

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiquas

The Institute has attempted to obtein the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the repreduction, or which may significantly change the usual mothod of filming, are checked below.

Coloured covers/

Couverture de coubeur

Covers damaged/

Couverture endommagde
Covers restored and/or laminated/
Couverture restaurde ot/ou pelliculde
Cover title misaling/
Le titre de couverture manque
Coloured mapa/
Cartes geographiques en coulour
Coloured ink li.e. other than blue or black)/
Encre de couleur (i.e. autre que bloue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illuatrations en coulour
Bound with other material/
Relif avec diautres documests
Tight hinding may cause shadows or distortion along interior margin/
La re liure serrde peut causer col'ombre ou de le distorsion lo long de la marge intirieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutfes lors d'une restauration apparaissent dans le texte, maia, lorsque cela útait possible, ces pages n'ont pas drd filludes.

L'inatitut a miernfilmb le melleur exemplaire geill lul a dte possible de se procurer. Les dotails de cet exemplaire qui sont pout-dtre uniques du point de vue blbliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la móthode normale de filmag) sont indiquds di-dessous.

Coloured pages/
Pagee de couleur

Pagee damaged/
Pages endommagdes
Pagee restored and/or laminated/
Pages restaurdes ot/ou pelliculdes
Pages discoloured, stained or foxed/
Pages dicolortes, tacheties ou piqudes
Pages detached/
Pages d'tachíes
Showthrough/
Transparence
Quality of print varies/
Quailt' indgale de l'Impression
Includes supplomentary material/
Comprend du matériel supplómentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been rafilmed to ensuro the best possible image/ Les pages totalement ou partiollement obscurcies par un feuillet d'errata, une pelure. otc., ont dit filmoes d nouveau de façon d obtenir la mailloure limage possible.

This item is rilmed at the reduction ratio cheched below/
Ce document est filmd au taux de réduction indiqub ci-dessous.

The copy filmed here has been reproduced thanks to the generostity of:

Library of the Public Archives of Canada

The images appearing here are the best quality posslble considering the condition and leglbility of the original copy and In keeping with the filming contract specifications.

Original copies in printed paper covers are filmed boginning with the front cover and ending on the last page with a printed or Illustrated impreeslon, or the back cover when appropriate. All other original coples are filmed beginning on the firat page with a printed or Illustratod Impresslon, and ending on the last page with a printed or Illustrated Impression.

The last recorded frame on each microfiche shall contaln the symbol \rightarrow (meaning "CONTINUED"), or the aymbol ∇ (meaning "END"), whichovar applles.

Maps, platee, charts, atc., may be filmed at difforent roduction ratios. Those too lerge to be entiroly included in one expcaure are filmed baginning in the upper laft hand corner, laft to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'oxemplaire films fut reprodult grice alo génóroaité do:

La bibliothique des Archives publiques du Cexirada

Les images sulvantes ont $\mathbf{6 t}$ toprodultes avec lo plus grarid soin, compte tenu de le condition ot de la nettoté de l'oxamplalre filme, ot on conformults avec les condlitions du contrat de filiriage.

Les axemplaires originaux dont le couvarture on paplar est imprimée sont filmía an commoncant par lo promior plat ot en torminant solt par la dernidre page qul comporto une emprointe d'impression ou d'illustration, soit par lo second plat, solon lo cas. Tous tes autres oxemplaires originaux sont filmés en commonçant par la promidre page qui comporte uns emprointe d'impression ou d'illustration ot on terminant par la dernidre page qui comporte une tolle emprelinta.

Un des symboles sulvants apparaitre sur lo dernitre image de chaque microfiche, selon le cas: lo symbole \rightarrow signifia "A SUIVRE", le symbole ∇ slgnifle "FIN".

Les cartes, planches, tableaux, etc., peuvent Atre filmés al des taux de réduction diffórents. Loreque lo document est trop grand pour etre roprodult on un saul clichd, il eat filmó à partir do l'angle supóriour gaucha, de gasuche droite, et de haut on bas, en pronant le nombre d'lmages néceseaire. Les diagrammes sulvente Illustrent la máthode.

ADVANCE PROOF-(Snhject to revision).
This proof is sent to you fir diseussinn ouly, and on the exprows understanding that it is not to bo used for miy other purposen what. over.-(Nee Sec. 17 of the Constitution).
(amadian 象ociely of eivil engineers.
incorporated 1887.
TPRANSACTIONS.
N. IB-Thlis Socicty, as a body, does not hold itaelf responsilile for the ficter and opinions stated in any of its publications.

GOTLIS O. RETAINING WALLS IN MONTRE.AT.

Hy H. Inwin, M.Can.soc. (C.E.
('Io bo real Tlursilay, Ootuleer 2ith, 189.4.)
Having ohtainet somo information as to the complete or parial liaiure of seme retaining walls in Montreal during the last fow years, the writer thinks that it may not be altogether uninteresting to bring this information muler the notice of the members of this Society, in order that it muy, if prosible, indnee somo of them to give the results ol' lheir experience in the runstruetien of walls, partieulary of those that have proved too light, as the failure of a structure genemally teaches more than its meeess.

Before tuking up the subjeet, however, the writer thinks it only lair to state that neither the Chief Engineer of the Railway on whieh he is emplojed, nor the writer himself, was in any way responsible lor the design of any of the walls herein alluded to as having finiled.
The various casen will be taken up in the order of the numbering of the ligures.

The wall shown in suetion by Fig. 1 is of dry masoary, built of stones from three feet to cight feet in length, by from ten inches to fonteen inehus thick, the beils of the stones being fnirly flat, hut the back of the wall, in sume places, seems to be rather poor, the stones boing too small; the top liont eourse was built with large, flat stones from five leet to eight feep six inches in length, but the writer has not been able to find out whit proportion of lhrough stones were ned. The filling behind the wall is principally clay, "small proportion being earth and satidy clay, and was dunped from cars raming on a temporary trestle.

The bank on which the filling rests has an averuge sinpe of ubout $2 \frac{1}{2}$ to 1 , and was not benchel before the filling was begon ; at the teme porary trestle must have larerily hedped to kewp the embankinent firun sliding, as it was buitt fin a flontle track and was well haced lougitudinally.

Iudeed, possibly, this trexthe, so far as it went, was better than benching, us the greasy elay would eavily vide firom one Inow to another, muless the benches were cut down viry derp: however, no doubt it would have been bether to hive benched the pars, of the shope below the trestle.
'The banh muler the filkif!e is of gravel, which athsurls the melting snow in the sprine rery fuickly, so much so that the catehwater diteh on the upper side of the slope seldom has uny water in it, ant there is never any sign of water passing down hetween the origimal slope and the elay filling.

The wall at the toot of the slopr wiss buit with a laee batter of I in 12, the batter ot the baek being 1 in 4 ; und shortly after the filling was finished it pushed the wall gratmally torward till the top orerhung the btaso by about 1 in 12, the embank ment rising bebind the wall.

Will should have been strong enough to risist overturning, bat that, at the ground level, the horizontal componernt of the thruat wonth be $\mathbf{4 , 5 0 0}$ lbs., per lieot run, while the vertical component of the resultunt pressure, divided by 2 to give the frictional resistanee to sliding, was $4,790 \mathrm{lbs}$, , without taking the vibration enused by trains inte aceount. Had the wall been built of the dimensions giren ubove as derived from "Trautwine," it would have upperared to be quite atrongenough, accorting to Wcyranoh's theory, to resist the extrathrust liom vibrations.

It seems also that this wall would have been quite strong unough to tetain the filling behind it, had it been of good material such as wouid stand at n slope of $1 \frac{1}{2}$ to 1 .

Tho wull shown in Fig. 3 was alao of dry rubble, built of the same class of stonea as No. 2, the embankment behind it being, of the aawe nature as that in Case 2 .

The filling was made in the winter by train on a temporary trestle. The wall failed completely eurly in the following summer, and n part of the same wall, which gradually stepped down to a height of only two feet, was pushed down for part of its leagth, and the lowest part was so completely covered by the filling that no attempt was made to dig tho stones out, as an extrn strip of land was bought to give additional room.

Unfortunately the writer did not see any part of this wall until after it had given way entixely; but in a part of the wall left atanding tho writer noticed a large flat bedded stone whioh had been oight feet nine inches below the top of the wall, und which had been pushed forwards four inches beyond the oourse beluw it. This, together with the fact that the wall, when it failed, was completely buried by the filling, seems to shew that the stones were pushed forward and fell over eaoh other, rather thun that the wall failed by overturning, especially na a wall immediately adjoining it and built in cement (ahewn in Fig. 4), which was a little higher and not quite so thick, dhl not fail altogether, though it was built with a vertical face. The courses of this wall, built in eemeut mortar, conld not, of course, slide over each other belore overturning.

The sliding noticel in this case, as well as that montioned in Case 1, seema to contradiet the statement to be found in Mr. M. A. Howe's book on retaining walls, edition of 1886 , page 48 , that "experience "und theory prove that if the resultant cuts the base within the " middle third, the wall is perfectly stable, and will not yicld cither "by sliding or hulging, and also that the wall lins a factor of safety of ""t least 2."

- This statement has, however, been omitted in the edition of 1891, and the writer has concluled that Mr. Howe must have found that it was not correet for dry walls, at least when they were subject to the vibration from passing trains.

Shortly after the failure of this wall the slope of the bank was found to be from 1 量 to 1 to \geq to 1 at a place where the bank had oompletely covered the wall.
In digging away the debris, at a place where no extra land could be acquired, eonsilderable misses of snow were found quite hard and fresh in the months of August and September. The eliy in the bank was also guite damp and greasy, and requiced very strong timber to retain it while the new wall was being built.
The writer noticed in one plice that a $\mathbf{6}^{\prime \prime} \times \mathbf{1 5}^{\prime \prime}$ stick fifteen feet long, with its greatest depth against the bank which was about eleven feet high tgajnst it, was badly erackent.

This stick was well braced at the foot and at a point about eight feet up from the foot, and carried a length of seven feet of the bank. Uofortunately the writer was so busy with other work that he had no time to take proper notes of the sloring of the bank.

$\xrightarrow{\text { saroseg }}=\stackrel{\mu}{\longrightarrow}-$ II

F/G. 7.

$$
\begin{array}{ll}
\hline \text { F/G. } 7^{A} & \text { TRANSACTIONS CAN. SOC. C. E.I. } \\
\text { vol. vil. PLATE vil. }
\end{array}
$$

Aecording to "'I'rantwime", this wall, if' hilt with the sume bather on front and back, should hawe a hisknese of tem fiet one ineh at the hase and live fret six indues at the thb, instead of seven fered seveni inches at the gromil hevel and three fiect at the top, as it wits actarlly built, and Trantwine's dimensions no hased on the assumptien that the filling behind the wall womld be of :gest material sueh ne would xtand at a lope of $1 \frac{1}{2}$ th 1 .

Consibering that the filling womble noce at at aterper slope than © tol, while moist, the witer thinks that, areording t" "Irantwille," the wall should have heen ant least tenf fiel areon ineles at the base and six fire at the top, of whent lifty per eent. thicker than it was buils, and that it would have been better to have built a wall in erment mortar "hout ten prerent. tbicker than the wall which failed.
The diagram :3 shows that, if the wall had bean built aceording to 'l'mutwine's d'mensions, it should have had, by Weyranch's theory, a factor rif safer, of one and a half arainst the stones sliding on thi course alove mentiond as being eight teet nine inehes below the tof of the wall ; but this theory makes no allowance liw vilwation rubed lig trains.
lhayram 3 A is drawn for the wall as it was antually built and lior the course alove mentioned.

As the wall was made withextru large stonss, itw weight is taken at 0.82 of solid stome, ir 135 lbs per enbie foot, the elay filling being taken at 120 llss. per cuhic fool, und being assumerd to come only to the top inner corner of the wall.

The diagram shows that the horizontal component of the thrust is $4,970 \mathrm{lbs}$. per fort run of the wall, and that the vertical component of the resultant pressuce is 9,700 lbs., which, dividel by 2 to get the frictional resistance to sliding, gives 4,850 lbs, for this resistamee, therefore, aceording to the themy mentioned above, the stones at this joint shond have heen just almut ready to slide withont the help of vibration.

As this wall lid not fail fil! "arly in the smmer ather the filling was finished, when the elay was futting thawed out, it is probable that it would have heen just ahout stronge enough hat the filling been of good material, deposited in layens and prop rly rammed behind the wall.

In view of the faet that the clay in the hank was still guite plastie and enotined somes show, which might be expected to mele net grahnally and make the clay still worse, and bearing in uind that a lailurn of the wall might derail a train and rend it down the lamk, mal that, if the wall gave way, heasy clatims for damberes wond have to be mot. it was decided to rebuild the wall of a very heavy seetion, alonest the same as that shown in Fig. + B, which was adopted in rehuilding the wall shown ly leig. t, the new walls in buth theser gases benge wuch higher thath those which failed was to allow the hank to $1 \mathrm{~m}^{2}$ widened ont.

Fig. 4 B, drawn according (1) Weyrmeh' theory, shows that the resnltant presure ents the wall at gromed level seven inches ontside the midde thire ; thim wombleave the wall stable comen thenetically, a- the foundation was newt.
'The diauram shows the hariantal component of the thrist t be ant, 500 lb . per lineal feot of the wall, and the witical compunent of the resultant presenre to le $4 \times, 900$ lise, which, divides by 2 to get the
 resistance to the horizantal pressure ; bint as tho wall was huit with Porth:nd cement mortirr, there wonld he no danger of the eomrsu sliting on earh other.

In drawing this pressure diagrath the weight of the wall was takell at 160 low, per mhice finot, the weizht of the tilling was taken at $1 \geq 0$

Ibs, per cubie fiout, and an aditional 2 fret was abled to the lewght
 the wull.

According to "Trumwine," a wall of the heighatsown in lig. \& B, with the given surcharge, with the face hater 1 rathslormed by I'ratutwine's method, which, in this ease, indive inelhes to the fae at gromed level mad takes off 3 feet 5 ineloer from the top width in front, and with the back changed to the bather shown, which is $\mathbf{2 !}$ inches per foot tor the lower frat, und leaving the sanse gnamtity of masoury th the back, would be if feet 3 inchess in width at the base and a feet : inches in widel, at the top.
Tluse dimensions were nonsidered exeemise as they arr about 3 B per eent. greater than the standard which was ased for tillings level will thp of wall, athe it was decided to buide the upler is feet ef the wall of the same thickmess as the standard, hat to pive the wall a liee bater of 2 inclics per forn instead of 1 inch, necording to the standart, thus uaklug the wall 1 ti inches thicker at the ground level than the standard.

Weep holes were left in the uew wills at intervals of ubout 6 feet, and the back of the wall was packed with simall stove and pariwh to secure good drailuge behind the wall.

The wall shown in lig. 4 was bmilt to vetain a portion of the sume bank as No. :\%. Beiug rather higher than the hiahest part of the dry wall just dealt with, and as it was to be built with it vertical face beenuse it uljoined a propetty line aud ahnted ugainst a brick stable, it was built with eement mortur.
It was pushed forward graclually for some uontha before and alter the failme of the wall No. :3, unt would probably have failed altosether in the course of a year.

It was pushed fierwaril about 5 inches at the top, when it was decided to take it down and replace it by the wall shown in Fig. + B, wheh has been already disenssed.
'The reason; for taking it down were firstly to seeure more spate by building a higher wall, and secondly to avoil the possibility of damages caused by a total failure.
Aceordiug to "Irrantwine," a goon rubble masonry wall ut the surcharge shown in Fig. \& , and with the same batter at the back, should be $!$ feet 5 iuches thick at the base and 5 feet $\mathbf{6}$ inches thick at the top, instead of 6 feet 11 inches at the base and $: 3$ feet at the top, as the wall that fibided was athally built, ath it serms certain that if Trautwinc's dimestons had been mlopited the Wall would not have movel.
The thickness of 5 feet t inches at the top reguived for a wall with a vertical fice: might have been redneed to 4 fiet 6 incher without weakeuing the wall it the front tare had been eiven a bather of 1 inch per fiont.

In the care of the new wall, with a firont batere of' \because inchas per foot, the neighbuaring preprietor was alowerl to ruin the roul of his stahle back, and to conaect it with the fare of the wall, so as to kep show and tain lrom getthig into the V shapel space latnecon the two walls.

Fig. 4 A, drawn accordine to Weymath's theory, shews that the resultant pressure cuts the botec at one-figurth of it. wilth from the front corner, ant the vibratons cansent by mains shond throw it atil wearer the frome comer, so that it is presible that the small forward movement of tho wall was due to exeese of gresere on the loundations. The horizontal compenent of the thru-t is about half the vertical com-
 pell on each ocher, as the wall was buile in Porthad cement mortar.

The nep wall shown in Fig. 4 h hats shown no signs of failure.

It is trite it ineren thicher than the sambard C.I'.ll. reminime wall, whieh may at lime sigl:t, as it did to the writer, sumb tom thiek, It must be horme in mind, however, that thi- samdard wa denigned not simply tor rinin an carth hank, but to cary and sand the thrust ant
 sharp eurves; and it has hone this lio many venrs and in a varicty of places withont any lablares that the writer ever head of
 1.2- to 1 , mul the thrust al a solt elay bank, w that he writer thinhs it is liarly propertimed.

Fig. $\overline{5}$ shews the old retaining wall on seigneurs street bedween Si. Autoine street and Dorehester strect, where it rums lingomally in the fine of the hill.
'Ihe dimensums were tahen hy the writer while the wall was heing taken down a short time ago, and seem rather tho small considering the anomit ol' areharge, yet its partial faibure suems to have been due to the want of proper eare, Had the joints heen all well raked ont and filled with good rement mortar, it would deubtions hase stond as long as it was wanted.

The writer understands that it was removed to make way lior the widening ol the street which entailed the huilding of a much higher new wall.

When the old wall was removed and the bank eut back, its lace atroul perfectly well at a slope of about $\frac{1}{4}$ to 1 , apparently almost vertical, the material of the bank leeing mostly eompatet tine gravel and sand, which would stand at a very steep slope so long as it was undisturbed and protected from the weather ; in fier, it looked firm enough to repuire a very thin wall if jroper precautions were taken to prevent water from Ionging behiml it, and if the filling replacel at the back of the wall were well rammed so as tu prevent any movement of the ohe bauk behint.

It will be netieed that the bank retained by this wall is of a totally different nature from thome ahready alluded to ; the fermer is an wh solid undisturbed gravel bank, the batter new elaty tillings dumper from ears with no attempt to spreal the material in layers or conoolinate it behind the walls.
'The writer hopes that the City Surveror will furnish the Soeicty with a section of the new wall on Seigneurs street, wiving the profile of the bank for some distance larek from the wall.

Aecerding to 'lautwine, a rubble masmry wall with a sureharge similar to that shown in Fig. . 7 , and with the given batter, should be 5 fuet 5 inches thick at the gronud line and : $;$ feet 9 inehes at the top, instead of :3 thee :3 inches at the base and 2 feet at the top; however, it must be borme in mina that 'Trantwine's dimensions are given for a bank of clean ing sand which would exert har more pressure than the hank in question, the surfaee of whieh :above amd behind the wall was ewered with the ohl sed an I bomed tozether with the roots of trees. anit the materith of the hank was, as ahreidy stated, wry tompact.
'lion big. in is draw acombing to Weyraucho thery fir a surlace sureharge sloping back st the same angle as the natural slope amb for unterial stambing at a slope of $1 \frac{1}{2}$ to 1 . The weigh: of the bothos is taken at 110 llse. per cubie lime and of the wall at 160 its $:$ and the hank is assumed to come within a hoot of the trent of the wall.
The diagram shows that the realtathtrew are cell, the has' at a bont one-third of its theknes lrom the frose comer, wh that the wall should have been sifie from overturning. The horizontai eomponent of the thrust is $1,600 \mathrm{lb}$ s. per livot 16 B, while the vertical compenent of the realtant presore, dividen by -2 get the frietional rexistaner, is 4,830 llss; but as the wall was huilt with murtar, there would be suth-

 on Lagume hetion : soret, tron dimensions given to the writer by the
 from the entranee easterly th Mansfied etrent, a leugth of about two hamiped and iwolly tret, about nino yeary ngo.
The writer was cinabled toget this iuformaion thrugh the kimbess wif Mr. A. Hubert, therementant at the Palates.

The purtion of the wall from the entranee westerly tu Cathedral
 lmilt, but banges ent at the the + inches at the midhle of its longels. The coms of this portion are wrill tied in ly the wall on Cuthedral thert and ly the retmon it the cutrunce, sin that the unsingiorted leugth is under 50 tied.
The wall is all built in common lime mortar, ami, sulire as the write remembers, the part repuired only had the liontstones taken ont and repheed with new mortar ; the stones seemed to have heen pushed wit by the freczing and thaving of water louged behind them.
I'leere are no weep holes in the enstern part, but it has one ilrain inhind at the centre which discharges into the street sewer. The eontruetor said that he wished to have put more drains behind, but was mot allowed to doso; and also said that he censidered such drains mueh better than weep holes, which are linble in this country to get frozen up in the spring firom the cold of the inmer part of the wall, and that they let the frost ioto the boily of the wall.

The writer hupses some members will give their upinion on this point.
'Where is no drain behind the shorter western past, bat there is onweep hole at the streve corner, If the dimensions given are correet, the wall is fully thick enough, and if built in coment nod properly drained behiml, shomblerer have moved.

There is a thin cement eatchwater Iruin behind the eastern purtion, as shown in Fig. 1; whiel takes away the surface water from behind the wall.

Fig. 7 is a section of the woll on the west side of Bleury sirect and just above Dorchester strect.

It lailed ly bulging out on the face, and was maken down and rebnilt last year.

Through the comrtesy al' the liev. F. X. Momand, Superior of St. Mary's College', dac writer was permitted to get the diumensions ol this wall, and other infirmation an to its comstractim, from the architeats wha designed it.

It ngears that the anehituets at dirst :alvised the building of is 4 foot stone wall, similar to that which carries the prenent new buidduy. which cond be used her a liture axtomion along blenty strete ; hew crer, the properictors did mot wish to go to no murli expense, as they did nut think of building : any liurther in the fathre, and wislad to reduce the cost of the wall as much as persithe.

It was thriefore deceided to pave the slope as shown. Imild as light a wall as possible, and tiil the V shapred yphee between the slope and the wall with light material, wot rammol, so as to allow the water tallinge in the yard to pereolate thromest the tilinge and ron of through the drain at the font of the sope, the drain beine cosered with flat tiles laid with open joints.

The wall was let by contract th the lowest tenderer, not the rontractor for the new building, and the priee was only sutficient to leave him $\$ 1.50$ per cubie yartl lor the rubble backing.
The writer was allowed to see the specification for the wall. It witk

4 easa, av the loney for the
lon's l'alare vriter by the I the portion of aloult two

the kimines:s

(1) Cathedral simee it. was f it. lengelı. Cathedral orteel length, ") fiar as the en taken out heen pusleel en. as ane drain
The emind, but was surh droins intry to get he wall, and It this point. here is one: are eorrect, mil properly ern pertion, rom behind eary sireet and rebuilt nerior of St. siens of this e architetes
ling of is 4 w building. treet ; how. as they dise to reduce das light a ope and the r talliag in h the drain s laid with
of the connt to leave ill. It was
carefinly drawn up, and provided tir man nom number of henders, which vere to be chrough stunes wherever the wall was $\mathbf{g}^{\prime} \mathbf{t}^{\prime \prime}$ or lose in thiskness. Italsuralled lor 2 to I Jortlami cenent mortar, made with White's ne us gond erment. It dures not neem that the pressure af the earth filling was the ranse of tho hulge in the wall for which the Jhilititg lapertor hat it tuken down; fir when it failed, the filling was wit suturated with water, and there land heero no time for frost to athere it.

It will be reen that the wall was about thick enough to retain the filling, for $8^{\prime} 9$ " multiplie! by $0 . t$ gives $3^{\prime} 6^{\prime \prime}$ fine the thickness at proumts level, while the neturl thickness of the wall was $3^{\prime} 3^{\prime \prime}$, and the vertical prossine of the extra 10 fect in hoight would have been morn than enomelt to mane tho stability of the wall, providing it were properly huilt.

Io fure, the wall buged out in one phee where there was no illing, at nll behind it.
I'he greatest bulge was at a leight of tior 8 feet abow the level of the sidewnalk, of nlmost as high as the top of the filling, and this secons too high to have been cansed by the lateral pressure, sinee the grentest binge shonid be about the centre of pressure.
'I'he hithere scens to have been due cutirely to bad nortar, want if proper headers, and through stones and execss of mortar in the backing.
Ithe writer examiand the wall carefally nfter it had been whost all taken down, a mil could find no trnec of a through stone or of a gool bender atall, and the wall seemel to have parted in two, the ent stome front nepurating from the backing.

The face was bailt of eut stone with a bed of only about 8 inchess in depth, and the backing was of' smatl stene with nltogether two much mortar in the joints. The mortar was made of very fine dirty sand with too little lime in it, and what little there was no doubt of the. nseless fat lime now exclusively used in Montrcal, because it is eheaper than grod lime made from the black limestone which takes more fucl to burn it.

The eonseruence was that the upger 10 feet ot the wall compressed the nortar in the backing, while the ent stone frout, with its thin joints, would seareely compress at ull, and the front was foreed out.
'Ile writer han brought a salule of the mortar for inspeetion.
The nrehiteets protested against the way in which the walls were being built, and notified the proprietors not to pay for it; it was taken down not long after completion, and rebuilt with the mouey retained.
'Ile writer believes that this wall would have stood perfectly well if' a sufficient number of headers and through stones had been used, und if the mortar had been made of good eement and sunal, in accortanee with the specification; but thinks that it would hase been better to have arranged to set the uper \because fiont portion 4 inehes back from the fare of the part below.
'Lloc diagran Jown in Fig. $\overline{\mathrm{B}}$ A. drawn aceordiug to Weyrauli's theory, shows lent the wall would be in no danger ot overturning and that the courses womld not slide on ench other.

In drawing this, the mannury was taken at 1 till lbs. per cubie fiomt atw the louse carils at stl llos. per enbie foot.

It uay be achled that a part of the wall whieh bulged stightly is still Atamdis:r.

The writer regrets that the varions cases referced (1) in this paper are unimportmont works, bot thinks that, in dereribing them as fully as possible, the results may prove useful.

Ihicy sectil to shew that Wrymach's theory, intelligently "iphied, would be a grood check on dmpirieal rules.
'This thery assumes hat the filting is without cohesion, and that its free surface slope wotld be a plate surliare.

 fropernidev in th termining low far the ury may be departed firom, and
 matiote of the lamik.
 propaly hainul, mut tu hase the material replaed behime the wall
 forwad till at last there will he as mueh promore against the wall as from a new hank; if inesu pecautionsare earrind ont, a very light wall might be used.
'The witer in well nwam that surlan eminent authority un Sir Benjumin Baber, whon practionl rules are so grod, serens to think that theory is cotirely at wh with regaril to retaining walls, if one may judge from lis book of the lateral pressure of eartheorh publinated by I. Vinu Nostrand in 18x.

Withall duo deference to thi distinguinhel riginemp, the writer thinks that he is a lietle hard on theory.

Many of the fribures mentioned in his houk were dae to bat formdations; such cares ats there require ghite ilifferent trenturent fom these Where the foundation is solid, and should te kept guite separate.

Withont atternging to eriticise the book above mentioned in full, the: writer may mention that on pagen 26 and $3+$ Sir Benjamin oltains the fresine against two walloby ealculating the monnent of stability of the Watls alter they hard beapresoct forward considerably. Surely this is not fair to theory, since the foree reymued to stare a wall and pash it "at if plual, would lwe tuach greater thian that fhally reppired to push it down when leanine; anm, besides, it is rearomatle to assume that the fresoner wombl be relicsed by the forwaril movement of the wall, unless He tilling haid $\cdot 0$ cobusimn, und muless it were kejt up fo its origimal lusel.

Again, in phige 40, werring to eracks in elay over tunnels, the rack - being probably along the line of least resistane, le assmues his to be Coule mbis liur ol hast msistanee, and argues againat his theory

There des nut secm, however, to be any very good reason for doing *o siner Combenti- theoty did not take intoraceount the cohesion of the - lay ; and, he-sides, the writer think, that the eare ot a mass of chay over a
 with at plate ficer.

In conchasion, the write womlat ish lis fillow-memberts to bear in mind

 on thu' subjere.

