IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes zéographiques en cculeurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être iniques du point de vue bibiiographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachétées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Compiend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., oní été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked helow/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbal ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may :-med at different reduction ratios. Those toc iarge to be entirely included in one exposure are filmeo beginning in the upper left hand corner, left to right arid top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générnsité de:

La bibliothéque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition ot de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la pramière page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "Fiv".

Les cartes, planches, tableaux. etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul clictié, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

INTERCOLONIAL RAILWAY.

General Instructions (No. 4.)

Setting out Culverts and Bridges, Foundations dec.

1. A Bench Mark should be established within a convenient distance of the intended structure for easy reference.
2. The character and clear water-way of a Culvert having been determined on information previously obtained, the next thing necessary is to stake out its exact site on the ground ; in doing this care must be taken to secure a tree and uninterrupted passage for the water at all times.
3. In the majority of cases there will be no difficulty in placing the Culverts at right angles to the line of Railway, and this position for several reasons is preferred when it can be easily obtained ; occasionally a slight diversion or rounding of the channel of the stream at one or both ends may become necessary.
4. If, however, there should be any obstacle in the way, the Culvert must be placed at such angle to the Railway as will best answer the purpose, and leave the channel of the stream with a natural and easy flow for the water.
5. In : 'l cases where the position of the Culvert docs not correspond with the direction of the stream, either in line or level, the latter must be altered so that the water may be conducted to or from the Culvert without abrupt bends, and in the manner best fitted not only to facilitate easy drainage, but to prevent underinining and the possibility of destruction of the works by the mechanical action of the water.

Section of Stream.
6. Having established the horizontal direction of the Culvert, it next beromes nocessary to determine its vertical position - that is to say - its relative elevation with respect to the formation level and the general daturs.
7. 'The centre line of the Culvert should be staked out, and a section thereon made to the distance of 50 or 100 feet, as circumstances may require, above and beIow the slope lines of embankment. On this section the fall of the stream should be shown by a line representing the lowest points in its bed ; these points having been found by levels and offsets in the usual way.
Linne of Pav-
ing. . A straight line drawn on the section a few inches under the lowest points in the bed of the stream will represent the intended surface of Paving, or artificial bed. In ordinary cases the surface of Paving, or invert of the Culvert, should be, say 6 inches under the lowest points in the natural bed, and with an inclination not exceeding 1 in 20 , or 5 per 100 . All Culverts with these moderate inclinations will for convenience

Ordinary Culverts.

Inclined Culverts.
length of level Cul. verts. be designated ordinary culverts, and will be constructed in accordance with the Lithographed General Plans of Level Culverts.
9. Some sections of the Railway extend along side hill ground where the streams flow with a rapid fall. In such places it would add very largely to the cost of the work were ordinary Culverts insisted upon. For side hill grecund a modified plan will therefore be auopted, having such an inclination as the circumstances of each case will justify.
10. The surface of Paving having been established in the manner above described, the length of the Culvert may new be ascertained, and the walls set out. 11. Table A is prepared for the purpose of finding readily the exact lengths of all ordinary kinds of Culverts; the vertical distance between formation level and paving being known, Table A will give the half lengtins of the box or arch, for all heights of embankment up to 80 feet, assuming the Culvert to be level, and at right angles to the centre line of Railway.
tion of ermine ve elead the staked f 50 or nd besection ine repoints e usual
inches m will rificial , or inder the inclinaulverts enience je conJeneral
along a rapid to the insisted an will tion as
blished he Culset out. finding inds of mation rive the of emt to be f Rail-
12. Table B is calcivated for inclined Culverts, and it will give the upper and lower half lengths for all in- culverts. clinations up to 1 in 5 , and for all embankments ranging up to over 70 feet on the eentre line.
13. Table C is the result of calculations made for skem curthe purpose of enabling the Engineer to ascertain very readily in the field the proper length of Culverts of every description on the skew.
14. All these Tables are now furnished for the purpose of facilitating the work of setting out, and in order also to secure uniformity and accuracy on the various Districts, Divisions, and Sub-divisions.
15. The following examples will shew the intended use and application of these tables.
16. Suppose the vertical distance between the Use of raurace preming and formation level to be 50 feet surface of Paving and formation level to be 50 feet, then by Table A we find the half lengths of the box or arch in each respective case to be as follows, Wings of Culverts, at least so much of them as extend beyond the barrel of arch, are not included in the following dimensions:-
Box Cu vert, $2 \mathrm{ft} 6 \times 2 \mathrm{ft}$. 6 83 feet.
Do. $2 \mathrm{ft} .6 \times 4 \mathrm{ft}$. 81 feet.Arch Culvert, 4 feet span 77 feet.Do. 5 feet span 75 feet.Do. 6 feet span 73 feet.Do. 8 feet span 69 feet.
Do. 10 feet span 66 feet.
Do 12 feet span 64 feet.

These are the half lengths or distances to the right and left of the centre line of the Railway for the various kinds of Culverts, formation level being 50 feet above Paving; the Culvert being horizontai, and at right angles to the Railway.
17. If the Culvert be inclined to the horizon, then Use of rathe upper half length will be shortened, while the ble B. lower half length will be extended; but the increase and diminution will not be in the same proportion. If we assume the inclination of the Culvert to be at the rate of 18 per 100, we shall find on reference to Table
B that the following are the upper and lower half lengths for the same height of embankment at centre line, viz. -50 feet :

> Half lengths per Trible 13. I.evel half lengtins Inclination, 18 prr 100. per Table A. Upper. Lower.

Box Culvert, 2 ft. $6 \times$ § ft. 6 83 ft...... $65.3113 .6$ Do. $2 \mathrm{ft} .6 \times 4 \mathrm{ft} . \quad81 \mathrm{ft}63 .7110 .9$ Arch Culvert, 4 feet................ 77 ft......60.6...... 105.4
Do. $\quad 5$ feet................ 75 ft......59.0...... 102.7 Do. 6 feet................ 73 ft......57.4...... 100.0 Do. 8 feet................ 69 ft......54.3...... 94.5 Do. 10 feet................ 66 ft...... $52.0 \ldots . . .90 .4$ Do: 12 feet................ 64 ft......50.4...... 87.6
skew Culverts.

Use of Tawe \mathbf{C}.
18. In the case of a Culvert on the skew, its length can be ascertained, if it is an ordinary level Culvert, by multiplying the length given in Tinhle A, by the natural cosecant of the angle which the Culvert makes, with the centre line of Rainway; but if the Culvert, in addition to being skeev, is inclined to the horizon, its upper and lower half lengths become more difficult to calculate. To find the lengths required under all conditions of skew is the dusign of Table C; whether the Culvert be level, or inclined, it will only be necessa:y to multiply the half lengths found in Table A and B, as the case may be, by the quantities found in the proper column in Table C, and opposite the angle of skew - that is to saly - the angle which the Culvert makes with the Railway.
show Level 19. If we take the case of a level, 2 ft .6 by 4 ft , Box Culvert, with formation level 60 feet above Paving, and having its centre line at an angle of 55° to the line of Railway. By Table A, opposite 60 feet in the first column, will be found the half length 97 . In Table C, opposite 55°, we find in the column for level Culverts 1.221 - this multiplied by 97 , gives 118.4 feet, the half length of the Culvert. I need scarcely say that both halves of Culverts on the level are the same length.
skew slop- 20. If we suppose the same Culvert to have an ing Culverts inclination of 20 per 100 , then in Table B, opposite 97 , and in the inclination column of 20 per 100 , we
find, for the upper half length, 74.8 feet, and for the lower half length, 138.6 feet; but these are the half lengths for a Culvert placed at right angles to the centre line of the Railway. We minst turn to Table C, where opposite 55° in the 20 per 100 inclination column, we find for upper half lengths 1.162 , and for lower half lengths 1.348 ; these quantities multiplied into the former will give the true half lengths of a Box Culvert 2 ft . $6 \times 4 \mathrm{ft}$., on a skew of 55°, and on an inclination to the horizon of 20 per 100 .

$$
\begin{aligned}
74.8 \times 1.162 & =86.9 \text { feet-the upper half length. } \\
138.6 \times 1.348 & =186.8 \text { feet-the lower half length. }
\end{aligned}
$$

21. It should be clearly and distinctly understood that with the exception of vertical distances, all distances are ealculated, and must invariably be set out on the ground on lines parallel to the horizon. The Engincer should invariably run out the slope lines of embankment at each end of Culvert, after the operation of setting out has been completed, as a rough check, in order to make certain that no mistake has been committed.
22. In constructing Culverts on an inclination, the foundation and the work generally mist receive the closest attention. The drawings which accompany this shew the general plan intended when the inclination is considerable. The following points must especially be kept in view :
(1.) The walls must be regularly stepped to in. Precautions sure stability.
(2.) Every precaution must be taken to prevent any portion of the water of the stream from getting underneath the paving, or the walls, or behind the latter.
(3.) The line of paving must be considerably lower than the original natural bed of stream; the exact depth will depend on the inclination and other circumstances.
(4.). The walls at the upper end should be entirely built in cement, and their connection with the ground made impervious to water by a liberal use of concrete deposited in a trench made for that purpose.

All mensurements in horizonticall lines.
l'lan of constructioni.

Concrete wall.
(5.) A concrete wall mast be formed underneath and around the body of the Culvert about one-fourth or one-third of its length from the upper end, this wall must be made a perfectly water-tight partition across the ravine, at least as high as the crown of the arch at the upper end.
(6.) The footings of walls must be full bedded in coment mortar, and as a rule, all the masonry must be built in the same material.
(7.) The spaces underneath the paving, between and behind the walls, must be filled in solid with concrete. The Paving must be lai! before the concrete sets, and grouted in solid with cement.
23. Drawings of Arch and Box Culverts have been prepared for the purpose of shewing the plan of construction rendered necessary where the inclination is considerable. Drawing No 1 , which accompanies this, is the plan intended for Culverts having inclination ranging from 6 per 100 to 12 per 100 , inclusive. Drawings No. 2 and 3 are for Culverts having inclination ranging from 14 per 100 to 20 per 100 : these drawings will explain themselves. If it should prove necessary, in any case, to construct Culverts with a greater inclination than 20 per 100 , special designs must be prepared and approved. All ordinary Culverts - that is to say - those that have a less inclination than 6 per 100, will be built in accordance with the General Plan of Level Culverts.
Depth of masonry.
24. In all cases the masomry must be carried down to a firm and solid stratum, sufficiently firm to resist the superincumbent load, and it must be at such a depth as to be entirely out of the way of frost, and such that it never can, under any circumstances, be exposed to the undermining action of running water. When the foundation pits have been excavated to a sufficient depth beyond the frost limit, and the stratum reached, appears at all insecure, the soft material must either be removed to a greater depth, or proper means taken to form a firm and durable artificial support for the masonry.
The substratum.
25. The masonry must not be commenced at any place; however solid the stratum may appear (unless
meath -fourth id, this urtition own of lded in asonry
etween d with he con-
s have plan of lination npanies inclintclusive. ing in) : these d prove with a designs ary Cul-inclinanee with
ed down to resist t such a and such exposed When ufficient stratum material r proper artificial
it unquestionably be solid rock) until the nature of the substratum be ascertained. This may be done by driving iron rods, or in special cases, by means of borings sunk at various points over the base of the intended structure. There must be no doubt left in the mind of the Engineer in charge as to the perfectly firm nature of the foundation, and he must lave nothing undone to satisfy himself on this point before any portion of the masonry is proceeded with.

26 . When any doubt is felt as to the sufficiency of artincial the foundation stratum, the untirm soil must either be removed to a greater depth, or the District Engineer immediately consulted as to the means to be employed in preparing a solid foundation by artificial means. In some cases a platform of timbers laid with roncrete will suffice, or it may be necessary to encluse the whole in a substantially constructed cofferdan of sheet piling. If the structure be large, and the superincumbent load very heavy, it may be necessary to drive piles over the entire base of the intended structure, to assist in bearing the load.
27. In all cases every means deemed necessary to secure perfect stability musi be adopted. In foundation works, more especially, it will not do to run any risk whatever.
28. Where the stratum on the site of the intended structure is rock, it will not be necessary to excavate to the same depth as in ordinary cases.
29. It will be sufficient to remove all rotten, loose, or decayed parts of the rock, and to cut and dress it to horizontal plain surfaces at such depth under the bed of the stream as will leave the surface of the Paving on the proper line.
30. It will be necessary, however, to exclude all water from between the rock and the masonry, to prevent any injurious results from frost. All cracks and hollows in the rock must therefore be filled in with hydraulic cement and concrete, and the first courses of masonry must invariably be laid in a full bed of cement mortar.
31. Before the masonry of a Culvert is commenced, Before ma it will be necessary to see that the stone and cement commeneed

Structure Book.

Levels and meastrements to be kept.
llans of masoury as executed.
delivered on the ground is of good quality, and in sufficient quantity to emable the contractor to carry on the work regularly and systematically. The Engineer in charge must be perfectly satisfied that the foundation pits have been excavated to the proper depth, and in accordance with instructions.
32. A Structure Book must be kept, shewing the details of all masomry work executed on each contract; it will exhibit each structure in consecutive order ; and in the case of Bridges, each abutment and pier will be shewn separately.
33. Whilst the masonry of any Bridge or Culvert
the col is being commenced, the Engineer in charge will ascertain by levelling from the Bench Mark and by other meastirements, the exact level of the foundation pits, and the exact position of every point where there is a change of level or of line in the walls, he will enter these in his Note Book, and he will, as soon as convenient, make a plan of the masonry exactly as built.
34. The levels and measurements of the formdations must on no account be overlooked, as plans of each structure, precisely as executed, will be required, properly attested by the Engineers in charge. These plans must shew the exact height of the foundations at the centre and ends of the Paving, and of other prominent points in the structure, above datum. The levels, \&c., should invariably be made as the work is exccuted, and before any portion is covered up. Plans of all masonry executed, with full dimensions written thereon must, without delay, be forwarded to the District Office.
35. The General Drawings, including those which accompany this, are to be adhered to as the standards for works to be constructed. It will frequently be necessary to make minor alterations to meet local peculiarities, but the District and Division Engineers will sce that the general designs, the specifications, and these instructions are substantially carried out. Special plans of structures must be approved by the undersigned.
36. Without reducing the standard or efficiency of the works, a change in the form or character of ecutive ent and
'lhese adations of other

1. The work is red up. ensions urded to
e which tandards ntly be et local agineers ications, ied out. I by the fficiency acter of
the structure may in certain cases very greatly accommodate the Contractors, for example - the only quarries available in the locality may yield stones better suited for building $2 \frac{1}{2} \times 4$ Culverts than 3×3 Culverts; or it may prove altogether impracticable for the Contractor to procure within a reasonable cost the covers required for large Box Culverts, while suitable materials for small Arch Culverts may easily be obtained. In all stuch eases the District Engineer may sanction a change, maintaining, of course, the original water-way; he will also communicate the circumstances to the undersigned.
2. The scheme alluded to in General Instructions No. 3, and requested to be carried out, will afford the resident officers on contracts daily opportunities of drawing attention to any question that may come up ; to any difficulty met with; to any neglect of orders; to any bad workmanship, er defective materials; to any dispute, or to any other matter or thing which should be wate known to those over them ; and they should not fiail to take full advantage of the opportunity so provided. In the event of bad material being delivered on the ground, or bad workmanship executed, a single veference to it will not be beld sufficient; the matter, whatever it may be, should be alluded to frequently until rectified.
3. Masonry must be set out with the greatest standard precision. All instruments used in setting out or measureing up must be kept in perfect adjustment. Standird measures must be maintained in efficient condition at all the District Offices, and at one office at least on each contract : it will be the duty of District and Division Engineers to see that this is not neglected. All measures in daily use must be frequently tested with the standards, and kept in true adjustment.

SANDFORD FLEMING, Chief Engineer.

Halifax, June 1st, 1869.

rable A.

Shewing the half lengths of Culverts (from Centre Line to the end of arch) for every height of Embankment (above paving) up to 80 feet, assuming the Culverts to be on a level-thrt is to say-uithout any inclination betwoen the Upper and Lower ends, and also at right angles to the Centre Sine of Railway.

Heicht of formation level above paving in centre of Culverts.	Box Culverts.		Auch Culverts.					
	2.6×2.6	$2.6 \times 4 \mathrm{ft}$.	4 feet.	5 feet.	6 feet.	8 feet.	10 feet.	12 teet.
5 feet.	11.0							
6	12.5	10.5						
7	14.0	12.0						
8	15.5	13.5						
9	17.0	15.0						
10	19.0	17.0	13.0					
11	20.5	18.5	14.5					
12	22.0	20.0	16.0					
13	23.5	21.5	17.5	16.5				
14	25.0	23.0	19.0	18.0				
15	27.0	25.0	21.0	19.5	17.5			
16	28.5	26.5	22.5	21.0	19.0			
17	30.0	28.0	24.0	22.5	20.5	16.0		
18	31.5	29.5	25.5	24.0	22.0	17.5		
19	33.0	310	27.0	25.5	23.5	19.0	16.5	
20	35.0	33.0	29.0	27.0	25.0	21.0	18.0	16.0
21	36.5	34.5	30.5	28.5	26.5	22.5	19.5	17.5
22	38.0	36.0	32.0	30.0	28.0	24.0	21.0	19.0
3	39.5	37.5	33.5	31.5	29.5	25.5	22.5	20.5
24	41.0	39.0	35.0	33.0	31.0	27.0	24.0	22.0
25	43.0	41.0	37.0	35.0	33.0	29.0	26.0	24.0
26	44.5	42.5	38.5	36.5	34.5	30.5	27.5	25.5
27	46.0	44.0	40.0	38.0	36.0	32.0	29.0	27.0
28	47.5	45.5	41.5	39.5	37.5	33.5	30.5	28.5
29	49.0	47.0	43.0	41.0	39.0	35.0	32.0	30.0
30	51.0	49.0	45.0	43.0	41.0	37.0	34.0	32.0
31	52.5	50.5	46.5	44.5	42.5	38.5	35.5	33.5

Table A -Continued.

Shewing the half lengths of Culverts (from Cantre Line to the end of arch) for every height of Embankment (above paving) up to 80 feet, assuming the Culverts to be on a lecel-that is to say-without any inelination between the Upper. and Lower ends, and also at right angles to the Centre Line.

Height of Formation Leval above paving.	Box Culyerts.		Archi Culverts.					
	2.6×2.6	$2.6 \times 4 \mathrm{ft}$.	4 fret.	5 feet.	6 feet.	8 feet.	10 feet.	12 feet.
32 feer.	54.0	52.0	48.0	46.0	44.0	40.0	37.0	35.0
33	55.5	53.5	49.5	47.5	45.5	41.5	38.5	36.5
84	57.0	55.0	51.0	49.0	47.0	43.0	40.0	38.0
35	59.0	57.0	53.0	51.0	49.0	45.0	42.0	40.0
36	60.5	58.5	54.5	52.5	50.5	46.5	43.5	41.5
37	62.0	60.0	56.0	54.0	5.2 .0	48.0	45.0	43.0
38	63.5	61.5	57.5	5.5 .5	53.5	49.5	46.5	44.5
39	65.0	63.0	59.0	457.0	55.0	51.0	48.0	46.0
40	67.0	65.0	81.0	59.0	57.0	53.0	50.0	48.0
41	68.5	66.5	62.5	60.5	58.5	54.5	51.5	49.5
42	70.0	68.0	64.0	62.0	60.0	556	53.0	51.0
43	71.5	69.5	65.5	63.5	\% 61.5	57.5	54.5	52.is
44	72.0	71.0	67.0	65.0	63.0	59.0	56.0	54.0
45	75.0	73.0	69.0	67.0	65.0	61.0	58.0	56.0
46	76.5	74.5	70.5	68.5	66.5	62.5	69.5	57.5
47	78.0	76.0	72.0	70.0	68.0	64.0	61.0	59.0
48	79.5	77.5	73.5	71.5	69.5	65.5	62.5	60.5
49	810	79.0	75.0	73.0	71.0	670	64.0	62.0
50	83.0	81.0	77.0	75.0	73.0	60.0	66.0	64.0
51	84.5	82.5	78.5	76.5	74.5	70.5	67.5	65.5
52	86.0	84.0	80.0	+ 78.0	76.0	72.0	69.0	67.0
53	87.5	85.5	81.5	79.5	77.5	73.5	70.5	68.5
54	89.0	87.0	83.0	81.0	79.0	75.0	72.0	70.0
55	91.0	89.0	85.0	83.0	81.0	77.0	740	72.0
56	92.5	90.5	86.5	$84 \cdot 5$	82.5	78.5	75.5	73.5
57	94.0	92.0	88.0	86.0	84.0	80.0	77.0	75.0
58	(1). 5	93.5)	89.5	87.5	85.5	81.5	78.5	76.5

arch) for the Culhe Upper

12 feet.
35.0
36.5
38.0
40.0
41.5
43.0
44.5
46.0
48.0
49.5
51.0
52.5
54.0
56.0
57.5
59.0
60.5
62.0
64.0
65.5
67.0
68.5
70.0
72.0
73.5
75.0
76.5

Shewing the half lenyths of Cuilverts (from Centre Line to the end of arch) for every height of Embankment (above paving) up to 80 feet, assuming the Culverts to be on a level-that is to say-without any inclination between the Upper. and Lower ends, and also at right angles to the Centre Live.

Height of Formation Level above paving.	Box Culvemts.		Arch Culverts.					
	2.6×2.6	$2.6 \times 4 \mathrm{ft}$.	4 feet.	5 feet.	6 feet.	8 feet.	10 feet.	12 feet.
59 fert.	97.0	95.0	91.0	89.0	87.	83.0	80.0	78.0
60	99.0	97.0	93.0	91.0	89.0	85.0	82.0	80.0
61	100.5	98.5	94.5	92.5	90.5	86.5	83.5	81.5
62	102.0	100.0	96.0	94.0	92.0	88.0	85.0	83.0
63	103.5	101.5	97.5	95.5	93.5	89.5	86.5	84.5
64	105.0	103.0	99.0	97.0	" 95.0	91.0	88.0	86.0
65	107.0	105.0	101.0	99.0	97.0	93.0	90.0	88.0
66	108.5	106.5	102.5	100.5	98.5	84.5	91.5	89. ¢
67	110.0	108.0	104.	102.0	100.0	96.0	93.0	91.0
68	111.5	109.5	105.5	103.5	101.5	97.5	94.5	92.5
69	113.0	111.0	107.0	10.5	103.0	99.0	96.0	94.0
70	115.0	113.0	109.0	107.0	105.0	101.0	98.0	96.0
71	116.5	114.5	110.5	108.5	106.5	102.5	99.5	7.5
72	118.0	116.0	112.0	110.0	108.0	104.0	101.0	99.0
73	119.5	117.5	113.5	111.5	109.5	105.5	102.5	100.5
74	121.0	119.0	115.0	113.0	111.0	107.0	104.0	102.0
75	123.0	121.0	117.0	115.0	113.0	109.0	106.0	104.0
76	124.5	122.5	118.5	116.5	114.5	110.5	107.5	105.5
77	126.0	124.0	120.0	118.0	116.0	112.0	109.0	107.0
78	127.5	1255	121.5	119.5	117.5	113.5	110.5	108.5
79	129.0	127.0	123.0	121.0	119.0	115.0	112.0	110.0
80	131.0	129.0	125.0	1230	121.0	117.0	114.0	112.0

Note.-The line of paving must always be a few inches at least under the lowest points in the matural bed of streams. See General Instructions (No.3) in reference to this. The height of formation level above line of paving at the intersection of centre llue being found in the first column, the half lengths of Arches or Box Culverts of each kind will be seen in the respective columns opposite. The wings of Arch Culverts, at least so much as extend beyond the ends of arch, are not included in the above haif lengths.

Table $13-F O R$ SETTING OU'T
This Table gives the half lengths r_{j} Culverts for various inclinations, ranging from A, being given in the first column ; the upper and lower hulf leagths will be tances given in this Table are to be set out on t.e ground horizontally (not
LEVEL.
Half Lengths
per'Table A.

10

11

$\frac{1}{2}$ per 100.	2 per 100.	
Upper.	Lower.	Upper.
Lower.		

3 per 100.		4 per 100.		5 pur 100.	
Upper.	Lower.	Upper.	Lower.	Upper.	
Lower.					

9.9	10.1	9.7	10.3^{2}	9.6	10.5	9.4	10.6	9.3	10.8
10.9	11.1	10.7	11.3	10.5	11.5	10.3	11.7	10.2	11.9
11.9	12.1	11.6	12.4	11.5	12.6	11.3	12.7	11.2	13.0
12.8	13.2	12.6	13.4	12.4	13.6	12.8	13.8	12.1	14.0
13.8	14.2	13.6	14.4	13.4	14.7	13.2	14.9	13.1	15.1
14.8	15.2	14.6	15.5	14.3	15.7	14.1	15.9	14.0	16.2
15.8	16.2	15.5	16.5	15.2	16.7	15.6	17.0	14.9	17.3
16.7	17.2	16.5	17.5	16.2	17.8	16.0	18.0	15.9	18.4

$\begin{array}{lllllllllll}17.7 & 18.2 & 17.5 & 18.6 & 17.2 & 18.8 & 17.0 & 19.1 & 16.8 & 19.4\end{array}$ | 18.7 | 19.3 | 18.5 | 19.6 | 18.1 | 19.9 | 17.9 | 20.2 | 17.7 | 20.5 |
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		19.7	20.3	19.4	20.6	19.1	20.9	18.9	21.3	18.7	21.6	
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllllllll}20.6 & 21.3 & 20.4 & 21.7 & 20.0 & 22.9 & 19.8 & 22.3 & 19.6 & 22.7\end{array}$	21.6	22.3	21.4	22.7	21.0	23.1	20.8	23.4	20.5	23.8		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		22.6	23.4	22.4	23.7	22.0	24.1	21.7	24.5	21.4	24.8		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{llllllllllll}23.6 & 24.4 & 23.3 & 24.7 & 22.9 & 25.2 & 22.7 & 25.5 & 22.4 & 25.9\end{array}$	24.6	25.4	24.3	25.8	23.9	26.2	23.6	26.6	23.3	27.0		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllllllll}25.6 & 26.4 & 25.3 & 26.8 & 24.8 & 27.2 & 24.6 & 27.6 & 24.2 & 28.1\end{array}$ $\begin{array}{lllllllllllll}26.6 & 27.4 & 26.2 & 27.8 & 25.8 & 28.2 & 25.5 & 28.7 & 25.1 & 29.2\end{array}$ $\begin{array}{lllllllllll}27.6 & 28.4 & 27.2 & 28.9 & 26.8 & 29.3 & 26.4 & 29.8 & 26.1 & 30.2\end{array}$ $\begin{array}{lllllllllllll}28.6 & 29.4 & 28.2 & 29.9 & 27.7 & 30.3 & 27.4 & 30.8 & 27.0 & 31.4\end{array}$ $\begin{array}{llllllllllll}29.5 & 30.5 & 29.1 & 31.0 & 28.7 & 31.4 & 28.3 & 31.9 & 27.9 & 32.4\end{array}$ $\begin{array}{llllllllllll}30.5 & 31.5 & 30.1 & 32.0 & 29.6 & 32.4 & 29.2 & 33.0 & 28.9 & 33.5\end{array}$	31.5	32.5	31.1	33.0	30.6	33.5	30.2	34.0	29.8	34.5		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		32.5	33.5	32.0	34.0	31.6	34.5	31.1	35.1	30.7	35.6			
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		33.5	34.5	33.0	35.0	32.5	35.6	32.0	36.1	31.7	36.7		
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		34.5	35.5	34.0	36.1	33.5	36.6	33.0	37.2	32.6	37.8
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllllllll}35.5 & 36.5 & 34.9 & 37.1 & 34.4 & 37.7 & 33.9 & 38.3 & 33.5 & 38.8\end{array}$ $\begin{array}{lllllllllllll}36.5 & 37.5 & 36.0 & 38.1 & 35.4 & 38.7 & 34.9 & 39.4 & 34.5 & 40.0\end{array}$										

 $\begin{array}{lllllllllll}38.4 & 39.6 & 37.9 & 40.2 & 37.3 & 40.8 & 36.8 & 41.5 & 36.3 & 42.2\end{array}$

CUI.
1 per fonn on the

Upipe
9.
10.
11.
12.
12.
13.
14.
15.
16.
17.
18.

G OUTI ping from 7hs will be tally (not
per 100.

eer.	Lower.

$\begin{array}{ll}.3 & 10.8\end{array}$). 211.9
1.213 .0
14.0
15.1
16.2
17.3
18.4
19.4
20.5
21.6
22.7

23: 8
24.8
25.9
27.0
28.1
29.2
30.2
31.4 32.4 33.5 34.5 35.6 36.7 $2.6 \quad 37.8$ $\begin{array}{lll}3.5 & 38.8\end{array}$ $4.5 \quad 40.0$ 5.441 .1 $6.3 \quad 42.2$

CULVERTS ON SLOPING (XIROUND.
1 per 100 to 20 per 100. The hrolf lengtlis of Level Culverts, as foumd by Tablu found for each respective inclination on the line opposite. Observe that all dison the inclination.)

6 per 100.		7 per 100.		8 per 100.		9 per 100.		10 per 100.	
Upper.	Lower.	Upper.	Lower	Upper.	Lowe	Upper.	Lower.	Upper.	Lower.
9.2	11.0	9.1	11.2	8.9	11.4	8.8	11.6	8.7	11.8
10.1	12	10.0	12	9.	12.	9.7	12.8	9.6	0
11.0	13.2	10.9	13.4	10.7	13.7	10.6	13.9	10.4	14.1
12.0	14.3	11.8	14.5	11.6	14.8	11.4	15.0	11.3	5.3
12.9	15	12.7	15.6	12.5	15.9	12.3	16.2	12.1	6.5
13.8	16.5	13.6	16.8	13.4	17.0	13.2	17.3	13.0	17.6
14.7	17.6	14.5	17.9	14.3	18.1	14.1	18 \%	13.8	18.8
15.6	10.7	15.4	19.0	15.2	19.3	1\%.0	19.6	14.7	20.0
16.5	19.8	16.3	20.1	16.	20.4	15.8	20.8	15.6	21.1
17.4	20.9	17.2	21.2	16.9	$21 . .6$	16.7	21.9	16.5	22.3
18.4	22	18.1	22.3	17.8	22.7	17.6	23.1	17.3	23.5
19.3	23.1	19.0	23.5	18.	23.8	18.	24.3	18.2	24.7
20.1	24.2	19.9	2	19	25.0	19.4	. 4	19.1	9
21.1	25.3	20.8	25.7	20.5	26.1	20.2	26.6	19.9	27.0
22.0	26.4	21.7	268	21.4	27.2	21.1	27.7	20.8	28.2
22.9	27	2	27	22	28	22.0	28.9	7	29.4
23.8	28.6	23.5	29.0	232	29.5	22.9	30.1	22.5	30.6
24.7	29.7	24.4	30.1	24.1	30.7	23.8	31.2	23.4	8
2	30.8	25	31	2	31	2	32.	. 3	32.9
266	31.9	26.2	32.4	25.9	32.9	25.5	33.5	25.1	34.1
27.5	33.0	27.1		2	.	26.4	.	. 0). 3
28.4	34.1	28.1	34.6	27.7	35.2	27.3	35.9	26.9	36.5
29.3	35.2	29.0	35.7	28.	36.4	28.2	37.0	27.8	37.7
30.3	36.3	29.9	36.9	29.5	37.5	29.0	38.2	28.6	38.8
31.2	37.4	30.8	38.0	30.4	38.6	29.9	39.3	29.5	40
32.1	38.5	31.7	391	31.3	39.8	30.8	40.5	30.4	41.2
83.0	39.6	32.6	40.2	32.2	40.9	31.7	41.6	31.2	42.3
33.9	40.7	33.5	41.3	33.1	42.0	32.6	42.8	32.1	43.5
9	41.8	34.4	42.4	34.0	43.2	33.4	43.9	33.0	44.7
	41.9	. 3	43.6	. 9	44.8	. 3	.	. 8	

Table 13-FOR SETTING OUT
This Tuble gives the half lengths of Culverts for various inclinations, ranging from A, being given in the first column; the upper and lower half lergths will be tances given in this Table are to be set out on the ground horizontully (not

LEVEL.	11 per 100.		12 per 100.		13 per 160.		14 per 100.		15 per 100.	
Hatf Lengths per Table A.	Uper.	Lower.	Upper.	Lower.	Upper.	Lower.	Upper.	Lower.	Upper.	Lower.

8.6	12.0	8.5	12.2	8.4	12.4	8.3	12.7	8.2	12.9
9.5	13.2	9.4	13.4	9.2	13.6	9.1	14.0	9.0	14.2
10.3	14.4	10.2	14.6	10.1	14.9	10.0	15.2	9.8	15.5
11.2	15.6	11.0	15.9	10.9	16.2	10.8	16.5	10.6	16.8
12.0	16.8	11.9	17.1	11.7	17.4	11.6	17.7	11.4	18.1
12.9	18.0	12.7	18.3	12.5	18.6	12.4	19.0	12.2	19.4
13.8	19.2	13.6	19.5	13.3	19.9	13.2	20.3	13.0	20.7
14.6	20.4	14.4	20.7	14.2	21.1	14.1	21.5	13.8	22.0
15.4	21.6	15.3	22.0	15.0	22.4	14.9	22.8	14.7	23.2
16.3	22.7	16.1	23.2	15.9	23.6	15.7	24.0	15.5	24.5
17.2	23.9	17.0	24.4	16.7	24.9	16.6	25.3	16.3	25.8
18.1	25.2	17.8	25.6	17.5	26.1	17.4	26.6	17.1	27.1
18.9	26.3	18.7	26.8	18.4	27.4	18.2	27.8	17.9	28.4
19.8	27.5	19.5	28.1	19.2	28.6	19.0	29.1	18.7	29.6
20.6	28.7	20.3	29.3	20.1	29.9	19.9	30.3	19.6	30.9
21.5	29.9	21.2	30.5	20.9	31.1	20.7	31.6	20.4	32.2
22.3	31.1	22.0	31.7	21.7	32.3	21.5	32.9	21.2	33.5
23.2	32.3	22.9	32.9	22.6	33.6	22.3	34.1	22.0	34.8
24.1	33.5	23.8	34.2	23.4	34.8	23.2	35.4	22.9	36.1
24.9	34.7	24.6	35.4	24.3	36.1	24.0	36.7	23.7	37.4
25.7	35.9	25.4	36.6	25.1	37.3	24.8	37.9	24.5	38.7
26.6	37.1	26.3	37.8	25.9	38.5	25.6	39.2	25.3	40.0
27.4	38.3	27.2	39.0	26.8	39.8	26.4	40.5	26.1	41.3
28.4	39.5	28.0	40.3	27.6	41.0	27.3	41.8	26.9	42.6
291	407	28.9	41.5	28.5	42.3	28.1	43.0	27.8	43.9
30.0	41.9	29.7	42.7	29.3	43.5	28.9	44.3	28.6	45.2
30.8	43.1	30.5	44.0	30.1	44.7	29.7	45.6	29.4	46.5
31.7	44.3	31.4	45.1	31.0	46.0	30.6	46.8	30.2	47.8
32.7	45.5	32.2	46.4	31.8	47.2	31.4	48.1	31.0	49.0
33.4	46.7	33.1	47.6	32.6	48.5	32.3	49.3	31.8	50.3
15									

\square
$L_{p 1}$

OU'T

ing from is will be ally (not
per 100.
Lower.
12.9
. 014.2

815.5

. 616.8
. 418.1

.2	19.4

.020 .7
.822 .0

.7

5 24.5
.325 .8 127.1

.9
8.4

3.7	29.6

1.630 .9
). 432.2 1.233 .5 $.0 \quad 34.8$
$\begin{array}{ll}.9 & 36.1\end{array}$
37.4
38.7
40.0
6.141 .8
6.942 .6
$\begin{array}{ll}7.8 & 43.9\end{array}$
8.645 .2
9.446 .5
0.247 .8
$\begin{array}{ll}1.0 & 49.0\end{array}$
$\begin{array}{ll}11.8 & 50.3\end{array}$

CULVER'IS ON SLOPING GROUND.-Continned.
1 per 100 to 20 per 100. The half lengths of Level Culverts, as found by T'able found for each respective inclination on the line opposite. Observe that all dison the inclination.)

16 per 100.		17 per 100.		, 18 per 100.		19 per 100.		20 per 100.	
Upper.	Lower.	Upper.	Lower.	Uprer.	Lower.	Upirir.	Lower.	Upuer.	Lower.
8.1	13.2	8.0	13.4	7.9	13.7	7.8	14.0	7.7	14.3
8.9	14.5	8.8	14.7	8.7	15.1	8.6	15.4	8.5	15.7
9.7	15.8	96	16.1	9.5	16.4	9.4	16.8	9.2	17.1
10.5	17.1	10.4	17.5	10.3	17.8	10.1	18.2	10.0	18.6
11.3	18.4	11.2	18.8	11.1	19.2	10.9	19.0	10.7	20.0
12.1	19.7	12.0	20.1	11.8	20.5	11.7	21.0	11.5	21.4
12.9	21.0	12.8	21.5	12.6	21.9	12,5	22.4	12.3	22.8
13.7	22.3	13.6	22.8	13.4	23.2	13.3	23.8	13.0	24.2
14.5	23.7	14.4	24.2	14.2	24.6	14.0	25.2	13.8	25.6
15.3	25.0	15.2	25.5	15.0	26.0	14.8	26.6	14.6	$\because 7.1$
16.2	263	16.0	26.9	15.8	27.4	15.6	28.0	15.3	28.6
17.0	27.6	16.7	28.2	16.5	28.7	16.4	23.4	16.1	29.9
17.8	28.9	17.	29.6	17.	30.1	17.2	30.8	16.9	1.3
18.6	30.3	18.3	30.9	18.1	31.5	17.9	32.2	17.6	32.8
19.4	31.6	19.1	32.3	18.9	32.8	18.7	33.6	18.4	34.3
20.2	32.9	19.9	33.6	19.7	34.2	19.5	35.0	19.2	35.7
21.0	34.2	20.7	34.9	20.5	35.6	20.3	36.4	20.0	37.1
21.8	35.5	21.5	36.3	21.3	36.9	21.0	37.7	20.7	38.6
22.6	36.8	22.3	37.6	22.1	38.3	21.8	39.2	21.5	40.0
23.4	38.1	23.1	39.0	22.9	39.7	22.6	40.6	22.3	41.4
24.2	39.5	23.9	40.3	23.7	41.1	23.3	41.9	23.0	42.9
25.0	40.8	24.7	41.6	24.4	42.4	24.1	43.3	23.8	44.3
25.8	42.1	25.5	430	25.2	43.8	24.9	44.7	24.5	45.7
26.6	43.4	26.3	44.3	26.0	45.1	25.7	46.1	25.3	47.1
27.4	44.7	271	45.7	26.8	46.5	26.4	47.5	26.1	48.6
28.2	46.0	27.9	47.0	27.6	47.9	27.2	48.9	26.9	50.0
29.0	47.3	28.7	48.3	28.4	49.3	28.0	50.3	27.7	51.4
29.8	48.6	29.5	49.7	29.2	50.6	28.8	51.7	28.4	52.9
30.6	50.0	30.3	51.0	30.0	52.0	29.5	53.1	29.2	54.3
31.4	51.3	31.1	52.4	30.7	53.4	30.3	54.5	30.0	55.7

This Table gices the half lengths of Culverts for various inclinations, ranyiny from A, being given in the first column: the upper and lower hrilf lengths will be tances given in this Table are to be set out on the ground horizontally (not

hevel.	1 per 100.		2 per 100.		3 per 100.		4 per 100.		5 per 100.	
Haid Lengtha	Upper.	Lower.	Upper.	Lower.	Upper.	Lower.	Upier.	Lower.	Upper,	Lower.
40	39.4	40.6	38.8	41.	38.	41	37.7	12.6	37.2	43.2
41	40.4	41.6	39.8	42.3	39.3	42.9	38.6	43.6	38.2	44.3
42	41.4	42.6	40.8	43.3	40.2	44.0	39.6	44.7	39.1	45.4
43	42.3	43.7	41.7	44.3	41.2	45.0	40.5	45.8	40.0	46.5
44	43.2	44.7	42.7	45.4	42.1	46.1	41.5	46.8	41.0	47.5
45	44.3	45.7	43.7	46.4	43.1	47.1	42.4	47.8	41.9	48.6
46	45.3	46.7	44.6	47.4	44.1	48.2	43.4	49.0	42.8	49
47	46.3	47.7	45.6	48.4	45.0	49.2	4.3	50.0	43.8	50.8
48	47.3	48.7	46.6	49.5	45.9	50.3	45.3	51. 1	44.7	51.9
49	48.3	49.7	47.6	50.5	46.9	51.3	46.2	52.2	45.6	53.0
50	49.2	50.7	48.5	51.5	47.9	52.4	47.2	53.2	46.\%)	54.0
¢1	50.2	51.8	49.5	52.6	48.8	53.4	48.1	54.3	47.5	55.1
52	51.2	52.8	50.5	53.6	49.7	54.5	49.1	55.8	48.4	56.2
53	52.2	53.8	51.4	54.6	50.7	55.5	50.0	56.4	49.3	57.3
54	53.2	54.8	52.4	55.7	51.7	56.6	51.0	57.5	50.3	58.4
05	54.2	¢5. 8	53.4	56.7	52.6	57.6	51.9	58.5	51.2	59.4
56	55.2	56.8	54.3	57.7	53.5	58.7	52.8	59.6	52.1	60.5
57	56.2	57.8	¢5. 3	28.8	54.5	59.7	53.8	60.6	53.0	1.6
58	57.1	58.8	56.3	59.8	55.	60.8	54.7	61.7	54.0	62.7
59	58.1	59.	57.3	60.8	56.4	61.8	55.6	62.8	54.9	63.8
60	59.1	60.8	58.2	61.8	57.4	63.9	56.6	63.8	55.8	64.8
61	60.1	61.8	59.2	62.9	58.4	63.9	57.5	64.9	56.7	65.9
62	61.1	62.9	60.2	63.9	59.3	65.0	58.5	65.9	57.7	67.0
63	62.0	63.9	61.1	65.0	60.3	66.0	59.4	67.0	58.6	68.1
64	63.0	64.9	62.1	66.0	61.2	67.0	60.4	68.0	59.6	69.2
65	64.0	66.0	63.1	67.0	62.2	68.1	61.3	69.1	60.5	70.3
66	65.0	67.0	64.0	68.0	63.1	69.1	62.3	70.2	61.4	71.3
67	66.0	68.0	65.0	69.0	64.1	70.2	63.2	71.2	62.4	72.4
68	67.0	69.0	66.0	70.1	65.1	71.2	64.2	72.3	63.3	73.5
69	67.9	70.0	67.0	71.1	66.0	72.3	65.1	73.4	64.2	74.6

1 per form on th
\qquad
$\mathbf{U}_{\mathrm{p}} \mathrm{pr}$
36.

37
38
39
40
41
ver 100.
r. Lower.
$\begin{array}{ll}2 & 43.2\end{array}$ $\begin{array}{ll}24 & 44.3\end{array}$. 145.4 $\begin{array}{ll}0 & 46.5\end{array}$. 0 47.5 $\begin{array}{ll}.9 & 48.6\end{array}$. 8497 .8 \% 0.8 .751 .9 . 653.0
:5 54.0
5
55.1
$4 \quad 56 . ?$.357 .3 $\begin{array}{ll}1.3 & 58.4\end{array}$

$\begin{array}{ll}.2 & 59.4\end{array}$ 60.5 .061 .6 $1.0 \quad 62.7$ 1.963 .8 | 3.8 |
| :--- | | 3.7 | 65.9 |
| :--- | :--- | :--- | | . |
| :--- | :--- | 67.0 $3.6 \quad 68.1$ 1.69 .2 1.570 .3

71.3
472.4
3.373 .5
1.274 .6

CULVERTS ON SLOPING GROUND.-Continued.
1 per 160 to 20 per 100. The half lengths of Level Culverts, as found by Tuble found for each respective inclination on the line opposite. Observe that all dison the inclination.)

6 per 100.		7 per 100.		8 per 100.		9 per 100.		10 per 100.	
Upper.	Lower.								
36.7	44.0	36.2	44.7	35.8	45.4	35.2	46.8	34.7	47.0
37.6	45.0	37.1	45.8	36.6	46.6	36.1	47.4	35.6	48.2
38.5	46.1	38.0	46.9	37.5	47.7	36.9	48.6	36.5	49.4
39.5	47.2	38.9	48.1	38.4	48.8	37.8	49.7	37.4	50.6
40.4	48.3	39.8	49.2	39.3	49.9	38.7	50.9	38.2	51.7
41.3	49.4	40.7	50.3	40.2	51.1	39.6	52.0	39.1	52.9
42.2	50.5	41.6	51.4	41.1	52.2	40.5	53.2	40.0	54.1
43.1	51.6	42.5	52.5	42.0	53.4	41.4	54.3	40.8	55.2
44.0	52.7	43.4	53.6	42.9	54.5	42.3	55.5	41.7	56.4
44.9	53.8	44.3	54.7	43.8	55.6	43.2	56.6	42.6	57.6
45.9	54.9	45.2	55.9	44.7	56.8	44.1	57.8	43.5	58.8
46.8	56.0	46.1	57.0	45.5	57.9	45.0	58.9	44.3	60.0
47.7	57.1	47.0	98.1	46.4	59.1	45.9	60.1	45.2	61.1
48.6	58.2	48.0	59.2	47.3	60.2	46.7	61.3	46.0	62.3
49.5	59.3	48.9	60.3	48.2	61.3	47.6	62.4	46.9	63.5
50.4	60.4	49.8	61.4	49.1	62.5	48.5	63.6	47.8	64.7
51.3	61.5	50.7	62.5	50.0	63.6	49.4	64.7	48.7	65.9
52.2	62.6	51.6	63.6	50.9	64.8	50.3	65.9	49.5	7.0
53.2	63.7	52.5	64.7	51.8	65.9	51.1	67.1	50.4	68.2
54.1	64.8	58.4	65.9	52.7	67.0	52.4	68.2	51.3	69.4
55.0	65	54.	67.0	53 .	68.2	52.9	69.4	52.1	70.6
55.9	67.0	55.2	68.1	54.4	69.3	53.8	70.5	53.0	71.8
56.8	68.1	56.1	69.2	55.3	70.4	54.7	71.6	53.9	73.0
57.8	69.2	57.0	70.3	56.2	71.5	55.6	72.8	54.8	74.1
57.7	70.3	57.9	71.5	57.1	727	56.4	74.0	55.6	75.3
59.6	71.4	58.8	72.6	58.0	73.8	57.3	75.1	56.5	76.5
60.5	72.5	59.7	73.7	58.9	74.9	58.2	76.3	57.4	77.6
61.4	73.6	60.6	74.8	59.8	76.1	59.0	77.4	58.2	78.8
62.4	74.7	61.5	76.0	60.7	77.2	59.9	76.6	59.1	80.0
63.3	75.8	62.4	77.1	61.6	78.4	60.8	79.7	60.0	81.2

This Table gives the lialf lengths of Culverts for vurions inclinations, ranging from A, being given in the first column ; the "pper and lower half lengths will be tances given in this Table are to be set out on the ground horizontally (not

LEVEL.	11 jer 100.		12 per 100.		13 per 100.		14 per 100.		15 per 100.	
per Thable A.	Upper.	Lower.								

40
41
42
43
44

34.3	47.9	33.9	48.8	33.5	49.7	33.1	50.6	32.7	51.6
35.1	49.1	34.7	50.0	34.2	50.9	33.9	51.9	32.5	52.9
36.0	50.3	35.6	51.2	35.2	52.2	34.7	53.1	34.3	54.1
36.9	51.5	36.4	52.5	36.2	53.4	35.5	54.4	35.1	55.4
37.7	52.7	37.2	53.7	36.9	54.7	36.4	55.6	35.9	56.7
38.6	53.9	38.1	54.9	37.7	55.9	37.2	56.9	36.7	58.0
39.4	55.1	39.0	56.1	38.5	57.1	38.0	58.2	37.5	59.3
40.8	56.3	39.8	57.3	39.4	58.4	38.9	59.4	38.3	60.6
41.2	57.5	40.6	58.6	40.2	59.6	39.7	60.7	39.2	61.9
42.0	58.7	41.5	59.8	41.0	60.9	40.5	62	0	40.0
63.2									
42.9	59.8	42.4	61.0	41.9	62.1	41.4	63.3	40.8	64.5
43.7	61.0	43.2	62.2	42.7	63.3	42.2	64.5	41.6	65.8
44.6	62.2	44.1	63.4	43.5	64.6	43.0	65.8	42.4	67.1
45.5	63.4	44.9	64.7	44.3	65.8	43.8	67.1	43.3	68.4
46.3	64.6	45.7	65.9	45.2	67.1	44.7	68.3	44.0	69.7
47.2	65.8	46.6	67.1	46.0	68.3	45.5	69.6	44.9	71.0
48.1	67.0	47.5	68.3	46.8	69.5	46.3	70.9	45.7	72.3
48.9	68.2	48.3	69.5	47.7	70.8	47.1	72.1	46.5	73.6
49.8	69.4	49.2	70.7	48.5	72.0	48.0	73.4	47.4	74.9
50.6	70.6	50.0	71.9	49.4	73.3	48.7	74.7	48.2	76.1
51.5	71.8	50.9	73.2	50.2	74.5	49.6	76	0	49.0
77.5									
52.3	78.0	51.7	74.4	51.0	75.7	50.4	77.2	49.8	78.7
53.2	74.2	52.6	75.6	51.9	77.0	51.2	78.5	50.6	80.0
54.1	75.4	53.4	76.8	52.7	78.2	52.0	79.7	51.5	81.3
54.9	76.6	54.3	78.0	53.6	79.5	52.9	81.0	52.3	82.6
55.8	77.8	55.1	79.2	54.4	80.7	53.7	82.3	53.1	83.9
56.7	79.0	55.9	80.4	55.2	81.9	54.5	83.6	53.9	85.2
57.5	80.2	56.8	81.6	56.1	83.2	55.4	84.8	54.7	86.5
58.3	81.4	57.6	82.9	56.9	84.5	56.2	86.0	55.5	87.7
59.2	82.6	58.5	84.1	57.8	85.7	57.0	87.3	56.3	89.0

G OUT fing from hs will be rally (not

5 per 100.

ner. Lower.
8.751 .6
52.9
54.1
55.4
56.7
58.0
59.3
8.360 .6
9.261 .9
$0.0 \quad 63.2$
0.864 .5
$\begin{array}{ll}1.6 & 65.8\end{array}$
$2.4 \quad 67.1$
$\begin{array}{lll}3.3 & 68.4\end{array}$
$4.0 \quad 69.7$
4.971 .0
$\begin{array}{ll}5.7 & 72.3\end{array}$
$6.5 \quad 73.6$
$\begin{array}{ll}7.4 & 74.5\end{array}$
18.276 .1
$\begin{array}{lll}19.0 & 77.5\end{array}$

19.8	78.7

30.680 .0
51.5
$\begin{array}{ll}22.3 & 82.6\end{array}$

53.1	83.9

53.9	85.2

54.7	86.5

| 55.5 | 87.7 |
| :--- | :--- | :--- |

$56.3^{89.0}$

CULVERTS ON SLOPING GROUND.--Continued.
1 per 100 to 20 per 100. The half lengths of Level Culverts, as found by Talle found for each respective imclination on the line opposite. Observe that all dison the inclination.)

16 per 100.		15 per 100.		18 per 100.		19 prer 100.		20 per 100.	
Upicer.	Lower.	Upper.	Lower.	Upper.	Lower.	Upier.	Lower.	Upper.	Lower.
32.3	52.6	31.9	53.7	31.5	54.8	31.1	55.9	30.7	07.1
33.1	53.9	32.6	55.0	32.3	56.1	31.9	57.3	31.5	58.6
33.9	55.2	33.4	56.4	33.1	575	32.7	58.7	32.3	60.0
34.7	56.6	34.2	57.7	33.9	58.9	33.4	60.1	33.1	61.4
85. 5	57.9	35.0	59.1	34.7	60.2	34.2	61.5	33.8	62.9
36.3	59.2	$3 \overline{5} .8$	60.4	35.4	61.6	35.0	62.9	34.6	64.3
37.1	60.5	36.6	61.7	36.2	62.9	35.8	64.3	35.3	65.7
37.9	61.8	37.4	63.1	37.0	64.3	36.6	65.7	36.1	67.2
38.7	63.2	38.2	64.4	37.8	65.7	37.3	67.1	36.9	68.6
39.5	64.5	39.0	65.8	38.6	67.1	38.1	68.5	37.6	70.0
40.3	65.8	39.8	67.1	39.4	68.5	38.9	69.9	38.4	71.4
41.1	67.1	40.6	68.4	40.1	69.8	39.7	71.8	39.1	72.9
41.9	68.4	41.4	69.8	40.9	712	40.5	72.7	39.9	4.3
42.7	69.8	42.2	71.1	41.7	72.6	41.2	74.1	40.6	75.7
48.5	71.1	43.0	72.5	42.5	73.9	42.0	75.5	. 3	77.2
44.3	72.4	48.8	73.8	48.3	75.3	42.8	76.9	42.8	78.6
45.1	73.7	44.6	75.1	44.1	76.7	43.6	78.3	43.0	80.0
45.9	75.0	45.4	76.5	44.9	78.0	44.4	79.7	43.8	1.4
46.7	76.3	46.2	77.8	45.7	79.0	45.1	81.1	44.6	82.9
47.5	77.6	47.0	79.2	46.5	80.8	45.9	82.5	45.4	84.3
48.4	79.0	47.8	80.5	47.2	82.2	46.7	83.9	46.2	85.7
49.2	80.3	48.5	81.8	48.0	83.5	47.5	83.3	46.9	87.1
49.9	81.6	49.3	83.2	48.8	84.9	48.3	86.7	47.7	88.5
50.8	82.9	50.1	84.5	49.6	86.8	49.0	88.1	48.5	89.9
51.6	84.2	50.9	85.9	50.4	87.6	49.8	89.5	49.2	91.8
52.4	85.5	51.7	87.2	51.2	89.0	50.6	90.9	50.0	92.8
53.2	86.8	52.5	88.6	52.0	90.4	51.4	92.3	50.8	94.2
54.0	88.1	53.8	89.9	52.8	91.7	52.2	93.7	51.5	95.6
54.8	89.5	54.1	91.3	53.5	93.1	52.9	95.1	52.3	97.1
55.6	90.8	54.9	92.6	54.3	94.5	53.7	96.5	53,1	98.5

This Table gives the half lengths of Culverts for various inclinations, ranging from A, being given in the first calumn ; the upper and lower half lengths will be tances given in this Table are to be set out on the ground horizontally (not

LEVEL.	1 per 100.		2 per 100.		3 per 100.		4 per 100.		5 per 100.	
$\begin{aligned} & \text { Half Lengths } \\ & \text { ner Table A. } \end{aligned}$	Upper.	Lower.								

9	71.0	67.9	72.1	0	73.3	1			
		68.9	73.2	67.9	74	67	75	66	
70.9	73.1	69.9	74.2	68.8	75.4	68.0	76.5	.	. 8
71.9	741	70.8	75.2	69.8	76.4	69.0	77.6	67.9	78.9
72.9	75.1	71.8	75.3	70.7	77.5	69.9	78.7	68.9	. 0
	76.1	72	77.3	71.7	78.5	70.8	79.8	69.8	1
74.9	77.0	73.7	78.3	72.7	79.6	71.8	80.9	70.7	. 2
75.9	78.	74.7	79.3	73.6	80.6	72.8	81.9	6	2
76.8	79.1	75.7	80.4	74.6	81.7	73.6	83.0	. 5	
77.8	802	76	81	75	82.7	74.6	84.0	5	85.4
78		77	82	76.5	83.8	75.5	85.1	4	86.5
79.8	82.	78	83.5	77.5	84.8	76.5	86.2	75.3	6
80.8		7	8.	78	85.9	77	87.2	3	7
81.7	84	80.	85.5	79.	86.9	78.4	88	77.2	89.7
82.7	85.	81.5	86.	80.3	88	79.3	$8!$	78.1	8
8		82.5	87.6	81	8	80.2	90.4	79.1	9
84.7	87.3	83	88	82.3	90.0	81.2	91.5	0.3	3.0
85.7	88	84.4	89.6	83	91.1	82.1	92.5	0	1
86.7	89.3	85	90.7	84.2	92.2	83.0	93.6	81.9	5.1
87.7	90.3	86.4	11.7	85.1	93	84.	94.7	2.8	. 2
88.7	91	8	92	86.1	94.3	85.0	95.7	83.7	7.3
89.7	92.3	88.3	93.8	87	95.3	85.9	96.8	84.7	98.
90.6	93.3	89.	94	88.	4	86.8	97.9	85.6	5
91.	94.3	90	95.8	89.0	97.4	87.8	99.0	86.5	5
92	95.4	91.2	96.8	89.9	98.5	88.7	100.	87.5	. 6
	964	92.3	97.9	90.9	99.5	89.6	101.1	88.	102.7
		93.2		91.9	100	90.6	102	89	
	98.4	94.2	99.9				103.2		
	98.4	94.2	99.9	92.8	101.6		103.2	90.2	104.8
96.5	99.4		100.9	93.8	102.7	92.5	104.3	91.	105.9
		96.2	2.1	94.7	. 7	9	05.4	92	

OU'T

iny from is will be ally (not per 100.
er. Lower.
.175 .7
$.0 \quad 76.8$
$.0 \quad 77.8$
$\begin{array}{ll}.9 & 78.9\end{array}$

.9

. $8 \quad 81.1$
1.782 .2

1. 683.2
2.584 .3
3.5 85.4
1.486 .5
\%. $3 \quad 87.6$

6.3	88.7

$\begin{array}{ll}7.2 & 89.7\end{array}$
8.190 .8 9.191 .9
0.393 .0
$1.0 \quad 94.1$
1.995 .1
$\begin{array}{ll}2.8 & 96.2\end{array}$

3.7	97.3

$4.798 . \dot{4}$
$\begin{array}{ll}55.6 & 99.5\end{array}$
36.5100 .5
37.5101 .6
38.4102 .7
39.3103 .8
30.2104 .8
71.2105.9
92.1107 .0

CUINERTS ON SLCPING GROUND.-Comtinued.
1 per 100 to 20 per 100. The helfi lengths of Leved Culterts, as foume by Theble fomul for euch respective inclimation on the line opposite. Obseree that all disone the incliuntion.)

6 p er 100.		I per 100.		8 per 100.		9 mer 100.		10 prer 100.	
1 mme .	Luwer.	Upper.	10wer.	Upher,	Lower.	Lpper.	Lower.	Lipper.	Lower.
64.2	76.91	63.3	78.2	(62.5	79.5	(;1.7	80.9	60.9	82.:3
(6.5. 1	78.0	64.2	7).:3	63, 4	80.8	62.6	82.0	6.7	83.6
66.0	79.1	(0.). 1	80.4	64.3	81.8	63. 5	83.2	(i2. 6	81.7
67.0	80.2	66.0	81.6	(6). 2	82.9	64.8	8.1 .4	(6). 1	85.9
(\%7.9)	81.:	66.9	82.7	66.1	84.1	6.5 .2	8.5 .5	(i4.3	87.0
68.8	82.4	67.9	8\%.8	67.0	85.2	66.1	86.7	65.2	88.2
69.7	83.5	68.8	8.4 .9	C7.9	86.3	67.0	87.9	(i6.1	89.1
70.6	84.6	69.7	86.0	68.8	87.5	67.9	89.0	(66.9	90.6
71.6	85.7	70.6	87.1	69.7	88.6	68.7	90.2	67.8	91.7
72.5	86.8	71.5	88.2	70.6	89.8	69.6	91.3	68.7	92.9
78.4	87.9	72.4	80. 3	71.4	90.9	30.5	92.0)	69.6	9.4 .1
74.3	8! . 0	73.3	90.5	72.3	92.0	71.1	98.7	70.1	9:, 3
75.2	90.1	74.2	91.6	73.2	93.2	72.:3	94.8	71.3	96.5
76.2	91.2	7 T .1	92.7	7.1 .1	94.3	73.1	96.0	72.2	97.6
77.1	92.8	76.	. 8	7.	95.5	71.0	97.1	73.0	98.8
78.0	93.4	76.9	94.9	75.9	96.6	74.9	98.3	93.9	100.0
78.9	94.5	77.8	96.0	76.8	97.7	75. 8	99.5	74.8	101.1
79.8	95.6	78.7	97.1	77	98.9	76.7	100.6	75.6	102.8
80.7	96.7	79.6	98.2	78.6	100.0	77.5	101.8	76.5	103.5
81.1	97.8	80.	99.4	79.	101.1	78.4	102.9	77.4	104.7
82.5)	98.9	81.4	100.5	80.4	102.2	79.3	104.5	78.2	105.9
83.5	100.0	82.3	101.6	81.2	103.4	80.2	105.2	79.1	107.0
84.4	101.1	$8: 3.2$	102.7	82.1	104.5	81.1	106.4	79.9	108.3
85.8	102.2	84.1	103.9	8:3.0	10\%.6	81.9	107.5	80.9	109.4
86.2	10:3.:3	85.0	105.0	83.9	106.8	82.8	108.7	81.7	110.6
87.1	104.4	86.0	106.1	84.8	107.9	83.7	109.8	82.6	111.8
88.0	105.5	86.9	107.2	85.7	109.0	84.6	110.9	83.5	112.9
88.9	106.6	87.8	108.3	86.6	110.2	85.5	112.1	84.3	114.1
89.8	107.7	88.7	109.5	87.5	111.3	86.3	113.3	85.2	115.3
00.7	108.8	89.6	110.6	88.4	112.4	87.2	114.4	86.1	116.5

This Table gives the half lengths of Culverts for various inclinations, ranging from A, being given in the first column; the upper and lower hetf lengilhs will be tunces given in this T'uble are to be set out on the ground horizoulally (not

VEL.	11 per 100.		12 per 100.		13 pur 100.		14 per 100.		15 per 100.	
Half Lengths	Upper.	Lower.	Upper.	Lower.	Upper.	Lower.	U1per	Lower.	Upper.	Lowe
70	60.1	83.8	59.3	85.3	58.6	86.9	57.9	88.6	57.2	.
71	60.9	85.0	60.1	86.5	59.4	88.2	58.7	89.9	58.0	.
72	61.8	86.2	61.0	87.7	60.3	89.0 b	59.5	91.1	58.8	92.9
73	62.6	87.4	61.8	89.0	60.1	90.7	60.3	72.4	59.6	4.
74	63.4	88.6	62.9	90.2	61.9	92.0	61.2	03.6	60.4	95.
75	64.3	89.8	63.5	91.	62.	93.2	62.0	94.9	61.2	86.
76	G\%.2	91.0	$6 \pm .4$	92.6	63.6	94.4	62.8	96.2	62.0	98.0

 $\begin{array}{llllllll}72.0 & 100.6 & 71.1 & 102.4 & 70.8 & 104.4 & 69.4106 .3 & 68.6108 .4\end{array}$ $\begin{array}{llllllllll}72.9 & 101.8 & 72.0 & 103.6 & 71.1 & 105.6 & 70.2 & 107.6 & 69.4109 .7\end{array}$ $73.8103 .0 \quad 72.9104 .8 \quad 71.9106 .8 \quad 71.0108 .9 \quad 70.2111 .0$ $74.6104 .2 \quad 73.7106 .0 \quad 72.8108 .0$ 71.9110.1 71.0112 .8 $\begin{array}{lllllllllll}75.5 & 105.4 & 74.6 & 107.3 & 73 & 6109.3 & 72.7 & 111.4 & 71.9 & 113.5\end{array}$ $\begin{array}{lllllllll}76.8 & 106.6 & 75.4 & 108.5 & 74 & 5 & 110.6 & 73.5 & 112.6 \\ 72.7 & 114.8\end{array}$ $\begin{array}{llllllllll}77.2 & 107.8 & 76.3 & 109.7 & 75.3 & 111.8 & 74.4113 .9 & 73 & 5116.1\end{array}$ 78.1109 .0 77.1110.9 76.1113 .0 75.2 $115.2 \quad 74.3117 .4$ $78.9110 .2 \quad 78.0112 .1 \quad 77.0114 .3 \quad 76.0116 .475 .1118 .7$ $\begin{array}{llllllll}79.8111 .4 & 78.8 & 113.4 & 75.8 & 115.5 & 76.8 & 117.7 & 76.0119 .9\end{array}$ | 80.6112 .6 | 79.6 | 114.6 | 78.7 | 116.8 | 77.7 | 118.9 | 76.8 | 121.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}81.5 & 113.8 & 80.5 & 115.8 & 79.5 & 118.0 & 78.5 & 120.2 & 77.6 & 122.5\end{array}$ $\begin{array}{llllllllll}82.4115 .0 & 81.3 & 117.0 & 80.3 & 119.2 & 79.3 & 121.5 & 78.4123 .8\end{array}$ $83.2116 .282 .2118 .381 .2120 .5 \quad 80.1122 .8 \quad 79.2125 .1$

 $\begin{array}{lllllllll}84.9 & 118.6 & 83.9120 .8 & 82.9 .123 .0 & 81.8 & 125.4 & 80.8127 .7\end{array}$

CULVER'TS ON SLOPING GROUND.--Con:imurd.
1 per 100 to 20 per 100. The lealf lengths of Level Culecrts, as foumd by Trabe found for each nespectice inclination on the line opposite. Observe that all dison the inclinaiion.)

16 pre 100.		15 per 100.		18 per 100.		19 per 100.		20 per 100.	
Upper.	Lower.	Upper.	Low	Upper.	Lowe	er.	Lowe	Upper.	Lower.
56.5	9.21	55.7	94.0	55.1	95.9	54.5	97.9	53.8	. 9
57.3	93.	50.5	95.3	55.9	97.2	55.3	99.3	54.6	101.4
\%. 1	94.7	57.3	96.	56.7	98.	56.1	100.7	5.8	102.8
58.9	96.1	58.1	98.	7.4	100.0	6.8	102.1	6.1	104.2
. 7	97.4	58.9	99.4	58.2	101	57.6	103.5	6.8	105.7
60.5	98.7	59.7	100.	59.0	102	58.4	104.9	57.7	107.1
61.3	100.	60	102.	59.8	104.1	59.2	106.3	58.4	108.5
62.1	101.	61.3	10	60.6	10	60.0	107.7	59.3	109.9
62.9	102.	62	104	61	10	60.7	109.1	60.0	. 4
7	103.9	62.9	10	62.2	108.2	. 5	110.3	0.8	. 8
6	10.	(63. 7	10	(3:) 0	109.6	62.3	11	61.6	2
	10	64.5	1	63.7	110.9	(i3. 1	113.	62.4	(
	107.9	(6). 3	110.	. 5	112	$6: 3.9$	114.7	$6: 3.1$	117.1
67.0	109.2	66.1	111.	65.3	1	64.6	116.1	68.9	118.4
67.8	110.5	66.9	112.8	66.1	1	(6) 4	117.5	64.7	119.9
	1	67.7	11%	. 9	116.4	66.2	118.9	65.4	121.4
	113.1	68.5	115.	67.7	117.8	67.0	120.3	66.2	122.8
	114.4	69. 3	11	.	119.1	. 7	121.	6.9	124.3
	115.8	70.1	11	69.3	1	.	3.	. 8	5.6
		70.9	119.	70.1	121.9	69.3	124.5	68.5	7
	118.4	71.7	120.	70.9	12	70.0	12.	. 3	8.6
	11	7	12	71.6	1	70.8	127.2	0.0	130.0)
	121.0	73.2	12	72.4	126.0	71.6	128.	0.8	. 1
75.0	122.4	74.0	12	73.2	127.4	72.1	180.	. 6	. 8
	123.7	74.8	126.2	74.0	128.7	78.1	1:31.4	72.3	1.3
76.6	125.0	75.6	127.5	74.8	180.1	73.9	132.8	73.1	5.7
77.4	126.3	76.4	128.8	75.6	181.5	74.7	134.2	73.9	7.1
2	127.6	77.2	130.2	76.4	132.8	75.5	18.5	74.8	138.6
79.0	129.0	78.0	131.5	77.2	134.2	76.2	187.0	75.5	140.0
9.8	130.3	78.8	132.9	77.9	135.	7.0	8.	6.2	

This Table gives the half lengths of Culverts for varions inclimations, ramging from .1, being given in the first columm: the upper and lower half lengths will be tances given in this Table are to be set ont on the groamd horizontally (mot

$\begin{gathered} \text { LEVEL. } \\ \text { Half Lengths } \\ \text { per Table } \lambda . \end{gathered}$	1 per 100.		2 per 100.		3 per 100.		4 per 100.		万per 100.	
	Upper.	Lower.	Cuper.	Lower.	Cuper.	Lower.	Upper.	Lower.	Upper.	Lower.
100	98.5	101.5	97.1	$10: 3.1$	98.7	10.1 .7	94.3	106.4	0:3.0	108.1
101	99.5	102.5	98.1	104.1	$\bigcirc 6.7$	10.3.8	97.2	107.5	93.9	109.2
102	100.5	10:3	99.0	105.2	97.6	1068	96. 2	108.5	05.0	110.2
10:3	101.5	104.6	100.0	100.2	98.6	107.8	97.1	109. 6	95.9	111.8
104	102.5	105.6	101.0	107.2	99.5	108.9	98.1	110.6	96.8	112.4
10.5	108.5	106.6	101.9	108.3	100.5	109.9	99.0	111.7	97.7	113.5
100	10.4 .4	107.6	102.9	109	$101 . .5$	111.11	99.9	112.8	98.	14.6
107	10.5.4	108.6	103.9	110.:	102.4	112.1	100.9	11:3.s	99. 6	15.6
108	106.4	109.7	104!	111	103	11:3.1	101.8	114.9	100.5	116.7
109	107	110.7	10.7. 8	112	10.4 .3	114.2	102.8	11.5	10	117.8
110	108.4	. 7	106.8	1	10.1.3	115.2	10:3.7	117.0	[112. 3	18.9
111	109	112. 7	107.8	1	10	116.2	104.6	118.	10:)	20.0
112	110	11:3.7	108.7	115.5	107.2	117.3	0	19.1	10.1	21.1
11:	111.	111.8	109.7	116.5	108.	118	(0). ${ }^{\text {d }}$	120.2	10.8	20. 1
11.1	11	:15.8	110.7	117	109. 1	$11!1$	07	121.2	6i.	2:3.2
115	11	116.8		11	110.1	120	4	1	107	124.3
116	114.	117.8	2.	19	111	101	$109 .: 3$	$12: 3$	107.9	12.5.4
117	11.5	118.8	11:3.6	120.6	12	12	. 3	121	108.	126.4
118	116.	119.9	14.	121.	11:3.0	193.6	11.2	$1: 5$	109.	127.0
119	117.	120.9	115.5	120.7	113.9	124	12.	126	10	128.6
$1: 0$	118.3	121.!	116.5	123.7	114.9	125.7	11:3.2	127.7	111.6	129.7

G OU'T

iny from is will be ally (not

per 100 .

r. Lower.
. 0108.1
.9109 .2 .0110 .2
$.9111 . ;$
.8112 .4
.7113 .5
. 7114.6
.6115 .6 1.5116 .7 .4117 .8 !.: 3.3120 .0 1.8121 .1 $; .2102 .1$; 1 1 1 12: 1124.3 7.9125 .4 3.9126 .4 0.8127 .5
0.7128 .6
1.6129 .7

CLIVERTS ON SLOPING (XROUND.-Continued.
1 per 100 to 20 per 100. The half lenyths of Level Culverts, as tound by Tuble found for each respective inclination on the line opposite. Observe that all dison the incliuation.)

6 per 100.		7 per 100.		8 per 100.		9 per 100.		10 per 100.	
Upper.	Lower.	Upper.	Lower.	Upper.	Luwer.	Upicer.	Lower.	Upper.	Lower.
91.7	109.9	90.5	111	89.3	113.	88.1	115.6	86.9	117.6
92.6	111.0	91.4	112.8	90.2	114.7	88.9	116.7	87.7	118.7
93.5	112.1	92.3	113.9	911	115.8	89.8	117.8	88.6	119.9
94.5	113.2	93.2	115.1	92.0	117.0	90.7	118.9	89.5	121.1
95.4	114.3	94.1	116.2	92.8	$118 . \mathrm{i}$	91.6	120.0	90.4	122.3
96.3	115.4	95.0	117.3	93.7	119.3	92.5	121.2	91.2	123.4
97.2	116	96.0	118.4	94.6	120.4	93.4	122.3	92.1	124.6
98.1	117	96.8	119.5	95.5	121.5	94.3	123.5	93.0	125.8
99.0	118.7	978	120.6	96.4	122.7	95.1	124.6	93.8	126.9
100.0	119	98.7	121.7	97.3	123.8	96.0	125.7	94.7	128.1
100.9	120.9	99.6	122.9	98.2	124.9	95.9	126.8	95.6	129.3
101.8	122.0	100.5	124.0	99.1	126.0	97.8	127.9	96.5	130.4
102.7	123.1	101.4	125.1	100.0	127.2	98.7	129.1	97.3	131.6
103.6	124.2	102.3	126.2	100.9	128.3	99.5	130.2	98.2	132.8
104.5	125.3	103.2	127.4	101.8	129.5	100.4	131.	99.0	134.0
105.5	126.4	104.1	128.5	102.7	130.6	101.3	132.4	99.9	135.1
106.4	127.5	105.0	129.6	103.6	131.7	102.2	133.5	100.8	136.3
107.3	128.6	105.9	130.7	104.5	132.8	103.0	134.7	101.7	137.5
108.2	129.7	106.8	131.8	105.4	134.0	103.9	135.8	102.5	138.6
109.2	1308	107.7	133.0	106.3	135.2	104.8	136.9	103.4	139.8
110.1	131.9	108.6	134.1	107.2	136.3	105.7	138.0	104.3	141.1

This Table gives the half lengths of Culverts for various inclinations, ranging from A, heing given in the first column; the upper and lower half' lengths will be tances given in this Table are to be set out on the ground horizontally (not

LEVEL. Half' Lengths per Table A.	11 per 100.		12 per 100.		13 per 100.		14 per 100.		15 per 100.	
	Upper.	Lower.								
100	85.8	119.8	84.7	122.0	83.7	124.2	82.6	126.7	31	0
101	866	121.0	85.5	123.2	84 5	12\%. 4	83.4	127.9	82.4	180.3
102	87. 5	122.2	86.4	124.4	85.4	126.7	84.2	129.2	83.2	131.6
103	88.3	123.4	87.2	125.6	86.2	127.9	85.0	130.5	84.0	132.9
104	89.2	124.6	88.1	126.8	87.0	129.2	85.9	131.8	84.8	134.1
105	90.0	125.8	88.9	128.1	87.9	130.4	86.7	133.C	85.6	135.4
106	90.9	127.0	89.8	129.3	887	131.7	87.5	134.3	86.5	136.7
107	91.7	128.2	90.	130.5	89.5	132.9	88.4	135.6	87.3	138.0
108	92	129.4	91.	131.7	90.4	134.1	89.2	136.8	88.1	139.3
109	93.4	130.6	92.4	133.0	91.2	135. 4	90.0	188.1	88.9	1.40 .6
110	94.3	131.8	93.3	134.2	92.0	136.6	90.8	139.4	89.7	141.9
111	95.1	133.0	94.1	135.4	92.9	137.9	91.6	140.7	90.5	143.2
112	96	134.2	95.0	136.6	93.7	139.1	92. 5	141.9	91.	144.5
113	96.8	135.4	95.8	137.8	94.5	140.7	93.3	143.2	92.2	145.8
114	97.7	136.6	96.7	139.0	95.4	4141.6	94.1	144.5	93.	147.0
115	98.5	137.8	97 - 5	140.3	96.2	142.8	94.9	145.7	93.8	148.3
116	99	139.0	98.4	141.5	97.0	144.1	95.8	14	94.6	149.6
117		2			97.9		96	148.3		1510
117							96.	148.3		151.0
118	101.1	14	100.1	144.0	98.7	146.6	97.	149.5	96.2	152.2
119	101.9	142.6	100.9	145.1	99.5	14. . 8	98.2	150.8	97.0	153.5
120	102.8	143	10	14	100	149.0	99.0	152.1	97.8	154.8

$\frac{\mathbf{U}_{1}}{8}$

CULVERTS ON SLOPING GROUND.-Continued.
1 per 100 to 20 per 100. The half lengths of Level Culverts, as found by Table found for each respective inclination on the line opposite. Observe that all dison the inclination.)

16 per 100.		17 per 100.		18 per 100.		19 per 100.		20 per 100.	
Upper.	Lower.	Upper.	Lower.	Upper.	Lower.	Upicer.	Lower.	Upper.	Lower.
80.6	131.6	79.6	134.2	78.7	137.0	77.8	139.8	76.9	142.9
81.4	132.9	80.4	135.5	79.5	138.3	78.6	141.2	77.7	144.3
82.2	134.2	81.2	136.9	80.3	139.7	79.3	142.6	78.4	145.7
83.0	185.5	82.0	138.2	81.0	141.1	81.1	144.0	79.2	147.2
83.8	136.8	82.8	139.6	81.8	142.5	80.9	145.4	80.0	148.6
84.6	138.2	83.6	140.9	82.6	143.8	81.7	146.8	80.7	150.1
85.4	139.5	84.4	142.2	83.4	145.2	82.4	148.2	81.5	151.5
86.2	140.8	85.2	143.6	84.2	146.6	83.2	149.6	82.3	152.9
87.0	142.1	86.0	144.9	85.0	148.0	84.0	151.0	83.0	154.4
87.8	143.4	86.8	146.2	85. 8	149.3	84.8	152.4	83.8	155.8
88.6	1	8	147	86.5)	150.7	85.6	153.8	84.6	157.2
89.4	146.0	88.4	148.9	87.3	152.0	86.3	155.1	85. 4	158.6
90.2	147.4	89.1	150.3	88.1	153.4	87.1	156.5	86.1	160.1
91.0	148.7	89.9	151.6	88.9	154.8	87.9	157.9	86.9	161.5
91.8	150.0	90.7	153.0	89.7	156.2	88.7	159.3	87.7	162.9
92.6	15	91.5	154.3	90.5	157.5	89.4	160.7	88.4	164.4
93.4	152.6	92.3	155.6	91.3	158.9	90.2	162.1	89.2	165.8
94.2	154.0	93.1	157.0	92.0	160.3	91.0	163.5	90.0	167.3
95.0	155.3	93.9	158.3	92.8	161.6	917	164.9	90.7	168.7
95.8	156.6	94.7	159.6	93.6	16:3.0	92.5	166.3	91.5	170.1
96.6	157.9	95.5	161.0	94.4	164.4	93.3	167.7	92.3	171.5

This is a Table of Mulliplicis for ascortaining the half lengths of Culverts on Table A, will give the proper lengths of level Culverts on the skew, accord yiven in corrospondiny columns in Table B. will convert the latter into thi inclination, on the skew, according to the angle of skew. By the angle of line of Railway.

Angle of skew.		2 per 100.		4 per 100.		${ }_{\text {6 per }} 100$.		8 per 100.	
		Upper.	Lower.	Upper.	L.ower.	$\mathrm{U}_{1 \mathrm{prrr}}$	Lower.	Upper.	Lower.
90°	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
$87^{\circ} 30^{\prime}$	1.002	1.002	1.002	1.002	1.002	1.002	1.00\%	1.002	1.002
85°	1.004	1.004	1.004	1.004	1.005	1.004	1.005	1.004	1.005
$82^{\circ} 30^{\prime}$	1.009	1.010	1.010	1.010	1.010	1.009	1.009	1.009	1.009
80°	1.015	1.015	1.016	1.014	1.017	1.014	1017	1.014	1.018
$77^{\circ} 30$	1.022	1.022	1.022	1.022	1.022	1.022	1.022	1.022	1.028
75°	1.035	1.034	1.037	1.033	1.038	1.031	1.039	1.032	1.041
$72^{\circ} 30$	1.047	1.049	1.049	1.050	1.050	1.047	1.051	1.044	1.05\%
70°	1.064	1.062	1.067	1.061	1.069	1.059	1.072	1.058	1.075
$67^{\circ} 30^{\prime}$	1.080	1.082	1.082	1.080	1.088	1.080	1.091	1.073	1.095
65°	1103	1.101	1107	1.097	1.112	1.094	1.116	1.093	1.120
$62^{\circ} 30^{\prime}$	1.127	1.125	1.130	1.119	1.138	1.118	1.142	1.120	1.150
60°	1.15	1.149	1.160	1.145	1.168	1.140	1.174	1.136	1.182
$57{ }^{\circ} 30$	1.183	1.180	1.193	1.172	1.200	1.168	1.209	1.161	1.215
55°	1.221	1.213	1.230	1.206	1.240	1.198	1.249	1.193	1.259
$52^{\circ} 30^{\prime}$	1.260	1.250	1.270	1.242	1.282	1	1.292	1.228	1.304
50°	1.305	1.293	1.317	1.284	1.332	1.273	1.346	1.264	1.362
$47^{\circ} 30^{\prime}$	1.360	1.344	1.375	1.333	1.392	1.321	1.410	1.310	1.428
45°	1.414	1.398	1.433	1.383	1.456	1.368	1.477	1.355	1.501
$42^{\circ} 30^{\prime}$	1.480	1.460	1.505	1.444	1.531	1.425	1.55%	1.409	1.588
40°	1.556	1.531	1.583	1.510	1.617	1.487	1.650	1.468	1.688
$37^{\circ} 30^{\prime}$	1.640	1.612	1.680	1.589	1.718	1.5	1.762	1.535	1.810
35°	1.743	1.709	1.788	1.676	1.839	1.644	1.892	1.616	1.950
$32^{\circ} 30^{\prime}$	1855	1.812	1.916	1.782	1.975	1.742	2.046	1.706	2.120
30°	2.000	1.945	2.067	1.897	2.154	1.851	2.237	1.810	2.332

the sh ing to correc skew

Upper.
1.000
1.002
1.004
1.009
1.014
1.022
1.032
1.043
1.056
1.072
1.091
1.110
1.132
1.158
1.187
1.218
1.255
1.248
1.343
1.395
1.4511
1.5171
1.592
1.6772
1.7732 into the angle of

Lower.
1.000
1.002
1.005
1.009
1.018
1.028
1.041
1.055
1.075
1.095
1.120
1.150
1.182
1.215
1.259
1.304
1.362
1.428
1.501
1.588
1.688
$535 \quad 1.810$
1.950
2.120
$810 \quad 2.332$

SKEW CULVERTS.

the skew: those found in the second column, multiplied into the lengths given in ing to the angle: those found in the other colnmens, multiplied into the lengths correct upper and lower half lengths, as the case may be, of Culverts with the same slew is meant the angle which the centre line of Culvert makes with the centre

10 per 100.		12 per 100.		14 per 100.		16 per 100.		18 prr 100.		20 per 100.	
Upper.	Lower.										

1.0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .000 1.0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .0021 .002 1.0041 .0061 .00410061 .0041 .0061 .0041 .0061 .0031 .0081 .0031 .008 1.0091 .0091 .0091 .0121 .0091 .0121 .0091 .0121 .0091 .0131 .0091 .013 1.0141 .0191 .0141 .0201 .0141 .0221 .0141 .0211 .0131 .0221 .0121 .023 1.0221 .0301 .0201 .0301 .0201 .0321 .0201 .0321 .0201 .0371 .0201 .038 1.0321 .0431 .0301 .0441 .02911 .0461 .0291 .0481 .0281 .0511 .0271 .053 1.0431 .0581 .0401 .0601 .0401 .06310401 .0681 .0391 .0701 .0381 .072 $1.0561 .0771 .0541 .0811 .0541 .0841 .0531 .087|1.051| 1.0921 .0491 .095$ 1.0721 .0961 .0701 .1031 .0681 .1081 .0681 .1121 .0671 .1201 .0661 .121 1.0911 .1251 .0871 .1301 .0851 .1361 .0831 .1421 .0801 .1501 .0781 .157 1.1101 .1521 .1051 .1601 .1041 .16811021 .1731 .0951 .1841 .0901 .190 1.1321 .1871 .1281 .1961 .1261 .2061 .1221 .2161 .1181 .2261 .1151 .237 1.1581 .2251 .1501 .2461 .1481 .2501 .1451 .2621 .1371 .2731 .1321 .285 $1.1871 .2711 .181|1.2841 .1761 .2991 .171| 1.314|167| 1.3321 .1621 .348$ 1.2181 .321 1.212 $1.3381 .2051 .360|1.2001 .3751 .191| 1.5961 .1821 .422$ $1.2551 .3791 .247 \mid 1.401$ 1.239 1.422| 1.2321 .4471 .2251 .4751 .2191 .501 $1.2481 .4481 .288|1.4751 .277| 1.508|1.267| 1.535|1.261| 1.5651 .25011 .605$ 1.3431 .5261 .3311 .5601 .3201 .5951 .3091 .6341 .3001 .6801 .2911 .721 1.3951 .6151 .3801 .6601 .3651 .7101 .3531 .7551 .3421 .8101 .3301 .862 1.4511 .7241 .4341 .7791 .4181 .8331 .4051 .8921 .3911 .9651 .3792 .033 1.5171 .8551 .4951 .9301 .4782 .0001 . 4622.0651 .4452 .1651 .4302 .250 1.5922 .0101 .5692 .1021 .5462 .1931 .5262 .3001 .5062 .4331 .4892 .564 $1.6772 .1981 .6472 .2401 .6232 .420 \mid 1.5982 .5601 .5722 .7121 .5522 .900$ $1.7732 .423|1.739| 2.592|1.708| 2.753|1.679| 2.950|1.652| 3.201,1.6293 .444$

SECTIONAB
SECTION THROUGH CONCRETE WALL, C. D

IN TERCOLONIAL RAILWAY

CULVERTS FOR SIDE HILLGROUND

 Referred to in Gionorel Instructions. .'o. 4S'andfordi fileming Chuef Linginar.

LOWER END ELEVATION

The doted live sthew is lincrale Wrill.

```
ALL, C. D
```

PLANOFLOWEFEND

L $\quad \mathbf{N} \quad \mathbf{G}$

L $\quad \mathrm{N}$
Scale δ feet to 1 inch

Drawing, No 1.

Drawing No 2.

INTERCOLONIAL RAILWAY
S E C T : O N
The cerled limo minersint.
ARCH CULVERTON SLOPING GROUND

Sanalford pilcming
Chirf'EMginerre

LON G I TUND N A L
Seates fect to I inch

fect to 1 inch

