BULLETINS

OF THE

Astial Exprrimut Aspariation

Bulletin No. XXIII
Issued MKONDAY, DEC. 14,1908

IR. YCCURDY'S COPY.

BULLETIN STAFF.

Alexander Graham Bell Editor
Gardiner h. Bell Assistant Editor
Charles R. Cox Typewriter
Mabel B. McCurdy
Stenographer

Cewnemwin00

-memmene000 menvenem

Belnn Fhresth. Tons Hodieck, Itora Sooths

1. 24itoriad Hotos and Comzontat-
2. Harmondeper t Vorst-
3. Hainn Wrand
4. Higenilaneous Commantoationa:-

Conchiagn or swocean in the Dasign of
Mying Machines: By 0. Chanate........................... $1-15$

- Outhook on Aviandons-

 By O. Chanuto. 1898.

ATter many centaries of fnsiure, it is believed that vc are et lust vithin meapurable A1atanoe of macoeas in Aorial Wavigutiong that there will be two solutions, one with dirigabie bulloons, wich will chieshy bo woed in was, and the other with aynusio, bird-like zmohinos which vil2 poosem so much crostes apeod and usofulnows thet they shoula prorex ably ongnge the attention of sentrchors.

I havo, or dato youra, cxperirsonted ulth aiz fudl3izod ellaing maehines currying a mnn, coxpriaing turae dife Porant typos, sud having roached sora derinite opinions as to the conaisions of eventund auoceas itith pover ariven zuchinea, it is ventured to state thon brioriy for the bonepit of other experisventers; for, finm auceoss will probubly cone through a proceas of evolution, and the last auccesam rul man will nood to wad but 12 thle to the progreas made by his predeceatsora.

It is brue that the moat inportant eorponont of the ruture 2 Fin ing machine will be ohe very $2 \boldsymbol{i}$ cht motor. It if the lack of this whioh has hitherte forbidion dymonie slicht nd reatricted dirigiblo ballouns to inerfioient apeeds, but it if nise trtat that tynousic ficint is inmoasible unleas tho atability be sdeguate. The progrese made in ilgt motern althin the last ten yours has been very froat; Maxiry, Langlay wh Jurgrave have produced etoos enginos weighing but about

BuLzetsin Ho.xxcII

flve kilogrnames to the horaompower; and huatrods of ingenilous men are now ingroving the gas ongine so rayidiy that there ia grood hope that we thall soon be in ponseanion of a prime mover which shall anproximate in 21 执tnows the motor muselen of biris, wich are believod to mel呂 but s to 0 silogramses per horae-power developed.

Jut oven with is very 21 ght notor, auceose ornnot be atfenined until we huve thorougily matored the problen of equilibrius in the air. This riaid is av evasive, the wind 30 conatinnty puta it into irrogular rotion, that it impoasos great difficulties even upon s Dird, ondowed as he is both with enn exquisite organization, al th difominutinct and with hereditary mkild. It is te this one rablons of oquilibriza that I hisvo devoted all my aftontion, in tho belies that an inaniseste urtificial ranchine mast be oncowed with automatie stability in the sir, and that experimonts indionte thme Chis enn be mohsevod.

The wind is constentay in a butnois; it atrizes the apparatua at difforent pointe and rangles, and this ohmengea the peaition of the oontor of prosasure, thus corprorising the equilibritas. zo rematablish tho iattor requiren aither that the center of gravity, (or welcht) bhall bo shafted to oorreopond, or that the supporting aurphoes themeelvos athall be ehlrtod, thus bringing back the centor of proasure owor the center of Gravity. Birds ediploy both mothods; they ahift the weight of parts of their bodios, or chay shaft ofther the poaltion or the angle of theis winge. It is beliovod that ondy the ahafting of the ringa is open so une for an artifieial apparatus.

If is inforred, therefor\%, that inventorn who begin
 Volvo a ounylate ILying muciane at onoe, are bogimning th
 promeruadmites.

15t. shant the oupharatus ahail posuess ausoczatic afabllity and saraty undor all circtastanoos.

2na. That the wewarasus thall bo so 11 ght and arall an to be estily controlled in \&o wind by the peraone al strength of the oporasor.

Tre genaral atubility in the iine of silets, the atearing, ons be abtained by m rulder, but the mutoratic oquilibriva ruast be mecured in two directions; Pirist dramion verooly to the wpyorntwe, and secondly fore and art. Vory Good reaulta have boun susornticnily obtained for the trannt verae atability by kuitating the attitude of the asoaring birds, tho underiying prinoipie of ohioh oonifate in a alight ainoural angle of the winge with onch other, esthar upward or Aommward, but the vory bont mppliontion of this principle is not yot evolvod, und it requires more experim mensing, Avyerlusentors have found out licsle arriculty in mecuring atability in thia erungvorion diroction, but it must be worted out nore thoroughly.

The longitudinal aquilibrium $1 a^{3}$, houvover, the most preonarious and irportant. I havn sosted three zothede of aecuring itasatomathondiy.

Firat, by gesting' the tasi at a adight upoward angia

With the aupporting surfuens, so aw to change the angle of incisence of the latter through the action of the mrelativa wind on the upper or laver aurface of the tail. This is known an the Gronud" tail; it is auaceptible of great inm proveroent in detsils of eonstruction, sa has been mdundantly proved, but it is not yot certain that it will oounteract il moversents of the oenter of gravity in meeting sudden *ind guata.

Secondiy, by pivoing the winge at hookr roote, se that they may aaing backward and formard horizontally, thus bringing back autonatically the center of preasure over the center of cravity, menever a change occurs in the "relative vind". The somadied "rsultipleminge gliding nachine was of this type, and it reduced the oversent of the aviator roquired to meet wind guate to about 25 millimeters. It cannot, however, bo said ite oonstruction is perfected.

Thirdly, by hinging vertieally the supporting aurfacea to the main-jrane of the ayparatus, so that these aurfacea ahall change their angle of incidence autornatically when rom quired. Thia last method has only been teated in modela, other ongrgersenta having prevented axperizenta this year (1.098). The other two sethods have beon apliled to fullsised mohinea oarrying a man. They have given auch sation factory reauls that not the alightest accident has oceurrod In two yours of experteonting, but hair adjuatrent has not yet reached the congumation originally almed at, i.c. that the aviator on the gliding rachino ahall not need to move at all, and that the ajparatus ahall autonatically thake care of 1 tself under all circuentances except in landing.

I ahall be glad to furniah more minute deseriptionm to those whe nay want to repeat theme experissents, or to apply the principlan to machinea of their oum. The atablility of an apparatus is the very firat thing to work out berore it is atterated to apply an artiricial notor. Fhia oannot be too strongly insiated upon, and the bust way of aceorpliahing this prewreguiaite is to experiment with a ruil-aizod gildIng machino oarrying m nan. Thit utilinea the ovor reliable force of gravity until such time wo the autocnatic equilituriten 1a fuily astained. Thon, and not tild then, it beeacees mafe to app2y a notor.

Then artipicial power corses to be ryplied, it is probable that the best moter to use at the begirming will be found to bo a cocpressed air engine, anphised from a reservost upon the apparatus. This not a preno mover, but $2 t$ is roliabla and oasily applied. It whil prousbly afford a slight for but a Sew acconds, but thls will onable the avintor to atudy the effeeta af the notor and propellar on the equilibrium of his mehine. Unon this is thoroughily ascortained another motor ray be subatituted, such as a atoan or a gasoline ongine, wich will preduce longer rilchta, but thia will reo quire long and costly ex or benenting to obtain a 11 ht and reliable ongine.

Another neat importantzequiaite ia Chat the firat apparatus تith a moter mhall be of the acmalleat dimonsiona which it is poasible to design, and ahall therofore oarry onky one man. This in reģusate for rour roasonas lat. in order to keop down the relative welght which incraasos as the cube
of the divensions, wile the axpporting ourfacea inerenge a. proximetely ass the square; 2nd. In order to secure adequate control of the ayparatua ln the wind; Jrd. To dininish the power required por bie motor, and 4 th to have sa litile inertia ta poasible to overconse in landing. The whole anytarabia hould be so 11 ght and samil that the aviator ahall earry 12 sbout on his thouiders wad control it in tho wind. This can ensily be accamplished with a Gliding machine. liy doublew
 of auyborting aurface, whighing 21 kilograss, and carriad a man porfectly on a ralative wind of 10 metera por second. It showed an oxpenditure of 2 horae-poter obthined fron fravity. It is believed that a pover wachine can be built with 26 equare matoris of oarrying aurface, and a welght of 41 kilom grawa, which will earry a man and a motor of is horisempower, 19 the latterwith ita proyeliers and shafts wooa not weigh mere than 5 or 6 kilograsas per horiompovor. In fact this has beon tone wikh a comproased air notor machine, but the eyparatue thus far hat produced doubtrul repults, in conaequence of defectis in the motor. It is firmy bolioved that it ail2 be a great nistake to begin experienenta with a lurge and heavy raachine, for it vould probably be suashed upon its Pirst landing, before ita posaibilities could be aseertained. The apsed firat airned at ahould be about 10 metore per wecond, and to achleve this the rellowing are good prom partions

Guatainang aurfanes 0.15 aquare moters jor silograzs. Juataining wurfaces 3.00 aquare netore per horsomower. Zquivalent houd atrface 0.25 日quare neters per horsempown. Voíght zuatainod 20.00 kilograsal par horsempotar.

Dizaiys of conuzt rezion.

The general arrangersent and dethails of construction W111 conform of course, to the particular design to be tosted by tho experimonter, but sone uperful hinte may be civen. Fhare need be no beal bation as to the ryeboriuls so orgloy. The erare would be of mood, wich although wonker tivan banboo da nore rollable and formita tha ahaying of the apars so me to dininish the hoad reatatanco. It has been found by experirsent that the bent aroasobection reaerbles that of a fiah, aith the groatoat thickneas about onembhird of the distance froe the front edge; this reduces the reBistanee to oemarfielente of onemsixth io onowtenth that of a plane of equal area, wile a round nection, auoh na that of bawboe, gives a comoriticiont of about one-hulf. Tho apars of tho frue oun boat be joined cogether with latinge of gluad tirine or with very thin ateal tubing, preferably silvered or nickel-plated. The ating or consion menbers ahould be of the best stool wire, also nickeledminted and oiled io provent ruat. A vory inportant detail, not yet woricod out, consiata In connocting the wires to the fracsowork ao that they ahasl puil alike. The supporting surfmeen should preforably be of Dalloon cleth or Japaneas silk, varnathed with two or three ooata of Pyroselane (colloaion) vurnith which possesses the property of arrinking the Rabric upon arying, se tas to swate

(A sood reoipe for thit varniah ia ac followge-
 it buife to hnonde, und tiagolvo it in th botio oontaining a

 1s spylied thiniy with n ilat orunit. Tro coase vill sonerm al2y be surficiont. It driea vory muickly, gluen together all the lapa in the rabrie, and ahrinis it in dryingl.

An expeditious way of fratenime the purfroea to the
 then doubling them back around the apar, the raw ao rande 1a then fastoned terguorarily with pinco tht firat ont of varnish will elue the surfinees eqgether, und the pins ray ba yitharam if ausired.

Althou(th it is prefernble that sone of the rear portions whall be flextble, the sur porting aurfinoos and the Sracjework anst bo aurficiontly sesfi not to ohange theis Genoral ahwo vthon wader motion. This indiontes brider oonm atruction for the froueworls and therofore the supor-iryoaing of aurfaces. Vory $1.5 t 10$ aupporting or parnohate action will be loat by shis, for even whon struak at rifht anglos by the vind, Thibust Round that a square plano ploood Dehind another of equal sise, and spaced at as diatanee oqual to tho longth of its aido, atsill axperiencod a prousure of 0.7 that on the
front pinne. The aupporting aurfacos will of course be arched in tho direction of ilight in mocordance with the practer ioe inawgurated by Lilisonthal, whe ahoved Ehat they poasesm sed at angles of incidenoe of 3 degrees, Pive einen the ilfting power of planes. It is not probasle that auccose will be nohieved in Aarini Favigution sith plat auotaining mutw facea.

180pongroy of paicis.

In propertsoning the parts the factor of arfety for abatic loadn ahould fenerally be 3 , nover less that 2 , and preferably 5 for the fartal aubject to the zore deportant strains. Theno are to be ooxputed in the arve way us they nare for bridgen, with the dirferenee, hovevor, that the oupport (on the adr), is to be considered am uniformly distributed, and the load ia to be asauzed as ooncontrated at the centor. It in not believod that it is practiouble to caloulate the strains due to posaible ahocka upon lunding. They rust bo taken into onnsideration in a genoral way, but she.utnost efforta will be made to avold chers.

The subtaining power alli be caloulated in the mannow given by hilienthal in toodobeek"a "Waschonbuch fur Fhugtoeh niker und bartnchaffer". He coes not, however, fulid explain how to ealeulate the rosiatance; this conaluts of the "drirt" or horizontal component of norzan precsure, plus or rinus the tangential preaaure, and of the mead roaistance" of the franowork, of the sotor if any, und body of the operator.

Aa an acample hov to conputa this I vaty five tho paleulatsons
 conatrueted bepore experiments, whownd hos the head reaitatanom could be furthar redueed by 4 apsing boster erostaneetions Sor tha trwewwork.

(2abla comtimued).

Desuription ${ }^{\text {Fo. }}$		$\begin{aligned} & \text { Baxaro } \\ & \text { Mesera } \end{aligned}$	Comeritio csont \$om agaptane	2quyse dont aq. Matern.
Wire atayn				
61 Wetars....	62000×2.27	. 07767	$2-2 / 2$. 11620
Spring wire atnya 8 netors	8000×1.27	. 01016	1-1/2	. 01524
Fiabber apringe. 6	1300×1.00	. 00780	1	. 00730
3undry projecting parts........	3xy	.02198	1	.0119
Ariaborta bodya.e	9ny	464.50	1	Acis

In ordor to onicuinte the reaiatanoe, wo mut firat ascertain the raguisite apeed for anp ort and the ounsequent "drift". The front aings meazure $\mathbf{2 5 . 3 4}$ gquare resery and earry all the weight, they are set at a positive ancle of 3 degraes, for with the kilionthal nomal eowefficiont η 2a 0.546. Uising tho vall known Pomula Fik if vincos ∞ in which 1 ia the wight, it the alr cowerficiont, s the surfact, v the voloeity, η tho Lilienthal oo-orticient (0.21) and \propto the angle of incidmee, and aulling sack kiloe we have for the supports $880.11 \times 13.34 \mathrm{xv}^{2} \times 0.546 \times 0093^{\circ}$; and ns cos 3 m0.99e6, we have for the apead:

Whenee wo have for the front winga: Heetangular preasure $0.11 \times 10.37^{2}-12.829 \mathrm{k} 2103$. per aquare raeter. Morrsal praze

Bulletin Wo.xCCII

-12*
Kift at $j^{\bullet} 36.16 \times 0.9986$ mac kilograng.
Drift e $36.16 \times$ 3ine $3^{\circ} \mathrm{m} .51 \mathrm{kilog} \mathrm{g}^{2} \mathrm{wn}$.

The Tangential preanure upon the front winga is sers at 3°. The "drift on the raar winge, when mengure 2.74 sig. meters, and wore set atcnegative angle of se°, consiuts in the product of thesr surfinee by the rectanguas presaure, sultie plied by the diffurence betaeen tho tangential prensure, (Lilienthal's θ) wioh at thin angle is positive, and the horiaontal aomponent of the normal (talientahle η) mich ia negative at 3°, the latter being obtained by maltiplying η by the aine of 30 . We have thorafore:

Drirt raar wing - $12.829 \times 2.74(0.043-0.242 \times 0.05253)$ - 0.98 k .

The hond reaistance is tho ryortant factor, and depends upon the shapes mich are adopted for tho franing to ovade air resistance and to secure $20 w$ comerficients. It has to be ealeulated in detall, and the Eable horewith given reoapitulates the various elemente of the area of hend rom sistance of the multiple wing machino, reduced by comerficie onts to an equivalont aroa for further onleulations.

The reotangular prosiaro for a speed of $\mathbf{1 0 . 3 7}$ metern kilos per second being $21.629 \wedge$ per square meter, we have therefore for the whole reaiatanees

Drift front winge $11.329 \times 13.34 \times 0.5460 .30333$. 4.51 kllon Drift rear wings $2 \lambda .029 \mathrm{x} 2.74(0.043-0.0236)=0.98$:
 Head resiatanee 12.030×1.007.

As the apeed laz $\mathbf{2 0 . 3 7}$ meters per seeond, the pover required te overcone thia total roalatance iat

Power 18. 35×10.37 = 190.20 kllogravmetera or 2.58 horaom power, and as the waight is 86 kilos tha orfle of quacent as a Eliding machine ougtit to be:

$$
\text { Angie } \frac{280.35}{86}=0.2134 \mathrm{I} \text { tangzont of } 12^{\circ} \text {. }
$$

In aint of fact tho a patatue caides gonorally at thia ancle mafroquanthy at angloe of doncont of 20 or 11 degroon, this boing probubily due to an nooending wind wiong the hille sidea, and fully verifying this rode of calculating the rosistanco.

I the "doublemsecised" eliding ractiane, in thich the frationg was bos:or ansigned, the fegiatance wes ondoul ted at 14.46 kilas , and i 2 nbaorbed a hormempow in bilding in atilh alr. By orbioying atill betiex cross sections of fruczowork, and ospociaily by plecing the aviator and hariantal poastion the head realmtunce ooul 1 be reduoed by is lowet one-third, but bhis partioular atcitude of that man mond invoive soce risk of accidont in handing, and is oonsidered to too danm Gerous to be emplayed in prelimimury experdrentis. It will be noticod in the bable that tie ronistinne of the tire atays ha given a comerticient of $1-1 / 2$, thile thooretionily, being cyflindrical, shair oomerficient ghould be cobut $2 / 2$. Inls allowance is baaed upon experience, whre otann prodice undue rum afstance, and this ta probably aue to the pact that woy viebrate like violin atrings whon the mparatia is undor rayid motion, and thus produce a greater roaistance than thmt tue to their rounded oronsmection.

The power required will be acen to differ very materially fron that indicatod by the formula reonntiy proposed in France, whioh 1s based upon tho aaswatption that the total oing surface, in square metors, nuisipliad by the comeffielent of air resistance (i.e. the nunbor of kilograspies
carried by a aquare netor, st a apoed of ane meter per second) must at leuat be equal to the cube of the welfot of the mpparatua in kilogrameas; Alvided by the sqaare of the porer exerted by the notor in kilograrrma, or, $K 3 \xi^{2}=p^{3}$ Prom vaich in our own onse we would araw:

$$
\begin{aligned}
& 0.11 \times 23.34 \times 2^{2}=86^{3}, \text { or } \\
& \% \sqrt{\frac{86^{3}}{0.11 \times 2.34}} \quad 065.4 \mathrm{kl} \mathrm{k}^{2} .
\end{aligned}
$$ or 8.75 horme-power, which is more than three timea the power caleulated by the mothod here given and teated by actual experievent and moasuring.

It masaf be romesberod, however, that the 2.53 and the 2 horsempower, which hnvo beon found aupficiont to guom tain th kilogracmes in the air, are the gat horsemoner abaorbed by the gilding machines. whon a propelier and a motor are added, it alli bo nocossary to allow for the loom ses in efficiency incident to those adjuncts, and wo providu about twice the powor at the engine which is inqlosted by the resiatanee mulliplied by the apoed. A ate rule of approximation will bo to allow that euch nocinal hornowower at the engine will auatain 20 kilograrmos, and that each kilograme of the sotal weight of the appratus will require 0.13 square soters of aurface to muatain it at moeda of about 10 meters per accond. When greuter apeoda bercone practicable and safe. the aurfuces nay be reduced below this 30 that at 20 sotera per acoond the rany be but about 0.05 equare aetera por kile., instead or who 0.15 square notors por kile above indioated, and this would parisit reducing the
how area of the irwang, but unleas the comartieient for the aviator'is body was in aome way roduced the rosintance and powar required would be groater, beasuan of the higher wemd. Thase ara the conditions and consiterations frich experimenta with full-aized gliding znohinea, earrying a man, have thua Par indicased as neoobstary to obaerve in order to achieve aucoess with a dynasic flying rachine provided with as sotor. The most important of then ares

PHusi, that the nutamelic oquilibriun and anfety shall firat be secured batore an cticupt is tude to ayply a notor, and
ascond, that the apparatua whall bo mado as annll and 11 ght as poasible, so that the avintor rany austain its weignt berore taking his faiches.

(Copy of a commanidation 80 London minginooring form marded by wr. Chanute, Oct. 15, 5906, 300 Bulietin XX, 43).

As roast of the oxperimontan portorzud ulth the airm propeller mare Drought bofore the Bustiath Aagoolation in Septarber 2888, arn publithed in the wingineor" of septern
 thore is no rosaon to ropent all this here, but rathor to present only the conclusions arann from those experinenta. A nubber of articlos ralating to t:in wore mabaequantly pub. lished in roat of the londing ingliah toehnical journals, Dut all thease are collected in thomgowntilp published at 2 Custon House Chamborn, Loitli, Beotland, and noed not be roproduced ofthor. She intention in thia paper being only is prosent a granornl viat of the mast dryortant racke.

When the idea of the air-ptopelies or revolving acila, for the une of mhips twa Pirat originated, I innge ined trat 14 , warting in the elantio $n \frac{1}{} x$, ouftht to be more efficient than the water propolior; oxperiroonte proved, hown ever. that tho results carse as near as possible to bre move, that ist whon a wher propelier ia of hand, yielding a certain thrust at a oertain power, thon a twombladod airmpropoller with 6 tirnes tho dimzoter and 181 th ita pitch reduoed to sonothing about tho half or two thirde that of the water propeller, gives the awne thrust at a aomevtat analler numbur of revolutions when the ongine powor is the swase and the

As soon as there is rind, chim power is utilised, is the pitch of the airmpropesler ia changed nocordinghy fint of course ond when this propelior is rounted on n ahip, pot When mountod on a belloon driving vith the wind) . Whe wint, when atraight agningt the course, doom poce harm sthough not very mach; surpose a atom blowing arith the apood of 60 foet per seece, and let us ulto connscor a areed of 60 feet per sec. हivan to the points of affort of the revolving anila in which the points the Fhole pressure is ooncontrate od, thon the reault is oxnctiy ish ofon malling 4 points froes the rind with atationary anilu; in the courso of a ons in our Latitude, thore 14 not a wind $u t r o n g$ onouth to prevent sin mir-propeller, driven wilh only one horeo-power, to iso atraicht against it, und 3 points froce the rind 1 ta powor is again. Let us for the anke of eethrnting the influence of tho natural wind oonaider the mase blooring uich a speed V_{0} and let the pointa of efrort of the revolving aalis jossess a gooed $W_{\text {, then in a twombiadod propelior, sa in tho sicetoh }}$ belou (1), ono blace will be worleing rgainat a coryinent V_{C} of the natural wind, while (2) the opponite blade Fild be working with the arwo; the argrogate influence on both blate: *ill theretora be roapectively a function ar:

$$
\left(w+v_{c}\right)^{2}+\left(v-v_{c}\right)^{2}=2\left(v^{2} v_{c}^{2}\right)
$$

froc whioh expreasion the conaiderable influonce of the nate ural wind 8 ss seen. Zven when the bladeas are pusaing the horizontal position, the influance of tho natural trind is groat becuase the normal pressure deroonds zutuch nore on the apeod of the ais, than on the angle of incidence, we only noed
remarber that an angle of incidence of ly gives a normal preanuro which is hals as great an when the angle of inesdonee is 90°. Guite a0\% of the different wind airections, when malling in a esroular path, are a benerit, whereas newrly $20 /$ to somo harm to the progress.

The bost raterinl for making an airmoropeller is thin steel plate wich enables the hictiest ofileiency to be reached, but it is often a nere ohrnee to hit the beet shope, a true matherstion nerve aurface is for instance very inferior, whereas a shape, such that anetions thrount the blatas form a feoble curvature atmilar to thaf of un Ahatrong ving is very succenarul. The only foeture in this ahape reambling that of a acrev is, that vections through the bladea, parallel with the axia, mhould have thoix angles aith a plane perpentimular to the axia, dearsasing propartionately with their aistanoes froe the aris. It bening se difficult to obtain correct shopea in ateel plates, it ia recormented to une ennves covored with ollakin in the following mannor: $-y-y 13$ a yard fixed in ite raidile porpendicularly to a ahart A_{0}, the two wila 3 are atiffoned by means of thin bobbers or books, put in ppoictes in the saila, which are rasatened to the axid yara $y-y$ by reonne of buttona working in n erroove monde in the yurd; the pitch of the amila oan be regulnted by menna of elastic ahneta t, s are ataya to support the yard y. The whole syatom is turned by neans of a orank o an a connecting rod of the vartioal ongine is indicated by If the erank emust be perpondioular to the yar:
If becauge the graateat influance of the natural wind uill

Bullotin Ho.XXXII

Just taike plaoe when the salla are pergendicular. For the gake of not atraining the leeches of the sails too much, oxtra Leechea aro fisstened between the nokn of the aadd boons. A olose fit between the mils and the yard $y-y$ is easontial, alise the onrras shoold be doubled or tripled according to the asrength required and oovered with oilakin
 aible and as arsocth an poasible so roduce friction.

Propnaliers both in air and water wrork by oreabing a rarepaction by dinanation of preanure or vecuun on the drag or rame aide of their blades; thie mas denonstrated by londing a tube froce the rear of tho aice of the blade of an aisepropelior to the hosion whaft on Aich it for this purpoae) tha nounted, tho hollow ahaft mgain cocrunscating gith a guage; noarky tho whole thruat was thus foum so reault from the rarafaction on the roar alde as the blade. The two agonta in operation to aruatio this rarefactIon are, firat, the auction fros the ruath of rir over the drag or leevard side of blade. Socond, the ountrifugal foree. As the preasure on tho thrust site of a revolving propelier blede docreases fron the tipa tomaria the center. tho air roust, when the ahape is corroet, novo inmarda towards the Lower preabure near the conter with a apeed prom portioned to the differance in preavire betweon the outer and inner parte of a blade; the contrifugal force osnnot therofore rarefy tho alr on the thruat aldo of a blade; but exactiy the opponite tates plaee on tho arag asde of a
propeller blade, there the centrifugal force therefore ansiats in rarerying the air. Bonething idite a littie atorn conter la thus orented in front of the propeller wherewith there is obtained, as it wera, a gram on bhe ooean of as in front of it, and a hith/momentum of air ia brought in notion townat the propelier; part of this alr paseos thrount and 10 thon scted upgn by the thrust asdon of the blades. The rarafaction 18 so intense at intg poeds that the air is evon ifteralyy dravn towards the propelle er. An experiment ralatine to the influenee of the rarofaction is pub11shed in the "Incineer" of Vob. 6, 1892, and more completem iy in the "ateamahip" of march 2,209 . It is there explained. In what marner the efricioney of a amall trombluded Ateel proyelior weighing 0.35 pounds, dinmeter and averago pitch one root, aroa 25 square inches, wha deterained, the sacce being found to ascend 200 foet into the air, fhen driven 70 revolutions per asc.

The determination of the efficieucy ia too intrioute to enter on here, bus one ourioua phonomenon, nanaly. negative alip, is aasily deronstratod. The mocient of In ertia I of the arnil propeller wins 0.0022 , and the angulat velooity vat 70 revolutiona per sec. wal 440 rt. par aec., so that the energy $1 / 27 w^{2}$ bocasse $1 / 2 \times 0.0012 \times\left(440^{2}\right)=$ 116 Poet pounds, the whale of this onercy could not, howevor. be uned in rxying up; bectuse the propnllex hovered at'13.5 revolutiong, when the highest point wis romehod, correapondIng to atn menount of energe oqual to $1 / 2 y^{2}=1 / 2 \times 0.0012 \pi$
-60
diapoand for lifting the weight 13 oonsequently $110-4.3$ or about 112 rootmpounds. The propelier, weighing 0.35 pounde conaresed, in Flying up to a dintance of 200 feet 200×0.35 = 70 footpounds, or about 63 per cent of the energ stored in the propelier: the mechandan threugh thich the revolutions Wore imparted to the propallex conmesed considerable work in friction ete; 30 it wal found through exqertmont that a man had to dovelop about 2 so pootpounde in a single pull to give the propeliar 70 revolutions por sec. The opeod was easily menaured and asounted to more than 200 feet por sec. especialiy wile riaing betwoon 30 and 230 feet fron the ground, whioh distanoe wis passed in zuch loas than one see. wheroas in accorannce with the averace plech, equal to one foot, the apeod should not have eroeeded 70 feet per sec., the nogative alip was tharefore considerable in this oase, when measured in relation to the ayorame pltoh, but when aizpropellexs were used for ariving boats, and coneequontly had a cocparatively eroster reaistonoe to aurzount, the poastive alip bocame often 3 tirses gronter than with propelLera in water ans utili the orfioioncy was about 69\%, thua phowing that the axip had nothing to 40 with the efricienoy of a propelier.

To prove nogative eliy in the air in ausother manner Major Eladale undertook the following exporimenti- A prom peller was constructed with blades of such ahape, that their thruat aldea becavse parta of a plane perpendicular on the whart, while the drag aidea formed an angle of th the thruat
side, the rigure ahows a mection klurough a blade, the ahaft

being roprosented by $A_{\text {p }}$ the trirust stde, perpondioular to the ahaft. by t. so that ita pitch in otian to nero; a prom peller of than type gave a thruat nenrly as grant as whon the thrust aide beonese parallal to the drag alde t, the blade revolving as shown by the arrow.

Won a propeliex revolvaw quickly, the rareraction often correaponda to a differonce in proasure of uevorni ine chea of wator, and tho ourrente producod by contrifugnd Porce aners to prevent the air froe atriking the arag sica. wich it wowla to whon negative alip ocours. Hr. Phili1pe had formerky montionod tho aure oxporiment and oxplained how he drove a boat with a aimilar propeller and as the piteh of the thrust side whas ogual to zore, the nogative alip was Insinite in relation to that alde。

Winon an airmpropelior in required for any purpose. It has wlramty been mentioned, that ita diameter should be about 6 tinas the dianoter of a propelior in water, doternine ed for the asme thrugt, but area, pitch, rovolukions, ete. can alse be found directhy from a model axporinont by menna of the rosiowing formulas two ihips, or, in the oase to be conasdored, two propollers are and to nowe with correspondIng apoods it and $h_{\text {g }}$, whon $12 / h=(0 / d) 1 / 2$, whore D and d are

Bulletin Mo. XXIII

sinilar lineal dimenaions apd il and' h are the apeeds of aimilar pointa on the propeliora, for inatance at their eirm cuaforences; under these oonditions of apeed, the thruats Z and t of the propellers, with areas A and a, sare in the relation: $\bar{Z} / t=A \times H^{2} / a \times h^{2}=B^{3} \sqrt{4} ;$ from $A \sqrt{a}=D^{2} / \AA^{2} m$ $(2 / t)^{2 / 3}$ reault a the important equation: 1) $\sqrt{a}=\left(2 / /^{2 / 3}\right.$, and by means of $\underline{p}^{3} / d^{3}=z / t$ wo obtain $p / \bar{d}=(2 \sqrt{t})^{1 / 3}$ wo that
 portant equation; the two equations $A \sqrt{A}=\left(\sum / \sqrt{5}\right)^{2 / 3}$ and $H / \sqrt{h}=$ $(3 / t)^{1 / 6}$ are derived under the asaumption that the thrusta vary proportionately with the aroa and with the square of the apeods, and we are now able to find the rovolutions, area, dianster, etc. of any propeller, when we know the qualititea fron the sodel. Let it, for inntance, be required to conatruct a propeliar able to yiald a thruat of 1000 pouncia wich is the reaistance of a ahip of about 1000 tons at a upeed of 4 knots; then to detornine its number of revolut-
 is neeesaary. To this and a two-bladed air-propoller quite 5 feet in diameter, 4 aquare peet area, pitch $2 / 3$ of the diameter was driven by the power of a man to 4.5 revol tiona per see. and gave a 20 ft . boat a apeed of 4 feet per 300. in caln weather, the resiatance of the boat or thrust of the propeller at that apeed, being 9 pounds, and the brace horaepower on the ahart becase $1 / 5$ horse-power wich consequently correaponds to 45 pounds for each horsempower. The area A of the large propeller (which atricthy apeaking should nove
at a correaponding apeed to be of the sacve ufriesency) is thon:
$A=a(2 / b)^{2 / 3} \mathrm{AB}$ the aroa a of the nodel 1 a $a=4$ aquarn soot ung get,
$A=4(2000 / 9)^{2 / 3} 4 x$ as + 92 aquare feet for the ares of the Large propalier, intended for a thruat of 2000 pounts, and as the aron of the nodol propelier is $1 / 5$ of the diak area, the aure must be the case with the darger atrilar prow pellar, whorohy 1 ts cianeter becocses situot. Ine velocity in the eixcuarerence of the axnil propesler was is foet, the volocity in the larege atnalar propelier mill thorofore be, $\mathrm{a}=\mathrm{h}(2 / 6)^{2 / 6}=75(2000 / 0)^{1 / 6}=75 \times 2.21=204$ fcet per sec. which corrouponds to 2.2 rowstukions por moe. Whon tho correaponding apeseds for nocol and 2 arge propelier are tomed is and $\mathrm{H}_{\text {, and }}$ the thrust of the nodel propelier is 45 pounde per horsompowar, etion the powor to drive the large propelier 13 , $(1000 / 40) 3 / h_{\text {, and as }} \mathrm{F} / \mathrm{h}=$ $(1000 / 9)^{2 / 6}$ - 2.29, we obtain the horsempower eguna to $28 x$
 ahip noves with a correaponding apoed to that of tho notel, which ia $4 \pi 2.19=6.76$, or quite 6 knotas as the large ahip is ondy intended for 4 knote in esin wosthor, the poover will be monentat redueed; noroover, the arrieieney of the largo propielles is Groater than that of the amiler, whiah sise cenas so roduce the power. or crrantor isportianee, how ever is the fuet, that the reasiskanoe of the air varien at a muck higher powor than that of the aquare, eapooialiy whon a
surface revoives round on axis in its own plane (uthon the apoen of the pointa of arrort of a surfaes, vovolving round an oris in 1 ta own plune, equals that of the sume auriace, them moving aftor a atralgre line porponiticularijo on ita ow plane, then the reaistnnee of the revoiving surpacos is about 3 tirsos eroater on account of the rasefaction produoed through oentria fugal force. The realatance alvo incronjes nore than proporsianally with the incruase of the aron wion the opood is unalterod; it ia not diffioult to take those matiors into consideration, but it rakes the formun more oomploated than is sultable for this paper; let it thorafore bo sursioient to any that the ponser in this onse would be loas than 40 horaepower and 2ai rovolutions per see. vouta scarenly be renohed at that powar with a greator disweter than 20 foet.

Soweral exper thente were rade with boats furniahed with rovolving sails or alropropnilera as opelained in the article reforred to; the largost of these mas with a bis atean launoh belonging to the Rognal Doclarard in Copenhagon and rurnsahed with an air-propelier 20 reet in 4ieeseter. Anv. of then of course oovid have boen ueed as untt or rodel for the axwele given, but whon a nodel axpordroms is reguired it ia not alunys oonvensont to drive a propelior with atoun for that purpose. It la net alfriouge at all for a ronn te drive a vory light boat to a ayoed of 4 knota or about 7 poot per sec. but the model alr-propeller to be teated mast be recoved to dirforont boata until one is found mich offors the the roquired roaiatance at meoartain apood.
H.C. Vogt, Holemeinugnde, 31 , Copenhagion-

Cahraryo Alpartian Genada Heve 9e dgoatolluving hoard that you oncouragod and axperinonted in Anrial Havignt ion, I thorefore venture to aubait to your valued oonasioration an itea whioh I happened to obaerve while axperkmenting with kitese Your are well mware that if an aeroplane could maintnin its ponition in tho air an ateadily an a well conntructed kite the selenco of flying would be alnost solvad. Then the queation mat keopa
 that the powor as epplied to the kite was not only in a forward direction but also down. How if the flying line inparts a force that is alse down an wall as forward as illustrated In drawing $\mathbf{I}_{\mathbf{g}}$ why not put an ongine and propeller, the propediex axerting its forve in preelaely the awse direetion as the flying line in drawing loo.IX. What I base my theory on is this. that nas. Par an I can gather that in the latoat sor oplanes for example the "June luge of 通r. O.ll. Curtias, She power la ape plied parallal or nearly se to the plunes.

How if a kite was to be flown you would not attweh the rlying ling to mio in drneing $X_{\text {, y }}$ you knew that the kite would under no elrousatances nly , yot you are applying the powor on a paraliel to the plane. But if you wiahed a auceeasml Rift you would raaten the flying line, in othor worda the powor, to the corract apot on the briale. Then thy ahould not a prom peller placed so as to exert its roxec in tho ause direction as the ghying line, do the ancie work and koop the kite aflioat. I an ariting you Dr. Hell froe having hoard that you are a firm aupportor of Aorial Havigation and your highly valued oo pinion would be vary much approeiated.

