

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH
CIHM/ICMH Microfiche Series. Cullection de microfiches.

The Institute has atiempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover titte missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleut ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
Lareliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'Lne restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les details de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Payes pages/
Payes de ctuleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquèes
Pages detached/
Pages dérachèesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/ Comprend du ma:ériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., cnt été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

> Library of the Public Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \longrightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en coniormité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

(All rights reseivel.)

ADVANCE PROOF-(Šubject to revision).
This proof is sent to you for disenssion only, and on the expr ss umbertanding that it is not to be need for my other purposs what ever.--(vee sec. ti of the Constitution).

INCORPORATED 1887.

TRANSACTIONS.

N.B.-This Socicty, us a !ruly, floes not hold itself responsible for the fiects and opinions stated in my of its publications.

SPEURAL TRACK WORK FOR ELECTRIO STREF'T RALL-
 A.N日 'TORONTO SYSTEMS.

By F., A. Stone, Ma.f., A.M. (in. Sro. C.E.

Special work is the general term spplied to all track work not ineluidel in the ordinary straight track; its construction for electrie railways has undergone great inproveuents during the last few years, and is still iuprovitig. The introdaction of elcetrie power for the purpose of eity passenger traffic gave rise to the present substimtially coustructed cars, which, with their alditional weight of motors, brought about ralical changes in the construction of the track.

Bexides eleetricity as used in the trolley syntem, other untive powers have been tried to take the place of the horse, such as gas and eonpresed air mo'ors, eables, chetrie eonduits nud storage batteries ; but up to the present tinu, the trolley system has demonstrated its practical superinrity over all others.
The track which had answered all parposes for the old comparatively hightly constructed horse cars became utterly useless for the motor cars. As the special work is subjectect to the greatest wear, and eonsequently requires the most frequent renewal, it changed form completely. T? old cast-iron curves, with their sho i, lightly eonstructed switehes and poir joints, had to frive waly to the heavier stcel construction, bearin! a freater resemblance to that of a steam railrond.
Special track work should be of good substautial eonstrinetion, with the greatest eare paid to the designing of the parts which wear mont rapilly. It is most important that track, especially in the eentral parts of a city, should require renewal as seldou as possible, for sueh renewals are very expensive, apart from the aethal eost of the new track work, as traffic is interrupted, catusing great inconvenience and sometimes loss of ${ }^{\text {' }}$ bus.ness to the publie, and generally demoralising in whole route of cars, and sometimes the greater part of the entire system. Speciat work shoult be made in such a manoer as to eatuse the least possible obstruetion to vehieles, wo part rising above the level of the paving more than is unavoiddble; the necessary recosses, grooves, ete., should be as narrow and shallow as possible, to prevent wheels of vehiches frow eatching. Flat surfices should have a tough top, to prevent horses from slipping upon then. All pieces shouid be finished to as to facilitate the paviug, no long, unnecessary projections being left on bolts, ette. The carves should be of as ereat a radius as the width of the strects will allew. The shanper the cunve the gecater is the wear on the track, and wheels of cars, the slower the sate of motion, the more power required to drive the eans, the more meven the motion and the grater hiability to dorailment.

The track may be baid on longitndinal stringers, on cross ties, or directiy on eonerete with tie bars eomerting the rails. The okd tracks of strap rail were laid on stringers, and the rail gencrally called stringer rail. (Higs, 1 mud 2.) The greater part of the new construction is laid on ties, and in unany resperts is cimilar to stemn track wok. A combinition of theer two methots, eonsistiug of planks laid longitudinally on
cross ties, in order to give a more even surface, has been tried, but the results do not secuu to hare been so satisfaetory as were expected. In sereral streets in Montreal, where permanent pavinir has been laid, the rails have been laid direstly on conerete, and bomot together by flat tie bars with threaded ends and double nuts. This, with the conerete between the ties, anl paving, makes a very solid bed ; however, it does not seen to have so much clasticity as track hid on tics in maeadam

The rails usel in 'I'oronto and Montreal are "Girler" rails. Those first laid have a height of $6 \frac{1}{2} \mathrm{in}$, with a flupe of $4 \frac{1}{2} \mathrm{in}$., while those faid later are dig in. high with a flange of 5 in. ; the web of the rail is not directly bolow the entre of the heal as in the "Tie" ruil, but nearer the eruge line, white a flanzway $1 \frac{1}{4}$ in. wide at the top is providel for by a projeeting lip. These rails average 75 lhs, per yird. This type of rail (Fis. :j) is ned on all straisht pieces an 1 ouside rails on curves in the special worl' ; the indide rails are mate of a section very similar to this, the prineipal difference beines that the lip is sunch hearier, being one inel in wilth at the top and rising 5.10 the in. above the level of the hend of the rail: this provides an efficient gnard for the ears in rumbing ound a emser, the eroove is $\frac{1}{}$ in. witer than in the ordinary girder rail. This rail weiphs Silbs. per yarl. (Fig. 4.) Another section (Fis. 5) is, however, coming into use, and will no donbt largely replace these rections for cpeeial work; it in the soun as the guard rail section. exerpt that the groore is fillet up with anthl metal to within 9-16ths in. of the top of the head, thus providing a domble bearing for the wheels as both flanges and treads of whels rest on the metal, so that the ears pass over all points without jolting. and the wear on the least durable parts of speeial work, viz., points, is greatly diminished. This section gives a rail of 89 lls , to the yard. (Figs. 1 to 6.) The peculiar seefions of these rails, with their thin flanges and wehe, and much thicker heals, eanse a varible amount of tourbiness in the section, the head hatring received the least amount of rolling proportionally and taking the

longest time to cool is not sut tomsh ats the web and flanger. 'f'ests on pieees taken from the ghard rail (Fig, t) have giver the following resuits:-

Head:-'Censile strength—bt,30; lbs. per su. in.
Dhastic limit-75 per eent, of tensile strength.
Jlongation on $4 \mathrm{in}-31 / 2$ per eent. ; reduction in area---2 per eent., with an even and uniform whitish gray fracture, moderately fine srained.

Web:- T'ensile strength—— 91,250 Ifs. per :4. in.
Elastic limit- 75 per cent, of tensile strength.
Elongation on 4 in. -27 per cont. ; reluction in aran-20 per rent. with a fine grained light gray frueture.

The neeessity for the inerease in the weight of the new rails ow the old is made apparent whou it is considered that the weigh.t of a motor car averagesabout 6 tons, white the weight if the old horse cars avernged
only ubout 2 tons, nad whereas horse cars run at the rate of about ti miles per hour, electricears frequently have a spoed of 15 miles per hour. T'ere rail (56lbs.) is also used lately for this work, lout its use is fenerally confined to maeadmised roads in the sulurlss, as its height is mut suitable for paving purposes (unless raised on chairs), although otherwise quite as efficient. (Fig. 6.) The girder rail being so high adsuits of bloek paving, and by the lip on the invide provides a good edge fir the pavers to work to, whilst the narrow groove offers a very - light hiulraneo to vehicles.

In dee rail special work, the inside rail on ennves is generally guarded by a a cond rail being bolted to it, the two rails being held apart by cast iron filling pieces; the spaee betwern these rails is afterwards filled with eement to within at inch from the top, so as to oaus' as little obstruetiou to traffic as possiblo, the guard rail is slightly clevated abose the ruming mil. Frefuently rails are used in paved strects of insuffieient heioht to admit of a parines boek between the ties and the head of the rail ; when this is the calse, the difference in height has to be made up by the use of ehairs ; this leads to rather complicated joints, and requires a longer time to lay than the method of direct spiking to the ties.

MAIN DLVEsIONS OF' SPBCtAL WORK.
Special work may be divited into fon elasses considerel with respect to its use and its prition when in place, viz. :-intersections, passing sidings, erossovers and tmrnouts, and miseellancons combinations.

1. Intersections.-By the term intersection is meant the speeial work phaced at the intersection of two or more streets, and may assume an almost endless variety of forms as regards number and directic of curves and the aligmment of the min tracks. The work unst be se construeted as to guide the ears in whatever directiou required, without any other external assistanec than tbe moving of the tongues in the switehes by the motor men; the cars must ride as smoothly as possible, i.e., there shonld be no Juting ; in plaees where a groove is to be erossed that would eanse the ear to run uneverly, the floor should be raised so as to give a bearing on whieh the flanges may ruu. On double traek lines the distanee between traeks is usually from fenr to five feet, but in order that cars may pass one smother on the curves, und not be obliged to wait at the ends, this distance is inerased to :about seven or eight fect to provide ample clearauce, this estra width is ohtained by striking the emrves from different eentres, i.e., the enrves are not conecutric. The practice in Montreal and Toronto has generally been to make the inser and outer eurves of the same radins when the apex angle has been nearly 90°; but when the :mgle varies greatly from a right angle, the outer eurve has generally been made sharper then the inner when raming round the obtuse angle. When the eentre line of strest

changes directiom, or has a " jog" at the intersection, necessitating a plain or reverse curve on the through tracks, the complieations increase very rapidly.
2. P'assing Siding.:-These are need on singhe track lines when cars lua in both directions; they nemy be divided into two classes, viz. : diamond and throw over sidinys.

....... Ć.:".".......

In the dianoud sidiny (Fig. 16) the thelek diveryes like ar at cither end, so that the centere line betwen the tracks in the sidings is on line with the emere line of tho sineth track; his is the form neanlly ahpred on single taick- rominge throneh narrow strewts, if it is desired that "ars hall run either to the right or left at these points, the *ritches of the ridings muth be provided with movable tongnes; but if the ears always ron in the samedirection, they may he guited in the direction reguired ly a movable tombue hed to the propur side by a rpring, so that a mar facing a switeh is ahway suided to the sathe side, and a car trailing it eompreses the spring, and pawes on, the tongene of the witch falling lack to it- proper position. (San Plate F'ig. B.) Thin guiding of the ear in one direction, however, may be provided for unch more simply by means of a switch without any movable part, commonly ealled a blind switth. One side of the switeh is straght and the other curvel, the front of the switch coincides approximately with the en of of the eurve of the switeh, whilt the eurve to the "ppsite side berius near the back of the switch, as shown in Fig. 18. If the cats always

run to the right (as in Montrealand Torminto) the switeh is made left hand, i.fe, the p. e. of the curve turning to the left is in front of the per. of the curse turning to the right ly the lengeth of the swith (approximately); thes a car approaching the widing travels straight along on the tangent past the point of the switeh, and is then curvel ont of its path to the side ly the curse in the rail hehind, and when leaving tho sidine runs over the curse of the switel ; this is the best arrangement for such sidings, as it is the simplest, most durable, and eatuses least delay to the ears.
In the thrown-over siding (Fig. 17) one track is continued stratisht thrmugh, whilt the other is thrown over to one side of it ; this is anitafle for single, track lines on a wile street, or in places where the track is ou nue side of the strect. If care are to les ran to wihler side, rwitches with movable tongu's are nereserv; but if the ens alway, beep to the same side, the tongues nume b: provited with springe, of blind switeles used; with the litter the problem is mut sus simple as in the diammd siding, and in order to solve it the main track has a slight reverse curve placed in it extending from the first of the switch to a short ditanee inside the carve crose; by introlucins this, the arneral arrangement for the dimond siding holds goot. (See Fig. 19.) 'The
 feet to inside gauge line.

3. C'rossovers and Turunuta-Crossovirs (Fip. 20), sometimes culled comecting tracks, are used on doublo track lines for tho purpose of transferinge ears from one triek to the other, and conse. qubutly nere plases ar the terminutions of regular romtes aml at points whieb, are male temporary termisii to areommorlato special traffic.

Turnonts (Fis. eg) ure used when a doublo track runs into a single track, the cent ro line ol the single track being on line with the centre line uf one of the trieks of tho slouble track line.
'These erosovers und turmonts, as well is all special work, slould change the directi in of the car's motion lion one line into another with tho least amount of resistanee possible exusi-tent with the dat: given; those in Montreal and Poronto have 75 feet ralius curve and abont 25 feet of thurn the later varying with the distmen between trucks; this gives u erossover of ubout 60 leet betweon extreme cuds of switeles. Cinsonvors and turnouts are said to be cither left or right hamb, aecordiny to the direction in whieh they enrve from the track, as ween from

the switch when looking towards the eross. Fig. 20 , hows a right hand erosoner. If a crussover of either land is suitable at a certain point of the line, one of the same hand as the side to which the cars rin shoult be chowen, i.e., right hanl erossovers are preferable for systems on which the ears rim to the right and left hand, on those in which the ears keep to the left ; this is on :weouat of the fuel that cars rumbur always to the right will trail all witehes of risht hand erossovers and faee those ol' left, so that they cannot possibly take the wronge track in the first case, white they atay be suddenly thrown ont of their course in the second, ant aceilents result.

In addition to permancnt erossovers it is always meessany whave temperary ones rluring coustruetion, which are laid direetly on top of the paving wherever refuired. These are so constructed as to be easily and quickly taid in place and redily movel liom one part of the line to another by a small gang of men.
4. Miscellaneons Combination.-Besides the work already mentioned, there are several kinds ol diauonds made to fill varions requiremeuts. There are also special combinations for car house's, ete. The simplest kinis of diamonds are those used when eleetrie lines eross electrie lines, and only require the running rails. When an eleetrie road crosses it atem road, the stean road track requires guard rails for prater safety, and the electric line should also be guarded either by an additional rail or plate.

SIIB-DIVISIONS.

Intersections, eross-overs, etc., are emposed of several picees, which may be divided into the following sub-divisious, viz. :-Tongue switehes (single and double curve), blind switches, mates (single eurve, double enrve and combiuatios), eurve erosses (single eurve, double eurve and combination), cliamouds (for electric and steaun crossings), split switehes, stub switehes and lengths of rail (eurved and straight). (See Payges 18 and 19.)
 important piece in auy coubination of speeial work, as it is subjeeted to grenter and more frepuent shocks than any other piece, its duty being to change the direction of the car's motion trom one line to
 seetion to ensaro the prricet gailance of the wheds. When madeof T'ere mail, an gural is formed cither by bolting on muther piece of rail, or by carryine up tho cesting on the wide to forn the repuived suard.
 costins and two piecenof rail. The hugne is malle af: sted, and anould be ofl' is uhstantial size, having a crosesection near the Inint, promar timed to redist violent shueks: nt the sallu timn the point minst be rather sharp to cusure the car "takiug" it "xaely : if hinat, the er
 top os the tongere rixes atho the leve of the herat of the rail, it is - Moper at both conseso an th allow the rive and ball of the car to be
 " whece to toneh the tmene hehind tho pina, an! un throw the switel hofore the back whedel have reachel the point If the: tomene were mad - on loue that the distume from the centre of the pin to the tumate pint sere grenter than the whed hase af the ears (athon 7 feret) this would be impossible: this methon, however, wonld meessitate a too
 back of the t migue nuld placing the rin waticiently lar hark. The pin shonid also he plieed so that the whenk do not run ever it, and wer cemso

 even, is if inet, dirt will enlleet between the iwo, and after a shom time the tomsa: will tilt when a cor rome over it, and may enns: the tonguo to throw to the "Iprosite side, ow the brek whel may strik the point, "ither of" which may be sutherient th: hrow the ear off the track. Sinugle enrve switchas are thon curved only on one side: duble carre awithes are eurved on both sides.
 switch when cars always rin of the carve at that point and nerer tuter it. It closely ressombles rhe: mate in general construction. In order that the smilauce of the car facing the wwitel may not altonether depend on the fied that the car will naturally take the straight rack' in the direction in which it is mosing, rather than turn into the conve, arige i, left almug the flow on the str.isht track which aets is : gane line, to make it practeally impossialle fire the car to conter the curve.
3. Mutes.-The mate is the preve "pposite the switch, on which the whends of one side of the car run white the wheets on the other side are being pullel around by the switch : its sole usie is th provide in swithee for the wheels to run upen, and has nothine to to with the change in direetion of the car's motion. It is made of two pireene of rail, ind sometimes there is a cating. One piece of rail extromb over the whole length, and is straight if fir it siugle curve mote, and curved if firs a double curved mate; the other pieec is shorth ond alwilys curver), the head teruinatine in a point this point should be so designem that the gauge at the point is fuite slack, so that is wheed facing the mate may not strike ugen it. "The wilth of the point stould mat he lew than $\frac{1}{2}$-inch, as if mallo shaper it will wear on his. In grider rail the solit flemer section in ikes the beat a. ates, is it. arovites a wide then for the wheels to roll upun, an I the depth of the thor brmow the heod of the mail heing loos than the deph of the fla, we uf' the wheel, it quickly wears so as to provide a louble be wring for the wheels, so that the poiut is passed without the whech dropping leavily upro it. If the
 nsed on the straight track, or of of Tee rail construction, a vecel easting is men anary to cirry the wheels over the pome from the lous rail in tin the short one ; tims cisting is more eflicient if' carried up enis the ins.ide to pravide a suard; for in case of the gauge being tow slach, the tougue maty have a tudency to jerk the car off the trach. Chis consting bust project considerably minile the adus lins of the short rasi, thi" puth of the rear wheelo on a truck not coniueding with that of the frout nues, hut lying about $\frac{1}{2}$ inch inside, at may be clearly seen on any rorm maté
 the piecesemresponting th the fron in menn railond work；it differs convilerably from the frog，however：one，int benst，of the rails in a curve cross in generally eurvel io n very sharp eurve，whitat the fiog is at raizht of either track；the Iros has wious raild，nul a whon erossing a fros rums from one pince of rat nerass the chanel on to auther rail， whilst in the envere ernss a whee gencrally rans the entiro length of the enosw on one pileen of rail，tho ohamel for the danges being shaper ont of the how of the mat．Iceording ane or both raila are ormel， the cross is sitil to bo a single ar domble anme cross．

ह．Himomix，－Diam mit are mate in varions way，necorthag to the requirements they are to werse．A simple sing＇track liam mel for the corssing of two dretrid lines eonsists of two wain parts，eats part beine mato of tive pieen of rail，one long pivee with four whort piover butting uir mainat $1 t$ ，two on each side；tho long rail is u－ually mank to form part of the twek on the street havige the preater momot
 is usually all wale of tee rail，of the same section as the rain of the sham road．If the bails of the stem romare not to be ent， the thomond is made in thee parts（lage 19，Fif，b），th wholle and one insile the stean track，the whole being so emastructed as to lift the strect car before reachiog the mils of the stem track on to the flanges of the wheces，and munterg seross on them to the other site，and then dropping exabually to the or linary hevel again，so that the only place wherw any jolt can oceur to a car while crossing such a diamond is When it croses the chaunel of the stemm track rails，notwithstanting the fiet that the rabls of the stean track wre not eut to the smallest exteont to provide a pass ge for the flangers of the strectear wheels．
 extent on this elass of work．They are more especially ：whated to suburlan traffic when＇Ter rail is used，rather thom crowded thor－ molifates of eities．They are expelally suitable when ears alwas rum tu（be sane dide，whon the switel）may le made to work notomationlly by means ol a spring，mill in this way they have been fomed very satis－ dactors．

7．Sthl Ňritches． S （ub）switelus are suitable for yard purposes mul sidnge mily ocensionally used ；they ase eheap，wheh is alwoys a fuint in their favour．The use of a stanl prohibits their use in eity thor ushlares．
8．Leenths or Rail－Raik for all specin work shoull be aeen－ ratcly ent to the regnireal lengths，and earelinlly hent．whe proser t．wplate if for nse wh a curse，we acurately statightened if required for uraght tack．If part of atail is to bestrithht and the remainder curved，the rail mu－t not only ayree with straight edge and template for the required lengths，but．it menst be texted．In determine whether the straisht part is tangent to the eurve，for if unt，the piece will not fit eorectly when phed in the work of which it lorns fart．

TIt：DFTERMINATION OF゙ NECESSABY゙ SHECTAL WORK゙．

Havimg lail down the mot of ay street milway system necesary tor the aceommodation of the ；resort trafic and that ot the ucar future， the sperial work vepaired beeones apparent．It ia nost inportant that curves likely to be required in a few years，but not uceessary at the present，shond be lati，if at all possible，thrine construction，as the addition of a single enve to an intersection in sume case mecessitates the recoutruction of the steater p．rt of the whole intersection．

SUUVEYS
A careful survey must be made of the intersection of strects requir－ ing special work，aud all measurenente of hines and augles taken which are necessary to plot with the grentest aceuratey the centre lines of tho proposed tracks together with the sireet and curb hines．

blottini.

Theme mensurements are plonted to a mithble newle (may 10 liect to 1 ineh), and the most suitable ralii for the reguirel curves de:erminad, which are usually frou 10 to 75 feet radiun (45 and 50 ft, ure most conmon iu Moutreal and Torontu).
'The attempt in sometimes ruade to eane these curver as ull team railo roul work; but when it is remembered that the length ol most of the curves is aboat 80 ft ., it will ho seen how limited the speace is la whish to "ttempt anything of the hiod ; however, an improvement may bo introdued by making the switehes ot the ends of eurven of a longer ra lius than the main purt of the eurvem, such ns asing in ft , radins owitches 01.45 ft , radies curves, this cases the curven for 10 ft , it each cad and meets all pantical requirementa, any further stepes in this direction would meen to lenn towards "hair splittine","

It might here le mentioned that e:thongh these eurves wonld appear very sharp to engineers acenstued to sham railruad work, yot there
 ntam railway, ant "printed succeofolly, the specel on it being from \& to 10 miles per hrour. (U.s. Military Rablway, Petersburg, Va.; see

There should be, if possibla, withenent space between the inside rail of the enrve nad the curbsions for a velicele to bian a car cisily ; this, however, requires very wide streis ; if this cmmot herlone, the rail shmuld be at nboat two feet from the enth whme ut the comer, for if at say four feet, there wiml not besufficiont romen bine or and vehiele to pass, but the attempt might be made . an necident exastu. The radia of the enrves should also bo determined with a view tusultivicht romior the switches; if this is unt looked to, special shurt switehes may bu regaired, wh ich is not desiralike. The interseetin: points of the gauge lines should also be carelinlly observed, as lyy the slight alecration of a radius, coubination pieces of eomplicated constructlou and of inn unendurable character may often be avoided. The radii haviur been fixel, the wangs lines uloue may be lad down to a largu scale (say 4 feet to, 1 inch), anl the calculations proeseded with.

chicut.attons

The data un which the calculations are lased are:-the gatuge, distance between tracks, mugle of interacetion, radii of curves, anl onetimes distances between apex's and diflection angles.

First, the tangents and louthe of all curves are found ; moxt, the distauces berween the conds of the curves are determined.

In the case of a double track branclionfi, with inner and outer curves of the same radiusmol equal eentril divtanees, this distance, re (Fig, 25), is given by—_distance between $I^{\prime} \cdot \prime,{ }^{\prime} \times, \prime=$ (gate + eentral dis. tence) tun ${ }^{\text {eentre altolat }}$

If the ridia are equal, hut the central distances on the two streets are unequal, the distances required may be lound as follows:-

Sut $G^{*}=$ ginue. (Sen Fig 2 1)

*. $11=0$ angle of interection
Nince she rulli of the inside and onside curvesare equal, the tan gents (fin the mane angle) nre equal.

(both mensumid parallel to gation lines)

$\left.h=(1 i+I)_{2}\right)$ соже $\left.a(1 i+l)_{1}\right)$ cot a
$i^{\circ}=\left(I_{i}+I_{1}\right)$ etome $a-\left(G^{i}+I I_{2}\right)$ trit a
$d=\left(1 ;, D_{2}\right)$ enside $u-\left(i i+l I_{1}\right)+v^{t} a$
Whon heth the contral dintances and radii varg, tho distances bo-
 tangents, mak'ug allowance for the apex nagle if differing very much from a right mugho.
Nexs, the momber of pinees into which to divide the intersection is setermined, and the proper lengthe fir switehes and mates fixen.

Thes points when the enver interseet the atrainht gauge lines are sext firmed; this may ha du, by bither of the two following methods:

Taking Figy, e5 with distaneos as murk

1at Methoul. Consider the point d,

$$
\begin{aligned}
& H_{1}=\left(I_{1}+(i)^{2}-R_{1}^{\prime 2}\right. \\
& =\sqrt{2} r_{i} R_{1}+r_{i}= \\
& \sin \mu_{1}=\frac{\mu_{1}}{\mu_{1}} \\
& \therefore a_{1}=\sin ^{-1}\left(\frac{\sqrt{2 F_{i} R_{1}+\theta^{2}}}{l_{1}}\right)
\end{aligned}
$$

$\sin a_{12}=\frac{\pi R_{2}}{R_{2}}$
$\cdot u_{2}=\sin \cdot\binom{\sqrt{d_{2}^{2}}-\left(k_{2}-I\right)-(i)^{2}}{k_{y}}$
aml su on tor other points.
2at Methol.-For A. vers $a_{1}-R_{1}+G_{1} \quad \therefore \quad a_{1}=\operatorname{vers}^{-1}\left(\frac{G}{h_{1}+G}\right)$
$I I_{1}-R_{1} \sin a_{1}$

$$
\begin{array}{r}
\text { For } B, a^{2}=\operatorname{ver}^{-1}\left(\frac{D+G}{R_{2}}\right) \\
\qquad H_{3}=R_{2}+\sin t_{2}
\end{array}
$$

Similarly for other point..

At a instance s, the spread $m=2 s \sin \frac{" 1}{2}$ (See bity 26) which ig

the distance betwern two points at a distance s from the intersection point, one on the straight gauge line and the other on the tangent to the curve at the intersection print.

The straight kngths of the figure (Fig. 25), i.e., the distances along the straight track between the points A, B, ete, are found by means of the lengths Π_{1}, M_{2}, ete., and the distanee between the 1 '. ('.'s. The are to any point from the $P^{\prime} . C$. is given by :-

$$
\text { are }=\text { ridius } \times * c . m . a
$$

So that the eurved lengths, i.e., the distances between the points $I, B,-F, E, \cdots$., are found by taking the diffurences betwen the ares te these points, while the distanecs beyond A, B.ete., to the other end of the curve are found by taking the differences betwem the total lenglbs of the curves and the ares to these points.

The following tables have been calculated by means of the preceding formule:-

When the intersection has enrves branching in both directions, as shown by lig. 13, the pmint, where the curves intersect as K, L, cte., have to be found, in order tu deturmine the different lengrth; the problem thus hecomes "to determine the intersecion point of cwo curves branghing in opposite direction from parallel lines." This may be solved by either of the two followise methods, the seemul of which is much the more readily applied. (eo Fiu 27.)

Let $R_{1}=$ radius of "arve with upper $I \cdot C$.
" $R_{z}=$ " " " lower $I^{\prime} . C$.

" $b=$ " " eentres "perpendienar "
$" c=$ " " " " in is straight line.
 pura, to mange lines.
" $\theta=$ angle bewen a line perpendicular to gange linwand line joining centres.
" $V=$ angle at upper econte between matins to intersection point and hue juininer centres.
" $\quad L_{2}=$ angle at lower entre betwent mathe to intrasection paint and line joinnir cernires.
" $/$; angle at centre mbtended by are between lower I^{\prime} ' ' and interection point.
" $T=$ anme at ecutre abtended by are bitwen upper I^{\prime}. ' $^{\prime}$. and intersection point.
1.t Thethoul- $n^{2}+y^{2}=R_{1}^{2}$.

$$
\begin{aligned}
& \therefore y=\sqrt{R_{1}^{2}-x^{2}} \\
& (x+a)^{2}+(b-y)^{2}=i_{2}^{2} \\
& \therefore x^{2}+2 a x+u^{2}+b^{2}-2 b \sqrt{R_{1}^{3}-x^{2}}+R_{1}^{3}-x^{2}=h_{3}^{2}
\end{aligned}
$$

Which becomes
$4 x^{2}\left(a^{2}+b^{2}\right)+4 a x\left(a^{2}+b^{2}+{R_{1}}^{2}-R_{3}^{3}\right)=l_{1}^{2}\left(2 b^{2}-R_{1}^{2}-2 a^{2}+2 R_{3}^{2}\right)$
$+R_{2}^{2}\left(2 a^{2}+2 b^{2}-R_{a}^{2}\right)-b^{2}\left(b^{2}+2 a^{2}\right)-a^{4}$
Corollary. When $k_{1}=l_{y}=R$

$$
\text { then } x^{2}+a x=\frac{1}{4\left(a^{2}+b^{2}\right)}\left\{b^{2}\left(4 b^{2}-b^{2}-2 a^{2}\right)-a^{4}\right\}
$$

These formuke are very habourions to use in practiee ; however, as in the majority of eases $l_{1}=l_{2}$, the corollary is the more frequently required.

Having found x, the amples B and 7 are given by

$$
\begin{gathered}
\sin B=\frac{x+\cdots}{n=} \\
\sin T^{\prime}=\begin{array}{l}
n \\
R_{1}
\end{array}
\end{gathered}
$$

and the spread at a distance $s=2 s \sin \left(\frac{B+T}{2}\right)$
These formale apply also when the two eurves branoh eff in the same direetion, with the exeeption that the apread is given by

$$
\text { spread }=2 x \sin \binom{T-B}{2}(\text { sse Fig. 28. })
$$

3nd Method:

$$
\begin{gathered}
\tan \theta=\frac{a}{b} \\
\quad=b \text { sec } \theta \\
\cos U=\frac{c^{-}+R_{1}^{2}-R_{2}}{2 c R_{1}} \\
\cos L=\frac{c^{2}+R_{2}^{2}-R_{1}^{2}}{2 c R_{2}} \\
T=U-\theta \\
B=K+\theta
\end{gathered}
$$

When two eurves branch in the sathe direetion (Fig. 28) the above applies with the following exceptions:-

$$
\begin{gathered}
\eta^{\prime}=180^{\circ}-(U-\theta) \\
\text { and } \operatorname{spread}={ }^{2} x \sin \left(\frac{T-B}{2}\right)
\end{gathered}
$$

Having fixed these points, the straight lengths are found as before by means of the perpendicular heighte to the intersection points of the single curve crosses int the dist mees the the dumond by means of the tangents. The ares to the intersection prints of the double eurve rroses aro given by:-

For are to intersection point on curve with upper P.C.,

$$
\text { are }=R_{1} c, m . T
$$

For are to intersection point on curse with lower P. $C^{\prime} .$,

$$
\operatorname{arc}=l \quad c . m . B
$$

so that the distances along the ares between the points are given by taking the differences between the ares.

In Fig. 13 it may be noted that when the ralii of all the curves are equal, the anglo θ for the points L, N, O and $P=$ intersection angle $\sim 90^{\circ}$.
that for the points K, L_{2}, M and $I^{\prime}, \quad l_{1}=l_{2}$
" " " L, N, O and $P . a, b$ and consequently θ and c are
the same.
that the angle U for the point $N^{\circ}=$ the angle L lior the point O, and vice versa.
that $i, N=L O, N U=O$ li, $O P=N r$, and $P T=P 心$.
The following table has been calculated by the preceding formula from the following lata:-(refer to Fig. $1: 3$) $I_{1}=f^{\prime} 9^{\prime \prime}, D_{2}=4$ $0^{\prime \prime}, a=86^{\circ} 33^{\prime}$, gatuge $=4^{\prime} 82^{\prime \prime}$, ratios of insithe gange line ol all curves $=45^{\prime} 0^{\prime \prime}$.

Note :-2 $\left(90^{\circ}-86^{\circ} 33^{\prime}\right)=66^{\circ} 51^{\prime}$
$=$ difference between left and right angles of L und P
$=" \quad$ " " ul N and right mugle of $"$
$=$ " " right of N mul left of "
To determine the P.C' of a branch officurve from a curve main track :

Let $a=$ deffection angle of main track tangent:
Let $\beta=$ angle between nue nf' these tangents and tangent to branch-off curve.
Let $\theta=$ angle between line joining eentres and prependicular from centre ol' main track curve to tangent of branch off curve.
Let $a=$ distance between apexes.
Let $h_{1}=$ radius of main track curve.
Let $R \geqslant=$ " " branch-off "
It is required to determine the point I.
Taking $x+y$ as show by lig, e9) ;

$$
x=" \quad l_{1} \mathrm{tanl}_{2}^{\prime \prime}-!
$$

$$
\begin{gathered}
=a+R_{1} \tan \underset{2}{\prime \prime}-R_{1} \cot \beta \\
=a+R_{1}\left(\begin{array}{l}
\tan \frac{u}{2}-\cot \beta
\end{array}\right) \\
\text { and } \cos \theta=\begin{array}{c}
r \sin \beta-R_{2} \\
R_{1} \mp R_{2}
\end{array} \\
=\left(\begin{array}{ll}
a+R_{1} \tan & \left.\begin{array}{l}
a \\
2
\end{array}\right) \\
R_{1} \mp R_{2} \beta-R_{1} \cos \beta-R_{2}
\end{array}\right.
\end{gathered}
$$

$R_{1}-R_{2}$ when curves branch in the same direction as in Fig. 29. $R_{1}+R_{2}$ " " " opposite directions,

This retermines the point I ' with respect to either P.C.
'To determine the infersecting prints of the gauge lines when the main track curve lies wholly between the $P . C$. of the branch-off curve and the nearest intersecting poins.

P is the point to bedetermined (Fig. 30), taking lengths as marked.

$$
x^{2}+y^{2}=R^{2}
$$

$y=b-(r-a) \tan a$

$$
\therefore x^{2}+b-(x-a) \text { tem } a_{5}^{\prime}=R^{2}
$$

which becomes
$a^{2} \sec ^{2} a-2 \operatorname{dttn} a(b+a \tan a)=\hbar^{2}-b^{2}-t \tan a(2 b+$ (fon a)
when the main track curves in the opposite direction to that of the branch-off, this equation beeomes
$x^{2} \sec ^{2} a+2$ tun $a(t-1$ tun $a)=R^{2}-b^{2}+a \tan a(2 b-$ $a \tan a)$

$$
\theta=\sin \frac{x}{R} \text { for both cases. }
$$

and spread $=2 . \sin \left(\frac{\theta-a}{2}\right)$ when main track and branch-off eurve in same direction

$$
\text { or spread }=\frac{2}{s} \sin \left(\frac{\theta+a}{2}\right) \text { when main track and brameh off }
$$ curve in opposite directions.

If the distance (h) from the $P . \ell_{\text {, of a a curve is known, the deflection }}$ (d) to the curve at that point is siven by

$$
l=r-\sqrt{r^{2}-l^{3}}
$$

In order to nake temphatso to which the mils are bent, caleuhations are necessary for flat curves (over 60 ft .) ; but those of a shorter radius may be trammelled out. To calculate theso templates, the deflections 13
at every 3 inches from zero up to half the length of the required template aro ealeulated by one of the above formmie. 'I'hese deflections are laid off on a board, a eurve is drawn through the points so found, and the board is then ent to the enrve. Of eoure the trammelling proeess is preferable whenever practicable.

Calculations for Crossorers.-Taking leniths as shown by Fig. 20.

$$
2 a \text { vers } a+\text { tenulent sin } a=1 \cdot C
$$

First, a length may be fixel upon approximately as desirable for a taugent ; with this length, solve for a (most easily done by trial), hav. ing feund a approximately, assmme an even whe for it (aty to nearest 10 uninntes) for simplicity, and with ihis value solve the equation again for the length of tamgent, dotermining it exaetly, which will be very close to the desired length (practically the amene).

The distances from sentre I^{\prime}, ' $^{\prime}$, to intersecting point of inside gauge is sriven by

$$
\theta=I \operatorname{cosec} a-\left(\begin{array}{l}
\left.H-\begin{array}{l}
G \\
2
\end{array}\right) \text { tan } \frac{a}{a} 2 \\
2
\end{array}\right.
$$

The total length betwect nxtreme eud I^{\prime}. $\%$'s is given by

$$
y=2 I \sin a+\text { tenfent cus } a
$$

The distance from end $P \cdot r^{\prime}$, to nearest intersecting point measured along main track is given by

$$
\begin{aligned}
& Z=\left(I-\frac{G}{2}\right) \sin a+x \cos a \\
& =I \cot a+\left(H-\frac{i}{2}\right)\left(\sin a-2 \sin ^{2} \frac{b}{2}\right)
\end{aligned}
$$

By making tament $=0$, the eonditions for a reverse curve are given

$$
\begin{aligned}
\because R \text { vens } a & =J \quad G \\
\text { and } y & =2 h \sin a
\end{aligned}
$$

When a erossover is requised for a width between track:, D_{1}, the only charge neeessary in a erossover designed for a width D) is in the length of the taugent which is changed by a length $=\left(D_{1} \sim D\right)$ cosec a.

To determine a reverse curve (short tangent butween curses) between two tangents not parallel, at an interaction.

A A all li.b, are the two tangents not parallal, representing the centre lines of a street with a wefletion at the intersection of amother strect. the centre line of which is mprest Iby U.O.

Take distances as shown in Fig. 32.
Fix upon a point which will be convenient to form one end of the eurve, ant let itce dintance from an apex be b,

Then, $A_{1} \cos \theta+t$ tentent $\sin \theta+l i s \cos \theta=a \sin a-b \sin$ $(\alpha-\beta)+$ Revers $(\alpha-\beta)$, as in the ordinary erosonver calculations, fix θ by trial and then solve for the tancent,

$$
\begin{aligned}
& \text { tangent }= \frac{1}{\sin \theta}\{ \\
&\left\{\operatorname { s i n } \left(\alpha-h \sin (a-\beta)+h_{2} \operatorname{ver}(a-\beta)\right.\right. \\
&\left.-\operatorname{ven} \theta\left(\mu_{1}+l_{2}\right)\right\}
\end{aligned}
$$

Having determined upon the amgle θ, nem fiomed the tament the other lengthes are comily linmil.

Calculrtions for Diamond Siding.-Consider end A, Fig. 16.

$$
\text { vers } a=\frac{D+G}{4 R}
$$

total length between extrome $I^{\prime} \cdot C_{0}{ }^{2}=2 R \sin a$
cos angle at eentre subtended by are from right hand P. C. to interseotion point $=\frac{l-\frac{1}{2}((t+D)}{R-\frac{1}{2} G}=\cos \theta$
male of eurve eloss $=2 \beta$
distance from right hand $P \cdot O .+{ }_{\text {s }}$ intersection point $=\left(R-\frac{1}{2} G\right)$ sin β.
These caleulations apply wheu the curves begith at the same point to braneh to either side as in Figg, 16 ; but when the eurves begin ai different points (for blind switches) as in Fig. 18, the intersecting point does not lie on the centre line, and may be found as follows:-(Fig. 33.)

$$
\begin{aligned}
& \tan \theta=\frac{l_{1}-R 2-a}{t} \\
& \operatorname{ros} \pi=\frac{R_{2}{ }^{2}+\left(l_{1} \text { sec } \theta\right)^{2}-R_{1}{ }^{2}}{2 R_{2} b \text { sec } \theta} \\
& \cos \phi=\frac{R_{1}^{2}}{2}+\left(b_{1} \text { sec } \theta\right)^{2}-R_{2}^{2}-2 \\
& a=90^{\circ} \quad \theta-\pi \text { and } \beta=90^{\circ}-\theta-\phi \\
& \cdots=l_{1} \sin \beta \quad \text { and spread }=2 \cdots \cdot \sin \left(\frac{a+\theta}{\underline{2}}\right)
\end{aligned}
$$

('ulculution for thrornover sidiny with bind switches.-The ealculation - are generally similar to those already described for erossover and dianond sidings, exeept for the curves in the main track; these are solvod as follows:--(See Fix. 19, end A)

$$
\begin{gathered}
a=\left(R+\frac{1}{2}(i) \text { vers } a+\right.\text { width of switch at baek } \\
N \beta=\frac{4}{2} R
\end{gathered}
$$

Total motre angle for eurve aljoininus switeh $=a+\beta$.

WOREING DRAWINGS

Huving completed the ealendations for an intersection, the detail drawings for each piece are make, and sent to the shop, together with a print showing the whole interseetion with the distinguishing marks of all pinces and lengthe of the connecting rails. A drawing is also made for assembling the work in the street, showing all necessary measurements tor laying out the work together with the position ind marks of the varinus pieees.

AHOP WORK

A bill of the rails required and the necessary new prints and references to old ones having been obtained from tho Drawing Office, the manulacture of the work may be proceeded with. The bill of rails required (made out no as to give a minimmm amount of serap) is given into the hands of the man in charge of the rail saw, who proceeds to cut up the rails into the required longths, markiug the length of each and whether required straight or curved upon the web. The rails next with few exceptions, go to the rail bender, to be ether curved to the re"uirel radins, or straightenel ; they next proeed to the "marker off,"

Who carcfully marks the necessary lines for all machine work required to be done upon them, he also stamps the rails on the end with their distinguishing marks; the rails afterwards pass on to the machines (milling machines, slotters, shapers, planers, etc.) suited to the work reguired; they then gro to the fitting shop to be assembled according to the drawiugs.

In a tongue switeh the long rail has to be properly curved, and sloted or bent fir the tongne to fall into place. 'The tongue is uade of hammered steel, aud the turned pin is slorunk iu; this is dropped into place, and all measurements cheeked before being considered realy for the lack.

Iu the blind switen and mate, one rail is phaned so as to leave a long wotels on one side, while the other tail isplaued to a point whieh tits into the noteh; the two are strongly bolted or rivetted together and sometimes finislied on a plauer.

The eurve crosses have usually two picees of rail, one of which has the rpper part so shajed at the erossing poiut av to allow the second one to drop down on the first, and fit aceurately inter the place allowed fur it; whila the seend has the lower part shaped so as to allow the first rail to pass through, the two raits jointing neatly into one another. Great eare is neecsary in the fittiug to hase the angles of intersection exaetly as required; in order to abtain the eorrect angle, the drawing shows the spreat, us, at a fixed distance, torether with the deflections: d_{1} and d_{2} of the curves at that point ; sothat this distane is mearured alone the rails from the intersection point and the deflections maked from the gatele line, the spord is then memened between the points so muked. (See Fig. 26.)

CuECKiNi.

When an intersetion has been muld, it is som times a lvisable to have it issembled as a final eheck before shipping ; for this purpore a laree pices of ground, as luy as posible, is required, and unela more than is actually oeenpied by the work when in face should be avaikable; the tangents of the intersection shonld be laid out, and a sufficient uumber of paints fixed to aceurately check thes end of each enve. Having laid out the ground, the finces are aseenblen, and any errors observed may be corrected; this last step ensures the work being absulately correct, and is the lest cheek whe work that can be adopted.
ansembling in tile track.
In laying an interection, it makes areat in al of difference whe ther the whole space requited is grabled at onee and all traffie sloppeit, or if only part of the intersection is gradel, leasing part undisturbed so an $n 0^{2}$ to interrupt arafie. When the work has to be performed in the latter way, wreat eare is necessary in placiug the work, so that the remaining part when laid may fit un, to and line in aceurately with the first part. If it is neeessary to lay out a curve, it is generally most easily perfonued by tangent and chord deflections or by ordinates fimm a chord. In gradiug a corner when :umportant intersection is to ho laid, care -hond be excreised in exeavating to the correct depth and having the grading done evenly, for if the track hat to be lifted say six inehes after being laid, it mans very much more than the satue lift on ordinary track, as the weinht of rail i sometmes rnormons as compared with the extent of erround it envers ; aiso, if the work havbeen carele-sly danc. and presents a very uneven bed, much more time is necerary to comple up the joins than wonlal have been refuired hat the grating been prosperly performed. The spacing of the ties for this work shoull reecive more atcution than is sometmes given to it, as it is a very important
 dusely than those on the stratight track.

The eenter limes of track - lor both streets are acemately fixed, and if there is no diamond, the entls of the curves must be fimm ; otherwise, this is mot essential. If thore is a diamond in the interscetion, his is laid first, bolted up and lined necurately. The other piece having been
seatterel about in their approximate positions are next drawn to place nud bolted together. The rails are then securely spiked te gauge, and liftell (if necessary) to grade, when the intersection may bo paved and so courdited. If there is no diamond to lay, an end of a eurve may be taken ats the martiner point. To lay the intersection so as to have the thromgh striight tricks in perfeet ahigment requires great care, 18 the joints are usially very elose tagether.
An iden of the anoun of rail that may be used is a single intersec.
 be formed from the fillowing finnes, fin one laid at the intersectica of Sit. Lawrence Main and St. Catherine streets, Montreal (smme as Fig. 15). It iv built of 75 Hb . and 8.4 lbw . sirder rail (Figw, 3 und 4). It contailus 2,150 fert of rail, and hers a total weight of about $2 f$ tons. There are s6 built up pieces (swithes, mates sud curve crossess), and is lingthe of connceting rails, waking a total of 16.4 piecess in tho complete intersection. The extreme leneth between ends and opposite switeles is abeut 110 feet. The ralius of the inside gauge lines of all the enres is 45 feet, and the distanee between tracks varies from 4 It. to 8 ft. 6 in . Thise intemetion, as well as all other in Montreal and 'Toronto, was made by the Cimada Swith Manufieturing Co., Lim. of Montrenl.
Such work, when properly constructed and laid, represents a large amount of e pitil, ind deeveres meeh more atcention and care than the ohl cast iron work; but, natiortunately, it seems sometime to be treated no better. The earves at intersections are necessarily very sharp, and in order to diminish the annment power reynired and the wear on the rails (as well ans on urw), they require oiling at lenst ence a day for henvy traffie, while the rate at which cars tun over special work should be strictly regulated to a low sped. The groove of the rail and the tongne: witeles recmive to be constantly eleared of the dirt which inevitably collects, and if not removed causes areat ineonvenience. The life of'such wirk may be appreciatly prolonged by such attention, and when ane ensidits the cont nii renewal and the conserquat interfirene to tretfic while dowe on it will he reatily seen that it pays in the emen.

acrobs bimern

$$
\square
$$

