The institute has attempted to obtain the best original copy availabie for filming. Features of this copy which may be bibliographically uniuue, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restauree et/ou pelliculieCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meillear exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetėes ou piquėesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tete provient:Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Généīique (périodiques) de la livraisonAdditional comments:/
Commentaires supplėmentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmè au taux de rèduction indiqué ci-dessous.

During the absence in England of the Editor, Professor Henry T. Bovey, communications, $\$ c$. , rclating to the Eilitorial Department should be addrested to R. W. Boodes, 21 JicGill College Avenue, Montrcal.
The Editor does not hold himself responsible for opinions expressed by his correspondents.
No notice will be taken of anonymous communications.

NEW BOOK.

The Materials of Engineering. Part II. "Iron ard Steel;" by Hobert H. Thurston, A.M.,C.E. (New York, John Wiley \& Sons, 1883.)
The second part of Mr. Tharaton's "Materials of En ${ }^{\text {ineer- }}$ ing " proves to be, as the first led ua to expect, a work of the greatest value to all enginears and studonts basiod in this do. partment of science. It is clearly printed and fally illustrated with cuts of different processes, machines, \&c. Tho work serves as an admirable compendiam of information upon this branch of the matorials of engineers. Thus after an opening chapter upon the qualities of metals of somewhat an elementary character, and a sketch of the history and prinoiples of motal. lurgic work, the strjent is led on to iron and steel in mannfac. ture, and to anggestive remarks apon the effects of time and temperature upon the metals. The work concludes with a practical chapter apon Specification, Teats and Inspection. This is in every way a good book, and we are glad to be able to recommend it highly to the pablic. The anthor not only makes constant references to the woris of recognized anthorities like Weyranch, Rankine, Moleeworth, Egloston, so., but has made excellent use of the Transactions of different engineering and scientific societies, chielly American and French. This we consider to be an excellent point. Nowhere is improvement in detail and manipnlation more constant than among enginecrs, and to keep abrenst of the times it is negessary to read widely among the miscelleneous periodicals, regintering recent resulta that have not yet found their way into the works of recognized suthorities. With regard to iron and steel, this task has hsen admirably done by Mr. Thurston.

Upon Factors of Safety, p. 840, \&c., Mr. Thuraton hat somo capital remarks to which we would refer our readars. By way of illusiration, we quote the following paragraph from them: "The factors of safety adoptod for iron and stoel are lower than those usually sidmissible for construction in other matarials, in
consequence of the fact that the elastic limit and the elestic resilience, or shock-resisting power of the former seem to increase, up to a limit, with strain; while the latter gradually yiald under comparatively low atresses, as will be seen hereafter. In common practice, the factor of safety covers not only risks of injury by accidental excessive stresses, but deterioration with time, uncertainty as the charscter of uninspected material and sometimes equally great uncertainty as to the sbsolute correctness of the formulas and the constants usod in the calculations. As inspection becomes more efficient and trust. worthy; as our knowledge of the effect of prolonged and of intermitted stress becomes more cortain and compleis ; as our formulas are improved and rationalized, and as their enpirically determined constants are more exactly obtainod, the factor of safety is gradually reduced, and will finally become a minimum when the engineer acquires the sbility to assume with confidence the conditions to be estimated upon, and to asy with srecision how his materials will continuously carry their loads."

We reserve some thoughts and criticisms suggeeted by the work before ns to a future Namber.

THE HEAT OF THE SUN.

BY YRNEST H. 500k, B.8C. (LOND.), F.c.s.
(Concluded from fing 101.)
With such a proliminary assertion Dr. Siemens proceeds to formalate the fundamontal assumption thac all space is filled with highly rarefied gaseous bodies, iacluding hydrogen, oxygen, nitrogen, carbon, and their compounds. The planetary bodies scattered in such an atmosphere would attract to themselves atmospheres varying in donsity, according to the varying density of the planet. But this attraction would be, to a cer tain extent, selective, and consequently, such atmospheree would consist of the heavier and, therefore, lees diffusible gases, while the lighter wonld remain in space. In spsee, therefore, there would be a vast preponderance of hydrogen, and the higher hydrocarbons. But again, the planetary system as 2 whole, will attract the rarefied gases existing in stellar space, thos wo shall have existing in space what may be called three clineses of atmoepheres : inter-stellir, inter-
planetary, and planetary. Each of these will vary in density, the first according to tho distances of tho stara, the second according to the mass of the particular syatem as a whole, and the third according to the mass of the attracting planet. In support of this view, tine molecular theory of gases is brought in, the evidence afforded by the analysis of gases occluded by moteorolites, which have fallen upon the earth, and the teachings of spectrum anaylsis. Each of these is in itself a perfectly sound and practically unanswerable argument in favor of the existence of a universal atmosphere.

In regard to the idea that if such atmospheres did exist, the central body of each system would attract to itself the heavier gases, whereas the revelations of spectrum analysis shows a prevalence of Hydrogen, Dr. Siemens remarks that it can be shown that at such a temperature as the sun possesses, no Carbon Dioxide or Carbon Monoxide could exist, and, in fact, supposes with Lockyer, that the metallords can also have no existence. But he eays that "outside the photosphere, there must be regions where these gases would accumulate, were it not for a certain counter-balancing action."

This counter-balancing action is provided for by the high rotative velocity of the sun, which is equal to about 125 miles per second, or, at the sun's equator, nearly $4 \frac{1}{2}$ times that of the earth. Such a movement must cause an equatorial rise of the solar atmosphere. La Place has, however, calculated that owing to this cause, the height of the solar equatorial atmosphere could not possibly exceed $\frac{9}{26}$ ths of the distance of Mercury. This calculation is, however, vitiated by his assumption of the emptiness of stellar space. If we suppose this action to go on in an unlimited modium, then a fan-like oflect is exercised upon that medium, rasultng in a movement outwards at the the equatu; and a drawing in towards the poles.

The sun, therefore, upon this hypothesis is supposed to have around his equator, a disc of matter rapidly leaving him, and at the poles matter approaching him.
In this way, Dr. Siemens says enormous quantities of bydrogen, hydro-carbon, and oxygens are supposed to be drawn towards the polar surfaces of the sun. During their gradual approach, they will pass from their condition of extreme attenuation and extreme cold, to that of compression accompanied with rise of temperature, until on approaching the photosphere, they burst into flame, giving rise to a great development of heat, and a temperature commensurate with their point of dissociation at the solar density. The result of their combustion will be aqueous-vapor and carbonic anhydride or oxide, according to the sufficiency or insufficiency of oxygen present. These products of combustion will come under the influence of centrifugal force, and move towards the equator, whore they will be projected into apace. As they recede from the sun, they gradually lose their heat, and become more and more rarefied, until they obtain the extreme state of rarefaction, which they possess in interplanetary space. Here, it is supposed the inverse action to that which occurs in the sun, takes place. The now highly rarefied aqueous-vapor and carbonic anhydride absorbs some of the radiations which the sun is oonstantly pouring out, and it is sapposed that at the extremely low pressure to whioh they are subjected, they are
dissaciated-exygen, hydrogen and hydrocarbons being produced. These a:o in turn again drawn into the polar surfaces by the fan-like action produced by the solar rotation. Thus, wo see that a continuous circulation of matter occurs, the same element alter nately forming a portion of the coldest portion of interplanetary space, and the hottest portion of the central luminary.

Such in outline are the chief points of this latest theory of solar action. Thore are some other secondary points, which are rendered necessary in consequence of the known constitution of the sun. For example, we know that the solar atmosphere contains large quantities of the vapor of certain metallic bodies. These are supposed to constitute an inner atmospheric shell which is not affected, in consequence of its density by the centrifugal force caused by rotation. This force, in fact, only affects the higher materials, ohefly liydrojen constituting the circulating atmosphere. At the surface of contact between the two, however, "intermixture induced by friction may sometimes occur, giving rise to those vortices and explosivo effects which are revealed to us by the telescope.... Some of the denser vapors would probably get intermixed and carried away mechanically by the lighter gases, and give rise to that cosmic dust, which is observed to fall upon our earth in not inappreciable quantities." Then again solar observation has revealed to us tho undonbted fact that the quantity of solar heat varies from time to time, and that the condition of the photosphere, as indicated to us by the sunspots, also varies. These are supposed to be accounted for by the circumstance that as the whole solar system is moving through space at a veloclty of $150,000,000$ annually. It appears possible that the condition of the gaseous fuel supplying the sun, may vary according to its state of previous decomposition, in which other heavenly bodies may have taken part.

Since its first publication, this theory has been subjected to 2 considerable amount of criticism, chiefly by French philosophers. Some of this may be considered as favorable, while some is decidedly hostile.

Most, however, of the notices which I have seen. agree with Dr. Siemens on some puints, and disagree on others. To this class, the present writer feels compelled to ally himself. The idea of a universal atmosphere dating, as Dr. Sterry Hunt has shown, as far back as Newton, seems perfectly reasonable and prohable, and there are other considerations than those Dr. Siemens has brought forward, which strongly support it. Moreover the constitution of such an atmosphere would be such as we require for the purposes of this theory. It is in the subsequent portions of the arguments that we are inclined to differ.

Firstly, there is the question of dissociation. The hydrogen and carbon compounds, combine, we are told, with oxygen, producing intense heat, and the products of combustion move towards the solar equator and are projected into space. The point hers is, is it not at variance with all terrestrial teaching, that such compounds can exist at such tomperatures? Assuming that combination such as supposed really does tako place, it seems to me, that subsequent dissociation must occur. This, it will be noticed, is just what Dr. Siemens requires, but he supposes it to occur far out in space, and if instead of this, it occurs close up to the
sulu, as here supposed, his argument abolit the conservation of the solar rays by thisabsorption, is untenable. In fict, the author of the theory himself says this, for he quotes Lockyer's idea, that at solar temperatures no metalloid can exist, and yet further on, he supposes the energy kept up by the production of carbonic uhyifide and carbonic oxide, which can be domons. tribly shown incapable of existence.
The prime cause of the movement of the atmosphere is the rotation of the sun upou its axes. But all the planets rotate also, and as they are all immersed in the atmosphere, we shall have the same action occuring in their case. Thus we ought to find an aorial current Howing constantly in the northern nemisphere from the north-oast (allowing for the gradually increasing velocity of rotation), and in the southern hemisphere from the south-east. In short, exactly in the same direction as the "Trado Winds." But these currents would occur in the higher regions of the atmosphere where the "Return Trades" are prevalent, and to these they would be exactly opposed.
The innor atmosphere of the sun is supposed to contain the motallic vapours. Supposing that dissociation does not occur and that combination does, we are still in a difficulty, for we have, at the bounding surfaces at any mate, a large mass of oxygen, in contact with hydrogen and vapors of the metals. Now, with which of these will this oxygen combine? The whole of the teachings of Chemistry tell us, not with the hydrogen, but with the metals for, as is well known, all the metals (with one or two exceptions) decompose water. It thereforn seems, that instead of water being a product of the combination, metallic oxides, especially those of sodium and potassium, which have the most powarful affinity for Oxygen will be produced. Thus, owing to the action of chemical affinity, supposing it to occur, we should have produced not water and carbonic diozide, but metallic oxides, either entirely or in combination with these.

Again it is supposed, that in consequence of the weight of the materials composing the inner atmosphere, they are not affected by the fan like action, but .uly by that of gravitation. Now, this assumption of itelf is diaficult of acceptance, inasmuch as any force which affects one lody, must also effect the other, even though they may differ in density. It is simply a question of dagree, and if owing to centrifugal force hydrugen is projected x miles into space, then sodium valur, which is 23 times as hea $\%$, will be projected $\frac{x}{23}$ miles. And here another consideration comes in. We are told carbon dioxide aud water are produced, drawn towards the equatorial regions, and there expelled into space. Also wo know that large quantities of sodium, potassium, magnesium and lithium exist in the sun, forming, let us suppose with Dr. Siemens, the innor atuosphere. They, we are told, are not projected into space, because they are of greater deusity. But this is nut the case. The specific gravity of carbon dioxide and of water, compared to hydrogen, is 22 and 9 respertively, while lithium vapour has a density of 7 , magnesium of 24 , and sodium of 23 . While if we can magine these metals to combine with oxygen, the density of lithic oxide is 15 , of maguesic oride 20 , and of sodic oxide 31. According then to this view, the brivus pruducts of combustion would be projected to the following proportionate distances:

Aqueous Vapor	3%
Lithic Oxide	$21 / 2$
Magnesic Oxido	$1 / 2$
Calcic Oxide	18
Sodic Oxide	1

Sumlar reasonng will apply if we assume dissociathon to occur, and consequently the composition of the stellar atmosphere must be far more complicated than Dr. Siemens supposes, and the existence of this inner metallac atmosphere 18 very prollematical. I will only refor to one other point. The researches of spectroscopy and the revelations of the telescope have revealed to us undoubtedly the fa:t that our sun is only one of an innumerable number. I theory to be complete must thus account for the action of all. Moreover, Dr. Huggins has shown that the fixed stars may be divided into classes, accordng to the spectra which thoy emit.
Thus we have all gradations, from the spectrum of a white or blush-white star, like Sirius, up to that of a reddish star, like Arcturus. Now, if we have the same atmosphere supplying all, and the same cause producing motion, it is difficult to see how these differences are to be accounted for. For, it must be remembered that Dr. Huggins' idea of different ages will not apply, the supposed cause producing their energy being independent of time.

In the foregoing, I have endeavord to present unprejudiced, if brief, views of the chief theories which have been proposed fiom time to tume, to account for solar energy. The subject is a very fascinating one, requiring strict attention in order to prevent the imagination running wild when dealing with such actions and magnitudes. If it is the reader's opinion that it has thus suu wild, I must respectfully ask his indulgence, and plead the nature of the subject as an excuse.

IMPROVED CALORIC ENGINE.

(See page 196.)

The Caloric Engine and Siren Fog Signals Company, of London, have been occhpied in producing caloric engines suitable for general purposes, and our illustration, which we fud in Engineerimg, shows the uost recent design. T'his engine is of two horse power nominal, or 3f actual horse power.
It consists essentially of three par s , viz., a pump for supplying compressed atmospheric arr; a generator or retort into which the arr 18 forced and there heated, and a cylinder into. which the heated air is expanded for the purpose of operating the piston. The generator comprises a cylindrizal firebrick liming of smaller diameter than the casing, so that an annular space is left between the two, and a set of grate bars upon which the fuel is burned.
After a fire lins been lighted in the gonerator, thic air is, in the first iustance, supplied by a hani pump or (in the case of small engines) by turning the fly wheel until tho necessary pressure is created, when the engine commences to work, and the arr pump at the top delivers at each nystroke of the piston a charge of air mito a valve casing, where, by meens of a hollow cylindrical ralve, it is divided into two streams, one entering into the annular space abore referred to, whence it des. cends and passes through the grato hars and the fuel, the other strean beung delvered directly iuto the spaces above the firc. The air passing through the incandescent fuel forms, in the first instance, carbonic acid and ultinnately carbonic oxide, so th: t the space above the fire may be considered as a combns. 'sul chamber, contaning carbonic oxido and nitrogen. The ozygeu ot the arr dely vered anto this space enters into isme. dinte combination with the carbonic oxide, and produces an intense heat with a cousequent increase of pressure.

IMPROVED CALORIC ENGINE.
ST GOTHARD TUNNEL.

The governor alters the position of the cylindrical valvo ac. cording to the load on the engine, so that the proportion of air sent through the fire and into the space above is varied, and also the consumption of fuol, according to the amount of work being done by the engine.

In engives of larger size than the one wo illustrate the go veruor is made to perform four functions, viz. 1 , it determincs what quantity of air is to be delivered to tho bottom of the fire; 2 , what quantity above fire; 3 , what quantity of atr ts to bo rejected atogether, and 4, at what ponst of the priton's stroke the supply of motive fluid is to be "cat off." One great impediment to the successful operation of a caloric engine, working at such a high temperature, has been the undue heating of the connections and seating of the valvo, which commands thu communtcation betweon the generatur and tho working cylinder. I'his didiculty is now overcone by surroundug tho parts with an atr chamber, which forms pratical. ly a part of the main pipe for conveying the compresed air from the pump to the generator, so that for every stroke of tho pump there is a current of cold ar around the valve. The piston, which, as is usual in caluric engatues, is provided with a shield or guard, has rings of the Ramsbottom kind, which are found to answer well.

Tho illustration shows a sugle cylander engane, which is very satasfactory for ordatary purposes, but where great regularity and steadiness of working is esvential, these enganes are constracted with two cylinders, the cranks being placed at right angles. From a test made with a iwolve horse power double cylander caloric ongume the following results are stated to havo been obtanned. Indicated horse jower of cylinders, $41 \cdot 24$, power of arr pumps, $21 \cdot 04$, net indicated horse power, 202 . Tested by the dynamumeter the eflective horse power was 14.39 . The consumption of ordinary gas coko was 36.56 pounds per hour, which equals $1 \cdot 8$ pounds per indicated horso power, and 254 pounds per effective horse power. Tho difference between the indicated and effective power shows a cunsiderable margin for friction, but it must be remembered that the cylinders are necessarily larger than those of a steam engine of same power.

Scientific American.

THE ROCKLAND SLATE QUARRY,

 MELBOLTRNE, P.O.*
By Eusesi McC. Macy, McGill Uuicersity.

This quarry is situated in the township of Mel bourne (Eastern Townships), about seven miles and a half from the village of Melbourne, and a fow rods away from a large creek running from Brompton Lake to the St. Francis river. This creek, which aflords excellent water-power for the machinery at the quarry, and also for mills lower down, runs through a deop gulley with protty steep banks, and the quarry is opened on the top of the right bank. The vein of slate lies next to the Serpentine rock, on the east of it, and in a nearly perpendicular position, running in the direction nurth-east and south-west. All these strata on the east of the Grepn Mountanns lean to the south east, and those on the other side (west) lean to the opposite direction. The vein extends a long distance, quarries being opened on it in this province, at Melbourne (on Mr W'alton's estate), on Mr. Stesle's place and at Danvillo, and in Vermont, at Montpelier, Norfield and Brattleborough.

The Danville quarry produces school-slates tor which the Rockland stuff is too hard, and it has lately been much improved, and oponed upon a larger scale than formerly. The supply of slate there is very large and of the best quality, colour, and texture, for writing slates and the finer uses to which slate is put. The colour of the Rockland slate is a
-Sumuer Report th the Eingmeering Departuent, Dickill University.
blue black, and its atrength is unsurpassed. Lying to the east of it, there is a vein of groen slate on which a quarry was partially oponed somo years ago, but there is no other colour known to be in this locality. At Acton, about twonty miles to the west, red and purplo slates have boon found; but this kinds are not well adapted for roofing, as they do not split.thin enough, but they are used for tiles and mantels. Another deposit has been found to the east near Sherbrooke, but it is not good enough to warrant its working well. The Rockland vein is the largest aud thickost deposit of good workable slate that has been found on this continent. It consists of three strata of slate, separated by beds of tlint from ton to fifteen foot in thickness, and the three voins combined are about three hundred feet thick. The stratum furthost to the west, lying noxt to the Serpoutino rock, has been worked right through and tho second, which is a rather better quality, has boen opencd up. 'lhe slate probably extends to a depth of three or four thousind fret below the surface, and as the Company own a mile of the voin, the supply may ho said to bo practically inexhaustible. It is worked in benches made by natural joints in the rock, and the dopth is abuut one hundred and twenty five feet to the first, and about fifty feet more to the second bench, making a total dopth of about a hundred and seventy-five feet.

The pit is about four hundred feet long, and of a rectangular oblong shape. There are two tunnels, one at each bench, running through the bank, the one at the first bench having been intended for taking out the rubbish, but it was found to be more economical to raise it to the surface with derricks and dump it down the outside, as the bank is almost perpendicular. For this purpose shurt tramways are laid, slightly inclined, from the pit to the dump so that the trucks, which are pushed by men, run down casily to the dump when loaded and are pushed up again without much difficulty whon ompty. The tunnel at the second bench was made for the purpose of drainage. The slato-mill and derricks are worked by a water wheel about forty rods from the mill, the power being conveyed by means of a wire rope, and it therefore costs nothing except keeping the machinery in running order. In the mill they make tiles, billiard-beds, mantels, washtubs, sinks, cisterns, paste-boards, and evorything that slate is used for, and a fow years ago they made a number of large slabs for lining the aterior of burialvaults. The mantel stuff is sold to manufacturers who finish, and marbleize it, imitating all kinds of marble to such perfection, that it can scarcoly be distinguished from the original marble, and the various kinds of wood are imitated in the same manner. The slate for mantels, tubs, etc., is sawed to the proper size by circular savs, then planed to the required thickness, and finally polished with wet sand. The slabs, that have to be joinod, are grooved, bolted with iron boits, and cemented. Thore are, I think, about fifty or sixty men employed in the pit and slate mill, and at the derricks, and also at making the roofing slates. Those who work at making slates, etc., are paid by the piece, and get more or less according to the amount of good slate wheh is brought up in the day, while those who work in the pit, and on the derricks, are paid of course by the day. The roofing slates are made of oighteen difierent sizes, from twelve to twenty four inches in
longth, and are sold by the square, or the amount necessary to cover ten square feet on a roof, weighing about fivo hundrod and fifty pounds. Up to the present time the slato has been drawn by teams to the Grand Trunk milway station at Richmond, a distance of about seven and a half, or eight miles, and they draw from seven to thirteen square at a load, according to the state of the roads ; but the Missisquoi valley ralway is likely to be comploted noxt year and, as it will run elose to the quarry, the slate can be shipped directly, without the trouble and exponse of drawing, which is very heavy work. The men have been getthag from twenty-five to forty cents a square for drawing, but the distance is too great to draw more than no load in the day. The pit is getting so wide that the old boom-derricks will not reach far enough now, so they are going to introduce travelling derricks, which consist of a wire rope two inches in diameter, stretching across the pit, with a carriage travelling on it. The carriage can be run out to any distance from the bank, and the rope let down, and the carriage drawn back to the bank, when the slate or rubbish is raised up to the top of the pit. They have also lately introduced steam-drills, and other improvements. The slate is shupped to England, Australia, the West Indies, and the Inited states, but the demand for it in Canada is very small, and the Rockland quarry alone could more than supply the Dominion. The very mauy uses which are now being made of slate, make the quarrying and finishing of it a most important industry, and one which ought to excite interest and attention from everybody. Latting alone its great importance as a roofing material there are dozens of other uses for which it is admirably adapted and for which it would he far more durable and convenient, than the materials which are more commonly used, and therefore cheaper in the long run.

UNDERGROUND SIGNALLING IN MINES.

The necussity for a good syatem of signals in mines, says the Mturng Journal, now engages attention. The old method of signalling with knocker line or bells is considered inspplicable for great depth and extensive works. The telephone has been tried but given up, and signalling by olectricity is being recousidered, and although at first the arrangements were found defective in detail one eminent mining engineer now states that he has found no difficulty in arranging sigaals for an indefinite number of roads, by having a pointer sttached to them or a pendulum to show which bell was sounded. In some ustances it has been fonnd advantageous to have one battery and two separate wires where there has been a number of statuons, and one bell has been found sufficient for any number of off:shoots. It has been suggested that the wires might be injured by a fall of stone or mineral, but the wires are generally placed in the roads, so that the stone, etc., would be hardly likely to touch them, and therefore there is no danger to be apprehended in that direction; but even were the wiro dam. aged it could be easily repaired. The Sax system has also been adonted in the North of England, and a similar arrangement has long been in use at the Mickley mines in Northumberland. In the early introduction of electric sigrals, and in those noticed, difficulties were met with, but these have now disappeared, and electric signal bells are admitted to be the best and cheapest that can be adopted for underground working.

An American paper gives the following:-The United States burns about $322,000,000$ dols. worth of wood every year. Rail. roads burn $5,000,000$ dols. worth. Brick and tile factorjes burn 4,000,000 dols. Mining operations cousume, as fuel, $3,500,000$ dols. worth. Steamboats burn about $2,000,000$ dols. worth

ON THE ST. GOTHARD TUNNBL.

if herr g. wendelstbin, of lucerng.'

(Concluded from l'age 171.)

4. boring machines.

Sevoral different types of rock drill were emyloyed more or lesn at the St. Gothard Tunnel. Amongst these may be mentioned tbe Ferroux, the Mackean and Sognin, the Dubois and Frangois, the Turrettini, the Burleigh, ote. The Ferroum drill was the first to bo employed, having been invented in 1873 specially to work in this tunr,el. In 1875 the original was superseded by a simpler form devised by the inventor, and this improved drill did the greater part of the work from henceforward. As space will not allow of a description of all the varieties used, attention will be confined to this drill as the most successful example.
Tho improved Forroux drill is shown in Figs. 7 and 8, page 197, with details cnlarged in Figs. 9 to 12. It is about half the weight of the older form, and less expensive. L, Fig. 7 , is the main feeding cylinder, in which trork the piston M, fixed to a hollow piston-rod N. The outer end of this rod is connected to the larger or working cylinder T. In the latter, enarged in Fig. 10, works the striking piston 0 , which is prolonged into the piston-rod Q, carrying st its further end the chisel or bit. The piston 0 is conical at each end. At either oud of the cylinaer ' f are sockets at right angles to it, and in these work the amall plug-valves an, which operate the entrance and exhauat of the sir. These plugs are mised and lowered by the piston 0 , which as it reciprocates brings its conical ends under each of the plugs altornately, and so lifts it. The plug which is raised acts through the lever B to depress the other, and thus opens the other end of the cylinder to the outer air, whilst itself opening a passage from the compressed air in the chamber P to its own end of the cylinder. The piston is thus drivea back to the other end, where the same operation recura, and thus the reoiprocation 18 carried on. The compressed air enters the feeding cylinder L., Fig. 0, from the supply-pipe throught the stop.cock I, and passes to the air-chest P, Fig. 10, through the interior of the hollow piston-rod N. At the same time, by pressing against the end of the piston M, Fig. 9, the air forces the rod N, with the working cylinder T attached to it, forrards towards the rock to be drilled. Along the top of the bearers A, Fig. 10, which carry the machine, is a rack R. When the hole has been deepened by a distance equal to the interval of the teeth of this rack, the conical shoulder C of the rod Q has advanced so far as to raise the fork D, which has two pawls engaging in the teeth of the rack. When these are raised clear of the rack, the striking cylinder T adrances by the length of one tooth; and this goes on until the cylinder has advanced the whole length of the rack. A plug Z, having the compressed air bolow it, operates to keep the fork D down upon the rack, and to bring it down again the moment it is released by the piston-rod.

To provent the atriking cylinder from moving backwards in the opposite direction, a small cylinder X, Fig. 10, is provided at its rear end, and is open to the compressed air. In this cylinder is a plug, which presses upwards aqainst a stirrup, carrying at its lower part the cross-piece H, Fig. 11. This crosspiece engages with two racks on the under side of the bearers A, and having their teeth in the opposite direction to that of the racks on the upper side. Whilst this piece H is engaged with the rack, 20 backward notion is possible; but it cun be released at any time, to bring back the drill, by pushing down the stirmp.

The rotation of the rod Q, which carries the drill, is given by an inclined groove in the enlarged part of the rod. Into this groove, shown in section in Fig. 12, fits a projection c from the ratchet-wheel d. As the striking rod Q advances towards the rock, the groove in it compels the wheel d to turn in the direction of the teeth. When the rod comes back for another stroke, the wheel is prevented from retarning by the paml F, and therofore the piston-rod itself is compelled to turn.

To bring the machine back when the hole is finighed, the cock I is closed and the cock J is opened, Fig. 9. The air then escapes from behind the piston M through the chamber P into the atmosphere, while it enters through the pipe \bar{K} into the annular space on the front of the piston M, and pushes it, with the striking cylinder and piston, back to the rear end of the cyliader L.
The weight of the machine is about 180 kilograms, or 397 lbs. and the grosn quantity of compressed air used per stroke is
S! GOTHARD TUNNEL.

Scale 1 to 20.
ST GOTHARD TUNNEL.
Fig. 14.

Screle 1 to 20.
$1 \cdot 40$ litres (85 cab . in.). The ndvantages claimed for it are diminished weight and cost, reduction in the number of parts, ease of maintenance, and durability.
The drill is connected with the carriage by means of a pin passing through the plate X , Figs. 7 and 8. This carriage, which weighs about 2,400 kilograms ($2 \cdot 4$ tons), is shown in Figs. 13 to 15, pp. 200.4. It is so arranged that, in a heading only 2.60 metres wide (31 f), the debris can be removed without shifting the carriage, as there is room for a small tramwny. 0.30 metre gauge 111.8 in. I, to be laid beside the carriage. The debris is filled into small trucks running on the tramway, and from these into the tipping riagons behind the carriage.

The carriage is armuged for six drills working together. These are placed three on each side, one above the other, the nidule one being shown dotted in Fig. 13, page 300 ; and are mounted in sockets carried upou rras which can bo moved by means of screws; the worknen standing at the side are able to manage these with facility. In order that the drills may be directeć ow any point in the face and at any angle, the sockets at the front end AA are made capablo of sliding laterally aloug the arms BB, Figs. 14 and 15, so as to traverse inwards or outwards as required. The novement is given by screws S lying parallel to the arms. The arms are raised or lowered as a winfle by means of the vertical screws C. The arms in rear DD, Figs 18 and 14, can also be raised or lowered by the vertical screws T; and the sockets EE on the arms can swivel round them, so as to incline the drills at the required augle to the rertical.
5. memoval of sholl.

The rock, after being blasted, was loaded into wagous, and hauled ont of the tunael by sunsll locomotives worked by compresund air. At the face of the leading the rock was first loaded into small tip wagons, which were run back on the narrow-gauge tramway alre.dy deccribed, past the drilling machines, and then tipped into the ballast wagons on a lower lelevel. The loconotives, shown in Figs. 16 aud 17, pp. 204.5, were built by, Schmender \& Co. of Creusot. The frames, spriugs, wheels, cylinders, cranks, reversing grar, etc., are all similar to ordinary locomotaves. On the frame is mounted a cylindrical reservoir A contaiming the nir under pressure. The pressure of course diministed during the journey. From the reservoir the air passes through an antomatic expander K , where it is expanded down to the cylinder pressure, whech ts always kept the same. Between the expander and the crlinders it passes through a small reservoir B, which acts as a heater, and at the same time prevents shocks to the valres when the engine :s started or stopped. The pressure in the main reservoir A is limited only by the power of the air-compressons, and the tightness of the joints in the pipes. In practice it reached If atms. (2uli lbs. per sq. in.). By a special arrangement the compressors could be suphlied with air already compressed to 7 atmes, at umes when the efficiency would hare been too low, if compressing direct to 14 atms.
The expander H, shown enlarged in Fig. 18, page 204, is composed of a vertical cylinder AA, communicating by a pipe 7. with the man resersoir, and partly, surrounded by a jacket B. This jacket is filled with the partially expanded air, which can pass into it through two series of holes, aa aud bb. From the jacket it passes to the engine cylinders through the pipe y. At the lower end of the cslinger, next to the holes $8 b$, there is a sohd cover; the upper end communicates with the atmos. phere. Withm the celinder works a piston-rod H, carrying two pistons. Of these the upper one is of the ordinary forro, but the lower is prolonged into a trunk, piereed with holes ec. The stroke is such that the battom of the truak nerer covers the holes 86 , so that the bottom end of the cylinder below the trunk is always in communication with the jacket. The upper end of the pintou-rad carries a plate K, and a spimal spring N holds this plate apart from another plate L , whose distance from the cylmder can be regulated by means of the screw M. This plate L , being fixed, the spring tends to keep the th nk a the bottom of its strokp, and so to keep the holes ee opposit ${ }^{\dagger}$ the holes an, as showd in Fig. 1S. If compressed sir nowe en ters through the pipe 7 , it passes through these holes into the jacket B, and thence through the holes of into the space bencath the trunk, where, ite pressure being greater than the atmosphere, it tends to push the trank upwerds against the pressure of the sprong. If the pressnre be greater than tho total resistance, the truak risce, the holes ee become blind with thosean, and the air ceases to prass into the jacket. Now smpfose the pije \bar{y} to be opened, so that the air in the jacket escapes to the eugine. Then the uprard pressure on the bottom
tue trunk diminishes, the trunk desceuds, and the holes ce become partly open to those aca. The result of these two tex. deucies is that the area of the boles $e c$ which is open to an is kept of such magnitude ns will cause the pressure of air in the jacket to balance exactly the reaction of the spring. The trunk is thus kept in equilibrium. and the pressure at which the air passes to Y is kepit constant. Its amount can be varied if necesary by screwing up the spring.
The heating a_{1} paratus is on the Mekarski system. The hea. ter R, Fits. 16 and 17, pp. $204-5$, holds 390 litres ($13.77 \mathrm{t}: \mathrm{ub}$. ff.), and is fitted with pipes and gauge-cocks for showing the water-lovel in the interior-glass gauge-tubes not bring applicable on account of the severe shaking and shocks to which the engine is exposed. The heater and the pipes leading to it are clothed with wood and felt. The mixture of compres ed air and water passes out of the main reservoir through a pipe P, furuished with a cock and passing to the bottom of the heater, where, in order to devide the air into thin jets, it terminates m a rose. These jets are heated by the hot water, and the air then rises to the top of the heater, whence it is conveyed to the expander R. From this it passes to a pipo S ranning between the main frames, and dividing into two branches, which lead to each of the workivg cylinders.
To charge the engine, tho cock betwern the main reservoir A and the heater 13 as closed, and tha mlet ppe of the heater is coupled to a prpe leading from a fixed boiler. There are tro outlet pupes from this boiler, one in the steam space and one in the water space, so as to gire steam or water as required. The cower is first bouphed to the heater, which is then filled with water up to the required level. This pipe is then shut off and the heater coapled to the other, and filled with steam up to the desired pressure. During the same time the main reservoir A has been coupled to a pipe leading from the cons-pressed-air mains, and has thus been recharged with compres-sed-air. When the charging is completed the inlets are closed, and the cock betureen the main reservoir and the heater is opened : the engine is then ready for working. The pressures are ascettaned by three ganges, one uln the main reserroir, one on the heater, and one on the pipe lealing to the working cylinders.
The pracipal dinemsions sc. of the engiaes are given below.

Constant absolute pressure on
entermg the cylinders...... $4 \mathrm{~kg} \cdot \mathrm{p} . \mathrm{sq} . \mathrm{cm} . \quad 5 \mathrm{mlbs} . \mathrm{p} . \mathrm{s} . \mathrm{in}$. Extreme length of engine from
buffer to buffer............ $5 \cdot 000 \mathrm{~m}$. $\quad 16 \cdot \boldsymbol{2} 0 \mathrm{ft}$ Werght of engre (aboul).........is 400 tonnes. -4 ions. 6. cont.

The cost of the tumel cannot be giren with any great exactness, but the total cost may be taken as follows.-
(1) Blastugg of tunnel, making of mater-courses, Sc. $41,700,000 \mathrm{fr}$ (2) Masonry, cte., inside the tuanel.............. 13,300,000" (3) do
outside
000,000"
Totsl.
$55,000,000{ }^{\prime \prime}$

To this must be added the cost of various extra worke, of the prelminary work of mangulation\&c., of rep iring of damages, of nilustung and laying the line of materials, niguals, telegraphe, sec., which together may be taken at $2,000,000$ frs. This nakes the total cost of the tunnel about $58,000.000$ fra. or lif a length of 14,890 metres 3,900 francs per metre $(f 140$ jer yard), or in rouml numbers $£ 250,000$ per mile. With regard to specal items, the cost of blasting was on the averageabout 46 fr, per cl). m. (88 s por cb. yd.). The cost of wal. fag per cb. m. may be takeu as follows:-

[Say $46 s$ per cubic yard]

This however is rather the contract price than the actual rost , the latter was much reduced by using the rock blasted on the spot to make the masonry. Again, for the greater part of the length this mason:y was merely a lining put for security, the rock beng amply strong enough to stand without it.

cesciral cosclusions.

In conclusion, the points connected with the construction of this tunnel, which secm particularly to call for notice and comuent may be stated as follows :-
(1) The advantage in such cases of constructing a long tunnilat a comparatively low level, instead of a shorter tunnel at 2 higher level.
(2) The proper position of the leadiug heading in the secthon, and the proper mode of completing tite full section from $1 t$.
(8) The best constmetion aud arrangement of the turbines and ar-compressors, to utalise a comparatively small quantity of water at a very high pressure and velocity.
14. The best construction and arrangement of the drilling inachines.
(i) The best means of keeping a long headiog cool, in riew of the very great loss of efliciency which is found to result from too high a temperature.

It s, only on the first two of these points that any remark kitl be made on the present orcasion.

With regard to the first of these points the superior limit to the level at whic' such a tunnel should be made bas been shoma above to be fixed by consudemtions of climate. The intertor limit to its position is determined on the one havd by the length, as influeucing the time anil cost of construction, and on the other hand lig the height of the orerlying strata abore the tunnel, as influencing the heat within the heading. From ohervations made at the St. Gothard and elsesshere we may assume that the limit of temperature at which men can work at all in a tunnel is $50^{\circ} \mathrm{C}$. (122 $2^{\circ} \mathrm{F}$.) in dry air, and 40° (. . 314° F.) in air saturated with moisture. The observations at Mont Cens and the St. Gothard also go to fix tho relation iefreen the depth below the surface and the internal temperaare. At the St. Gothand the avorage increace appeared to be 2 ' C, per 100 metres vertical height (or say $1 \cdot 1^{\circ} \mathrm{F}$. per 100 ft . rerical helght). The torm of the orerlying mountain, and the wature of the rock, have of course also an influence on the ternprature. The amonat of water to be expected is a matter on "hwh it is generally impossible to speak with any certainty; int a long tunnel will always be more or less wet. Jlany modes have been suggested for drying and cooling the air within the healong, wat there is little to be said practically as to their ellosency. The air used for ventilation is found to have lithe anfuence in cither direction. These considerations hare a pracical bearing, for cxample, on the proposed Simplon Tunmol. which is to be neraty 12 miles long and caly 2,300 ft abown the sea. In this case the temperature of the rock would tre about $47^{\circ} \mathrm{C} .1116^{\circ} \mathrm{F} . \mathrm{J}^{\circ}$ according to the rule given abore, av leiermined for the St Gothard by Dr. Stapfi. If the tua$1 川 1$ were raised to a level oi $2,600 \mathrm{fi}$. with a leugth of 10 miles, the iempreature wonld ho about $40^{\circ} \mathrm{C} .1104^{\circ} \mathrm{EF}$]: whilo if it w.re raised to a level of $8,600 \mathrm{ft}$. with a length of $7 \frac{1}{2}$ miles, tho
conditions would be about the same as in the St Gothard tun. nel. It follows that the longest of these projected tunnels could not be mado in the sume way as was practised ut tho St Gothard, and some improved method would have to be sought for.

As to the secoud point, i.c. the actual mode of driving the tunnel, the results obtained at tho St. Gothard are of great interest. In the improvement of the drilling machines, and the employment of dynamite, that tumnd had a great advantage over the Mont Conis; and accordingly the grogress of the first heading was much more rapid. On the other hand the completion of the tunnel lagged much further behind. At the Mont Cenis the tunnel was open for trallic 3 mouths after the junction of the headings, whilst the interval was 22 months at the St. Gothard. There arises therefore a question how the improved rate of progress. Which has beon achieved for the heading, may be extonded to the work of completion.

Whilst in the Mont Cenis tunnel the leading heading was driven along the bottom of the section, M. Favre adopted the opposite course at the St. Gothard, and drove the heading along the top. In 1874 this method was sharply criticised by Irofessor Hziha and others; and although the discussion led tofno very definite result, the Arlberg tunnel is being driven by means of a liottom heading. These works have been tro yesrs in progress; the rate of advance iu the heading is half as great again as at the St. Gothard, and the completed work follows as closely behand it as it did at the Mont Cenis. Herr Bridel, chaef engineer of the St. Gothard Railway, and formerly a supporter of the Belgian or top-heading method, has written a report comparing the two methods (top) heading and botton heading) under the three following heads:-

1. Influcuce of each method on the rapid completion of lengths :Iready pierced by the heading.
2. Infuence on the pover of keeping back the pressure of soft rock.
3. Influence on the cost of construction.

His results are as follows.
Completion of Tunnel _ With regard to the first head, it is very important, where drilliug machines are used in the enlargement of the heading, to hare as many points of attack as possible, 80 that the workmen may not be too much crowded together. With a bottom heading this is attsined by adopting what is called the English system, in which openings are commenced in the sides and roof of the heading at a number of different places, corresponding to the rate at which the hesding itself advances. It is obvious that the spoil from the furthest of these openiugs can be carried past the others mithout difficulty; which would not be possible in the case of a top heading, where the opening would have to be made in the fluor and not in the roof. The bottom heading was adopted at the Mont Cenis iunnel, and also at the Arlberg tuanel; and in the latter, in spite of the much more rapid advance of the heading, the completod tunnel on 31 st July, 1852, Was only 1090 yds. behind the face of the heading on the West side, and 750 yds. on the Fast side. Thosame system, Fith slight modifications, was adopted at the Laveno tunnel 1.9 mile loug. Here the junction of the headiugs took place $\$ 0 \mathrm{~S}$ days after the commencement, givitg an arerage adrauce for the tro ends together of $\$ \cdot 15$ met.es ($\left.26^{\circ} 7 \mathrm{ft}.\right)$ per day. In the last month the adrance was 37.7 ft . per day. Top headings were here corried formard at the same time as the bottom headings, and their junction took place two months after that of the latter. Opeaings were made at siort intervals from the one to the other, and the syoil from the top heading was thrown down through these into wagons below. The completion and walling of the section did not lag bel ind; and the tunnel was open for traffic $4 \frac{1}{2}$ months after the junction of the bottom headings, and only 163 months from the commencement of the mork.

On the other hand, in the case of the St. Gothard 'Tunnel, the whole length under construction in October 1377 (a time when the woris were in an exceptionslly regular condition) wes 2750 metres (say 3000 yds .) ; which many be compared with 1260 jards in the case of the Arlberg tunncl. Eren theoreticelly, the length under construction with the tacthod adopted at the St. Gothard can never be less than 2600 yards. Assuming a maxidum progress of 165 yands per inonth, it follows that the tonnel cannot be completed until 15.8 months after tio jauction of tha hoading. As a matter of fact the actual interral Fes over 21 months. In the Arlberz tunnel on the other liand the completion map be expected to follow withiu 5 months from tho juuction of the headings.

On the whole it would seom that the method of driving a top heading is not the best for any tunnel where machine drills are used for the rapid completion of the work.

Pressure of Rock. - Where the rock is of a gravelly nature, so that it exercises great pressure, but is not itself compressible both theory and practice show that if the Belgian method be adopted, and the arch put in without abutments, a sinking and crushugi in of the arch cannot be prevented. The same is yet more certain where the rock is of a clayey or plastic nature, as has been shown on the line from Foggia to Naples, and also in the "pressure leugth" of the St. Gothard tunnel. Here it was found in many places impossible to complete the arch at all on the Belglan method, it was absolutely necessary to begin with the abutments and invert. In wet earth the Belgian mothod is clearly quite inapplicable.

Herr Bridel has drawn the following conchusions on this sub-ject:-
a. The Belgian method is not safe where there is great pres. sure, and especially where the rock is plastic.
b. Even where all possible precautions are taken, the work is extremely difficuft, slow, and expensive, anil the success always doubtful.
c. With a top heading, the English method of completing the tunnel is possible indeed but exceedingly costly, difficult, and slow.
d. With a bottom heading, this method is capablo of any amount of development, and renders possibie a much more raphd advance.
e. In a long tunnel it $1 s$ impossible to tell whether plastic strata, or others exercising great pressure, will be met rith, through which it would be necessary to drive a bottom heading. But it is exceedingly difficult to pass from working by a top heading to working by a bottom heading.

All the above conclusions point to the superiority of the bottow heheading system.

Cost of Construction.-The experience gained on this lead leads to the following conclusions, as drawn up by Herr Bri-del:-
a. With forced norking (i.c. where the progress is to be as rapid as possible), when the conditions as to ventilation and drying the tunnel are the same, the general cost of blasting is nearly the same whether the leading heading is at the top or at the hottom.
b. The drying and ample ventullation of the working places are however much more difficult with a top heading than with a bottom headug, so that the later systom is real:y superior in these respects.
c. The removal, toading, and transport of the spoil is done much more easily, quickly, and coeaply whith the bottom hea. uing than with the top headreg.
d. The formation of drains, and the laying of roads and of air and waterpipes, are extensive and costly works with a top heading, but are a small matter with a bottom heading.
It follows that, where rapud progress is necessary, the bot-tom-headmy system is to be preferred to the other.
At the Ariberg tunnel the contract prace at 3 to 4 kilometres from each portal (which ts about the average distance at the St. Gothard, and where walling is thmest, is as follows .-

	Ft. per metre.
Top headug, following it	242
Completan, exceyt masonry to trains.	1430
Hasunry to drains.	57
Total.	2103
Add 31 per cent. for tat	73
Add interest nu cost of plant, sc., supp rantway company takmg chat as the the St Gothard.	by the as at 470

Grand Total.
2646
(say £96 per yard.)
On the other hand the contract price at the St. Gothard tunnel was as follows :-

Fr. per motre.
Total except masoury....
2800
Masuary, minimum thickness
830

Total........ 3630
(say el 192 per yard.)

There is thus a ditferouce in favour of the Arlberg tunnel of 284 fr . per mutre ($£ 36$ per yard). This differcuce is certainly more that can be accomnted for by the somewhat harder character of the rock at the St. Gothard : and thus confirms the con. clusion that, at least with force working, the bottom-heading system is the cheapor of the two

THE DESIGN AND CONSTRUCTION OF BRIDGES.

(Sce page 20s.)

The structure shown in our illustration page, represents the bridge constructed at Grenoble, over the lsere, by M. Berthier engiueer-in chtef. As will be seen, it comprises three arches, segments of chacles. The centre arch has na openiny of $25 \cdot 10$ m ., and a rise of 3.30 m ., the side archrs are each 23.10 m . span, and 3 m . sise. These arcs correspond to an angle in the centro of 60°; in other woris, the chord is equal to the radius or side of tho anscribed hexagon. Many engineers zightly consider this propertion of arc as the most graceful. M. Debaure, whose description we are quoting, says, the thickness of the keystone of the middle vault is 1.20 m ., and that of the side vaults $1 \cdot 10 \mathrm{~m}$. The fronts of the "pierres de taille" (ashlar voussorss) are diessed to spring from a skewback, the masonry is formed in steps, and the front portions of the piens or cut. waters are also of ashlar masonry. The filling of the spandrel 1812 masonry covered by a layer, and the infiltrated water which collects is carried to tho centre of piers, where it percolates througa a heap of rubule or stones before being dischar. ged by the inclined pipe seen in the section. The longitudinal and transverse sections illustrate the construction of the span. drel, and show the filling and masonry through the axis of the pier. The piers and quay walls have a slight batter, the former one of $\frac{1}{25}$ and the latter of $\frac{1}{10}$. The width between ths parapets is 12 metres, and there is a slight set-off from the arch-face to the tympana. The widths of roadway and footways and parapets are figured in the cross section; the footways have gutters. The cunvex contour of the bridge is favourable to the carrying off of the water, and also to the architecturai effect. The plan and elevation show that the bridge is turned by quarter circles or quadrants into the approaches or quays, which angles are rounded off by a corbellizg nf nossonry a plan favourable for the easy passage of trattic. We give a plan of the end of bridge showing this arrangement We also give a plan and side view of the "organeauy," or rings, for mooring vessels. These are fixed in the piers. All bridges built on navigable rivers ought to be provided with these applances, which are placed at different heights The piers, as whll be sten, are bailt on a mass of beton onsmerged in an inclosure of piling. The scouring of the river is prevented by the rubble aprous seen in the section The hed of foundation is an incompressible gravel.
Uur other mllustratiun shows the railway hridge of Plessis-lesTours, over the Loire. We only give one arch and pier of this fine structure which is composed of 15 archers of elliptical shape of 24 metres span each, and of $71^{n} m$ rise or veried sine, separated by pers of 3 metres in width, and terminated by abutments of s metres. The width of the hridge is 8 metres between the parapets. The thickness of the heystone is 1.20 m ., and the hae of exirados springs from the summit of the head of the pier, which gives, at this part, a joint of 1.50 m . for the vault. The small discharging or reliel valuts have only a thickness of 0.70 m . at the keystone. A dotted line on the elevatuon shows the backing. The foundations consist of masses of beton anclosed by ples and plauks. The conveyance of the water which passes through the hallast, and which arrives at the surface of the masonry, 15 effected by a covering or layer, which is shaped to the profte shown in the sectinns, or inclined from the axas of pier to the summit of vault, whele tho discharge takes place. By this means, the surfare drainage is carried to the summat of each vanlt, where they are met by vertical pipes, the suporior orifice of which is protected by a head or rose covered by a mass of stones, forning a filter. The covering of the vault is composed of three layer's, the lowest of concrete, the intervening of cement, and the upper of asphalte. lietreen the covering and masonry in che spandrels of bridge, the vaults have been filled with a very thia beton or rubble, which constitutes an incompressible material.
The parapets are built in terracotta, which, M Debauve observes, 15 less costly than ashlar, and is preferable to iron railings. The "voussoirs des têtes" are alternately in two or three pieces, but the keystone is formed of a single block, the
front of which is cut dimmondwise; and as will be noticed in the cross- section, the two keyatones are connected by a rod of rron, which ioes not mjure the solidity of the vault. The sumpe and clegant profile of the arches and the piers will commend the devign to all bridge builders. The piers batter to a pleasing proportion, and are faced with courses $0 \cdot 20$ in height, and crowned by a capping of nshlar. The nbutments have this moulding carried through to the banks at the same levol, thus cunnecting in effect the piers and the abutments.

The total cost of the bridge was $1,345,000 f$. for 488 metres. Uur readers will be enabled to study for thomselves the details of these tivo excellent examples of bridges, as all the dimensuns are given, and the several radio of the arches in the last desiribed structure are indicated. We are no less charmed with the scientific distribution of araterial and construction. than with the graceful elegance and simplicity in the lines and profiles of these two bridges. Our own Lomdon Bridge over the Thames only is comparable with these in the extreme sim. plicity and elegance of proportions between the opening and solids.
The two designs are instructive also as showing two distinct modes of reducing the weight on the foundations. In the first mstance we seo a backing of rubble misinnry over the vault, the tilling benng of lighter material ; in the fatter case the weight is discharged bs a small arch over the pier, and a consi. derablesaving of solid masonry is effected. The designer of s bridge must use his own judgment as to which plan it is desirable for lim to adopt. The man consideration should ba the nature of the foundation or bed ot tiee isver. If thes is at all doubtful, or if the formation is of a compressible soil, or if of rock full of cracks, the less weight on the foundation the belter; if it is unyielding, the designer may adopt bold proportions for his openiags. Perhaps no better foundation for a per of a bridge can be found than that shown in our sections. Here we have no bearing piles supporting the pier, but a solid mass of concrete "in a shell," in the one case 5.03 m . deep and 6.40 m . Wide, extending throughout the whole leugth of the pier. This mass of beton is supported while in the process of setting by the piles, and further protected from the scouring action of the river by stones throwin in all round.
In treating of foundations, a writer in the 9 th edition of the "Encyclopredia Britannica" makes some very apt remarks, and as unt turpose 18 now to give practical information with res. pat tu the site and foundations of bridges, we may here reier to these observations in the course of our romarks. As regards sut, the engneer must satisfy hinself by borings at convenent distances. A solid rock is, of course the best if homogeutuus, but if cracks are found, it cannot be relied upon, and is aferior to such tormations as uniform gravel, chalk, and subse kiats of sand and clay. A squeezable foundation is the Hurst, as at would allow of subsidence when the piers were waded. Even more objectionable than a compressible founda. ton is one of unequal bearing power. When softer materials ate luand they should be removed, und the inequalities filled u! with concrete.
lieterring more particularly now to foundations under weter, the dition of the scour is one of the chief difficulties in the way wi a lastily foundation against which the engineer has to conirisd. We may allude in passing to the subsidence of Waterwh ludge over the Thames as au instance of this. Little did Its engoneer, Rennic, think that in little more chan half a century symptoms of failure of the foundations from this cause wohl have shown themselves. Many other bridges lave falfod b, the gradual undermining of the piers, and we may have lu saty something about the action in a future article.

Lutce are several methds adopted in the laying of foundatous of bridges to which we may briefly refer. We have naturally first to speak of the system of cofferdams, aud for the lu whit of our pounger readers se may say the cofferdam conwis , f a doable row of sheet piles tied together by wales and uwss) weams inclosing a vertical wall of clay puddle. Its vidth ts ketermined by the pressure or head of water, and sometimes theyuals the head unless inside strutting cen be adnpted, from sute to side of the inclosed area. The Cours de Ponts, as used at the school of Ponts et Chaussees, remarks that a colferdnm need not be made of greater thickness than from 4 it . to 6 ft . The water being pumped out, the necessary excavations can than be procecded with.
luother system of laying foundations is by making caissuns: these inay be of timber or wrought-iron plates bolted lugcther in sections and sunk. One mode was by driving piles, cutting them off level at a certain depth, and then sinking
a caisson or box filled with masonry on the proposed site. As the scour of the river has been found to injure this method of procedure, it has been generally abandoned. Anothel and preferable form of caisson is to construct it of wrought-iron plates din. to 9 in. thick in sircular segmonts or rings, bolted together so as to form sections of a manageable diameter and depth. The lower section is made with a cutting edge to penetrate the soil. These sections are sometimes sumk between guide piles, and the joints made watertight. After being sunk by their own and additional weight the ground within is excavated and the water kept down by chain and bucket or other kind of pump. Sometimes mechanical dredgers are used. Sometimes a frame is floated to the site of pier and then sunk, the inside soil is then excavated or concrete is shot within it, which sets uudisturbed. These hollow timber frames without a bottom are particularly adapted for bridge pier building. They can be made watertight after being lowered, aud can be used in water from 5 ft . to 20ft. of depth. This mode of laying foundations will be effectual wherever a good rocky bed is found. When the frame is in position, it is allowed to remain as a protection for the concrete, and in such a case should be surrounded by a rubble embankment or "toc." The same plan has been used by the French engineers in the bridges we have described, and is called "concrete in a shell." This mode depends on the valuable property of hydraulic concrete of setting into a solid mass under water. The area of site is inclosed by piling or a shell of tumber or iron. The soil inside is dredged out by a mechanical excavator until the foundation is reached, and concrete or beton is then shot or run in from a height of about 10 ft . and rammed in layers. The rubble stones heaped up outside protect the shell or casing of piles against the scour of the current. - The Building Neics.

Japanese napkins folded in the shape of fans and put in glasses at each end of the top shelf on the sideboard are light and ornamental.

EXPERIMENTS ON AMERICAN WOODS.

by prof. s. P. suariles, boston, 3ass.
(Read at the Boston IUecting, Februtary, 1883.)
Under the aot providing for the taking of the Tenth Censns the superintendent was authorized to appoint experts to inquire into special industries. Under this act Professor Charles S. Sargent way approsnted to gather statistics in relation to the forest industries.

As chief of the Department of Forestry of the Tenth Census he has been busily engaged in this work since the Fall of 1869. Soon after his appointment he became convinced that it would be desirable to make an examination of the fuel-value of the various woods of the United States, and this work was placed in my hands.

At the same time I made the saggeation that while wo had the opportunity, it would be well to test also the strength of these woods. The suggestion was adapted and Professor Sar gent at once sat his agents to work in various parts of the country to collect spectmens of all the trees growing in their localitres, employing as a rule botanists who were familiar with the flors of the region in which they were at work. The result of this work was the collection of over thirteen hundred specimens of wood, comprasing orer four hundred species and varie. ties, nearly one hundred of which had not before been de. scribed as trees existing in the United States.

The ash and specific gravity of every specimen in this collection has been determined, in most cases in duplicate. About 2,600 ash and 2,000 specific gravities have been determined, about 325 species were further tested for transverse strength and resistance to crushang. In this series about 1,800 specimens were tested. As each of these was tested in three different ways, it made in all about 3.900 tests. The specific gravity of each specimen in this last sertes was also determined, thus making in all about 10,600 tests that were made on the specimens. Diany of these teats, huwever, included not only a single teat, but often 8 series of tests that required at least ten entries on the final report, as I shall explain further in this paper.

In addition to to the tests already spoken of, 70 tests were of the carbon and hydrogen in a number of specimens.

These testa have already, so fir as the results of the ash and specific gravity of the dry wood is concerned, been published in F'orestry Builetzn No. 22. The carbon and hydrogen detor.

minations aro to be found in Bulletin No. 18, while the tamin in the lark of a fow of the most promising trees is found in Bulletin No. 24.

A Bulletm shortly to be published is to give the deflections under various loads of the woods tested in this mauner, and the weight under which they failed, together with the forco necessary to crush in the direction of the libr" pieces, whose length was equal to eight dameters. In addition to the tables published in the Bulletms, the final report will givo the foico necessary to indent the wood.

The series of tests is felt to be incomphte in many ways, and with the experience that has been gained in the work could doubtless besmproved. A briefdescription of the methods used may be of interest.

Fach specim n as soon as received was given a number, and this number ha., been constantly repeated in all the work done on that specimen, it is designated in the seport us the office number, and wherever met with always refers to tho sime tree.

After numbering, the sticks were at once sawed into bars five centuncters square. These pieces were then seasoned by airdrying. During the first wiater they were kept in a room warmed by a stove to abont $70 \circ \mathrm{~F}$. After that they were removed to a timber-loft at Watertown Arsenal, where they were kent until they vere dressed for the final tests.

Two blocks of fiftecn centimeters in levgth w re taken from each specimen aud dried rapidly with stoam-1 at until they had lost '. nst of their moisture. From these pieces hlocks of exactly 11 centuncters in length and about thirtyfive millimeters square, were dressed out. These were then placed man oven which was mantaned at a constant temperature of 100° until the blocks were perfectly iry. After they had ciased to lose weight, they wore carefully measured with a micrometer calper aud then weighed. From the measurement and weight it was easy to calculate tho specific gravity.

The ends removed from these bluchs were used for determining the ash. They weighed from 10 to 20 grammes and thus gave quite appreciable amounts of ashes. The ash was determined by dryiug the wood in the same manner as the specific gravity blocks, then carefully burniug in a platinum dish in a mutlle.furnace heated by gas. The heat was so regulated as to burn the ash periectly white without meltang it. In most cases the ash was left in the exact shape that it occupied in the wood. It was judged best to report the ashe exactly os found, and not to attempt to make any correction, on account of carbon doxide that mghit have been. lost from the calcic carbonate present.

From these results, the approximate fuel value was calculated, assuming that equal werghts of all woods have the same fuel-value. This value is supposed to be given more correctly by taking as the weight of the wood, not the specific gravity, but the weight of a cubic decimeter, minus the ash contained in it. The ash evadently adds nothing to the fuel-value, while it does add to the weight. This assumption, which is the one which is generally made, is not strictly true, but it is near cnough fur all practical purposes. It is founded on experiments made by Count Runford and Marcus Bull.

The carbon and hydrogen determanations were made by burning tine sawdust in a platinum hoat 1 na a current of oxygen and collecting the products in the usual way. These analyses were calculated on the dry wood. The determinations may bo conveniently divided into two classes-those of the coniferous woods and the non-coniferous.

The coniferous woods examined, with two exceptions, gave larger amounts of carbon than the hard woods. These two exceptions were the common white cedar or arbor vita of the north, and the black spruce or picca alba, neither of which wonld be selected as valuable fuel. The average composition of twenty-nine specimen of cuiferous woods examined was carbon, 53.21 ; hydrogeu, 6.45 ; ash, . 32 ; specific gravity, . 5 ti24. Fuel-value by weight, 4488.3 ; by volume, 2524.2 .
For the non-coniferous woods the average results were carbon, 49.53 ; hydrogen, 633 ; Ash, 64 ; specific gravity, .6951 . Fuel values by weight, 3993.9 ; by volume, 2776.1. These latter values agree very closely with those given in the books, as the results of the analyses of European woods. It is rather singular that with the exception of fir, no coniferous woods bave been reported on in Europe.

Forty-one determmations of non-coniferous woods were made. After the long sticks of wood had become thoroughly seasoned they were dressed out to the exact size of four centimeters square, and were sawed as near as possible to the length
of 11 decumeters. They were then tested on tho Watertown machue. In testiug, the atick was placod in a perpendicular position resting on supports that were exactly one meter apart. The force was then applied at the centre of the length by means of an iron bearing, which had a lousth a littlo greater than the width of the stick and a radhus of 12.5 millimeters. Tho weights were slowly applied, 50 kilograms at a time, after each weight was ndded, tho doflection was woted. After 200 kilograms had been added, the weights were removed and the set read; the weights were again applied, the reading again taken at 200 kilograms, and thenat every 50 kilograms until the stick was broken, the breaking weight being noted. In making the report, the coeflicients of elasticity for the weights, 50 and 100 , have been calculated; also the modulus of rupture.
So far I cau only give the most general results in regard to these tests. In the first place ne have not teen able to estah. lish any geueral law in regard to the direction manich a stick is the strongest, that is, parallel or perpendicular to the amnual rings.
The results have shown, however, that it is by no means necessary to break two sticks to show whech is the strongest, provided they are of the same kind of wood. The weak stick will show the largest deflections from the start. The strongest atick found was a specimen of locust, hut following closely after it were specimens of hickory and southern pine. Ash was found to stand well up to a certain point, and then it gave away suddenly and withont warning, generally shatterng badly. The Calitornia red-wood was auother that shattered very much. White oak was found to be inferior in strength to several other oaks, and to Southern pue, tho average breakug weight of 40 specimens beang 386 kilograms, while the average breaking wo:ght of 8 specinens of quercus prinoutes or the cow oak of the South was 52 S kilograms.
The average of 27 specimens of phnus australts was 490 kilograms. The average of 30 specimens of the Douglas fir from the Pacific coast was $3 i+k$ kilograms, and of sux specimens of the W estern larch was 523 kilograms.

13 specimens of white pine (pizus sthotus) gave 274 kilograms.
11 specimens of beech gave an average of 454 kilograms.
16 specimens of carya suleato averaged 464 kilograms.
20 specimens of carya alba averaged 512 kilograms.
24 specimens of white ash averaged 378 kilograms.
3 specimens of locust averaged 513 kilograms.
The next scries of tests which mere trade, cousisted in taking specimens of the same size, siuare as before, and 32 centimeter long, and compressing them in the durection of thoir fibres. Here again both locust and the Southern pine stood up well.
9 specimen of locust stood an average weight of 11,206 kilograms.
5 specimens of tho Western larch stood an average of 10,660 kilograms.
35 specimens of whito oak stood an average of 8183 kilo. grams.
24 specimens of pinus anstralus stood an average of 10,498 kilograms.
The third series of tests was to find the force necessary to indent the wood at right angles to the grain. These tests are not finished yet, and l have made no examination of the results.

They are made on blocks 4 centimeters square and 16 centimeters long, the bearng of such a size that it makes an impression on the block which extends from side to side of the block and is the same length; or, in other words, is 4 centimeters squarc.

In closing this paper I wish to express my thanks to Col. Laidley for valuable suggestions made during the progress of the work, and to Mr. Howard for the able manner in which he has executed the tests. These tests hare been made at the joint expense of the War Department and the Census Bureau, the maghine having been put at our service by order of the Secretary of War.

The tests will all probalily 30 published in the annual report of the testing machine, calculated in feet and pounds.

Discoveity of a Planet. - Another small plenet (No. 233) was discovered br M. Borrelly at Masseilles on May the 11th, and observed by M. Bigourdan at the Paris Observatory on the following night. It was of the eleventh magnitude.

OUR BODIES.

By Dr. Andm: Whand, F.R.S.S., de.

In the course of our previous studies we have seen that the work of the body is perpetually associnted with waste. Work and waste bear, in fact, a very well defined relation to each ather and of necessity, the function of nourishment, whereby repuir of this waste is effected, must in turn relate itself to both pronnsse. Work is impossible without the energy for power of perfarming it); we derive from our food, and the bodily waste as merely one indication of the extent to which that energy has been applied in carrying out the acts of hife. A human body, as the result of its work, then, is perpetually breaking down, in a chemical sense, into various waste products. Of these products so much hecet may be regarded as waste matter, secing that it is given olf from the body, mad is thus lost to it. Water forms a second product of extreme importanco, as also docs, thirdly, the gas named carlonic acid. A fourth kind of waste is mprespnted by the substance known as urca; and, fifthly, we can detect ammonia amongst the waste materials of our frames. To these we may add organec maltcrs of various kinds, ronsisting of the artual worn-out cells and particles of the hody; and mincrals, whereof a considerable quantity is exe. creted or given of by the skin and kidneyn especially.
The work of excreting or removing these waste matters from the blood, iuto which they have been poured as the result of the tissuc-waste, falls chielly uron the lungs, shin and kiducys. These organs form, in fact, a kind of physiological trio, eugaged it the same kind of work, and capable of mutually aiding each wilher in its performance. The same products are excreted by all three orgaus, but in different proportions. The practical lenefit of this knowledge is seen in the treatment of many diseaseg. For when the lungs are disordored in any way, the $f^{\text {ihrexician can compel the skin and kidneys to take up so much }}$ of the lungs' work, by giving medicincs which stimulate the skin and kidnoys respectively. When the kidueys similarls sutfer disorder, skin and lungs come to their assistance. The mere fact that skin and iungs cooperato perfectly and invariably during excreise is sufficient to impress upon us the close interdependence which exists between the organs.

When we endeavour to sum up the income and expenditure of the boly in a kind of physiological balance-sheet, we are met by the consideration that whilst the work of repair, or the fast, of bodily income, are plainly enough to be discerned, the sources of linss or expenditure are not so readily noted. We huw that froul-solid and liquid-is converted into ous own subitauce, aud that the oxygen of the air also forms part of our intary, since it is necessary for the maintenance of heat, and for other vital purposes. But the sources of loss are not so apparent as the means and ways of gain ; hence we must firstly see where and hor the bodily income is spent. A little consideration will show us that there must be a considerable amount of loss incurred through the action of what may bo called the ordinary "wear and tear" of life. All the organs anil tissues must wear and lose their substance in the discharge of the ir duties. In such an organ as thr stomach, daily enanged in the important work of digestion, or the liver, which i_{i} prrpetually engaged in its labour of manufacturing bile, there must he constant loss of substance. Again, there is actual wave of muscular subetance in every movement of life, from the winking of an eyelid, or the stroke of the heart, to the $1, \ldots$ ksmith's energotic lahours, haminer on anvil. Mueh of tha hodily maste (water, heat. carbonic acid, etc.) must thereforr arise from this source. A second source of waste is that incurred in the production of heat and of movement in our hindipu We are perpetually locing and giving off heat, yet the nnrmal temperature of our bodies (about 100° Fahr.) requires in in maintained. Such an amount of heat cannot be generateit without exnenditure of force, or without the presence of ask. si 10 speak. which ash makes its appearance in the form of rertanl of the waste products aiready mentioned. As regards minhy motion, we have already noted the immense expenditure which muscular action entails upon us.
Ither and more subtle forms of waste make demands upon our stores of energy, and necessitate bodily wear and tear as an equivalent. The thoughts that originate in the brain, the exrifewinn of uerve-force to which thes give rise, its conveyance by the nerves. are. each and all, so many sources of waste and hinjily expenditure. Eren grocth itself, the digestion of food, the propulsion of blood through the bodv, and all other processes of nomrishment, necessitate an outlay of the store of
strength we possess. It is thus perfoctly true, in one sense, that life is a process in which we burn the candlo at hoth ends. The very acts whereby we build up our frames anew and nourish our bodios, whilst repairing these frames, at the same time draw from them the strength and enorgy we owe to provious acts of nourishmont.
Summing up the sourres of inconce of our bodies, we may discover, firstly, that in solid food, water, and oxggen we may be said to place our physiological trust. An adult consumes every day about $8,0 n 10$ grains of solids, about 35,4011 grains weight of water, and about 13,000 grains weight of oxygen. Nearly $8 t$ th. of matter, calculating roughly, represent the daily income. Daily expenditure practically shows a simular amount, for sipprosing growth has ceased, thra income and loss will, in health, be as nearly as may be adjusted; and if our means of research wero more delicate, they would prohably bo found, in lealth, exactiy to correspond. From the lungs we give off, per day, carbonic acid gas, water, and organic matters equal to 20 , no grains. The skin gets rid, in the same time, of hearly 12,000 grains weight of water, minerals, gases, ctc. The kidnoys excrete about 24,000 grains of waste (water, urea, minerals, etc.), and from the intestine the digestive waste given off may be estimated at about 2,800 grains weight. It follows that with about $8 \frac{1}{\mathrm{l}} \mathrm{lbs}$. of inaterial income, sind the sanne amount of material expenditure, a man will deal with about 3, 000 lbs . woight of mitter per annum; and we cannot regard the amount as excessive, if we consider, even for a moment, the immense amount of work which his body performs unon that material, and the results of its conversion mito bodily power. It has been calculated, indeed, that the daily force expended by au adult in maintaining his temperature, or heat, in the work of heart, lungs, dic., and in his muscular acts, may be set down at 3,400 foot-tons. In other words, the daiiy lite of man, summed up in one huge lift, would be capable of raising 3,400 tons one foot high. Kinimleifge.

Mars and rugs for halls are polar whate bear, leopard, and tiger skins mounted in black furs, the edging being extremely decp.

A PREHTSTORIC CEMETERY.
By Josrin F. James,
chetoman cincinsati society of satleah ajstony. (Sce pagc 2l...)
About ten miles from Ciucinnati, along the Little Minmi River, is a locality which has long been known to the conntry people as the "Pottery-Field." The ground was strewed with fragments of pottery; bones, arrow-points, and other romains of like character, and the place was generally considered to be the site of an ancient work-shon. The primitive forest still occupies tho locality, and is made up of oak, beech, elm, maple, walnut, etc. $11 l$ around are found numerous mounds or cumuli, must of them small. A fow of these were opencd by Mr. Florian Gianque, in 1876, and some interesting things found. But, in 1S78, Dr. Charles Metz and other gentlemen interested in archarology commenced a systematic exploration of the country thereabont, and so much has been found that we are ouabled to form some idea of the babits, and get a glimpse into the life, of the peoplo who once lived in the immediate vicinity of the city of Cincinnati.

During the four years that the excavations have been carried on, between six hundred and fifty and seven hundired skeletons have been brought to light. Many of them are in an advanced state of decay, and ciumble to piece on the slightest touch, while others, again, are in a very good state of preservation. It can, therefore, hardly be inferred that, because some of the skeletons are much decayed, they are necessarily very nld; for, though wo have well-preserved remains of bones from Babylon, Nineveh, and Egypt, which are certainly twenty-five hundred or three thousand years old, still the cases are oxceptional in which they are found in good condition after the lapse of many years. Different kinds of soil and differences in climate have much to do with the matter: for, in a dry and equable climate, bones may resist for a iong time the influences which would cause their decay, while, in a moist tlimate, and with sudden and extreme changes of temperature, such as we have here, any bone, unless buried in peat, or subject constantly to heavy pressure, so as to become partially fossilized, is liable to soon decay.
An examination of the skulls found in the cemetery, as it is called, as well as the other parts of the akeleton shows some

A PREHISTORIC CEMETERY.

Fic. 1.

Fio. 3.

Fic. 4.

Fro. 2.

Fic. 8.

Fia. 8.

Fig. 6.

Hen. 14.

Fio. 16.

Fio. 18.

Fra. 17.

Fie. 18.
miterestung facts In a paper by lir. F. W. Lanmen is given a table of measurements af the crania which shows that tho brachycephalous skulls ctiose with an inden of breadth of 900 and overit are largely th the majority, there being fifty-two out of seventy-two of thas character. None of them, howerer, exhibit any signs of the liattenag of the frontal bone, which ss such a characterstic feature of the Natelien and other south. "rn races of Indans. The Caribs of the West Indies and the Chmooks of Uregon both flattened the hemds of thear children an infancy; and the skalls of tho ancient Poruvans and the figntes on the monuments at l'alenque show a remarkable fattening of the frontal. I'ms is qenerally considered to liave been the natural form of the skull, to have bern the tyje of beauty cultivated hy the Peruvians, Central Americans, Toltecs, etc., and not to have been produced altogether by compression. The peculiar form of the skull became hereditary, and children were born with this (to us) deformity.

Farious forms of diseased bones aro found among the human remains. One of these is a peculiar anchylosis of the spinous and articular processes of some of the vertebra, the bo.lies remanning free. s It is supprosed to have been the vertebral column of a female dwarf, the skeleton of which presented several other ponnts of intercst. Among the crauia are several which have been fractured by some blunt implement, and the fracture has been partally or completely healed. Two other very interesting specimens are among the human bones. One 1s the eleventh dorsal vertebra, in which is imbedded for a quarter of an inch one of the sioall llint-points called wararrows. The other specimen is a sacmum in which there is anbedded a similar point. This last was found in a pit with twenty-two skeletons, ${ }^{\circ}$ and doubtless belonged to an indiridual killed with the others in a battle, all of the killed laving been burned together. These specimeus show with what force the people could send their arrows. Both had entered from the front of the body, passed thronglt it, and were only stopped by the vertebral column. Some of the loug bones exlitit various excrescences which have be n referred to syphilitic diseases, and which show that the prople here buried were aflicted wath that fearful scourge which, as some one has expressed it, " turned Furope into a charnel-housc."
liut the bones of an extiact race of men, interesting though they may be, can tell us but little of their domestic habits, and it is to the implements found here that we turn with greatest interest. These are so abundant, and often of such a pecular character, that we have much to speculate uyou. First of all is the remarkable circumstance of tiading so many implenents of bone, the sbundance of which has generally been thought to be a proof of a low grade of civilization. But probably their abuadance or their rarity has been regulated also by the age of the deposit, for, the older the deposit, the less lakely at is that the bone relics have resisted the action of time.

Siany of the remams are of a peculiar character, unlike anythung found elsewhere, and speculations in regard to their orgitu and use are rife. Still other relics are strikingly like some found elserkiere, not particulariy in this country, but in Eumpe, as will be shown further on.

Among the most curious and anomalous of all are certain pecularly grnored bones, as represented in Fig. 1 * They aro usualls zatic of the leg-bones of the deer or clk. But few of the specimens are peifect, the majority laving been broken by use and wearng away of the bone. The groove is often highly polished, though scraiches running the long way aro visible. These scrntches were made in that manufacture or use of the instrmment or tool, but rliat its asse ras no one has been able satisfactorily to determare. Archacologists are puzzled, sud pronounce them to be anique. it has been supposed by nearly every one that thes were used in dressing skins, but no such scratches as are obscrsed conld be made in that operation. Some hare sugmested that perhaps they were made 20 serre some purpose of ormamentation, but neither is this explanation

[^0] ph. 241 -23

- lbid. vol. iv, manin
- Copind froma Journal of the Cincinnati Sncicty nf Cafural His. turs. vol. iii., juite I. Jnet of the finures hervin kiven are made frum apecimens in the collections of the Cincintati Socices of Niatarad
list
probable. It seents to me that tho groove has hern tho result of rubbing, for the purpose of polishang certain other relics found here. 'There have becu found numbers of peculiar cylia. drical pioces of bone and horn, like Fig. 2, as milike anything found elsewhere as the grooved bones; aud it seeus probable that these cylinders of bono have been rubbed and polished in the grvoved bones. We find that the different sized cylinders fit well into the differeut-sized grooves, and certainly coustant rubbing would both round of and polish the cylinders, and leave scratches in the groove. It has been a matter of speculation, also, to determine the use of these cylimders. Some have said that they were used in playing a gann ; lint it is more likely that they were mado mito a belt for the want, or a necklace, thongs being woven between then, first round one, then the next, aud so on. None of them show any signs or attempts at boring from end to end.*

Dear and elk horns enter largely into the manufacture of many of the relics. Among others are what are riown as bone arrow or spear points, shown in Fig. 3 and 4. They are invariably made from the sharp points of horm, the piece being first cut olf, and then a hole driven into the blunt end with a lint. Marks made by the drill ano still distinctly seeu in the holes. The points wero fastened to woolen shafts iuserted in the holes. Now, strange though it may seen, relies of an exactly similar make and of exactly the same sort of inaterial are found thousands of miles away. Dr. F. Keller, in bis elaborate book on the "Iake-Dwellers of Europe," "ives figures + of these moplements found in the Swiss lake-dvelljugs, and Fig. 5 is taken from lins book. It is immediately seen that the relics from the two localities are identical, with the exception of the small hole drilled into the side. In Fig. 5 one of tho arrow-points has a portion of the shait still fasteued in the hole.
Large pieces of deer and elk-horr, with the prongs polished by constant use, have probably been emplyy as digging in. plements. Smaller pmeces of the flat part of tho horn, with two or three prongs, like Fig. G, have circular holes drilled into them, and were probably used for loosening tho ground in agricultural labors. Here also we have similar pieces found in Switzerland, and Fig. 7 is comed trom Dr. Keller's book, before mentioned." The same idea has evidently actuated the makers of both these articles. Still other impleracats of horn are known as skin-dressers. These are made of the broad bases of decr-hom, sometimes six or eaght mehes long aud four inches wide. They are polished at the broad end by consiant use, so that thoy look like ivory. Uccasmonally ono is found with a hole bored in it, but such are exceptional, and were perhaps used for another purpose. Mere, agaiu we find relies of a similar character in Switzerland, as figured by D. Keller.t
llone beads are also found with the other relics. These rary in length from one to three inches, aud are often very highly polished. Fig. S is a large one, and has some peculiar ziyzag markings on it, the significance of which is not known. Boue fish-looks, as represented in Fig. 9, show the race to hare lived by the product of the Littic Miami liver as well as by the chase. Bono hatpoons, similar in male to those still in use by the Eiquimaux, "shore further that they derived sustenance from the river, while Fig. 10 shows a needle made of a fish-spine (c) with a large hole in one end, a deer-bono (b), used jerhaps as an anl, andra turkey-bone (a), also used as na awl.
l Besides the uscfal articles of bone that have been mentioned there are others uscd more for ornament. The beads have already bcen referrad to. A peculiarly-shaped piece of elk-hord, with fire tecth and a perforated bandle, has been foand anì has been called a comb. Fig. $11+$ represents it, and a striking rescmblance between it and one from the Swass lake-dwellings (Fig. 124: may be noticed. Another piece, the use of which is not knorn, but which is supposed to hare been jerhays some sort of fluto or whistle, is shown in Fyg. 13. It is a hollow piece of bone, with six holes of different sizes made in one side,

- Since this was written, Dr. Phene, of Finklanh, sugnecta that they were used tis carrency, and it is very possible that this was the care.

- Sec plate 13, Fir. 0

1 Sec plate 13, Fís. 14.

- Tubbock. " I'rehistoric Times"' jo 501, Kig, 219.

Copicd from the "Houmal of the Cincinnati Socicts of Datural History," vol. iii., b. 13ֻ
i Keller," Lake-Drellings," blinte ${ }^{3}$, Fix. S.
and marks of another where the relic has been broken. How much longer it was we can not tell. In Fig. It we have still another tube, with only three holes, placed farther apart than in the preceding, and oblong instead of round; and in Keller" there is figured almost an exact counterpart, except that the centre hole is placed a little below the level of the other two. Thas last is called a weaver's shuttle, and, if our relic may be s:mularly named, wo have evidence that weaving was another occupation o: his people. And other facts are at hand to show that they did weave. Ameng the stoue relics is one of those pecular of long preces of polished plate which have sometimes gone by the name of "gorgets." These nieces have one to three holes drilled through them, supposed to lave been mado to carry the ohject by. Still another and more probable purpose, however, is for weaving, the holes being use to regulate the size of the thread. But all doubt vanishes when it is fonnd that some " ash-pits," in which movt of the relics have been found, contatn pieces of coarse matling. This has been carbonized, so that it can not now be ascertained of what material it was made. Enough, however, remains to shom that the fibers runmag one way are secured by twisted cords running across, and woven in and out between and around them.

As is very well known, the copper mines of Lake Superior were extensively rorked at an carly day, and articles made of the copper are found all through the valleys of the Mississippi and Ohio Rivers. The present cemetery is no exception, for fragments of copper are quite common. The pieces are mostly small, howover, and do nob seem to liave been in very general use. In all probability the metal was highly prized, and used sumply for personal adornment. The most of the pieces are simply coiled or rolled, and Fig. 15 represents common shapes. These two I "ces still have the remains of a leather thong in them, shown; that they had been used like beads. Another piece is a sotc of copper bell, made of a single piece of metal, with a hole in the sidc, a liaudle, and a small piece of copper unsde, which rattles when the bell is shaken. Still another large phece is like a cross with two arms, the use or purpose of it being entirely unknown. Objects like it have occasionally been found elsowhere. Squier and Davis" have figured a sumalar piece, but of silver, which they refer to the French Jesuits ; and Professor Putman figuzes another, + which differs in laving only one arm. He considers it an ornament, "made In its present form simply because it is an easy design to execute, and one of natural conception." We mast beg leave to differ from him in this latter yoint, for, if the design is one of natuml conception, why do we make a proint when it is found ? Why are the forms like it not more numerous, and why does not the ornamental pottery have innumerable examples of it in the ornamentation?

Beads maile of pieces of fresh-water aud marine shells are found among the other remains. Sometimes pieces are cot from the mussel-shell, rubbed round, and then a hole bored. somethes spreimens of Melania or Paludina had holes bored near the aperture, and were then used as beads. The beads tnade of marino shell show that some system of barter or commerec existed with the Atlantic Ocean or the Gulf. Quantities of shells, of species of the genus Uraio, "fresh-water oysters," are found. They go to show that shell-fish formed an articlo of diet of the racc. And not only did they eat the animal, but they made good use of many of the shells. Jlany of them have been ground ofl at thu edge, and were ased as spoons or tadles, while others have holes punched in the valves, and were proinably used for hoes in their agricoltural operations. An examination of inaty of these shells show no diflerence between the many milividuals of the same species now found in the nuer. Still, a change coulh hardly be exnected in the inhabitants of any locality, without a chauge in tho conditions of Hfe, and there is no evidence of a change in conditions since the shells were taken from the river.

The flint pieces, of various shapes, are quite numerons, and mamy ol them beautiftolly worked. In Fig. lö are shown some of the war arrow-points, ard they are so abundant that one is almest inclined to bolieve the people who made thera were 20 ot st praceable as has been supposed. I Fig. 17 is shou'n one of tho "leaf-shaped" flints, some of which ars beantjfully worked; while, in Fig. IS are some of the drills use in boting holes in boncs or shells. There is one thing to be noticed

- lic. Cit, llate 4l, Fig. 3
- " Ancient Monuments of the Mississipni Valley," m 208.
"Fleventh Annual Keport oithe Peabods Museam of Archacolon' and Fithology," p. 30f.
anong the fint pieces. It is said that, in war, arrows like those in Fig. 16 were exclusively used, while, in lunting, points which were notched at tho broad or lower end were used. Now, the peculiarity noticed is the scarcity of points of the latter character. For, out of 316 worked ilints, selected from some thousands, thers are but four which are notched at the lower ends. One of two things is to be inforred. Either that the race was more warlike than agricultural, and used horn arrows in hunting instead of the notched ones; or else they were manufacturers of war-points for other tribes, and lived peaceably by hunting, fishing, and agricultural labors. All that we know could be interpreted more in favor of the first view than of the second, for, while we are sure they were agricultural to a certain extent, this fact would not be opposed to an argument for their warlike character. The Southern Indians, within the historic period, were at war all the time, and still raised quantities of maize. *

The fact of the race of people here buriod raising maize is established by finding, in some pits, quantities of it complet. ely carbonized. Corn seems to have often been placed in pots and buried with the budies, to serve, perhaps, as food for the journey to the spirit-land. Another of their agricultural labors was that of raising tobacco; for, in common with nearly all the other North American races, they were smokers. Numbers of pipes, of various styles and materials, are found here. Some of them are of the red clay known as Catlinite, others of ordinary limestone. In Fig. 19 is shown a pipe carved out of inard limestone. It is very highly polished, and considerable skill is exhibited in the carving of the head. It is evidently meant for a wolf, and the teeth, though interlocking in a peculiar way, are still tolerably true to nature in having the long canines. \dagger
The stone implements are much the same as those found in various parts of the country. There seems, however, to be a remarkable paucity of grooved axes, there having been but two found so far. There are numbers of the ungrooved "celts," as well as of sling-stones, blunt at each end, but with a groove in the midule by which to fasten the handle. Some of theso stones rere also probably used as sinkers for nets in fishing, and are very similar to those found in Swiss lakes, as noticed by Dr. Kicller. Kubbing-stones for polishing celts, hammers, anvils, pestles, and corn-pounders, are also abundant. Some pieces of a coarse, gritty sandstone have shallow grooves worn into them, which are supposed to have been used in rabbing dorn some of the bone or flint implements. Other pieces, with similar grooves, but made of close-grained sandstone, Fere probably used to straighten the shafts of the arrows. The shaft, at first wet and green, was rubbed up and down in the groove, and all the beuds or twists thus taken out. Stones like these have heen used by the Indians of the historic period.
Reference was made in the parly part of this article to the name of the "Pottery. Field," giveu to the burying-ground. It may be inferred from the name that pieces of pottery were abundant, and the number of vessols tation ont fully confirms the appropriateness of the name. These are all of one general shape and character. The material is a clay mixed with finely. powdered sheels, and was baked in the sun. Nearly all the vessels are furnished with four handles, and are generally devoid of any ornamentation. Some hare salamander-shaped handles, and the fer that are ornamental have simply crosslines and stripes with lines ranning rouml the ressel noar the top, and perhaps a few dots. Though some of them are vers well formed, thes do not show any great divance in art.

Among the most interesting remains of any sace of people, are the ande begnnings of art they have left Dehind then; and, though the preoplo under consideration did not have, as far as wo know, any writen laogage, they hare left a few memorials of thear artistic feelings in the shape of some carvings on bone, and a fers inscribed stones. The most interesting of these are here figure3. Fig, 20 represents, on a pioce of limestonc, the hoad and forelegs of some curious animal. What is meant is hard to imagine. The tecth are marrellons,
-Jonce, "Antiquity of the Southern Indians," p. F. "When, in 1730, tho whites interposed their good ofices to briag aboot a pacification betpeen the Tuscaroms and the Cherokees, the latter res ponded: "We cannot lire rithout kar; should we make peaco with the Tuscerorss, Tith whon wo are at war, ke must immediately look out for zomo otbers with whomine can be enarged in our beloved occupation. For notice of agricultural labors, sce Jones, Djs. 20
 Nos. 1, 2, ind 3 .

Fio. 19.

Fra. 90.
but atill, in their arrangement, are like the toeth of the wollpipe in Fig. 19. Fig. 21 is a portion of a bone having peculiar marks cut on it. The marks are the same on both sider, but the meaning intended to be conveyed is beyond the interpreting powers of the writer, nor does he know of any explanation having been attompted.

From the remaius here described, and from others found in the censetery, for such the locality undoubtedly wes, wo can form some idea of the timbits of the people. They were warlike yet agricultaral, hunters as well as fishermen. They killed the bear, deer, elt, beaver, racioon, and other animals of the forent, for the remains of all are quite abundant. They ato the shell-fish of the Little Miami River, and caught fish with hooks and nets. They raised corn, as well as tobacco, in quantities. They wove matting, mede fish-nets, and perhaps blankets. Ther ornamohted themwelves with necklaces of bone and shell beads, bear and beaver teeth. They dreseed in skins, prepared with horn and stone implements. They painted their bodies, as cakes of paint testify. They had commercial intercourme, or some system of barter, with Lake Superior and the Galf, or the Atlantic. They were frequently embroil-
cover the age of the cemetery. It has been referred to the age of the mound-huilders, but, if so, it is a most remartable fact, unlese we consider the modern Indians as the linoal descondants of the mound-builders, which is quite probable. Heretofore bat three or four anthentic skallin of the mound-builders have been found in any sort of precervation, while hare wo have a great many takon from a small area. Further, if we are to refer the cemetory to the mound-buildery ruce, wo mpat admit that the race disappoared within a vory recent poriod. On a level bank near the Little Miami River is a circular oxcavation about forty foet in diametor and seven feot deop. "An old settlor relates that fifty yoars ago remains of atatim or palinadee could be seen surrounding the excavation." "Thwe have since dieappeared, but their being there shows within how recent a period the ground wes abandoned. Than the afe of the forent troes growing on the ground argues against any vory groat antiquity. The largest trees measured are a Fralnut fifteon and a hadf ieet in circumfereace, an oak twelve feot, an oak and a waple each nine and a helf foet in circumference, t equal to aboat five, four, and throe feet in diameter reapectively. Now,

Fio 21.
edi in wars with neighboring tribes. They coald hardly havo been far advanced in civiliration, if bono implements instead of atone is any indication. They had not rritten language, but yet left some record of their existence in the ghape of carrad bopes and inscribed stones. Finally, if the barial of reseele containing food for the dead be any indication, they had some idea of a fature life. Kach farther than this in their history we can not go.

The attention of the reader has been repeatodly callod to the similarity betweon the implements fonnd in this "Cincinnati" cemetery and thowe fond in the Sriss lakes. No one could claim that, becanse of this similarity and almost identity of forms, the two reces of peopie over had intercourse with each other. But the fact is interesting as ahowing how, in two conatries, thoumads of miles apart, snd separatod by a poriod of handreds uf jours in time, there wcre made, with the mime materiale, the same forms of weapons and implemonts. The resemblance is no argament for s common crigin, but simply shows that nearly the same grade of civilization may be doveloped spontancounls in two widely reparatod countries.

It now bocwnes an intereating .matter of specalation to dis.
the average growth of fourtoen different species of troes is about 12 of an inch a year, or one foot radius (two foot dia. meter) in minety-eight yeare \pm Taking this average, streo five feet in diameter would be two handred and forty-filye years old; one four feet in diameter, one handred and ninoty-fix years old; and one three feet in diamoter, one hundred and forty-seven years old; or, in ronnd numberk, two hundred and fifty, two hundred, and one handred and fifty jeare reapectively.

There is no evidignce to show that thore was any growth of forest on this ground, after its abendonment by the former rosidente, previoue to the one now corering it. The roote of living trees having tranizs two and threes foet in diametor have been foind penetrating the crania of skeletons foond here, a

[^1]tolcrably sure indication of a first growth. Notwithstanding the assertions of many poople to the contrary, the process of covering land with dense forest is by no means a slow ono. A field allowed to go without being cultivated becomes in a few rears covered with a new growth of asplings. Mr. Robort Ridgray, in a late paper, after referring to the cutting off of timber, and also to ita encroachment on prairie land in 111 i nois, says: "The growth of this'new forent is so rapid that extensive woods near Mount Carmel (Illinois), consisting cbiefly of oaks and hickories (averaging moro than eighty feet high, one to nearly two feet in diumetgr), were open prairio within the memory of some of the present owners of the land." " Taking this fact into consideration, and romembering that the largest tree found on th: ground was not over two hundred and fifty years old, the time of the abandonment of the cematery can not be more than three hundred years ago. This would take it beck to lese than ono hundred years aftor the discovery of America by Columbus. The present State of Ohio was thon probably ocoupied by a tribe of indians known as the Eries, who were totally exterminatod in 165e, and it is possible Fe have in this cemetery one of the burial places of this tribe of Indians.
Catlinite pipes were unknown to the mound-builders, yet some made of this matorial are found in this cometory. Hoge rooting in the ground find sufficiont nutriment in the bones to eat them greedily, and probably there would be fewor bone implemente found if they had not boon buriod in ash-pits. Everything therofore, tende to show the comparatively recent date of this cemotory, and I would stato, is a roasonable concInsion, that the remains are thowe of a tribe of Indians, perhaps the Rries, and wore deposited not more than three handrod and poshape only two huadred and fifty years ago. -Popular Science Mouthly.

THE THOMPSON IMPROVED INDICATOR.

The Richards Indicator, for many years an im. portant adjunct of the steam engine, has been found to require several important changes in order to adept it to the high-apeed engines which have come into general use during the past few years. The changes consisted for the moet part in the reduction of the number and Foight of the moving parts, thereby reducing to a minimum the vibration which is necessarily introduced by the rapid movements of the modern engine making from one to three hundred revolutions per minute; and were worked out, a few years aqo, by Mr. J. W. Thompeon, who, at the same timm, made provision for working the instrument with prewares as great as five hundred pounds to the inch. It should be added that the Thompoon Indicator will work equally well when attached to low-speed engines, and is therefore gradually superseding the older forms of indicators which give very uncertain results for ongines making more than aboat eighty revolutions per minato.

The American Steam Gauge Co., of Boston., the manufacturers of the Thompeon Indicator, have recentif presented one of these instruments with esveral accassories (including an Amstor Planimeter for measuring the diagranis,) to McGill College. The collootion forms a moot important addition to the Mrasenm of tho Faculty of A pplied Science.

Sclpuor in Paris.-M. Daubrio has drafinattontion to tho occurrenco of sulphur in the recent excavations in Paris for frilic works. The crystallization of the allphar is ovident to the cye, and under the microscope the cryatals are seen to be ocialicdral. In some places tho sulphar is in sufficient quantity to pay for extracting. M. Danbrio supposes it to be formict by organic matters, sich as manure, loather, bonos, and ris : iables, acting on the aulphate c? lime.

[^2]

tixurixtions.

A New Reflame Pruchos-At a recent meating of the Societe de l'udustrie manerale, M. Thiollier communicated the details of a method of refining pig, and finiahing iron and steel, by the action of damp hydrogen. To assure himself that the well-known laboratory exizeriment may be carried out on a large scale, he has erected experimental works hear Paris, having four funaces with cast-iron retorts capable of treating about one ton at a time The retorts are coated inside and out with a vitrifiable substmee to prevent oxilation, amd loss of gas through the pores of the metal. Hydrogen is metroduced through small metal tubes, and, in order to prevent all danger of explosion, the air in the retort is displaced by carbonic acid gas before the hydrogen is allowed to enter After being annealed for a fow hours in an atmosphere of hydrogenat a darkred to cherry-red heat, malleablo cast iron acquires all the properties of steel. Coarse steels may be changed into fine tool steel. On wrought iron the action is slower. The covt is estimated at two francs per 100 kilos of poor-quality iron.

Amifichal Fuel,-Tho process of Mr. E. F. Looiseau for making artuticial fuel from coal-dust is in successful operation in Philadelpha, where from so to 300 tons, according to size of the lumps, ure made daily

The process of manufacture may be briefly outlined as fol-lows:-

The coal-dust is fed into hoppers, together with about eight per cent. of brtumonous slack, frum whech it passes through a sertes of four ylindrical revolving drums, in whith it is thoroughly driod. From these it is carried to a receptacle situated uear the press. 'l'he dust, still at a temperature of abont $140^{\circ} \mathrm{F}$., is then thrown moto the maxing apparatus, in which it is thoroughly stirred ly revolving shafts with blades, while the proper quantity of pitch and coal-tar is alderd from a reservoir in which it is maintained at 2 tamperature of 180° by steam heat. The pitch is mixell with a certain quantity of coal-tar to give it the proper toughaess. When thoroughly mixed with the melted pitch, the mass is plastic, and can readily be moulded into any desired shape. It is then carried to the press, where it is delivered between rolls having moulds upon their surfaces, from which the egg-shaped lumps are discharged. When discharged from the press, the lamps are quite hot, and have to be cooled by jets of water.
As thus prepared, the fuel is compact and very hard. Formerly clay was used as a cementing material, but now no incombustible or ash-producing tuaterial is required. The fuel is said to be even superior to the uatural coal; and this opinion is borne out by an analysis which gave the following results:-

Chestn	nut anthracite.	Joiseau fuel.
Carbor,	73.41	S201
Ilydrozen	3.10	2. 5 t
Doistures.	0.44	\cdots
Ash b -	17.35	10.45
Nitrogen and oxyren by difference	- 5.12	-350
Theortical calorifie bower, British thermal unts	12.3840	13,853.00
Equivalent to the eramoratior, from and at $212=$, of lis. water	3 ll 2.76 ll .	14,33 lbs.

The Finhive Stran Inspeton:-Mr L. J. Groves read a maper before the Institution of engineers and shipbuilders in Scotland, March, 20, descrihing the exhaust steam-injector. It resembers the ferd-water injector of Henri Giffaril both in principle and in its general construction. It forees the feedwater into the boller ly the artion of the exhamst-sitam at nearly atmospheric pressure, at the same time heating consid. erably the water passiag through the instrument. It difters from the usual forms of Giftard injector in having the "mixing" or "combuning" nozzle spht in such a manner that it hes open when tho apparatus is not working, but closes up to form the standarl form of nozale when the instrument starts into operntion. The stemm-nozzle is much larger than that of the common instrument, and has a central spindle, of cone shape, to direct and conccutmete the jet. The instrument starts automatically when the engine starts. It draws cold water, and forces it into a high-pressure boiler at a temperatare of $190^{\circ} \mathrm{F},\left(88^{\circ} \mathrm{C}\right.$.) On a lecomotive it hiss forced feel-water into the boiler at a temperature of $277^{\circ} \mathrm{F} .\left(136^{\circ} \mathrm{C}\right)$, against a steam pressure of ten atmospheres.

A New Proskether.-Mr. J. D. Cable of Pittsburg, Pa., has applied for letters patent for a shell which, as a destructive weapon, is slaimed to be unequalled. It is a nitro glycerine bomb, and is described as follows: A heavy couical shell is first cast, and so arranged that one end is much heavier than the other. One end is closed with a tightly-fitting cap screwed after charging. The interior of the shell is divided into three compartments, each separated by a heavy plate-glass cap. The division furthest from the open end is filled with suiphuric acid, the next with glycerine and the outer one with nitric acid, these three elements being the component parts of nitroglycerne. A small openmg ithrough the center of the cap fithug the open end of the projectile admits a steel rod, to each end of which is firmly attached a small circular piece of metal, the iuner end resting against the first glass cap. The outer cap is then screwed on and the projectile is ready for service. Accordug to the principle of gravitation the heavy end naturally strikes the ground first, the steel rod is driven through the plate-glass partitions, the chemic ils are mingled aud a nitrooklycerine discharge take place The inventor claims that if such a projectile should strike a vessel it would have a disastrous effect, and as a means of reducing intrenchments it would be serviceable beyond measure.

The Power of a Straminup.-The Oregon, of the Guion line, is to be the most powerful and the fastest of the transatlantic passenger-steamers. Her displacement is about 11,000 tons. Her engines have three cylinders, and are of 13,000 horse-power. The boilers contains 74 furuaces, cousume about 300 tons of coal per day, evaporate 2,700 tons of water, require 6,000 tons of air to support the combustion, or a volume of nearly $175.000,000$ cubic feet, and the power developed is sufficlent to ralse about $2 u 0,00 u$ tons unt foot high per misute. The ship will nake 20 nautical miles (knots) per hobir, against an estimated resistance of 94 tons, or twenty imes the resis. tance overcome by the most powerful lnevmotive. The Atlantic will be crossed in six days an wond weather.
\%inclualisg for Inen. - Attention has been drawa to May. Neugean and Dolaite's process of protecting iron againat rust. A very fine powder of metallic zinc is mixed with oil and a siccative, and applied to the iron br means of an ordinary brush. In mauy cases one coat is sufficieut; two coats are at any rate guaranteed to secure a protection against the corrosive action of the atmogphere as well as of sea water. The zine coating gives the iron a steel-grey appearance, and it does not interfere with subsequent paiuting. MMI. Neugean and Delaito recelved a dylons at the Paris Electric Exhibition of 1881, and now recommend their process for iron structures, bridges, lamp-pouts, de., and also for iron ships. If this process really affords the protection it claims, nothing need be said in recommendation of it, since it can hardly be surpassed in simplicity and cheapness, and is capable of application in cases where galvanizing, the bower-Barlf, and similar processes would hardly be practicable. A good mixture, of which only the necessary quantity ought to be prepared, consists of 8 parts by weight of zine, 71 of oil, and 2 of a siccative.

Tue framework of a curious hall chair is composed entirely of elk horns mounted in silver. The back and seat are of embosied leather, and the bordering is stndded with brass nails.

EATucatiomat.

ADMISSION TO STUDY FOR THE PROFESSIONS.

The following lotter addressed by Ir. Heneker to William White, Esq., as Batonnier of the Quebec Bar, in regard to the preliminary examinations for admission to the study of the professions, having been laid before the Protestant Committee of the Council of Public In. struction, it was unanimously resolved :-

[^3](Copy.)
Sinerbrooke, 29th June, 1883.
William White, Esq., Shorbrooke.
Mr Dear Sir,—J am not about to address you officully for I am not authorized to do so, yet I know you are so much interested in the question of education in this Province that, I cannot but feel (occupying as you do the highly honourable and important position of Batonnier of the Quebec llar,) that you ought to be made aware of the deaires of the Protestant Committes of the Council of Public Instruction in the matter of the examination of candidates for the admission to study the professions in this Province.

1 wish, at once, to state that the Protestant Com. mittee do not in any way desire to interfere with the education of Roman Catholics. The two Committees of the Council of Public Instruction have the same object in vierr, but they work on difforent lines.
The Protestant educational system may bo classified ance three srades, viz, Common Schools, High Schools and Universities. With the limited means at the disposal of the Committee they are endeavouring gradually to raise the tone of the High Schools. The Common Schools demand a great deal of thoughtful care in their administration, but hitherto they have been almost exclusively under the control of the Superintendent of Public Instruction: and the Universities, although receiving grants of public money, lie beyond the inspecting power of the Committee. Regular returns of their work and numbers are sent periodically to the (iovernment, and they are worthy of the great confidence reposed in them by the public. But the High Schools or Academies, as they are called in country parts, have been in a most unsatisfactory condition. The Committee have laboured earnestly to raise their tone and to fit them for the woik which the country demands of then. I do not wish to trouble you with an account of their shortiomings and of the efforts of the Protestant Committee to improve them. Suffice it to say that the aim of the Committee is to make the Academies the means whereby young men may prepare themselves for the study of the professions and for enterng the Universities by giving them the ground work of a liberal education, such as may qualify them for public life, no matter what a man's special calling may be. One of the most serious difficulties the Committee has to encounter arisos from the powers possessed by the several professional bodies to examine candidates for the permission to enter on professional study. This is a very different thing from the professional examination itself for admission to practice. With this latter the Committec have no wish to interfere ; it is entirely outside of their province. But as to the admission to study, they feel that the best preparation a young man can have is a broad liberal education without "cram," such as will draw out the faculties and cultivate thought and observation. This style of training is equally anplicable and useful to the intending student of Law, of Mcdicine, of Engineering and oiher professions, including even Divinity.

Under the present system there is no uniformity of plan or subject, no trained body of Examiners, and in the uncertainty which prevails, students are led to search previous sets of questions and to prepare themselves by a system of "Cram."

But further there is a great practical difficulty in
the fact that no Academy teacher can give attention to students proparing for different professions, and at tho same time attend to ordinary school work. Under such a demand any educational system will break down. The plan of the Committee is to have an Examining Board of trained teachors of exporience, who may be appointed by the Government on the recommendation of the Cummittee with, if necessary, the concurrence of the professional bodies. Some such plan would meet the requirements of the case, provided the subjects taught in the Academies and High Schools formed the ground work of the examinations, and it would be of course open at any time to the professional bodies to recommend certain objects of study. The co-operation of the professional bodies would bo welcomed by the Committeo and would greatly strengthen their hands.

The adoption of some such system would give a higher tone to education and secure a higher class of teachers, and the evils of the "cram" system would be evoided. Tho Committee moreover insist very strongly on the absolute necessity of recognizing the University Degree as in itself a qualification for the entrance on the study of a profession. The two Protestant Universities, McGill and Bishop's College, aro working to increase the quality of the degree. They are united on the subjects for matriculation in Arts, and although there are subsequent differences, 80 as to satisfy difforent classes of minds, yet both are earnest to require good work from their students. If the professional bodies will not accept men who have devoted three or four years of their strength to the study of Arts and Science, not in technicalities but on broad fundamental grounds, there would seem to be very little room for Universities at all in the Province of Quebec.

Commending these few observations to your kind notice and attention,

I am, my dear Sir, very truly yours,
H. W. Heneribr.

THE FLORA OF ANCIENT EGYPT. (Nature.)

By Dr. G. Schwinfurth.
The discovery made by Euil Brugsch Bay on July 6, 1881, of the vault of a king of the twentioin dynasty, is of the greatest importance to botany, in consequence of the large number in spectes of plants contained in the offerings and funeral re. pasts and in the wreaths which adormed the illustrious dead. Among them are several which were not known to belong to an innt $\mathrm{E}_{\mathrm{g} y} \mathrm{pt}$. I have begon the stady of the remains of these plants taken from the breasts of the most celebrated kings of Egypt and of such inestimable value to science. Deputed by Mr. Maspero to arrange these relics for the Egyptological Museum of Boulak, I havo classificd them according to the high personages for whom they were intended. On the eight cardboards which I have the honour to send you in the mame of Mr. Muspero, you have a part of the funeral wreaths belonging to Mamses II., Ameuhotep I., and Aizhmes I.
The wreaths of Ramses 11. were renewed towards the cud of the twentieth dynasty (1100 or 1200 B.C.), or at the time of the twenty-first dynasts (1000 b.c.). The kang of that period, according to records inscrived on the coffins and translated by Mr. Maspero, caused a new coffin to be made for the great Ramses, the one in which he had first bean pluced having been accidentally destroyed. In this new coffin were several yards of wreaths, which Mr. Mraspero handed to me. I have cammined them sll and ascertained their composition.

The wreachs of Ramses 11. ure formed of the leaves of Mimusop Schimperi, Hockst., either folded or torn in
two and stitched together, and serving as clasps for the sepals and-petals of Nymphea carulea, Savi, and Nymphaza Lolus, Hook., the whole strung on strips of the leavcs of the date palm. Besides the wreaths, there were in the coffin at the side of the body, and fastened between the bands cacircling the mummy, whole flowers of Nymphera carulea on stalks cighteen or twenty inches long. The water-lilies thus scattered separately on the mummy were all of the blue-flowered species. An examination of these entire flowers and the sepals and petals in the wreaths, whether of the white or of the blueflowered species, leaves no doubt whatever respecting their identity with the living plants so common in ditches at the present day, especially in Lower Erypt, where they blossom from July to November.

The Nympinaca coervelea, Savi, which figures on all the ancient monuments of Egypt and among the offerings painted on the walls of the temples is often recognisable from the blue colour of its petals. In the temple of Ramses II. at Abydos the colour is remarkably well preserved, and besides there is always a leaf associated with
each cluster of flowers, clearly demonstrating by its entire (not toothed) margin that the species represented is N. corrulea and not \mathcal{V}. Lotus. The latter, whose sepals and petals occur abundantly in the wreaths taken from the coffins of Ramses II. and Amenhotep I., has not been found by me on the ancient monuments, though Unger records an instance at Beni Hassan where the white flower could be recognised. With regard to the question to which of the species the old name Lotus properly belongs, I have been able to ascertain the following facts. No design on the ancient monuments is referable to Nelumbiums; neither the fruits nor the leaves, so easily characterised, are recognisable. Further, no remains of Nelumbium have been found either in the coffins or among the offerings and funeral repasts deposited in the vaults of the Pharaons. The Lotus was not referred to Nelumbium until a very much later epoch. This plant has not been found among the wild plants of any part of Africa. It is eminently Asiatic, and was perhaps not introduced into Egypt before the Persian invasion. At the time of Ramadus it was probably cultivated every-

Fic. 2-Portion of a Funeral Wreath from the tomb of Kamses II. (2000 to: 200 DC), composed of the folded leaves of Afimusaps Schimperi and the petals of Nymphaca carrulca, Savi, stitched together with staps of the leaves of the Date Palm. A separate leaf of Miniusops Schimperi.
where in Egypt, for we often find it in the mosaics, sculp. tures, Sc., of that period, associated with papyrus and animals characteristic of the Nile, and easily recognised by its fruit.

The most ancient writer whe treats of the Egypian Lotus in such a way as to leave no doubt that he meant the Nelurnbiumt, and not a spectes of Nympinaa, is Herodotus (1b. ii. cap. 92); after him Theophrastus ("Hist. Plant." lib. sv.), and then Strabo, while Pliny (lib. xin.j) clearly alludes to a Nymphcen in a comparison of the fruit with the capsule of a poppy.

The Mimusops was evidently a sacred tree to the, ancient Egyptians. The fruits, or the stones of the fruits, which had been eaten, are often found in the funcral repasts in the vaults; and the leaves not only occur in the wreaths of the ancient empire but likewise in those of later tumes, even duwn to the Greeco-Roman epoch, as specimens in the Jeyden Muscum testify.

The fruit of Mrisiusops found in Egyptian tombs ${ }^{1}$ exactly resembles-except that the stones are a linle thicker

[^4]-that of M. Kummel, Bruce, a species spread througnout Abyssinia and the region of the Upper Nile; yet no species of the genus is found wild in Egypt. The leaves forming the wreaths in question should belong to the same species as the fruits found in the tombs. Nevertheless, in comparing them vith numerous specimens of Mimusops Kummel, I did not meet with the perfect identity one would have expected from the resemblance of the fruits. In Central Africa, and especially in Ab3ssinia, an allied species, M. Schimperi, exists, the leaves of which are much more like those of the wreaths. A longer, and especially a slenderer, weaker petiole, and a more acute, less abruptly acuminate blade characterise these leaves. With regard to the fruit of M. Schimperi, I have not had an opportunity of studying it. Moreover the two species under considexation are not sufficiently estabhshed as distinct species. But an anatomical character came to my aid. Dr. Westermaier of Berlin has ascertained that the leaves of Mimusops Schimperi and of M. Elengi, L., have a double layer of epidernial cells, a character they possess in common with the leaves from the ancient tornbs; whereas in the leaves of M. Kwmmel there is only a single epidermal layer of cells.

Chould this distunctive character be constant in the two African species, there is a double reason for maming the ancient A1imusups M. Schimperi. The fruit of M. Elengi is very distinct from that found in the tombs. I think it tery likely that this species, of which we so often find the truits and leaves in the tombs of the ancient Egyptians, may be the Persea of the old authors, which modern butamsts bave erroneously referred to Ralanites and D'ospyros mespiliformis. ${ }^{2}$ The latter has not hitherto been found in the ancient tombs; neitber does it occur depicted on the monuments. Diodorus (i. p. 34) has transmitted to us a valuable tradition concerning the Persia. He states that it was introduced into Egypt with the first colonists coming from Fithiopia, which clearly imples that the ancient authors regarded it as having been introduced from the regions of the Upper Nule and not as belonging to the indigenous flora. Rnlanilcs, however, grows wild in the valleys of the Eastern Thebaid and on the borders of the Red Sca, and in Nubia this shrub is of general dispersion. True its frut has been found in the funeral repasts in the tombs, yet that of the Mimhsops has been found much more frequently, and, in support of my liypothesis, the thick leaves of the Balantes are always wanting in the wreaths.

According to 'rheophrastus, the lersea had a black wood, and he compares the flowers with those of the apple-tree. I do not know the wood of the Mimusops sufficiently, but with regard to the flowers it must be
admitted that no ancient authors ever mnde a inore unmistakable comparison, while the fiowers of the Balanites have nothing in common with those of the apple. Pliny (lab. xin. p. 9) does not speak of the Persca, but of the Persica, and the only surprising thing in it is that he treats it as indigenous in Egypt. He mentions, too, the pecularity of the Egyptian variety of the peach-trec, which consists in its persistent foliage Even now in the middle of winter we see the peach-trees in blossom while still carrying their leaves. The same author (lib. xv. p. 13) expressly points out the difference between the Persica and the Persea. On Egyptian monuments we often see a tree diagrammatically represented, though the distichous, elliptical, acute leaves are cyident. This tree, sacred to Hathor or Isis, and often drawn with these divinuties, probably represent the Mimusops in question. The fruit of Mimusops Kummio, of Central Afica, resembles in appearance as well as in taste that of the wild rose; and it may be that under cultivation a still more palatable fruit could be obtained. Indeed, the fruit of specimens of thas species collected in Abyssinia appears to be much more pulpy.

All the wreaths of the find at Deir-el-Bahari are of one and the same pattern. The leaves are folded lengthwise in the middle, ${ }^{1}$ then folded again in the conirary direc. tion over a string or strip about if in. wide, of a leaf of the date-palm. In the fold of cach leaf, single fiowers, or parts of flowers (sepals and petals), are inserted in

 flower-heads of Acacia Nilotion strunz logether with srips of the leaves of the Date Palm, A separate leas of the Salis lthe teeth represented too sharp) and a flower-head ef the Acasia.
such a manner that they are fixed in the leaf as in a pair of pincers. Then with a finer strip of the date-leaf than the central one, they are stitched through and securely fastened together in long rows side by side, and all pornting in the same direction. These wreaths are arranged in semicircles on the breast of the mummy, so that their disposition is like one sees in the neckiaces of the present day. Their thinness rendered them suitable tur using in large numbers, and sometimes they occur in several layers one above the other, filing up the limited space between the mummy and the lid of the coffin.
it is probable that it is to this kind of wreath that Iliny alludes (lib. xxi. p. 2) as the "so-called Egyptian wreaths," of which Plutarch and Athenius praised the beauty. Unfortunately these wreaths, which, with ordinaty care, might have been removed entire from the mummy when the coffin was first opened, were broken and reduced to powder in several places. The specimens 1 send you attached to cardboard are the most perfect that I could procure after those selected for the Museum of Bouial. On placing them in boiling or cold water,

Kanth took the stones of Mfimusofs found by Pastalaqua tc be this plant.
It may be mentioned that Ruath published his determipations of tbe rc.. s found by Passalacqua in the Annaies des Sciences Niatnrelles, viii. 1,4 s) p. 428. Untortunately it is not known to what perind they belonged. A.mong them were seeds of a palm, Arrea (i) Passalerqua. Kunth, which *as subsequently identified thy Ungei with F\}yphane Argwn, Mart., 2 pala Wich mhabers wome of the valleys of the Nuoizh desert in the bend of the Nile between Korosko and Abou Hammed.-W. B. H.]
according to the species, the leaves, \&ec., recover their original fexusility, especially in Nymphan carulea; and with proper precaution one succeeds in spreading them out and drying them again effectually. The fragility of these objects is only due to the extreme state of dryness they have reached during the thirty to thirty-five centuries they have lain in the tombs. It is at the same time the frincipal factor in their wonderful preservatio:1.

The wreaths of the other kings of this vaul: I have at present only partially examined. From theirgeneral appearance, however, as well as from the flowers and leaves of which they are composed, which also indicate a different season * of the year, one would br justified in attributing them to a different period from that during which the wreaths of \hat{C} amses II. were renewed. If they really date from the time when the bodies of the kings of the eighteenth dynasty were first deposited in the vault, we have liere to do with specimens four or five centurics older than the wreaths of Ramses II. In any case these objects are at least contemporaneous with the time commonly assigned to the Trojan war, if not several centuries more ancient.

The wreatins of Amenhotep I. (who was found during
${ }^{1}$ Or when they were too large they were torn in two.
2 The recurds to which I have alluded indicite the day and the mooth: and these f,wers will one day serve to fix the season with which the month of that epoch cuincides. The cirthamus could unly be had from the ond of March to the ridddle of May; the Water-bilies from July to November: while the young leares of Saliz indicate the spriag. The Acacia and Sesbania fower at all seasons

THiscelameoxe.

An (Hin Siohage Batteify Patenc.- bilectricians aro interested at present in the discovery in the Patent Office of a patent issued Fubruary 6, 1861, to C. Kilchof, a New-Yorkor, for an electric battery, which presents all the fentures of the storage batteries an use at the present day-lead plates immersed in achdulated water, whicl becomes coated with the oxule of lead. The principle appears to be tho same as that of the Plante (French) storage battery, and the storage batteries now in market must hereafeer rely upon peculiarities of construction instead of comprehensive clams.

Sthen Asomer Nen Themonemerr-Prof. 'Tait announces that by means of pure iridium and ruthenium he has been enabled to construct a standard thermo-olectrie thermoneter, capable of reproduction anywhere, and which would allord a perfectly definite standard for the cotapatison and measurement of high temperatures, for which at present no proper bistrument exists.

Hait frfirrl.-Ur. li. II. Hall finds that the values of the " mtational coeficients" givon by ham at the lork meeting of the British assoctation for zinc, aluminum, copper, brass, and lead, are confirmed by later oxjerments. Un trying the effect of change of temperature, only a negative reault was obtained with arold; with iron, the increase was two-thirds of one per cent., whin a nse of $1^{\circ} \mathrm{C}$. 'lhe cueficiant, with change in the strengeth of the firld trom 1,000 to 7,500 absolute units, seemed to incraase; but, of this, Dr Hall dowa not fenl suficient contilence to publish his results. Theobject of another experimant was to determine whether ans part of the rotational effect conld be made perm ${ }^{\text {nont. For }}$ fhis purpose a thin plece of very hard steel spring was used as the plate. The direction of the equipotential lines was permanently chauged by the action of the magnet. This change was in the same direction as the temporary fflect due to the magnet's action, and perhaps equal to two per cent. of this.

Radiation dal divumition of hock Sabt.-Herr C. Baur has made some observations on this sthject. His results do not agree with those of Melloni and Magnus. Melloui considered that heat, radiated from rock-salt, way not absorbed hv plates of rockesalt, any more than heat radiated from other suhstaners. Mamuq found that rock-salt plates absorbed heat radiated from rock-salt murh more than that radiated from other sulstances. He believed that the radiation from perfectly pure rock-salt would he completely absurbed by a plate of the same substance, and that the apparent exceptions to this law were due to impurities in the radiating plate. Herr Baur concludes from his experiments that, 1. Hock-salt absorbs its own radiations better than those from any other body; 2. The absorption increases as the diffrence of tomperature between the radiating and absorbing plates decreases, 3. Th: absorp. tion is probably complete when both plates are at the same temperature. Sagnus' exceptions wer probably not due to impurities, but to a difference of temperature of the two plates.

Eabth-wubm, avi: Fririfili--Arcording to Hensen, earth-worms increase the fertility of the soil by forming burrows throush wheh the ronts of plants can descend into the subsoil This applies chit lly to Lambroms terrostris while L. communzs is confined chefly or entirely to the surface-soil The tap-roots of many plants, he thinks may be sble to force thear own way thruugh the hart snhsoil : hut the more slendersideroots descead chefly through worm burrows, or other channels, such as those left by old decayed roots. [3y excavating in frozen ground, he was able to trace roots domnward through worm-burrows, and to cbserve that the layer of excruments with which the latter were lined was covered with a delicate network of root hars properding from the root in the interior. An important fuuction of these roots Hensen behreves to be, to supply the plant with water froa the muist subsoil ; and tms is particularly important 14 the case of quick-growing anouals, like the cereals, which must develop their root-system raputls, and frequently have to withstand prolonged dry weather It $1 s$ plain that no new material can be added to the soil by earthwortns; but they effect the fixation of vegetable matters in the soil by drawing into their burrows leaves, and other loose fragments of vegetation : they hasten their drcomposition, and distribute them throngh the various layers of the soil.

Magnetization of Inon ann Stege by Rupture.-At a recent merting of the Soclety of Physical and Natural Sciences at Karlaruhe, Germany, Mr. Bissingar dwolt at some length upou the phenomenon of maguetization of iron and steel when lroken in the testing machine. The phenomenon is ascribed not to the elongation of the bar, but to the actual fracture, and woth parts are converted into two maguets of sousibly equal power. The shack and vibmion of the netal on breaking, is in all probability the cause of magnetization. In testing bars for tensile srength, the south pole is formed at the upper end of the bar, and it hay been found that the dilferent ison objects nour the machine at the moment of rupture are also magneti. zed, but to a less degrec.

An intenrsting miscovery.-dccording to a French paper, the becho duc.Vord, a number of coal mines in the north of Frauce are atonst to ha visited hy a hand of explorers of great distinction. Messages were recently sent from the place in question to the dcademy of Seiences, in Paris, aud to the allthorities at the British Musoum, inviting delrgates from each of the bolles to pay a visit to the subterranean passagno, where an uncommon discovery is said to havo been made. The paper in question relates how, in excavating a now passage, the miners cane acrosa some extraordinary fossils, proving the pre sence there, at some remote period, of human beings, as well as of animals and fishes. The passage in question led, as it appears, into two caverns, the mouths of whirh have lnog beer closed u_{p}, and $\mathrm{ul}_{\text {the }}$ first of these were disoovered five perfect fossils-one of a man, two of women and two of children, besides sevoral weapons and utensils of petrified wood and stone. The second cavern, discupered some time later, contained uo less than eleven fousal boles, described as beng of large dimensions, a quantity of miscellancous o!jects, and some prectous stones. In eddition to this, it is aseertained that the walls of the cave were covered with rule sketehos representing the combats of men with gigantic animals, from which it would appear that the human race, while battling for existence Fith the aid of stones axes against the mousters of the field and forest, were still acquainted with the graphic arts, and ansious to perpetuate their deeds of early heroism. Tho bones and bodies themselves hare now been removed to the neigh. boring towns of Leens and Lille.

PROCEEDINGS OF SOCIETIES.

 in the Chair, Mr. C (i. Darrach exhibited two profiles from Tifin Thio, to Iake Station on tho sotuthers bend of Lake Michigar Tho eurreys trore mado for tho laltimore and Ohio short line to Chicaso. une ria Napoleon and the other via Definoce. Ohio.
Tho Definace lide (run by Mr. Darmeh), was but 1t miles innger than an airline.
About 240 miles of survoss woro run and the profile mind mans plotted in $\mathrm{f0}$ workine days. with n party of 8 men.
The Scorotary presented a communication from Col. Tames Worrall with regard to tho Pannma Canal. Col. Worrall says:
" You may remomber in my paper on tho Panama nroject. I niluded to a catch-vater dana on the Chagres and compared it to the Schusl kill. endearouring to conves an idea of its difficulty. By the enclosed slip Irom tho New York Timen. I sco thor have abanioned the idea of a dam.-What aext rill they abandon ${ }^{\text {² }}$. If the come tn quicksand ther will abandou the riolo thing, at least as a cannl a niveru
"Thny can get acmoss that neek of land rith lenin., but it will be many a long day before thes got a level trenchdur through the Andes eren at the l'anama Gap.'
The Institution of Ctul. Eincosfrrs.-At tho Mecting on the 8th of April. Mr. Brunlees, President, in the Chair, the Paper read was "On the Diamond Fields and Mines of Sonthafrica."
The Author commenced by stating that Kimberley was st uated in Ciriqualand West, about $\mathbf{i n 0}$ miles north east frum Tablo Bay, and t 50 milee inland from Port Elizabeth and Natal on the Fast Coast lines of raltony were in course of construction from Table liat and Port Filizabeth to Kimbertev, and were about half completed. In iriquniznd thoro wero serernidnamond mancs. the principal of which "ere Kumberles. No Becr's, Da Toit's Pan and Bultfontein.
In thr nrange Freo States there recre also tro mines, viz., Jagersfontrin and kiffreyfonten, the first of whech produced fino white stonce. The mines urere nil diyded intu claims, the greatest number of which were to bo found in the Du Toit's Pan minc. Bultfontein came next.
Tho deepest and most reqularls worked was tho Kimberles mine. The next deonest was De Becr's, which, huwever, wis rery unorenls worked. Then folioned Du Toit's Pan aud Bultfontcin. The Du Tout's Pan mine ranked next in importance to Kimberley mine. Dia mnnds nere first discorered in 166 by Mr: Neilly, a trador and bunter, whe resited a colomst named Fan Niekirk, residing in Gri gua. ithe first diamond, on being sont to tho authorities. TRs Falued at $£ 500$. Considerable excitement was caused throughout the colong, and tho natives commenced to look for diamonds. and mane wero fouml. anong which was one of $83 \frac{1}{4}$ carats, ralued at $£ 15,000$. In 1868, many enterprising colonists made their way up tho Vaal River and were successful in finding a good number of dianonds The contre of the riser-diagings on the Traneraal sido was Klindrift, and on the opposito side Pniel. In all thero were fourteen rifer-digginse

Du Toit's Pan and Bultfontein mines wore discovered in 1870 at \boldsymbol{n} distance of 24 miles from tho river-liggings. Tho dizgers took nos' seeson of those plyces. Inconces wero kranted giving tho tirst digRers

 wovered, and, in rivisedim. Smat the river-dings.
lhe mines wore of irregular shape, and wero surrounded hy reef. The top reef was a loososlinlo, and lind gaven great troublo from the troquent slips. below this were strata of trachstie brecena and atigracueno formation was thon seany to an unkin wa depht.
GU, ithin tho reef, the surfice snil was red, turd of a sandy mature The next stratim was of toose vellow sravolly lime, und tho thrd hhm, of a lard slately nature. 'las was tho real dinamatiforous sot Large stones had been foushin the "sellow," but the workng of this cucrally did not mas. himberluy mino. howrorer had pitid very well Ill Hrongh. The methoi of working in deepgronnd was detormaned " pondways rumning north and south. The son was hauled up to
these roathass, and taken to the sorting tables. The woadways do
 windliss was adopled, which worked very well for a time unfil horsewhune wero introdticed in $18 \% 3$. l'he depth of tho mines increasing, borsershims liad to givo way to steam-engines in 18if,

The first diagers treated on an averame 10 loads jer day each patty, At the present tame, the least taken wut by any enkinu, when full; emploged, wns 250 loads ber day. The eost of working. With iresent apiliancos. tho first 100 feot in depth, wat $3_{N_{0}}$ ghe per loud ; the secomd
 In fhrough seareaty of water atssten of dry surting had to be re surted tofor several years but it was superseded by the introduction of washing-wachinery, which was now qenurally employed.
At the commencengont, through inosperience, wany sorions mistahes woro made. When tho first dikgers reached the buttum of the red sand. they thought hoslamotuls woild be found in the next stratam. When, howevor, diamuand were futhil in the second stratim.

 lhatifontein mines were irrekular in shape. Tho othor mines, liow hat beenstank and contueted with tho mines by undorgrvund gatle thes. Thesogallorics wero consenjent in the caso of falls of reef.
 workitig, boang loose atml iroken, but the blate soil required blastiug.

Euberal methorls were alupted for extracting the suil and carrying II Irum the mane before stean was introduced. I'he cost of wood for heating burposes was a serions item, but gond cual had now been
 noms tean it expanse vas the liansjut wer nataral roads unly,

Thu manhiners despaned by tho Author for this industry was descrntred. A 16 H.-r. direct-ncting winding engitu was introducod for hambin up londs at the zato uf about 1,000 feet jer minute, and a 2 H. f. geared-ongitio, for hauling up lieavier loads, at the rate of from Whturnofect jer minute.
theberwas dear, able water-heators wero fitted to each ongine, by whed 33 per cont. of the water was agan used, thas saving one-thimb.
The builers were as tho lucomotive type, mostly of sted, to sare The builers were as tho locomotive type, mostly of sted, to sare
wergh, ind thas redace thu cost of transit. The firo-boxos were also menght, ind thas remace thu cost of transit. The firo-boxos were also
unde of steel of vory soft and ductile quality. i sema-portable encme was mate fur drivitik the wash mill. Tho engine was so arrang ed hat it maght bo remuvad from the boiler ind placed soparatels. The burler was mate to worh at n iressure of 140 lbs . per squaro inch.
 were provided with a sunal surang for adiusting the suced. A screen.
or cy hader wash-mall and clovatur. wore used fur dealios with the diamantiforous soil, and were deseribed. Standing wires wero fixed at tho back of the unchiners, and lassed over oframe fixed at the top of the ininc, the end in the mine boins securcd to strong mooden posts. After tho blue soil had been blasted and collectedinto trucks. it tua maced in thbs, which ascended the standing Firos. It was then emptied into the depositing box. The yellow soil might be put mothe wash-mill dircet, also that portion of the blue which had pasced through the screen fixed ovor the depositinebox. The re-
unamder of the blue. which was spread ont to a thickness of 4 or 6 whes an the deprositine-ground sume distance from the mino to dry, mas delisered into the upper part of the screch. Tho return-water trom the elevator, with a portion of fresh water, was also discharged at the point, and operntions wero thus sreatly facilitated. the soil becomine thoroughly saturated, rnd passing more easily down the shemts. Tho largo nieces which would not drop through the meshes of the screen wero discharsed into trucks at the lower end and carried arav. The smaller pieces with water, in the form of sludse, fell through tnto a shoot, and thence wero convexca into tho wash-mill onn, and there kebt in constant rotating motion by agitators. Tho damonils, and other picces of hish specific grarity, savk to the drejest part of the pan, and the remainder of the sludge was forced ofer the inner ledgo to the elcvator. The sludgo was then hifted, and
thrumn upon an inchmed sercen and down the shout orer the side of thruma upon an inctined sercen and down the shoot orer the side of
the bank. The residue loft in the pan at the end of the day's work was passed through a pulsator, in which, by tho force of water, the was passed through a pulsator, in which, by tho force of water, the
mud and lighter particles were carried awny, learing behind tho dia mud and lighter particles were carricd away, leaving behind tho dia
munds, agates, maracts, and other heary stones. It was the practice munds, arates, pardets, and other heavy stones, It was the practice
occasionallv to put a fow inforior stones in tho soil. to test the effoccasionall to put a fow
ciency oi the machinors.

In 1881 the Author paid a visit to Kimberley, and found the industry a latige one The lost-office return showed the value of diamonds passed through the office in one year to be $\mathrm{f3}, 685,000$. Mlicit diamond tratfic had hitherto been a source of great trouble at the Fields. It Hax a question whether this industry would over cease ; in any casc
there was no doubt but that it would last for over a century. It was there was no doubt but that it would last for over a century. It was,
behesed that the main bed of diamonds had not yet been reached, and that the mines in operation mere mercly shafts jading to it Snw that the Faterworks wero finished, with a bountifus suppls of Water, coupled with tho great boon of railways to tho Fields, and the
edrantage of a lav recentls pasced for tho provention of illicit buyhng, areat and prosperous future was in store for the Diamond Fields.

Titz: Dethraination of Conpze as Stref. by Magutr Troilius Chemist to the Midvale Steel Coupady, Philadelphin. Read at tho Boston Mecting, February, 1833.
Thu fallowing is avery rapmemethod for determinnmg copper in steel. I havo found it to givo remultsvery closoly arreing with those obtained by galvanio precipitation of tho coppor,
Five grams of steol are disqolv; in a mixturo of $100 \mathrm{c} . \mathrm{c}$. of water and 100 c.c. of sulphturio acid. When all is dissolved, ind 2 oc. of a concentrated solution of hypusulphite of somatan stir woll Aftor 15 minutes boiline, nll the coppor it down as black sub-sulphite of oop* per (Cu2si and the solution regains its greunsh color. Filter rapidiy. washa tow tmes with hot water, ntere, tho filtor, and wash the procijifate back into the beaker, in which it wats made.
Disgolve in a little aqua regia and ornporito with about 2 c.c. of
 sottlo in a warm place, filter and wash with hot rater contaiuing sotto an a watm flace, fitior and wash with hot rater containing addablittledilute sulphuric acid till it is slighty acid, and precipitato add a littledilute suphurie acid till it is alighty acid, and precipitato
the copper as beforo with it fow irope of hyposulphite of sodu, Filtor the copper as beforo with in fus drope of hyposulphite of soda, Filtor
on a washed filter-puper, wash with hot water, placo tho wet filter in on a Wusbed filter-paper, wash with tot water, placo the wet giter in
a weinhed poredan orucable, ignito and weigh as onide of coppor (CuO).

When an orlinary bunsen burner is used, care should bo takon not to tet tho cruciblo como mondo contact with thonmer cono of tho flaine.
 Apra, 2lst 1sws: President Ilenry (i, Morrss in theChair, 22 momburs

 from a cast searth steet, wore about do inches by 5 feet 6 inches. The
 thrmag is + mehes wido by 2 mehes long. $1-32$ meh thick, shomma the roll to be vers homnogenuas ind very tuagh for cals. stech. A communteation from Mr. E. M. Tabooth. Secretary National jxposi-
 the propuse
diseussed.

Ifecorl of IRegular Meeting. May Sth. 1383.-President IIenry (i. Morrss in the Char: es membors ande visitors presente Mr. T. M. Clemathn was enabled to show, throngh the courtesy of Mr. W. W. Evans, of New Lork, a map ani profile of the Sunthern Pacific Railroal ha California, shownis where th crosses the dried ab bed of a lake, being below the surface of the lacifice Ocean for 58 aniles, and attaining a depth bolow said surface of 366 fect. At this point it skirts a deposit of satt frum o to 24 anches in thehness. Ho alsu
showed a numbor of photugranhs of the 'lehachepi Pass on the same showed a number ot photugraphs of the 'lehacheni Pass on the same
rantroad near $\mathcal{F a n}$ Fornando. In order to attain tho summit sith R sufficiently reduced grade, the hae was "developed,' advantago beine taken of a conmed lath to whid about it in tho form of a helix, crossing itself and continuing on its way with sereral meanderinges. Tho St, tiothard lasiroud has sevoral such helices, but they are cut in the solud rock. A smalur location was mado abont 18 years ago in the Southern Pennyylvanaa Railroad, but it was not built. Anofher piece of merestunk location was atso exhibited, manely, the mountain division of the Wextern North Carolim Nailroad, which shoms groat skill in fittung : line to the countrs. Mr. Georgo S. Strong described anew method of manufacture of corrugated builer tubes. Mr. E. F. ture of artiticial fuels. Mr. K_{2}. II. Sanders described a derrick used for hoistias material from a slate quarry by means of cablo and bucker, and Mir. T. M. Glemaman nuted an simíar methed pursued in the constructuon of a vaduct m Pert, 232 feet hifh. When the picces were convoyed by a traveller to the pier. Mr. C. G. Dazrach continued bits remarks with rerand to the reintire qualit. of water at the top and diffients encountered ta tho accumulation of impuritics bolow tho surface.

THE AUTOMATIC GAS SEAL.
The tendency of improvements in blast furnaces has been almost exrlusively in the direction of increased capacity. The marked success attanned has naturally resulted in a very keen competition so that, in the future, economy in fuel, repairs, etc., will of necessity be the most important object to be songht by the iron smelters.

The gutomatic gas seal, shown in the accumpanying illustration, is an inveution of wheh the prime object is economy. It consists in a cuveriug for the feeding, hopper of a blast furnace, Which coverng has two or more openings the number is determined by the size of the furnace), provided with lids $N \mathrm{~N}$ hunged near the center. The lids are opened and closed by the movement of the lever arm $B O C$, which is pivoted at O. The moving power is derived from a cylinder connected to the arm BO at D and supportud on trunmons in the fork of the lever F01 G. The latter is pivoted at O1, and connected with BO C at C by a pin and slot.

In connecting and supporting the cylinder in the above mannerits weight acts as a conuterbalance to the lips, and action and reaction, that is, the upsiant thrust on the piston as well as the downward pressure on the bottom of the cylinder, both become effective in raismg the lids, in consequence of which a mucu smaller cylinder will operate the seal than would be possible by any other arrangernent. Furthermore, it is out of the way and easily got at. The illustration represents a design in which the blast is the motive force. The cylinder is eighteen by thurty inches, and cylinder K is twenty

THE AUTOMATIC GAS SEAL.
fons by thirty-six inches. If steam be cmployed, mhich on the whole is preicrablo, the dameters may be reauced from eighteen to shs nohes and from thirty-four to eight inches, respectively.

The operation of the antomatic gas seal is as follows. Sapposing the hopper to be charged, the valve J is turned so as to admit the blast through TGII into the cylinder, where its action is apruard on the cylunder head and dounward on the piston, causidg is o to descend and the seal to be closed. At this instaut the purt hole as the bollaw piston rod will have ontered the cylinder, thus establishing communication through D CS It with cylinder k. The blast in ontering raises the piston, this allowsug the beli H wo lower and the coutents of the hopper to be discharged tato the furnace. The apparatus has now tahen the position skura by the dutted lines. The bottorm of the hupper is upen, but the top is complotely closed, thus preventing any gas frume escaping. Roversing the valve J the air enters through Y into \mathbb{K}, causing the piston to descend and the bell to bo brought to its seat. At this moment the pin I will have upentd the valve H, allowing the air to pass through $H E C(G$ to the cylinder, whero its action and reaction causes the has to be raised, leaving the hopper open to receive another charge.
The entumatic gas seal regaires no extra labor to manipulate it, it can neither bo neglected nos misplaced, couseqneatly the furnace is neper opon to the atmosphero and no gas is permittod to esrape.
The adpantagas of a gas agal on a blast faroace are manifold, and its economical value much more far reaching than would sppear at first sight. First and most apparent is the ssoing of the gas which orduarily escaples while lurering the bell. The amount of gas thas actually lost varies with the relative num. ber of charges and the time required in discharging, but will in no case agure luss than equavalent to one ton of coal per 100 tons of iron.
There is also an indirect loss of facl. Firat, in the farnace itself, due to the dilation of the gaseous contents and the loss of sensible heat carried off by the volumes of escaping gases. Second, when, while lowering the bell, the gas excapes at the top of the farnace, there is an inrush of cold air into the com. bustion chamiers of the hot blast stoves and ander the boilera. This has a cooling effect which nudoubtedly causes as great a loss of fuel as the escaping gas itself, which would increase the fael economy due to the gas seal to two tons per 100 tons of iron made. The items of fuel which are saved by a gas seal,
although small per ton of iron, will amount to several times the cost of a seal in a single blast. It is, furthermore, not to be over-looked that a device which completely shats off the gas and, requires no extra labor must be a boon to the "top filler," who is ordinarily more or less exposed to the noxions gases.
All these advantages, howover, are of small significance com. pared with the great office of the gas seal to reduce repairs. First, the furnace itself, since the bell and lipring are scarcely ever worn out, but alpays burned or warped by overheating cansed by the ignition of the escaping gas, it follows that When the hopper is providod with a seal which rendersignition impossible thas muy last an indefinito length of time. Furnace managers know that the most careful attendant can not always prevent the gas from lighting, and that it is only in rare and exceptional cases that a bell and lipring last through a whole blast ; but, on the contrary, not unfrequently have to be rerlaced sercral times, the expense of each renewal by far exceod. ing the cost of a seal. Second, repairs in the hot blast stoves. The iron pipes may become warped by overheating, and can even be melted down by too strong a fire, but are invariably oxidized (borned) by the carreats of ancombined orygen impirging upon their hoi surfaces while the gas ceases to flow.

The frequent failures of the iron pipes, the attendant delays and consequent heavy expense have induced not a fow of the toost experienced furnace managers to condemx the iron stoves and erect fire brick stoves at great cont, where a few hundred dollars invested in gas seals might have helped them over the difficulty.

Last, but not least, are the boiler repairs. The frequent explosions, numerons narrow escapes, and countless minor "givo outs " in furnace boilers have in nine cases ont of ton been traced to the continued strain caused by the expansion and contraction due to the intermittent flow of gas. This item is of the most vital importance, since it is not only a source of much annoyance and expense, but may result in fatal accidents. The deleterious effects of the change of tomperature, and of the shocks caused by the sudden ignition of the re-antering gases on the walls of the hot blast and boilors walle, is also an item worthy of consideration.

Thus, considering the advantages of the gas seal in all its bearings, it is evident that it is destined to become an frotor of no small inport in the economy of iron smelting.

Mr. Ed. A. Uchling, of Sharpsville, Pa., is the patenteo.American Inventor.

[^0]: - "Jourazl of the Cinginnati iocicy of Natural listory;" rol. it. jish 2ī. ciaro.
 + The iong diameter leing taken in lom.

 5. For at fikure of this and rariuns uther discased bones; zce arricle of Houmal of the Cincinuati Socicir of Siatural listory." vol. iv.
[^1]: - "Prebistorio Monuments of tho Littlo Miami Vallos"" by Dr. Cbatios Moks "Jouram of the Cincinnati Socinct of Natarmizitory, vol. i, p. 128
 t Ibid., vol. iii, p. st.
 I Sectable by Dr. A. Lepham, of ace of troes in Wisoonsin, given in "Prohiatoric Races of the Unitod Station,' P. 374.

[^2]: - "Notes on the Native Trees of the Lower Wahath and Whito Mirr Vallegs in Illinois and Indinang" printed in "Proeeoding" of the Caited States Munoum," 1882, p. 34

[^3]: "That the letter rcad by Dr. Heacker be adopted by this Committec as expressing its views, and be printed in the Re. cord, and for general circulation."

[^4]: ${ }^{2}$ The ancient fruits, however, have usually a thicker stone. the three

