The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couteurCovers damagedi'
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peur que certaines pages blanches ajoutées lors d'une restauration apparaissent cians le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui àèté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uriques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

\square
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquėes
\square
Pages detached/
Pages détachées
Showthrough/

Quality of print varies/
Qualitė inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from: /
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

\square
Caption of issue/
Titre de départ de la livraison

\square
Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplë̀nentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Livelosil

nluner.

VOL. II.-NO. I.
COBOURG, AUGUS'1 1, 1847.
hoalthy nutrition of a new living being. Mr. Rogers has found by experience that potatoes are exempt from rot, if planted late in autumn, and never disturbed in the spring, but cultivated as if planted at the latter season.

It has long been a source of deep regret to us that the study of vegetable pliysiology, and of the diseases incident to cultivated plants, is цenerally so little : lished, and so unpopular, in the farming community. Hence we write every sentence that relates to this science, in the fear of not being understood, and of exciting the disapprobation of many of our readers. But we must still crave their indulgence, while wo pursue the discus. sion of this subject a little further.

The premature developmert of the germs of potatocs is only one, and that perhaps the least injury, which thoughtless cultivators inflict on this invaluable plant. They omit to place within reach of its roots those alkalies and alkaline earths, without which no healthy and perfect tubors can bo formed. According to the most reliable analysis an acre of potatoes, tops and roots, weighing 7,870 lbs. dried, require in their organiza. tion 193 lbs . of pure potash and soda.Ashes and common salt will supply these elements; but others are also needed, which a little gypsum and bones will furnish.

Nothing is more certain than the fact that, to withhold from any being, whother vegetable or animal, its appropriato food, is to impair its constitution, and ex. pose it in an eminent degree to become diseased and destroyed by injuries, whether by insects or other agents, that would fall harmless on well fed, strong, and healthy systems. A violation of the laws of organic lifo will be fatal, sooner or later, according to the extent of such violation, not only to particular beings, but to the fumily in which the injured indi. vidual is a connecting link between the past and the future. From this cause, many families in the highest class or genus of beings, that of man, have become extinct, although once endowed with great vital force. For wise purposes, God destroys families that, from generation to gencration, consume more than they produce, in idleness, extravagance, and vice. This is doubticss done to make room for the expansion of familics, distinguished alike for their industry and temperance, and the physical, moral, and intellectual strength which labour and virtue always confer. If we view human
action in its proper light, it will be found impossible, in the order of Providence, forman to inflict injury upon others, even on a potato plant, erreatly needed as it is by the poor, without bringing on him. self or his orepring a greater injury.But it is unnecessary for us to moralize on this subject; although morality and agriculture are more intmately connected than many suppose. Without any espectal violation of natural laws, we have no doubt that varieties of plants as well as animals will, ouc day, cease to have any living representatives on the earth. The researches made in that de. partment of Geology called Palcontology, which investigates fossil plants and animals, leave no room for doubt in regard to the extinction of many races, that have flourished for thousands of years on the globe. Hence, our able contemporary, Mr. Beecher, editur of the Indiana Farmer and Gardener, cxpressea a general truth too strongly when he says in a recent article,-"Any one tree may wear out; but a varicty never." A famils of plaats, or varicty of such family. may endure for indefinte ages. But in the ceaseless proyress of time, an epoch will arrive when this family, litio all the extinct famities, from the recent mastodondownward, will have no living representative to perpetuate its lineage.

We cannot dismiss this subject without remarking that constitutional wealsness in the putato plant can be remedied as well by propagation from the germs in the tuber, as from the seeds in the ball. The vital principle is as feeble, as much exhausted in the one organ of the being that forms einbryos, as in the other. If vitality be lacking in the germ found in the potato or tuber, it cannot be moro abundant in the seed. If plants gerninated from seeds appers more nealliy and vigorous than those fiom the tuber which gave the seeds, it is owing to extra. neous circumstances, belter care, keeping, less exposure, or some other incident. Unwise culture is only the predisposing cause of the potato rot; while the active agent exists unseen, and umappreciable in the atmosphere, like "the pestilence that walketh in darkness." We have good reason for the remark that, by supplying the crop with the precise ingredients required to form it, in its perfect state, and at the same time avoiding the bad practice of sprouting before planting, the peculiar malaria, insect, cryplogamic, or parasitic plant, or whatever else may complete the work of destruction, will pass harmlese ever the potato field.

From the Genesec Farmer.

WHEAT CULTURE.

The farmers of Monroe county sow an. nually about 72,000 acres in wheat, and harvest not far from 1,400,000 bushels of this most valuable grain. The breadth of land sown last year, according to the Census, was 72,635 acres; while the acres harvested were 68,383 . These facts are interesting, because they show that wheat culture is on the increase in the Genesee country, there being 4,252 acres sown in one county in 1845 more than there were in the year provious.The average yield is something less than 20 bushels per acre. That this is a very profitable crop may bosafely inferred from the circumstance that about one third of the plough land in Monroe county has constantly a wheat crop on it. The whole amount of land in meadow, pasture, and tillage, is 281,011 acres. Deduct only one-fifth of this for moist land permanent. ly in meadows or pastures, and it leaves $\dot{2} 24,809$ acres of wheat land. Divide this sum by 3 , and it will give but a fraction more than the number of acres an. nually sown with wheat in the county.

It is taxing the natural resources of the soil protty severely to take from it a crop of wheat every third year, and send tho grain out of the county to distant markets. Our researches, however, by chemical analysis, into the composition of the soil, and of the fragments of rocks, which being broken up into pebbles, and ground into powder, form the principal weight and substance of all soils, warrant us in saying that, with skilful management, this land may be cropped with wheat every third year without ilapairing its enduring productiveness. But what is skilful management? No general rule can be laid down which shall embrace the best practice applicable alike to all soils, under all conditions and curcumstances.

The common sense, not only of the profession but of the community af large, has decided the point that no physician, no matter how well versed he may be in the sciences of anatomy, physiology and pathology, and in the properties of medi. cines, can make a general prescription that will apply to all constitutions and al! diseases. He must see every patient, and learn all the facts and circumstances peculiar to each, before he can say what remedies are needed. in each particular case. This common sense principle ap. plics with equal force to the renovation, and lasting improvemont of soils, by removing every defect that attaches to each man's farm. We malko theso observations as an apology for not attempting to prescribe rules of practice far the guid. ance of farmers in the details of wheat culture. Without an analysis, we can only deal in generalities.

It is obvious that by growing and sending off a farm, 500 or 1000 bushels of wheat per annum, the ingredients in the surface of the earth that combine with elements taken from the atmospthere to
furm the seeds of this plant, must gradu. ally become less and lees, without restitution from some source. The farmers of Monroe county annually make out of something, and export from their estates, the maller convertod into wheat, equal to forty-eight millions of pounds. The whole crop of wheat at sixty pounds to the bushel, will weigh nearly one hundred millions of pounds. We do not re. gard it as impracticable for this county to produco and export annually that weight of matter in good wheat, for indefinite ages to come. Our reliance is on the elements of this bread forming plant, which nature has stored up in the sub.soil, drift, and solid rocks for hun. dreds of feet in thickness below the surface of the earth where the plough-share now runs. In many respects this mino of the minerals required in making good crops of wheat, is vastly superior to the resources of the Nile, which enable the people of Egypt not only to feed unnumbered millions at home, but to export at Rome and other citics in Europe and Asia, for thousands of years, an incalcu, lable a mount of breadstuffs. It is a pro. found and most interesting study to learn the best process for transforming Earth, Air, and Water, into bread, milk, meat, wool, and flax. It is the earth, aided by air and water, light, heat, and electricity, that furnishes all manures, whether vegetable, animal, or mineral. Hence it is that man ploughs the earth, harrows the earth, spades the earth, hoes the earth, and cultivates it in a thousand forms, to favour the organization of useful plants. But he fails to plough and mellow the soil deep enough to command the full advantage of its mineral elements. The plough passes over too much surface in a day, and only half so deep as is necessary to give the roots of plants a fair chance to expand, and diaw nourishment from a considerable depth in the earth. We have recently taken up roots of com. mon white beans, grown on a deep sandy loam, which extended two fect each way from the stem, and penetrated 18 inches deep into the soil. By placing the stem of a plant in the centre of a square whose sides are distant 2 feet from it, the area will be 16 feet, or 4 on ali sides; and if we include a depth of 16 inchos, the solid contents will be 24 cubic feet of soil to yield food to the growing plants. Now, limit the extension of the roots of the plant to one foot in all directions, to tho depth of 9 inches, and you will have a surface of only 4 square feet, containing just one-eiglth part of 24 cubic feet. Every body knows that a hard, impervious soil is fatal to the growth of bountiful crops. Plough, then, a narrow forrow, move all the earth down eight inches, and let a sub-soil plough follow in the same tracks, to breok up and pulverize the compact earth six- or eight inches deeper. This will enable the oxygen and carbonic acid in the atmosphere, and other metcoric elements, to decompose tho before insoluble silicates and phos.
phates of potash, soda, and lino; and permit the thirsty roots of starving plants to go down and drink in the nourishment which they most need. In this operation the sub-soil is not brought to the surface, but only broken up, and mado friable and pervious to water, air, and roots, in all respects like the surface-soil.

How can one best increase the elements of wheat in soils where such elements are lacking?

This is a question of great practical moment. To show, in the first place, what one acre of land can do, where Science had supplied it with each element used by nature in forming this invaluable plant, so far as such elements were lack. ing in the soil, we ask the reader's atten. tion to the following facts:
in part VIII. vo!, 2, p. 200, Mr. Colman says: "It is well attested that a crop of wheat grown in Norfolk county in the same year (1845) produced 11 quarters, 2 bushels, 3 pecks per acre, that is to say, 90 bushels, 3 pecks per acre." The evidence of the truth of this state. ment being satisfactory to the Royal Agricultural Society, its Council directed Prof. Playfair to make a critical analysis of the soil that produced this remarkable crop. He did so, with the following result :-.

In so small an amount as 100 grains, this soil shows an appreciable quantity of each element, (14 in number,) found in perfect wheat plants. And yet, more than four-fifths of the soil is nothing but silica, or pure fint sand. The proportion of silica is about the same as we find in our best wheat soils in Wheatland. It differs from them in containing more soda, potash, and phosphoric acid; while the amount of lime, magnesia, alumina, oxide of iron, and chlorine, correspond very exactly with the results of our uwn analyses. We have, however, never so small an amount of organic matter (vegetable mould) as $2 \frac{1}{2}$ per cent. The fact that over 90 bushels of wheat can be grown on an acre with so little organic matter in the surface soll as 2.43 per cent. is worthy of mature consideration by those that desire to prepare their land for producing large crops of wheat at the least expense. It is not regetable, but mineral matter that our soils lack to give a large yield of plemp wheat. An abundance of mould will increase the growth of strav, but not of grain. To promoto

[^0]the growth of tho latter, no one thing is so valuablo, as a goneral rule, as that of bones boiled to a powder in strong lyc. To this the addition of gypsum and common salt will be of great service. The phosphate of lime contained in bones is an indispensable ingredient in forming the seeds of the whent plant. The gluten in this grain contains sulphur, which the sulphato of lime (gypsum,) will furnish. The plant also needs potash, soda mag. nesin, and chlorine; all of which the common salt, and ashes linached to ob. tain lye, will supply. The liquid oxcro. toons as well as tho dung of animals abound in elements most useful in form. ing wheat. But an excess of manure will be ruinous to the crop. And woky this is so, let us now consider. Suppose, for an experiment, one should make 2000 lbs. of repe wheat, including both straw and grain, into a heap of manure for feeding a second crop of wheat plants. Let this manure be sproad over the ground eight or ten inches deep, so that the plants would havo to organize their tissuce, seed, \&c., from the appropriate elements con. tained in the manure. Could a large yield of good seeds be thus grown? We think not. Why not? Every thing the kernels of wheat need, as well as all that the stems and leaves require, would be present in great abundance. The difficulty is this: Nature designs that this plant shall derive from the almosphere, through the medium of its roots and leaves, a large portion of the carbon, nitrogen, oxygen, and hydrogen, used in organizing its seed. Hence, to fend wheat plants with an excess of these cle. ments in rotting manure, is to inflict a surfeit and disease upon the same. All organized beings, whether vegetable or animal, may be injured, more or less, by having an excess of nutritious matter thrown into their circulating systems. Wheat can ondure this surfeit far less than corn, oats, or barley. There is a natural limit beyond which we cannot force any plant or animal, by the use of its most appropriate food. But in regard to wheat culture, we are far behind the maximum of product consistent with the highest profit. Something can be gnined on most farms, by the droppings of domestic animals, applied directly to wheat fullows. They are not generally too rich for a dose of barn-yard manure; especially if it be well rotted, and contain an admixture of gypsum, salt, ashes, and lime. Don't spare the clover seed, the plaster, nor the leached ashes, where you wish to enrich your soil.

From the Farmer's Gacotle. BONES.

Of all the extraneous animal inanures in use, bone"dust has, perhaps, been of the greatest importance to the farmer. Its use hns extended the growth of green crops urder circumstances, and in places where it otherwise could not have been attempted. The improvement of waste lands was often retarded, front the want
of a sufficient supply of manure; but this difficulty was obviatod by the intro. duction of bone manuro. We can point to several districts where this circum. stance hus effected a very great change, not only in the generat character of the husbandry of these districts, but it has onabled farmers to rear and feed cattle and sheep of tho more valuablo breeds, thus competing successfully with the farmers in other and older improved dis. tricts. A long exparience of this manure has only tended to impress upon our mind, that whether as an anxiliary to, or as a substitute for farm-yard manure, it is at once the best and most permanently useful of any manure we are as yet acquainted with.

Bones are generally boiled before being broken for the fariner, in order to extract the fatty matter containcd in them, and although this may at first sight appear to lessen their value, yet it has been proved that so far from being prejudicial, this previous boiling actually incroases their value to the farmer, the boiled bones raising by far the best crops. The manner in which bones act in promoting vegetable growth, has been the source of much discussion among scientific men, some ascribing their fertilizing qualities to their inorganic constituents, whilst others attributo their effects to the organic matter contained in them. A ton of bones, according to Johnston, contains

By Liebig, and after him by certain other writers, the action of bques is attributed to the phosphates contained in them, and this opinion is founded, among other things, upon the circumstance that bones have been found to exercise very little influence on vegetation, when the soil already contained n large amount of phos. phate of lime; and we find that Mr. Han. nam, in his Prize Report on the Effects of Special Manures, inserted in vol. 1, new series, of the "Journal of Agricalture," has drawn the conclusion from certain experiments made with burnt and unburnt bones, that "the inorganic constituents are the chief fertilizing agents in bones" (page 169); and again, "that the fertilizing properties of bones depend mainly on the inorganic matters contained in them" (page 171). That the inorganic constituents of bones do exercise a very great influence on plants cannot for a monent be doubted, when we consider the very importent part which these constituents of bones occupy in certain vegetnbles; but it must also bo borne in mind, that one third of their composition is animal matter, containing from eight to ten times more ammonia than cow-dung, and judging from the well-known influence which ammona exercises on vegetation, we cannot conceive that its presence is altogether useless, at the same time we cannot agree
with the opinion advanced by some writers, that this animal matter is the sole or chief cause of the beneficial nction of bones; for we think it impossiblo that the remaining two.thirds of their weight, boing inorganic mattor, slould have no fertilizing influence. We rather think that the very superior action of bones is attributable to the large amount of both organic and inorganic matter contained in them, their effects boing combined so as to produce results which neither the one part nor the other, taken singly, would produce. That bones should not act with full offect on soils previously containing a large amount of phosphato of lime, can be easily understood; for such solls were already supplicd with abundance of this constituent of plants, and therefore a similar addition would not be productive of ady good, simply because such an addition was not required, but this circumstance is by no means a convincing proof that the fertili. zing properties of bones are attributable solely to the phosphates which they contain.

Bone-dust is used chiefly as a manure for raising turnips. When used alone, 16 bushels to the statute acro are a suff. cient quantity; indeed a larger allowance than this does not produce a corresponding increase in the weight of the crop. We have used, annually, large quantities of bone-dust by itself, and applied at the rate of 16 bushels to the acre; but we consider that half this quantity of bones, along with a quantity of well prepared manure, pqual to half a dunging, gives more satisfactory results than whou the bones are applied alone. Bone-dust is sown either broadcast on the land when ready for drilling, or in shallow drills covered in the usual way, or by means of machines which deposit the manure either in a continuous line on the top of the drills, or at short intervals where the seed is alsc placed. It may also be put in by ordinary hand-dibbles, the seed being placed in tie holes on the top of the manure ; but in this case, as well as when applied by the drop.drill, tho crop must be consumed by sheep folded on the ground, so that the whole of the land may be manured, in order to render it fit for the succeeding crops. It is of importance that the seed be placed in confact with the manure, so that a rapid braird may be insured; and the turnip seed is not injured by thus coming in confact with it. When sown in the bottom of a drill, however shallow it may be made, or when the manure is sown on. the land before drilling, then the seed does not come uniformly into immediate contact with the manure, as it ought to do ; and the braird is comparatively slow and unequal. All experienced turnip growers are aware of the importance of a rapid and equal braird, and therefore they will direct their attention to the effectivg of this as far as possible in tho application of the manure.

Bone.dust may be mixed with dry and
well-sifted coul or turf-ashes; and is lighaly moistenod with water, or butter still, with higuid manure, and the heap turned over, the mass will soon becomo heatod, and when this heat has subsidod, it will be in a fit state for buing applied either to the raising of turmps or as a top. dressing for pastures. Old grass lands will bo found to bo much bencitted by nn application of bone manure, its effocts being shown in the more rapid improve. ment of tho stock depnstured thereon, and, in the caso of dairy stock, in the quantity and quality of tho milk produced.

The description of land to which bone manure is best suited, is that of a light and dry mature. On heary clay soils, it produces little effect; and evon on light soils, if acel, it will prove a lailure. Some years ngo we applied bone-dust, at the rate of 15 bushels an acro, to a lichl of a light gravelly nature, only partially drained but otherwise well suited for bone manure; the result was (the season be. ing very wet), that the turnip crop of that year was nlmost a complete fallure, but the grain crop of next year, it being a dry anmmer, was exceedingly laxariant, and the produce of very superior quality; indeed it is only on thorough drained hamd that manure of any sort will prove elli. cacious.

From the inothaster Daily Ancricnn.
 THE HESSIAN FLY.
 (Cecilomyin dostructor.)

How to Phevent its Ravages.The scoond generation of this most desfructive insect makes its appearance in this latitude during the two list weeks in September. The fly dies not live more than ten or twelve days. It sometimes hatches a little earlier, and at others a little later thanatio time aibove indicated. If there were no young wheat plants within reach of the periect insect at the peribd of its mataraty, on which to depo. sit its cags, in September or the first week in Octoher, all mast perish without providing for the appearanec of another gencration in the sipring. As all summer crops are out of the way in autumn, and winter rye is tut little cultivated, and may be sown lato cven better than wheat, the Hessan fly can be wholly eaterminated, by delaying to seed till aftor the 20 h September. Late seeding shonid bepractised by all wheat growers simultancously. for the 20 acre field of one farmer sown before the 10th September, may susatin lared enough to come out perfect insects in April, or the first week in May, greatly to injure a thousand neres in the surrounding country. All insects, and especially the lipult, increase with wonderful rapidity. If a man should raise ten thousand wolves and let them out to destroy the sheep and cattle of the community, he would hardly do more injury to the pub. lic than to sow 50 acres in wheat cearly, in a town where the IIessian fly is linown in exist, and thus raise countless millions of these destroyers of bread.

Woare woll awatothat on many soils, late sown whent suffers greatly by the henvings of frost, which separates the root of a small plant from tho surround ing earih and destroys it. Undor-drain. ing and open water courses will obviato this dificulty. Adbitting the full lorce of danger from winter-killing, still the loss from that causo is nothing whon com. pared with that which results from multiplying IIessian Ales in a whont growing county a hundred fold. Tho frost usually injures only portions of a fichd; and evon when tho damage extends over its wholo surface. it never spreads liko winged insects over every man's grain with. in ten or twenty miles.
The sulject is ubviously one of grent importance. Those that think of sueding early to avoid injary from frost, and to givo the wheat a good start with nume. rous routs, befure winter sets in, should remember that they need only nourish till spring, a few minute worms, to have their grain nearly deatroyed in May and June by the vast numbers of the next genorathon.
Rolling with a heavy roller was fried by a harge wheat grower in Whentland last fall to kill the larver, by crushing them against the stom whero they lic, but with little or no good result. This field was on the Genose bottoms, and sown the first werk in September, con. trary to our advice. Its crop is now nearly destroyed by insects, and will give to Monroo county far more Hessian flies the coming nutumn than is desirablo.

It is not a bad practice. to sow atand carly througin a fallow that all the insects in the neighborhnod may como and de. posit their nits, which should be plongh. ed decp into the earth where not one will ever come to maturity. After this the field can be seeded in the usual way. No application to the seed sown will have tho least eftect to keep off tho fly. In the spriag, it will deposit its ova on the leaves of the oats, baricy, and spring wheat, as well as on the winter varieties of the latter plant. Hence it is much moro difficult to prevent propagation in spring than in autumn.

Burning the stubble after harvest, has been recommended and practiced to some extent. This can soldom bo done without destroying the young clover which the farmer has on the ground. No skilful wheat grower thinks of omitting to secd often with this renovator of the soil, aided, ns it should be with a coat of gypsum, lime, ashes aod salt.' Where the land is not secded, or the clover has come badly, burning the stubble will be advantageous in more ways than one.

To escape the ravages of the Cecido. myia destructor, for it is indeed a desroger without a parallel amony the insect depredators upon the fruits of rural industry, we urge upon the whent growers of Western New York, the propriety of delaying to seed till after the 20 th Sepiember.

It is worthy of remark in this connec.
tion, that Providenco has provided in this country no fewor than four other inn sects that pray on the harvae of tho itnported IIossinn fly. The world is much indubted to Mr. Morrisk for informution on this subject. The following is an abridgement of his remarks on tho para. sites of the Ilessian fly made by Dr. Fitch:
"When its eggs are layed upon the wheat lonves they are visited by an excoodingly minute four winged fly, (a specios of Platygaster,) which punctures the egg and deposites in it four or six eggs of its own ; the Hessinn fly worm hatches, grows, and passes into its flax sead state with these internal foes feeding upon it: it now dios, and its distroyers in due time escape from tho flax seed sholl. Thrce other minute four winged flies, or bees as thoy would be called in comman langungo, destroy the fly when in its flax seed state. The most com. mon of these, by far, is Say's Ceraphron destructor. Alighting upon the wheat stalks, instinct informs them precisely where one of these flax seods lies con. cealorl. They thereupon "siting" thiough the sheath of the stall, and into the body of the worm, placing in egg there. in, which hatches to a maggot, lives upon and dovours the worm. Such are the means which nature has provided for proventing this pest from becoming unduly multiplied. And so efficient and invetcrate are those foes, that more than nine-tenths of all the Hessian lly larva that have como into existence, are probably destroyed by them, Mr. Herrick tininks, and we have strong reasons for believing that his estumato is within the truth."

This we regard as an over estimate of the proportion of the larvae of the Hessian fly destroyed by parasites. That a large number are thus disposed of there can be no doubt; but it will not do to depend on the multiplication of one kind of insects to extirpate another. The farmers' wheat and the mechanics' bread will be the first to fail, unless cultivatod intellect shall protect the food of man

ON THE PREPARATION OF COMPOSTA FOR TOP.DRESSING. LAND.

Dung from stables, byres, pig-stycs, and other places about a farm-court, I mean all dung made by Lensts, and the refuge straw about the farm offices, can be very well managed in the open court-yard, and it is profitably managed, and properly attended to, by the greater number of our best Fiarmers. There are many farms where the straw is all made into manure on the premises, that it would be a difficult process to rot the straw under cover. Where dung is made in the open air, have all sides of the dung-hill walled in, and the upper sur-fa-n only exposed. I have never discovered any loss in making dung in this manner; be it leept in mind, that no. rubbish of any kind should be admitted
into the strawnyerd dung hill, except such articles as noed a process of formentation to roduce thorr parts to the consistonce of manure. All composts should bo manufactured, and also used in 2 state bordering on dryness, and that every availablo substarico that can be gntherod about, or near to farm build. inge, should be brought to the compost heap, and to have such compost heap properly under control, it is indispensubly nocessary to have it under cover; the cover should be an erection of the shed form, having a side wall shatting in the stormy side completely, the leeside to be supported by posts or pillars, the two ends open, for tho entering or departing of a cart, with a substantial span roof over all, to keep the inside of the erection dry, and fit for the use it has to serve. The compost shed should not be less than 12 feet wide within15 or 18 feet might answer still betterand of a height of side wall to allow a loaded cart to pase freely under; the length should range to answer tho size of farm, or the quantity of compost re. quired.

It-might be cnvoement to have the poultry 500 st connocted with this eraction for the sake of the dung of the fowls; also, the privies may be so attached as to discharge their contents adjoining to the compost heap. All ashes from the fires and furnaces of the farm to. be brought to the shed daily; and all sweep. ings from the houses and court-yard; every particle of lime, rubbish, sand, saw. dust, soot, cleanings of gutters, even roads scrapings, where easily got at, and every other article that may becon. verted into profitable compost. It is most astonishing what can be accumu. lated from the gatherings of a well-conducted court of farm offices. If possible, let all things be brought to the-shed in as dry a state as they can begot, especially what may be broughtin from road sides, the back of hedges, turf. walls and such like articles; for the:drier they can bo got in, their mixing, and after-working, will be easier managed. After a considerable quantity of stuff is collected in the shed, some wet day, when it may be more to your profit to have the harses in the stoble, and the men employed within doors, get the spades and shovels, and three-pronged forks, put to work, and turn the whole contents two or thres times, then put all through a riddle, or screen of nbout an inch mesh, and store the heap from one end and along the back wall of the shed, sloping it well up to the wall; the base, or bottom of the heap, may occu. py two thirds of the breadth of the floor, leaving a sufficient passage along the shed-the riddlings or screenings to be thrown back to be mixed among the stuff that is coming in betimes. It is not supposed that the shed is to be filled at once, or in a few weeks, but it may be daily, or weekly, get additions, and the prepared compost may lie uninjured till
the shod is full, or till a field bo ready for top-drossing, and a fit tid to put it on. Somotimes it will bo requisito to sercen the compost over ngain, through a finer riddle, ospecially in cases whon you mix in guano, bone dust, salt, nitrate of soda, or such.like. I should have mentioned before this, that all refuse brushwood, small spray, old shocs, and any other thing that noeds reducing by fire, should be burned by times, and their ashes added to the compost heap. A compost prepared in this way can be used as snon as it is made, or it may lio dry for years if you please without losing its essential propertios.-Ploughman, in Ayrshire Agriculturist.

From the Albany Cultivator.
 HOEING OR CULITVATING CROPS.

Tras ohief or primary object in hoeing crops is to increase the quantity and im. prove the quality of the produce. Io this end, various means are adopted. A point of the first consequence, is the oradication of weeds and all plants excepting those which it is wishod to cultivate. T'he necessty of dostroying woeds, arises from several causes. Their growth in. terferes with and injures the crop in various ways. Thoy eximust the soil, more or less, of the olements which constituto the food of cultivated plants; they esper cially abstract the moisture of the soil, making a constant drain upon it in this respect, from the first moment of their existence.

It is of great importance that weeds should be killed while they are young. If killed at this stage, the injury they occasion is comparatively trilling, and the expense incurred in the operation is but little, conpared with what-would be required to effect the object when they are more fully grown. The brush of a hoe or the scratch of a light harrow, will effectually lill a weed at the timo it appenss abovo ground, whereas, the growth of a few weeks would give it such a bold on the soil that it would with. stand considerable force, and to cradicate it would require ten times the labor which would havo effected the object in the first instanes. Besides, if weeds are allowed to reach a large size, their roots beco.ne more or less mingled and entwined with the roots of the cultivated plants, so that in pulling up the wer is, the crop is liable to be injured.

Some people seem not to be aware of the serious injury which the introduction of pernicious plants is to the soil. Some of the rich "corn land" of the western states, have already suffered a great deterioration frons this cause. The negligent and slovenly manner in which the corn is too frequently "tended," has Glled the soil' with every pest which will grow on it, The foul growth is in many cases suffered to increase every yoar, till there seens to be between the weeds and corn a great strife for the mastery; and though the corn, on some of the most
fortile fields, grows twolve to fifteen feot high, or more, it searcely excoeds the weeds in height or strength, and judging from the liboral border around the fielde, of which the woods seems to have gained full possession, and from their frequent appearanco among tho crop, the prospoct seams fair for the day being ultimately carried by them.
Stirring the ground, to a certain extent, is beneficial to crops, aside from the effect of keeping down the weeds. By keeping the soil loose, the roots of plants more readily extend themselves; the soil is rendered more permeable to the sun, by which a more congenial temperature is gained for plants; it facilitates the abserption of dews, which bring down ammonia and fertilizing elements from the atmosphere: and it oxposes the soil more to the action c\& the air, by which the decomposition and combination of the various elements of vegetable food is effected. The action of the oxygen of the atmosphere is thought to be particularly beneficial on claye, and slaty and granitic suil. The combination of the oxygen with the iron, and its action on the other mineral elements, produces a disintegration of the stony materials, and leaves the soil more friable. The admission of oxygen into the soil, may likewise be useful by its entering into combination with the carbon of the soil, and thus forming carbonic actd, the food of plants.

On some soils, espectally those of a tonacious nature, a hard crast frequently forms, by which heat and air are much excluded. Some simple implement, as a harrow or cultivator, should be used with sufficient f:equency to prevent the crust from forming. As the growth of plants increases, their roots are more extended, and it is not proper to use tools which will mutilate and destroy the roots.

It is important that plants shol.d bo duly exposed to the influenco of light and air. It is only under the iofluence of light tha: they are able to digest their food. They take in carbonic acid and water, but by the aid of light, they de. compose the carbonic acid, giving off the oxygen, and retaining the carbon to form their tissues.* This in. fluence of light is quite surprising. If a plant is placed in a dark room, and a ray of light is admitteu on one side, tho ends of the branches are soon directed towards the light, and the plant seems to siruggle to reach that part of the room where the light is strongest and its influence inost direct. If a small tree be planted under or near a largo one, or on the side of a forest, it soon begins to lean to the side nearest to the light, and. will contane to grow in this direction, putting out but few or no branches on the side most affected by the shade of: other trees.

[^1]These facts are cited to show the necassity of giving plants sufficiont room. If thoy 3 recrowded too thickly together, the sun is too much excluded from the soil, and from the want of sufficient circulation of air, the plants are less heal. thy; being more subject to blight; and the blight is prevented from coming in contact with the stems and leaves in such a manner that the sap can be properly elaborated. Where plants stand so thick that the light strikes them mostly on the tops, they are drawn into slender stalks, having but little substance.

But in cedar and pine forests, where it is somotimes desired that the trees, in order to make timber for certain purposea, may attain a great height in proportion to their circumference, a dense growth is an advantage.

From Bell's Lifo in London.
 THE ENGLISH RACE HORSE

Is an animal of which all classes of our count:ymon are justly proud; but at the same time it may be doubted whether the great and numerous prizes now offered to spead, without much regard to stoutness do not produce results injurious to the country; and I wish to call the attention of our readers, who comprise most of the sporting public,) to the present state of our horses. The Arabian blood, by its mixture with ours has long since attained to a wonderful degree of perfection; and racing having been at an early period enrolled among our national amusements, the attention of the most wealthy unong us has been directed to race horses, and to the breed. ing of them with the utmost possible speed. F.rmerly horses had to run four milos at bigh weights; now it is a course of a mile and a half, with light weights, to try to approximate to the speed of steam. One attempt has been made to stem the torrent, by the race instituted some years ago by the Duke of Portland, but it was against the fashion, and it was given up; and if any ono objects that such a race is more cruel and more distressing to horses than a short one, I say he can know but little of racing, horses differ much more in stoutness than in speed; and as you lengthen the course you do away with the keenness of the contest, which is what causes the distress, and this in fact is the very reason why the B. C. [Beacon course, which is 4 miles, 1 furlong and 137 yard round,] is unpopular. A leggy animal, with a long stride is worth more now than he was in the days of our fathers; this! say is entirely wrong and mischievous. Then, as to another point-no regard is paid to sound and lasting legs and feet for mares or stallions; these points would be carefully looked to for a riding horse, but when it comes to breeding a more valuable animal, the breeder says, - Oh, the colt will come out well at two years old, and \because in mo a fow gnod stakes, and that will do, never unind his Jegs.' 'Thon again, what carelossarsa
there is as to sizo and power, especially as to the dam ; on these points, stout. ness, soundness, and power, I say, mosi wonderful indifference is daiiy shown, as any man will see who looks through thorough-bred studs, in nine cases out of ten. Let him go to 'rattersall's and almost all the thorough-breds he sees sold will be thin lung logged colts, (most of the chestnuts, with slight and upright pasterns, and small round fetlocks. What on earth are they good for? a Welsh pony would kill three or four of them in a costermonger's cart. Then we expect to sell our thorough.breds to foreigners, but they will not buy small lamo cats; they buy nothing but the very best sort we have. In short, whether for use at home, or as merchandise to go abroad, we ought to be more particular in the shape, size, and soundness of sires and dams of horses, than the Short.Horn breeders are as to their cat. tle; and whereas, most of us, on the contrary, trust to blood, and think of littls else. I have addressed you long ago on this suoject, but I do so again because I think it one of great and national inportance, and because I see the evil growing daily. There would be much less expense and much less disap. pointment, if one colt was bred from a sire and dam of true form and soundness, than if six were bred at random, with the hope of one turning up a trump. Again, it is not near so easy now as it used to be to buy a good, strong, young hunter. A steam is in some measure the cause of this, for an old fashioned, compact, active, coach. ing mare, when her work was over, bred a good hunter by a lengthy thoroughbred horse : now, the demand for the machiner is ncarly gone, and the animal is very scarce. In the want, then, of this middle class, from which to recruit the patrician blood of our Sultans, \&c., we have an additional motivo to be careful about strength anc' 'ze in the latter. I have been bitten b; chorough. breds when younger, but I think of them now, that though a large and powerful thorough.bred is the finest form of horse, bring me them at random, and I will ongage three out of four will be irre. deemable rips.

From the Farmers' Gazette.

ON TAE UTILITY AND CONSTRUCTION OF a liquid xanure tank.
Sir,-As much has been already said and written on the nbove subject, both by scientific and practical agriculturists, little has been left for to say-at least, nothing new; but, under the present appalling circurnstances, and considering the rather precarious situation in which the generality of Irish farmers are placed, and not only they, but the whole com. munity at large, now at this important crisis, in my hamble opinion, this subject cannot be too often bronght under the farmer's notice.

Every week I spe queries put to you
about manure. The whole "cry out" with the farmer is, I want manure. Now this, to a cortnin extent, is his own fault ; if he would but use a little more economy than he is usually wont to do, about his farm-steading, by putting himself to the trouble and expense of constructing a liquid manure tank, in some convenient and appropriate place near the cow-sheds, kitchen, scullery, \&c., then, and not till then, would the farmer have plenty of manura; and when this is done, take my word for it, we will not hear of such a want of manure any more. But some farmers aro so lazy and niggardly, that they would not put themselves to the trouble and expense of constructing such reservoirs for the reception and accumu. lation of the most valuable manure about the farm-house. Few farmers under. stand the value of being out about tho dung. heap, cow-sheds, stable, \&c., doing some usoful and, perhaps, at the same time, all important job.

Some of those persons I am about ad, dressing may say talk is cheap, but pray where are we to get the money to do all this? Now this is the very point I wish to come at, and this is just what I want particularly to remark, the cheapness with which such necessary requisites can be constructed, though not of the nicest description, still they are quite nice onough for their contents. It is not beauty, in all cases, that constitutes good farming. I do not intend to ridicule regularity and neatness about the farm. house, or handy or nice implements, but where usefulness is sacrificed to ostenta. tion is the principle I wish to eradicate.

The plan I am about to lay before yon is one which I adopted myself before ever I heard of a tank, and one which I have found to answer the purpose just as well as one at a cost five times as great. After having sunk a hole, of whatever size you require, which, of course, will be regulated according to the facility you have for making the manure in question, commence and cover the bottom with rough flags or bricks, also the sides in the same manner. When you have this done, get tough clay and puddle it all over, both bottom and sides, to the depth of about two inches; then cover the whole neatly over with slates or scantling boards, and at the same time taking care to joint it well at the bottom and corners, to prevent the liquid from percolating through. If the tank is sunk in a stiff, tenacious clay, it would be unnecessary to interline it with stones or flags, merely to puddle and cover it with slates or boards. Af. ter the tunk is completed, the next thing to look into is the sewer or channel to convey the liquid to the reservoir, which can easily be constructed in the ordinazy way. A cover is necessa:y to prevent fowl or other domestic animals from fallw ing into it. All this can be performed by any handy and willing farmer or his son, and at little or no expense. Even suppose he should go to the expense of a few shillings, it will, in a very short time;
amply repay him, and, at the same time, give a pleasing aspect to his farm-stead. ing, which, before, was one continued shoot of urine, water, puddle, \&c. No sonp.suds, cleanings of greasy or oily vessels, dce., should be allowed to go to wnste as formerly; all, in fact, which does not go into the pigs trough, out of the kitchen, should be carefully collected and thrown into the tank.

Having gone so far with the subject, if not trespassing too far upon the pages of your invaluable Gazette, and also the patience of your readers, allow me to say a few words on the uses of this so highlyprizod liquid. I need scarcely remnrk that it is a poworful stimulant to grass lands. I have known instances of grabs being cut four times, where liquid manure was regularly applied after each cutting. The last crop was off in the beginning of November, and was from 15 to 18 inches in length; it can also be beneficially apo plied where turnips, cabbages, rape, \&c., are grown. Dut to whatever crop it may be applied, be very cautious in using it in dry weather without diluting it with water, as it would in that case prove injurious rather than beneficial.

It also acts as a powerful decomposer whon thrown over the dung-heap, or any other place where speedy fermentation is wanted. It likewise forms a useful in. gredient in compost heups, besides a great many other purposes, which, at present, would exceed the limits I had prescribed when commencing this letter. I shall, therefore, conclude by saying, that I have used this manure in all the different ways mentioned, and I have also seen its benefits; and last, though not least, realized the profits derivable from such a system, and am fully convinced that, if it is given a fair trial, it will never be abandoned; but, on the contrary, adopted by every caroful, industrious, and persevering farmer. Yours, \&c.,

$$
\text { April 23, 1847. }- \text { Alpea. }
$$

Use of Lime as a Manjre in New Jersey.-About from 1825 to '30, the farmers of the region began to learn that time would change the soil of our naturally sterilo hills, to the strongest kind of corn and wheat land; and indeed no one but an cye witness could believe the change that it has already wrought. Before we werre avare of its power, some applied too much, and injured the land for two or three years; but by deep plowing and bringing up and mixing the clay with the soil, and growing clover, to equalize the proportion of vegetable natter with the lime, \&c., a powerful wheat soil was formed. Those who say that every soil has lime enough naturally, should visit Morris, there they may see fields of thirty or fifty acres, on which nothing grows but what we call "poverty grass," and sassafras bushes, and in one adjoining, as noble crops of corn, wheat, or oats, as any reasonable man-would wish to see. And this too, is so cer. tainly attributable to the lime, that all
now uso it, even the old Gormans, whose prejudices have deprived thom to its bov neficial effects 20 years or more.
Any quantity of lime can be obtained at tho kilns, for six to eight conts a bustrol, overy bushel of which, when slaked, will average doublo the quantityI find by careful experiment, that the best manner of applying it, and in which it has the most imenodiate offect, is to pluce it in heaps of from 100 to 200 bushels, as may be most convenient, and leavo it to pulverize by the action of the air and rain for two or three months. By this time it will be become a carbonato, and is fit to apply to any crop, at the rate of 20 to 50 bushels per acre, or rather, double that quantity, it being slaked. Of course the quality of the soil must regulate the quantity; a good soil bearing a larger quantity than a poor one.
I have seen lime in the above conditinn, put upon corn bills before the corn was up, (a quart to the hill,) and strange as it may seem to thoso unacquainted with lime, except in its caustic state, with marked good effect, while the gaping crowd predicted ruin to the crop, not knowing the difference between it and fresh lime.
I have tried it fresh from the kiln, (a light dressing of 30 bushels to the acre,) harrowing it in, and this trifie, on account of its caustic property, caused a difference for the worse that could be seen a mile-other corn unlimed, standing side by side. But its good effect never fails when applied in the former state.
You may take the poorest soil in New Jersey, and in three years, (by an interval of one year between two, सréssings of forty bushels to the acre, cap make. it produce good corn. The matritrys, frst apply one dressing, and ploighion ion well and deeply ; then planticoluand till it thoroughly, and the crop will fom 30 to 40 bushels of ears to the aicre. The next April we sow oats, two bushels to the acre, and apply the other dressing of lime on the surface, harrowing in thoroughly with the oats, and "seeding down" with one harrowing, after sowing the clover. We think six quarts of clo. ver-seed sufficient to the acre.

The oats, with this treatment, are generally a fair average crop, and the clover, soon after the oats are taken off completely fills the stubble, and the fol. lowing summer should not be pastured, except by hogs after it is in bloom. Thus a great quantity of vegetable matter will be upon the surface for the next years' crop, which will be all you can wish. One important item I have omitted, which is $1 \frac{1}{2}$ bushel gypsum, sown broad-cast to the acre, on the clover. This should be done in March.

Morris is rich in iron ore, which in both quantity and quality is unsurpassed. One mine of great value, is 300 feet deep, thich, in a comparatively new country, is a deep hole. These is no
doubt, I think, that the mines of this country could supply all the furnaces and forges in the United States. Jamps Hainee, Chester, N. J. Feb. 1847.

Neurnstle

 farmer.

COBOURG, AUGUST 1, 1847.
Should scientilic enquiries be pursued in referonce to Agriculture, and the results be in tho same ratio with those already obtained during the past fow yoars, it will not be long ere the term "infortile" becomes obsolete, and the opinions now held concorning woorn out lands, as they are usually denominated (after having been in a state of caltivation) shall be considered mersly as popular ertors of bygone days of ignorance. . And we see no reason why such advances should not be made, since such wonders hava been accomplished in almost every ether de. partment, even to the compelling the po. tont agency of one of the invisible and most subtle of fuids to subserve our interests, endowing it (if not with the.girt of speech) with an orgon for commanicating ideas, at distarces the most conceivably remote.

We believe it will erentually be foand that there is no description of soil but may be made capable of producing food for both man and beast, save such as abound in so large a portion of mineral or metallic ingredients, as to render the attempt to neutralise or correct such an abundance of material, a work either of too much labour or expense, alike abortive and unremunerative.

It is true that some soils are easier reclaimable than others, but there can scarcely be a doubt that many, hitherto considered as worthless, will hereafter occupy a prominent place in agriculture.

Man, in exercising his prerogative to "replenish the earth and subdue it," is desirous to make all things subservient to his will and pleasure. He strips the earth of its natural verdure and products, invades ruthlessly the primeval woods and forests, destroys alike the domicile of the insect, the lair of the beast, and the eyry of the bird; and bids occupy the site, plants of every variety necessary for his wants and gratification, of a form and character totally dissimilar to the former occupants of the soil, and requiring a mode of culture and supply of food adapted to their peculiar character.

Coorso sands and gravel, where found in a stato of nature, are usually tho most dofective in organic substances of any description except indeed, that from their situation or climato they may abound in moisture, but undor such circumstances thoy gonerally receive the wash from more clovated lands, bringing down with it no inconsid rable of the finer particies of carth mixed with many secds, and much docomposed organic matter, by which means they are capable of growing plants from such deposit of seeds ns may flourish in a situation congenial to their nature, to the exclusion probably of many others incapable of vegetation under the same circumstances.

Now of lands which have been under culture and become crihausted, we must consider what is implied in that term "that they cannot be made remunerativo by culture;" but we believe there are, there can be, but fow spots (in this coun. try at least) which can by any means bo laid dry, which will not becomo produc. tive.

All plants must necessarily take some. thing, as their food, from the constituent parts of the soil, beside what they receive from the atmosphere, which undoubtedly furnishes a large proportion.

We need scarcely argue that if we tako a ton or a ton and a half of hay from tho moadow, or an cqual or greater quantity of straw* from the arablo land, over and above the weight of the grain itself, say 25 bushels of wheat equal to 1500 lbs., or barley or oats in their several proportions, that we are not robbing the land of something, which somothing must bo returned to the suil in somo form or other, beforo it can be again equally productive.

Professor Thaer says of wheat, that for every 100 parts of nourishment neces. sary for that plant, contained in the soil, 40 is carried off by the crop. This may be hypothetical as to exact quantity, but as a general principle it is undeuiable that a large proportion of the emount romoved in the crop is furnished by the soil.

That land which is unproductive for one crop, will raise one of a different description, is owing to the varied propors tions of the different ingredients entering into the formation of different plants,thus evideneing the necessity for a rotation of crops, and indicating the positive need of restoratives in the form of manures to meet the deficiency; so the bar-

[^2]ren soil on the const of Peru, which does not contain a singlo particlo of orgnnic mattor, consisting only of clay and sand without tho slightest appearanco of vege. tation, is made (by the application of gunno) to raiso the finest crops of Indian corn, plainly showing that such manuru contains within itself all tho ingredionts of which the soil is deficient, for the sus. tenance of that prolific and valuable ce. real. If thon, land which will not grow so much as weods, can thus bo mado ro. muneralive, we ought to hear less about worn out and cxhausted soils; it is igno. rance, or bad management, or both, which is the furmer's brne, leaving out of the question (of course) unfavourable soa. sons, over which he can have no control.

Many facts the observant farmer has arrived at by experience, without the aid of acience, by which he has been enabled to correct some errors, and avoid some futal mistakes; but if he would make the best use of all his applinneces, it will be necossary that he should become acquainted with the constituent parts of each plant and the propartion of the difforent ingredients entering into their formation, and also the capability of bis land to furnish such ingredionts, irrespective of the manure intended to be applied, he will thon bo uble to arrive at the descripition of manure n:ost beneficial, and the amount needed for the crop.

Manure may be defined to be any sub. stance necessary for the food of a plant, of which tho soil on which such plant is grown is naturally deficient; or, any matter necessary to enter into combination with substances already contained in the soil, rendering them better fitted to enter into the organization of the plant.

The light sandy, or coarse gravelly soils, are usually denominated hungry soils, not roturning a produco at all equal to the amount of manure laid upon them. And this is casily accounted for, by tho consideration of their total unfituess (naturally) for the production of grain, espe. cially in a climate where the heat during the summer is intense, the amount of sain which falls comparatively small, and from their texture so pervious to the sun's rays, that all their moisture is quickly lost by evaporation, and the plant withers at its source. Now to supply such a soil with a large proportion of nearly undecomposed barn.yard manure is an error, in more ways than one; first, it renders the soil still less compact than before, and consequently moro liable to the operation of the sun and hot winds of a sul.
try soason. Again, long strawy undocomposed mattor is "in fnct" no manure at all, it nothor converts other eloments of the scil into nutrition matter, nor is its presenco needed, since it could only furnish an additional amount of one in. gredient, "silica," for the formation of the straw, of which material the soil is already in excers.

A superabundance of any one element in the soil, howevar good in itself, will not promote the intention of the agriculs turist ; it is the just combination of the various ingredionts which ensures success. There may be in the soil an excess of the richest material, which will prove equally fatal to successful produc. tion, as a vast deficiency of the same matter; true, the plant may io strong, vigod rous, beautiful, full of sap, and apparently promising well; but what is the result? an abundance of straw, bearing a head which rarely arrives at maturity.

It is stated by one writer, that the beat and most productive soil is that in which "the decomposiblo vegetable or animal matter does not exceed one-fourth of the woight of the carthy constituents;" and we should be disposed to rate this as a high estimato, and that such an amount is unnecessary for most crops, supposing access to be had to ons or other of the fertilizing substances now in use as manures.

We find it impossible to close this sub. ject without exreeding our ordinary limits, and shall therefore dofer it until our next number, contenting nurselves for the present by stating our belief-

That sterility or barrenness can result only from the absence of certain materi. als, which may (in most instances) be supplicd, or from the excess of other com. ponent parts, which can be eithor modificd or removed:

That an abundance of material is al. ready in existence for the supply of vege. table life to any extent, and that no confinued creativo energy is employed in such productions:

That these materials are within the reach of every agriculturist, and that science is leading the way to their attainment:

That a knowledge of the due and proper admixture and proportion of such materials, for the various crops, is necessary to successful cultivation of the soil.

Wheat harvest has commenced; there are some few excellent crops, but we feas they are the exception and not the rule, and we doubt whether the result generally will not bo much below an average crop. Barley, which was not up until after the cold rains ceased, is looking well. Oats will be a fair crop, but there are but few really good fields of Spring wheat. We know of none at all equal to a ficld belonging to M. Cruso, Esq., on land reputed worn out this twentyfive years past.
lublished by H. Jones Rutran, at "The Cobourg Star' Ofice.

[^0]: - Water not driven off at 212° of heat.

[^1]: * Carbonic scid consists of carbon and nxygen; 6 lbs . of carbon and 16 lbs of oxygen fomming 22 lbs of carionic acid.-Johnston.

[^2]: *The weight of straw compared with bushels ol grain varies from 100 to 200 lbs . yer bushel.

