The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.


Coloured covers/
Couverture de couleur


Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sorit indiqués ci-dessous.


Coloured pages/
Pages de couleur


Pages damaged/
Pages endommagées

$\square$
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées


Pages detached/
Pages détachées


Showthrough/
Transparence


Quality of print varies/
Qualité inégate de l'impression


Continuous pagination/
Pagination continue


Includes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:


Title page of issue/
Page de titre de la livraison


Caption of issue/
Titre de départ de la livraison


Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.


## The Canadian Engineer

## The Canadian Engineer. <br> ISSUED MONTHLY iא the intxazsts or the

 CIVIL, MECHANICAL, ELECTRICAL, LOCOMOTIVE, STATIONARY, MARINE, MINING AND SANITARY ENGINEER. TIIE SURVEYOR, TIIE MANUFACTURER, THE CONTRACTOR AND THEMERCHANT IN THE METAL TRADES.
Subscription-Canada and the United States, $\mathbf{3} .00$ per year; Great Britaln and lorcign, 6s. Advertising rates on application.

Oprices-62 Church Strect, Toronto: and Fraser Building, Montrcal.
E. B. Bicgar
R. R. Samuzi

BIGGAR, SAMUEL \& CO., Publishers,
Address-Fraser Building.
Toronto Telephono, 1892. Montreal Telophozo, 2589.
All bnalnam cosreanondenceshonid be nildreaged to our Montreal
 ailiresserl to tho Turonto Othco, zand ahinulil bo aent whinover
 pay in nur hands uot luter than the list of oach mouth to ensure Insertlon.
CONTENTS OF THIS NUMBER:


For The Canadian Eigineer.

## RAILWAY ENGINEERING.*

BY CECIL B. SMITH, MA. E., MEM. CAN. SOC. C.E., LATE ASSISTANT PROF. OF CIVIL ENGINEERING IN M'GILL UNIVERSITY.

ARTICLE 4.-RAILS
The progressive history of rails from the first longitu. dinal wooden sleepers up to the present would be interesting but not in place here. We have arrived at two types, one used in England and Scotland, and in some British colonies and dependencies, etc., i.e, the bullhead or double-headed rail, resting in cast-iron chairs, the other used in the world generally, otherwise, (i.e)., the Viguoles or flanged rail, which is self-supporting.
(A) Plate XXIII. gives sections of bullhead rails, and on Plate XXV. is shown a cast-iron chair for fastening the rail to the ties, and which adds $\$ 1,500$ to $\$ 2,000$ per mile to the cost of the track. The original idea involved in the use of this section was to obtain a reversible rail which would double the wearing value if it could be turned over and used again after one head had worn down, bi:t when it was found that the chairs damaged the rail so that they could not be reversed advantageously, this idea was abandoned, and the section now used has a much larger per cent. of metal in the head than in the base of the rail. The British railways use rather heavy rails considering the light rolling stock, but space their ties 2 feet 6

[^0]inches apart, centres, due to the superior supp, rting qualities of the cast-iron chairs; and, in general, the tracks are very solid and first class, the rails being held to the chairseats by long tapering oak keys which are tightened

occasionally, while the chairs themselves are fastened to the ties with wood screws and bolts, and even those few British or Irish roads which use flanged rails use the same fastenings with tie plates, not trusting to spikes except at every other tie at the most. A special advantage in using rail chairs is that creosoted pine ties become available, and they are probably the most durable and economical tie in use, where it becomes possible to fasten the track securely to them.
(B) Flanged Rails.-The objections urged against flanged rails, that they cut into the ties, and that they cannot be held properly for heavy traffic with spikes, are overcome by adopting tie plates and screws or bolts for fastenings, and the idea that they are not rigid on curves is shown to be crroneous, as witness the very heary engines of America running at high speed around much sharper curves than are used in England.

Plates XXIII. and XXIV. give sections of flanged railof various designs and origins. In detail they will be found to vary widely, but with the exception of the New

York Central rail, which has a narrower base for use with tie plates or steel ties, the height is usually equal to the width of base. The first difference noticeable is the per cent. of metal i:a the head. Other things equal, the more metal in the head the more wear will be obtained, but rails with relatively heavy heads never cool equally,

causing initial strains in the section, and a deep heavy head will not get well rolled, and being spongy will whar rapidly when the top layer is gone. The endeavor now is to get a rail as hard as possible, chemically, that will stand drop iests, with a wide, mo lerately deep head, but not so deep as to induce sponginess in the centre of the head. A wide head is necessary with modern heavy engines to prevent undue crushing of the top surface, due to heavy concentrated wheel loads, and this forces a small proportionate depth of head to keep the per cent. of metal in the rail head from being excessive.

Striking differences in rail design occur in the radius of the top of the head, the upper head corners, and in the side slopes of the head. The tendency in America is toward a flat top, sharp corners, and vertical sides, which is the reverse of English practice of round tops, easy corners and sloping sides, while fishing angles are getting flatter and tend to become standard at $13^{\circ}$.

Plate XXV. gives a standard U.S. wheel tread-rails after eleven years' wear on curves, and two drawings which contrast the fit of a wheel on a rail head of sharp corner radii with that on one of larger radii. It will be seen by the dotted lines that normal wear is upward and outward, thereby increasing the arc of contact between wheel and rail, thus also increasing the resistance and wear, so that the longer this can be deferred by starting with a sharp
corner radius and vertical sides, the better, as the contact is then a rolling one only, and the wear and resistance small. Note that the radii of worn rall corners is still about $f$ inch, and investigation has shown that sharp radii of upper comers of rail heads do not cause sharp flanges on wheels, which has been the chief objection raised against them in the past.

Composition of Rails.-When steel began to replace iron as a material for rails it was found necessary to remove the notches in the flanges from the centre to the ends, and even omit them altogether to prevent breakage, the notches being put in the flanges of the angle bars instead, so as 10 prevent creeping of the track. Rails were made hard to stand wear. Then drop tests were introduced to detect brittleness, and soon forced soft rails to be used, but going to the other extreme the rail heads wore out very quickly, especially as the demand for cheapness produced insufficiently rolled rails. Now there is a gradual tendency to get as hard a rail, chemically, as will just stand the drop tests.

Specifications for Chemical Composition of Rails:
(1) Sandberg (Sweden)-Carbon, if alone, ${ }_{i}^{s}$ p.c., but only ${ }_{\text {IJ }}^{3}$ p.c. in presence of ${ }^{\frac{1}{\delta}}$ p.c. phosphorus; silicon, at least io p.c. to give sound ingot and make rail wear.
(2) G.T.R. (Canada)-Carbon, ity to ${ }^{\frac{5}{0}}{ }^{\frac{5}{0}}$ p.c., sulphur,
 manganese, is p.c.
(3) New York Central Railway (Dudley)-60 to 701b.

 phorus rifo p.c. or less; 70 to 80 lb. rail: Carbon, $\frac{8}{10}$ to
 sulphur, ${ }^{\frac{7}{0} \delta \mathrm{f}} \mathrm{p} . \mathrm{c}$. or less, phosphorus, rig p.c. or less; 100 lb . rail: Carbon, ${ }_{18}^{180}$ to $\frac{78}{100}$ p.c., manganese, ${ }_{10}^{8}$ to I p.c., silicon, r $^{1}$ to ${ }_{\text {rox }}^{100}$ p.c., sulphur, $1^{\frac{7}{0}}$ p.c. or less, phosphorus, $\frac{\pi}{\pi \sigma}$ p.c. or less.

Dudley, also regarding different constituents that affect the quality of rails. says: Manganese takes up the oxide of iron, and prevents red shortness, but over a p.c. makes rails not only hard but coarsely crystalline, with a tendency to brittleness, flowing easily under wear and oxidizing rapidly in tunnels. Silicon produces solid ingots, free from blow holes in columnar structure, with smal! compact crystallization. Sulphur causes red shortness and seamy heads; it also tends to check welding of blow holes and ingot pipes. Hhosphorus increases the size of crystals and produces brittleness; it must therefore be very low in high carbon rails, which make prices higher, as most ores have phosphorus in them.

## Physical Drop Tcsts for Rails:

(1) Intercolonial Railway of Canada-Supports 3 ft . 6 inches apart; a rail 12 ft . long is to stand one blow of $2,000 \mathrm{lbs}$. falling 18 ft ., and three blows falling 6 feet for 67 lb . rail, with a deflection of 3 to $3 \frac{1}{2}$ inches for first, and $2 \frac{1}{4}$ to $3 \frac{1}{4}$ inches for second case. (Drop tests for- U. S. roads about the same.)
(2) Irish Flange Rails.-(a) Supports 3 ft. 6 inches apart, a rail not to deflect more than $\frac{3}{8}$ inch with permanent set not more than $\frac{1}{8}$ inch for $30,000 \mathrm{lbs}$. at centre for 30 minutes. (b) Same supports, rail to stand 2 blows without breaking, and not to deflect more than inch for $2,000 \mathrm{lbs}$. falling 8 fect.

Under wear the top surface of a rail head gets more or less cold-rolled and brittle for about $3^{\prime} z$ inch, which is the cause of heads breaking downwards (e.g.) a broken wheel may hammer and cause the brittle layer at top to crack, and the crack will continue on down until the rail breaks. High stiff rails with a broad head are more needed
as the wheel loads on drivers get greater, so as to keep a decent track and prevent cold tolling. (Large drivers are not so hard as small ones on track.)

The endeavor is to get a high carbon rail and work it until it is tough and compact in texture in the head.

> articiel 5.-RAII. joints.

While great progress has been made in the strength and rigidity of rail joints, they can hardly be considered yet equal to the criterion of simplicity, and of being as strong as the rail itself, and as stiff laterally. Sandberg, by watching the effect of trains on narrow notches cut in

the heads of solid rails, concluded that the lipping down was due to lack of support of the fibres, and that we may, therefore, not expect to ever obtain a joint so perfect as to prevent this wear entirely. Various joints are shown on Plate XXVI., and also special ones attached to rails on Plates XXIII. and XXIV. Of these the simple fish plates were considered sufficient in early railroad days, when wheel loads were light and speeds not excessive, but, as these increased, the joints could not be kept in surface, and a lower flange was added, giving us the angle bar, which is the ordinary standard form to day. It is simple, easily attached, etc., and may be used as a suspended joint on two ties with four bolts, or a longer one ( 44 inches), with 6 bolts, is often used, resting on three ties, and although more expensive, gives better results.

A comparison was made in Sweden between:
(I) Fish plates with Ellsworth base plate.
(2) Angle bars.
(3) Double deep angle bars with 2 -inch extension downward between the ties.

The renewals for flattened ends in five years were
(1) $6 \frac{1}{4}$ p.c., (2) $14 \frac{4}{4}$ p.c., (3) $17 \frac{8}{10}$ p.c., but as for stiffness they were (1) $A,(2) \frac{2}{3},(3)$ i. So that Nos. (2) and (3) were considered superior, particularly owing to their simplicity, but as No. 3 was easily heaved by frost and snow it was considered suitable for milder climates, and the choice rested on the angle bars.

The Fisher bridge joint has been tested quite extensively, and is found to be very stiff vertically, but weak laterally, and its various parts are rather expensive and more complicated than the angle bars. For these reasons it is not likely to find extensive favor. The Churchill joint of N. \& W. R. R. is probably the most efficient joint yet designed as far as stiffness, etc., and is intended for use with 60 ft . rails. Otherwise it would be too expensive and complicated for ordinary use. The other joints shown appear to have good points, but are of less tried merit. (Also see Engineering Nezos, page 178, Vol. I., 1891, for Paterson rail juint.)

We may expect, ultimately, to obtain a joint as strong as the rail itself, but how simple it can be made is for the future to show.

## ARTICLE 6.—RAIL FIXTURES, ETC.

The weak spot of our track is its attachment to the ties by ordinary track spikes. I'heir heads are often cracked by excressive driving, re-spiking is frequent, and the ties get spii: and rotten much sooner than they would naturally, and while Greer, Goldie, curved, interlucking and other special spikes are improvements on the dog spike, yet the final solution would seem to be in some positive fastening such as wood screws or fang bolts, such as are used to hold rail chairs to the ties on British roads, and while tie plates and selected oak ties are keeping off the evil day, yet as speeds get higher and engines heavier, demanding a high stiff rail, this must be done by heavy traffic roads soner or later, either with wooden ties and tie-plates, or with steel ties and bolts.

Tie plates (such as Goldie, Servis, Standard, Sandberg, etc.) will enable roads even with heavy traffic to use soft wood ties and a high stiff rail with narrow base (see N. Y. C. \& H. R. R. R. section), and will prolong the life of ties. They are being adopted rapidly, some roads using them on curves only, others for the whole track. Wood screws for holding track are of steel, seven inches long, with thread for $4 \frac{3}{3}$ inches, $\frac{3}{4}$ inch diameter, and have a pulling resistance of about six tons. Fang bolts are attached by:boring holes through the ties, and screwing the bolts, which have heads on them suitable for holding down a rail, into a nut, with a fang on it. This fang grips into the wood on the under side of the tie, which prevents it turning or loosening.

The vibration caused by passing trains would soon loosen the ordinary nut on the bolts which fasten the angle bar joint to the rails, and, in order to prevent this, many devices have been tried. The double nut is not effective. A gravity lock outside the ordinary nut in the form of an eccentric nut is much better, and Young's patent has been used quite extensively, but the spring nut lock, which consists of one turn or a little more, of a strong steel spiral, with two cutting lips taking hold of angle bar and nut as the nut is screwed on, on top of the nut-lock, is the kind generally usea, and being simple, cheap and effective, is likely to remain the favorite kind in use.
article 7.-switches and frogs.
Outlines of various designs for passing a train from one track to another are given on plate XXVII., but of course there are various forms of attachments differing in detail only.
(1) The Stub switch consists of two movable rails, A $B$, with the ends $B$ supported, and free to slide on plates for a lateral distance of five inches, called "throw." Theseswitch rails or points are from to to 25 feet long, depending oa the frog distance, BC , and the angle of the frog $C$. The guard rails, $D \mathrm{D}$, prevent derailment at the

throat of the frog. The stub switch :works for a threethrow as casily as for a two-throw turnout, and can be made into a safety switch (see Cook Switch, Plate XXVII., and Dunn Switch, Engineering News, Vol. II., 1890, page 174), and is considered to be more durable and easily kept in working order with snow and ice than are the many forms of split rail switches.
(2) Dooley's stub switch is a modification which makes easier riding by having one point longer than the other, substituting two jolts for one severer one, but it is not as rigid as the ordinary stub switch.
(3) Nicoll half-safety switch is a compromise between the stub switch and a split or Lorenz switch. It is not at all a strong or secure switch, as the two rails are not opposite each other. Its advantages are not very obvious.
(4) Lorenz safety switch is the model of various split switches. Both rails are feathered down so as to fit close up against solid rails. One is a main line rail, the other for the siding, connected so as to act together. This switch is adapted to position where the traffic is consider. able on the branch line, or turnout, and in climates not troubled with ice or snow, but the split rails or points wear out rapidiy, and it is more complicated when applied to three.throw turnouts, necessitating two sets of switch rails, stands, etc., set one ahead of the other, in winich case neither of the main line rails are solid. The Stewart switch (Engmeering Newos, Vol. I., 1895, page 59) has a special feature in making the switch rails by bending over solid-headed rails, instead of planing them down 10 a point. It is claimed this will give durability and rigidity.
(5) Ainsworth safety switch is made by giving the solid siding rail a sharp bend or recess, and the corresponding switch rail is left square ended, thus providing a more solid track for the main line, and a more durable switch rail. This form is adapted to branch lines having little traffic.
(6) Wharton safety switch is used for heavy main line traffic. It gives a solid main track. The siding rails lead the wheels onto blocks (a.b.) higher than the main line rails, and fall down on to the main line, while in facing the switch the wheels are first lifted by the blocks (a.b.) and then carried over the main line rails by the wheel tread riding on the high rail D.

The Macpherson switch (llate XXVIII.) is a modified Wharton coming into use on the Can. Pac. Ry. The main line is solid, ana the train is thrown onto the siding by having the outside movable rail higher than the main line, and a movable guard rail which is also higher than the main line, but which is thrown into position only when the switch is set for the siding. This design also includes a special form of frog, which is a sliding plate, brought into position by means of bell.crank levers and rods operated from the switch stand, when set for siding; when set for main line the plate is clear of the main line, leaving the main line solid at this point also. This design has been in use since 1892 , and it has proven itself very satisfactory and durable.
(7) The Themeyer safety switch has one movable split rail, and a stationary split rail or half-frog and guard rail. The movable rail and guard rail guide the wheels onto the siding when set for it. It is successfully used on the B. \& O. R. R.

The main object of safety switches is to make it safe for a train to trail through a switch from the siding, when it is set for the main line, or vice versa, and this is accomplished, with split switches, by using springs which allow the movable rails to be forced aside just enough to pass the wheel flanges through. The springs then force the switch points back to the position for which the stand and signal are set.

Other special switches of tried merit are the cam automatic, in which the split rails are fixed, and the solid ones move horizontally (see Eng. Neius, vol. I., 1890, page $\left.48_{9}\right)$, and the Duggan switch, which has two knuckle. jointed vertical moving split rails. (See Eug. Nezus, vol. I., 1893, page 390.)

Frogs.-Formerly cast steel solid frogs were common, but as they were more liable to crack, and when worn in one part were unfit for use, they were soon supplanted by frogs made up of pieces of steel rail fitted and bolted together onto a flat steel base plate-any worn part can be easily replaced. Such sohd or stiff frogs are in most general use, but on main lines having beavy traffic, those turnouts with light traffic are now generally fitted with spring frogs (see Plate XXVIII.) in which either the "point" or the guard rall are movable, and the main line is nornally a solid track. A train to or from the siding forces the frog open momentarily, and a spring brings it back again as soon as the train has passed, leaving the main line again solid. The defect in many of these spring frogs is the tendency to derail wheels with worn treads and flanges, by forcing open the spring frog when a train is on the main line. It is claimed that the Vaughan spring frog, used on the Penn. R. R., overcomes this difficulty by blocking up the tread. Other spring frogs of special features of merit are the Monarch, Ramapo and Pegram, described in the Engineering New's since 1890.

Turnout Calculations.-The "lead" is the distance
-KD (Plate XXVIII.) from the switch stand to the frog point. The fixed end of switch rails is the "heel," and the movable one the "toe." The "throw" is the amount

Plate XXVIII.

which the switch stand rod moves the " toe " of the switch. It is 5 inches for stubs and 3 inches for split switches. To designate a frog angle $E D F$ the ratio $\frac{E D}{E T}$ is called the frog number (i.e) if $E \overline{E D}=6$, then the frog is called a No. 6, the ordinary numbers in use are 8, 9, and ro for main lines, and 5, 6 and 7 for crowded yards and sidings. The middle frog is a special one, derived from the others by calculation or from a large-scaled plan:
(1) To calculate the lead from the frog number we have (see Wicksteed, Trans. C. Soc. C. E.) D. M (Fig. 1.) $=\frac{\text { Rauge }}{\sin \alpha}$ or approximately $A D=\frac{2 \times \text { gauge }}{\sin \alpha}$ but, for small angles $\frac{1}{\sin \alpha}=$ frog number $=N$ and gauge $=g=4.75 \mathrm{ft}$., approximately, then frog distance = 2. g. $N=9.5 \mathrm{~N}---(\mathrm{A})$.
(2) To find .ine length of the movable rails.-Offsets to a circle from a tangent vary as the square of the distance from tangent point, and taking gauge as 57 inches and throw as 5 inches we have

$$
\frac{\text { slide rails }}{\text { frog distance }}=\sqrt{\frac{5}{57}}=\frac{3}{10} \text { approx. (1) }
$$

also, for stub switch, lead $=\frac{7}{10}$ frog distance ( $C$ ) which equations give all necessary data for a simple turnout for a stub switch. The froz for a very short distance is straight, and the slide rail is often practically straight, but by using a long rail and spiking the fixed portion, the movable part will bend to a curve.

If split switches are used Fig. 2 will apply, and the
movable rail being, necessarily, straight, is from $B$ to $C$ only, is tangent to the circle at $B$, and is half as long as a stub switch movable rail, also in this case the switch stand is at a different place K.C. and we have

Switch rail $=\frac{1}{5} \times{ }_{20}^{3}={ }_{20}^{3}$ frog distance $(D)$.
Lead $=$ frog distance $-A C=\frac{10}{20}$ frog distance $(E)$.

## EXAMPLES.

(f) Stub switch No. 8 frog-

Frog distance $=8 \times 9.5=76$ feet by $(A)$.
Slide rail $={ }^{3}{ }^{3} \times 76=22{ }^{8}{ }^{8}$ feet by $(B)$.
Lead $\quad=76-228=53$ ind $^{3}$ feet by ( $C$ ).
(b) Split switch No. 9 frog-

Frog distance $=9 \times 9.5=85.5$ feet by $(A)$.
Lead $\quad=\frac{0}{0} \times 85.5=72.6$ feet by $(E)$.
Slide rail $=3_{30}^{3} \times 85.5=12.9$ feet by $(D)$.
Note.-These distances can be varied by a small percentage without affecting the running of the trains.
(3) Middle frog calculations, Fig. 3, Plate XXVIII. First let the two turnouts $A E A F$ be of same degree of curve and start from same switch stand, then $\frac{A D}{A} \bar{C}=\sqrt{\frac{1}{2}}$ or $A D=\frac{71}{100} A C$, which gives us the middle frog distance from the frog distance $A C$, which equation ( $A$ ) determines.

Also for small angles the angle of the middle frog will be $2 \times$ To' $^{10}$ frog angle at $C=1.42$ frog angle $C$, and the number of the frog will be $\frac{1}{1.4^{2}} \times$ frog number $C=703$ fron number $C$.

Second, let the turnouts be of different sharpness, and let one begin say 6 feet ahead of the other, let the right hand turnout start first and be a No. 8 frog, and the left hand one a No. in frog. Call the middle frog distance $x$.

The two turnout frog distances are
$8 \times 9.5=76$ feet, and $6+10 \times 9.5=$ roif feet.
Offset from one tangent to $B=\left(\frac{x}{76}\right)^{3} \times 4.75 \mathrm{ft}$.
" " other tangent to $B=\left(\frac{x-6}{95}\right)^{3} \times 4.75 \mathrm{ft}$.
But both offsets added $=$ gauge $=4.75 \mathrm{ft}$, therefore

$$
\left\{\left(\frac{x}{76}\right)^{3}+\left(\frac{x \cdot 6}{95}\right)^{2}\right\} 475=4.75
$$

and solving this quadratic equation we get $x=6 \mathrm{I} \cdot 6 \mathrm{ft}$. Also we can determine its lateral position by substituting in either of the above equations this value of $x$, in this case these are 3.13 ft . and $: .62 \mathrm{ft}$. The angle of the middie frog, in this case, can be calculated thus:

$$
\begin{aligned}
& \text { Middle frog angle }= \frac{616}{76} \text { angle of No. } 8 \text { frog }+ \\
& \frac{55.6}{95} \text { angle of No. Io frog. }
\end{aligned}
$$

In crowded yards and with split switches these conditions prevail, and many much more intricate calculations are often needed when the turnouts are from curves, and cross other tracks which are also curving, but these can often be best obtained by carefully drawn plans to large scale.

## MONTREAL'S TAXATION.

The ratepayers of Montreal find the present taxation of the city none too easy to be borne, and are constantly threatened with increases. The majority of the electors in the city do not feel a serious responsibility in the matter of the city's finances, being cliefly tenants or holders of small properties which bear a very low valua-
tion. They do not therefore check the extravagance and recklessness of the city council, which are flagrant. The only recourse of the more economical portion ot the people is to the Legislature at Quebec, many of whose members are not prepared to deal with questions of the magnitude which Montreal's money affairs assume. There has therefore existed hitherto a free expenditure of money, a large part of which never reached the objects for which it was voted, and a constantly growing civic debt for whose payment no means exist if the city is to be maintained in a habitable condition. The city council is constantly looking for fresh sulyects for taxation because the limit of the horrowing power has been already reached on the present assessment. At the last session of the Quebec Legislature the city charter was revised and all machinery was exoressly made taxable. This has raised a storm among the owners of plants in Montreal, meetings have been held and most vigorous protests made. Some of the leading manufactmers have spoken very plainly on the subject of their removal to more advantageous locations if the tax is imposed. Those who lad the charter amendment in chatge explain that the city has always had power to tax machinery under the head of "immovables," and the present clause was framed so as to make taxable the wires, ralls, etc., of the electric companies which are at present exempt as not being attached to the property of the as essed.

While this explanation shows that the city council bas no present intention of placing a tax on manufacturing plants, yet the existence of the clause is a constant menace to the manufacturers at present within the city limits, and a deterrent to others establishing themselves there. It will buld up the small towns surrounding the city, and will be an incentive to those bonus-offering towns like Sherbrooke, Que., or Bellevilie, Ont., to grant inducements to secure the taxed industries. A manufacturer who is heavily tased on his machinery to raise funds for street paving which is not put down (that is the method in Montreal) is apt to look longingly to towns where there are no taxes on machinery and a large cash bonus is a vail. able for busing new plant.

## AN ALIEN ENGINEER.

St. Mary's, Ont., had been discussing waterworks systems for two years, but little progress had been made untel early last month. Comm tees of the town council and board of trade had collected some information from other towns, and a public meeting had been held at which some of these had been read. A civil engineer from the United States whohappened to be passing through (it is reported in the local papers) stopped off for a few hours, drove round the town with the chief officials and was instructed to prepare plans of a water supply system for the town. The engincer in question is of maquestioned ability, and has constructed some very large works in the United States with a great deal of success, but it would seem almost unfair to Canadians that an alien engineer shonld be employed upon the mere offer of his services without considering the claims of the many successful members of the profession who have done good work in Canada and depend upon Canadians for the sulstantial recognition of that work which will enable them to remain in Canada and follow their chosen profession.

## INDEX.

The Index for Vol. 6, The Casidian Engineer, is now in course of preparation, and will be mailed to sub. scribers on application.

## ENGINEERING WORKS UNDER GOVERNMENT INSPECTION.

There is a well-grounded prejudice in Canada in favor of the freedom of municipalities in the carrying on of local affais. We have been accustomed to count our mumicipal freed.m as one of the choicest growths of the freer air of the American continent, and to complain strongly against anything tending to strengthen the central Government at the expense of the outlying centres of authority. But in spite of preconceived notions we must admit that "they do some things better" in Great Britain. We require in Ontario a closer supervision by the Government of public works undertaken by the municipalities.

In Great Britain the Local Government Board has control of all public works such as water supply, sewage disposal works, etc. When a town decides to construct a work the plans are submitted to the Board and are passed upon by engineers whose standing in the profession makes their decisions irreproachable, both morally and scientifically. If the decision is favorable to the proposed work the town is authorized to borrow the necessary funds and carry on the work according to the plans submitted, and the inspectors of the Board see to it that the plans are not departed from nor any work not in accordance with the specifications as passed upon, put in. The consequence of this is that the British local public works are of unrivalled excellence, and the municipal indebtedness is low. In Ontario any clique of aldermen or town councillors who get together may decide upon a public work, talk the citzens into adopting it, hand over its execution to the individual whose arguments appeal most strongly to the aldermanic mind, and so add almost at will to the public debt. It is true that an issue of municipal bonds requires to be approved by the Local Legislature, but it is the issue of bonds that comes in for the criticism of the legis. lators, not theeconomical spending of the resulting moneys. Even if the plans were required to be passed by the Private Bills Committee there would be no improvement, for the legislators know very little more engineering than do the aldermen.

A supervisory board of civil and sanitary engineers of the highest standing is needed to act as a check, as does the Local Government Board in Great Britain. We would not then have unsatisfactory works constructed at absurd expense by municipalities unable to carry the resulting debt. This is true in too many cases in Ontario to-day.

## SOME INCIDENTAL BENEFITS FROM THE GROWTH OF FORESTS.*

Mr. Chairman and Gentlemen-On considering the true meaning of the title of my subject it has occurred to me that what is the main and what the incidental benefits of forest growth to the community depends largely upon the point of view. The guardian of the public health would probably have no doubt that the principal use of forests was to purify the air by absorbing carbonic acid gas and exhaling oxygen and in regulating the temperature. The scientific agriculturist would be inclined to think that the chief function of a forest was to serve as a windbreak and shelter for farm crops, and assist the subterranean irrigation, while the old-fashioned farmer will be equally certain that the only use of trees is to furnish fuel and fencing, and they should only lie grown so long as they are cheaper than sabstitutes, failing in this they should be cleared off to provide pasture or ploughed fields. The engineer will be inclined to regard trees growing in mass to be chiefly valuable as a regulator of stream flow
-From a paper resd beforo the Association of Ontario Land Surveyors.
and a flood preventative, while the artist will look at them mainly from an esthetic point of view, as making or marring the landscape, according to their presence or absence and thereby contributing to the sum total of human happiness.

Many land surveyors, I have no doubt, frequently have occasion to regard a forest as an unmitigated nuisance, especially when it is compused of Ilex verticillata, or black alder, and lies in the line of march. As an official of the Government, interested in maintaining the provincial revenues from sources remote from direct taxation, I have to admit that my own point of view is largely a utılitarian one, that regards the forest as a source of wealth to the province and to the people, but I fully recognize the importance of the other, and what I shall call the incidental benefits, benefits so great and so important to the general welfare of the community as to make it desirable that forestry should be an affair of the State rather than of individuals, with whom present financial necessities may cause a sacrifice of future profits and result the detriment of climatic conditions.

Before going into the matter of the incidental benefits of forest growth, allow me briefly to refer to what I consider the main question from the standpoint of provincial revenue, and the maintenance of the extensive industries dependent upon forest products. The provincial revenue received last year from woods and forests by way of ground rent and timber dues was over $\$ 981,000$. This represents the production of a large amount of timber, and if we add to this the large quantity of firewood, railway ties, pulp. wood and about $375,000,000$ feet of timber cut yearly on lands not controlled by ihe Crown, it will be seen what a very important part in th industrial life of this province is played by our forests anc their products. The number of men employed in the woods, on the streams and in the saw-mills, apart altogether from those engaged in other industries dependent in part or wholly upon the forest, runs into the thousands, while the capital employed represents many millions.

It is not necessary for me to go into the many reasons why permanent forest industries must be dependent largely upon State control, that is I think pretty well understood by everybody now-a-days, but I desire to point out what the present forestry policy of the Government means to the future revenue, and the industrial life of the province. The Forest Reserves Act of 1897.8 proposes to set apart areas of non-agricultural lands to be withdrawn from settlement and kept permanently the property of the Crown for the purpose of growing successive crops of timber. If these areas had to be cultivated and planted to young trees, at an expense of about $\mathrm{S}_{15}$ an acre, the amount of money required would be very great, and if the amount thus expended, with interest, were added to the annual cost of care and protection of the young trees, it is doubtful if the resultant crop would show a very large profit on the transaction. True, the crop would be larger than in a forest grown under natural conditions, as was the one we are now harvesting, and a shorter time would be required to enable it to reach a state when it would be profitable to cut it. At the same time the initial expense and annual charges would be so great as to render the project of doubtful financial success on any large scale in this country, where only the more valuable products of the forest have a market value:

Fortunately for us, however, this is not necessary to provide future crops of trees and of the sorts experience has proved to be the most valuable. To do this will
require the expenditure of very little money, but more time. I hesitate to make any remarks as to how we are fixed in the former commodity-it is more or less a political subject, on which doctors differ-but we are rich in the latter. How much money we can invest in reforesting without borrowing I will not attempt to say, but we have plenty of time. The nation never dies, or hardly ever, and we are a young nation, with millions of acres of land valuable for growing trees, of little value for any other purpose, so we can afford to wait to allow nature to restore the magnificent forest removed by axe and fire from these lands. And nature is already doing the work, not as evenly as we could wish, nor with a crop of pure white pine, our most valuable trec, but she is doing the work just the same. I had occasion this past summer to examine a tract of several thousand acres that had been lumbered over, and burned over several times. Over this tract I found a vigorous growth of poplar, birch, white pine, red pine, tamarack, cedar, maples and other trees. In some places there was very little pine, but over most of it there is a crop of pine numbering from 200 to 700 trees to the acre and growing very fast. Much of it is now 6 to 9 inches in diameter, and I estimate that in 50 years there will be a very heavy crop of pine ready to cut, not less than 50,000 feet B.M. to the acre. I do not mean that it would be wise to cut that much at that time, but it could be cut.

On much of the abandoned farm lands in New England 50,000 feet to the acre is now standing, and two years ago the Rathbun Co. cut 100,000 feet to the acre over quite a tract in Grinsthorpe. I mention this to show that my estimate is not excessive. The stumpage value of that pine 50 years from now will be worth not less than $\$ 4$ per M , and is likely to be worth more. At this figure the pine timber on much of this land fifty years from now, if protected and cared for, will be worth $\$ 200$ per acre, which represents a present cash value at 3 per cent. compound, of $\$ 45.62$ an acre, and this land is generally considered of no value.

The main benefit to be expected from these reserves consists in the provincial revenue, and the maintenance of industries dependent on them, but in addition to this the incidental advantages from the presence of these masses of trees are ol vast importance to the people of this country. Concerning these factors in forest value there is room for considerable diversity of opinion, and this diversity exists. It is claimed by some forestry advocates that forests materiaily affect the rainfall, while on the other hand, it is claimed that it is not so, but that the rainfall affects the forests. While there can be no doubt of rainfall affecting the forests, it is not equally certain that the presence of forests influences the amount of rainfall. It is a case of not proven, although to my mind the evidence mainly goes to show that if the total rainfall is not influenced by tree growth its distribution is. We know that trees take up immense quantities of water from the soil and transpire most of it through the leaves. The moisture thus transpired from a large hardwood forest is very large, though difficult to estimate accurately, as the amount varies with the thickness and number of the leaves, amount of water in the soil and other conditions. A conservative estimate is made by F. B. Hohnel, a German scientist, of a fifty or șixty-year old beech forest for the season of growth at $1,972,000 \mathrm{lbs}$. or 986 tons of water per acre. Some authorities make the amount much larger than this, but in any event there is sufficient to lead one to believe that the atmosphere immediately above a forest must be so charged with moisture as to hasten precipita.
tion in clouds that may come in contact with it. That forests exercise a beneficial influence on the climate of the neighborhood there can be no doubt. The temperature of the air in the forest is cooler during the day and warmer during the night than in the open field. Consequently air currents are set in motion by this difference in temperature, cooler currents coming from the forest during the day in the lower strata and warmer air during the aight from the upper strata, thus equalizing the temperature and increasing the humidity of the air. This is aside altogether from the nere windbreak action of the forest, which is of zonsiderable importance.

The aspect of forest growth most likely to appeal to the members of this association is its effect as a regulator of our water supplies, and a factor in flood prevention. Even here there seems to be a difference of opinion, and a Western States writer a short time ago claimed that the presence of forests in the mountains prevented the snow from drifting into immense banks and then gradually thawing all summer, keeping up a constant supply of water for the streams. Without disputing this statement-for it cannot possibly apply to our own province, which is not mountainous-I may stateas an accepted fact that the main factor in our great wealth in water powers and navigable waters are the great forests. At the risk of repeating what you may already know better than 1, I desire to point out some ways in which the forests serve to regulate the flow of streams and prevent alternate flood and drought. Speaking generally the steam flow can only reach a percentage of the rainfall in the catchment basin. If the water does not fall either as rain or snow there can be no streams; but granted a certain precipitation during the year it may be gradually given off to the streams, making them reasonably constant in volume, or it may run off quickly, causing a flood and subsequent drought. Our streams are fed in two ways, by underground springs, and by the run off from the surface of rain or melted snow. Springs occur generally where a layer of porous sand or gravel lies hetween an impenetrable subsoil and the surface soil. The rain water runs under this top soil through the sand or gravel, and as it cannot penetrate the subsoil it is forced out through an opening in the top soil and goes to add to the volume of the nearest stream. It will readily be seen that a larger quantity of water will reach the gravel layer if the surface is covered with forest than would be the case in the open field, as most of it would run off the surface after rain, in the latter case instead of soaking into the soil. Most of us have known of springs that have become dried up in the summer, that years ago before the woods had been removed were perennial.

In the same way the forest serves to regulate the water running from the surface into the streams. Concerning the extent of this action of the forest a great deal has been written pro and con, and volumes of figures have been compiled to show that the removal of the forest had little or nothing to do with stream flow. At the same time I think we are all pretty well convinced that Captain Eads, the famous engineer, was right when he remarked conctrning the building of the jetties at the mouth of the Mississippi River, that he was working at the wrong end of the stream. The very nature of a forest floor covered with small twigs, leaves and sponge-like soil, indicate the mechanical action that dams the water and allows it to run off slowly. Branches die and fall to the ground. Trees do likewise and in falling across something would form dams and create small reservoirs of water against the time when it would be needed. The sorts of trees also form conductors that allow the water to penetrate the
subsoil deeply, and add to the subterranean supply. Remove these forests and the rainfall rushes off to the streams, which are soon in flood and soon dry up. The snow exposed to the full force of the wind and sun follows the same course, and large sums are being spent all over the continent to prevent the disastrous floods that now cause so much damage and loss of life, but which were not known in the earlier days when this was really a " wooden country."

At Brantford, I believe, they are spending a large sum of money to prevent the annual flood of the Grand River doing so much damage. It is worth noting that the county of Brant has only about 7 per cent. of its total area classed as woodland, and of this much is not tree forest land, but is pastured and the soil beaten hard. Most of you know something of the vagaries of the river at Belleville, which nearly every spring causes anxiety as to the amount of damage it is likely to do in flood, and in summer is so dry as to cause the remark by a traveler who saw it last fall from a Grand Trunk car that "it looked like a first rate place to put a river in."

A concrete case of the effect of forest denudation on stream flow has been furnished by W.C. Caldwell, M.L.A. Mr. Caldivell is a lumberman and a mill owner, and as his business interests were affected, he made careful notes of the occurrence in his diary at the time. The watershed of the Clyde Fiver was swept by successive fires in 1875.6 .7 , a large territory being affected. The water supply was gradually affected from 188 to 1885 . From 1885 to 1892 the flow of water was so reduced that in 1886.7 .89 and 90 the mills on the Clyde were short of water in August and September, something unknown until that time. In the meantime the new crop of poplar, birch, etc., t.ad reached quite a size, and in 18 go began to affect the water supply and restore the evenness of flow. Since 1893 there has been an abundant supply of water, and Mr. Caldwell has no doubt it is due to the effect of the new forest that has followed the fires. Failing this new forest a constant sup. ply of water could only have been secured by a costly system of impounding reservoirs.

## E.ITERARY NOTES.

The annual report of the Department of Mines, Nova Scotia, for the year ending Sept. 3oth, $1 S_{8} 8$, contains 100 pages of facts and figures about the progress of mining in Canada's farthest East. Extracts from the report will be found on another page.

Canadian Hand-Book of Steam and Electricity is a volume of 150 pages in brown cloth, published by the C. H. Mortimer Co., Ltd.. Toronto, contains a mass of valuable information, much of which is in tabular form and convenient for reference. A large portion of the work is of such an clementary character as to give it special value for beginners.

Accounts of the City of Charlottetown. P.E.I., and Annual Reports of the several departments of the City Government for the year ending the 3 Ist Dec. 1898 , embodies the repert of the city engineer, Freeman C. Coffin, upon the system of sewage disposal for the city now being installed. We hope to refer to the special features of this system at a later date.

The Annual Jeport of the City Engineer of Hamilton, Ont., for 1898, contains among other interesting matter a large colored map, showing the proposed changes in the water distribution system. The expenditure on public works in the past year was $\$ 204.86$ r.36. Full page illustrations are given of the new pumping station, the filtering basin, boiler room of the main pumping station, etc.

The Canadian Magazine for April contains an interesting chapter of Miss Wood's story "A Daughter of Witches" and a pleasant variety of short stortes, together with the usual poetry. Judge Ermatinger continues his historical sketch of the Michnlimackinac. It is unfortunate that this number, however, retains the dime magazine standard by publisbing a variety of uninteresting pictures of more or less uninteresting theatrical persons.

The special Easter number of the Ironmonger issucd March 25th, 1809, is one of the most successful special numbers that trado journalism has produced. The lithographed cover is a pleasing introduction to the three hundred and eighty pages of illustrated advertisements and gencral reading.

The Universal Electrical Directory (J. A. Berley's) for 1809 ' which is the eighteenth year of publication, contains in its 1,250 pages an amazing mass of most useful information. The index alone, to the classified trades, occupies four pages, which is a critcrion of the thoroughness with which the ground is covered. It is difficult to think of an electrical trade question which cannot be answered by the aid of this well-named Universal Electrical Directory.

We have received A. S. Lovendal's Dictionnaire Technique Francais-Anglais des Outils et Ustensiles Employes dans les Metiers manvels, La P'etite Industrie, La Menage, cte. This is a most valuable dictionary for anyone who laas to do in any way with the arts or trades among our French-speaking fellow cilizens. The lists are most com plete and are so arranged as to be most conveniently referred to, as not only are the different tools and apparatus listed alphabetically, but also each art or trade has grouped under it, as a heading, all the tools, etc., which naturally fall there.

The series of papers by Cecil B. Smith, Ma. E.. which appeared in Tue Canadian Enginerr during the past two years have now been issued in book form under the title "Railwas Engineering." There are many standard works written upon various phases of railroed construction, the merits of which are universally recognized, such as " Vellington's Theory of Location " and "Foster's Wooden Trestle Bridges." but Mr. Smith's work is the only general discussion of the entire subject that has recently been published and the work is therefore very welcome, especially to those who may wish to acquire a general knowledge of the subject before commencing a special study of any one of its details. The title "Railway Construction" would perhaps be more apropriate than that of "Railway Engineering" as the book does not deal with the important branches of track maintenance and operation. Mr. Smith's long and honorable professional carcer amply qualifies him to write as an authority upon his chosen theme. for he has been prominent in the locating and constructing staff of the Northern Pacific Junction, Niagara Central, Charlestnn, Cincinnat and Chicago. Roanoke and Southern. Baltimore and Ohio, and Canadian Pacific Railways, and had ample opportunity during bis connec. tion with McGill University to theroughly study the theory and litera. ture of railroading. His work therefore presents to the reader a concise and thorough description of the engineering side of railroad construction, and in detail is as follows. Chapter I. is devoted to railroad statistics, dealing more especially with those of Canada, and com ${ }^{*}$ menting particularly upon the maxims of railroading and the consider ations technical, political and local which must be taken into account when studying any proposed line. In Chapter II. train resistarces and their effect upon the cost of transportation are discussed, the methods introduced by A. M. Wellington in his "Theory of Loration" being closely followed. Thischapter is perhaps the most valuable in the hook, for to-day no locating enginecr can be considered as priperly qualified who is not fully aware of the financial effects of grades and curvature Chapter 111. contains a brief reference to the use of circular curves and a clear exposition of vertical and transition curves. These latter may still be classified as recently introduced, for their use is by no means general to day and the realization of their importance dates only from the first scientific study of the theory of location. The simple methods of calculation th:t are recommended nullify the objections on the ground of intricacy that are so often urged against them. In Chapter IV. t.je reader gets the benefit of Mr. Smith's wide experience in reconnaissance and field work, and the many practical hints given are of great value. Chapter $V$. is devoled to construction and treats of those structures that are usually under the superintendence of the resident engineer. It is plentifully illustrated with cuts of the standard plans of the various railroads with which the author bas been connected and concludes with some very pertinent advice upon classification and estimation. Chapter VI. is a most unusual and interesting addition and contains a carcful resume of those clauses of the Railway Act that are of special importance to engincers. A brief second part upon track material concludes the work, but the collection of diagrams for the rough estimation of timber and masonry quanitities from the profile are worthy of especial mention from their particular usciulness in the comparative study of locations. While the book as a whole is very welcome, dealing as it does with the entire field of the construction enginetr, the chapters upon train resistances and railway law deserve the most especial commendation, because many of our engineers bave simply grown into their profession and are ignorant of the great forces, natural and political, that control our common carriers. It is only to be regretted that Mr. Smith has not seen fit to discuss his

Interesting subject at greater length, for there is room at present for a successor to the once standard work of $\mathbf{G}$. L. Vose , but as it is, it is to be heartily recommended to all who desire a clear introduction to the art of railroad building. Railway Engineering, Cecil B. Smith, Ma. E. Cloth, 200 pages, profusely illustrated. Biggar, Samuel \& Co., Publishers. \$1.50.

## METAL IMPORTS FROM GREAT BRITAIN.

The following are the sterling values of the imports into Canada from Great Britain of interest to the metal trades for the month of February and the two months to February, 1898 and 1899 :-

| llardware ........ | Mfonth of Pebruary, |  | Two il wilis to Fervary. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1898. | 1899. | 189?. | ${ }_{1} \mathrm{O}_{9}$. |
|  | £1,629 | 61,116 | 63.333 | 22.054 |
| Cutlery | 3.283 | 3.055 | 6.612 | 7.820 |
| Pig iron | 1.348 | 401 | 1.852 | 762 |
| Bar, etc. | 1,212 | 801 | 1,412 | 1,2,4 |
| Railroad | 6,872 | .. | 6.922 | .. |
| Hoops. sheets, etc. | 1.939 | 1,618 | 2.753 | 1.743 |
| Galvanized sheets | 542 | 332 | 2.518 | 820 |
| Tin plates......... | 6586 | 5.862 | 18,515 | 11.547 |
| Cast, wrought, etc., iron | 1,998 | 1.443 | 3.571 | 2.440 |
| Old (for re-manufacture) | 80 | . | ถิо | 2.44 |
| Steel | 6,100 | 1.919 | 10,627 | 5.689 |
| lead | 594 | 133 | 1.518 | 1,022 |
| Tin, unwrought | 619 | 118 | 1.921 | 2.633 |
| Alkali | 1,383 | 853 | 2.884 | 2,396 |
| Cement | 1.389 | 35 | 1,874 | 248 |

## SUMMIARY OF THE MINERAL PRODUCTION OF CANADA! . 98.

The following figures have been submitted by the Geological Survey of Canada to the Government, and are subject to revision:

| Product. | Quantity. <br> (a) | Valuc. <br> (a) |
| :---: | :---: | :---: |
| Metallic- |  |  |
| Copper (fine, in ore, etc.) (b) Ibs | 17,951,421 | \$ 2,159.536 |
| Gold. Yukon district* |  | \$10,000,000 |
| Gr.jd. all other |  | 3.700 .000 |
| Jron ore. ions | 38,161 | 152.510 |
| Lead (finc. in ore, cic.) (c) lbs. | 31.915 .319 | 1.206.309 |
| Nickel (finc, in ore, etc.) (d) lbs. | 5.517.690 | 1.820,8,8 |
| Silier, (fine, in ore, etc.) (c) ounces.. | 4.434 .15 | 2,583,208 |
| Total inctallic. |  | \$21,622.,501 |

Non-Metallic--

| Asbestus and asbestic, tons | 23785 | 486.227 |
| :---: | :---: | :---: |
| Chromite, tons | 2.021 | 24,252 |
| Ccal. tons | 4.172.655 | 8.227.95\% |
| *Coke (f) tons. | 72.4.14 | 219.200 |
| I-chspar, tons | 2.500 | 6.350 |
| *Fire clay, tons | 2.170 | 5.000 |
| Giaphite. tons |  | 11,2038 |
| Grindstoncs. tons |  | 39.465 |
| Gyi.sum, tons | 219.256 | 230.440 |
| limestone for flux, tons. | 33.913 | 31.153 |
| Marganese ore, tons | 50 | 1.6 ro |
| Micu, |  | 117.508 |
| Mineral pigments-- |  |  |
| Baryta, tons | 1,070 | 5.258 |
| Ochres, tons | 2.341 | 18.600 |
| * Mincral water |  | 155,000 |
| Moulding sand. tons | 10.572 | 21,0,4 |
| * Natural gas (g) | . | 320.000 |
| Petrolcum (h) bbls. | 700,790 | 981,106 |
| Phosphatc (apatite), tons | 733 | 3.65 |
| Pyrites, tons | 32,218 | 128.872 |
| Salt. tons | 57.142 | 248.6.39 |

Structural niaterials and clay products-

Cement. natural rock, bbls............ 87,125
73.412

Cement. Portland. bbls................. 163,084 324,168
Flagstoncs ....................................... $\quad$ 4,250

Granite ................................ ......... $\quad 73.573$
*Pottcry .......................................... . 135,000

| Sewer pipe |  | 165,421 |
| :---: | :---: | :---: |
| Slate |  | 40.791 |
| Terra cotta |  | 167.00: |
| Tripolite, tuns | 1.017 | 16.0\% 0 |
| Building matcrial, includung bricks. buiding stonc. lame. sands and gravels and tiles (estimatted as for previons yenar) |  | 3,600,000 |
| Total structural materials and chay product: |  | 4.002.177 |
| -th oher mon-metallic |  | 11.282.41\% |
| Total non-metallic |  | 15.884 .501 |
| 'lotal metallic |  | 21.622.(0): |
| Eetimated value oi miacral pioducts not returned |  | $250.0(x)$ |
| וSgS total.. |  | 37.737.10\% |
| 180\% total. |  | 2S.601.4.6) |
| seys total. |  | $\therefore 2.5 \mathrm{~S} 4.51 .3$ |
| $\mathrm{I}_{59}$ total. |  | -0.758.450 |
| 189t total. |  | 19.033.557 |
| 1 ing total. |  | 20.0.35.042 |
| 189: total. |  | 16.628 .417 |
| tisol total. |  | 18976.616 |
| 1Sgos total. |  | 16.70.3.35.3 |
| 188; total. |  | 14.01 .3 .91 .3 |
| is88 total. |  | 12.518 .824 |
| 8SS7 total. |  | 11.321 .3 .31 |
| sesth total. |  | 10.221.255 |

## *Partly estimated.

(a) Quantity or value of product marketed. The ton used is that of 2.000 lbs .
(b Copper contents oi ore. matte, etc., at 12.03 cellts per ib.
(c) Lead contents of ores, etc., at 3.78 cents per 1 ll .
(d) Niekel contents of ore, matte. etc., at 33 cents per lb.
(c) Silver contents of ore at 58.26 cents per oz.
(f) Oven coke. all the production of Nova Scotia and Mritish Columbia.
(g) Gross return from sale of gas.
(h) Calculated from inspection returns at 100 gals. crude to 42 refined oil, and computed at $\$ 1.40$ per bbl. of 35 imp . gals. The barrel of refincd oil is assumed to contain 42 imp . gals.

In staiying the figures given in the above general table. many interesting and gratifying features will be noticed. In the grand total an increase is shown of over $\$ 9.000 .000$ or nearly 32 per cent, as compared with 1897. This is a still larger preportional increase than that of 1897 over 1896 which ammonted to nearly 27 per cent. Compared with i886, the first year for which statistics were issued. we find an inerease in the value of mineral products in thirteen years of nearly 270 per cent. When it is remembered that during the same period the increase in the population has been onls about 14 per cent., it will be evident that the proportional importance of the minine industry io the conntry is very much greater than it was at the beginning of the period dealt with. Thus the per capita value of the mineral production of the country has increased from about $\$ 2.30$ to $\$ 7.30$. Whilst these large increases of late years have of course been partly due to the discovers and working of the rich gold-placers of the Yukon, other important mineral industrics have also contributed to them, and there is every reason to expect a continued rapid growth in many of them for some years in come, especially as the province of British Columbia contimes to develop. The following table shows the principal changes in the production and values for the year $1 . S 2 S$ as compared with the revised figures for 1.87 :

| Product. | -Quantity- |  | -Valuc- |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Increasc. Percent. | Decrease. <br> Per ecnt. | Increase. Per cent. | Decreaje. Per cent. |
| Mctallic- |  |  |  |  |
| Copper. | 34.9 | ... | 43.81 | . $\cdot$... |
| Gcld. . | . | -.... | 127.31 | ..... |
| Iron ore. | 14.70 | ..... | 17.05 | $\ldots$ |
| I.cad. | ..... | 18.20 | ..... | 13.63 |
| Nickel. | - 38.02 | ... | 30.14 | ..... |
| Silver. | ..... | 20.23 | ..... | 22.27 |


| Non-Metallic- |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Asbestus and asbestic. |  | 21.87 | 0.17 | $\ldots$ |
| Coal | 10.21 | .... | 12.66 | ..... |
| Gypsum |  | 8.52 | ..... | 5.\%6 |
| Niatural gas. | .... | ... | ..... | 1.80 |
| Petrolcum |  | 1.28 | $\cdots$ | 3.00 |
| Cement | 21.93 | .... | 44.43 | . ... |

It will be obseried that most of the large increase in the troiol is to be credited to the metals, gold. copper. nickel, the non-metallic materials, coal, ashestus and cement also contribme ing. Beginning with the most important. the increases in these products were as follows, vir.: Gold, about $\$ 7.67 .3 .000$ : coal, over $\$ 04,000$ copper, nearly $\$(158.000$; nickel. wearly $\$ 422,000$ : asbestus, iron we and cement aggregating about $\$ 185.000$. Of the sold ontput the man ieature was the very large increase in that of the Yukon. This accounts for $\$ 7.500 .000$ of the enlargement. Which is three times as great an estimaled output as that for last gear. With the exception of the gold washings of the Sashatchewan River in the Norhwest Perritories. there were allso increates in all the other glistriets of the Dominion. There wore increased outputs of coal in all the different districts. In copper the largest increase was in Ontario. which anounted to -ver 50 per cent. of the previous year's output. British Columbia showed also a consulerable enlargement, whilst in Quetee a small falling off was apparent. A sise in the price of the o-etal makes the proportional increatse in valate greater than that for duantity. In mekel, the increase in the quantity is greater dian that in the value. owing to at fall in the arerage price oi the metal for the year.

The falling away in the production of both lead and silver is. in the former case. putly offset by the rise in the average price, whilst in the latter case a lower price for the year has aggratated the propurtional decrease in the value as compared "ith the quantity. Whilst there was a decrease in the actual atamity if the prodet oi the asbestus mines of Quebec, the , alue shows a large percentage increase, which is explaned by the lesser proportion of asbestic and luw grade fiber in the ot:put. The proportional comtributions of the chiei products to the grand total of value are set fortit in the following table both for ling and 180 s:
bronict and per cent. of total. phoduction 1897.1895


Building material. ........ 12.36 Building matcrial........ 9.3 .3
Silver..................... 1159 Silver ...... ..... ....... 6... $6.8_{4}$
Copper .................. 524 Copper .................... 5.72

| .................. 4. Nicticl .................. 4.82 |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

Lead ................... 4.3; Lead ....................... 3.19

Asbestus ................. 1.55 Asbestus ................... 1.29
Natural gas.............. 1.14 Cement ................... 1.0 .5
Cement .................. 多 Natural gas...... ........ \$


Salt .................... is Gypsum .................... 6t
Coke .................... 62 Coke ......................
With the exception of the transposition of the positions $u i$ gold and coal, of natural gas and cement. and of gypsum and salt. the items stand in the same order as before. The feature mainly noticeable is of course the assumption of the first place by gold, and its large predominamee over the rest. To this is largely due the fact that the metallic minerals as a class contributed in 1808 over 57 per cent. of the whole. as compared with about 48 per cent. last year. The structural materials amounted to about 12 jer cent., and the other non-metallic mitscrals to about 30 per eent.

## BOSTON SEWAGE OUTFALL.

## by cibaries en trout.

## For The Canadian Engineer.

More than one-half the sewage of Boston and vicinity is discharged into tide water at Moon Island. about six miles from the main water front of the city. To reach this point tive sewage flows by gravity to a pumping station on the harbor front near Afoon Island. where it is raised about thirty-five feet and forced through a tunnel under an arm of the harbor to the outfall works. These consist of a storage reservoir. together with the necessary gate houses and machinery for filling and dis-
charging. The function of the reservoir is to store the sewage white the tide is Howing in and discharge it after the tide has turned, when the strong current carries it out to sea. The reservoir is composed oi four distinct basins, so arranged that one may be kept empty for any purpose, as cleaning or repairs, white the others are in use. The four basins are of nearly equal cupacity and the division walls between the basins are of rabble on concrete foundation. Where the foundation rests on gravel or other pervious material a line of tongued and greoved sheet piling is driven into the clay underlying such material. As a further precaution against water passing under the division walls and the bursting of the reservoir floor by springs, a line of drain pipe, with open joints, is laid on cither side of each division wall, and beneath the floor of the basin. These drains discharge outside the reser"oir. Thus, water accun.ulating bencath the foor finds free access to the drains, and is carried safely outside the reservoir. is safety valre, opening into the reservoir is provided on each drain to relieve an excess of pressure below the tloor in event of a drain being choked. The floor of the reservoir is of concrete nine inches thick, and is shaped in alternate gutters and ridges, the width centre to centre of ridges being twenty feet. Set in the ridges at intervals of thirty feet are blocks of granite, three feet sumare and eighteen inches decp, to be used as pier stones in case it should ever be necessary to roof the reservoir.

The arrangements by means of which the reservoir is filled and emptied could best be illustrated from a figure. Across the lower end of the reservoir runs the outfal sewer, which brings the sewage from the eity to the works. Inmediately below it are the discharge sewers, which carry the sewage from the reservoir out to seia. These are all of brich and backed with rubble masunry. Between the sewers and the reservoir is what is known as the six foot gallery which serves as a foundation for the grate honse abore, and as a protection for the gates from frost. It is divided by the diasion walls ui the reservoir and four partition walls, one opposite the centre of each basin, into ciglt compartments. In both the untall and discharge sewers, on the side next the reservoirs, are tuenty gate openings, cach three by four icet. Only hali of these, cight in the outiall and twelve in the discharge sewers, are at presem in use. The rest are bricked up whil the increased amount of sewage renders them necessary. The gates with thear frames are of cast iron, with bearing surfaces of compesition. Both gates and irames are single castings. which are grooved to receive the strips of composition for valve iaces and gate resis. The grooves are worked out by machine tooks ind the strijs are riveted in place with composition rivets. The gates are pressed tight by adjustable gibs, bearing on inclined planes, cast on the frames. The gates are raised by lifting rods and screws. connceted with suitable gearing above the floor oi the gate house. The clutches ior each gate are thrown in by a hand lever. and may be thrown out by hand or by the gate itself on reaching either end of its course. The gearing is driven by a main line oi shafting, ranning the full length oi the gate-house-575 iect-and varying in diameter from three and one-half to two and one-half inches. The power to operate the gates and ior other purposes is furnished by a turbine wheel installed at the lower end of the outfall sewer, and driven by the sewage. The wheel pit drains into the discharge sewers. Ample power is furnished by the turbine for operating the gates, pumping and running other machinery about the works, at no expense for maintenance, and with no attention beyond opening and closing the gates leading to the wheel pit.

The rescrvoir has a capacity of about $25,000,000$ gallons. Under ordinary conditions it will fill in about ten hours. In time of storm, however, the reservoir is not large enough io store the extraordinary quantities of sewage received, and it is frequently necessary to begin discharging before the turn of the tide. The frequency of this early discharge is constantly increasing with increasing population and water consumption, and might in time give cause for complaint to property owners on the water front of the city. The builders of the present reservoir foresaw the necessity of increasing its capacity in the future, and they so located and carried on the work that such an extension could be casily carried out by increasing the length of the basins. Such works are now in progress. The length and capacity of the basins will be doubled.

The method of discharging, nushing and filling the reservoii is as follows: An hour or so after high water, the water in the harbor being then about the height of the bottom of the reservoir, the gate leading to the wheel pit is opened and water is admitted to turbine. The shafting in the gate house starts and it is possible to raise or lower any gate by throwing its operating machinery into gear. First, the gates leading from the outfall sewer are closed, then those leading to the dischorge sewers are opened. Under ordinary conditisas the reservoir is empty in less than an hour. A deposit of slime remains in the bottom of the reservoir, generally quite thin, but in considerable quantities after a storm. To remove this the reservoir is flushed by the sewage stored in the outfall sewer. The openin:gs from the rescrvoir to the six-foot gallery, exce:pting those neit the side and division walls, are provided with gates hinged at the top and swinging into the six-foot gallery. Thus. while the basins discharge at all the openings they fill out; from the two extreme openings. As soon as a basin is empty the lower gates at one side are closed and the upper gate on the same side opened wide. The sewage rushes in, filling one compartment of the six-foot gallery, and rushing into the basin by the one opening not provided with a gate, it flows up the gutter opposite that opening. and at the same tince it spronds ont over the ridges washing the slime into the gutters. As soon as enough sewage has entered, the upper gate is closed and the lower ones opened. The flush is drawn into the discharge sewers, where it is held till the next diseharge, in order that. being the foulest of the discharge it may have an early start and be carried well out to sea. The flushing is done alternately from opposite sides of the basin. This method works well excepting that it will not clean the back corners of the basins of heavy materials. and a deposit of gravel, sand and sludge collects there which has to be occasionally shovelled out. Onee a me nth or so the reservoir walls are washed by a fire stream inmivhed by a power pump driven by the turbue. Salt water from the harbor is used in this washing.

Is it is not expected that the present method of flushugg will be effective when the basins are doubled in length, a mothod has been devised by means of which the flushing will be done fro:n the upper end. A large sewer will be buitt frow the outiall around the upper end of the reservoir. On this sewer will be four gate houses, one opposite the centre of each basin. through which sewage can be admitted in sufficiert quantities to thorounluly flush the basin. A system of stop planks will be provided to distribute the sewage over the width oi the basin. The gates in these gate houses will be operated by compressed air pistons wihk valles operated by electricity. The compresse: and perhaps a dynamo as well, will be operated by the turbine.

In winter scarcely any odor is noticed from the basins. but in hot weather an offensive smeii arises at times. However, is no one lives nearer than the main land. a mile away. this is not a serious matter. Generally the tidal currents carry the sewage away from all inhabited places. but occasional complaints ar heard from summer resorts along the coast. These are neither very earnestly made nor very seriously taken. and are probably due to a readiness to attribute the consequences of local carelessness to a distant cause. At the wors:, however. the works guite fulfil their object in minimizing the nuisance caused hy the sersage of the district they serve.

## metallurgical machinery.

my a. C. h'callun, mif. peterdoro. ont.
In the matter of the design of metallurgical machinery it must be admitted, with reference to rolls, crushers, stamps and other machines employed in the reduction of ores, one is almost led to belicve that they are not susecptible of as exact an analysis as a bridge for crample. In the following remarks it is purported to deal with the most familiar machines employed by mining engincers, such for instance as crushers, rolls. slamps and fecders. To deal with them from the designer's point is my purpose.

Consitiering in the first place crushers, the introductory remarks anent them are applicable to most all of the other machines mentioned. It will readily be admitted that many de-

- From a paper read before the Canidian Mining Insititate.
signs of crushers show by the distribution of the material within them, that the designer neglected to take adsantage of a mathod of analysis commonly employed by designers of bridges and other large structures, a system of analyzing cutce apphable to mimang machners, namels by that of graphecs. The construction of a graphic diagram of stresses within ans wathan under design is must cosention, as apon it the desiguer claburates his worhing draning. The benefits to be derned from such a process of designing cannot be overestimated, it impresses unon the designer an mamate and exact knowledge of the acting forces and thear distribution throughout the paris of the machine in the pocess of design; there may be many problems which are extremely complex and frequently unsol. able; it is necessary however, to possess definite knowledge oi the resistance of the materials employed in the construction of the machine to those complex forces.

It has been sometimes remarked that skill and good workmanship are not essemtial features in the make-up of mining niachinery, but the idea is false. more plants bult for the purpose of ore reduction have been failures, due in large measure to the fact that the enterprise was handicapped by machinery ill adapted for the purpose. It is to be much regretted that many enginecrs in the purchase of mining machnery estimate the superiority of the machines to be purchased by the dead werght, regardless of how the material is uthized and distributed. Discussion will not alone settle the question finally in all ndies watiout elaborate and unprejudiced expermental work. Most carciul insesugation is necessary in many instances to discammate between real improvement and the mpractical. The s:ne qua non oi good machne destgn, from a structural pom: oi view, is the presence oi sufficient material of the proper kind, in the right place. There are many types of crushers upon the market, and there is no doubt that the majority of thein were originally intended tor breaking road ballast. The demand withn recent years for crushang machacry in mums regons is promarily the cause of thear beng advanced to the from as crushing and pulverizing machines. There is no doubt that the "Blake" type of crusher stands pre-eminently for service and has been generally adjudged the most efticient and economical in use; perhaps the reasons most readily advanced for such, lies in the fact that for a given capacity the first cost is less, the cost for repairs is also less, and they are idle for repairs much less of the time. The "Blake" type of crusher has developed few changes from the original design. The first type of "Blake" crushers had the crushang jaw proted at the tettom, as at present in general use the jaw is pwoted at the upper end. It is a matter oi chonce. to do a given amount oi work by ether of the types of machine; one with the workits: jaw puroted above, the other below. Fur the jaw pwoted at the bottom, the plea is used that a more uniform product is olstati,ed, and that finer crushing. when that is desirable. can be secured. The concurrence of preierence however if gauged by use, is in favor of the modern "Blate" design wish overhung jaws, winen that type of crusher is chosen.

A general summary of crushers upon the market if analyzed would reveal the important fact of a want of harmony amongst the various types of similar dimensions. The dimensions of the openings are not called in question. but like pieces within different makes of crushe-. So far as the openings of the jaws are concerned, those dimensions are not by any means arbitrary, but have been fixed by experience. Quartz generally breakin: in sizes which can be suitably crushed by ore breakers si such sta ndard dimensions as $10 \times 7$ in., $15 \times 9$ in., 20:10 in. Mining cl:gincers in charge of plants are well acquainted with the mans faules developed in crushers under their care, broken frames. pianans, jaws and other parts are known. What then ate requirements of a good crusher?

In order that the crusher shall run easily. cool, and prove serviceable, it is requisite that all of the journals be in correct aligument one with the other. Rigidity. strength and sufficient weight must be found in the frante, so that the vibrations created while crushing may become absorbed. This must be advanced as the reason for the failure of the many types of stecl plate frames. they easily yield to the strains within the machine, thus causing the working parts to become out of proper relation one with the other, and resulting in heating, and running hard. According to the nature of the product to be crushed, we must have a certain direction of stroke, length of
stroke, and relative angle in the position of jaws, and to proctre these conditoons various means are employed, wheh methods are well known to manng men. But at has appeared to the writer that smpheity of construction may be secured by abolshing from the tgpe of crusher under consideration, the wedge block so common, and employing other means of adjustment, for mstance by means of the toggles. Change of toghles can be eflected as readily as by means of the adjustable wedge. The movement required can then be made by rearrangement of the enggles. The machue beng provided with a set of toggles guing the reguste maximum and mmmum opentugs. It is necessary that the shaft supporung the jaw should be securely fastened to the jaw, not by means of set screws, a preferable micthod of fastening is that of the gib and key. The jaw shaft is then required to move in the bearmgs of the machine. lins overcomes the pounding and jumping due to lost motion, whic! read.ly develops when the jaw moves upon the shaft. The caps of the bearings can then be tightened whenever wear renders it necessary. Within the pitman much trouble is often created, pethaps no other feature withu the make-tip of the pitman creates more tronble than the adjustable devices provided to take up wear, when the ecentric shaft has worn out of rounl. due to the stran upon it being constantly in one direction.

Fly-wheels as commonly fastened to crushers are at faul! By cmploying them as a means to prevent serious injury to the working parts of the machine, owing to sledge hammer heads falling into the jaws, or other causes. we may so fasten the fly whed upon the shaft that in case oi accident the belt mas slip and the crusher stop while the fly-wheels exhaust ther unction. We may use taper keys.

The reduction of granulation of coarse particles of ore be neans of rulls, has been given much consideration during the past few suars. The varicty of crushing rolls are many and sariuns in type and construction. Machines for this class of work hase been largely involved by American engineers, and pooi of their superiority is to be found in the fact of their having gained admission to almost every large mutallurgical work throughout the world. Notwithstanding the many changes that have been made during past years in all the varivus designs known $t 0$ us, no special one has met with gencral approval. The most potent change has been in the adoption of steel as the material for use in the construction of the shells. The construction of the frame in one picce, having suficient weight and strength to absorb the vabrations set up "thin the machine. and eloser study has been given to the matter of the strains with the structure. Marked improvement wier the uliter furms of crushing rulls has been made an tiac dasign oi jumrnal bearings, methods of lubrication, and the factilities for dismanting the machine if required. Considerable ingenuity has been displajed to obtain complete and satistactory methods ior keeping the lateral adjustment of the rolls correct. The adoption of springs for that of levers and dead weights within the machine to give crushing power to the rolls is in intjortant improvement, affording as it docs, a much more uniform product. The adoption of some form of housing obviates the wasteful and disagrecable nuisance of dust usually found around rolls employed in dry crushing, and length oi life to the machine is ensured. The most marked change within recent years has been along the line of increased peripheral sjeced, by the employment of rolls of larger diameters, and narrower faces. The results being decrease of journal friction. increase of crushing suriace, and reduction of spring pressures. Those changes are undoubtedly the direction in which meodern pratice is iending. Peripheral speeds of 600 to 1,000 fect pe: minute are now found to be practicable, but this change in specd has also brought about many of the improvements already mentioned. The aggregate spring pressure is now greater, ranging from 2103 tous per inch width of face of roll shells. Change has also been made from gears to belts, proving a much more preferable method of driving. In the carlier form of rolls, the spring presstere was carried along the main tension bolts. making it a matter of considerable labor to adjust the rells. The method now in use consists of enclosing the whole nest of springs between two washers, and constructing them so that each nest forms a complete washer of an inelastic nature, until such time when the maximum pressure is reacied, further compression taking place, relice is afforded to the rolls by the deffection of the springs. Chilled iron shells in all probability
will be displaced by steel shedls. In the design of rolls pre sented all the above mentioned improvements have been em bodied, simplicity of const-uction. fewness of parts, and inter changeability is to be found The hopper underneath the rolls is constructed in such a manner that no pockets are permitted. all four sides declining towards the bottom at an angle of 4.5 degrees, thas affording cleanliness at all times within the machine. The matter of sliding versus switg bearings for the acmovable roll, was decided in favor of swinging rull bearings The wearing surfaces become reduced by means of their adop tion. Any wear about the bearing surfaces of sliding roll bear it:gs is an cuil which may result in damage to the frame ot the machine; it is easicr to maintain the alignment of the swinging buaring in the sliding type of bearing. In design for rolls, a wature worthy of consideration is that of the disposition ot the loolts employed for the purpose of bolting the machine together, it is a desirable feature to have as few as possible. and so arranged that should they by any means become loose, they may not fall within the machine. The use of common nuts is not desirable, and recourse must be made to lock nuts or elastic ntuts; this provision prevents the bolts becoming loose, and may help to preserve the machine from injury.

The construction of mortars will always prove interesting to mining men. The sectonal mortar contains a feature new to the writer. It is usual in the construction of sectional mortars to make the ends in two picces. In this particular mortar, in overcome making the ends in the above way, they were carefully designed (not to exceed 350 lbs . in weight) and in making the ends of cast steel the joint usually found was eliminated, and considerable strength has been thus added. The drawing shows the construction ciearly. This type of mortar was designed for the Ben dor Mine, bridge River, BC. In the 3 stamp double disclarge moriar, the lower guides of the hattery are to be found in the upper part of the mortar, wate: supply is carried to and around to cach of the heads. The puly frent back sereen running through a channel cored in base of mortar and joining to that of the channel from front sereen is then carried by a pipe and distributed over the amalgam table. This type of mortar was designed for the Oro Fino Mill of Fairview district, B. C. Amongst designers of mining machinery the ore fecder has been taken in hand, and it doubtess has been observed in recent designs presented for public favor that of the suspended type shows many marks of improvement in design, utility and simplicity oi construction. The marked changes in this feeder are to be seen in the abolition of the adjustable mechanism to the ieed lever, the lever adjustment being made by means of a collar on the stamp stem, or by the bumping rod. Gears are not employed at all, thus resulting in: quict ruming. One could, perhaps, make extcuded remarks with regard to other machines in process oi design and mamuincture. I icel I have not done justice to the subject, it is much too wide for a single paper. Papers on metallurgical machines to be of real benefit to the Institute should be divided into secticns, treating oi the design and dynamics of each machine in seprarate papers. Should it be the pleasure of the Institute I would willingly contribute my small quota. Publication oi data thus collected may not be considered of much momen: by the busy outer world, but it clarifics tise writer's ideas, and brings into compact form and small bulk, a large amount of knowledge otherwise unattainable. This iniormation adds much to the making of the routine work of the profession more productive and pleasurable.

## THE NOVA SCOTIA COAL TRADE.

The following returns of Nova Scotia coal sold during the ycar 189S, shown in the report of the Department of Mines. Nova Scotia, in comparison with those of IS97. are as follows:

|  | 1897. | ISOS. |
| :---: | :---: | :---: |
| Nova Scotia | 641,308 | 667,252 |
| New Branswick | 242043 | 265.759 |
| P. E. Island. | 62,0.32 | 93.241 |
| dicwfoundland | 75.950 | 62,051 |
| Quebee | S75,574 | 914.160 |
| West Indics | 9.356 | ...... |
| United States | 106,279 | 98.027 |
| Other countrics |  | 3.877 |

The production was $2.281 .45+$ tons compared with 2.320 .916
tens in the year 1897. There is an increase in the sales in Nova Scotia, New Brunswick, Prince Edward Island and Quebee, the sales to the last named point coming close to the million mark. There has been a decrease in the Newfumbland and United States sales. It is confidently expected that in a few weeks shipments of gas coal to Boston from Cape Bretun collieries will be commenced on a basis of at least 700,000 tons per annum. If this be carried out and no unforeseen obstacle intervenes, the total sales of next year should be we the vicinity of $3,000,000$ tons. The total sales for the year were $2,1,35,317$ tons, compared with $2,013,4=1$ tons in 1897.

## the practical man.

The Friction of Metal on Metal, without LubricationMay be taken at $\mathrm{t}-6$ of the weight up to 40 lbs . per sq. inch. May be taken at $1-5$ of the weight up to 100 lbs . per sq. inch Prass on cast iron $1 / 2$ of the weight up to 800 lbs . per sq. inch. W'rit on cast iron $1-3$ of the weight up to 500 lbs. per sq. inch. Well oiled with tallow at $1-10$ of the weight.
Well oiled with olive oil at $1-3$ of the weight; 800 lbs. per inch ferces out the oil; friction of journals under ordinary circumstences $1-30$ of weight; friction of journals well oiled semetmes only 1-60 of weight.

Rules for Calculating Speed. The dameter of drwen grven to find its number of revolutions: Multiply the diameter of the driver by its number of revolutions and divide the product by the diameter of the driven. The quotient will be the number of revglutions of the driven.

The diameter and revolutions of the driver being given to find the diameter of the driven, that slatl make any number of revclutions: Multiply the dameter of the driver by ats number of revolutions and divide the product by the number of reguired revolutions of the driven. The quotient wall be its diameter.

To ascertain the size of pulleys for given speeds: Multi!)! all the diameters of the drivers together and all the diameters of driven together: divide the drivers by the driven. Multipl: the answer by the known revolutions of main shaft.

To Drill or Turn Aluminum.-Use kerosene oil (coal oil) for drilling or turning aluminum.

To Drill Hard Stecl - Lise turpentine instead of oil, when drilling hard steel, saw glate. cte. It will drill readily when you could not touch it with oil.

To Prevent Rust on Tools.-Uise vaseline, to which a small amount of powdered gum camphor has been added. heat tuhether over a slow fire.

| Alloys. | $\dot{ \pm}$ |  |  |  | 哥 | 彦 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brass. engine bearing. ...... | 13 | 112 | 4 | .. | .. |  |
| Tough brass, engine work... | 15 | 100 | 15 | - | . |  |
| Tough, for heavy bearings.. | 25 | 160 | 5 | -. | - |  |
| Ycllow brass, for turning.... | . | 2 | 1 | - | . |  |
| Flanges to stand brazing.... |  | 32 | 1 | - | 1 |  |
| Bell metal | 5 | 16 | - | $\cdots$ | . |  |
| Babbit's metal | 10 | 1 | . | 1 | $\cdots$ |  |
| Rrass, locomotive bearings.. | 7 | 64 | 1 | - | - |  |
| Brass for straps and glands.. | 16 | 1.30 | 1 | - | . |  |
| M!untz's sheathing | . | 6 | 4 | . | . |  |
| Metal to expand in cooling. . | $\ldots$ | . | . | 2 | 9 |  |
| Pewter | 100 | - | $\cdots$ | 17 | . |  |
| Spelter | .. | 1 | 1 | . | - |  |
| Statuary bronze | 2 | 90 | 5 | . | 2 |  |
| Type metal. from | $\cdots$ | . | - | 1 | 3 |  |
| Type metal, to ............. Solders. | - | - | - | 1 | 7 | $\cdots$ |
| For lead | 1 | .. | . | - | 14: |  |
| For tin | 1 | $\cdot$ | . |  | 2 |  |
| For pewter | 2 | . | - |  | 1 |  |
| For brazing (hardest)...... | $\cdots$ | 3 | 1 |  | . |  |
| Fo: brazing (hard). | - | 1 | 1 | - | - |  |
| For brazing (soit).......... |  | 4 | 3 | $\cdots$ | - |  |
| For brazing (soft), or....... | 2 | . | . | 1 | $\cdots$ | -• |

## NOTES ON SHAFT GOVERNORS.•

## by w. b. a'lenn.

The following paper does not propose to discuss the many difficult mathematical and other problems involved in a treatment of the theory of shaft governors. It will only deal with some practical points in the design of these appliances which thave come to the notice of the writer during a summer spent at work connected with higi-speed engines which were thus
a matter on which designers differ. In the governor shown in Fig. 2 it is made very approximately a straight line by an application of Watt's parallel motion. The form usually adopted, however, is that of a circular are, the cecentric plate being pivoted directly on the supporting gorernor frame or whecl. By this arrangement a greatly increased rigidity is obtained to resist the pull necessary for moving the valves; which pull generally comes at a considerable off-set. There are two wa: in which this pivot may be placed as shown


Figs. i and 2-Automatic Governor. Fitchburg Co. Stbam Engine.
governed. The shaft governor is the means now almost universally employed for regulating the speed of the modern (American) high-speed engine. In most American engines it acts by changing the point of cut-off of the valve, and thus varying the volume of steam admitted to the cylinder at cach stroke to suit the varying loads. This of course changes the ratio of expansion; but between the ordinary limits of cut-off, under working conditions, the variations of this ratio do not greatly affect the cconomy, and the regulation is much quicher than with the old type of throttling governor.

In the older forms of shaft governor the cut-ofif was changed by having an eccentric of the ordinary type placed locise upon the shaft, which was turned around by the governor so that the angle of advance varicd, about irom $0^{\circ}$ to $90^{\circ}$ under the full movement of the governor. (Fig. 9.) In more modern forms, however, the object is to have the eceentric eentre describe a path, relatively to the shait, such as that shown in Fig. 1. . Here the large circle has a radius representing, on some scale, the half-travel of the valve or the throw of the eccentric, at the point of greatest cut-off, and the small circle has a radius representing, on the same scale, the outside lap; $b$ is the position of the eccentric centre which gives the proper lead when the valve has its greatest travel. The path which the eccentric eertre is required to describe under the action of the governor is rom $b$ to $a$ where $a$ is a point cither at or slightly inside oi the intersection of the lap circle with the centre line through the cenire of crank pin and centre of shaft. At the minimum travel of the valve there will then be no admission of stcam at all to the cylinder and the lead will diminish from be to 0 , or to a small negative lead at $a$, as the eccentric is moved in by the governor. The form taken by the line ba is

[^1]

Figs. 3 and 4.
in Figs. 3 and 4. To compass the two the circle is drawn which represents the path of the eccentric centre at $1 / 1 /$ cut-off. The lead at $1 /$ cut-off is in each case de; and it will be seen that the arrangement of Fig. 4 gives much more lead and also a greater maximum port openirg' at the early cut-offs than dees that of Fig. 3.


The desired movement of the eccentric plate is ordinarily obtained by connecting it to weights, pivoted in the governor frame so as to be movable in the plane of rotation, the movement of the weights being controlled by springs. When the rate of rotation of the shaft changes new forces act on the weights which produce the desired movement. The most im-


Fig. 6.-Rites' Governor as used by Fiscurr Foundry and Machine Co., Pittsburc.
portant of these is the change of the centrifugal force. This is, however, by no means the only force made use of. Forces due to the incrtia of the masses themselves are now largely used. Suppose we have a weight, as shown in Fig. 5, in the form of a long bar pivoted at $b$ to a frame rotating about $a$. Then in addition to its rotation as a whole about $a$, the weight will have a rotation at the same rate about $b$. If the rate of rutation about a change, that about $b$ will still tend to remain the same, and the weight will consequently turn on the pivot b. The couple producing this movement depends for its magnitude upon the moment of inertia of the weight about the axis through $b$. This couple may be called angular accelerating ccuple. The Rites' governor, which has been recently brought out and is now used by a large number of prominent American


Fig. 7.
engine builders, depends for its action principally upon this force. As seen in Fig. 6 the weight arm and eccentric plate are made in one piece, thus necessitating the arrangement of the pirot shown in Fig. 3. This governor gives very quick regulation, but from the very nature of its action a light fly-wheel must always be used with it. Its action depends not on the total change of rotation but on the rate of change or angular acceleration.

Let a weight in the form of a ball at the end of a lever arm be placed in some such position as that shown in Fig. 7. so that the tangent to its path at the centre of gravity falls some distance to one side of the pivot. Then, if the rotation about $a$ be accelerated. it is evident that on account of its in-

ertia the weight would resist the change of lincar velocity due to a change of angular velocity (and of radius of rotation if a movement about $b$ did occur), and a force would be produced tending to cause motion of the weight about b. But this is not the only force developed in this case, and Prof. J. G. Klein has demonstrated to the satisfaction of leading engineers, who have discussed this subject (see Trans. Am. Soc. M.E., 1897, discuesion on paper by F. FI. Ball, p. 3(t), that in such a case the resultant of all the forces developed always passes through the pivot: The force mentioned will therefore not be available for governing. The two promincrit forces made use of in shalt
governing will tien be centrifugal force and angular accelerating couple, and it is in the combination or opposition of these that the action of different governors varies.

In the case of weights rotating about a horizontal axis as is the case in shaft governors the effect of gravity must be taken into account. To show what this would be in the case of a single unbalanced weight take the following case: Suppose is wheel (Fig. 8), moving at a constant rate of rotation to


Fig. 9.-The buckeyf Engine Co.'s Isochronal Governor.
have a weight placed in it so as to be movàble, without friction, only along the radius $a c$, of which $a c_{1}, a c_{0}$, ctc., are successive positions as the wheel makes a revolution. Also suppose that a spring is attached to it and to the wheel which balances the centrifugal force in all positions. that is makes it isochronous. Then the only force which we need consider will be that of gravity. Starting from the position $b$, the weiglt will be pulled towards $a$ until it reaches $b_{2}$. At $b_{2}$ it will cease to be pulled towards $a$, but will then have a certain velocity inwards. From $b_{2}$ to $b_{2}$ this velocity will be destroyed by the retarding force of gravity pulling it away from a again. At $b_{1}$ it will have reached its nearest position to the centre a, and will start mov-


Fig. ro.-Governor and Valve Motion. Strajgitt-Line Engine Co.
ing out again. At $b_{A}$ it will have its greatest velocity outwards, which from $b_{4}$ to $b_{1}$ will be destroyed again by gravity until it reaches its-extreme outward position at $b_{1}$. By experiment and mathematical demonstration Prof. S. P. Robinson has shown (Trans. Am. Soc. M:E., 1890, pp. 1055-64, discussion on paper by J. E. Sweet), that the path of the weight under these cir-
comstances is very nearly a circle, whose centre is verticially abose ilse centre of rotation by a distance $\frac{g}{\varepsilon v^{2}}$ where $\mathrm{g}=$ .ucreration due to gravity and a $=$ angular velocity in radins It will be secn from the above that if a governor weiglt be tut badanced, one effect of gravity will be to make it move more or less on tis purot at every revolution, and thus move tite whole governor. The argument for balancing is that this makes the phas wear out and necessitates increased lubrication fwo methorls of balancing may be noticed The firit is that of


Fig. II.
diphlicating the weights and connecting them to opposite sides of the eceentric plate pivot as in the governor shown in Fig. 9. The second. shown in lig. 10. is to make the weight of the eccentric plate and comections balance that of the weight. The gorernor shown in Fig. 2 presents a peculiarity in balancing in the counterweight: 0 o. which are put in to balance the wight of the eccentric plate and strap, and in vertical engines of the valse and rods anos, and thas relieve the governor of these disturbing iminences.


Fiscs. 12. 13. AND 14.
The resistance of the valve is another element of disturbance in the shat: governor. It is principailly due to three causes, friction, mertia. and umbalanced stcam pressure. The friction in the best practuce is reduced to a minimum by the use of balanced valves, and by accurate scraping processes, thorongi lubrecation, cte. The inertia is reduced by making the vaive and connections as light as possible. The unbalanced steam pressure is not gencrally accounted for as it is not generally iccognized as a disturbing force. It is due to the unbalanced a:ea of the value rod which enters one side of the steam chest and does not usually pieree the other. Thus the pressure on
the ene side of the value will nut be perfectly balanced by that on the other, and there will be a constant force tending to puli the value towards the shaft, whiel will be equal to the area : the value rod steam pressure per square inch. In conjum tim with the others mentioned this force may canse constal erable trouble in a governor, as may be illastrated from the case of a 12 -inch tanden compound engine, which was found to have too light a governor. A pencil was attached to the governor weight and a board was held up against it white the engine was rumning. and thus the actual path of the weight was traced on the board. The true circle concentric with the


Fig. 16.-Robb-Akmstrong Governor,
shait, which the pencil would describe if the weight had been fised in the whel, was aiso described on the same diagran. It was thus found that the path of the governor weight was, as shown in Fig. 11, sensibly a circle whose centre was displaced horizomally from the centre of the shaft by about $3-16$ of an inch. This of course disturbed the adjustment of the valves, buth of which were attached to the governor in this case, and made it neecssary to put on a much larger and more powerfinl governor. Some makers point out the influence of the valves as tather an advantage, and seemingly for the same reason that the somewhat similar eflect of gravity is clamed by others to be a disadivantage. It is argued that the alternate pushand puil due to the incria and friction of the valve gear tends to, and doubtless does produce a small movement of the governor and that this overcomes the friction of rest at the joints four times in each revolution, thus making the governor more sensitive and fre to act. Governor weights. especially when in the form of


Fig. 17.-Roller Pis Bearing, Ridgway Dysamo \& Engine Co.
a ball and lever, are often made adjustable both as to mass and leverage. An adjustment for mass is shown in Fig. 12. where the governor ball is cast hollow, of malleable iron and weights of varying thickness put in until proper working is secured. diljustments for leverage are made by making the weight so that it can be moved along the lever arm and champed in any desired position as shown in Fig. 13. A consideration of some importance which is often lost sight of in designing governor weights is to so distribute the mass of the weight as to avoid as much as possible twisting couples on the weight pivot at right angles to plane oi rotation, as these catuse rapid and uncren wear. To illustrate what is meant Fig. it shows a possible
distribution of the mass of the weight shown in Fig. 12, which would eause it to have the bending or twisting couple about its pivot, reicrred to.

The springs used to control the movement of the weights ate of two kinds, coil springs and flat-leaved springs. Conl springs are almost always used in tenson. In using them stresses are developed due to the centrifugal force of their own mass, which at high speeds become of some importance and cause the spring to assume a slightly curved form. Means must be provided for adjusting their tension. Examples of these may be noticed in Figs. 6 and 13 . The ends of these springs are generally fastened with simple pins as shown in Fig. 6, but sometimes have kniie-edge bearings to do away with friction. There are two ways in which flat-leaved springs may be used. either to push the weights in as shown in Fig. 15 , the weight being on the same side of the centre as the spring, or to pull it in by a connecting strap, the weight and spring being on opposite sides of the centre as shown in Figs. 10 and 16 . in the arrangement of Fig. 15 the centrifugal force due to the mass of the spring itself will oppose its action, and if the spring be made stronger to resist thas opposing force its mass must be increased, and thus the opposing force will also increase and

## the electric power and liahting plant of the soulanges canal.

The Canadian Gencral Electric Co. is supplying the electric power and lighting plant for the Soulanges Camal upon speorfications oi which the following is an outime:

Generators.-There will be two generators of multi-phase type of 110 amperes at 2,400 volts, ( $26, \mathrm{k} . \mathrm{w}$.) when operated it a speed of 225 r.p.m., frequency 60 p.p.s. Fach generator to be direct connected, and when the generators have been operaterl at the above capacity for twelve consecutive hours, the temperature of the hottest part of the machine shall not be more than 45 C . above that of the surrounding atmosplere. The machines are to be so constructed that the insulation between the armature winding and frame of the machnes and also between phases, will withstand a break-down test of 6,500 volts for five consecutive minutes, such test being made with a transformer of not less than 4,000 watts capacity. The insulation between field winding and frame of machines shall withstand a break-down test for five consecutive minutes of an alternating voltage equal to five times the voltage to be used in exciting the generators. The armature and field winding insulation is


Fig. 15.--Goverinor for Single Valve. McIntosh, Seymour \& Co.
hence a much stronger sping is necessary with this arrangement than with that of Figs. 10 and 16 , where the centrifigal force of the spring itself assists its action. Arrangeinents for adjusting the tension of flat-jeaved springs are applied, either. at the fixed end of the spring. as shown in Figs.' io and-16. or at the moving end, as shown in Fig. 15. When the spring is connected to the weight by a metal strap an important and utciul adjustment of the spring's action may be made by the. use of a yuadrant, as shown in Fig. 16. As the weight gocs out the leverage of the spring in acting on the weiglit may be made to vary in any desirable way by adjusting the quadrant to different angles about its pivot, and by making the face in prefile of different curves. The curve usually adopted, howcver. is that of the are of a circle.

The joints and pivots are among the most important itens to be considered in the construction of a governor. If there be too much friction the governor is apt to stick at first when the load changes, and then to move suddenly and too far, thus catsing racing of the engine. The ordinary construction is to bore out the bearing, say 38 -inch larger than the pin, and to press or clamp in a bush, which can be replaced when it wears out. These busices are usually of hard babbitt metal or some similar alloy, or of brass, but graphite is often used. A more expensive constrution, which is coming into favor, is that of a reller pin bearing, as shown in Fig. 17. Governors have been designed with the weights pivoled on knife-edges, but the idea docs not aphear to have been prosecuted with much success. although knife-edges are used on the springs by some makers as has been mentioned. The shaft governor has now been brought to such pericction that the variation of speed with the best types between no load and full load or between maximuin and minimum boiler pressure, is a small fraction of 1 per cent. of the average speed. They are so simple in their action that they require almost no attention, and with proper design and workmanship are as durable as any part of the engine.
be capable of withstanding tine break-down tests specified, imnediately after generators shall have been operated at the toad runs abbove stipulated. The generators will have an inherent Yegulation of at least ten per cent. The generators are not to have so-called "compounding devices." Regulating appliances must be provided so that the E.M.F. of each or any phase may be varied ten per cent entirely independently and separately ire $m$ each other. When the gencrators are operated under full load they shall have a commer ial efficiency of at least ninetytwo per cent.; when operated at hali load, of eighty-nine per cent., and at quarter load of eighty-four per cent.

Exciters.-There are to be two exciters of modern desigu. with self-oiling bearings, and to be provided with a belt-tightering device. The armature to be of the iron-clad type, and the armature coils "machine wound." The capacity of the eiaciter to be such that it will deliver continually, without undue sfarking, exciting current to an extent equal to two times that required by one gencrator when it is operating at its maximum lead. The emperature of any part of cither exciter, after werking for welve hours at about stated output capacity, shall not exeecd $45^{\circ} \mathrm{C}$. above the surrounding air.

Switchboard Appliances.-The switchboard appliances will be mounted on marble slabs, supported on an oak or iron frame, and consist of the following instruments: 2 voltmeters. 2 main switches or set of switeles, 2 voltmeter transiormers. 2 exciter switches, 2 voltmeter switches, so arranged that the veltage can be determined of each phase, a ampere meter for each phase of each gencrator, 2 generator rheostats, 2 exciter rhcostats, 2 motor circuit switches and ampere meters, 2 arc light circuit switches and ampere meters, i static ground detector, a switch for ground detector, so that connections can also be made to cach phase, also the necessary bus bars, pilot lamps, cte. There shall also be supplied the necessary lightming suresters for the protection of the switchboard and generating
albatatus from lighting discharges from the outside line; each hahoung arrester to be chally elbowt as any at present made.
. Ill wirmg in comecturg the generator and excoter io -wth hboard and to late to be done with rubber-covered wirs and according to the rules and regulations of the Canadian Pire Underwriters Assoctation.

Vobor- - The following motors to be armished, erectud and mataled in motor housings. to be furnished by the conwator at each ome of the five loctis: Lock No. I, at the lower chtrance to the camal: lock Sin. 2, at about 1.900 feet from the lewer entrance of the eanal lock; No. 3 , at about $3 / 4$ of a mile from the lower cutrance of the camal: lock No. f. at about 3 miles from the lower entrance of the canal: lock No. 5. at the ubler entrance of the canal or alout $1+$ mile, from the lower entrance of the canal; guard gates at about $3^{1!}$ miles from the lower entrance of camal. Twenty (20) 1 h.p. motors, one to be connected to each oi the four sluce gates.an each lock, each motor to be prowded with the necesoiry mechanism. reducing pears. cte. to operate the shati- of the sluice gates: twemy-two (22) ; h.p. motors. one io be connected to each of the gates at wach lock, each motor to be povided with the necessary mechanism. reducing gears, cte.. Io drive the pinions operating gate bats; each of the above matury to be also supplied with the necessary releasing or brake armagement, so that in opening or closing the gates, the power may be released antomatically so as to prevent any undue strain on the machinery in connection with the gates. Seven (7) 2 h.p. motors. each to be placed and connected with suitable mechaniom ready for the nperation of each of the seven bridges. situated along the canal: each motor to be provided with us necessary switeh, starting bos, etc. One (1) 15 h.p. motor. complete. with the necessary starting box, switelh
ntes, between the primary and secondary coils, between prima-y and iron, and between secondary and iron. No part of the tansformers are to hate a rise in temperature when in use at full load during twelse hours consecuisels, of more than 45 C above the surrounciag atr.

Are Lampe-There shat be t94 alternanng emremt, (a) cyele, 12 hour open are lamps. liach are lamp will be of nommel 2,000 c.p., and consume not mure than 500 watts per lamb. There will also be . 320 incandescent lamps of 1 oc.p. each.

## CANADIAN ENUINES IN SPAIN.

In Octuber, 1897, contracts were given for the equipment of electric tramways in Barcelona and Madrad. the two most important citics in Spain. The work was completed a iew months ago and the lines are now in successful operation. Baicelona with a population of about 600,000 is the largest city in Spain, and is an important seaport and manufacturing centre. It is an ideal city in many respects but particularly from the standpoint of the owners of the electric railway, as it is well patronized on accomt of the climate being too warns for walking. Madrid is the capital of Spain, and is nearly as large as Barcelona. It is situated inland, and has many parks, broad streets and fine buildings. In the character of its popubation it resembles a western Amertan city, as not more than 40 per cent. of its residents are natives. Although these systems are owned by Eritisit capital and built by British conthactors, much of the apparatus was purchased on this side of the Atlantic. The main engites were manniactured ia the United States, and three smaller engines were supplied by the labb Finginecring Co.. Amherst, N.S. These engines, as


Rubb-armstrong Lingine at Mabrio.
shdung bar-. cte., to be installed at a workshop to be erected near the lower end oi the canal. At each oi the five locks and at the guard gates there shall be instalied in a building to be provided therefor, a switchboard to which will be provided the necessary switches and instruments for effectually and completely handling and controlling the operation of all the motors required at each lock. Where it becomes necessary for wires to cross the canal. such wires shall he lead covered, and shatl lie placed on the bed oi canal or locks at places to be deter minned by the Government engmeer, and shall be placed in such a manner that they cannot receive any injury

Transfobnfrs - The following transiormers are to be sumpijed and erected as follows 5 tramsformers, each suitable for four i $h p$ and four $; h p$ induction motor, one to be installed at each lock; 2 :ransformer suitable for two 7 h.p. induction motors, to be installed at guard gates. 7 transiormers. each suitable for one 2 hp . induction motor, one to be installed at racit bridge: 1 transformer. suitable fur one $\mathrm{s}_{5} \mathrm{~h} . \mathrm{p}$. induction mutor, and to be inctalled at the workshop, at the lower end of tire canal Fach transformer will withstand a break down test oi 6,000 volis of alternating currem, for five consecutive min
shewn in the accompanying illustrations, are tandem compeund, of the site crank type with dynamos direct connected. They were put in principally for lighting the extensive car sheds and driving the machinery in the workshops connected with the tramway systems, but are also used for running part of the cars late at night or early in the morning when the main engines are shut down. The ligh pressure cylumer of these engines is so inches in diameter. low pressure 10 unches in diameter, stroke 15 inches, and they are rated at 115 h.p. each. Both valies are controlled by the automatic governor in such a way as to divide the work equally between the two cylinders. The crank shaft, connecting rod and crank pin are of hammered open-hearth steel. The high pressure cylunder is placed next the frame, the low pressure w the rear so that the cylinder heads and pistous can be remosed without disturbing the a linders. The throttle comststs of a that valve rotated through oie-half revolution by a leser, and as the valve and seat are phetected from the steam whether open or shat they can ne:ther wear nor rust. The man bearmgs have a rung oiling device, the oil being continuousls conveyed from a cavity beneath the bearing to the top of the shati by metal rings which
dip in the oil. All bearings are large and the parts of the engines few and simple, and as strong as possible. making them well adapted to any service where continuous running and variable or severe work is required.

It is lighly creditable to the Robl, Engineering Co. that its engines were selected as part of these installations, which
gold will be found. The supply of water must be sun?: ient to cover the larges: voulder met with, and is supposed to carry anay 1-5 its own weight in gravel. Mercury is added several times daily at the sluice head. The stream of water, somennes under a head of 400 feet, is directed by a nozzle (monitor) of from 5 to 9 inches in diameter. When it is time for a cleall


Romb-Armstrong Engines at Barcelona.
are said to be the most important undertakings of the kinn completed in any part of the world during the year 188 §. The meducts of this firm have been favorably known throughont Canada for a number of years, and we have no doubt the foreign shipmems. which have been gute mamerous during the past year. will give as great satusfartion and lead to a large increase of business.

## MINING METHODS.

## I:diof Canalman Enginter :

Would you libully gre me some information through your valucd monthly in regard to placer mining. panning. sluicing, ete.
I. H.

North Bay, Ont.
[Placer mining is only practicable where free gold is deposited in beds of sand and gravel. The sand underlying the gravel of stecams is the most likely place, and the gold will be frand-owing to its great weight-where eddies or bends in the stream check the speed of the current. thus allowing the gold to settle. The most simple way of extracting gold from the sand is by panming. A shovel full of sand is placed in the pan. which is a steel dish, shaped very much like a frying pan, about 15 inches wide and 3 inches deep. with sloping sides. The loose. light mud is then washed out with water, and the large pebbles removed by hand. The samd is then subjected to washing. Which is done by giving the pan a circular motion, and adding water at the same time: in this way all the light sand is washed wer the edge. leating behind a heary residuc. mostly black in on ore and the gold. If the gold is in fairly large muggets it can be extracted by further panning. as it is so much heavier tlan the black sand. but if it is in a fine state it will liave to be ucated with mereury, this is done by mixing the sand thoroughly with mercury. and squecring in a buckskin bag, thus frecing the mercury from the alloy. The gold can then be exracted from the alloy by heat. Shill in panning can only be ubtained by considerable practice. In the case of a large deposit of auriferous gravel the best way to treat it-if circumstances allow-is by hydranlicing. thes is done by playing a stream of water. under considerable head, upon the gravel deposit, which will be carried by the water through a number of sluices, which are large. frame troughs lying on the ground and paved with wooden blocks or riffics, which are fit to catch the gold and amalgam. The sluses are slanted according to the nature of the gravel worked and the supply of water, and are made long enough so that a test of the balings being taken, no
uf)" the water is turned off, all the loose graved picked out and the gold and amalgam carefully collected. Under farozable circumstances gravel runuing as low as 2 to 3 cents per cabic yard: can be treated with profit by this method. The gold rocker is such a crude home-made affair that it is difficult to get cuts of it. but it may be found in some text-books on gold mining. for instance in "Gold (Metallurgy of)" by T. II. Rose. Roughly, it is a wooden bos. 3 fect long by ike feet wide, one side being knocked out. and resting on two rockers, one of which is lower than the other, thas giving the foor a slant fromt back to frome. About two feet above the floor is a removable ridide box. 3 feet long by 9 inches wide, with $1 /$ inch mesh sereen: below the riddle and forming an angle of about 30 deg. with it, and slanting toward the back of the rocker. is stretched a piece of blanket or cantas apron. the length of the rocker and about to inches wide. The gravel is placed in the middle to: with water. which washes it through into the apron; bere the fine gold is caught. and the dirt passes out from back to frent over the bottom where the heavy sand and coarse gold is caught by two or three riftes nailed across the bottom. Mercury is sometimes added. The object of the rocking motion is to prevent the sand from packing behind the rimpes. Sl:e capacity oi a rocker of this description-two men washing-is from 3 to 5 cubic yards per day: the amount of water used is : or 4 parts to 1 of gravel.-En. Cas. Enti.]

## dam building.

## I:ditor Canadian Engineer:

Your January number contains an article upor! dam com struction by Chas. Baillairge, which ojecns up discussion upun a subject which is of great importance at a time like the present. when so much capital is being invested in the development of water power plants in all parts of the country. Mr. Baillairge. auite rightly. in my opinion, advocates the use of concrete for such works. In approaching the question of ratio of thicknes to depth of water, however, it will be neecssary to take into account some other factors in the problem which Mr. Bailiairexe has not embraced in his statement of the matter. The length of the structure should be considered as well as the depth of the water. About 1 to of the length will figure out a good pro portion for dams of moderate length. provided this is not les, than 5 of the depth of water. This width being increased by footing courses so as to give a total width of effective base so resist overturning equal to .8 of the depth of water. The pro pertion of .5 however, should be maintained to the sop of the
datn. and the dam should not be tapered off at the top as is the cti-tomary practice By building the dam of a uniform thicknew. the structure is much better equipped for resisting the action ot moving loads, and it is my betiof that engineers will fail in the search for a satisfactory formula for the strengeth or preportioning of dams, until they recognize the presence of men ming loads upon such structures. It has long been known Ilat the stresses callsed by the moving loads were the mont destructi $e$ in the cases of bridges and buildings, and it will hate to come to the same point in regard to dams. The arched de:pan spoken of by Mr. Baillairge is of doubtful advantage. If it is properly equipped at the abutment ends for receiving thrust. it may possibly comerne to act as an arch, but if the same amonit of material were put into a straight dim, and the t:anwerse section so dewigned as to enable the structure to feris moving loads, it would be a muth better dam than the more slemer extended structure in the form of an arch would wer be

Yours truly.
J.io. S. Fifiminci.
, (too Bequet St. Piutshurg, P'a.. Mar. Ifth, ISgo.

## A STUDY OF EMERY WHEELS.

Emery whects that were thirty gears ago practically mah.m wh and forty gears ago not manufactured, are to-day an article understood by everyone who knows the uses of a grindstone. Emery is a mineral; the best quality, and that which is uncel almust exclusively being found in Turkey. The Camadian tracie is supplied by Unted States and Fonglish mills which crash and grade it, at the same time clearing it of impuritics. The manufacturmg of wheels is done by a variety of processes. man:y of which are adapted only for special varieties of grinding. The wheel that is most called for and which must be of good duality to prove a labor-saving and durable article is a general purpose wheel. What we mean by a general purpose wheel is one for coarse work, such as castings, steel, and all kinds of metal. The two varieties oi wheels which have heretofore principally been used for this purpose are what is known as the "Vitrified" and "Silicate." The "Vitrified" wheel is taken from the same process as a brick-maker would make brick. with various alteratione to make it muth harder and hold the

emery up to its work to give it cutting properties. This has proved itsclf to be a very good process. but being of a glatsy mature it is very liable to break, and thus has to be used with cantion. The high speed at which it has to run to prove a good cutting wheel also proves a detriment to its use. The " Silicate " may be said to be the first and last. being in use for a great number of years it is yet more used as a general purpese whed than that of any other process. The chief ingredicnt in the bond of this whed is silicate of soda, sometimes hown as "liquid glass." commonly called silicate. This can be used with safety, as a defective wheel can casily be detected, it is clained, by apping it sently with a hammer, if cracked or defective in any way it will give a dull sound. whereas a good whecl will ring sharp and clear.

Some two years ago a combination of the "Vitrified" and "Silicate" wheel was attemsted by the Preseott Emery Whed Co.. limited. and ther have now on the market a whed known as the " semi-vitrified" whecl. which contains the gond gualities of the two already referred to. together with its own act-
vallatges. It is said to be waterproof, can be used wet or dry, the bond 'seing of such a mature that it has cuttug quatites as well as the emery comained therein. It is perfectly safe as 18 can be tested, which, it is claimed, cannot be satd of the " Vitritied" wheel, and has admantages over the "Silicate" wheel inasmuch as the boud therein contains so cutting gualities which clog the faces of the particles of emery, cansing it to glaze and burn the work instead of cutting it. The semivitrified always has a cutting surface, which cuts very fast and cool. The manufacturers claim that this process is rapidly. taking the place of the wher two processes mentioned, as the re, ults wherever they are used show forth.

To procure the greatest amount of work from an emery wheel and ensure safety in ruming, only the best grinders should be used. The arbor should be of sufficient proportionto easily earry the wheel adjusted on it. The following table will give an idea of the correct size of arbor: Wheels 6 in. in diameter and less, $1 / 2 \mathrm{in}$ arbor, 7 to to in. inclusive, $3 / 4$ to 1 in.; 12 toitin.. $11 / 4 \mathrm{in}$.; 16 to 18 in ., 13 in in.; 20 to 24 in . $13 / 4$ to 2 in . In: mounting a whecl, it should slip on the arbor easily, never foree it on the arbor. Keep boxes of machine tight, so as arbor will not jump. Keep rests close up to wheel. The collatre should be one-third the size of the whecl. and made slightly concave to touch the whed only at their circumference; washers of paper or some other pliable nature should be used between the wheel and collar. All our wheels are supplied with circular labels which serse to protect the wheel in this capacity. The cutting surface of the wheel, to give good satisfaction, should be kept trac. This can be done with a dresser or diamond tool. All emery wheels should be run at a surface speed of 5.500 feet per minute. By roming at speed marked on the label of every wheel, this can be attained. Rumning faster than this speed will cause it to glaze. burn de work and a certain risk is moolved. By rumning too slow, it "uars the wheel unnecessarily and does no more work. The Aikenhead Hardware Co.. Toronto. carry a full line of whels oi the Prescott Emery Wheel Co.'s manuacture.
table of fmery wheel sifeds.
Rev. per Min.

for \begin{tabular}{c}
Rev. per Min. <br>
for

$\quad$

Rev. per Min. <br>
for
\end{tabular}

OUR FRIENDS SAY SO.
[Copy].
Depot Harbor, February 3rd, 1899.
Figgar, Samuel \& Co.. Fraser Building. Montreal. Que.
Dear Sirs.-Enclosed find \$I. my subscription to Canadian Engineer for the year 1802. I like your paper, it contains a lot of information which is valuable to know and 1 would miss it if it were stopped. Wishing you a greater amoun: of sucess this year than ever before. I remain, yours truly.
D. S. Lougir.

P'S-Please address my paper to 354 Elgin street. Ottawa. Ont.
[Copy].
The Riordan Paper Mills. T.td.
Merritton. February fth. 1809.
Piggar. Samuel \& Co . Fraser Building. Montreal, Que.
Dear Sirs.-I take pleasure in remitting you iby P.O. order
my. subseription for The Canadian Engineer for the ensuing yeas to December, 1809 . I consider thas dullar better spent that most. Your paper surpasses ally trade papers I have seen, III value of contents and ats attracture style. I ann glad it is "C"anadian." Yours sincerely,

Chas. C. Riordon, Jr.

## LITTLE GIANT AUXILIARY SCREW DRILL CHUCK.

In addition to the popular little Giant Improved, Latte: Giant Double Grip, and Oncida Drill Chucks, and Lathe Cluacks of all kinds, the Westeott Chuck Co. is now furnishing the Little Giant Auxiliary Screw Drill Chuck. as shown in illustration. In drill chucks with side serews it is claimed that the imer or gripping part of jaws has a tendency to crowd away from the right and left hand screw, and the outer end of

juws has a tendency to draw toward the right and left hand screw. The anxiliary serew (in this new Little Giant Auxiliary Screw Drill Chuck) entirely overcomes said tendencies. Afte: closing jaws on drill in the usual manner (by turning right and left hand serew), then tigiten the auxiliary screw. This will sreatly increase the gripping power of chuck. The effect of the auxiliary serew is similar to that of a bolt. as it virtually belts the two jaws together. The $1 / 2$-inch, $3 / 4$-inch and t -ineh sizes are made of pattern shown in the figures. The hole in the hub is made to fit the Morse taper, but can be bored out

and lireaded to sti, the customer's templet at small cost. These chacks are also made with straight bodies, which are especially adapted for Hollow Spindle lathes, for holding rods, round or square, which are to be turned or cut off. When a chuck is wanted for holding square work it should be so stated in order. The Aikenhead Hardware Co.. Adelaide strect, Toronto, reports a steady and increasing demand for the Westcott chucks.

## NEW CATALOGUES.

The following catalogucs have been received and are filed in our onice, where they may be consulted at any time:

The Unbreakable Pulley and Mill Gearing Co., I.td., West Gorton. Manchester.-A Treatise on the Economical Transmission of Power. Eighth edition. Cloth covers, 160 Dages.

Darling Bros., Reliance Works, Montreal, Que.-Illustrated catalogue of Darling Bros., Reliance enginecrs, machinists and manufacturers of special and patented machinery. Boards. 100 pages.

Prescott Emery Wheel Co., Ltd., Prescott, Ont.-Catalogue and Price List No. 16.-Paper, 40 pages, illustrated. At-
tention is called to some new features, as the " Semi-Vitrified," whet is more open in texture than the other whels, and which has an abrasive bond.

Gas and Gasoline Marne Engines and Lannches.-The John Gillics Estate Co., Carleton Place, Ont.

The Gartshore-Thompson Pipe and Foundry Co., Lid., Hamilton, Ont.-Catalogue of cast-iron pipe ( 3 inches to ( $\%$ mehes in diameter), for water, gas, culverts and sewers; also special castings, hydrants, valves, etc.

The Michigan College of Mines, Houghton, Mich., U.S.A. -The catalogue of the Miclugan College of Mines, with statements concerning the instutution and its courses of instruction ior 1808-1900.

The I.ehigh University. South Bethehem. Pat. U.S.A The Register of Lehigh University. South Bethlehem, Pa., L.S.A.

The Massachusetts Institute of Technology, Boston. Anneal Catalogue, 1808-1809; paper, 350 pages.

The Fairbanks Co., Montreal.-Illustrated Supply CataKegue; cloth, 250 pages; profusely illustrated, showing a fulf line of the varied mill supplies carried by this well-known company.

## rolling or ratimina in road building.

## l:ihfor Canaman Engineer:

Sir,-There is one thing as to which the profession is entirely in the dark, and where information is capable of being afforded by such an instutution as MeGill University, under Professor Bovey's able direction, and supplied as the institu tion is. avowedly, with all the necessary and the best and most suitable machinery for the purpose. I allude to comparative statistics of ramming and rolling for purposes of strect paving. W'lat amount of pressure is equisalem to a blow from a hammer or pounder of a given weight. lifted by the operator to and descending from a certain heigit. In a word what weight of a road roller exerted on a give:ı surface is equivalent to ramming the same in an ellicien! manner. Maybe an inkling of it might be obtained by estimating the force of impact used in driving a nail into a piece of soft or ordinary wood, and th- pressure in pounds to be exerted to drive another nail in the same time to the same depth.

This question of ramming vs. rolling a road-bed or oi rclling vs. ramming is most pertinent; and though of extreme inticacy, considering the rather indefinite breadth and area of the strip of surface on which the roller bears; still I am confident Mr. Bovey can make someting of it and give us at least. and as soon as possible, to begin with, in view of the approaching seascn for paving, some approximate mode of being satisfied, which 1 amp prone to belicere that almost no imaginable weight of road rollers ( 10 tons. 20 tons or more) can be nearly as effective as ramming.

Another question to which I would invite your attention is a statement of the depth to which an impacting of the surface, or a rolling of it, will reach. in an effective manner. (li course, we know that in trench filling, the ramming amounts is nothing if left to be performed oaly when the trencis is filled. and the filling should be rammed. in successive layers of six to cight inches it is supposed, and this is the practice followed out in embanking for reservoir dams; but still it is guess work more or less, and has not been calculated and reduced to a science as it should be, if possible. In trench filling. here in Quebec, by our gas company, when it cxavates for any purpose, a man goes and comes along the bottom oi the trenen as it is being filled in from above, and in such a way as, by allowing say one rammer to half a dozen fillers, to ram almost cvery successive shovelful of filling as it goes down. This, of course. is the right thing to do, or should be, but could hardly be expected, over extended areas.

A heavy (steam) road roller is most deceptive. It inspires the general public with full confidence in its efliciency; but we are not, in such matters, to be guided by mere sentiment. Very little is known of the comparative effect of rolling and ramming. I have just now before me paving specifications, best or most recent editions of them all, from Washington, New York, Boston. Baltimore. Philadelphia and Chicago, and they arc all at one in specifying " ramming or rolling with a 5 to to
low roller." as if the one were equivalent to the other. Now on the contrary. I do not know that even a so-ton roller, which it woukd be impractucal to use, would be an equivalent. I ann far from stothes this; having no data to go by, but suppose a 1 ammer be b-melies square or of an area of 36 inches, and stppose a ruller is steet long or broad, and 5 feet in dianeter and weighs 10 tons. then will there be but one ton weight or plessure on wery $\quad$ omelees lineal of the length or breadth of ruller. Suppose. now that the effective breadth of the strip of -urface pressed ou by the roller be 6 inches, and it hardly could be less. on an already rolled surface. or afte: a first or second rollage wihout a versed line of sukage into the surface to an adent to weden the cord of secton of area sunk into by the roller. I say that in such a case, only one-tenth of weight of roller would come upon this surface or area of $6-\mathrm{in}$. by $6-\mathrm{in}$. or 36 square inches, and a comparison is now to be instituted. in how far this weight of one ton on one-quarter of a square font is equivalent to a blow or succession of blows of a rammer of given ucight fallugg from it or brought down like a hammer with a man's muscular effort in addition to the effect of its own or maided weight or impact.
incbec. March 23 ral . 1809 .

## C. Bambatrge:

HARRIS VS. THE TORONTO ELECTRIC LIGHT CO.
The verdiet against the defendant in Harris ves. the Toronto Fiectric Light Co. marks the first step in a legal fight which will be watched with absorbing interest by everyone interested in electricity. either as producer or consumer. The number of double services such as is alleged to have caused the fire is very great, and all producers of electric current will fecl most insccure until the finding of the Court in this case has been reversed as no doubt it wili be when heard before a Court which will go fully into the technical points involved. The plaintiff's witnesces swore that they saw the wires fire the building. Such a iesult would only be produced by a short circuit of course. The defendants showed that the fire alarm sent in by telephone by Dr. A. A. Macdonald, who saw the fire in the interior of the huilding, was given at 2.35 and the short circuit was recorded at the defendant's works as occurring at 2.48 . The verdict was for \$10.00s damages.

The whole of the esidence in this interesting case will be reviewed in a later issue.

## ONTARIO RAILWAY ORANTS.

The following bunnse have been granted by the Ontario Government:

To the Ontario. Mulson Bay \& Western Railway, between Wiscinabic Station on the Canadian Pacific Railway and tidewater on the mowh of Moose River on James Bay. a distance not excecding two hundred and forty miles. a cash subsidy of $\$ 2.000$ a mils- $\$ 480.000$.

To the James Bay Railway, from a point at or near Sudbury to a point at or near Take Abittibi, a distance not exceeding one bundred and seventy-five miles. a cash subsidy of $\$ 2.000$ a mile- $\$ 350.000$.

To the Faliburton. Whitncy \& Mattawa Railway. between Haliburton and Whitnes, a distance not exceeding thirty miles. a cash subsidy of $\$ 3.000$ a mile $-\$ 90.000$.

To the Ontario \& Rainy River Railway. from its junction with the Port Arthur. Duluth \& Western Railway to Fort Frances, a distance not excecding two hundred and five miles. a cash subsidy of $\$ 1.000$ a mile. and from Fort Frances to the mouth of Rainy River, a distance not excecting seventy-five miles. a cash subsidy of $\$ 4,000$ a mice- $\$ 505.000$.

To the Central Ontario Railway from C:mshy or Coc Hill to a point at or near Bancroft. a distance not exceeding twentyone miles, a cash subsidy of $\$ 3,000$ a mile- $\$ 63,000$.

To the Central Counties Railway from Glen Robertson to Vankleck Hill, a distance not exceeding fourteen miles, a cash subsidy of $\$ 2,000$ a mile- $\$ 28,000$.

To the Ontario. Belmont \& Northern Railway. from the northern terminus thereof in the direction of the townships of Helmont and Lake. a distance not exceeding seven miles, at the rate of $\$ 3,200$ a milc- $\$ 22.400$.

Resolved, That there shall be set apart for the use of the Sault Ste. Maric \& Hudson Bay Raiway and the James Bay Railway out of the lands of the Crown through which they may pass, 5,000 acres to the mile of each of the sad ralways for the portions above mentioned, such areas to be selected in blocks oi 5,000 acres on each side of the line alternately by taking the necessary number, of lots as the townships are surveyed or outlined, or by taking the proportionate grant for each ten miles of railway (or 50,000 acres) in blocks on alternate stdes of the live. such blocks to have a frontage on the late of ten meles rach, or in such other way as may be agreed upon by the satd company and the lieutemant-Governor-in-Council.

## THE BICYCLE INDUSTKY.

During the last five years Canada has come to the front in a remarkable way in the bicycle industry. Iast year this journal gave several instances of large shipments of Canadian-made bicycles to foreigit countries and the British colonies, as well as to Great Britain itself. That Canadian manufacturers are doing their best to maintain their position in this branch of trade was made evident to a sepresentative of The Canadian Engincer, who in company with a number of other journalists paid a visit the other day to the bicycle factory of H. A. Lozier \& Co.. Toronto Junction, makers of the Cleveland whed. The extensions built to these works during


Sand Blasting Departagnt.
the past year have enabled this company to donble its outputwhel is now from 150 to 200 wheels per day. The various departments have an aggregate floor space of 137,000 square feet, and with the exception oi the wood rims and rubber goorls all parts of the Cleveland wheel are made in the firm's own works. In addition to its own steam plant the company has its own clertric lighting plant. and its own gas plant, supplying fuc! oil and gas for various departments. There are two oil ranks with a capacity of 5,000 gallons each. The works have their cwn water supply also, there being a roof tank of 10,000 gallons capacity, and an underground tank of 100,000 gallons capacity. The brazing of the bicycle frames is carried out chicfly by the "dip" process, ensuring uniiorm and rapid work. For removing the borax and encrustations the sand blast is used instead of the "pickle," commonly applied after brazing. The sand blast has the advantage not only of rapidly and completely cleaning the brazed parts, but the fine frosting which it gives to the entire frame enables the rust proof coating and subscquent enameling coats to adhere with greater tenacity. A view of the sand blast room is here given. It contains five sand tauks. to each of which is attached a pipe ending in a funnel which discharges the sand in a thin stream on the principle of a sand hour-glass. An air compressor supplies the air blast to each operator through a flexible tube which ends in a nozzle. manipulated by the orarator as the nozzle of a fire liose would be The operator's cyes are protected from the rebounding particles of sand by a canvas screen in which a pane of glass
is filted to cnable him to sce his work. Armholes are cut in thi canvas so that he can hold the frame with one liand, and direct the stream of sand by means of the hose in the other land. The blast of air is brought in under a pressure of 15 lbs., this being sufficient to drive the fine grains of hard sand with such force as to impart a fine frosting on the smooth tubing almost instantly. This is a hard silicious sand, impurted fom St. Louis, the Missuuri sand being the best yet discovered for the purpose. Previous to being enameled the frames are grimed with a special rust proof composition. The enameling room has four double " dips," each tank holding 120 gallons of
grinder, 1 cutter grinder, 6 drill presses and many other machines; while the milling, drilling and punch press room contain 24 plain and universal machines, 15 drill presses, 10 j,unch presses and other special machines. The lathe department contains 21 screw machines, 10 lathes, 3 grinders and other machines. The air compressor used is from the wellknown works of the Canadian Rand Drill Co., Sherbrooke. The company employs at Toronto Junction 350 to 500 hands, but the hands in the United States and Canadian works aggregate over 2,000, with a total production of 500 wheels per day. The works are under the able management of E. R. Thomas.


Drop Forging Department.
the enamel, and there are 10 furnaces, heated by fuel oil to a temperature of about 340 degrees for the baking of the enamel. which is put on in four coats. The bliee dipping room for putting on the blue dip, which is the distinguishing feature of the Cleveland spokes, has a capacity for dipping spokes in leats of 5,000 at a time. A great amount of special machinery is used for the rapid production of the various parts of wheels. such as the pedals, cranks, hubs, chains, gear wheels, etc., and each part as it is completed is tested by automatic machinery, except the pedal cranks, which are tested by hand. F ir instance, a chain when finished is put into a device (shown in the engraving), ly which it is subjected to a strain of $1,000 \mathrm{lbs}$. by means of a weight. Having been thus tested for strength the chain is put on a pair of sprocket wheels revolving at such a rate as would be equal to a run of 200 miles in a few mirutes.


Sprocket Testing.
and thus every link is put in the most thorough running order. So with the pedals, which after being put together are placed in the testing machine, here illustrated, and spun in $\dot{a}$ bath of oil at the rate of 3,000 revolutions per minute to prevent any porsible unevenness. The machine tool room.is very completely equipped. It contains a planer, 5 shapers, 2 milling machines. is lathes, i speed lathe, $j 0$ vises, $I$ die sinker, I universal


Chain Testing Machise.
Signor Cuigliemo Marconi, the inventor, who recently; after long delay, obtained permission from the French Government to establish a station on the French coast for the purpose of experimenting with wireless telegraphy between England and France, announces that he has conducted successful


Crank Testing.
experiments between the South Foreland, county of Kent, and Boulogne-sur-Mer, 32 miles. The Times, March 29th, printed a hundred-word despatch, the first press message by the Marconi system of wircless telegraphy, describing the experiments b:tween the South Foreland-and Boulogne-sur-Mer. The experiments were carried out in the Morse code, and were read as distinctly as if wires were used.

## Industrial $\sqrt{\text { otes. }}$

Toronto is advertisitg for tenders for a gas plant for Toromto Island.

The Niagara Falls l'laning Mill Co., Ltd.; capital, \$3.500. has been incorporated.

The town of Windsor, N.S., has voted \$2,000 for a site for a public building; $\$ 5,000$ for the building and $\$ 5,000$ for a steam fire cugine.

The Dodge Mnfg. Co., Lud., Toronto. is working a large stafi of employes full time, turning out pulleys and rope drics, cte.

Vancouver, B.C., las ordered a No. 5 Champion rock crusher with elevator and screen from the Good Roads Machircry Co., Hamilton, Out.

Shurley \& Dietrich, Galt, Ont., have, it is said, decided to meve their iron bedstead factors, now at St. Catharites, to Galt shortly. A new bunlding will be erected.

The R. Simpson Co.. Ltd., department store. Toronto, has bought the corner of Richmond and Yonge streets, and will buld a large extenston to the store at once.

Listewel, Ont., is organizing a co-operative pork packing establishmem, whose proposed capital is $\$ 37.500$, and also a furmture iactory to be heavily bonused by the town.

Tenders are called for the coustruction of a system of watcrworks for the viliage of Hintonburgh, Ont., as will be seen by reference to the advertisement in another column.

The Middleton, N.S., Outlook reports that the people of licrwick, N.S., are considering the advisability of starting a cannery in connection whth the creamery already established there.

The McClosky Vire Fence Co.. Lid., Vindsor, Ont., has becn incorporated with a capital of $\$\{0,000$. The provisional dircetors are: W. McClosky. J. R. Dixon, J. A. Auld, S. A. King. M.D., and J. Kay.
J. O. C. Mignault, C.E., has entered an action claiming $5: .000$ danages from the corporation of Roberval, Quc., on account of a protest served upon him in connection with sertain work which lie did for the municipality.
W. II. Comstock, J. McL. Gill, G. I. Mallory, E. W. Mica. O. K. Fraser, Brockville. Ont., and J. Cummins. Lyn. Uilt.. have been incorporated as the Brockville Peat and Power Company: Led.; chief place of hasiness. Brockville, Ont.; capi2:2. $\$ 90,000$.
H. P. Dwight. W. D. Mathews, R. Jaffray, E. B. Osier, G A. Con. Fred. Nicholls and J. K. Kerr. Toronto, are the directors of the Motor Carriage Co.. of Ontario. Lid., which has beca organized to make. and sell. and lei for hire motor carriages and other vehicles: chici place of business. Toronto: cajital. $\$ 250.000$.

The Montreal Pipe Foundry Company, together with C. A. Mrissuer, have leased the works of the old Londunderry Iron Company: situated in Coiclicster comity. N.S. The new comfany will. lihe the old, manufarture cast-iron water pipe and whis cast iron fittings. Mr. Meissner was the general manager of the old concern.

The B. Greening Wire Co.. Hamilton. Ont. has juct cirsed a contrac: for the ercetion of a new wire cleaning brusc. which will cuable it to greatly increase the output of the wire drawing mill. During the bulding of thes addition there will be added thirty feet to the smoke-stack, it being the intention to increase the power by the addition of $100 \mathrm{~h} . \mathrm{p}$., cilice clectric or steam, as may be decided.

The reports of the British Fire Prevention Commuttec contime to be of great interest. No. 14, just received. contains the statement of a test made by the commitec upon a floor built ly the Expanded Metal Co.. Lid.. London. In thes test a scom lined with expanded metal lathing and floored with cencrete laid upon expanded metal. withstood a temperature of 2,000 deg. for an hour, and only showed shagheracking when witer was thrown from a hose at 20 lbs. pressure for three minutes.
E. H. Bronson, F. P. B-onson, W. G. Bronson, Levi Crannell, Ottawa; T. L. Willson, Woodstock, Ont.; J. Sutherland, M.P., Woodstock, and J. J. Gormully, Ottawa, are applying for incorporation as the Ottawa Carbide Company, Ltd., to mamufacture calcium carbide at Ottawa, with a capital of $\$ 200,000$. It is said that the large sawmill premises of Bronson \& Weston with its valuable water power will be used for the purposes of the company.
R. M. Thompson, New York; J. J. Thompson, Bayonne.N.J.; J. R. Wilson. Montreal; C .C. Colby. Stanstead, Que., and R. G. Leckic, Esq.. Truro, N.S., are applying for a Dominion charter as the Canada Mining and Metallurgical Company, I.td., to carry on exploring for mining, smelting, treating. mamufacturing: extracting, reducing and selling gold, silver. cepper, lead. iron. tin and other ores, metals and mineral substances. Chief place of business. Montreal; capital, $\$ 5,000,000$.

The Fairbanks Co. has placed a large stock of its scales with Miller. Morse \& Co.. of Winnipeg. who will handle Fairbasiks' standard seales. gasolene engines, and some of the other specialties of the Fairbanks Co: for Manitoba and the Northwest Territories. They will constantly carry in stock a full aseartment of goods most commonly called for, and all enauiries for these producte for this territory should be sent in them. The Fairbanks Co. is extendine its business rapidly and while covering new territory accounts for some of the inelrace the satisfaction exnerienced by former clients is a much preater source of thic firm's develonment.

The Dominion Imon \& Stecl, Company lass been granted by the Nova Scotia Lecislature a partial exemotion from payment of rofalty on coial used in the operations of the company, which has iust been incorporafed with a capital of $\$ 20.000,005$. H. M. Whitney. Boston. who is head of the new eompany, as well as the: Dominion Coal Comnany, askęl for entire excmption from Riyment of the provincial royaltv for a period of five years on the coal used bv the Iron \& Steel Combany, and the Government granted hall the exemption for cisht years. The Dominion Conal Company mavs a rovalty of twelve and a laalf cents a ton. The Dominion Iron \& Steel Company will use enormone mantitics of conl.

## $\Omega_{\text {lectric Tlashes. }}$

A. and G. Corneil are establishing an clectric liglt plant at Stanbridge East, Que.

Quyon. Que. is to lave electric light and a large grain clesator in the near future.

The Richelieu \& Ontario Navigation Co. is placing a lighting plant in its hotel at Tadousac.

The Welland-Vale Co.. St. Catharines, has recently installed a lighting plant in its bicycle factory.

The electors of Winnipeg will vote this month on a by-law providing for a municipal electric light plant.

The Canadian General Eicetric Co., Ltd., is installing in Soo light alternating dynamo for Jas. Knox, of Stayner, Ont.

The Montreal Novelty Co. las placed an order with the Casadian General Electric Co. for a $6 \mathrm{k} . w$. Edison generato:

The Radial Railway repair shops at Hamilton Beach were destroyed by fire, March 13th: damages. \$4.jom; fully insured.

The Untversity of New Bramswick has purchased an experimental electric plant from the Canadian General Electric Cc. Ltd.

Jos. Knot. Stayner. Ont.. proposes to develop nower on the Nottarasaga river for lighting and industrial purposes gencrally:

A project is on font to build an electric milroad between Trenton and Westville. Pictort county: via New Glasgow and Stcllarton.

The penple of Cornvall Ont, are making strong repreerniations in the fovernment to secure an effective head of water for power development in the improvements being mare in the Farran's Point canal.

The award in the Brantiord, Ont., Electric Co. and Robson Bros. arbitration has been handed down and gives Robson Brus. $\$ 4,195$.

The Penman Mnfg. Co., of Paris, Ont., is adding an $8^{2 / 2}$ k.w. generator of the Canadian General Electric Co.'s make to their present plant.

Cunliffe \& Ablett, Vancouver, B.C., have bought from the Canadian General Electric Co., Lid., two 50 h.p. three-phase induction motors.

The Hull and Aylmer, Que.. Electric Railway Company has decided to equip its cars with new gearing so that they will run at forty miles an hour.

The Guelph Strect Railway Co. has placed an order with the Canadian General Electric Co.. Ltd., for a multipolar railway generator of $110 \mathrm{k} . \mathrm{w}$. capacity.

The Montreal Strect Railway Co. Bas placed an order with the Canadian General Electric Co., Ltd., for ten more two motor G.E. 1,003 motor equipments.

The street railway line is to be extended to English Bay beach. the Vancouver city council having granted the necessary franchises renewable ciery five years.

The Department of Railways and Canals has placed an order with the Canadian General Electric Co., Ltd.. for additional plant to be used on the canal at Sault Ste. Marie. Ont.

The Kootenay Standard Publishing Company. Rossland. B.C. is placing in its prirting house one of the Royal Electric Company's "S.K.C." induction motors to operate the printing presses.
F. II. Daigneault. M.D.. J. E. Marcile. L S. Plamondon. E. St. Amour and E. Tetreault. Acton. Quc.. have been incornorited as the Acton Hydratic Power Co., with a capital of $\$ 15.000$ : headquarters at Acton.

The Kentville. N.S.. Electric Light and Power Co. is installing. as an increase to the present plant. two multinolar gerecrators of $45 \mathrm{k} . \mathrm{w}$. cach. which will be supplied by the Canadian General Electric Co.. Ltd.

The I,indsay Light. Heat $\mathbb{R}$ Power Co. has placed an order with the Canadian General Electric Co., Ltd.. for one multinolar gencrator of $25 \mathrm{k} . w$. canacity. which is intended as an addition to the present power nlant.

It is stated that the various electric commanies doing business in Montreal in lightins. power distribution and passencer transportation. will be amaleamated with a probable capital of ten or fifteen million dollars.

The Richelicu \& Ontario Navigntion Company are installing complete lighting outfite on two of ite boats. consisting of Canadian General Electric Company's multipolar sencrators of $30 \mathrm{k} . \mathrm{w}$. canarity directly connected to high sneed engines.

The Canadian Brotherhnod of Electrical Workers clected the following officers for the year at a recent mectiner in Toronto: President. T. Eaton: vice-president. S. P. Kent: resnoding secretar:. .]. C. I.onc: financial secretary. F. Marson: trcasurer. F. Hawkey.
W. A. Johnson. J. W. Thompson. J. N. Smith. G. E. Scholey. Eric Thomoson. C. J. Holman and A. B. Lce. Toronto. have been incorporated as the United Electric Co.. I.tal. in earry on the business of the W. A. Tolsnson Electric Co.. and the Toronto Electric Mfotor Co.. Ltd.
A. S. Bowen. Kemptville Ont., has purchased the liehting niant recently noerated by Mr. Collins of that town. and is installing a standard romo light alternator of the Canadian General Electric Co.'s make. tocether with a complete new iransformer and are lighting system.

The T. Eaton Co.. Itd.. Toronto. has siven the Canadian General Electric Co.. Lid.. a contract to supply anothe: Ign $k$ w. 110 volt direct connected generator. as an addition to its already extensive plant. This company will now have probably the largest and most modern isolated plant in Canada.

The Montreal Cotton Co.. Valleyfield. Que. is constantly increasing its large electric transmission plant. of which the three-phase induction motor is found so satisfactory for cotton mill operation. There have recently been ordered from the Canadizn General Eicctric Co.. Ltd., three motors of 75.50 and 10 h.p., respectively.

Local capitalists propose to subscribe the funds for the talked of Guelph-Hespeler electric railway.

An electric light plant has been added to the Standard Cliemical Co.'s equipment, Descronto, Ont.

The proposed Galt, Preston and Hespeler Railway would enter Galt via Doon and Blair and connect with the C.P.R.

The Montreal Cotton Co., of Valleyfield, Que., has ordered ancther 100 h.p. induction motor from the Canadian General Electric Co.

The Dominion Coal Co. proposes doing away with the herses used in the mine for hauling purposes, and will use electricity entirely.

The London Electric Light Company, Ltd., has secured an arendment to its clarter increasing its total capital stock from $\$ 250,000$ to $\$ 500,000$.

The Canadian General Electric Co. has received an order frem Stunden \& Perrine, of Rossland. B.C., for a standard induction three-phase motor.

The Montreal Island Belt Line Co. is applying for increased powers in building branch lines. and to buy the Chateauguay and Northern Railway Co.

Jno. Forman. Montreal, has sold his proparty. 553 acres. at Shawinigan Falls, to the Shawinigan Water \& Power Co.. and the development will now proceed.

The Brantford Strect Railway Co., Brantiord, Ont., is installing six Canadian Gencral Eleetric " 850 " railway motors, purchased fion the Camadian General Electric Co.

The Canadian Pacific Railway Co. has placed an orde: with the Canadian General Electric Co. for one $75 \mathrm{k} . \mathrm{w}$. three-phase synchronous motor for the Trail smelter, Trail, B.C.

The Winnipeg Electric Street Railway Co. has placed an order with the Canadian General Electric Co. for two adititicual Canadian General Electric " 1,000 " 2-motor equipments.

The National Electric Co., $15 \$ 612$ Notre Dame strect. Mentreal, is the style of a new firm commencing business as clectrical contractors, and making a specialty of installation for electric lighting.

The linemen of the construction department of the Hamitton Electric Light and Power Company recently struck for an increase from $\$ 8.50$ to $\$ 10.50$ per week for experienced hands. The demands of the men were granted.

A verdict for $\$ 4,000$ damages was given against the Toronto Railway Co. recently for damages sustained by a Mrs. Darling, who iell and broke her leg. owing to the street car beginning to move while she was getting off.

The Canadian General Electric Co. is supplying the Hospital St. Jean de Dicu of Longue Point, Que.. with a mots: equipment of the standard Canadian General Electric 1.200motors, including controllers. rheostats, etc.

The Electrical Maintenance and Construction Co. of Toronto, Lid., has been formed by P. H. Patriarche, P .D. Ball. H. L. Dunn. W. M. Boultbee and others, of Toronto; capital, $\$ 20,000$ : chief place of business, Toronto.

The Dominion Oilcloth Co., of Montreal, has placed an order with the Royal Electric Co. for the complete equipment of its factory with "S.K.C." motors. The different units as required throughout the building in the different departments. asgregate over $150 \mathrm{~h} . \mathrm{p}$.

Hamilton, Ont., is understood to be the home of a large electrical combine similar to that alleged to exist in Montreal. The plan includes all the electrical plants in Hamilton. light, priwer and trolley, and is said to have designs on the Cataract Power Co., and the electric lines at Niagara Falls.

The Esquimalt \& Nanaimo Railway Co., which is openins up its coal mines at Oyster Harbor, B.C., has decided to operate the entire mining and hauling apparatus by electricity, and for this purpose has placed their order for two direct connected units of 150 h.p. cach, with Ideal engines, and two $40 \mathrm{~h} . \mathrm{p}$. mining locomotives with switchboards. and all the necessary supplics for the complete installation, with the Royal Electric Co. of Montreal. This is the second order that the Royal Electric Co. has received for mining locomotives and apparatus on Vancruver Island.

Joliette, Que., is extending its are system, and has placell an order with the Royal Elecric Company for a 50 -light 2.000 cp. T 11 Royal are machine, with a full equipmem of lampThis is :m aldition to a recent purchase of an $120 \mathrm{k} . \mathrm{N}_{\mathrm{s}}$ "SKC." generator with transformer, etc., which was pat in operation recently.

The Cunsumers' Corilage Co.. of Montreal. is fittug out its factories with electric power and has phaced its order with the Royal Electric Co. iur two soli.p. "S.K.C." syachronors motens. The currem for ti:ese motors is to be furninhed by the Chambly Mufg Co. as soon as it has their currem in the city. which is expected about the first of May.

The Montreal Street Ralway Company is bulding a humdred bew open cars for tis summer service. One mprovement is a safety board of wooden sheeting on the stide of the cat anatest the uther tracks, instead of the wire sereen, as formerly: the cotton coler intended to keep out rain is replaced by waterp:oof blinds. which fit tightly into frames.

1 company to be krown as the Nova Scotia Flectric Light Co. is being organized to furnish electric light, heat and power to all poims in the valley from Windsor to Annapolis, with branclies to Canuing. Kingsport. Granville Ferry and other outlying centres. The smurce of power will be the Gasperean river. where there will be an effectuse head of water of 375 fect with a minimum flow of 8.000 cubic fect. F. B. Wade, Q.C.. and C. E. Foss. are the organizers of the company.

The bill respecting the Hamilton. Chedoke and Ancaste: Street Railway Company was passed by the Railway Committee of the Ontario l.egislature with one amendment. which provides that the road may be run by electricity or compressed air but not by steam. The capital stock is raised from $\$ 100.000$ to $\$ 300.000$. and the line will in future be known as the Hamilton. Arcaster and Brantiord Railway. An agreement may be made with the Brantinrd Strect Railway for the use of its tracks.

The Riordon Paper Mills Co.. Hawkshurv. Ont., is lightins its plant tirnughout by electricity. In arder has been placed with the Royal Eleceric Company. Montreal. for a $25 \mathrm{k} . \mathrm{w}$. "SKC" twn-phase generator, wound to deliver no volts. There will be zon incandescent lamps installed from this thenughout the mills. as well as ten alternating enciosed are lan pe This is the fith large mill or factory which has withis the past year installed alternating current apparatus of the "S.K.C." two-jhase type.

John Ross Robertson, oi The Telegram. in laging out his new buildings at the coracr of Bay and Sielinda strects. Toromo. is arranging ior a most complete electrical installation. Alt the printing machinsey. shaising. hosts and elesators are to be nperated by clectricity a- well as the lighting of the building threwghout. The Goldic. MeCulloch Co.. of Galt. Ont., are intinching the stean engines and boilers: the Spragne Flestric Co. are furnishing the hoists and elevators. ard the Canadian General Filectric Co. is supplying the generaters and slow speed motors for lighting and powes A more detailed aceoum of this ideal installation will be given in : later issue.

The regular anmal convention oi the Maritime Electrical Asweiation will be held in Halifax. April isth. The convention headpuarters will be at the New Victoria Hotel, and the metings will be held in the ascembly room The programme will be as inllows- 0.30 a m.. mecting of the Executive Ciommituce: morning sescion, to a m. president's address. report of secretary.treasurer. report oi committess, election of officers. zereral linciness liferumon <evsion. 2 pm . papers will be read he: members on Iron Armonect Condait Wiring. Fire Alarm Systems. Steam Ensinecring. Telephone Work and Electrir Meters Questions which have been sugsested by the members will alen be diesusced In he evening a recestion. ennsisting of bannuct and smoking concert. will be eendered by the Halifas members of the association The president. F. A. Bowman. etates that no effort is beine spared to make this convention o sursess from every point of wiew: and all members attendio: will not only reccive onne rerv practionl information irom the papers to be read and the diecussinne which will inllow hus will also find the orcacion a minct enioyable one socially.

At the amual meeting of the Canadian General Electric Company all the old derectors who are chgible were re-elected. The folluwng comprise the board for the present year: W. R. Bacek, president; II. P. Dwight, first viec-president; Frederis Nichulls, second viec-prestemt and managing director: Hon Geo. A. Cox, W. D. Mathews, Robert Jaffray, E. B. Osler, J. K. Kerr, S. D. Greene, E. W. Rice, Jun., and II. Parsons.

The Folger-Hammond Mines Co. has given a contract to the Canadan General Ekectric Co., Letd., which covers the installation of a complete transmission plant to operate their stamp mills and compressors from a water fall some three miles distan: fro:n the line. The generating plant will consist of a three phase generator of $150 \mathrm{k} . \mathrm{w}$. capacity. operating at 2.000 write For operating the machincry there will be supplacd one 100 hp three phase induction motor and one $20 \%$..
F. Richardson, assistant electrician of the C.P.R., accompanicd by M. Grimes. Ottawa, and a staff of assistants. lefs early last month for the Pacific coast under instructions from the Minister of Public Works, to construct a telegraph line from Skaguay to Dawson. The estimated cost of the line for: the distance of 600 miles between the two points named is $\$ 150.000$. It is expected that the line will be in operation by the 15th of November. Whether the sea link will sublsequently be connected by a cabie between Vancouver and Skaguay, or whether the Government line from Quesnelle. in the Caribno eceutry, will be extended northward to connect with the Skaguay-Dawson line, has not been made known.

The specifications on which the Central Construction Company was awarded the contract ior the power plant at Orillia. Ont., provide for a solid masonry dam haid in cemen. There are two steel thumes. with an opering in the dam for a third. The power house. which is to be fire-proof. will be 62x.36. The company also undertakes to cut down all trees along the routc. to furnish two motors for the present plant. one for the pamps and one for lighting plant. The Westunghouse Company is supplying the electrical machinery: the Stillwell-Bierce and Smith-\aille Company the wheels. The Central Construction Cempany gives a boad of $\$ 12.000$ from the National Securty Company. good for sixteen months (which will carry the town over the freshets of the spring of so00), that the dam, cte., is of sufficient strength, and one of $\$ 5.00$ for four years.

Jualge MeDougall. in a judgment deluered March 2;th. unheld the conviction of the Toronto Ralway Company for a beach oi the city by-law which provides that every railway oporating within the limats of the city shall. daring the monahs oi January. February. March. November and December, provide each car with a proper and sufficien vestibule to protect the motorman and others in charge oi the car. His Honor held that the meaning and interpretation of the by law is plain. and the conviction should be affirmed. and the appeal dismissed with costs. He found that the evidence showed that the conductor and monorman were in charge of the car within the oriabary meaning of the expression llic Honor auded: ". Is to the argument that the rear-end vestbule would interfere with the proper working oi the ear. it should be addressed to the city council." His Honor aloo iound that the obiectinn raised as in the alleged applieation oi the Dominion Railway Aat. owing to the fact that the Street Railway Company's tracks creced the track: ni the GIT.R. and C.PR., was not suttained.

## Personal.

William Clare has bern appumted to the charge oi the East Eind sewaze dispocal works. Hamilon. Ont

Horace Mabere a graduate of the Kingston Sehool oi Mises. has been appoimed chemist of the Desernuto Irnn Co.

Samuel Hall. one of the oldest employese of the G.T.R. Relleville. died iast monti. He was 25 years an engincer, and for twenty years had charge of the nump house in Belleville

Those Polter, in charge of the electric lighting plant. Watkerton. Ont , reccived a shock at $\mathbf{8 . 0 0 0}$ volte last momh. omis was severely wioured though net killed. He was sitting reatsine a newspaner. and leaned back in his chair till his licad cam: in contact with a wire.

Geo. A. Calvert, who represents the Farbanks Co., Munt real, Farbanks' standard scales, asbestos dise valves, etr., cilled upon us recently while in Toronto.
C. J. Peppm, mght watchman in the Pardament Bualdugs, 'loronto, has been appomted engineer at the Deaf ard Dum', Institute, Belleville, Ont. The positiun carries with it a salary of $\$ 000$ and house rent tree.

Near Millwoud station on the Manitoba and Northwestern railway the enginecr, W. Hill, and the fireman, P. Donlon, nere instantly killed, March Gth, by the explosion of the locomotive boiler, while working up a steep grade

Juseph Chartier, thirts years of age, a wire drawer in the Dcmmmun Wire Worhs, Lachine, Que., while at work became entangled in a mass of wire, which drew him intu a cuttug machme, with the result that lus left fuut was almost cum pletely severed.

The death took place an St. Thomas recently of Wilham Chambers, ex-locomotive ioreman of the Grand Trunk shops. Mr. Chambers was born in England in 182 S , and on comng to Cinada cntered the employ of the G.T.R in 185t, and only left its employ in 188.

Joseph R. Koy, C.E., resident engineer-m-chief ior tixe Deminion Government in Bratish Columbia, who has been for some weeks in Montreal recuperatung from a severe ilness, la, gone in charge of a party sent by the Dommon Government to Dawson City, in the Yukon, to make some surveys and cary out needed public works.

The seafiold erected inside of a large sawdust burner ior the purpose of repairs at the mills of W. C. Edwards \& Company, Kockland, Ont., gave way just as the men were entering at $10^{\circ}$ clock, March zoth, and comang down upon the five whis entered, killed iour oi them. The dead are: Louis Rochon. Henry Dalrymple, Eugcue Deschamp, Archue Stewart. Savier Fisypier was four hours under the debris and was finally got cut scriously hurt.

At a mectung of the Can. Assoc. Stary Engmeers, Montreal No. 1, held shortly atter the death oi Capt. Jas Wright, an honorary member of the association, many expressions of regret Were made by the members at the loss oi an earnest and iauthful friend. A motion of condolence and sympathy was unantously passed, and the meeting adjourned ammedately out of tespect to has memory. Capt. Wright was one oi the oldest and most reltable mechancal engucers in the country; was ior many yeans supermending engincer oi the dredging plant of the Montreal Harbor Cummissioners.

It is announced that the Joule scholarshup for phystcal research has been awarded by the council of the Royal Society, London, to Howard T. Barnes, M.Sc., demonstrator in the Ihysics department, McGill Uumersity, Montreal, and whose trammg has been recened at MeGill. The annual value of the scholarship is a hundred pounds, and it is generally awarded tor two years. Mr. Barnes will continice the researelies into the specafic heat of water on which he has been for some time crigaged.

The death took place recently at Albany. N.Y., of Arthur S. C. Wurtele, C.E. The deceased, who was 69 years of age, was the second son oi the late Jonathan Wurtele, seigneur of Kiver David, and was bern at Quebec. He studied civil enginecring with Walter Shanly, C.E., and aiterwards reccived an appointment as one of the resident engineers of the New York Central Railway. He was next appointed deputy state engineer of the State of New York. He retired a few years aso, having gained an excellent and widespread reputation as an enginecr.
F. H. Badge:, only son of Mir. Badger, Montreal, city electrician, died a short time ago at his iather's residence, Montreal. Deceascd. who was 36 years of age, was an expert electrician and for many years in the service of the Royal Electric Company, having charge of the outside worte and installing tice company's present wire system. Some four years ago be went to Quebec to take charge oi the Montmorency and Quebec Electric Light system. On the amalgamation of that systent with the Quebec Strect Railway Company, last year, he went to New York, where he has since been engaged. He was ofiered his choice of swo good positions, one in Washington,
D.C., the other $n$ St. Paul, Minn. Before decidang wheh to accept he determmed to visit botn places. Atter domg so he decided to accept the post in Washagton, but was suddenly taken all. When he was at Washngton the weather was mad, and he wore light clothing. When he reached St. l'aul the thermometer stood at 45 below zero, and he canght a severe celd, which had developed into pneumonia by the tume he teeched Montreal; and resulted, as stated, in his death.

1․ G. Beckett, Hamiton, Ont., deed very suddenly at lughewood, Nं. J., last month. Grip was the cause of death. Di:caased went to Inglewood in jabluary to wist a marbed daughter. He was abuut 70 years of age, and was well known an ! ! ana itton for alnost half a century. Many years ago he had an engine works where the cotton factory now is and did a bis busmess during the oil tever. He manufactured engines and boilers for the big freight ferry boats which ply between Windsor and Detroit. Liter he was in partnership with J. W. Killey, and had works on Barton strect. For some years he has been before the public as the promoter of the Beckett drive, along the mountain side.

There was a big sensation in civic circles in Ottawa iast anconth. Early in March Assistant City Engincer Perreault was suspended for making errors in measurements. A little later Cit, Engineer Galt was advised to reinstate him, but Mr. Galt, having previously been given full power to deal with his suburdinates as he thouglit proper, called for Mr. Perreault's restisnation. This angered Mayor Payment, wh:m friend Mr. Perreault is, and the mayor suspended $N:$ walt ior "having usurped the authority of the councll," and placed Mr. Perrealt in charge. The city council promptly resented this acticn on the part of the mayor and appointed a new assistant ergineer.
J. T. Nicolson, head of the department oi Mechanical Eingmeering at McGill Unversty, Montreal, since $1 \$ y_{1}$, has resigned on account of receiving an Appointment in Mancliester, Eing., as head of the Mechanical and Elcetrical Departments of the Municipal Tecimical School there. For his enperiments in compression, which threw added light on geclogy, and ior his work with Prof. Callender in preparing the paper on the steam engine read before the Institute Civil Engineers, Great Britain, in IS97, Mr. Nicolson has received well-merited honors. For the paper Mr. Nicolson was awarded the Watts gold incdal and a Telford premium of $£ 20$, by the Institute of Civil Enginters, London, and for the two researches the cibtained the degree of D.Se., from Edinburgh last summer.

Early on the morning of Miarch 7th A. Galloway, foreman of a gang of men at the Imperial Oil Company's works, Sarmia, Ont., ordered some of his men to clean out one of the oil tanks in the company's yards. James MeCue proceeded down into the tank. When he reached the bottom he was seen by his fellow workmen to fall down. Another workman named John Carter went down to reseuc McCuc, but no sooner reached the bottom of the tank than he too was overcome by the gas. The foreman, Galloway, was the next to attempt the rescte of the men, ind he shared the same fate as the preceding two men. Heney Willis then came to the unfortunate men's rescue. but he, too, was overcome, as was also another employec, named William Brimbs. By this time the alarm had been given that some men were being smothered in a still, and a gang of men frem the boiler-shops were soon on the seene and proceeded to tear the covering from the still to allow the gas to cseape, and thereby make it safe for men to deseend into the still. Before this work was completed William McCue attempted to go down the ladder, but when half-way down he fell, being almost overcome, but managed to climb part way up again, and was pulled out of the still just in time, as he fainted when he reached the ground. After the covering had been torn away, and the $g^{-s}$ allowed to escape. other employees went into the still, and the five men who were lying in a heap at the botom were licisted to the top, and all that was possible was done for the unfortunate men. Doctors, who were hastily summoneri. worked over the poor fellows from that time until late in the afternoon, when their efforts were finally successiul. The courage of the men who went down to face what seemed probable didth one after another cannot be too highly praised.

## $\sqrt{\text { arine }} \sqrt{\text { ews. }}$

Mathew's Line, Toronto, Ont., has appomed to the stemers "Niagara," Capt. Jas. Morgan, Engmeer Thos. Mills; " Climon," Capt. John Fahey, Engineer J. M. Donaldson.

Alesander Horn, of Oldreve \& Horn, sailmakers, Kingston, Ont., has been nothied of his appointment as Govermment inspector of hulls in sucession to Thomas Donnelly, resigued.

Merchants line, G. E. Jacsues \& Co., Momreal, have appeinted to the propellers" Cuba," Capt. Heary Chestmut, Engineer Willian Kemnedy; "Metbournc," Capt. Fred. Elliout. Ergineer Thos. Milne.

Lake Ontario \& Bay of Quinte Stcamboat Co., Kingston, Ont., has appoimted to the steamers "Hero," Capt. Win. Bloomfield, Engineer Robt. McEwan; "North King," Capt. Jehn Jarrell, Eugineer O. J. Hickey.

Canadian Pacific Stcamship Co., Montreal, lias appointed to the steamers "Manitoba," Capt. E. B. Anderson, Engineer N. Lewis; "Allabasca," Capt. G. McDougall, Engineer W. Lreherber; "Alberta," Capt. J. McAllister, Engineer Angus Ciancron.

St. Lawrence \& Chicazo Stcam Navigation Co., Lid., J. \}. G. Hagerty, mgr., Toronto, Ont., has appointed to the stcamers "Algonguin," Capt. James McAlaugh, Engineer Janacs Hi. Ellis: "Rosadale," Capt. James Ewart, Engineer Ed. $O^{\circ}$ Dell.

Hepburn, A. W., Picton, Ont., has appointed to the steamers *Alexandria," Capt. E. B. Smihh, Engineer Chas. MeWilliams; "Aberdeen," Capt. M. Heffernan, Engineer Frank Theriauld; " Water Lily," Capt. M. Hicks, Enginecs George Gerow. Schooners "Rob Roy," Capt. Homer Peron.

McKay R. O. \& A. B., Hamilton, Ont., has appointed to the steamers "Sir S. L. Tilley," Capt. W. O. Zealand, Enginecr Joseph Boulanger; "Lake Michigan," Capt. Arthur Leicbure, Enginecr Joseph Dawson; "Myles," Caph. John S. Mocre, Enganer Jas. Smeaton. Schooner "T. R. Nierritt." Capt. Wilham A. Corson.

North Shore Navigation Co., Collingwood. Ont., has ap. pointed to the steamers "City of Collingwood," Capt. W. J. Bassct, Enginee: Chas. Robertson; "City of Midland," Capt. F. X. La France, Engineer Wm. Whipps; "City of Torono." Cipt. John O'Doamell, Enginecr D. McQuade; "City of Parry Scund," Capt. Ernest Walton, Enginecr J. L. Smith; "City of 1.on:don." Capt. W. W Storey, Enginece Jas. Crossland.

The Richelicu \& Ontario Navigation Co. has made the follewing appointments to the various steamers of the fleet for the season:

## Sicamer.

Quebec
. Montreal"

- Canada ${ }^{"}$
"Sisuenay"
"Carolina"
${ }^{-}$Three Rucrs ${ }^{-}$ - Berthier"
" Terrebonne"
"Chambly"
${ }^{*}$ l.aprairic ${ }^{*}$
- Cailinatcar"
" l.engucuil".
" Hochelaga"
"Hosanna"
" Mcuche-a-Fen"
"Sorcl"
- Riser.du-L_oup"
"Toronto"
"Spartan"
" Algerian"
"Bohemian"
"Hamilton"
"Cersican"

Captain.
L. O. Boucher
L. St. Louis
J. Dugal
C. Lapierre
G. Riverin
F. St. Louts
C. Gounn
F. E. Gouin

Gco. Paulch
P. McLean
O. Raymond

1. Jodoin
H. Maudeville
D. Mongcau

- Crepcian
- Berihiaume
- Faubert
H. Esiord
H. P. Grange
D. Nills
A. Dunlop
A. J. Baker

Jolin MicGraw

Enginecr.
F. Gendron
F. N. Ilamelin
E. Denis
M. Latulappe
J. Matte
E. Arcaud
G. Gct:dron
C. Gendron
di. Beaudin
H. Nocl
N. Beaudes
F. Chapdelaine
E. Gendron
P. Boucher

- Beaucage
1.. Godin

Wm. Black
A. R. Milne
L. Marshall

Wm. Parker

Calvin \& Co., Garden Island, Ont., have appointed to the stcamers "D. D. Calvin," Capt. A. H. Malone, Engineer T. C. Smith; "Bothnia," Capt. G. A. Brian, Engineer R. Veech: "Armenia," Capt. Chas. Coons, Engineer W. Cunninghann: " Reginald," Capt. John Doyle, Engineer J. Kennedy; "Chumtain,' Capt. John Sullivan, Engincer T. Gray; Partha, Capt: David Lefavre, Engineer G. Sauve; "W. Johnston," Capt. Ed Phelix, Engineer T. Harper; "Bluchell," Capt. John Dix. Engineer C. LeRiche.

At the meeting of representatives of the Canadian Marinc Engineers' Associations of Toronto, Vancouver, B.C., and St Juhn, N.B., hast month, in the Confederation Life Building. Toronto. it was unanimously decided to amalgamate the thre: distinct socicties. About 60 delegates were present, and the chair was accupied by Harry Parker, president of the Toromo organization. At a meeting held in the morning of the visiting delegates, a report was drawn up and plans agreed upon for presentation before all the members. After three hours; discussion the entire mecting agreed on an amalgamation. Harry Parker, S. G. Mills and Robert Craig were appointed an Esecutive Committec, to meet in Montreal next autumn, and arrange a new constitution for the organizatio:i. The name will hercafter be the National Association of Canadian Marine Engineers, and it at present bnasts of a membership of 350 . Branchewill also be instituted in Kingston and Montreal. The meeting then adjourned.

## Brief, but Interesting.

The purchase of the Havana street railway by the Harvey syndicate of New York has been declared void by the Cuban courts, and the Canadian capitalists may now have an opportunity of exploiting the transportation facilities of the island.

Alernating current apparatus for all purposes is makms prugress in Canada, and it is said that belore many months there will be alternating current sereet railway apparatus in use in Canada. It is already extensively used in burope, espectally in Switzcriand, and the larger compantes in the Umied States are experimenting wish it, and have already buikt a new road entirely equipped with alternating current apparatus, which is giving satisfaction.

The most complete elephone system in the world has just becn inaugurated in Stockholm, Sweden. It is not in the hands of a syindicate or a trust, but under the immediate control of the Government. There is hardly a residence in Stockholm and the ncighboring towns not comected with central offices. The telephonc tax is levicd in the same mamer as the water tas and amounts to only $\mathrm{S}_{5}$ a year. In this connection it is interestirg to notice the large appropriations made at the presem sension of the Britsh Parhament for the establishment of a Government telephone system in connection with the postofice and in opposition to the private companies, whose inadequate service has been the cause of so much complaint on the part of the public.
H. W. Wood, instructor in physics in the Universty of Wisconsin, has originated the idea of thawing out water pipes with electricity, and has made successful cxperiments. He takes the electric current used for street lighting purposes, attaches one wire to the frozen pipe inside the cellar of one house and the other wire to a similar pipe in the adjoining or any other house, thus completing the circuit. A current of about fity volts is then turned on, heating the pipes and meltiang the ice within. At Chatham, Ont., experiments in this method were made under the direction of Superintendemt Jones of the Wiaterworks Department, and Manager Coate of the Gas Compary. Two hydrants, 280 fect apart, were connected to the ciectric lighting circuis, and were thawed out in 45 minutes. Another hydrant, distant 120 feet from the first, was also cunnected, and thawed out in 24 minutes.

Ball bearings have been little used on heavy vehicles because it is difficuit to make them endure the great pressure. A form of ball bearing devised by Schuppiser has been tred on strect cars of Zurich, at first unsuceessfully, as in other ex-
pesiments, but more satislactorily since balls to take up side precsure have been employed in addition to those carrying the weight. In their present form, the bearings have two rows of sixteen $3 / 4$-inch balls, and two rows of twenty-six $1 / 2$-inch balls each. To distribute wear, the bearings are arranged so that they can be roved into four different postions. Some of the bearings have now been under test more than two years, Podoski reports, but much trouble was at first experienced with the bearings for the balls. For a lew months these have been made of Krupp's crucible steel, which is thought to have quite overcome the dilliculty. It is found that an average saving of 15 per cent. of the total power has resulted on the four electric railways experimented on, and as high as 24 per cent. on one line, with 35 per cent. under the most favorable conditions. In every ease a saving has been shown, even on steep grades.

## JTEing JCtatas

It is reported in Quebec that gold yielding $\$ 20$ a ton has been discovered near Lorete, Que.

Bonham \& Munroe have commenced business as mining blokers with offices in Canada Life Building, Montreal.

A very rich strike of placer gold is reported from Tete Jeune Cache at the headwaters of the Fraser river, B.C.

The Neweastle Coal Co. at Port Morien, C.B., has given a contract for a considerable amount of mining machinery again.

The Crow's Nest Pass Coal Co. turned out 2,000 tons cf ecke from the oven at Fernic, B.C., in the month of Februars.

The Crow's Nest Coal Co. has secured the contract to supply the British feet at Esquimault with coal for the present ycar.

A Ieter from A. P. Low, of the Geological Survey staff, which is wintering on Hadsons Bay. confirms previous reports of the existence of deposits of magnetic iron ore on the shores of the bay.

At the annual mecting of the Mining Society of MeGill Ui,iversity Dr. Harrington was elected honorary president, Mr. McMillan was elected president, Mr. Cowans, viec-president, and Mr. Archer, secretary-treasurer.

It is stated that work will soon be started upon the erection of a 400 :on smelter at Grecnwood, B.C. The capitalization si the company is $\$ 100,000$, and J. P. Graves, prime moser of the Old Ironsides and Knob Hill, is the promoter.

The following gentlemen are interested in active mica mining near Kingston, Ont.: Kenk Bros., bankers; E. H. Smyth, Q.C., I. Franklin, me:chant; Mr. Chown, of the Webster Co., Sydenham, and J. L. Gemmill, Perth, Ont.

The zine mine situated between Rossport and Schreiber on the C.P.R., about tweive miles from the mouth of the Gravel river, which was sold to a Belgian syndicate last year by Jno. McKellar, Fort William, Ort., is shipping frecly to Belgium. where it is stated the ore nets almost $\$ 40$ per ton.
W. C. Caldwell and T. B. Caldwell, accompanied by Areh. Blue, director of the Ontario Burenu of Mines, made a visit to the gold mines at Ardoch, Addington county, Ont., owned by the Bocrth Mining Co., Detroit. A boarding house has becu ceected and some sixty men are at work. Five large furnaces and a pulverizer are used in reducing the ore, which has proved to be rich, assaying from $\$ 24$ to $\$ 10$, and $\$ 50$ to $\$ 500$ per inn. The mine is situated not far from the Kingston \& Penbroke Railway, and is on the Mississippi river.

The lead and zinc deposits in Tudor township, Hastings county, Out., are begianing to attract attention. The Hollandia and Catharime miues are said to have assayed very heavy values in lead and zine. This is the first discovery of zinc in Fastings county, although its presence in the mineral belt was referred to about twenty years ago in a paper read by T. Campbell Wall-
bridge before the Royal Gcological Society of London. One of the deposits is only ten miles irom Millbridge on the Ontario Jualction Railway.

The summer mining class of Megill University, which proved so suceessful last year, will be continued this year. The party will leave McGill. under Dr. Porter, about the 2jth if April and will spend about four weeks in the work. This year they go to the United States and will visit the anthracite mines of Central Pennsylvania. Here they will be able to see some of the largest coal mines in America, and will be able to observe the railway transportation there carried on, as well as the actatal minting operations. Exactly what mines will be visited is not set definitely setled, but invitations have been sent to Dr. Perter from sevgral mines.

## Railway ] [atters.

One thousand freight cars are to be built by the C. A. and O. A. \& P. S. Railways this year.

The Central Vermont Railway was bought at auction by a representative of the G.T.Ry., March 2Ist, for $\$ 7,000,000$.
G. L. Mattice, Montreal, is engineer-in-charge of construction of the Rutland \& Canadian Railway from Aldburgh to Novar Junction.

It is said that the C.P.R. will build a coal wharl and sheds at St. John, N.B., so that it may be in a position to send 200,000 tons of coal per annum to Montreal.
-The judicial enquiry into the composition of the reports on the efficiency tests of the Green's Economizer at the Toronto waterworks main pumping station is procecding before Judge Macdougall. The city engineer has ended the state of hostilities among the staff at the high level pumping station by discliarging the whole staff and appointing Wm. Hali from the main pumping station in charge, and Woodward, of the Niagara Nav. Co., and McKcown, G.T.R., to fill the vacancies.
-The provisions of the Ontario Act dealing with the Niagara Power fuestion rushed through by the Government at the cnd of the session are mainly two. The first provides that the Commissioners of Queen Victoria Niagara Falls Park may, with the approval of the Lieutenant-Governor-in-Council, enter into an agrecment with the Canadian Niagara Power Company for the surrender by the latter of its sole right to use the waters of Niagara river within the limits of the park, upon such terms and conditions as to abatement of rent, extension of time for carrying oat the agrecment of 1892, variation of that contract, cte., and that any arrangement so entered into shall be binding. The second resolution provides, in brief, that the Park Commissioners may enter into contracts with other persons or companies to enable such persons or companies to use the waters of the Niagara within or without the park for powcr purposes, but it does not add, as in the case of the former resolution, that any such contract is to be binding.

## FIRES OF THE MONTH.

March Jrd. J. Stuart's machinc shop, Thorold, Ont.; damages, $\$ 18,000$; insurance, $\$ 10,000$. March 12 hh. Hamilton Radial Railway Co.'s workshop, Hamilton Beach; damages. \$5.000; fully insurel.-March 22nd. Elliot \& Brooks' paper boa factory, Adelaide strect west, Toronto; damages, $\$ 25.000$; insurance, $\$ 16,000$ - Alatch 28 th. G. G. Bryant's sash and dour fac.ory, Slecrbrooke, Que.; insurance amounting to $\$ \mathbf{j}, 300$ will not cove: loss.

## THE NICHOLSON PATENT FLANGED FACE COMPRESSION SHAFT COUPLING.

The makers of this coupling claim for it that in desig:, , construction and general operation, it more completely meets the reguirements of a first-class shaft coupling than any other on the market. In appearance it resembles the ordonag flanged face coupling. The two half eastings are bored tapering. and have tlanges on rim to cover bolt heads and nuts. The outer faces of hubs are closed almost to shaft by a rib or pro. jection, through which :lots are cut to space the jaws a uniform distance apart and hold them in position while coupling is being fixed on the shaft. The steel jaws have double taper, turn ed to fit bores of castings, and are concaved on their inter

faces a tritle less than the radius of shaft, which makes the grip positive when flanges are drawn up by the bolts. The couplings are fitted so that flanges stand from $3 / 8$ to $3 / 4$ of an inch apart when drawn tight with the bolts, thus enabling i trifle larger o: smaller size of shait than gauge to be coupled. Owing to dhis feature extra couplings may be carried in stock, so that in case of an accident they can be immediately applied to the shafts that have been broken and twisted off, or another shait may. it is stated, be coupled on without the necessity of key seating the old shaft or making exact mensurements to ensure a periectly tight fit. The Nicholson patent flanged shait coupling is placed on the market by the Fairbanks Co., Wentreal, and is, we are told, being installed by the company in place of less up-to-date appliances.

## CANADIAN PATENTS.

The following patents oi interest to enginecrs were issued in January:

No. 62,176.-Electric are lamp; The British Blahnick Are light Co., Westminster, London, England.

No. 62,177.-Rail joint for electric railways; The firm oi Ausfuhrungenfur Eisenbahn, Oberban, Abtheilung " Stossfangschienne," Scigm, Eppenstein, of 45 Wilhelmstrasse, Berlin, Germany.

No. 62,181.-Acetylene gas generator; Isidore Thericll. Qucbec, Que.

No. 62,186.-Acetylene gas generator; Francis Xavier Nidon, Maniwake, Quc.

No. 62,194.-Acetylenc gas generator; E. J. Dolan, Philadelphia, Pa.

Nos. 62,199, 62,200, 62,201.-Motor; Zuzislav Maevsky, S:. Petersburg, Russia.

No. 62,203.-Acetylenc gas generator; J. W. Scarth, Pudsley, York, Engiand.

No. 62,207.-Turbme; Jos. Chew, Orillia, Ont.
No. 62,214.-Telephone transmitter; F. A. Ray, Boston.
No. 62,217.-Railway rail joint; T. C. H. Gray, Gray Bridgc, Mass.

No. 62,219.-Trollcy connection for canal boats; F. J. Shewring, Toronto.

No. 62.224.-Solenoid blow-out for displacing, dispersing. or extinguishing, formed in breaking electric circuits; S. H. Short, Cleveland, O.

Nio. 62.243.-Drill clutch; W. L. Hirlinger, Luzerne, Penn
No. 62,249.-Device for moving dredging machines; J. W. Pike. Vancouver, B.C.

No. 62,262.-Insulator: E. Renault, Florida, U.S.A.
No. 62,264.-Electric arc lamp; Thos Spencer, Philadelphia, Pcunsylvania.

No. 62.260.-Smokeless furnace; Ed. Gesstier. No. 60 Kirona, Brunn, Austria.

No. 62,278.-Railway tic and clamp: Chas. A. Colc. Niew York.

No. 62,281.-Acetylene gas making machine; A. Holland, Oluawa, Ont.

No. 62,282.-Azetylene gas lamp; John Zimmerman. Chicago, IIl.

No. 62,283.-Acetylene gas macinine; P. H. Mace, Paris. France.

No. 62,293.-Track clearer; James C. Cameron, Montreal.
No. 62,29.-Acetylene gas generator ayparatus; Jean $\lambda$. Plantin, Ottawa, Ont.

No. 62,312.-Motor vehicle; The Prelot Motor Syndicate, Butolph House, Eastcheap, London, England.

No. 62,336.-Electric engine; Marcy Lelland Whitfeld, Chicago, Ill.

No. 62,339.-Steel manufacture; Thos. J. Heskett, 50 North Terrace, Adelaide, South Australia.

No. 62,341.-Steam boiler furnace; Geo. N. Robinson, Brocklyn, N.Y.

No. 62,356.-Flat-railed railway; H. L. Stillman, Charlestown, Rhode Island.

No. 62,359-Car coupler; Philip Hien, Chicago, 111.
No. 62,361.-Brake shoe; A. J. Allen, Chicago, Ill.
No. 62,377.-Telephone; R. W. Wallace, 21 De Vere Gardens, Kensington, London, England.

No. 62,378.-Furnace grate; Henry Truesdell, Toronto.
No. 62,385.-Heater and radiator; Chas. Ellingsen, Ashby, Minn., U.S.A.

No. 62,389.-Instrument for determining the amount of elongation and compression of railway rails under moving trains; P. H. Dudley, New York, N.Y.

No. 62,390.-Electric track circuit rail joint; Wm. H. Talley, Waco, Texas.

No. 62,392.-Heater; John A. Markle, Birtle, Man.
No. 62,410.-Compound steam engine; Jos. Hardell, Stratford, Ont.

No. 62,416.-Car pushing device; Wm. L. Joy, Toronto.
No. 62,424.-Beiler; Calixte Cauchene, St. Gabriel de Brindon, Quc.

No. 62,440.-Telephone number and address: Annunciator; Wm. J. Walsh, Hamilton, Ont.

No. 62,447.-Stean boiler and furnace; Wm. Hopkins, Dubuque, Iowa.

No. 62,449.-Electric railway truck; Geo. J. Capewell. Hartiord, Conn.

No. 62,450.-Gas generating process; Samuel H. Wood. Wilmette, Ill.

No. 62,451.-Steam boiler; David Fitzgibbons, Oswego,N.Y.
No. 62,453.-Steam boiler; N. F. Anderson, Hardid, Ill.
No. 62,455.-Steam boiler; R. Hutchinson, Somerville, Mass.
No. 62.456.-Stean boiler; Gco. H. Watson, Chicago, Ill.
No. 62,457-Boiler; R. W. Innes, Omaha, Neb.,
No. 62,458.-Steam generator; Henry Hening, Paterson. New Jersey.

No. 62,403.-Acetylene gas lamp; Geo. D. Pearson, Montreal, Quabec.

No. 62,464.-Acetylene generator; F. Cortez Wilson, Chicago, Ilt.

No. 62.466.-Process of. and apparatus for, the manuiacture of metallic carbides.

Wanted-Agents in Afontreal and Toronto to push the sale of a high-srade
English Leather Machlno Belilngin the Dominlon. Commission only. Ap-
ply" X.In," care ot The Canadlan Engineer.

## FOR SALE

A sood Weter Powter, 500 horse, situzted one-balf mile from rallway, every A good Witer Power, 500 horsc. situzted
taetlity for making sidlag to power. Address
J. D. THEUNISSON. Cookshirc. Que.

## Village of Hintonburgh.

## TENDERS FOR WATERWORKS

Tendera for constructing a sjstem of waterworks for tho Vllitege of Hinton-
 sonburkh, Óntarto.

Each tender mast be accompanied with an aecepted bank cheque for an amount equal to the per ceor of the amount tendered and made paizabe to the order of W. A. Mason, Treasures of the Corporation, which cheque wilib be forfeited If the contractor decllines to enter into a conitrase whin called upon to do so.

The Corporation reserves the rikht to reject any or all teaders.
Plans and spelifecsions can be zern, and printed spelifeations and forms of
obtanind as the offec of tho Clerk. Town fall, Hlatonbargb. iender obtained as the offee of the Clerk. Town Hall, Hintonbargb.

Datod at Hintorborah this a3rd day of March, sscy.
(Sigaed) D. II. MeLean, Recve.
(Sigaed) Charles h. KEEFER, Consiluing Eagineer, Ottama.

# The Canadian Engineer 

INDEX TO VOL. VI.

| decidents Pagi: |  | F \& D wheil The Patis |
| :---: | :---: | :---: |
|  | , | E. \& D. Wheel, The .............. 20 |
| Acetylene Gas Lighting for Trains. 198 .. on Railways ............ 170 | Civil Engineers, Canadian Society of ........................199. 246. 285 | Fires of the Month. 28, 51, 83, 111, 136. 180, 201, 233. 262, 291, 330, 359 |
| Air, Navigation of the. | Civil Engineering. The Ethics of, 262279 | Fire Prevention Committee, The |
| Angle Indicator .................. S52 $^{\text {a }}$ | Clamps. Tool Makers Steel ....... 195 | British ...................... 32.3 |
| Are Lighting, Series ............. 310 | Coal Trade, The Nova Scotia | Firc-proof Buildings, ...119, 149, 166, 186 |
| rmstrong Cutting-Of Tool. The.. 228 | ewfoundand .............. os | Construction with Luxfer |
| Antocar Industry, The........79. 252, 282 | ncrete Railway Structures ....... 252 | Prisms ..................... 16.4 |
| Battery for Railway Traction. The | 126 | es and Fire-proof Construction.. 30 |
| Storage | Conduit. Toronto Waterworks. The. 252 | Forests, Some Incidental Benefits |
| Bicycle Industry, The ............. 352 |  | the Growth of............ 336 |
| Blodgetts Combination Twist Drill, | Corundum ........................ 167 | undry Practice, A Departure in.. 199 |
| Thread Pitch, Centre, and Tap | :mm Buill | dations |
| Drill Gauge .................. 169 | Deseronto iron | oundation, A Concrete ........... $120^{\circ}$ |
| Boats of the "Dominion" Type. . 188. 254 | Destructors, Garlage | Frazil Ice in Lachine Rapids ...... 273 |
| Boiler Explosion at Orillia. | "Dominion," The .................. 188 | Fireight Yard, A Novel City ........ 163 |
| Mumford's Improved | Type. Boats of ......... 254 | Friction |
| Room, Economy in the..... $13^{\circ}$ | Drainage Practice, Errors in ........ 91 | Garbage Destructors ............... 109 |
| and its Safety. The Steam.... 255 | Dredge. A New Gold | The Con |
| s, Evaporation and Raising | Dry Dock, A Floating | tion |
| Steam in.................... 139 | Duncan Integrating | Garbage Disposal in Montreal...... 155 |
| oilers, Mechanical Drait for Steam | Electric Flashes | Gas Engine, The Model ............ 2 So |
| 1-3. -48 | , | c, Blorgett's Comb |
| The Prevention ui Scale in. 2.47 | cric Heating .................. 106 | Drill. Thread Pitch, Centre and |
| Brace, The Liniversal ............ 90 | Light Co., Harris v. The | Tap Drill ...................... 169 |
| Bridge Construction on the Trent |  | ge. How to use the Electric Wire 141 |
| Valley Canal, Sume in Swing. $\qquad$ | Electric Lighting of Trains......... 242 | Gold Dredge. A New ............. 141 |
| ridge Disaster, The Cornwall..... 162 | proved Meters in................ 142 | Governors, Notes on |
| .- The Proposed Quebec.....11. 280 <br> .. The Victoria Jubilee ...... 125 | Eicetric Power at Sault Ste. Marie.. SI " " and Lighting plant | Grain-Handling Machinery. Pnetmatic $\qquad$ |
| ut' Inte | the Soulanges Cani | Grate Bars. Robertson's Shaking |
| Calcium Carbide, Progress of........ 97 | tric Railway | and Dumping |
| Campbell Electric Lighting Type of Oil Engine $\qquad$ 216 |  | Harris v The Toronto Electric Light Co. |
| madian Association of Stationary | [51. 65 | Heating, Electric .................. 106 |
| inecrs ..19, 81, 111, 127. 194. 238 | st $\because$. West. | Drum. The Chilcoot Hot Air min |
| nadian Electrical Association, 20. 51. 65 |  | Horseless Vehicle, The. .79, 152, 258, 282 |
| Engineer ......... 440, 259. 350 | ectrical Power Transmissions...58, 165 | Horton Driil Chuck. The .......... 82 |
| Engines in Spain ........ 348 | Plant at McGill Un | House. A Very Small .............. 257 |
| Mutual Association of Mc- | provements in the............ 49 | Boat on Ottawa River ........ 20 |
| anical Engi | ctrical Stage Appliances ........ 254 | udson Bay, Canadian |
| vince of Quebec.............19, 110 | ctricians. National | pedition to ............... 80 |
| madian Trade with South Africa. 121 | Municipal .................... 318 | Lab |
| Canal, The Lake Manitoba ....... 236 | ctrolysis in Gas \& Water Pipes. . 226 |  |
| The Montreal, Otawa | Emery Wheels, A Study of ........ 350 | Iec, Frazil |
| Gcorgian Bay ........186, 261. 315 | Enginc. The Campbell Elec | In |
| Canal, The Soulanges ............ 306 | ing Type of Oil .............. 216 | r Methods of................. 103 |
| rolite ........................ 246 | Engine. The Model Gas ........... 280 | Improved Boiler, Mumfor |
|  | The Steam .............12, 88 | Interception Traps. The |
|  | Spain, Canadian ......... 348 | Industrial Notes 21. 52. $113.142,171$, |
| arbonization. W | of the Great Lakes, Marine. 169 | 230, 263, 294, 324, 354 |
| atalogues, New ................. 351 | Engineer, An Alien ............... 336 | Iron Co.. The Descronto ........... 284 |
| taract Power Co., of Hamilton. <br> Ont., Lid.. The ................... 217 | Engincers, Canadian Association of | in Canada, Chromic ............. 34 |
| Onent in Ontario ................. 48 |  | the Stockholm |
| Silica, Portand ........... 312 | Eugineers. Canadian Socicty of Civil | Swedish |
| Manufacture and Use of Sand 17 | 246, 283 | sociation de |
| Cements, The Constitation of Hydraulic | bec. | des Ingenicurs Mecaniciens, 19, iro |
| neral Station Men, How to Overcome Some of the Difficultics | Of Mechanical .........19, 110 's Report for IS97, Toronto | Lighting for Trains, Acetylenc Gas. 191 <br> .. Series Arc ............... 316 |
| Encountered by ................ 66 |  | Literary Notes. 51. 88, 112, 179, 198, |
| cmistry, McGill University, The <br> Department of ................. 262 | Enginecring Works, Under Government Inspection $\qquad$ 336 | $238,261,300,323,338$ <br> icr Prisms, Firc-proof Construc- |
| Chromic Iron in Canada ........... 34 | Estimates, The Dominion .......... 19 | tion with ....................... 164 |
| , The Horton Drill .......... 83 | in and the | MeGill University ............... 4 I |
| alc G | Stcam in Boilers .............. 139 |  |
| Drill ........................ 351 | $n$ Cylinder? | ical Departments of … 4 I |
| c N | duced the | Gill University, |
| S | Expert? Who is | at ........................... 320 |

INDEX TO THE CANADIAN ENGINEER (Continuid).

| Pagas |  | Pace: |
| :---: | :---: | :---: |
| MeGill University, The Department of Chemistry ..................... 262 | Power Tramsmissions. Electrical, 58 , [165, 209, 247 | Scwage Works, The Chorley, England ............................ 221 |
| McGill University. Hydraulic Labora- | 317, 343 | Sewerage Systems of Ontario ........ 303 |
|  | Actual and Estimated, Wind 220 | Sc |
| Gill Unwersity, Improvements in the Electrical Plant at. | Precipitation Systen of Sewage Disposal in Operation at Hamilton, | Testing Cement and Clay....... 179 Thenpling, The Nicholson Patent |
| Megill University, The Surveging | 39 | Compression $\ldots$.... 360 |
| Equipment of ................. 156 | Prospectors' Outfit ................. 18 | Notes on ........ 344 |
| Macadam for Roads, Tarred ........ 165 | Pump. Economy Test of a Uninue | Sherbrooke Gas \& Water Co........ 259 |
| Macadamized Roads. Disputed | Form of Feed | Silica Porthand Cement ............ 312 |
| Points in Comnction with | ump. The Quimby | Stmelting in British Columbia, The |
| Construction | Pumping Station at St. Johm, N.B., |  |
| chines. Refrigerating | High Ievel | Soulanges Camal, The .............. 306 |
| chinery, Metallurgical | Quebec Brid | $\cdots$ " |
| Machinery | Queen City Oil Co., The ......... 64 | and Lighting Plant of the...... 347 |
| Grain-Handling | Rail Trucks for Light Railways...... 71 | Square, To Square a ............. 321 |
| Marine Engines of the Great Lakes, The $\qquad$ | Railway. A Pole ................... 33 $\cdot \cdot$ Enginecring. $1,257,271,301,331$ | Stage Appliances, Electrical ........ 254 <br> Steam End, The |
| Marine News, 26.54. 86, 115. 14. 177. [208, 237, 266, 209, 320, 358 | Gants. Ontario :.......... 352 Ontario, Milcage of Eiec- | Engine, The <br> $\therefore$ Electricity $\qquad$ $\qquad$ |
| Meclanical Traction, The Future of. 79 | tric ............................ 32 s | Heated Surfaces, The Protec- |
| Metal Imports from Great Britain, | Railway Labor Question on the Crow's Nest Pass ............... 62 | $82$ |
| 28, 312, 339 |  |  |
| Metal Saws for Cutting ............ 280 | 359 |  |
| Metallurgical Department of MeGill University. Chemical and........ 41 | Railway, Montreal Island Belt Line.. 12 Structures, Concrete ....... 252 | xpo |
| 341 | Superintendents of Bridges | Stevens Arms \& Tool Co., The J.ı. 105 |
| Aeters in Electric Lighting. The use of Improved | Buildings, Asso | Stoker Company, The American. 82,191 |
| nes. New Plant for the War Eagle 20 | Refrigeration .................... 196 |  |
|  |  | proof .......... 8t |
| Mineral Prochetion of | Refrigerating Machinery ........141, 320 | ng |
| States in 1897-98 ............... 99 | Reclamation. Frase |  |
| Iineral Production of Canada in 1808. Summary of | Repairs to S.S. "Monarcli".......... 18 <br> Road Materials and Construction... | Storage Battery for Railway Traction, The |
| 31ining Institute. The Canadian ..... 322 | 291 | Strength of White Pine, Red Pine, |
| Mining Matters, 25, 53, 87. 117, 146. 175. 206. 233. 268, 298. 329. 359 | Road Building. Rolling or Ramming in. ................................ 351 | Hemlock, and Spruce, Results of Experiments on the |
| Methods | Roads, | Surveyors, Associatio |
| Montral's Taxation ............. 335 | c | 283, 321 |
| Motor Carriage Industry, $\begin{aligned} & \text { The. } 79 . \\ & \text { [152. } 258.282\end{aligned}$ | Macadamized .................... 268 Resistance, A New General Formula | arveying Equipment of McGill University, The ..................... 156 |
| Motors, Tidal ...................... 82 | for | Tarred Macadam for Roads ........ 164 |
| Munford's Improved | Rope Testing | tion, The Future of Mechanical, |
| Municipal Ownership .............. 3i | Rope Driving, Ropes and ......461, 194 | , 252,282 |
| Navigation of the Air | Sand Blast. Stone Cleaning by ..... 283 | The Storage Battery for |
| Newioundland Coal $\ldots \ldots \ldots \ldots$............. 88 .. Notes ............. 261 | Sand Blast. Stone Cleaning by ..... 283 | Railway .......................... 212 rain Resistance, A New General |
| -n |  | Formula for .................. 292 |
| Observatory. The Toromo Magnetic 181 | Sanitary Experiments at Cologne, <br> Germany ....................... 62 | Trains. The Electric Lighting of.... 242 |
| Oils for the Engine Room ........... 140 Oiling Un | Sanitary Plumbing ................. 109 | Trade with South Africa, Canadian. I21 |
|  |  | Traps, etc., The Evils of Interception 243 |
| " Waterworks of $\qquad$ | Saws for C | Tool, The Armstrong Cutting off.. 228 <br> Toronto Electric Motor Co., Ltd. |
|  | " "Sterling" Hack .......... III |  |
| ". to Canadians ............... 8t | Settlenent, | "Toronto," The Launch of the ....... 78 |
| Paving Materials ................. or | Scwage Di | Tubing, Metallic, Flexible ............ 315 |
| Pavements, The 1 nfluence of, on <br> Public Heath .................. 183 |  | Valves, Straightway Quick Opening. 226 Ventiation of Plumbing Appliances. |
| Personal, 2S. 57. 85, 118. 14 S. 178. 208 <br> [238. 267. 299. 330. 356 | ewage Disposal at the Asylum for lusame, London. Ont., A Short | oltmeter, A Pocket ................. 83 |
| Pier Moved by Ice and Replaced. <br> Masonry | -History of ...................... 155 Sewage Disposal, Recent Methods of 157 |  |
| Plumbers' Association. Montreal, <br> The Master ...................... 320 | Novel Method of, | istilled ...................... I4 |
| $\begin{gathered} \text { umbers' Convention. Associated... } 97 \\ \text { ". } \\ \hline 1 \end{gathered}$ | of Toronto ..................249, 330 <br> Sewage Disposal, Some Methods of.. 318 | of $\ldots$...................... 67 Water Power Centre, A Great..... 260 " |
| mbing. A System of ............ 277 Appliances. The Ventilation of | at Hamilton, Ont., <br> Report on the Precipitation System of | "" "، in the Ottawa Valley 320 "" of Ontario ............ 189 Waterworks, Petrolia. Ont........... 245 |
| mbing. Sanitary ................. 189 | $\begin{array}{cccc}\text { wage Disposal, Toronto and } & . . . & 47 \\ { }^{-} & \text {in Europe } & . . . . . . & 179\end{array}$ | Systems, Ontario....... 246 Expropriations in Can- |
| at Sault Stc. Maric, Electric 8i | s. The | 306 |
| Company of Hamilton, Ont., |  | Waterworks Conduit. Toronto ..... 252 |
| imited. The Catara |  | Water Whecls, Impulse ........28, 89, 101 |
| wer in the Ottawa Valley, Water. 320 | " " " by Mixing | 2 |
| - To Estimate H | with Purc Water | Whecls, A Study in Emery ......... 350 |

INDEX TO THE CANADIAN ENGINEER (Continueld).

| ar | Page | Pag: |
| :---: | :---: | :---: |
| Wind Mills and Pipes ............ 257 | J. II.-"Mining Methods' | Francis |
| Pressure, Actual and Estimated 220 | I.ough, D. S.-"Canadian Engincer" 350 | Buikdings" ........ 119, 149, 167, 186 |
| Carbonization ................ 185 | Lockhart, Gordon, M., M.E.,-"The | Naughton, P.-"Evaporation and |
| n, The Gold Deposits of the... 259 | igation of the Air".......... 9 | the Raising of Steam in Boilers". 139 |
| Trade in the ................. 228 PORTRAITS. | Montrealer-"The East will be East, and the West will be West"...... 106 | Moseley, Chas.-"Economy in the Boiler Room" $\qquad$ |
| Bear, Wm. ........................ 134 | McKinstry, H. L.-"!Who is Expert" 98 | Matheson, Ernest G.-"Rope Test- |
| Brownc, Wim. II. ................ 76 | McDougall, John-"Sewage Disposal" 14 | ing" . . . . . . . . . . . . . . . . . . 273, 303 |
| Clapman, W. F. .................. 133 | Rochester, E.-"Canadian Enginecr" 140 | Monro, Thos.-"The Soulanges Canal" 306 |
| Coker, E. G., B.Sc.E. ............. 200 | Riordan, Clias. C., Jr.-"Canadian | McCarthy, Geo. A.-"Rope Testing |
| Dion, A. A.. ....................... 77 | Engineer," ..................... 350 | [273, 303 |
| Dodwell, C. E. W.. ............... 291 | S. Q. R.-"To Square a Squarc".... ${ }^{32 \mathrm{~L}}$ | McCallum. C.-"Metallurgical Ma- |
| Denison, E. Napier ............... 135 | Subscriber-"Prospectors' Outat".... 18 | chinery" |
| Galt, Joln ...................... 242 | Senex Homo-"Co-Operative Sette- | Mcl.can, Wै. B.-"Notes on Shaft |
| Growski. Sir Casi | ment" ......................... 18 | Governors" .................... 344 ${ }^{\text {a }}$ |
| Henderson, Gordon | Smith, J. A.-"Sewage Disposal".... 64 | Magic, L. D. W.-"Electric Utiliza- |
| Herdt. L.. B.A.Sc. | Trolley-"Mileage of Electric Rail- | tion of Water Powers" .......... 67 |
| Jennings, W. T.. ................. 290 | ways in Ontario" .............. 321 | Imer, R. E., C.E.-"Fraser Valley |
| Kinoch, James. ..................... 12 | Wilford. F. R.-"Public Opinion" .. 259 | Reclamation" . . . . . . . . . . . . . . 106 |
| Tynch, William H | Young Enginecr- "To Estim | Parke, Roderick J. - "Municipal |
| Mgoring. G. C. |  | Ownership" .................... 31 |
| Mountain, Geo. A.. ................ 290 | NTRIBUTORS OF SIGNED | Perry, Wm.-"Friction" ............ 7 |
| Owens, R. B., E.E | ARTICLES. | "Wind Mills and Pipes" 257 |
| Pettigrew, R. C..................... 133 | Baillairge, C., C.E.,-"Foundations". | Ross. R. A., E.E., C.E.-"Electrical |
| Rutherford, Ernest. B.A., M.A., B. Sc. 200 | Barrow, E. G., C.E.-"Purification of | Power Transmissions" 58. 165, 209, 247 |
| Ryan, Thos. | Scwage" . ..................... 121 | Ross, R. A., E.E., C.E.-"The Elec- |
| Wendell, John L.................... 134 | Bell, J. J.-"Strect Paving Materials". 6ı | rric Lighting of Trains" ....... 242 |
| Wilmott, A. E.. .................. $32 \dot{3}$ | Bomer. W. T.-"Rail Trucks for | Sjostedt, Ernest E., M.E.-"The |
| Walker, Jas. Wallace, M.A., Ph.D... 200 BIOGRAPHICAL SKETCHES. | Light Railways" ................ 71 Bonner, W. T.-"The Quimby Screw | Swedish Iron and Stecl Industry. as shown at the Stockholm Ex- |
| Armstrong, F. C. .................. 58 | Pump" $\qquad$ 100 | position" |
| Bear, Wm.......................... 134 | Bover, Prof. H. T., LL.D., D.C.L.- | Snow, Walter B. - "Mechanical |
| Coker, E. G.. B. | -Results of Experiments on the | Draught for Steam Boilers". 222, 248 |
| Chapman, | Strength of White Pine, Red | Smith. Cecil B.-"Railway Engineer- |
| Denison, F. Napi | Pinc, Hemlock, and Spruce" .... 92 | 57, 271, 301, 331 |
| Dodwell. C. E. W | Bowman, F. A., A.I.E.E.-"The Im- | out. Chas. . E.-"Boston Sewage |
| Dion, A | portance of Proper Methods of | Outfall" ....................... 340 |
| Galt, John | Illumination" .................. 103 | Turbayne. W. H., E.E.-"Series Arc |
| Gzowski, Sir | Bucke. R. M., M.D.-"A Short His- | Lighting" . . . . . . . . . . . . . . . . 318 |
| Henderson, Gordon | tory of Sewage Disposal at the | Trowern, P. T.-"Water Heat" .... 170 |
| Jennings, W. T.. ................... 289 | Asylum for Insanc, London, Ont. 155 | Watson, W. M.-"The Ventilation |
| Kingsford, $\mathrm{Dr}^{\text {r }}$ | Butler, M. J., C.E.-"Silica Portland | of Sewage Appliances" |
| Kinoch, James | nt" . ..................... 312 | Watson, W. M.-"Road Materials and |
| Lynch, William Hen | mpbell, A. W., C.E.-"The Infu- | Construction" |
| Mooring. G. C. | c of Pavements upon the Pub. | Watson. W. M.-"Report on the Pre- |
| Mountain, Geo. A. | lic Healh" ................... 183 | cipitation System of Sewage Dis- |
| Owens, R. B., E.E | Clipman, Willis. C.E.-'Waterworks | posal in Operation at Hamilton |
| Robcrtson, J. | Expropriations in Canada"...... 306 | Ont. . |
| Rutherford, Ernest. B.A., M.A., B. Sc. 200 | Duckham, Frederick Elliot-"Pucu- | Watson, W. M.-"Sanitary Experi- |
| Ryan. Thos. | matic Grain-handling Machinery" 49 | nts at Colognc. Germany" .... 62 |
| Walker, Jas. Wallace, M.A., Ph.D.. 200 | mer, J. T.. Ma.E.-"Inpulse | Watson, W. M.-"Errors in Drainage |
| Wendell, John L | Waterwheels" .......... 28, 89, 101 | Practice" . . . . . . . . . . . . . . . . 9 9 |
| Wilmott, A. E...................... 323 CORRESPONDENCE. | Golding, Wm.-"The Steam Enginc".. 88 Gibson, Thos. W.-"Watcrpowers of | Watson, W. M.-"The Chilcoot Hot <br> Air Heating Drum" ............. 111 |
| A.W.E.-"Acetylene Lamps" ...... 134 | Ontario" ....................... 189 | Watson, W. M.-"Sanitary Excesses" 123 |
| B.-"Who Introduced the Expansion Cylinder:" 201 | Hedley. R. A., M.E.-"The Possibilitics ior Smelting in British | " "، " - "An Unsanitary 12 |
| Baillairge, C., "Fires and Fire-proof Construction," | Columbia ............... ........ 50 ctzsky, Chas. G., C.E-"Recent | Watson, W. M.-"Purification of Scwage by Irrigation"........... 151 |
| Baillairge, C.-"Tidal Motors" ...... 83 | Methods of Sewage Disposal. ... 157 | Mising with Pure Water". |
| "-"Wind Pressure. Actual and Estimated" | Horetzsky, Chas. G., C.E.-"A Novel Mcthod of Scwage Disposal | Watson, W. M. - 'The Evils of Interception Traps, Etc." |
| Baillairge, C.-"Retaining Walls" . 251 | Especially Designed for the City | Watson, W., M.-‘A System of |
| " "-"Rolling or Ramming | of Toronto" . . . . . . . . . . . . 249,330 | Watson, W. M.-".................. |
| in Road Building" . ............ 351 | in, H., C.E.-"Disputed Points in | Scwage Disposal" .............. 318 |
| Candy, Frank-"Sewage Disposal"... 108 | Conncction with the Construction | Watson, W. M.-"Garbage Disposal |
| E. A.-"Sanitary Plumbing | and Maintenance of Macadamiz | in Montreal |
| Expert-'Toronto Sewage Disposal". 47 | Roads" ........................ 268 | struction of Garbage Destructors" 225 |
| Ficlding. John S.-"Dam Building"..: 349 | Jonah, F. G.-'"Concrete Railway | Wheeler, F. Meriam-"Economy Test of a Unique Form of Fecd Pump" 313 |
| Frood, Thos.-"Boats of "Dominion" | Structures" ..................... 252 | Williams, Julius M.-"Oits for the |
| Type" ....................... 254 | Kenyon, L. H.-"Ropes and Rope | Engine Room"'................. 140 |
| Frood Thos.-"Ottawa Ship Canal". 261 | Driving" ................... 16I, 194 |  |
| G-"Tenders for Electrical Plants".. 134 | Lconard, R. W.-"Masonry Pier | Woodworth, R. B.-"Some Noveltics |
| Gorflard, Massey Warner-"Garbage | Moved by Ice and Replaced".... 211 | in Swing Bridge Construction on the Trent Valley Canal" ........ 104 |
| Destructors" :................... 109 | Milne, James-"The Steam End" .... 101 | Wright, A. A.-"How to Overcome |
| Golding, Wm.-"A Floating Drydock" ............................. 227 | Mohun, E., C.E.-"Scwage Disposa! by Subsoil Irrigation" | Some of the Difficulties Encountered by Central Station Men" 66 |


[^0]:    -Now lesued in book form.

[^1]:    -A papersead before the Applied Sclence Graduates' Socetr of SeGill and pub. Hsbed exclastrely la the Canadian Eagiaeer.

