CIHM Microfiche Series (Monographs)

> ICMH
> Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographi, ally unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleurCovers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seuie édition disponibleTight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est fiimé au taux de réduction indiqué cl-dessous.

The copy flimed here hes been reproducad thenks to the generoslity of:

Bibliothéque générale,
Université Laval,
Québec, Québec.
The Imeges eppearing hera ere the best quality possible considering the condition and iegibility of the origlnei copy and in keeplng with the fiiming contract spoclfications.

Original coples in printed peper covers ere filmed beginning with the front cover end ending on the last pege with a printed or Illustrated Impression, or the back cover when eppropriete. All other original copies ere fllmed beglnning on the first pege with e printed or lilustreted Impression, end ending on the iest page with e printed or iliustrated impression.

The iest recorded freme on eech microfiche shaii contein the symboi \rightarrow Imeanlng "CONTINUED"I, or the symboi ∇ (meaning "END"). whichover appiies.

Meps, plates, cherts, otc., mey be fiimed at different reduction ratlos. Those too lorge to be entireiy Inciuded in one exposure are filmed beginning in the upper ioft hend corner, ioft to right and top to bottom, es many frames as required. The foliowing diagrems lliustrete the method:

L'oxempleire filmd fut reprodult gráce ala générosité de:

Bibliothèque générale.

Université Laval,
QuÉbec, Québec.
Les Images suivantes ont oté reproduites avec le plus grand soin, compte tanu de la condition ot de le nettoté de l'oxemplaire filme. ot en conformitó evec les conditions du contrat de flimage.

Les exempiaires originaux dont ia couverture en pepior est imprimbe sont flimd́s en commençant par lo premier piot et en terminant soit par la dernibre puge qui comporte une empreinte d'impression ou d'inustration, soit par ie second plat. saion ie ces. Tous les autres exemplaires originaux sont fiimés en commençant par ia promildre page qul comporte une emprainte d'impression ou d'iliustration et en tarminant par lo dernid́re page qui comporte une telle emprelnte.

Un des symboies suivants apparaitra sur la dernidre image de cheque microfiche. selon le cas: is symboie \rightarrow signifie "A SUIVRE". ie symboie ∇ signifie "FIN".

Les cartes, pianches, tabieaux, etc., peuvent être filmés des taux de réduction différents. Lorsque ie document est trop grand pour âtre reproduit en un scui ciiché, il est fiimé à partir de l'angie suṕ́rieur gauche, de gauche à droite. et de haut en bas, en prenant ie nombre d'images núcessaire. Les diagrammes suivants Illustront io móthode.

BF
 21 T686
 INIVERSITY OF TORONTO 2,3 TUDIES

PSYCHOLOGICAL SERIES

Vol. II., No. 1 :
COMBINATIONS OZ COLOURS WITH TINTS
and With shades. by t. louis barber.
STEREOSCOPIC VISION AND INTENSITY
(SECOND PAPER), Br T. R. ROBINSON

THE UNIVERSITY LIBRARY : PUBLISHED BY IBRARIAN, 1905.

$=8$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$
$=$

COMMITTEF OF MANAGEMENT

Chairman: James Loudon, M.A., LL.I., President of the University.
Profegsor W. J. Alfxanoer, Ph I).
Professor I'elham Edgar, Ph.D.
Jrincipal. J. Galbraith, M.A.
Professidr R. Ramsay $\mathrm{W}_{\text {right, M. M., B.Sc }}$
Professor (ieorge M. Wrong, M.A.
General Editor: H H. Langton, M.A. Librarian of the University.

COLOUR AESTHETICS

combinations of colours with tint and with shades

138
F. LUIS BARBER, BAA.

WiTH sll Ulls

 amal thales, is whr present ablijece.

 The roon'n was lighted maformly byy tivlight, and the jutas ments were madle in the afternonons at about the vilme tine in order to secure equal light internity, so that as fat asposible the pheatomenon of Durkinje might not affeet the rennlts. Other comblitoms of diatance from, and ampe with the talse, ete. were kept as miform as pessible. [pon atahle with a sloping tope eovered with black velvet the $2+$ (b)thninations were arranged in two rows, 1 to 12 anci $2+101.3,110,2+$ being under no. 1. Fiad combinition comested if two coloured cards, $83 \times 3.3 .5$ mun., one colour (or its shate or tint an the casc might be) being the same (constant) in all of the at patirs displayed at one tince, He other colour for shatle or tint), called the variable, being that corresponding to the numiser plaed above it. 'lhese varivbles always formed at colour-circle in uninterrupted spectrat under; the co:nbinations were ton thme apart. Iflus it is seen that itcoroling to this method at constant would be combined with each of the 24 virtiables at ench tribl, and in a series of $2+$ each of the $2+$ constants would lse combined with cach of the $2+$ viarialles.

$$
[16:]
$$

There were ten oiscrvers, varying in age and of either sex. They were asked not to consult one another regarding their results, and also to make their judgments from the inmediate impression of tile combinations as frec as possible from distracting associations of other shapes, sizes and uscs that imagination might present. Each observer completed the whole four scries and recorded the numbers of the cumbinations found agreeable. In a sccond and third column were racorded those found most agrceable and unpleasant respectively.

In all experiments the constant was placed at the left of the varialie, and as cach constant appeared also as a variable at the"right of its corresponding constant (previously a variable) each conbination appears in botli ways. Hence, as we combine our results the space-crror is eliminated. To elininate the time-crror the crder in whieh the constants were chosen was not that of the speetrum or any other, but they were seleeted at irregular intervals, so that ihe choices would not result from a similarity of the scries with the onc preceding.

Coln used io colours in lis cxperinents, giving $\frac{10 \times 9}{2}=45$ combinations. Miss Baker and also Miss MacDougall uscd $2+$ colours, giving ${ }^{2+Y}{ }_{2}^{2}=276$ different pairs. Miss Chown used $2+$ colours with 5 greys and black and white, giving $2_{2} \times 7=168$ combinations. In the present experiments the multiplicr is not diminished by 1 , as in Miss Baker's, on account of the colour with itsclf giving no binary combination. The colour with its own shade or tint gives a true combination; hence we have $24 \times 24=576$ in caell of four scrics, or $230+$ different combinations in all. As the number of obscrvers is 10, and as each combination appears twice, thercfore the number of judged combinations is $230+\times 10 \times 24=46080$.

Tables ito iv give a condensed statement of the results. In the horizontal line of figures at the top of the table, and in the vertical line at the left, are the ordinals of the tints or shades and of the colours in full saturation, respectively. All the other numbers are cardinals, and each indieates how [168]
many times the particular colours and tints (or shades), indicated by the eorresponding ordinals at the left and at the top, have been chosen. The columns at the bottom and at the right side of the tables give the totals for the tints (or shades) and for the colours respectively:

Tables I and II refer to combinations of colours and tints; Talles III and iv refer to combinations of eolours and shades. Tables I and in report the "pleasant" and Tables II and iv the "most pleasant" combinations. "Lnpleasant" judgments are not reported here although they are on record.

Since the tables are not easily surveyed it will be convenient to employ curves for the further discussion of the results. For this purpose a curve has been drawn for cach colour, shade, and tint, analogous to those published ly Miss Baker for the individual colours. Of these nincty-six diagrams we can give here only a few samples. Fig. I, for instance, deals with the eombinations of colour 15 with the tints, while Fig. II refers to the combinations of tint 15 with all the colours. It may be mentioned that for other colours the difference between the eurve for the colour in full saturation and that one for the tint differs sometimes more widely than in the present example. In a similar way Figs. III and IV give the curves for the eombinations between colour 15 and the shades, and shade 15 and the colours. The upper curve always refers to the "pleasant," and the lower to the "most pleasant" combinations. In order to see what rôle complementarism plays in these eombinations we ha:e marked in these curves (as also in the later ones) the place of the complementary colours by a cross (+).

In Figure I, and in the eorresponding diagrams for the other eolours, not published herc, the ordinates of the curves are an indication of the frequency with which the fully saturated colour has becn ehosen in combination with the tints. In these diagrams we sce, just as in Miss Baker's, the unmistakable pcaks in the curves for red, indicating a preference for a certain region of the colour eircle, turn, in the orange and yellow, into a more indifferent plateau-like series of smaller

6 Barber : Colours with Tints and Shides

> Table I
> Tints and Coloters.
> Pleasant fombinations.

$[1 ; 2]$

10 B.irber : Colours with Tints AND Su:.r
Table V.
Tints and Cololers.
Pleasant Combinations.

Colours	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1	15	11	20	21	22	23		Tints
ked.	9	17	12	17	18	21	20	22	24	24	30	27	26	20	14	11	15	10					s	9	
Orange	7	12	12	$1 s$	21	$2+$	24	15	15	10	\cdots	15	15	22	20	17	14	15	6	S	\%	12	15	i	
dellow.	12	13	15	20	20	23	30	2.3	17	21	30	20	26	31	27	2	\therefore	28	24	19	25	25	is	19	
Yel.-Green	22	18	17	24	24	19	24	24	$3+$	31	. 3	28	\pm	15	1.3	1.3	14	20	14)	22	22	17	10	23	
Blue Green Blue....	17	15	12	21	16	21	20	22	$2+$	26	31	32	30	31	33	25	12	${ }^{2} 3$	16	24	17	20	21	21	
- Biue.	10	5	5	12	13	15	20	20	21	17	21	16	12	26	19	25	25	17	15	18	8	4	7	5	
	14 23	10	15	15	12 19	19	18	17	14 22	21	22	16	11	21	18	13	28	2	37	37	30	19	1	4	
\pm Purple	23	19	15	18	19	22	26	${ }^{5}$	22	16	23	21	15	21	13	10	11	6	J	5	5	18	${ }^{24}$	23	

B.

Tabie VI.

Table Vilf.
Shades and Cololers.
HEEASANT COMBINATIONS

13.																								
Shades	1	2	3	4	5	6	7	8	"	10	リ	12	1	14	15	16	17	14	17	20	21	22	:;	$\therefore \mathrm{id}^{\text {colours }}$
Red.	15	1.8	22	17	20	35	3.	32	17	22	30	21	25	\because	10	11	1.	11	1.4	12				
Orange....	23	22	30	27	36	17	+2	25	11.	2	-s	24	24	2	25	18	$\because 1$	16	11	21	17	2	17	${ }^{17}$
Yellow	28	${ }^{211}$	31	27	30	3	35	3	23	\therefore	21	\therefore	25	23	22	25	$\therefore 2$	14	17	17	$1 ;$	3.3	31	32
Blue-Green	219 30	23 11	25 16	21	19	13.3	13	27	1.8	18	4	111	\because	26	15	1.	12	11	15	17	14	30	21	21
Hlue.	23	17	14	,	16	23	22	22	1.8	if	18	20	19	20	10	${ }^{11}$	12	15	15	25	is	- ${ }_{\text {S }}$	24	5:
Violet..	20	15	14	18	20	26	24	17	20	16	IS	114	12	14	1.1	,	13	${ }^{14}$	12	11	11	14	119	\therefore
Purple.....	11	16	14	16	18	30	30	20	13	17	25	35	25	20	17	5	\div	11	'	10	20	20	15	10

Tashe Vill

maxima distribut ed over the whole field. The maximman never coincides with the complementary colour. The latter is sometines even very noar the minhum, But in a few esses also it is at a minor maximum.

In one sense the curves are not comparable with those of Biss Bakers, where the coloner cond never be combined with itself, whilst in our experiments the colour combined with a slade or a tint of itself might make a very good ombination. So we see, for instance, that the purples and reddi-h-purples,
h. as evervholy knows, are so dificult to match, have their masimm:n with themselves or their nearest neighbours, and a second maxinum with yellow or grecnish-yellow. Of course, Miss Baker's curves could slow ho such thing, ats the colours combined with themselves would make no hinary combination at all.

In the curves of which ligure II is a sample the frequeney of the selection of a timt with the colons is shown if course, it must by no means be expected that the curves ctose! correspond to those of the forgoing series-thotsh they may show similar features, in so far as the colour yuality is concerned. Thus, for instance, we make the same obervation as regards the non-coincidence of maximum and complementary, and we observe again the above mentioned relations of the purple with itsdif and ydlow.

The third series of eurves of which Figure III is a specinien shows the harmonic qualities of colours in rehation to the shades. Complementarism does not seem to be favoured execpt in the green and the ' ' \therefore, and partially so in the purple. Ilere there are sometimus severai maxima, which for the red colour [178]
are alway in th fdlow or yellow-green. The oratge and yellow colomr, de their maxima decidedly with their own satas or h t'me of mear meighbours-a circmasstance which mi t well be expeeted from the frepteres with which, for "amental purpores in rombe, arehitecture, ete., we the the ex ahinations of difierent shates of yellow or
 howewer, the maxim jumpe to the parple, and for the colours 12 antrl 1,3 we ave the rare cane where the maximum closely concides with the complementary: Tlus, white complementary etwen and purple do not form the natot agreeable combination when in full sat uration, ${ }^{1}$ they do wo when the purple in a she Simile we find at mavimum for the purple colen 23 , 2f tia ee green (11, 12, 1.3), thonglt in this can fow has tittle greater preference. Whate we e that the po ple colours harmonize very well with Fil the we whot sily the same with regarel to ther. to ir ows. tades; on the contrary, their ow: sha. beter 17 th minimum.
 indie "fregut ofe "ifth wheh the shades were chosen in con mation we 1 the en Here we make the simbe

 plementan it a the mimuan. The maxima fall ar : Hlems

14×1	-1:13 leflow
1r.alla + + 11	Orankr-1. ${ }^{\text {a }}$ (low.
Y'ellas	Imple and (ornuse.
ป¢dl m	()rangeyedow.
[14,	l'urple.
Cirer	Orange-vellow a inl l'urple
Blue	VCllow and Crrent and the mini:num witlo itself.
Vinh.	Violer-purple ated liclow.
I'urp!	Yrellow and (ireen.

[^0]What has - en stated with reference to the po eurves of which "1. could only give four examphes will appear ecpually dear in the following plates, contaning ligures V to $\mathbb{X X}$.

These enrves correspond to some extent to the combin. ation curves XXV to NXXVI in Miss Baker's first articte. In these enrese three qualities are alway: combined, thus, Red samde for one, two ant three, Orange for foner, live and six, Sellow for seven, cight and nine, Dellow-green for ten, deven and twelve, Bhegreen for thirteen, fourteen and fifteen, Bhice for sixteen, seventern and eighteen, Violet for bincteen, twenty and iwelly ons, Purple for twenty-two twentertiree and twenty-fons. The numbers for the ordinates of these curves will be fomen in Tables v, vi, wii and viii.

Fach tigure contains fone curves, the nper referring to "pleasant" and the lower to "most pleasant" combinations. In Figure V the plain curves refer to the combinations of the tints with the fully saturated red ($1,2,3$) ; the dotted enrses on the other hand represent the combinations of the fully sathrated colonrs with the tint of red ($1,2,3$). The other figures are arranged similarly.

Figures $\mathcal{N X I}$ and XXll give the grand total or summation carves. In the former the results of the combinations of colours and tints are represented, whilst the latter refens to colours and shades. Analogons to the foregoing figures the plain curves show the degree of harmonizing power of the colots in full saturation, whilst the dotted curves indicate the harmonizing capability of the shades and tints. In these curves the striking difference in the belaviour of slades and tints maniiststs itself at once. For combinations of tints and colours there is a broad mavimum in the middle of the speetrum, it the gells \because yellow-green and blue-green. Froms there the harmonizag power of the tints slopes more or less abruptly down toward the spectral ends, whilst for the colours in combination with tints there are secondary maxima in violet and red, thus leaving the orange and the hlue in a decided, and the purple in a lese pronounced mininum. The
curve fo the "most pleasant" combinations forms in cach

"The pleasam: curve for the " blates and colours" show athont decided maxiantut in the orimge-ycllow ante accondary thaxi:n:1 in the sreen and purple The deepest drop appeare int the blate and violet. This mininmum and the secomblay maxima are more promotheed for the colours than for the shimles. The "unost pleasatht" eurse correspants well with the "pleasimt" in case of the shates, whist for the colours there are thres pointed maximat in the oringe yellow, the yellow greedt ath the blue-greeth, the latter being the highest, with decided drops between them.

The smamation curves as well as the grand totals of Pables i to iv show that in combination with fully saturated colours shates hatye a considerable advantage ower tints. The pleesant combinations of shates and colours execed those of tints and colours by 37.3 which is about 10 per ceut., whilst for the most pledsat combinations a correnpondinge exces of 123 is observed, which amounts to almost 12 per cent.

In Tibles ix, $x, x i$, xii we give a more combersed and conserfuently a more perspienons representation of our results. The grouphing together of three consectutive gtalities is applied here to both sides,-to the colours as well ats to the eints and shades. Hence it is quite easy to survey the 6f licdels of the tables. Thus, for instatuee, in Table ix the lirst horizontal row of mumbers indicates that the power of hatmontazation of red wat the tints of the eight qualities is greatest for yellowgreen, less great for vellow and for blue-green, still less for orange, red, bue and purple and sumallest for violet.

The lirst vertical coluan, on the other hand, shows that the tint of red when combined with the colours in full saturation harmonizes equally well with yellow-green and purple, somewhat lesis with blue-green, yellow and red, still less with orange dut violet and least with blue. So with the other colnmas. Froun the whole table one can see that with recrard to the combination of tints and colours the gravitation of pleasantness is to the middle of the speetrum; whilst from Table [181]
xi it ean easily be deduced that the gravity eentre for pleasantness for shades and colours is deeidedly with the "warm" eolours (orange and yellow). The question in how far the colours agree with their own tints and shades can also be settled by these tables., The best to agree with their own tints, as Table ix slows, are blue-green and violet, next comes yellow-green, then yellow, blue, purple, and the least, red. A glance at Table x shows that the same result can be ascertained from the "most pleasant" juclgments. Tables xi and xii show that it is quite different with regard to shates. The eolours whieh agree best with their own shades are orange and yellow.

Table I.
Tints and Colotrs-"Bheasant."

Colours.	R	Or.	Y'	$)^{\prime}$	13.	13.6	V.	1	Tints.
R.	is	56	66	si	$(10$	$3{ }^{6}$	$11)$	20	37^{6}
Or.	31	6.3	54	52	57	$4{ }^{\prime \prime}$	2	$\therefore 1$	301
Y.	40	6.3	\% 0	71	${ }_{4}$	i4	65	02	53.2
YG	57	67	82	S_{7}	$5{ }^{6}$	47	0.3	50	51.
B.G.	4	58	66	80	102	60	57	62	5.35
	20	40	01	54	57	67	4	16	356
V	27	55	49	50	50	ar)	10.	31	444
P..	57	$5{ }^{19}$	73	60	50	3.3	13	65	410
	34	401	521	553	516	43^{2}	38%	345	$35 \overline{32}$

Tablf $\underset{\text { K. }}{ }$
Tints and Colocrs.- " Most Pheasant."

Colours.	R.	Or	Y Y.	V.G.		B.	\cdots	P.	Tints.
R..	13	I 4	9	28	14	12	7	10	107
Or	12	21	12	16	15	10	$\stackrel{\text { s }}{ }$	14	108
ソ'..	7	26	23	L	30	13	15	21	15.3
Y.G.	16	27	2.3	28	17	15	27	22	175
13.G.	8	10	11	30	47	16	17	19	15\%
B.	3	10	1.3	16	11	32	S	4	97
V..	2	11	9	6	6	25	5°	14	120
P..	13	15	-	21	12	7	1	$3+$	12
	74	1.3 .4	115	16.3	152	120	439	$1+3$	1048

Table XI.
Shades and Cololre.-" I'leasant."

Table XIl
Shades and Colocri- - Most Pleasant."

Colours.	R	O	1	V	BC	13.	V.	1 I.	Shades
	18	27	20	24	23	9	12	14	147
	21	29	$2+$	20	15	13	!	11	139
	23	20	31	16	16	$2+$	17	22	160
V.G.	35	17	:2	. 30	15	15	17	3.5	196
B G.	20	25	20	28	2.3	16	11	20	86.3
	6	11	=	14	4	10	3	1	97
	5	11	11	8	4	11	18	7	85
	10	23	37	2.3	31	1.3	17	21	175
	14.3	$1)^{3}$	210	16.3	15 t	111	(9)	34	1171

[184]

Fig. Ill. Colomr 15 With Shades

Fig. IV. Shinde 15 with Conolers

Fig. MI.-RED, Silades and Comors.

Fig. I:II. Oringr, Shmes and Comotre

*.
\rightarrow

:ss
107

s

$25 i$

50

Fig. Nilli.-Sumathon Curye, Silmeis min Colocrs
-
$*$
"

STEREOSCOPIC VISION

and its relation to iwterstiy and duality of

 LICHT SENSTITON
SlCいNJ スに゚リビった

\qquad

川

T．R．ROH：NSON，H．．．

In the former article ${ }^{1}$ an aecount was given of some experiments upon the application to the two retinas of light stimuli of different intensity. There are some phenomena of equal interest which oceur when the respective parts of the stimulus are of different quality. The presentation of different colour stimuli simultaneously to the two eyes may have various results, according to the degree of difference in the quality of the stimuli. In the experiments now to be described the following questions were kept in view :
(1) Will the results obtained by the previously reported experiments with uncoloured light be essentially altered by the introduction of the colour factor?
(2) What are the limits of possibility for binocnlar mixture of qualitatively different retinal impressions?

1 University of Toronto Studies, Psychological Series. Viol. ii, Non. 2.
(3) How is such binocular mixture of colours related to the stcreoscopic combination of the retinal images, i.e., do differences of colour affect the stereoscopic combination, or, on the other hand, does the stereoscopic combination facilitate or linder the binocular mixture of colours ?
I. COMPARISON OF MONOCULAR AND BINOCULAR INTENSITIES IN COLOURED LIGHT
A few experiments were made upon this point in the course of an investigation by the author in connection with Fechner's paradox, ${ }^{1}$ referred to more fully in the preceding article. Those experiments, however, were comparatively few in number. and made with only one absolute intensity, so that the results were not conclusive. The chief differences from the results with white light were that the judgments were more difficult and less decided, and that the region of equality in intensity between monocular and binocular vision extended over a wider field. The differences between the results of the same two observers were noticeably greater than with
${ }^{1}$ American Journal of Psychology, Vol. wii. No. r. pp. 9 etc.
[187]
uneoloured light, perhaps beeause the intensity values of the colours were not the same for different observers.

A furt' ir series of experiments has been made, following a modifieation of the fermer methot. The apparatus was the same as that used for the experiments in binocular lustre, ${ }^{1}$ execpit that the objeets observed were plane coloured surfaces instead of stereoscopie objeets. On each side were two brightly illmanat d eoloured surfaces, which were combined by means of the stereoseope. Before one of them the episko-tister-dise was revolved, so that tho surfaees differed in brightness, while remaining similar in ás. . . ner respeets. The difference in brightness could, of course, be varied by re-aljusting the dise. The eolour was furnished by eoloured gelatine or thin glass plates placed over the openings in the front sereen of the apparatus, white paper being plaeed opposite them on the sereen or wall at the back. The experiments were made in a dark rom by two observers, who took turns in operating for eaeh other. They began in cach ease with monoeular vision, i.e., by looking through the stereoseope with the shutter eovering the le: before whieh the dise revolved. Then, after the observer had looked for a few moments, the shutter was opened, and he at onee reported whether the brightness was equal to, greater or less than that of monocular vision. A series was made by inereasing the opening of the dise until the raising of the shutter plainly resulted in an inerease of brightness, then by decreasing the opening until monveular and binoeular intensities appeared equat, and still further until the opening of the shutter eaused a just noticeable decrease of brightness. Then the opening of the dise was gradually widened till the equal region was reaehed again and still further till, on the opening of the shutter, there was a just noticeable inerease of brightness. In the results of observer " J " the average of the "equal" judgments is given for each series. The results of observer "H" were ealeulated a little differently, taking the average of the degrees of opening of

[^1]the dise when the judgments were "brighter," "darker" and "equal," the values for "brighter" and "darker" being regarded as the limits for the region of equality. The colours used were from near the middle and ends of the speetrum, being respeetively red, grecn and blue. Similar series were also made with white light for the purpose of comparison. The wave-lengths of the respective colours were approximately as follows : red $615-7+0 \mu \mu$, green $+80-560 \mu \mu$, bluc $+40-500 \mu \mu$.

Certain special difficulties were found in experimenting with coloured light. First, there was the neessity of abstracting intensity changes from saturation changes with inereasing or decreasing illumination. This made the judgments in some cases very diflicult, especially with the blue light. When the opening of the dise was very small there was competition of the vision ficles, that of the darkencl eye having either no colour, or a slight tinge of yellow, due to hinocular contrast. Secondly, the disturbing effeet of afterimages had to be more carefully guarded arainst. Again, each observer found himself able to distinguish differences of brightness more readily with certain colours than with others. Thus the discrimination of "H" was best with green, that of " J " witle red. A further obstacle in the way of comparing the results with different colours is that the same illumination could not be used for all the colours. With the red it was found necessary to use a 100 c.p. lannp, as with weaker illumination the "equal" limits could not be passed in both directions. On the other hand this very bright light had eertain disturbing effects on account of which it was not used with t..c other colours; the fatiguc of the eye was very great, and the after-images gave more trouble. Obscrver " J " noted, however, in spite of these hindrances, that diserimination was less diffieult with red than with white light.

The results of these experiments are given in Tables I and II. They show the same general dependence of the relation of monocular to binocular intensity upon the absolute intensity of illumination as is shown in the experiments with uncoloured light. Difference of quality, therefore, docs not apparently
affect the intensity relations. Where the brightness of the colonred liort: is approximately the same as with red and green, the results show very little difference. On the other hand, the very great difference of average values between blue and red or green may perhaps, not be due solely to the difference of brightness. This indeed seems probable in view of the faet that in the former experiments, where the eolours were of equal brightness, the values for blue were with both olservers higher than those for red.

Table I.-Obserber II.

T:BEL 11 -OBSERVER J

II. BINOCULAR MIXTURE OF COLOURS

The experiments to be deseribed in this seetion were condueted with the purpose of diseovering the effeets of various degrees of difference in quality between the two retinal impressions. There were four series of experiments : (1) the [190]
first serics was made with small coloured surfaces upon a dark lield; (2) in the next series stereoseopic figures against a dark ground were observed, the impressions in the respective eves leing differently coloured; (3) in the third ease, stereoscopic figures were employed, and one retinal image was coloured, the other uncoloured; (4) in the fonrth series, an entirely difierent method was employed, and the colours occnpied the whole vision field, instead of only a part of it.
(1) Plane coloured surfaces upon a dark fich. The colours used were approximately spectrally pure, the surfices observed being of Milton-Bratiley coloured paper, illuninated by light which passed through combinations of coloured gelatines. A stercoscopic picture of the apparatus employed is shown in Fig. 1, and a sehematic representation of it, as seen from above, is given in Fig. 2. Aeross the back of a table, $A, 66$ em. long atd +2 em. wide, is tixed a screen, B, of the same width as the table and 05 em . hish; 18 cm . before this screen is another, C , of similar dimensions. Between these two screens, at the middle of the table there is a partition, D, to enable the right and left halves of the rear sereen to be illuminated independently of each other. The top of the table and the surfaces of the sereens and of the partition are a dead black. Upon the rear screen, two thin wooden dises, E, E, one on each side of the partition, are fastened by screws at the centre only, so that they may be turned at will. The surfaces of these dises are divided into seven sectors, covered with Milton-Bradley coloured papers. The dises are so placed that the inner edge of cach comes close to the dividing partition. In the centre of the front screen, 25 mm . apart, and one on each side of the partition, are two openings, a, a, 45 mim. square, through each of which can be secn a portion of one sector only of the colour dise opposite it. Turning the dises thus brings each colour in succession before the openings. For illuminating the discs there are employed two sheet iron tubes, $F, F, 15 \mathrm{~cm}$. square, and 91 cm . long. The front ends of these tubes are inserted through openings which they exactly fit in the front screcn. The inner edges of the tubes
are 16 cme. apart, and they are on a level with the portions of the dises visible through the smaller openings before deseribed. The latter are thus directly between the openings which admit the ends of the tubes. In order that the tubes may not interfere with the position of the observer before the apparatus, they are placed at an angle so that their outer ends are widely apart. In each tube is a moveable block, litting the inside of the tube, to the front of which is attached a socket for an incandescent clectric lamp. The upper side of each tube has a narrow slit, b, b, running nearly its whole length, through which projects an attachment to the block for affixing the wires which connect with the light socket, and a serew, e,e, for lixing the block at any desired distance oria the ends of the tabe. The front end of each tube is ntted with a groove, d,d, into wheh were slipped frames containing the combinations of gelatines through which the light passed before falling upon the sectors of the dises. During the experiments all other light was excluded from the room. By the use of varying combinations of paper; and gelatines, the speetran was divided into twelve approximately equal divisions. These colours are the same as were used iy Miss Baker in her work upon the aestheties of colour combinations. Their spectroscopical analysis is given below.

Ninmit of Colout	Witis Nanleow sittr		Wrat Whur: slat	
	Viaille part uf nopetrum in $\mu \mu$	legeion of ereatest intenalty in $\mu \mu$	V'isible part of sirectrum in $\mu \mu$	[Rug.on of greatent intellaty in 1μ
Red.	$66.5(?)-592 \cdot 5$	63.5-610	6-2.5(?)-550	$657.5-615$
Orange-Red. . .	$622.5-582.5$	612.5-592 5	6,3.5-580	622.9-502.5
Orange........	$607 \cdot 5-552 \cdot 5$	5*5-562.5	$622 \cdot 5-547 \cdot 5$	607.562 .5
Orange-Yellow.	$5 \times 7 \cdot 5-5+7 \cdot 5$	$562 \cdot 5-557 \cdot 5$	$617 \cdot 5-537 \cdot 5$	$602 \cdot 5-5.5$
Yellow...	580-512.5	$562.5-5.35$	$615-41325$	58-5-555
Yellow-Green...	$565-497.5$	$535-525$	5NO-480	5マ5ー530
Green. . ${ }^{\text {Gre}}$	$542 \cdot 5-492.5$	530-50\% 5	570-480	537.5-517.5
Green-Blue.	$525-472.5$	$512.5-49$	$550-4+7.5$	52,-502.5
Blue. .	570-460	$492.5-475$	$5.35-4+5$	$572.5-4)^{2} .5$
Violet...... . . .	+82,5-4.32.5	$+70-462.5$	+9\%.5-4.30	4-5-455
Violet-Purule ?	$687 \cdot 5-665$	$462 \cdot 5-455$	$\{700-665$	+70-452.5
Purule	$\begin{aligned} & 485-4+40 \\ & 680-6+5 \end{aligned}$		$\begin{aligned} & 1+87.5-430 \\ & 6=0-635 \end{aligned}$	
	$4180-430$			$475-460$

[192]

Their complementary relations are also stated very fully in Miss Baker's artiele. ${ }^{1}$ The purpose of the tubes containing the moveable lamps wats to equalize the intensities of the two eolours by adjusting the distanees from them of the lamps. To faceilitate this adjusturet a certain intensity of the greenblue, a colour of medium intensity. Was taken as the nomal, and the positions of the lamps reguired for the varioms colours in order to give intensities eflual to it were found and marked on the tubes. In a few eases, where one gelatine combination was very much more tramsluent than the other, the lengeth of the tubes was found insumicient, and either a stronger light had to be used for the duller colour or a shect of white tissite paper placed before the front of the other tulse. The lamps, commonly used tiroughout were 32 e.p. A moveable block was placed upon the front of the table in a groowe which cmabled it to slisle backword and forward. To this block was attached an upright upon which was fixed, at the height of the openings in the serent, the hood of an ordinary stereoseope, (i, in which the glasses hard been replaced by others of a somewhat longer foeal distance.

In the experiments the observer take; his seat in front of the apparatus. There are then before hire in the darkened roon tro sintall square coloured surfaces, of different colours, but eguall! bright. Putting lise head into the hood of the stereoscope, he adjusts the latter so that the two coloured surfaces completely coineide. All the facts regarding the colour of the surface seen are then noted, and the colour presented to one of the eyes remaining the same, that before the other is changed, and a new oberration made. This is repeated till the constant eolour has been eombined with each of the othee colours used. Then another colour is taken as the constant colour, and eaeh of the others commined with it. To vary still further the eonditions, with some observers cach eolour was presented to each of the eyes of the observer as the constant colour, so that it was twiee combined with caeh

[193]

Rominson: Stereoscolic Vishon

of the other colours. Four combinations of each colour w each other colour were thas effected for enels observer, ma coltur being presented to each eye onee as the constant colot and onec ass of of the changing series. With other observe the position of the constant colour was changed from right left or zice versa after caela series, but only one series was mat for each colour. So that with these observers only two con binatious of each colour with each other colour were ohtaine Tables III to lill give the combined results of six observer with four of whom the former method was followed, with tw the latter; st that in the experiments which thene tablen - whe marize each of the twelve colours has been combined wit cach of the others twenty thones has been combined witl

TWO YONOCTLARIY SHEN, BIT INCUSY゙INT

Tahil: Vi-Compinte Minturp

	R	OR	0			YG	G	(iß	13	V	V1	1	
K.		20	11	14	,	1		-	-	1	;	14	80
OR	10	io	14	198180	14	6	'	1	1	-	6	12	129
	18	19	20	20	19 20	1.3	6	3	-	1	4	7	110
	7	14	11	: 0	2	is	5	3	\bigcirc	2	:	6	114
IG	1	6	1.3	14	1.		II)	i	\bigcirc	3	:	\bigcirc	08
	1	1	6	5	12	18	11)	15		4	1	2	88
${ }_{1} \mathrm{~B}$	-	1	2	3	3	9	15		20	15	1	\bigcirc	i^{2}
	-	1	-	-	-	1	-	20		2	10	3	9
Vi	1	-	1	2	3	4	-	15	20	\cdots	19	i	\cdots
1	5		4	6	2	1	1	10	14	11	.	17	86
	12		;		\bigcirc	2	\bigcirc	2	3	9	17		72
	s6	${ }^{19} 9$					7^{2}	No	64	ss	80	i2	1050

 phenomina for bath Coholer

	Complete Rivalry	Partial Rivairy.	Inconstant Misture.	Complete Mixture.	
K...	42	66	26		
$\left.{ }_{0}\right)^{1} \mathrm{R}$.	. 35	5.5	28	8	220 220
(\%).	25	55	27	110	220
Y...	:	4.4	. 30	114	$\therefore 20$
	2.3	-0	37	188	220
G...	$\because 5$	8	3	Sn	$\because 20$
B	+0	67	33	$\therefore 0$	220 20
1.	58	0.	36	6.	$\therefore 2$
V1	11	:	- 4 +	8 S	220
1 '	30	\%	4	in	$2: 0$ 220
	372	noo	4 4	1050	26.40

[19.5]

	（iomblete Rivalry．	l＇artial Kıい！	Jnetortant Mixture	$\begin{aligned} & \text { Comblese } \\ & \text { Ilixture } \end{aligned}$
K	7	3	8	$1)$
1）K	V	s	10	10
$1)$	7	\％	13	10
（）1．	－	11	11	10
1	7	X	10	11
$1{ }^{\prime \prime}$	＊	\cdots	11	10
（：	3	10	11	19
$1 ; 13$	\％	1）	1）	7
［3．	S	11	（）	7
1.	7	i	U	10
！1］．	6	1	11	11
I＇．	1）	10	I I	11
	く\％	101	11 ¢゙	11.1

（2）Stereoscopic figures upon a davk pield．In the experi－ ments thus far recorded，the objects observed，though com－ bined by means of the stereoscope，were simply plane surfaces differently eoloured．The question naturally presented itself in connection with this method，whether the results would be different if three－dimensional figures were used instead of plane surface：There are，indeed，two questions of interest here，（1）whether the binocular mixture of colonrs is facilitated or impeded，the rivalry of the vision－fictds intensified or lessened，by the efiort of combining the outlines into a three－ dinensional figure，（2）the question of the effeet whiel differ－ enees of eolour have upon the stereoscopic combination of the figures．In investigating these points，it was，of course， desirable that the method foliowed should conform as nearly as possible to that of the former series of experiments．Ae－ cordingly the same apparatus and the same colours were used， but over the openings for observation in the front of the appar－ atus small spuares of thin plate glass were placed，upon which the sterenscopic figures were etehed．The glass surrounding the drawing was blackened to prevent the transmission or reflection of light．Three pairs of outline drawings were used，one forming a transparent oetahedral erystal，another
on oparque hexaronal erystal, and the third a o meated peramid, with the summit projecting towath the observer. The etchings were made in two ways, whe being on elar glans with frosied lines, others on frosted glass with the lines clear. These bigute are reproduced, as nearly ats possible as they were nsed, in Figs. 3 th 5. The expriments were conducted in the athe manner as thace with phate burfaces, the momber of combinations of cach colonr with cath other colour being in this eare sixtern. The restates as regards the mixture of
 show the effer upon the sterooserpic comblination of the differences in the coblone of the objects.

	R		\bigcirc	(1)	Y	Y;	1		B	V		1	
K		-	-	-	1				;	4	6		
OR.		-	-	:	:	¢	12	,	,		$\stackrel{\square}{5}$	\%	4% 40
\bigcirc	\bigcirc	,	-	\bigcirc	-	1	${ }^{13}$	11	${ }_{17}$	3		7	
\dot{G}	1	2	\bigcirc	\bigcirc		\%		\cdots	$1+$	1.3		1,	
${ }_{\text {g }}$,	:	${ }_{2}^{2}$	${ }_{1,3}$)	$\stackrel{2}{5}$	-	-	5	11	11	15	is	n_{2}
	7	-	\square	12	is	;	1		1	-	10	12	\%
$\stackrel{3}{1}$		0	"'	14	!	11	:			-	2	$1+$	-i
P1	6	;	\%	12	$1 \begin{aligned} & 1 \\ & 12 \\ & 12\end{aligned}$	11			\bigcirc		-	0	0.1
P.	-	\%	\%	a	${ }_{1} 12$	15	18	${ }_{4}{ }_{4}$	${ }_{10}{ }^{2}$	\bigcirc	-	-	8
		40	6		;1			2.3	i.	6	π	8_{4}	

	に	けK	()	${ }^{(1)}$	\dagger	V'i	(i	(ill	'1		(1)	I'	
		\bigcirc	1	1	\&	2	0	0	2	1	¢	0	12
(1)	-		0	-	2	S	2	,	-	1	1	2	18
11	1	-		0	2	6	1	,	-	4	5	7	\therefore
!!	3	\bigcirc	\bigcirc		0	7	1	0	0	-	3	is	10
Y	;	\%	*	\bigcirc		1	4	0	1	8	1	2	dif
11i			\therefore	7	1		2	7	1	3	0	-	10
	\bigcirc	0	1	1	1			d	7	7	\%	1	35
If.	\bigcirc	0	\%	0	n	,	:		1	11	8	1	i8
V"	4	\bigcirc			1	:	;	3		2	\cdots	4	10
B	4	6	4				\%	-	\%	4	1	5	18 +0
*	0	2	7	,	2		,	1	4	7			15
	12	i 8		30			39	33^{8}	10	*	40	35	305

	(rinurle Ris.tis		Inormectars Disture		
K	4"	1:	23	;	- 0
(1R	311	111	14	ir	\div
(1)	20	(i)	\therefore	(1)	\because
$1)$	$1-$	(1)	\therefore	70	\div
YG	7	-	\therefore	-0	1\%0
i;	1.	A	\therefore	11	1:1)
(il3	2if	\cdots	:	$1:$	1:6
13.	';		:-	i i'	170
\cdots	\therefore	6is	4	$\because 1$	10
$V 1$	15	;	50	\% 7	:00
1.	10	4.	35	1%	$1: 0$
	- 0	Noo	208	0 15	216

Resalt of comeur C.minnation.	Prerat:	$\begin{aligned} & \text { atk on } \\ & \text { Impzeri } \end{aligned}$	$\begin{aligned} & \text { fiptery } \\ & \text { Sligh? } \end{aligned}$	A....,.
Complete Rivalry	1	1	1	$1+$
P'artiat K_{1} wry	21	: ${ }^{\text {a }}$	3	:
Incrost. Mixture.	:	21	4	;
Complete Mixit:	-	-	-	\bigcirc
	130	1.	11	",

Re:ul: of Collour C'unthination.	Perfert.	Stpreoscobri EqPiect. Impaired slight.		Sinte.
	27	:	2	1
larimal Risaly	\%0	34	0	1
Intonst.alt Mixtmme..	3'1	*	-	-
Complete Mix:ure .	so	0	0	\bigcirc
	210	3.4	s	2

Ku -ili of Colour Cimbhination.	Stimboscormic Effect. Porlect. Impratere Sight			Nirne.
Complute Kivalry	\geq	$1:$	s	17
I'arial Rivalry.	11	50	ぶ	10
Inconstamt Mixture	20	17	:	-
Cimmple Nixture.	7	-	-	\bigcirc
	107	$8:$	(3)	is

Re‘ult rif Colour 	STEREOSCOMC EHFTCT.			
	Hermet.	Imparir	Slight.	Nu:c.
Complete Kıalrs	30	23	30	in
Prartial Rivalry.	1:\%	150	14	78
Inconvtant slinture	111	(1)	1.	3
Comblete Nixture	3.3	1	0	\bigcirc
	010	211	N6	(1)

Remarks on the tables in sections (1) and (2). The tables group the results in four divisions, aecording to the activity of the colours, i.e., the liveliness and persisteney of the rivalry of the vision-fields, the two extremes being "complete rivalry," where the impressions in the respeetive eyes have qualitatively no influence upon each other, and "complete mixthre," where there is inn entire finsion of the two impressions.

The cases of complete rivalry for plane surfaces and stereoseopic figures respectively are shown in Tables III and IN. These are the only cases where there is absolutely no mixture effeet, and their numbers are comparatively quite small. They are munch less mmerous than the cases of complete mixture, and are not a large proportion of the total. This phenomenon, as might be expected, was most frecpuent where the colours were nearly complementary (there was not any pair of exact complementaries), where abo the cases of complete mixture were least frequent. The proportion of cases of coniplete rivalry was on the whole, slightly greater with stereoscopic objects than with surfaces.

The cases elasified as "partial rivalry," and rexhibited in Tables IS and X are very interesting. They show that evell when there is most pronomeded strife of the vision-fields, there is frequently at the same time a certain mixture effect. Fither one or each of the eompeting colours is molified in the direction of the other, (e.g., red and green being the colonrs, the red appearing more orange-red and the green nearer to yellow) or else, especially where the colours are nearly complementary, one or both will appear paler thann when seen alone, i.e., of less saturation. Comparivon of these two tables shows a marked difference between the results with threcdinensional objects and those with plane surfaecs. The proportion of eases of partial rivalry is decidedty larger with the former than with the latter

Tables V and NI, "inconstant mixture," represent a variety of cases, ranging from those where there was a single colonr, which, when regarded for a time, ehanged slightly toward one or the other of the competing colours and back again, [201]
or toward each in turn, to those in which there was a deeided strife of the vision-fields, but with a mixed colour appearing between the alternation of the competing colours. These phenomena, as will be seen from the numbers in these tables, are comparatively infrequent. There is a decided difference between the proportion of eases of partial misture with threedimensional objects and that with plane surfaces, the proportion being greater with the former.

Tabkes 11 and XII show the cases of emmplete mixture of the colours. These cases are more nomerons than might have been expected, in faet they form a very much larger proportion of the total number of combinations than do any of the others. Complete mixture of colours is not nearly as common with stereoscopic objects as with plane surfaces, showing that the effort required for the stercoscopic combination interferes deeidedly with the complete mixing of the colours, though it has been shown, on the other hand, to produce a partial mixture effect $m \cdots$ frequently than that occurs with plane surfaces.

Four tables of summaries are added, giving the totals of the preceding tables in parallel columns for convenience of comparison. Tables VII and XIII give the total numbers of cases of the occurrence of the respective phenomena. They show that the phenomenon which occurred most frequently with surfaces was that of complete mixture, with stercoscopie objects that of partial rivalry. With surfaces rivalry of modified eolours was the next in order of frequency, and rivalry of unmodified colours in both cases much the least frequent of all. The proportion of cases of complete mixture is larger in Table VII than in Table XIII, but the cases of complete rivalry are also more numerous here. These results have been noticed already in connection with the preceding tables. These combined tables, however, furnish in addition a hasis for comparison of the various colours with respect to the facility or difficulty with which they mix with other colours. Tables VIII and XIV summarize the results from a stightly different view. They show, not the number of times each phenomenon
[202]
occurs with cach of the colours, but the number of other colours the combination of which :"ii: each of the colours results in the production of the ". perave phenomena. These four tables of summarics are ih. . ite 1 graphically in 'u, ves I to IV, in which the abscissa lines represent the the die spectral intervals and the ordinates represent respect: of the number of cases and the number of eolours. The rese th in to numbers of colours and mumbers of wases of ocewronce correspond quite well. The spectral colours near the purpe end are, on the whole, shown to be somewhat more activ, i.e., to mix less readily, than those at the opposite cut. The regions of greatest and of least mixture, however, are found between the middle and the ends. The colour whin mixes most frequently and with the greatest number of of her colours is the same in all the curves, namely, orang-yeilow. From that point the curve gocs somewhat regularly and sharply upward to bluc, whence it abruptly deelines.

Tables \because to XIX show the effect upon the stereoscopic combinatio. of the differenecs in the colour of the impressions in the respective eyes. The results for cach of the pairs of drawings used are given in a separate table, and the combined results in Table XIX. From thesc tables it appears that the combination is seldom much impaired where the colours are not too different to admit of even partial mixture. With rivalry of modified colours the stcreoscopie effect was often completely preserved, and even in a number of cases with rivalry of pure colours. The cases in which there was no stereoseopic effect were comparatively few. (They occurred for the most part only where the competing colours succeeded each other very rapidly). They occurred also mainly, as the talles show, with the etchings upon ground glass, where also the complete mixture of colours was less common. This is no doubt to be explained by the fact that in these cases the eolour cortrast was stronger upon the lines than upon the surfaces.

A fact worthy of note is that with all the observers there appeared occasionally a lustre sim!lar to that produced by [20ヶ」
the combining of black and white objects or surfaces. With this there appeared also usuatly a "transparence" effect, one colour being reported as "seen through" the other. Careful examination of these cases slowed them to be due to slight differences of brightness between the two colours. Re-adjustment of the lights ahways caused the lustre or transparence to disappear. These eases, however, suggest an interesting question regarding the problem of binocular lustre, as they seem to indicate that that phenomenon may be produced with much smaller differences of intensity between the two retinal impressions, where there is also a marked difference of quality:
(3) Mixture of coloured and uncoloured impressions. The apparatus and method employed in this series of experiments were the same as in the two preceding, and the objeets were the same as in the last series, except that while one of the colours before described was behind the drawing presented to one eye, behind that presented to the other was one of a series of greys. Only one pair of the drawings described in section (2) were used, namely, those etched upon clear glass, and forming a transparent octahedral crystal (lig. 3). Six greys of the Prang series were used, selected so as to be about equally graduated in brightness. In experimenting, the colour in use was made of equal intensity with the grey bey adjusting the position of the lamps, in the same mamer as before describet for equalizing the intensity of the two colours in the experiments where different colours were prescinted to the respective eyes. The light illuminating the grey wat passed through a gelatine which excluded any trace of yellow, leaving the light as nearly as possible absolutely colourless. Each of the six greys was combined with each of the twelve colours, the greys being kept on one side. Then the grey and the colour were interehanged, bringing \dagger° grey before the other eye, and the series repeated. Such 'ouble series was made by one observer only, and by anotles al single series. There were thus in all three combinations of cath of the six greys with each of the twelve colours. The total munber of experi[204]
ments was therefore not nearly so great as in the investigation regarding the mixture of coloured and uneoloured impressions. The results, however, are of decided interest. They are in some respects more regular that with combinations of two colours, and exhibit other marked differenees from the former results. The results of one series are given in full in Tables XX to XXV. The results of all three ries are smmarized in Tables XXVI to XXVIII. They are also graphically represented in Curves V to VII. Curve V combines the results in Tables XXVI and XXVII-the results for one observer. Curve VI represents the results for the other observer, and Curve VII gives the combined results of the two observers.

Coboter is Raint Eite.!	Epblt ar Conmmiathan.
	Kivalry at tiret of light grey and brillimt red then of gree and dull oramge, timatly miving
Orange-Red.	to orange of low saturation, hut high intensity Slight rivalry, sulsitling almost immediatciy into light lirown misture:
Orange	
	Same effect as with orange only lighter lyown. Mixture, saturation growing lesis till vellows
Yellow-Green.	Rivalry at first, thent. yellowish misture.
	Mixture, green gradually fading. Final effect goral pea-green.
Green-Blue Hlue.	Nit rivalry. Grey-green, farling to greenish grey. It first rivalry of fluc and grey, theta mixturi. with blue predominating at centre and kres at periplary.
Violet......	Rivalry of lituish grey and pale violet in outer portions: in centre, mixture, greyish wiobet.
Purple.....	strong rivalry of greyish yellow and purple. At tirst rivalry between light grey and purple of less saturition than when seen alone. finally settling into in faint vellow, with at times is suggestion of pink.

Cobohr in Right Eye.	Limfert of Combination
Kel	Strong rivalry at tirst between red ithl grev, then less promounced rivalry letween red and nramgered.
Orame-Kerl Orance	Slight rivalry of grey and orange, then mixture, orange wihdeciled red spots. Finally setes into a brown.
Orange Orange- Vellow	Light lorswn Now rivalry: Nis rivalry. A light grey, with leautiful orange
Vellow	Palc, slighty incomstint wellow.
Yellow-(ireen	Complete mixture, very shathly greenish grey Complete mixture, light peosgreen
(ireen-Blue	Rivalry of grey and hlue. seltling down to a light grey with a tinge of lhwe
10	Dark frey, with slight sugyestion of blue at times.
Violet.......	Rivalry of violet and yellowish grey. Aways some violet in waces.
Violet-Purple	Rivalry of vellowisla grey anm purple. After a
Purple	time grev lissts the longer. Rivalry at lirst of light lorewn and purple, settling into an mustably purnisin lirown.

Table 씨II.-Orserver, P. T. Grey No. 3 in Left Eyf.

Colotr in Rigit Eye.	Efpect of Combination.
Red	No rivalry. A light grey wath slight pinkish tinge.
Orange-Red	No rivalry. Surface bright, with faint tinge of pink.
Orange Orange-Yellow	A faint pink, increasing in saturation. No rivalry; A pinkish white. No rivalry.
Yellow	No rivalry. Mixture appears like a dirty white
Gellow-G	Complete mixture, light green. A very light grey, with a suggestion of
Green blue	No rivalry. An agreeable light hlue.
Blue	Light grey, with suggestion of bue.
Violet.	Rivalry of violet and yellowish grey, the grey predominating.
Violet-P'urple	Slight rivalry at first. Soon becomes a l:ght grey, with suggestion of yellow. A portion of surface is eovered with faint purple. Around periphery is dark blue.
Purple	Over a light brownish surface a slight and indefinite purple moves. Around periphery there is a bluish tinge.

[206]

Contove Is Khatr liva!	
Red	Rivalry of white "ith ral which kradually lecrimes of les saturatiuls
Or.muge-Ret.	Ftint Oramge. An rivalrs.
Or.ange.	Rivairy of white amp pale rell
8chlow -	Complete mixture, pinkish white. Mixture, very licht hi wn
Yellow-Cireen....	perfect mixture. light greetr
	lerfert mixture. pale pex-kreen
Prreeti-ikue. Bhe	Complete mixture, very light hite
「ivket....	Continuous rivalry.
Violet-lurple	Rivalry. Girey appears white. cohbur never covers whole surface, but is stronger around edges.
P'urple	Continuous rivalry. The grey aljubars white

Table XXIV:Observfr, P.T. Grby No. sin Lept liyp.

Colotroin Right Eye.	Effect of Combination.
Red	Strong rivalry of re
Orange-Red.	Kivalry of white and dark brown, brown becoming fainter at each re-appearance
Orange.	So rivalry. Effect is yellowish grey.
Orange- Yell	A distinct yellow, No rivalry.
Yellow-Green	No rivalry, Very faint yeliow.
Green.	No rivalry. Effeet is pea-green
Gre	Mixture, varying from pale: to very decided green. Centre is more green than peripher:
Blue	Inconstant mixture, varying from bluish-white to light blue.
Violet	Strong rivalry of white and violet ; violet never covers whole surface.
Violet-Purpl	Rivalry : grey seems white. Purple is dark,
P'urple.	but only comes over half the surface. Rivalry; first white, then purple, which on disappearing leaves a yellowish tinge, then purple comes again, but disappears quickly.

Rohinson : Stereoscopic Vision

Table ṄXV-Observer, I't. Grey No. 6 in Lept life

Culotr in Right Eyf.	Efrect of Com

[200]

Rerefts: 1. The character of the rivalry of the visionfied diflered in some inportant reppects from that which oceured with two colones. (a) There were no cases of "complete rivalry," i.e., of rivalry of sensations of ghite the ame abaracter an laon in monoenlar vision. lifither the grey was briglater or hat wate tinge of eolone, or the colour was of lew s.aturation or change: in tone, or several or all of these modiheations wemered together. (th) (ramgered, orange, and arange-vellow very frepuentiy, and even ydhow and purple in some e:ber, lecatue lrown or brownisls. This never occurred with red, wheth when modilied appeared less bright, or of lower saturation (i.e., pinkibl) or elanged to onatere red or ormae. It was moticable that the brown effee came not less frepuenty with tie highter tham with the daterergeys. (e) 'The rivalry, wen when very pronomed at first, very frepuently subsided more or less quickly into an inconstant, or exen at periex mixture. (1) The phenomena are accordin. 1. ind intel in the tables in thin seetion upon a different hatio iron that adepterl in the two preceding sections. Inte:et of the completeness of the rivalry, i.e., the absence of any molilication of the competing colours, the criterion is it. permancuce, or the rapidity with which it subsites. The term "inemstant mixture" hass also a slightly different signiticamee trom that attached to it in the former tables. There it was extended to inclute the ean, where there was rivalry, sometimes evell quite promonacel. but xith a mixed colour appearing between the altarani on . $^{\circ}$. . In the present tables it is used only for e: \quad. \quad was no rivalry, berond an utsteadiness of : . . : :...in.
2. Complcie mixture un : . :a. . \because.. ats less common Ham with two colours. '1.:...... ri. to be expected, as in many cases the two ita! 1 more alike than a coloured and an uncolouredin an
3. Comparison of the variou culouts as to the facility with which they mix hinocularly with uncoloured light shows that their relative quicsence is not quite the same when they are combined with uncoloured light as when they are combined
with one another. The regions of most strenuous rivalry, as will be seen by a glanee at Curver V to VII, are at the very ends of the spectrum, and the region where most mixture occurs is about at the middle, the gradation between these extremes being on the whole quite regular. The colour with whieh most mixture oceurred is in each of the eurves shown to be yellow-green. Here the rivalry of the fields was searcely ever very pronounced, and usually did not oecur at all. With violet, violet-purple, and purphe, which appear at or near the maximum, the rivalry was not, perlraps, so nuch more marked than with some other colours, but it was more persistent. The impression did not settle into any one colour so frequently as with otler eombinations.
4. The grey's wh dit mixed best were those of medium brightress. This was the ease in spite of the faet that the intensities of the grey and the eolour used in each experiment were always carefully equalized by the adjustment of the lamps.

5 The wours mostly tembed to beeome fainter when regarded for a time. In some cases, however, they persiste : and in a few instances they even became more pronoureed after a time than at first.
6. In a number of cases with violet, violet-purple and purple the competing grey had a yellow tinge. This oceurred both with the deeper and the fighter greys. As, aceording to the results of Miss Baker, ${ }^{1}$ who used the same colours, violet and yellow-green are about eomplementary, these are probably to be regarded as cases of binoeular contrast.
7. The stereoseopie effect was found to be practically eompletely preserved in almost every ease. The exceptions occurred near the beginning of the experiments when the eyes of the observer, being unused to the conditions, were probably more easily fatigued. When these experiments were repeated later it was found that in every ease the stereoseopic effect was complete.
(4) Mixture of colours covering the entire vision-field. The experiments so far reported were all made with surfaees or

1 Cniversity of Toronto Studies, Psychological Series, Vol, ii, No. i, p. 6. [2:3]
objects eovering only a portion of the vision-field, the remainder being darkened. The following experiments were differently arranged, the colours eovering the whole of the field of vision, so that not only were the colours more extended spaeially, but also the possibility of eomparison was lessened. The apparatus consisted simply of a large pair of goggles similar to those worn by automobilists, but with removable glasses. The frames of the goggles were fitted with grooves, elused at the bottom, but left open at the top, into whieh square glass slides eould be easily inserted. The goggles were fitted elosely to the faee by means of some light fur attached to the baek of the frames, so that they could be adjusted with comfort to the observer, and yet exclude all light. They were held snugly in place by an elastic band whieh went round the head. Two sets of eoloured glass slides were used. One was of mineral-dyed glasses, five in number, the colours being red, yellow, green, blue and violet. The other set was composed of coloured gelatine combinations placed between thin sheets of plain glass. These were twelve in number, and divided the entire speetrum into approximately equal seetions. Slides of uneoloured plate glass were also used. The speetroseopieal analysis of the solours used is as follows :

Spectroscopical Analysis of the Cololrs Used.
I.-Gelatine Colotrs.

[214]
II. -Mineral Colours.

Colour.	Unliminished in Intensity.	Somewhat Weaker	Very Weak.

In experimenting, the goggles, without any glasses in, were first adjusted over the observer's eyes. He then closed his eyes, and a pair of differently coloured glasses were slipped into place by the experimenter. The observer was then told to open his eyes, being eareful to open both at onee, and not at any time to elose one eye alone. Observations were then made regarding the colour of objects both within and without the room. In observing objects outsicle, eare had to be exereised to seat the observer before the window so that there should be no interferenee from the bars of the window sash. If the vertical centre bar of the sash came in the middle of the field it was found that the colours on the two sides were more readily distinguished. The observer was seated at the window at the beginning of the experiments, and looking out reported the appearance of everything in the vision-fiekd generally, i.e., whether darker or brighter than ordinary, or whether there was any definite prevailing colour tone. He then reported the appearanee of prominent objeets in the landseape, such as the sky, trees, a bright yellow house with dark green shutters, a red brick outhouse, snow and grass, grey brick and stonework of the University buildings, a slate roof just outside the window. After this some observation was made of objects within the room. Then the observer was handed two large eards, one black and one white, on caeh of which were arranged in a eirele twenty small dises of coloured paper, mostly of the Milton-Bradley series, of approximately equal speetral differences, and he was asked to give his judgment of several of the colours. Then he was asked to raise [215]
his eyes and tell, as nearly as ine was able, what colours were before his eyes. Finally the observer elosed his eyes, the goggles were removed and he was then direeted to open his eyes, to look with crossed eyes, and to report what after-effect, if any, he saw. Two eomplete series of experiments were made with the gelatine eolours, each for a different observer. In each series ore constant colour was employed, with which each of the others was in turn combined. The series, however, was not carried on uninterruptedly, but other combinations were interspersed, so that the observer was not only ignorant of the actual eolours of the glasses at any time before his eyes, but was not even aware of any constant colour being used. A series was also made with combinations of mineral-dyed and plain! glasses, whieh was not, however, arranged in any definite order. The results of the three series are given fully in Tables XXIX to XXXI.

Three other ohservers also made series of experiments, using the six mineral-dyed glasses only. The results of these are not given in extenso, as their general character is similar to the results obtained by the former observers. None of the results lend themselves very readily to tabulation in more eondensed form, owing to the irregularity of the effects of the combinations of colours upon the colour of objects in the vision-field. The appended summary of results, however, is based upon the reports of the five observers.

Tarle XXIX:-Blée-Grfen (No. 8) Before Right Eye.

Colrur Before Left Ey.	Subject of Repurt.	Resuls.
$\begin{gathered} \text { Re.l } \\ (\text { No. } 1) \end{gathered}$	Colour of Surrounding Objects.	Everything lonked red and brighter than normally. Red lorick wall appeared brighter red. The hands had a suggestion of yellow over them There was no rivalry of the vision fields.
	Colours on Card.	No good green seen at all. No. is (a dark blue) is the only good blue.
	Colour of Glasses.	Cannot tell what colours.
	Ifter-Eiffect With Crosserl Eve	l'rom right eye red, from left greenish.

Colour Before Left Eye.	Subject of Report	Rescluts.
Orange (No. 2)	Colour of Surrounding Oljects.	Everything appeared a little darker.
	colours on Card	No good green or hiue. Nos. 2 and 3 (flark and light red) had lustre.
	Colour of Glasses.	Yellow on right side and blue on left.
	After-Effect With Crossed Eyes.	From right eye hluish, from left eye no colunr.
Orange- Yellow (No 3)	Colour of Surrounding Oljects	(This experiment was performed on a dark hay.) Everything much darker fellow printed house hat lost its yellow colour. Slight rivalry between yellow-green and violet Snow hai a vellow-green tinge. Trees and stone sills of liuildings were tinged whth vinlet, dingy white brick ippeared purplish.
	Colours on Card.	No grod blue. Nos. $1,2,3,4$ and 5 hall lustre. is and 19 (violet and (vislet-purple) were brown with slight suggestion of violet
	Colesur uf Glasses.	Cond mat wh at end of experment, but from memury of first impressions julged violet on left anil vellow-green on right.
	After-Effect With ('ronsed) Eves	From right eye blue, from left nocolour.
Yellow (No. 4:	Colnur of Surcumbling Objects	Koll hick huildins lookel redrer that it was remembered. Shy was bleegreet bellow house was a mixture of vellow atm pink Hamin and face of experimenter lowhed ghastly with volet tinge aromad edges. Dow er hing a little diarker.
	$\begin{aligned} & \text { Coldurs on } \\ & \text { Cart? } \end{aligned}$	Nor red. Red amd oramge dises apperat docolate. "amd - (rrange-vellow . 16.11 vallow(range) were gewh hrowns. 17. an and of (hate virlet. violet, and violet-purple) were dark grey with a tinge of vioket
	riolume of Glansies.	13 lue ont right, greem on left.
	Ifter-Effect With Crossed 1:yes.	From right exe lilue, from left muexthe

[217]

Robinson : Stereoscoric Vision
Table XN:

Coluur Before Left Eye.	Suhject of Report.	Rrsulits.
Yellow. Green (io. 5)	Colour of Surrounding Objects.	Evervthing a little darker. Fellow house appeared dirty yellow with a little green. Sky bluish-green. Face pallid, lips almost colourless. Not the least rivairy.
	Colours on Card.	No red. Ked and orange appeared dark brown or chocolate. No. 14 (hlue-green) appeared hluish-grey.
	Colour of Glasses	Bluish on right, green on left.
	After-Effect With Crossed Eyes.	From right eye purplish, from left eye brownish.
$\begin{gathered} \text { Green } \\ \text { (No. } 6 \text {) } \end{gathered}$	Colour of Surrounding Oljects.	(No sun shining). Everything dark. Snow greenish. Yellow house appeared dirty yellow with a little green. Sky bluish-green. Face pallid. lips almost colourless. Not the least rivalry.
	Colours on Card.	No red. Reds were brown or chocolate.
	Colour of Glasses.	Could not tell at all..
	After-Effect With Crossed Eyes.	From right eye purple, from left no colour.
GreenAlue iNo. 7)	Colour of Surrounding Ojects.	Everything darker. Ked brick wall greyish. Snow darker than usual. Sky had leaden appearance. Hand looked darker than usual with greenish lustre around edge.
	Colours on Card.	No red. Reds were dark brown. No. 13 (very greenish-blue) almost colourless.
	Colour of Glasses.	Blue, but could not distinguish sides
$\begin{aligned} & \text { Blue } \\ & \text { (No. Я) } \end{aligned}$	Colour of Surrounding Objects.	Yellow house looked pink. White and red lrick hoth appeared red. Snow and sky looked blue. face pallid, and no colour in lips at all.
	Colours on Car 1	Nos. 2-5 dark reddish-brown. No yellow on card. 6 and 7 (orange-yellow and yelloworange) were dark brown. No. 9 (greenyellow) was pink. 8 and 10 (yellow and yel-low-green) were dark brown. $: 1$ and 12 (green) were dark grey.
	Colour of Glasses.	Blue on right. Could not tell what colour on left.
	After-Effect With Crossed Eyes.	From right eye green. from left no colour.

Table XXIX-(Continued).

Culour Before Left Eye.	Subject of Report.	Results.
Violet (No. 10)	Colour of Surrounding Objects.	Everything very dark. Ked briek wall fiery red. Sky dark blue. Yellow wall had pinkish tinge. Hands were purplish.
	Colours on Card.	6,7 and 8 (orange yellow and yellow) varied between red and yellow: 2,3 and 5 (red and orange) were very brilliant reds. 4 (orangered) was a beautiful pink.
	Colour of Glasses.	Blue on left, on right could not tell.
	After-Effect With Crossed Eyes.	From right eye greenish, from left eye red.
VioletPurple (No. 11)	Colour of Surrounding Objects.	Everything had purple tinge, and was much darker. Snow was bluish, hands reddish.
	Colours on Card.	No good red, yellow or blue.
	Colour of Glasses.	Left, blue or violet : right, could not tell.
	After-Effect With Crossed Eyes.	From right eye faint red, from left eye green.
Purple (No. 12)	Colour of Surrounding Objects	Shadows from trees and buildings were purpleviolet. Everything darker. Sky pink and blue. Yellow house appeared as without glasses. Red brick wall had some yellow in it.
	Colours on Card.	Green entirely absent. Nos. 2 and 4 had slight lustre. No. 9 (green-yellow) appeared white. No. ${ }^{3} 3$ (green-blue) appeared grey with a suggestion of blue.
	Colour of Glasses.	Blue on right, purple on left.
	After-Effect With Crossed Eyes.	From right eye green, from left eye brown.

[219]

Robinson : Stereoscopic Vision

Table XXX-Yrllow-Grern (No. 5) Berore Lept Live

Colour Before Right Eye	Subject e of Report.	Resclits.
$\begin{aligned} & \text { Red } \\ & \text { (No. s) } \end{aligned}$	Colour of Surrounding Objects.	Whole vision field darker. Slight rivalry of green and pink, but green soon entirely disappeared. Dark yeliow or brown leaves appearell hright yellow. Yellow house brighter. Green lines of note-look were purple. Sky had a purplish tinge, and darker than usual.
	Colours on Card.	Yellows less saturated. Most of the colours purplish
	Colour of Glasses.	On right, purple, on left, could nut tell, but thought yellow.
	After Effect With Crossed Eyes.	From right eye faint red, from left, green.
Orange (No. 2)	Colour of Surrounding Objects.	Everything darker. Some rivalry at tirst Later, colours blended, and appeared sonnething hetween reil and purple. Fellow house was lighter yellow.
	Colours on Card.	18, 10, and 20 (violet, violet-purple and purple) hat nearly lost their volet or purple tone, and were of a dingy hese. Non 6 (orange-yellow) was between hrown and lark yellow
	Colour of Glasies.	On right violer, on left could not say.
	After-Effect With Crossed Eyes	From right eye violet, from left no colour
$\begin{aligned} & \text { Orange } \\ & \text { fell } \\ & \text { (Now } \end{aligned}$	Colour of Surrounding Objects.	(Sun shining hrightly). Everything has a vellow tint. Slight rivalry at first, but swan ceased. Green fir-tree dark green, but more yellowgreen where sun shines on it. Rell brick wall itpleared dult reddish-brown.
	Colours on Cird.	Creens nearer vellow, Blues more puarinh.
	Cilosur of Glansers.	Shight vellone tinge. Could wos dictimguish hetween the two niles
	After-1:ffect	None from either eye.
Vellow (No. 4)	Colour of Surrounding Obyects.	Everything hill bright velhow tint lellow hutue as usual. Non rivalry.
	$\begin{aligned} & \text { Colvurs on } \\ & \text { ("art! } \end{aligned}$	(ireeps mure haish. Now 2 and ; hatl slight histre.
	Crimetr of Chasces	Buth aves hat yellow ghasees

Table XXX-(Contincem)

Colour Befure Right Eye	Subject of Report.	Restilts,
Green (...o. 6)	Colour of Surrounding Objects.	Sky dark lhuc. Hand pallid.
	Colours on Cards.	Red and orange appeared brownish. Two cards, one black, the other white. with the same colours on, heing shown, the colours were ubserved to show up better on the dark sard.
	Colour of Glasses.	On the right side light blue, on left, yellow.
	After-Effect	From right side a slight pink, from left side yellow.
GreenBlue (No. \%)	Coluur of Surrounding Objects.	(Experiment performed in bright sunsline.) Everything tinged with yellow green, and seems rull. Yellow house appears as usual. Cannot distinguish red bricks of the barn as red.
	Colours on Card.	Discrinination much the same as without glasses.
	Colour of Glasses.	Could not say decidedly, but had a vague impression of green.
	After-Effect.	No after-effect.
Blue Green (...o. 8)	Colour of Surroumling Objects.	Ewerything much darker, and hat a slight yellow tinge. Fellow house was quite yellow. Snow where sun shining on it was bluish
	Colours on Card.	Rerls appearel dark brown, so dark as to be almost without colour.
	Coloter of Glanses.	Blue on right, yellow on left.
	After-Effect.	From left eye violet. Nio after-effect from right eye.
$\begin{aligned} & \text { Blue } \\ & \text { (No. }) \end{aligned}$	Colour of Surrounding ©hyocts.	At first sight rivalry between bute and green. which sonn ceaned. Snow and vellow building hat normal apparance sky appared dark blate. (It was really light bue-grey) Hand hase a pallid appearance.
	$\begin{aligned} & \text { Cosfourson } \\ & \text { cird. } \end{aligned}$	No. a appeared dark hrown. No. 1 dark dirty hine-green.
	Colnur of diasses	Could wot tell what emburs he had on his eves, hut there seemed a tinge of blue over the visionfiedt
	After-Effect.	Norafter-effect.

Robinson : Stereoscopic Viston

Table XXX-(Continuen).

Colour Bafore Right Eye.	Subject of Report.	Results.
Violet (No. 10)	Colour of Surrounding Objects.	Everything had a hazy appearance with a little violet tinge. Yellow leaves seemed very bright yellow. Yellow house had a slight tinge of green. Hands looked a little darker than usual. Occasionally. looking past the edge of any object. e.8, chimney, there appeared a purplish tinge approaching red. The violet tinge to everything disappeared and again re-appeared. On its re-appearance, the hands had a distinct purple tinge, and experimenter's lips were slightly blue.
	Colours on Card.	No. 12 (green) was yellow with slight greenish tendency. No. 17 (blue-violet) was "dark blue."
	Colour of Glasses.	On right, light blue, on left could not tell.
	After-Effect.	Violet from left eye, noeffect from right eye.
Purple. (No. 12)	Colour of Surrounding Objects.	(Experiment performed on a dull day.) A purplish tinge over everything. gradually growing lighter: right sile a little ilarker than left. Dark yellow leaves appeared l,right yellow. Face looked death-like, lips as thougl almost bloodless.
	Colours on Cari.	No. 1 appeared bronze or hrownish-orange. No. io (yellow-green) was a pale yellow. No. 12 (green) was yellowish-blue. Sirght lustre from Nos. 2 and 3 .
	Colour of Glasses.	On right, light pink, on left, very light pink.
	After-Fiffect.	No after-effect.

Table XXXe.

Colour		Stulject of Report.	Resulis.
Right Eye	Left Eye.		
		Colour of Surrounding Oljects.	The whole vision-tield had a purplish tinge. and the light was dimmer. Grass where sun shone on it was more yellowish than usual. The evergreen tree was almost black. The relation of white and yellow in the yellow house (comice. etc., white) was about normal, the colour being darker than remembered. Sky appeared purplish. the colour being more prominent on sudlenly turning to look upat it. Hands had an unnatural appearance, hardly describable.
		\qquad	$r_{\text {annot tell anything ahout colout of glasses. }}$ Very bright, but no after-image \qquad
		Colour of Surrounding Objects	Sky seemed a brownish.red, getting darker. Yellow leaves seemed lark hrown in centre.
		colours on Card.	No 20 (purple) was purplish-red. II (gretn) was normal.
		Colour uf Glasses.	On right a slasle of red, on left, green.
		After-Effect.	Indefinite impression of colour. quickly disappearing. No distinction betwern the sides
		Colour of Surro ling Olyects.	This experiment was performed on a dark day. There wa; a pinkish tinge gradually growing lighter, the right eye being a little darker that the other. The dark yellow leaves appear light yellow. The experimenter's face appeared corpse-like, the lips hlow'less
		Colours on Card.	Nos. 2 and 3 had lustre.
		Colour of Glasses.	On right eye light pink, on ieft, very light pink.
		After-Effect	Only effect is that on removing glasses everything is brighter.
		Colone of Surrounding Objo-'ts.	This experiment was performed on a dull day. On opening the eyes the right eye seemed to have a shatle of yellow the left having a very slight tinge of the same colour The effect on the right cye seemed to le growing weaker

Tamir XNXI - Conrinurin

Cobruar.		Suliject of Kepmert	Krstiots.
$\begin{aligned} & \text { Kight } \\ & \text { Eyue } \end{aligned}$	l.eft Fyc		
		coblour of Glissex.	In right eye light yellow, in left very interinite, and could not tell what colour if aty:
		After-Effect	After removing glasses and blinking, very faint tinge of purgle (negative after-image).
		Colour of Surrounding Objects.	On opening the eves the vision-tield sermed minewhat darkened. Kivalry of vellow and blue followed.
		Colours on Cars.	So. 13 (green-blue) was a pale bluc. lint with no green in it No. 13 (a green near to yellow) was quite yellow.
		Colour of filassed.	On right violet or blue, on left, cannos tell.
Gelatine Orange (..o. z)	Mineral Green.	"nlour of Strroumding Objects	Everything apleared lrighter, with pink shade. The yellow house is rather a dark yellow. The colour of the (greell, shutters conid not be determinets. The experimenter's face had a bluish tinge, as if cold
		Colsure on ('arl.	Keds had lustre effect: No. 10 (vellow green) was light green: Wis a greyish the
		Cobour of (ilisenes	On norht eve blue, on left, green

Summary of Results. 1. Competition or rivalry of the dision-fiedds is never prominent. In same cases, on first opening the eyes there was a slight struggle of the impressions, but this soon ceased, and after a few moments the competition was no longer observable. The obscrver was frecpuently unible to distinguish between the colours of the two glasses, even when attending exclesively to this point.
2. The result of the mixture of the two impressions was not usially, as with the former methon of binocular mixture, to produce a colour midway between the two that were combined. Sometimes the total impression would be quite near
to the quality of one or other of the monocular culours, but evell whell it was quite unlike either of them the result was not always that produced by other methorls of mixing.
3. The colour quality of the impression was usually very vague. Coloured objeets in the fied of vision were noticed to have a different appearance from that remembered, but the attempt to tell what was the eolour of the glasses before the eyes was seldont successful. Often it was oaly concerning one side that the observer could fri: or elecided opinion. Setdom did lis judginent correspo if i, the objective facts. Sonectimes le would be right as to one of the colours, but wrong as to the other. And even when approximately corret as to the colours of both glasses, he would often be mistaken regarding the eyes before which the respective colours were presented.
4. The rather frequent appearance of a lustre effeet is noteworthy. This phenomenon appeared only upon red or orange-coloured surfaces (except once or wice with purple) of small area. It was mostly upon the small coloured dises on the eard that it was noticed. It was, however, quite plainly seen upon the very small, bright red leaves of ivy growing rount a stone chimacy just outsite the window.

1II. STEREOSCODIC LIOSTRE FROM DIFFERENCI: OF INTENSITY AND OF COHOLR BETWEEN THE RETINII. MMIGES.
In the previous article, dealing with the intensity relations of stereoscopic vision there were described some experiments upon the production of lustre by diferences of brightness between the images in the two eyes. A further problem in that comnection was suggested by the results of the experiments in binocular mixture of colours, reported in a preceding section of the present articte. Is mentioned there, there oceured quite frequently a histre effect, which, upon choser examination, appeared to be due to differences of intonsity so stight as to have otherwise passed unnotied. In the

[^2]
experiments upon stereoscopic lustre with uncolourcd light, such very slight differences of brightness had not been found to produce the phenomenon, so that it seemed probable that the cffect would appear with smaller differences of brightness where there is also a decided difference of colour. This question was investigated by a method similar to that employed in the experiments with white light, the only difference being that on the rear wall of the apparatus, in place of the squares of white paper and black velvet respcctively, there were placed squarcs of differently coloured paper. The objects were, as before, ctchings on plate glass (Fig. 4). The two pairs used both formed truncated pyramids with the apices toward the observer. Seven colours were used, chiefly of the Milton-Bradley serics, viz., red, orange, yellow, grcen, blue, violct, and purple. These were illuminated by an 8 c.p. incandescent electric lamp on eachside of the apparatus. The colours obtained by this arrange-ment were of coursc by no means spectrally pure, but they possessed the additional interest of bcing more like the colours commonly seen. The spectra reflected by the papers under the prevailing conditions of illumination, and their comparative intensities, were as follows :-

Name of Culuur.	Comparative Intensity:	Portion of Spectrum Visible in $\mu \mu$
Red....	360	$\begin{aligned} & 680-480(640) \\ & 670-550(590-600) \\ & 670-500(570) \\ & 650-500(530-540) \end{aligned}$ Whole spectrum dimly visible (500). Whole spectrum visible-yellow and yel-low-green very weak. Whole spectrum visible-yellow and green weak.
Orange......	360	
Green.	310	
Blue.	320	
Violet	125 180	
purple	180	
	180	

One colour being placed opposite the inncr lens of the stereoscope, i.e., the one before which the episkotister dise revolved, and a different one opposite the other lens, the disc was then adjusted to admit only a single degree of light, and the amount gradually increased to the largest amount that
the disc was capable of admitting, viz. 320°, at which point no difference could be noticed between the effect and that of the full light. Then the colour on the unobscured side was replaced by another, and so on until all of the other six colours had been combined with the partially obscured une. Then another colour was placed behind the disc, and cach of the others combined with it, as beforc. By this means cach of the seven colours, in all degrees of brightness, was combined with cach of the others. The results are summarized in Tables XXXII to XLV, which show also the amounts of light which had to be admitted through the disc for the production of any, and of complete stereoscopic combination. With regard to lustre also, the figures indicate the smallest opening of the disc with which it appears at all, and the least opening with which it is completc. Wherever the lustre was reported as "decided" or "perfect" it continued so, as the opening of the disc widened, even up to 360°. The colour named in the heading of the table is in each case the colour before which the episkotister was rotated; the colours indicated in the first column of the tables are those combined with it.

Two series were also made in the same way, combining white with coloured light. In one of these the white was behind the episkotister, and the colour remained constant in intensity, in the other the white was constant and the colours behind the disc. The results are shown in Tables XLVI-XLVII.

Table XXXII.-Red. Observer, W.A.M.

Compared	Opening of the Episkotivter Disc.	$\begin{aligned} & \text { Ratio of the in- } \\ & \text { tranaities of the } \\ & \text { objects presented } \\ & \text { to the respective } \\ & \text { Eyes. } \\ & \hline \end{aligned}$	Luatre.	Stereoscopic Effect.
Orange.	$\begin{aligned} & 10^{\circ} \\ & 20^{\circ} \\ & 40^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{array}{r} 36.00 \\ 18.00 \\ 9.00 \\ 6.00 \\ \hline \end{array}$	None. Slight. Brighter. Good.	Partial. Do. Good. Do.
Yellow.	$\begin{array}{r} 30^{\circ} \\ 60^{\circ} \\ 100^{\circ} \end{array}$	10.33 5.16 3.10	None. Slight. Decided.	Imperfect. Good. Do,
Green.	$\begin{array}{r} 8^{\circ} \\ 10^{\circ} \\ 60^{\circ} \\ 100^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 40.00 \\ 32.00 \\ 5.33 \\ 3.20 \end{array}$	None. None. Slight. Pertect	Partial. Complete. Do. Do.
Blue.	$\begin{aligned} & 10^{\circ} \\ & 20^{\circ} \end{aligned}$	$\begin{array}{r} 12.50 \\ 6.25 \end{array}$	3 None \} occurs.	Partial. Good.
Violet	$\begin{aligned} & 10^{\circ} \\ & 30^{\circ} \end{aligned}$	$\begin{array}{r} 18.00 \\ 6.00 \end{array}$	None \} occurs.	Partial Good.
Purple	10° 40	$\begin{array}{r} 18.00 \\ 4.50 \end{array}$	None. \}occurs.	Partial. Good.

Table XXXIII.-Orange. Observer, W.A.m.

Compared Culour.	Opening of the Episkotister Dise.	Ratio of the intensities of the objects presented to the respective Eyyes.	Lustre.	Stereoscopic Effeet.
Red.	$\begin{array}{r} 6^{\circ} \\ 12^{\circ} \\ 40^{\circ} \\ 160^{\circ} \end{array}$	$\begin{array}{r} 60.00 \\ 30.00 \\ 9.00 \\ 2.25 \end{array}$	Nonc. Do. Slight. Distinct.	Poor. Distinct. Do. Do.
Yellor:	8 20	$\begin{gathered} 38.75 \\ 15.50 \end{gathered}$	$\}$ None occurs.	With effort. Goud
Green.	10°	$\begin{aligned} & 32.00 \\ & 16.00 \end{aligned}$	$\} \begin{aligned} & \text { None } \\ & \text { occurs. }\end{aligned}$	With effort. With ease.
Blue.	$\begin{array}{r} 8^{\circ} \\ 50^{\circ} \\ 60^{\circ} \\ 90^{\circ} \end{array}$	$\begin{array}{r} 15.62 \\ 2.50 \\ 2.08 \\ 1.38 \\ \hline \end{array}$	None. Do. Slight. Decided.	Partial. Good. Do. Do.
Violet	$\begin{array}{r} 10^{\circ} \\ 30^{\circ} \\ 70^{\circ} \\ 120^{\circ} \end{array}$	$\begin{array}{r} 18.00 \\ 6.00 \\ 2.57 \\ 1.50 \\ \hline \end{array}$	None. Do. Faint. Uncertain.	Poor. Good Do. Do.
Purple.	$\begin{array}{r} 10^{\circ} \\ 30^{\circ} \\ 70^{\circ} \\ 100^{\circ} \end{array}$	$\begin{array}{r} 18.00 \\ 6.00 \\ 2.57 \\ 1.80 \end{array}$	None. Do. Slight. Decided.	Fartial. Complete Do. Do,

Table XXXIV.-Yellow. Observer, W.A.M.

Compared Colour.	Opening of the Epinkotifter Dise.	Ratio of the inrensitien of the objects presented to the reapective to the renper.	Lustre.	Stereoneopic Tiffeot.
Red.	$\begin{aligned} & 10^{\circ} \\ & 15^{\circ} \\ & 30^{\circ} \\ & 40^{\circ} \end{aligned}$	$\begin{aligned} & 41.80 \\ & 24.64 \\ & 13.93 \\ & 10.45 \end{aligned}$	None. Slight. etter. c 2od.	$\begin{aligned} & \text { Partial. } \\ & \text { Do. } \\ & \text { God. } \\ & \text { Do. } \end{aligned}$
Orange.	10° 30°	$\begin{aligned} & 41.80 \\ & 13.93 \end{aligned}$	$\}_{\text {None }}^{\text {occurs. }}$	Partial. Gord.
Green.	$30^{\circ} 0^{\circ}$	37.16 12.38	Slight. Good.	None. Partial. (Never becomes perfec \downarrow
Blue.	$\begin{aligned} & 6^{\circ} \\ & 15^{\circ} \\ & 60^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{array}{r} 24.19 \\ 9.67 \\ 2.41 \\ 1.61 \end{array}$	None. Do. Slight. Decided.	Poor. Good. Do. Do.
Violet	$8^{8} 5^{\circ}$	$\begin{aligned} & 25.80 \\ & 13.93 \end{aligned}$	$\left\{\begin{array}{l}\text { None } \\ \text { occurs. }\end{array}\right.$	Partial. Good.
Purple	$\begin{aligned} & 6^{\circ} \\ & 15^{\circ} \\ & 70^{\circ} \\ & 90^{\circ} \end{aligned}$	$\begin{array}{r} 34.83 \\ 13.93 \\ 3.15 \\ 2.03 \end{array}$	None. Do. Slight. Good.	$\begin{aligned} & \text { Partial. } \\ & \text { Do. } \\ & \text { Perfect. } \\ & \text { Do. } \end{aligned}$

Table NXXV.-Green. Observer, W A.M.

Comparel	Opening of the Episkotinter 1 bise.		Luntre.	Steremeupic E:ffect.
Red.	$\begin{array}{r} 10^{\circ} \\ 20^{\circ} \\ 60^{\circ} \\ 100^{\circ} \end{array}$	$\begin{array}{r} 39.75 \\ 19.87 \\ 6.65 \\ 3.97 \end{array}$	None. Do. Slight. Perfect.	Partial. Complete. Do. Do
Orange.	$\begin{array}{r} 10^{\circ} \\ 40^{\circ} \\ 60^{\circ} \\ 160^{\circ} \end{array}$	$\begin{array}{r} 39.75 \\ 0.05 \\ 6.65 \\ 2.49 \end{array}$	None. Do. Little. None.	Inconstant. Perfect. Do. Do.
Vellow.	$\begin{array}{r} 8^{\circ} \\ 15^{\circ} \\ \hline \end{array}$	$\begin{aligned} & +3.60 \\ & 23.25 \end{aligned}$	1 No decided 1 lustreappears	Partial. Good.
Blue.	8°	17.57	None $\}$ appears.	Complete effect appears at once
Violet.	$\begin{array}{r} 8^{\circ} \\ 20^{\circ} \end{array}$	$\begin{aligned} & 25 \cdot 31 \\ & 10.12 \end{aligned}$	\|No appearance of lustre lat all.	Imperfect. Complete.
Purple.	$\begin{aligned} & 15^{\circ} \\ & +0^{\circ} \\ & \hline \end{aligned}$	$\begin{array}{r} 13.50 \\ 5.06 \end{array}$	1 None 1 appears.	With effort. With ease.

Table NNAVI-Blice Observer, Wi.M.

Comarel			Lutre	Sturemempic Fifeet
Red.	$\begin{aligned} & 10^{\circ} \\ & 10^{\circ} \\ & 50^{\circ} \\ & 10^{\circ} \end{aligned}$	$\begin{aligned} & 70.72 \\ & 20.7 \\ & 12.96 \\ & 11.52 \end{aligned}$	Nune. D) Little. None.	loor. Partial. With adort lerfect.
Oravge.	$\begin{array}{r} 20^{\circ} \\ 10^{\circ} \\ 10^{\circ} \\ 222^{\circ} \end{array}$	$\begin{gathered} 51.84 \\ 17.25 \\ 11.52 \\ 4.81 \end{gathered}$	None. Little. Better. Very good	P'artial. Complete. Do. Dis.
Velluw	$\begin{gathered} 6^{\circ} \\ 10^{\circ} \\ 40^{\circ} \end{gathered}$	$\begin{array}{r} 148.80 \\ 89.28 \\ 22.32 \end{array}$	None D: Slight. (Never becomes good.)	Partial Complete Do
Green.	$\begin{array}{r} 15^{\circ} \\ 60^{\circ} \\ 1 \$ 0^{\circ} \end{array}$	$\begin{array}{r} 61.48 \\ 15.36 \\ 6.55 \end{array}$	None Little None	With effort. (Never comline perfectly.)
Violet	$\begin{array}{r}60 \\ 15^{\circ} \\ \hline\end{array}$	$\begin{aligned} & 86.40 \\ & 34.56 \end{aligned}$	(None inppears.	Difficult. Perfect.
$\mathrm{Parb}^{\text {u }}$	60°	8.64	Noac.	With effort, and so throughout.

Romisson : Stmatoscome lismon

Cimprarel			$1.12-150$	
Recl	$\begin{array}{r} 70^{\circ} \\ 110^{\circ} \end{array}$	$\begin{array}{r} 10.26 \\ 5 \quad 4 \end{array}$	Winne.	1'15: i..1 (inntictre.
Oramge	$\begin{gathered} 30^{\circ} \\ 80^{\circ} \end{gathered}$	36100 10.25	\} Nome.	$\begin{aligned} & \text { l'arial } \\ & \text { Cinythe. } \end{aligned}$
Yellow	$\begin{aligned} & 40^{\circ} \\ & 10^{\circ} \end{aligned}$	15.50 10.30	; Xunc.	
Greern.	$\begin{aligned} & 20^{\circ} \\ & 30^{\circ} \end{aligned}$	$\begin{aligned} & 32.00 \\ & 21.33 \end{aligned}$! None	I'arti.a\|
[3lue.	$\begin{aligned} & 10^{\circ} \\ & \therefore 0^{\circ} \end{aligned}$	$\begin{aligned} & 8.3 .3 \\ & 8.12 \\ & \hline \end{aligned}$	Nune.	l'arimit. Crimplere.
Purple.	15 40 40 100°	$\begin{array}{r} 24.00 \\ 1.00 \\ 4.00 \end{array}$	None. Sight Viry fair	1'ia: s.al Better Complete

Table NXNVIIL-icrplf. Observer, W...

Compareal	$\begin{aligned} & \text { Oluphing of the } \\ & \text { Byinknotiveter } \\ & \text { inve. } \end{aligned}$		L. u atre.	Sture westice Eitrert.
Red.	$\begin{aligned} & 20^{\circ} \\ & n 0^{\circ} \end{aligned}$	$\begin{array}{r} 36.00 \\ 8.00 \end{array}$! None.	I'ar:ial. Gorld
Orange.	$\begin{array}{r} 20^{\circ} \\ 610^{\circ} \\ 10^{\circ} \\ \hline \end{array}$	36.00 1200	None. Slight. Deciderd.	limperfect Complete. [) !
Yellow.	$\begin{array}{r} 30^{\circ} \\ 70^{\circ} \\ 100^{\circ} \end{array}$	\therefore	None : ione . Slight. (Never becomes grool	Partial. Geral. Do
Green.	$\begin{array}{r} 80^{\circ} \\ 120^{\circ} \end{array}$	$\begin{aligned} & 8.00 \\ & 5.3 .3 \end{aligned}$	'None.	l'artial. Perfect.
Blue.	60°	4.16	None.	At once complete.
Violet.	$\begin{aligned} & 10^{\circ} \\ & 20^{\circ} \\ & .0^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{array}{r} 36.00 \\ 18.00 \\ 12.00 \\ 6.00 \end{array}$	None. Slight. Do. Goorl.	$\begin{gathered} \text { Pirtial. } \\ \text { Do } \\ \text { Good. } \\ \text { Do. } \end{gathered}$

Tahle XXXIX-Red. Observbr, P.B.T

\begin{tabular}{|c|c|c|c|c|}
\hline Compared \& Opening of the bive. \& \& 1.u*tre. \& Steremengie Eiffet. \\
\hline Orange. \& \[
\begin{array}{r}
10^{\circ} \\
123^{\circ} \\
30^{\circ}
\end{array}
\] \& \[
\begin{aligned}
\& 36.00 \\
\& 29.60 \\
\& 12.00
\end{aligned}
\] \& \begin{tabular}{l}
None. \\
Slight \\
Gond.
\end{tabular} \& Partial. Do. Complete. \\
\hline Yi...uw \& \[
\begin{aligned}
\& 10^{\circ} \\
\& 20^{\circ} \\
\& 50^{\circ}
\end{aligned}
\] \& \[
\begin{array}{r}
31.00 \\
15.50 \\
6.20
\end{array}
\] \& None. Slight. Good. \& \begin{tabular}{l}
Complete \\
Do. \\
Di.
\end{tabular} \\
\hline Green. \& \[
\begin{aligned}
\& 12^{\circ} \\
\& 20^{\circ} \\
\& 10^{\circ}
\end{aligned}
\] \& \[
\begin{array}{r}
16.66 \\
16.00 \\
4.00
\end{array}
\] \& None. Do. Partial. \& Slight. Gonod. Do. \\
\hline Blue. \& \begin{tabular}{l}
10 \\
\(23^{\circ}\) \\
\\
\hline
\end{tabular} \& \[
\begin{array}{r}
12.50 \\
5.43
\end{array}
\] \& \[
\begin{aligned}
\& \text { Ninne. } \\
\& \text { Du. }
\end{aligned}
\] \& Partial Complete. \\
\hline Violet. \& \(60^{\circ}\)

7
33°

30° \& $$
\begin{array}{r}
30.00 \\
10.28 \\
6.00
\end{array}
$$ \& Nione. Do. Good. \& Partial Complete Do.

\hline Purple. \& $$
\begin{aligned}
& 15^{\circ} \\
& 30^{\circ}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
12.00 \\
6.00
\end{array}
$$
\] \& None. Do. \& I'artial Complete.

\hline
\end{tabular}

Table XL.-Orancer Oaskiver, P.B.t.

Compinead Cobour.	Opening of the Epiakninter Dime.	Haltu of the intenalies of the objectn preqented to the rensmelive нуем.	I.uvere.	Sieringeopic Effect.
Red.	$\begin{array}{r} 6^{\circ} \\ 150^{\circ} \end{array}$	$\begin{array}{r} 60.00 \\ 2.40 \end{array}$	None *Traces.	Complete.
Yellw	$\begin{aligned} & 10^{\circ} \\ & 20^{\circ} \end{aligned}$	$\begin{aligned} & 31.00 \\ & 16.50 \end{aligned}$	Nione Do.	Partial. Complete.
Green.	$\begin{aligned} & 10^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{array}{r} 32.00 \\ 5.33 \end{array}$	None. Same, never becomes grod.	Complete. Do.
Hlue.	60 12° 20°	$\begin{array}{r} 20.83 \\ 10.41 \\ 6.25 \end{array}$	None. Jair Grod.	Complete. [)o. Do.
Violet.	$\begin{array}{r} 12^{\circ} \\ 200^{\circ} \end{array}$	$\begin{aligned} & 15.00 \\ & 1.11 \end{aligned}$	None. *Slight .races.	Complete. Do
Purple	$\begin{array}{r} 6^{\circ} \\ 15^{\circ} \\ 50^{\circ} \\ 60^{\circ} \end{array}$	$\begin{array}{r} 30.00 \\ 12.00 \\ 3.60 \\ 3.00 \end{array}$	None. Do. Do. Sligh:.	Slight. Fair. Good

* Hard to dintinguish luetre from hrithtnenn of the object.
- Increaven with greater intensity of Orange, but never becremay very decided.

Table Nlll-Green. Observer, I'.b T

Comparel cinhur.	Opwning uf the Episkhtioter 11.4e.		h.untre.	
Krud	80 122° 160°	$\begin{array}{r} 50.62 \\ 33 \\ 3 . \\ 2 \end{array}$	Nanc. Do. Very slight	Partial. (iomplete [\because.
Orange	120° 40°	$\begin{aligned} & 3.3 .75 \\ & 10.12 \end{aligned}$	None. Bo.	Partial. Complete.
Yel'ow.	15°	23.25 8.72	None Io	Partial Complete.
Blue.	10°	14.80	None.	Complete.
Violet.	10°	$\begin{aligned} & 20.25 \\ & 1.3 .50 \end{aligned}$	None. 1) o.	Imperfect Complet••
Purple.	$\begin{aligned} & 12^{\circ} \\ & 20^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{gathered} 16.511 \\ 10.11 \\ 3.37 \end{gathered}$	$\begin{aligned} & \text { Nume. } \\ & \text { I: } \\ & \text { Faint. } \end{aligned}$	

rimprareal			$1.4-\mathrm{rr}$	
Herl.	. 30°	$\begin{gathered} 134 \\ 30 \\ 31 \end{gathered}$	$\begin{gathered} N_{1}, \ldots \\ \text { Hи, } \end{gathered}$	P', rri.d Enn!flete
Orange.	20 10 10 70		$\begin{aligned} & \text { Nume } \\ & \text { Slight } \\ & \text { Cinent } \end{aligned}$	Portial Complete
Yellew.	x°	$\begin{aligned} & 11110 \\ & \text { Sy. } 25 \end{aligned}$	Nine. Shight, newer lectumes prand	1'.rrt., 1 Cimplete.
Cireen.	25°	36. no	None.	*'inmplete
Sirret.	20 50	$\begin{aligned} & 25.96 \\ & 10.36 \end{aligned}$	$\begin{aligned} & \text { None. } \\ & \text { 1/n } \end{aligned}$	*I'artial "utmplete
I'urple:	$\begin{aligned} & 50^{\circ} \\ & 100^{\circ} \end{aligned}$	$\begin{array}{r} 1036 \\ 5 \cdot-76 \end{array}$		*Slight. Fair

'copmares	Oprining of the E.pmikutiater Dive.		J.15-tre	Nremerernpio Fiffeet.
Ked.	$\begin{gathered} 8^{\circ} \\ 20^{\circ} \\ 60^{\circ} \end{gathered}$	$\begin{aligned} & 90.00 \\ & 36.00 \\ & 11.00 \end{aligned}$	None. Slight	Imperfect Complete. Jo.
Orange.	$\begin{gathered} 20^{\circ} \\ 60^{\circ} \\ 100^{\circ}-190^{\circ} \end{gathered}$	$\begin{array}{r} 36.00 \\ 12.00 \\ 7.20-4.50 \end{array}$	None. Dos. *Faint	Imperfect. Complete.
Yellow.	$\begin{array}{r} 88^{\circ} \\ 20^{\circ} \\ 60^{\circ} \\ 1190^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 76.50 \\ 31.00 \\ 10.3 .3 \\ 3.55 \end{array}$	Sone. Du. Faint. Disappears	Partial. Complete. Do Do
Green.	10° 20°	$\begin{aligned} & 64.00 \\ & 32.00 \end{aligned}$	None Do.	Partial Complete.
Blue	155°	$\begin{array}{r} 16.66 \\ 3.12 \end{array}$	None. Very faint	Complete. Do.
Purple.	15 -0.	$\begin{array}{r} 24.00 \\ 5.14 \end{array}$	Ninc Do.	Fair. Perfect.

* (iralually fadex an opening increazes beyond tion degrees.
[237]

Table XLV.-Perple. Observer, P.B.t.

Comparel	Opening of the Episkotiste Dise.		Lustre.	Stereoreopic Effect.
Red.	$\begin{gathered} 12^{\circ} \\ 70^{\circ} \\ \hline \end{gathered}$	$\begin{aligned} & 60.00 \\ & 10.28 \end{aligned}$	None Do.	Partial. Complete.
Orange.	$\begin{aligned} & 155^{\circ} \\ & 20^{\circ} \\ & 60^{\circ} \end{aligned}$	$\begin{aligned} & 48.00 \\ & 36.00 \\ & 12.00 \end{aligned}$	None Fair. I)	Partial. Do. Complete.
-'•-low.	$\begin{array}{r} 12^{\circ} \\ 173^{\circ} \\ 20^{\circ} \end{array}$	$\begin{aligned} & 52.00 \\ & 36.51 \\ & 38.00 \end{aligned}$	None. Slight. Do.	Imperfect. Do. Complete.
Green.	$\begin{aligned} & 12^{\circ} \\ & 20^{\circ} \\ & 50 \end{aligned}$	$\begin{aligned} & 5.3 \cdot 3.3 \\ & 32.00 \\ & 12.80 \end{aligned}$	None. Do. Slight.	Partial. Complete. Do.
Blue.	20 120	$\begin{array}{r} 12.50 \\ 2.08 \end{array}$	None Do.	Complete. Do.
Violet.	200° 240	$\begin{array}{r} 18.00 \\ 1.12 \end{array}$	Faint. Increases, but still weak	Complete. Do.

Table XLVI.-White. Observer, W.
(Wilte changing in intensity, Colol'r constani.)

Comparal	Opening of the Epinkotinter Dive.	$\begin{aligned} & \text { Hatio of the in- } \\ & \text { tennitien of the } \\ & \text { ohjects prenented } \\ & \text { to olie reppective } \\ & \text { Eyen. } \end{aligned}$	L.ustre.	${ }^{\text {' Sterenveopic Effect. }}$
Red	$\begin{gathered} 1^{\circ} \\ 4^{\circ} 8^{\circ} \\ 210^{\circ}-270^{\circ} \\ \hline \end{gathered}$	$\begin{gathered} 360.00 \\ 90.00 \\ 12.85 \\ 1.71-1.33 \\ \hline \end{gathered}$	None. Do. Faint Good Good	Partial. Complete. Do. Do.
Orange.	$2^{2}{ }^{\circ}$	$\begin{array}{r} 180.00 \\ 40.00 \end{array}$	None. Faint (never lecomes goorl)	Complete. Do. Do.
Yellow.	$\begin{gathered} 2^{\circ} \\ 10^{\circ} \end{gathered}$	$\begin{array}{r} 155.00 \\ 31.00 \end{array}$	None. Slight.	Complete. Do.
Gre :	$\begin{array}{r} 4^{\circ} \\ 10^{\circ} \\ 260^{\circ} \end{array}$	$\begin{array}{r} 80.00 \\ 32.00 \\ 1.23 \end{array}$	None. Faint. Very good	Complete. Do. Do.
Blue.	$\begin{array}{r} 2^{\circ} \\ 6^{\circ} \\ 15^{\circ} \end{array}$	$\begin{array}{r} 62.50 \\ 20.83 \\ 8.33 \end{array}$	None. Slight. Very fair	Complete. Do. Do.
Violet.	$\begin{array}{r} 2^{\circ} \\ 4^{\circ} \\ 7^{\circ} \\ 110^{\circ} \\ 250^{\circ} \end{array}$	$\begin{array}{r} 90.00 \\ 45.00 \\ 25.71 \\ 1.63 \\ .72 \end{array}$	None. I) 0 . Slight. Brighter Good.	Partial. Complete. Do. Do. Do.
Purple.	$\begin{array}{r} 1^{\circ} \\ 4^{\circ} \\ 8^{\circ} \\ 30^{\circ} \\ 80^{\circ} \end{array}$	$\begin{array}{r} 180.00 \\ 45.00 \\ 22.50 \\ 6.00 \\ 2.22 \end{array}$	None. Do. Slight. Better. Very good.	Partial. Complete. Do. Do. Do.

Table NiJil.-Witte, Obserter, W. (Hihte conscant in indensity, Colul r changino)

$\begin{aligned} & \text { Compared } \\ & \text { Comanr. } \end{aligned}$	Dise.		I.ustre.	Steremeropic Eifect.
Recl.	$\begin{array}{r} 2^{\circ} \\ 4^{\circ} \\ 5^{\circ} \\ 155^{\circ} \end{array}$	$\begin{array}{r} 180.00 \\ 00.00 \\ 45.00 \\ 3.78 \end{array}$	None. Do. Slight. Very groad.	Imperfect. Complete. Di. Do.
Orange.	2 8° 24°	$\begin{array}{r} 180.00 \\ +5.00 \\ 15.00 \end{array}$	None. Slight. Fair.	$\begin{gathered} \text { Complete. } \\ \text { Do. } \\ \text { Do. } \end{gathered}$
Yellow.	$\begin{array}{r} 2^{\circ} \\ 10^{\circ} \\ 1.30^{\circ} \end{array}$	$\begin{array}{r} 2019.0 .3 \\ 41.80 \\ 3.21 \end{array}$	None. Slight. Fair.	Complete. Do. Du.
Green.	$\begin{array}{r} 2^{\circ} \\ 4^{\circ} \\ 16^{\circ} \\ 65^{\circ} \end{array}$	$\begin{array}{r} 202.50 \\ 101.25 \\ 25.31 \\ 6.23 \end{array}$	N゙ıne. Do. Slight. Fair.	P'artial. Complete. Do. Dı.
Blue.	$\begin{array}{r} 5^{\circ} \\ 3^{\circ} \\ 6^{\circ} \\ 100^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 1036.80 \\ 345.60 \\ 172.80 \\ 10.36 \end{array}$	None. Do. Slight. Fair.	Imperfect. Complete. Do. Do.
Violet.	$14^{2}{ }^{\circ}$	$\begin{array}{r} 360.00 \\ 51.42 \end{array}$	None. Slight.	Complete. Do.
Purple.	$\begin{array}{r} 1^{\circ} \\ 4^{\circ} \\ 12^{\circ} \\ 100^{\circ} \end{array}$	$\begin{array}{r} 720.00 \\ 180.00 \\ 60.00 \\ 7.20 \end{array}$	Aone. Extremely faint. Slight. Grod.	Iniperfect. Complete. Do. Do.

Results: Comparison of the results of these experiments with those of the similar experiments in white light shows some very interesting points of difference.
(1) With a considerable number of combinations no lustre appeared, no matter what the differcuce of intensity. (The limits were from cquality to a ratio of 1 to $; 20$). This scems difficult to account for, the more so as there is not very much regularity as to the colour combinations with which the lustre appears or fails. On the whole, it may perhaps be said that in most of the cases where no lustre appears the colours are either somewhat near each other in quality, so as to mix readily, or else are nearly complementary, so as to produce the strongest rivalry. The number of experinnents, however, was not great cnough, nor the regularity of the results sufficient, to make this induction conclusive.
2. Lustre does occur in many cases with smaller differences of brightuess between the two retinal i:npressions than were required with uncoloured light to produce it. As before observed, when "good" lustre was onee scen it continued till the disc was opened to its fullest extent. And in some cases, as when, for example, red was behind the dise and green on the other side, this meant that the intensitics were practically equal. The lustre was frequently reported as "good" or "decided" when the intensities of the images were about as 3 or + to . With uncolourcd light, on the contrary, no lustre at all appeared unless one retinal image was from $11 / 2$ to 3 times as bright as the other; and "good" lustre required a ratio of at least 9 or 10 to 1 .
3. Lustre does not occur with as great differences of intensity in coloured as in uncoloured light. That is to say, the upper limit is much lower with coloured light. The lustre was scarcely ever good when one impression was more than 10 or 12 times as bright as the other, and a ratio of about 50 to 1 is the extreme upper limit for the appearance of any lustre at all. With uncoloured light, on the other hand, the 'ipper linit for good lustre varied from 375 to 920 to 1 and for any lustre at all the upper limit was about 1900 to 1 .
[2+1]
4. The opening of the disc required for the production of the stereoscopic effect is greater when the images differ in both colour and brightness than when they differ in brightness only. The complete combination often required an opening of 30° or 40°, or even more, while not even a partial or inconstant combination in many cases appeared with an opening less than 15° or 20°; whereas refcrence to the corresponding tables regarding unceloured light shows that a partial stereoscopic effect appeareci with an opening of $21 / 2^{\circ}$ to 9°, and the complete effect did not require an opening greater than 14° to 18°. From Tables XLVI and XLVII it will be seen that this phenomenon re-appears even in the combination of white and coloured light. A partial stereoscopic effect was frequently seen with an opening of only 1°, and complete stereoscopic combination commonly did not require more than 4°.

Fic. II

F!. III

FI

[^3]

K OR O OY Y YG G GBE V VP P R
(Tables XXVI and XXVII)

UNIVERSITY OF TORONTO STUDIES

Psychologicai, Ser'rs

Vol. I., comprising

1. Spatial Threshold of Colour, by W. B. LANE, with

Appendices
2. A Contribution to the I'sychology of Time, by M. A. Shaw and F. S. Wrinch
.75
3. Ifxperiments on Time Kelations of Poetical Metres, by J. S. Hurst and Jons Mckay...................
4. Conceptions and I, aws in Aesthetics, by Professor A. Kirschmann. Experiments on the Aesthetic of Light and Colour, by Emma S. Bakfr. Fxperiments with School-children on Colour Combination, by W.J. Dовbif.
Vol. II. No. 1: The Conception and Classification of Art from a Psychological Standpoint, by Professor 0. Kïlre. Spectrally Pure Colours in Binary Combinations, by Fimaa S. Baker. On Colour-Photometry and the Plienomenon of Purkinje, by R. J. Wirson. Fixperiments on the Function of SlitForm Pupils, by W. J. Abbott.
Vol. II. No. 2 : Combinations of Colours and Uncoloured Light, by Susif A. Chown. The Complementary Relations of Some Systems of Coloured Papers, by D. C. McGregor and D. S. Dix. Some Photometrical Measurements, by W. G. Smith. Stereoscopic Vision and Intensity, by T. R. Robinson...
Vol. II. No. 3 : Combinations of Colours with Tints and with Shades, by T. Louls Barber. Stereoscopic Vision and Intensity (second paper), by T. R. Robinson

$$
\nabla
$$

[^0]:

[^1]: 1 University of Toront, Studies, Psychological Series. Vol. is No. 2, p. 77 .

[^2]: [Eniversity of Toronto Stulies. Psych. Surien, Voh ai, Nio 2
 [225〕

[^3]:
 к ok o oy y ygegen vippre
 Curve II.-_Colours
 (Tables III-VI)
 Plane Surfaces
 $\underset{\text { (Tables III-VI) }}{\text { Curve }}$

