
, b2738193(E)

TECHNOLOGY

PROSPECTING

ABROAD

Dept. of External Affairs Min. des Affaires extérieures

JUN 1 1990

RETURN TO DEPARTMENTAL LIBRARY RETOURNER & LA DIBLIGTHEQUE DU MINISTERE

DRAFT VERSION

March 28, 1990

Science and Technology Division (TDS) External Affairs and International Trade Canada 125 Sussex Drive Ottawa Ontario K1A 0G2 (613) 996-4160

193422400000 43-275-408

. . . . • . •

TABLE OF CONTENTS

1.0	INTRODUCTION	5	3.10 Norway	67
2.0	NORTH AMERICA	7	3.11 Sweden	70
2.1 (Nat	United States of America tional Overview)	7	3.12 Finland	72
(- ·	2.1.1 Atlanta (Southeast U.S.) 2.1.2 Boston (New England)	9 12	3.13 Netherlands	75
	2.1.3 Cleveland (Ohio, Kentuc West Virginia and		3.14 Spain	77
	Western Pennsylvania) 2.1.4 Houston (Southwestern	14	3.15 Greece	79
	U.S.A.) 2.1.5 San Francisco (Colorado	18	3.16 Portugal	81
	Hawaii, Utah) 2.1.6 Seattle (Northwest USA	20	3.17 Israel	82
	2.1.7 St. Louis (Missouri)	24 26	4.0 ASIA/PACIFIC RIM	85
	2.1.8 New Jersey 2.1.9 Washington D.C. (Mid-		4.1 Japan	85
	Atlantic States Region) 2.1.10 Los Angeles (Southern	29	4.2 South Korea	89
	California) 2.1.11 Minneapolis (Minnesota		4.3 People's Republic of China	91
	Iowa, North Dakota, So Dakota, Montana and		4.4 India	93
	Nebraska)	33	4.5 Australia	94
3.0	WESTERN EUROPE	37	4.6 New Zealand	96
3.1	France 3.1.1 Rhône-Alpes	37 40	4.7 Singapore	98
3.2	West Germany 3.2.1 Baden-Wuerttemberg	42 44	5.0 EASTERN EUROPE	101 101
3.3	United Kingdom	46	5.2 Hungary	104
3.4	European Community (EC) Organization	- 50		101
3.5	Belgium	55		
3.6	Italy 3.6.1 Lombardy	58 61		
3.7	Austria	62		
3.8	Switzerland	64		
3.9	Denmark	65		

. . . . • . •

1.0 INTRODUCTION

echnology is the practical knowledge that is used to develop the products, processes and services that keep firms internationally competitive. In an increasingly technology-intensive global economy, knowing what the technology development environment is abroad and how to gain access to technology in other countries is imperative.

The purpose of this document is to describe, in succinct fashion, the technological trends and research programs in selected countries. The reader should note that this document is merely a snapshot of S&T activity in these countries, and provides a guide to some of the more visible activities.

These countries are serviced by the Science and Technology Counsellor and Technology Development Officer Network of External Affairs and International Trade Canada. The Science and Technology Counsellors, in eight posts abroad, monitor scientific and technological developments and respond to requests from Canadian organizations about technological opportunities. The Counsellors, in conjunction with Technology Development Officers, facilitate technology acquisition and technology transfer, and familiarize Canadian firms with the business practices and operations of science and technology organizations in foreign countries.

This document is designed with the needs of Canada's small and medium sized business sectors in mind.

This initiative is undertaken to facilitate international technology transfer and research co-operation between Canadian firms and technology development organizations and their counterparts abroad.

Science and Technology Division (TDS) External Affairs and International Trade Canada 125 Sussex Drive Ottawa, Ontario K1A 0G2

. . . . • . •

2.0 NORTH AMERICA

2.1 UNITED STATES OF AMERICA (NATIONAL OVERVIEW)

be United States, with a GNP of over \$4 trillion, is the largest and most diversified economy in the world. It spends about 2.8% of its GNP on R&D; the government and industry finance about equal shares (48%) of R&D, but industry actually performs about 70% of the R&D. When defence R&D is deleted, the United States spends about 1.8% of GNP on R&D. ●

The United States has about 66 R&D scientists and engineers per 10,000 population, equal to Japan and far ahead of other industrial countries. In industry, R&D is geographically widespread. American post-secondary education in terms of production of research and graduates is second to none in terms of quality. The United States does however face an increasing shortage of scientists and engineers making it a potentially large "sink" for highly qualified personnel trained elsewhere.

TECHNOLOGY TRENDS

The United States does not have an explicit industrial or technology policy. The United States federal government views its role in S&T as having two primary goals: (1) to support basic research, including academic research, where there is no economic motivation for industry to undertake the work on its own; (2) to fund R&D for national security purposes (the definition of national security is increasingly being broadened). Officially, all other civilian R&D is best determined and financed by the private sector. The United States is active in all areas of R&D, and continues to lead the world in most sectors but one notable area of weakness is the consumer electronics industry where the United States companies have been unable to compete successfully with other countries, especially Japan, even though it can lay claim to most of the basic innovations in the industry.

TECHNOLOGY STRENGTHS

The United States leads or is competitive in virtually all areas of technology. It has clear leadership in space and aerospace and related fields. Many of the most innovative companies in biotechnology, pharmaceuticals and medicine are American. It continues to lead in basic computer technology, especially in development and production of CPU's and specialized chips and clearly leads in computer software.

Many of the areas of United States strength are led by industry but there is often a large direct or indirect assistance from government programs such as the Department of Defence, the United States Space Program, the research work conducted or funded by the National Institutes of Health or the National Laboratories of the Department of Energy. In the future, these and other

• PAGE SEVEN

new big science projects such as the Space Station, the Human Genome Project, the Global Change Research Program, and the Clean Coal Technology demonstration program can be expected to have important commercial spin-offs.

KEY ORGANIZATIONS

The United States federal government with a budget of some \$1.2 trillion, is a huge force in the development of technology. This has been especially true in computers, communications and information processing technologies. Some of the key organizations influencing technology development in the United States federal government are:

The Department of Defense (DOD): DOD, with an annual budget in the order of \$300 billion, has and will continue to have a major influence on many areas of technology development with an emphasis on information technologies, advanced industrial materials and transportation R&D (air, land, and water). Canadian companies by virtue of the Defence Development/Defence Production sharing arrangements enjoy special access to many DOD procurements. One agency of special note is the Defense Advanced Research Projects Agency (DARPA) which is DOD's primary funder of advanced R&D and is the only agency in DOD whose mandate is to maintain United States' technological superiority without having to tie its work directly to a particular defence mission or project.

National Aeronautics and Space Administration (NASA): NASA, with an annual budget of \$10-12 billion, is the largest funder and procurer of advanced technologies in the civilian side of the United States government. With major programs in space science, space transportation,, manned space flight, remote sensing and communications satellites, it funds work in virtually all areas of R&D.

Department of Energy: The Department of Energy also has a large and diversified procurement of advanced technology goods and services, while access to its nuclear weapons programs will remain relatively closed to non-American companies. The massive cleanup of its weapons plants may provide opportunities to Canadian companies with expertise in nuclear/environmental technologies. New and renewable energy research is being revived by President Bush after being virtually eliminated during the Reagan administration. Almost every other agency of the United States federal government procures high tech goods under contract, many of which are open to Canadian companies by virtue of the FTA and GATT.

KEY SUPPORT PROGRAMS

The United States federal government has relatively few direct industrial support programs. The major influence is the massive size of the federal procurement for virtually the complete range of advanced technology goods and services. However, many states now have industrial/technology development support programs, most of which are directed at supporting or attracting local industry.

Every federal government department is required to operate a small business innovation research program (SBIR). This program is directed at United States resident companies, often start-up companies or older companies trying to diversify.

The United States federal government has in place a 20% R&D tax credit. Until now this credit has been subject to a two year or shorter life cycle. President Bush has proposed making the credit permanent and expanding the criteria for eligible expenses.

PAGE EIGHT

CONDITIONS OF ACCESS

United States officials make wide use of "Buy America" clauses in either authorizing programs or in appropriating funds. Canadian owned companies are exempt from many of these provisions as they apply to civilian government agencies by virtue of GATT and the FTA. Procurements below \$25,000 are subject to Buy America and not covered from the FTA. There are also "set asides" for small business and minority owned firms, which are only available to US firms.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

As in other areas, the United States is both the largest potential market for Canadian technology goods and services and our largest source of technology. The special defence relationship and our own export control laws, which mirror United States export control laws, give us special access to United States technologies which may be difficult or impossible for industry in other countries to acquire.

The United States market is a highly competitive one. Price and quality will ultimately determine success or failure in the consumer market.

CONTACT POINT Minister-Counsellor (Commercial) Canadian Embassy 501 Pennsylvania Ave. NW Washington, DC 20001

Tel: (202) 662-1740 Fax: (202) 682-7726

2.1.1 Atlanta (Southeast U.S.)

The Southeastern U.S. has approximately 20% of the U.S. population (43 million). The Southeast transacts over 11% of U.S.-Canada trade by dollar volume and accounts for approximately 17% of the U.S. GNP. Seven major technology concentrations exist in the following cities:

- Tampa/Orlando/Miami (FI) -6 million
- Atlanta/Georgia 3.8 million
- Charlotte/Greenville/Spartanburg (NC-SC) - 2.2 million
- Raleigh/Durham/Greensboro (NC0 - 1.6 million
- Knoxville/Nashville (Tn) 1.5 million
- Huntsville/Birmingham (Al) 1.5 million
- Mississippi 0.8 million

On a scientist per capita basis Huntsville, Alabama ranks number one in the U.S.A.; Raleigh/Durham, North Carolina is number six and Atlanta, Georgia is number eight. Major manufacturing sectors are: aerospace/military; furniture; forest products; automotive/transportation; communication/telecommunication; textile/apparel/carpet; printing; plastics; and poultry.

The Southeastern U.S. has several universities with technology development of national and international stature: e.g. Georgia Tech, Emory University, University of Alabama, North Carolina State University and the University of Miami.

TECHNOLOGY TRENDS

The area's principal specialities and directions are:

 Biotechnology: Strength in genetic mapping, immunology coordinated through the Center for Disease Control, universities and several R&D centers.

- Environment: Federal money has been earmarked for the Sunbelt Institute along with several universities and companies for R&D in atmosphere, ground water and waste control.
- Space: three NASA centers (Alabama, Florida, and Mississippi) have over 64% of NASA's \$12 billion budget developed in SEUSA, involving all final space technologies.
- Marine: five major R&D centers on east and gulf coast have Federal project funding.
- Military: Defence R&D budget in the territory reached over \$400 million in 1986.
- Engineering: Atlanta is nationwide hub for consultants (1400), because of excellent transportation (air) network out of Atlanta, and because of Georgia Tech as the number one engineering R&D university in USA.
- Transportation: Excellent systems and several of latest US rapid rail systems, along with good ship, rail, truck and highway provide the model intermodal systems. Atlanta, for example, has automated intermodal center for rapid interchange, rail to truck.
- Advanced Materials: The area is a major source of ceramic raw material in the U.S.; four major R&D centers comprise the hub for advanced materials development.
- Production Manufacturing Process: Several projects are in play to apply developed technologies to actual manufacturing processes.

TECHNOLOGY STRENGTHS

Areas of strength include:

- Aerospace: the largest employer in several southeastern states, with a large number of surrounding smaller spin-off companies.
- Poultry: the industry in Georgia has increased production by 200% while reducing the work force by over 60% the past several years (all with automation).
- Textile/Apparel/Carpet: the Southeast manufactures over 50% of U.S. finished products.
- Furniture/Woodwork: the first (North Carolina) and second (Mississippi) largest concentrations of furniture manufacturing in the Southeast which lead in wood product automation technologies.
- Pulp/Paper/Forest: the leading U.S. paper institute just relocated to Georgia Tech in Atlanta (where the international trade show TAPPI is held every other year).
- Communications: the leading U.S. area in manufacturing telecommunication and satellite machinery and equipment.
- Energy/Power: area has the two major U.S. nuclear research centers (Oakridge Tn and Savannah River Project SC) and five major power companies.
- Agriculture/Food: area has five major universities developing research along with three large research centers for initiating research (for example poultry processing).

KEY ORGANIZATIONS

These include:

- Universities: Georgia University System, University Alabama Huntsville, Duke, Clemson University, Mississippi University & Tennessee University. Each has full programs of industry projects that relate to state needs.
- Technology Transfer Conference Inc.: This company organizes six technology shows a year to link industry, government and university for technology transfer.
- Lloyd Patterson International Inc.: this company, which integrates all industries for technology transfer, is also linked to Florida NASA.
- Advanced Technology Development Center: a 20 year old Incubator with excellent record of graduating companies to the commercial world.
- Huntsville Association of Technology Societies (HATS): an organization with over 60 professional Associations for education and technology transfer.
- Oakridge Research Area/Savannah River Project: the top two atomic/nuclear R&D centers in the USA.
- Research Triangle Park: one of the largest joint ventures among four universities in US to assist commercial development.
- Georgia Institute of Technology: the largest US public university for engineering research; over \$130 million last year with over 1000 full time scientists.
- National Oceanographic and Atmospheric Research Laboratory (NOARL): three research centers where ocean and atmospheric technology is developed.

KEY SUPPORT PROGRAMS These include:

TECHNOLOGY PROSPECTING ABROAD

- National Aeronautics and Space Administration (NASA): three of the national centers (\$7B) for developing all technologies used in final space payloads, (Marshall, Kennedy, Stennis).
- National Oceanographic Research Data Agency (NORDA): two east coast and major gulf coast (S10M) research centres to co-ordinate US Navy R&D.
- Defence Advanced Research Programs Agency (DARPA): Considering locating HDTV (\$30M) project at the new Georgia Institute of Technology Microelectronics Center.
- Sun Belt Institute: A University/Industrial/Government \$60 million group for supporting environmental research.
- S E Association Egg & Poultry International: Leading group to promote & demonstrate technology in the industry.
- Bobbin International: Major group to promote technology to the apparel industry.

CONDITIONS OF ACCESS Very Open

• Local specifications, requirements and rules to be worked out for each technology.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Key opportunities in areas such as ocean industries, environmental technology, agriculture, pulp and paper, furniture, clothing, electronics and aerospace.

TECHNOLOGY PROSPECTING ABROAD

CONTACT POINT Technology Development Officer Canadian Consulate General Suite 400, South Tower One CNN Center Atlanta, Georgia 30303-2705 Tel: (404) 577-6810 Fax: (404) 524-5046

2.1.2 Boston (New England)

The area has a population of about 9,600,000 people or four % of the U.S. population. Because of a tradition of high technology development (i.e. Route 128) and world class universities (eg. MIT, Harvard), New England spends about 2.5-3% of its GDP on R&D.

Two way trade between Canada and New England reached \$11 billion in 1988. Our major imports were computers, semi-conductors, and telecommunications equipment although we did export \$630 million in advanced technology products.

TECHNOLOGY TRENDS AND STRENGTHS

The December 1989 meeting of the New England Governor's Conference focused on the importance of biotechnology to the economic future of the region. Estimates are that by the year 2000, the value of the biotech industry in New England will be over US\$ 100 B. Economists forecast the creation of 100,000 biotech jobs in the region during this decade. New England is one of the world's top centers for biotech and biomedical research. There is a great opportunity for technology transfer, joint R&D, and joint ventures between Canadian and New England companies.

Computer software has become a growth industry in the region. There are over 1,500 software companies in Massachusetts alone with industry leaders such as Lotus, Index Technology, and Bitstream. The US headquarters of Cognos is located just outside of Boston. The industry employs about 300,000 people. Many small and medium sized companies have expressed an interest in joint projects with Canadian companies. The mini-computer industry continues to be a dominant force in the regional economy despite the nationwide slump in computer sales. Recognized industry leaders such as Digital Equipment Corp., Prime, Apollo/HP, and Data General are based in Massachusetts.

On the academic side the region is home to over 150 colleges and universities. For virtually every discipline, at least one of the top centers of study in the world is located in New England. Among these the most important are: Massachusetts Institute of Technology (MIT), Harvard, Tufts University, Dartmouth College and Northeastern University.

Additionally, world class research institutes in oceanography (Woods Hole Oceanographic Institute), biotechnology (the Whitehead Institute), medicine (the Harvard hospitals), communications (the MIT Media Lab) and engineering (the Charles Draper Stark Laboratories) are located in New England.

KEY ORGANIZATIONS AND SUPPORT PROGRAMS

- Massachusetts Office of International Trade
- Massachusetts Computer Software Council
- Massachusetts Biotech Council
- The New England Governors' Conference
- MIT Industrial Liaison Program
- Harvard University Technology Transfer Office

CONDITIONS OF ACCESS

Very open except for "Buy America" and "set aside" policies described in Section 2.1, page 9.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities exist in ocean industries, computers, software, biotechnology, defence industries and instrumentation.

CONTACT POINT Technology Development Officer Canadian Consulate General Three Copley Place, Suite 400 Boston, MA 02116 Tel: (617) 262-3760 Fax: (617) 262-3415

2.1.3 Cleveland (Ohio, Kentucky, West Virginia and Western Pennsylvania)

This area is responsible for about \$20 billion (Cdn) in bilateral trade with Canada which is equal to that with the U.K., France, West Germany and Italy combined.

This territory is the home of 55 of the Fortune 500 industrial companies and 33 of the Fortune 500 service companies. It also has two foreign and 25 domestic automotive manufacturing plants and some of the largest producers of rubber, steel, electrical and consumer products.

TECHNOLOGY TRENDS AND STRENGTHS

Because of marked differences between the four states in this territory, the technology profile is presented in tabular form on the following pages.

CONDITIONS OF ACCESS

As a general rule, State funded organizations (such as OTTO) and programs (such as Ohio Edison Centers) are restricted to tech transfer from state laboratories and academia to Ohio industry. However, where technology development has been funded by universities and industry funds (including military and NASA R&D), it is open to licensing or competitive contracts from others, including Canadian industry.

ECONOMIC CONTEXT

	Ohio	Kentucky	W. Virginia	Western Pennsylvania
• GDP	\$222b	\$67b	\$315b	\$120b
 Population 	10m	4m	2m	4m
• Key Industrial Sectors	 automotive primary metals fabricated metal products defence products & services polymers maching 	 mining apparel & textiles lumber tobacco food products transportation equipment 	 mining primary metals chemicals & allied products equine mining 	 primary & processed metals (steel) machining computers (hardware & software) food products transportation equipment agriculture apparel and textiles machinery
• Exports to Canada (1988)	\$8.79b	\$1.24b	\$0.43b	\$1.75b
• Imports from Canada (1988)	\$4.35b (4th largest of U.S. states)	\$1.35b	\$0.30b	\$1.65b (8th largest of U.S. states)
R&D	Largest concentration is 2400 people in Labs at Wright Research & Development Center, plu NASA-Lewis and indust			3rd largest concentration of R&D after CA and MA

TECHNOLOGY PROSPECTING ABROAD

TECHNOLOGY TRENDS

Ohio	Kentucky	W. Virginia	Western Pennsylvania
 biotechnology 	7		 software (software Engineering)
 polymers 			Institute (CMU)
 advanced man 	ufacturing		 hi tech start-ups (biotech,
• AT WRDC: I strong compo high temperat materials	sites &		robotics, software, environmental systems - U of Pittsburgh R&D Park) • Nuclear and Energy Systems
• General: Incre emphasis & p for Technolog by State; USA	rograms ry Transfer F &		(Westinghouse)
municipal gov	rernments		

TECHNOLOGY STRENGTHS

Ohio	Kentucky	W. Virginia	Western Pennsylvania
 plant automation (Allen Bradley) 			 software, biotech, robotics special materials (CMU-
 polymer materials (B.F. Goodrich) 			software/special materials) (Pittsburgh U Industrial Park)
 aircraft jet engines (GE, WRDC) 			(Westinghouse Labs)
 advanced machinery (Cincinnati Milacron) 			
 advanced composites (WRDC) 			
 advanced avionics & structures (WRDC))		

KEY ORGANIZATIONS

Ohio	Kentucky	W. Virginia	Western Pennsylvania
• Wright Rese Developmen (military, US	t Center		 NASA Industrial Applications Center at U of Pittsburgh (technology search - \$500 fee)
• Ohio Techno Organization of Developm	n (Ohio Dept.		 Pittsburgh High Technology Council (600 local high tech firms)
• Dayton Area Network (10 tech firms, o mutual busir transfer)	0 local high bjectives:		 Mellon Institute (academia) Westinghouse Labs (commercial)
Edison Cent development tech transfer industry)	funding,		
 Ohio Advand nology Cent intended to between WH industry 	er (new,		

PAGE FIFTEEN

KEY ORGANIZATIONS

 Ohio	Kentucky	W. Virginia	Western Pennsylvania	
 Small Business 1 vative Research (help Ohio smal business with R proposals EPA Environme Research Cente (evaluate enviro systems & produ NIST Great La Manufacturing Technology Cer (Cleveland) 	Inno- Centers II &D ental r nmental ucts) kes			- - -
• Battelle Memor Institute (Colun (R&D in many s	nbus)			

ł

KEY SUPPORT PROGRAMS

 Ohio	Kentucky	W. Virginia	Western Pennsylvania
Wright Research	&		Ben Franklin Trust (PA State
Development Cer	nter		Matching Fund for R&D)
(competitive cont	racts		-
for R&D program	1s of		 National Environmental
all labs to industry	7)		Technologies Applications Corp
 NASA-Lewis Res 	earch		environmental technology.
Facility (in-house	&		(Heavy emphasis on
contracts to indus	try for		information licensing, JV &
R&D products to			R&D)
support NASA pr			
particularly in pov	ver		
systems for space			
platform)			
 Ohio Edison Cent 			
(State & Industry	funds		
for tech product			
development;			
clearing house for	high		
tech problems &			
solutions)			
 Most universities 	•		
large companies s			
R&D for their ow			
requirements & an			
prepared to licens			
 technology to other 	ers		

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The essential first step is to study the areas of industrial strengths and technology R&D strengths and trends outlined in this summary, decide what technology is desired, then contact the appropriate Trade Commissioner listed below for guidance as to possible sources. For contract development of technology in the space and aerospace sectors, Canadian companies should (1) reach the Commerce Business Daily, to learn about "Sources Sought" for various R&D tasks and "Requests for Proposal" for specific requirements, and (2) contact the Trade Commissioner at Wright-Patterson Air Force Base to discuss your technology requirements and receive suggestions on how to proceed, other contacts, etc.

CONTACT POINTS

Consul & Trade Commissioner Director, Defence Production Canadian Government Office MCLDDP, Bldg 11A, Rm 148, Area B Wright-Patterson Air Force Base Dayton, Ohio 45433 Tel: (513) 255-4382 Fax: (513) 255-1821

Consul & Trade Commissioner Canadian Consulate Illuminating Building 55 Public Square Suite # 1008 Cleveland, Ohio 44113 Tel: (216) 771-0150 Fax: (216) 771-1688 Consul & Trade Commissioner Canadian Government Trade Office Gateway One, 8th Floor, South Wing Pittsburgh, Pennsylvania 15222 Tel: (412) 392-2308 Fax: (412) 392-2317

/ TECHNOLOGY PROSPECTING ABROAD

Canadian Government Trade Office Chiquita Center, Suite 1500 250 E. Fifth Street Cincinnati, Ohio 45202 Tel: (513) 762-7655 Fax: (513) 762-7802

2.1.4 Houston (Southwestern U.S.A.)

The Southwestern States - Texas, Louisiana, Arkansas, Oklahoma, Kansas and New Mexico - represent approximately ten % of the U.S. population and total employment is estimated in excess of seven million jobs. Almost one-half of the jobs available are within the Houston Metropolitan Statistical Area (SMSA) and the Dallas-Fort Worth Metroplex.

The major industries - energy (68%), financial services, manufacturing (trade) and real estate - suffered from the 1980's oil slump. Defence-related manufacturing growth has slowed due to budget cuts. Some cities with strong economic anchors unrelated to oil and gas managed to escape the worst effects of the recession. Improvement is evident. Houston's energy industry has shifted its emphasis from exploration and production to refining and petrochemical manufacturing. And, the area economy has diversified and become less dependent on oil and gas, in general. Most major cities in the area have experienced job expansion in the last twelve month period. Employment growth in Texas is expected to average approximately 2.5% for the next two years. A broadening of the economy has left the area poised for steady growth and less prone to the boom and bust cycles characteristic of the past.

Canadian exports to the state of Texas total approximately US\$ 1 billion and over US\$ 450 million to the remaining five states.

TECHNOLOGY TRENDS AND STRENGTHS

Growing industrial diversity in the 1990's will be characterized by health care, biotechnology, computer, software, aerospace and telecommunications.

- Health Care The Texas Medical Center (TMC) (Houston), a strong confederation of 41 institutions, is one of the largest in the world, employing 55,000 and is Houston's biggest employer, renown for its cardiological and cancer research.
- The Dallas Medical Action Group, nine institutions to date, is aggressively raising its visibility in the area and internationally. A 7.1% gain in new jobs was experienced by the health service sector last year. More than US\$ 1.3 billion in construction projects are in progress at TMC and, upon completion, will add another 6,500 permanent jobs there.
- *Biotechnology* A significant number of biotechnology companies are emerging in Texas and New Mexico producing products and services including drugs, artificial joints and gene mapping and gene splicing techniques. Medical schools and research centers in both states encourage more technology transfer and commercialization and are receiving worldwide attention. The industry is moving from a science-oriented business to a product-oriented business. Biotech and related companies number close to 200 in Houston alone.

KEY ORGANIZATIONS

Major areas of research and development are conducted by the following institutions:

 Baylor College of Medicine & Center for Biotechnology (Houston, Dallas) - Molecular Genetics/Human Genome Research participation; Cardiology/DeBakey, Parkinson's Disease/Deprenyl Study; Other Neurological Disorders.

- University of Texas Southwestern Medical Center (Dallas) – Dowager's Hump.
- University of Texas Institute of Bioscience & Technology (Houston) - Major Medical and Agricultural Research.
- University of Texas Center for Biotechnology (Austin) - Insect Diagnostics for Agriculture.
- Texas A&M University/Texas Agricultural Experiment Station (College Station) - Brucellosis Project; Plant Genetic Engineering.
- University of New Mexico/Center for Non-invasive Diagnosis -Nuclear Magnetic Resonance (NMR).
- New Mexico State University/ Plant Genetic Engineering Laboratory - Rapeseed.
- LSU Medical School/Delta Primate Center - Major AIDs Research.
- Computers Compaq Computer Corp. (Houston) is the largest success story, followed by Dell Computer and Compuadd in Austin, and Tandy and Uniden in Fort Worth.
- Landmark Graphics and Geo Quest have carved out niches in the computer-aided explorated workstation market.
- The Microelectronics and Computer Technology Corporation (MCC) and Sematech consortia in Austin spawn additional high tech support industries.

- Software More than 1,400 software developers have emerged in Houston, the largest of which is BMC Software.
- Aerospace Aerospace contracting continues to assume a larger role in Houston's economic future due to NASA's presence. The two largest private space companies are located there - Space Industries and Space Services. Funding for the space station is expected to total USS 2.1 billion in 1990.
- Grumman opened its Southwest Regional Development and Production Center to handle NASA and defence contracts in 1990. McDonnell Douglas, Westinghouse and Boeing have significant presence at the Johnson Space Center (JSC).
- The Fort Worth Arlington area is heavily dependent on aerospace and defence through General Dynamics.
- Telecommunications GTE and Fujitsu American relocated to the Dallas MSA in 1989. Dallas is also the headquarters for Ericcson's U.S. operations.
- A consortium, the *Bluebonne Project* (Austin), is comprised of eleven of Texas' largest universities, research institutes and corporations to create a statewide telecommunications network - one of the fastest-growing high-technology fields - using high powered computers.

Other Important Organizations include:

 Texas Engineering Experiment Station (TEES) - Texas A&M ranks eighth nationally in research - est. USS 250mm. Environmental research, space power, CAD tools for circuit design and analysis. Texas Center for Superconductivity/ University of Houston - Dr. Paul Chu

TECHNOLOGY PROSPECTING ABROAD

- Research Corridor/Centers of Technical Excellence - New Mexico
- Center for High Technology Materials - UNM
- Center for Micro-engineered Ceramics - UNM
- Los Alamos National Laboratories
- DOE & University of California Sandia National Laboratories -
- DOE & AT&T Technology

CONDITIONS OF ACCESS

Federal contracts continue to represent a major contribution to Los Alamos and Sandia Laboratories, but as dependency on these contracts diminishes, accessibility improves. Other Research Corridor institutions welcome collaborative discussion and research.

MCC approved in June, 1989 foreign participation in its consortium, limited presently to Canadian companies.

All universities and research institutions welcome collaborative research and funding support. Foreign professors/researchers represent a significant percentage of staff.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The technologies of primary economic importance to the region parallel those vital to sustained economic growth of Canada - Biotechnology, Information Technology and Advanced Industrial Materials - Strategic Technologies.

CONTACT POINT Commercial Officer Canadian Trade Office 3935 Westheimer, Suite 301 Houston, Texas 77027 Tel: (713) 627-7433 Fax: (713) 621-0193

2.1.5 San Francisco (Colorado, Hawaii, Utah)

California is the sixth largest economy in the world and will be the fifth by the year 2000 with an economy estimated to be \$820 billion. California's \$500 billion dollar economy is larger than Canada's and California creates 400,000 new jobs each year. California has 27 million people now and will have 33 million by the year 2000. California ranked first in new businesses opened in the US and in new capital spending.

The Bay area has 5.6 million people and has an economy of \$125 billion making it the fourth largest market in the USA. High tech accounts for 1/2 of the manufacturing jobs and 1/5 of California's exports.

Colorado, which is also within the responsibility of this post, offers many opportunities in the defence sector.

TECHNOLOGY TRENDS AND STRENGTHS

Northern California is the centre of many new trends in the four or five areas of technology that it dominates. As a source of technology there is probably no greater source in the world based on accessibility and ease of access.

A. Biotechnology

"Biotech Bay" is the centre of biotechnology developments in the USA with over 250 biotechnology firms headquartered here. Experts estimate that about 30% of the biotechnology activity in the US takes place in Northern California. Like the computer industry, the biotechnology industry giants (eg Genetech) are spinning off many new companies and technologies that could be attracted to Canada. However, few other locations including Canada have the critical mass of talent, climate, research facilities and support industries required. B. Computer Hardware and Software, Telecommunications, Defence Electronics

TECHNOLOGY PROSPECTING ABROAD

Silicon Valley is the world centre for the computer industry. Most of the major computer chip manufacturers, Intel (\$1.9 billion), National Semiconductor (\$1.8 billion), Chips and Technology, Fairchild, Advanced Micro Devices (\$997 million) are based here as are the major manufacturers of chip making equipment. While the local market share of silicon equipment has fallen to around 35%, a largepercentage of new developments in computer technology still comes from this entrepreneurial centre.

Also headquartered here are the related industries such as: CAD/CAM; software development labs (eg IBM); personal computer manufacturers [Apple (10,000 people), Amdahl (10,000 people), Atari, Hewlett Packard (90,000 people), Tandem Sun]; Defence Electronics [CAE Link Singer, Harris, Litton, FMC, Avantek, California Microwave, Varian, Watkin Johnson]; Scientific Instruments [Varian, HP]; Telecommunications [3 Com, Novell, Northern Telecom, Rolm]; and Space [Lockheed Missles and Space, Ford Aerospace], etc.

KEY ORGANIZATIONS

Much of the early success in Silicon Valley is attributed to Stanford University. Stanford still runs a highly active technology transfer office that holds a large number of patents. Five other technology transfer offices exist in the area universities. Several private labs also have technology transfer offices.

Stanford is far from the only major university in the area. Other major institutions such as Berkley, Cal Poly, University of San Francisco, San Jose State, are all within the Bay area. On the industrial side such research facilities as the Xerox Research park in Menlo Park (home of the Macintosh ikon approach and desktop publishing to name a few), Stanford Research Institute (3500 researchers) are all potential sources of technology cooperation agreements and collaboration.

On the government side, major labs such as Lawrence Berkley (6000) researchers, Lawrence Livermore (7000 researchers) for weapons, materials, and supercomputing are important.

The private sector has extensive research programs. For example IBM has over 2000 researchers at its St. Theresa research facility. Genetech runs one of the largest biotech/pharmaceutical commercial research and development labs in the US.

KEY SUPPORT PROGRAMS

California is open for business. Over 25% of investment is from foreign sources and most of this investment is in the technology sectors.

A. Venture Capital

Silicon Valley is the home of 25-30 % of the venture capital for high tech in the US. This large venture capital pool supports a significant percentage of the R&D done by the small entrepreneurial companies in the Valley.

B. Defence Spending

NASA Ames, Lockheed satellites, etc. are examples of military and space programs that are partially government funded and that support the local R&D community. In 1985 over 30 billion dollars in defence prime contracts were received by California firms. California receives over 20.8% of the prime defence contracts fuelling a large amount of high tech research and contracts.

C. Government

Government has played a limited role in the development of the Valley. Initially government was a large customer for chips. Now it accounts for less than 10% of the electronic parts sold out of the Bay Area.

CONDITIONS OF ACCESS

There are almost no restrictions to Canadian firms participating in most of the research programs at most of the sites listed above.

Patent protection has little if any impact. Most local firms figure that they have to protect themselves by winning market share. Technology moves too fast for patents to be much protection. In biotechnology patents may be more of a factor due to the longer lead times for products to receive FDA approval.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

California is the centre of research in so many areas of interest to Canada that it is almost impossible to list them all. Aside from the vast potential offered by microelectronics, from its huge agricultural base, California funds biotechnology research that will have a great effect on Canadian agriculture. Other major efforts include the mapping of the Human Genome, a project estimated to be equivalent to going to the moon in its complexity.

CONTACT POINT Canadian Government Trade Office 4677 Old Ironsides Drive STE 270 Santa Clara California 95054 Tel: 408-988-8355 Fax: 408-988-6315

2.1.6 Seattle (Northwest USA)

TECHNOLOGY PROSPECTING ABROAD

The overall economic outlook for Seattle post territory of Alaska, Washington, Oregon and Idaho continues to be positive in particular greater Seattle and Portland. The foundation for this strong economy is Boeing's growing backorder of commercial aircraft worth \$85 billion today; expanding software development houses in particular Microsoft; diversifying forestry companies such as Weyerhaeuser; expanding Japanese investment in high technology manufacturing facilities in Portland which number 71 companies today and decreasing levels of unemployment. No figures are readily available on R&D expenditure in territory, however, given the nature of two of the principal businesses in the territory (aerospace & software development) it would be above national averages. Also, above national levels would be the number of engineers, scientists and technicians. For example, Boeing has 15,000 engineers and 13,000 technicians on its payroll.

TECHNOLOGY TRENDS

Today, the technology industry in the Pacific Northwest is strongly backed by government, educational and industrial leaders. This support has contributed to the necessary ingredients for a bright future, including an existing critical mass of "home grown" technology companies with world-wide reputations, technology centers of excellence like the Technology Corridor in Washington and Oregon Center for Advanced Technology Education, strong technology centers in the leading universities and a highly trained work force. The future growth in the technology industry in the Pacific Northwest will come from three principal areas: expansion of existing companies, spin-offs from existing companies and relocation of established companies to territory particularly from Japan. Published figures state the technology work force in this territory will grow by 50% in the next 20 years.

PAGE TWENTY TWO

TECHNOLOGY STRENGTHS

The major technology strengths in this territory can be found in all aspects of commercial aircraft manufacturing and systems integration, defence aircraft & systems, space based radars, space stations, application software development, operating software systems, computer test equipment, biotechnology with emphasis on forestry and medical, oceans and atmosphere research and oil spill clean up.

KEY ORGANIZATIONS

Most of technology development undertaken in this territory is done by the private sector in particular with the Boeing Company, the territory's largest employer (110,000 employees). Boeing's following subsidiaries are responsible for most of the technology activity: Boeing Commercial Airplanes, Boeing Computers and Boeing Defence & Space Group. Other key private sector organizations include Microsoft, Microim, Aldus, University of Washington, Fred Hutchinson Cancer Research, Immunex, Tektronix, Mentor Graphics, Intel, and Weverhaeuser. Government agencies actively involved in technology development include Bonneville Power Administration and National Oceanic and Atmospheric Administration.

KEY SUPPORT PROGRAMS

No programs exist, however Boeing Defence & Space Group is always interested in working with capable Canadian companies.

CONDITIONS OF ACCESS

With the rare exception of a defence procurement policy preventing Canadian companies from participating, there are no barriers to Canadian companies wanting collaboration.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities lie in the areas highlighted in the section on Technology Strengths.

CONTACT POINTS

Senior Trade Commissioner Canadian Consulate General 412 Plaza 600 Sixth & Stewart Street Seattle, WA 98101-1286 Tel (206) 443-1777 Fax (206) 443-1782

2.1.7 St. Louis (Missouri)

The population of the region is 5,141,000 (15th in the US). The major cities are St. Louis, population 2,420,000 (11th in the US) and Kansas City, population 1,518,000 (24th in the US). The gross state product is \$92.45 billion (US) and the labour force is 2,550,000. The state provides company headquarters for 25 Forbes 500 companies and 16 Fortune 500 companies.

The key industries in Missouri are manufacturing (transportation equipment), agriculture (cattle and soybean), minerals and fuel (lead, cement and stone), construction, and military related industries.

Ranked in order of value of exports in 1988 are the following sectors:

- transport equipment: \$1.1 billion
- chemicals/chemical related products: \$239 million
- industrial machinery: \$200 million
- computers: \$200 million
- electronics: \$190 million.

Since 1984, total spending on research and development by the State of Missouri has totalled over \$50 million.

In 1989 approximately \$1.1 million was funded by the federal government through the Small Business Innovation Research facilities. Another million in federal funds was passed to the centers for Advanced Technology.

In total, the federal government has spent more than \$5 billion in Missouri for research and development in the past year.

TECHNOLOGY TRENDS / STRENGTHS

Large firms in the Missouri area such as Monsanto and Ralston Purina have been strong in the fields of biotechnology, biochemistry and genetics. Recently, Monsanto has joined together with Washington University, also very strong in research capabilities, for a collaborative research venture. Over a period of 8 years, ending in 1991, Monsanto will have given Washington University \$62 million for biomedical and biotechnological research.

TECHNOLOGY PROSPECTING ABROAD

The company also has built a \$150 million life sciences laboratory expanding the spectrum of their research. This complex will focus on biotechnology, genetics, and biochemical sciences.

Ralston Purina has strong research capabilities in the food science sector.

General Dynamics, headquartered in St. Louis, is working with NASA to develop the first privately built rocket launch facilities.

McDonnell Douglas, a leader in aerospace and largest employer in St. Louis with 44,000 employees, received S2.9 billion in government research funding in 1989 (12% of total defence research). The company is the nation's largest defence contractor, with more than \$8 billion in annual contracts. They are negotiating with NASA to build the Delta rocket launcher at Kennedy Space Center.

Other than these private companies, many learning institutions in the region have strong research capabilities and often work alongside the private companies in joint ventures.

There are about 1500 other technologically based companies in the area, with specific strengths in agriculture, robotics, aerospace (composite and advanced materials), biotechnology (human therapeutics, plant agriculture, animal agriculture, pharmaceuticals and diagnostics), engineering and computer sciences.

KEY ORGANIZATIONS / SUPPORT PROGRAMS

In 1983, the Missouri Corporation for Science and Technology was created to strengthen the state's economy by encouraging the development of science and technology through various programs.

Private firms have underwritten sources of seed capital, such as in the Capital for Business Fund and the Gateway Mid America Fund I and II.

The Higher Education Applied Projects (HEAP) Fund was established in 1982. This program assists businesses in bringing new technologies to the market by using the higher education institutions in the area. The Missouri Department of Economic Development is in charge of administering this fund.

In Missouri, there are four Innovation Centers which started in 1984. The centers are located at University of Missouri campuses at Columbia, Rolla, St. Louis, and Kansas City. They were set up as support programs for entrepreneurs and innovators, helping firms at various stages of their projects. Approximately S33 million in private funds have been made available for these centers.

In addition to these four innovation centers which assist industry, research oriented Centers for Advanced Technology have been created through the University of Missouri at Kansas City, Washington University and University of Missouri at Rolla. Each institution will target specific technologies: telecommunications, plant technology, and manufacturing research, respectively. The Center for Advanced Technology in Telecommunications/Computer Networking is being organized at the University of Missouri in Kansas City which will emphasize research, technology transfer, education/training and innovation.

The Center for Advanced Plant Technology at Washington University will genetically engineer plants to be stress resistant in their environment, thus leading to improved crop productivity and decreased cost. This technology will be transferred for commercial use.

On a larger scale, there are centers being organized by the private sector and the State of Missouri. In 1985, the St. Louis Technology Center opened as an incubator for smaller firms trying to establish themselves in the high technology industry. This center is the first enterprise of its kind in the area, capitalized with a S4 million seed fund.

Most recent is the Missouri Research Park being built just outside of St. Louis. This park is the project of the University of Missouri in cooperation with other universities in the area. The park will concentrate its efforts on attracting companies that will use the strength of the universities in the areas of agriculture, computer sciences, robotics, aerospace technology, biotechnology, and engineering.

A similar project is in the planning stages through the University of Missouri at Kansas City, where a 62 acre research park of similar capacities is being designed.

CONDITIONS OF ACCESS

Open markets, No barriers.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Major opportunities exist in:

- aerospace (composites, fine materials, avionics)
- biotechnology (human therapeutics, plant agriculture, animal agriculture, diagnostics, pharmaceuticals)
- electronics; and
- telecommunications.

CONTACT POINT

Canadian Government Trade Office 231 South Bemiston, Suite 800 St. Louis, Missouri 63105 Tel: 314-862-0130 Fax: 314-862-3129

2.1.8 New Jersey

The gross state product is about \$156,898 million (1988) and the population is 7,721,000 (1988). Exports which are 12th in U.S. amount to \$6 billion (1988).

In 1988, the state's industrial and academic R&D labs of which there are over 700, spent more than \$14.7 billion. This represents roughly 10% of gross state product and accounts for 11% of R&D funds spent nationwide. These 700+ laboratories employ almost 170,000 scientists and engineers, or 43 per 1000 of labour force, giving New Jersey the highest per capita concentration of scientists and engineers in the U.S. New Jersey ranks third in the U.S. for the number of patents issued to residents, accounting for 10% of all U.S. patents.

The following lists key industrial sectors, along with their rankings on a U.S.-wide basis:

- pharmaceuticals and healthcare (#1)
- chemicals (#2)
- rubber and plastics (#5)
- instrumentation/related products (#6)
- petrochemicals (#7)
- fabricated metals and leathers (#9)
- electrical and electronics equipment (#10) (but with a leading position in telecommunications).

TECHNOLOGY TRENDS

In 1985, New Jersey, the "Invention State," established the Commission on Science and Technology to stimulate economic growth through science and technology. Cooperation and cost-sharing are characteristic of the Commission's initiatives and the Commission is making strategic investments in university research and technology-based business targeted to New Jersey's economic future. The Commission is a partnership of academia, industry and government with all of these points of view reflected in its 18-member board. The Commission's strategy for economic development depends on building the technology infrastructure at research universities and on providing long-term support for R&D - to encourage industry and the federal government to match New Jersey's investments. These investments are targeted to four scientific fields identified as New Jersey's strengths:

- biotechnology
- telematics (informatics)
- advanced materials
- environmental protection technologies

TECHNOLOGICAL STRENGTHS

The four scientific fields that have been identified as New Jersey's strengths reflect the industrial structure of the state in key areas such as pharmaceuticals, chemicals, food processing, rubber and plastics, and electronic equipment. To support its mission of generating economic growth through science and technology, the New Jersey Commission on Science and Technology has funded a network of eleven Advanced Technology Centers (ATC's) with the following research foci:

A. Biotechnology

• human health - (molecular genetics; structural biology; cell and developmental biology; molecular pharmacology)

• food technology - better food processing technologies

 agriculture - application of tools of molecular biology to improve quality/productivity of plants, animals and environmental systems

B. Telematics - advanced computing devices geared to (informatics) improving industrial design, productivity and quality control

- C. Advanced Materials ceramics, fibre optic materials, optoelectronic materials, superconductors
- D.Environmental Protection Technologies - hazardous waste reduction, recycling and recovery of waste plastics

The Commission has also founded Technology Extension (TEX) Centers to facilitate the transfer of information and new technologies from university laboratories into industry. These centers have been established in:

- polymer processing
- information services
- food processing
- fisheries/aquaculture
- cancer diagnosis and treatment

KEY ORGANIZATIONS

As previously mentioned, there are over 700 industrial and academic R&D laboratories within the state of New Jersey. One of the better known is the David Sarnoff Research Center located in Princeton, New Jersey. New Jersey is also home to a number of academic institutions with recognized expertise in technological areas of importance to the state. Among them are Princeton University, Rutgers University, the New Jersey Institute of Technology, the University of Medicine and Dentistry of New Jersey, the Stevens Institute of Technology.

The Princeton Plasma Physics Laboratory, funded by the U.S. Department of Energy, conducts research into magnetic fusion energy. Its research and development in the field has led to advances in the state-of-theart of numerous physics, engineering and technological disciplines with potential for non-fusion applications e.g., plasma technology, vacuum technology, neutral beam technology. A key organization in the promotion of science and technology is the New Jersey Commission on Science and Technology with its network of eleven Advanced Technology Centers and five Technology Extension Centers.

KEY SUPPORT PROGRAMS

The N.J. Commission on Science and Technology funds a grants program (Innovation Partnerships) in partnership with the state's private companies to provide funds to support academic researchers pursuing investigations into immediate and specific industrial problems. The Commission's Business Development Programs include: "Bridge Grants" to help small research firms secure federal research funding to discover novel technologies to launch new businesses; a "Venture Match" program to team venture capitalists with promising enterprises; the "Entrepreneurs Forum" where business leaders share financial, managerial and marketing skills with technology driven entrepreneurs; a network of "business incubators" to provide new technology and science-based firms with space and support services linked to the state's universities and laboratories.

CONDITIONS OF ACCESS

The N.J. Commission on Science and Technology has recently amended its policy on access by foreign firms to the technologies and expertise housed in its eleven advanced technology center (ATC's) to permit Canadian firms and research institutions access as if they were New Jersey firms. This means that Canadian firms can apply to become a member of an Industrial Advisory Board of a given ATC which would mean full access to the generic research performed by that ATC. Alternately, Canadian firms can enter into a bilateral relationship with an individual ATC to access technology.

This improved access for Canadian firms and research institutions is predicated on reciprocal access by New Jersey firms and research institutes to technology developments in Canada.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

There are excellent enhanced opportunities for Canadian firms to access technology in New Jersey's four areas of concentration: biotechnology, telematics, advanced materials, environmental protection technologies. In addition, technologies available from private research centres, like the David Sarnoff Research Center, can be licensed for specific applications.

CONTACT POINT

Consul and Trade Commissioner Canadian Government Trade Office Princeton Corporate Center 5 Independence Way Princeton, New Jersey 08540 Tel: 609-452-1929 Fax: 609-452-2632

2.1.9 Washington D.C. (Mid-Atlantic States Region)

TECHNOLOGY PROSPECTING ABROAD

The prosperous 72,000 square mile mid-Atlantic corridor of the United States boasts a heavy concentration of technology-based businesses. With a population of 16 million consumers (6% of the U.S. total), the region is home to 9% (or C \$350 billion) of American personal disposable income. The greater Washington-Baltimore metropolitan areas have a highly skilled workforce which in 1989 included 183,000 scientists and engineers. Fifty one% of all technology professionals hold masters degrees and their average annual income is \$75,000. Defence, aerospace, electronics, telecommunications, and informatics are major industries. The U.S. Federal Government's annual procurement of goods and services encompasses most product areas and total some C\$186 billion. The Delaware Valley economic region which includes Philadelphia and environs is strongly influenced by the automotive, pharmaceutical, medical, and chemical sectors. Key mid-Atlantic exports include passenger automobiles and parts, plastics, chemical products, telecommunication equipment and computers.

TECHNOLOGY TRENDS

The national capital area (which encompasses adjacent counties in Maryland and Virginia) is the fastest growing major technology centre in the United States. Technology-related job creation is currently growing at a rate 250 times that of overall employment. By the turn of the century, it is predicted that the region will surpass California in national high technology prominence and become the U.S. focal point for global activity in this area. Washington technology companies represent one fourth of the 4,000 new corporations formed in the region each year. More than 10% of the nation's biotechnology firms are located in Maryland, and the number is growing exponentially as newcomers and startups are lured to an industry area anchored by one of the world's premier biomedical research facilities, The National Institutes of Health, as well as the State-funded Maryland Biotechnology Institute. Metropolitan Washington is also a dynamic growth hub for information systems development and electronics manufacturing, as is Eastern Pennsylvania in the rapidly emerging life sciences field.

TECHNOLOGY STRENGTHS

Sub-regional strengths break out as follows:

- Maryland
 - biotechnology (over 119 firms producing diverse range of products; Johns Hopkins U. and other educational institutions; NIH)
 - aerospace, defence electronics (Martin Marietta, Bendix Field Engineering Corp.)
 - computer systems (Integral Systems Inc., Computer Data Systems Inc., CompuDyne Corp.)
 - test and measurement equipment (E.I.L. Instruments Inc., Telecommunications Techniques Corp.)
- Delaware
 - advanced materials (U. of Delaware, Dupont)
 - food processing (Cargill Inc., Conagra, Draper-King Cole, Perdue Farms)
 - chemicals/specialty chemicals (du Pont, Hercules, I.C.I.)
- E. Pennsylvania
 - pharmaceutical, health care and chemicals (Smithkline Beecham, Rohn & Haas, Abbott Labs, Warner Lambert, Roher Group, etc.)

PAGE TWENTY NINE

- instrumentation/related products (ie. medical device commercialization -Thomas Jefferson U; Schott Optical and numerous other firms.)
- metalworking (Bethlehem Steel, Carpenter Tech. Corp., Continental Wire & Cable, etc.)
- Virginia
 - electronic computer & telecommunications equipment (Fairchild Industries, Systems Technology Assoc., Genicom Corp, Flow General & Comdial)
 - forest products (James River Corp, Chesapeake Corp.)
 - specialized high-tech manufacturing (lasers/Digital Optromics, ISOMET; also silicon chips, interferon, rocket motors, robotics, etc. produced by a variety of companies).

KEY ORGANIZATIONS / SUPPORT PROGRAMS

A number of institutions of higher learning are heavily engaged in basic research that provides a foundation for follow-on commercialized technology. The Johns Hopkins University is a mid-Atlantic leader in this regard, with a \$300 million annual R&D budget devoted to work in the fields of biology, medicine and genetic engineering.

Montgomery County High Technology Council (MD)

Comprised of 150 area high tech firms, government research facilities, colleges and universities, this consortium is charged with establishing linkages between corporations, entrepreneurs and support industries.

Ben Franklin Partnership (PA)

TECHNOLOGY PROSPECTING ABROAD

Designed to promote advanced technology in mature as well as emerging industries, the partnership links state, private and educational resources in an effort to increase international competitiveness, recruit new investment, and support small spin-off businesses. The six year old organization has injected over \$105 million in state-funds into PA technology projects and has attracted more than \$400 million in private matching support. Grants have established four Technology Centers which provide joint R&D education and training, and entrepreneurial assistance to their respective regional clients.

CENTER FOR INNOVATIVE TECHNOLOGY (VA)

The Ben Franklin counterpart in Virginia, CIT is a public/private sector partnership which endeavours to maximize scientific and technical talent at the conceptual, technology transfer, and commercialization stages of product development. The Centre supports three research institutes at various universities, ten Technology Development Centers, and seven Innovation Centers.

REGIONAL SCIENCE AND TECHNOLOGY EDUCATION FACILITIES

In addition, the greater Washington area is home to over 1,500 intellectual property, patent and trademark attorneys, some 2000 industry associations (60 related to biotechnology alone), and the nation's fourth largest concentration of computer programming and related service centers. Venture capital companies are heavily represented throughout the region.

CONDITIONS OF ACCESS

Private sector access to U.S. federal government research is strongly influenced by the Technology Transfer Act of 1986. This legislation permits federal laboratories and federally employed scientists and engineers to collaborate jointly in research efforts with industry. There is a demonstrated preference for U.S. incorporated companies (rather than out-ofcountry partners). Commercialized technology resulting from these arrangements must be manufactured in the United States under the terms of the Act.

With regard to technology collaboration between private sector partners, access for Canadian firms in the mid-Atlantic region-as in the rest of the U.S.-is governed by strategic business interests.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Key areas of opportunity for Canadian firms in the Pennsylvania to Virginia Corridor include those related to the biomedical, advanced materials, food processing, informatics and electronic industries. The supplementary material enclosed will provide some idea of how considerable the scope for partnership is in this region.

CONTACT POINT Counsellor (Commercial) Trade and Investment Development Canadian Embassy 501 Pennsylvania Ave N.W. Washington Tel: (202) 682-1740 Fax: (202) 682-7676

2.1.10 Los Angeles (Southern California)

TECHNOLOGY PROSPECTING ABROAD

With an estimated gross regional product of US \$412 billion, Southern California ranks 10th in the world in economic size, slightly smaller than Canada (1989).

The region's 18.5 million people are concentrated primarily in Los Angeles, Orange and San Diego Counties, as is the bulk of Southern California's manufacturing activity.

Between 25% and 30% of the region's work force is dependent on manufacturing. Nearly a third of Southern California's manufacturing is in the areas of aerospace, defence and electronics. In fact, Southern California has the highest concentration of defence and aerospace firms in the United States. The biotechnology, robotics, advanced telecommunications and medical instrumentation industries are also taking on an increasingly important role in the region's economy.

TECHNOLOGY TRENDS

Technology development is centered around:

- Aerospace technology, both military and civilian, in the South Bay and Antelope Valley regions of Los Angeles County. Although the impact of defence cuts will be felt throughout Southern California's military-industrial complex, the missile-related sector will be particularly hard hit. Strong worldwide demand for commercial aircraft should enable aviation-related firms to weather the Pentagon's cost-cutting measures with less hardship.
- Computer software in the San Fernando Valley.

PAGE THIRTY ONE

- Communications equipment, aerospace, medical instrumentation and electronics in Orange County, particularly the cities of Irvine, Anaheim and Fullerton.
- Biotechnology, aerospace and scientific and medical instrumentation in San Diego.

TECHNOLOGY STRENGTHS

Within the state of California, US \$26 billion is spent on R&D. A large proportion of that spending takes place within Southern California's largest aerospace firms: Rockwell International, Lockheed, Northrop, Litton Industries, Hughes and McDonnel Douglas. Major universities such as the California Institute of Technology (including the Jet Propulsion Laboratory), the University of California at Los Angeles, the University of California at San Diego, and the University of Southern California also conduct valuable technological research.

KEY ORGANIZATIONS

Aside from its well-endowed research universities, Southern California's strongest technology development organizations come from within private industry. The most important such organizations are SO\CAL\TEN (Southern California Technology Executives Network) and its partner organizations, RIMTech (The Research Institute for the Management of Technology).

KEY SUPPORT PROGRAMS

California is open for business. Over 25% of investment is from foreign sources and most of this investment is in the technology sectors.

A. Venture Capital

Silicon Valley is the home of 25-30 % of the venture capital for high tech in the US. This large venture capital pool supports a significant precentage of the R&D done by the small entrepreneurial companies in the Valley.

B. Defence Spending

NASA Ames, Lockheed satellites, etc. are examples of military and space programs that are partially government funded and that support the local R&D community. In 1985 over 30 billion dollars in defence prime contracts were received by California firms. California receives over 20.8% of the prime defence contracts fuelling a large amount of high tech research and contracts.

C. Government

Government has played a limited role in the development of the Valley. Initially government was a large customer for chips. Now it accounts for less that 10% of the electronic parts sold out of the Bay Area.

CONDITIONS OF ACCESS

There are almost no restrictions to Canadian firms participating in most of the research programs at most of the sites listed above.

Patent protection has little if any impact. Most local firms figure that they have to protect themselves by winning market share. Technology moves too fast for patents to be much protection. In biotechnology patents may be more of a factor due to the longer lead times for products to receive FDA approval.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

While Southern California remains one of the world's most dynamic markets, the region faces serious problems as a result of its remarkable growth. Environmental and transportation concerns top the list. Environmental products such as pollution control equipment and toxic waste management systems will be key areas of opportunity for Canadian firms, as will mass transit equipment. Opportunity will continue to exist in the aerospace industry, but not to the extent known in the 1980s.

Telecommunications, electronics, medical instrumentation, software, and biotechnology will continue to be areas of tremendous technology transfer opportunity.

CONTACT POINT Canadian Consulate General 300 South Grand Avenue 10th Floor California Plaza Los Angeles, California U.S.A. 90071 Tel: (213) 687-7432 Fax: (213) 620-8827

2.1.11 Minneapolis (Minnesota, Iowa, North Dakota, South Dakota, Montana and Nebraska)

The region produces some 4.3% of total U.S. gross domestic product (GDP). Two thirds of goods and services produced in the region are from the states of Minnesota (42.3%) and Iowa (24.5%).

The Region represents 4.5% of the U.S. population. Major concentrations of population are in Minneapolis-St. Paul, Des Moines, Iowa, Omaha and Nebraska.

Minnesota and Iowa dominate the manufacturing sector producing over 80% of the region's output. Agriculture is a major sector in all states with the region generating 17% of U.S. production. Mining is an important contributor to the economies of Montana and North Dakota.

Located in the region are 24 Fortune 500 firms. The Minneapolis-St. Paul area is considered a leading high-tech center in the U.S.Minnesota employment in high-tech firms numbers about 180,000 with approximately 40,000 producing office and computing machines, the largest high-tech industry segment.

Key industrial/high-tech sectors include (1) office and computing machines; (2) medical devices; (3) scientific/testing instruments; (4) telecommunications equipment; (5) computer peripherals; and (6) electronic components. Minnesota manufactures/sells nearly S5.2 billion (U.S.) of computers and electric/electrical equipment. A nation-wide computer industry slowdown has affected the state of Minnesota due to its production of mainframe, or large-scale computers, by firms such as Control Data, Honeywell and Unisys. It is estimated that mainframe sales have increased only 8.8% over the past two years versus 17.5% for the U.S. computer industry.

Offsetting the slowdown in mainframe computers are the success stories of Cray Research (Minneapolis, MN) in super computers and IBM (Rochester, MN) in mini-computers and personal computers. Other sectors experiencing high growth trends are medical devices software development and biotechnologies.

TECHNOLOGY STRENGTHS

While R&D is funded in university laboratories by federal, state and private sectors, the overwhelming thrust in technological research is performed by individual private companies. Specific firms are identified below by key areas of technological strength:

	Key Technology	Specific Firm (major products)
1.	Computers	 Cray Research (large-scale scientific computers) Control Data Corp. (mainframe computers) Unisys (mainframe computers) IBM (mini-computers and PC's)
2.	Medical Devices	- Medtronics (pacemakers, heart valves) - 3M (health and safety products) - Starkey Laboratories (hearing aids) - St.Jude Medical (heart valves)
3.	Software	 National Computer Systems (financial systems for bank trust departments) Lawson Associates (business applications) MicroEd (educational software) MECC (educational software)
4.	Biotechnology	- SciMed Life Systems (disposable medical devices) - Incstar (hormones, measuring kits) - Northrup King (seeds) - Pioneer Hybrid (seeds)

TECHNOLOGY PROSPECTING ABROAD

KEY ORGANIZATIONS

Key organizations involved in the high technology development include the following: the Minnesota Department of Energy and Economic Development (St. Paul), the Greater Minnesota Corporation (Minneapolis), the University of Minnesota (St. Paul), the Minnesota Trade Office (St. Paul), the Iowa Department of Economic Development (Des Moines), the Nebraska Department of Economic Development (Lincoln), the North Dakota Development Commission (Bismarck), the Governor's Office of Economic Development (Pierre, South Dakota), and the Montana Department of Commerce (Helena).

KEY SUPPORT PROGRAMS

The thrust of support programs by the individual states is aimed at attracting new industry to the state and developing increased economic growth. Numerous options for achieving these goals are utilized, including joint ventures, financial packages/incentives, R&D support by state universities, etc.

CONDITIONS OF ACCESS

In addition to the U.S. federal programs of "Buy America" and "Set Asides" for small business and economically disadvantaged firms, individual states have programs which restrict Canadian access to contracts via limiting a portion of state procurement to companies located within the state. These limitations are viewed as being relatively minor as regards high technology products and/or joint activities concerning research and development projects/ventures.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities exist for Canadian firms and research organizations with the companies identified in the prior section on Technology Strengths. Product sectors/technologies include medical devices, computers, peripheral equipment, software, semi-conductors testing equipment, process control devices, telecommunication systems, printed circuit boards, robotics, and electronic/mechanical components. Opportunities are not limited only to large companies as Minnesota is home to more than 2,100 high-tech companies, many of which are small, entrepreneurial, niche market, high-growth firms.

CONTACT POINT

Canadian Consulate General 701 Fourth Avenue South Suite 900 Minneapolis, Minnesota U.S.A. 55415 Tel: (612) 333-4641 Fax: (612) 332-4061

. . . . • . •

WESTERN EUROPE 3.0

3.1 FRANCE

itb a GDP of about \$700 billion (US) and a population of 56 million, France is a major force in Europe. Its major exports are machinery and transportation equipment, chemicals, food stuffs, agricultural products, iron and steel products, textiles and clothing. Because it has to import a large part of its energy, France has opted for nuclear energy and has the largest civilian nuclear program in 33

Europe. 🛛

Expenditures on R&D amount to about 2.3% of GDP. Industry finances about 41% of the country's R&D expenditures.

TECHNOLOGY TRENDS

France has placed a priority on industrial technology development and rapid transfer of results to industry. To this end, France uses major national programs, involving industry, in the following areas: biotechnology for pharmaceutical production, electronics, transportation, natural resources, new materials and chemistry.

More than 80 per cent of France's research personnel and budget is tied up in four areas: aerospace, telecommunications, nuclear energy and defence. Recent budgetary allocations have increased government support of industrial R&D in:

- European Community programs (JESSI, HDTV)
- EUREKA
- agriculture and food, TGV third generation, cleaner automobiles
- innovation assistance to small and medium sized enterprises
- European space program (Ariane V, Hermès, Columbus, SPOT)
- Aeronautic programs (Airbus, A330 and A340)

TECHNOLOGY STRENGTHS

Through major programs, France has developed particular strengths in space technology (Ariane), aircraft (Airbus), railway technology (TGV), digital telephone networks and nuclear power. Key firms in these areas include Aérospatiale, Airbus Industries, Alathcom, CIT Alcatel and Cie Générale d'Electricité respectively.

KEY ORGANIZATIONS

Lead organizations in technology development are:

- CNRS (Centre national de la recherche scientifique) This major research facility, which is the largest basic research organization in Europe, interacts with industry through:
 - a) joint research projects
 - b) the issue of licenses for developments produced within CNRS
 - c) the creation of small businesses to develop particular projects
 - d) secondment of researchers to private companies
 - e) consultancy to industry

f) training of industrial technologists in new technologies

TECHNOLOGY PROSPECTING ABROAD

- g) a data bank (BCT) service which answers inquiries from industry on particular technologies
- h) an industrial relations committee (CRIM) in which hundreds of researchers and people from industry jointly conduct analyses to develop strategies for new technologies
- a network of "chargés de mission" for industrial liaison located in each of the regions. In addition, it has a directorate for scientific and industrial information which produces publications, audio-visual aids, and exhibitions to put across information about new technologies.
- ANVAR (Agence nationale de la valorisation de la recherche)
 ANVAR is a national agency with independent economic status, and reports directly to the Minister of Research and Industry. It has 350 employees in 24 regions. It carries out its role by:
 - a) providing information to promote and encourage innovation
 - b) helping to develop and commercialize inventions arising from research carried out in government and private research establishments and industry
 - c) giving advice on public financial assistance
 - d) giving direct financial assistance for research and innovation.
- COFACE (Compagnie Française D'Assurance Pour le Commerce Exterieur)
- COFACE in collaboration with ANVAR, offers financial assistance of up to 75% of the cost of market research, to enable companies to

assess the market for their innovations. It usually covers all marketing expenditures, including exhibitions, use of consultants, transportation and production of samples.

Other important organizations include l'Institut National d'Etudes et de Recherches Médicales (INSERM), l'Institut Français de Recherche sur les Technologies de la Mer (IFRE-MER), l'Institut National de Recherche en Informatique et Automatique (INFRIA), l'Institut National de Recherche en Agronomie (INFRA) and the Commissariat à l'Energie Atomique (CEA).

KEY SUPPORT PROGRAMS

The most important programs having an international dimension include the following:

• EUREKA (excluding the JESSI Program) France is participating in 127 out

of a total of 297 projects under the EUREKA program. Total funding for the EUREKA program so far is 5.5 billion ECUS, including 4.1 billion ECUS for projects with French participation. These projects with French participation are in the following areas:

- biotechnology/biomedical
- robotics/advanced manufacturing (CAD/CAM)
- informatics
- microelectronics
- communications
- new materials
- energy
- lasers
- transportation
- oceanology/environment

The French government is providing some 700 million francs (for 1989) in financial assistance to its national participants in EUREKA projects.

- European Laboratories Network
 The French government is supporting financially the participation of some 400 French laboratories in this network of the Council for Europe (21 member states).

 This program encourages co-operation between small European research teams wishing to participate in EC programs.
- CNRS

The CNRS has co-operative agreements with 32 countries including Canada's National Research Council and has representatives at certain embassies abroad, with the purpose of seeking new technologies for international technology transfer.

• ANVAR

ANVAR has two offices in other countries, one being Bonn, West Germany and the other in Washington, D.C. It helps French companies to mount international operations and will assist them in promoting new products and processes abroad. It also helps them to establish links with foreign firms in the same field.

CPE

The Centre for Evaluation and Prospective Development is a network that collects scientific, technological, industrial, economic and social data world wide, but especially from the United States, Japan, the Scandinavian countries and Germany, and makes them available through publications. ORSTOM (Institut Francais de Recherche Scientifique pour le Developpement Scientifique en Cooperation)

This agency is a public scientific and technological research establishment (EPST). It makes available the national potential in science and technology and provides support mainly, but not exclusively for the francophone countries overseas.

Bilateral Agreement
 Under the bilateral Science and
 Technology Co-operation
 Agreement with Canada, some 30
 scientists from each country have
 the opportunity to work in foreign
 laboratories every year.

CONDITIONS OF ACCESS

A corporate presence in France would facilitate access.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Canadian opportunities lie largely in areas that compliment French strengths. Those include ocean industries, wood products, urban transportation, environmental equipment, telecommunications, electronic components, food processing and advanced manufacturing technologies.

CONTACT POINT

Counsellor (Science and Technology) Canadian Embassy 35 avenue Montaigne 75008 Paris 8th France Tel. 33 (1) 4723-0101 Fax. 33 (1) 4723-5628

3.1.1 Rhône-Alpes

The Rhône-Alpes region of France represents approximately 10 per cent of that country's socio-economic activity as defined in the following indicators (1988):

TECHNOLOGY PROSPECTING ABROAD

- 10.7% of exports
- 9.4% of the population
- 8% of surface area of the country
- 11% of French patents filed in the region
- 10% of National R&D support goes to the region.

The three major urban areas are Lyon, Grenoble and Saint-Etienne. Some 30% of the work force is employed in 5 major industries; (1) mechanical engineering, truck building and arms manufacturing; (2) metallurgy; (3) electrical and electronics engineering; (4) textiles; (5) chemicals and pharmaceuticals.

The region has the second largest concentration of educational and research facilities after Paris. The region has some 20,000 researchers.

TECHNOLOGY TRENDS

Technology development is centred around five principal thrusts (pôles):

- industrial production technology (at Saint-Etienne and Roanne)
- robotics and automization (at Valence)
- electronics (at Grenoble, Chambery and Pays de Gex)
- genetic and medical engineering (at Lyon)
- plastics, plastic transformation and composites (at Oyonnax).

TECHNOLOGY STRENGTHS

A number of large firms in the region (e.g. Pechiney, Mérieux, Rhône-Poulenc, Thomson-Brandt, Saint-Gobain, Compagnie Générale d'Electricité) have been focii for the development of technological strengths in areas such as metallurgy, chemistry, biotechnology, glass, trucks, electrical and electronics engineering as well as energy (e.g. nuclear power).

KEY ORGANIZATIONS

The region has a concentration of both public and private technology development organization.

In Rhône-Alpes, there are some 240 publicly funded laboratories and research centres including CNRS Laboratories (2,000 researchers), Institut National de la Santé et de la Recherche Médicale (25 units), Centre National d'Etudes des Télécommunications (specialized in micro-electronics and integrated circuits), Office National d'Etudes et de Recherches Aérospatiales, Institut National de la Recherche Agronomique.

In addition, there are international institutes such as the Centre International de Recherche sur le Cancer and the Centre Européen pour la Recherche Nucleaire, the laboratoire des Champs Intenses, l'Institut Von Laue-Langevin and the Synchrotron.

Research in the region is also supported by 20 professional technical centers, including:

- French Textile Institute (Lyon)
- Paper Technical Center (Grenoble)
- Leather Technical Center (Lyon)
- Mechanical Industries Technical Center (Saint Etienne)
- French Petroleum Institute (Lyon)
- Aluminum Technical Center (Voreppe)
- Plastics Technical Center (Oyonnax).

PAGE FORTY

The major firms mentioned earlier also have technology development units. In fact, private research in Rhône-Alpes represents:

- 50% of French research in textiles
- 42% of the national research in non-ferrous metals
- 27% of chemical research
- 100% of research in high and very high voltage electricity

KEY SUPPORT PROGRAMS

There are no specific regional programs. Rhône-Alpes based firms submit their request for assistance in innovation research to the Lyon offices of the two appropriate Government Agencies:

- ANVAR (Agence Nationale pour la Valorisation de la Recherche)
- DRIR (Direction Régionale de l'Industrie et de la Recherche)

CONDITIONS OF ACCESS

There are no specific conditions applying to foreign firms and research organizations wishing to collaborate with counterparts in this region (or for licensing technology).

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The key areas of opportunity are electronics, telecommunications, nuclear energy, hydraulics, plastics and composites, fine and agricultural chemicals and pharmaceuticals. The Ontario government has recently signed an agreement for technological cooperation with this region; one of the so-called "four motors of Europe".

CONTACT POINT Commercial Officer Canadian Consulate Bonnel Part-Dieu Building 74 rue de Bonnel 3rd Floor 69428 - Lyon - Cedex 03 France Tel: (33) (1) 72 61 15 25 Fax: (33) (1) 78 62 09 36

PAGE FORTY ONE

3.2 WEST GERMANY

ith a population of approximately 61 million, and a GDP of about (US) \$1,130 billion, Germany invests 2.9% of its GNP in research and development making it Europe's biggest investor in R&D. In 1989, Germany spent \$33.2 billion (US) on R&D, some 64% of which was funded by industry. Only about 22% of the federal R&D budget is spent on defence related R&D.

West Germany is among the world's largest producers of vehicles, machine tools, machinery, chemicals, ships, iron, steel, coal and cement. It is also important in the areas of mechanical engineering, electrical engineering, synthetic material processing, plastics, office and data processing equipment, pulp and paper machinery, non-ferrous metals, foodstuffs, environmental technology, biotechnology and beverages.

TECHNOLOGY TRENDS

Germany, like Japan, has noted the closer integration of basic research with technology and is moving to strengthen its applied basic research base both in government funded research institutes and in industrial laboratories. In 1988, 20% of the Federal Government's total expenditures on R&D was in basic research.

In the 1988 Report of the Federal Government on Research, the following technical areas were identified as major recipients of funds from the Federal Ministry for Research and Technology in 1987 (in excess of 50 million DM);

Living Conditions – Preventative Research; R&D in the service of health, R&D for humanization of industrial life, environmental conserving and protection technologies and ecological research.

Market-Oriented Technology Promotion; Nuclear energy research (including reactor safety), coal and other fossil fuels, research and technology for land-bound transport and communications (including traffic safety), electronic components, renewable energy sources and efficient energy utilization, biotechnology, materials research, technical communications, aeronautic R&D (e.g. completion of Airbus family), information processing, production engineering, application of micro-electronics; micro-peripheries physical technologies (e.g. laser and thin-film) and marine technology

Primary long term R&D programs are nuclear fusion, marine and polar research, and space research. Space research received 1.45 billion DM in 1990 from the federal government. Industry expenditures on air and space sectors were some 2.78 billion DM in 1989.

TECHNOLOGY STRENGTHS

West Germany has technological strengths across a broad spectrum of industrial sectors. Key technological strengths include: automotive technologies, control and instrumentation, electrical products, optical instruments, organic primary products (including pharmaceuticals), nuclear reactors and pesticides.

KEY ORGANIZATIONS

Lead organizations in technology development are:

• Federal Ministry for Research and Technology (BMFT) This is the main government department concerned with the promotion of market-oriented technologies. It supports both "strategic basic" research and development.

- Max Planck Gesellschaft The role of the 60 Max Planck institutes is to complement the research at the scientific universitics and to establish priorities in specific areas of research, particularly in basic research in the natural sciences, the social sciences and the humanities.
- National Research Centres
 The 13 national research centres
 with a budget of approximately 2
 billion DM per year conduct
 research on tasks relating to inter disciplinary complex problems. It
 is anticipated that the centres, in
 line with government policy will
 put greater emphasis in the 1990's
 on information technology, pro duction engineering, handling
 technology, materials research and
 biotechnology.
- Fraunhofer Gesellschaft Institutes The role of the 33 Fraunhofer Institutes is to promote applied research and to work closely with industry on the applications of technology to industry.

KEY SUPPORT PROGRAMS

The main support programs include:

Technology Transfer Advisory Services There are 85 German Chambers of Industry and Commerce, which are distributed throughout Germany, and are well funded and staffed. The Federal Government initially provided funding to set up advisory services in six of the Chambers. Now, there are such services in 15 of the Chambers, all of which are funded by the individual Chamber members. Each service has between one and five experts who can give advice to companies directly, or help them to get advice from consultants.

- Consultancy for Problem Solving The Government will pay for a grant of up to 30% of the cost of a contract from a small firm to a university, government institute, or another company to solve the technological problem.
- Canada-Germany Agreement The Canada-FRG Science and Technology Agreement signed in 1971, provides an umbrella for joint R&D projects. It has an annual budget of \$200,000 for catalyzing joint activity on the German side. On the Canadian side, the Government has recently allocated more but modest resources to support Canada's bilateral agreements with European countries, including Germany.

CONDITIONS OF ACCESS

There are no specific conditions of access. However, Germans insist on a level of technological competence in their international partners. Even in licensing agreements for which they receive money, they will like to be assured of the technological ability of the licensee to properly apply and use their technology.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities for Canadians exist in all technological areas including automotive parts, ocean industries, defence, health care products, micro-electronics, pulp and paper, wood products, environmental equipment, urban transportation, agricultural equipment and telecommunications.

CONTACT POINT Counsellor (Science and Technology) Canadian Embassy Friedrich-Wilhelm-Strasse 18 D-5300 Bonn 1 Federal Republic of Germany Tel. 49 (228) 23-1061 Fax: 49 (228) 23-0857

3.2.1 Baden-Wuerttemberg

ECONOMIC CONTEXT

Baden-Wuerttemberg, one of West Germany's leading industrial states, produces 17% of the country's exports. The state, whose capital is Stuttgart, has a population of 9.2 million (15% of the total population).

The state has more than 12,000 manufacturing companies, 95% of which are small and medium-sized enterprises (SMEs). Some 24% of Germany's automotive production originates in the state; Daimler-Benz and Porsche are headquartered in Stuttgart. Some 25% of Germany's electronic industry output is generated in the state through such companies as Bosch, SABA and AEG-Telefunken which are headquartered in the state. Other key manufacturing sectors include high-precision mechanical parts, machine tools, optical and other scientific and control instruments.

TECHNOLOGY TRENDS

The state has the highest density of research institutes within Europe, providing 30% of Germany's applied research capabilities and 22% of its industrial research in support of the state's major industries.

Joint Industrial Research Institutes are established by a number of companies to undertake pre-commercial research. As well, technology centers have been established to serve as incubators for new high-technology ventures.

TECHNOLOGY STRENGTHS

Baden-Wuerttemberg has world class technology in several areas including; "mechatronics" (the marriage of mechanical equipment with electronics), high-precision mechanics, automotive technology (eg. front-wheel drive, electronic injection systems) optical instruments (eg. microscopes, telescopes, planetariums); surgical instruments and control equipment.

KEY ORGANIZATIONS

TECHNOLOGY PROSPECTING ABROAD

The principal technology development organizations include:

- Fraunhofer Gesellschaft; 15 of the 34 institutes are in the state. Their principal areas of research are; solid-state electronics, information processing, systems technology, materials technology, environmental technology and process control.
- Karlsruhe Nuclear Research Center; (3,800 staff); principal areas of research are fast breeder reactors, fusion technology, nuclear fuel reprocessing and cryogenics.
- Stuttgart and Karlsrube Universities; their major fields of research are micro-electronics, sensors, lasers, informatics, materials, biotechnology and antipollution technology.
- Stuttgart Max-Planck Gesellschaft; the major areas of research are, solid-state physics and chemistry, optoelectronics and powder metallurgy.
- Heidelberg research complex for biotechnology; several institutes are grouped under this rubric - eg. European Laboratory of Molecular Biology, German Cancer Research Center, Genetic Research Center.

KEY SUPPORT PROGRAMS

The principal technology development support program is the Industrial Promotion Program of Baden-Wuerttemberg, aimed at strengthening the international competitiveness of the state's SMEs through financial assistance, vocational training and regional development. Part of the program is to encourage technology transfer through twenty university-based technology transfer centers.

PAGE FORTY FOUR

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Specific opportunities exist in automotive, electronics, environmental and medical technologies. The Government of Ontario has signed a Memorandum of Understanding with the State of Baden-Wuerttemberg to facilitate contacts between companies in the two jurisdictions and the identification of specific joint projects in areas of mutual interest.

TECHNOLOGY PROSPECTING ABROAD

CONTACT POINT

The federal government representative to contact is:

Consul and Senior Trade Commissioner Tal 29 D-8000 Munich 2 Federal Republic of Germany Tel: (011-49-89) 22-26-61 Fax: (011-49-89) 228-5987

PAGE FORTY FIVE

3.3 UNITED KINGDOM

be U.K. has a GDP of about \$620 billion (US) and a population of some 57 million. The major industries in the U.K. are machinery and transport equipment, metals, food processing, paper and paper products, textiles, chemicals, clothing, motor vehicles, aircraft, ship building, petroleum and coal.

The U.K. spends 2.3% of its GDP on R&D, half of which is financed by industry. It ranks fourth or fifth in overall R&D spending worldwide.

The Government currently provides nearly £5 billion support for R&D directed principally towards procurement (47%), improvement of technology (18%) and advancement of science (17%). Half of the annual Government expenditure supports defence research, one-quarter university research and the remaining quarter civil research (the last a gradually decreasing share).

After the US and Japan, the UK is Canada's most important trading partner.

TECHNOLOGY TRENDS

As a result of recent UK Government reviews, the amount and balance of government supported research is being altered:

• Support for advancement of science activities is being gradually increased with budgets of the five research councils for university research grants and Council Intramural Laboratory programs benefitting, although unevenly.

- Government support for industry R&D has been curtailed, with costshared support generally only available for industry-led collaborative projects within the UK and Europe. Industry no longer receives support for "near-market" research which the government considers to be the responsibility of industry to sponsor without assistance.
- Government assistance for technology transfer, industry-education links and expert/management support, aimed at small companies.
- Reduction of government expenditures for public sector civil R&D to a GERD percent level similar to what Japan and US spend (ie. from 25% in 1987 to 10% within the next few years). In practical terms, most government laboratories are either being closed, privatized or converted to support exclusively government policy or program mandates. Laboratories which are retained in government support roles will be quasi-independent agencies and will operate by obtaining contractual funding agreements to supply specific services to government departments.

TECHNOLOGY STRENGTHS

The UK has broad technological strengths across most sectors, and is strengthening an already formidable science base. There are however concerns about UK industrial innovation and competitiveness, and ability to avoid a brain drain in the new '1992' European environment. Specific strengths include defence technology, telecommunications, aerospace, software development and offshore oil and gas technology.

KEY ORGANIZATIONS

• Department of Trade and Industry (DTI)

Encourages and supports industrial innovation and R&D. Also, through the DTI's Chief Engineer and Scientists, establishes government-wide policy, e.g. on the status and operations of government laboratories/agencies. Also has major international trade responsibilities.

DTI has five industrial research establishments which are being converted to semi-independent agencies or private sector research institutes:

- National Engineering Laboratory (NEL)
- National Physical Laboratory (NPL)
- Laboratory of the Government Chemist (LGC)
- Warren Spring Laboratory (WSL)
- National Weights and Measurement Laboratory (NWML)
- Research Councils

The five major research Councils not only support university research but also serve as important funding partners in industrially-relevant projects. In addition they have major laboratories, e.g. British Antarctic Survey.

The Councils are:

TECHNOLOGY PROSPECTING ABROAD

- Science and Engineering Research Council
- Natural Environmental Research Council
- Agriculture and Food Research Council
- Medical Research Council
- Economic and Social Research Council
- Proposals to combine the Councils into one Super Council have been shelved.
- British Technology Group (BTG) Handles intellectual property, patenting and licensing for universities and other public sector sources, sometimes with provision of funding for technology development, transfer and exploitation.
 BTG plows back its retained share of license royalty income into the development and exploitation of other technology, and acts as a catalyst for start up companies.

SUPPORT PROGRAMS

Research related to industry is encouraged and financed through a variety of competitive programmes:

1. LINK. Cost-sharing of joint precompetitive research involving companies in collaboration with Higher Education Institutions and Research Councils. LINK Programmes underway include Molecular Electronics (5 year programme, total value £20 million), Advanced Semiconductor Materials (5 years, £24m), Industrial Measurement Systems (5 years, £22m), Eukaryotic Genetic Engineering (4 years, £4.6m), Protein Engineering (5 years, £10m), Nanotechnology (4 years, £15m), Optoelectronics (3 years, £30m) and Catalysts (5 years, £5m). About 20 programmes have been launched with an expected 500 industries participating and government contributions next year at £76m.

PAGE FORTY SEVEN

TECHNOLOGY PROSPECTING ABROAD

- 2. EUREKA and EEC Programs. EUREKA (launched in 1985) encourages industrially-led projects with European Community and other European partners with the UK participants receiving varying proportions of financial support from the UK Department of Trade and Industry (DTI). UK companies are also encouraged to obtain support from the EEC Programmes, and are participating in many, e.g. BRITE, EURAM, ESPRIT. The UK is contributing about £660m to the EEC Framework Programme (1987-91).
- 3. ADVANCED TECHNOLOGY PROGRAMME (ATP). Collaborative research among companies supported by the DTI to promote long term research and industrial application. For instance the Information Engineering Programmes have replaced the well-known Alvey Program. ATF also supports Advanced Robotics, Wealth from the Oceans, High Temperature Superconductivity, etc.
- 4. INTERDISCIPLINARY RESEARCH CENTRES. University-based Centres of Excellence in fields such as Superconductivity (Cambridge), Molecular Sciences (Oxford), Optics and Lasers (Southampton/Univ College), Surface Science (Liverpool), Process Simulation and Control (Imperial), Engineering Design (Glasgow), and Population Biology (Imperial). University Research Councils fund the Centres at a cost of £15-20m annually.
- SMART. (Small firms Merit Award for Technology). DTI assistance for small high-tech firms to improve strategies and management.

- 6. CLUBS, groups of companies jointly funding projects in particular areas of common interest (e.g. biotransformation) with contributions from DTI.
- 7. THE TEACHING COMPANY SCHEME assists manufacturing companies to form partnerships with higher education institutions including specialist support or placing science or engineering students in the company as well as preferred access to universities, polytechnics or the Scottish central institutions. This popular and successful scheme has proven to be an excellent mechanism for diffusing technological innovations.

Some industries are forming new research units without direct government assistance, for instance Warwick University in Coventry will house a £7m Rover advanced technology centre and a £3m Rolls Royce advanced Ceramics Centre. Of longer standing are about 24 Industry Sector Research Associations, which are exclusively supported by UK company members, among them the Food Research Institute and the Production Engineering Research Association. Other ancillary organizations have also sprung up to serve industry including Defence Technology Enterprises which aims partly to secure civilian applications for (Ministry of Defence) defence technologies.

-

i

ł

1

CONDITIONS OF ACCESS

Any UK company with manufacturing and/or research facilities in the UK would be eligible for support if the requirements are met. Often the costsharing ratio is determined on a case-bycase basis. Ownership of companies is not an eligibility criterion although availability of finance from abroad (eg. from the parent organization) is an important criterion and can reduce the UK contribution. Access to collaborative programs by companies outside the EEC varies, but if a good case can be made participation is usually possible, although without eligibility for UK government financial incentives.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Canadian companies willing to plan carefully and invest the time and efforts to collaborate will benefit from investment and trade opportunities in such fields as ocean industries, automotive parts, telecommunications, electronics, defence industries, urban transportation, plastics/chemicals and wood products, environmental technologies, health services and medical devices, and sports facilities.

CONTACT POINT

)

Counsellor (Science and Technology) Canadian High Commission MacDonald House 1 Grosvenor Square London, U.K. W1X 0AB Tel. 44 (1) 629-9492 ext 3363 Fax. 44 (1) 491-3968

3.4 EUROPEAN COMMUNITY (EC) - ORGANIZATION

be 12 member states of the EC (Belgium, Denmark, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Spain and the United Kingdom) are engaged in the process of completing their internal market. The current exercise will remove all remaining internal barriers to the free movement of people, capital, services and goods. The resulting single market, which should be largely achieved by the beginning of 1993, would have a combined population of 330 million people and 25% of the world's GDP. •

To encourage European companies to work together in developing new technologies, the Community has developed complementary research and development programs to those of their member states to support the need for common standards and the economic integration brought about by the completion of the single market. While the amount of funding is relatively modest in percentage terms (only 2% of total R&D spending in Europe) for the last years, it has an important catalytic effect, in promoting transnational co-operation, and in some sectors, especially in enabling technologies, such as telecommunications and information technology, Community contributions represent a large percentage of total funding available.

Total R&D expenditures of the EC R&D programs is approximately 2 billion ECUS a year which represents only 50% of total funding as most programs are cost-shared. The current instrument used for EC R&D activities is the Framework Program of Research and Technological Development. The first one started in 1983 with major programs such as ESPRIT. The third one is being approved by the Ministers of Research of the 12 members and will be in place for the next 5 years with a budget of approximately 10 billion ECUS (i.e. \$14 billion Canadian dollars).

TECHNOLOGY TRENDS

The current priorities are:

- information technologies and telecommunications with, for example: ESPRIT II (budget of 3.2 billions ECUS);
- modernization of industrial sectors with materials research, technologies, production and aeronautics;
- environment with a budget doubled for this sector in the new framework program - including participation in the global change programs;
- life sciences and technology with three new programs: biotechnology and agro-industrial research as well as biomedical and health research and human genome research programs in addition to a major action in the social programs of the EC (outside of new research program) for AIDS and cancer;
- energy, which has always been a strength of the EC especially in thermonuclear fusion program; this sector is however receiving a slight decrease in budget.

PAGE FIFTY

TECHNOLOGY STRENGTHS

The catalytic role of the EC has been very successful in correcting the attitudes of Europeans - they today work together - and are rapidly improving the R&D situation. Recognizing this rapid improvement and with the perspective of the large industrial market of 1992, interest has clearly been shown by the USA and Japan to work closer with Europe - even though in sectors such as information technologies, Europe is still behind its competitors. Europe is however a leader in fundamental research, especially today in the sector of thermonuclear fusion and all technologies related to nuclear research.

KEY ORGANIZATIONS

Most research funded by the EC is contracted out to industry, universities and Member States' government laboratories on a 50/50 basis.

The Community also has intra-mural research conducted at the four facilities across Europe regrouped in the Joint Research Centre (JRC). It was reorganized in July 1989 and divided into Research Institutes reflecting new trends but also more clearly responding to the EC role of establishing standards and covering safety aspects. This establishment has over 2000 scientists and works partly on a cost recovery basis. The main Institutes of the JRC are Environment, Remote Sensing, Nuclear Research (Fission and fusion, including management of radioactive waste), Advanced Materials, a Bureau of Reference and I.T./Telecommunications.

In addition to the JRC and the Framework Program of R&D where most of the research is done, the EC has training programs such as COMETT and ERASMUS, has demonstration programs such as THERMIE, and has a regional policy which provides funding for regional development such as installation of telecommunications equipment through the STAR program. The EC is also an active member in the EUREKA initiative which has engaged today 6.4 billion ECUS for research work.

TECHNOLOGY PROSPECTING ABROAD

The EC is also an active member of the COST which stands for Co-operation in Sciences and Technology. The COST structure regroups the 12 EC member states plus Norway, Sweden, Finland to provide a framework for specific projects in which all these countries are free to participate.

KEY SUPPORT PROGRAMS

Existing programs and the new programs (under the new Framework Program for 1990-1994) are organized under specific themes.

FIRST THEME: ENABLING TECHNOLOGIES

A. Information Technology and Telecommunications

1. Information Technology (I.T.) ESPRIT: (Strategic European Research Program in Information Technologies)

The program has a budget of 1.6 billion ECUS for the period of 1989-1993. ESPRIT was launched in 1984 and carried out 277 joint projects, more than half of which resulted in industrial applications. The second phase ESPRIT II emphasis will remain on precompetitive research, but the emphasis will be placed on demonstration activities for the preparation and validation of standards and for integration of I.T. It will also deal with basic research, especially in cognitive sciences. 2. *Telecommunications RACE*: (Research in Advanced Communications for Europe)

Its aim is to develop technologies and standards needed for the future broadband integrated network - with a budget of 550 million ECUS (over \$700 million Canadian) for the 1987-1991 period. It will concentrate on high speed integrated circuits, integrated opto-electronics wideband switching (synchronic/asynchronic). RACE has currently 88 projects under way.

- 3. Development of Telematic Systems in Areas of General Interest This new activity is of prenormative research character. A limited number of experimental development activities concerning the validation of common functional specifications will ensure interoperability of systems, peripherals and telematic networks at trans-European level.
- **B.** Industrial and Materials Technologies The EC has currently one program of 500 million ECUS (1989-1992) called BRITE-EURAM which regroups two programs as both had the same objective: to contribute to the rejuvenation of the European manufacturing industry by strengthening its scientific base. This program is a combination of BRITE (New Technologies for Manufacturing Industries) which was adopted in 1985 and carried 224 projects, and EURAM (European Research in Advanced Materials) adopted in 1986 and financed 84 projects.

The JRC will contribute to this work, especially on the prenormative aspects on advanced materials, the preparation of nuclear and non-nuclear reference materials.

SECOND THEME: MANAGEMENT OF NATURAL RESOURCES

1. Environment and Marine Sciences and Technologies

The EC has set up two research programs: STEP (Sciences and Technology for Environmental Protection) with a current budget of 75 million ECUS for the 1989-1992 period and; EPOCH (Climatology and Natural Hazards) with a budget of 40 million ECUS for the same period. The new Framework Program has more than doubled the current budget for environmental research. The 1990-1994 period budget is 514 million ECUS.

The Environment Institute of the JRC will also contribute to research in the environmental sector. A close cooperation exists between the JRC and the European Space Agency on the application of remote sensing to these environmental problems, as well as with EUREKA in the frame of the EUROTRAC project.

2. Life Sciences and Technologies The EC has a long-term strategic objective which is to develop European potential for understanding and using the properties and structures of living matter. The programs are as follows:

(a) Biotechnology

The BAP program (Biotechnology Action Program) came to a close in 1989. The BRIDGE program, with a budget of 100 million ECUS for the 1989-1995 period is its successor with very similar objectives. However, it is expected that both budget and goals of the BRIDGE program will be expended in light of the new Framework Program with a special concern attached to ethical implications and their relevance to industry.

PAGE FIFTY TWO

(b)Agricultural and Agro-Industrial Research

TECHNOLOGY PROSPECTING ABROAD

Based on biotechnology research, the EC has two other programs: ECLAIR which will apply biotechnology research to the agro-industrial sector (80 million ECUS for 1988-1993), and FLAIR, 25 million ECUS for the same period, which deals with applications in food stuffs sector and includes research on hygiene, safety and health, nutrition and toxicology.

- (c) *Biomedical and Health Research* This is one of the rare concerted action programs: the EC pays only for the cost of the co-ordination of the excellent medical research done in Members States.
- (d)Life Sciences and Technologies for Developing Countries Essentially this deals with tropical agriculture, medicine, health and nutrition.
- Energy Currently the EC has five programs in the energy sector:
 - a thermonuclear FUSION program (1988-1996), 745 million ECUS is being carried out under JET (Joint European Torus).
 - the JOULE program (122 million ECUS, 1989-1992) investigates possibilities in the non-nuclear energy sector.
 - a program to manage Radioactive Waste (79.6 million ECUS, 1990-1994).
 - a program for decommissioning nuclear installations (31.5 million ECUS, 1989-1993).
 - TELEMAN (1989-1993), 19 million ECUS) is devoted to remote handling in hazardous or disordered nuclear environments

THIRD THEME: UPGRADING OF INTELLECTUAL RESOURCES

The program Human Capital and Mobility (budget of 518 million ECUS) is to help mobility and training of scientists of government research labs, private sector or universities. It will build networks of scientists and foster utilization of large scale facilities.

CONDITIONS OF ACCESS

Non-European participation in programs is strictly controlled. Those R&D programs have been designed to foster intra-community co-operation and international competitiveness. Their access is limited to EC Member States companies, research institutes and universities. However, certain programs are open to EFTA countries which all signed a framework agreement on science and technology with the EC. Some programs are open to non EC/non EFTA countries if legal instruments exist between the EC and that country. For example, the Fusion or the STEP programs are open.

Because of the 1976 Framework Agreement for Economic and Commercial Co-operation, Canada has access to information on these programs. Exchange of scientists is also taking place for Canadian companies. The current situation is as follows: if a project involving two or more EC Member State partners, is of interest to a Canadian company, either as a subcontractor or as a partner, the EC would allow the Canadian partner to participate on the basis that he is bringing in added-value to the project, all EC partners agree to have an extra partner, and no transfer of funds takes place (which means that the Canadian partner would have to bring his own research funding). Research can be done in Canada, but the bulk of the project has to be done in Europe.

PAGE FIFTY THREE

For the purpose of the EC (and EURE-KA) projects, a Canadian company with a base in Europe is considered as a European company provided there is a research facility located in Europe. A sales office is insufficient. A presence in Europe would definitely be advantageous to gain access to the EC.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The major opportunities are those contained in the technology profiles of the Member States.

In addition the best source of information on existing EC projects and opportunity for co-operation is the ECHO data base. ISTC and NRC are on line with this data base. Other sources exist, for example the NET (Network of Environmental Technology Transfer) which is a specialized network giving services to all European environmental industries.

CONTACT POINT Counsellor Science and Technology Canadian Embassy 2, ave de Tervuren 1040 Brussels Belgium Tel: 32 (2) 735-9125 Fax: 32(2) 735-3383

3.5 BELGIUM

elgium has a GDP of about 5,500 billion (100 billion Can\$) and a population of about 9.9 million (1988).

The breakdown of GDP by sector (in billion CS) is as follows:

• commerce 60; service 50; industrial manufacturing 40; transport 14; construction 10; agriculture 3; miscellaneous 3; for a total of 180.

The principal exports are (in billion C\$):

 electrical production 35; mineral production 17; chemicals 17; miscellaneous 31; for a total of 100.

Total R and D expenditures: 1.65% of GDP (1987). Of this total 73% is performed and almost totally funded by industry.

Belgium is made up of three separate regions; Flanders in the north, Wallonia in the south and Brussels in the middle.

TECHNOLOGY TRENDS

University research activities are scattered out over many academic institutes. The inter-university poles of attraction (PAI) programme is aimed at the creation of inter-university networks in fundamental research. Wallonia is setting up technology centres gravitating around universities; six centers are being proposed, covering such topics as biotechnology, informatics, robotics and new materials.

In Flanders, action is being focussed on.ur areas, namely microelectronics, biotechnology, new materials and the environment. For each area, an integrated approach is being followed. Not only research but also education, commercialization and social factors are being considered. A major difficulty in Belgium is to have a clear view of government policy on science and technology. In the eighties, Belgium has become a federalized country and S and T has mainly become a regional affair. Only in areas that are supra-national in character, such as space research, aeronautics (Airbus), Antarctic research, the European Frame program and bilateral agreements does the national government still have jurisdiction. All other activities have by now gone to the regions, involving the transfer of both funds and thousands of people. However, the national government still plays a coordinating role and can also initiate national programs in concert with the regions.

TECHNOLOGY STRENGTHS

The following sectors have been identified as sectors where expertise exists:

- medical technology; Institute for Tropical Medicine in Antwerp, universities
- microelectronics; Interuniversity Microelectronic Center (KUL), many small companies
- advanced industrial materials; universities, CRIF, CRIBC
- biotechnology; universities, selected companies
- agriculture; Ghent and Gembloux universities
- environmental equipment; selected companies
- metallurgy and machine building; fabrimetal, CRIF, CRM
- textile technology; Centexbel
- remote sensing; selected companies
- food and chemicals technology; CBM, Solvay, multinationals

PAGE FIFTY FIVE

- pharmaceuticals; selected Belgium and multinational companies
- glass technology; Glaverbel, CRIBC, Verlipack
- aeronautics; selected companies.

KEY ORGANIZATIONS

(A) At the national level;

- science policy office of the national government
- the Nuclear Energy Research Centre (SCK/CEN) in MOL.
- a large number of sectoral research centres, covering beer and associated products (CBM), textile (Centexbel), leather (CRIF, affiliated with the Industrial Association Fabrimetal), transport (CRR), construction (CSTC), wood (CTIB), diamonds (CRSTID), coatings (CORI), metallurgy (CRM), welding (IBS), and the electrical industry (Laborelec).
- approximately 20 national scientific institutes, such as the agricultural centres in Ghent (CLO) and Gembloux (CRA), the Institute for Chemical Research ((RC) in Brussels and the Institute for Hygene and Epidemiology (IHE) in Brussels.

(B) In Flanders;

- the services for science policy and technology
- three major universities in Leuven (KUL), Ghent (RUG) and Brussels (VUB).

(C) In Wallonia;

- L'Administration de l'Energie et des Technologies Nouvelles.
- three major universities in Louvain-la-Neuve (UCL), Liege (ULG) and Brussels (ULB).

KEY SUPPORT PROGRAMS

The IRSTA (Institute for the Encouragement of Scientific Research in Industry and Agriculture) supports industrial and agricultural research. The budget of this institute is now almost completely regionalized. The major foundations for support of scientific research in universities are also being regionalized (FNRS in Wallonia, NFWO in Flanders).

The science policy office operating under the aegis of the Minister for Science Policy and the Secretary of State for Science Policy, is responsible for, among other things, evolving the broad lines of national science policy and preparing the inter-departmental science policy budget program. Specific programs are the special fund for universities research, interuniversity attraction poles (PAI) and impulse programs such as artificial intelligence, biosciences and remote sensing. All these programs apply to academic research. On the industrial side, financial support is given to specific programs like Airbus, Space Program and the Frame Program of the European community.

The regional governments actively support technological development through loans to industry and by direct investment.

CONDITIONS OF ACCESS

No specific conditions for collaboration exist, other than the willingness and capability of Canadian firms to master and apply the new technology involved. The fact that industrial research is spread out over a larger number of companies than in the Netherlands (75% of industrial research is being carried out by 122 companies) should make access by smaller Canadian companies easier.

PAGE FIFTY SIX

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Areas where specific opportunities for collaboration with Canada most likely exist are plant genetics, chip design, specific aeronautical applications and biotechnological applications in the medical field.

Canada has a bilateral science and technology agreement with Belgium.

CONTACT POINT Counsellor (Science and Technology) Canadian Embassy 2, ave de Tervuren 1040 Brussels Belgium Tel: 32 (2) 735-6040 Fax: 32 (2) 245-24-62

-

TECHNOLOGY PROSPECTING ABROAD

3.6 ITALY

taly, with a GDP of about \$740 billion (U.S.) spends about 1.3% of this amount on R&D. About 33% is spent by the private sector: About 1% of the labour

force is employed in R&D. 🔍 🛛

Key exports sectors include by order of importance; engineering products, textiles/clothing, transport equipment, metals/minerals, chemicals, food and agriculture. More than half of exports are to other EC countries.

TECHNOLOGY TRENDS

The major trends in government R&D policies are:

- "Internationalization" of R&D: increased support and commitment to European research programs such as EUREKA, BRITE, ESPRIT, etc. and efforts to correlate domestic programs with these in order to cut costs and duplication as well as to link up with technologically strong EC companies and consortia.
- Gradual increase in government allocations to industrial applied research to 3% of GNP and renewed (fiscal) incentives for contributions by private industry.
- Reorganization of state administration of R&D resources and programs through the centralization of policy and management in the Ministry of Technological **Research and Universities** (MRST), make MRST the sole administrator of the state R&D budget and the focal point for a cohesive Italian R&D effort coordinating all CNR (National Research Council) domestic programs, private industrial R&D, academic research and Italian public and private participation in EC programs.

- Institution of new state agencies (e.g. the Italian Space Agency) reporting to MRST responsible for coordinating and monitoring all private and public R&D initiatives within a given sector (space) and coordinating these with European EC programs (e.g. ESA).
- Increase of government grants and fiscal incentives for environmental R&D programs and for technological and industrial investment in Southern Italy.

The private sector drive for technological development has been motivated by a belief in R and D and need to be on tech edge to be competitive edge in 1992 EC economic integration.

The major technological thrusts are: machining centres, automation, robotics, electrical and electronic controls;automotive sector; recycling and processing of materials; advanced materials; industrial machinery; informatics (computers etc); marble granite sector; avionics; furniture, design, manufacturing use of new and mix materials; food processing, packaging, canning, automation, special machinery; wood working machinery and tools; plastics, machinery and processing; petro chemical, chemical processing, fine chemicals; ceramics, processing, machines, and equipment; shoe manufacturing; textiles, fashion, machines and equip.; leather tanning and processing.

PAGE FIFTY EIGHT

TECHNOLOGY STRENGTHS

Italy prospers in its capability to design and generate new and advanced technologies. Some major technology strengths are (key companies in brackets):

- robotics, machining centres, automation, flexible and computer integrated manufacturing (Mandelli, Rambaudi, Comau, Sapri, Duplomatic, Jobs).
- numeric controls and sensors (Marpossa, Sapri, Elam, Fiar, Comau, Mecof, Prima Industrie)
- advanced space robotics (Aeritalia, Tecnospazio, Milan and Turin Polytechnic, Pisa University)
- avionics such as landing gears, special controls, engines components (Aeritalia, Agusta, Nardi, Piaggio, Magnaghi, Fiat Aviazione)
- high efficiency titanium refining processes (Ginatta)
- plastic machinery/injection moulding (BM Biraghi, Mir, Remu, Negri and Rossi, Nuova Plastic Metal, Sandretto)
- plastic machinery/extruders (Amut, Dolci Bandera)
- plastic recycling machinery (Sorema, Bandera, FBM, Govoni, BM Biraghi)
- plastic recycling process (BG Plast, Cadauta, Reval, Sohital Comelli)
- reinforced plastic products (Azimut, Comar, Isola, Rolfo)
- film extrusion (Snia Moplefan, Manuli, Saffa, Nuova Pansac)

- automotive components and parts manufacturing (Fiat group owns practically all car production/brands in Italy and
- owns/controls major part of suppliers. Some of the major components and parts importers are Valeo, Redaelli, Hella)
- furniture design and automated manufacturing (B and B, Cassina, Scavolini, Molteni, Fantoni, Snaidero)
- wood working machinery (SCM, Stefani, Celaschi, DMC, Cremona)
- petrochemical/chemicals (Enimont, Snamprogetti, Ferruzzi Group)
- marble granite cutting machinery and tools (Breton, Terzago, Gregori, Pedrini, Simec)
- ceramics (tiles) manufacturing technologies (Marazzi, Iris)
- textiles, machines, tools and accessories
- food processing, packaging, canning, automation, special machinery (Rossi, C.I.M. Exports, Gruppo T.A.U., Ilva Spa, Pavan, Manzini, Comaco Spa)
- leather tanning and processing (Cogolo, Cortan).

KEY ORGANIZATION

Key public sector technology development organizations include the National Research Council (CNR), the National Commission for Nuclear and Alternative Energy Sources (ENEA), the National Electric Energy Corporation (ENEL), the Institute for Industrial Reconstruction (IRI), the National Hydrocarbons Corporation (ENI), the Manufacturing Industry Shareholdings and Financing Corporation (EFIM), the Experimental Institute of the Italian Railway, the Superior Institute of the Post and Telecommunications Department, and the Italian Agency for Air Navigation Services. All of these agencies offer potential for technology transfer and cooperation.

In addition there are industrial organizations such as the CECCP of Turin, Foreign Centre of Piedmont Chamber of Commerce, which help to locate and transfer technologies; the Cestec in Milan with its mandate to help SMEs with their operational problems, tech development; the UCIMU (tech transfer division) which is an association of major manufacturers of machine tools and automation; they also help in development of new technologies; and the polytechnics of Turin, Milan, Pisa.

The patent office in Rome is responsible in issuing patents. In the private sector licensing of technologies is undertaken by companies using legal services. Lately however, major Italian banks have increasingly become interested in arranging for technology transfer and venture capital.

KEY SUPPORT PROGRAMS

Financial support provided by the Italian State to research is available from different sources. Specific funds have been established for applied research and for technological innovations. Financing, often taking the form of generous grants, is also available under regional development programs, especially those aimed at the South of Italy.

Italy has also invested both money and scientific expertise in collective research. It is third, after West Germany, in terms of participation in the European collective research effort. An example of this collective effort is the Common Research Center, where multiple research initiatives are aimed at increasing European competitiveness in avantgarde industrial technologies. Today, there are four such centers throughout Europe. However, the original and still the largest center was founded by the Italian Government when it transferred ownership of the Ispra Center for Nuclear Studies to EURATOM. Italy is also one of the main thrusts behind European research programs such as EUREKA, ESPRIT, RACE, BRITE, EURAM, BAP, JET etc.

CONDITIONS OF ACCESS

There are no known specific conditions which apply to foreign firms and research organizations wishing to collaborate with Italian firms. In licensing, companies come to mutual agreement often using legal assistance. Where patents are involved arrangements become more complex. Post requires additional time to determine actual conditions to license technology.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Key areas of technology opportunities are: machine, tools, automation, flexible manufacturing, plastics machinery and process, robotics, controls and sensors, ceramics, food processing, packaging, special machine and tools, wood working machinery, leather tanning and processing, furniture design and manufacturing, new materials and composites, industrial design, glass, textiles, dimension stone processing.

CONTACT POINT

Counsellor (Commercial/Economic) Canadian Embassy, Rome Via G.B. de Rossi 27 00161 Rome, Italy Tel: 39 (06) 841-3451 Fax: 39 (06) 884-8752

3.6.1 Lombardy

Lombardy, Italy's fourth largest region whose main centre is Milan, accounts for close to a quarter of the country's industrial production. The region accounts for one third of the active corporations in Italy, import-export volume and foreign investments. This is due to the high productivity of capital invested in the region, where about 21% of the GNP is generated with a share of investments slightly over 17%.

The labour force in Lombardy is about 3,678,000 which is equal to 41% of the regions population and about 18% of the total national labour force. Industry employs 1,626,000 of which 1,295,000 work in manufacturing, they constitute 44.2% of the regional labour force. Some 45% of the region's labour force lives in the Province of Milan.

Lombardy accounts for approx 31% of Italian outlays for R&D state companies, while for privately owned firms the figure nears 40%.

We find installed in Lombardy 31.4% of the largest main frame computers while Milan alone accounts for 25% of the data processing centres, 10% of the industrial robots and 15% of the CAD/CAM systems operating in the country.

Milan can also boast of the highest concentration of private and public post graduate educational centres as well as the major non university research centres such as Cise (applied physics) Mario Negri Institute (pharmaceutical and biology) Assoreni (chemistry, applied engineering) IRB (new materials) ISMES (civil engineering) and Donegani Institute (chemicals), ISPRA (EEC designated research centre for nuclear energy).

TECHNOLOGY TRENDS / STRENGTHS

TECHNOLOGY PROSPECTING ABROAD

The Lombardy region has a presence in all the product areas and in all industries. There is a *greater concentration* than the national average in the high value added industries such as metalworking, petrochemical, plastics, papermaking (see Italy Section 3.6).

KEY ORGANIZATIONS/SUPPORT PROGRAMS

- as per Italy Section 3.6

CONDITIONS OF ACCESS

- as per Italy Section 3.6

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

- as per Italy Section 3.6

CONTACT POINT Consul and Trade Commissioner Canadian Consulate General Via Vittor Pisani 19 20124 Milan, Italy Tel: (011-39-2) 669-7451 Fax: (011-39-2) 670-4450

3.7 AUSTRIA

ustria has a GDP of about C\$ 167 billion (1988) and a population of 7.6 million. R and D expenditures are about C\$ 2 billion or about 1.3% of GDP.

The main industries are (1987 production figures in billion dollars) food and beverage 8, 7, machinery and metal construction 6, 5, metal products 4, 3, electronics and electro 5, 3 (1988 6,0), chemical 7, 6, pulp and paper 3, 1, woodworking 2, 1, textile and clothing 4, 2.

The main economic centre is the Vienna area followed by Linz and Graz (approximately 200 km away from Vienna). Small centres are Salzburg and Innsbruck, even further away.

TECHNOLOGY TRENDS

Areas given specific government support are electronics, new material technology, and to a minor extent biotechnology and environmental technology.

Austria participates in many international research activities, e.g. EUREKA programs. Environment technology is becoming more and more important.

TECHNOLOGY STRENGTHS

As a small but highly industrialized country (almost 50% of local exports go to Germany and Switzerland) the local industry specializes in very small sectors of the total spectrum.

Areas of strength are mainly concentrated in:

- machine industry (machine tools, flexible mfg)
- transport material handling
- measuring and control technology
- construction technology
- forest, woodworking machines and equipment
- alcoholic & non-alcoholic beverages, milk products, fruits and vegetables, meat, sweets and bakery
- environment technology.

KEY ORGANIZATIONS

Technologies are developed at company and university levels. There are no key developers for technology. Places with several research labs are Seibersdorf with approximately 300 scientists and Arsenal which is smaller. Some larger companies like Alcatel and Benda have set up special research labs outside the company for artificial intelligence, gene technology. The Austrian nationalized industry is supporting a number of research labs in particular disciplines.

So-called technology parks support young companies starting with new technologies. An organization supporting the exchange of technology internationally is the Federal Economic Chamber, Wiedner Hauptstrasse 63, A-1045 Vienna, Technology Section Dr. Wilfrid Mayr., phone: (222) 501 05, telex: 111871.

KEY SUPPORT PROGRAMS

Three key programs are:

- FFF, Forschungs Forderungs Fond (Research Support Fund) supporting research in companies to 50% of costs;
- ITF; Innovation Technology Fund (for companies);
- FFWF; Fond zur Forderung der Wissenschaftlichen Forschung (fund to support scientific research) at universities and similar organizations.

CONDITIONS OF ACCESS

Austrians are usually very open when showing their technology in order to find partners or buyers. Normal business relations are perfectly suitable to establish tech transfer or joint research agreements. Austrians do also expect that appropriate Canadian government organizations supporting Canadian partners in joint research projects would do everything possible to support Canadian companies in their part as promised, even if budget cuts make it difficult.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

There is no problem in obtaining technology if it is available. Key areas are the ones mentioned under "Technology Strengths".

CONTACT POINT Commercial Officer Canadian Embassy Dr. Karl Luergen Ring 10, A-1010 Vienna Republic of Austria Tel: (011-43-222) 533-36-91 Fax: (011-43-222) 535-44-73

TECHNOLOGY PROSPECTING ABROAD

3.8 SWITZERLAND

witzerland spends about 2.9% of its GDP of over \$99 billion (U.S.) on

R&D. Some 80% is financed by industry. •

The country's traditional industrial strengths are in chemicals, precision instruments, agriculture and food, machinery, clocks and watches and heavy engineering.

TECHNOLOGY TRENDS

The main fields of technology development activity are:

- agricultural research, especially biotechnology applications;
- defence, especially in opto-electronic observation, information technology, anti-tank armours, aircraft terrain reinforcement, weapons protection, materials science;
- telecommunications, especially in networks, propagation and new materials;
- energy especially in newer fields such as solar and geothermal energy;
- environmental protection, and
- microelectronics.

TECHNOLOGY STRENGTHS

Strengths lie in traditional areas such as precision instruments, chemicals pharmaceuticals, engineering products and agri-food industries.

KEY ORGANIZATIONS

Key technology development organizations are in the private sector which spends 80% of the country's R&D expenditures. Government organizations with a mandate to support industry include:

• The Commission for the Promotion of Scientific Research (CERS) which encourages contacts between scientists and industries. This grantgiving body contributes up to 50% of the cost of a project. The focus of activity is on materials, processes and manufacturing. The CERS also assesses EUREKA and RACE projects.

• The Swiss Centre for Electronics and Microtechnology (CSEM) supports the electronics and precision instruments industries through joint university/industry projects. It also gets involved in improving contacts with foreign sources of technology. The main areas of activity are microelectronics, optoelectronics, sensor technology, micro-engineering and materials technology).

KEY SUPPORT PROGRAMS

The "Impulse" program provides financial support in specialized areas such as electronics, sensors for measurement and control as well as training in informatics, mechanical engineering, and new construction techniques.

The "measures to strengthen the Swiss economy" program set up in 1983 centered on large-scale procurement. Some funds were set aside to finance mechanical engineering and informatics projects.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities exist in plastics/chemicals, textiles, leisure products, mineral processing and consulting engineering services.

CONTACT POINT Canadian Embassy Kirchenfeldstrasse 88 Ch-3005 Berne, Switzerland Tel: 41-31-44-63-81 Fax: 41-31-44-73-15

PAGE SIXTY FOUR

3.9 DENMARK

enmark with a population of 5.1 million and a GDP of \$693 billion DKR (198+) (C\$ = 5.7 DKR) has broadened its economic base from agricultural products and beers to include machinery, electronics, textiles and pharmaceuticals.

In the period 1982-86, industrial investment increased 79 %, industrial employment was up 13 %, and industrial exports increased 41%. Denmark spends approximately 1.4% of GDP on R&D.

TECHNOLOGY STRENGTHS

Key technology areas listed below include companies which are highly recognized internationally.

- A) Agriculture and food technology Companies: Danisco, MD Foods, Tulip, Meat Research Inst.
- B) Biotechnology (Particularly within agri-food sector)
 Companies: Carlsberg, Novo-Nordisk, Chr. Hansen Lab., Danisco, Dakopatts
- C) Medical products/Pharmaceuticals Companies: Novo-Nordisk, DAK, Loeven, Lundbeck, Ferrosan
- D)Health care products/Handicap aids Companies: Coloplast, Ambu, Danish Health Care Systems
- E) Electronics/Medical electronics (Often niche-oriented and based on advanced transducer technology) Companies: Radiometer, Bruel & Kjaer, Oticon, Widex, Simonsen & Weel, Foss Electric
- F) Ships and harbours Companies: Maersk, Cowi, Carlk Bro, Ramboll & Hannemann, Danish Hydraulic Inst., Welding Inst.
- G)Process regulation Companies: Danfoss, S.T. Lyngsoe
- H)Energy technology Companies: I. Druger, Cowi, Haldor Topsoe

- Waste management technology including hazardous waste Companies: Kommune Kemi, Chemcontrol
- J) Agriculture machinery Companies: Dania, Taarup
- K) Cement industry and machinery (Turn-key installations) Company: F.L. Smith recognized world leader

KEY ORGANIZATIONS

These include:

- National Agency of Industry and Trade
 Responsible for administration of national technology-related schemes and programs, regional development programs, export development programs and trade regulations.
- Academy of Technical Sciences
 Established 1937 as an independent institution to promote technical and scientific research for the benefit of trade and industry.
 Among the 20 non-profit institutes affiliated to the Academy are Danish Research Centre for Applied Electronics, Danish Welding Institute, Danish Institute of Biomedical Engineering and Danish Hydraulic Institute.
- Risoe National Laboratory
 Largest national research institute
 in Denmark. Has high interna tional representation among
 researchers. Priority areas:
 applied and basic research within
 energy, materials science, chem istry, biology.

PAGE SIXTY FIVE

- Danish Technological Institute Largest approved technological service institute in Denmark. Institute is polytechnological in character and covers wide technical and industrial spectrum. Employs a total of 1,100 technical staff. Special department for innovations, patents and licensing of new technology. A special role in information supply is fulfilled by 15 regional Technological Information Centers (TICs) administered by the Institute. The Institute has close international relations and is involved in large number of EC proects. Has close connections to Canadian wood research.
- Patent Directorate Responsible for patents, copy rights and trade marks. Of a total of 7,346 patent applications in 1988, 36% came from the remaining EC, 25% from the USA and Canada, and 16% from Denmark.

KEY SUPPORT PROGRAMS

Danish research and technology rely on wide international cooperation. About 5% of the national R&D resources are attributed to participation in international cooperation, including the EC R&D programs. Participation in Nordic research cooperation is of importance to Denmark.

Denmark participates in approximately 120 EC programs. Among the largest are BRITE/EURAM, COMETT, ECLAIR, ESPRIT, FAR, FLAIR, JOULE, MAST, MONITOR, RACE and SPRINT. The resources of the Danish national support programs include DKR 1.1 billion of which 50% is attributed to technological infra structure (e.g. innovation services through European network). EUREKA: Danish firms currently participate in 35 projects.

CONDITIONS OF ACCESS

Danish companies and research institutes are open to collaboration with Canadian firms on equal terms and under normal commercial conditions. Foreign companies may participate as partners with Danish companies in government support programs (e.g. industrial network program). There are no restrictions in licensing of technology to Canadian companies except in cases where an invention has been financed wholly or in part by government funds. Only in such cases would a license be offered to Danish companies on a first refusal basis.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Danish industry consists basically of SMEs well aware of essential need to export, and exports have been lead factor in the development of niche production to overcome foreign competition. Denmark's peculiar position as gateway between Scandinavia and the EC has furthered awareness of world market needs. Although a great part of the business community is oriented mainly towards the EC and the Nordic countries, Danish firms and research organizations would welcome bilateral collaboration with Canadian counterparts. Technological opportunities exist within the key technology areas already listed. Costs to Danish SMEs often prohibits satisfactory North American marketing efforts making them ideal candidates for technology transfer.

CONTACT POINT Canadian Embassy Kr. Bernikawsgade 1, DK=1105 Copenhagen K., Kingdom of Denmark Tel: (011-45-33) 12-22-99 Fax: (011-45-33) 14-05-85

TECHNOLOGY PROSPECTING ABROAD

3.10 NORWAY

orway has a population of 4.2 million and GDP of \$76,000 million U.S. (1986). It invests approximately 1.8% of its GDP on R&D. ● ●

Norway has a relatively large resourcebased industrial structure including such sectors as offshore petroleum, mining, ocean transport, shipbuilding, steel production and fish processing. These sectors are the basis for exports which account for 36% of GDP.

TECHNOLOGY TRENDS

The Government has chosen the following eight priority areas (two-thirds of total R&D expenditure falls within these priority areas):

- A) Information technology
- B) Biotechnology
- C) Aquaculture
- D)Material technology
- E) Oil and gas technology
- F) Organization, management and administration
- G) Traditional and cultural dissemination
- H)Health, environment and living conditions

A re-evaluation of the R&D system is presently taking place in Norway. There is a general feeling that R&D expenditures have not given the expected results. Too many government agencies have been giving out funds and there has not been enough coordination of these funds. It is expected that in future more R&D funds will be given to industry and less to research institutions directly. Thus industry will have more influence on how and where research funds will be used. In an effort to improve internationalization of Norwegian industry, the government will also emphasize marketing, or commercialization, of research development abroad.

TECHNOLOGY STRENGTHS

Key technological strengths in Norway are in the following areas:

- power generation engineering, construction, production and installation of power generation stations, units and equipment (hydro power turbines, generators, transformers, cables, switchgear products) including underground installations, electrical transmission and distribution systems. Firms: EB, Kvaerner, Norconsult
- metals and electro-chemicals ferro-silicon, silicon metal, carbides, magnesium, aluminium, zinc, metal, iron and steel products. Sale of know-how, engineering expertise and advanced processing equipment to electro-metallurgical industry. Firms: Elkem, Norsk Hydro
- chemicals fertilizers, explosives, petrochemicals (ethylene, propylene, vinyl chloride monomer and PVC), paints and synthetic resins, edible fats and their derivatives, wood and fine chemicals, pharmaceuticals, diagnostic agents such as X-ray contract media.
 Firms: Norsk Hydro, Dyno Industrier, Jotun, Nycomed
- pulp, paper and board newsprint, magazine paper, kraft paper, packaging grades, wood-free printing and writing qualities, board, tissue, sulphite paper and greaseproof, increased use of re-cycled paper

PAGE SIXTY SEVEN

fishing and food - traditional fishing (cod, saithe, herring, mackerel, prawns, haddock, tusk, ling, halibut, red fish, capeline, sprat, squid, blue whiting, sandeel, pout) and fishfarming (salmon, trout, halibut, cod, turbot, lobster, plaice, oysters, blue mussels). Related technology and equipment such as fishing vessels, fishing gear, processing plants, transportation systems. Other food exports include cheese and crispbreads, beers, special spirits. Firms: Trio Industrier, Marenor, Akvaplan, Austevoll, Mustad, Norwinch, Rapp, Morenot, Simrad; Frinonor, Seanor, Kavli, Norway Foods, Ringnes, Vinmonopolet

TECHNOLOGY PROSPECTING ABROAD

- shipping shipowners (cruise operations, gas and chemical shipping, car carriers, high speed ferries, tankers and paper carriers, rigs and supply vessels to offshore industry), shipping operations (shipborkers, insurance companies, financial institutions and research institutions) and manufacturing of specialized vessels and ship's gear. Firms: Wilh. Wilhelmsen, Star Shipping, Olsen, Jebsen, Oddfjell, Hoegh; HMV, Fjellstrand, Frank Mohn
- engineering industries electrical power equipment, electronic products, non-electrical machinery, offshore structures, ships (fishing vessels, high-speed passenger ships) and ships' gear (electrical and electronic products, steering, propulsion and deck machinery), metalware, foundry products, care components (wheel rims in light metals, starter batteries, fittings, plastic products, chassis, bumpers in aluminium, plastic and rubber, and cast and forged products, brakes, exhausts, car heaters, cabling, safety products), bicycles, transportation equipment. Electronic engineering include: a) telecommunications (automatic switching gear, private and public branch

exchanges, multiplex equipment, radio links, satellite communications equipment) b) power network communication systems (fibre optic cables, microwave radio links, high performance antennas, satellite ground stations) c) control, alarm and monitoring systems d) office automation (mini and microwave computers, peripherals, advanced software). Consulting engineering for construction hydro power station, fish farms, offshore developments, environmental protection, water supplies, tunnelling. Firms: EB, SI, Fjellanger-Wideroe, Kongsberg, Norsk Data, Oceanor, Raufoss, Sintef, Selmer-Furuholmen, NGI, Norconsult, Aker, Puritech, Dbs

 design products - ergonomic furniture, interior furnishings, textiles and clothing, glassware, hollowware, cutlery, electronics, building products, winter sports gear, pleasure craft.
 Firms: Dale, Helly-Hansen, Protan, Draco, Rybo, Stal og Stil, Stokke, Hadeland

KEY ORGANIZATIONS

Principal technology development organizations include:

- NTNF Royal Norwegian Council for Scientific and Industrial Research, which allocates funds to institutions, companies and research projects. It is the main government arm in Norwegian research community, reports to Royal Ministry of Industry and decides the direction of the main research thrusts.
- NAVF Norwegian Research Council for Science and the Humanities conducts basic research, fundamental technology development.
- *Industrifondet* finances R&D projects which are less risky than what NTNF will finance.

PAGE SIXTY EIGHT

There is no specific organization responsible for licensing or patents. Legislated regulations apply to all companies. Both NTNF and Industrifondet do work related to patents and licenses.

KEY SUPPORT PROGRAMS

International cooperation projects in R&D are integrated into existing research programmes in Norway, e.g. the EUREKA projects are integrated into the various divisions in NTNF.

Several NTNF Research Programs invite foreign participation. Those projects receiving over 100 million NOK in financing are as follows; (in brackets are desired % of foreign participation):

- A) Computer Integrated Manufacturing - 189 million NOK Production technology project (30%)
- B) Information Technology in the Health Sector - 172 million NOK Information technology project (20%)
- C)Production Installations for Salmon - 152 million NOK Aquaculture project (30%)
- D)Drilling Technology 130 million NOK Offshore technology project (10%)
- E) Light Metals 116 million NOK Materials technology project (7-9%)
- F) Geographic Information Technology - 112 million NOK Information technology project (10-20%)
- G)Security and Reliability of Information Processing Systems -111 million NOK. Information technology project (63%)

- H)Business Growth through New Technology - 103.8 million NOK Manufacturing technology project (5%)
- Innovation and the Spread of Technology in North Norway -103.7 million NOK Manufacturing technology project (no % given)

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

There are major opportunities is the fisheries and oceans industries as well as agricultural equipment.

CONTACT POINT

Canadian Embassy Oscars Gate 20 Oslo 3 Kingdom of Norway Tel: (011-47-2) 46-69-55 Fax: (011-47-2) 69-34-67

weden with a population of approximately 8.5 million and an area of 487 thousand km² invests more than U.S. \$4,000 million or about 3% of its GDP in technical and scientific R&D. The Swedish corporate sector accounts for more than 70% of this R&D expenditure.

Unlike the other Nordic countries, defence R&D expenditures play an important role in Sweden. Sweden has been enjoying a positive balance of payments in technology in recent years although its percentage growth in GDP (2.5%) has been slightly less than the average for OECD countries (3.3% in 1986). In 1986 machinery and equipment exports accounted for 52% of their total exports.

TECHNOLOGY TRENDS

A proposal for a new 3-year government R&D program was presented recently by the National Swedish Board for Technical Development (STU). It emphasizes the necessity for Sweden to increase government spending to create new knowledge, new technology and new products. Priority areas for spending are international cooperation (EC, EUREKA and other opportunities), materials technology, and environmental technology. Other main areas of R&D spending are mechanical engineering, biotechnology, biomedical technology, wood-pulp-paper technology, energy technology, and information technology.

TECHNOLOGY STRENGTHS

World class strength in technology is found in multinational corporations and is not normally available for licensing (e.g. high voltage transmission, industrial robots, small scale nuclear reactors by Asea-Brown Boveri (ABB); radar, telecom switching, mobile radio by Ericsson; car safety design, regeneration bus propulsion by Volvo; non friction movements and bearings by SKF; air treatment technology by Flakt).

KEY ORGANIZATIONS

The principal technology development institutions are:

- Swedish National Board for Technical Development (STU) - Stockholm; The government's central mechanism for providing support for technical research and industrial development, STU with an annual budget of about U.S. S113 million:
 - initiates, coordinates and supports technical research and development at universities and cooperative research institutes;
 - co-operates with universities and industry to develop and speed the introduction of new technology;
 - stimulates and supports inventors, small-medium sized companies and newly-established technology companies with product renewal.

STU in cooperation with Swedish companies is financing, over a three year period (SEK 55.5 billion), in such areas as computer science, digital communications, computerized image technology, operation development systems for the processing industry, technology for the handicapped, and civil-aviation research.

- The Royal Swedish Academy of Engineering Sciences (IVA) -Stockholm; The IVA is a learned society whose aim is to "promote engineering sciences and industry for the benefit of society". In 1988 its budget was \$8 million U.S. IVA conducts studies and analyses of technological issues and their impact on modern society and industry. IVA also acts as a forum for international contacts for the exchange of specialists and information on R&D, and for the establishment of technical and industrial collaboration.
- *The National Industrial Board* (*SIND*); SIND operates under the Department of Industry, and manages a system of regional development funds set up in each of the 24 Swedish counties. A main objective of these funds is to finance industrial innovation especially in the latter stages of the innovation process (ie. pilot plant, test production, market evaluation).
- Information Technology Programme; Funded at an estimated cost of SEK 1.1 billion, part of this program is incorporated in the government's agreements on industrial development in the field of IT with ASEA, Ericsson, Nobel Industries, SASB-Scania and Teli.

KEY SUPPORT PROGRAMS

The STU delivers the principal support programs. As well, there are international initiatives under EUREKA, EC programs and Nordie country programs.

CONDITIONS OF ACCESS

Except for normal considerations of confidentiality and propriety rights, foreign involvement is treated from a business point of view of cost, benefit and risk.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

TECHNOLOGY PROSPECTING ABROAD

Areas of interest to Canadians are; pulp and paper (new processes, energy savings, recycling); forestry (reforestration, forest management, harvesting); wood (optimization, sawing, drying, components, automation); mechanical (automated materials handling); energy (solid fuel combustion, industrial heat pumps, district heating); and environment (solvents, aerobic water treatment, energy production from household waste, catalytic converters).

CONTACT POINT Technology Development Officer Canadian Embassy P.O. Box 16129 S-103 23 Stockholm Sweden Tel: 46-8-237920 Fax: 46-8-242491

3.12 FINLAND

inland has a population of 4.9 million and a GDP of FIM 440 billion (approx C\$126 billion).

Key industrial sectors include metal products and engineering, pulp and paper, and chemicals. About one-third of the GDP is exported.

In 1989 Finland spent 1.9% of its GDP on R&D. Industry contributes more than 60% of this expenditure.

TECHNOLOGY TRENDS

Finland's technological and industrial policies aim especially at:

- maintaining the competitiveness of the country's basic industries (e.g. wood processing and metal)
- creating new industries in emerging sectors of technology (e.g. information technology, biotechnology, etc).

The following national technological programs, initiated by the Technology Development Centre (TEKES), have planned total annual budget expenditures of greater than 40 million FIM (approx \$9 million U.S.):

- Information technology program (FINPRIT)
- Microelectronics program
- Functional paper
- Industrial building technology
- Software technology (FINSOFT)
- Biotechnology
- Powder metallurgy products
- Forest products technology

In 1989, the Finnish Ministry of Trade and Industry initiated a three-year project called, "Managing Technological Change (MTC)" to assist in the internationalization of Finnish firms. The aim of the MTC project is to invite top foreign experts to Finland to advise companies and to lecture in universities.

Finland has a network of seven science parks located throughout the country, and three technology oriented universities: Helsinki University of Technology, the Tampere University of Technology and the Tapeenronta University of Technology.

There is a concerted push to expand international co-operation through EC technology programs, EUREKA, associate membership in ESA.

TECHNOLOGY STRENGTHS

Finland has traditionally been strong in wood processing technology (research institutes include Central Laboratory, Technical University's Wood Processing Laboratories and ABO Akademias Wood Processing Department in Turku. Further research is carried out at Oulu University's Process Technology Department, Tampere Technical University's Plastics Technology Institute and the Lappeenranta Technical University's Process Technology Department. Other strengths include metallurgy (research institutes include Technical University's Metallurgy Department., Technical Research Centre of Finland's Technical Metallurgy and Minerals), chemistry (Technical University's Chemistry Department, Abo Akademias Chemistry Department., Oensuu University's Physical Chemistry Department., Oulu University's Process Technology Department., Tampere University's Chemistry Department., etc). Technological strengths also exist in microelectronics and telecommunications.

KEY ORGANIZATIONS

Principal technology development organizations include:

- The Technology Development Centre (TEKES) Reporting to the Ministry of Trade and Industry, TEKES, headquartered in Helsinki, coordinates international cooperation in technology and assists in raising the standard of technology in Finland through the management of national technological programs that link Finnish industry with research institutions. TEKES provides grants and loans for information technology centres, science parks, industrial R&D, and applied technological research. Its budget in 1988 was 532 million FIM (\$118 million U.S.).
- The Technical Research Centre of Finland (VTT) Finland's largest research institute, VTT consists of five research divisions comprising over 30 laboratories and a staff of approximately 3000. The objectives of VTT are to maintain and improve the general level of technology in fields of national importance, and to meet public and private clients' demands for research and testing. It meets these objectives through R&D in five areas:

- energy and its safe, domestic production
- extensive exploitation of information technology in products and production
- advances in the process industry and in the use of domestic raw materials (including research in microbiology)
- application of building technology in areas such as materials, heating and plumbing, and fire safety
- manufacturing technology and production methods throughout the mining/metal and machinery/engineering industries
- The Finnish Pulp and Paper Research Institute A private corporation owned with a staff of 300 by Finnish paper companies, it is the central research institute of the pulp, paper and paperboard industry in Finland. Research activities within the Institute are divided into four sections: by-products, pulping processes, paper and board, and technical services.

KEY SUPPORT PROGRAMS

International technology development programs co-ordinated by the Technology Research Centre are:

- microelectronics (1987-1990)
- software technology (Finsoft) (1988-1992)
- mechatronics (1987-1989)
- polymer matrix composites (1988-1991)
- powder metallurgy products (1986-1990)
- metal working and forming technology (1985-1989)
- functional paper technology (1977-1991)
- biotechnology (1988-1992)
- pharmaceutical technology (1989-1993)
- Arctic technology (1985-1989)
- industrial building technology (1986-1991)

PAGE SEVENTY THREE

CONDITIONS OF ACCESS

Any foreign company or research institute can arrange co-operation on a project level. Firms which have manufacturing in Finland can participate in above technology programs.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Major opportunities exist in the pulp and paper, resource development equipment, wood products and agricultural equipment.

CONTACT POINTS Commercial Counsellor Canadian Embassy P.O. Box # 779 00101 Helsinki Finland Tel: (358-0) 171-141 Fax: (358-0) 601-060

3.13 NETHERLANDS

be Netherlands has a GDP of about C\$270 billion and a population of 15 million. R&D expenditures amount to 2.3% of GDP. Of this total, 61% is performed in and mostly paid for by industry. Some 63,500 people, that is more than 1% of the working population, are involved in R&D.

The principal Dutch exports are machinery and transport equipment, food, drink and tobacco, chemicals and plastics. Over 70% of exports go to the EC.

TECHNOLOGY TRENDS

More attention is being focussed on environmental technology. A national Environmental Technology Programme (NPM) will start in 1990 and there are more and more environmental projects within EUREKA.

There is increased internationalization of science and technology, but with strong emphasis on Europe and continuing strong participation in EUREKA. The Netherlands, through Philips, will play a key role in the joint European Submicron Silicon Initiative (JESSI) aimed at developing European submicron chip technology.

Increased emphasis is being placed on technology diffusion and small firms. There are now 18 innovation centres scattered over the country and each university has its transfer point.

TECHNOLOGY STRENGTHS

The following sectors have been identified as strong sectors:

- health care and medical technolgy; TNO, universities
- microelectronics; Philips, Holland Elektronika, Centres for Microelectronics at the three technical universities

- new and advanced industrial materials; TNO, universities, selected companies
- ocean related science and technology; Marin, WL, universities, Ministry of Transport
- geosciences; GD, universities
- biology and biotechnology; universities, selected companies
- agriculture and tropical forestry; agricultural university, Ministry of Agriculture
- environmental technology and equipment; Federation of Suppliers of Environmental Services and Technologies (FMPS)

KEY ORGANIZATIONS

The Ministry of Economic Affairs is responsible for stimulating development of new industrial technology.

STIPT (implementing organization for technology stimulation programmes) is a semi-governmental organization responsible for implementing technological innovation. Stipt is also responsible for the EUREKA program.

The Ministry of Education and Science is responsible for scientific research, mainly within the university and scientific institutes.

PAGE SEVENTY FIVE

TNO (Netherlands organization for applied scientific research) is now theoretically an independent research organization, with considerable infusion of government money in various forms. It covers a wide range of scientific and technological activities.

Other major technological institutes are ECN (energy research), GD (soil mechanics), Marin (maritime research), NLR (aerospace laboratory), and WL (hydraulics laboratory). Three technical universities, an agricultural university and most of the other nine universities have active science and technology programmes. The Octrooiraad or patent office is mainly responsible for issuing patents in the Netherlands.

KEY SUPPORT PROGRAMS

The following programs are aimed at the stimulation of industrial development. The newly formed Stipt organization will implement these programs at arm's length from other government departments; the Innovation Stimulation Scheme (INSTIR), which was renewed in 1989; the Technical Development Credit (TOK); the Business Oriented Technology Stimulation Program (PBTS), which constitutes the nucleus of national technology programs on materials, biotechnology, medical technology and information technology; a fifth program on environmental technology will start in 1990; the Innovation Directed Research Programs (IOP) are in support of research in universities and research institutes. A number of IOP's in such areas as materials, biotechnology, catalysis and carbohydrates are under way. An IOP on environmental technology is in preparation.

The Business Oriented Stimulation of Technology in International Programs (BTIP) scheme was started in 1980 in support of international projects such as EUREKA.

CONDITIONS OF ACCESS

No specific conditions for collaboration, obtaining licences or other forms of technology transfer exist, other than the willingness and capability of Canadian firms to master and apply the new technology involved. Also one should realize that 85% of all industrial research in the Netherlands is being carried out by only 20 large companies. Hence most industrial technology would be owned by large companies.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Biotechnology is an area where active cooperation is being pursued through a pilot plant project. Advanced industrial materials and the environment would appear to be the most suitable areas where further cooperation should be tried. As well, there are possibilities for joint projects in telecommunications, language and image processing, new production systems, transportation and logistics systems.

CONTACT POINT

Technology Development Officer The Canadian Embassy Commercial Division P.O. Box # 30820 2500 GV The Hague The Netherlands Tel: 31 (70) 361-4111 Fax: 31 (70) 356-1111

3.14 SPAIN

pain is the second largest country in Western Europe whose major urban areas are Madrid, Barcelona, Valencia, Sevilla and Bilbao. GDP has been growing at 5% per annum. In real terms, the population is 38,996,000.

Key industrial sectors are automotive, capital equipment, steelmaking, mining, food processing, electric power, electronics and computers, engineering and construction, petrochemicals and textiles.

In 1988, expenditures on R&D equalled 311.800 million Pesetas (0.8 per cent of GDP). The Spanish government is aiming at an increase in R&D equivalent to 0.1% of GNP annually in order to reach a total of 1.2% of GNP in 1991. Distribution of expenditure by type of research is approximately as follows: 20% on basic research; 35% on applied research and 45% on technological development.

TECHNOLOGY TRENDS/STRENGTHS

In 1987, the Spanish government announced the first national plan for scientific research and technological development (1988-1991). The Spanish government targets under the plan are implemented by means of national programs which interact with the sectoral and regional programs. Priority areas are:

 Horizontal Programs: Training of R&D Staff, interconnection of information networks, communications and production technologies, micro-electronics, new materials, robotics, information and communication technologies, space.

- Natural Resources, Agricultural and Food Technologies: agriculture, stockbreeding, aquaculture and marine resources, geological resources, food technologies, environmental, forest systems and their preservation.
- Quality of Life: biotechnology, health, pharmaceutical research, social aspects of science and technology, special programs, high energy physics.

KEY ORGANIZATIONS

These include:

 The General Secretariat of the R&D National Plan. Its objectives are: co-ordination of the programs and activities of the National Plan, technical and budgetary management; Administration of the Plan. It is also responsible for monitoring and co-ordinating the initial R&D programs in which Spain participates. It collaborates with the Spanish organizations involved in scientific co-operation with other countries and co-ordinates Spanish participation in important European research programs. • The Spanish Council for Scientific Research (CSIC) - the CSIC defines its scientific objectives in accordance with state scientific policy. Sectoral priorities in the economic, social and cultural fields, and the results of scientific survey. CSIC pursues these objectives through a series of very diverse means: the creation of research centres, of joint centres with universities and other bodies, and of centres that are governed by a board on which other branches of the government administration are represented.

The CSIC's resources are: 80 institutes; 5,800 members of staff; 1,700 scientists; 3,700 technicians; assistants and office personnel; 250 post-doctoral fellows; 600 postgrad students.

- The Centre for Industrial Technological Development (CDTI) -The CDTI is a state company entrusted with the implementation and development of the industrial innovation policy defined by the General Secretariat of Industrial Promotion and Technology (Ministry of Industry and Energy). The CDTI's functions are as follows:
 - the identification of priority fields of technology;
 - the promotion of industrial utilization of the technologies developed, financial assistance for pre-production manufacture and the marketing of new products and processes;
 - the granting of loans on favourable terms for the financing of technological development projects;
 - co-operation with the interministerial Commission for Science and Technology in securing scientific, technological and industrial feedback from international programs in which Spain is participating.

 And the management of the programs for which the CDTI is responsible: EUREKA, ESA, Airbus and CERN and shares responsibilities for several European Community programs: ESPRIT, BRITE/EURAM, DELTA, RACE, AIM, BRIDGE, ECLAIR, FLAIR, new materials and recycling, TELEMAN.

The CDTI funds two types of projects:

- A) Technology development or innovation projects; and
- B) Concerted projects

These are captured in the national and regional programs.

CONDITIONS OF ACCESS

Spain is a member of the European Community. EC limitations apply (see Section 3.4). A presence in the country would facilitate access.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The areas that offer good opportunities for Canadians are: automotive electronics, aerospace, tool making, machine tools, pollution and environmental control, factory automation, plastics, industrial engineering and biotechnology.

CONTACT POINT Canadian Embassy Apartado 587 28080 Madrid Kingdom of Spain Tel: (34-1) 316-3905 Fax: (34-1) 431-2367

3.15 GREECE

be Greek GNP is about US\$50 billion. Greece has a small industrial base with manufacturing representing only 20% of the GNP. The agricultural sector represents 17% of the GNP while the heart of the economy remains the service sector which represents over 56% of the GNP.

The expenditure on R&D in 1989 was C\$200 million, e.e. 0.20% of GNP.

TECHNOLOGY TRENDS/STRENGTHS

Greece is an agriculture oriented country, but government policy is directed towards industrialization and technological development. There is no single thrust for the development of any specific sector, but rather a general effort for overall industrial growth.

The main R&D expenditure is made by the government (74.4%). Public enterprises spent 13.8% and private enterprises 9.4%. There is no specific sector favoured or exhibiting a particular strength, but interesting niche technologies exist amongst companies such as Petzetakis in plastics and in yogurt technology.

KEY ORGANIZATIONS

These include:

- the Ministry of Industry, Energy and Technology (which also operates the National Pailnis Office)
- The Ministry of National Economy
- The Ministry of Agriculture
- The Hellenic Industrial Development Bank
- Also universities of Athens, Tessaloniki, Pathas and Crete Institute

KEY SUPPORT PROGRAMS

The Greek government co-operates closely with all the EC sponsored R&D programs and also supports the following programs:

- The Program for Supporting Human Research Resources (Channelco through universities)
- The Program for Development of Industrial Research
- All the EC Co-ordinated Programs

 an example of which is a future project concerning refuse processing.

CONDITIONS OF ACCESS

Foreign firms and research organizations can freely participate in the above programs subject to approval by the Ministry of Industry, Energy and Technology.

Licensing of technology is the responsibility of the same ministry. Fees for the license are approved by the Ministry of National Economy and no particular problems exist.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

These exist through niche industrial opportunities and through off-shoots from the EC research programs, such as (Aim, Gap, SCA, Gridge, CTSC, etc.) for which only European entities are eligible.

CONTACT POINT Canadian Embassy 4 Ioannou Ghennadiou Street 115, 21 Athens Greece Tel: (30-1) 723-9511 Fax: (30-1) 724-7123

PAGE EIGHTY

TECHNOLOGY PROSPECTING ABROAD

3.16 PORTUGAL

ortugal has a GDP of 6.90 billion Escudos (approximately C\$53.27 billion) and a population of 10.4 million.

The key industrial sectors are: textile, clothing and footwear, timber, cork and paper pulp and machinery.

The expenditures on R&D are 47.36 billion Escudos (approximately C\$365 million) or 0.68% of GDP.

TECHNOLOGY TRENDS/STRENGTHS

Total expenditure on R&D for 1986 was US\$256.9 million (current purchasing power parity basis) or 0.45% of GDP. The state financed 63.5% of the total, while the companies paid 26.8% and the universities and private not-for-profit organizations made up the remainder. Since 1986, the picture has not changed significantly. R&D expenditures by the state in 1986 concentrated on "natural and exact sciences" (29.7%), "engineering" (30.0%) and "agriculture, forestry, livestock, hunting and fisheries" (18.9%). Enterprises, in turn, concentrated heavily on "manufacturing" (68.2%) with "services (transport, communications, banking, etc.)" a fair second (20.9%).

KEY ORGANIZATIONS/ PROGRAMS

The state's direct contribution involves practically all of the state institutes which in 1990 will receive from the government budget a total of 18,108 million Escudos (approximately C\$140 Million), to cover their R&D expenditures. The largest single share (5,230 million Escudos) will go to the National Board for Scientific and Technological Research (7NICT) which, among other things, is responsible for supporting "the implementation of programs and projects relating to scientific research, experimental development, and innovation". A rather distant second is the National Laboratory of Engineering and Industrial

Technology (LNETI) with 3,608 million Escudos followed by the National Institutes of Agricultural Research (INIA) with 2,555 million Escudos.

As in other sectors, EC funding plays a significant role. In fact, 2,000 of JNICT's 5,230 million Escudos (above) are earmarked as Portugal's "counterpart" in the new "CIENCIA" program. CIENCIA received government approval in June 1989 and will be expected, in 1990-1993, to "mobilize funding" at levels not previously experienced. It will support "quality" R&D in areas of great interest to the country, and will marshall the energies of the "Portugese scientific community in the country and abroad".

CONDITIONS OF ACCESS

Portugal is open to co-operation with foreign firms and research organizations provided that they meet the requirements established by the EC which is that the Canadian entity have a local "presence".

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Opportunities exist in the fisheries and the clothing industry.

CONTACT POINT

Canadian Embassy Av. da Liberdade, 144 / 56-4 1200 LISBOA Portugal Tel: (351-1) 347-4892 Fax: (351-1) 347-6466 TECHNOLOGY PROSPECTING ABROAD

be 1988 GDP was US\$34.3 billion. The population is 4.5 million. The top industrial exports are: diamonds, high tech products (electronics, electro-optics, telecommunications, avionics, medical electronics), and agricultural products.

R&D expenditures are 3.1 per cent of GDP. The sources of R&D expenditures are: 51.0% at the Ministry of Defence; 22.3% at the universities and research institutes, 14.8% at government agencies; and 11.5% in industry.

TECHNOLOGY TRENDS

In Israel, a distinction is drawn between scientific and technological activities. In the area of science, Israel hopes to maintain a minimal international level of excellence across a broad spectrum of scientific fields by encouraging the establishment of centres of excellence, especially in areas of vital concern to the development of industry. International co-operation has played a major role in above effort by facilitating the extension of scientific resources and knowledge at Israel's disposal. In the area of technology, Israel has striven for excellence primarily through specialization.

Strong support is given to industrial R&D with a high R&D ratio in terms of sales tend to export a higher proportion of their sales than firms expending a smaller fraction of their sales on R&D. Fostering the continued growth of these types of firms is presently at the heart of Israel's industrial strategy.

TECHNOLOGY STRENGTHS These are:

- defence industries (telecommunications, avionics/optronics)
- medicine (neurobiology, cancer, cardiovascular disease)
- computer science
- agriculture (irrigation, aquaculture, automation in agriculture)

KEY ORGANIZATIONS

These are:

- Ministerial Committee for Science and Technology appointed by Cabinet. It determines national long term policy for the advancement of scientific research and development
- Ministry of Science and Development which oversees and guides national R&D efforts
- National Council for R&D (NCRD) which is in charge of fostering international relations
- Israel Space Agency
- National Steering Committee on biotechnology
- Chief Scientists' Forum made up of the chief scientists of the various ministries

- Israel Academy of Sciences and Humanities
- Council for Higher Education

KEY SUPPORT PROGRAMS

Through the National Council for Research and Development, Israel has established scientific co-operation at governmental levels with more than 20 countries and regional international organizations.

Key Support Programs are:

- Exchange of scientists and convening of scientists' conferences
- Extensive programs of co-operative research. Such programs are underway between Israel and the Federal Republic of Germany, the US, France and the European Community
- Israel's international development co-operation program quote Masmav unquote, a division of the Ministry of Foreign Affairs. Its activities include training, research, projects, institutional support and other forms of technology transfer to developing countries
- Bi-national research funds for joint R&D (e.g. USA, Israel Bi-national Science Foundation, Bard-USA, Israel Binational, agricultural research and development, BIRD-Israel - USA Bi-national Industrial R&D Foundation, GIF-German -Israel Foundation for Scientific R&D)

CONDITIONS OF ACCESS

TECHNOLOGY PROSPECTING ABROAD

Canada and Israel signed a Memorandum of Understanding (MOU) for joint R&D in 1986. The MOU is between NRC and the office of the chief scientist of the Ministry of Trade in Israel. Foreign firms and organizations wishing to collaborate will find very willing partners in Israel, both in industry and in academic institutions. There are abundant technologies available seeking international partners for further development and marketing.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Within the framework of the MOU for joint R&D, a fertile ground has been established for co-operation between Canadian and Israeli firms. The following sectors offer opportunities for technology transfer: telecommunications, optronics, electro-optical, tactical electronic equipment, composite materials, biotechnology, genetic engineering, medical electronics, and agricultural technologies.

CONTACT POINT Canadian Embassy P.O. Box # 6410 Tel Aviv State of Israel 63405 Tel: (972-3) 228122-6 Fax: (972-3) 223001

TECHNOLOGY PROSPECTING ABROAD

4.0 ASIA/PACIFIC RIM

4.1 JAPAN

apan is the world's second largest industrial economy after the United States. Its 1988 GDP was some US \$2,500 billion, and its per capita GDP (population 123 million) exceeded that of the USA. In 1989, Japan's per capita income rose to become the bigbest in the world. The world's 10 largest banks are now

Japanese. 🛛 🗶

Japan spends about 2.8% of its GDP on R&D. Some 80% of national R&D expenditures are financed by the private sector, the highest ratio of the industrialized nations.

TECHNOLOGY TRENDS

A 1986 Cabinet decision established the General Guidelines for Science and Technology Policy in Japan. These guidelines include the following areas of concentration;

- basic sciences and fundamental technologies which impact progress in other fields (advanced materials, information technologies, life sciences, software, space, ocean and earth sciences)
- science and technology which stimulates economic growth (natural resources, energy, recycling, production and distribution systems, service to society)
- science and technology which improves the quality of life (mental/physical health, culture, human, environment, safety and comfort).

The three major S&T funding agencies of government are the Ministry of Education, Science & Culture (S6.7 billion), the Science & Technology Agency (STA) (\$3.8 billion) and the Ministry of International Trade and Industry (MITI) (\$1.8 billion), which in general fund basic, respectively applied and product development research.

National technology thrusts are normally promulgated via "National" or "Large-Scale" projects in which the government funds a substantial amount (See "Key Organizations"). The basic thrust of Japan's current strategy in S&T is to move upstream into basic research which will provide the foundation of Japan's future technologies. Basic research accounted for 14% of Japan's R&D expenditures in 1987, while applied research accounted for 24.3%, and experimental development 61.7%.

Internationalization is another pillar of Japan's S&T strategy. In the past few years a number of major programs have been initiated by Japan (see "Key Support Programs").

TECHNOLOGY STRENGTHS

From aquaculture to robots Japan is among the best in the world. Japan is a world leader in advanced manufacturing technologies, micro-electronics, automobiles and automotive components and assemblies, energy technologies, and food processing. It is also extremely strong in construction technology, aquaculture and optoelectronics, among others.

TECHNOLOGY PROSPECTING ABROAD

KEY ORGANIZATIONS

The lead organizations in Japan are:

• Ministry of International Trade and Industry (MITI)

MITI is responsible for industrial and trade policy development in Japan. It plays a key role in industrial technology development (see AIST below), and has overall responsibility for ensuring that Japan's industrial economy grows in a coherent fashion.

Agency of Industrial Science & Technology (AIST) AIST has 16 national laboratories which are industry-oriented, a staff of some 4,000 and a budget of some \$600 million. There are 7 regional labs which are charged with technology development based on the strengths of the individual regions.

Centrally, AIST administers the "Basic Technologies for Future Industries" project, and a number of so-called "National" and "Large-Scale" projects. It is also responsible for the "Sunshine" (new energy sources) and "Moonlight" (energy conservation) technology programs. The provision of technological information and technology diffusion are also in AIST's mandate.

- Science & Technology Agency (STA) The STA, an arm of the Prime Minister's Office, has central responsibility and authority for all science and technology development in Japan. It has a budget over \$1.2 billion and some 2,200 employees. Its key missions can be summarized as follows:
 - (a) planning and implementation of national S&T policies
 - (b)co-ordination of government's S&T expenditures excluding Education
 - (c) promoting technology development in strategic fields including atomic energy, space, oceans, etc.
 - (d)bolstering basic research in Japan
 - (e) co-ordinating all international S&T activities, both multilateral and bilateral.
- Research Development Corporation of Japan (JRDC)

JRDC links researchers and inventors with companies. It has a number of programs which promote the transfer of research completed in the institutional sector to the private sector. JRDC also funds private sector research and development and co-ordinates technology transfer both within and outside of Japan.

• Japan Key Technology Centre (KEYTEC)

KEYTEC was established in 1985 jointly by the Japanese Government and the private sector with the objective of promoting private sector technology development in strategic fields. It provides venture capital funds and loans for eligible projects, and puts together research consortia on a contract basis.

TECHNOLOGY PROSPECTING ABROAD

• Japan Industrial Technology Association (JITA)

JITA is a non-profit organization funded by and closely affiliated with MITI/AIST. It has long been the funnel by which AIST technology is transferred to the private sector in Japan, and of late has been concentrating on international transfer of Japanese intellectual property. JITA runs an intellectual property mission to North America every year with a view to showcasing available technologies.

 New Energy and Industrial Development Organization (NEDO) Also an AIST affiliate, NEDO manages the Sunshine and Moonlight Projects, among others (see "Key Support Programs"). It also takes on a significant role in non-energy technology development in Japan. NEDO will be a source of funds for private firms' R&D efforts and will also administer a number of the "large scale" projects. There is now a multimillion dollar "International Joint Research" grant program which reviews and selects appropriate projects internationally from the life sciences and advanced materials fields.

KEY SUPPORT PROGRAMS

The main support programs include the following:

Internationalization

 JRDC International Research Program

JRDC will select large scale bilateral R&D projects from proposals submitted to it by foreign countries. Cost sharing on a 50/50 basis is expected. Human Frontier Science Program (HFSP)

FY 1990 funding will be approximately \$30 million. Canadian researchers, corporate or institutional, can avail themselves of HFSP funding following an application and peer review process (Medical Research Council of Canada is the Canadian contact).

- STA & Ministry of Education Fellowship Programs The two programs are funding hundreds of foreign researchers to work with their Japanese counterparts in Japanese labs. Over 250 positions are available in 1990, and Canada is eligible for over 20. The Natural Sciences and Engineering Research Council (NSERC) coordinates the program in Canada.
- MITTI/AIST International Research Programs
 A number of programs are available to foreign entities in a number of sectors, many of which require a "membership fee" to participate.

National Programs

- Exploratory Research for Advanced Technology Program (ERATO) JRDC funds and manages ERATO which funds "leading edge" R&D in everything from solid state physics to biophotons. Projects are carried out in the existing labs of the partners. Last year's budget was \$40 million.
- Frontier Research Program
 Similar to ERATO, this program is
 managed by the STA's Institute for
 Physical and Chemical Research
 (RIKEN). It is directed towards
 life and material sciences.

PAGE EIGHTY SEVEN

• Large Scale Projects

These AIST-funded and NEDOmanaged projects are strategic technology development initiatives. Corporations, government labs and, to some extent, universities work together towards a national objective. Current projects of interest include:

- Advanced robotics (FY 89 budget of \$20 million)
- Water treatment (FY 89 budget of \$20 million)
- Interoperable Databases (FY 89 budget of \$11 million)
- Advanced material processing/machining (FY budget \$19 million)

Effective this year, foreign enterprises are eligible to participate in all "Large-Scale" projects.

- Sunshine and Moonlight Projects
 These NEDO projects are targeted
 at developing alternative energy
 sources (solar, geothermal, coal,
 wind, hydrogen, etc.) and energy conserving technologies (superheat
 pumps, fuel cells, etc.)
- Fifth Generation Computing
 This is a national project which
 commenced in 1982. Managed by
 the Institute for New Generation
 Computer Technology (ICOT), a
 combination of government and
 private sector human and financial
 resources, its target is literally the
 "fifth generation" computer using
 AI and parallel processing.

CONDITIONS OF ACCESS

Government programs, which have often excluded foreign participants in the past, are slowly opening to international participation. In the past two years alone, at least four major initiatives of Japan totalling over \$100 million have not only been opened to foreign organizations, but created with their participation in mind. Intellectual property in Japan is controlled by the Japanese Patent Agency. While the patent process is similar to that of both Canada and the European Community nations, the Japanese system is "first to file". Patent applications in Japan sometimes take an inordinate amount of time to fruition (up to three years), and a good patent attorney is a necessity.

Both the government and private sector are willing licensors. Individual agreements can be tailored to the tastes of the parties involved. Government licenses are often extremely cheap.

The biggest barrier to access is not technical, but cultural. The use of Japanese professionals for cultural and language interpretation is a *must*.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

These abound in virtually every sector of the Japanese economy. Successes include everything from scallop aquaculture to advanced debit card technologies. In the strategic sectors there are abundant opportunities in advanced materials, automotive industries, advanced manufacturing and chemical/plastic products. Environmental, food, and resource technologies also hold promise.

Canada has a bilateral science and technology agreement with Japan which was signed in 1986. More recently, the federal government has approved a Japan Science and Technology Fund which will enhance science and technological collaboration with that country.

The Japanese also remain one of the world's most prolific *licensees* of foreign technologies. Opportunities are also numerous here.

CONTACT POINT

Embassy of Canada 7-3-28 Akasaka Minato-Ku, Tokyo 100 Japan Tel: (03) 408-2101 Fax: (03) 479-5320 or 470-7280

4.2 SOUTH KOREA

outh Korea with a population of approximately 42 million, had a growth of GDP of 11.3% in 1988 and had a trade surplus in 1986 of US\$11.4 billion. Korea increased its expenditures on R&D from US\$577 million (0.9% of GDP) in 1981 to US\$5.3 billion (2.6% of GDP) in 1989. Their plan is to reach 3.0% of GDP in the year 2001. Their GDP for 1989 is estimated to be US\$204 billion. The real economic growth in 1989 was 7.5%.

• Key economic sectors include automobile production, steel production, industrial chemicals, electronic products.

TECHNOLOGY TRENDS/STRENGTHS

The primary science and technology policy directions emphasize "creation" rather than "imitation", in developing selected high-tech areas toward the 21st century, and strengthening science programs for the younger generation. The Korean government plans to increase the numbers of scientists and engineers from 13 per 10,000 (1987) to 30 per 10,000 by 2001.

Through the use of financial incentives, the Korean government has encouraged the growth of private research institutes from 52 in 1980 to 503 in 1988, and research consortiums from 0 to 37 in the same period.

In their "Long-range Plan of Science and Technology Toward the 2000's", Korea has identified the following technologies as important:

- information technologies and automation
- fine chemicals
- precision machinery
- biotechnology
- new materials
- environmental technologies
- health technologies
- oceanography
- aeronautics

There is also greater emphasis being placed on basic research.

KEY ORGANIZATIONS/SUPPORT PROGRAMS

These include:

- Korea Advanced Institute of Science and Technology (KAIST)
 A major government sponsored research institute located on the outskirts of Seoul, it engages in cooperative research projects with private sector and academic laboratories.
- Korea Science and Engineering Foundation (KOSEF) KOSEF plays a major role in the training of scientific personnel, including supporting Korean scientists in conducting joint research with their foreign counterparts. KOSEF conducts joint research, holds research seminars, exchanges scientists and science and technology information with foreign organizations.

PAGE EIGHTY NINE

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Major opportunities exist in the expanding electronic/software, aerospace equipment, communications, automotive parts and agricultural food sectors.

CONTACT POINT Canadian Embassy P.O. Box # 6299 Seoul 100-662 Republic of Korea Tel: (82-2) 753-2605/8 Fax: (82-2) 755-0686

4.3 PEOPLE'S REPUBLIC OF CHINA

bina, with a population of 1.1 billion people had a GNP of RMB 1.385 trillion in 1988 (11.2% increase over 1987) which was equivalent to US\$340 per head in 1988. Key industrial sectors include, agriculture, energy, petroleum and petrochemicals, metals and minerals, transportation, machinery, telecommunication.

TECHNOLOGY TRENDS

Technology development thrusts are in the following fields: agriculture (chemical fertilizer plant, farm machinery, pesticides); energy (hydro, coal fired and nuclear power); petroleum and petrochemical (ethylene, polyethylene, propylene, carbon disulphide, etc); metals and minerals (steel, aluminum, lead and zinc); transportation (railways, waterways, port, aviation, car); telecommunications (switchboard, packet switching, fibre optic, microwave).

The government recently outlined its funding priorities and listed 30 key projects involving power-supplies, ports, airports, plants producing chemical fertilizers, aluminum, copper, cement, heavy duty trucks, ethylene, colour television tubes, detergents and electric generating equipment. Briefly, China will expand infrastructure project investments in energy, raw materials and communications (both telecommunications and transportation).

KEY ORGANIZATIONS

There are more than 200 science and technology research institutes and centres in China. The most important ones are:

- Chinese Academy of Science
- State Science and Technology Commission
- Beijing New Technology
 Application Research Institute
- Beijing Machinery and Electricity Institute

- Beijing Agricultural Machinery Research Institute
- Beijing Automotive Industry Research and Development Centre
- Central Iron & Steel Research Institute
- Beijing Information-Optics
 Instruments Institute
- Organization responsible for patents and licensing of technology: China Patent Office

KEY SUPPORT PROGRAM(S)

China Association of Science and Trade (CAST)

China Council for the Promotion of International Trade (CCPITT)

CONDITIONS OF ACCESS

Viable business opportunities exist in many areas, but cool and realistic assessment is essential. Decision to enter PRC market requires long-term commitment of resources need to achieve success and acceptance of probability that, initially, results may be minor and long-delayed. China's potential and current circumstances justify a special approach. There is a need to accept less well-defined and precise operating circumstances than usual. Initial profits should be used to expand local base of operations, rather than repatriation, but for a limited period only. Must check to what extent any propriety technology will be protected under the patent and copyright system (April 1985, currently under review). Two key words: Patience and Persistence pay. Sooner or later, China will become one of the biggest markets in the world. The sooner one starts, the better.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Canadian firms and research organizations have little to gain from Chinese technology. But a good way to enter the Chinese market is to introduce Canadian technology and services. Key areas of opportunity are energy, transportation, telecommunications, metals and minerals, petroleum and petrochemicals.

TECHNOLOGY PROSPECTING ABROAD

CONTACT POINT

Prime contact on Technology Development and related questions is:

Canadian Embassy 10 San Li Tun Chao Yang District Beijing 100600 P.R. China Tel: (86-1) 532-3536 Fax: (86-1) 532-1684

ndia has a GDP of RS 2,933,000M and a population of 797 million. The focus of its industrial production is food, textiles, metallurgy, mechanical engineering, electrical engineering and chemicals. India spends about 1.13% of its

GDP on R&D. 💿 💿

TECHNOLOGY TRENDS

The Indian government has targeted the following areas:

- environment
- ocean technologies
- non-conventional energy sources
- biotechnology
- space technologies (e.g. telecommunications)
- electronics (e.g. electronic switching, LSI/VLSI, computer architecture, etc.)
- nuclear power

TECHNOLOGY STRENGTHS

India's technology strengths include the space program, defence R&D and computer software.

KEY ORGANIZATIONS

A principal agency is the Council of Scientific and Industrial Research (CSIR). This organization consists of a network of 39 national laboratories, two co-operative research associations and 100 extension field centres. The Council's research programs are directed towards the effective utilization of India's natural resources and development of new processes and products for economic progress.

Other organizations include:

- The National Remote Sensing Agency (NRSA)
- India Space Research Organization (ISRO)
- Centre for Development of Telematics (C-DOT)
- Geographical Survey of India
- Centre for Development of Advanced Computing (C-DAC)

KEY SUPPORT PROGRAMS

Support is directed to sectors such as space, military and telecommunication more than to support of manufacturing per se.

CONDITIONS OF ACCESS

While imports are discouraged, technology transfer agreements stimulating manufacturing in India are permitted. Government approval procedures are to be accelerated for industrial collaboration.

TECHNOLOGICAL **OPPORTUNITIES FOR** CANADIANS

Principal opportunities are in communication technology, defence and software.

CONTACT POINT **Canadian High Commission** P.O. Box # 5208 New Delhi 110-021 India Tel: (91-11) 60-8161 Fax: (91-11) 60-8161, Ext. 401

4.5 AUSTRALIA

ustralia's gross domestic product (GDP) in 1987-88 stood at A\$292 billion. Real GDP growth in 1987-88 was 3.6%. The country spends about 1.2% of its GDP on R&D with industry contributing about 37%.

Australia has one of the largest livestock industries and is the world's leading supplier of wool, accounting for about 50% of international wool exports. Metal and mineral exports account for more than 28% of export earnings. Manufacturing accounts for about 17% of GDP.

International trade accounts for about 28% of Australia's gross domestic product. On a composition of trade basis, agricultural product exports constitute 25% of total export values and minerals another 24%.

TECHNOLOGY TRENDS

The announced priority of the government is to internationalize Australian industry and research. The thrust of its R&D policy is to improve the competitiveness of Australian firms by increasing their productivity. It is promoting strategic alliances, research collaboration, methods to restructure its mature industries (mining, agriculture and heavy manufacturing), and developing new industries in information technologies, aerospace, biotechnology and environment.

TECHNOLOGY STRENGTHS

Australia is prime supplier of Zirconia powders, rare earths, gallium and silicon metal. There are also developments in ceramics (based on Zirconia). There are 30 university departments and 30 in government doing R&D in new materials. In agriculture, biotechnology is playing a strong role in developing new strains of plants products and in animal virus control. Food processing is also a strong sector for innovation. In minerals and metals processing, new techniques for smelting are being developed.

In the newer industries, innovation is strongest in the I.T. field particularly in software and communications. Telecom Australia, the Overseas Telecommunications Corporation and several private sector firms and universities are developing capabilities in optoelectronics and ISDN.

KEY ORGANIZATIONS

These include:

- CSIRO: similar to Canada's NRC, primarily concerned with developing new technologies primarily in Agriculture and Food, Minerals and Energy, and Manufacturing industries.
- DSTO: Primary interest in technology for the defence industry
- DITAC: Industry development industry patent Office and support program for R&D program and international cooperation
- TELECOM: Large R&D program for Telecommunications research: ISDN, Optical Fibre.
- OTC: Large R&D program in transmission, networks and applications. Strengths in optoelectronics and satellite communication. Latter shared with AUSSAT, the Australian Satellite Organization (public company).

KEY SUPPORT PROGRAMS

These include:

- Grants for Industry R&D (GIRD)
 - support to small firms
 - support for joint R&D
- Tax concessions for industrial R&D (150%)
- Management and Investment Companies (MIC)
 - subsidized venture capital companies to provide management and financial support
- Australian Industry Development
 Council
 - the Governments own venture capital firm
- Partnership for Development Program
 - program to attract foreign high tech firms by removing offset requirements for R&D and trade promises
- International Licensing Network
 Link

CONDITIONS OF ACCESS

No specific conditions, very similar to Canada.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

Australia's strengths lie in technologies for agriculture, food processing, mining and metallurgy, and represent real opportunities. The I.T. sector is also very strong in certain niche areas e.g. banking software, data communications, optoelectronics, space communications and ISDN. CONTACT POINTS Canadian Consulate General Level 8, 50 Bridge Street Sydney NSW 2000 Australia Tel: (02) 231-7022 Fax: (02) 223-4230

Canadian Consulate Commercial Officer Level 6, 1 Collins Street Melbourne, Victoria 3000 Australia Tel: (03) 654-1433 Fax: (03) 650-5939

Canadian High Commission Commonwealth Avenue Canberra Act 2600 Australia Tel: (61-62) 73-3844 Fax: (61-62) 73-3285

4.6 NEW ZEALAND

ew Zealand has a total population of 3.4 million located on three islands that contain 267 thousand Km². New Zealand invests approximately 1.4% (1987) of its GDP in R&D. Its GDP in 1988 was NZ\$59.2 billion.

TECHNOLOGY TRENDS

The bulk of R&D is conducted in government supported laboratories and research institutions. Therefore, the research objectives of the Department of Scientific and Industrial Research (DSIR) can be considered to reflect the objectives of government R&D policy.

KEY TECHNOLOGICAL STRENGTHS

These include:

- agricultural biotechnology
- compressed natural gas technology

KEY R&D SUPPORT PROGRAMS A main program is:

The Development Finance Corporation Applied Technology Program

- This program spent approximately NZ\$3.9 Million in 1985/86 to assist New Zealand industry undertake R&D.

KEY ORGANIZATIONS

The principal technology development organizations are: Department of Scientific and Industrial Research (DSIR). DSIR is New Zealand's main government research organization and also New Zealand's major plant breeding organization conducting studies in molecular genetics, biochemistry and plant process engineering. DSIR also conducts research into:

- industrial chemistry and biotechnology (e.g. bioprocessing, microbial cultures, insect bioassays, and fermentation)
- physics and mathematics (e.g. metals corrosion, new ceramics, radioactive tracers, and materials characterization)
- mechanical engineering (e.g. alternative fuels technology (methanol), biomechanics, advanced production technologies)
- electronics and information technology (e.g. machine vision, digital communications, satellite image processing, expert systems, chip development)
- ecological science (e.g. animal and plant identification, pest management, plant diseases)
- land and such resources (e.g. soil and rock mechanics, waste and efficient disposal and geotechnical investigations)
- water science and resources (e.g. groundwater studies, river hychology and fish habitat assessment)

- earth sciences (e.g. ultra-trace metal analysis, geological well logging, seismic monitoring)
- atmospheric studies (e.g. greenhouse effect and ozone levels)

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The main opportunity areas are in agriculture and animal products.

CONTACT POINT Canadian High Commission P.O. Box # 12-049 Wellington, New Zealand Tel: (64-4) 739-577 Fax: (64-4) 712-082

4.7 SINGAPORE

be Republic of Singapore is a small, highly urbanized and affluent democratic city state. the country's socio-economic activity as defined by total trade in 1988 is C\$105.4 billion (and total exports in dollars was C\$49.8 billion).

The population is 2.6 million. 🛛 🗨

Some 45% of the work force is employed in the manufacturing sector in the following four major industries:

- electronic and electrical industry;
- ship and oil rig building and repairs;
- petroleum products and bi-products; and
- consumer goods.

Singapore has the most developed and well-equipped education and research facilities in the whole of South East Asian region. Singapore has 3,361 researchers.

TECHNOLOGY TRENDS

Technology Development is centred around four principal sectors (all within the country):

- electronics
- computer hardware and software
- robotics, automization and engineering equipment
- biotechnology

TECHNOLOGY STRENGTHS

A number of large firms in the country, which are mostly MNCS are: AT&T, Hewlett Packard, Digital, Philips, Sony, Matsushita, Dupont, Far East Livingston, BP, Exxon, Seagate, Glaxo, SGS-Thompson, etc. These companies have been the focii for the development of technological strengths in areas such as electronics, computer hardware and software, petroleum bi-products, chemicals, engineering equipment, and pharmaceuticals.

KEY ORGANIZATIONS

Singapore has a concentration of both public and private technology development organizations. Publicly funded institutions include Singapore Institute of Standards and Industrial Research (SISIR), Institute of Molecular and Cell Biology (IMCB), Institute of System Sciences (ISS) at the National University of Singapore, Japan Singapore Institute of Software Technology, and the Science Council of Singapore. All these institutions are situated at the Singapore Science Park, and they employ about 2,000 research scientists and engineers.

Private technology development organizations in Singapore are for example CCS or Centre for Computer Studies a partnership between ICL (UK) and NGEE ANN Polytechnic and Northern Telecom (Canada) joint research projects with Nanyang Technological Institute.

CONDITIONS OF ACCESS

Companies that wish to qualify for local support program must establish themselves in Singapore.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

The key areas of opportunity are electronics, computer hardware and software, robotics, automation and engineering equipment, biotechnology, petroleum bi-products, chemicals, pharmaceuticals and telecommunications.

CONTACT POINT Counsellor (Commercial/Economic) Canadian High Commission IBM Tower 80 Anson Road 14th Floor Singapore 0207 Tel: (65) 225-6363 Fax: (65) 226-1541

5.0 EASTERN EUROPE

5.1 SOVIET UNION

be Soviet Union is the largest country in the world (22.5 million km²) and has a population of more than 280 million. It has a large primary resources development sector which accounts for 85% of Soviet exports. Manufactured exports are largely in the machinery and equipment sector:

The push to restructure the economy and to accelerate production is based on the introduction of new technology.

TECHNOLOGY TRENDS

The new economic system set in place in 1988 links science and technology to the economy by placing research institutes on a contract basis with the clients of their services.

The following are major science and technology programs being undertaken by the USSR:

- high energy physics (e.g. investigation of electro weak and strong interactions, and solar and stellar particle streams and energy generating mechanisms)
- high temperature superconductors (e.g. development of industrial processes to manufacture HTS, and development of HTS devices)
- exploration of the planet Mars (e.g. development of a detailed engineering model of Mars, and study of the technical feasibility of a manned expedition)
- human genome program (e.g. complete decoding of the molecular structure of the human genome involving chromosome mapping and sequencing of DNA)

- emerging information technologies (e.g. development of super computers, ultra-high capacity external storage devices, artificial intelligence systems, and computerized information networks)
- advance manufacturing technologies, machines and production systems (e.g. new farming methods using high-density energy, ultrahigh pressures, etc; CAM; intelligent or self-learning robots using opto and bio-sensory systems, and high precision machine tools)
- advanced materials (e.g. radiation and hydrogen resistant steels, alloys with amorphous and microcrystalline structure; "shape memory alloys and steels"; new structural ceramics with high impact viscosity, tool ceramics with a damaging structure, ceramic membranes with adjustable channel size; metal and polymer matrix composites, structural polymers, special purpose polymeric materials, stalls with high bio-compatibility and super strong glass fibres)

- bio-engineering (e.g. production of recombinant micro-organisms, transgenic plants and animals, bioleeching processes for mining and pollution control, construction of peptides and proteins for diagnostic and therapeutic uses, development of extra-cellular proteins, and production of bio-catalysts).
- high-speed non-polluting transport (e.g. development of naval transport technologies such as high speed trains, mag-lev vehicles and non-polluting automobiles)
- clean energy (e.g. from safer nuclear power stations, non-polluting thermal power stations using low grade fuel, solar/wind/geothermal sources, and more efficient forms of fuels based on more extensive processing of coal and natural gas)
- resource-efficient and non-polluting metallurgical and chemical processes (e.g. development of new technologies concerned with rolled setal manufacture, turbulent flow reactors in chemical processes, non-polluting cellulose manufacture, and membrane processes for concentrating products and clarifying waste water in small scale chemical plants)
- high-efficiency food manufacturing processes (e.g. development of safe means of soil enhancement, of integrated systems of plant protection using environmentally safe biological and chemical agents, production of high yield plants and animals, manufacture of food and fodder protein, development of biological and physio-chemical storage and transportation mechanisms for farm produce, and development of mariculture technologies for cultivating saltwater fish, etc., and for the combined processing of the animals and plants cultivated with the aim of producing high quality food products, biologically active substances and feed items)

- prevention, diagnosis and treatment of widespread diseases (e.g. atherosclerosis, oncological diseases, viral infections, alcohol/ drug/toxic substance abuse and AIDS)
- advances in building technology and materials (e.g. development of new structural materials and members)

TECHNOLOGY STRENGTHS

The Soviet Union is well recognized in space research, space technology, laser technology and thermonuclear fusion.

KEY ORGANIZATIONS/SUPPORT PROGRAMS

The principal technology-related organizations are:

 Gosplan USSR Gosplan is responsible for all aspects of economic planning in the USSR. Its main role in relation to R&D is in the planning of the introduction of innovations into the economy, but it also plays a part in the allocation of resources and suppliers for use in science.

Organizationally, it is divided into two main types of departments which include those concerned with particular industries. The department most closely concerned with innovation is the Department of Aggregate Planning for the Introduction of the Achievements of Science and Technology into the National Economy. It works closely with the State Committee for Science and Technology and the Academy of Sciences. • State Committee for Science and Technology

The Committee has five main functions:

- planning the development of science
- supervision over the fulfilment of the plan
- the establishment of rules and standards for the conduct of research and development
- the processing and dissemination of scientific and technical information
- the arrangement of foreign contacts.

The State Committee only has 2% to 3% of the science budget to allocate to promising lines of research.

• USSR Academy of Sciences The Academy is the country's highest scientific establishment. It is responsible for promoting basic research in both the natural and social sciences and for implementing research in promising spheres of industrial development. The Academy has 332 full and 597 corresponding members. The Academy is comprised of 17 scientific divisions and 3 regional divisions. The research, within this framework, is carried out by more than 300 institutions.

CONDITIONS OF ACCESS

The sale and purchase of patents, licenses and "know how" falls within the purview of the Licensintorg of the Ministry of Foreign Trade.

Economic restructuring is now stressing joint ventures between foreign and Soviet companies.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

TECHNOLOGY PROSPECTING ABROAD

Opportunities exist principally in the area of resource extraction especially in the machinery and equipment sector.

CONTACT POINT Canadian Embassy Starokonyushenny Pereulok 23 Moscow, U.S.S.R.

Tel: (7-95) 241-9155 Fax: (7-95) 241-4400

ungary, with a population of 10.6 million in an area of 93 thousand km² had a GNP of 993.9 billion Forints (C\$1.00 equals 54 Forints) in 1987. 🔍 🔍

The important industries are agriculture and food processing, engineering, chemicals and light industries.

TECHNOLOGY **TRENDS/STRENGTHS**

Medium-term plans for 1986-1990 call for expenditures of 152-164 billion Forints (US\$3.3 billion to US\$3.5 billion) on R&D.

Under their 1986-1987 National medium term R&D Plan, the Hungarians have identified the following as priority areas:

- basic research in biology
- ٠ microelectronics (e.g. data processing, telecommunications and automation)
- reasonable utilization of raw and waste material and associated technologies
- biotechnology
- energy management
- electronic components
- automation of technology
- electronic instrumentation in precision mechanics
- pharmaceuticals (e.g. plant protection, haematherapeutic and diagnostic compound production)
- food production

KEY ORGANIZATIONS

The State Committee for Technological Development

This Committee is responsible for national R&D planning, co-ordination in allocating development resources and in maintaining international science and technology relations.

Hungarian Academy of Sciences

The Hungarian Academy of Sciences is the supreme scientific body and has two main roles:

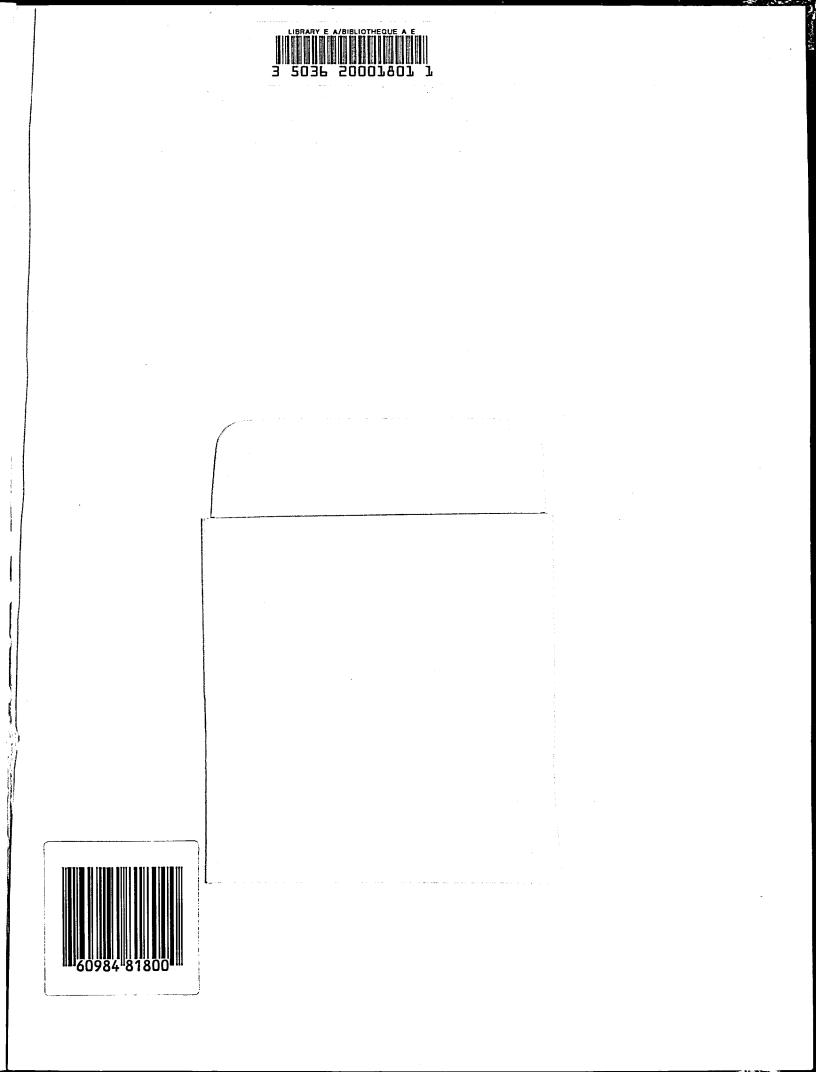
- participates in the national direction and control of scientific research, and acts as a corporate scientific body; and
- supervises its institutions carrying out research funded mainly from the state budget

Of the 68 institutes dealing with R&D activities, 36 are under the supervision of the Academy.

KEY SUPPORT PROGRAMS

The Technological Development Fund Funded by compulsory tax on the price of industrial goods, this centralized national fund is used by ministries and agencies directly subordinated to the Council of Ministers for supporting R&D projects directly or indirectly aimed at upgrading economic activity. This fund, in 1985, constituted 22% of the total R&D expenditure of the country.

National Scientific Research Foundation Established in 1985, the foundation has about 4 billion Forints available over 5 years to award grants for both basic research and for improvements to the research infrastructure.


CONDITIONS OF ACCESS

Hungary is a planned economy which encourages joint ventures with foreign entities. to facilitate international cooperation, the law or the Investments of Foreigners in Hungary was passed in 1988. For example, this law protects foreigners against nationalization or expropriation.

TECHNOLOGICAL OPPORTUNITIES FOR CANADIANS

While there could be "niche" opportunities to access technology, there are possibly more opportunities to sell technology useful to the development of a sophisticated industrial structure.

CONTACT POINT Canadian Embassy Budakeszi UT 32 H-1121 Budapest XII Hungary Tel: (36-1) 767-686 Fax: (36-1) 767-711

