IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institur canadien de microreproductions historiques

The Institute has aitempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restauré́ et/ou pelliculée
Cover title missing/
Le titre de couverture inanque
Coloured maps/
Cartes géographiques en couleur
Colcured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peu: causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible, ces pages noont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvelit exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachèes
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du ma:ériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensurs the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de fac̣on à obtanir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Additional comments:/
Commentaires supplémentaires:

The copy fllmed here has been reproduced thanks to the generosity of:

The Nova Srotia
Legislative Library

The images appearing here are the best quallity possible considering the condltion and legibility of the original copy and In keeplng with the filming contract speclfications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or iliustrated Impression, or the back cover when approprlate. All other origlnal coples are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated Impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (msaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one expueure are filmed beginning In the upper left harid corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire flimé fut reprodult grâce à la générosité de:

The Nova Scotia
Legislative Library

Les images suivantes ont été reprodultes avec le plus grand soln, compte tenu de la condition et de la netteté de l'exemplalre filmé, et en conformité avec les conditions du contrat de filmage.

Les oxemplaires orlginaux dont la couverture en papler est imprimée sont filmés en commençant par le premier plat et en terminant solt par la dernlère page qui comporte une emprelnte d'impression ou d'llustration, solt par le second plat, selon le cas. Tous les autres exemplaires originaux sont fllmés en commençant par la première page qul comporte une emprelnte d'impression ou d'lilustration et en terminant par la dernlère page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernìere image de chaque microficine, selon le cas: le symbole \rightarrow signifle "A SUIVRE", le symbole ∇ signlfle "FiN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction dlfférents. Lorsque le document est trop grand pour être reproduit en un seul cllché, il est fllmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'Images nécessaire. Les diagrammes suivants illustrent la méthode.

REPORT

OR
W. H. TALBOT, ESQ.

ON
THE WORKS, ETC.
or
The grand avigation © company.

EXTRACTS "FROM LAST REPORT
OF

C. W. FAIRBANKS, ESQ.

HALIFAX, N. S.
PKINTED BY JAMES BOWES ANDSON円, 。 1856.

Foe 10.18c\%

NS
386.4

T

1807

REPOR'I

W. H. 'TALCOTT, ESQ.

To the Shareholders of the Inland Navigation Company of Nova Scotia :

Gentlemen,-

At the request of the President and Directors of your Company, I have examined the line of your proposed Inland Navigation, for connecting the waters of the Harbor of Halifax with the waters of the Basin of Minas, for the purpose of ascertaining, as near as possible, the cost of completing the said Navigation, upon a seale which will accomplish the objects intended to be accomplished by the making of such a work.

The general plan of your works, as recommended by your Chief Engineer, Mr. Fairbanks, and approved by your President and Directors, is as follows:
I. An inclined plane at Dartmouth, with 55 feet lift above medium high tide, connecting the Harbor with a small artificial lake at the head of this plane.
II. A lift lock, of cut stone masonry, laid in full cement mortar, with 11 fect lift, connecting the said artificial lake with Dartmouth Lake.
III. A canal, 669 feet long, bringing the waters of Dartmouth Lake to the foot of lock No. 2, which is called Port Wallace.
IV. Lock No. 2 , which is a lock of 13 feet lift. This is all old lock, now standing, originally faced with cut stone and la:d up with lime mortar. It is proposed to let all the walls of this lock stand, except what extends above the upper lock gates, and to line the chamber of the lock with timber and plank, and fill the spaco between the plank and walls with concrete, making what is called a " composite lock," constructed partly of stone and partly of wood.
V. A canal, 1,000 feet long, extending from the head of lock No. 2 to the foot of lock No. 3.
VI. Lock No. 3, which is to be reconstructed upon the site of the old lock, at the west end of the summit level. It is to be a " composite lock" of 13 feet lift.
VII. A canal, 2,640 feet, being the summit level of the proposed navigation, and bringing the waters of Lake Charles to the head of lock No. 3, including also a stop gate at the entrance into the lake.
VIII. Porto Bello inclined plane, with a lift of 33 feet, connecting Lake Charles with Lake Thomas.
IX. Lock No. 4, with 9 feet lift, connecting Lake Thomas with Lake Fletcher. This is a cut stone masonry lock, laid in cement mortar, and nearly completed, At this lock there is a dam and large overfall or weir, with gates to discharge the surplus waters.
X. Locik No. 5, with $10 \frac{1}{2}$ feet lift, connecting Lake Fletcher with the Grand or Shubenacadie Lake. This is also a cut stove masonry lock, laid in cement mortar, and so nearly completed as to admit of locking boats through it. At this lock there is also a large dam and a very extensive weir, completed, with gates to discharge the surplus waters.
XI. Lock No. 6, with 6 feet lift, including river dam No. 1, and a short canal of 700 feet, reaching from the dam to the lock. This lock is situated about $1 \frac{1}{2}$ miles below the natural outlet of Grand Lake. It is to be a "composite lock." The dam is built with crib work of timber and stone, having suitable openings to discharge the surplus waters.
XII. Lock No. 7, witi $\overline{7}$ feet lif?, situated at a place called Roeky Falls, about two miles below lock No. 6. This includes, also, river dam No. 2, which is to be constructed similar in plan to river dam No. 1; also, a eanal, 500 feet long, reaching from the dam to the lock.
XIII. A drawbridge at Seott's cross road, near the lower end of Lake William. Also, a drawbridge, or a bridge suitable to be used without a draw, at the lower end of Lake Thomas. Also, a bridge, and raised roat way, aeross the lower end of Lake Fletcher.
XIV. The clearing out and improsing the Shubenaeadie River, from the outlet of Grand Lake to Nelson's Bridge.
XV. Some furthcr improvements of the river, from Nelson's Bridge to its mouth. This iten is not intended to be done at present, as the river may be eonveniently navigated, in its present state, until the trade shall require further improvementat which time the earnings of the Jompany will provide the means of making it.

It is proposed to make these works in such manner as will secure, gencrally, at least 5 feet depth of water throughout, and as will allow boats navigating the same, to be loaded to 4 feet depth of water, and the boats to be of the following dimensions, to wit:

$$
\begin{aligned}
& \text { Extreme length of boat, . . . } 66 \text { feet, } \\
& \text { Do. width } 16 \frac{1}{2} \text { feet, }
\end{aligned}
$$

and to use wind or steam power for propelling the boats, taking advantage of the flow and ebb of the tide so far as that extends. After a eareful inspection of the whole line of these works, I am able to say that this general plan is admirably adapted to, and in union with, the prominent and very remarkable features of the country through whieh your work passes. And I can with truth say, further, that this general plan, and also the detailed plans for carrying it out, evinee a eareful study of, a thorough aequaintanee with, and readiness to apply, the great laws which govern the natural means which have been so profusely placed within the reack of man, to aecomplish this work. And I may also add, that these natural means and advantages
exceed anything of the kind that has ever before fallen under my observation，elustered within so short a space．
It will be observed that the plan adopted for overcoming the elcvations，includes the construction of two inelined planes． Inasmuch as this is not the usual method of overcoming eleva－ tions in water communications，it may be expeeted that particu－ lar refercnec should be made to this part of your works．

There is aiways，and wiscly so，a hesitation on the part of capital，in adopting any novel plan，or embarking in untricd experiments．Although there is something unusual in this plan， still it eannot now be said to be either novel，or an experiment． Such planes have been in suceessful use for several years in England，and for more than twenty－five years in the United States．At this present time the undersigned has eharge of the Morris Canal，in the State of New Jersey，which is 102 miles long，and overcomes an elevation of nearly 1,700 feet of rise and fall by means of 23 inelined planes and 24 lift locks，and has a trade at this time of about 600,000 tons per annum．

The greatest elevation overeome by any one plane is one hundred fect，and the time required to pass a boat over this plane is less than five minutes，making the rate of speed while passing the plane greater than the ordinary speed of the boats on the level canal．

Those planes are all operated by water power，which is the same power as is proposed for your planes，and the plan and machinery for your planes is to be the same as that now in use on the Morris canal．There need not，thercfore，be any doubt or fear about the suceess of the inelined planes on your work； and I do not hesitate to give a very decided preferenee to planes over loeks at the two points where planes have been adopted．

In estimating the cest of the planes，it becomes necessary to aseertain the weight of the ropes to be used．In doing this I must refer again to the dimensions of the boat in order to ascer－ tain the weight of the load on the rope．The total length of the boat is to be 66 feet，and the width $16 \frac{1}{2}$ feet，and the draught of water 4 feet．

Making the proper allowanee for the rounding of the ends of the boat，it will displace $(56 \times 16-6 \times 4) 3,$,630 cubie feet of water，which is equal to（ $3,630 \times 62 \frac{1}{2}$ lbs．，$)$ about 100 gross tons．

The boat may be estimated at $\frac{1}{4}$ or 25 tons，and the cargo at 75 tons．

The car for carrying the boat over the plane is estimated to weigh 27 tons, making the total weight to be moved 127 tons.
The Dartnouth plane is to lave an inclination of 1 in 22 , and the Porto Bello plane an inclination of 1 in 16 .
Tho preponderance of the trade will be up the Porto Bello plane and down the Dartmouth plane. It will therefore be necessary to provide the ropes of sufficient etrength for the Porto Bello plane. The duty required of the rope may be
I. The gravity of 127 tons on an incline of 1 in 16, a weight of $17,780 \mathrm{lbs}$., . . $17,780 \mathrm{lbs}$. II. The friction of the car may be estimated at 15 liss. per ton, which equals . . 1,905 " III. The friction of the carrying shcaves and back rope is estimated at
square inch of cross section. This will give (20980) 0 . in strength to the weight for It is recome of this load.
area of ecouilibended that there should be at least five times the 1 d 650 square inchus given to the rope - this would be equal to The weight of English metal. per fathom, which is equal tes $1 \frac{3}{4}$ inches diameter is 23 lbs . of rope, and this is equal to 1 lb . for every $3 \frac{13}{1 \mathrm{itc}}$ inches length solid metal, providing the rope an arca of 1 路 square inches of is henip; if $\frac{t}{\eta}$ be deducted, it $\frac{1}{2}$ was all metal; about $\frac{1}{\eta}$ of the rope of solid metal, and there is very an area of 1 in square inches hemp parts of the rope. It may thersiderable strength in the to adopt ropes of 1^{3} inches ${ }^{3}$ thercfore be considered safe
The Dartmouth planches diameter. 1_{10} inches in diameter, but the be operated with a rope only ropes of the same diameter, the convenience of having all the the same form and pattern, allowing all the machinery to be of saving in the first cost of will more than compensate for any
And besides this, the duty of ther ropes for this planc. plane being much the duty of the rope at the Porto Bello that plane will fail first greatest, it is evident that the ropes at that plane will fail first. If the machinery and fixtures of both
planes shall be of the same dimensions, the ropes of the Porto Bello plane may be traisferred to the Dartinouth plane whenever they show signe of being too weak for the duty required at that plane ; and in that way more service ean be obtained from the ropes, than could be expected if both planes had been made with the same inclination.

It is therefore evident that the present arrangement of the planes is judicious, and that it is best to have all the ropes of the same diameter.

It is more than eight years since the first introduction of wire ropes on the planes of the Morris Canal, and the experienee of their use up to this time, indicates, that with proper care the ropes will last at least seven years.
The forn of the rail used on the Morris Canal was adopted after long experienee, and it is believed to be the best fornı you can have for your works. It is 3 inches broad on the bearing surface, and weighs 76 lbs . per yard. The estimates for the planes have been based upon the adoption of ropes $1 \frac{3}{4}$ inches in diameter, and a rail of 76 lbs . per yard, and the use of the same kind of a water wheel as that whieh is used on the Morris Canal, ealled "a Scoteh Motor."

Also, on the use of the same form and general dimensions of maehinery as that which is used on said eanal.

The aggregate estimated cost of completing all your works, I make as follows:

1.	Dartmouth plane,	\$21,945 79	£5,486		0
III	Lift Lock No. 1,	1,293 80	\&5,480		0
III.	Canal at foot of Lock No. 2 done,				
IV	Lift Lock No. 2, $^{\text {, }}$	1,200 00	300		0
V.	Caual from Lock No. 2 to Loek No. 3 done,	000	300		0
VI.	Lift Lock No. 3,	2,787 40	696		0
VII.	Canal from Loek No. 3 to Lake Charles,	52662	131	13	1
VIII.	Porto Bello plane,	18,150 00	4,537	15	0
LX.	Loek No. 4, .	r8, 49000	4,52 122	10	0
X.	Loek No. 5,	24000	60	0	0
XL.	Loek No. 6 and river dam No. 1,	2,500 50	625	2	6
XII.	Loek No. 7 and river dam No. 2 ,	4,745 91	1,186	09	6

9

the Porto ane whenequired at ined from een made
nt of the ropes of
luction of e experih proper
s adopted form you e bearing for the inches in the same e Morris
nsions of works, I

8690
2390
000
0000
00
96150
31131
37150
22100
300
$25 \quad 26$
36096
XIII. Drawbridges and other bridges.
XIV. Clearing out the Shubenacadie river from outlet of Grand Lake to Nelson's Bridge, . . . 5,274 33 1,318 10 \&
XV. Inproving tho river below Nelson's Bridge at present, 000
$\$ 60,35435$ £15.088 119
Contingencies, Superinten-

It is known to many of the Shareholders that the time which I have been able to bestow upon these estimates has been somewhat limited beyond what could have been desired. Consequently it can hardly be expected that the results will prove that the cost of each strueture has been aceurately arrived at.

It is proper therefore to state, that as a general thing (sueh being ray rule always,) I have in all cases of uncertainty leaned towards an over estimate, rather than an under estimate. I shall not, therefore, be much disappointed if the works of the Company should be completed for a less sum than the total amount of my estimate, but I should be greatly disappointed if the work should cost more than the sum stated above.

As individual enterprize will hardly be willing to provide the first stean tug, at so early a day as it will be desirable to have such boat provided, it may be necessary for your Company to procure such a boat, which will cost from $\$ 2,000$ to $\$ 3,000$, or from $£ 500$ to $£ 750$.

Should the work be completed for the sum estimated, it will make the total cost of your works about $£ 33,000$; thereby giving to you the benefit of a navigation about 60 miles in length, with one end resting on the Harbor of Halifax, and the other on the Minas Basin, for that sum, which is only $£ 550$ per mile.

As a general thing, ihe canals now in use in the United States, with only 5 feet depth of water, have cost to the Proprietors a least $\$ 40,000$, or $£ 10,000$ per mile, and $\$ 2,500$ or $£ 625$ per foot lift for the elevations overcome.

The same rate of cost in this ease would swell your work to the sum of $£ 698,025$.

Experience has shown that the cost of transportstion in the States on a eanal with 5 feet water is about 1 cent. per ton per mile, exclusive of the tolls; and that the cost of transportation on the rivers and lakes docs not exceed $\frac{1}{2}$ c. per ton per mile.
As your navigation may be said to be entirely river and lake navigation, but subjected to the passing of 7 locks and 2 planes and a circumscribed ehannel in a portion of the river, it may be safe to calculate that the cost of transportation will be a halfpenny per ton per mile for distanees over 30 miles, and one cent per ton per mile for distances less than 30 miles; thus making the entire cost of transporting a ton from the Basin of Minas to Halifax Harbor, only two shillings and sixpenee for the freight, and whatever the tolls may be in addition thereto, probably not to exceed, in al!, three shillings and ninepence per ton.
In other words, for all praetieal purposes to Halifax, the Basin of Minas will be brought as near to it as is the farming country at ten miles distant from the town; and consequently a very large proportion of the trade of that large Inland sea would be secured to Halifax, a trade which must otherwise firally eentre at St. John, New Brunswick.

I trust that it will not be considered improper, in closing this report, to refer to the large deposits of gypsum, limestone, brick, clay and sand on the banks of the Shubenacadie River, and the extensive quarries of granite and other good building stone on the lakes, and also to the forests that line the shores of the lakes and parts of the river and its tributaries, from which may be obtained almost an unlimited amount of timber, lumber and wood; and to the large water power on said tributaries, and along the Company's works, and also to the extensive and fertile agrieultural regions on each side of the river, this side of the Bay of Minas, as evidenee that a large trade will seek the advantages of the use of your water communication, almost as soon as it shall have been completed.

Very respeetfully,
Your obedient servant,

W. H. TALCOTT, C. E.

Halifax, N. S., May 19, 1856.

EXTRACTS

from tie
REPORT OF C. W. FAIRBANKS, ESQ.C. ENGINEER,SUbMitted to the special meering of the company, held onTIIE GTI DAY OF FEbrUARY LAST.
The work remaining to be done on the river will not eost over, at present priees, $\dot{\&}, 500$
To finish the locks at Fletcher's and the Grand Lakes, with three drawbricges and sluiee, 350
Say to finish the eanal to Marshall's, or to within sixmiles of Halifax Harbor,£2,850
If this part of the navigation be put into operation, the Com-pany will derive some revenue, and it will also aid the railway.If the Directors would aecept of one of the offers made byJohn F. Ward, of Jersey City, and Mr. Greig, of Dartmouth,for the construction of the water wheel, pulleys, and other worksconnected with the planes at Dartmouth and Porto Bello, thetwo will cost £5,200The flume wheel-house and other works on the Dart-mouth plane will cost 1,000The rails for one track at Dartmouth and Porto Belloplanes,700
Main and baek wire ropes for the two planes, 1,500
The flume wheel-house and other works at Porto Bello
plane, 750
The Dartmouth and Port Wallace locks, 1,500
Brought forward, 2,850
$£ 13,500$
To which add for 4 drawbridges, station-houses and other expenses, 1,500

The increased cost of value of labor, as eompared with its cost previous to the commeneement of the public works, is 35 per eent. for common laborers. I experieneed much diffieulty in procuring plank boards and timber for the loeks, dams, and other works. The railroad eontraetors and their workmen required mueh more lumber than the mills eould supply. I had therefore much trouble and expense to obtain the large quantity I required. In some cases thirteen dollars was freely given for hemloek lumber per thousand; every kind of material could only be got by paying more than one hundred per eent. over its former value. With all the additions to the eost of the eanal, although mueh more than expeeted, it will nut be an expensive publie work.

A large part of the outlay is for new and valuable improvements, sueh as the loek sluiees and the wire ropes, rails and water wheels, for the inelined planes. There is now no work to be done or exceuted of ' a dangerous or uneertain eharaeter. The greatest misfortune that ean happen, sueh as the breaking of a dan or loek, eannot be very injurious. There is no part of the works on the river or lakes whieh eannot be made as perfeet and as seeure as can be desired.

No experiments are tried; the works are as near as possible copies of works now in use in England or the United States.

The deep eutting at Port Wallaee is the most extensive and expensive work of art on the whole route, and it is, when compared with cuttings on other eanals or railways, rather insignificant, but very important when it is remembered that it is the lowest passage from the harbor to the Basin of Minas : through it must flow the greatest portion of the trade of the Province; and if the rate of toll on the artieles whieh may pass over the canal be as low as on any similar work, the revenue will execed the working expenses and pay twelve per eent. on the outlay, and there will remain a large sum to make any required repairs or improvements, and, in time, the extension of the navigation eastward into othur seetions of the Provinee.

A small steamboat would be very useful and profitable on the Shubenaeadie River and the Grand Lake ; it would have plenty of work ; and so soon as the loeks arebuilt, a trade in plaister will at once begin. The steamboat eould tow a train of boats containing five hundred tons of plaister, from the quarries whieh are nearest the market to Dartmouth, so as to prepare any quantity for shipment, in summer or winter : 1,000 tons each day for 200 days, at sixpence toll per ton, would give $£ 5,000$ for this one article alone.

If we put down but a small sum from the many other articles which we know will descend to the harbor, it is clear that a large revenue must be produced.

The working expenses on this canal will not be very large; it would be cleapest to employ ori.y the best men that can be had, at the locks and railways. The repairs which may be required, will mostly result from the carelessness of the boatmen and the natural decay of all wood work in the gates and sluices. The mechanical structures on this canal will be less subject to injury than on most works of the same description. Plaister would perhaps bcar one shilling toll, but it would not be prudent to charge it, if we desire to concentrate in Halifax Harbor the principal sources of the trade of the Province.

The lower the toll on every article is made, the greater will be the quantity used; thus marsh mud at sixpence per ton can come down, and pay the farner who is within a short distance of the canal. Put it at thrcepence, and you will increase the demand perhaps fourfold. I cannot but believe that the revenue of the canal will much excecd all my former calculations. If we take the increase of trade on our canal to be something in proportion to the increase observed on the canals in the States, with much higher rates of toll than it is proposed to charge on our works, the profits will be very much beyond any statement yet made. The tolls received on the Morris Canal in 1845 was $\$ 18,997$; in 1854 , $\$ 240,429$; the profits of the business $\$ 142,412$ dollars. Now if these results are produced on a navigation, which I think is far inferior in every respect to our work, we may expect large returns.

The toll on the Morris canal is one cent per ton for a mile; our toll may be half a cent per ton. The tonnage on the Morris Canal in 1854 was 545,269 tons; our trade will exceed this quautity in ten ycars from its completion.
The work though, as a commercial speculation, affords every prospect of profit to those embarked in it. We may view it in the light of a public werk of necessity, absolutely recuired to supply the wants of the citizens of Halifax and the people of the country. The port of Halifas wants an export trade besides that which the fisheries produce. The city wants cheap wood and coal, also building materials, stone, brick, timber, \&c. The country wants a chcap mode of communication with tie sea-coast, so that at all times the staple products of the Province may be exported in winter as well as in summer, and thus afford employment for that portion of our shipping now idle and usc-
less during the winter months. 'The rxperience of other canals give us data from which we may, without any doubt, estimate the profits on our navigation.

Plaister, deals, timber, coals, and oiher articles, can be placed in very great quantities at the ontlet of the canal in summer, so that a cargo may be procured at any time. No other work of art can produce these important advantages to the same extent or at so small a cost.

The canal will bring into use and value many acres of land now unproductive; it will cause numerous quarries to be opened, some of which only await the opening of the work; it will also turn the trade passing down the Siubenacadic River into the Harbor of Halifax, and produce many other valuable results now unnoticed or perhaps unknown.

Whatever good may be done by the navigation, when in operation, must be attributed to, not the works made by man, but tc the great natural advantages and resources which it has pleased a wise Providence to place for our benefit and use, on or under the soil of our Province.

From the rapid increase in dimensions, and also the vast expansion of the trade on canals in the States within the last ten years; and from the experience I have now gained on our works relating not only to the construction of its various locks, dams, \&c., but to the trade it will induce hereafter to augment throughout the country it is traversing, I believe our canal to be of much greater importance to the whole Province than ever supposed by its former or present promoters, and that the profits to be derived from it will greatly exceed the estimates and expectations of its most sanguine friends. I certainly was quite surprized to see the improvement in trade and form on those canals in the States, which I take as models for our works, since my first inspection in 1847.

It now requires but little study to perceive the vast benefits which must result from a line of water communication, passing through the centre of the Province, and having for its terminus the cities of Halifax and St. John, also commanding the commerce of the Basin of Minas, and part of the Bay of Fundy; no other work of art can injure its trade, impair its utility, or lessen its revenues.

The foregoing extracts from Mr. Fairbanks's Report. art published in compliance with the terms of a resolution passed at the Special Mecting of the Company, held on the 19th instant, for the purpose of receiving Mr. Talcott's Report,and which resolution provided for the publication of that Report, with the Extracts appended. And the Directors would call the attention of Shareholders to the various points of agreement between the two Reports, which shew that Mr. Talcott not only approves the plans and eonfirms generally the views of Mr. Fairbanks, respecting this work, but also in the main agrees with him as to the probable cost of its completion.

