F. Gillespie, of Prince Edwards, Mr. J. B. Davidson, of Perth, and Mr. F.S. Falconer, Middesex, pupils of the Ingersoll Bigh School, were successiul at the recent First Class Terchers' Examination. Miss Gillespic has obtained a situation as assistant in the Picton High School, Mr. Davidson has been appointed issistant is the Woodstock Model School, and Mr. Falconer takes a school in the county of Perth.
Encournged by the growing demand for more extended training in Exprestion, The National School of Elocution and Oratory of Philadelphian, last ycar. enlarged this Graduatung Course of Instruction from cighteen wecks to one jear. The expermant has been very successful. They have also increased their staff of Instructors and the number of hnurs of mstruction per day, without adding to the cost of tuition ; in fact, the mates for mstruction are anaternally less than herctufore. The fall term begias on Munday, Sept. 2Sth.

Mr. J. I' Doacon, late head master of the Woodstock Model School, has been appointed to the mspoctorship of Public Schools in the County of Halton, mado baci:at by the death of the late Inspector Littlo.

The teachang statl of tho Chathan High School has been aug. meated by tho folluwing teachers. Mr Twohey, MI A, grila medallist, Turonto University, s lary $\$ 300$, classical master. Mr. W. J. Chisholn, 13. A.. hunor graduate and medallist, of Vic1 tora Cumersity, s.hary Sion, Enoplish and modern languages. Mr Shurt, graduate of Turuntu University, junior assistant, salary \$500.

Miss Airth, a young lady whose honse is at Shelburne, Ont., but who is at present vasitun relataves in Fluridi, hes recostly received Ifrom the mathagement of the Wurlds Exposition in New Orleans a diploma and award of merit fur at beautifully etehed table which she had on exhibition there. Considering the mignitude of the Exposition, in whel worhs of art were rasged in cumpetition from all parts of the worfd, Miss Airth's sucesss ia highly creditable, not alone to herself, but to Canadian art is well. - (ylobe.
Some clerical errors occurred in the hast of Woodstock Huph School pupals, who passed the Teachers Nion-Professtumal Exumanation, as published last week. We give the corrected list :-

seconn class-ghaly: a.

E. Ella Campbell, Helen Duughas, M. McPherson, M Markle, Alice Sti.art, Alice White, Thos. Heency, J A MeDonald, E P' Whyte.

gitaden.

Joan Sherran, Sarah Stephenson, n. G. Revell, Alb. E. Scoth, J. G. Robson, E. Lang.

> THHMD CLASS.

Anne Bayne, Liz:ie Douglas, A. Gcdues, M. Moncur, L. Overholt. May Rose, M. B Toppug, M. S. Webster, D. S. Matheson, 12. H. Weaver, E. G. Bardwell, A. G. Palmer, C. U. Bertand, N. Milmine, W. P. Robinson, C. E. Hendersholt, Jno. O. Lewis, E. L. Danbruok, Chas. F. Lyster, Juv. Miller, C. Hurseman.

REGULATIONS RESPECTING TEACHERS CEITTIFICATES AND PHE COIRSE OF STUDY IN HIGH SCHOOLS AND COLLEGIATE INSIITU'TES.

(From the seat licgulutions.)

93. Pupls, on entering the High School, shall pursue one or osther of the followag Courses.-(u) That prescribed for a High Selaool Commerchal Course. (6) That prescribed for Matriculation hat., any of the Untersities of Ontario, or for the Preliminary Exami-- …"ata ot any of the learned professions. (c) That prescribed for 1a Teacher's Non-professional Certificate. Special Classes for the study of Agricultural Chemastry may be estitlished by the Trus cees, with the concurranco of the Head Master.
94. Any High School pupil may cake, in addition to the subjects In the course selected, such subjects in any of the other courses as may be argrecd upon by his parent or guardian and the Head Master of the High School; but no subject not mentioned in the High School Cuursu of etudy shall be taken up by any pupil with. out the consent of the Education Depariment.
95. In classifying his pupils, the Head Master shall be guided by the capabilities of liss pupils and the circumstances of the school. The Head Master is not restricted in the sub-division of Forms, but he shall make at least turo sub. disisiuns in Furms.
96. It shall be the duty of the Head Master to prescribe the number of pupils in cach Form, the divisjon of subjects among his assistants, and the rder in which erelh subject shall be taken up by the pupts-whether or not all the subjects in the Course of Study shall be taught concurrently; also, to make such promotions from one Form to another as he may deem expedient; :and generally so to limit the sub-dirisions of each Form as will best promote the interests of his pupils.
97. In every High School and Colleginte Institute, Vocal Music should be taught, as well as the theory therenf; Chemistry and Physics should be taught experimentally, and l3otany practically; aud it shall bo the duty of the High School Inspectors to report specially those schools in whicla this recommendation is not observed. Drall and Calesthenics shall also form part of the obligatory course.
IS. The followng subjects as herem limited, snall comstitute the Course of Study in the different Forms:-

Form I.

1. Readiny (oral) and Principles of.-A general knowledge of tho principles of clocution ; reading with proper expression, cuphasis, intlection, and force.
2. Urthography and Orthurpy. - The pronunciation and syllabica thon, and the apelling from dictation, of passages from any Eng. hsh author, and the spelling of all non-technical-English words.
3. Énglish Grammer.-Etymology and Syntax ; exercises.
4. Compusition.-The framing of sentences and paragraphs ; famihar and busuess let eers; paraphrasing, synonyms ; correction of errors; themes besed on the prose liternture prescribed for this Form.
5. Litcratur. - The critical reading of such works as may be prescribed by the EdLcatim Department from time to time.
6. Instory. - The dading cuents of Canadian and English history
7. Gcosraphy.-Political, physical, and mathematical Geography. May, Geugraphy generally, Canada and the British Enpire more particularly.
o. Arithmetic and Mensurution.-Arithmetic in theory and practice; areas of rectilinear figures, sud solumes of right parallelopupeds and prisms; the circle, spherc, cylinder, and cone ; Mental Arithmetic.
8. Alyelira. - Elementary rules; factoring: greatest common measure ; least common multiple ; fractions; simple equations of one, two, and three unknown quantities; simple problems.
9. Euclid. - Buok I., with easy problems.
10. Physics. - The elements of Physics, as treated in Huxley's Introductory Science Primer and Balfour Stewart's Science Primer.
11. Heiany.-The elements of structural Butany; including systematic examinations of common plants selected to show variety of structure in the different organs; true nature of the parts of the tlower; varions forms of roote, structure and uses, how distingoished from underground stems; various forms of stems, buibs and tubers, herbs, shrubs and trees; nature and position of buds; forms and disposition of fuliage leaves; kinds of inflorescence, special furms of fluwer-leaves, morphology of the calyx, corolla, stamens, and pistil : modifications of the Hower due to adhesion, cohesion and suppression of parts; classification of fruits; the seed and its parts; germination ; the vegetable cell; protoplasm ; chlorophyll ; formation of new cells; various linds of tissues; intercellular spaces; structure of leares; exogenous, and endogenous growth; tood of plants; reproduction in flowering plants; nature of the pollen-grain ; fertilization of the avule; reproduction in fes:..s, the spore. Outlines of classification; examination and classification of common plants belonging to the following natural orders.- Ratanculacee, Crucifers, Mairace:c, Leguminose, Rosaces, Sapindaces, Umbellifern:. Composite, Labiate, Conifere, Arace: Liliacer, Triliacer, Iridacee, Graminere ; the characters and general properties of these orders.
12. Latin.-The Elementary Latin Book, grammar, composition, and the texts prescribed from time to time hy tho Education Department.
13. Greck-The Elementary Greek Book.
14. French.-The Elementary French Book, grammar, composition, and the texts preseribed from time to time by the Educition Departument.
15. German.-The Elementary German Book, grammar, composition, and the texts prescribed from time to time hy the Education Department.
16. Writing.
17. birohlecping. - Single and double entry ; conmercial forms ; general business trausactions.
18. Draxing.-Freehand ; practical Geometry ; perspective ; industrial designs.
19. Mintic.-Vucal and Theoretical.

FORM II.

1. Ilending.-Course for Form T. continued.
2. Orthography and Orthö̈py.-Course for Form I. sontinued.
3. English Grammar. - Courso ior Form I. continued. (As prescribed for the Pass Mataiculation Examination of the University of Torento.)
4. Comprosition.-Course for Form I. continued.
5. Literalura-The critical study of the texts prescribed from time to time for the Pass Matriculation Examination of the University of Toronto.
G. Englith History (including Culonial History.) - From Willian IIf. to Georgo III., inclusive. Ihoman history from tho commence-
ment of the second Punic War to the death of Augustus. Greek history from the Pursian to the Peloponnesian Wars, both inclusivo (University Pass.)
6. Geography, Modern.-North America and Europe. Ancient.Greece, Italy, mad Asia Minor.
7. Arithmetic.-Cuurse for Form I. continued (University Pass).

9 Silycbra.-To the end of Quadratics (Tniversity Pass).
10. Geomet,y.-Euclid books I., II., IlI.; easy deductions (University Pass).
12. I'hystc:-Definitions of velucity, acceleration, mass, momentum, force, moment, couple, energy, work, centre of inertia, statoment of Newton's Laws of Motion, composition and resolution of forces, condition for equilibrium of forecs in one plane. Definition of a flund, fluid pressure at a point, transmission of fluid pressure, resultant fluid pressure, specific gravity, Boyle's Law, the barometer, ale puny, Nater-pump, siphon (Cniversity Matriculation Examination.)
13. (hemstry.-Reyuold's Experimental Chemistry ichaps. I to XVI inclusive.)*
14. Botany.- Course in Form I. continued.
10. Latan.-Examination subjects as prescribed from time to thme for Pass Matriculation into the Cniversity of Toronto.

16.	Greck	${ }^{1}$	${ }_{6}$	${ }_{6}$	66	66	16
17.	Freach	6	68	16	46	68	66
18.	Germus	14	4	46	64	64	66

18. Germati 46 \& 46
19. I'rating. - Course for Form I. continued.
20. Luok-keeping and Commercial Trunsactions. -Course for Form I. continucd.
21. Draking. - Coursu for Form I. continued.
22. Music.-
23. Prccis-teriting and Indexing.
24. Phonoyraphy (optional.)
form inf.
25. Finglish Grammar. - Courso in Form II. continued.
26. Composition.
27. Comprosition.
28. Litcrature. - The critical study of the texts prescribed from time to time for Honor Matriculation into the University, Toronto.
29. Mistory. - English History under the Houses of Tudor and Stuart.
30. Gcography.-The British Empire, including the colonies (Honor Mratriculation University:)
31. Algebra.-To the end of Binominal Theorem (Honor Matriculation University).
32. Gcometry.-Euclid Books I., to IV. inclusive, Book VI and defintion of Book V. (Honor Matriculation University.)
33. Trigunumetry.-(Honor Matriculation Enversity) The solution of Triangles.
34. Chemistry.-Reynolds' Experimental Chemistry, chaps. I. to XXVI. inclusive. (The Eniversity Matriculation Examination.)
35. Hotasy. - The structure and classification of Canadian tlowering plants. (The Eniversity Matriculation Examination.)
36. Latin.-The course as prescribed from timo to timo for Honor Matriculation and the University of Toronto.

16. Greel	1	11	18	11	11	11	12	17	11
17. Prench	71	81	31	11	11	11	$1:$	12	11
18. German	14	11	11	11	11	11	12	II	11

90. The subjects for study in Form TV. shall be those now proscribed by the Gniversity of Tornnto for Senior Matriculation, Pass and Honurs. As far as possible, the classes shall be the same as those in Forms II and III.

Commercial Codrse:

100. Candidates for a diploma in the Commercial Courso will bo examined at the same time and place, and on the same papers as candidates for second class non-professional certificates.

Gramgatio: Dirlona.

101. Any Pupil who passes the Departmental or the University exammation in any of the courses hercin prescribed for Forms II., III. or IV., in High Schools, shall be entitled to a Graduation Dip. loma signed by the Minister of Education and the Eead Master of tho High School at which such coursu was completed.
[^1]
Cherfficatis of Atrindasidi ano Cembactar.

102. In addeton to passing the preseribed examination, each candidate for at Grablation Diphomat shall submit to tho Elacation Department, through the Head Diaster, the followiby docmments: (1) A cernticate from the Ilead Naster that the candidate is at High Schoul pupil who has attended for at least one year. (e) A ecrtilicate of character signed by the Head liaster.

: Debsestatos of Duromas.

103. Commencement Exercises should be held in each Hish School or Collegiate lasiatate, at a suitable time during the Autuma term of each year, at which the (imhation Diplomas may be presented to the suceesstul cemblulates.

Duties of Teandiak aso Puris.

102. The regulathons respectine the duties of teachers and pupils in Hioh Schuols shall be the sanm as those athecting teachers and pupis in l'uble Schools, exeept as herein othes wise provided.

10:. The qualifications for the Headntastership of a High School or Colleniate lnstitute shall be (te) : dergree in Arts obtainod after: ! regalar comse of study fromany charteredumiversity in the bratish
 master in a High Schom or in a Colloge or a l'ruate School.
103. After the first dity of July. $1 s 50$, no me shath be deemed
 First Chase Professimall luhhe S:hnal Certatione ; ar andess he be at (raduate in Irts (as abowe), or an Conder-galuate in Arts of at least two years standing, who has obtained a professional eertiticate at a 'lyaning Institute.
104. Any teacher who is not quabified as above, but who, on the first day of July, 15 sio , is employetl ats an disistant in at lligh School or Collegiate Instimte, shail be demen at lesgally yuaditied Assistant for such Hish School, but for no other.

Question Paracr.

The following lines from (ioldsmathis Traveller were given for analysis at the Teacher's Exammation in Algomat and l'ary' Somnd:-
" 13at me not destined such delights to share,
My prine of life m wanderines spent and eare: Impelled with stepls unceasang to pursue Some thetims own that mocks me with the vien : That, like the circle bounding earth :mil skies, Alluges fromiar, yet, as I follow, thes; dy forfunc leads to traverse realass alone, And timd mo spot of thl the world my own.
A complefe anelyse of the forsenine will be gratefally received by all

Ans:nma Treacmen.
Ilease let me know where I can get a bowk entithed - lising Thoughes of (iruat Tibinkers," and oblige
(bros.
Will you please inform me through the Jonnsas. the following:
(1). Are Book-keepnug and Butany requred for :ird class 'Teachers' fexammations. (\because). To whom shoald I now send subscription io
 the Arithmetic Competition?
A. Me(
(1). In 1ss:3, I ohnamed a Third-Class Nom-prefessiunal Certilicate. If I chly tay for my Bufessunal this Fill at the Co. Mondel, will it still hotid geed for ihere yearsafter. (2). Tohow much of the holitiay pay is a seacher who teaches the first six munthe in the year entitled?
K. G. $\mathbf{1 3}$.

Asswems:

 Sew York. Cam le ordered through :my bookseller. $\leqslant i .00$.
A. DicG.--(1). Bumi-keep 1 ng is required. An option is allowed Wetween Phystes and lsotany, (aroups 10 and $1+4$, and the subjects
 hished in this sisuce. Noxt week we will publisht the repuirenents for 'Teachens' Certibicates in fall.
(2). To the Secretary of the Brlucation Dejartment.
(3). Camot give definite answer this week. Ilope to mako anmonncement soom. Holidays have camsed delity.
K. (i. B.--(1). Yes. The l'rofesstonat certilicate holds gend for thre years from the tmo it is mamted without resard to the date of the Non-professional.
(2). That depends upon the acrecment. If the matter is not specilied in the aurecment the teacher is entitled to a sman which hears thesame proportom to a full year's pay which the number of d diys he taught bears to the wholenmaber of teaching days in a year.

The following Answers to (Detestions in No. 2t; (July gad), have heen crowded out of late numbers of the dountiat.

1. Field 10 rods loag, containing 2 acres or 320 squc. rods.
 or 1 :St ft. the perimeter of field, $1085 \div-12=132$. No. of trees.
\because. Cuhic inches of space occupied by balls, $.2031 ; \times 3^{3} \times 1 ; 4=$ 104, 250 s .

Ass.
3. $135 \overline{2} .15 \div 0.20=$ No. of sureleigns.
(i. :3 men and 2 boys do as much in 2 days as $\overline{5}$ buys in if dias, and do 3 timess as much in t date; das as much as lis boys.
is m. $=1: 3 \mathrm{~b}$. 1 boy does the work in $1: 0$ days, 1 man in 9 i; days.
7. Equali\%e the number of women in the two comp mics, and the conditions will stand thas:

E boys do in 2tif days what if w. 4 h. do in :ind. ; do in as much in same time.
$\therefore 12 \mathrm{~b}$. $=$ if w. 4 h. and S boys $=6$ women 1 hoy dees work in 40 days, 1 women in 30 duss. 1 boy +1 women in 17 ! days. Ans.

Ioms Mosen, York Mills, N. B .
When oing in opposite directions the engine passes the train at a spect egnal to sum of the mate of the engine and train, and when going in the sane direction the engine pateses trainat as seed egnal to the rate of the engine minus the rate of the train.
\therefore Sum of mates of engme and train in soce is the length of curine phas length of train, or $i=0$ times lencth in 1 hr.

Difference of vates in 25 , sec. is lenth of engine plus length of frain. We have got sum and ditterence of rates. \because the rate of faster, which is the enuge is 4i:2 tines leneth of both in 1 hour,

 :2! times, Nor. passed per minate= rate of train in miles per hoar. Divile this loy the mumer phessed per homer, wheh is (io times the number passed pur minute, :and the result is the distathes apart of poles.

Thus-if times. $\mathcal{C o}$. p:ssed per minute. fill timesNo. passed per

In.ashot.

Titetate Revicto.

In the Sephemine St. Nionerns tine fayorgte eomerihutors are well re.

 i'lue Minh:

 stoal uf 51

> Cubic fuches contanerd in her. $10: 1=172.2$. $17: 8-!104.750 S=5: 3.210:$.

[^0]: Mr. Edmund 13. Harrison has resigned the position of Inspector of Public Schools for East Kent.
 Four pupils of the St. Gcange P. S. passed very successfuily the receni Entrance Examination, and two former pupils of the school took Third Class certificates. Mr. J. C. Elliut is Head Master.
 The attendance at the Ontario Business College, Belleville, within a short period has cmbraced students frum fifteen different provinces and states. This shows how widespread the reputation of the school has become.

[^1]: - Uernold'a Chemintry in here referred to not as a tcxt-book to bo placed in the hands of Itizh scheol fuptis but an a gutde to the tcarhers, both in methoda of illustration

