Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

BRITISH AMERICAN

MEDICAL \& PHYSICAL JOURNAL.

Yol VI.-No. 2.]

ART. VIII.-Valedictory Address delivered to the Students in the $F a$ culty of Medicine. at M. Gill College, on Wednesday, May 8, 1850, by A. F. Holmes, M. D., Professor of Medicine.
Gentlemen, - Befure closing this ceremony, and as a Valedictory to you, who, having terminated your course of study, are about finally to leave us, permit me to call your attention to the Oath you bavejust now severally pronounced. The solemnity of a promise cannot fail to be increased by being attested by an appeal to the Almighty; and the feeling of responsibility to be proportionately increased. It must. however, be a considerable relief to the mind of one who feels the awfulness of failing under such circumstances, to know that by the Oath, nothing more is required of him than the performance of such duties as his own mind will tell him are in accordance with the hooest and upright discharge of his duties as a physician. To exact an oath of you to follow a certain conduct seems almost supererogatory; since to exercise your profession in a cautious and upright manner-to care for the safety and comfort of your patients, and not to use the opportunities your profession may give, for the unnecessary or careless diyulging of their secrets, especially where this may tend to their injury or disparagement-all these are nothing more than every well-principled man will feel disposed to make the rule of his action. Again, we ask of you to keep an affectionate remembrance of the University whose children you are become, so as to desire her advancement
and to promote it if you can. In this, also, there is nothing that might not be expected to be the spontaneous outgoings of your minds, inasmuch as you have become incorporated with the University: its honor is reflected upon you, and the more eminent it becomes, the more satisfaction you will feel in belonging to it. We do not wish, therefore, that you should consider that this day severs the connection between us-that it should be as if it had never been; but we wish you sbould feel a kindly interest in her welfare and progress, and manifest it as ocgasion may allow, by any good offices which it may lie in the power of your hand to do: in fact, that the appellation "alma mater" so commonly applied in reference to seats, of learning, stould be applicd and felt in regard to ourselves.

While pointing out, however, ine accordance of the Oath witi what you will at once allow $: s$, be the correct and necessary deportuner of a right-minded individual, there are included in some of the parts certain duties, which the required brevity may render less perspicuous to your minds. I shall, therefore, detain you a short time to notice one or two of them; all of them, however, being matters of more importance to your own advancement, than the interests of this Institution, in which is again seen the fostering arms of Alma Mater.

Firstly, then, you will fulfil your promise of persevering "in omnibus gratiis animi officiis", towards this Unir versity, by paying attention to your own
advancement in the scientific knowledge of your profession, and by keeping pace with its improvement. You will hereby assure most certainly your own elevation, and when elevated, the University will look with pride upon you as its Alumni. It is very erroneous to conclude, that once possessed of the Doctorate, you are freed from the labour (or I should say, pleasure) of study. On the contrary, Medical Practice is a continual study, and personal observation and research should always be checked and verified by comparison with the observations of others. It hence becomes a duty to keep up with the constantly changing, and generally (if not always) improving aspect of the science. A few years of neglect throws one lamentably behindhand; and recurring to the subject, one finds oneself a stranger in a field formerly well understood. This is the case not only of those parts of medicine less immediately practical, as Chemistry and Physiology; but in the most practical parts, great disadvantages attend the neglect of following out the improvements, which the zeal and labour of the profession are constantly suggesting. I do not confine my recommendation simply to some new method of operating, or to the use of some newly-discovered medicine, but generally to becoming acquainted with all the changes, theoretical or practical, wrought from time to time in the opinions, and consequently in the practice, of the Profession.

To shew you the disadvantages that would attend the neglect of keeping yourselves au niveau of the progress of knowledge, let me glance at some of the changes that have occurred in regard to practical medicine within a few years,-which are not few, in regard to opinions held, or medicines prescribed. I do not moan to say that a change is
always an improvement: on the contrary; we sometimes retrograde; but yet I hold that we are still bound to acquaint ourselves with such alterations of medical doctrine, even if we do not mean to test heir accuracy.
(a.) The first great improvement of recent years which I shall notice, is the discovery of the excito-motory nervous system, and its application to pathological plenomena. It may be said that this is more properly a physiological improvement ; but not so: it is equally or more important in its bearings upon pathology and practice. By it, irritations are refiected from one part to another, and refermen to it wiil enable us ofien to trace diseases to sources which might otherwise have remained unsuspected.
(b.) Another great change which has come over medical opinion of late years is the revival of the Humoral Pathology, at least to a considerable extent. When I was a student, this doctrine was supposed to be one of the proofs that we were wiser than our forefathers, and was allogether rejected as a mere spec ulation without a basis. Whoever, however, now looks into the more recent works treating of Fever, of Puerperal Metritis, of Gout and Rheumatism, \&c., will find that the causes of diseases are attributed to changes in the blood, and that this is a revival of the once exploded Humoral Pathology. It is true that the doctrine, as revived, rests upon observation and facts, while, as emanating from Hippocrates, it was only a happy conjecture. Yet the history of this doctrine should teach us a lesson,-not to be too hasty in rejecting what is not quite in accordance with present views, and to remember that we are not infallible. In fact, it is rather humiliating to look back into the history of medicine, and to see the neglect of great discoveries, and frequently the opposition to the
introduction of greatimprovements. The case of Inoculation, and more récentily ưf Vaccine, may serve to shew the one; and the long neglect of Percussion as a means of diagnosis in diseases of the heart, the other. It was about the middle of last century (1761) that Aumbruzzer published his important discovery (unquestionably, says Dr. Forbes, one of the greatest improvements ever made in Pathology), and it was not till it was recommended by Corvisart, many years after the present had commenced (1808), that its value became generally known.
(c.) A third subject which may illustrate the variable condition of our doctrine, and shew the neccssity of paying attention to it, is the nature of Feverto which I shall allude chiefly to notice the apparent likelihood of the breaking down of what once seemed one of the best established distinctions among diseases, viz., that between common continued and eruptive Fevers: You are aware that it is now well known that in the progress of common continued as well as typhus Fevers, a rash appears at a certain period, having peculiar characters assimilating those fevers to the nature of an Exanthema, and consequently bringing all idiopathic fevers within the same category. I shall again stop to shew the difficulty there often is at one period in drawing attention to a subject which at a subsequent period is acknowledged as important, and becomes universally received. Years ago, about the latter third of the last century, Burserias pointed out the existence of this rash, and insisted that common Fever should be classed among Exanthema.

There is another point connected with Fever which I may remark upon. For years after I graduated, it was the received opinion that Continued Fever,
however diversified in appearance or iūtē̃sity-whlueilher mỉd̉ or severe, synochus or typhus-was always the same disease. identicel in cause aud mature. In the works which are still principally referred to we find this opinion. Consult the Cyc. P. M.-Tweedie's Lib. of Med.-Watson's Lectures-and you find this doctrine promulgated. Yet now we have writers who assert the non-identity of different cases of continued Fever; and, under the names of typhus and typhoid Fevers, we are taught that there exists two diseases,-distinct in their origin, their symptoms, and their effects.
If time permitted, I might bring to your notice many more instances of important improvements, or, at any rate, important alterations, in medical doctrine, which have taken place within the last few years; among which the discovery of what is commonly called Bright's Disease is not the least important; but I shall only finally allude to the vast improvement introduced into practical medicine by the conjoined operations of Auscultation and Percussion.

It is now about thirty years since Laennec first announced his great discovery to the French Academy, and it is much less since the practice of Auscultation has become general. Like most other improvements, it met with opposition at its first introduction; but this has now quite disappeared, and its only obstacle is that which it shares with all other objects of pursuit, the labour necessary for acquiring expertness in its application.

It has not only given precision to our diagnosis of diseases of the chest: it has led to the discovery of others not before suspected.
I might extend this detail of improvements by referring you to the numerous means of combatting disease which have
been added to our list within 20 years. I might refer to that most important and unexpected means of removing the dread and horror of operations,-the use of Ether and Chloroform. I might point out improved miodes of operating and treating surgical complaints, and in like manser advert to the many improvements in obstetrics; but it is unncces. sary, as I have adduced sufficient to bear out the recommendation I made to you, of not standing still while the tide of medical improvement is hurrying past you.
If I have succeeded in impressing you with the propricty of not lagging behind in the advance which your profession is continually making, I shall point out to you one easy meaus by which you may always know what is doing in the world of Medical Literature. It is to take one or more of the Periodicals which are now so numerous and solow-priced, that no one is justified in remaining in ignorance, with so easy a method of acquiring iniormation. Many of you, no doubt, will fix your residences in country parts, where you may have litule opporiunity of communion with other practilioners, and you will therefore be very likely to become "rusty" in regard even to the knowledge which you now have, and much more in regard to that which is being devcloped every day. The best way of preventing this is to take a periodical whose pages contain a condensation of the mass of new matter which is monthly and weekly poured upon the profession. The practice of reading such works may thave another benefit: it may stir you up to communicate the results of your own experience, and many valuable facts and observations may thus be saved and rendered useful; and hereby you will be fulfilling in some measure the duty which I pressed upion you, viz., that of becoming a credit to the University.

ART. IX.-Contributions to Clinical Medicine. by Robt. L. MacDonnell, M.D., Licentiate of the King and Queen's Collige of Physicians, and of the Royal College of Surgcons, Ireland; Lecturer on Clinical Mcdicine, Univiersity of M:Gill College, Phy= sician to the Montreal General Hospital, eq.
No. 3.-Extensive Encephaloid Disease of the Left Lung, attended by unusual symptoms : weith obscrvations.
March 2 nd, 1850.-1 was called tò attend Miss ——, aged 17, daughter of Captain ——, the history of whose illness has been furnished to me at great length by her father, from whose notes I hare condensed the following account. Two years before, sle caught cold, having sat in damp clothes for a whole day; the catamenial discharge, which had been just established, was suddenly arrestecl, and did not appear for five months; she was attacked with pain in her left side, back, and top of the left shoulder. These pains continued, and were followed by difficulty of breathing, and inability to lie upon the right side, but without cough or c. x pectoration. After some months a small tumour appeared above the left clavicle, somewhat painful to the touch, and to which, tincture of iodine was applied by her medical attendant. In the month of July she wes sent to Upper Canada for change of air, but derived no benefit from it, and returned to Montreal in September, much worse. The tumour noticed in the neck had become enlarged, although not yet conspicuous; but it was painful, and this sensation extended up along the side of the neck. At this period her father noticed slight ptosis of the left eyelid, and contraction of the pupil of that eye; " and the iris did not expand and contract equal to the other, in the transition from light to shade." "During the winter of 1848-49, she complained
much of pains' in her arm and shoulder, particularly at night, and often groaned in her slecp; yet she went out, and her appearance, occupations, and amusements were as usual." "In the spring of last year," continues her father, "I first observed the left arm to have shrunk or withered conspicnously, yet the tumour in the neck had not much increased in size." The following summer was spent in Upper Canada, during the most part of which, she suffered greatly from pains in the left side of the chest, in the back and shoulder, and from debility and dyspnoa. She returned to Montreal Jast September, so altered in appearance that her father hardly recognised her; she staggered into the hall, "a poor emaciated creature, with a ghasily countenance of a blueish green colour. She inal upon her a constant hacking cough, great shortness of breath, had lost all appetite, was reduced to a skeleton, and so weak, that she sank upon the bed, whence she did not rise for three weeks.?"

She was now seen by a physician of this city, who prescribed cod liver oil and the local application of iodine to the tumour. "From this time her health fluctuated a good deal, and," adds her father, "Jan. 9. Favorable symptoms of change in my daughter's health; was enabled to use her left arm, of which she had lost the use for two months." Jan. 10. A violent fit of dyspnoa set in, accompanied by hysteria and delirium. The joumal from which the above quotations have been taken, goes on to say, that up to March 20th many serious attacks of spasm have been staved of by your prescriptions, and all have ultimately yielded to them; but, with her increasing weakness, the spasms are more frequent, and apparently more dangerous.

Present State.-The attention is immediately attracted by a large tumour on the left side of the neck, which protrudes upwards from the thorax, through the space bounded by the clavicle in front, and the spine towards the middle. This tumour is of an irregular shape, somewhat globular, uneven on its surface, everywhere resisting, with the integument tense, shining, and codematous. It is quite dall on percussion, and no pulsation, bruit, or thrill are perceptible. It is not painful to the touch, nor is it the seat of any constant pain, though shooting pains occasionally proceed from it downwarls to the fingers. The surface of the tumour is traversed by, large tortuous reins, which anastomose freely with similar veins on the left side of the thorax, the left arm, left side of the neck, cheek, and left side of the forehead. The tumow has by its pressure, produced paralysis of motion and sensation of the left arm, and the pulsation of the uluar, radial, and brachial arteries; is completely obliterated. The whole of this arm and correspoinding part of the chest are extremely codematous.

Physical Signs.-The anterior portion of the left side of the chest is full and prominent, and is continuous with the tumour, there being no depression to mark the supra and infra-clavicular spaces: the clavicle is dislocated forwarls, its sternal end projects nearly an inch in front of the sternum. The ieft side of the chest does not move in inspiration; its intercostal spaces are obliterated, and an cxtremely dull sound with resistance is elicited by percüssion from the clavicle to its lowest part, and the same dulness extends all over the side behind and laterally. The respiration is bronchial before and behind, and there is also bronchophony, but not the least râle of any kind. Tha
upper portion of the right lung in front is clear upon percussion, but from the mammary region downwards it is quite dull. Behind, the respiration is loud and puerile, and without rale. All over the right mammary region the impulse of the heart can be seen and felt; its impulse is extremely abrupt and violent, and both sounds are accompanied by a loud sharp ringing soufflet of a peculiarly musical and metallic character, quite unlike anything I have ever heard. The apex of the heart strikes towards the right axilla. The right hypochondrium yields the usaal dulness. There was no incricase of hepatic dulness below the tibs. The left side of the'chest appears to be increased in size, but I have not yet had an opportunity of determining this point. The respiration is short, about 40. The inspiration is accompanied by great action of the intercostals of the right side, the expiration is accompanied by a short stridulous grunting noise. During the performance of inspiration the larynx (which is pushed towards the right side) is drawn across the mesial line to the left side. The voice has never been affected, and except during the severe attacks of dyspnca, there is no stridor. The voice is naturally agophonic. She has no cough, nor does she expectorate any thing. She has never had hamoptysis, nor has she at any time had red currant jelly-like expectoration; but shee is subject to frequent attactis of epistaxis, which invariably procecd fidn the left nostril. At times this is rather profuse; at other times it is only sufficient to cruse a blocking up of the nostrii. The beating of the heart is frequently very troublesome; the pulse is small, about 120 , sometimes more frequent, and sometimes less so ; it is not internitting nor irregular. There is partial ptosts of
the left eyelid, which sometimes pro= ceeds so far as almost to conceal the eyeball, and there is also contraction of this pupil, thongh this eye is quite as sensible to light as the other, and she can read with it quite as well. No matter to what amount of light this eye be exposed, the pupil is never dilated to more than one half the extent of the other. She never suffers from headaches, flashes of light before her eyes, noise in the ears, or frighiful dreams. Oecasionally her symptoms assume a hysterical character: Her tongue is cleani, appetite pretty good, no dys= phagia, stomach eeldom sick, bowels regular, urine scercted in natural quantity, skin moist, body greatly emaciated. No pains in the chest. Catamenia alsent. During the prevalence of easterly winds, and before a fall of snow, her friends remark, that her countenance brightens up, the appears quite healthy, and her spirits improve; these are but the precursors of an extremely severe attack of dyspncea, which is sometimes, however; warded offby the administration of an anti-spasmodic.
April 24 th. Since the last account, the tumour has been gradually extending across the neck; it has pushed the laryn:, trachea, and thyroid gland completely over to the right side, and now occupies the median line, and extends beyond it. The right arm is now partially paralysed, and the pulse at the wrist is perceptibly smaller than it used to be; adema and varicose veins occupy the right side of the chest, and the right arni is also becoming cedematous. Since the last report, several severe attacks of dyspnea and palpitations have occurred-sometimes almost threatening to terminate her existence. It is noticed, that these attacks are invariably preceded by a temporary amendment-her spirits become cheer-
ful, her strength increases, and the countenance becomes animated: the colour of the face, which is usually sallow and livid, changes to a bright rosy hue; but at the same time it is quite apparent that the tumour undergoes marked augmentation, and that the tortuous and varicose veins become more enlarged and turgid. Her father is positive that he has noticed a connection between these phenomena and the state of the atmosphore, and that they occur invariably in thick damp weather, or previous to a snow storm. On two or three occasions, she became delirious, and her stools and wine were voided unconsciously. The appetite remained pretty gool, and the bowels were gencrally regular. Ste slept well when free from spasm, and had latterly suffered but litte from the pains in the chest and shoulder. During the whole period of my attendance, I never hoard her cough, nor had she ever any cxpectoration; she always lay upon her back. The derree of ptosis varied, but no change occurred in the state of the pupil. The bleeding from the nose occurred almost daily. Enlargement of the liver was noticed towards the close of the discase, and though the left side of the chest had become enlarged, and the intercostal spaces were raised even above the level of the ribs, yet her extreme debility and the inerease of her sufferings induced by a change of position, prevented iny measuring the chest nccurately.
After a succession of sovere attacks of dyspiaca, she cxpired.

The treatment consisted of generous, bland diet, a moderate quantily of wine, and the use of camphor, ather, opium, lobelia, \&e., sometimes given conjointly, at other times separately, according to the judgment of her father, a genleman of great sagaty, who from
close and unremitting attention to all the phases and rariations in her case, acquired a rare tact in the employment of these drugs. The neuralgic pains which attacked the chest, shoulder, and sometimes extended down the arm were always relieved by a warm lotion containing tincture of aconite, in the proportion of one ounce of the common tincture to seven of water. Folds of lint saturated with the above lotion were laid over the painful parts, and cvaporation prevented by surrounding the lint by a piece of oiled silk. This application used to give great relief.

Post Morlen Examinalion.-Before opening the body, a careful examination was made by inspection, percussion and measurement, when the following circumstances were noted. The whole of the front part of the chest was codematous, and traversed by large tortuous veins which anastomosed freely with the superficial epigastric veins. The greater number of these vessels were noticed upon the left side. The left arm, from the shoulder down to the hand, was much swollen from codema, and at its upper part were numerous veins inosculating with those of theneck, chest and axilla. The right in-fra-clavicular space was depressed; the left was full and prominent and constituted part of the tumour already spoken of. The right shoulder was elevated, and the clavicle was separated to about the distance of an inch at its attachment to the stemum. Porcussion yiclded the some results as were noticed during life, with this excoption, that there was complete dulnese extending from the nomil hepatic region, downwards for the extent of two inches below the margin of the ribs. The circumferenee of the neek and tumour mosasured above the clavicle, was 16 ? inches; the distance from the nipple
to the stemal end of the clavicle 6 inches on both sides. The circumference of the chest upon a line with the nipples was 27 inches; it being on the right side 121 , and upon the left $14 \frac{1}{2}$ inches; distance from the right nipple to umbilicus $9 \frac{1}{2}$ inches, from the left $10 \frac{1}{1}$. Nothing remarkable was observed on any other part of the body, except extreme emaciation. On opeuing the thorax, the heart and pericardium were observed lying to the right of the sternum, and distant about three inches from the mesial line. The pericardium was quite healthy and contained no fuid, nor was it adherent in any situation. The heart was of natural size, and free from any disease whatever, einher of its walls or valyes. The left side of the chest was occupied by an enormous mass of encephaloid cancer, which adhered firmly to the ribs and was continuous with the tumour noticed in the neck. It was contained within well-marked cysts, which enveloped it in the same manner as the arachmoid surrounds the brain, and which when slit open, allowed the cercbriform masses to be seen, presenting well marked convolutions and sulci exactly resembling those of the brain. In a fow situations, homorrhagic clots intervened between the inresting capsule and the surface of the mass. "There was no adhesion to the front part of the ribs or to the sternum, diaphrarm or pericardium. No trace of puhnonary structure could be seen, cxcept at the diaphragmatic portion of the tumon, where a thin layer of condensed lung was spread over it for a small space, and peeled off it, as if mercly coherent from apposition-no bronchial tubes extended from this portion of lung. to the cancerous mass, nor could any be traced in the latter-the left bronchus entered its upper part, but no traces of its ramificat ons could be discovered. Such
were the characters of that portion of the mass within the chest, but as it was emerging from the latter situation, it had dislocated the clavide and was indented by the latter bone. At this point, the tumour pressed upon, and stretched ont the left subclavian artery and vein; the left carotid, though not so much interfered with, was pushed a little towards the mesial line. This arlory as well as the pneumogastic and sympathetic nerves were pushed backwards by a process of the growth which proceeded towards the lateral processes of the cervical vertebre, to which it took a strong attachment. On the anterior part of the timour, the sternocleido mastoid, and the sterio-liyoid muscles were spread out in riband shape, and their fibres were separated from one another. The brachial plexis passed through the middle of the growth, and could not be completely separated from it, oren by the scalpel. The third stage of the subclavian artery was oblittorated by a coagulum, and was not minch larger than the radial. The phrenic nerve passed over the most prominent part of the tumour. :The csophagus was pushed towards the middle and as noticed during life, the larynx trachea and thyroid gland were shoved over into close contact with the right brachial plexus The mass adhered fitmly to the clavicle near the shoulder soint, and also took an attachment to the acromion, and a portion of it passed under the hrapezius muscle. When remes from the body, the mass was weighed, and found to amount to six pounds and a half. The right lung was quite sound, except at its inferior part, where we found three small encephaloid tumours, of the size of large currants, growing from the surface of the lung and covered by the pleura. The liver was much conlarged from
congestion, and when cut into, blood escaped in large quantity.
The other abdominal organs were all healthy.: The brain was carefully cxamined. 'Some slight vascularity was noticed upon the pia mater, but there was, no effusion either beneath the arachnoid nor in the cavity of the ventricles. The origin and course of the third nerve were accurately examined, but nothing abnormal could be detected, and the same remark applies to all the cerebral nerves and to the structure of the brain itself.

It is only within the last few years that the diagnosis of cancer of the lung has been established on a tolerably certain basis; yet cascs are occurring almost daily, which prove that many points connected with the discase remain to be worked out yet, by the diligent in this field of observation. It is to be regretted, that the nature of some of those cases was not even suspected during life, that others were under the observation of practitioners imperfectly acquainted with the existing state of knowledge upon this and other thoracic diseases, whilst a third class of cases, has been carefully observed during life, but no post mortem examination having been performed, we are unable to connect their signs and symptoms with anatomical lesions observed after death. It is therefore, the duty of every one to add to the scanty list of accurately noted cases, any that may occur in his practice.
At the time the case of transposition of the Viscera was noticed at the Hospital, the details of which, I laid before the profession in the April number of this Journal) some of my pupils mentioned to me, that a youtg lady was then under the care of a physician of this city, in whon the
heart was observed to pulsate on the right side, and they inquired, if it were not highly probable, that it was also an instance of congenital transposition. I replied, that I considered it much more probable that the patient laboured under chronic pleurisy of the left side, with displacement of the heart to the right. In a few days the case came under my own care, and I had no hesitation, at once, in declaring it to be an example of cancer of the lung, and for the following reasons, to all of which I drew the attention of my clinical class when lecturing upon this affection :-
1st. In nearly all the best observed instances of primary cancer of the lung, the discase has been ushered in by symptoms of pleurisy, and in many of them those symptons have existed throughout; in some cases undergoing abatement, as the cancer advanced; in others, disappearing, or remaining stationary. To the former class, belong the case under consideration, those by Graves*, Heyfeldert, Huglies \ddagger, Symsll, and Stokess ; and I doubt not, that if the early history of some other published cases had been inquired into, that the disease would have been found to have commenced with an inflammatory attack of the lung, or its investing membrane - at least, this has been the result of my experience of the disease, and in the above case, no exception was formed.
2. The only diseases producing enlargement of the side, absolute dulness, and firm resistance on percussion, $a b-$ sence of vesicular respiratory, murmur, protrusion of the intercostal spaces, and detrusion of the heart, are, extensive empyema, and cancer of the lung or

[^0]mediastinum. In the foregoing particulars, these discases resemble one another; but, I have only once noticed enlargement and tortuosity of the veins of the chest in empyema, and in only one case have I noticed a bruit in a heart dislocated from pleuritic effusion, and though I have observed tumours forming on the exteriof of the chest in empyema, yet such tumours were always soft, fluctuating, and devord of pain. Odema of the side has been often noticed in acute pleurisy, less frequently in chronic, but in no instance of cither form of the disease, have I observed it, accompanied by permancnl edema of the corresponding arm; and empyema, so extensive, as to have produced such a great change in the size of the chest, and, in the relation of organs, might have enabled peripheric fluctuation to have been detected.
3. The want of pulsation, bruit, thrill, dysphagia, of laryngeal cough, together with the extent of dulness, \&c., were opposed to the idea of the discase being aneurismal, although the paralysed condition of the left arm, and loss of pulse at the wrist and bend of the elbow are not uncommonly observed in thoracic aneurism springing from the arch or some of its branches; and the same cause might produce a varicose condition of the veins of the thorax and arm,-a point to which my friend, Professor Walshe, of London, has directed attention.
4. With the idea of extensive deposition of tubercles in the lung and tubercular discase of the cervical glands, pathology and clinical observation are both opposed, for I do not believe, that tubercular disease of the lung ever produces enlargement of the affected side of the chest, or of any portion of it:*

[^1]and in no case, no matter how extensive the deposit, have we complete dulness and total loss of respiratory vesicular murmur, and in extensive fubercular deposit, softening and consequently the signs of cavities, would have taken place long before I saw the patientnor should we find, a healthy condition of the opposite lung, nor dislocation of the hcart: and I need hardly add, that extensive tubercular deposition in one lung, would soon have been accompanied by signs of disease in the other, by congh, hocmoptysis, hectic, \&c., and that external turnours, varicose veins, wdema, and paralysis of the upper extremifies, are not seen in phthisis.
5. With the idea of the discase being chronic preumonia (even granting its frequency, as some modern writers seen disposed to believe-an opinion to which my own experience is much opposel) the facts of the case were quite incompatible.

So that we find that with no other disease than cancer, could I reconcile the history, symptoms and physical sigus of this case, and I shall now direct the reader's attention to some of its peculiarities.

Amongst the most prominent, may

[^2]Le mentioned, the absence of cough, of bronchitic rales, of stridor, of dysphagia, of currant-jelly-like expectoration, (for which, however, the daily cpistaxis was a substitute;] of aphonia.

The paralysis and pain of the left arm are casily accounted for, by the pressure of the tumour on the brachial plexus of nerres; and by the same pressure acting upon the subclavian artery and rein, the absence of pulsation, and the presence of codema are cxplained. It is worthy of remark that it must have been solcly by mechanical proserere that the tumour produced paralysis, and not by involving the nerves in its own structure ; for the larynx and thyroid gland being shoved over by it. into close contact with the plexus of the right side, paralysis, to a less cextent, was produced of the right arm.
Dr. Sims and others have noticed the codema of the arm, rescmbling that of phlegmasia dolens: but the total alsence of pulsation in the principal arterics, \uparrow will complete p paralysis of one arm and partial paralysis of the other, are now recorded for the first time, and though pain of the cliest and through the shoulder is often mentioned, yet I know of no other instance where it extended down the whole arm. I may here obscrve, that pain of a constant nature spoken of by Dr. Stokes as a valuable diagnostic, was not prosent in this case; for when

[^3]once relieved ly the aconite lotion, it did not often return, and even before my attendance it was not constant, nor, indeed, of late, was it frequent.

Dysphagia appeared enly in the last two days of her illness.
As might be expected, some cause for the ptosis and contraction of the pupil was carefully looked for in the brain and third nerve, but without success: no trace of disease could be disovered. How, then, are we to account for these symptoms? We know that ptosis is. usually accompanied by a dilated state of the pupil, and by paralysis of the superior, internal, and inferior recti muscles, and also of the inferior oblique; hut, as was stated before, there was no paralysis of any of these muscles, and the pupil, though con-: stantly contracted, became smaller and larger, according as the intensity of the light was increased or diminished. Nor can we suppose that the stiperior branch of the nerve was alone affected, for we know that that portion sends no twigs to the lenticular ganglion. If we appeal to experimental physiology, we do not roceive a more satisfactory solution of the entire question ; but for part of it we can account. It was ascertained by Longet, that division of the pneumogastric and sympathetic nerves; in thic neck of some animals, was followed by contraction of the pupil, whilst in others it was followed by dilation. Now, if the same cause produce effects so opposite, on such a delicate organ as the iris, it merely proves that the division of these nerres acts, in disturbing the innervation of the organ, in one case producing a diminution of power of the circular, in the other, of the straight fibres of the iris; and if we admit this explanation to be correct, we can uiderstand how, in an analogous experiment, the nerrous
power of the other branches of the third being diminished, (for it is evidently owing to the connexion of this nerve, and of the fifth; with the sympathetic, that the phenomena are produced;) some of the muscles supplied by that nerve may be actually in a slightly paralytic condition, which may escape the observation of the patient, and of his physician, unless a strong antagonising muscle be in action, as in the case of the orbicularis palpebre in the foregoing case, and then the diminished power of the levator palpabro becomes at once apparent. I make use of the term analogous experiment advisedly; for it must be evident, that pressure on the pneumogastric and sympathetic nerves produced the same effect, for the time being, as division would have done: so that, in this instance, disease imitated the experiment of the physiologist, and went far to corroborate it. This view is borne out by what was frequently observed, that on those occasions when the tumpur of the neck became enlarged and the venous system more congested, the ptosis was always more marked. Should the foregoing explanation not prove satisfactory to any of my readers, they are at liberty to account for the phenomena of contracted pupil with plosis, and without paralysis of the muscles of the eye, the brain being healthy, upon any other hypothesis they may consider more convincing: I have offered the best that has suggested itself to me.*

To auscultators the occurrence of marked bronchial respiration, with bronchophony, heard all over the left

[^4]side, whilst there were no bronchial tubes running through the cancerous mass, suggests many questions of consideration :-Where were those sounds generated? how were they transmitted all over the side?-if by continuity of the ribs with those of the opposite side, through the medium of the sternum, or by continuity of the ribs with the laryns: and trachea, partly through their connection with the sternum and with the cervical tumour,-or did the mass itself act as a conductor from the larynx and trachea to all parts to which it exteuded? The latter opinion I am disposed to adopt. If the ribs are supposed capable of having transmitted those sounde, then they should have also transmitted the cardiac sounds, and the vesicular murmur from the opposite side, and the sound heard all over the diseased side would have lost much of its strongly inarked tubular character; and for the same reason I cannot sunpose that the parietes acted as conductors from the tracha-seeing that they do not perform this office in other cases. There is no difficulty, however, in comprehending how a mass of encephaloid occupying the left side of the chest, and firmly pressed against the larynx, no breach of continuity occurring in its structure, and into whose substance the left bronchus entered for some distance, should convey, with great clearness, sounds generated in the larynx of an individual, in whom exaggerated respiration-had become ha bitual and permanent.*

The peculiar bruit licard to accompany the sounds of the head remains unexplained by any anatomical appear. ances discovered at the autopsy.

[^5]In conclusion, I would remark that this is the largest specimen of cancer of the ling on record. In Dr. Graves' case, the diseased mass is said to have weighed more than six pounds, but the patient was a male adult. In the above instance, the mass remored weighed six pounds "and a half-some omces more having been left behind-and the patient was a young girl of low stature and delicate formation.

ART. X. - Observations upon the Diagnosis of Curdiac Disease, founded upon a case of Milral Disease with regurgitation through the Left and Right Auriculo-Ventricular Orifices; associated with seneral Dilalation and IIypertrophy of the Heart, by R. Paramer Howard, M.D., Licentiate Royal Colleage Surgeons, Edinh, Associale Member of the Surgical Society of Ireland, \&c.
[concluped from our last.]
Autopsy 30 hours afler death, assisted by my friend Dr. Wright. Cold weather. External appearances; no rigor mortis; abdomen and thorax much distended, especially the former. Ca daveric lividity generally diffused over depending parts of body and members; this condition present in both iliac fosse along the course of the epigastric veins, but particularly along those of the left side, which also present a flaccid and shrivelled appearuce. These linear marks, very numerous and of a bright red colour in left lumbar region, exhibit in an exaggerated degree the appearances observed on the cxtremities in phlebitis, and under suspicious circumstances would favour the idea of violence having been used. ThovaxRight lung did not collapse; it was universally crepitant, and somewhat emphysematous (vesicular form); no marks of extrivasated blood on its exterior; sanguinolent serum exuded from its substance when eut; structure heal-
thy. No adhesion of pleura. Left pleura contained about oij of deep straw coloured serum. Left lung lay at back of thorax, close to the spine and ribs; it was universally of a deep purple colour, except a small portion of the summit of the upper lobe, which was somerrhat congested, but crepitant, and from which, when cut, exuded bloody serum; the rest of the organ more resembled hepatic substance than pulmonary, and afforded an excellent example of carnification; its structure was of a deep reddish-black hue, noncrepitant, fim, not fragile; no serosity could be squeezed from it; its sole contents were blood. No adhesions of the pluera.

The distended pericardium extended nearly to the 2nd rib and concealed the left lung ; it contained at least one pint of fluid like the above; a small film of lemon-coloured fibriu floated in it. No adhesions or thickening of this serous sac. A white spot, about the size of a fourpenny-bit, on right ventricle. The heart quite flaccid; looks three times as large as natural, and is an example of what has been called "hypertrophy by increased cxtent', it "weighs oz xii. The left ventricle will receive a goose egg; its walls measure abont 2 lines at the apex, 5 inch at the middle, and $\frac{3}{8}$ of an inch at the base. Leff auricle somewhat dilated; its walls of natural thickness. Left auriclo-ventricular orifice measures $3 \frac{1}{8}$ inches in circumference; the larger yalve next the aortic opening is so thickened and stiffened that it does not close accurately; the other is also ossified at its base. At the posterior point of union and insertion of these two ralves (mitral) into the fibrous ring there is a calcareous concretion 3 lines thick, and from this 3 round irregular branches or roots of the same material extend, 2 of them
into the ventricle and the other into the auricle. Calcareous particles stud the fibrous ring nearly all round. Right ventricle about the same size as left; its walls measure about a line at the apex, and 2-Sths of an inch at the middle and base; its columnex carnex are woll developed. Right' auricle dilated, its columne carnex aro also very well developed. Right auriculo-ventricular orifice micasures 5 inches in circumference; the tricuspid valves are sound and very large, and might close the cavity if not much distended; aortic and pulmony valves quite healthy, and accurately close the openings over which they preside. The great vessels of heart and lungs contain masses of soft black coagulated blood.

Abdomen-Large quantity of fluid in the peritoncum, similar to that in the pluera; no traces of inflammation. Siver large and greatly congested ; its cut surface is motled like a nutmerg; blood oozes freely from it. Gall bladder nearly filled with fluid bile; no gall stones. Spleen small, hard, and re-sisting-of same colour and consistence as the carnified lung, but its substance is darker and more fragile. Fidncys congcsted, flabby, and tolerably large. Stomach exhilited large veins gorged with blood, which are especially numerous at its greater extremity; the mucus coat is much thickened and congested; this condition is so marked at the pylorus that it communicates a dark green colour to the mombrane, which is casily dissected of the muscular coat ; the same appearance, to a less dergree, exists about the cardiac orifice: the mucous membrane is not soltened. The viscus contained no blood. The veins of great omentum and mesentery grorged. Intestines natural.

Head not examined.
Observations.-This case has an im-
portant bearing on the diagnosis of mitral valve discase, respecting which a difference of opinion cxists amongst medical men. Many authorities-as Drs. Hope, Latham, Bellingham, Littré, Furnival, Illakiston, \&c.-state the signs of mitral regurgitation to "be, a mumur of various character with the first soundi, most audible at the apex of the heart and the lower augle of the left scapula, and not propagated up the aona; purring tremor; pulmonary obstruction; small, weak, uncrual, irregular and intermittent pulse. In opposition to these, we fund Dr. Ranking coneluding "that a patulous mitral valve does not grive rise to a 'brut,' for "that the sound heard in such cases i. due to co-cristing disease of the antic orifice. Dr. Banow, in the Guy ${ }^{\circ}$ I Iospital Reports for 1515 , expresses the same opinion, ahllough he assigns the prodnction of the monnur in such case: to distension of the righ rontrele. Now in II. S-—'s case a! the abore-citer! signs were well merkel, yet the artic valves were porfectly healliy, white the mitral alone were diseased. And if the latter gentlemen will refer to Dr. Blakiston's practical work on "Discases of the Chest," they will find that in the only four cases (C32, 35, 56 and 74) out of 37 , in which the milral wero the only valves discased, a "bruit" was andible at the left nipple in three of them (C) 35, 56 and 74), and in addition at the lower angle of the left scalpula in two of them (C35 and 74), and that its absence in the fourth (C32) was attributable to the flabby and enlarged state of the heart, and its consequent inability to propel the blood with sufficient velocity to prodace a murmur ; this cyplanation is favoured by the circumstance that although in this

[^6]patient there was great disproportion between the size of the heart and that of the aorta, yet no abnormal sound was caused thereby. I might cite ex:mples from Hope, Taylor, Funival, and others, in further corroboration of the affirmative side of the question: but enough.

Wihl reference to Dr. Barlow's explanation of the systolic murmur heard in these cases, I would remark that it is quite improbable that a loud rough murmur can be produced by the coexistence of simple dilatation of the right ventricle, and that even when tricuspid regurgitation accompanies the latter condition a mumur is very seldom heard, as will be shewn below; fouther, it is unfuir and illorical to atribute the "bruit" to such a canse, when mitral disease is presont and rationally accounts for the murmur, as well as for its character and situation.

Another interesting particular in this case was the tricuspid regurgitation. To Dr. Blakiston we are indebted for pointing out the existence of this condition in almosl cuevy case of obstruction of the vessels of the general circulation originating at the heart; his is the merit" of having shown the true cause of this obstruction to be regurgitation through the tricuspid orifice, and not, as supposed by Dr. Hope, to be dilatation, "which by putting the muscular fibres of the heart preternaturally on the stretch, their contractile power is diminished, so that they lose as it were in force what they gain in length; and it is this deficiency of power," he says, "in the mainspring of the circulation, which constitutes the obstacle, if it may be so called, to the circulation., ${ }^{*}$ Audral was also in error when he stated that the impodiment to the circulation arose" from the excess of the capacity

[^7]of the heart relative to that which has been preserved in the blood-vessels." In proof of his position Dr. B. gives a table of 155 cases of heart disease.* Of 116 of these in which the general circulation was obstructed, tricuspid regurgitation existed in 106 ; and of 39 cases without obstruction of the general circulation, only 5 presented this condition, and of these 3 had in addition an open foramen ovale, so that the stream was divided between the venous and arterial circulations. Further, Hope's hypothesis will not explain the frequent co-existence of hypertrophied and dilated right ventricle with an obstructed circulation; whereas Dr. B.'s does. And in'reply to Andral's theory, it will be mentioned below that in 12 cascs of dilated right ventricle, of long standing, no symptoms of obstructed circulation occurred.

The signs of tricuspid discase are admitted by most authors to be not all certain. Hlowever, Dr. Blakiston thus states those of regurgitation through the right auricnlo-ventricular orifice: "Seldom any murmur. Venous pulsations of the nech. Obstruction of the general circulation." \dagger To which may be added, when a murmur is present, it is best heard under the sternum, in a line with the point at which the miral murmur is audible; it is not as rough or grating as the latter, and Dr. Hope has never known "purring tremor" to accompany it.

It is difficult to tell by the physical signs whether the regurgitation depends upon merc temporary distension of the right cavitics, or upou incapacity of their valyes from disease or permanent dilatation of the ventricle. From the table already quoted, we learn that in 123 cases of dilated right ventricle tri-

[^8]cuspid regorgitation occurred in 111 of them: in the remaining 12 cases the valves were so large that they prevented regurgitation. The incompetency of the valves arose from dilatation alone in 60 cases, from disease alone in 6 , and from both in 45 . Hence, contrary to what might have been expected, we can not, in a given case of tricuspid regurgitation, say "a priori" it is most likely due to dilatation merely, for actual disease was present in 51 out of the 111 cases-nearly one-half of the whole.

1st, then, how shall we know if the tricuspid regurgitation depends upon temporary distension or upon permanent dilatation of the right heart? This can not be determined by a single exan:ination; but here the important princ:iples in diagnosis so insisted upon by my talented teacher, Dr. Stokes, viz.-time and extended observation -render much assistance. The brief duration of the symptoms, and their yielding to and disappearing under the use of appropriate treatment, will show that they depended upon the former, while the contrary will be indicative of the latter. Further, the clinical history of the case will help us; for if the patient has not had previous disease of the heart, arteries or lungs, and if the symptoms arise in the course of or subsequent to typhus, seorbutus, purpura, ancomia (from whatever cause), or general emaciation, the regurgitation is likely due to temporary dilatation from softening or attenuation of the muscular fibres of the heart, and is amenable to tonic and roborant measures. Again, if it succeeds the former diseases while they are yet recent or not excessive, it may still be owing to mere temporary distension, and yield to treatment ; but this latter condition is now very likely to end in permanent dilata. tion, if the cause can not be removed.

This was illustrated in H. S.'s case; there was incurable mitral disease, and the tricuspid regurgitation arising from over distension of the right cavities, although at first yielding to suitable treatment, soon returned, and, continuing to the last, expedited very much the fatal issue.

The diagnosis between tricuspid regurgitation depending upon permanent dilatation of ti:e right auriculo-ventricular orifice, and that arising from structural changes of the tricuspid valves, is yet more difficult and uncertain than the preceding; but here also the previous history will be of use. However, it is of little consequence as respects the prognosis whether valvular incompetency be owing to permanent dilatation of the orifice or to pathological conditions of its valves, since permanency is the characteristic of both. The treatment will be influenced by other circumstances, such as the increase or deficiency of comractile power in the heart, the presence or absence of pulmonary disease, \&c.

There are some interesting points connected with the physical signs of pericardial effusion in this case. The dulness over the heart gradually increased, so that on the 5th Oct. it extended "from the inferior borler of the 2nd rib to the lower part of the epigastric region, and from a point 2 iuches on the outside of left nipple to one an inch on the right of sternum," the patient lying on his back during the examination. This sign in connection with vibration of the intercostai spaces favoured the idea of considerable effusion into the pericardium, but the strength of the impulse and the distinctness of the sounds were unfavourable to this view, so that I was undecided whether to explain the phenomena by supposing the existence of hydro-pericardium, or of great dilatation of all the cavinies of the heart, with.
out attenuation of their parietes; the latter supposition indeed best accounted for the physical signs present; for, besides the well-known signs of dilatation with hypertrophy, viz., increased dulness, loudness and shortness of the sounds, strong impulse, \&c., Dr. Blakiston has shown that even feeble pulsations may be produced between the 2nd and 3rd left ribs by a dilated appendix auriculæ, and the orthopnœa, anxiety, feeble pulse, \&c.", are not pathognomonic of either condition.
Dr. Hope says that he never saw, in cases of general dropsy, the fluid in the pericardium amount to a pint, and yet the quantity present in the above case was estimated by three of us at a pint and a-half, although I have stated it at a pint so as to be rather under than over the truth.

As regards the treatment, it was conducted upon the principle of relieving the congestion of the lungs by occasional small local depletions, by keeping up a serous discharge from the surface by means of blisters, and by free bronchial secretion. Tonics, and especially iron, were given to support the system generally, and prevent the increase of dilatation; while diuretics, diaphoretics, and occasionally hydragogue cathartics were administered in their turn, according as it was thought desirable to promote the renal, cutaneous, or intestinal secretions respectively.

An interesting circumstance in the case, which may properly be alluded to in this connection, is the very abundant discharge of urine which took place shortly after the performance of acupuncture. How may it be accounted for? The only explanation which suggests itielf to me is the following t the removal of so large a quantity of fluid by puvcture must have diminished the obstruction produced in the venous radi-
cles by the mere mechanical influence of the effused serum, and as a consequence of this removal the general circulation became more active, the venous engorgement decreased, and consequently absorption commenced with vigour, and nature as usual relieved herself through one of the emunctories, the kidneys.

If we reflect upon the state of the lungs only in the above case it will seem no wonder that an unfavourable issue was the result. The lcft, with the exception of its apex, carnified; the right encroached upon by extensive effusion into the pericardium and left pleura, its vessels kept engorged by mitral regurgitation, its expansion prevented by the ascites pressing against the diaphragm, the supply of air being diminished by copicus sero-sanguincous effusion intothe bronchial tubes, and the oxygenation of the blood impaired by co-existent thickening of the lining of the pulmonary vessels and tubes. When to this is added poisoning of the blood by accumulation of the elements of the bile, proved by the absence of this secretion in the evacuations, and the yellow tinge of the conjunctive, exudation of the serous portion of the vital fluid which is tantamount to depletion, and debility resulting from the latter and from impaired assimilation, we shall at once perceive the utter hopelessness of the case.

St. James Strect, treal, 6th A rril, 1850.

ART. XI.-On some of the Mineral Associates of the Gold of California, by T. S. Hunt, Chemist and Mineralogist to the Geological Survey.
An opportunity has lately been afforded me of examining a portion of the sand from the auriferous gravel deposits of Galifornia; through the politeness of
our countrymen, Mir. Z. Rochon, who has recently returned from that country, and has brought with him many specimens illustrative of the wealth of that interesting region. He having generously presented a suite of specimens to the Natural History Society of this city, 1 was cnabled carefully to examinc them.
Our accounts hitherto had described the gold as associated with platinum and what was supposed to be maguetic iron; the existence of diamonds bas also been anoounced. The specimen which I examined was the result of washing the crude gravel, and consisted priacipally of a fine heavy black sand, in which were seen a great number of small scalcs of gold. By the carcful use of a magnet it was separated into two portions; the one, which constitutes about threcfourths of the whole, is magnetic iron ore ; the remaining fourth is a mixture of black brilliant grains, with a grayish sand and scales of gold. Many of tha black grains prosent octohedral faces to the nalied eye, and under the microscope are seen to consist of regular octohedrons with pitted surfaces; others of them are rounded grains. A mong the sand were observed numcrous small crystals, transparent and of a light ycllowish brown, which had the form of square prisms, sometimes regularly terminated by pyramids or having the terminal cdges replaced. By those characters, and by their great hardness, they were recognized as zircon. A few crystals were observed in the furm of bexagonal prisms, terminated by pyramids, having the angles and general appearance of quartz; bat the larger portion of the non-metallic sand was made up of anorphous semi-transparent grains, some of them were colorless or yellowish, whinle others were observed of a violet blue and of a redilish or hyaciath brown.

The lighter ones were probably quartz, with perhaps some fragments of zircon ; but, from their minuteness and want of crystalline form, it was very difficult to say to what species the blue and red grains are referable.
The octohedral form of the black crystals led to the suggestion that they might be chromic iron, and I therefore submitted them to a chemical examination. Having finely pulverized about a gramme of the sand from which the magnetic iron had been removed, I mixed one-half of the powder with carbonate of sola and nitre, and heated the miixture for some minutes to fusion. On cooling and digesting the mass with water, a yellow solution was obtained, in which the presence of a considerable anount of chromate of potash was recoignized by the ordinary tests.
The other portion of the powder was decomposed by digesting with hydrochlorie acid, adding sulphuric acid towards the end of the process. On evaporating until the fumes of sulphuric acid were disengaged, cooling and dissolving the residuc in a large quantity of water, a solution was obtained which by long boiling threw down an abundant white precipitate. This was redissolved by hot concentrated sulphuric acid, by which character and by the subsequent tests of tincture of galls, and the reducing action of zine and hydrochloric acid, it was clearly shown to be tilanic acid; thus confirming my suspicion that the amorphous black grains associated with the chromic iron were titaniferous iron or ilmenite.

The result of this examination shows that to the platinum, diamond and magnetic iron, hitherto recognized as occuring with the gold of California, we are to add chromic iron, iluncnite and zircon. This observation is peculiarly interesting, as establishing a complete parallel
ism between California and the other auriferous regions of the globe. In the mi:es of Brazil the minerals accompanying the gold, platinum, and diamonds, are magnetic iron, chromic iron, ilmenite, and zircon; and in the rich gold region of the western flawk of the Urals the same minerals occur; in both of these localities rutile is met with, which is anoilier furm of titanium. The gold bearing region of the United States has lately yielded specimens of platinum and several diamonds, together with magnetic iron, zircon, rutile, and brookite, a crystallized mineral chemically identical with rutile.

These facts assume a new interest when we look at the gold region of Canada, in the valley of the Cbaudiéc. Here, through a considerable extent of gravel, gold has been met with; and associated with it are found magnetic iron, chromic iron, ilmenite, and rutile. From our examinations in the Seigniory of St. Frangois, in the vicinity of the gold region, it becomes evident that the source of the chromic iron and ilmonite is found in the adjacent serpentine, in which the former is disseminated in grains, while the latter, mechanically mixed with magnetic iron, forms a vein in the same rochs.

These facts fully establish the similarity between the gold region of the Chaudićre and those of Brazil, Russia, and California; and we may confidently expect that an extended exploration of the district will disclose the presence of both platinum and diamonds. But whether the diseovery of these or of more extended deposits of gold is to be considered as adrantageous to the country, is a question scarcely to be decided but by expericnec.

Montreal, May $15 \mathrm{~h}, 1850$.

ART. XII-Horses and their Diseases: Lamenesses-Curb. By J. B. Turner.
The word "Curb," as used by the English, most probably came to them from the Normans, in company with all the other terms of the manêge; the French word being courbe, evidently derived from the Latin curvare, to curve or bend, and certainly suggested by the form of this very troublesome swelling.

Percivall, of the Life Guards, the most elegant, accurate and able of modern veterinary writers, thus describes Cuns:-
"A Curb may be defined to be, a prominence upon the back of the hind leg, a little below the hock, of a curvilinear shape, rumning in a direct line downwards, and consisting in effusion into or thickening of the sheath of the flexor tendons."' (Just after they pass over the hock.)

The swelling is sometimes so slight, and rises so gradually from the surrounding parts, that it cannot readily be seen when the surgeon stands behind the horse; he should therefore move to the animal's side, when the unnatural prominence of the part immediately becomes visible, rising gradually from the surface at ibout three inches from the point of the hock, and extending downwards for from three to four inches, and as gradually vanishing in the surface of the skin.

The swelling is tender and hot to the touch, the heat often extending to some distance on the surrounding skin: there is evidently considerable pain, for the animal eases itself by bending the ler and throwing its weight on the toe..:

In young horses the swelling is hardly ever of any great size, is difficult of detection, and is thought mothing of unless it is accompanied by what are called " curby-formed hocks," or otherwise "sickle hocks"-by which we
understand a leg so formed as to incline 100 much forwards, under the body of the animal, thereby making too great an angle between the thigh and leg, and consequently weak and liable to give out. Now, as the hind quarters are the chief instruments of progression, horses whose legs deviate in this way from the straight line drawn from the point of the hock downwards to the ground, are especially unfit for hard galloping or leaping, or any work in which the hind quarters are principally brought into action.

Some singular opinions as to the cause of this tumor making its appearance are to be found in our carlier veterinary works. The oldest work I have is that of the Sieur de Solleysel, "Equerry to the King of France for his great horses," written about the year 1690. Solleysel, as translated by Sir William Hope, says, "The Curb is a large and hard tumour, generated by flegmatic mattor seated on the inside of the hough, higher than spavin, on the substance of the tendon that strengthens the part; 'tis a long swelling in the shape of a pear, cleft through the middle into two pieces, higher above than below, and sometimes makes the horse halt." With the exception of the error in the situation assigned, "inside of the hough," the definition is not so far from correct; ; it is possible that the word "inside" may be a mistranslation, though Hurtrel d'Arboval, a modern French Veterinarian, makes the same mistake in his celebrated Dictionary.

Osmer, an old English author, of great repute in his day, describes the tumor as " a swelling on the joint of the hinder leg, below the hock," but he gives no opinion as to its cause.

Bracken, another English author, who lived about the middle of the last
century, a physician as well as veterinary surgeon, thought that Curb was an effort of nature to strengthen the parts in horses with "sickle houghs"!
Among the morlerns, Blain, a great authority, says that Curb is "an extension of the ligaments of the hock, or of the sheaths of the tendons passing from the hock downwards, as of the flexor perforans."

White, a military veterinarian, conceived Curb to be occasioned by the "rupture and consequent inflammation of some vascular membranes situated between the two tendons of the gastro-cnemu"-in fact a sprain.
Spooner, who has put out a new edition of White, with some remarks of his own, observes that "Curb depends upon a strain and inflammation of the strong ligament that passes from the os calcis down the back of the hock to the shank bone, frequently involving the flexor at the same time."
Professor Dick, of the Edinburgh College, gives the same description with Percivall of the appearance of the tumor, and says " that the complaint is produced by an injury of the ligament which connects the os calcis with the metatarsal bone, and consists of a thickcning of the ligament and cellular membrane."
Youatt attributes Curb "either to a strain in the ring-like ligament which binds the tendons down in their place, or in the sheath of the tendons"-oftener, he thinks, in the ligament than in the sheath.
W. C. Spooner, in his recent notes to Youatt's beautiful work, seems inclined to lay the scat of the disease in the sheath of the flexor tendon, and says that it in fact resembles sprain of the back sinew, as it is commonly called.
Here is certainly sufficient uncertainty of opinion, but it is not to be
wondered at when we consider how feve opportunties there are of autopsy in cases of curb. The disease is a mild one, comparatively spenking; that is, it occasions pain and lameness while it lasis, but horses don't de of it : hence we have few or no opportunities for dissection and examination.

Let us now look at the anatomy of the parts. The tendon of the gastrocnemius internus* expands upon the point of the hock, and forms a sort of cap for it ; it then proceeds down the back of the leg, enveloped by cellular tissue, and is by it connected with the surrounding parts. Directly in front of the tendon is a serous bursa, and behind it is a tendinous band, denominated the annular ligament, binding the tendon down, and adding generally to its effect. Now the seat of curb is directly opposite to this serous bursa, or thecal cariiy, through which passes the perforating tendon; and there can be very little question but that the tumor is caused by the great play which the tendons have at this point; sprain and laceration taking place not in the tendon or ligament, but in the cellular sheath of the tendons, the physiological history of the accident being that from some sudden exertion or false step, while going at a fast pace, the horse has been compelled to place the gastrocnemü muscles, from which these tendons-the perforaled and perfora. ting-proceed, into instantaneous and violent action, resulting in extension, if not in laceration, of the cellular sheath. I belicve Percivall's opinion is identical with this account; though I have not his work at hand to refer to.

When the appearance of the tumor immediately follows the accident, it can be readily supposed that there is

[^9]rupture of some small blood vessels, and consequent extravasation; but mote commonly some time elapses before the appeararce of the swelling, by. which we conclude that internal serolymphy effusion is going on, probably pervading both the cellular sheath and the bursa, and this gradubl deposition is most likely the reason why lameness does not appear in all cases at first ; in many cases, in which the injury is slight, though there may be a well defined swehing, there is no lameness at all.

If a horse be brought to a veterinary surgeon while the tumor is in this, its first stage, while there is heat, tenderness, and lameness, it is easy enough to deal with it ; but, unfortunately, they are not generally applied to until the interstitial deposit has become hard and callous, the cellular sheath being permanently thickened and indurated. Λ curb in this condition in fact consists in hypertrophy of the sheath of the flexor tendons. Cases have been met with in which curb has assumed a malignant form, finally involving the substance of the tendons themselves.

The Treatment.-The horse should be kept as free from motion as possible, not even being allowed the liberty of a loose box, and the tendons should be relaxed by the application of a highheeled shoe. The diseased part should then be well fomented with hot waternot in the way in which grooms usually apply fomentations, for a quarter of an hour at a time, and perhaps twice a day-but continuously and thoroughly, for at least an hour at a time and four or five times in the twenty-four hours, a large body of hot water being kept to the part by means of thick flannels, several times folded. A strong dose of purgative medicine should bo given;
the croton farina* would in this case probably answer better than aloes, as the horse must not be walked about to assist the operation of the medicine. If the case is a very bad one blocd may be taken from the toe; but the fomentation, physic, high-heeled shoe, and perfect rest will generally restore soundness, if the surgeon has been called in soon after the occurrence of the injury.

I will not say anything about the various cooling and discutient lotions that have been recommended in the treatment of curb, for all these require the use of bandages which are difficult to retain on the part, and we have other more effectual means.

If the treatment detailed abnve does not succeed, we must resnrt to more powerful remedics, and I will at once mention that which appears to be most suecessful among the modern veterinarians, and was first adopted by Mr. Wills-I mean the deuto ioduret of mercury: This I have tricd with marked success in some recent cases.

After the heat and tenderness have been subducd by fomentation,- when in fact I believe that there is no longer any acute inflammation, but that it has become of a chronic character,-I shave off all the hair from the tumor itself and for about an inch around it. I then paint the part so denuded of hair with vinegar of cantharides, tying up the horse's head at night ; in the morning wipe off the discharge with a sof sponge and warm water, and foment forhalfan hour, renewing the application of the cantharides and fomentation every day for three days. I then apply daily, or twice a day, the deuto-ioduret of mercury, two drachms to an ounce of hog's lard, having it well

[^10]rubbed in, and then smearing a litte over the surface, and this I continuc until the curb has disappeared and sound. ness is restored. It is advisable to tie up the horse's head for an hour or two after the application of the ointment. Mr. Wills stated that-he removed by this treatment two obstinate and indurated tumors in six weeks; but in the few cases I have had, which were mild ones, the disease yielded in as many days.

If, however, this treatment fails, or if curb continually recurs, which it often does, there is nothing for us but the firing iron; though I should never, except in a very extraordinary casc, where the curb is of unusual size, and the lameness excessive, recommend this painful remedy in the first instance. Whatever be the remedy applied, it is advisable to let the horse wear the high-heeled shoe for some time after the cure, and indeed it would be well to keep the animal for some weeks in a state of repose, or at least in very slow and moderate work, for a hock once curbed will hardly ever again stand much exertion.

ART. XIII.-Preliminary Report on the Observations of the Aurora Borealis, made by the N. C. Officers of the Royal Artillery, at the various Guard-rooms in Canada, by Capran Lefroy, R.A., F.R.S.; M. M. Magnetical Observatury, Toronto.
The system of Obscrvations on the Aurora Borealis, permitted by Colonel Dynely, C. B., at my request, to be made at all our Regimental Guardrooms, under the sanction of the officers in command, has now been continued for two years in Canada, and for one year in Nova Scotia and Nowfoundland. I have therefore pleasure in communieating a short aecount of what has been done, for the salse of the encouragenent which the results aford for persevering in the undertaking.

The printed instructions dated 1lih October, 1848, expressed in a few words the objects in view in keeping these re.gisters. They were-(1.) To ensure the observation of every Aurora which should be risible in Canada, so as to afford a better criterion of the actual frequency of the phenomenon tban can be given by observations at any one station. (2.) To supply the means of judging how far variations of the magnetical elements, shown by the instruments at 'Toronto, during cloudy weather', might be connected with Aurora visible elsewhere. (3.) To furnish data for computing the height or distance of the luminous region from the earth. (4.) Lastly, to throw some light on the question whether or no the same Aurora is not sometimes seen under considerably different forms by observers stationed not very far asunder.

It is not worth while to enter into some of these enquiries until all the materials for comparison are accessible, including the observations made in the United States under the instructions of the Smithsonian Institution, and those published in the Regent's Reports. I shall confine myself therefore at present principally to the first of them.

In the year 1848, Aurora, or Auroral Light, was observed at Toronto on 69 nights, although for the last six nonths of the year no observation was made after midnight. 'i'his number is exclusive of 5 observations of a luminous appearance in the clouds, referred to Aurora, but not perfectly determined. Ohservations are to be found at other of our stations on many of the same, and on 57 other nights, exclusive of 1 doubtfal one : making a total of 125 decided, and 6 doubtful appearances in Canada.*

[^11]There are about 46 nights in the year in which it was clouded at all the stations; if we omit these, the proportion is 10 observations to every 26 nights on which observation is not wholly precluded by the state of the sky-or 39 per cent.

This proportion is greater than that given by one station taken singly. We have-
At Quebec, in 1848, 52 observations to 188 practicable nights-28 per cent. At Montreal, 41 observations to 201 practicable nights-20 per cent. At Kingston, 64 observations to 218 practicable nights-29 per cent. At Toronto, 69 observations to 207 practicable nights- 33 per cent. At London, C. W, 33 observations to 17 S practicable nights- 19 per cent. It is, however, probably less than the truth, as far as it expresses the actual frequency of the phenomenon, as I have considered observation to have been possible whenever nothing to the contrary is stated, which is, most likeny, more than the facts would warrant; moreover, when we consider the short duration of some of the displays, and how close to the horizon others of then? occur, it is difficult to believe that we have noted every one, even on nights when the sky was clear; it is probably set down as clear in many instances when it was sufficiently clouded near the northern horizon to prevent a feeble display from appearing. The dates included in the list at which it was seen at all the stations, which extend along a: line of 500 miles, are Jan. $11 ; 16 ;$ Feb. $21,23,24$; March 16, 24 ; April 1, 2, $5,6,7,29$, Aug. 21 ; Nov. 16. On several other occasions it was seen at every station at which the state of the sky permitted it ; but there are one or two instances of clear sky at stations not
recording Aurora which was seen elsewhere.

Aurora, or Auroral Light, was observed at 'Turonto in 1S49, on 63 nights, exclusive of 5 entries of an uncertain character-the observations terminating at midnight throughout the year. The other stations, including Newfoundland and Halifax, add 70 more, exclusive of 2 doubtful ones : making a total of 133 certain, and 6 unsertain appearances, in Canada, Nova Scotia, and Newfoundland.* The area included this year, measured from London, C.W., to Newfoundland, extends about 1150 miles from east to west; and measured from Quebec to Halifax, about 140 miles from north to south. Owing to this great extent, there are but few nights (24) clouded at all the stations, and omitting these, the proportion is 39 per cent., or exactly the same as bcfore. We have at-
Newfoundland, in 13 months, or from 26th Nov., 1848, to 3st Dec., 1S49, 59 observations to 178 practicable nights, or 33 per cent.
Halifax, in 10 months, or from 14th Jan. to 31st Oct., 1849, 30 observ. to 136 practicable nights, or 22 por cent.
Quebec, in 12 months of 1849,44 obs. to 182 practicable nights, or 24 per cent.
Montreal, 26 observations (descriptions imperfect.)

[^12]Kingston, 63 observ. to 178 practicable nights, or 19 per cent.
Toronto, 63 observ. to 199 practicable nights, or 31 per cent.
London, 26 observ. to 172 practicable nights, or 15 per cent.
In this list there are but two Auroras seen at all the stations without exception: they occurred on Feb. 27 and July 23. There are cleven dates on which it was seen at Newfoundand and London or Toronto, but missed at some of the intermediate stations. These dates are-Jan. 14, Feb. 19, March 17, April 24, July 31, Aug. 12, Sept. 12 and 18, Oct. 7 and 30, Nov. 28. None of the stations, singly, give quite so many appearances as the previous year; the five Canadian stations; which gave 121 appearances in 1848 , gave but 99 in 1849, the remainder being made up from the other commands.

These observations, having been continued throughout the night, may be referred to for testing an apparent law, which was noticed in the observations made by Sergeant Henry and myself at Lake Athabasca, in the winter of 1843-4, and which is fully confirmed by the series at Toronto, namely, that the Aurora Borealis does not appear with equal frequency at all the hours of darkness, but is sulject, like most other phenomena in Meteorology, to influences having a diurnal period as well as an annual one. The present series places the hour of maximum frequency at 10 or 11 P.M.; probably a longer continuance will be necessary to fix it accurately.

Table, showing the number of times on which Aurora is reported:qt each hour of the night.

Any Observation before 6, P.M., is here set down at 5, and so on.

The Aurora appears in Canada in every month of the year. The greatest number of observations is in April, and there is a very marked excess in February, March and April of each year over any other period. Taking them by the seasons, there are--
In the Spring,-Maich, April, May, 1848, 40; 1849, 41.
In the Summer,-Tune, July, August, 1848, 21 ; 1843, 29.
In the Autumn,-September, October, November, 1848, $31: 1849,34$.
In the Winter,-December, January,
February, 1848-9, 37; 1849-50, about 20.

I believe that this number of observations is greater than has ever before been made in so low a latitude, and am inclined to think that it is yery high even for Canada. The greatest number of observations at Toronto in any previous year since 1840 , was 37 , in 1846 ; the average of the ten years being 35 . The grealest number in any one year (from 1837 to 1848) collected in the Regent's Reports, is 75, the average 50. The
greatest number observed by M. Hansteen at Christiana, in Norway, Lat. 60° from 1837 to 1846 , in any one year, is 52-the average 33. This result is not more than may have been expected from the great advantages afforded by the duties of N. C. Officers on Guard, for observations of the kind, and from our comparative proximity in geographical position to the magnetic pole, with which, in some way, not at present well understood, the phenomenon appears to be connected. But it is highly satisfactory to find that the pains taken have been so successful. For the next twelve months, observations will be continued at Toronto, throughout the night, and the observatory will be provided with a number of self-registering instruments, recording every change of the magneticelernents mechanically. Hence it will be of great consequence not to lose the key which Auroral displays at a distance may possibly afford to those movements in a single instance.

At some of the stations the N.C. Officers have got out of the habit of at-
tempting to describe what they sce. This is to be regretted. Measurements with the wooden quadrant, or careful estimations of the heights and azimuths of arches, are frequently wanting, and the time is not always stated. This remark applies particularly to the termination of the displays, which are frequently said, in general terms, to have lasted until daybreak; in all such cases, the observer should state, as nearly as he can, the latest moment at which he was sure of seeing the light-wateh its extinction attentively. and endeavour to decide for himself whether that is the consequence of the increase of daylight, or of the actual termination of the phenomenon. Very carly appearances should, for similar reasons, be particularly described; for iustance, it is recorded to have been seen at Londen, C. W., on the 24 :h July, 1848, at $\frac{1}{2}$ p. 7, P. M., which is but a few minutes after sunset. Such a rare observation strould have every possible confirmation. These particulars might at least be noted wilh very little trouble at the hours of going rounds. I should be glad also to see a more explicit statement every morning of what the character of the night has been, as regards the possibility of observing Aurora, so as to give some preeision to the rough calculation attempted above of the per centage of nights in which it is seen, to nights in which it could be seen if it occurred. The expression " fine night" is ambiguous. In any statement of this kind, the point to be chiefly referred to is the cordilion of the northern half of the sky-the rest is of little consequence. I should be obliged by a memorandum on the next Register of the nature of the look-out at each station, and how nearly down to the horizon the view frorn NE. to NW. exiends; some differenee in this respect is perliaps thic reason why the observa-
tions are more numerous at some stations than at others.
Dates of all the Observations included in the foregoing comparison.-The stations are expressed by their initials:N, Newfoundland; Q, Quebec; M, Montreal ; H, Halifax ; K, Kingston ; T, Toronto ; L, London, C W ; P, Penetanguishene; F, Fenelon Falls; B, Bruce Mines, Lake IIuron. The last three are additional stations, from which I have been favoured with communications.
1848.

January.-3, K T; 9, L; 11, K T L; $15, \mathrm{KL} ; 16, \mathrm{~K}$ T L; $23, \mathrm{~K} ; 28, \mathrm{M} \mathrm{T}$ L; 29, K.
February.-6, QMK; 7, Q M K T; 8, Q M KT; 12, M; 13, M; 14, M T; $20, \mathrm{~L} ; 21$, Q M K T L ; 22, T; 23, Q MKTL; 24, Q MKTL; 25, QM; 28, Q; 29, K.
March.-1, M T; 6, M IT T 8, T $\mathrm{L} ; 10, \mathrm{~K} ; 14 . \mathrm{Q}$ MT; $16, \mathrm{QM} \mathrm{MT}$; $19, \mathrm{KT} ; 20, \mathrm{Q} ; 23, \mathrm{Q} ; 24, \mathrm{Q}$ M K T; $27, \mathrm{~T} ; 30, \mathrm{M} \mathrm{K} ; 31$, T?
April- 1, Q MK TL; 2, QMKT L; 3, Q; 4, KT; 5, QMKTL; 6, QMKTL; 7; QMKTL; 9, MK; $15, \mathrm{MKT} ; 16, \mathrm{~K} ; 17, \mathrm{Q} ; 20, \mathrm{Q} ; 21$, K H T; $23, \mathrm{TL} ; 24, \mathrm{~T} ; 26, \mathrm{Q}$? 29, Q MKTL; 30, QMKT.

May- $-2, \mathrm{~T} ; 4, \mathrm{Q} ; 7, \mathrm{MKT}$; 8, Q T; 17, QT; 18, Q K; $22, \mathrm{~K} ; 24, \mathrm{~K}$ T L; 25, K T; 26, T; 31, K TL.
June.-3, M K ; 5, K ; $9, \mathrm{M} ; 22, \mathrm{~T}_{\mathrm{F}}$ $28, \mathrm{~L}$; $29, \mathrm{QKT}$.
July,-3, KTL; 4, KT; 5, K; 10, QM; 11, K T; 24, L; 27, L; 28, K; 29 , K.

August.-1, M K; 3, M; 8, Q M K T; 21, QM K T L; 22, Q M L; 28, T.
September.-3, Q K; 4, Q M K T; $17, \mathrm{~K} ; 18, \mathrm{QK} ; 20, \mathrm{~T} ; 29, \mathrm{~T} ; 30$, T .

October--2, Q; 4, Q; 8, QMKT; 17, T? 18, T; 19, L; 22, K T L ; 23, MKT; $24, T ; 25, Q T ; 27, Q ; 28$, Q; 29, K; 30, Q; 31, KT.
November-10, T? 15, T? 16, T; 17, QMKTLP; 18, QT; 19, Q T; 21, TL; 22, Q T; 23, QKTP;25, T? 26, NQKTL ; 27 , NT ; 30 M .
December.- $2, N ; 8, \mathrm{~K} ; 13, \mathrm{~N} ; 14$, $\mathrm{N} ; 17, \mathrm{Q}$ K T L; 18 , N K TL $; 19$, Q

I; 21, N'; 22, K; 23, N P ; 25, N ; 26, N Q MK.

1849.

January.-7, N Q; 11, Q; 14, N Q K T H ; 17, P; 22, T ; 23, N; 25, N ; 26, T.

February.-3, Q; 9, Q; 12, Q M; $13, \mathrm{QHT} ; 14, \mathrm{~T} ; 15, \mathrm{~N}$ QMP; 16, NQTL; 17, 1; 18, Q KTLP; 19, NQHT;20, NQ1I;21, QH;22,N; $23, \mathrm{~N} ; 25, \mathrm{Q} ; 26, \mathrm{~N} \mathrm{~K} \mathrm{~T} \mathrm{P} ; 27, \mathrm{~N} \mathrm{Q}$ MKTLHP.

March.-6, Q; 9, L; 15, K; 17, N Q K TLHB; 18, Q M K T L B; 21, T; 25, T H ; 26, TL; 27, T; 30, N K T L; 31, T.

April,-1, TH;2, QML;4, H; 11, $\mathrm{K} ; 13, \mathrm{M} T \mathrm{H} ; 14, \mathrm{Q} ; 15, \mathrm{~N} ; 16, \mathrm{~T}$ L H; 17, N Q MH; 18, N Q M ; 20 , NTH;21, QH;22, NT;24, N MK $\mathrm{L} ; 25, \mathrm{~N} ; 26, \mathrm{~N} ; 27, \mathrm{~N} \mathrm{Q} ; 28, \mathrm{~L}$; 29, Q HI ? 30, N.

May.-1, Q H; 6, I ; 11, NH; 14, T L; 17, TH; 20, T; 21, T; 23, T? $25, \mathrm{~K}$ T $; 26, \mathrm{~K} ; 27, \mathrm{M}$.

June, $-6, \mathrm{Q} ; 8, \mathrm{~K} ; 14, \mathrm{Q} ; 16, \mathrm{Q}$? 17, M; 1S, M; 20, NQTL; 22, T; $24, \mathrm{~K} \mathrm{~L}$; $25, \mathrm{H}$? $27, \mathrm{Q}$.

July.-3, H; 4, H; 5, T; 9, N T; $10, T ; 12, \mathrm{~L} ; 20, \mathrm{~T} ; 21, \mathrm{~N} ; 22, \mathrm{Q} \mathrm{T}$; 23, NQMKTHL; 26, 「; 31, NQ MKTL.
August.-2, T; $4, \mathrm{NK} ; 12, \mathrm{~N} \mathrm{~T} \mathrm{~F}$ $\mathrm{L} ; 13$, NMK ; 18, T L ; 20, N ; 21, KT; 22, QH.

September. $-3, Q ; 7$, N T; S, KT $\mathrm{I} ; 9, \mathrm{M} ; 12, \mathrm{NK} \mathrm{TH} ; 16, \mathrm{NM} \mathrm{M} 17$, TF;18, NQMKTHF;19, QMH F; 21, II; 24, H T; 29, N QMK.

October,-7, N Q MKTL; 9, M; 10, T; 13, Q K TL; 14, Q MTHL; 17, NK; 18, KTHL; $19, \mathrm{KH} ; 20$, $\mathrm{K} ; 21, \mathrm{~N} ; 24, \mathrm{MT}$; 30, NQ T? L.

November.--10, $\mathrm{N} ; 12, \mathrm{TK} ; 13, \mathrm{~T}$; 14, K T; $15, \mathrm{~F} ; 18$, K T; 19, T? 21 , T; 25, T? 26, Q T; 27, K; 28, NQ MT;29, N.

December-11, MT; 12, NT T 1 S , T: 20, N.

I will only add that these ouservations promise to furnish a valuable body of information respecting the Aurora; and will have a very important bearing on the observations to which the establish. ment at Toronto is devoted. While,
therefore, I take this occasion of conveying my thanks to my brother Officers, and to the N.C. Officers of the Regiment, for their assistance, I beg to request that the system be persevered in.
$\left.\begin{array}{l}\text { Magnetical Observatory, } \\ \text { Toronto, 27th March, 1850. }\end{array}\right\}$
Instructions for Observations of the Aurora*-N. C. Officers on Guard have an opportunity of observing at every second hour whether any Aurora is visible, and by encouraging the more intelligent of the men, when their posts are favourably situated for the purpose, to notice and to report any display of short duration which may occur in the intervals, will be able to state every morning whether Aurora has been seen at all during the night, and if not, whether the state of the sky was favourable or otherwise to observation. Private observers should make a regular practice of looking for Auroras, every clear evening, from dusk to as late an hour as may be convenient, recording the result whether there has been an Aurora or not, together with the times of observation. The notes may be short, but they should be clear and precise. Wet or cloudy everings should be noted.

Auroral Phenomena may be divided into the following classes:-
(1.) A faint light in the north without definite form or boundary.
(2.) "A diffused light, defined by an' arch below."
(3.) Arches resembling the rain6ow in size and form, but of a uniform white colour, sometimes retaining their apparent position for a considerable time without change.
(4.) "A" dark segment under the arch," if any sta: can be distinguished within this space, the circumstance should be particularly noted.
(5.) "Floating patches of luminous haze or cloud.:
(6.) Beams, rays, streamers, transverse and serpentine bands, sometimes tinged with colour, and undergoing more or less rapid changes.s It may be necessary to define the last two expres-

[^13]sions-Transverse bands are frequently nothing more than arches which have advanced nearly to the zenith, or perhaps, have passed it, and retain their regularity of form, although now projected nearly as straight lines. Serpentine bands rather resemble curtains of light, and undergo in their outline changes like those of the folds of a curtain, they are usually the most brilliant part of a dis play.
(7.) "Auroral Corona, or a union of beams a few degrees to the south of the zenith."
(8.) "A sudden appearance of dark clouds" in the region recently occupied by the Aurora.
(9.) "Sudden appearance of haze over the whole face of the sky."
(10.) Lastly, a disposition in light clouds at a great elevation to arrange themselves during dayligh, in parallel lines, crossing the meridian at right angles, has been frequently suspected to be connected with the Aurora, or with a common source.

The observer should state in plain and definite language the general character of the Aurora, with reference more particularly to the foregoing characteristics. At Canadian Stations every observation of the azimuths of the exiremities of an arch, when they are well defined, its span along the horizon, its height above it, or its place among the stars, will be valuable for comparison. At all stations the time at which the light passes to the south of the zenith should if possible be stated, as well as the precise times of very brilliant or active displays, which frequently last but a lew minutes. Lastly, it should be noted how much beyond the zenith, to the south, the bands of light descend. The degree of brilliancy may be denoted by the terms-Faint, Moderate, Bright, Very Bright.

SURGERY.
On the objections which have been made against the use of pressure for the cure of Aneurism.-Mr. Tufnell, in a paper read before the Surgical Society of Ireland, reviews the objections which have been urged against the employment of compression for the cure of aneurism," "These are," he remarks," "that compression is painful, weari-
some, and ineffectual. I will grant that it may be rendered such if the mode of treatment be not thoroughly understood, or if instruments for controlling the circulation be employed which are not suited to the purpose, or are used with an unnecessary degree of force. In the first place, in adopting this treatment, it is desirable that the principle of cure should be fully explained to the patient, and that he should be made a willing party in carrying out the surgeon's designs; that, instead of being told to keep up pressure upon the artery at any particular spot for a given length of time, he should be recommended to raise the pad directly when it begins to cause annoyance, taking care, of course, that before doing so compression is made on another portion of the vessel.
"Jain, 1 may add, is often needlessly caused by not paying sufficient attention to the minimum anount of pressure that will control pulsation in the sac, but as if to make assurance doubly sure, giving two or three additional turns to the serew after this object has been attianed. It is to the screw, indeed, that the suffering hitherto felt may principally be referred. Pressure in one form or other has, almost in every instance, been effected by its aid, and whether used in a greater or less degree, it has invariably been a dead, myyiclding force, allowing no play or contraction to the muscular fibre beneath. This, the only valid objection to the use of compression, has now been entirely removed by the apparatus of Dr. Carte, and the introduction of an elastic pressure through the medium of vulcanised India-rubber.
"In this instrument, the screw, as a means of compression, has been done away with altogether, its place being supplied by a band of vulcanized Indiarubber. The advantage it offers are immense. Whilst I have never known a patient to bear compression by the screw for a longer period than threc hours at once, in the case just detailed, Dr. Carte's apparatus was worn for double that time, and I have known it kept on for a longer perior still. Whien used in the case of Atkins, the instrument was incomplete. It was so contrived that when the pad was let down on the artery it could only be lifted of it by mannal force. This required the
patient to raise himself to the sitting position in order to obtain a purchase, and to remain so, using considerable muscular exertion, until the parts beneath had so far recovered their tone that the instrument could be reapplied. Its employment being, on this account, interdicted in cases where a suspicion existed of internal arterial disease, Dr. Carte was induced to add a male and female screw. By this simple modification every objection has now been remored; a few turns of the former raise the pad from off the vessel, whilst the latter retains it there. The infliction of pain by this instrument is really so slight that I am certain the strongest opponents to compression will, upon a trial, withdraw this charge.
"The second oljection raised to com. pression is, that the treatment is wearisome and prolonged. This, as a general assertion, is not borve out by facts. There may be particular instances where the cure has been protracted to an unusual length; but, taking the average of the time which has hitherto been consumed in the cases that have been made public, nine-and-twenty days only have been occupied in the progress of cure, and this, too, be it recollected, at a time when the treatment was in its infancy and but imperfectly understood. Granting, towever, that nine-and-twenty days are required for the cure by compression, let us contrast this period with the average duration of treatment by the ligature and knife.
" From the time that a patient with ancurism is admitted into hospital, until he is placed upon the operating table, we may, I think, safely regard it as a week; from the application of the ligature to its separation we may consider as sixteen days longer; and for closure of the wound and cicatrization we may reckon on seven days nore, or a time, upon the whole, fully as great as that hitherto occupied by compression. I have taken the average of all the cascs hitherto treated by compression, and find it to be nine-and-twenty days. Were I to do the same with every case where ligature has been employed it would greatly exceed this time.
"But the sweeping assertion that compression is wearisome and prolongeil, ill accords with cases that can be adduced,
where not even days but hours were sufficient to complete the cure. I will specify two that within a recent period have come under my own observation. In the first of these, ten hours only elapsed before the pulsation had ceased; and in the second, a large femoral aneurism was solidified in thirty-three. This latter case is worthy of record. The patient was sufficiently recovered to be enabled to leave the hospital in ten days, and, to be married within three weeks from the time pressure was first commenced. Can the advocates for the knife bring a parallel case to this?
"Lastly, the treatment by compression is said to be ineffectual. In reply, I would refer sceptics to the fact that, in a perind of nearly four years, in all the hospitals of Dublin, and in private practice as well, the ligature has only been resorted 10 once, and this a case of traumatic aneurism at the bend of the arm, where the operation subsequently showed a high bifurbation to exist. I would, however, refer those who doubt to the records of this Society, to the able work of Dr Bellingham, and the tables of Dr. Edwards Crisp. The latter may not prove satisfactory to those who affirm that the treatment by compression. is dancerous, whilst that by the ligature is casy; gentle, and safe.
"In the work of Dr. Crisp are detailed 206 cases of femoral and popliteal aneurism. In 185° of these the vessel was taken up, and the result of which operations is shown in the following ta-ble:-

Died from the effects of the operation 33 Recovered, after suffering subsequent amputation10

Recovered, after sloughing of the sac 3
Recovered, after mortification of the tues. 1
Recovered, after sloughing of the in-: teguments. 1

$$
\text { Making a total of } 48
$$

"So that more than the fourth of the cases treated by the ligature either terminated fatally, or were maimed for the rest of lifc. This, too, not occurring in the practice of young and inexperienced nen, but to Hunter, Pot, Cline, Cooper, Bell, Guibrie, Lawrence, White, Brodie, Carlisle, Synie, Travers, and others of
almost equal note. From this analysis, therefore,'so far as regards the ligature, the conclusion to be drawn is, that, in the generality of cases of ancurism of the exiremities, it should be laid aside. What object is to be gained by its use that is not equally attained by compression? Does its application exert any specific influence u_{j} on the sac? If so, I should, for information's sake, be glad to have it explained, for at present my conviction is that, as far as regards the aneurism itself, the effects of compression and the action of the ligature are identicaily the same: That in both cases the direct current is arrested, and the imponlse of the heart no longer communicated to the sac. That the blood, previously propelled with an injurious momentum, now trickles barmlessly through the collateral vessels, eddying in its passage in the bollow of the tumour, and lining it with fibrinous layers.

[^14]"As to the snccess attendant upon the employment of compression. I will only add that, since the year 1843, no less than thirty five cases have been publisitell, in which the disease has been permanently cured without injury to life or linib. With these facts openly detailed, I consider that in the present day no surgeon is justified in taking up an arıry for the cure of external aneurism. until compression has been tried and failed, any more than he would be in operating fer hernia without attempting to reduce the bowel.
"When prejadice can be overcome, and eompression be as generally adopted as it has been in this metropolis, I feel certain that the operation of tying will be very seldom resorted to, and I do believe in the words of a recent writer upon the subject - - We may confidently look forward to the day when ligature in ancurism of the extremities will cease to hold a place in operative surgery, when it shall have become a matter of firofestional history, a practice of lyygone, days." "-Dublin Medical Press.

MEDICAL JURISPRUDENCE.

[CONTINEED FROM OUR Last.]

Trial of Doctor Welster for the Murder of Doctor Parkman.-Dr. C. T. Jackson.-Am a chemist by profession. Have followed practical chemistry for the last ten years. Was called to the examination of the remains found at the Medical College on Saturday afternoon, Dec. 1, 1849. Met Dr. Martin Gay and Dr. Winslow Lewis. The chemjeal examination was assigned to Dr. Gay and myself. Were shown the remains of a human body, and the contents taken from a small open furnace ; took observation of the remains. Did not think they had been used for anatomical purposes. They had not been dissected. The manner of opening the body I thought indicated some knowledge of anatomy.

Heard the testimony of Drs. Lewis, Stone and Gay, and agree withit. Was acquainted with the late Dr. George Parkman. He was a tall and slender man. I thought him rather flat and broad on the pelvis. Thin on the lateral view, and not so much so in front. Discovered nothing dissimilar from what I supposed to be the conformation of Dr . parkman.

The tlesh showed indications of having been subjected to a strong solution of caustic potash. . The aralysis of the contents of the furnace, and other articles, was presented in writing, to which Dr. J. testified as given before the coroner; and Mr. Bemis read it.]
The bones had the appearance of being exposed to fire-were much brokerx and partially fused among the cinders. A tooth with a hole in it, having the appearance of having been filled by a den-tist-a block of mineral teeth-olobules of gold-a pearl shirt button-pieces of an alloy of tin and lead, were found. The ashes yielded globules of gold and silver-30 grains of gold were found.
Examined the flesh and skin of the thorax, and found it corroded as if by potash, and submitted it to analysis ; it yielded strong alkali. Some parts of the skin appeared singed, as if subjected to the action of fire. Dissected out the ateries of the thigh, and delivered them to Dr. Gay to see if any zinc or arsenic was to be found in them.
I was instructed by the Attorney General to take posscession of articles left by

Dr. Gay [deceased.] Did so. Found the very papers that I delivered to Dr. Gay, and gave them to Mr. Crossley, who had begun the analysis for Dr. Gay, to complete the examination.
Potash softens and dissolves human Hesh gradually, and, when heat is applied, very rapidly. If attempting to dissolve a body in potash, would dissolve the potash and boil it, precisely as in making soap. It would depend on so many circumstances, he could not tell precisely how long it would take to dissolve a hody; if cut up in small pieces it might be done very rapidly.
It would take nearly half the weight of the body; of potash, and would require a large kettle. Should think it would take about 70 lbs . of potash to have dissolved Dr. Parkman's body. Less than that would have destroyed the possibility of identifying the remains. Went through Dr. Webster'slaboratory: The largest vessel I saw was a in boiler, such as is used for washing clothes -about from 1 foot to 15 inches square. This vessel was not large enough to have disposed of a thorax or thigh, without its being cut up in pieces. Putash is the best thing to dissolve a body, because it can be used in common vessels. Nitric acid would be the next best. Nitric acid would require vessels of porcelain or glass. Should think it would take about the weight of the body of nitric acid to dissolve it. If heated, it would give off very little nitric acid gas, but if boiled, a very large quantity: Decomposition would be most rapid if boiled. The gas is very disagreeable and unhealthy, but the draft of a chimney would protect the operator. I saw there several hottles, containing five or six pounds each, of nitric and muriatic acids; there might have been ten pounds of nitric acid. Some diops of green liquid on the starway leading from the rear of the lecture room to the laboratory, were taken up by Dr. Gay by means of filtering paper; I have since examined that liquid; and it was nitrate of copper.: The spots were numerous all over the staircase, and side wallmost abundant towards the bottom; had the appearance of being spilt on each stair"separately, and not rumning from one to another. Nitrato of copper is very dilatory in drying up. Its taste is very astringent; caustic, and like copper. "Have transferred the microscopic
examination of the action of nitrate of copper on blood, to Dr. Wyman; a powerful microscope is the best instrument to discover the effect of acid upon blood. He also took the pantaloons and slippers. The punch pieces, made of copper, found in the ash-pit, had nitrate of copper upon'them. They were of the same kind as others found in Dr. Webster's drawer in the room above. A large number were found in the ash-pit, much acted upon, showing that they had been used for making nitrate of copper. I think Dr. Gay had the pearl shirt button, and I have not been able to find it. I found 45 grains and 6 tenths of gold, by washing my portion of the contents of the furnace. Dr. Gay found 47 grs. in his. Mr. Andrews also brought me 81.05 grains. Total, 173 grains $65-$ 100 ths. The 173 grains would be worth $\$ 6,95$, standard value. Some gold still remains in the ashes, in very fine particles. The appearance of the bones taKen from the furnace indicated that they had been subjected to great heat. I have been acquainted with Professor Webster several years. The large sheath knife found in his laboratory at the College, I noticed in his laboratory in Mason street in 1846. When it was shown to me on Monday or Tuesday in Grove-street College, it had the appearance that an attempt had been made to clean it. It had whiting and oil upors it. I found this by scraping it off and analyzing it. The oil was not quite dry -was like soft putty. Dr. P. was about my height. He appeared so when he stood erect. I am a trifle over 5 feet 11 inches. If flesh had been consumed in the furnace, the odor would have been carried off. It was an assay furnace, and therefore covered when in action. We saw the cover there. It was of the kind used for an assay furnace. There was about half a peck of ashes, and a couple of quarts of cinders and anthracite coal.

Cross-examined.-I should not have supposed the remains were those of Dr. Parkman, if he had not been missing. I draw no conclusions from the sea-salt with the potash. " It is found with potash. Some of the hair was curled and singed, as if it had been exposed to flame. Only one side of the thorax, its two euds and back, had been subjected to the action of potash. The thigh found with the thorax had been softened by
the action of fire as well as potash. The head of the thigh was smoked. If cut up into small pieces, and with a very large ressel, it would take but a few hours to dissolve the flesh, without the bones. It would require weight for weight of acid and flesh, and heat to do it. In nitric acid the bones might be dissol ved in half a day. The green fluid spots might have been several days on the wall. They might have been there two weeks. The oil and whiting near the handle of the knife I supposed were used to clean the silver on the handle. The potash had not been long on the re-mains-it was still caustic. The softening was produced by the joint action of poiash aud fire. There was little effluvia from the body-it had an alkaline smell. The softening would be soon effected by the joint action of potash and fire, which gelaiinized the skin. Nitrate of copper would produce the same brown stains on Norway pine that we found on the stairs. [Exhibited spotted chips from the stairs.]

The following is the deposition of Dr. Jackson, read ly Mr. Bemis :-

Dr. Charles T. Jackson being duly sworn, deposed as follows:-I am by profession a physician and chemist. The 1st day of December, 1849, I was requested by Mr. James 11. Blake to accompany Dr. Marin Gay in making some chemical and other examinations at the Medical College in the city of Boston, and at 4 ' 'clock in the afternoon of that day I went with Dr. Gay to the Medical College, and there met with Dr. Winslow Lewis, jr., and others, wilh the Coroner of the Comaty of Suffolk, and the jury of inquest. That we made a general examinution that afiernoon, and adjourned till Sunday morning, when we resumed our examination -Dr. Jeffrics Wyman being associated with us and aidng in the examination of the bones fround in the furnace of the Chemical Laboratory, and also took chips of wood on which he had been shown certain brown stains, which were submitued to Dr. Wyman to examine.

Dr. F. S. Armistrong also assisied us in the selection of fragments of bone from the cinders of the furnace. The bones found by us were in a mass of cinders and asies which liad been removed from the furnace by the police officers, and placed in a box, and had the appearance of having been exposed to
fire. They were much broken, and were, in some instances, partially fused into the cinders. We identified at that time, the following bones: right os calcis, right astragulu , tibia and fibula phalanges. resem:bling those of the ring or litule finger, coronoid process of the lower jaw, and numerous fragments of human skull, a human tooth with a hole in i1, appearing as if it had once been filled by a dentist's operation, three blocks of mineral teeth, with platinum rivets in one of them entire, but waning the gold plate on which mineral teeth are usually set. A pearl shirt button was also found in the ashes of the furnace, and was partially calcined, numerous little copper cups fround in one of the laboratory drawers-they did not appear to be burnt. -many pieces of glass were found among the slugs and cinders of the furnace, masses of metal were also found which proved by analysis to consist of, in 25 grains, tin 12.19, lead 11.95, total 24.14-hence it is evidentiy tea chest lead-the cinders of the furnace pounded and washed yield globules of gold, some silver ard a hitle copper: in the portion of slugs and cinders worked by mic, thirty grains of gold were found-my attention having been called to the state of the human body which Dr. Lewis was examining. I took portions of the shin and muscles from the thorax and tested them by reddened litmus paper and found those parts strongly charged wilh alkali. Ifound the discolored uhighs also had been imbued with alkali and stained by the tan. I took portions of the skiu from the thorax and thigh, and carried then to my laboratory, and ascertained by chemical analysis that the alkali coutained in them was potash mixed with a very litule sea satit the skin in several places appeared to have been corroded by the joint action of polash and heat; the thotas harl singed hair on it, showwing the action of fire and probably of flame since the burning was superficial. I fisund no alkali in the interior of the thighs, nor in the flesh beneath the skin of the thorax; thie muscles of the cut surface at boin ends of the thorax were strongly alkaline; I observed that the skin near an opening near the 6th and rith ribs was quitc tender, and the eedges of the npening into the thorax were corroded as if by potash; I dissected the arteries, aud some of the leg, and gave them to Dr. Aarin Gay; I subsequently saw

Mr. Richard Cross in my laboratory, in his presence examined a portion of one of these vessels with the adhering muscle for arsenic and zinc, and saw that no trace of those substances was found ; the spots on the walls, floor and furniture showed us" were all committed to Dr. Jeffries Wyman, who cut chips from them in my presence. A pair of slippers was subnitted to us by the officers, and Dr. Jeffries Wyman cut pieces of from them in my presence and took them away with him; Dr, Martin Gay took portions of the cinders and metals for examination, and his results should be compared with mine, iu order to ascertain how much gold was found anong the cinders.

Chas. T. Jackson.
A'test,
J: Li. Andnews.
Re-examined:-The ashes were partly of wood and hard coal.

Richard Crossley.-I made experiments on certain blood-vessels, at the request of Dr . Martin Gay, to ascertain if they had been injected with arsenic acid, or chloride of zinc, and found no appearance of thosc substances.

Dr. C. N. Keep.-Am a physician and dentist ; have been in practice nearly thirty years, and have given attention to mineral teeth. 1 knew Dr. George Parkman, as early as 1822. In 1825 he employed me as his family dentist, and ever since that time, so far as I know. 1 was shown a block of mineral teeth, by Dr. Winslow Lewis, Jr, on the Monday affer Thauksgiving last. I recognized them as the teeth Imade for Dr, Parkman in 1846. [The tecth found in the furnace were exhibited to the witness.] These are the same as slow by Dr . Lewis.' Dr. Parkman's mouth was peculiar ia many respects-especially in the relation between the upper and lower jaws; and thus the impression left on my mind was very distinct; I remember these peculiarities with great exactness. The circuinstances under which the teeth were ordered, were peculiat. Dr. Parkman asked how long it would take to make the teeth. He said he wanted to be present at the opening of the Medical College, and might wish to speak; and he did not wish to order them unless they would be ready by that time. The time was rather short. Ihe peculiarities of the mouth required as much skill as could be used in fittiog the teeth. I began to work as soon as
possible, and gave a large portion of my time to it, from day to day. I saw him frequently while it was in progress; and in consequence of these circumstances, remember very distinctly. I proceeded in my usual mode in taking an exact fac simile, or impression of the gums. It was done by taking a portion of soft wax, supported by a piece of metal, or mouth. cup, which being placed in the mouth was pressed carefully upon the gum of each jaw separately, and then the impression was taken out. Liquid plaster was then poured into the impression, which, in twenty minutes, became hard, and could be taken out. Here is the plaster-cast of Dr. Parkman's lower jaw taken from life. [Exhibited.] The natural teeth were cut off, in the plastercast, of which there were four, besides three stumps. He had lost all his upper teeth.
[The witness then described the process of making the pattern plates, by metallic dies.]

The next step was to make gold plates from the same dies, aided by the pattern plates, which had been tried to the doctor's mouth. Then the relation between the upper and lower jaw was to be found. The lower plate was fited to the lower jaw with soft wax upon it, and so with the upper; the jaws were then shut. The relation of the jaws, showing the receding of the upper jaw, was thus obtained- This peculiarity was strongly marled in the doctor's ponth. I have here two sets of casts, one showing the form of each jaw; and the other, the relation of the jaws to each other. The teeth were made in blocks. After geting the pattern, this block was made in one entire mass, and then the teeth carved. The great irregularity of the left side of the lower jaw caused much dificulty. The upper set was made in one entire piece, and cut into three pieces before baking. These pieces are called blocks. The upper teeth of Dr. Parkman were in three blocks. The lower teeth were also in three blocks," but not made whole, in consequence of the natural teeth which remained. On the left side of the lower jaw was the largest block; the next largest was opposite-and both were back teeth. The three blocls of the lower jaw were also attached to a single gold plate, which completed the upper set. The upper and lower teeih were
conected by spiral springs, which enabled the patient to open and shut his mouth with less danger of displacing them. The pins which fastened the teeth were platina instead of gold. There was an accident which injured one of the teeth, which rendered it necessary to make a front upper block anew. This occupied me nearly all night; but they were finished thirty minutes before the opening of the Medical College. I did not feel entirely certain that they would be quite as I wished them, so I requested of the doctor that I might see him soon. When I next saw him, he remarked that room was wanting for his tonguc. - In order to obviate that difficulty, I ground the lower blocks on the inside, to make more space, which at that time was not accomplished with much ease, and required a small wheel on account of the angle formed by the teeth and the plate. The grinding removed the color of the gum, and also the enamel of the teeth. T'wo weeks before his disappearance, he called late in the evening, having broken the spring, which I repaired. The day before his disappearance, he called on me to inquire respecting a servant who bad lived with me.

Monday after Thauksgiving, Dr. Lewis presented to the the portions of mineral teeth, saying lie was requested (1). bring them to me for examination. On looling at them I recognised them to be the same teeth I had made for Dr. Parkman. The most perfect portiou whish remained was the block belonging to the left side of the lower jaw. I recognized the shape and outline to be the same with those which I had laboured on so tong. Several of the other portions had been much injured by exposure to fire. 1 proceeded to look for the models by which those teeth were made. On comparing the most perfect block with the model, the resemblance was so stritking that I had no doubt. This portion which I now hold in my hand belonged to the right upper jaw. This belonged on the left upper. This is the remains of the front upper block, more injured than the others. The left lower block is nearly entire. [The witness here exhibited to the Court and Jury the left lower block of teeth,' with the would in which it was formed. He also explained to them the manner in which the teeth
had been ground to give more room for the tongue.] I find embedded with these portions of mineral teeth portions of gold and minute portions of bone. This small portion of the bone is can-cellated-peculiar to the jaw-bone.

The teeth were in the Doctor's nouth the last time I saw him-the day before he disappeared. The presumption is very strong that they were in the mouth when the head was placed in the furnace; for, when recently worn, they absorb small portions of water, which, when heated rapidly, would explode them, and they would go into a multitude of pieces. If the teeth had been removed from the head, the springs by which they were connected would have thrown them apart, and they would not probably have been found fused together. I find, fused in with these mineral teeth, a small porlion of the natural jaw.
Cross-examined-These teeth were all exhibited to me at the same time by Dr. Lewis; I knew the teeth when I. first saw them. Dr. Parkman's name was written on the nodels at the time the teeth were made; I preserve for use in case of accident. Dr. Parkman had a former block, which was displaced.

Re-examined.--The different portions of the teeth, when they came from the furnace, were all in one mass, so that they conld be lifted up together; but afterwards separated. I recollect that, in the examination before the Grand Jury, the roots of a natural tooth were accidentally broken off from one of the blocks of mincral teeth.

Dr. Lester Noble.-I was an assistant of Dr. Kcep in the antumn of 1846, and continued untii July, 1849. I recollect working upon teeth for Dr. Parkman in 1846. The handwriting on tlie models-"Dr. Geo. Parkman, October, 1846," is mine. I examined the teeth found in the furnace, and recognized them to be Dr. Parkman's from the general shape and configuration. It struck me at once. In looking them over carefully, I noticed a hole between the second bi-cuspid and the first molar tooth. I also noticed a surface which appeared to have been ground, and recollected that those of Dr. Parkmin had been ground in that way-that I saw Dr. Keep grind them. I also noiced 1 small margin near the plate, unground,
which could not be reached without removing the plate. I see good reason to helieve these to be the teeth of Dr. Parkman, and none that they are not. I have not the slightest doubt but that they are the same I worked upon for Dr. Parkman. I remember the circumstances of making these teeth, on account of Dr. Parkman's great punctuality in attendance when he engaged to call in from time to time: they were to be finished for him on the occasion of the opening of the Medical College, and were so finished just in season. I went to the meeting, and sat so as to observe, when the doctor spoke, how the teeth operated. When he was complimented by Governor Everett for his generosity in giving the ground for the College, I thiuk Dr. Parkman replied by bowing, but said little or nothing if I remember right.

Dr. Jeffries Wyman. - I am Profossor of Anatomy in llarvard College. "I went to the Medical College on Sunday, Dec. 2, and found several gentlemen there. My attention was called more especially to tive fragments of bones found in the furnace. I have a catalogue of these bones. These, in this box, are the fragments found at the College. They are registered under 35 heads. My attention was directed to the remains of llesh, though not particularly. These remains showed no indication of having been used for anatomical purposes. On examining the thorax I was struck with the fact that the sternum was removed in the manner usual in post-mortem examinations; as well as its separation from the collar-bone and the first rib. The route which the knife passes is such that a person unacquaint. ed with the operation would have great difficulty. There is only one way. The separation of the thigh-bove from the hip indicated the same knowledge: J did not observe as to the separation of the head from the trunk. The sav is not usually employed for purpose of anatomical examination. The quaitity of hair on the back was very unusualon each side of the spine, and half or third of the way down the back. If death were occasioned by a blow, and the stab were immediate, I should look for a considerable flow of blood. Postmortem examinations are not necessarily attended with much loss of blood;
though it is usual to spread cloth by the sides of the body:

I examined certain spots on the sides of the stairway leading from the upper to the lower laboratory. Some of these were tobacco spitle, But there were others higher up, of which I discovered nothing definite. On Sunday, these were moist. They were said to be nitrate of copper. I have experimented to determine whether nitrate of copper would destroy the globule character of blood. I placed some blood under the microscope, and added some nitrate of conper. In the course of a few hours the discs of blood had disappeared.

There were brought to me a pair of slippers and a pair of pantaloons. These are the same slippers, and these are the same places where I cut out certain spots. [These slippers were then shown to the jury. 7 I have satisfied myself that these spots were blood. These are the same pantaloons. Dr. Webster's name is marked upon them. I cut the spots from them. I obtained a sign from these spots which satisfied me that they. were blood. I think the drops of blood did not fall upon the pantaloons from any great height-say three fcet-otherwise the drop would have assumed the elongatel form on the surface upon which it fell. The spots are on the lower p art of the outside of the left leg. [A puper was also shown, found by officir Heath in the laboratory, under the table, which the witness said contajned two spots of blood.]
The bones during my cxamination I arranged in order ; those of the head, of the neck, and other parts, were selected out and put by themselves. [Witaess proveeded to explain mihutely to the Court and Jury, by a diagran, the nafaral location of the different fragnents of bones. From the jaw bones found, Dr. Wyman had made a model of the lower jaw, which corresponded in a remarkable manner with the model in the possession of Dr. Keep.] There were no duplicates of any of the bones, and the fragments were from almost all parts of a human frame. There were some particles of bone attached to one of the blocks of teeth. There are 16 teeth in each perfect jaw of a person. Nitrate of copper applied to blood produces a blueish tint of color [Witness explained at some length the action of heat upon bones.]

Cross-cxamined.-I should think nitrate of copper effectual to remove blood, but no better than water unless the blood had soaked into the wood. Shouldthink muriatic acid would then be a better solvent. . The amount of blood is about one-fifth the weight of the boly. I examined Dr. Webster's laboratory for the purpose of finding spots of blood, but only found it on the pants and slippers. The bricks were removed from the floor, but bore no indications of blood being spilled upon them. I think the perforation between the ribs of the trunk was not made with a knife, as by a stab. After blood has remained some 48 hours on a substance it assumies, a dark brown color, and does not change. The spots I examined had that appearance. Can by the microscope distinguish human blood from that of some animals, but not many.
Catalogue (prepared by Prof. Jeffries Wyman) of the Fragments of Bones taken from the Ashes of the Furnace of Prof. J. W.. Webster's Laboratory, at the Medical College, in Grove stieet. and first seen by me December 2,1849 (Sunday) ; the list of fragments given at the Ooroner's Inquest is subjoined in another order.
The present catalogue inclutes the parts enumerated, as well as others which were determined subsequenly to the Inquest-names of the bones identified and characters by which they were determined-those about which a question exispor are marked as doubtful No. 1, frontal bone, outer angle of the orbit, left side-on this-may be seen the outer portion of texporal rilge; part of the cavity of the orbit; supra orbital notch; part of the frontal sinus. No. 2 , temporal bonc, petrous portion of the left side; internal auditory foramen; jugular fossa; corotid canal; fenestra ovalis., No. 3, temporal bone; digastric fossa of the left side, with a portion of the additamentum; the squamous suture. No. 4, sphenoidal bone ; base of the great wing of the right side; forainen rotundum ; foramen ovale; sphenoidal sinus; vidian canal; suture. No. 5 , temporal bone, mastoid process; mastoid cells. No. 6, parietal bones, two tables, vascular canals, glands of Pacchioni. No. 7, two fragments of the occipital bone-A, occipital protuberance ; B, left lateral portion with lateral
sinus, fragments of cranium not deter. mined: some of them indicate fracture previous 10 burning. N.B.-A few of these were found during the second search of the ashes made at the Marshall's oflice. No. S, left malar bone, enlge of the orbit, edge of the temporal fossa, maxillary suture. No. 9, left upper jaw, antrum, suture, fitting that of No. S, ridge. No. 10 , one of the condyles of the lower jaw. No. 11, four fragments of the lower jaw-A, cormoid process; B , alveolar portion which succeeds to A, dental canal; C, portion succeeding to B, with alveolus and dental canal ; D, symphisis-chin. No. 12, allas, upper and lower articulations and arch of left side, tubercle for transverse ligament. No. 13, body of a cervical vertebra under surface, projecting from the slags. No. 14, fraginents of a humerus- these are somewhat doubiful. No. 15, tip of olecranon, process of the ulna. No. 16, frayment of a radius or an ulna. No. 16, scaphoides of the left side. No. 17 A , trapezoides, side right or left-donbiful. (This was found on the second search.) No. 18, second phalanx of a finger, side-found on second search. No. 19, terminal phalanx of a finger, side. No. 20 , fragment of a radius, right or left, doubtful. No. 21, fragment of the right tibia: tuberosity with spine on the right ; canal for the nutritious artery to adjacent ridge, spine, articulation with fibula, lower articulation with fibula, lower articulating surface. No. 22, fibula, central portion. No. 23 , right os calcis, nearly entire. No. 24 , right astragulus, nearly entire. No. 25, tarsal bone, right cuboid (this atheres to No. 12). No. 25 A, tarsal bones. No. 26, metatarsal bone of the great toe-the ridge of the articulating surface indicates the right. No. 27, metatarsal bones, distal porions-one of the bones found on second search. No. 28, sesamoid bone. No. 23, terminal phatanx of the little toe, a part of mid: dle phalany adheres-second search. No. $*$, middle phalanx of a toe. No. 31, phalanx of a toe-second search. No. 32, fragments of fingers and toes. No. 33, framments of cylindrical bones. No. 34, fragnients of bones of face. No. 35, fragments not determined, The fragments of bones enumerated in the preceding catalogue belong to the following regions of the body, viz. : cranium, face, neck, forcarms, hands, right
leg below the knee, and feet. There are some fragments which were supposed to belong to the humerus; they correspond to that bone as to their angles and curves; but are not of sufficient size to render it certain that they are parts of a humerus. Besides the pieces of the cranium in the package marked No. 7 A, others are to be seen in the clay cemented with the fragments marked Nos. 13 and 21. Some of the pieces in No. 7 A did not present the appearance of having been fractured by the process of calcination, but by mechanical violence previous to the calcination. The fragments of the lower jaw are those of the right side and chin, and belong to a person from whom the teeth had disappeared between the coronoid process and the region of the first molar or second bicuspid. The alveoli have been absorbed and replaced by a flattened surface, with a ridge on one of its borders. This would indicate that many months had elapsed since the disappearance of the molar teeth. The bone of the right tibia is unequivocally that of the right side.

Dr. Oliver W. Holmes-Am Parkman Professor in the Medical School of Harvard University, and Dean of the Faculty. Dr. Webster lectured four times a week to the medical students, on the subject of chemistry. His department was distinct from that of the other professors. He had no connection with the anatomical department. His lectures were delivered from 12 to 1 mine from 1 till 2."I saw the remains found at the College. They indicated anatomical knowledge on the part of the person who dissected them. My attention was drawn to the manner of the separation of the stermum from the ribs by Dr: Wyman, and I can only confirm the general statement that there was no botching about the business. I observed the effect of chemical agency on the flesh, and length of hair on the shoulders. I noticed nothing in the remains dissimilar to those of Dr. Parkman. A stab between the sixth and seventh ribs need not necessarily be followed by a great effusion of blood externally: it would depend on the direction of the wound. On the day of Mr. Parkman's disappearance, my lecture commenced at one My lecture room is over Dr. Webster's, and I never was disturbed by a boise from the room below, chemi-
cal explosion or other. The rooms are very high. The seats of the students are raised above the main floor, but I stand upon it

Cross-examined.-In the Demonstrator's room, opposite Prof. Webster's lecture, room, noise would be heard sooner than in my room above. Cannot say that I think the remains had been subjected to fire, but caustic had evidently been applied. A mortal blow on the head might be given without any effiusion of blood following.
(To be continued.)

MISCELLANEOUS.

Freezing of Alcolool.-Until recently this liquid has resisted all attempts to freeze it. The Comptes Revidus, (the Paris Academy of Sciences).of January, gives an account of the experiment of Dr. Despretz, of Sorbome, who, by the joint agency of solidified carbonic acid, liquified protoxide of nitiogen, ether, and a vacuum, reduced the temperature so low that the alcohol lost its fluidity, and the tube which enclosed it could be held liorizontally for some minutes without the alcohol running out.

Action of Lime on Animal and Vegctable Substances.-It is generally believed that lime possesses a powerful tendency to corrode and destroy animal bodies, and that when placed in contact with it, they soon decompose and disappear. With this view it has been added to graves to promote rapid decay. Dr. John Dary has made a series of experiments upon the action of lime upon animal and vegetable substances, the results of which show that it not only does not promote their decomposition, but that it exercises a decided preventive and antiseptic power, and that putrefaction, when once commenced, is speedily arrested by this agent.

Cerebro-Spinal Meningitis.-This disease, which has been reiguing epidemically among the garrisons of some French lowns, has made terrible havoc at Logrouo and Ribafrecha, in Spain. In the latter place full one-tenth of a population of 3000 souls were attacked, and twenty-two died. The natives call the affection clavo or sarmicnto.

Abstract

Adulteration of Opium.-It would appear, according to Landerer, that they sell in the East, under the name of opium, an extract of glaucium rubrum, an annual belonging to the Papaveracer. Almost all the opium sold in the bazaars of Smyrna, as' well as the therica, or mithridate, which may be procured in these bazaars for a few paras; is prepared from this plant. A herbalist of Athens, who mistook it for a poppy, made an extract of it, partly by means of incisions carried into the stems, and parly by a decoction of the fresh plant, and sold it to various apothecaries as opium. This extract of glaucium exhaled a narcotic smell, and tasted as bitter as opium, so that it, in fact, bore a great resemblance to the bad Sinyrna variety.

British Zamerican Iommal.

MONTREAL, JUNE 1, ISḊO.
The Prelensions of the Montreal School of Medicine.-We regret much to learn that the Lecturers of this School are taking a step likely to become productive of serious injury to the French Canadian students of the Province, and destructive, if their application be granted by the Legislature, to the best and truest interests of the Profession. We have been given to understand that they are seeking from the Legislature the power of conferring diplomas, and that the holders of them shall not be reëxamined by the Provincial Medical Boards;-or, in other words, that they shall be endowed with the power of granting a document cquivalent to a license.

A few years only have elapsed since we felt ourselves compelled to raiso our voice against the pretensions of the same school, on those very grounds. The School sought this very privilege at the time that they obtained their Act of Incorporation. The former was donied, but the latter, and properly too, granted Consequent upon the latter
was the concession, on the part of the University of M‘Gill College, of privileges to the School of the most important character: their tickets were recognised ; and with the completion of one annus medicus in the University, the Students of the School were admitted to graduation, their examination being conducted by the Lecturers of the School, and in. that language with which they were most familiar. This arrangement was mainly effected to remove the objection, urged "against M'Gill College, by the French Canadians, that the Lectures of the University being delivered in the English language, the French Canadians were unable to derive full benefit from them, and were therefore debarred from the privilege of obtaining University honours." The arrangement thus entered into, and acted upon for the last three years, has now been openly violated by the School of Medicine itself. To the University, we apprehend, it is a matier of little consequence; but as regards the French Canadian students; who may be desirous of graduating in the Faculty of Medicine, it is one of extreme moment. If this privilege is now lost, except upon the completion of regular and prescribed University terms, the lectures at which are delivered in the English language, they will have but to thank their own countrymen, the Lecturers of the School of Medicine, who have sold, or desire to sell, their privilege, for a mess of pottage.
But this is a minor view of the question. It is fraught with consequences, of the most serious character to the profession at large. Concede this privilege to the School of Medicine, and where are the subsequent concessions of the same privilege to be stopped? There would be no end to them; and a free
trade in diplomas would be originated, which would laugh to scom free trade in a more literal sense of the term, and would become synonymous almost with manslaughter. Some may say, we write hyperbolically; but who will dare gainsay its truth? We appeal to the effects of this very system-the multiplication of heensing boards, in the United States,-and a few extracts from authenticated papers, will amply verify our statement.
Dr. F: Campbell Stewart, in his Address to the New York Medical and Surgical Society, Jan. 3rd, 1846, says:
"He had always advocated (quoting from a Medical Journal) a higher standard of medical attainment for graduating in medicine, and a sufficient preparatory education to place physicians on a par with other learned professions; but we have seen so much of the levcling system; so much pandering, to popularity; such audacious promises on the part of medical schools to gull pupils; such pretensions to cheapness of board; such mock examinations for degrees; such drumming up of students; such underbidding in the price of tickets; in short, such artifices, and tricks, and manceuvres, for the sake of putting a few dollars ln the pocket, that we have almost lost our early faith in the practicability of medical reform, at least to that extent to which it ought to be carried in order to accomplish the desired end."
"There is no hool here whose certificate our army or navy examiners can take as a sufficient guarantee of the qualifications of candidates for admission, as medical officers, into either of these branches of the public service."
"A system then so invariably admitted to be defective must stand in need of amendment, $\%$ \&c.
And again-
"So long as they trust for reputation to the numbers rather than the character of their alumni, our country will be annually flooded with imperfectly and half-educated physicians, many of whom must, from absolute necessity, be forced to resort to means for gaining a livelihood calculated to degrade them
in their own and in the public estimation, and to produce a ruinous influence on the profession."
So wrote Dr. Stewart, of New York, in 1846. In May, 1848, the Medical Association met in Baltimore; the Committee on Medical Education thus, among other matters, reported :-
"This Committee was instructed to report upon the subject of the two reports submitted at the last meeting of the Assöciation, by the Committee, on the separation of teaching and licensing.
"The preamble and resolution, at the conclusion of the report, signed by a majority of that Committee, are as fol-low:-
"Whereas a general sentiment prevails in the medical profession that the active competition existing amongst the medical colleges of the Union has a tendency to lower the standard of professional requirement, and to depreciate the value of the degree ;
"And whereas the facility, with which charters for medical corporations are obtained from our State Governments, exposes the medical profession to the continuance and increase of these abuses, inasmuch as the corporations possess alike the power of granting the license to practice;
"Therefore resolved,-That, in the opinion of this convention, some additional checks to the exercise of this right should be established by the great body of the medical profession."
After an examination into the proportion of graduates in medicine to the relative populations of France and the United States, the report further states:
"From all these considerations, the inference is inevitable that our present ratio of supply of medical men is greater than is demanded by the exigencies of the people.
"Whence follows this result, but from the facility with which the medical degree is obtained ?"†.

But to demonstrate in the most incontrovertible manner the effects of this free trade in physic, upon the acquire-

[^15]ments of medical graduates in the United States, let us take the authenticated recoids of the army and navy medical boards, exhibiting the proportion of those approved to those rejected for actual incompetency; and this we take to be the most effectual commentary upon the practice, the initiaiive of which has been taken by the Lecturers of the School of Medicine. From 1841 to 1845 inclusive-" prosented themselves, 69 ; withdrew, a portion being physically disqualified, 15 ; examined, 51 ; approved, 17 ; vacancies happening within the ycar, 12." "From July 1846 to May 1849 inclusive :invited, 381 ; presented, 201 ; physically or otherwise disqualified, 18; withdrew, 64; total, 82; examined, 119; approved, 38.* At the Nary Medical Board of the United States, from 1841 to 1849 , inclusive, the following results are obtained-candidates presenting, 232; withdrew, from various causes, 57 ; examined, 175 ; approved, $77 . \dagger$ No stronger argument in our favour than these statistics could be adduced to demonstrate that the practice of the United States is detrimental to the interests of the profession there, and is the most certain method of securing ill-informed practitioners : not one, out of every three who graduated, were found worthy of being entrusied with the lives of the forces, army or naval, of the United States! And it is to a similar result here that the labours of the School of Medicine would inevitably tend. Are they men of greater virtue than those of the United States? Yet, see the results! Certainly, thesc results are not likely $10{ }^{\circ}$ be bettered in the hands of the School of Medicine, and most assuredly the lives of civilians are of equal value with those of the

[^16]soldiers and sailors of the United States; and, if so, are equally worthy of being protected against the experiments of half-educated practitioners. No! Things are well as they are. The Montreal School of Medicine should learn, if it has not already done so, that their work is comected with the regeneration of the profession,--not its prostration; and that private schemes and private ends must succumb to the general good. We have now pictured the results of free trade in diplomas on the profession of the United States, drawn from authentic sources: we predict the same lamentable consequences on the profession of this country, if the application of the School of Medicine be granted. We shall wait to see what the action of the Legislature will be on the subject. Much, indeed, will the Lecturers of the School of Medicine have to anstere for, if their application be granted. They will then have attained their own private ends, but, along with it, the ruin of their Profession, as a Profession.
census of the city of montreal-1850.
(Compiled for the Montreal Herald.)
We publish below the Census of the City of Montreal, which has just been completed. The lait Censüs was taken in 1844, at which period the whole population of the City was.........44,285 The Consus just taken makes our populationi. 48,207 Increase. 3,922
The following is a Comparative Statement of the City of 'Montreal in the Years 1844 and 1850 :-
$$
\text { 1844. } \quad 1850
$$

Natives of England. ... $3,161 \quad 2,666$

Return Shewing the Number of Inhabil－ ants in the City of Montreal， 1850.

	范
	Ocrupich
	racant．$\left.\right\|^{\text {晨 }}$
	Heads of Fa－ milics．
	Ensland．
	Sonland．
	Irelend．
	$\begin{array}{c\|c} \text { Canada: } \\ \text { Frcnch. } & \text { Z } \\ \hline 3 \end{array}$
	Caniada， British． 品
$\underset{\sim}{\sim} \mid \sim \sim$ 为	Germany or Hnllind．
$\underset{\sim}{\mathcal{W}}$	United States．
	Other Countries
	H 0 0
会\|	Members of family absert．

CENSUS OF THE CITY OF QUEBEC－ 1850.

Champlain Ward．	Total nopul．French Can． ．．． $4548 \quad 762$
Palace ${ }^{\text {a }}$	$2488 \therefore 1178$
St．Peter＇s ．＂	$.3111 \quad 1095$
St．Lewis	29907 711
St．Roch＇s 《	14472 12223
St．John＇s ：©	． $9972 \quad 6396$
	27，500 22，375
Population of 1842	21，747 19，251
－Quebec Gazelte	

On the 8th May，a Convocation was held at M＇Gili College，when the De－ gree of Doctor of Medicine and Surgery was confeited upon the following gen－ tlemen，Students of the University ：－
Amos S．Bristol，on Amenorrhea．
George W．Sanderson，on Uterine He － morrhage．
Enoch G．Dorland，on Pathological Changes in the Blood：
John A．Nellis，on Epilepsy
J．M．Van Norman，on the Repellant and Curative Powers of Nature．
R．M．Willson，on Venereal Affections． And likewise on the following gentle：－ men，Students of the Montreal School of Medicine and Surgery ：－
André Loupret，on Dropsy． Olivier Raymond，on Cholera． Charles Lemoine，on Diabetes．

The Convocation also bestowed the Honorary Degree of Doctor of Medicine on Joseph Morrin，Esq．，Vice－Presi－ dent of the College of Physicians and Surgeons of Lower Canada，and Presi－ dent of the Quebec School of Medicine．

The Convocation also conferred the Honorary Degree of Doctor of Civil Law on the Rev．W．Agar Adamson，A．B．， T．C．D．，Assistant Minister of Christ Church，Montreal，and Chaplain to the Legislative Council of the Province．

> Licentiales of the Medical Board， Canada West．
> John Isaac Dallas，M．R．

C．S．L．．：．．．．．．．．．．Nov．29， 1849
Saml．Blackwood，M．D．Nov．29． 6
Hans Caulfield．．．．．．．．Jan．12， 1850
Abner Otis Kellogg．．．．．Jan．12，＂＂
Joshua M‘Lean，．．．．．．Jan，12，
William Bell．．．．．．．．．．Jan．19，
James MCMahon．．．．April 6，©
James Might．．．．．．．．．．．．April 13，
Robert Petch ．．．．．．．．．April 13，＂
John Orange Baker．．．．April 13，＂
Joseph Andrew Neilson，
M．R．C．S．L．．．．．．．．May 11， 6
Peter M＇Kenzie ．．．．．．May 11，＂؛
Daniel Wilson．．．．．．．．May 11，＂
Diseases of the Horse．－We publish to－day the first of a series of papers on the principal diseases of the Horse，by J．B．Turner，Esq．，a gentleman who has had extensive experience on this subject，and who acted for a consider－ able length of time as veterinary sur－
geon to the 7th Hussars when they were stationed in this city. We entertain the opinion that these papers will prove of great value to the profession of this country in the treatment of niseases of their own horses, especially in places where the aid of an experienced veterinary surgeon cannot be obtained.

CORRESPONDENCE.

IMPROPER ASSUMPTION OF THE TITLE OF M. D .
To the Editor of the British American Journal.
Sir,-In the last number of your Journal I read with satisfaction the letter of Legulus, and fully enncur with him in the absurdity of adding "Esq." after the names of Doctors of Medicine. But even that is hardly so bad as the actual assumption of titles by some medical men, who have no legal right to them.

I refer more particularly to the letters M.D., and the word Doctor. It is a notofious fact that the majority of the medical men in the Lower Province, who are only Provincial Licentiates, dub themselves Doctor; and a tolerable number add M.D. to their names, who possess no University honour. On referring to the Directory for 1849, I find, among the names of the Physicians and Surgeons, two with M.D. after them, who, I know positively, do not possess the degree: one should have D.D.S. after his name, if he wishes to specify particularly what he is a Doctor of. In Starke's Almanack again, no titles whatever are affixed to the names-a more preferable proceeding. And in a pamphlet containing a number of certificates upon the virtues of the Aurura or Point du Jour Mineral Waters, several medical men have the M. D. again affixed to their names, who have no more right to use that title than I have, who am but a simple Licentiate. I maintain that Licentiates and Members of the College of Physicians and Surgeons have no right, unless they have a regular degree, to assume the title of Doctor; properly they should be styled Mr. Fish or Mr. Bone, and for my own part I have never assumed the title of Doctor. Why should not the Licentiates affix the initial letters L. C.P. and S. after their names. The title is an honourable one, and one they need not be ashamed of.

In bringing this matter before the pro-
fession, I am actuated by the purest motives, and solely for its benefit. When so many quacks, together with arrogant and boasting individuals, assume titles they have no claim to, it is time we should put them down.

I would suggest that, for the future, a list of all those who assume such titles ought to be published in your Journal, and the column headed by a couple of black sheep, as adopted in the pages of the Lancet. I have trespassed upon your time and space, and wishing your Journal every success; which, from the independent and impartial manner in which it has always been conducted, it fully merits.

> I remain, Sir,

$$
{ }^{13} \text { L. C. P. \& S، }
$$

Montreal, May 27, 1850.
OBITUARY NOTICES.
Death of M. Marjolin.-We have to record the death of M. Marjolin, one of the oldest, most respected, and talented surgeons of the French metropolis. His decease took place on the 4th of March, in the seventieth year of his age. This worthy member of our profession, and excellent man, was Professor of Surgery to the Faculty of Medicine; Honorary Chief Surgeon to the Hopital Beaujon, Member of the Academy of Medicme, and Officer of the Legion of Honour. He was accompanied to his final resting place by a large concourse of medical men and students, and deputations from all the hospitals and learned societies. Professor Roux, M. Dubois (d'Amiens), and M. Monod, severally pronounced discourses over the remains of their departed friend--the first, in the name of the Faculty; the second, as organ of the Academy of Medicine; and the third, as the representative of the Surgical Society, M. Marjolin had held his Professorship for the last 30 years, and was deservedly popular among his pupils. He was particularly successful both in surgical and medical practice, and was invariably consulted in difficult cases. His tastes, though possessor of very handsome property, were particularly simple, and he greatly delighted in rural pursuits. Like Meyer, of Berlin, and Jaegar, of Stuttgard, he exactly foretold his end, and calmly conversed with his son touching his decease, a few hours before he died.

At Munich, Dec. 29, M. Walther, Professor in the University of that city,

At Padua, Prof. Giacominb, one of the most disringuished medical writers of Italy.

Drowned, May 6, near Port Maitland, Lake Erie, Douglas Grantham, M.D., aged 30, Assistant Surgeon of the 23rd Royal Welsh Fusileers. The deplorable accident which has thus consigned Dr. Grantham to an untimely graye, occurred in consequence of a collision between the British steamer Commerce and American steamer Despatch, at night time, whereby 24 soldiers and 13 women and children met at the same time a watery grave. Dr. Grantham was in charge of a portion of the 23 rd Regiment, which was en route to London, C. W., in the steamer, at the time of the accident.

At Port Dover, on Tuesday, May 28, Dr. Meek, at an advanced age.

Errata in Dr. R. P. Howard's communication in last number.-At page 4, 2nd column, 15th line from top, instead of "Scillw tinct. oz. ij ." read "Scillæ inct.
dr. ij." ; and at 17 th line, instead of "mist. camph. dr. iij." read " mist. camph. oz. iij." At page 5, 2nd col, 10th line from bottom, after "one" insert "an". At top of" 2nd column, page 6, instead of "suegr" read " senegx." At p. 7, 1st col., 24th line from top, instead of " magnes. sulph:"; read "manganese sulph." ; and at the end of the prescriptions of the $14 \mathrm{th}, 16 \mathrm{th}$, and 31 st Oct. and 16 th Nov. instead of ".\&c." substitute " m."

BOOKS \&C. RECEIVED.
Rudimentary Treatise on the Drainage and Sewage of Towns and Buildings, by G. D. Dempsey, C.E. London, 1849.

Transactions of the Medical Society of the State of New York during its Annnal Session-held at Albany, Feb. 5, 1850.

An Historical Sketch of the State of Medicine in the American Colonics, from their first settlement to the period of the Revolution, by John B. Beck, M.D., \&o, Albany, 1850.

Address delivercd before the Class of the Baltimore College of Dental Surgery--Ses sion 1849-50, by C. A. Harris, M.D., D.D, S. Baltimore, 1850.

METEOROLOGICAL REGISTER at MONTREAL, for the Month of APRIL, 1850:

E	Thermometer.				Barometer.				Wind, \quad			Weatner,		
	7 A. m	3 p.	10 pm	Menn.	7 A.m	3 г.m	10	Mean		3 P	$10 \mathrm{r} . \mathrm{m}$,	A.M.	P.	N:
1	+37	$+$	+41	+4.	29.91	29.07	-99.87	29.92		SW			Fair	O're'st
2	$\because 40$	$\cdots 48$	${ }^{4} 41$	$\because 44$.	29.90	29.86	29.78	29.55	S	W	S W	Fair	Clo'dy	O're'st
3	" 37	" 50	" 40	" 43.5	29.66	99.46	29.39	29.50	W SW	SW	SW			Clo'dy
4	" 36	" 37	"35	$\because 36.5$	29.29	99.26	29.41	29.32	N NE	F	NE	Rain	Stor'y	'dy
3	" 28	" 38	" 59	- $33 .-$	29.57	29.63	29.62	29.61	N N E	NNE	N NE	Fair	Fair	Fair
8	${ }^{4} 27$	" 40	- 32	4 33.5	29.64	29.59	29.54	29.59	NE bN	NE	N by E	Fair	Fair	Fair
7	$\cdots 30$	" 52	142	، 41.	20.60	09.51	29.43 ;	29.53	N N W	N W	N iV	Fair	Fair	Clo"dy
8	" 42	" 39	" 21	- 40.5	29.42	29.42	29.67	29.50	W SW	W byN	N NW	Fnir	Sleet	Wndy
2	$\because 15$	" 27	423	- 21.	99.78	$\underline{29.73}$	$\stackrel{99.83}{ }$	29.78	N Wbw	NW bw	NW	F	Fair	
10	" 19	" 35	" 27	- $27 .-$	29.90	29.82	29.84	29.85	N W	NW	NW	Fuir	Fair	Fair
11		$\stackrel{4}{49}$	" 30	- 32.-	29.88	29.74	29.71	29.78	W byN	N	N	Fair	Fuir	Fair
12	" 27	"48	435	- 34.5	29.78	29.64	29.57	29.66	W SW	Wby.	W. by N	Fa	Fair	Fair
13	$\because 37$	" 35	" 34	$\because 36$.	29.41	29.32	29.32	2935	SSE	SE bys	SSE	O'rc'st	Snow	O'rc's
14	" 28	${ }^{1} 34$	" 29	" $31 .-$	29.30	29.27	99.44	29.34	W by	W NW	NW	Snow	Wndy	Fair'
15	" 22	- 32	" 24	1. 27.	99.60	29.64	29.70	29.65	W NW	W NW	W NW	Fair	Fair	
16	" 40	${ }^{6} 31$	" 25	" 25.5	$3^{3} 9^{\circ} 7$	29.79	29.91	29.82	W	W byN	N NW	Fair	Fair	c'sf
17	" 19	" 30	${ }_{6} 21$	" 24.5	30.02	29.94	30.04	30.00	N W	$\mathbf{N W}$	N W	Fair	O're'	Fair ${ }^{\text {" }}$
18	$\because 23$	" 44	"33	" 33.5	30.14	30.08	30.06	30.09	N W	SWbs	SWbs	Fair	Fair	Clo'dy
19	' 34	" 50	"37	" 42.5	29.77	29,78	29.76	29.77	WS W	WSW	W	Fair	Fair	Fair
20	' 37	"48	${ }^{4} 38$	" 42.5	29.81	29.76	29,79	29.79	W	W	W NW	rair	Fair	Fo
21	" 37	$\cdots 55$	i 44	، 46.	29.82	29.86	29:80	29.83	W NW	NNW	SWbs	Fair	Fair	Fair
52	$\because 42$	" 46	"45	"44\%-	29.69	20.46	29.35	29.50	S SE	S by w	W S W	Rain	Clo'dy	Clo'dy
23	" 45	"48	c 35	". 46.5	29.46	29.48	29;74	29.56	S S W	S S.W	SSW	Fair	Fair	Clo'dy
24	"36	" 46 "	". 43	$\because 41 .-$	29.84	29.68	29.63	29.72	SWbs	SWbs	NW	Fair	Fair	Clo'dy
25	" 44	" 63	" 54	" 53.5	29.66	29.54	29.55	29.5 S	NW	W by s	W by S	Clo'dy	Fair	Fair
2	" 51	" 66	" 55	" 58.5	29.63	29.56	29.56	29.58	W by S	W	W	Fair	Fair	Fair
27	" 49	" 75	" 60	" $62 .-$	29.57	29.48	29.53	29,53	W	S	W NW	Fair	Fnir	Clo'dy
28	" 42	" 55	© 49	(i) 48.5	99.78	29.72	29.51	29.67	NNE	N NE	NNE	Fair	Clo'dy	Rain
29	" 51	:" 53	" $4^{\text {2 }}$	" $51 .-$	29.20	28.99	29.98	29.16	SSE	S bye	SSW	Rain	Rain	dy
30	44	[45 57	"48	" 60.5	29.57	29.66	29.45	29.56	SE	SW bS	SW bs	Fair	Fair	Clo'dy

 Moan of the Month, $+39,8$

oivogonaw	
1	

961

荷荷

 C21: SLI

-1
-1
2

 8 Snx
\qquad

[^0]: * Dublin Journal of Medical Sciences. \dagger Heyfelder, Archives Generules.
 \ddagger Guy's IIospital Reports.
 || Medico-chirurgical Transactions, vol. xviii.
 § Dublin Journal of Medical Sc iences, rol. xsi.

[^1]: - I am well aware, that on the authority of a verbal

[^2]: statement of D_{r}. Chambers, of London, that some writers-amongst others, Professor Walslie-haye alluded to an eleration or bulging forward of the infiaclavicular region, as a sign of incipient phthsis ; but as I have anxiously looked for this sigu for several years, without in one siugle case observing it, I can only account for, the discrepancy, by supposiug, that in Dr. Chambers' cases, both sides were affected, and the atrophy being better narked on the side, where the least physical traces of incipient phithisis were observed, the opposite iufra-clavicular region presented an appearance of comparative fuluess or bulfing, well calculated to deceive; for I have not unfitequently remarked [and had recently yan opportunity of pointing out 20 my class at the fIospital] the fact, that in incipient phthisis, we may have marked atroply of the iufra and supra-clavicular spaces of one side, with comparative dulness and feebleness of respiratory marmur, whilst on the opposite, there may be no atrophy; scarcely auy dulness, with a harsh respiration, gradually becouming accompanied by a "crumpling sound," dry crackling, and then (as in the case just alluded to) sibilant and muco-crepitatiais rales,- yet the condition of the oppesite lung may remain as when first examinel. It is only in this way, that I can account for the striking anomaly said to have been observed by Dr. Chaabers.

[^3]: * The earliest case recorded of cancer of the ling, attended by dyspharia, is that, I believe, given hy Vain Sweiten. Ile says, "for this last olservation 1 an indebted to the learned. Dr. Anthony de 1Iten, who exerts himsclf in the practice of physic with great applause at the Hague, and with indefatigable iddus. try takes every occasion to enquire into the latent causes of diseases in dead bolies, and who opened this patient after his decease, before the celebrated Schwencke, professor of anatomy and surgery."
 t Dr. Walshe says "I have recently found the radial pulse very triningly weaker and swalter on the alfected (right) than on the other side; but in this case a mediasterial tumour coeexisted with the disease, affecting the root of the lung; the difference bas been observed indepindently of the former, and is, under all circumstances, rare.... Treatise on 'Cancer,

[^4]: * The iris receives a branch fiom the sixtr nerve in several animals, and if has treen supposed that it sqmetimes does so in inad, which would account for the faci that the pupil has not been affectud in some cases where all the other muscies of the eye were paralysed from disease of the third nerve : in the above case, the singularity consists in our having only one muscle supplied by the third nerve, and only one sot of gbres of the iniz in a state of semi-garalysis.

[^5]: * I purposely avoided entering into any discussion on the views of Professor Skoda, of Vienna, whose skill as an anscultator I had an opportunity of witnessing, "whilst following his cinigute, as they may from. the subject of another communication to this, Journal.

[^6]: * Inalf-yrnely Alstact of the Med, Sciences, Vol. 1. p. 2l2. Amer. Dd.

[^7]: * Hope on Dis, of the Heart, p. 883. 5th Ed. 1 Sto.

[^8]: * Blakiston on Dis. of the Chest. p. 197. 1848.
 i Laco citato, p. ${ }^{2}$ I.

[^9]: *The myological nomenclature of Percival. This tendon is commonly called the s perforated."

[^10]: * Dose--From a scruple to half a drachm, made into a ball with palm oit, linseed meal and palverised ginger; operating in from six to eight hours.

[^11]: of Decluding Newfoundland for Norember and part
 of

[^12]: * One of the uncertain appearancez at Toronte is confirmed by other Observations.

[^13]: * The original instructions are here extended and improved by the incorporation of some particulars from those issued by the Sinithsonian Institute.

[^14]: "Such I believe to be the modus operandi of cure in either case, and where the condition of an aneurism is such as to allow of this effect being produced by means of the ligature, I am certain it will equally be the result of compression if properly applicd.

[^15]: * Transactions of the American Medical Convention, vol. 1, page 239.
 \dagger Op. Cit., page 243.

[^16]: * 'Irankactions of the American Medical'Association, vol. 2, p. 317.
 $广$ Op. Cit., page 320 .

