CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has atiempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alier any of the images in the reproduction, or which may significanily change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture resiaurée evou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleve ou noire)
Coloured plates and/or illustrations /
Planches eVou illusirations en couleur
Bound with other materiai/
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding me"cause shedows or distortion along interior margin / La reliure serrée peut causer ȯe f'ombre ou de la distorsion le long de la merge iriérieure.

Blank leaves added during resicrations may appear within the text. Whenever possible, these have been omitred from filming / Il se peut que certaines façes blanches ajoutées lors d̛une resiauration apparaissent dans le texte, mais, lorsque cela éteit possible, ces pages n'oni pas éié filmées.

Adoítional comments /
Commentaires supplémentaires:

L'Institul a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les délails de cel exemplaire qui sont pevi-étre uniques du point de vue bibliographique, qul peuvent modifier une image reproduite, ou qul peuvent exiger une modification dans la méthode nomale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagėes
Pages resiored and/or laminated/
Pages restaurées elou pelliculées
Pages discoloured, slained or foxed /
Pages décolorées, iacheiées ou piquées
Pages detached/Pages délachées
Showhrough / Transparence
Quality of print vañies /
Qualité inégale de l'impression
Includes supplementary , naterial/
Comprend du matérie! s' . 'hmentaire $^{\prime}$
Pages wholly or pe , tured by erraia slips, fissues, eic., have bern entmedt to ensure the best possible image / L $2 r$: zess iotalement ou partiellement obscurcies jar un feuillet d'erraia, une pelure, eic., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayani des colorations variables ou des décolorations sont filmées deux fois atin d'obtenir la meilleure image. possible.

This item is filmed at the reduction satio checked beiow/
Ce document est limé au taux ce récuction inciqué ci. ćesse.s.

The copy filmed here has been reproduced thanks to the generosity of:

National Library of Canada

The images appearing here are the beat quality possible considering the condlion and legibility of the original copy and in keeping with the filming centract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow Imeaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner. left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filme fut reproduit gráce à la générosité de:

Bibliothèque nationa?e du Canada

Les images suivantes ont éte reproduites avec le plus grand soin. compte tenu de la condition et de la netieté de l'exemplaire filmé. et en conformitó avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commencant parle premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmós on commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernidre page qui comporte une telle empreirite.

Un des symboles suivants apparaitra sur la dernidere image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent ètre filmés à des taux de réduction différents. Lorsque le document est trop grand pour ètre reproduit on un seul cliché, il est filmé à partir de l'angle supórieur gauche, de gauche à droite. ot de haut on bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la mérhode.

1	2	3
4	5	6

APPLIED MAGE Inc

'THE

Bullders' and Gontractiops' Guide

TO

Goppect Measurements

BEING A PRACTICAI. TREATISE ON THE MOST CORRECT, SIMPLEST, AND MOST APPROVED MI:'THODS OF OBTAINING AREAS AND CUBIC CON'ENTS OF AII. KINDS OF BUILDERS' WORK, AND SUITEL TO THE EVERY-DAY WANTS OF STONE-M SONS, BRICKLAYERS, CARPENTERS, PAINTER TINNERS, CONCRETORS, ESTIMATORS, KOO,EERS, TIIERS, PLUMBERS, AND AIL WIIO ARE ENGAGED IN THE: BUILDING TRADFS, SHOWING HOW ALL SORTS OF INTRICATF, MEASUREMENTS MAY BE READILY'TAKEN

BY
FRED T. HODGSON, Architect, M. O A. A., And
W. M. BROWN, C. E. and Quantity Surveyor

Fully Illustrated with Explanatsry Diagrams and Shetchss

CHICAGO
FREDERICK J. DRAKE \& COMPANY
Publishers
1906

Coppinfint. linui

AUTHORS' PREFACE

To ascertain accurately the cost of buildings proposed to be erected, and the separate values of the different artificers work, it is essential that a system of measurement be adopted. When an uniform system has been introduced int, a country or any district, it gives a proper basis for each contractor to figure out his estimate. The present treatise is intender to meet this demand by formulating a system which has been practised for many years hy me in my profession as a quantity surveyor and estimator in a large city. The advantages of this system are accuracy and minuteness of detail, which give the nearest value possible that would be satisfactory to proprietor and contractor. The rarious artificers" work slall be treated separately, sho" ing the methots of measuring each and making out the ineasurements of same.
II: M. Brown.

Assisted by Fired. T. Hodgson, Architect. Collingwoon, Oیt.. Aug. 1, 1906.

PART ONE

RULES FOR MEASUREMENT OF MA WORK

(1) Foundations (uther than rubble) fur walls to be measured by the cubic foot where $1:$ inches thick or upwards; and where under 1: inches thick, to be measured by the superficial foot, sta.ing thickness. Foundations for columns and pillars to be classed separately, according to stac. The prices shall include materials. dressing, and building, but preparing for sole plates to be charged separately.
Thus in the first instance a stone $12^{\prime} 00^{\prime \prime}$ long, $2^{\prime \prime} 0^{\prime \prime}$ broad, and $18^{\prime \prime}$ thick, to be calculated:

120
2-1)
2t-1)
$\frac{1-6}{24-10}$
12.0

Cubic feet 3fi-1)
In the second instance, foundations under 1!" thick, thus:
$10^{\prime \prime}$ Foundation of wall, $12^{\prime} 0^{\prime \prime}$ long hy $2^{\prime \prime \prime} 0^{\prime \prime}$ hroad........ 12.0
Superticial feet 24-11
Foundations for columns and pillars to be classed separately, this:
Foundations for 3 columns each......... $1^{\prime} 6^{\prime \prime} \times 1^{\prime} 6^{\prime \prime}$ and $3^{\prime \prime} 0^{\prime \prime}$ high

The prices shall include materials, dressing, and building. but preparing for sole plates shall be charged separately.
(2) Buitding of every lescription-with exceptions hereafter siated-shall be first measured as rubble by the superficial yarl, amd classed according to stile of work and quality of materials.

The exceptions are: Cube columms and pillars not connected with rubble, cornices in one or more leaves. anyone of which goes througli full thickness of walls, and uther courses going througlt full thickness of walls, mullions, transoms, tracery, skews, chimney stalks. newels, parpen.l ashlar walls, steps, platts, pavement, hearths, shelves, skirtings, border stones, copings on walls: and which shail be held to include building and laying, and shall not be measured as rubbie.
(3) Two feet stall be the standard thickness of building. Walls exceeding that thickness shall be reduced to it: and those under two feet thick shall be classed according to their respective thicknesses. Thus in the first instance a wall varying in thichness at dif. ferent heights is measured in the following manner:
Rubble wall above foundation.......... $211 \times 47-0 \times 0.11=66-i-3$
 Contents of $\underline{Q}^{\prime}(6$ " work in superficial yards $1: 31-\overline{-}, 9$

These foregoing calculations are divided by 2 to bring them to the standard thickness of : feet, after beins? multiplied by each other, and then divided by : to give the contents in superficial yards, thus:

47.0		47.11
9.0		10.10
423.0		tio.0
2.10		2.f
846.0		941.11
$3.52-4$		2:5,11010
2) 1119×16		-117\%.0
(9) $\mathbf{3} 94.3$		(9) 587.6
191-.--7	Superficial yards	(5.) $)^{3}-15$

Superficial yards
(jit-i-i-is Superficial yards
(4) Walls shall be measured net, without girding, either in length or height. Gabie tops and pediments shall be taken the average wilth within the skews by the perpendicular height, or in such a manner as will ascer. tain the net superficial area.

Thus in the measurement of pediments the half of the base by the perpendicular height qives the net superficial area, in this instance.
$\alpha-11 \times(-1)=$ superficial feet 6t-0

The projections of such continuous cornices, mouldings, and belts as are measured for rubhle shall be reduced to the thichness of the walls with whel they are connected. Thus:
$2^{\prime} 0^{\prime \prime}$ Rubble wall above foundation to
top of cornice. $\quad 130-1) \times 46-0=6644-4-0$
$2^{\prime} 0^{\prime \prime}$ Rubble work in projection of
moulded course............... $\mathfrak{i n}^{\prime \prime} \times 1311-0 \times 0-4=1-1-10$
2'0" Rubble work in projection of
cornice on wall head................ $19^{n \prime} \times 130-11 \times 010-10=6-0-\Omega$
Superficial yards (ial-li- "

F1G.2.

Note. - The calculations of the projecting courses to be divided by a after being multiplied, to bring them to: feet work, the thickness of wall.

All circular and oriel walls to be measured on the outside circumference, and classed to their respective thicknesses, in every other respect they shall be measured as stated for straight worl.

The daylight sire of all openings with their mullions, transums, and tracery to be weducted from the builling. No deduction to be malle for vents, but thin parts of walls, such as window hossings, wall presses, and other recesses shall be deducted from main walls, and classed according to thickness.
(5) Levelings and beam filling. - No allowance to be made for levelings of any kind, except for bond timbers, which shall be charged by the lineal foot. Beam filling at wallheadis shall be measured by the lineal foot, stating thickness and heigit, and cuttings on common rubble shall be measured by the lineal foot.
(6) Scuncheons and angles. - The hammer dressed scuncheons at sides of openings (not having hewn dressings) window bossings, wall presses, other recesses, and exposed ends of detached walls shall be measured by the lineal foot of height and classed according to their quality and breadth. The insile scuncheons of openings having hewn dressings shall be included with said dressings.

The hammer dressed corners under surface, and at angles inside of walls, to be measured by the lineal foot of height.
(7) Vents and vent linings to be measured by the lineal foot, from the top of the oncome to the bottom of the stalk; the cutting of vents through cube stone to be charged separately; and oncomes, whether built or fire clay, shall be enumerated. Recesses formed or cut in walls for soil pipes and conductors shall be measured by the lineal foot.
(8) Pointing of exposed face of common rubble walls shall be measured by the superficial yard, the daylight of openings being leducted.

Square dressed rubble shall be measured by the superficial yard for extra value over common rubble, and classed according to quahty.

Coursers and Ashlar shall be measured by the super-
ficial foot for extra value over common rubble, and classel according to quality.

The exposed surface only shall be measured for square dressed rubble, courscrs, and ashlar: and all openings, with whole size of face of rybats, sills, lintels, comers, and other Iressines, shall be deducted. The cover of facing at internal ancles shall be charged by the lineal foot of height. The cuttings at all angles and circles shall be measured bey the lineal foot for labor and waste of material.

Rustic work shall be measured as plain surface, without girding, and the channels shall be described and measured by the lincai foot.

In all cases where facing of walls is checked or curved and where headers are required at upstarts and pilasters, the dme shall be describe! and measured by the lineal foot.
(9) I'rincipal stones not less than 12 inches thick, and the brealth of which docs not exceed twice the thickness. nor the lensth twice the breadth, shall be measured by the cubic fout ant classel accorling to their contents, viz: -under $1-\therefore 0$, or \because cubic feet, and so on progressively.

Stones more than ?l inches in brealth, and the breath of which exceets twice the thickness, shall be measured by the superficial foot, and chassed according to their thickness and contents.

Stones uther than these two classes, and above it inches by $!$ inches, shall be measured by the lineal foot, and classed accorlinir to brealth and thickness, and also according to length where it exceets 4 feet.
(10) Hewing of principal stones, so far as exposel, to be measured by the superficial foot, and elassed accorling to qualit!. The extreme length of returns at external and internal angles of moulded work shall be taken, and all mitres enumerawed. The hewing of top bed of cornices : id other mouldings, where 12 inches broal and upwards, shall be measured and classed separately. Scabbled and broached l.ewing on sides 0 , shop piers shall be measured by the superficial foot.
(11) Storas 14 inches by 9 inches an uncer shall be measured for material and hewing by the lineal foot, stating size of stone and girth of hewing, and classed according to length, where it exceeds 4 feet. Belt, string, and similar courses shail be measured ixtreme length of moulding, and the mitrej enumerated.
(12) Corners and rybats to be measured by the lineal foot of height, stating size of stone, description of labor, and girth of hewing; the rybats being zirded to bottom of check.
(13) Sills and liatels to be measured as principal or lesser stones, the length for hewing to be taken same as length of stones, and girth of hewing for sills shall be taken six inches ilward from shech, or as far as hewn, and for lintels to bottom of check. When plain sills proiect, one projection shall be added to the leng' and the return ends of moulded sills and are. itrave Is, also footings and reprises, shall be enu.nerated. All labor on face to be described, and included in the pices of sil!s and lintels.
(14) Working beds and joints of stones shall, in all cases, pe ineluded in the price of the stone.

14

(15) Circular hewn work shall be measured in the same manner as straight work, but classed e parately; the full size of stone required to work circle shall be stated.
(16) Stones in arches over openings shall be measured at their extreme sizes, and charged by the cubic or superficial foot. The plain hewing shall be measured net by the superficial foot; and moulded hewing shall be measured at the outer circumference of each ring for length, and charged by thesuperficial foot.
(17) Vaulted and barrel arches shall be measured at their largest circumference, and classed according to their thickness and quality. Where groins occure they shall be measured by the lineal foot of groin, and charged separately for labor and waste of material.
(18) Chimney stalks of ashlar, coursers, or square dressed rubble shall be girded and charged by the superficial foot, the price to include forming fair face on inside and building, the briggs (livisions) of wents shall be described and measured by the lineal foot of height, and vent linings shall be charged extra. All cornices and plinths under copes shall be measured by the lineal foot. siating size of stone and girth of hewing, the price to include forming fair face on inside and building. All plain and moulded copes not above 12 inches thick shall be meastirel by the lineal foot, stating size of stone and girth of hewing, and the return ends shall be measured or cnumeratci'; but if abuve $1 ?$ haches thick, they shall be measured by the cubic foot for stone, and the hewing shall be measured by the superficial foot. In all cases
the price of copes shall include building; and the perforating of copes for vents shall be measured or enumerated.
(19) Room chimney jambs and lintels shall be charged by the set, accorling to duality. Kitchen and laundry jamls and lintels shall be charged scparately in detail, stating the siz of both jambs and lintels. The jambs, sills, and lintels of safe presses in walls shall be measured by the lincal foot, stating size of stone and girth of hewing.
(20) Hearths shall be measured at cxtremes, and charged by the superficial foot. When front an! back hearths are in one stonc, the checking shali be enumerated per hearth.
(21) Platts shall be classed according to size and quality, and rated by the superficial foot; the full length and breadt' on stoncs shall be taken, cxcept in the case of platts formed os winding stcps, where the breadth shall be taken in the conter. The hewing on edge and underside of platts shall be measured net for labor only. Steps shall be cilarged oy number; according to size and quality, the length being stated clcar of wall hold, which shall be understood to be 4 Inches for resting steps and 9 inches for hanging stcps, unless otherwise specified.
(22) Newels and parpond ashlar walls shall be measured for stone by the superficial foot, stating the thickness, the hewing being charged separately.
(23) Pavement slall be measured at extremes and charged by the superficial yard; and a separate charge by the lineal foot shall be made for cuttings at angles or circles.
(24) Skirting, whether level or raking, shall be meas ured by the lineal foot, statine the lirealth and qualit..
(25) Coping anl skews on walls. also border and grutter stones, shall be measured hy the lineal foot, aml classed according to their size and quality, the girth of hewing to be stated where requisite.
(26) Hire clay drain pijes to be measured by the lineal gard and classul according to their size at quality: bends, $\because e=$ and other connections shall be charged extra. ln all cases the price shall inchule digging and refilling track: 3 feet in depth or less; where the depth of track exceeds : feet, the actual depth shall be stated and chargel extra. Cesspools and traps to be described and entmerated. Built sewers shall be measured by the lineal yarl, and classed according to size and 'tualit.: connections with old drains and sewers shall be charged separately.
(27) Taking delivery, carryiner in, and setting iron beans and lintels to be elassed aceuriling to length and weight, and charged by the lincal foot: columms and mullions at a price for cach, acoorling to size anl weight.
(28) Dooking walls for strapping shall he measured by the superficial yarl. Dowking for wincow stanchions shall be charget per window. (inttiner raggles for lead or slates shall be measured be the lineal foot
(29) Cutting batt holes. weketing for stair railings, perforating walls for Water, fris, and drain pipes, and excenting all other joblings required hy the carpenters. pimmbers, and other tralesmen emploved at the buildings, shall be charged as a separate item.
(30) Furnishing, lighting, and upholding lamps shall be charged as a separate item.
(31) In all cases the p!umbing of rybats and scuncheons, building or filling up savings, forming washings on bases and sills, and all matters of a similar description requirel to complete the work as represented on the Irawings, or described in the specification, also supplying water, shall be held to be included in the prices of the work.
(32) All ordinary scaffolling, planks, tresses, and gangways shall be provided by the contractor for wright work, but these shall be set up and shifted as required by the contractor for mason work; and all gabbart seaffolding shall be provided, erected, and altered from time to time by the contractor for wright work. But all cranes and crane seats, also all tackling and other appliances requisite for conducting the work, shall be furnished by the contractor for mason work, and shall be held to be incluted in the prices of the work.
(33) The foregoing Rules and Regulations shall be hell as generally applicable to the measurement of all work, whether materials and workmanship are wholly or on'y partially furnished hy the contractors: and likewise, when partial or sub-contracts are made for worknanship, cartage, quarrying, furnishing of lime, and such like; so that the same quantities shall apply throughout the whole departments of the work.

RULES FOR MEASUREMENT OF BRICK WORK

(1) Fonmlations shall be measured by the cubic yard
(2) Walls shall be elassed according to the number of bricks in their respective thicknesses, and measured by the superficial yard.
(3) Hollow walls to be stated at their full thickness, giving the outer and inner thicknesses respectively and width of space between, also mode of tying, and number of ties, and classed separately from ordinary work by the superficial yard.
(4) Walls shall be measured net without girding either in length wr height. Gable tops and pediments shail be taken the average width within the skews, by the perpendicular height, or in such a manner as will ascertain the net superficial area.
(5) The rojections of chimney breasts, pilasters, and butts shall de measured with the walls to which they are built and reduced to the same thickness as the wall.
(5) The projections of brick, continuous cornices, mouldings, and belts shall be reduced to the thickness of walls with which they are connected.
(7) All circular, octagonal, and oriel walls to be measured on their outside circumference, or extreme length, and classed according to their respective thicknesses, in every other respect they shall be measured as stated for straight work.
(8) The daylight size of all openings to be deducted. No deduction to be malle from brick walls for stone, bond timbers, joists, lintels, fireplaces, vents, or ventilation flues, hut thin parts of walls, such as winlow bossings, wall presses, and other recesses, to be deducted from main walls, and classed accurding to thickness.
(9) Nll scuncieors and r!bats to be charged separately by the lineal foot anl classed according to their respective thicknesses and character.
(10) . Wll arches over openings and recesses to be measured by the lineal foot at their outsifle or extreme lengths for extra value over common brick walling. The thickness of arch and the height of rings to be stated, and the price to inclurle for cutting walls for arches. Skewbacks shall be enmmerat 1 .
(11) No allowance to be mate for ievelings of any kind.
(12) Cutting at angles on the various walls to be measured by the lineal foot, stating thickness.
(13) Beam fillings at wall-heads to be measured by the lineal foot, stating thickness and height.
(14) A!l corners of walls to be measured by the lineal foot for plumbinc.
(15) Forming fireplaces (not having stone jambs and lintels) shall be enumerated, and to include for scuncheons, oncome, and arch.
(16) All vents shall be measured by the lineal foot, from the botionn of the lintel to where they finish. Oncomes of fire clay shall be enumerated.
(17) Chimney stalks shall be girthed, thickness of
brick work stated, and charged by the superficial yard, and price to include for briges (divisions) and plumbing.
(18) Piers one brick and a half square and npwarls shall be measured net by the cubic yard. The forming of curners shall be charged separately by the lineal foot.
(19) Piers unter one brick and a half square slatil be measured by the lineal fout accorling to their respective thicknesses, and to inclute plmmbing corners.
(20) Rounded or monlded nosiny bricks at rybats, corners, curnices, string or belt conerses shall be measurel by the lineal foot for extra value.
(21) Miterel angles, returns, and stop ends shall be enumerated fur extra value.
(22) All pointing shall be measured by the superficial yard.
(23) \therefore Il enameled, vitrified, or other special brick facing oi walls shall L e measured net by the superficial yard 'or extra value over common brick.
(24) Rounded, nosing, or rounded brik rybats, corners, cornices, string or belt courses to be measured by the lineal foot for extra value over special brick facing.
(25) Mitered angles, returns, and stop ends shall !x enumerated for extra value.
(26) . Irches shall be measured by the lineal : at for the extra value over special facing brick at their extreme lengths, stating thickness and height, and price to melute cutting watis iur arches. Shewionciss shail bu enumerated.
(27) Vaulted and barrel arches shall be measured by
the superticial arilat the lament circmuference, or outside firth, stating full thickness of rings.
(28) . Ill cuttings at skews and groins shall be measmred by the lineal foot, ant chargel separately for labor and waste of material.
(29) Skewbacks shall be measured by the lineal foot.
(30) Stean boiler seats and flues shall be measured by t.ee cubic yarel, and to incluic for all fire brick covers and resting blocks. The boilers only shall be deducted. lirizins insite of buikers shall be enumerated.
131) Chimmey stalks for furmaces shall be measured r mol the outside face at the start of the various thicknesses, each being statel separately, by the superficial yarl, or described and taken by the lineal foot. The price in hoth cases shall inclule for phmbings.
(32) Brick paving shall be measured by the superficial yarl. Cutting at angles shall be charged by the lineal foot. Forming grutter channels in brick to be measured by the lineal foot.
(33) Sewers or flues exer ted circular or skewed, to be measurel at the extreme ponts.
(34) lipe chases buift or eut in walis, also rayges for lead latting or slates, shall be measured by the lineal foot.
35) Duoking for strapping of lined or lathed walls, be measured by the superficial yard.
(36) Cutting batt holes, perforating walls for water, gas, and drain pipes, and executing all other jobbings recuire: by joiners, plumbers, and gasfitters, shati be chargel as a separate item.
(37) Kemoving rubbish comected with this department of the work to be charged as a separate item.
(38) Furnishing, lighting, and uphohling lamps shall be charged as a separate item.
(35) An! mason work incluted under a contract for brick work shall be measured in acoorlance with Rules for Neasurement of Nason Work.
(40) Supplying water shall be included in the prices of the work.
(41) . Ill orlinary scaffohling, planks, tresses, antl gangways shall be provilel by the contractur for wright iork. but these shall be set ipp and shifted as reuuired by. the contractor for brick work: and all gabbart scaffolding shall be proviled, erectel, ard altered from time to time, by the contractor for wright work. But all cranes and crane seats, also all tackling and other appliances requisite for conducting the sork, shall be furnished by the contractor for brick work, and shall be held to be included in the prices of the work.
(42) The foregoing rules shall be applicable to the measurement of all work, whether materials or workmanship are wholly or only partially furnished by the contractors, and likewise, when partial or sub-contracts are mate for workmanship, cartase, furnishing of lime, and such like: so that the same quantities shall apply throughout the whole departments of the work.

RULES FOR MEASUREMENT OF WRIGHT WORK

(1) The general conditions (Nos. 1 to is) shall apply to all work, unless otherwise specially provided in the following Rules.
(2) The scantlings and descriptions shall be explicitly stated, and timbers exceoding ${ }^{2} 5$ feet in length shall be classed separately.
(3). All work shall be measured net, unless where allowances are specially provided for.
(4) Oblique or circular cutting on work charged net by superficial measure shall be charged by the lineal foot for waste of material and labor.
(5) Circular work shall be classed separately, and where the nature of the work requires, it shall be described as bent or wrought out of solil.
(6) All moulded returned ends, forming to circle at corners, also rounding or beveling corners of shelving, counter tops, seat boards, book boards, and other similar work, shall be enumerated.
(7) Mitres shall only be charged where stated in the Rules. Ill other miters shall not be chargeable separately, but shall be hell to be i:aeluded in the prices.
(8) All prices shall include fitting and fixing with the screws, nails, or other materials, and workmanship necessary for so doing.
(9) The charges for all temporary work, such as scaffolding, sheds, centers, and the like, shall be held to
include the adequate maintenance of the same during the currency of the work.
(10) When so specified, the wright shall furnish all scaffolding, planks and tresses required for the building. These shall be set up and shifted by the several contractors requiring them, and shall be taken down and laid on the ground by the contractor last using them. The main gangways and all supports required for the building shall be furnished and set up by the wright.
(11) ilanks for supporting embankments and trenches, for wheeling, for mixing platforms, and for bexing concrete foundations shall be specified separately.
(12) The wrights shall erect uprights and fix cross needles for plasterers' scaffolds where ceilings are above 13 feet and do not exceed 20 feet in height, but the plasterer shall cover same with planks.
(13) All gabbart scaffolds and special scaffolds for carvers and other tradesmen shall be provided, erected ar. 1 aleered from time to time by the wright. All such scafforimg shall be classel separately, and the lengths and heights requiring gablarts shall be stated.
(14) Shores or supports with cross heads, at alterations or at adjoining buildings, shall be described and enumerated.
(15) The witsht shall provile adequate and thoroughly water-tiglit sheds for hewers, tool-house and houff, and where requirel shall enclose the building and fit up two patis of planks with posts and handrail, and shall also fit up blinds at all openings. Should an office
for Clerk of Works be requred, the wright shall erect and fit up the same as described in the estimate.
(16) When so specified, the wright shall provide templates, also moulds of wood or strong zinc for the masons' use, and lay down the reguisite drawing boards, also cover stair steps and all exposed and projecting parts of mason work with rough boarding.
(17) Centers for arched openings in walls, and arches under hearths, shall be described and enumerated.
(18) Centers for barrel and groined arches shall be measured on soffit, and charged by superficial yard.
(19) Temporary boarding with bearers for concrete floors shall be measured on soffit by superficial yard.
(20) The prices for all centers and temporary boarding shall include the supports or hangers, and the cost of easing and striking.
(21) Safe lintels shall be measured by the cubic foot, and where the lengths exceed 12 feet shall be classed separately. Those in circular walls shall be measured at extremes of each piece ini classed separately. When sawn all rund they shall be classed separately.
(22) Taking delivery, carrying in, raising, setting, staying and racking iron pillars shall be enumerated. The heights and positions of the pillars shall be stated.
(23) Beams, sawn or dressed, shall be measured by the lineal foot, and scarves shall be enumerated. Where chamfers, beads, mouldings, or chamnels are required they shall be stated. Stop ends shall be enumerated. Flitch plates shall be measured by the ineai foot, and bolts shall be enumerated.
(24) Wall plates under joists and roofs, runners on and warpings in brick partitions, and warpings for linings shall be measured by the lineal foot; half checking shall be described, and included in the price.
(25) All slecper, floor and cciling joists shall be measured by the lincal foot, the distance from center to center being stated. The nrice of diagonal joists shall inclule cuiting other j jists on cach sile.
(26) Bridles shall be measured by the lincal foot, and the prices shall include covetailing, morticing and tenoning as shall be described.
(27) Solid dwangs and those formed by crose pieces shall be measured by the lineal foot, measuring across joists. Iron rods through joists shall be measured 1 y the lineal foot, and the screwed ends, muts, heads a:ol washers enumerated. The prices of rods shall include perforating and fitting.
(28) Framed timbers in bound couples, sawn or dressed, shall be measured by the lineal foot. In all cases the prices shall include dovetailing. morticing and tenoning. Where chamfers, beads, moullings or channels are required they shall be statel. Stop ends shall be cnumerated.
(29) Iron straps and bolts for bound couples shall be described and entmerated, and the prices for straps shall inclule perforating for bolts. Perforating timber for bolts, also fitting anl fixing iron work of bound connles, shall be chargel for cach couple.
(30) Purlins slall be measured by the lineal foot, the checking at main rafters and cleats supporting purlins shall be enumeraced.
(31) Common and purlin spars for roofs shall be measured by the superficial yard, the distance from center to center leeing stated. In allowance of ! inches shall be made at all cuttings, and aldel to the quantity. Labor beveling or chechins at lup and buttom shall be included in the price. The deductions at dormers, roof lights, stacks, etc., shall be calculated according to the number of battons wanting. Battons of circular roofs shall be measured by the lineal fout, and the prices shall include cutting and waste of material.
(32) Ridge boards, hlank and hip rafters, and wall plates shall be measurel by the lineal fout. The prices for pole plates shall include checking as shall be described.
(33) Sarking shall be measured by the superficial yard. An allowance of 9 inches shall be made at all cuttings and addel to the quantity, which allowance shall include supporting fillets where necessary. Doubling or tilting fillets for slates and leal shall he measured by the lineal foot. Sarking of circular roofs slall be measured net by the superficial yarl without allowance, and the prices shall include cutting and waste of material.
(34) Balks, oxterpicces, and ties shall be measured by the lineal foot, the distance from center to center being stated.

Labor beveling or checking ends shall be incluled in the price.
(35) Platform joisting, cambered joisting, and cambered pieces un juists shail be measured by the lincal foot.

(36) Platform boarding shall be measured by the superficial yard. Bottles on elges and battens for rolls shall be measured by the lineal foot.
(37) Lined solits of rouf projections under $1 ?$ inches broall shall be measured by the lineal foot, and those at or above 1: inches broal stall be measured hy the superficial yard. Nitered joints at angles of lining slall be measured by the lineal foot. Cantilerers shall be enumerated. Mouldings, facings, and skew copes shall he measured by the lineal foot, and miters on these be enmerated.
(38) Gutter hoarding shall be measure by the superficial foot, cach length being taken at its greatest breadth, and the price shall include cutting and bearers. 1 Where bearers are of a greater scantling than $21 / 2$ by 2 inches, they shall be chargel separately by the lineal foot.
(39) Spars and bearers of snow staging shall be measured by the lineal foot.
(40) Framing of continuous roof lights and cupolas shall be measured by the lineal foot. Roof lights containing less than 1: superlicial feet shall be measured by the superficial foot. . Ill frames, fillets, checis, and facings shall be measured be the lineal foot.
(41) Hatch boards and service 1 =, wi eir finishiness shall he enmerated.
(42) Boarding of grangways within roofs shall be measured by the st:perficial yard, anl bearers shall be measured by the lineal foot.
(43) Deafening-boarding shall be measured by the superficial yard, and the price shall include the fillets
supporting the boards. Joists and partitions under 9 inches thick slall not be deducted.
(44) Straps for lath on walls, semelioons, soffits and beams, also brandering for lath ceilings, and bracleting forming or enclosing beams, s':all be measured by the superficial yard, the distance fiom center to center being stated. Operiings shall be leflucted net size. Ilangers lowering ecilialds shall be measured by the lineal foot.
(45) The prices for straps and grounds shall include the duoks or hodfasts driven into stone or brick work.
(46) Standard partitions shall be measured by the superficial yard, the distances from center to center being stated. Openings shall be delucted net size. Runners, dwands and cross pieces, also framing of trusses, shall be measured by the lineal foot.
(47) Ribs forming coved ceilings and domes slall be measured by the lineal foot.
(48) Bracketing for mock arches shall be measured ly the lineal foot. Tiracketing for cornices shall be measured by the lineal fout of cornice, the sizes of bracketing and the distances from center to center being stated. The longitulinal grounds and dooks for bracketiner shall be included in the price.
(49) Dlocks for gas penlants an I brackets, also for bell-pulls, shall be emmeratel.
(50) Lath shatl be measured by the superficial yard, and partitims umder ! incles thick shall not be deducted. Lath on mancled ceilines, cowes and circlel work shall le classel separately. Jath at domes shall be measured net, without allowance. Lath and illets deafening partitions shall be measure $/$ verer standards.
(51) Flooring shall be measured by the superficial yard, and partitions under! inches thick shall not be dedticted. Traversing floors shall form : separate charge by the superficial sari. L abor butting fooring, where reversed at ends, sha! be measured by the lineal foot. Dearers or dwans for flooring at borders shall be macurel by the lincal fort. Cutting and fitting flooring at tile leartlis ani columes stall be enmerated. Hearths in floors and borders for learths shall be entmeratel.
(52) Stair steps shall he emmerated, the prices shall include treads, breasts, motildinss, brackets, and stringers or springoards. Newel posts shall be measured by the lineal foot.
(53) Bound raking and iriangular lining at stairs shall be measurel net and elassel separately. The length of oblique rails shall be taken for cutiong.
(54) Wood balusters and perlestals of stair railing shall be enume: atca. Iron balusters shall be enumerated, and their price slall inclute thin iron strap for cope.
(55) Cope of land rail sliall be measured by the lineal foot. Seroll ends with offsets shall be ennmerated, and the sizes stated.
(56) Siles and steps of trap stairs shall he measured by the lineal foot.
(5?) Linings shall be measured by the superficial yard, and where gromels are requred they shall be described along with the linitg. Walls and ingoings
 at arrises shall be measured by the limeal foot.
(58) Windows compuscl of sashes and cases shall be
measured! inches willer and : inches higher than the daylight size of each compartment, and charged by the superficial foot. The prices shall inclule pulleys, hemp corils, cast iron weirhts, iron screws for batten rols, fitting and langring. If insile facines are broader than $4^{1} 2$ inches they shall be chargel loy the lineal foot for extra value.
(59) Where pulless are of greater value than ordinary iron or brass faced ones, and the sashes are hang with materials more costly than hemp curds, these shall be specified and the winduws enmmerated for extra value. Lead weights shall be charged by the cwt. for extra value over cast iron. Brass serews and sockets for batten rods shall be enmmeratel.
(60) Windows shall be specified as with or without astragals, and as for plate, sheet or other glass, each description being classed separately.
(61) Windows having sashes divided for specially small panes shall be classel separately.
(62) Windows containing over 6 and under 12 superficial feet slatl be classed separately.
(63) Moulded ends on stiles of sashes shall be enumerated.
(64) Panclel or moulle 1 facings opposite mullions shall be measured by the lineal foot for extra value over plain facings.
(65) Framing of shop winlows and side lights, also of fan lights without astragals, shall be measured by the lincai foot. Astragais in shop winduws shall be measurced by the lineal foot.
(65) Fixed or hinged sashes and fan lights with astragals shall be measured by the superficial foot. Frames and checks shatl be measured by the lineal foot.
(67) VIt windows containing of superficial feet and under shatl be ennmeratel, and the prices shall imelute frames and checks.
(68) Windows of whatever deseription having circled or pointed tops, alow ullique and romd windows, shall be measured as if square at the extrene size and the circled or pointed tops enumerated.
(69) In all cases the number of windows, side lights, and fan lights shall be stated.
(70) Fillets securing glas insteal of putty shall be measured by the lineal foot.
(71) Where glase is charged separatel!. it shall be measured according to the "Mode for Glazier Work."
(72) Shutters with their closers and bouml linings shatl be measured be the superficial foot, soffit. being taken at extreme lengith. Shutters having more than two panels and their corresponding bound linimes shall be classed separately: Checking edges, fitting and hanging shutters and closers shall be enumeratel per window: Plain linings shall he measured by the superficial yard.
(73) Facinos and architraves slall be meacired by the lineal foot, stating the number of pairs. Staff beads, margin-stiles, copes, moulded bases at breasts and shitter checks shall be measured be the lineal foot, base blocks shal! be charged by the pair, and raggling or housing shall be epecially described.
(74) Grounds with dooks for facings and architraves
shall be included with the prices for these, but dressed and checkel grounds shall be charged separately by the lineal foot.
(75) Fixing irommongery shall be charged by enumeration of windows and shutters.
(76) Frames for doors, with fixtures, shall be measured by the lineal foot, stating the number of paits, and the prices shall include driven dooks where regured. Mouldings wrought on frames shall be described therewith.
(77) Iron wolts or bats for fixing frames shall be enumerated, and the nrices shall include boring, fitting, and lead.
(78) Dooks built into brick walls for fixing doorframes shall be enumerated.
(3) Grounds for lining in thick walls at side spposite to doors shall be me:s sured by lineal foot.
(80) \therefore doors shall be charged by the superficial foot, stating the number. Doors having more than four panels shall be classel separately.
181) Doors in two or more leaves, those prepared for glass ant those containing lese than 1: superficial feet. wall he charged separately.
(82) Doors having circled or pointed tops shall be measured as if square at the extreme sizes, and the circled or pointed tops enumerated.
(83) Beals covering tenons on edge of doors with their groove, also planted slips for glass, shall be measured by the lineal foot.
 or checks shall be measured 1), the lineal foot.
(85) Hars on back of plain duars shall be measured bs the limeal foot.
(86) Fitting an! hamginf 1 mom hall be emmeratcul.
(87) loames. ardhtaves ath dichso shat be mes.

 houring shall be spectially lescribe I.
(88) Fixing irummonery thath he warged by (mumeration of the dome. Domes han ime momise locks shatl be classe I separatels.
 and ficture monding shall lex measured by the limal

 the foregoing they shall he learibell t'erewith. Seribing

 hy the lincal foot, and when lixture are rempered they shat be aberibed therewth.

 prices shall include the nocesars lixa res.
(92) Shlues, halict- and hations $1 \because$ ballos on thate in breath shali be measurem be the superictal iont, but those ather i: indhe : in bealth sitall be measume by the lineal fuet
(93) Kidertes and fillets thatl be measured by the

(94) Sarered bed bottoms with bearers shall be
 measured by the lineal foot.
(95) [ramime of tresers ant coal boxes shat be measured by the limeal fomt. l'antry fintimes shall be - linsed sumaritul!
(96) Fops shatl he measure l hy the superfictal iont.
(97) Limmis thatl hemeasured hy the superlicial sarl, and where hromble are required they shall be lescribed therewith.
(98) Drawers shatl be ateasureif bo the sumerticial foot, stating the mamber, and the prices shatl itrelate glued blochs. Those maller ti inchees in ilepth shatl be classed separately.
(99) Spars formmar fiches shall he measured by the lineal foot.
(100) Sifips wh enfiges of lming copmg. fillets and slikers shall be measure l hy the lineal foot.
(101) Cumaces shall be measured by the lmeal foot. athl when blu chs or brachets are reguired they shall be kescribed therwith. Niters shall be emmerated.
(102) Moulds fur marble tops of basins, also framed supports for sinks, basins and water-closet seats shall be enumerated.
(103) Framing under washing tubs shall be measured by the lineal foot.
(104) Baths, sinks, cisterns and washing tubs, also seats, tops, and bouml work of water-closets and basins, shall be measured by the superficial foot.
(105) The cluset seats and basin tops shall be enumerated for the cutting and rounding of apertures, Filting and hinging covers shall be enumerated.
(106) French polishing, when charged separatel!. shall be measured by the superficial foot.
(107) Pipe covers with plain grounds shall lee measured by the lineal foot. Checked and bealed grounds shall be measured by the lineal foot.
(108) Tops of counters and tables shall be measured liy the superficial foot. Rounding and moulding edges slall be measuret hy the lineal foot. Niters at mouldings shall be enumerated.
(109) Hound fronts of comnters shall be measured by the superficial fout.
(110) Framing, moullings, skirtings aml toe facings shali be measured liy the lmeal foot. Miters at mould. ings shall be enumerated.
(111) Framing of pews, also seathoarils, bookboarls, beated ledges and foothoards shall be measured by the lineal fort.
(112) Racis of pews and passages, also fronts of galleries and pulpits, shall be measured in detail by the lineal foot, except in the case of limines and bound work, which shall be measured by the superficial foot.
(113) I Ialfets shall be enumerated.
(114) Heel and head posts of trevices, also rails and spars of racks, shall be measured ly the lineal foot.
(115) Trevee divisions dall be measured by the superficial fout, the full length of each board being taken. and the price shall inclule fitting to posts and rails. Cutteng divisions to curve at top sha! he measured hy the lineal foot.
(116) Painting on snow staging, projections of roofs and all other outside work shall be measured by the ":utial yar ju.
(117) Sitending phumbers, gasfitters, smiths and dhonset forming screwel lifting boards in floors and lmun or pipes and cranks (if brass serews and sockets are used they shall be enmerated), perforating for all pipes, gratings and cock-, also supplying and fitting bearers and blocks for gas pipes and bell wires, shall be charged as a separate item.
(118) . Ittending electric, heating or other engineers. shall be chargel as a separate item.
(119) Cleaning out flours for painters and removing rubbish from this department of work shall be charged as a separate item.
(120) The foregoing Rules shall be applicable to the measurement of all work. whether materials and workmanship are wholly or only partially furnished by the contractor, and also to all partial or sub-contracts. Any items not expressly mentioned shall be measured and descriad in conformity therewith.

RULES FOR MEASUREMENT OF GLAZIER WORK

Plate Glass

(1) Plate glass, whether polished or rough, shall be measured at its extreme size; all fractional parts of inctes Shall be charged as full inches; irresular shated phates Whall be charged as the squares r"mberl to cut them from, and classed separately. In estimating plate ghass, the sioc of each pane may be ctatel, or the eontents of the panes as not above $1, ?, 3,4, \therefore, f, i$ or i superficial feet, above \therefore to 20 feet inclusive to step : feet at a time, athl above $\because 0$ leet to step if feet at a time. The worls "polinhed plate glass" will be unkerstool as pulished on buth siles; if it be pulished on one sile and rungh on the other, to be so wescribed and chargel separately. Plates polished on one sile and ground on the wher, to be so described and charged separately. The thickness of the glass shall be stated, an l whether it is to lee of Senerican or other manufacture. The grimbing or phlishing cheres uf plate glass shall he charged he the lineal fort, stating the thickness of the grass. Forming pulished chamfers on enfers if glass shall be measured by the lineal foot, stating li.e brealth.

Sheet Glass

(2) Sheet glass shall be measurel at its extreme aize, and describel as lest, secon 1 or thirld Inality: all fractionai parts of imele: shall be chatal as full mehes: irregular shaped plates shall he chargel as the squares
required to ent them from, and classerl separately. In estimating shect glass weighing $1 \pi, \because 1$ of $?$ (i ounces per superfecial foot, the contents of each pane shall les statel as not above 11 feet, it leeing unlerstond that ino pane shall exceel in lenerth io inches, or in wisth Sif inches: abore 11 to $\because 1$ feet, the contents to be stated in steps of ? feet, the lemerth varying accorling to contents irom in to 80 inches, ant the wilth from 3 a $t o 1$ inches. In the case of shent grass weighing $3 ?, 3$ or $1: 3$ umes per superficial fout, the contents of each pate shall be stated as not above is iect, it being unlerstool that no pane shall exceer in lenertly 15 inches or in wilth it inches; aboves to 11 feet, the steps to he statel in steps of : fect, the lenerth warling accurling to contents from . 0) to 60 inches, amd the wilth from 36 to fo inches: above 14 to 19 , the contents to be stater in steps of one foot, the length varying according to contents from lit) to si. inches, and the wifth from th to to inches; all sizes abore this to be mentionel in letail for each pane, as only few sizes above $1!1$ superficial feet are mate.
(3) Crown glass shall be measurel at its extremu -ise, and lescribed as best, second, thirel, fourth, or coarse ywality: if wantel more than the wewal thickness, the estimate to state the particulitr thickness lesired, fractions to be dealt with as in sheet sliss. ln estimatfing crown glass the contents of each pane shall be stated as innder: superficial feet, and each finot thereafter up to if fect: above ; fect the size of cach pane to be mentioned sumpat: 1 :
(4) . Ill ornamental glass iwhether plate, sheet or
crown) shall be measured for glass ats alrealy deseribet. and the ornamentation thereon particularly detaikel. Colored glass when over 4 inches broarl shall also br measured for glass as alrealy lescribed by the superficial foot, but if only of or unler if inches broal by the lineal foot, stating the brealtl:, and if ornamented, besides being colored, such ornamentation shall be particularly detailed.
(5) Lattice work aml glass shall be measured together, not by the pane, but in compartments or lights; each compartment or light shall lee measured at its extreme size; and all fractional parts of itiches shall be charged as full inches. Glass in tracery heals or the like shall be classed separately, and the price shall inclule for any moulds required.

The prices for all lattice work shall inclule iron stiffening rods and copper wire fixing, also pointing and painting; the diameter of rods and their distance from each other to be specially describerl.
(6) The glass in windows having small panes each containing under : superficial feet of sheet or crown glass. and separated only by astragals, sha!l be measured within the frames but over the astragals: any fractional parts at astragals not being allowed, but the fractions at frames dealt with as already described.
(7) The cost of cutting glass to angle or circle shall be included in the price per foot; but as already provided for, such gluss shall be classed separately. All bent giass shailice ciasseri seldatciy, and the price shal inciude for any moulds required. The price of glass in all cases
shall include priming, puttying with pins, catches, and work glazing.
(8) . Ill estimates for glazing shall contain the fullowing entry for replacing and cleaning glass to be pricel and extended by the contractor as part of the agreement " Vhow for replacing all broken glass and leaviner the "ork clean and perfect at the completion of the building."
(9) Where painting is inclule with the glazing. the measure shat be the same a staring.

RULES FOR THE MEASUREMENTOF SLATER WORK
 describul. Wi quatmatio \therefore (iall he malle mitum the net

Circular an i wrifit work shall lu measurel met, and chassel sebprattely with ine bollowing allowances al.led to the fuatitity:

9 inches at cowes.
1s inches it anorle l cives.
$1^{1} \frac{1}{2}$ inches at sew

Is incles at or lina?! lip rafters.

 and the leal is whler the watm

2f inches at or linars went or chas valleys.

 and new romfs sath le feseribel amb charered as a sepa 1،1じitern.

Felt minder slates simbll be measured all same at slating,
incluting the same allowances, an I the wrerlaps to be describerl.

I'ointing rangryes shall be medsurel hy the lineal foot.
l'omang skews and tiftings shall be measurel by the lineal foot.

Tile Work

Sire, quality and gande of tiles shath he explicitly deseriber. Sll quantities shall be matle up from the net sizes and charsel hy the suterlicial yard. (ircular and nprisfit work thall alsolne matasured net and classed separatels. \quad lll ruils in tikes at chmmey stacks and sky windows maler $\because ?!$ 'superficial jeet shatl not be deducted, but no eave tile or skew tike allowane shall be given thercon.

Eave tiles shall be described ant measured by the lineal foot fur full raluc.

Skew tike shath be measured be the lineal foot for extra value user phan tiles.

Aagkel or cut thes at hif rafters and valleys shall be
 tiles.

Hip tiles, valley tiles an if wire tiles shall be measured by the lineal foot for full value.

Tile finials shall be leseribed and enmmerated.
Making, emplates int all tile work slall be charged a separate item.

Felt t:mer tiles shall be measurel ail same as tiles without an! allowances, anil werlaps to be kescribed.

Kepairing sates en tiles after all uther tradesmen are
timshed. teaning out grutters and removing rubbish, shall be charged a separate item.
 arate item.

Kough cat-ting shall lo measure luct be the superficial sarl.
 be measumed he the lincal font for evtrat labor.
(leaminer wif dressing- batl be kesoribed and charged separatcle.
l.ime and cement washing shall he measurel all as Wescribel for roush casting.

The furesomer rules shall be applicable to the measurenent of all worh, whether materials and worhmarnship) are wholly or only partially furnished by the contractor, an! a!so to all loartial or sub-contracts. Any items not mentinnel thall be measured and deseribel in conformity therewith.

RULES FOR THE MEASUREMENT OF PLUMBER WORK

Sheet lead to be measured and calculated so as to brang ont the net weirht, and charged per finndredWeight. according to the following classification:

1. I'latforms with rolls.
2. Gutters.

1II. Valleys, ridges and hip rafters.
11. Aprons, flashings and flanges.
V. Aprons stepped as for brick work.
II. Drip boxes.
VII. Domes, turrets, beliries and such like.

Extra latoor working lead 10 wood monllings to be charged separately.

Soldering pipes tw tlanges to be described and enumeratel.

Zinc on roofs to be specitiel by weight, chargel by the superficial foot, and classed similarly to lead.

All sollered juints of rine to be charged by the lineal iout.

Zinc rolls to be deseribed, stating girth anl charget hos the lineal foot. Linds and intersections to be lescribed and enmmerated, and charged for extra material and labor.

- All iron case gutters to be measured net and charged Ly the lincal font, the slips and clips to be added to the length.

Angles emls and outlet- to be lescribed and charged cematate.

The prices of all iron rones, gutters and comnections 1, incluld for all labur aml materials in bultins, jumting .n! ! lixime:
(its irungipes to be charym be the lineal foot, slips boiber alded to the lensth: Where airtight or watertieht juints are required, these to be deseribel.
. Ih: comections, such as cistem heak, wifets, bemes, shoes, and branches to be keseribed and charged separately.

Fipe ears, whether cast on or loose, to be described and chared separatels, and price to inchule fistures.

All sfecial castings to lee particularly described or shuwa ly sketel.

Matheable iron bipes tw be wescribed as fur steam, water or gas, and charged he the lineal foot, the price to melude for screwe un ls and straght couplings.

All other connections ant bents to be cmumeratel and charged separately.

Lead pines to be reseribed and charged by the lineal foot.

Bends on mpes over one and a half inch bore to be entumerated ant chargel for extra labor.
iVieel suller joints of branches to be enumerated and \therefore arged in ixtra material and labor.

Sollered siup ends of pipes to be envmerated.
Cact ar shent loal wing; where required, to be lescribel aml chargel extra over holdfasts.

Copper pipes to be described and chargel by the lineal foot.
liemis un pipes tu be emmmerated aml charged for (v)ta labor.
 lewribel av wit! or witimet contplone.
 whlimst atml hlther 11:

 and e:ntmichatel.
 leser:bel an | (rnmmerate!
 ant sizes to be staterl.

Faths, wash-han! basins fout pails, sitz baths, sinks, and wash tubs to lie luarribl, and siacs instite whether ontside or insile measure

NIf fittitges tu be semately detaiked.
All measurements sha! le net, aml the sires statel for pipes and coclis shall lo insmiediameter.

The prices shall be hell tu include for all matrials, tools, plant, carriage, ant wery other waperse remaisite for preparing, making, titum anm fixins (on the job, anl,
 local authority for havinir i^{\prime}. Water lail on, anlatendance upon the officials theient.

An itenn to be inserted in schedule for attemding sani fary atuthorities while cesting soil and other bipes, ant making good all defects to their entire satisfaction.

The foregoiner rules shall be applicable to the measurement of all work, whether materials and workmanship are wholly or only partially furnishe: by the contractor, and also to all paztial or sub-contracts. Iny items not copressly mentioned shall be measured amd leseribed in confurmity therewith.

RULES FOR THE MEASUREMENT OF PLAS'TER WORK

Deafening

Plaster, askes or comocotion formine leatomim:

 uf flowr aratat ns deafenct.

Plaster

$18 r y$ kscriptin of alaster an! cemont wow thatl

 an phater wosk at repaim, hall be feocthed and classed sparatels. The meaturement of mai: plaster shall inclule the surfate behind all mondines ant behind
 hate mot receivel a limis ing coat. The measurement of phain cement shall imolule the surfaces bethont cement mouhlings ant shis thes, hut mot those behime wool kitimes.

T'r cost of cuttine out an I preparing oll plaster for iuncti a with new work tall be incluted in the price for mow plaster at repairs withont allowance.
latches under twor supenicial dards shall not be includel with larger patcher, but shall be classed separateig, or chargei at joibing rates where tikey dio not form the subject of a special agrecment.

All work shall be measured by the superficial yard, with t'ic exception of diaper work, Keene's cement, and cement hearths, which shall be measured by the superficial iout.

All mouldings shall be measured by the lineal foot at the extrente length of each stretch, thus adding all projections.

Impust cornices, cornices run at obtuse angles, such as along camp ceilings, and all mouldings to match old work, shall be described and classed separately.

Astragal and architrave mouldings, whether run along with cornice or not, shall be charged separately.

All external, internal, obtuse or acute miters on mouldings, butt and splayed ends, also joinings with old mouldings, shall be enumerated and charged separately. The breadth and depth of all mouldings shall be stated.

Friezes, bands and rails slall be described as plain, raised, arrised, or moulled, and charged isy the lineal foot. Niters on arrised or moulded work shall be enumerated separately.

Pancled soffits of beams may be measured in detail, or describel and chargel by the lineal foot of beam.

Enrichments in mouldings shall be described and measured by the lineal foot at their net lengths, irrespective of the length of the moulling in which they occur. The miters shall be emmerated separately.

Enrichments to match oll work slall be classed separately.

Capitals, cemer ibwers, combi, ahd other omanents shall be described and emmerated.

Unless otherwise provided, all ornaments to be selected from plasterer's stock.

A sum shall be charged for each ornament specially morlelled, irrespective of the quantity used. On the payment of any moilel it shall belong to the proprietor, and must not be again used without his architect's consent.

Bases and skirtings shall be described and charged by the lineal foot. All external and internal angles shall be enumerated separately. Cement pugging behind wood skirtings shall be described and charged by the lineal foot, and if extra over plaster the same shall be stated.

No charge shall be made for internal angles at any description of plain work, except for diagonals at camp ceilings which shall be charged by the lineal foot.

External angles shall be measured by the lineal foot, lescribing whether they are relieved timber beads, rounded corners, plain arrises, splays, beads, or mouldings and whether wrought in plaster or cement work.

Miters and stops at plaster beads, splays, and mouldings shall be charged separately.

Columns, pillars and pilasters shall be measured between base and capital, fillets at bottom or top being part of shaft.

They shall either be describei and charged by number, or be measured by the superficial foot; fillets, arrises, and flutes being charged separately.

The bedding and pointing of windows shall be charged per window, those having mullions or transoms being classed separately.

Mending all damaged or broken plaster at new work,
except repairs caused by alterations, also removing rubbish and furmishing all moulds required, shall be provided for in schedules as a special slump sum item, and shall not be chargel at johbing rates.
. In seafidhiner shall be provided by the contractor for wright work: but the contractor for plaster work shall without charge set up ant shift ordinary scaffolding phanks, tresses. etc.

The prices for all work shall be held to include supplying materials, water, tools, rods, and labor necessary for its e mpletion.

The foreqoing rules shall be applicable to the measurement of all work, whether materials and workmanship are wholly or partially furmished by the contractor and also to all partial or subcontracts. Any items not expressly mentionel shall be measurel and described in conformity therewitls.

RULES FOR MEASUREMENT OF PAINTER WORK

In all cases the work shall be explicitly described, giving, where required, the sizes. girth or breadth, also stating the number of eoats and whether finished plain or in shates, in oil, that or varnish. When in more than two shades the number shall be stated.

Imitations shall have the number of coats of ground and Varuish stated.

Fine colors and es rat kinds of varnish shall be speciall! mentioned.

All quantities slall be make up from the net sizes, the extra measurement for circulars, beals and mouldings of woolwork beiner adled where they oceur.

All whas in panes exceding is inches wide and $4^{\prime \prime}$ feet superficial shatl be teducted, less an allowance of !! 2 inches for cutting romml same.

An allowance of 1^{1} inches for cutting shall be given to the more expensive work at joining of rifferent kinds of painter work where both are charged by superfcial measurement, as also to painter work at joining with © isting paper hangings.

The plain surface of ceilings shatl he measured net, ant charge! by superficial yard.

Cornices shall be charged by lineal foot. statiner sirth ans munter of shades and descrbing enrichments.

Picking in, ilfuninating and gilding enrichments in
cornices shall be charged separately by lineal foot, but space ornaments may be enumerated.

In making out estimates, the gold for hatching enrichments may be charged by the book.

Colored and goll lines shall be charged by lineal foot.
Beams, ribs and pancl mouldings on ceilings shall be charged by lineal foot as described for cornices.

Friezes and astragal moullings on ceilings will gencrally be included in girth of cornices, but on walls they shall be kept separate, anl chargel by lineal foot, as described for cornices. Center flowers and detached ceiling ornaments shall be entmerated.
licking in, illuminating and gilding shall be charged separately.

The plain surfaces of walls shall lec charged by the superficial yard.

Woodwork generally, whether bound or plain, shall be charged by the superficial yarl. I'anels or other mouldings in special colurs shall be charged by the lineal foot.

Bases, surbases, beltings, ete., when detached or painted differently from the aljoining works, shall be charged by lineal foot.

Sashes in extra small panes shall becharged separately by the supe. ficial yard.

Timbers of roof couples shall be charged separately by the superficial yard.

Mantel-pieces shall be entumeratel.
Colored bands unler \because inches broal, forming friezes, dados, stiles of pancle, or grounds for lecorations, shall be charged sparately by the lineal foot.

Colored or gold lines, imitation mouldings formed of lines, and running decorative ornaments, shall be charged by the lineal foot. Detached decorative ornaments shall be enumerated.

Circled bands and lecorations, also bands and lecorations on circled groundwork, shall be charged separately.

Circled corners or miters on imitation mouldings shall be enumerated.

Decorative work on panels, ete., may be enumerated or charged by superficial foot.

Lines for imitation asilar, marble slabs, or planked woodwork shall be described with and included in price for same.

The prices of all lines and decorative work shall include striking out.

Iron railings shall be described as plain or ornamental, and measured on both sides by the superficial yard.

Intermediate dwari baiusters shall be measured extra on both sides.

Rods and pipes shall be charged by lineal foot.
Bolt heads, washers, brackets, hinges, locks and similar items shall be enumerated. Iron beams and similar work above 18 inches in girth shall be charged by superficial yard, and up to 1 s inches in wirth by the lineal foot.

Iron columns shall be described and enmmerated.
Papers, also sizing for and hanging same, shall be described separately, and charged by the piece, but in making out estimates sizing and hanging may be charged by the net superficial jard.

Paper friezes, dados and iorimer. àso hanging same, shall be charged by lineal yard.

Canvas and scrim cloth shall be charged by superficial yard, including tacks and puiting on.

All miters shall be enmmerated.
Imitation marbles shall be charged by superficial foot.
Columms and pilasters may be leseribed and enumerated.
()utside work shall be kept separate, ams lescribed to show where ladlers are likely to be remuirel.

Wimbus shall be enmeratel.
special designs for decorative work ordered by the proprictor ur architect, and prepared ly the painter, shat! be mate a ermate tharse.
l'uttoms anl propring new work lefore painting shall mit le chargel, molese by special agreement mak before the work is hecrum. Washing, polishing, puttying, scraping or hurning off whpaints, strippins papers an! other simitar work, thall be male a separate charge, inchuling time ans materials.

Time and use of materials where reguired for covering floors, chmene-pieces. cte.. to protect them from maint spote hurins operations, shall be all extra charse.

Washing flours when ortered before commenciug or after finishing work shall bee an wetra charese

Carriage of materials to comatry jubs shall be included in prices.
 prices.

The prices shall inchude for :upplying all urdinary
plant, but special or gablert scaffolls shall be an extra charge.

A charge for obertime shall be allowed when contract work is orlered by the proprietur or architect to be done before or after the usual working hours.

The foregoing rules shall be applicable to the measurement of all work, whether materials an 1 workmanship are wholly or only partially furnislied by the contractor, an! also to all partial or sub-contracts. Any items not expressly mentioned shall be measured and described in conformit: therewith.

METHODS OF MEASURING

In the former part the rules for measuring the different kinds of artiffeers work have been given, and now we have to consider the :method of carrying them out in practice. In doing so we may state that we do not intend to touch upon the guality of materials, nor of the component parts which are comprised in their manufacture, but solely to adhere to the elueidation of the method employed in measuring the variuns departments of work.
A vast amount of valuable information of great assistance to the estimator can be had from "The Estimator's Handbook and Guide" by Mr. I'red T. Hodgson, which would be of service in pricing the various items.

In taking of the quantities from the plans, the same method slionill be carried out, as described for measuring completed work, but it is very essential that the estimators shoth have a thorongh knowledge of building construction and be able to describe minutely and explicitly every item, so that there may not be any ambiguity as to the meanin' of same.

The instruments commonly used in measuring the various works are, a 1 -iout rol, a 3 -fout rele, and a 50 -foot or 60 -foot tape line. It is necessary also to have a book tn marl bloun the measuremente-preferahty one of an oblong shape, and lined off t!as, so that it may be easily held in the hand:

FORM OF DIMENSION BOOK

$3-11$	mamentons	
	Rubble front wall.	$47-11 \times 30-0$
	Rubble projection of cornice	$4{ }^{1} 2 \times 47-0 \times 1-0$
	Rubble projection of string course.	$21 / 2 \times 47-0 \times 0-6$
	1)ed. 6 wns.each	$4-0 \times 8-0$
	1 door	$3-6 \times 6-0$

METHOD OF MEASURING MASON WORK

(1) Foundations are measured thus:

Superficial yards $=\underline{1 i n-1.11}$
Foundations of cube stones measured thus:

(2) In measuring rubble work the full thickness of wall is taken including the face work. The exceptions sun will find in rule No. : of the masum work. The following is an example how to measure a stone wall ? U" thick:

シ'U" rublle bubling of projection of moulded
course . 4 " $\times 1$ in $^{-11} \times 11.1 ;$

Deduct 1 door $1-11 \times 7-0$
2 windon $5 . .$.
 \qquad Superticial yards \qquad
The rules Nos. 3 to S in-lusive require no elucilation.
(9) Principal stones are measured thus:

1 principal stone
$2-10 \times 1-6 \times 1-1=4-3$
1 principal stone $.3-11 \times 1-8 \times 1-1==.-11$

Cubic feet $1: 3$
Stones more than 24 inches in breadth and the breadth of which exceete twice the thickness, shall be measured by the stiperficial foot and classel accorling to their thickness and contents, thus:
12 " stone in arch over door...... $\because-1 \times 2-2=$ superficial feet $4-4$
Stones other than these two classes, and above 14 inches by 9 inches, shall be measured by the lineal foot.
 according to length where it exceeds $\&$ feet, thus: 15×10 stones in $4^{\prime} 6^{\prime \prime}$ lengths..... 3 each, $4-6=$ lineal feet $13-6$

Fig. 5

(22) Polished ashlar new bi Ishlar newel 1 I'olinhed hewing on ashlar newel, 2,.,
-asured thus:
-superficial feet 1 On- 0
=su!roticlal feet "inl-u
(23) I'a ement oo be measured thus:

Cutting at anglo
$7-4 \times 3-11=:-110$
lineal feet (i-0

ORDER OF ARRANGEMENT
Nute.- L : estimates in following order, viz.:
The excavator, mason, brick, iron and steel works, see page 64 .

The carpenter and joiner works nage 1 no.
Slater work, see page 100.
Lather and plaster works, page 1 U1.

Plumber work, page 103.
Tile linings, page 10 of.
Painter work, pase 107.
Methods of measuring, page is.
Method of measuring masm work, page 6in.
Method of measuring brick work, page $i:$
Method of measuring earpenter and joiner work, page $8 ?$

Method of measuring glazier work, page ! ! :
Method of measuring slater work, page 9 i.
Nethod of measuring plaster work, page ! $\%$.
Method of measuring plumber work, page 11:3.
Method of measuring painter work, page $16 i$.
Form of measurement for mason and brick works, etc., page 110 .

Form of measurement for plaster work, page 13%.
Form of measurement for plumber work, page $1: 3 \%$.
Form of measurement for the lining, page $14 ?$.
Form of measurement for painter work, pase 1.43.
Notes on various works, page 1.7%.
Forms in note book, page 16 .
The following is an example of making out an estimate for the excavator, mason, brick, irom and steel works of temements and shops.

Excavations and Foundations

Excawating earth in area and trenches for foundations, the stuff to be catted away, cubic yarts \qquad
\qquad
Foumdations under outer walls and sables, of concrete, compused of iour parts chatate broken to pass through a $1 \frac{1}{2}$-inch mesh,
to one part sharp sand and one part best freshl l'ortland cententcubic yards 144-0-0
Brick work in foundations, thoroughly well packed and grouted with thin lime mortar, cubic yards

40-0-0
liammer dressed stone foumdations of iron pillars, $3^{\prime} 0^{\prime \prime}$ square and $14^{\prime \prime}$ thick, bedled in lime mortar cubic feet

94-6
Hammer dressed stone foundations of iron columns, average $3^{\prime}-0^{\prime \prime}-2^{\prime}-()^{\prime \prime}$ and $14^{\prime \prime}$ thick, bedded in lime mortarcubic feet 12.0 Droved hewing on top of foumdations, sq. feet $11 \overline{7}-\overline{0}$ Bedded sole-plates of 9 iron pillars in pure Portland cement grout.

Rubble seats under 6 hearths, each about $2^{\prime \prime} 0^{\prime \prime}$ high.
Building temporary office for clerk of works, having !" brick walls lu'd" square inside, chimney stack, fireplace and grate, and supplying coals complete.

Walls to Level of Surface

Nore. -The walls are measured net for rubble work, the daylight size of openings, also thin parts of walls (except at vents) deducted, the hewn work and cube stones charged separately for extra value unless where mentioned to include building.
$2^{\prime \prime \prime \prime}$ Rubble walls of large size material, built in resular and level courses with l'ortand cement, having throngh hond headers in every course not more than ${ }^{-1}$ apa square yards
l'10" Rubble wall north gable of large size material, built in regular and level courses with Portland cement, having through bond headers in every course not more than : apart..................................square yards in-ll-1 Hammer dressed out and inbond corners of back wall in stones $2 t " l o n g$ and $12 "$ thick on head lineal feet
14" Frenstone pavement damp conrse, all sawn on joints and laid in breadths, the full thickines of walls on bed of Portland cement mortar including leveling walls, square gards.
|14-11-11
1/4" Freestone pavement damp course, on dwarf partitions $9 "$ broad . lineal feet $2: 3+-1$

Piers of Shop Front

Cube stone piers，well dressed on beds and joints，in－ cludher building cubie fect \qquad － 16×-0
Striped hewing on sides ．．．．．．．．．．．．．．．．．．．．square feet
Checked hewing on sites \qquad 1к－11
Polishel plain hewing ．．．．．．．．．．．．．．．．．．．．．．．．．．．．stpare feet 1：21．11
Labor working polinhed splays $3^{\prime \prime}$ broat on bises．lineal ft ${ }^{\text {b }}$ ．＂ Extra for ${ }^{\text {a miters un splays }}$
Extra for woubling under trusies at top of shafts，includ－ int cxira size of stonc and itwing ．．．．．．．．．．lincal feet \qquad 8－11 Labor whther fohlished monhled amb thated trusses，as per dra،inge
Labor ratising abd setting if cast iron donable columns， each about $1:$ feet hish，of shap front
Labor raising and setting a circular pillars，each la fect high，with sole and top plates

Labor raising and laying cast aron L and \perp beans lin．ft． $11 /-11$ Labor rasing and layins cast iron box－beams，lin．ft．．．．． \qquad 2 | 11 |
| :---: |

Rubble Walls above Surface Level

Q＇u＂rublle front wall 2＂い＂rublle back wall l＇lu＂rubble north gable ab we brickwork，superticial gels lati－1
 $1 \because 3^{\prime \prime}$ rublile pediments on trone wall ．．．supericial yards I？ $11-1$ f0＂rublle walls of oriels and at window bosinass and

1：xtra ior hammer ifericel－quared rubble forming berolel fricze over shon front ．．．．．．．．supericial yaris Hammer dressed scuntions of window hossines in ：＇v＇ and 「＂1 ${ }^{\text {＂walls．．．．}}$ superficial yards 214－（0．0 superlicial yards exan 11－11
\qquad
\qquad
\qquad
 walls
Hammer trewed uperames at orichs \qquad lineal foret \qquad （i． 11 limeal neet \qquad引に！ Hammer fremol symare schations of wall breser in
 Lalmor tying end of 1 ＂ 6 ＂wall into $\mathrm{R}^{\prime \prime}$ brick wall，hmeal feet \qquad Hi．1＂

Wall Dressings

C：te Etone romice neer shopmont in tones 3 3t＂broad
 Polished plan hewng on beds and joint ．．．superficial feet lix－in

Polished moulded liewing nil beds and joints，superficial ft．188．0
Labor mitering and returning upper and lower members of cornice at top of f stome piers
 $11^{\prime \prime}$ ．Ineall feet．
lti＂$\times 1^{\prime \prime}$ polished plan sill comree serving as window sill girding $31^{\prime \prime}$ in stones for＂long ．．．．．．lineal feet 19 ． 1
C．vera material and laior forming of somicireled and moulded pediments catch ：？？$\times 12$＂on ince over trusses
Labor perforating cule stome for combucturs ．lineal fer－iz－1
$14 " \times 6^{\prime \prime}$ polishad monded sill comrse，girding $1 \mathrm{t}^{\prime \prime}$ ，lineal ft ．＿iven
1－＂$\times 6^{\prime}$ polished moulded sill course，serving at window

labor perforather，mitering and returnines sha course at 4 conlutetors
Bxtra for 2 circled pieces momlded sill courne including miters as per drawing \qquad
1 polished moulded stones， $0^{\prime \prime} \times 15 \%$ on face，and pro－ jecting $\mathrm{t}^{\prime \prime}$ ，perforated，mitered and returned round con－ ductors
Hammer drebed stone cornice at wall head $10^{\prime \prime}$ thick and 33＂broarl，including buiding．．．．．．．．．．．superncial fect \qquad $75 \cdot 1$
Hammer dressed stone cornice at wall head lo＂thick II＂broad，includin：building．．．．．．．．．．．superticial fect F\＆－n
Polished moulled hewing on same．．．．．．．．superficial feet ixa．．．
\because plain stop ends
41 miters of monliled cornice
if polished projecting stones at ends of cornice at sides of pediments，having peended face，includins material， hewing and buhlling as per drawing
Labor cutting gutter in cornice．．．．．．．．．．．．．．．．．．．．．．．．．．． 12－11
Labor periorating 4 drip holes in 10 ＂cornice， 4 each
Wabbed conrses of iront wall and north gable， $1 ;$＂$w 1$ bed and two colstes in height of each rybat，havinc ？2＂ droved matsin round each otome，with the necesoary headers
superncial feet or－on．n
Babhed out and inband corners in stones mot less thati

Dressings of Windows

Droved out and inhand back filleted rohats, in stones not
 having neatly dabbed tails and bead moulding on arris, girding in all : $\mathfrak{B}^{\prime \prime \prime}$, the price to inchate for hammer dressed beveled inside seantions lineal feet $1: 3 " \times 14 "$ droved out and inhand hath hileted lintels, with neatly dabbed taik and beal mowhing on arris, in single stones, from (i"t" tw bit" long lineal feet $13^{\prime \prime} \times 10^{\prime \prime}$ droved out and inbind hack filleted lintels, with frieze and astragal $\mathrm{K"}$ deep in all........... . . 1 neal feet Labor working 18 returns of moulded lintels for rybats1R-1) Labor working 9 returni for domble moulded mullions Labor working 12 polished plain ends of back filleted lintels, each projectins whe inch.... Labor working 6 polished monhed and mitered lintels li"× $\mathbf{i}^{\prime \prime}$ polished moulded sills in stones about $\mathfrak{i}^{\prime} t^{\prime \prime}$ long lincal feet
Labor working 6 polished, moulded and mitered return ends of sills.

${ }^{\prime \prime} \times$ if" $^{\prime \prime}$ polishad mullions hewn all round and having bead moulding on both arrises 111 stones from $6^{\prime \prime} 3^{\prime \prime}$ to $6^{\prime \prime} 9^{\prime \prime}$ long, including buihling hncal feet (ill-1) :3 polished moulder cornices e:nch | 6 |
| :--- | projecting 6 inches in one stome, returnel both ends

3 polished moulded cornices cath $\mathfrak{i}^{\prime!}$ " lons, and $i^{\prime \prime}$ thick, projecting $\mathrm{i}_{\mathrm{in}} \mathrm{m}$ les in one stonc. returned beth ends. .
3 polinhed moulded and serolled coronas, each $6^{\prime} 0^{\prime \prime} \times 3^{\prime} v^{\prime \prime}$ on face, and $10^{\prime \prime}$ on hed, in one stone and having monlded and pyramidical ornament in center as per drawing
Carving in 12 " letters "189:" on whe stone, including extra size of stone

Oriel Windows

$16^{\prime \prime} \times 15{ }^{\prime \prime}$ polished plain sill coursc. girltug $31 "$, lineal feet bifin
 48 miters of sill course
Labor clecking sill course for iron \perp beams, and
grouting with lortland ecment lineal feet (ifi-1)
Polished moulded cornices, girding $20{ }^{\prime \prime} \ldots .$. . . . lineal feet $102-0$

24 mitres on cornices
$13 " \times 12 "$ polished mombled lintels，girding $24 "$ ．．lineal feet $198-0$ labor working fez returns of moulded lintels for rybats and mullions
1：＂polished ashlar darlos．．．．．．．．．．．．．．．．．．．．square feet 336－0
Polished out and inband projected jambs in stones $30^{\prime \prime} \times 12^{\prime \prime}$ and $0^{\prime \prime} \times 1.0^{\prime \prime}$ alternately，with bead moulding on arris，girding in all $30^{\prime \prime}$ lineal feet 237－0
$16 " \times 1 \mathbf{z}^{\prime \prime}$ polished angular mullions in stones from $60^{\prime \prime} 3^{\prime \prime}$ to ${ }^{4} i^{\prime!}$＂long．girding $: 31$＂，with bead moulding on both arrises
．lineal feet
237.0

Dressings of Back Wall，North Gable and Return

Extra for outside wi back wall，etc．，being of fairly squared work－no stones les；than $3^{\prime \prime}$ high and all stones at least twice their height in length，fairly dressed where exposed，with level beds and plumb joints，trowel pointed while being built，and the joints to le afterwards raked out at least one inch deep， pointed with Arden lime and key drawn－openings and dress－ ings dedncted．
N．B．－The pointing to be done at such time as the en－ gineer may appoint and the price to include for scalfolding \qquad 350．0－0
Out and inbond corners in $\left.w^{\prime \prime \prime}\right)^{\prime \prime}$ and $l^{\prime}\| \|^{\prime \prime}$ walls，having $21 / 2 "$ droved margins and neatly lammer dressed tails，

Out and inband corners in $l^{\prime} 6{ }^{\prime \prime}$ wall，having $2 \frac{1}{2 \prime \prime}$ droved margins and neatly hammer dressed tails，the stones not less thin $\mathbf{2 0}^{0 \prime \prime} \times 10^{\prime \prime}$ ．．．．．．．．．．．．．linteal feet， \qquad
$1 i^{\prime \prime} \times 6$＂ Iroved projected plinth at lack wall head，lineal ft ．
Droved out aul inhand ryhits in stones not less than
 tails，price to include for hammer ifessed beveled

Droved out and inband rybats in stones not less than $\mathbf{S}^{\prime \prime \prime} \times 10^{\prime \prime}$ ，withき＇气＂margins and neatly hammer dressed tails，price to include for hammer dressed beveled in－ side scurcheons in $1^{\prime}(6$＂wall．．．．．．．．．．．．．．．．．．．．．．．lineal feet $1: 3^{\prime \prime} \times 10^{\prime \prime}$ droved checked lintels with $\because, z^{\prime \prime}$ margins and neatly dressed tails ．．．．．．．．．．．．．．．．．．．．．lineal feetlineal feet

70 BUILDERS AND（ONTRACTORS GLIDE
 Brick Work

$18^{\prime \prime}$ brick gables with vents forneed in brickwork （measured separately）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．are yards
 ［4＂brick back wall at statcanco．．．．．．．．．．．square yards シ2（1）－1）－1） ！）＂brick wall，of back whss，built with l＇ortand

 at ends at beds at fer plan．
Forming checks and phombines sombebont in ！＂walls． lineal feet
Phmbing angles of wall，
ineal foet
Labor cutting ド＂gable tops at angle including for loss of material ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．lincal fect
Labor cutting It＂gable tope at ande induding for low of material ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．lineal fecet
Labor cutting ！＂gable tup at am：le，influtiner for lus of material ．．．lineal foet
Extra for rounded brick at angle lmeal foct
Vents in brick gable－s．stmonthy plantorm with haircal lime．． lm ．
！＂brick buidling walls of ah prt，punterd with arden lime and key drawn wn outside amd thash pointed

Cutting brick at skews．．．．．．．．．．．．．．．．．．．．．．．．．．．．lineal feet
Plumbing plain seumeheons ！ 4 broad．．．．．．．．．lineal feet
Ihambing external angles．．．．．．．．．．．．．．．．．．．．．．．．．lincel feet
Slate slab breast of ash pit，inchang builhing，super．ft．
$\frac{21-n-0}{1-11}$
$1 \leq-4$
11－9
－ $2(1-1)$

Dressings of Brick Walls

Facing wall of hack wings with selected white facing brick having headers，neatly ponted with Portland cement and key draw：in joints on wutside（for extra value over common brick）．．．．．．．．．．．superncial yarcis \qquad
Extra for forming semi circular arch tups of 3 openings each $3^{\prime} 0^{\prime \prime}$ span daylight in ！ $9^{\prime \prime}$ brick walls．．．
11 " $\times 6$ " polished plain projected plinth on wall heads (including laying) $60-0$
lodibled plain hewing ond ends of plinth $11 " \grave{0^{\prime \prime}}$ pulished projected sills to windows. . lineal feet $35-0$
$11^{\prime \prime} \times 0^{\prime \prime}$ polished projected sills to windo. : hewn oninner vige. neal feet12"> $9^{" p}$ plisiked clacked lintels......... ineal feet$12 " \times!$ " polished checked lintels, hewn on ner edge,lincal feet.:138-0
$12^{\prime \prime} \times 9^{\prime \prime}$ polished cliecked semi-circled arclied lintels,53-0135-033-0
lineal feet
Chimney Stacks, Skews, etc.
Polished ashlar chimmey stacks on gables (price toinclule building) girderl...............superticial feetL.abor working splay on ashlar................... H .Labor working 5 be pended stopends of anhlar.h.abor working astragal moukling on ashlar, includingfur extra size uf stunc......................... . . . $i n n e a l$ feetLabor working 22 miters of same["" $\times 6^{\prime \prime}$ pohshed moulded plinth, girding $\mathfrak{l a}^{2}$ ", includinglayinglineal feet$\left.138_{0}\right)-10$
$-4 \geq 3-11$
$112-10$
$\qquad$$11: 330$
\square laying....
22 miters of plintl. \qquad

- $4^{\prime \prime} \times 10^{\prime \prime}$ polished, mouded stone copes as per plan, dressed well on beds and joints, inciuding hewing and buildine
lineal feet

78.

Polisited, moulded and mitered hewing it return ends of stone copes
habor cufting vents througli copes and socketing copes for ioclamuey pots.
$12 " \times\left({ }^{\prime \prime}\right.$ polished, moulded and beveled label moulding, zirding $14^{\prime \prime}$, incluting linyug.eal feet
12" \times li" polished, moulded and beveled circular label moulding. hineal feet
1 polished projecting stome panel $\mathrm{T}^{\prime} 0$ " broad and $8^{\prime} 6$ " high on extremes, the conter part ieft rough for carver and having circled upper part, including cutting for ant hiserilis pand into ioutom of chimncy slack, per drawing.
Carving on same as per drawing \qquad
\qquad

9 polished and moulded stone trusses under panel and bottom of chimney stalk, including building, as per drawing
8 polished and moulded steps with phlshed hreasts on north gable, as per drawing.
2 polished and moulded terminalio buorth gable as per !rawing
21 dabbed crow steps, arcate $15 " \times 12^{\prime \prime}$ and $21 "$ long, having $\frac{1}{2}$ droved margin all around, built with lortland cement including butding) as per drawing.... \therefore dabled crow steps, average $15 " \times 12^{\prime \prime}$:all $3: 3 "$ long, having ${ }^{\prime 2}$ " drowod margin all around, huilt with I'ortland cement (including building) as per drawing
(i dabled corbels each 10$)^{\prime \prime} \times 1 \underline{U}^{\prime \prime}$ and 30 " iong, with moulded ends and plain sidu (including building), as per drawing
: polished ornmmental finials each 12 " spuare at base and $39^{\prime \prime}$ high in all, with iron lowel and cement, including buiding, as per drawing.
$12 " \times 6$ " polished ${ }^{\prime \prime}$ ain skews on main gables (including laying) ..ncal feet
$9 " \times 6$ " polished plain skews on side walls uf wings (including laying) lnneal feet $^{\text {f }}$
6 polished club skews on main gables, having moulded outline on face (including layink)
6 polished club) skews on sile walls uf wings (including laying)
Extra for $9^{\prime \prime} \times 0^{\prime \prime}$ stone skews wf wings, heing kneed on top and hollowed on under side, as per drawinge, b each

Chimney Jambs, Vents and Hearths

18 sets ham: ier dressed covins and lintels for room fireplaces in brick gables, including wheomes
33 pair polished kitchen chimney jamhs each $18^{\prime \prime} \times 0^{\prime \prime}$ and t'u' $^{\prime \prime}$ long.
33 polished lintels each $12^{\prime \prime \times} \times 1 n^{\prime \prime}$ and is long, hewn on both ends, and having lammer drened oncomes....
 with Iortland cement............... 18 each \qquad $41 / 2$ Brick trimmer arches unker kitchen hearths, built with Portland cement.
.27 each \qquad
$9^{\prime \prime}$ fire clay vent linings, grouted all ronnd with lime
mortar, in stone wall.......................... . . lineal feet
$25^{\prime \prime \prime}$ polished stone heartbs of the best quality, laid on a good bed of limesuperticial feet

Stairs and Pavement

3" polished stone platts in shop dours, latid in lime, superficial feet.
4×-10
Labor working polished chamfered edge of platts. lineal feet $24-1$
24 polished, moulded stone steps of stairs each fo" long, clear of \because rests
12 polished winding steps of tairs from fin" to "s $1+1$ " long, clear of "2 rests
gox polisher, moubled stone steps eath fa" long, clear of ${ }^{2}$ rests (rounded on back)
27 polished moulded stone steps each $f^{\prime \prime \prime \prime}$ long, clear of 1 rest, returned on 1 end (rounded on back).....
Brick building under 3 first steps of stairs (if reguired) 3 each
1.) polished, moulded corbels each $1 \times{ }^{\prime \prime} \times \times^{\prime \prime} \times 0^{\prime \prime}$ under beams.
$11^{\prime \prime}$ polished perpend datos of shop windows and silelights, incluting building, in stones from $3^{\prime} 00^{\prime \prime}$ of $0^{\circ} 0^{\prime \prime}$ long and l'u" deep........................ . supertecial feet
Labor cutting polished perpemd dados to slope of ground, lineal feet
Labor cutting and forming miters at 13 angles
Single coat untimshed asphat paving having f" buttoming of freestone shivers, well leat down, under wood floors.
superficial sards
$12 " \times 8$ " new $d r e s s e d$ freestome borller, laid on that, including laying . lincal feet
l'aving fromt fontpath and hick e. :rts with concrete : " thick, composed of four parts new, clean, itard burned brick, hroken to pass through a 1 " " ring, one part clean, sharp gravel sand, and one part fresh Portland cement (all by measure) thoroughly mixed by being turned over twice hefore and twace after leing watered with a water hose, and finished with granitic $1 \frac{1}{2}$ " tirick, in the proportion of equal parts
of crushed, sifted, and fincly ground granite aul lortand cement, rolled with roller. . superticial yards ithe-1 -1 laving water closets, lavatories and satilerios also stair lamdmos, closets, etc., with contrete in" thic!. composed oi four parts new, clean, hard burnel brick, brokern to pass through a 11 :" ratag, one part
 cement (all by measure) therothrlaty mivel by heing turned over twice before athl twice ifter being watered with a water lome and finsised with gramitic 1 ! "thick in the proporton of equal parts of ermshed. sifted, and tinely grommd gramite and l'urblathel cement, rolled with roller........... superticial sardis
laving with concrete f" thick on fouf of ash pits, combposed on four parts new, (l-all, hard burmel brick, broken to pate throush a tre" ring. whe part chean, sharp gravel samb, athe whe part fresti forflat cement (all hy me:ture) thormbly mi eal her bing turned ower twice beiore ant twite atter being watered with a water home. imbl limished 1 ith grathitic $1^{1 / 2 "}$ thick, in tie proportant ui empal parts of crashed, sifted, amb fincly ghomel gramite and lort land cement, rolled with roller, inchander forming

Labor forming ghtters in parbry.......... . lineal icet Lablur forming 6 hasms in paritus.
L.abur forming moukled edterin star landings, lincal feet 2" scennd class freestone parmant, satwi wh elges and jointed with lortatal coment. covering drains, superficial yards.

7-11-1)
$\because\{i j-11$
\qquad 1.7.3-11

Cutting raggles $4^{\prime} z^{\prime \prime} \times 1^{\prime \prime}$ in brick walls for concrete paving.. . lincalfect

Iron and Steel Works

Nutr.-All iron work to be printed whe cont red lead before being fitted up and inclusded in price for same
if coet iron double colmms of shap ironts, per draw-
\qquad

(ast iron Land \perp beamo, p.r drawnge, hundredweights ('ast iron box beans, per drawings hundredweights
$\begin{array}{r}1: 1 \theta-0 \\ -8(i-1)-9 \\ \hline 8.5-0 \\ \hline\end{array}$

10", ai" rolled steel beams weighing lo^{2} pombls per foot,

1:" \times 倍" rolled sted beams weighing 42 pounds per font,

"' cil" rolicol stecl beams weighing : $\because: 3$ pound per foot,
 (i" " - " rolled steel beams weighing d:b'z pounds per foot, Sincal feret
 fowt, in lengths unler ln'................... . . lancal feet \therefore ": 3 " rolled steed beams weighins ll pounds per foot,

 $\therefore " 1$ " rolled irnil beams weighing 23 pounds per

$1 " X \because$ " Tolled iron beans weighing 12 pomnds per lineal

Labur raising and living rolled ate. 1 heams weighing 42 puunts per line:al foot lineal feet
Labur raising and laying rolled ofed beams weighing ta pounds per lineal fout... lincal feet Lat if ratising and lathas roil i stere beams weighing ais pomals per lincal fort lincal feet
Labor ratsing and laying rolled teel beams weighing 28 pounds: r lineal foot lineal feet
l.al, r raismin and laying wolled steel beams weighing apounds per lineal foot................. . . lineal feet
La raning and laving rolled steel beans weighing 1. promali per lineal foot lineal fect

Labor raining and laying rolled steel beams weighing ${ }^{1}$ pura!s p er lincal fontincal feet
Latour ratsing and laying $i^{\prime \prime} \times 6^{\prime \prime} \times{ }^{\prime},{ }^{\prime \prime}$ | ees.... lineal feet

Labor raishe and layine rolled irnn beams weighing

Labor raising and laying rolled irom beams wedghing 12 pounds per foot . lineal feet
(17-1) 23-1)

204-11
1120
1.65 .11
\qquad
Kij-11
(i:3.11 T: -11.11 311.11

24:3-11
:311-1)
-!!: 1
1.7i-11
112.11
\qquad K. 11

Ni-11

1i:3-11
$\frac{1 \div 10-11}{11-11}$
:311-11
243-11
$1^{\prime \prime}$ machine stone coddings, sawn on edges, umber

7_{χ} " malleable iron circular stonchioni of grommd tlat windows, rum into stone at top and buttom whth lead, laneal feet.

2゙る-0
(iill 19
$18-10$
21 " " $\times 1 / 2$ " malleable iron that crose hars perforated fur stanchion - and rum in with lead.......... . lineal feet (i) iron cluthes poles for court, each -'l" high with iron cross heads fur rope. 11 Inding fitting in with leal into stone

Conditions

The whole materials to be of the very best quality, and the work done in the most complete and tralemanlike manner ${ }^{(1,}$ the entire satisfaction and directions of the proprietor and engineer, or any person appointed as inspector, who shall at aid times be entitled to examine the work, and breiect ar cause w be rejected all bad or defective materials or workmanship, but shch examination shall in no way dimmash, affect or impar the obligations of the contractur as resards the due and fouper exceution of the work in all respect The proprietor and engineer reserve full power the make aiterations on the f° is or mode of executing the work, and th increase, lessen altoge her omit any such portions of the worti as may be though proper.

The work will be measured when fininlied, and whether more or less than mow estimated whll he valued at the rates contained in this estimate, or others in strict proportion thereto, and in proportion to the slump sum of tie Tender The prices for extra work to which schedule rates do, not apply to be revised and, if necessary, corrected by the measurer.

The contractor to pay half expense of schedules and measurements.

The proprictor man not accept the lowest of any offer.

Tender

Thomas simath, lasi.
SIR:-1 hereby offer to execute the excavator, mason, brick, irn!! an! stee! works of tomements and shops which you propose to erect in Fifth avenue, according to plans therenf by Mr. James Thomson, civil engineer, now slown. in conformity with, and to the extent of the foregoing estimate for the sum of...............

METHOD OF MEASURING BRICK WORK.

(1) Foundations measured thus

Brick work in foundation (taking aserasp contr (1) 2 each
$11-\mathrm{i} \times 2-11 \times 111=$ culuc sards

Fig. 6.

(2) Walls to be classed according to number of bricks in thickness, thus:

$$
1 x^{\prime \prime}, 14^{\prime \prime}, 9^{\prime \prime} \text { or } 11_{2}^{\prime \prime} \text { thick. }
$$

(5 and 6) $11^{\prime \prime}$ brick wall $1 \times-10 \times 10-0$
$14^{\prime \prime}$ brack ...nluction of butt-........... 2 each $42 \times 2.0 \times 10-10$

Superlicial yards.

(8) Deduct daynent size of all through openings from waits and charge so ateiy phaming souncheons (or sides), stating thickness an I height by lineal foot.
is LULLDEKS' NN1) (ONTR.ICTORS' GUIDE

Fig. 8.

(9) I'lumbing scumcheons and forming chectis of ondungs.
2 cach
6-0 $30-11 \times 2(1-0=606$

18 " brick wall
Deduct 1 opening $\therefore-11 \times 5-11=1-6-0$

Gothic arch over uproning.

1 upening $\therefore-11>\therefore-11=1-(i-11$

1 opening $\therefore-11 \times 7-1 i \times 2-1-1 ; \quad 7-1-11$ superticial yards 59-5-5

In measuring gothic arched top take two-thirds for height-thus I' $^{\prime \prime}$ " high irom spring of arch would be $\stackrel{2}{ }{ }^{\prime} s^{\prime \prime}$.

In measurius semi-circle arches multiply half diameter by same, thus:

Sermi of :3-11 dia.

$$
\begin{aligned}
& \text { 1-6 } \\
& \text { 1-1i multiply } \\
& \text { 1-1i } \\
& 10!\text { add } \\
& \because: 3 \\
& \frac{3}{6-5} \text { multioly } \\
& \begin{array}{l}
\frac{0-4}{} \text { add } \\
\frac{7-1}{} \text { area wi wrele } \\
3^{\prime \prime}-6^{\prime \prime} \text { area of semin curcle }
\end{array}
\end{aligned}
$$

And multiply by 3h. Area of semi circle, superficial fect.
Flumbing scumchern and forming checks of neroings,
4 each
$\pi-11=20-0$
2each
$-7-15=150$
Luneal feet $35-0$

Forming Gothic arch over 1 opening, one ring deep and $41 / 2^{\prime \prime}$ thick lineal feet !-
Furming semi-circular arch over 1 upening, one ring deep, and f^{\prime} 'z" thick lineal feet $10-1 \mathrm{f}$
Forming 1 that agmental arch over 1 opening, one ring deep and $41 / 2^{\prime \prime}$ thick............................ . . lineal feet 4-1)
(17) 9" brick work of chimney stalk

Fig. 9.

(30) Steam boiler seats and tlues shall be measured by the cubic sard.

Disick building of boiler seat................ $25-n \times 6-0 \times 8-0$
Deduct boiler................................. . . . $28-11 \times(6-11)$ dia.
Cubic yards \qquad

F1G. 10 .

Chimney stalks for furnaces to be measured round the outside face at the start of the various thicknesses, each being statel sparately by the superficial yar! or described and taken he the lineal fort.

First Instance

Second Instance
IR" brick building of bottom part of circular chmmey stalk, average $4 x^{\prime}$ in circumference. Ineal feet $30-10$

METHOD OF MEASURING CARPENTER AND JOINER WORK.

(21) Safelintel over 1 doork सux! 天́ti. .

 (i' $11^{\prime \prime} \times 11^{\prime \prime},^{\prime}$
cubic lect [11-1]
(22) Tahing deliwery, carring in, rating, staying, and

levolls, monhliner athl flamels measured similar ôo chatibiers.
1' \because " $\|^{\prime \prime}$ wall plates under junts, meludug half checking at curnctrö c゙acl!

110

li $11=$
$12-0$

28) Framed timbers in bound couples (macludar dose tating, morticms, and tenoning), 2 each........ . $11-1 \mid=$ Working chanfers. beatio or momblings, 2 each ...|l- 1 = \because iron itraps anl bulin for fommb conples
\qquad $20-11$ -211.11 Ferforating thmbers for th hith
 $\because " \times=$ purlins (imblulatg checking at man rafters), 10

 Deduct at pediment.... $=6-1 \times \times-14$ Superlicial yards
(32) $1^{\prime \prime} \times 1 \frac{1}{2}$ " ridgebuard of roof|meal lect 3 : 11 Flank plates at perliment, 2 cach $1:-4=$ 3 311-11

(33) ss" sarking on ronf (samm funtity as sparmeasurement
Sz" satkitug of "troular ranf .. 15.10×10.0
(34) Balks are the timbers binding the spars, and the oxterpieces between the spars and ceiling joists.

Fig. 14.
(35) ! " placed $1 \mathrm{~K}^{\prime \prime}$ t" énters. 11 each 0 - 1111
(36) Boardne ontup of platform jobisting li-10× K-0 suguthetal yarls
$1: 3: 311$
Working bothle on ealp
......... :mal luet lic.1
"á" lining on sothit of rowi propec -
tion lo" hrwat.... Ameal foet lön 11 Miters at angle:- 4 each I :
andilever matiet romp projec
tions.
$\mathbf{i n}^{\prime \prime} \times 5$ §" facmg on ronf projex

\& miters on ronf projection
(38) (intter boarding in valicys between roofs, thus:-

Gutter boralmg amd bearel
…34-1+x|11 . .-7.11

Gutter hoarding and heate - what

Superticial yard in in

 1)-11 $t^{\prime \prime}:$:". top rail oi rowf hight (mchuhat; cheching for

 (j -1). lineal feet

(41) 2 hatch!watd with thanluht - wit row \because service boris.

42) se" boarding insiute rown	12-11. 111
	111011

Deduct at -tairnpen
if 11 . 3.11
12911×119

$$
1 ; 4 \cdot 11 \times 111.0
$$

$\therefore-11 \times(\mathrm{i}-11$

An $1 \times: 3-4=$ - 1 p.rficial yards $12.0-0$
 45) The pricen for traps and erounds shall inchade the

 place 11 " 10 center-
$1: 3=11 \times!1-11=132-0-0$ Dedinct 3 doons.
 -uperticial yards $1: 2$ "- 11
 Deduct at door 1 ti
l.tucal fret ?!11.11

 3＂cath：＂＂lameal beet ！ 11 －-11

Sonl：\quad komeritulinal grommis and leoks for fraterems－If heincluled in the price

Add 1.11 wals
 ：3र（i－（1）－1）

Adr ont wa
「ごリーリーリ

（i）doours．．．
Lath ob panelled ceiling
1）deduct rouf windows ．．．．．．．．

（：ach 3－11．•－－
Superticial yards 11 ｜11－4－11
． 3 ：$: 1 / 1134-11 \times 12-11=12(11111$

Superticial yard ：B－（0－1）

 fuct

Pill -11

dibordera fur ale hearth
（52）30 timber－

(54) $4^{\prime \prime} \times 4^{\prime \prime}$ timber newall post.
lineal feet $6-11$
12 turned halusters of railing, each $3-0$ high.
ditisuber pedestals, each $4^{\prime \prime} \times 4^{\prime \prime}$ and $3-0$ high
12 iron balusters each $1 \frac{1}{2} \times 1 \frac{1}{2}$ incluting thin iron strap at top, of outside stair.
$4^{\prime \prime} \times \mathbf{2}^{\prime \prime}$ moulded cope of hamdrail lineal feet
1 seroll end of cupe.
(56) $11^{*} \times 1!2^{\prime \prime}$ dressed sides of trap stairs....... 2 each $23^{\circ \times 1!2 " ~ \mid r e s s e d ~ s t e p s, ~ r a n g l e d ~ i n t o ~ s i d e s . ~ . i s ~ e a c h ~} 1-1=$ (57) 5\%" white pine lining on cealing 3:-11 $\times 12-11$ 5\%" white pinc linng withgromblion walls. . $9111 \times 10 \cdot 0=$ Dednct at windows.. Superficial yards

Working beads on angles of ingoings. . 6 each $110.1=$ (58) 2t/s" whllow saber with cases and astragals, including pulleys. ctc each $3-$ ti $\times 6-8=$ Ratra value for inside facings being broader than $1 \frac{1}{2^{\prime \prime}}$ broad.

Ikeach 6-2 lincal feet
(64) Extra for panelled or moulded facings upposite mallions
.$!$ each $6-2=$
(65) $4 " x y^{\prime \prime}$ (lressed framing of 2 shop windows and sidelighs, t.p and buttom railst each $6-1 /=$ end rails

4 each k-0= Lincal feet 2 each $\mathrm{z}-\mathrm{u}=$
$3^{\prime \prime} \times 2^{\prime \prime}$ dressed astragal...
B0-0
$1!\cdot 4-3$ $121-11$
$\therefore i=-4$
24-11
$\frac{39-0}{3+i-4}$
16-11
(66) $2^{\prime \prime}$ fixed sashes with astragals
\therefore eith $6-11 \times 3-0$ superficial feet
3×2 frames for sasles.
2 eachls-11
2×5 的 dressed chucks.
\therefore each $18-0$
(67) 2 $1 / 82$ windows cach $\boldsymbol{\beta}^{\prime} \boldsymbol{H}^{\prime \prime} \times$ 2'O" including frames 2 and checks..
(68) I:xtra fur if winduws having circled or pointed tops .

(72) 13/8 bound shutters with closers if windows... . each $12-4 \times(6-1)$ superficial feet
$1 \times 8^{\prime \prime}$ bound lirngs of windows.... .1 cach $2-11 \times 6-1:=$
$138^{\prime \prime \prime}$ bound liaings of soflits......... 2 each $10-6 \times 2-11=$ Superlicial feet

$6 " \times 5 / 8$ " dressed facings ui windows	2 each ! - 0	
41\%"×1" dressed architraves	2 ciach ! - -	
\because stitf bual	: ciach !1-1/=	\|8-11
:3"X梠" margin stlle		$\|\times-1\|$
3"X5́s" dressed copera.	\because (iath $0-11=$	12-11

l'utting on ironmongery of 2 wiblou- wih shatters

77) \& irou bolts or hatt for lixing fratmen

(79) Frrounds for lining in thick wit! . . . \because ratcli iju
-2" a bommal doors lationg 1 fitmels with atmk platited
 Bound donss having circled or polutell thr hhali be measursd thus:

(83) Beads envering temona whe alge of dons

$$
\because \text { ! }
$$

 \because mitres on cornices..
(102) シ̈ Monlds for marble lops

Fratned supports ior 3 sinks.
1:ramed supports for 3 basits.
liramect supports for 3 water-clonct seats
(103) $3^{\prime \prime} \times$ D $^{\prime \prime}$ framiner umber wabling tho
(104) Lining wi hath-hottoul..

92 BUILDERS' AND CONTRACTORS' GUIDE

Sinks, cisterns, washing tubs, etc., to be measured similar.

Cuttin? and rounding apertures for 2 closet seats.
Cutting and rounding apertures for 2 hasin tops. \qquad
Fitting and langing covers fur 2 closet seats.
French polishing seats. . 2 each $1-6 \times \mathbf{2}-11$ superlicial feet
$10^{\prime \prime}$ pipe cover with grounds 2 each loth lincal feet
Checked and beaded grounds 2 each $6-0$ lineal feet 1 " maliogany tups of counters. . $20.11 \times 2-0$ superficial feet Rounding edge of counters \qquad lineal f et
$6 i-1)$
$2(2-11$ 120 (11-1) $2:-11$
(109) $2^{\prime \prime}$ bound front of counter.
$21-11 \times 3-11$ superficial feet $60-0$
(110) $3^{\prime \prime} \times 2^{\prime \prime}$ dressed framing of commters............................
top rails.......2 each $21-11=40-0$
standards...... lo each $3-11=30-0$
bottom rails... 2 each $810-0=410$ cross rails.....20 each 2-1)= 41 - 11 lineal feet 1 F(1)-1)
$10^{\prime \prime}$ moulded base..................... 1 . 1 eal feet $2 \dot{2}-0$
10 mitres on moulded base \qquad (114) $3^{\prime \prime} \times 3^{\prime \prime}$ dressed heed and head posts of trevice
(i) each $6-11=$ lineal feet 36.0
$3 " \times 58^{\prime \prime}$ dressed spars of racks..... 10 each (i-1) lineal feet tith-1)
(115) $2^{\prime \prime}$ trevice division, dressed both sides $10-11 \times 8-0$.

Cutting division to curve. lineal feet If-1

Fif. 19.

METHOD OF MEASURING GLAZIER WORK

Plate Glass

In measuring glass the extreme size to be taken for waste of material, thus:

Lattice Work
Lattice work in compartments of windows:

1-2-11) $7-6=$	1.i-0
$1.3-11 \times 7-6=$	22
perficial	17

METHOD OF MEASURING SLATER WORK

Slater Work

Slates on roof nurth っnk.	
Slates on roof somh sule.	22-6x ${ }^{\text {a }}$ (1)-11
Slates on roof ends, ¢2 cath	$16-0 \times 1$ (i-1)
. 1 llow at eaves	2f-11) $11-9$
dllow for cutting at piends, 4 each	$33-10 \times 1-4$
Alluw for cutting at pediments, 4 cach	24-11) 19.9
Deduct at pediments, 2 eacld	5-11<20-11
Add on perliment rocfs, t sides each	12-11 $\times 5-11$
Allow for cuttings at pediments, trach	$24-10 x$

In mbasuring abowe rom average the eave with rilg" thus:

21-0
$3 i-11$
Divide ley 2) 5i-l
2x-ti
3.5

Measure ends taking the length of eave by ha!f height:

METHOD OF MEASURING PLASTER WORK

Begin at the upper floor of building, taking the ecilings and walls of each apartment, then the cornices and moullings, center flowers or any other ornament. Then each floor down, taking only the height of waths if apartments are divided off same as upper flowr; thus saving the measurement of apartments: noting if any additional work or deductions are to be taken into account, thus:

> 1.5-1) $: 3$ coats plaster on ceiling of east front bed-rooms in two upper floors. $\ddot{\Delta}$ cach
> 1:-11 $\times 111$.
> 3i-n 3 enats plaster on coiling of west front
> bed rooms in two upper thoors.

$$
\begin{aligned}
& \text { 41-11 } 3 \text { coats paster on ceiling of east hack }
\end{aligned}
$$

$$
\begin{aligned}
& 3 ;-11: 3 \text { conte plaster on west back bed }
\end{aligned}
$$

$$
\begin{aligned}
& \text { !ers a coats plituter on walls of abowe }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - 'ack windいw-.............ach 3- (ix T-i }
\end{aligned}
$$

14-1) Add on ceiline wi cast front form in grownd tat

12-11×:1-11=
(35-1) Ald on ceiliner wi wort room in ground that 10- 11×8 - $6=$

Deduct 1 iront winlowseach 3- ix $\overline{\text { i-fi }}$
4 back windows...............eacl: 3- $1 \times$ i-1i

superficial yards
\qquad -

Cornices are taken at the extreme lengths and miters and projections are cmumerated thus:

$X^{\prime \prime} \times 6^{\prime \prime}$ cornice of room No.?
Length of cornice taking the extreme points, thus:

1:5-11	
3:9-4	
	Multipl:
T111	
	l'rojections, ald. Limeal fret it 11

F1G.25.

8 miters on cornice
1 center flower 3' diameter

ESTIMATE OF THE SLATER WORK OF TENEMENTS AND SHOPS

 ! resuel, bored 1!:" from top, to have $3^{\prime \prime}$ of cower at

 pomtel with Portland cement

 tion

Conditions

 work drate in the most emblete and tradesmanlike manner th the entire satisfaction of the proprictor athe :reditect or that .if

The proprietor reserves full powe- the make alterationts. .ll the plans or mole at excenting the work, and to, inereane, lessert or altogetler omit any part of the work le may deeme expedient

The work will be measured when finheled and whether more or less be dome than now estimated. the same will be valued at the rates contained in this cotimate, or whers in strict propurtmon thereto, and in proportion the shanp ann in temler. The prices for extra work to wheh sehemble rates do but apmeto ho revised, and if necessary corrected be the engineer The cost tractor to pay half expense of sebeduice athl beantement

The proprictor does not himd himelf thatecpt the lemen wr . 11 ! off.r

Tender

Thomas smith, l:sy

Sis: I herely wife: to exemte the shater work of the tencmells athl bhap which yon propme to erect in Fitharente aceordine to plats thereni by Mr. James Thomson, cive cogineer, now shown, in conformity with abll the extent of

Your acceptance of thin wher with low ombling on

> Luur obedient scrvant.

ESTIMATE OF LATHER AND PLASTER WORKS

Portland cement an liwer walls of stateatice finiohed

 of roomln

 cortura
Relleving corner boals

 mastic aml obl
 lacat mastic anl mal
 men are linished and upholling vame for imboth, after completion

102 BLILDERS' AND CONTRICTORS' GLIDE

Conditions

The lime for the first two coats to be the very best and mixed in the most approved proportions with clean, sharp sand, long fresh hair, and pure water, and the whole carefully wrought and frepared. The third coat to be run Irish lime mixed with white shiver sand, and the whole to be finished straight and smooth, and perfeetly free from eracks, blisters or other imperfections.

The whole materials to be of the very best quality, and the work done in the most complete and tradesmanlike manner to the entire satisfaction of the proprictor and architect or that of any person appointed to inspect the work.

The proprietor reserves full power to make alterations on the plans or mode of executine the work, and th inereace, lessen or altugether omit any part of the work he may deem expedient. The work wall lee meanured when fininhed and whether more or less than bow estimaterd, will he rahed at the rates contained in this estimate or ithers in strict proportion thereto, and in propertion to the slump sum of the tender.

The prices for extra work to which schedule rates do not apply, tu be revised, and if necessary, corrected hy the engineer. The contractor to pay half expence of sehedules and measurements.

The proprietor may not accept the lowest or any offer.

METHOD OF MEASURING PLUMBER WORK

In measuring Plumber Work, firstly, measure all roof work, such as ridges, piends, flanks, gutters, lead round chimney-stalks.

Then measure all rain water pipes, eave rhones and any supply or discharge pipes outside of walls. Then take the inside work beginning at the upper floor, such as baths with their finshings and pipes connectel, cisterns, water closets, hot water tanks, and all insile pipes. Then take the other floors in similar manner. Then all supply or other pipes outside of building.

ESTIMATE OF THE PLUMBER WORK

F 11. sheet lead lining kitters 12.0-0
(ills. sheet lead on ridices. peends and thanks 3*-11-11
\therefore ll, sheet lead aprons at skews, chimmey stalks, ete - ()-()-11
Ciwts. (1)-11-0aprart . lineal feet$3: 4-0$$11^{1 \prime}$ strong מilvanized irom straps, each $10^{\prime \prime}$ leng, fixingleat on rideres and peemits$3^{\prime \prime}$ 人 $1^{\prime \prime}$ cast iron moubledgetter, made of $1 / f^{\prime \prime}$ metal, bultedand jointed with red lead antl firmly serewed on wonditciner . line al feet1200:3" bemds from gratters made of if 11). leatl. lineal feet: $\because:-11$4 : "X3':" abt irom O conductors made uf ': metallineal feet$193-0$$\because$ cast iron ornamental ears lixed with spikesonface and projecting !!: \ddagger " per drawng

3" cast iron round conductors and wate pipes from jawlowes mate of ! ${ }^{\prime \prime}$ metall, fixel with ctrone holdfasts, and jointed with red lead putty lineal feet \qquad
St east iron smghe hembur show at ' Athm
ti cast iron 3" wffel all tup
$\because 7$ cast iron branch pieces tor wante pipe:
-itast irnu branch horns ciat on for wante piper....... .
t'" cast irun smi pipes made of !:" metal, jointed with makum and red leat and fixed with strong holdfasts, lineal fect
ti cast iron lends whtheel rests at lefthm...
:24 cast iron hornofor hrancles. .
24 cast iron branch pieces
4' 2 "cast iron light air pipe ' $\mathrm{t}^{\prime \prime}$ metal abme soil pipe, lineal feet
dicowls on top of air pipe, ats per drawing
3 " waste pipes made of t ll, lead.
\therefore branch soil pipes made oi 7 lb . lead.... . . . lincal feet
 outside, "f the finest quality with overflow..
 brass cieansing sorews
:3': 27 hrass table washer, with phas and vhatin in fire clay sinks

* \& 27 heavy brass nose cocks.
$\because 7$ collars made of 7 H. lead comnectmy fire clay horns to learl wate ppes
G plain whiteware tahle top wash-hand basins each 16 " diameter inside, supported on two ornamental iron brackets and having lion's head, Scespmol of it 1 b . lead and approwed supply and discharse apparatus for cold water, with if lh. had rod, overflow and tapered waste pipes complete
Extra for i hasins navine bras pllar fount with Hange
24 Shanhs first quality "Citizen" Inshdown tire clay water-clonets in one piece, white insile, and huff outside, of strong thick ware, having hroal hip fitted up complete
 tolead soil pipes

24 bras: nipples each 5 " dameter and $0^{\prime \prime}$ long of $1 / 8 "$ metal connecting lead and iron swil pipes

- -4 Doulton's patent iron improwed three gallon vacum syphon cisterns
If cast iron brackets inchuline fiting up with screws...
"t" $2 t$ brass knee with jam mut for owerllow.............
H." gavanized tron service pipes to water-closets, screwed and compled at joininge with hoddaits, lineal feet:

"保 patent lead anply pipes weighing 11 lbs per lineal

${ }^{\prime}$ " patent lead supply pipen wedghing 7 the per lineal yard lineal feet

(i) brase materground stop cocks um supply pipe...... . .
© brass serewed ferrules. .
1 cast iron stop cock cases.
3 cast trom horse-shoce convers.
$3 / 4$ " 3 brass cleansing cocks with complane tails.
1 malleable iron stop cock key.

Conditions

Mantainimg the phomber works in perfect condition during the progress of the work, making geod from time to time any damaged or imperfect work from whatever canse arising, from theft, storm, fire, tradesmen's operation<, accidents of every kind, and after the several tradesmen finish, overhathing the work, and leaving the work in a periect condition.

The lead to be of the best soft-mitled English kind, and the prices to inchude all charges for carriage, solder, homfasts. workmanship and exey other expense necessary for the thorough completion of the work. The whole materials to be of the very best quality, and the work done in the most complete and tradesmantike mammer the entire satisfaction ot the proprictor and architect or that uif ally peran :pposinted to inspect the work. The proprictur reweres full peewer to make alterathons on the plans or mode of evechting the work, and to mereace, lesatn or altogether omit any part of the work he may deem expelient. The work will be measured when tininhed and whether more "r less than now estimated, will he valued at the rates contained in this estimate or others in strict proportion thereto, and in proportmin to the slump sum of the ender.

The prices for extra work to wiich selaednle rates do not apply to he revised, and if necessary corrected he the entrineer The contractor to pay half the expense of sehedules and measurements. The proprictor may not acept the lowe ot any offer.

ESTIMATE FOR TILE LININGS

Pure enameley tiles in $\mathrm{f}^{\prime \prime}$ squares, cream, haff or other approwed collor on lower walls of closses, sot in led of pare forthand cement, mixed without sand, superficial yarls . 130-0-0
Ornamental emameled border :3" broad, of appored pattern, set in hed of pure Iortland cement, mised without sand. laneal feet \qquad
Enameled corner beads on angles............ . . lineal feet \qquad 9 enameled coriter pieces of $3^{\prime \prime}$ ormamental border. Cutting tiles at vertical and raking angles, inchudirg for loss of mitterial lineal feet \qquad
Extra for dark base $i{ }^{\prime \prime}$ high, chocolate or other
approved colur..
\qquad
ntting and fitting tile to moulded breasts of 30 steps.
Maintaining the tile linings in perfect condition during the progress of the work, making grood from time to the any damaged or imperfect work fo m whatever camse arising, from theft, storm, fire, tradesmen's operations, aceidents of every kind, and after the several tradesmen faish werhating the work, and leaving tile linings in a perfect condition.

METHOD OF MEASURING PAINTER WORK

In measuring lainter work begin with the ceilings and walls of apartnents，stating the mat rial used， whether oil pa！at or any othe－，then measure all woorl， iron or stene work．Measure the cornices and other ornaments after the walls．In all cases sta ${ }^{+}$e the number of coats used in painting．

ESTIMATE FOR P／－ソTER WORK

 Size color on walls ．．．．．．．．．．．．．．．．．．superlicial yards 3001－11－1 3 coats oil paint in shades on plain cornices，girding from 1ご＂t＂ごり＂．．．．．．．．．．．．．．．．．．．．．．．it： 3 cuats oil patiat in shades on 18 enriched ceni erflowers， each $\mathbf{k}^{\prime \prime}$ diameter．
3 coats wil paint in shades on 18 plain center lowers，ach ！＂＂diameter．
3 coats paintiner in shades on 9 cirenlar irm pillars each girding $\because 4$＂and 12 high，having stem－iled ornament at jomining oi colurs．
Imitation rich dark flowered ak with ：）cont：wromed and 1 coat varnish on woodworl：of romms，lobbies， ctc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．superticie？yarls
Imitation rich dark flowered oak，whis 3 cons gromme， and I coat varninh on skirtings a：ni leotings girding from（i＂tw！＂．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．lineal yarls
3 coats patine wise rest wodwork，walls wi obbies， and lower wall；of kitchens，senlleries and stairs，

3 coats panting on skirting and beltings，girth（；＂ lineal yarth ．．till－1）－4 Drawing black line at top of lower walis．．．．lineal yards fith－n－t 1 coat staining in shades with dark mouhlings and：

1 coat staining in shades with three cont of varnish on staff heads，girding $3 \mathbf{3}^{2 \prime}$ ．．．．．．．．．．．．．．．lineal yards $1: 30-11-0$

J'ainting vermillion aml varnivh whedges of shelves, lateal yarils

23:0.11-11
 flecon
 lintels :1m shelu, -
Suplying $1 / 1$ piccer pitper (walla of rowns

 stancheons of wates and lourroweri lights (measured on twosicli-t.
.athare yards

Scoats patinting (Ht) irmminer, sirth $6^{\prime \prime}$ of shop front limeal yards
: cuit, bainting on fratning, girth $)^{\prime \prime}$ of shop front lincal yards
B conts painting om iron mutters lineal yards
: conats pabinting on comductors and soil jupes limeal yards
[11-(1)-1)
1:(1-01-1)
6.2.)-11-0
$\frac{2(1)-1)-0}{4(1)-11-1)}$
(30-11-1)

3 coats pabuting on 3 ormamemtal ears.
3 coats paintiner on 3 iron cistern heads
\therefore coats palating um i irun chothes poles
Bcoats painting on ? 3 irnn ventilation gratings
\because coats paintiner on outside of 147 window.
$\ddot{\Delta}$ coats painting on outsile of if small, wioluws.

Conditions

The work th be :mished phath or parti-enlured and in oit or flated as regrimed The prico munt :nchate all charses for
 thoroush conpletwol of the worls.

The work the recole the full mumber wi fats of best white
 maint on any petome whatere

The whole materiat io he of the very heat quality, and the work done in the mut comphte amb tradesmanlike mamber th the entice satinintion and dirculions ui tire Engincer or ary person appointed as Inspector, who stall at all times be entitied to examine the work, and to reject or catse to be rejected all bad
or defective material, or workm:aship, hut such examination hall 1110 way diminish, effert or impar the obhgations of the Combractor at resalds the due and proner execution of the work in all respects.

The Proprietor reareve mill power to make alterabomis on the Haths or mode of everuting the work, am: th increane, iessels or altogether omit any ouch portions of the work he may deem expedient. The work watl be meabured when finished and whether more or lese thall wow ontimated will be valued at the rates containel in this entmate. wr others in strict aroportion thereto, and in proportion th the vamp sum of the tember.

The prices for extra work 10 which schedule rates do not apply, to be revised, and if necosnary, corrected by the lowineer. The Contractor to pay lalf expenise of schedteles and measurements. The l'roprictur may not accept the lowest or any offer.

FORM OF MEASUREMENT FOR MASON AND BRICK WORKS

 formalations
$: 3 i-11 \times!111 \times 4-11$
Rewatang carth in arcat athl trollolnc far f. mbdations
$\therefore 1-11 \times!11 \times(i-1)$
 boundations
(ifi $11 \times 4 \times 7 \times 7$
 follodition

211 $11 \times 7-11 \times 10-1$
 fommlathon.
Exabating catth in areat and trenchen for formblitions
$\therefore 11 \times$ R.11 $\times 1-11$
 frmindation.

$$
\pi: 3-11 \times 8-11 \times 3-0
$$

('ubse rards

Conerote fonthdatinn- mbler muter walls...3i-n $\times 2-1 \times 1-6$

Concrete fomditions moler outer walls....ir $11 \times-$ fix $\times 14$
Cinheyarils
Brick work in fommaturn of walls
$3!-11 \times 2-6 \times 3-0$
4. $0 \times 2 \times-6 \times 3-6$
$2!-11 \times 2-6 \times 2-0$
Cubre garils
"Iammer Iressed tone fotudations wi iron pillars
: each : $:-11 \times 3 \times 3 \times 3$

Hammer dressed thate fomblations of iron pillars

Hammer dressed sinne fombdation, witm
columns
\because each $3-11 \times 2-11 \times 1-6$

$$
\begin{aligned}
& \text { 1'a:nmer dressed stone fommations of iron } \\
& \text { (columms } \\
& \because \text { each } 4-10 \times 1-6 \times 1-9 \\
& \text { Hammer dressed stumte founciaioms for }
\end{aligned}
$$

1）rover hawing son tup ui foundittons oi irun

Droved hewing on top of fontmlittons of iron

Droved hewing on trop of fommlations of irmon
 suturrictal foct
Bedded solcplates of ix iron pillars

e＇rublble building of fromt wall of main bmbliner
$819-0 \times 36-0$
：rablale buibling of front wall oi moin builling ．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 －11× $-4-0$
＂＇rublule lombling of front wall of main

＂＇rubble building of bicck wall ．．．．．．．．．．．ご－$-11 \times$ ！－1

4 sloors，fri nt wall．．．．．．．．．．．．．．．each $-3 \times 10 \times 11$
8 wintows in sable ．．．．．．．．．．．exach $3-11 \times$ 宿 6

！winlows in back wall ．．．．．．．．e．tch $3-0 \times 7-6$
4 （lomrs in bacli wall ．．．．．．．．．．eval \because－ $6 \times 6 \times 0$ Sunurtion yards
Hammer dressed ont and inhombl inmure of walls ．．．．．．．．．．．．．．．．．．．．．．．．．．．．I viach 3fi－0

Cuperlicial yard
 toors.! !" luroal
lincal feet

(ubic fect

Strsped lewing an siles. \because encls $\mathbf{3}-0 \times 7-6$
 Superticial feet

Striped checked hewing on sides 2 each 2-1) $\times 8-11$

l'olshled plain hewng on sides. 2 each $-0.0 \times 3-1$

2 coll $3-0 \times 11$
lonlmberl plation lewing on stiles
3 cach $1-11 \times 211$
Superticsal feert
Labor "urking pu' bhed splay "?" broad wh bases,
lineal feet..
lixtra forkmiters wn spoys.
litro for monleling umde trasses at tup of shaits, inclading extrasiee of stonc abd lewing . . limeal feet
l.abor working a polished moul led atml lited trusses, as per drawing
falumr raising and setting li cast iron fouble čolumns each about lơ ligit oi shop front
Labor ranamg athl netting 3 circular pilars, each 1: ${ }^{\circ}$ lugh and sole a.oll top plates
Labor rasing amd lising cast iron L and \perp beams, lincial feet
Labor raising and laying éat fron box beans, lineal feet
Cube stonecorniceosershop front, $30-0 \times 3-1) \times 1-0$ cubic ft .

S3101-1

$$
0
$$

\qquad々. 11

147-1)
$\frac{27-0}{9.00-0}$

Polithed nlain hewing on tone cornice wer shop front ill-11×2.0....... sup. rlicial feet
folished matded hewing on itone corrice, were shop front, $: 30-1 \times 1-11$. supericial feet
labor ma:rins and returning unper anll lower members of cornice at top of 4 stone piers...
$16{ }^{\prime \prime} \times X^{\prime \prime}$ pulished plain stl coura abome cornice girding $17^{\prime \prime}$.....al leet
$1 i^{\prime \prime} \times 15^{\prime \prime}$ polished plain sill course abowe cormore ners.
 lineal feet
lixtra material and lahor forming 1 whi circled and

Labor perforatme cube stone fureonductors. lineal icet
 lineal feet
..................................... . .
$18^{\prime \prime}$ xti" polished monded sill courne, berving as wimbow sills, girding シx"...ncal leet
Labor perforating, mitering and returning sill course at a conluctors
Extra for 3 cireled pieces mondad all coure including miters as per drawing
1 polished moulded stones, ceath $20^{\prime \prime} \times 1.0^{\prime \prime}$ on face and projecting $\mathrm{b}^{\prime \prime}$, perforated, mitered and retained round conductors
Hammer dressed stone cornice at wallhead [0" thisk and
 syuare feet
llammer dressed stone cornice at wallheat $10^{\prime \prime}$ thick and 21 " broad, $20-11 \times 1!1$ quare feet
 square feet

N-f
3.in-1

の-5-11

2 plain stop ends
40 miters of moulded ennice
(i polished projecting stones at ends of cornice at sides of pedments, having peended face, including material, hewing and building as per drawing
Labor cutting gutter in cornice lineal feet
Labor perforating 4 drip hules in $1 \|^{\prime \prime}$ cornice...

Dabled comsers of front wall，and mortlt gable， 6^{*} on leal attll two comren in lieghit of each rybat， Hawng＇：＂drowed markin rommleach stone，with the

1roluct ！＂1ndun． ゴ小品，

Snperficial feet

18110.11
filla． 1
$\because \| 11111$
120
こぶぶ1
$7(1-1)$

Dressings of Windows

browed out and inhand batek filleted rybits incluiling
 fect
$133^{\prime *} 10^{\prime \prime}$｜roved mat and inbamd batek tilleted lintels with

1：i＂＝10＂\｜rowed out aml ind：and back tilleted lintels with

Lahor working 12 returns of monkleal lomtels for rybats Labor workmge 9 returas for domble moblikel mallions．

Labor worting if pe itad monlalal ind mitured ends of lintels．
 lineal feet．．．
Labor working diphlinded monded ams mitered return ends of stlis．
 moulding on lostla arrises，locacla $18-11$ ．．．lineal feet
3 polished munted cormece＂ach dia＂lothr and s＂thick，

3 polisheal monhted cornices．＂ach bis＂long and is＂

 fer estmatle．
Carving in l2＂raised letters＂lag＂on one conona，per estimate． \qquad

Oriel Windows

$16^{\prime \prime} \times 15^{\prime \prime}$ polished plain sill conrse girding $31^{\prime \prime}$, line tred fiti-n
 lineal feet $\mid 21111$
R miters of moulded sill
Labor checking sill course for iron \mathbf{T} beams, and sronting wath lortland cement .. lineal fect
 !t miters on mombled cornices.......................
 ©-1) lameal feet
Labur working ia return of mandikel latel, for robats : mil mullan! ...

:\{1011
Polished wit aml inhath? fropected jambe in stones sun" \times
 arris, fll each is-1 lineat feet

$\because 1411$

26111
Square dressed rublole of hath wall. flatix. li.superticial yaris
20011.11
$\because-11$
||-11
$-\frac{-111}{3119.11}$
--1
$\frac{-10}{1-2-11}$
122-0

Brick Work

$12^{\prime \prime}$ brick south gable	$3:-11 \times 4 i-10=$	$315-11.11$
1"゙ hrick inner gitules	\because each 3:-11 $\times 10-11=$	$3: 30-1)-11$
1*" hrack inner gables.	\because eath $38-11 \times+18=$	$\because 21-4-11$
	Superlicial yards	?1! 11
2." br		3! 111
14" brick back wall at staircases. . $36-10 \times 11.0$ sctuare yarls		16it11-10
$9^{\prime \prime}$ brick walls of back wing;	\therefore cach 19.11) $11411=$	J(ist-4)-
	4 cen $1116-10 \times 111.11=$	$28+4-10$
	Superficial yards	1-14-4-0

116 B'HMERE AND CONTRACTORS' GEHEF
:1" brick dwarf walls tinder sleepers. . . 80-0 $\times 4-1$ sup. yds.40-1)-11
"'? brick partion ground floor... $.350 .11 \times!1-11=$$4^{\prime} z^{\prime \prime}$ briek partition three upper floors4.4-11×:3i-11-Superlicial yards
'lumhing plain scunchions $11^{\prime \prime}$ broat, 玉ot each $4-11$,lucal feet
 line:al feet $440-5$
Forming 36 openings for ventation in $4:$ brick parti- tions, per plan.
Forming checks and plumbing scunchions in !" walls
lineal feet
Plumbing angles of walls. f1 "atch $\because=11$........ lincal fect
Labor entting $\mathbf{1 R "}^{\prime \prime}$ gable whe at anfle, inclulang for luss of material lincal feet
Labor cutting $1 t^{\prime \prime}$ gable tops at ancle including fur loss of material................................ . . lincal iect
$618-19$
$2 \times 11-11$
R1-11
$30-10$
Labor cutting $9^{\prime \prime}$ gable top at angle, meluding for losi of material lineal ient
Extra for rounded brick at angles. heneal iecet
Vents in brick gahles, smoothly plantered with hime, lineal feet
1429.11
!" brick buidding walls of ashpit pointed with . Irden lime and ley drawn, 21-11X!!-11...........square yarils Cutting brick at skews......................... . . l neal ieet Mrombing platn scunchions $9^{\prime \prime}$ broal lineal fect Pumbing external antele........................ . . lineal feet Slate shab breast of ashput, $4-6 \times 2-1 . . .$. ...atperficial fiect
$\frac{\frac{21-0-0}{12-19}}{\frac{11-19}{2(1-1!}}$

Dressings of Brick Walls

Iame wall of hack wings, $356-10 \times 9-14 .$. superficial yards 350 - 00
Extra for forming semi-circular arch tops vi : openings, cach 3^{\prime} span daylight in $9^{\prime \prime}$ brich walls
$11^{\prime \times} \times \mathbf{t}^{\prime}$ polished p!ain projected plint! on wallhead, lineal feet
lonished plain hewing on b ends of plintlo wall head. .
$11^{\prime \prime} \times 1 i^{\prime \prime}$ polished projected stlls to winduws, 16 each $\because-=$ lineal feet
11"×i" polished projected sills to windows hewn on inner edge 3 each $4-0=$ 132-0

Polisibed ashlar chimney stalk winnorth gable． girded $.36-11 \times 10-1)$

Poisisel ablar chanmey talls un inner
 Superlicial fert
4！えで＂brick brigs ．．．lincal ivet
Lahor working splay on ashlar．．．．．．．．．．．．．．．．．．lincal feet
Labur working 50 peended stup chlis of splay．
Lahor working astragis moulding on astilar including for extra size of stone．．．．．．．．．．．．．．．．．．．．．．．．．． l ．
Labor workint © miters wh atsagal mouhling．．．
$10^{\prime \prime} \times 6^{\prime \prime}$ polished moublat plinth，girding li＇＂，includiner laying ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．lincal feet
2．）miters of moulded plinth
$2^{\prime \prime} \times 10^{\prime \prime}$ polished munday stame copes inchoting

Polished mondded hewing 10 return ends
Labor cutting vents through cone ．．．．．．．．．．．lineal ieet
Labor socketing eopes for ill chimney pote
$12 " \times 6$＂polished moubled and beveled latoel mouldms． girding $14^{\prime \prime}$ ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．lincal fert
$12^{\prime \prime} \times 6^{\prime \prime}$ polished mondded and beveled tabel mouhding． circular ．．． lineal feet $^{\text {f }}$
1 polished projecting stone panel i＇broad ancl \＆＂6＂high，per estimate．
Carving on projecting stone panel，per estimate
f polished and moulded stome trusien，per estimate
＊polished and monhled s．eps per e－atimate
\because polished and monked terminals per estimate

：dabbed crow steps average $1 . \boldsymbol{F}^{\prime \prime} \times 12^{\prime \prime}$ and $: 33^{\prime \prime}$ lung having＇ 2 ＂Iroved margin all round，per estimate ．．．．
\qquad
ぽ！！
！1＂又
$16 i 3.11$
1112.0
－ 11

1111
$.1+1.11$
（i－1）

118 BLILDERE IND CONTR.ICTORS' GUIDE

6 dabbed corbels each $15^{\prime \prime} \times 12^{\prime \prime}$ and $30^{\prime \prime}$ long, per estimate 3polished ormamental finials each 12 " square at base and "So" high in all, per estimate \qquad
$12 " \times 60^{\prime \prime}$ polished plain skews on main gables . . lineal feet
$!" \times 0^{\prime \prime}$ polished plain skews on sidewalls of wings, lineal feet
6 polished club skews on main gables
6 polished cluh skews on sidewalls of wings
Extra for !!"xti" stone skew; of wings being knee'd on topand hollowed on unc!erside

Chimney Jambs, Vents and Hearths

16 set hammer dressed covins and lintels for room fireplatees, per estimate
30 pair pulished kitehen chimmey jann in
Supolishe! lintels each 12"× 1" ":a1 ! lond
12" Hibrichtrimmer arches unker remm hearths

!" for clay ven !inin!rs .incal feet

\ddot{Z}^{2} : pulished Arbwath hoarths in kitchens, : c:ach.
$4-6 \times 1-3$
212" pulinhed . Irbromh heartha in kiac:
each... . $3-6 \times 1-11$ Superficial feet

Stair $;$ and Pavement

3" pulished Arbroath phatti in shop doors. :3 each
$1-1 \times 3-1=$
 c:اch.. $i=$

 each.
$1-1 \times 3-11=$ Superlicial feet
Labor working polished chamiomed ulye of phatte, linc:al fort
24 pulished mombled Arhruath steps of stairs, per cotimate
\qquad

12 polished whecling Arbroath steps of stairs，per estimate lox polished mouldedilrbroath steps，per estimate
27 polished moulded Arbroath steps，each l＇－ti＂long，per estimate．
$14 "$ polished parpend dadus of shop windows， 6
each
$3-11 \times 1-6=$
10＂polished parpend dados of shop windous，if
each．．． $10-11 \times 1-6=$
：＂＂polished parpend dados of shop winduws， $1 i$
cach．．． $2-1 \times 1-0=$ 14＂polished parperd dados of shop windown，i
vach．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $3-8 \times 1-0=$
10＂polished parpend dado of shop windwws，
lieach
$2-6 \times 1-6=$
In polished parpend dados in sidelights， 21
each
$6-0 \times 1-6=$ Superficial feet Labor cutting dados to slope of ground ．．．．．．．lineal feet Labor cutting and forming miters at 12 angles
1 coa．funished asphate paving having ＂＇$^{\prime \prime}$
bothoming of freestone shivers．．．．．．．．．．．（6t－1）$\times+6=$
1 coat finished asphalte paving having $1^{\prime \prime}$

1 coat fintshed asphate powing having $4^{\prime \prime}$
bottoming oi freestone shwers．．．．．．．．．．．．．2マ－11×6－11＝
1 coat tmished asphate paribs having $1^{\prime \prime}$
botoming of freestume shiv re．．．．．．．．．．．．．．．in－11×1－6
Superlicial！：
12＂XR＂new dressed whinstond lwrder．．．．．．．．lineal feet Paving front footpath of strect．．．．．．．．．．．． $511-1 \times$ ． $12-11$
Paving front footpath of strect．．．．．．．．．．．． 1 万－ $11 \times 10-6$

laving in lack conrts ．．．．．．．．．．．．．．．．．．．． $10 .-11 \times 30-11$
laving in hack courts ．．．．．．．．．．．．．．．．．．．it $4 \times 2.5-0$
Superlicial sards

Paving in lavaturies ．．．．．．．．．．．．．．．．．．．．．．．．．．．．each $-\boldsymbol{1 1} \times \mathbb{1}-11$
Paving in sculleries ．．．．．．．．．．．．．．．．．．．．．．．3n each T－1） 3 ． 11
Paving on tair landings．．．．．．．．．．．．．．．．．． 1 e each ！ 1 － $1 \times+10$

 \qquad
Superticial yards

120 BEILDERS NNO（ONTRICTORS GUIDE

l＇aring $4^{\prime \prime}$ thick on rowiof of ashpit \qquad
Lather thrming gutters in paving \qquad Lather in rming blansins in paving
L．ator formins mouldedederenf stair lamblings，lineal feet
$2 "$ second clase Catithess pavement jomed

Cuttiner ramelne 11 ＂$\times \mathrm{I}^{\prime \prime}$ in brick walls for concrete paving．．

18－11－1

14111
\qquad $470-1)$

Iron and Steel Works

（i）cast iron double columns of shop from
cilsts
Catst iron Lanl \perp leams
humlredweights．
9 cant iron circular pillars
humireduenghts humbrelwershts
 foot，in lengths about 1 ：

Ime：l feet
$10^{\prime \prime} \times 0^{\prime \prime}$ rolled ste 1 beams weighing ta lbs per foot in lengths abont 1 に
lineal feet
$11{ }^{\prime \prime} \times 10^{\prime \prime}$ rallen steel heams weighing liz His．per lineal font，in lengths alout 1^{-1} ．．．．．．．．．．．．．．．．．．．．lineal feet
 foot，in lengthis from 7 to 11^{\prime} ．．．．．．．．．．．．．．．．．．lineal feet
$\varepsilon^{\prime \prime}$ ， $1 i^{\prime \prime}$ rulled steel beams weighing 33 lbs per lineal font，in lengthe from 11 to lí．．．．．．．．．．．．．．．．lineal feet
$6^{\prime \prime} \times$ ®＂$^{\prime \prime}$ rulled steel heams weighing $2: 312$ Ibs．per lineal foot ．．lineal feet
$\therefore!\times 1$＂rolled steel beams weighing k hos per lineal foot，in lengths under 11° ．．．．．．．．．．．．．．．．．．．．．lineal feect
$\therefore " \times: 3 "$ rolled steel leams weighing 10 ths per lineal font，in శ＇t＂length．．．．．．．．．．．．．．．．．．．．．．．．．．．lineal lect

：3＂；：3＂＂s＂rolled steel Tees in i＇lengith．．．．．lineal feet
$\therefore " \times 42$ rolled iron lowas weighing 2．？th：per lincal fowt
lutal feet
 limeal feet
Labur rating and lifying rolled steel beam ．．lineal feet
Labor ．．sing and laymg rolled steed beans，weighing ヶ々 lls，per lineal tont ．．．．．．．．．．．．．
Laboring rainmy and laying rolled steel beams weigh－ ing 33 lhs．per lineal fuot ．．．．．．．．．．．．．．．．．．．．．．．ineal feet

114－11－11
（26－11－1）
$2 \cdot \pi-11-11$
1：6－（1）－1）

！1：3－11

2010－11
$4.40-11$

1．54－11
\qquad
21－11
6410
$1211-11$
1t－11

36111
24111
3（4）－11
（101．1）
$150-0$

Labor raising and laying rolled steel beam; weighing ex lbs. per lineal foot...................... . . ineal feet
Lahor raising and laying rolled steel beams weighing 2362 lhs. per lineal fout l neal feet
labor raising and laying rolled steel beans, weighing 12 lhs. per foot ineal feet
I abor raising and liying rolled steel beans, weighing 10 lbs. per lineal foot ineal feet
Labor raisult and laying rolled steel beams $6^{\prime \prime} \times 0^{\prime \prime} \times 1 /{ }^{\prime \prime \prime}$ tees . lincal feet
Lahor raising and laying rolled steel beams $3^{\prime \prime} \times 3^{\prime \prime} \times 3 / 8^{\prime \prime}$ teeser lineal fect
Lahor raising and laying rolled iron beams weighing 23 lbs. per fort . lineal feet
Labor raising and laying rolled steel beams, weighing 12 Ibs. per foot . lineal feet
4" machine Arbroath coddings under beams, 6 each . 2-1 1×1 - 11
4" machine Arbroath coddings under beams, 3 each . 2 - 9×0 - 10
4" machine Arbroath coddings under beams, 2
cach . $2-0 \times 1$ - !
Superficial fect
汶" malleable iron circular stancheons of ground flat winduws............................ill atach \&-11 lineal feet
$\because \neq 2 " \times 12^{\prime \prime}$ malleable flat cross hars perforated for stancheons.....................................'ineal feet
$4 \times 10-11$
$45-11$
if iron clothes poles, per estimat.

ESTIM.ATE FOR CARPENTER AND JOINER WORKS

Scaffolding, etc.

Furnishing all necessary scaffoldine, planks and tresses, putte up kangways and supports, masom's shed and towl hotree, making moulds of strons zinc, blmbling openings, maluding hinged dowrs wath focks, covernes projections of masonry with rough hoarding, and incloning building with proper barricade having the necessary gates, footpath and handrail in accordance with police regulations
Furnishing rough platorm about 10 square with bearers and sides for mixing cement.
Fitting up temporary office for clerk of works 1 'r square innade (the brick walls are built by mason) having Hood flonr and roof, slazed window with hinged shutter, doner with hinges and lock, plain table with drawer and stnol, the price to inclute for covering roof with slates complete

Centers, Safelintels, etc.

Centers and supports for 3 semi-eircular arches of openmys in !" brack wall cach 3 'span daylight.... Centers and supports for 4ib bick trimmer arches under heartlis It to 4^{\prime} ' longe.
$4^{\prime \prime} \times z^{\prime \prime}$ beveled springere for erick trimmer archer, lin. ft.
1" sawn boarding wath remeh bearers and supports under concrete flomers of water clonets and stair lamding, ete., abos for ronf of ablpit (to be after-

Safe lantel- wer mpening: (Fawn on whe side and edge) cubic feet.
$412^{\prime \prime} \times 4^{\prime \prime}$ cleancel safe lintelsover whulows in water closets, lineal feet.
$!!^{\prime \prime} \times 0^{\prime \prime}$ sawn beams under roof including doveta :ng ior and insertme ceatmer juintsincial feet
$6^{\prime \prime} \times 3^{\prime \prime}$ cleaned beaded beams wer bed upens. . lineal feet

Assisting masons in setting up，alsor racking 6 cast iron donhle columms ead ！e゙ high of shop front
Asoisting matsons in setting up ！circular castiron pllare from le＇to 13^{\prime} high
（i＂\times ！＂wall ${ }^{\text {nlates }}$ under sleepers．．．．．．．．．．lineal feet
！＂＞1＂wall phates unter sleepers．．．．．．．．．．．．．．lineal feet

$10 " \times 11^{\prime \prime}$＂all plates under rowi．．．．．．．．．．．．lancal beet （；＂×112＂wall plates mader rowf．．．．．．．．．．．．．．．．．．． lineal feet 2

 brick partitions
 placed is＂th centers，in in mind flowr ．．．．．heneal feet $111^{\prime \prime} \times \ddot{Z O}^{\prime \prime}$＂jonstug oif tirat quality puth pine in 36% lengtlis ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．inteal feet
 lengths anl under
laneal feet
 carry hribles at heartha ．．．．．．．．．．．．．．．．．．．．．．nneal feet S．abor checking joists on to tees wher orichs．．lineal feet 1＂＂λ ：3＂hrifles at hearths，fowetaled for joists，lineal feet $1 n^{\prime \prime} \times 1{ }^{\prime \prime}$＂slip，joists at partitions．．．．．．．．．．．．．．．．．ineal feet ！14 cant iron shods for ents of brilles．．．．．．．．．．．．．．．．．．．．．．． $1 "^{\prime \prime} \times{ }^{2 \prime \prime}$ solin dwangs between joists．．．．．．．．．．．．．lineal feet

$$
\begin{aligned}
& \text {-24-11 } \\
& \text { 7!!2-11 } \\
& \because \cdot 5111 \\
& \text { 1:3-11 } \\
& \text { (i) } x+1
\end{aligned}
$$

24：゙ール

6．ずーール
137T－11

094－6
$\frac{216-11}{2!1 i-1!}$
$4 \times(i-1)$
$6 \times 2-1)$

Roofing

 battens，placed ぶ t．centers．．．．．．．．．．．．．．．．．．

31：32－11 superlicial yards
$1!" \times 1 \frac{1}{2}$＂ridgeboard，romblem on top ．．．．．．．inineal feet 11 ＂$\times 1!$＂piend ratters，rombled on top，including cht－ ting and fitting spars on each side．．．．．．．．．． lineal feet $^{\text {fing }}$ $\left(i^{\prime \prime} \times 1^{\prime \prime}\right.$ flank plates including cutting and fitting sarking at one side ．．
$\therefore \times 2$ Balk and oxterpleces of whate dram hattens placed $18^{\prime \prime}$ to center．half checked and well naled at ends．
．lineal feet

$\frac{(64-11-1)}{171111}$
1；

1．2100
$2 \times 18-0$

 breadths..erficial yards (ontting and fitting sarking at piends lineal feet (utting and fitting sarking at anded skews... lineal feet (i"× "s" rough facing for fixing fon gutters. lineal fect Dombling fillets at cates ant shews........... . . lineal feet
 on back, brilles, checks, T hinges and long press lock complete
 quadrant fatemer .unt glazell with: "1a" patent ralled plate ghans complete
s's rongh lowarding on ceiling joists ...snperthial yards
 painted 3 coats oil paint all romal......... lincal feet
 3 coats oil daint all rumal
12 galvanized iron straps cach $11 \ddot{4}^{\prime \prime} \times 3$ "n and $12 \times$ long, bent to lit round ridges and fised with serews.......

Deafening Boarding Flooring, etc.

$5 夕^{*}$ Weafming hoarding of rel pine in narrow breathes

 liers

Red pine straps 1 ! $2 " \times{ }^{\circ}+$ "and 12 " to centers fixed to well iried redwoml dooks en" alart on outside walls, superticial feet
(6) 1-11-11
 grooved and well nath I with two mats to each buar I into cerery juist and carcfally cleance off after finishins, price thinchole for luarers at windows and press bossings. cte....................... suparficial fect

Labor cutting and fitting fluoring neatly at 9 circular iron pillars.
I abur chiting ani hamg flouring neatily at 37 cireled corners of breasts.
Border, of flooring mitered round it hearths

Cast iron ornamental 10－11，haluster railing of stairs to engineer＇s selection，with thin iron strap at top， inclucling cutting and fitting up ．．．．．．．．．．．．．ineal feet Dixtra for 3 main balusters of stairs
 polished）
．lineal feet

Wingows with Their Finishings

a）windows in hatek wall having cames with $1^{\prime \prime}$ sills， $11,2^{\prime \prime}$
 side facings，batten roils and parting beats，and e＂ sashes with astragals whete required，double hung non $13 \mathbf{y}^{\prime \prime}$ strong hrass farel axle pullers，best Italian hemp corl and cast iron weishts，primed and glazed with 29 oz．sheet glass and afterwards painted 2 coats oil paint on outside．．．．．．．．．．．．superlicial feet
9 windows in front wall，each in two compartments and having cases with $4^{\prime \prime}$ sills， $1^{\prime \prime} 2^{\prime \prime}$ lintel， $1^{\prime \prime}$ pulley stiles， and ？s＂inside facings＂＂＂outsile facings，hatten rods and parting beads and＂3＂sashes with astragals where required，double hung on li，＂strong brass faced axle pulleys，best Italian hemp corel and cast iron weights，primed and glazed with 22 oz ．sheet glass and afterwards painted 2 coats oil paint on out－ side．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．superticita feet
18 oriel windows each ia threc compatments and hav－ ing cases with $4^{\prime \prime}$ sills， $1^{\prime \prime} ¿^{\prime \prime}$ lintel， $\mathrm{J}^{\prime \prime}$ pultey stules and Ts＂inside facings， $5 \mathbf{z}^{\prime \prime}$ outside facings，batten rods and parting beads and $\underline{2}^{\prime \prime}$ sashes with astragals where required，double hung on 13 ＂＂strong brass faced axle pulteys，best Italian hemp cord and cast iron weights， primed and glazed with 29 oz shect glass and aiter－ wards painted ？coats oil paint on outside super－ ficial feet
144 moubled ent＇s of stiles of upper sashes of front windows．
6 hinged sashes each $1 \mathbb{R}^{\prime \prime} \times 30^{\prime \prime}$ ，daylight having $4 \frac{1}{2}{ }^{\prime \prime}$ irame，with beveled checked sill，beaded cheeks， $3^{\prime \prime}$ strong brass linges，brass knob and button and glazed with $1 \frac{1}{4}$＂rough cast plate glass complete．．．．．

 frame，＂uth beveled checkid shll．beaded chects， $3^{\prime \prime}$

 for hacli windous，al．n including evtra for border panes，and clear ghas in center，and colared border， superlicial fort
：3 teak woml homsebmarded andi circular arched tops of
 circlal framing etc．comphte

 rooms，alsomock shntterin kitcherts．．supertictal feed
Śs＂cleaned boardints on anditi ．．．．．．．．．superlicial feet
S＇s＂chamfered solected white piac hanner in ：？＂breath with grounds，on hreasts and ellows of windows in kitchoas，alho sides abl sofits of scullery windows and enchosing sinks．．．．．．．．．．．．．superticial yards
s＇s＂beated copre．
limeal feet
 round insoling and bat on an ples．
 with lars
27 stronts framed supp ert；under simis．

$4^{\prime \prime} \times 1^{\prime \prime}$ twak cope
ごメ1＂reak cope
．．．．．．．Ineal feet

1＂teak
teak sule buard with hearers
$3 " \times$＂s＂beaded cope orer uried：
superficial feet
 edge of oricis（if requizci：）．．．．．．．．．．．．．．．．Inncal feet
 tincoil feet

1510．1

 Cirounds onty fror facmgs lincal fect
Stifair plan bate blocks to facings
l'utting irommongery on :- Whatow,

lonting irommongery on ! whlon - cach in two compartments whlt mock vinters
 three comparmant, with mock shatters
Patting ironmongery on di wind hws with shatters
120 strong brass spring sash fasteners and screws
Zll stromg bratss rimg sash lifters ind serew,
Gif brass shutter kinols and shields
St ehony shutter knobs and shields
12 pair:3" edge hinges and screws.
12 pair $1!2^{\prime \prime}$ backioh hinges and serews
© iron shutter hars each α^{*} bung with heepers and serews
$7^{\prime \prime} \times 3^{\prime \prime}{ }^{\prime \prime}$ maculded sills of shop winduws and sidelights, lineal fect
$3^{\prime \prime} \times 2 / 2$ moulded and checked framing of st op windows and stdelshts..... inncal fect
$3 " \times: 3^{\prime \prime}$ donble moulded an checked amgular framing, line:al fect. .

 pancs comtaning from for to superficial feet, including slazing superficial feet
If" best polished liritish phate phithi in sidelights, in panes containing about : en 3 superficial fect, super ficial feet
138" framed stop chamfered dwarf shanters with open pancls and plathed beads for wire work, superficial feet
3" 八こ" monlded ath checked top rail for shutters, lineal feet

$13-11$

0. $3-11$

141 iron corner clasps and serews for edge of shutters and end of top rail
18 iron corner clasps anl serews with checked plates for edge of hlutters and emd of ton rail Iroll strap 1! !" breat, whth sereols
\mathbb{R}^{2} atrong lowhet littcher.

 columbis.
lancal feet

 with stralk ath doohn......................

Doors with Their Frames and Finishings

s"×"2.! eanced frames for porch dour - in hops, lineal fect
 the ceilings lat high, havins fixtures at top and bottom
 the ceilings from 10^{\prime} (1) lo's" hixh, havint fixtures at top and butom

 $31_{2}^{\prime \prime} \times 1^{1}$: " fin pair frame; th wallpresi dours 6"×ジ cleaned framer fur matle doors at small homses, lineal feet
 lavatories and scullertes
\qquad $12 \cdot 1$
$\because 1 i-11$

9! -10
$3: 8-11$

13/4"? bound two-leaved doors having mush planted mouldings ou both sidesnprortictal feet
15/8" fif homal pass doors having flush mondlinge both sides supertictal feet
$158^{\prime \prime}$ To bound press, closet, scullery ally hatory doors, having thoh mondings on fate, and syare iramed on back.........erlicial teet
$178^{\prime \prime} 21$ framed and lined doors to water chacts, havint:
$7^{\prime \prime}$ narrow chamfered liming amb stop chamfered

2" 3 framed and lined gates, having "x" chamfered lining and upper part left open for iron stancheons (red pinte) superticial feret $6^{\prime \prime} \times{ }^{2 \prime \prime}$ cle:ned frames for borrowed lights hineal feet
$2^{\prime \prime}$ fixed borrowed lights, glazed wath 's" rough cast plate glass superticial feet
2" fixed fanlights glazed with ol or. pheked shect glass, superficial feet
Labor working beaded and elsecked edges of two-leaved doors
. lineal fect
5/8" beaded checks . linea! feet
Fillet checks lineal fect $^{\text {fin }}$
(i" $\times 5$ s" headed checks round ingoing of small openings in $41 \frac{2}{2}$ partitions at ends of beds........... . inneal fect
$1: / 2^{\prime \prime} \times 1!{ }^{\prime \prime}$ rounded berges at entrance doors (white pine) lineal feet $^{\text {f }}$
$1 " \times 1: 4^{\prime \prime}$ rounded berges at inne. Joors to small houses (white pint)..................................... . . ineal feet $^{\text {f }}$
S/s" white pine lining. chamfered in joints, with grounds, sides aud soffits of inner doors, superficial yards.
$11 / 2^{\prime \prime} \times 34^{\prime \prime}$ moulded facings in rooms, lobbies and stairs, lincal feet
$1^{\prime \prime} \times$ B's" mouhled facings in kitchens, sculleries, closets $^{\prime \prime}$ and shops ineal feet $2100-0$
2-0 pair plan base blocks for facines
3." double beaded transum facines. lineal feet

5s" double headel transom facings............ . . incal feet
Labor fitting and hancine $16=$ dours
Labor fitting and hanging i.i two-keaved doors
Putting ironmongery on 162 doors
Putting ironmongery on two-leaved doors

I'utting iron:nongery on 6 fanlichts.
it pair i" hinges and screws
io pair $6^{\prime \prime}$ hinges and screws
Ta pair i" hinges and screw:
$6-12 " \times 1$ "f " patent brass flush slip holts with leevers and screws
6-36" $\times 1^{11 "}$ patent brass flush slip bolts with keepers and screws
6-4" mortice lever lacks haviner chony and bronzed crank handles on both side:
$36-\mathrm{s}^{\prime \prime}$ rim locks with check box ant $2^{2} \mathrm{~s}^{\prime \prime}$ milled edge brass mounting insike and iron octagonal handle outside
18-6" mortice lucks with Mareos patent comy mounting one side and brase monntine utacr
18 strons spring litelow latelacs with Mace's patent brass mounting both siles
30-4 2 " rim latches with Mace - patent bras mounting both silles
(63-:" press locks
4is set Mace's patent hrass muck mortice mmanting .
1.3 set Mace's ebony monk mortuce monntine

3-6" galvanized lock; inr water havine japanned octawomal pull knohs both sides
12.in" patent spring flush shp bolts with keepers and serews
G pair strong brase piwn hingesand screws for fanlishts
(i) strong cords with brase rees and yacht howk for fanlinhts
7's" malleable iron stanchenns at gates and borrowed lights in back chaser. including lead batting and putting in

Skirtings, Etc.

(i) $2^{\prime \prime} x^{3} 4^{n}$ moulded skirtings and rounds in ronms and lobhics....... lineal fect 1200-0 (1" \times : ${ }^{\prime \prime}$ mondded skirtangs and grounds in kitchens, sculleries and closets lineal feet dime miters of monlded akirtins:

$41^{\prime \prime \prime} \times 5$ ' $^{\prime \prime}$ mumbld utensil beltine with dooks, lineal feet

14＂corner beals with dooks on angles．．．．．lineal feet
 litueal feet

Kitcher Ritutnes，Reds and Presses．

こと一10

20111－11

 one breath ．．．．．．．．．．．．．．．．．．．．．．－． 1 mertictal twed

Labor working it mondided return ents of moulded shating
S＇s＂dovetalled drawers with is＂irmit，glue blocked， superfictal feet．．
$3: 8.11$
$\because 43-11$

12＂boume doors with flah planted mondinge， superficial icet

231－11

！1－••11
Fllets and sli＇r for it itawer．
＂s＂sparred hulves $1^{\prime \prime}$ aphart ．．．．．．．．．．．．．．．supericial fect
$\because 16-1)$
$\because 2(t i-1)$
$1120-10$
$12-11-0$
（6）－1）－0
3：4－11
$81-0$
1＂corner beads win angle ．．．．．．．．．．．．．．．．．．．．．．．．．．hne．．fiet
Extra for forming hinged parts of from and thp of \becausecoal lowes，with hare on hack laviner serews

－Japantued iron strong hook ant eyes on phater and serews
Labor fitting and hanging ai small ilw lemed doori ．．． luting irnmmongery on ご dreners ant cual boxes．．．． 81 pair 3＂edge hineses and serews．
14＂ご bras turnlmakkes．
27 strong lowk dad eyes on plates amil serews ．

$3^{\prime \prime} \times{ }^{-2}$＂cleated framing forming bed closets ．．lineal feet 13：－0
 lining inmeal text 630－0

$23 / 4^{\prime \prime} \times \mathbf{2}^{\prime \prime}$ cleaned and stop clamfered framing at openings.. . .
$205-0$
1's" ptich pine lining, tongned, grooved and beaded or
chamfered in joints...............superfial yards 105-0.0.
5 各" beaded checks lineal teet

**" monlding under leaded cope
 junctions of enpes and standards. lixed with sorews.
\therefore :galvanized iron curtain rode having bent palm ends and fixed with screws...................... . . . lineal feet
! dozen galvanized iron rings 1 " ${ }^{\prime \prime}$ diancteron curtain rods
S's" narrow chamfered white pine lining lack of ronn presses superticial yards Fs" cleaned white pine boarding on ingoing sup. ft. 5. " cleaned white pine shelving. superficial feet

Labor cutting raggles for shelving.......... . . lineal feet
5's" beaded slips lincal feet $5 " \times 5 s^{\prime \prime}$ chamfered skirting lineal feel

Lavatory and Water-Closet Fittings

24 French polished birch ater-closet seats each about $18 "$ square and $1 \frac{1 / 2 "}{}$ thick, in two thickinesses, shaped and beaded on edge and laving aperture complete.
-4 French polished birch hinsins rats, cach $4^{\prime \prime} \times 1 \frac{1}{2}$ and $33^{\prime \prime}$ long with two moudded brackets underneath
24 pair $3^{\prime \prime}$ brass edge hinges and screws
D0 India rubber studs each $1^{\prime \prime}$ diameter with b.ass sockets, plates and screws and fitting in
$5 / 8^{\prime \prime}$ angle pipe covers from $i^{\prime \prime}$ to $9^{\prime \prime}$ broad, witlt grounds
and fixed with brass sockets and screws... lineal fect
Two sided pipe corers girding $z^{\prime \prime}$ to $12 "$ broad, with grounds and fixed with brass sockets and screws, lineal feet.
6"X5s"s cleaned pipe covers with beaded checked grounds on both sides and fixed with brass sockets and screws.
. lineal feet
$150-1)$
$150-1$

60-1)
$3(6-1)$
1.55-11
13.)-1)
$\therefore 1-9$

42-11-11
301;-1)

- $1(i-1)$
$114-0$
$\frac{3416-0}{31-0}$

Shop Fittings

$5 / 8^{\prime \prime}$ chamfered selected white pine lining in $3^{\prime \prime}$ breadths, hand planed, with grounds $1^{\prime} 2 \prime \times 1$ " and not more than $30^{\prime \prime}$ apare. and well dried dooks on lower walls of shops, alsu ;ites and enffits of windows, doors, etc....................................... . stuperlicial yards
$4 " \times$ " "hite pine dwang for lining of shops (for extra valie over grommds).................. . . lineal feet
5́s" beaded cope at tup of lining............... . . lineal feet
Labor working bead on angles of linimg. lineal feet
 $4^{\prime \prime} \times \mathbf{2}^{\prime \prime}$ white pine bearers mader soleboards in windows lineal feet.

622-0-0
162-0
$\frac{5(m-11}{2(30-1)}$
156-1)
25-4-1
1/8" batten soleboards................... superticial yards 5/8" narrow chamfered liming only of breasta of batten soleboards superficial !ards
Extra for forming $1: 3$ small doors in sulebords with bars on back and putting on ironmongery 12 pair 1 !!"" backfold hinges and serews
12 brass knols
12 black buttons
Labor working bottle on edge of solehoards. . lineal feet 1/4" shelving fitted 1 p, where directed....superficial feet $1^{\prime \prime}$ shelving fitted up where directed. superticial feet 78" shelving fited up where directed.inperficial feet 3 " $\times 11 / 2^{\prime \prime}$ beaded groumds, dooked to wallineal feet $2^{\prime \prime}$ turned heads on frouts wi shelves.......... . . lineal feet 60) turned monded hases each !!" diameter and 3! 2 " high 60 turned monded capitals each 6 " "liameter and $4!2 "$ high six" plain soflit of cornice with bearers ... superficial fict $6^{\prime \prime} \times$ ®" $^{\prime \prime}$ moulded cornice having plain frieze le" decp in all with blockings 1 neal feet
If miters of moulded cornice
$11 / 2^{\prime \prime}$ bound 只ons with flush planted mouldings to small

Labor fitting and hanging ti small two-leaved doors.. Labor working beaded and checked edges.... lincal feet 190-0) Labor working thunb moulding on efge of top...
Incal fect

84 pair 3" edge hinges and serew.
42 strong iron hooks and eyes on plates and screws

134 BULIEDERS ANI CONTRMCTORS Gし゚DE

f2 large size latehes

Futting irmmongery on for small two-leaved doors "s" mahosany tops of comenters (french polished). superficial feet.
 (French polished)
lineal fiet
12 miters of mahosany thumh mondiner
 supurticial feet
 and chamfered in joint. on cond-.... aperticial yards
$\Omega^{\prime \prime}$ moulded lase with hockingr............ . . . lineal feet

 12 miters mimouldint

Extrit for motering and remommer moulded 1 ase at sum deaned pilantur
 5's" dovetailed drawer, watr - " fronts (stue !becked), superticial feet
$320-11$
3" $\times 1$ '2" cleaned framing and ponts lineal fect Fillets and sliders fur if il rawer
fi hardwod blocks having four cabll cups turned in each bxecuting all jobbings required beymbers. gasthers, and wher tralesmen, including all roush material reguired for cranks in romi, ete., alan sweepinis out floors, abll removing rublish to outcule, thio rablish will le then removed ly eontractor for maen work
Mantaminf carpenter, jobler, glazier and irommongery Works in perfeet condition during the progres of the work, making geond irom time to time any damaged or imperfect work from whatever callec aricing form theft, sturin, lire, tralenmen'superationts. acculent, wi every kimd, malicinus damage or otherWise, and after the several tradesmen fininh, werhanding the work, and reparing where necessary, so that the carpenter, joiner, glazier and iromongery works may be m such a periect condition that the necessary formal written certificate of completion may be granted by the engineer

Conditions

The safelintels, beams, wall plates, wall straps, dooks, window sashes and eases, frames and iraming of outer doors and shop windows athl shatters to be of Riga red pine, roofng of white pine, and all other timber maless where otherwise mentioned to be of American vellow pine. The whole timber to be of first nuality and thormondy seasomet, and free from sapwood shakes, large or lowse knots or other blemishes. the finishines to be spectially selected entirely free from blemish, and to stand fide full sizes specifed when hinished.

The worl to be framed and fitted in the most appen 1 manner, the whole of the nath leed throurghout to be teel nails, cut or patent wronght at the engineer may decide.

The whole matertats to be of the very best quality amd the work done in the most complete and trale $\begin{gathered}\text { manlike matner, to }\end{gathered}$ the entare satisaction and directinns wi the proprictor and
 thanes he entitled to examine the work, and tor rejeet, or canse to be rejected, all bad or defective materials or workmanship, but such exammation shall in mo way diminish, affeet or impair the oblisations if the contractor, as regarls the due and proper execution of the work in all respect-

The proprestor reserses full power to make alterations on the plathe or mone of exechting the work, and to increase, lensen or altogether omit such portions of the work at may be thought proper.

The work will be meatard when finished, and whether more or less than now estmated. will be valued at the rates enntaned in this estimate or others in strict proportion thereto, and in proportion th the slump sum of the tember.

The prices for extra work to which seborlale rates do not apply, to be revised, and if necessary, corrected by the engineer.

The contractor to pay half expense of seledules and measurements.

The proprictor may not accept the lowest or any offer.
The contractor shatl hate the whole responsibility of maintainmer and supportin: has department of the work until the whole is satisfactorily completed and formally taken off his hands and shall be bound to rectify ans falure from whatever cause arising, and to execute all work of whatever kinds necessary to complete this department of proposed works in accordance with
plans and foregoing particulars before the formal written certificate of completion be granted by the engineer.
Themas Smith, Issq.
Sir:-I herby offer to execute the carpenter and joiner Works "f the tememont and shups which you propose to erect in Pith arenus, aconrlin: to plans theren by Mr. James Thomson, civil engineor, buw shown, in conformity with and to the extent of the furesoing estimate for the erm of

Yunr acceptance of this offer will be bmding an Your Ubedient Servant.

FORM OF MEASUREMENT OF PLASTER WORK

Measurement of the plaster work of temements and shops erected in Fifth avenue by Thomas Smith，Esq．
S9－0 3 coats plaster on ceilings of rooms，
south houses，three upper flours ．．．．．．．3cal．11－11x ！！－6

3．5－0 3 coats plaster on ceilings of kitchens $: 3$ cia．$!-11 \times \times-i$
$14-03$ coats plaster on cenlings of beds．．．．．3 eit． $6-11 \times 1-11$
$17-03$ coats plaster on ceilings of sculleries， 3 eat． $\bar{j}-\mathbf{i} \times 2 \times 3$
$\because 1-03$ coats plaster un ceilings of lobbices． 3 eni．X－11× 4－11 Except breaks：3c：1． $4-11 \times 3-6\}$
37－0 3 coats plaster on ceilings of roons．，
north houses
：3 ea．！$-4 \times$ ！ 19
93－0 3 coats plaster on ceilings of beds ．．．3 cia． $6-(0 \times \quad$－ 6
33－0 3 coats plaster on ceilings ef kitchens，$:\{$ ea．$火-(j \times x-1)$
14－0 3 coats plaster on ceilings of beds．．．．3ca．（i－1）$\times 4-1$
17－0 3 crats plaster on ceilings of sculleries， 3 ea． $5-1 ; \times 3-1)$
$23-03$ coats plaster on ceilings of lobbies．．isea． $7-4 \times 4-11$ ） Execpt 3 cit． $4-10 \times 3-65$
209－0 3 coats plaster on walls of above apart－
ments，three upper floors
$299-11 \times 39-11$
Deduct 12 front windows ．．．．．．．．．．．．．．．．each 3 ． $10 \times$ ス．1

18 doorsides ．．．．．．．．．．．．．．．．．．．e．each $3-11 \times$ 万－11
12 doorsides and fanlights ．．．．．eeach $3-11 \times \times-6$ \qquad
$39-0$ add on ceiling of room，soutli house，
ground floor
$111-11 \times 9-1 i$
23－11 add on ceiling of bed．．．．．．．．．．．．．．．．$i-11 \times$ ．j－ti

1t－1）add on ceiling of bed ．．．．．．．．．．．．．．．．．．．fi－1） $1-11$
17－0 add on ceilifig of scullery．．．．．．．．．．．．．．．$\quad i-10 \times 3-11$

Except $4-11 \times 3-61$
37－0 add on ceiling of room，north house ．．．．！ 1 － $1 \times(1)$
$2 ?$ n add on ceiling of bed．．．．．．．．．．．．．．．．is $0 \times$ in
$33-0$ add on ceiling of kitchen ．．．．．．．．．．．．． $8-6 \times \quad 8-11$
14.0 add on ceiling of bed．．．．．．．．．．．．．．．．．．． $\overrightarrow{0}-0 \times 4-0$

```
138 BUITDERS' INI CONTRICTORS' GUHDE:
17-11 add on ceiling of scullery............... i-fix 3-14
```



```
2!!!-1) add walls of above apartments, &romm!
    Hoor . . . . . . . . . . . . . . . . . . . . . . . . . . .ach 2!99-1) X10-1)
Weduet & front win!nws ..................ach :3-1; < 8-1)
Iback wind 心.&...................ach :3-1\times 7-6
```



```
Whl culing of staircasc.................. に.-.0}\times\mathrm{ (1-0
```



```
Deduct * (wors :m! fanlights..............ach :3-1)
    \thereforestaircase winhow; ...............ath f10&!!-!
    2 closs upe+14..............ach f11%!!-11
                                    superlicial yares
F.. *i" conmace uf rmmms in smuth lmonses, three
    "pper flour................................ . cach 3!%-n= 115-11
7"\timesli" (urnice wi romme in north houses, three
    upper floors .......... ..................... . cach :3%-1)= 111-11
```



```
                                    31-1)=
                                    :37-n
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{cal feet 304} \\
\hline \\
\hline
\end{tabular}
位mitera nu cormuce
```



```
Rounding plaster corners．．．．．．．．．．．．．．．．．．．．．．．lineal yards（i）－0－11
leothing it wintow ase in lime and pointing same with mastic and wil
Nending broken plaster after the nther tradeamen are hinished
Measured amb calchiated E．E．（signed）James Thompon C．E：
```


FORM OF MEASUREMENT OF PLUMBER WORK

Measurment of the Plumber lionk of Tenements ami Shops erected in lifth dvemue，By Mr．Thomas smill．
T lls．sheet iond lininer whthers．

F 1h．ohroet leat lining gritters
 Superlicial iect｜－テー－ 11 z $\because t$
1；11，shect leat linines ant

i 16 ．shect kal liming on

（i）lls．slect leal liminer wn

Superticial fect 喜い－t 1316
\therefore 11．silecet lead apront at

\therefore 1b．sheet leal aprons at

\therefore 1h．sheet learl artorns att

\therefore llb．sheet leat aprobs at

Superficial feet：3：3－4	1.1	2	9
	40	2	21

To find the total weight of leal on roof multiply the superficial feet in each case by the pound per foot in margin，thus：－1si．6 multiplied by i gives $1: 313.2$ ．

I：3；strong galranized iron straps fixing leat wn riclges and piends
140
is" $\times 4^{\prime \prime}$ cast iron mombledgnter along front eave, lineal feet $116-11$
lif cast iron monlated close enda
I cast iron moulded dropen or ontlets
12 heavy copper rose gratings in gittern at top of pupes$3^{\prime \prime}$ hembs from gitter, matle of 6 llo. lead. . . . litueal feet3 c.i. $90-11=$lineal feet|स1)|
(i) cast iron benth at bottion
in cast iron urnamental cars fixed with spiken,di cast iron ormamental cintera heads
3' cant iroll romble conlucturs and wante pipesfrom jawores

a cast iron ciresh hends or shoes at hottom
(i) cast 1 rum : ${ }^{\prime}$ ets at top2.: citat iron la....ch pieces for waste pipes
2-2 cast iron hranch horns cast onf fur waste pipes112 cast ironstil pipes from water-closets. 3 each |ll-1120-0
3 each 景-11 Ti. -11
:3 each 16 - $1=$ lineal feet $\because 23-11$
9 cast iron bent . ith heel rests at bottom
ef cast iron hornn for brancles.
24 cast iron branch pieces
$11 / 2 "$ cast iron lisht air pipe $!4^{\prime \prime}$ metal above suil pipe6 each I 0 - 1 lineal feet
ti cowls on top of air pipe as per drawing
:3" waste pipes made of $i \mathrm{ll}$. lead lineal fect (11-9
\therefore leal hranch suil pipes lineal feet 11.i-1)
 outside measture

$3!/ 2{ }^{\prime \prime} 27$ hass table washers with p!ug and chath

uT lead cullars connocting lurustiol waste pies.e.t
6 plain whiteware table top wash hand hasins as per estimate

Extra fort hasine having hrane pillar fonnt with flange
 water－closets at for exthate

$\because 1$ hrass mpple c：ach $\ddot{\theta}^{\prime \prime}$ dametor
 syphon cinteran

$1!2^{\prime \prime}$ galvanizel iron service ppes f．watlor．

Lime：al fote ：2lla－11
Labor only forming ：3 wficts an arrice pipe
3／4＂patent lead supply pipes 11 lls．por lam：al yard

1icath $\therefore 11=$
2110－11

（i）each 1 にール

1／2＂patent lead supply pipes 7 lla，per lineal yard．

7ciach：111＝210－11

1 each $: \%-11=$（0）－11
\therefore each $17-0=$ 51－1
Lincal feet TII．
6 brass underground stop cocks on supply
6 brass screwol ierrules
3 cast iron stop euck cases
．f cast iron horse shoe covers
$3 / 4^{\prime \prime} 3$ brass cleansing cocks with coupling tails ．．．．．．．．．．
1 malleable iron stup cock key

FORM OF MEASUREMENT OF TILE LINIINGS

FORM OF MEASUKEMENT OF PAINTER

WORK

 e...ll

 eルl。
i; 11 - (-1)

I conat wil bitht all : thithng is. it

tome fai pini ral terman

1 crat wil haint and -i/n enting of athe - .i

I © wat wh pant and size tinting coilings of bed. (i-9) $\times\{-1\}$
I coat onl paint anll size thating ceiling of scullery
........ J-fi) : 3-1)
$\left.\begin{array}{r}1 \text { coat oil paint and shee tinting coit of of lobby, } 819 \times 1-0 \\ \text { Excent }+4 \times 3-6\}\end{array}\right\}$
1441 coat oil paint and size tinting ceiling of roomnorth house$9-6 \times 9-0$
1 coat oil paint and size tinting ceiling of bed. $6-0 \times 5-6$
1 coat wil paint and size tinting ceiling ofkitchen$8-6 \times 8-10$
1 coat wil paint and size tinting ceiling of bed. $(i-1) \times 4-0$
1 cont wi paint and size tinting ceiling ofsculters$5-1 \times 3-0$1 cont wil paint and size tinting ceiling of lobby, $\left.\begin{array}{r}7-6 \times 4-0 \\ 4-11 \times 3-6\end{array}\right\}$

1 coat oil pant and size tinting ceiling of closs, $1 \underset{-11}{ } \times \mathbf{d - 1}$
1 coat oil paint and size tinting ceiling ofstaircase . $\sqrt{\text { ® }} 11 \times$ X!- 10Superlicial yards
\qquad
Size colur on walls of apartments, three upper floors
Size color on walls of apartments, groundfloor . $!1!1-10 \times 10-0$
Size color on walls of staircase............... . . ${ }^{3}-10 \times 43-0$
Size color on upper walls above tile lining... (6t-0 \times i-0 Superficial yards
3 coats uil paint in shades on piain cornices girding $20^{\prime \prime}$ lineal yards
3 coats oil paint in shancs an a center flowers each $3^{\prime} 6^{\prime \prime}$ diameter
3 coats oil paint in alsoke on ! circular iron pillars each 12" highaml gardiny "4" with stenciled ornaments
Imitation rich dark oak with 3 coats ground and 1 coat varnish on woodwork, viz. :

$$
\begin{aligned}
& \text { windows. } 12 \text { each } 10 \text { - } 10 \times 8-11 \\
& \text { soffits of windows.......... . . }{ }^{2} \text { each } 8-0 \times 8-10 \\
& \text { breasts and chbow:. } 1 \text { e each } 16-11 \times 3-0 \\
& \text { doors, } 26 \text { sides.......e.each } 4-1 \times 7-6 \\
& \text { doors and fanlights, his sides . .each } 4-11 \times(1)
\end{aligned}
$$

Superficial yards
Imitation rich dark wat with 3 coats ground and 1 coat varnish on skirtings and beltings girding from $6^{\prime \prime}$ to !" ${ }^{\prime \prime}$. lineal yards
3 coats painting on wher wooiwork, wails oi iobblies and lower walls of kitchens, sculleries, and stairs, superticial pards

3 coat, painting on skirtings and beltings, girth $6^{\prime \prime}$, lincal yards
Drawing line at twp of lower walls.......... lineal yards 600-0 - 0

1 coat staming in shates with dark mondiness and 3 coats varnish on womlwork of shops. viz:
wall linings. 1 . 1 : $14-11 \times 4 \times-6$
wall lininцょ. $111 \times 3-6$ doors

In cach $4-11 \times$ - -1 Superficial yarts
1 coat staining in shades and 3 coats varnish on staff beads, girding 33^{2} "...................... . lincal yards
Painting vermillion and varninh on edges of shelres, lineal yards
3 coats painting approved color on ik rowm chimney pieces
3 coats painting hack on 33 kitchen channey jambs, hintels and shelves.
Supplying 14 piecos paper for walls of rooms.
Hanging $1 / t$ piecess.
3 coats painting bronze \&reen on stair

3 coats painting bronze grem on iron

3 coats painting brome green on burfowed lights
.1) cach 3-11× 2-4
Superficial yards \qquad
3 coats painting hromace green on ontshle woulwork, viz. :

 1"duors. each T-11×R-11
Superficial yarda
3 coats paintines bronse green on framine, girth if" of $^{\circ}$ shop front... lineal yards
:3 coate painting bromece green om framing, girth !" "f

 pipes

1ace.a :anos

3 coats painting bronze green on : $:$ ron cistern heads.
:3 cats painting bronze green on 6 iron clothes pules.
3 chats painting bronze green on 29 iron ventilation grating s
3 conts pantiner hronfe wreen on iron stanchennt of 18 winduた.

NOTES ON THE VARIOUS WORKS

EXCAVATOR WORK

The excavator is the person who unlertakes to do all the digging operations in comection with the building. The tool generally used is the common spate, but there is oiten used a large scooped shovel which is drawn by a l:orse, especially where the soil is of a sandy nature. The prices per cubic yard for dirging operations are regulated upon the condition of soil, whether it is har' or soft, and the time that would be taken in doing the specified quantity. In order to ascertain the cubic contents of excavating work done, it is necessary to find the data of the various levels of the ground previous to digging operations. The site for the proposed builling may have a very mineven surface, and so it is necessary to reduce the elevated parts of the ground to the lowest level, which will be to the uniform level of the ground previous to iigging for the underground work of the buildiner. The instrument used for leveling is the Theodolite, which stands upon a tripol or three legs. It is generally placed in such a position that commands a favorable ए) int to take observations of the whole surface, an l where this is not accessible it has to be moved from Wace to place in order to gain the best arailable point. Within the Theololite there are two cross films-ant the center point is that which gives the ubservation of the number of feet as shown on the rol which is held up at the

place where the level is to be taken. Firstly, however, a datum is to be taken of the place from which all the levels are to be regulated. Thus, uftgn the corner of a wall of a meighluring house may be chosen, amt a mark mate by a chisel unn the wall indicating the print uf vision taken while looking through the Theodulite. The inlex on the Fowl which it strikes is then antel in the olservation book ior future reverence. When wh the observatives are taken then the have to be regulated accordines to the rise and fall of the ground in comparison with the datum taken.

When the levels are taken and jotted down in the note book, then the calculations may be male i:1 the office. The surface of the ground may be divided off into sections at the various points, and taken the average depth. Thus the various depths are taken and calculated on tie various secl.uns of the surface:-

This reduces it to the level surface of the ground and then the exavator may berin to do any undersurface digesing that may be requirel. The digering of same may be ascertained in a like manner.

When at the levels are taken and quantities male out, it is neeessary to lescribe the nature of the soil whether liarl or soft, if the soil is to be wheeied to some part of adjacent ground or carted away altugether from the location. Theexcavator the: can come to a proper basis upon which to regulate his price per cubic yard.

NOTES ON MASON AND BRICK WORKS

The term rubble is given to the rough stones that are generally used for the backing of walls where there is a facing of hewn work, or for walls of buildings where no facing is required. Common rubble is not hewn, but only shapel to the position it is to uccupy in the building, and is generally not placel in any regular form. Square dressed rubble is hewn win the face to make the surface more regular and give it a better appearance. Ashlar is stone often used for the facing of walls, and is either polished or rock faced. Polished ashlar is gemerally used in the facing of buildings of a costly character, and those that are exposed in conspicuous positions to the public view. It presents a very pleasing appearance when build in regular courses. The thickness of ashlar is in general $6^{\prime \prime}$, and in courses $1 ?^{\prime \prime}$ or $133^{\prime \prime}$ deep, an 1 is set in mortar and jointed with putty. kock faced ashlar is the face hewn rough in the center with a margin wrought round each block of stone. This is often adopted in buildings where a relief is lesired from the plain or uniform face in uther parts, and it has the effect of giving a rustic appearance which is a very pleasing contrast. Buildings of a castle or fortress character have very often this class of facing alloptol in their construction which gives an imposing and hold effect to the general appearance. Another kind of ashlar is that winich is termed droved, and derives its name from being drow 1
or hewn with a chisel and then placed in its position in blocks. Again there is vermiculated ashlar, that has the face hewn in a worm-like form in the center of the block with a margin of plain Iressed or polished hewing roum? same. Again there is crow-tued ashlar which has the face done in the form of crows' toes. There are other kinds of hewing also adopted in dressing of stone, such as scabbled, stripel, grooved, flyted and piended. There are also other varieties of stone, such as boulder stones and whin stones. The system of building with boulders has been in practice for several centuries. When we recall to mind the great walls that have been built by the Romans, notably the one stretching between the estuaries of the Forth and Clyte in Scotland, we have an example of the very early periol in which it was adopted. Again when we see the ruins of some of the ancient castles or fortresses throughout Great Britain which have stood the test of time, and seen the practical purposes which boulder stones have served, we can well understand the durability of such material when properly built. The boulders are often found on the sides of mountains, on the margins of lakes, by the roadsides or in the fields. If they are found in the vicinity where it is proposed to build, then the expense of quarrying is saved, for they are generally on the surface or a little underneath the soil. In Scotland this methor of building with boulders is frequently adopted and in many of the ancient towers and castles it may be seen. Although often, too, found built in their natural condition, yet they may be hewn to meet the reguirements of the style of

Architecture used. The various kinls of stones have certain qualities which make them applicable to some particular style of building, and boulder stones are well adapted for the liaromial style where ruggedness and strength are the promment characteristics. The sizes of boulder stones vary from 3 inches to s cubic feet, and are to be foumd in different colors, such as grey, blue, green, brown, red and several others. The various shades may be well adaptel to give a pleasitig effect to the building when placed in certain positions. Boulder stones can be utilized for window heads, window sills, window jantbs, square corners, window arches, chimney-coping, doorsteps, and other parts of the building, if required. When white boulder stones are used at comers of walls or at window jambs, and filled in with blue whin stones of different sizes in courses between, they present a pleasing appearance. The boulder stones are set in lime and neatly painted with black mortar and white lead in the keydrawn joint. Besides being used in the building of houses the boulder stones may be utilized with effeet in building churches, and public buildings where strength and solidity are required, and may be hewn to the size and shape that may be best suited to the order of Architecture. Nary of the dykes or walls that enclose the fieds or rural districts of Scotland are lmilt with boulder stones laid on the top of each uther without mortar. These are not generally set in any regular order nor intenled to be always permanent, as they may be removed from one position wanother as may be required. Whan stone is found in different parts throughout Great

Britain, and is of a very lard and durable character. It is not easily hewn, lout when it is made into regular thaped blocks and blacel in proper positions in the builling it presents a ver! neat and pleasing appearance. The dressings of corners, windows and doors have generally freestone, allapted to give contrast the whin stone facing. Cottages or small honses have often whin stone as the facing for the onter walls, and it is very neat in appearance, when laid in courses i inches deep, and jointed with white putty. Churches or castellated buildings are also often built of this kind of stone, and it is very durable and well suited to withstand the influences of the weather. There is also the granite stone which is very little used in building and is principally utilized for the making of monuments, steps, pillars, columns, piers and other requirements. Sometimes the base part of buildings is done with this material and may be either rough or polished. It is very hard and consequently not so easily hewn, but when polished it presents a nice appearance, and is very durable. There are some localities, but very few where granite is to be found. Aberdeenshire in Scotland is where some of the best quarries are to be found, and notably in Aherdeen and Peterhead. The former city is callel the Ciranite City, where nearly all the buildings are constructel with granite found in the district. There are other kinds of stone that may be used for building purposes such as marble, etc.

Th treating of hrick, thor are two hats which are often adopted in buildine: the common rel and white brick. These again may be made smooth, and present a more
finished appearance to the bulding Buildings that are built with brick and cement murtar are often very durable when groul material is used, but if the brick be of a soft character the buildine would be apt very soon to give way. There are matn mupuses to which brick mas lie applied, but it is mancessary to enmmerate them. Brick is the best material for the construction of large chimney stalks and flues, and may be built with the red brick outside and white fire clay brick on the inside. Brick mas be made int, any slape by being moulded. Thus we have moulded cornices, rounded corners and splayed bases. We shall not touch upon the manufacture of the brick, as there are processes which would cause unnecessary detail.

NOTES ON CARPENTER AND JOINER WORK

In considering this subject we woull notice the various kinls of timber and the practical purposes to whic! they may be applied. The timber that is exposed to the weather must be of a harder and more durable character than those for insile we, and according to the different parts of the work required to be done the timber that is most suitable is grenerally alopted. Thus white pine is oftell used for roofing spars, joisting ete., while American Fellow bine is adopted in the finishings, such as loors and lining of rooms. It is right to see that all timber be free from shakes, sapwool, large and loose knots and other imperfections before being wsel. There are many blemishes tu be a oded in the choie of timbers, especially when they are to be used for very barticular purposes. The timber must be thoronghly well sasone ${ }^{\text {m }}$, otherwise, there mey arise several impertections that will show themselves through time in the timber, eatsed by exposure. The timber for safe linte: beans, wall plates, wall straps, looks, window sashes and cases, frames and framing of outer hors are generally of kiga relphes. The fimishins - ich as winduws and doors are ne nerall! now done by machinery, whereas all the finishings in furncer times, used to be done by the hand and so a less dhumat wi work was accompiisibei in tine sante space of time thine what can now be done by the appliances at comman t. In all the various kinds of Joiner work there
are many t as at in their constructio no the manily ulation of these eb re competer traleatien to prit together the various parts of the wum Great probre. has been mate in the manufacture of the nmere merneish and ormamential fal is in the joiner wor witce shore co the

 juistins is witen place! i- 1 ente amlore -h ob duangs are phacel letwern t low ort of the jorsts over the whlh wi ar a whit or The justs are often inserte ! bla ,
 preverth the jonsts from tahmer artas
 often they are hali an inch thin : otronglif fir insertion of the j ists, thus the l rallow 11 He ! ! $1^{\prime \prime}$

placed on the coof and may be made to any size as may be required. Over the upenings in the walls there are the beams or safe lintels. They have generally a rest of nine inches one each side, and when inserted into the wall are rough, but when expused ower any opening they are dressed. Beans are made in different lengths, hat should be specified if in long lengths, as the price will be more per lineal fout. Door frames may be described as per pair, giving the height of ceiling and the thickness of the brick partition in which they are placed. Thus:-one pair door frames in $4^{r^{\prime \prime}} 2^{\prime \prime}$ brick partition the ceiling $10^{\prime} 00^{\prime \prime}$ high. Those door frames in stanlard partitions may be measured in a similar manner. ()r again the frames and lintels for doors may be measured by the lineal fuot. Partitions where standards are used are generally composed of $4^{\prime \prime} \times$?'" standards placed $14^{\prime \prime}$ to centers, and having $4 \times ?$ runners at top and bottom and dwangs in center.

Windows are generally male :"s" thick and havine cases. Windows may be with or without astragals, and if having small panes shoull be specified so, as an extra price would require to be charged. Windows may have circled or gothic shaped tops, and an extra charge should be made for forming same. Windows that have mullions or transoms shoul!! have the same specified am! measure by the lineal foot giving breadth and thickness. Where spandril board: are, these should be described giving the extreme measurement. liindows are generally hung with lead or irmen weiglts anl strong hemp cord with hrass faced aske pulteys. They may be hung on both sashes or mily on one, but munt l心 anspeified. Doors
are made of various kinds of timber and different thicknesses. Two inches is the thickness of ordinary luors, which are generally for the outer doors or inner pass doors. Press and closet doors ari generally made $11 / 2^{\prime \prime}$ or $138^{\prime \prime}$ thick. The number of panels in doors should always be specified and the kind of mouldings in the panels lescribed, also whether it is square on the one side and mouldings on the other. In measuring bound partitions where the glass is in upper portions, the thickness of bound work should be taken and classed by the superficial foot, all mouldings and copes measured separately and astragals describing their size. The wainscoting on walls to be described giving the thickness and the mouldings ar: copes measured ty the lineal foot.

The order in masuring Carpenter and Joiner works is to begin by taking the rough timbers first, such as safe lintels over openings, beams, wall plates, runners on brick partitions, slecper and floor joists, door frames, ceiling joists and roof timbers. In taking the finishings begin with the upper floor and come downward. Firstly: Take all the winlows in each roon with their finishings, then all the doors with their finishings, and then the mantel-pieces and skirtings in each apartment. In the next stury down take the same order. It the note book then you an see at once where to find each item and so have them classified and arranged in the completel measurement After you have taken the rougi timbers on a piece of paper that you have as a Irait you may then take all winluws with their finishings in one place, the doors with their finishings in another
with all ironmongery and then note these in proper order form same as described in Furm of listimate. The completed measurement should be kept in as near a form of order as detailed in the Estimate, as the prices in the listimate can be better applied and placed in order in the measurement.

NOTES ON SLATER WORK

In many localities slates are not to be obtainel. but in England and Scotland where there are several quarries, the slates are greatly utilized for the various buildines. that are erected. The W'estmoreland slates of the North of England and those of the Western Highlands of Scotland are chiefly in demand throughout Great Britain. Those from Westmoreland are green and of a durable character, and give a neat appearance to the roofs, when properly bonded. The slates from the western Highlands of Scotland are generally hlue and can be had in various sizes. Slating in Canada is very seltom done, and when so, the slates are shipped from a considerable distance. Shingling is the method done generally throughout the Dominion, and when the roofing is painted it has the appearance of slates st.ch as are used throughout Scotland. Slating makes a very durable and strong material for resisting the effects oi snow and rain, as well as the sparks from fire. Although the prices of slates are much higher than shingles or any other material, yet it is to advantage, in getting roofs done with them, because of the durability and adaptability that they possess. The slates are generally three fourths sytuare dressed and bored $11 / 2^{\prime \prime}$ from top, having:3" of cover at the eaves gradually diminishing to ?" at the ridge and put on with raivanized steel or ir .7 nails weighine 1! pounds per thousand. Slates can be
m in various patterns and shapes, but where they are re intricate than the common mode of slating, it requires considerably more time in arranging and fixing them.

NOTES ON PLASTER WORK

There are different kimls of material with which plastering is done. There is the common plaster composed of haired lime mixed with lime shells, and pure water. This after being made into the proper consistency is put on the walls and floated with a square piece of wood having a handle which is used for the purpose. The first coat of plaster is then left to thoroughly dry aml then the second coat is put on, ind when this coat is in a condition to receive the third coat, it is then put on and finished in a polished manner with white stueco plaster. This is then the last coat which completes the plastering of the walls in general cases, as three coats finished white makes a first class job. The walls then should be in a proper condition for receiving pant or any other material that may be desired to cover the same. There are also Portland and Roman cement which are usedi fromently in the plastering of walls. Then there is staceo or plaster of Paris that is usel for the cornices ant urnaments of the building. These can be run ur moulted into any shape or form as may be desired. There are many kinds of ornaments adopted in the cornices. There is the modillion block, the curg and lart enrichment, the various kinds of floral urnaments, the ilentil ornament, the patera ornament and several others that might be mentioned. Conter hiowers are male in different patterns and in larions sizes.

NOTES ON PLUMBER WORK

This work is ret importall from a sanitary point of view and is worthy of great attentiom being given to its study and development. The romes of huildings have generally leal usen in the varions parts that are exposed to the weather such as ribges and piends, valleys and round chimney stalks, and these lead pieces, should be well batted down and secured from being remored by storm. Z.nc is also often used in connection with roof work, such as rilges and piends, valleys and round chinneys stalks, etc. The conductors or pipes that convey the water from the roufs are of different bores or inside diameter, as the rempirement demands. At the top of these pipes there are boxes or cistern heads in which the water is contained previous to its flow dow the pipes. These pipes may be made round or syuare, and fastened ly iron hollfasts or loose ears. At the top of some of the pipes where there are projections of plinths there are offsets projecting beyond the wall to allow the rain water to flow into the ripes. At the botom there are shoes or bends to allow the water to flow from the pipes at the sround or there may be heel rests at the bottom for connecting at drains. The pipes or bends from sinks or jawboxes are often carried to the outside to join the rain nater pipes. The jan inoses ur shins are gemeraliy piaced in a convenient position next the outer wall, and are inclosed often with lining 浮" thick and having a door in
same for access. The top part or sole buarl is at the end. while the hardweorl cone is romnd the openinir of sink. The position is thus:

lusile the sink there is a flar and socket at the top ui the waste pipe with chain attacherl, white there is a brass xrating for allowing the water $:$., ischarge into the waste
pipe. There is also an overflow at the tod of the sink for the water when it rises to a certain level. On the waste pipe from sink there is a cesspool, or trap, and a brass screw attached to give access for cleaning purposer The water closets are often situatel also near the oute wall so that the soil pipes may be carried down conveniently for discharge to the outside. The soil pipe is connected with the horn of closet and has also a bend or cesspool with screw for access to same for cleaning. The soil pipe is sonmetimes carried down inside the wall, but for sanitary purposes it is better that it be carried outside the wall, and having a grating on top for ventilation. On the down soil pipe outside the wall there are horns cast on for the reception of branch soil pipes from closets. At the bottom there are heel rests at connections of drains. The thickness of inside diameter of soil pipes is generally \therefore " or $4 \frac{1 / 2 "}{}{ }^{\prime \prime}$. The bath pipes are more complex in their construction as often there are hot water pipes to be brought from the tanks where the hot water is generated. The cold supply pipes to baths, sinks and cisterns, as well as to hot water tanks, are brought up from the ground and carried throngh the building to their various places. The cold supply pipes to baths are led along to where the cranes are situated and the hot supply pipes also to their cranes. Then there are the other pipes such as the waste or discharge pipes, rod pipes, and fittings for baths. Baths may be fittel up with plunge, spray or shower. Hot water tanks are generaily situateri in the kitchen, where the pipes for the tanks may be led from the kitchen boiler. The revolving pipes are those between the tank and boiler. The other pipes from the tank convey the hot
water to the bath and sink. The fittings of the tank are generally 3 couplings for connecting pipes. The fittings for sinks and baths may be either made of brass or dectro-plate or gun metal. The sanitary condition of the building or house depends greatly upon the method and perfect equipment of all the parts to the uses for which they are intended to accomplish the desired results. It is of importance that the water closet fittings and arrangement of its position in the house le particularly attended to, also the method in which the soil pipe is marle perfectly air tight, and the connection it has to the drain, and exit of the soil therefrom. lentilation of the soil aipe is very essential, and shouh be done in the most thorough method possible. The gasfitter work of a house is also of much importance where a supply of gas can be readily obtained. The pipe conveying the gas from the main is led into the house and connected to the meter which has an index that records the number of cubic feet consumed, and this may be priced per thonsand feet and the cost ascertainel. The pipes are mate of composition or block tin and of varions diameters or bores a acording to the number of lishts reguirel in the various apartments. They vary from $1^{\prime \prime \prime \prime}$ to $1 /{ }^{\prime \prime \prime}$ in diameter and according to the position of the apa" ment and the number of lights in it, the pipes will be led in the shortest metho! possible to save expense. Then there are couplings which cunnect the pipes at their junctions where they brancl: of to the several apartments brackets are fitted upon the walls or mantel-pieces, and gasalies from the ceilings. These may be had at varions prices an ! frm the plaines: to the most claborate ilesign.

NOTES ON PAINTER WORK

Beauty and cleanliness, along with good taste are very essential elements in the finish of a building. The Painter's art is one of great importance in producing. these when carried out in the most thorough manner. Painting may be done with various kinds of material. Thus we have oil color, and water color. The oil color gives a more durable condition and may be easily washed. The water color is of a cheaper material and can be used for common purposes. The oil paint can be made into various tints according to the class of work that may be desired. IIarmony of color is very important in painting, as a deficiency in this respect displays a want of good taste. The work of a gool painter should produce the highest artistic results. For this class of work the Decorator is brought into requisition, who requires to devote his time to the study and development of the newest and best designs, and produce original sketches for the various subjects that may be required. The decoration of churches, halls and public beildings call for the skill of the best artists, and this class of work becomes very expensive owing to the time required in gaining the experience of same, ant the great care and taste displayed in producing the desired resuits.

FORM IN NOTE BOOK

MASON WORK

Measurement of the masun work of a tenement being erected in Fifth avenue by [homa, Smith, Esy.

U＂kubhle fummdatum sent gable above fommdation ．．．．．
Deduct ： ＂malons． groumd flowr

ご－11×（36－1）

 floor orrol ；Wintows．thari Howr．

1＂い＂Kulluk＂alls of Wじい beduct 12 wintow： 1 somer．
Ryhats of opeoling－ inf front wall，hat－ ing droved margin and scuncheons． per estimate

Rybats oi upening in la＝k wall，hav mg uroved margan alld simncheons． per＂stumate
Ryhat $u f$ op mmg． in cout gable has ing toved margin an cunchema． per ：mate．．．．．．

i	cach	$6-6$
i	each	--0
i	each	$8-1$
ii	cach	$i-1 i$

＇Kyhats 01 operangs in west sable，hav－ mg droved margin alld scuncheons， per estimate．．．．．．

BRICK-WORK

Ho" Brek partituns in
gromblat lat

Brick lmblym of
wall at comblot wine
Brach tomblation for "Ing
$11^{n}>111-11 \times 111+$

FORM IN NOTE BOOK

CARPENTER AND JCINER WORKS

Windows.

Doors with their Frames and Furnishings

1's" \therefore ough hottoms of conal boxes

$1 \times \prime \prime \quad$ liatten liming dresse 1
ann clamfereal.
$3^{0 \times} \times 3^{\prime \prime}$ Sumbled and chamlored é"raer ponts ;
1" (0uracer lucals $" 11$ antigle.
lixtra for furminh hinged pirts of front and tup of \because cond bosets
-3 parr ?" stru!k hackith limgis and screws
\therefore Jabinmed irull hooks and eren on plates amel screw
l.abur fitting and hanging :丷 small. two-lcived duors. l'utting ironmongery on : (lressers, and coal lomes.

- pair $3^{\prime \prime}$ elde hingets and screvs
\because strong lowotio athel cyes un plates and screll.
\because black irawers, ctil handies and screws
3"~"゙ ("leanced iramink forming led cluset..

$\times \underbrace{\prime \prime} \quad \begin{gathered}\text { Cleancd framing } \\ \text { forming gronm! } \\ \text { finrlinmer }\end{gathered}$ | 2 | each | (i-1 |
| :--- | :--- | :--- |
| 2 | tach | $3-11$ |
| 2 | each | $4-11$ |
| | | |
| \vdots | | |
| | eitch | each |
| | $f-11$ | |

23." $\times 0^{\prime \prime}$ Cleaned and stup chamtered iraming at openings.

1's" Pitch pine linims. grooved, bealed

FORM IN NOTE BOOK

SLATER WORK

The sketches of roofs are the principal things to be taken in note book, and great care must be observed so that not one single measurement be omitted to be jotted down, otherwise the contents cannot be ascertained. It is advisable that the sketches be carefully examined for this purpose before coming off the roofs. The contents of area of roofs may easily be obtained by diviling the. various parts into triangles, parallelograms or squares. according to the shape of the roofs. The pointing of raggles and skews may be taken also when upon the roofs and jutted down, and any other work done by slater.

FORM IN NOTE BOOK

PLASTER WORK

Upper Floor of one Tenement

Walls square . 47 - $0 \times$ 9-6
Derlati 1 wintow......... 11×8 8-6
\because dowrs all $14-0 \times 7-0$
$8^{\prime \prime} \times 0^{\prime \prime}$ cornice as walls...................... lineal fect 47-0
4 miters
1 center flower $4-0$ diameter.
1 coat plater behind window linings, breast. . $7-0 \times 2-6$
1 coat mater behind window lininse, sides, 2 ea $1-0 \times \mathbf{0}-0$
1 coat p!aster behind press lining................ $3-0 \times 7-0$
3 coats polished plaster ceiling of beilroom....12-11 $\times 8-0$

(ix 4 cornice as walls Lineal feet 40-0
1 miters
Deduct I winlow from walls $4.6 \times 8-6$
1 (loor . $3-0 \times 7 \times 0$
1 coat plaster hel.ind window linings, breast....(i-f $\times 2-6$
1 cont plaster behind wimbun liminss, silles, 2 ea $1-\boldsymbol{1 1} \times \mathbf{0}-0$
3 coats polished plater evilins of kitchen...... $12-10 \times 9-0\}$ Except $\quad 7-11 \times 2-0\}$

3 coats polished plabur ceiling of leal 6 ($6 \times 4-4$
3 coats polished plater walls21-11×! 9

1 dour to beil2 sides each 3 3-0 $\times \mathbf{0}$ - 0
1 (lonr and f:mlight. $3-n \times 9-0$
1 coat plaster behind window linings, hreast. . $7-0 \times 2-6$
I coat plaster behind wintow linings, sides, 2 ea $1-0 \times \overline{-}-0$

3 coats polished plaster ceiling of lobby....... $8-0 \times 7-0$
Walls square $30-0 \times 9-6$
Deduct 2 doors each $3-0 \times 7-\mathrm{e}$
2 doors and fanlights each $3-0 \times 9-1)$
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls Lineal feet 30-1)
4 miters
2 coats polished plaster on ceiling of parlor,north house $12-10 \times$: $11-0$
Walls square $45-8 \times!-6$
$8^{\prime \prime} \times 6^{\prime \prime}$ cornice as walls Lineal feet 4.)-8
4 miters
1 center luwer
1 coat plaster behind window and press linings as lastparlor
3 coats polished plaster ceiling of bedroom... 12-0×7-10
Walls square $39-8 \times 9-6$
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls Lineal feet 39-8
4 miters
Deduct 1 window, as south house
1 door, as sunth house
1 coat plaster at window as south house
3 coats polished plaster on ceiling of kitchen .. $12-11 \times!-(1)$Except $7-11 \times 2-4\}$
3 coats polished plaster on walls square $42-11 \times 9-6$
Otherwise same as kitchen in soutl loouse.
3 coats polished plaster on ceiling of lubby..... $2.6 \times 6-10$
Walls square $.31 .8 \times 9.6$
Deduct 2 doors, as south isouse
\qquad2 doors and fanlights, as sontl house
\qquad
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls Lineal feet 30-8
4 miters
Up Two Stairs.
All same as upper floor except
Height of walls $\times 9-1$
Height of breast of windows $\times 2-3$
Height of sides of windows. $\times 7-0$
l'ress linings as above
Up One Stair.
All same as upper floor except
ileight of wails 요 0
Height of breast of windows $\times 2-3$

Height of sides of windows............................. . . $\times 7-0$ Press linings as above

Ground Floor.

3 coats polished plaster on ceiling of parlor, south
\qquad
Walls square . + - -1×1111
Deduct 1 window . $-11 \times$ R- 6 1 door....................................... . . $3-11 \times$ 「-0
$\mathrm{R}^{\prime \prime} \times 6^{\prime \prime}$ cornice as walls.....................ineal feet 44-0
4 miters.
1 center fiower
1 coat plaster helind window linings, breast. . . $\overline{-1} 1 \times 3-4$
1 coat plaster behind window linings, sides, 2 ea $1-(1 \times 7-1)$
1 coat press lining as above.
3 ccats polished plaster on ceilin: of bedroom. $12-11 \times 8.1$
Walls square . $40-11 \times 11111$
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls.ineal feet $411-0$
4 miters
3 coats deduct 1 window $4-6 \times 8-6$
1 door . $3-4 \times$ (11
1 coat plaster behind window linings, breast....6. $6 \times \ddot{2}-1 ;$
1 coat plaster behind window linings, sides, 2 ea $1-0 \times$ (-1)
3 coats polished plaster ceiling of kitchen12-0×9-0)

3 costs polished plaster walls square 42- $0 \times 110-10$
3 coats polished plaster ceiling of bed6-6 $\times 4-0$
3 coats polished paster walls.................. . $21-11 \times 10-0$

1 doorto bed................. sides each:3-11× $\begin{aligned} \text { - }-11\end{aligned}$
1 door and fanlight. $3-10 \times 9.11$
1 coat plaster behind window linin . hreast.... $\mathbf{i - 1)} \times$ 区-6
1 coat plaster behind window linion, viles, \because eal $1-0 \times 7-1$
I coat plaster in press $3-0 \times$ (-10

Walls square . $30-11 \times 10-1)$
Deduct 2 dours each................................... . . $30 \times 7-0$
2 doors and fanlightseach : $3-11 \times$ 9-11
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls I neal feet $30-11$
4 miters.
is coats polished plaster on centang of parlor, wath honse
$12-10 \times 9-0$
Walls square $.43-8 \times 10-0$
Deduct 1 window, same as in south house
\qquad
1 door, same as in sotitl house
Lineal feet $43-\varepsilon$ $8^{\prime \prime} \times 6^{\prime \prime}$ cornice of walls
4 miters
1 center fiswer
1 coat plaster behind window linings, breast.... $7-0 \times 3-0$
1 coat plaster behind window linings, sides, 2 ea $1-0 \times 7-0$
1 coat plaster behind press lining as abose
3 coats polished plaster on ceiling of bedroom.12-0 \times 8-0
Walls square $40-11 \times 10-0$
Deduct 1 window $4-6 \times 8-6$
1 door $3-0 \times 7-0$
1 coat plaster behind window linings same as in southhouse
3 coats polished plaster ceiling of kitchen....12-1) $\times 9-0\}$
Except $7-0 \times 2-0\}$
3 coats polished plaster on walls $42-0 \times 10-0$
3 coats polished plaster ceiling of bed $.10-6 \times 4-0$
3 coats polished plaster walls $.21-0 \times 10-0$
Deduct 1 window $5-0 \times 8-6$
1 dour to bed 2 sides each $3.0 \times 7-0$
1 door and fanlight $3-0 \times 9-0$
1 coat plaster behind window and press linings, same as in south house

\qquad
3 coats polished plaster ceiling of lobby $.8-11 \times 7-0$
Walls square $30-0 \times 10-0$
Deduct 2 doors cach $3-0 \times 7-0$
2 doors and fanlights .each 3-0× 9-0
$6^{\prime \prime} \times 4^{\prime \prime}$ cornice as walls Lineal feet 30-0
4 miters
4 miters
Staircase and Closs.
3 coats polished plaster on ceiling of staircase. $17-0 \times 9-0$
Walls square $52-0 \times 40-6$
Ad on newel $19-0 \times 31-0$
Add on ceilings of landings 3 each $9-0 \times 4-0$
Add on ceiling of closs $20-1) \times 4-0$
Add on walls of closs $40-0 \times 10-0$
Adt on walls of closs next back $36-n \times 9-0$
Deduct 3 stair windows each $4-6 \times 8-0$8 entrance doorseach $4-0 \times 8-6$
188 BC'ILDERS' ANED CONTR.ACTORS' GLIDE
Cement on lower walls of stair and newal,
etc $250-0 \times 4-6$
Portland cement on lower walls of staircase, newal, etc $200-0 \times$ 4-i
Rounding plaster corners 3 each $1(0-1)$
4 each (i-1)
8 e.. '1 9-1)
Relieving wood corner beads 5 each 3-0
7 each $6-0$
Bedding and pointing 24 window cases

FORM IN NOTE BOOK

PLUMBER WORK

In measuring the roof work you can only measure the various items so far as you can get conveniently within their reach and proceed along the roof in the direction which will enable you to overtake all the work thereon, so that the different pieces of materia! will require to be arranged in proper order when making out the complete measurement.

ROOF AND OUTSIDE WORK

7 lb . sheet lead lining center gutter............. $20-10 \times 2-6$
6 lb . sheet lead ridge of roof. $40-0 \times 1-3$
6 lb . sheet lead piends.................... . . 4 each $30-0 \times 1-3$
6 lb . sheet lead flank $32-0 \times 1-6$
5 lb . sheet lead apron round chimney stalks, 4 ea. $24-0 \times 1-3$
5 lb . sheet lead skews at chimney stalks, 8 each $12-0 \times 1-6$
Lead batts in raggles 4 each $24-0$
80 galvanized iron straps for ridge and piends
$5^{n} \times 4^{n}$ castiron moulded eave gutter................... $60-0$
2 castiron moulded close ends
2 castiron drops or outlets.
2 copper rose gratings in gutters
3^{n} lead bends from gutters 2 each 3-0
$41 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$ castiron conductors irom roofs . . 2 each $4^{0}-0$ 2 cast iron bends at bottom
10 castiron ormamental cars
2 castiron ornamental cisiern heals
$3^{\prime \prime}$ c stiron round conductors and waste pipes
from jawboxes 2 each 56-0
branches............................ . . . 8 each 6 e 0
\& castiron singie bencis or sitoes at iotlom...............
2 castiron offsets at top... .

8 castiron branch pieces for waste pipes \qquad
8 castiron branch lumens cast on
$4 / 2 "$ castiron suil pipes from water-closets... 2 each (1)-0)
Ocastiron bends with lieel rests at bottom
8 castiron horns for brancles
Q castiron brancle pieces.
$41 / 2^{\prime \prime}$ castiron light air pipe above soil pipe . . 2 each $10-0$
\because cowls for top of light air pipe

INSIDE WORK

Upper Floor

$3 / 4$ " lead main upright supply pipe (11 lbs per ya. -) to sinks.

2 each 10-0
$1 / 2^{\prime \prime}$ lead branch to upright supplypipe. 2 each 1-6
2 white enameled sinks, per estimate
2 hydraulic drawn 5 " traps of 7 lb . lead
2 brass table washers with plugs and chains
2 heary brass nose cocks
2 lead collars connecting horns
$11 / 2^{\prime \prime}$ galvanized iron service pipe to water-closets, 2 ea $10-0$ Labor forming 2 offsets on service pipe $3 / 4$ " lead upright supply to water-closets (11 liss. per yard) 2 each 10-0
$1 / 2$ " lead branches (7 lbs. per yard) 2 each 3-0
Up Two Stairs
All same as upper floor.

Up One Stair

All same as up 2 stairs.

Ground Floor

All same as up 1 stair.
$3 / 4^{\prime \prime}$ lead main supply pipe (11 lbs. per yard) from street to inside of building .60-0
a brass underground stop cocks on supply
2 brass screwed ferrules
1 castiron stnp cock case
1 castiron horse shoe cover
1 brass cleansing cock with couphing tail
1 malleable iron stop cock key

FORM IN NOTE BOOK

PAINTER WORK

Upper Floor of 1 Tenement

1 coat nil paint and size tinting ceiling of parlor, south house . $13-17 \times 10-11$,

Off cornice .. $1-4$ and $\mathrm{i}-4$
1 coat oil paint and size tinting cornice, girding
\qquad
1 coat oil paint and size tinting on center flower, $4^{\prime}(0)$ diameter.
Supplying 8 pieces paper for walls.......................
Sizing for and langing for 8 pieces.
3 coats oil paint, grained imitation oak on window and shutters $24-0 \times$ - -0
3 coats oil paint, grained imitation oak on soffit $7-0 \times 2-11$
3 coais oil paint, grained imitation oak wn breast . $14-0 \times 2-3$
3 ni paint, grained imitation wak on 1
$\pi-1) \times 7-(i$ Superlicial yards
3 co. oi: paint, grained imitation oak on skirting, \& ! rth 1: " . 3 ! 11
3 cuats oil paint, grained imitation mak on 1 mantelpiece
1 coat oil paint and size tinting ceiling of bed-
room. $12-0 \times$ ® $_{8-10}$,
Off cornice....................................... . . 1 - and 1-11
1 coat oil paint and size tinting cornice, girding about $1.5 "$
Supplying fiplece; paper for walls
Sizing for and hanging f pieces
3 coats oil paint in shades on window and bound lining
$9-11 \times 7-3$
3 coats oil paint in shades on soffitj-0 $\times \ddot{=}-0$

192 BUHLDERS＇AND CONTRACTORS＇bit＂HE：

3 coats oil paint in shades on breast ．．．．．．．．．．．． 7 － $4 \times 2 \times 2$
3 coats oil paint in shades on i door．．．．．．．．．．．．．．．－9 \times－-8
Superficial yards
3 coats oil paint in shades on skirting．sirth 10＂
3 coats of oil paint in slanles wn 1 －mall mant ${ }^{1}$ nime．．．

Size tinting walls of kitchen ．．．．．．．．．．．．．．．．．．．1： 11 －！！
Size tinting ceiling of bect．．．．．．．．．．．．．．．．．．．．．．．．．．．． $\mathrm{f}-1 \mathrm{l}$
Size tinting walls ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 － $11 \times!11$

1 door and fanlight ．．．．．．．．．．．．．．．．． 3 （1）${ }^{(1)}$
Superticial yards
3 coats oil paint in shades on woodwork of window
$7-1 i \times 7-13$
3 coats oil paint in shades on woodwork of suffit ．．． 4 －fix：2－11
3 coats oil paint in shades on woodwork of breast

| $*-11$ |
| ---: | ---: | ---: | ---: |
| -3 |

3 coats oil paint in shades on woodwork of 1
door
3 coats oil paint in shades on woodwork if 1
door and fanlight．．．．．．．．．．．．．．．．．．．．．．．．．$-1 \times \times$（1－1）
3 coats oil paint in shates on liming enclosing dresser ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $10.11 \times 3-11$
3 coats oil paint in shades on lining encloving sink
（i－11）$\times 3-1$ ）
Superticial yards
3 coats oil paint in slades on skirting，girth $\mathrm{i}^{\prime \prime}$ ．． $20-11$
Painting stone jambs and lintel of fireplace， 3 coat black
Size tinting ceiling of lobby ．．．．．．．．．．．．．．．．．．．．X－11×テ－11

Size tinting walls ．．．．．．．．．．．．．．．．．．．．．．．．．．． $311-10 \times 9.1)$
Deduct 2 doors each $3-11 \times$－ 11
2 doors and fanlights cach $3-11 \times!1-11$
Superficial yards
3 coats oil paint in shades on plain cornice，girding about 12 ＂．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 30 ． 311
3 coats oil paint in shades on 2 doors．．．． 2 cach $4-6 \times 7-0$
3 coats of paint in shades on 2 doors and fan－ lights
．．．each $4-6 \times 9-0$ Superficial yards
3 coats oil paint in slades on skirtneng kirth \mathbb{R}^{*} $18-0$
1 cont oil paint and stee tinting cethag of parlor，morth hontic ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1 \because 2-11 \times 10$－ 11 ，
Off 1－1 and 1－4）
1 coat oil paint and size tinting corrice．girding alomut$21^{\prime \prime}$$1:$ ， 2
1 coat oil paint and size tintin：conter flower f＇diameter．
Supplying 8 pieces paper for walls
Sizing for and hatmerne p pieces．
3 coats ril paint，grained imitaton wak and 1
3 coats nil paint，grainel imitation wak and 1 coat varni－It on sulfit ．．．．．．．．．．．．．．．．．．．．．．T－11×
3 coats oil paint，grained imitaton oak and 1coat varninh on bre：ist ．．．．．．．．．．．．．．．．．．．．14－10× $2-3$
3 coats wh paint，prained initation mak and 1Superficial yards
3 coats oil paint．grabited imitation wak and 1 coat varnish on skirting，girt！1び $37-10$
3 coats oil paint，grained initation oak and 1 coat varnish on 1 mantel piece
1 coat oil paint and size tinting ceiling of bed－ room $12-11 \times 7-101$
Off cornice 1－0 and 1－11）
1 coat oil paint and size tinting cornice，kird－ ing abont is $3!1-2$
Supplying 6 pieres paper for wallSizing and langing if picees
3 coats oil paint in slades on window and
bound lining $9-1) \times 7-3$
3 coats oil paint in shibles on soffit 6－19 \times ：－-1
3 coats oil paint in shades on breast $7-1 i \times 2$
3 coats oil paint in shates on 1 door． 5－リメ7
Superficial yarts
3 coats oil paint in shades＂hs skirting，girth $10^{\prime \prime}$
3 coats oil paint in sharles wn small mantelpieceSize tinting ceiling of kitchen1シ－11×！！－
Size tinting wa！le$4:-10 \times!1-4$
Size tinting cciling of bed $6-6 \times 1-0$
Size tinting walls $21-0 \times 9-0$
Dedluct I window $5-n \times 8-6$
1 dowr and fanlight3．10×！ 11Supertical yards3 coats ail paint in shalles on wombork of
3 coats uil paint in ，thaldes on bollit ．．．．．．．．．．． $4-6 \times 2$ ． 1
3 conts wil paint in whales on lor ant $8-11 \times 2.3$
3 coats on paint in thales ritl 1 dowr 5－11×i－ij
3）conth ml paint in shane＇s onf 1 foor andfathiglit5－11 $\times 9.10$
3 conts ail paint in hatk on lining enclosing dresser ジ－11ン3－1） 0）
3 coats uil pant in shater on lining enclosingsink ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $8-11 \times 3-11$Superficial yarils
3 ewats oil paint in shates on skirting，girth i＇$^{\prime \prime}$ $2(1)$
Panting stone jambs an 1 lintel of tireplace 3－oats black
Size tinting ceiling of lobly $8-11 \times 7 \cdot 11$
Off cornice 1－4 and 1－11）
Size tinting walls $3111 \times!-10$
Deduct 2 doors．

\qquad
each $3-11 \times 7-11$a doors and fanlightseach $3-11 \times!-11$Superficial yards
3 coats oil paint in shades on plain cornice，girdingabout 12 ＂
3 coats oil paint in slades on doors．．．．．． 2 each 4 － $\mathbb{C} \times \boldsymbol{\pi}-0$3 coate oil paint in shades 1112 dorors andfanlights．each $4-6 \times 9-11$
Superficial yards3 coats oil paint in shades on skirting，girth $8^{\prime \prime}$ ．．lineal feet
Staircase and Closs
Size tinting ceiling of staircase $17-0 \times 9-11$
Suze tintms walls $82-0 \times 40-6$
Stze tinting newal $19-10 \times 31-10$
Size tinting ceilings of landings 3 each $9.11 \times 1-10$
Size tintiner ceiling of close $20-0 \times 4-10$
Size tinting walls of closs $40.0 \times 10-0$
Size tinting walls of closs next back． $30^{-0} 0 \times 9-0$12－11
\qquad
\qquad

0

析
\qquad
\qquad

Deduct 3 stair windows.each 4-fire 8-0
Rentrance duors...................ectich 41 a 8.6

Suinericial yards
3 cuats oil paint on Portand cement lower walls .2.0. 0 . 1×4.6 \qquad
3 coats oil paint graincel imitation wak abll coat varnish on 8 entrance donrs each $\mathbf{5 - 0 \times 8 - 6}$ \qquad
3 cuats oil paint on oniside of $2 t$ whaduws

ABBREVIATIONS THAT MAY BE USED IN NOTE BOUK

Altn.	for Alteration	Fit.	for	Fanlight
Aldu.	" Addition	Frt	."	Front
Astrl.	Astragal	$1 \because 1$.	"	Fireplace
Archre.	Architrave	1 t .	"	Foot
Abt.	About	Feg.	"	Facing
Adjn.	" Adjoin	Fi.	"	Facia
Agt.	" Against	Fl.	"	Floor
Bm.	Bottom	Frd.	"	Framed
Bk.	Back	Fd .	"	Found
Bn .	Button	Fltd.	"	Fluted
Br .	Brick	Gra .	"	Ground
Blk.	Black	Gd.	"	Good
Borlt.	Borrowedlight	Gld.	"	Glazed
Brwbd.	Browband	Galv:	"	Galvanized
Brs.	Brass	Gtg.	"	Grating
Bd.	Bound	G!.	"	Glass
Bdd.	Beaded	G. p.	"	Gas pipe
C.	Cest iron	Hol.	"	Head or hard
Csn.	" Cistern	Helwd.	"	Harlwood
Cambd.	" Cambered	H1.	"	Heel
Ck.	" Cock	Hdit.	"	Headligit
Clik.	Check	Hy. p.	"	Heavy pipe
Clk.	Cloak	H. d.	"	Hammer dressed
Cld.	Cleaned	Hfdrsd.	"	Half-dressed
Chfd.	Chamfered	Hn. .	"	Hewn
Drsd.	Dressed	Hy:	"	Heary
Drsr.	" Dresser	Inbd.	"	Inbond
Ded.	" Deduct	Itrgo.	"	Ingoing
Dedn.	Deduction	Intd.	"	Introduced
Dr.	Door	Incld.	"	Include
Dble	Double	In.	"	Inch
D. T.	" Dressed top	Impd.	,	Improved
Diamr.	Drameter		"	Joint
Digl.	Diagonal	Jd.	"	Joined
D1	Deal	Jst.	"	Joist
Est.	Espimate	Jb.	"	Jamb
Ex.	Except	Jwbx	"	Jawbox
Excl.	Exclusive	Jb.	"	Jamb
Exct.	Excellent	Japd.	"	Japanned
Encl.	Fuclose	K. p .	"	King post
Entd.	Entered	Knd.	"	Knee'd
Enfd.	Finforced	K b.	"	Knob
Elev.	Etuatur	L.	*	Lintel or latir
Ent.	Entrance	Li.	"	Lead or laid
Fr.	" Firame	Lvd.	"	Leaved

Lifd. for Lifted
Ling. " Lining
Lvi. " Level

Mr. " Miter
M. P. " Mantelpiece
Ml. " Mount

Mtcl. " Mounted
Mln. " Mullion
Mdd. " Moulder
Mdg. " Moulding
Min. " Modillioti
Md. " Mould

Mble -" Marble
Mwble. " Movable
No. " Number
Nted. "O Nuted
Nr. .- Near
Ntchol. " Notched
Numbd. " Numbered
N゙t. \quad Neat
O. I. \quad Oil paint

Ornt. ". Ornament
Ornl. "Ornamental
Outbid. " Outbond
Oft.
Pt .
Pd. " Panelled
Pd. " Pound or paid
Ptd. " Paintell or
pointed
Pltd. " Planted
I'tg. " Painting
Prtn. " Partition
Petn. " Petition
Q.p. " Queen post
R. p. for Red pine

Retd. " Returned
Relvd. " Relieved
Rll.
Rdl. " Rounded
R. p. n. " Raisel planted mouldings
Rble. " Rublle
Reded. " Reduced
Reced. "Received
S. L. " Safe lintel

Scun. " Scuncheon
S. f. a. " Single facia architrave
Sidelt. " Sidelight
Stı. " Standard
St. " Stone
Shr. " Shutter
Sctlg. " Scantling
Sk.
Tend.
" Sunk or Sink
Tenoned
" Turned
T. b. " Tie beam

Utl. " Utensil
U. b. "، Utensil belting

Venr. " Veneer
Ventr. " Ventilator
Ventn. " Ventilation
Verl. " Vertical
W. p. " White pine

Wrt. " Wrouglit
W. p. " Wallplate
W. p. " Waste pipe

W1. press " Wall press
Y. p. " Yellow pine

PART II

Tables, Rules and Memoranda for Obtaining Quick Results in Measurement of Areas, Solids and Contents

PRACTICAL MEASUREMENT OF GEOMETRICAL AREAS

In the following series of problems it will be shown how to find the area of any geometrical figure, without any calculation whatever, by simply drawing a few lines (only two or three in many cases) and then taking one measurement. The problems are supplemented by notes explaining how to apply the methods to large areas, the final measurements being taken on a suitable scale when the area is being found from scale drawings.
(1) Given any rectangle and one side of another rectangle; to complete the latter so that the two areas may be equal. (See Fig. 1). Only one construction line is neces-

Let A B C D (Fig. 1) be the given rectangle, and $D E$ (marked off on $A D$, produced) the given side of the other rectangle. Join E C, and produce it to meet A Pr, produced, in F. Then $B F$ is the other side required to complete the other rectangle.

In other words, the length $\mathrm{B} F$ multiplied by the length D E exactly the same result as multiplying $A B$ by $\lambda \mathrm{D}$, which, of course, gives the area of the rectangle $A B C$ D. A very important use is made of this result in Problem 3. It may be stated that when a terminated straight line is extended or lengthened, this is called "producing" the line, and the line so treated is said to be
 "produced."
(2) Given any square and one side of a rectangle; to complete the latter so that the two areas may be equal.

This is identical with I'roblem 1, since a square may be considered as a rectangle.
(3) To find the area of any rectangle. (See Fig. 2).

This is a very important problem, since all the areas are reduced to rectangles in this series. Take, as example, the rectangle A B C 1) (Fig. 2). Produce one side, as A D, and mark off D E, one inch long. Join E C, and produce it to meet A P, proluced, in F. Then measure B F to obtain the required area-that is, find the number of inches in B F and call them square inches. The reason for this is that the area of the rectangle A B C D is equal to $B \mathrm{~F}$ times D E (see l'roblem 1), and D E . has been made one inch by construction; therefore the required area equals B F (in inches) times one. NotesIf, ty using a line one inch long (D) it in Fig. :i), the intersection of lines at F, which denotes the area, become
very oblique and consequently vague, a two-inch line may be used instead at D E, and thus obtain half the area at B F ; or D E may be three inches, and B F multiplied by three to find the required area; or D E may be four inches, and B F moltiplied by rour; and so on. A ;ain, for large surfaces, or in scale drawings, if D E (Fig. 2) is made one foot, tine number of feet in $13 F$ must be called square feet, it being only necessary to rer.ember, in this case, that any oll inches in the "area line" ($B F$) do not represent square inches, to obtain which it is necessary to multiply by twelve. Further, if b E is made one yard, the resulting area will be in square yards, in which case any orld frat
 in the "area line" must be multiplied by three to convert them into square feet, and any odd inches by thirtysixth to convert them into square inches.
(4) To fint the area of any square.

This is solvel by Problem 3, treating the sytiare merely as a rectangle. Note-In the ease of a square, ihe line B F (Fig. $: 2$) is always the square of $\Lambda \mathrm{B}$, ad the aroblem may thus be used to obtain rapidly the suluare of any awkward number, fractional or wherwise.
(5) To construct a square of any given area. (See Fig. 3.)

Draw a line and mark off on it $A B$ one inch long (see Fig. 3) and $B C$ fin the same direction) equal to the required area-that is, make BC as many inches long
as the area contains square inches; if, for example, the area is to be three and five-sixteenths square inches, make I C three and five-sixteentis inches long. Now hescribe a semicircle on A C, and at B erect a perpenlicular to meet the curve in D. Then B D is the side di supare which will contain the given area. NotesThis method does not break down when the area contains awkward fractions, but is quite as easy and correct ior fractional areas as for simple cases. A B 1Fig. 3) must always be one inch if the area is in square inches. If, however, the area is given in square

feet, use a line one foot long at A B, and if there are any ohd square inches in the area, they must be divided by velve before being included in the "area line" (B C). Suppose, for example, a square is required containing wight square feet, $10 ?$ square inches. Now $10:$ divided by twelve is eight and one-haii; therefore make A B one foot. and 1 BC eight feet, eight and one-half inches. Ther B D is the side of the requirel square. If the area is given in square yards, ete.. make A B one yard, and divide the ohd feet in area he three and the orld inches by thirty-six.
(6) Given mic sile of a rectangle; to construct the figure so as to contain any given area. (See Fig. 4).

AIf (Fig. 4) is matle efpual to the given side. Produce it and nrark off $B C$ equal to the given area-that is, if the area is to be, say, three and one-quarter suluare inches, then B C must be matie three ind one-quarter inches long. Draw perpendiculars at A and C° one on each side of the line. Mark off $\mathrm{A} D$ on the perpenticular at A equal to one inch. Join D I', and prorluce it to meet the other perpendicular in E. Then C E is the requirel side of rectangle. Note-A D must always be placei at the end of the given side, not at the "area" and of the line. A D must always be one inch if the area is given in square inches; if it is given in square feet or syuare yads, see note to I'roblem is.
(7) To find the area of any rhomboid. (Sec Fig. j).

Take, as example, the
 rhomboid . B G H (Fig.
5). From A and B draw perpendiculars to meet $\mathrm{G} I 1$ (or (II prodnced) in C and D. Then the zectangle A B C I) equals in area the rhomboid $A \mathrm{BG} \mathrm{H}$. Proceed tw fim the area of the rectangle, and consequently of the rhomboid, as in Γ.oblem 3. 1) E is made one inch, and then, B F being two and one-half inches, the area of the rhomboid is two and one-half square inches.
(8) To fon the area of any rlomh!! :

Proceed exactly as in Problem :
(9) To find the area of any four-sided figure with
two parallel and two non-parallel sides (trapezoid). (See

Fig. 6).

Through the middle points of the non-paralled sides draw perpendiculars to the parallel sides (or the parallel siles produced). and thus obtain a rectangle equal in area to the trapezuid. In Fig. 6.
(10) To find the area of any triangle. (See Fig. \%.)

Take, as example, ihe triangle A I C (Fig. i). From one angle C draw a perpendicular $C D$ to the opposite side A l ; bisect this perpendicular by a line parallel to A B. From . 1 and B draw perpendiculars to meet this bisecting line in E and F . Then the rectangle ABEF equals the triangle ABC in area. Again, by Problem:, A G being $1 \mathrm{in} ., \mathrm{F}$ II gives the required area; in this case it is $23^{3} \mathrm{i}$ in. Notes:-Any of the three sides of a triangle may be taken as "base," according to convenience, and the "altitude" measured perpendicularly from the base to the opposite angle. A rectangle can then to
 constructed with the same base and half the altitude, or half the base and the same altitude. In an irregular
triangle, therefore, there are at least six different rectangles, any of which can be used to find its area.
(11) To find the area of any irregular four-sided figure (trapezitum). (Fig. K).

Take, as example, the irregular quarlrilateral A B C D (Fig. 8). Draw one diagonal 1 C ; draw permen-
 diculars to this diagonal from the other two angles H and D, and through the midlle points E and F of these perpendiculars draw parallels to "1e liagonal $\mathbf{A} \mathbf{C}$; and, lastly, through the extremities A and C of the diagonal draw perpendiculars to it to meet ti, ase parallels in CiII K . Then the rectangle $G H \mathrm{~J}$ equals in area lie irregular figure A B C D. Now proceel by problem 3 to find this area. K L (Fig. 8) measures 2_{1}^{1} in., therefore the area of $A B C D$ is 2_{16}^{1} sq. in.
(12) To find the area of any regilar hexagon. (See
 Fig. 9).

The hexagon and the octagon (Problem i3, Fig. 10) lend themselves to very weat special solutions; they could, of course, both be treated by the general meth:od for regular polygons given in Problem 14 (Fig. 11). Let A, B and C
be three alternate angles of the hexagon, as in Fig. 9. Join A B and proluce indefinitely. Produce also the two siles which are at rirht angles to $A B$, as $A \mathrm{E}$ and B 1) (Fig. 9). Through C Iraw a parallel to $A B$ to meet the two last prodnced lines in E and D. Then the rectangle I l; D E equals the hexagon in area. Again applying Problem $3, \mathrm{~B} F$ measures nearly 2 in., and therefore the lexagon in Fig. !) contains 2 sq. in. nearly. Note:- To find the area of large hexagonal surfaces, simply multiply the two lengths i 13 and C G (Fig. 0)
 together.
(13) To find the area of any regular octagon. (See Fig. 10).

It can be readily shown that in any regular octagon the area of the rectangle made by joining the extremities of two opposite sides is exactly half the area of the octagon, as A BC D (Fig. 10). Hence the jllowing methorl for finding the area. Produre two opposite sides until their iength is doubled; thus D E and C F are made equal to $\mathrm{A} D$ and $\mathrm{B} C$. Join $E \Gamma$ and then the area of the entire rectan le A II F E will equa! the area of the octagon. is G, ubtained by Problem 3 , measures 1 妥 in., conse Iuently the octagon contains 1,'s sq. in. Notes:For large octagonal surfaces multiply twice the length of the side by the direct distance across from side to side. The area of any eicci-sidel regrular polygon can be found as in Fig. 10 by making $\perp 1:$ and $B F$ each equal to a
quarter of the total bommlai. For instance, in a duodecasen (twelve siles) I I) am! l: C must be mate equal ir throe siles.
(14) "Fu fi t the area of any rexular polygon." see Fgi. 11.)

Proluce one of tire sides until the tutal length ermails half the perimeter or boumdary (see note at en l of L'roblem 1.1). In Fior. 11 the polygon (pentagon) has five silles; therefore one sille, $I \quad l$, is extented t. C, so that the whole line A II C equals: "' sides. Now draw a parallel through O, the center of the figure, to meet perpendiculars from A and B, in E and D. Then the rectangle A C D E again equals the given figure in area. The length of $A \mathrm{~F}$, found by Problem 3, is $13 / 4 \mathrm{in}$.; the area of polygon is there-
 fore 13/4 sq. in. Notes:--To make B C (Fig. 11) equal to half the boundary, proceed in this way: Mark G the point directly opposite to A. Then with the angle If as center, swing G round until it is in a line with the next side (BII) at K^{-}; then go to the next angle B and swing K round again until in a line with the next side at C, and so on. In Fig. 11 no more swinging round is necessary. but for a greater number of sides the operation must be continued until half the boundary has been unwound, as it were, into a straight line. To find
thee center of any regular polygon with an old number of siles, draw a line from any angle to the middle point of the opposite side; this line contains the center, and if another angle and side are similarly
 treated the requirel center is the intersection of the two lines (lotted in Fig. 11). Of course, if the number of sides is even, simply join opposite corners twice.
(15) To find the area of any irregular figure with more than four sides (See Fig. 12).

If the number of siles is even, divide the area into quadrilaterals, and find the area of each quadrilateral as in Problem 11, and then add these areas; if odd, divide it into quadrilaterals and one triangle, as indicated by dotted lines in Fig. 12; treat the former ly Problem 11 and the latter by Problern 10 . This me hod is far less confusing and consequently more reliable than reducing the whole figur 1 , one triangh equal to it in area (on the principle of t les of equal base and as ude being equal). Moreover, the results will be more correct in the long run.
(16) To find the area of any circle. (See Fig. 1:).

On the diameter A IS
 (Fig. 13) construct an ontilateral triangle A B C; produce the siles $C A$ and $C H$ to meet the tangent drawn parallel to the diameter, $A B$, in D and E;
from D and E draw perpendiculars to meet the diameter produced in F and G. Then the rectangle $F D$ E G equals the circle in area (see note), and I) II equals area of circle in square inches as before. Note: The length D E (lig. 1:i) is fenerally accepted in staircase work, handrailing, etc., as bein: equal to half the circumference of the circle. As a matter of fact, half the circumference equals $3.1+1 . i$: 2 , etc., times the radius of the circle, white the length 1 C C equals $3.1540 . \mathrm{i}$, etc., times the radius, showing an error of . 013113 too nush; so that the results obtained hy the preceding method are a little over $:-5$ per cent in excess of the actual areas, or an excess of .00416 in . (about $1-2.0$ in.) to every square inch. This will be near enough for most practical purposes, but where greater accuracy is required the foregring figures are taken in order that the excess may be subtracted from the result obtained.
(17) To find the area of any sector of a circle. (See Fig. 14).

The most practical method of solving this probleni is to find what part of the
 whole circle the sector A I S C (Fig. 11) represents; this can be done by measuring the angle A 13 C and comparing it with $3 l i 0^{\circ}$. $\quad \mathrm{r}$ instance, 30° is onetwelfth of 360 ; 96°, one-1 , 40°, one-ninth; 45°, ree-eighth; 600^{-}, one-sixth, $101^{1 / 2^{\circ}}$, three-sixteenths, etc. In Fig. 14 the angle is 120°. or one-third of 360°. Now construct a rectangle edual to the whole circle by Problem 16 (Fig. 1:), and then take off the part required. In the case given in Fig. 14 it will be neces-
sary, after ubtaining the rectangle for the whole circle, to take one-third of the rectangle as the required area of the sactor A BC.
(18) To find the area wi ally segment of a circle. (See Fig. 15).

When the -熍ment I I C is less than a semi-circle, as in low. 1 i . find the area of the whole strotor A l (C$)$, of which it furms a part, as in l'robiem 1%, and then subtract the area of the trianerie $11 ; 1$, which is found by I'roblem 10. If the segment is more than a semi-circle, find the area of the whoke circle as in l'roblem 16 , and then subtract the small sesment mot refuired.
(19) To finl the area of any surface bounded by stralsht lines anl circular ares. (See Fig. 1ii).

Join the extremties of the ares to the centers from which they are struck when these centers are within the limits of the area beiner measmen; when the centers are outsile i° " area simply cut of the ares by their respective chords. Then treat the separate portions as ant irregular pulgom (by l'rublem lis), and sectors or segmems of cirche (by l'roblems 1: and 1i). Supuse, for instance, such an area as shown shated in lite. $1 / i$ is to be meas ured. . is the conternt the circular cormer. The area of the segment on lid is at first inclulenl for convenience, and the area of the whole triangle I $B C$ (found by Problem 10) is adred th, the areas of dualrilaterals $A 13 \mathrm{D}$ E and A C F (i fommily lroblem 11) and the area of the sector

A E G (found by I'roblem 1i). Finally, the segment I) (' (found by Problem is) is subtracted. It is possible by a little manipulation to treat any area in a similar manner.
(20) To fint the area of any ellipse. (See Fig. 1i).
()n one side of the mimor axis A B (Fig. 1i) lescribe a semi-circle $A 1 \mathrm{BH}$, and on tim wiht sile construct an equilateral triangle $A \quad 1 ;$ (\because tangent to the semi-circle Iraw I: (i, para!lel the minor axis I lb, and on the same stle of the latter another parallel throngh the vortex II of the ellipse: proluce the siles C 1 B and C .1 of the cquilateral triangle to meet the tangent to the semi-circle in F and G ; through F and G draw perpendiculars to meet the minor axis produced, and the parallel through the vertex in J, K. L and M. Then the area of the rectangle J K L M equals the area of the ellipse
 subject to the shight diserepancy refered to in the note at the foot of I'roblem 1 li. Therefore, to find the area of the ellipse find the area of this rectangle K M by the method shown in I'roblem :3.
(21) To find the difference between any two geomet rical areas.

Represent each area by a single line as shown in the preceding problems, and the? apply tic "area lines" one wer the other to discover their difference.
(22) To equal area.

Reduce the area to a rectangle by the preceding problems, then give the triangle the same base and twice the altitude of the rectangle, or twice the base and the same altitude.
(23) To reduce any geometrical area to a square of equal area. (isee Fir. 18).

Rerluce the area to a rectangle by the precedins problems. Then draw a line and mark A liequal to the long si ! and $B C$ equal to the short side of the rectangle (see Fig. 1s) Describe a semi-circle on $A C$, and at the juncture B of the two sides raise a perpendicular to meet the semi-circle in D. This perpendicular $\mathrm{B} D$ is the side of the required square.

Abstracting

In abstractins, the items (amoment and description) are taken from the dimension sheets, and arranged in the proper order in which the will afterwards appear in the bill. It is usual to abstract one trale at a time, commencing ach on a separate shect of paper, headed with the name of the trade. Leave plenty of room between the items on the abstract paper, as crowding leads to confusion and ${ }_{n}$ istakes.

I generat method in abstracting, in each trade, is to take the cubi= items first, the supericial items next, then the items measured "run," and finally the numbers, beginning in each case with the items of least value. Each item as it is abstracted, is cussed through with a vertical line I, and when all the sans have been taken from a single dimension sheet a turk is placed at 'e bottom.

In taking the description of ite:11s from the dimension sheet, they should be faithfully copie? without alteration, except when extremely long, in which case a portion only may be written with a reference back ahled (as "etc., in sheet"). The ahstract should be checked by a secund ferson, who ticks the itens on the dimension sheet and abstract in red ink as he proceeds.

After all the items have been abstracted, each class should be totalled, the deductions subtracted, the averag-
ing done if required, and the resulting figures are those to transfer to the bill.

Excavator. - Vhstract in order all exeavations, afterwards taking the concrete, etc. To reduce feet to yards, livile superficial items by !, and cubic items by 2%.

Drainage.-Commence with the smallest sized drain, first taking the item remuring the least exeavation; follow in order with other depths and larger Irains.

Bricklayer.-Nake four columns, as under :-

and abstract in these, walls of any thickness, $c . s$. it feet superficial of 1 or $1 / 2$ brick wall would be put in their respective columns, while 62 feet of $21 / 2$ brick wall would be abotracted as f feet of 1 brick wall and $6: 2$ feet of $1^{1} 2$ brick wall.

If in feet superficial of $21 / 4$ brick wall had to be ahstract 1 it would appear in the $1 / 2$ brick column as 48 feet, and again as $: 1$ feet. The first item of 48 feet equals $1^{1 / 2}$ brick thick, leaving 4 feet of $3 / 4$ brick wall to be abstracted, which is done by halving the amount, thus obtaining $: 1$ feet of $11 / 2$ brickwork, which is egual to 48 feet of 䚾 wall.

All other thickness walls could be abstracted in one or other of the culums iny proceeting in the same way.

When all brickwork is abstractel, total the columns, subtract the deductions, reluce the 1 brick wall to $1 \frac{1}{2}$
brickwork by deducting, 13 , then reduce the $1 / 2$ work io rods by dividing it liy Si i.

Facings and other items will follow.
Mason.-Separate the different kinds of stone, with their labors.

Tiler or Slater.-Take chief item of slating or tiling first, liviling total amount by 100 to refluce to suluares.

Carpenter.- ibstract in the usual way, taking cubic items first, following with the superficial, runs, numbers, and, lastly, any "fixings only" to ironwork. In the runs take the smallest sized pieces first, as $? \times 3$, then 3×4, and so on.

Joiner and Hardware. - Separate the various kinds of wood, first taking all the pine. Commence with floors, dividing by $1(6)$ to obtain the number of squares, then skirting, sashes and frames, doors, framings, sundries and lastly stairs. Follo: with the hard woods, as mahogany, teak, oak, etc., finally the hardware and fixing.

Iron-Work.-Take wrought iron first, the cast iron afterwards, bringing all to weight in cwts. Wrought iron and rolled iron weigh 480 lbs ., and cast iron 450 lbs ., per cubic foot. Consequently 1 foot superficial of $1^{\prime \prime}$ thickness wrought iron would weigh 40 lbs ., and cast iron $3 \pi 1 / 2 \mathrm{lbs}$. Provide columns for various thicknesses of iron to be abstracted, and having totalled each, reduce all to their equivalent in $1^{\prime \prime}$ iron; then multiply by 40 or $37^{1 / 2}$ for W. or C. I.

Plasterer.-Take plastering to ceiling and walls first, afterwaris the cement work. Divide iby tu reluce to yards superficial.

Plumber.-Include in one item all lead in flats, gutters, and flashinge (but lead in ecret gutters and stepped flashings would be abstracted togetier to form another item). Make columns for $4-\mathrm{lb} ., \quad 5-\mathrm{lb} ., 6-\mathrm{lb}$., and $7-\mathrm{lb}$. , lead, under which enter the various squared dimensions; multiply the totals by $4, j, 6$, or respectively, and add the same together. This gives the total weight in lbs., which is then reduced to cwts.

Take all labors after the lead, and follow with the internal work, as pipes, II. C.'s, baths, etc.

Gasfitter.-l'ipes, beginuing with the smallest, afterwards the fittings, etc.

Hot-water Engineer.-The same order would apply as for "Gasfitter."

Bellhanger.-Bells first, and sundries afterwards.
Painter.-Superficial items first, dividing by 9 to reduce to yards; then the "runs" and numbers.

Glazier.-Take glass of least value first, arranging the siquares in their order of "uider 2 feet," etc., commencing with the smallest. After glass, abstract any labor to that glass before proceeding to another variety.

Paperhanger.-Although a piece of English paper is supposed to be 1 ? yards in length, it is seldom found to measure more than 11 yaris; the width is 21 ", consequently a piece contains about in' superficial. Abstract the items, add $\frac{1}{\text { to }}$ allow for waste in matehing pattern, etc., then divide by -8 , which gives the number of pieces; any amount over a piece to be counted as a full ece. American and French papers only measure $18^{\prime \prime}$ wide, and are about 9 yards long, containing $40 \% /{ }^{\prime \prime}$ superficial;
therefore to obtain the number of pieces divide by 40 instead of is.

The totals of abstract on completion should be checked by a second person, in order to a a oid mistakes being inadvertently made and to ensure that everything is correct.

Examples of Abstracting

The dimensions shown are ohtained from the examples previously taken off.

EXCAVATOR

cube.	
Ex. and cart away:	
$2092!1$	D ${ }_{\text {dt }}$
16711	585 11
¢763 !	
58511 D.	
$2 7 \longdiv { 2 1 7 7 1 0 }$	
8017 yards	

> Ex. R,F. and R. $\frac{2 \pi-511}{218 \text { yards. }}$

Ex. to basement trenches, $\frac{\text { part R.F. and R. }}{\frac{27) 21,2}{23^{2} 7} \text { yards. }}$

Ex. to basement trenches and cart away: $27 \frac{29011}{1029}$ yards.

Ex. to surface trenches, $\frac{\text { part K.F. and R. }}{\frac{27) 1010}{33_{2}^{3} ?} \text { yards. }}$
cube.
Ex. to surface trenches $\frac{\text { and cart away: }}{2 7 \longdiv { 5 0 6 }} \frac{1 \frac{8}{23} \text { yards. }}{}$
larick core filling, rammed and levelled. $27) 120$ 16 yards. Remove top soil is" decp, wheel and spread where directed.
3×116
$\frac{\frac{122}{} \frac{0}{15026}}{5.93 \text { yards. }}$
cule.
Concrete in trencles, 6 ball: tto I I'. cement.

$$
\frac{506}{\frac{50}{3414}}
$$

sup.
($\mathrm{i}^{\text {" }}$ concrete AB levelled top.

No.
Cement concrete wer trim mers, levelled up for hearths.

DRAINAGE

> runi.
> *" Mlazed stoneware drain. jointed in cemment and dig goms av. $3^{\prime \prime} 3^{\prime \prime}$, antl $i^{\prime \prime \prime}$ cembert con rete under and around piper.
> 1fi:3
> 4" drisin 1 liblimid n tunnel. intholing uruttink.
> if 1
> 4" drain I! and difgring an. ") in ruan
> 1111
f" drain and ligging for
\qquad air inlat. \qquad 711 Nos. $\frac{\text { Extra to } 4^{\prime \prime} \text { lénds }}{2}$ 1 :
L. I., interecpting trap with inspecting arm ind stopper, including ơtro digging, concrete and ieriding in cement. 1

Nio.

linll-nose slipper trap athl -hanmel whlt $f^{\prime \prime}$ outlet ant gall. irnugrating. \qquad -
(innmect tu sewer, includines せr
$\frac{\text { Connect to } 4^{\prime \prime} \text { tral. }}{1}$
Commect to $4^{\prime \prime}$ soil pipe. 1
rıll.
I" kall K. IV pipe 3^{11} $\therefore 1 \%$
Galle iron mica tlap air inlet for 1" pipe.

1
(immect K. WV. pre to Arain __melarinlet. $:^{-}$
l'rovine lighting and watching
l'ay all feosto local autlorities.

Following in small quantities to inspection chambers.
cube.
Ex. and cart away.

8011	Dit,
1.923	402
53111	762
287	5
116	11610

27)17111
(28\% yards.
lix. R.F. and R.

414
it 2
$\frac{: 21166}{4{ }^{\circ} 7}$ yards.

Concrete of 6 of ballast
$\frac{\text { to } 1 \text { of cement. }}{\frac{2 \overline{5} 310}{2 y a r d s .}}$

sup．

Coach hld．trimmer arch

Konghl cutting，straight 34

Hitho．circular．
1.71
$\div 11$
211
rull．
$\frac{12 \operatorname{rough} \text { cutting．}}{12}$

Kake ont and point thashings in cement．

K又 1

Nい，
1：xtra labor alld waste to rolleving arches．
1 lik．liy I lik．

$$
3-i 3^{\prime} \mathbf{N}^{\prime \prime}
$$

Lixtrat labor，cutting and waste to rolieving arches．
$1=4^{\prime} 6^{\prime \prime} \times!^{\prime \prime} \times!^{\prime \prime}$
$1=3^{\prime} 00^{\prime \prime} \times!!^{\prime \prime} \times 4!$
$1=3^{\prime} 1^{\prime \prime} \times y^{\prime \prime} \times 41$
$1=I^{\prime} i^{\prime \prime} \times 9^{\prime \prime} \times 11^{\prime \prime}$
$4=15^{\prime} 11^{\prime \prime} \times 3^{\prime} \times 3^{\prime}$
Average $3^{-} 夕^{\prime \prime} \times!\prime \times!$＂

Tirra－cotia chimmey－pots Z° fish，set and flaunched in ccolent．

4

Nos．
Tile hearths P．C．20／－and
\qquad

Extra to Brecze fixing bricks．
$1 \times$

$$
x
$$

$$
\because 4_{i}
$$

 1
lied and print frames．
；

Perforate and make good l） 13 ．W．to leart pipes．
$\overline{1}$
8
$1 \frac{\text { ditto i1：2 13．W．}}{1}$
1
6
Build in ends of timbers．
$\frac{10}{16}$

Parge and core flies．
$\frac{\text { Set stove，} 3 \text {＇opening．}}{2}$

Set kitchener．f＇i＇＂opening， and all firebricks and humps．
$!" \times t^{\prime \prime}$ airgrils，fixing，and $\frac{\text { channel in } 13 \mathrm{BW}}{6}$

No．
$!^{\prime \prime} \times 1 i^{\prime \prime}$ plain iron outlet venti－ $\frac{\text { lator and fixing．}}{1}$

FACINGS

- 11.	rilit.
F. wh stuck II WV. For IIT yta:l reds, fininled witl wricck jomut.	1." finr cuttong. utraight. if 1 i
1!9! ju blit.	
$\checkmark \quad 3 \quad 3: 3$	
¢ $3 \quad \because 111$	1 -1hent lillit
701119	li) 1
12 it ii\} !	
2!16 ${ }^{-}$	
(i.) !	1 (1) fachmb t" wernallins
$\therefore 1310$	-111-
	1i11
E. mb stock 13 W. -ur kallsed	19 id
arches ill red riblures, aet ill	(i) 1
lune putty and trontel sul	
1. cellicht.	Make guori liatlug - in ends
3 !	- ni bll-.
$1: 3$ if	ti
MASON	
LIMESTONE	

TILER

silp.
Best Red tiling on sawn fir laths, to 3!'z" gauge, fixed with gald. nails.
$43^{\circ} 1$
3: 1
$\because 10$

in $4=$ - ब万rs. 1 if.
rill.
Extra to plain lifp tiles, herded in cement. -․․

Plain ridge bedded

1*0
a 11 d
rill.
lsedding verge in cement. 17 i -
jominted in cement.

No.
Fair end. jomtelk

(*)

1

Hip hooks.
2

SLATER

sup.
Blue Bangor Countess slating, 3" lap, centre nailed with compo. nails, $\ddot{2}$ to each slate.

T140	D ${ }^{\text {dt }}$
80	71
1.)	2.$)$
-64 ${ }^{\text {\% }}$	320

:321).
73: i
$=7 \mathrm{sqrs} .30 \mathrm{ft}$.
run.
Slate ridge $2!{ }^{\prime \prime \prime}$ roll, $7^{\prime \prime}$ wings, hed and joint in rement.
$\because 0: 3$
No.
Fitterl ends.
\because

Make good aronnd 1 " exhaust
\qquad川 \qquad
1

CARPENTER

cube.

Sprnce in plates and lintels.

1	8
1	9
1	11
1	8
11	0

Sprace framed in tioors.

Spruce framed in trussed
\qquad partition.
10
411
$+1 i$
1 !

Spruce framed in 3 roof trusses. hoisting and fixing 35 ft . ahove gromind level.

16	3
\vdots	\vdots
\vdots	10
3	8
30	2

cubc.
Spruce framed in roofs.

20	
20	1
\vdots	1
\vdots	1
4	11

sup).
1 " rongh boarding. edges shot,
tor root.

- H / i;
- surs. 8 fl f.
i" ruigh boand in ruticra and

-1) 11

Cleats．
$2^{\prime \prime} \times 1 \frac{1 / 2}{2}$ H．${ }^{13}$ ．strutting to ？＂joist．
$41 / 2{ }^{\prime \prime} \times 2$ nogeing piec

Springing piece for trimmer．
に！

$$
\frac{4^{\prime \prime} \times 4^{\prime \prime} \times 22^{\prime \prime} \text { hamert. }}{6}
$$

$\frac{\text { Ditto } 9^{\prime \prime} \times 4^{\prime \prime} \times 4^{\prime \prime} \text { chaved }}{6}$
 disaifl．and fited． 4

Nos．
Extrato form $2_{8}^{\prime \prime}$ rebated dri；
$\frac{11 / 2^{\prime \prime} \text { roll in gutter．}}{2}$
run．
$\frac{4^{1 / 2} \text { thrning piecrs．}}{0}$
sup．
Use and waste of centering
\qquad

Nos．
Labor in splayet edge to $\frac{1 " \text { roof hoarding．}}{1600}$

Nos．
Labor in scarf to（i＂\times バ＂purliz．s inchudine bolts．

Ditio to $\frac{1 " \times 11^{\prime \prime} \text { pule plates．}}{2}$
15

JOINER AND HARDWARE

FLOORS

sup．
1：1＂yel．batten，edges shot，Ditto，including bearers．In grouved and gald．iron tongues， splayed headings and fixed with 2㪀＂brads．

107	Mit．
$1131)$.	46
1hit 4	$6!$
	113

run．
 cluding reb．floor，glueing and mitreins．
 ：

SKIRTINGS

DOORS

sup．
2＂6－pan．，planted mouldings both sides，double tenoned for mortise locks．

210

SASHES AND FRAMES
sup．
Cased frane and ：＂＂sashes （fescribtion）．
$\because 10$

2＂nyoly casements．
ご 1
－＂ovol！fanlight．
i 8
\qquad
$-($
-1
－
rinn．
Labor in look：joint．
6

Labor in ret．and circular
\qquad tongile．
1.10

Labor in rebl．and splayed bottom rail．

310
$312^{\prime \prime} \times 1^{1} z^{\prime \prime}$ mot leclandgrooved
weatht boand
$3!$

Libur groove in oak.

Nos.
Mouldings for glass and mitres. Sets.

Sets.	
4	$y^{\prime}=36^{\prime}$
1	$10=10$
\vdots	$5) \frac{16}{-6}$
	average $y^{\prime} 3^{\prime \prime}$

THICKNESSES AND FRAMINGS

sup.
By" W.O.S. moulded grounds, splaved edge.

93

1" rough framed grounds,
O.E.S., one edge splayed.

1/4" window-board reb, and moulcled, and all bearers. $\because 10$

No.
Notched and return mould.
\qquad
sup.
$1^{\prime} z^{\prime \prime}$ jamb liuing W.O.S. framed, "2 ce reb. pan, plant. mouldings and dovetail $\frac{\text { lickings. }}{\text { is } 10}$
run.
?" X^{7} s" $^{\prime \prime}$ elbow linings, reb. 1 euge, tongued angles and $\frac{\text { linrkings. }}{1+11}$

$$
\frac{\text { L.abor to groove. }}{1411}
$$

Labor th gronve in nak. 34
run.
$41 /{ }^{\prime \prime} \times 0!2^{\prime \prime}$ franed, wrot. sunkweathered, rebated, 3 times mot 'ed and thruated in trausi m.
$+6$
$4 / 2 " \times 41 / 2 " 2$ ce monlded, re. hatel, alal holluw sruoved janbs.

155
$4^{\prime} 2 " \times 4{ }^{\top} \mathbf{2}^{\prime \prime}$ 2 ce moulded and rohated heart.

46

IN OAK
rill.
$6^{\prime \prime} \times 3^{\prime \prime}$ framed, rel ated, weathered amd 2 ce grooved in sill. $+6$

IN MAHOGANY .

No.
I.t inest quailty W. $\frac{\text { seat and cover, with brass side hinges. }}{1}$

MOULDINGS AND SUNDRIES

run.

2"入1 2" hod minding rebated.
47

No.
Return and mantel ends.

9 " $\times 6_{1} \times 21_{2}^{\prime \prime}$ cham.

Frame architrave to ן lint block \qquad 4

Ilousings in plinth blocks.
Holes iv frame for sadule-bar.
run.
Labor to groove. 4

Allow for attendance by joiner on plumber.

IRONMONGERY AND FIXING

Nos.
$\frac{\text { Pairs } 31 ; " \text { W.I. mitts. }}{11 / 2}$
3". solid brass sash fastening.

Nos.
$\frac{\text { Pairs } 3^{\prime \prime} \text { brass butts }}{2}$
$3^{\prime \prime} \frac{\text { brass finch sash lifts. }}{2}$
$\frac{\text { 4" brass sash pulls. }}{2}$
6" 2-bolt 4-lever mortise lock, I. C. $9 /-$, brass receded fumtore. \qquad 1

Sets, brass-ra, el fincer-plates.
Fanlight opener, P.C. 176 .

Brass Fanagnolnttr bolt for $\frac{6^{\prime}\left(i^{\prime \prime} \text { casement. }\right.}{1}$

Brass cups and screws. 12

Brackets for W.C., $161 / 2^{n}$ high.

run.
$11 / 4$ " $\times 1 / 4^{\prime \prime}$ gald. water-bar. $\frac{\text { bedded in white lead. }}{39}$ $\begin{array}{r}46 \\ \hline 83\end{array}$

SMITH AND FOUNDER

WROUGHT IRON

In 1 plate girder and hoisting and fixing 16 feet above ground level.

STRAPS

CHIMNEY-BARS
CAMBERED AND CAULKED
2!/2"×!2".
(i) 4
$\frac{48}{110}$
景! 2

$$
=\frac{331 / 2}{12} \sup _{2} \text { of } 1^{m} \text { of } 1 / 2^{m} \text {. }
$$

su?. 1^{n} collected.
12 $\frac{133 / 8}{153 / 3}$ 57 lhs.

Sets of gibs and cotters.
3
run.
1/2", $13^{\prime \prime}$ long, sqir. heads, nul's and washers.
$1 / 2 "$ round zald. iron sad $\frac{3:}{3 \%}$

CAST IRON

In 1 hollow column fixed at ground-level.

sup. $13 / 4{ }^{\prime \prime}$.	sup. $11 / 2$ ".	sup. 1".	sup. 1" col	llected.
159	20	4		$\because 7103 / 4$
$=27634$ of $1^{\prime \prime}$	3 7			$\begin{array}{r}4 \\ +4 \\ \hline\end{array}$
	$\underline{210}$			$\begin{aligned} & 3313 / 4 \\ & 37 / 2 \end{aligned}$
	$=43$ of $1^{\prime \prime}$.		Feathers $21 / 2.7$	$\begin{aligned} & 1205 \mathrm{lbs} . \\ & 30 \end{aligned}$
				1235 lbs .

No.
$\frac{\text { Pattern for column. }}{1}$
1
run.
$2^{\prime \prime} \frac{\text { R.W. pipe and fixing. }}{100}$

Nos.
$\frac{\text { Extra to } 2 \text { " shoe }}{1}$.
2" R.IV. head. 1

PLASTERER

sup.
L. P. F. and S. ceilings.

2050 Ddt.
46 D. 46
(1) 0.36
22% yards
L. F. F. and S. partitions. $3 \times \overline{2} 9$ Ddt.
$\frac{189}{9)} \mathrm{D.}_{\frac{26 \pm 0}{291 / 3} \text { yards. }} \quad 189$
R. F. and S. walls.

sup.
Pl. mold. cornice.
678

Nos.
$\frac{\text { I. Mitres. }}{5}$

$$
\frac{\text { Ext. Mitres. }}{2}
$$

Keene's cement angle.

PLUMBER

EXTERNAL

Milled lead aud labor in flats, gutters, and flashings.

run.
$\frac{\text { Lead wedging. }}{880}$
run.
$\frac{\text { Copper nailing open. }}{166}$

Nos. Extra lead, labor, and solder in cossponks.

4
Labor to dress angles
$-\frac{\text { around curt. }}{4}$
4" socket pipes 2 ft. Ions double Labor in hosse 1 en's to rolls. hent ont of $\mathbf{T} \cdot \frac{14}{}$. lead. and joint. ing ens.

Labor in four way intersections.

13

Domical wire covers to $-\frac{\text { ceasmols. }}{4}$

INTERNAL

3_{4} " inch strong lead pipe, including bends. jnint j and fixing.

51
17
69
6
746

$\frac{1 \text { lead nide, etc. }}{110}$
run.

Nos.

$$
\frac{3 / 4 \text { pine shor }{ }^{+1} \text { e gthis. }}{1}
$$

3 " ditto and soldered juint. $\frac{3^{\prime \prime} \text { ditto and } 2 \text { joints. }}{1}$.

Extra to trumpet-mouth connection to grating (sink).
$3 /{ }^{3 \prime \prime}$ boiler screws and joints.
$\frac{1 / 2 " \text { union and joint. }}{1}$
$1^{\prime \prime}$ brass bath overflow grating, - whon anl joint.

1. " brass combined bath waste and tran, cleansing screw, and plug and jnint.

1
Nos.
$\frac{11 / 2^{\prime \prime} \text { brass clips. }}{2}$
$3^{\prime \prime} \frac{\text { brass grating (} \sin k \text {). }}{1}$

1/4" H.P., S.1., stop-cock
and joints.
1

3/4" 11.P., S.D. bib valve and hoss. 1

3/4" copper ball valve, boss, and soldered joint. 1

114" lead S trap, screw cap
\qquad and jonits. \qquad

Gald W.I. riveted cistern, 14 B.W.G., Rogalls.. and fixing.

Drill hales. \longrightarrow

Earthenware wash-down pell estal closet and trap in one piece and fiving. \qquad piece $\frac{\text { and fixin }}{1}$

Joint W. C. to flush pipe and lK. cone. \qquad I
rull.
$4^{\prime \prime}$ lead soil pipe out of $7-11$. lead, including joints, tacks, $\frac{\text { and fixing to wall. }}{2711}$

Nos.
IExtrat to junction lemi and
\qquad jutit.

- 1
Joint between W.C trap and 4^{*} lead sonl pupe, including brass collar. \qquad

Connect soil pipe to dram, incluting brass thimble.

Domical copper wire cover.
1
Drill hole.
1

2 gall. W.W.I. cistern, brass chain and pull.

1

Nos.
Gald. iron bracelets. Pair.

Connect with water company's main, incluting ferrule, paying fees, and making good road. \qquad 1
$\frac{\text { Stop-cock and box. }}{1}$

HOT-WATER ENGINEER.

Nos.

$\frac{\text { Short length i" pipe. }}{1}$

Gald W.I. tank !" nlate her with manhole, 30 galls., bearers and fixing. \qquad 1

"" S. O. hib valve, engraved "HOT", and joint to iron pipe.

$$
\begin{gathered}
12^{\prime \prime} \times 10^{\prime \prime} \text { W. welded arched } \\
\text { H.I'. Bonler. } \\
\hline
\end{gathered}
$$

Drill holes and conflect. Include short lengtlis pipe, lacknuts and joints.

$$
\because
$$

$f^{\prime \prime}$ dead-weight safety valve and joint to irnn.
 away and making good after hot-water engmeer and test system at completion.

PAINTER

sup.
K. P.s. and 3 on woodwe k
\qquad and ${ }^{11}$
H: 6

- 10

39
142
$+0$
11: 10
$1_{1}=19 \quad 7=3$
(0) $137 \quad \mathrm{~B}$

15* yards.
rull.
On skirting. \qquad

Nos
On sash sheets verv larke 1/3 doz.

Sash squares very latge. $\frac{8}{2 / 3} \mathrm{doz}$. $\frac{\text { Onfanlights. }}{\ddot{2}}$

On sash frathes, ordinary
Casement frames, very large.
On plintlı blocks. 1

GLAZIER

sup.
21-oz. sheet glass in squares, from is to 8 ' super., and glazing.

1210
$1 / 4$ "pol. plate in squares, 4^{\prime} to i^{\prime}
sup., bedded in chamois
leather.
186

PAPERHANGER

Paper, price ithc per piece, and

$$
\begin{aligned}
& \begin{array}{l}
\text { hanging to ceiling. } \\
2080 \\
461) \\
2036
\end{array} \\
& 1,5=\frac{200}{46} \\
& \frac{58,32}{4 \text { pieces. }}
\end{aligned}
$$

Paper, price īe per piece, and hanging to walls.
2974 Ddt. 232! 386 5®01 6 $\frac{64}{5161} 115 . \quad \frac{18}{64} \frac{9}{0}$
$:-=73$
5月) x !
11 preces 9 ft .

Billing

Billing is the operation involved in transferfing the totals of the barious items from the abstract to the bill form, in order to enable then: to bericed, and to obtain an estimate of the cost of the intended work.

The orler of billing should follow the order of abstract, if that has been preparel as before explained.

In large contracts each trale shoull have a separate bill, which should be heaked with its name and number. In smaller works all the trades are included in one bill.

It is usual to give a description of the material to be employed by each trade at the healing of its bill before taking the itens, the total estimated amount of which is carried to a smmmary placed at the conclusion of the bill.

A bill form is ruled as under:-

If the total amount of an item in the abstract is an vild, $6^{\prime \prime}$ or over, it woull appear in the bill as a fout, but if under $f^{\prime \prime}$ it is entirely ignored, c. $g .3 s^{\prime}:{ }^{\prime \prime}$ would be billed as $39^{\prime \prime}$, while $26^{\prime} 2^{\prime \prime \prime}$ would ' taken as 26^{\prime}. This also applies to other items, as any amount of half a yard or over of painting or plastering would be taken as a yard.

In slating or tiling the feet would le billed as in 11 . 1is, 说, ecte., parts of it feet being call. 1 is feet, and in leat, bifled at per cwt. the lbs. would he taken as i, 11 . or \because I.

The first in order of the bills is kzewn an the I'rediminary liell, which contains particularn from the combtums of contract and specification which may influme the amomen of the tender, perliminary works, and provisiomal
 "taking off" and abstracting. It in : ponsible to kive exact items that would appera in $1 /$ abose hill, as the conditions vary in different cases. I few hems, however, that are founc most contracts may l... sem, such as:-
"The building to be complet. 1 and fit fur occupation by (mention date) under a penalty of - per week as liquidated damages, delays calsed by frost and strikes only excepted."
"Payments may be made to the contracter at the rate of $i \cdot 5$ per cent. of the value of the work executel, an additional 20 per cent. at completion, an l the other : per cent. six months from that date.

A priced copy of the bill of quantities to lie reposited with the architect w'ren signing contract."
"Provile water for the "se of the works, anl pay all fees connected therewith."
"Insure the building for two-thirds amount of tender in an office approved by the architect."
"Give necessary notices to aif authorities, supply required drawings, and pay all fees."
"Provide all scaffolding and tackle for the use of the works."
"l'rovide a suitable office where directed, for clerk i works, also light, fire, anl attendar.ce."
" l 'rovide watching and lighting as required."
"Make good any injury to alljacent buildings.
"l'rovide temporary covering and casing to walls, stonework, etc., and protect work from frost."
"Erect hoarding as required."
"Allow for attendance of each trade upon all other trades."
"Clear away all surplus material, rubbish, and waste, scrub floors, clean glass, and leave the premises fit for occupation."
"Make good any defects appearing within six months of completion."

Provisions:
"Provide the following sums to be used as directed, or deduction in part or whole. Add for profit, carriage, anl fixing."

$$
\begin{aligned}
& \text { Stoves } \\
& \$ 20000 \\
& \text { Carving } \\
& 50000
\end{aligned}
$$

"Excavator" and other trarles would be billed in their proper orler after the Preliminary Bill, their total amonnt being carried to the summary, the usual form of which is as under:-

SUM ${ }^{\text {P, }}$ ARY

EXAMPLE OF BILLING

BILL No. 1. PRELIMINARY AND PROVISIONS

BILL No. 2. nYCAVATOR

The concrete to be composed of 1 part Portland Cement and 6 parts ballast, deposited steadily, and rammed in $9^{\prime \prime}$ layers.

BILL No. 3. DRAINAGE

DRAINAGE-Continucid

yds. ft.	No.		Bronght forward		B
		\checkmark	Mitres. $4^{\prime \prime}$ white glazed channel pipes. bedded and jointed in cement.		
		run			
		2	$t^{\prime \prime}$ long chanmel bends.........		
		"	Cernent concrete bolstering		
			$3^{\prime} \times \mathbf{2}^{\prime} 6^{\prime \prime} \times 4$! ${ }^{\prime \prime}$ thiek laid to falls, trowelled top and made good to ehannels		
	"	2	Cast-iron air-tight eovers and frames 3$)^{\prime \prime} \times 24^{\prime \prime}$, with grease joint, fixing and bedding in cement.		
	"	b	Make good drain to 1 briek wall.		
			Carried to Summary		

BILL No. 4 BRICKLAYER

Brieks to he sonnd, well burnt and true in shape. Lime to be fresh-burnt Durking stone lime.

BRICKLAYER-Continued

BILL No. 5. MASON

Stone to be of the best quality, free from sand holes and vents, laid on its natural bed, and cleaned down at completion.

BILL No. 6. TILER

BILL No. 7. SLATER

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\frac{8 \mathrm{gqs} .}{7}
\] \& \begin{tabular}{l}
ft. \\
\(3 \overline{3}\)
\[
2_{0}
\]
\end{tabular} \& ㅅ.. \& sup.

run
2

1 \& | Blue Bangor Countess slating, "3" lap, centre nailed with compo nails, 2 to each slate. |
| :--- |
| Slate rid $e^{-}, z^{\prime \prime}$ roll, $"^{\prime \prime}$ wings bed and joint in cement. |
| Fitted ends |
| Make good around pipe. | \&

\hline
\end{tabular}

BILL No. 8. CARPENTER

Timber to be of the best description, sawn die square, free from sap, shakes, large, loose or dead knots, and other defects.

946 HCHDERG' AN゙D CON゙TRUTUR: GUIDE

CARPENTER - Continurd

sprs. f

Carried to Summary

BILL No. 9. JOINER AND HARDWARE

JUINER AND HARDWARE-Continu'd

JOINER AND HARDWARE-Continurd

BILL No. 10. SMITH AND FOUNDER

BiLL No. 11. PLASTERER

Laths to be lath and half butted, broken joints, and nailed with cut nails.

BILL No. 12. PLUMBER

11
$1: 3$
5
$1^{\prime \prime}$ ditt:
$1^{\prime}+$ "' ditto.
1!" ditto.
3 3" so ered joint.
3_{4} " slont length pupe
i" ditto and soldered jonto ditto and t ${ }^{\text {an }}$, juints.
Extra to Irumpet-munth con nection to sink klating.
3'" boiler screws and join*
${ }^{3}{ }^{\prime \prime}$ " union and joint....
$1^{\prime \prime}$ inch brass bath wivou grating. uthmin and jum
1/4" brass combured wat waste and trap, cleansing s•rew, and plug and joint
1,2" byass clips
3" brass sink gratisg
t"H.I'screw-duw: - peoxh and joints.
+" H.P. screw down tibvalve and bome.
1 "\&" copper hall value, hoss. and solde. 1 joint
14" lead 5 trap, s rew c.
Carric d lorwa: 1

BILL No. 13. HOT-WATER ENGINEER

BILL Nu. 14. PAINTER
All materials to be of the best quality.

BILL No. 15. GLAZIER

All glass to ', e best quality and free from bubbles.

BILL No. 16. PAPERHANGER
All paper to be hung with butt joints.

ITEMS

There is danger of the quantity surveyer overlooking some important item, and in order to prevent this, the following items have been prepared so that measurement, of as many as possible, shall be measired:

Inspection of site
Examination of swi!
Note if gravel, soil, or sand
Figure accordingly
Get number of cuble yards
The distance to be remosed
Where to be deposited
Pumping water
How drained
Sewerage
What depth of drains
Depth of cellar
Depth of foumdation wall
Widtle of footings
Rock blasting
Shoring bank-
Piling for fomblations
Shect piling
Excavations for prer
Cessponl
Cintern
Trenche
Cuttings for water plpes
Gratling
Leveling cellar floor
W. C. for workmen

Rumorng fenee
Grubbing out tree stump)-
Removing surplus soil

Removilis debri-
Sordlings
Carriageway:
1-ootpaths
Driveways tor rear
Tamping earth
Concreting foumdation
Openings for drain pipes
Laying drain pipes
Areat of all tiles
Weeping tiles
Elbows and bends
Traps of all kind
latake water pipe
Wiate pipes
1Fonting
Cellar walls
liurnace rom
Wall- latl in cemelt
Wall- laid in lime montar
Wall, i.nilt up ni comerete
Sonce walls, felle tome
Siene walls, phatried tome
Stome walls. dimenhion :tome
Brick wall- fur cellar
limomint of tone
lmontat of brick-
Amoint of concrete
Cellar steps

Cellar windows
Cellar doors
Cellar partitions
Cellar eoping stones
Cellar sills and lintels
Pond stones
Cellar water closet
Water taps, ete.
Concrete and cement floor
Plank floor
Firth foor tamped
Wine cellar
Vegetable cellar
Coal storage bina
Coal chute
Bahes receiver
Cellar stairs
Preserve closet
Shelving
Platering wall and ceilings
. Damp courses in walls
Donble sashes in windows
Doors, what kind
liireplace and chimuey
Laundry tubs
Hot and cold water supply
Furnace and ...tachments
Furnace, hot water
Furnace, steam water
Furnace, hot air
Gas jets, how m:uy.
Electric light-. how mathy
Laundry tabie
Clothes drying dovice
Mangle
Chimney piece
Stove rings
r risters ar finish
arleole hooks and pins

Cupboardo and itrawers
Tool room
Wasle bowl and atand
Kind of hardware
Gromitu! Poor
Number of romme
Number of door-
Number of window-
Style of doors
Style of windows
Sizes of doors and windows
Thickness of doors and windows
Kind of glase
How windows are lungs
Hardwood or pine finish
Outside walls, stone, brick or wood
Thickness of walls
If tone, rock face
Tooled. rubbed
Crose woth chiseled
Crandalled
Brick w:all
Thickne.. of brick walle
Commond lirick=
Prened lorich:
First, second and third gualits
Mixed. brick and stone
Walls ormamented
Walls left plain
Window finisl
Urinals
Slate labs
E:veriar window finivh
Anterior wimbow limi-h
Exterior door fini-h
laterior door fini-lt
lenting courses
Sailing courses

256 BL'ISDERs' AND CONTRICTORS' GUIDE

Lai: m cement or mortar Jets and gasoliers
$!$ ron sicfis, stone
?ront stur, cement or wood
Holl catrance
Double floor. pine
Hardwoed flont
1'arquet thour in some roons:
Tile floors
Dimensions of joists
Thickness of floors
Height of ceilings
Stairs, itraight
Stairs, winding
Stairs, plat form
Pine or hardwood
Kind of hardwood
Sty!es of newels and buideters
Flain fintsh ia rooms
Ornamental finish in room-
Fret and grill work
Arches. plain or otherwise
Styles of platering
Stucco cornices
Styles of cornices
Sliding doors
Fireplaces
How many
Mantelpieces
Mantelpieces, plain or ormamental
How finished
Other wood finivh
Pillars, colmm or brackets
Base and plinth
Style of trimminge
Style of hardware
Cont of hardware
Crates ambl tiles
Mirror=
Gats lighting

Electric lighting
Electroliers and brackets
Piping for ras
Wirines for clectric lights
Witting dothe clocets
litting in den
litting up closets
litting up ecllar stairs
Fittingatip dining room
Fitting up other rooms
Kitchen finish
Tubs, sinks. Aresser
Cupboands. china closet
Butler's pantry
General pantry
Range
Steam cooker
Chimney:
Ventilation
l'anting
Varnibhing
W:aincoi
Penclings
Wiash-tand
Marble facing for walls
1)nuble window:

Sather, weight, and cords
box frames
llain frames
Windos: tonde
Invide shutters
Inside blinds
Splay boxes
Tiled hearths
©ish locks
liked facings
Batek stairs
Servant's room
Bay window

Painting

Oriels
Veranda
Front porch
Rear porch
Stoop
Back areas
Front areas
Iron railings
Stone railings
Balconies
Window hoods
Door hoods
Door stops
Door springs
Plate glass
Stained glass
Niches
Closet fittings
Provide for heating Conservatory
Corrugated glass
Skylights
Handrail, oat or mahogany!
Bracketed stairs
Anchors and tie irons
Vats
Angle irons
Bond timbers
(arcing, if any
Scaffolding
Temporary enclosure
Iron beams
Iron columns Bis pipe pillars
Water on main floor
Yalu. nickel plated
Til. plain
Glazier's work
Meters. Syphons
Flows, pendant-
raper hanging
Iron pipes
lead pipes
Brass pipes
Washers, wastes
Plugs, grating
Pumps. suction pipes
IV all hooks. supply pipes
Cast iron work
Wrought iron work
Stuce work generally
Stucco friezes, enrichment
Stucco pateras. panels
Stucen moldings
Stucen beads. straight
Stucco beads, over arches
Stucco arrises, quirks
Stucco reveals angles
Stucco centerpieces
General plastering
Two coats
Three coats
lathing
Quality of laths Sand. lime and hair Plaster of Paris Clean water Sound story joists Studding for partitions Bがall-
Trimmer - Lur hearths Primmer for -tar Primer for chimney Strapping wall Dimensions of strapping IVooden bricks l lugging walls Sailing strips Temporary sashes

i) is BLILDEKS' INO CONTR.ICTORS' GUIDL:

Lanterns
Louvres
Thresholds
If metal ceilings
If metal cornices
Metal centerpieces
Bridging joists
Bridging studding
Dimension of studs
Double partitions for sliding doors
Liming pocket of sliding doors
Hanging sliding doors
Framing wooden house
Boarding inside
Boarding outside
Boarding both sides
Papering one or both sides
Horizontal boarding
Diagonal boarding
Tar paper or plain paper
Outriggers
Towers
Two-story bay windows
Two-story oriels
Two-story balcony
Two-story porches
Two-story verandas
Three or more stories of same Iron railings for balennies
Wood railings for same
Ornamental iron columu
Ornamental brackets, irmon
Iron supports for platform
Iron truses for balconies
Iron plates for piers
Sither iron work
Siding frante imuiding Half-timbered building Rough cast building

Brick veneered building
Wood cornice outside
Metal cornice outside
Shingle cornice outside
Brick cornice outside
Stone cornice outside
Attic floor joists
Rafters
Collar beams
Trusses for roofs
Framing for dormers
Framing for eye-winkers
Dormer windows
Chimury stacks
Framing roof
Boarding roof
Mortar under shingles
Mortar under slate
Asbestos paper under covering
Common paper under co ing
Shingle roof
Slate roof
Tile roof
Composition roof
Tin roof
Galvanized iron ronf
Ronfs pairted
Flashing of all kinds
Tin flashings
Zine flastrings
Galvanized iron flashings
Eave troughs
Conductor pipes
Size of conductor pipes
Afansard roof
Sadllle roof
fip roof
Hat rous
Tower forof
Square tower roof

Conical roof
Steeple roof
lolygon roof
Bay window roof
Porch roof
R of over balcony
Veranda roof
Framings for veranda
Chamber floors
Attic floors
Beclroom fittings
Number of doors is bedrooms
Washbasins
Closets, drawers and fitments
Servants' bedronms
Hall, sewing room
Continuous stairway
Bathroom and fitments
Water closet, in what style
Bathroom washstand
Linen closet
Nursery
Fireplaces
Mantels
Tiling for fireplaces
Base, style of finish
Built in seats
Finish in main bedroom
Finish in nursery
Finish in servant's room
Finish in bathroom
Finish in hall
Finish in closets
Openings and arches
Style of painting
Pine finish
Hardwood finish
Character of finish
Cost of hardware
Style and cost of bath tab

Style of water closet
Marble washstand
Tiled walls
Tiled floor
Marble lined walls
Ventilation
Air clucts
Register
Bath trimmings
Shower bath
Hot and cold water
Stairway to attic
Attic storerooms
Attic, clothes drying room
Children's playrocm in attic
Inside trim of dormer windows
General finish of attic
Water closet and lavatory in attic
Painting in attic
Attic doors
Heating attic
Attic storeroom
Children's toy room
Hall in attic
Railing around attic stairway
Closets in attic
Water in attic
Plastering in attic
Attic walls all boarded
Marched ceiling in attic
Attic hardware
Chimney tops
Style of chimney tops
Chimney pots
Finishing top of chimney
Stone tops
Cement tops
Metal tops
Roof decks

Railing for decks
Rolls for ridges
Cresting for ridges
Wood cresting
Metal crestings
Terra cotta crestings
Terra cotta panelo
Terra cotta wori generally
llatchw:y in deck
Scuttle in deck
Lead work
Copper work
Tin work
Roof painting
Painted or dipped shingles
Stairs to roni ur deck
Itagnole
Halyards
Wire guards
Snow guards
Storm sashes
Storm doors
Screen doors
Wire screens for windows
Wood gables
Brick or stone gables
IIalf-timbered gables
Plastered gables
Shingled gables
Deafening floors
Deafening walls
Pugging floors
Sulb-floors
Diagonal floors
Rong'l floors
Cellar sleepers
Cedar posts

Chestrutt posts
Spindid pancls
Lattice work
Eintrance approach
Porte-cochère
Steplidders
Refrigerator
Cold storage shelving
Wine bottle racks
Folding partitions
boxed shutters
Boxed blinds
Sliding blinds
Rolling blinds
Venetian blinds
Dumb waiter
Transom doors
Transom winlows
Mnllion windows
Circular top windows
Elliptical windows
Double-hung windows
Single-hung windows
Windows, plain
Windows, ornamental
Pavements
Slop hoppers
Vestibule
Vestibule partition
Vestibule floor
Hardwood or tile
Wainscot in vestibule
Wainsco* ip stairway
Paneled stair strings
Hardwood stairs
Wood-shed
Coal-shed

While the foregoing does not pretend to give all the items that may be required, it offers to the measurer some
hints as to what is required, in a general way, for domestic buildings. For factories, stables, barns, warehouses, public buildings, churches, schools, railway stations, and similar work, a more elaborate list would bc required, but the workman should be able to find all the items in the specifications prepared for the work under consideration, and if he is thorough he will add to the list as given above such items with their cost, as he gocs over them when taking off the quantities.

The reader of this book, should also obtain a copy 0° Hodgson's Estimator and Contractor's Guide; which is . companion book to this. This one gives methods 0 computing quantities, the Contracter's Guide shows how to price them. So it will be seen that the two books should go together.

INDEX.

PAGE
RLLES FOR MEASUREMEN゙T OF
Mason Work 7
Brick Work 18
Wiight Work $2: 3$
Glazier Work 38
Slater Work 12
Plumber Work 4.
Plaster Work 4!
Painter Work i3
METHODS OF MEASURING is
FORM OF DIMENSION BOOK -!
METHOD OF MEASURING:
Mason Work 60
Brick Work 73
Carpenter and Joiner Work $8: 3$
Glazier Work 93
Slater Work 95
Plaster Work 97
Plumber Work 103
Painter Work 107
FORM OF MEASUREMENT FOR:
Mason and Brick Work 110
Plaster Work 137
Plumber Work 139
Tile Linings 142
Painter Work 143
TORM OF ESTIMATE FOR:
Excavator, Mason, Brick, Iron and Steel Work 64
Carpenter and Joiner Work 123
Slater Work 100
Latiter anủ Plaster Work n!
Plumber Work 103
Tile Linings 106
Pdinter Work 107
PAGF.
NOTES ON:
Excavator Work 117
Mason and Brick Work. 1.11
Carpenters and Joners W'ork 1:\%
Slater Work $1(11$ $1(11$
Plaster Work 162^{2}
Plumber Work $11: 3$
P:anter Work $11 i$ $11 i$
f()R.I OF:
Marm Work in Vote laok
Marm Work in Vote laok $1 l i 8$ $1 l i 8$
Brick Work in Vote Book. 17 17
Carpenter and! Jimer Work in Nute Book $17: 3$ $17: 3$
Slater Work in. Note book 18:3
Planter Work in Note look 184
Plamber Work in Note Book:
Plamber Work in Note Book: $18!$ $18!$
Painters Work in Note Book 191 191
ABBREVIATICNS THAT MAY BE USL:D 1. NOTE 196
BOOK
BOOK PRACTICAL MEASURE.MENTS OF GFOMETRICAL
109
AREAS
213
213
IBSTRACTING
218
218 218
EXAMPLES OF ABSTRACTING
EXAMPLES OF ABSTRACTING
EXCAVATOR 219
DRAINAGE
221
221
BRICKLAYER 2.)
MASON 223
TILER 224
SLATER
2.24
2.24
CARPENTER
296
296
SOINER AND HARDWARE
SOINER AND HARDWARE
$2 \cdot 3$
$2 \cdot 3$
SMITH AND FOUNDER
SMITH AND FOUNDER
231
231
PL.ISTERER
231
231
PLUMBER
234
234
HOT WATER ENGINEER
HOT WATER ENGINEER
235
235
PAINTER
PAINTER
23.5
23.5
GLAZIER
i.)
i.)
PAPER HANGER
PAPER HANGER
236
236
BiLLING
239
239
SUMMARY 240
ENAMPLES OF BILLING$\boxed{5} 4$
ITEMS

NOTICE

To the many workmen who ato purchasing the publleations onder the suthorship of Tred T．Hoxlgsorn，and whe weffil wire have been benented by his excellent treathes on maty Carpwiry and budding subjects，wo desire to inform them thal blo ellowing list of books have besn publlahed since 1903，therrby making them strictly ap－to date in every detall．All of the newer book hearing，the Imprint of Friderick J．Drake \＆Co．are motern if every respect and of a puraly selfeducational character，expressly insued fur Ilome Study．
PRACTICAL UBES OP THE STEEL SQUARE，two volumes，over Fin pages，includiug 100 persperzive views aud fiom plans of nexium priced houses．Cloth，two volumes，price \＄2．00．Half leathet price $\$ 3.00$ ．
MODERN CARPENTRY AND JOINERY， 300 pages，including to hriv plans，perspective views ath thor plans of m＋illim and low i． houses．Cloth，price \＄1．00．Hall ieather，price \＄1．80．
BUILDERS＇AROEITECTURAL DRAWING BELF－TAOGET，oTer B pages，Including 50 house plans．Cloth，price \＄2．00．Half leither price \＄3．00．
KODERN ESTIMATOR AND O．JNTRACTORS＇GUIDE，for pricing buila－ ers＇work， 850 inises，including so house plans．Cloth，price $\$ 1.60$. Hall leather，price \＄2．00．
MODERN LOW－COST AMERICAN HOYEB，over 200 nages．Cloth．price \＄1．00．Hale leather，price $\$ 1.80$ ．
PRACTICAL UP－TO－DATE EARDWOOD FINIBEER，over 300 pago． Cloth，price $\$ 1.00$ ．Half ：s ther，price $\$ 1.50$ ．
COMIMON BENEE BTAIR RUILDING AND HANDRAILING，nver ジッ pages，including perspective views and floor plans of 5 ）mediuma－prterat houses．Cloth，price $\$ 1.00$ ．Hail leath－r，price $\$ 1.50$ ．
STONEMASONS＇AND BRICFLAYERS＇GUIDE，over 200 pages．Cloth． price $\$ 1.60$ ．Hall leather，price $\$ 2.00$ ．
PRACTICAL WOOD CARVING，over 200 pages．Cioth，price 31．60．Halt leatter，price \＄2．00．

Sold by booksellers generally，or sent，all charges paid，upon receipt of price，to any address in the wortd

Practical Up.to-Date PLUMBIIG

Ey

George B. Clow

Over 150
lllustrations

A
PRACTICAL up-to-date work on Sanitary Plumbing. comprising insefnl information on t: ewiping and soldering of Fad pure foins and the installation ifot and cold water and dramage systems into modern ifeidences. Including the gratity tank supply and cylinder and tank system of water heating and the presolte cy:blidet -vatem of water heating. (nnurctions t b bath mb)..., ertions for water closet. Conllections fur laundry : ? Conmections Pre wash-bowl or
 Closets I'rinale 1.: in is shawer haths. Toltet room ull office buldines. tir aizars. Hibb-cocks. Soilpipe fttungs. Dramage fit. 1_{1}.er's tool kit, etc.. etc. sinf vages. |rat ifluse nt

12 Mo. Cloth $\$ 1.50$

Sold by Booksellers generally or sent postpaid to any addrese upon receipe of price by the Publishera FREDERICK J. DRAKE (2) CO. 350-352 Wabash Ave. Chicago, U.S. A.

fludern Alpliabrta

PLAIN and Ornamental, ancient and medixal, from the Eight to the Twentieth Century, with numerals. Including German, Old English, Saxon, Italic, Perspective, Greek, Hebrew, Court Hand, Engrossing, Tuscan, Miband, Gothic, Rustic, and Arabesque, with seyeral Original Designs and an Analysis of the Roman and Old English Alphabets, Largn, Small, and Numerals, Church Text, Large and Small; German Arabesque; Initials for Illumination, Monograms, Crosses, etc., for the use of Architectural and Engineering Draughtsmen, Surveyors, Masons, Decorative Painters, Lithographers, Engravers, Carvers, etc.

Sold by Bocksellere senerally or send postpaid to any address upon receip: of price by the Publishers

Freitriak J. 國rakre 350-352 WABASH AVENUE ::: CHICAGO, U.S.A.

AMODERN treatise on Hot Water, Steam and Furnace Heating, and Steam and Gas Fitting, which is intended for the use and information of the owners of buildings and the mechanics who install the heating plants in them. It gives full and concise information with regard to Steam Boilers and Water Heaters and Furnaces, Hipe Systems for Steam and Hot Water Plants. Radiation, Radiator Va!ves and connections, Systems of Radiation, Heating Surfaces, Pipe and Pipe Fittings, Damper Regulators, Fitters' Tools, Heating Surface of Pipes. Installing a Heating Plant and Specifications. Plans and Elevatious of Steam and Hot Water Heating Plants are shown and all nther subjects in the book are fully illustrated.
256 pages, 121 iliustrations, 12 mo , cioth, price,
$\$ 1.50$

Sold by Booksellers denerally or sent postpald to any address upon recelpt of price by the Publieher:

Hodgson's Modern Estimator and Contractors' Guide

Eor Pricing Builders' Work

Cloth, $\$ 1.50$

Hall Loather, $\$ 2.00$

SYNOPSIS OF CONTENTS,

Introduction to estimating-Remarks on tendering for work-Terms of payment-Discounts-System in estimating-Reminders of tems in work and materials-Different methods of estimatiug-sume temarhs on esti. mating generally-Fistimating hy stories-Mensurition of superticies-Detinitions-Four-siaed thures-Triangles-Trapeziums and TrapezoidsKegular polygons-lrregular bodies-Circles and segments-Elipses and similar figures-liyperboles-Table of segments of circles-Tahlo of zones of circles-Areas of zones of circles-Lengths of circular arcs-Length of elliptical ares-Cubes and sollds-Pyramidal measurements-Wedge and prismoids-'The cylinder, cone and sphere-Spherolds-Conoids and hyper-bololds-Average rate's of wages per hour for the jear 190t-Loads for wagons, carts, wheelharrows and baskets-Loids of earth, bricks, stone: tiles, slates, lumber, timber, mortar, lime, concrete, sand, clay, ballast, etc.Cubic contents of earth before and after disging-Weleht of various matc-rials-Cost of iterns of Work of "irious kinds in Philiwdelphia, Bostou, New York, Chicago, San Francisco and other large citics at this date (19H)Excavating for trenches, drainage, footings and similar work, with hints as to cost, etc. - Pricing items of excavation in various solls-siome things wo th knowing in excavating-Natural slopes-lrimming banks-Equipaleuts of slopes-Irrecular sites-linns for wheelbarrows-Welghts of materials-Steam excavators and shovels-Cost of excavating-Rough approximate prices-Laying drain thes, pipes, wecping tiles and similar work-Kain-fall and clearance of samo-Tible of gradients-Clay tiles and cast iron plpes-Weeping tiles-Footings for foundations-C'ut stoneCement stone-percentage of cost-Determining the cost of labor-Tible of rate of wages pald difterent trades (1901)-Listimating by the squareAna!ysis of work generally-Estimating by units of accommoditionMethod explained-Estimating by cibing-Table showing cost per foot. name of building, and disce of erection-Prtecs of work of various kindsCost of parks and public grounds jer acro-Estimating hy detall quantitiesRemarks and suggestions on thls metiod of estimatiug-l'rices of work per tem, or hy the hour at present date (1004)-Slating-slater's memorandiaSlate dalls for any supertlchil area with hable and rules-Generil mattersltemized work with prices attached-Plasterer's data-bricklayer's dataStone mason's data-Carpenter's data-1'ainter's cnta-Painter's extrasThe plasterer and paluter-Stucco work-Extercal pastering in Portland cement-Outside plisteriug geuerally-Tiles and tiling with cost of labor and material-Fixing tiles-lroof thes ani laying same-Cost of slateBangor black slate-brownville Maine slate-Green, purple aud red slatepain bottom slate-Sea-grecn slate- Weipht of slate-Mcasurenent of stating-Cost of slating-The excarator aud hricklayer-lules, tables, notes, and soll plpes-Tibble showing uuraber of bricles reanired cast irou drain will-Measurement of hrickwork-Safe beuricis loads-Masonry gele size of Proportion of bricks and mortar-Number of bricks renuired fer well yid other circhlar work-Thlekness of brick walls for dwelling houses - wails for cold storage and warchonces-lioofs reucrally-shlugling-Table for estimating shingles-Slatiog-Weight of roof covering-Siow and wind lobds-Wind pressure on roofs-comparative cost of roofs- inmposition roois-Speclic gravity and weight-1he metric system-Mensures of lergth-Measures of area-Measures of volmme-Currcht measmas-Weighis ri mmber of the Pacitle coast-Surveyor's measure--Sinare measure-sinr. regor's suluare measure-The wear and tear of building materlals-sitone and brick work-How to tgure plastering-short hintsonstome and brick workShort methods of estimating-some poluters of e-tinating Mscellaneous tahles, rules and general information uvefnl fo the estluator-("losing remarks with hints and suggestions is to how to fistimate systematically, and proper methods of kepplug datatam meworandit, ete., etc., etc.

MIDdern Carpentry virl $_{2}^{\text {vic }}$
 ADVANCED AERTES

 JBy fred ©. HodgsonThis is a continuation of Mr. Hodgson': first volume or Modern Carpentry and is intended to carry the student to a higher plane than is reached by the first volume. The first volume of this series may be considered as the alphabet of the science of carpentry and joinery, while the present volume leads the student into the intricacies of the art and shows how certain difficult problems may be solved with a minimum of labor. Ever. progressive workman and especially those who have purchased the first volume of this se:ies cannot afford to be without this volume, as it contains so many things necessary the advanced workman should know, and that is likely to crop up at any time during his daily labors. The work is well illustrated with over 100 diagrams, sketches and scale drawings which are fully described and explained in the text Many puzzling working problems are shown, described and solved. This is truly a valuable aid and assistant for the progreasive workman
300 pages, fully illustrated. 12 mo , cloth, price. $\$ 1.50$
Sold by Booksellers generally or sent postpaid to any Idress upon coseipt of price by the Publishers

$$
\begin{aligned}
& \text { FREDERICK J. DRAKE \& CO. } \\
& .550 \text { W WA SH AVE., CHICAGO, U. S. A. }
\end{aligned}
$$

PRACTICAL BUNGALOWS AND COTTAGES FOR TOWN AND COUNTRY

THIS BOOK CONTAINS PERSPECTIVE DFAWINGS AND FLOOR PLANS

OF ONE HENDRED I.OW AND MFDHTM IFJCFD HOESES HANGING FKOM FOLKK JLNDREH H FOLK IHOL゙SAND
DOLLAKS FACH. ALSO TWMNTY-FIVE SFLECTED
DESIGNS OF BtNGALOWS FOK STMMEK ANDCOtNTRY
HOMES, FIRNISHING THE NROMFKR BNK B'?LDER
WITH MANY NFW AND LV-TH-DAIE IDFAS AND SCG*
GFSTIONS IS MUIVFKN AKCHITEGTURE
THE HOUTKG AIHERTISEI, IN THIS BOOK ARE RN=
TJRFIG IHIFFERENT IN STHLY FRGM THOSE SHOWN
IN HODOSON'S LOW COSH IHOMES
12 MO. CI,OTH, 200 PAGES, 300 ILLUSTRATIONS IRICE, POSTPAID \$1.00

FREDERICK J. DRAKE \& CO.
350.359 WABASH AVENUE

CHICAGO

Concretes,

Cements, Mortars, Plasters and Stuccos

How to Make and How to Use Them

By
Fred T. Hodgson Architect

T
HIS is ano:her of Mr. Hcdgson's practical works that appeals directly to the won kman whose business it is to make and apply the materials named in the title. As far as it has been possible to avoic chemical descriptions of times, cements and other materials. and theories of no value to the workman, such lias been done, and nothing has been admitted into the pages of the work that does not cossess a truly practical character.

Concretes and ceinents have received special attention, and the latest methods of making and using cement huilding blocks, laying cement sidewalks, purting in concrete foundations, making cement casts and ornaments, a:c discussed at lensth. Plasteri.g and stnceo work receive a fair share of consideration and the best methods of making and using ate described in the usual simple manner so characteristic of Mr. Iludgson's style The book contains a large number of illustrations of tools, appliances and methods employed in making, and applying concretes, cements, mortars, plasters and stucco, which will greatly assist in making it easy for the student to follow and minderstand the text

300 pages fully illusirated.
12 Mo. Cloth,
Price, $\$ 1.50$
Sold by Booksellers generally of sent postpald to any address upon recelpt of price by the Publishers

Frederick J. Drake Q Co. 350-352 Wabash Ave., CHICAGO. U.S.A.

