The Institute has attempted to obtain the bast original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommageC. wes restored and/or Iaminated/

Couverture rastaurbe et/ou pelliculieCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relió avec d'autres doruments

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de f'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas èté filmées.

\squareAdditional comments:/ Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.
I.'Institut a microfilmé le meilleur exemplaire qu'il lui a éte possible de se procurer. Les détails de cet exemplaire qui sont peut-ltre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculfes

Pages discoloured, stained or foxed/
Pages décolories, tacheties ou piquiesPages detached/
Pages détachies

Showthrough/
Transparence

Quality of print varies/
Qualitē inégale de l'impression
Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Tizle on header taken from:/
Le titre de l'en-tete provient:Title page of issue/
Page de titre de ia livraisonCaption of issue/
Titre de depart de la livraisen

Masthead/
Générique (périodiques) de la livraison

Vol. XV.
TORONTO AND MONTREAL, JUNE. 1898.
No. 6.

The Unthtad Alkall Company, Limited, of England.

Caustic Sodsa, $60^{\circ}, 70^{\circ}, 74^{\circ}, 76^{\circ}, 77^{\circ}$. Soda Ash. all strengths. SAL. SODA. PUAE ALKALI, 58°.
WILSOM PATERSON \& CO, Montroal, Sole Agonts. inporters of Selphate of Ateming, Hgpo faiphite of soda, Bichromate
 Ginax, Ceoment O1, Patim Dil, Cepter O11, Cetten Seed O11, Rosit Olt. ROSIN. All Chemicals used by Sosp, Paper, Woolen, and Cotton Manufacturers.
NEW YORK 1FFGE, 133, 135, 137 FROMT STREET
McARTHUR, CORNEILLE
$\& C O$.
Importera anil Manufncturera of

920 to 816 St. Paul St. and DYE MONTREAL STUFFS

ANILINES - ALIZARINES
mrawss, querius, acibs, ETc.
MARBHALL'S INDIGOS AND AROHILS soLE MaENES IN CRNADA FOt
CAM MEMMAB-Alicaximes, Aoetates, eta

Oolates.
On: orn and Chotalical Products.
 Fucle entillogwood.

FRANGEOO, BASSO \& CO-muming.
JACR R ROBBRTNOR
7 St. Helen St. MONTRTAL

New York and Boston Dyewood Co. Mansot:yem

Manufacturers of AnILINE COLORS Herlin, Germamy.

NEW YORK. 86 beekman St. BOSTON: $118 \& 117 \mathrm{High}$ St. PHILADELPHIA: 19s A tec Arch St.
A. W. LEITCE, 16 EqRheon Street gouth, HAMMLTON, Ont.

virne DTE gewoio SURAC INDICO
 Extracts

HEMOLIN BLACK, MORIN YELLOW
WM. J. MATHESON \& CO., Limited 423-425 St. Paul Street, MONTREAL Maln Office: $\mathbf{1 9 2 - t 8 4}$ Front Street, New York.

Branches. Boston, Philadelf has, Irovidence. Works: L.onk Island City, Port of New York

W T. BENSON \& $C O$.
 31 Common st, MONTREAL

 Imporest of FOREICN WOOL And all flnes of
CHEMICALS and DYESTUFFS

Ano COCOANUT ANB PALM OIE, and all other sonp Mooks. Bolo Agonts for
Melarn. Jofin idang Manufuctarers of
extracts of LOCNOOD, fUBTIO, BUPAO, etc.
D Complete stocks of all the above always on hand.
Bellhouse, Dillon \& Co.
GOLE AGENTS IN CANADA FOR
THE whet INDIES OHENHOAL wORK8, LINITED, Spaniah Town, Jamalon, w. J.
Trade Mank

Pratirn
Alrigator Brant,
Whte for samples and prices. FOR COMTON, WOOL AND SII.Pa Toronto Office-26 Colborne Street.
80 St. Francols Kavier St., Montmeal New Yort Oatce. wo cular sireet.

CEO. D. ROSS \& CO.

WOOLEN COMMISSION MERCHANTS MONTREAL and TORONTO

| Tweeds Etofret Shirts and Pants | |
| :--- | :--- | :--- |
| Worsteds Blankets Fulled Bocks and Nitte | |
| Eorges Varns | Oloves, Hosiery, eto., etc. |

Aileances Aroulo on Consignments.
Dum Corresponience Solicited.

YT MTTMT DDITCTTCN made, and Blocks re-filled. Highest quallty and best warkmanship puasanteed, and closcost possible prices. OHAS. BOECKH \& SONS, Manufncturers, TORONTO

DYEWOOD EXTRACTS

Mnnufuetared by
myOKLOW * CO., - BURX, ENGLAND
DOMINION DYEWOOD \& CHEMICAL CO. TORONTO
. . . rozk auknts fol canada

Kanufaciurers of CLOVES and MITTS
 Branches as Montreal, Quebec, Halltax, WInnipes and Victoria

PURE SOAP

FOR
Woolen Milis, Knitting mills. Carpet Factories, 8hirt Factories, Laundries.

EMPIRE SOAP CO., HAMILTON

1490 Notre Dame street, MONTREAL.
2. 工. noskntrat, Mnnaker.

Felts for Pulp Mills

Twenty years in the business-the first to make Felts in Canada; capacity $1,000 \mathrm{lbs}$. per day. All our Felts are woven endless, without a splice. Our Felts will last longer and make dryer Pulp. All up-to-date mills use our Felts. New mills, when in need, write for samples and prices.

HAMELIN \& AYERS, Lachupe Mills, P. $Q_{\text {, }}$

Fratabillobed 1848.
 A. EICKHOFF

Manufactarer and Dexier isi 'Eatters', Furriers', Tailors', Glovers' and Shirt Cutters' KNIVES AND SCISSORS.
Knives for al' kinds of business nlways on nand and waranted. All kinds of Cutery ground and repalred.
No. 381 BROOMD STRERT, Betwekn Enosaway and Bowary,

Canadian Fournal of Jfabrics

A Journal devoted to Textile manufactures and the Dry Gools and kindred trades.
Subsctiption. Canada and Unted States, El.00 per year, Great Britaln 51 Advertislog rates ou application.

Offices 6a Church Street, Toronto, and the Fraser Building, Montreal.

Agency in Europe Polsce Bros., 30 l'oppin's Court, Fleet St., Londen, Eng. Toronto Telephonc, 1392 | Montical Telephone, 2589
 the toth of each mouth to ensure insertion.

THE CAMADIAN TEXTILE DIBECTOAY

A Handbook of all the Cotton. Woolen and other Textile manufactures of Canada, with lists of manufacturers' agents and the wholesale and retail dry goods and kindred trades of the Dommon. to which is appended a vast amount of valuable statisties relating to these trados Fourth edition now in hand.

Price, on and after publication, 83.00. Subscribers ordering in advance are given a discount of $\$ 1.00$.

BIGGAR, GAMUEL \& CO. Publishers. Fraser Building, Montreal.

Editorial.

THE COTTON TARIFF.

A discussion of much interest to the cotton manufacturers, and the shirt and collar trade took place recently in the House of Commons, at Ottawa. On motion to go into supply, Mr. Monk (Jacuues Cartier), called attention to the treatment which has been meted out to the shirt, cullar and cuff industry under the present tariff. Mr. Monk clamed that the duty on the raw material is the same as that pard upon the finshed product. The cotton manufacturers have every advantage while the kindred undustry called into existence under the late Government
is being driven to the wall. It has been compelled to reduce the wages paid to operatives and is having a hard fight to make both ends meet. The importation of colored cotton by the trade is upwards of a million dollars, and in addition to this half a million dollars worth of Canadian cutton is used. The Finance Minister reported that at this late stage of the session it would be difficult to reopen the tariff question. The case of the collar and cuff manufacturers has already been very fully laid before the Government. That they are placed at some disadvantage in comparison with other industries there is no question. These difficulties, however, seem to be magnified, and there did not appear to him any reason why the shirt men should not still make reasonable profits in their business. The Government had last session attempted a measure in relief of the shirt manufacturers in allowing them to bring in their cotton at a reduction of ten per cent., but this plan did nut seem to work out and appeared to favor the larger manufacturers, and was afterwards dropped. He was sorry that there did not appear to be any relief possible.

The result of this decision en the part of the Government is the announcement that the shirtmakers of the Dominion have decided to reduce the wages of their employees so per cent, beginning on July ist. On the present duty they clam that the Unted States makers can undersell the Canadian makers, and unless they cut down expenses they will be driven out of the market. The Employers' Association is a strong one, extending all over the Dommion. The workers are also well urganized in the Province of Qutbec, but there are not very many in Ontario and the orgamzation is weak.

how to reduce seconds in a knitting mill.

Seconds, which are caused by gross carelessness, accidents, etc., are something which require much thought and watchfulness to avoid them.
ist. The mill should be well lighted and well heated in winter, for when the machines are chilled they will work badly. See that the machires are in good order, that no imperfect needles are used, for of the machines are working properly then you can reprove the uperators fur making imperfect work, in which case they will be more careful On the other hand, if the machines are not in good working order the operators will get careless and pass through work that will not be detected by the most watchful eyes.

2nd. The yarn should be as even as possible, and free from lumps; if it is solid colors see that the colors are aven and not streaked; avoid winding a new bateh of dyed yarns on the same bobbins that have yarn on from the preceding batch, as two batches are seldom the same shade, even should they be from the same dyer. The winders should keep their frames free from fly and waste, and keep the guides as tighf as the yarn will pernit, so that no lumps or waste will pass through. Keep the yarns in separate bins or boxes, and the number of yarn marked on each box or bin containing the same.

The foreman or forelady should be watchful of the yarn, :or if they are not the winders will not be, and good spooling is the essential part to avoid seconds.

The winders should whip their colored skein yarn well before using as this removes most of the dry dyestuff and grit that generally adheres to the yarn in dyeing. Some run their yarn through oil, but if the yarn is properly manipulated as above no oil will be required as it gives the goods a dull appearance after being pressed. This refers to sold colors. Good lard oil is a help on mixed.

See that the operators are careful with their work and that the lengths are correct. Goods should be tried on the form three or four times a day as the gauge is liable to slip or may get out of order, thus making seconds. The machines !ould work properly, for if they do not the kmitter will make seconds. Never let a knitter run a machine that is out of order. The rib machines should be kept in good repair and the cutters so instructed that they will not let any bad tops, etc. go through. Special attention should be given to the rib machines.

The power should run even, which will greatly facili. tate the working of all the machines. On light colors or solds see that in oiling the machines it is properly applied so that it does nut make black streaks or spots, thus saving seconds. The knitters should be required to turn out all scrubs and holes caused by the breaking of a needle, etc., thus saving seconds. See that the machines are cleaned every night, which will save seconds. Goods should be kept on the wrong side until the pressers are nearly ready for them. The knitters should turn them as they make them, and they should be mended before they are turned by the turners, as they are liable to make a second out of a mender with their sticks. All goods should be pared, folled and boxed as soon as pressed to insure them against getting soiled.

cloth selvages.

In the manufacture of cloths which are made otherwise than by the plain treading of the healds, some special arrangements are usually necessary to secure a plain selvage, or, at any rate, one which, when the cloth is fimished, will be a good substitute for a plain selvage. When stripes are being woven, in which the ground is plan cloth, the shafts which make the ground may be uthlized for making the selvage - care lreing taken in destgnag the pattern to so arrange that the first and last strupe shall be equi-distant from their respective selvages. In other fancy cloths, it is sometimes possible, by using
two or more of the shafts to make a suitable selvage. These are matters for the designer, and should never br forgotten when designing a pattern for striped cloth. In jacquard weaving, it is usual to reserve certain needles for the formation of the selvage. In these cloths, therefore, no further special arrangement is necessary. But in three and four shaft drills, where one heald only is raised or depressed at one time; in five shaft sateens. in matting, serges, oatmeal, mock crapes, and a variety of other cloths, it is absolutely necessary to have some arrangement by which a different selvage from the body of the cloth may be made. The old plan was the addition of skeleton shafts to the shafts required for weaving the body of the cloth. Skeleton shafts are shafts on which healds only are knit when required for raising or depressing the selvage ends. Up to within a few years ago, it was usual to make these healds of the same yarn, or similar to that used for the ordinary healds, but, it being found that the great strain upon the few healds, placed upon these skeleton shafts, caused them to wear ont long before the healds upon the other staves, thus resulting in loss to the manufacturer, it is now usual to employ selvage mails-that is, healds containing metal eyes, which, when properly made, last a very long time. In many cases, however, it is impossible to use skeleton shafts without the addition of some arrangement to actuate these shafts, for instance, in making three or four shaft drills, and five shaft sateens, where motions exist which only provide for actuating three, four, or five shafts respectively. When this is the case, it is obvious that some further arrangements are necessary. One arrangement for this purpose is the addition of two small plain tappits to the tappit shaft ; these tappits are cast in halves for convenience of application. They are placed just under that point where the selvage ends will come. Two small treadles are actuated by each of these tappits, and these treadles, in their turn, actuate the skeleton shafts. Where a spring top is used, the top staves may be attached to two of the jacks, should there be any not previously employed, or arrangements may sometimes be made to attach then: to a long heald roller. In some cases, only one plain tappit is employed. This tappit is, of course, fixed upon the tappit shaft, whilst the three, four, or five, leaf tappit ic upon the twill shaft. When this is done, some care is required in designing the tappit. In all cases where strong selvage ends are used, the skeleton shafts should be placed behind the other shafts, and not before:' When two small tappits are used, skeleton shafts are sometimes done away with, and the selvages are made by a harness arrangement. The selvage healds are threaded through small comber boards, which are attached to the loom side or loom top, similar to those used in making fancy bordered dhooties, and either connected at the top with two of the jacks of a spring top, or else with elastics. Another variation of this pian is to have only one pair of these tappits at on side of the loom. The mail healds are connected with two of the jacks of a spring top. These jack. of course, actuate their fellow jacks to work thselvages on the other side of the loom to which
other mails are also attached. These setts of mail are connected to elastics or springs at the bottom of the loom. The great objection to the last two arrangements is that it is necessary to use a considerable quantity of heald cord, which has the unsatisfactory property of being subject to the changes in the weather. It is needless, probably, to point out that, as this is the case, the loom overlooker may have considerable work in readjusting the selvages of bis looms when a moist atmosphere has been replaced by a dry one, or vice versa. Recent investigations and experiments have, however, shown that it is possible to make heaid cord so that it is almost impervious to the weather, but as the arrangements by which this cord is made are not perfected, it is probably better not to enlarge upon this point. Another method very usually employed to make a bastard plain selvage is what is called the boat system. Between the healds and the yarn rods, two pieces of hard wood, one at each side of the loom, are placed upon a round weight iron bracket affixed to the loom side. These pieces of wood are so fixed that each end can be swayed up and down from the cantre of the wood, giving a motion like that of a boat-hence the name. The boats are placed under the warp-the distance being regulated by the length of the wires placed at each end of the boats. These wires are usually made of reed wire bent double and fixed in slits at the ends of the boat. The number of wires is regulated by the number of selvage ends required. Half the selvage ends are drawn thruugh the back, and bent wires are drawn into the healds of the two back staves only, above the eye, and not in the eye, as is usual; and the snds which are drawn through the dents in the front of the boat are drawn through the healds on the front stave, but always above the eye. of the heald, and not through the eye. This system is a very inexpensive one tn apply. It makes a selvage as follows: Three-shaft drill, one pick in a shed, two picks in a shed; five-shaft sateen, one rick in a shed, three times repeated, two picks in a shed. Where boats are used, very strong selvage ends are necessary, else the selvages will weave very badly, and much time will be lost by the weaver. The healds also are found to wear out very soon at those parts used by the selvage ends. The weaver has also to draw the selvage ends in at the loom. Where sufficient room in the loom exists, the tappit arrangements would seem to be in m ust respects superior to the boat plan, and, where manufacturers order looms for the weaving of fancy cloths, care sheuld be taken to make such arrangements as will permit of their adoption if required.

PHOTOGRAPHY IN WEAVING.

by nic. reiser, director of the weaving school, AASCHEN, GERMANY.

The writer gives in the following the result of his inquiries into an invention which seems likely to cause an entire revolution of the art of designing, the most essential and up to now most difficult part of the textile industry. Since the introduction of the jacquard, about the beginning of this century, no new idea of greater importance and utility has been added to the art of pattern weaving, and
already it seems certain that all those branches of the weaving indusiry which involve designs of any kind will consult their interests by securing and applying the invention.

Designing for weaving by the aid of this process, which has been protected by patents in all countries having textile industries (Jan Szczepank, of V'ienna, bemg the patentee), is done by means of photography in such a way that any picture or object, of whatever nature, can be produced on an enlarged scale through an optical obstruction (a screen) directly upon sensitive paper. This screen, which is called "Raster," is a photographical negative about $80 \times$ so centimeters in size, and is made on a strong glass plate, mounted firmly in a frame. About thirty such rasters or screens are required to make all designs whatever occurring in the whole of the weaving industries. One of them, called the chief screen, is a light gray negative with a strong lineage sumbar to designing paper, each of the lines consisting of two parallel strokes, one of which is black, the other white. The lineage forms a large number of squares, 800 to $\mathrm{t}, 000$, in the with representing the warp, and an equal number representing the weft ends. The whole surface of the screen thus contans 640,000 to $1,000,000$ squares.

The photographic apparatus, which is used for design. ing, has a focussing screen, which is also covered with a black fine lineage, and conforms in its scale to that of the chief screen, and all the other screens used. A small picture in front of the lens of the photographic apparatus can very easily be projected in the destred scale on to the focussing screen in the following manner: The object, if fixed exactly in the centre of the board, is carried in a stand to the front of the camera; then the apparatus is adjusted so that the image covers the desired number of squares in the width of the focussing screen. The closer the lens is brought to the picture, the larger will be the projected image. At the same time the focussing screen must be removed from the lens until the image appears sharp enough. In order to reduce the picture, the lens is removed from the picture, and the focussing screen is advanced to the lens until the image is quite distinct. The stand and camera are connected by two rods fastened to ther sule, and containing a scale for mechanically finding the enlargement desired. The board B can he vertically adjusted by means of a crank; another crank works the hurtountal adjustment of the board. These motions serve the purpose of easily projecting the picture on to the focussing screen. The focussing screen contains squares representing the warp and weft ends, in the proportion of $1-1$. The other proportions-when more warp than weft ends, or more weft than warp ends are in one square-are usually represented on the designing paper by oblongs of different size. These oblongs are so arranged as to divide the design into the desired number of warp and weft ends, in its length and width. With the present arrangement the squares are not altered, but the inage projected on the foulussing screen is shortened or lengthened by optical means, so that the length also is thrown upon the desired number of squares in the length of the focussing screen, altuough the width of the image remains unaltered. The width, of
course, may be arranged in the same manner. The foregong is effected by a cylindrical mirror, or cylindrical lenses, which are arranged between the lens and the picture. The latter is thus lengthened or shortened when desired, in one way only. It is sufficient to properly arrange the cylindrical mirror or cylindrical lenses, and then to adjust them by means of a screw fastened to the lens, in order to obtain the desired shortening or lengthening of the image, according to the proportion required between warp and weft ends. For simplifying the adjustment the screw has a scale, which gives all the proportions between warp and weft.

After projecting the object upon the number of squares required both for length and width, the focussing screen is withdrawn and replaced by the chief screen, which is firmly fixed in a dark slide. Behind the chief screen is arranged a sensitive paper, the film of which is placed against the screen. The back of the paper is covered and made light-proof by the lid, and its front is protected by an adjustable shutter. After a short exposure and the necessary development, the photographic paper shows a squared picture which represents the finished design. The squares appear black on light ground and white on black ground. The outlines of the image appear in full squares. This is effected by the chief screen being arranged at a given distance fiarther from the objective of the dark slide than the focussing screen, through which the picture is no longer projecteci in its original sharpness.

It is known that different colors in photography have a different effect; therefore, the design of a colored picture appears in two different tenes. Two tones, gray and black, upon a white ground, can easily be defined in card cutting. Thus, pictures of three colors, each of which causes a d.ferent effect in photography, give a design complete without any addition or alteration whatever. There being, however, many different colors, which, when photographed, are hardly distinguishable by the human eyc, it is necessary to paint the object according to a scale of colors specially constructed for this purpose, and always to be adhered to, two of a photographically indis. tinguishable effect never being applied against one another, which causes no difficulty whatever.

If the object is composed of more than three (for instance, six) different colors, we must repaint three of the tones on the design with a transparent color. For ninecolor objects we must use three colors, etc. In this way a quite sharp design can be obtained, for in repainting thres tones with red, for instance, a light red, a gray red, a dark red ground is formed according to the white, gray or dark ground. The repainting of such a design does not require any emasiderable amount of time or practice. Such a design already, with squares only, obtained by the use of the chief screen, can be used for weaving purposes in a great many instances.

To ubtain the positite screen more exact, more beautiful and cheaper, we recommend that it be composed of single parts, printed in any desired manner on a greater scale. The expenses of a screen suitable for 800 platinas would be about ios. Thousands or any number of designs
can be produced with one screen thus obtained, each of which would then cost about 18. to 2s. The photographic apparatus used for designing is most simple, but it may even be replaced by a camera obscura. A photograph studio is not required; a light roem will do. In case of need the designing with screens can to done during the night and with artificial light. The present invention opens new prospects, for instance, for portrait weaving. It is possible to obtain natural images with technical effects that were previously unattainable. The invention is of equal importance for weaving plash, damasks, paramount, curtains, carpets, gobelins, etc.

For a few shillings and in the course of a quarter of an hour we can make any designs whatever, and these ready for card cutting, which up to now have required a great amount of expenditure in both time and money. These designs have the advantage of being entirely free from all defects which were previously unavoidable by human hands and eyes, for in the photographic process the bindings are mechanically designed by the light. The fear that designers may be displaced will, as it has done many times before, prove unfounded. As the designing will not take much time nor require the expenditure of much money, many new designs will be combined and constructed, so that they can be otherwise employed. The writer does not hesitate to admit that he had great doubts as to the merits c f the invention at the beginning, but after a thorough study and practical test ho is convinced of the great utility and perfect success of the invention, and he hails it as a process which opens up quite new prospects to the textile industry.

analysis of fabrics.

There are various means adopted for determining the material of which the cloth is made, and, in the case of mixture yarns, how to ascertain of what the mixsure is composed, and the relative quantities of each. A common and ready way for finding the difference between animal and vegetable fibers is to burn some of the threads of yarn in a flame. The vegetable fiber is composed of carbon, hydrogen, and exygen, while the animal fiber, in addition to these, contains nitrogen. By burning, the threads used in testing the first mentioned fiber will result in carbonic acid and water, while those of the latter, or of animal fiber, will result in combinations containing nitrogen, which element readily makes itself known by its peculiar smell, or disagreeable odor, similar to burnt feathers. Another point, which it is well to note, is the rapidity with which the thread composed of vegetable fibers burns, as com pared with the thread having an animal substance as its basis. In the latter case, oally a little bunch of porous carbon forms itself at the end submitted to the flame, and there is no flame, as in tho case of the former. Another method is to untwist the threads, and note carefully the appearance of the released fibers. If they are wool fibers, they will be waved in exactly the same way as in the raw wool - the finer the wool, the greater the number of wave or corrugations that will be shown. On the other hand, cotton fibers will maintain the same atraightness which
they show in the raw state. We might, with advantage rmploy the microscope, as, by this means, wo shall bo able more readily to determine what is the nature of the fibers under observation. Under the microscope, wool fibers can be detected by the scales which aro upon the surface, and which overlap each other after the manner of scales upon the back of a fish. This poculiar property belongs to all qualities of wool and hair. Cotton, under the microscope, shows as a thin transparent ribhon twiated, without any of the scaly appearance noticed in tho wool, while silk has the appearance of a glass rod divided in the middle.

In some instances, owing to the effoct of finiuhing and milling, and especially in the case of materials which have been p zviously worked up, the above teats may be unre"able, or so undefined that they cannot lie trusted. In such cases, we should have a means of teating or analyzing that can be depended on, both to determino, at once and with accuracy, the class of fiber or filers that we are deal. ing with and the quantities of each, where two are mixed together. This can be done by a chemical analysis, that is, treating the cloth or fibers with acids or alkalios.

To detect cotton or other vegetable fibor in woolen or silk fabrics, one authority gives tho following: "Boil the samples to be tested in a concentrated solution of caustic soda or potash, and the wool or silk filer will rapidly dissolve, producing a soapy liquid. The cotton, or other vegetable fiber therein, will remain undisturbed, even though boiling in weak caustic alkalies for several hours, care being taken to keep the samples below the surface of the solution during the operation. If, during this s.ienping process, it is exposed to the air, the cotton filue becomes rotten, especially when the exposed portions are also, at the same time, brought under the influence of steam, (any cotton fibers remaining from the testing, if colored, may be bleached in chlorine water, and afterwards dissolved with cupra-ammonia)." Professor E. Kopy gives the following test:-" Wool is ouly soluhue in cupra-ammonia by the aid of heat. Concentrated acids, such as sulphuric, nitric, or, preferably, hydrochloric, act in the cold upon silk, but not on wool. The dissolving properties of cupra-ammonia, cu all vegetable fitres, make it one of the most reliable of tests. Cupra-ammonin is prepared by suspending strips of copper, in concentrated ammonia, in a large flask, tightly corked, and accasionally slaken, so as to bring the metal in contact with the oxygen of the air. By degrees, a tolerably concentrated solution of oxide of copper in ammonia is obtained, which dessolves cotton and other vegetable fibers, leaving animal fibers untouched." Professor Hummel gives the following test for detecting silk from wool or the vegetable filers:-" "The best solvent for silk is an alkaline solution of copper and slycerine, made up as follows:-Dissolve 16 grains copper sulphate in 140.160 cc . distilled water, and add 8.80 grains pure glycerine ($\mathrm{Sp} . \mathrm{Gr}$. 1.24) ; a so'ution of caustic soda has to be dropped gradually into the mixture until the precipitate at first formed just re.dissolves; excess of VaOH must be avoided." This so'ution doas not dissolve either wool or the vegetable fibers, and thus serves as a distinguishing test. Another method is given as follows :-
"Concentrated zinc chloride, $13^{8 "}$ Tw. (Sp. Gr. 1.69), made neutral or basic by boiling with excess of zinc oxide, dissolves silk slowly, if cold, but very sapidly, if heated to a thick gummy liquid. This re-agent may serve to separate or distinguish silk from wool and the vegetable fibers, since these are not affected by it. If water be added to the zinc chloride solution of silk, the latter is thrown down as a flocculent precipitate. Dried at 230° to 235° Fi, the precipitate acquires a vitreous aspect, and is no longer soluble in ammonia."

In testing cither cloths or fibers, where wool or silk is mixed with vegetable fibers, the better test is to use caustic soda, as this has less effect upon the vegetable matter than sulphuric acid would have upon the animal fibers-that is, if we subject a mixed yarn or cloth to the action of caustic soda, the soda would have, as shown in the above quotations, little or no effect upon the vegetable matter, while, on the other hand, if we treat it with sulphuric acid, there is a danger of the wool being affected by it, before the acid has entirely destroyed the vegetable matter, but it is best to be guided by the proportion of the two materials. If the cotton or vegetable matter predominates in the sample to be tested, it is better to use the alkali or caustic soda test, as it will destroy the wool or animal matter without disintegrating the sample, and thus allow the residue to be washed out without any fear of any of the vegetable matter escaping. On the other hand, if the animal matter predominates, better results would be obtained with the acid test, but, in using the acid, care must be taken not to have it too strong, or to allow it to boil very long, otherwise some of the animal matter might be destroyed. If the samples are undyed, the process is very simple, but, if dyed, the difficulties are increased, owing to the action of the acids used for mordanting, and the various coloring matters used in dying. These should be got rid of if possible, and, in most cases, subjecting the sample to boiling in a concentrated solution of hydrochloric acid will either remove the color or render the material subject to the tests to be applted, but, after thus boiling, care must be taken to thoroughly wash away the acid and the impurities loosened by the process.

The method we should adopt in the case of dyed samples would be to boil, for two or three minutes, in the hydrochloric solution, putting the sample in whle cold, so as to allow it to penetrate the sample, then, immedately, to thoroughly wash it and allow it to dry in a cool, ary place, after which we should carefully weigh it, and then subject it to either the acdid or the alkah treatment, according to the above-mentoned rule. We should use about a 5 per cent. solution, and put the sample in while cold, and gradually raise the temperature to boiling point, and allow it to bonl for two or three minutes, and then wash off and allow it to dry m a cool, airy place, so as to get it, as nearly as possible, the same temperature as before, when it is again carefully weighed, and the loss noted, and the percentage of loss calculated. One method generally adopted is to dry the sample to be tested in a copper oven, heated by a bunsen burner to a temperature of $105^{\circ} \mathrm{C}$, and then to weigh it
d test it in the above manner, and, after washing, to
evaporate the morsture, and dry to the same temperature before weighing, so as to ensure having the same amount of moisture on each occasion of weighing ; but, when the sample is weighed at this temperature, it readily takes up moisture from the air in the process of weighing, and we find that, unless we get the accurate weight immediately, it will gain weight so quickly that, in the case of using a very small sample, our percentage of loss will be very far out. We should prefer (if the oven is used) to leave the sample in the air for a few mmutes after drying, so as to get it the same temperature as the balance or scales would le, and then to weigh it. By this means we could ensure getting the weight accurately, without it taking up moisture during the process of weighing.

Having stated at length the recelpts and methods adopted by several authorities, we will give a complete analysis, as found by the atoove method, viz.:-Drying the sample in a copper oven, and then allowing it to take up moisture from a room, at a temperature of $62^{\circ} \mathrm{F}$. before weighing, and then subjecting it to test, and again drying in the oven to evapotate the moisture, and allowing it to again dry in the air before weighing it to ascertain the loss.

Weight of cloth $=\$ 0$ grains.
Alter treating with the caustic soda $=2.67$ grains, or 33.2 per cent. cotton

Wool dissolved in the process $=533$ grains, or $66 y$ per cent wool.

Warp weighed 1.44 grains.

After treating, 40 grains, or 35 per cent. cotton.
Wool dissolved. 74 grams, or 65 per cent. wool. Weft weighed $3+$ grains.
After treating. 1.05 grains, or 3: per cent cotton Wool dissolved, 2.35 grains, or G_{9} per cent. wool.
In the above example, there is either more wool in the weft than in the warp, or else some of the short fibres of cutton have been lost in the working, owing to there being less twist in the weft. If we take the warp and weft logether, we find the proportion of cotton 32.2 per cent. against 33.5 per cent. in the cloti, so that there has evidently been a slight loss in separating the warp and weft from the cloth.

BUILDING AND EQUIPPING A COTTON MILL.

The main builuing of a cotton mill should not be over three storice high, with weaving shed connected by means of a fire-proof covered run, said run on hallway being located near the elevator. The shed should be at ieast twenty feet from the main mill, with a fire-proof wall for end, said wall caps to be made of iron or stone to protect it from the weather.

The shed should be constructed with a saw tooth roof for the purpose of diffusing light; the main building constructed on any of the well-known plans, but I should prefer the Lockwood style of floor beams, with the exceptoon that the intermediate beam be carried to the centre of double window frame, and there supported by an I beam extending down to the window stool. Ths will give the beam a strong suppors, and not in the least unsightly. I

[^0]would advise the use of steel I beams. There would be no shrinkage in them to allow machincry or floors to settle, and the only objection I know of to their being used is that they might sug in case of fire; but who would not rather rus that risk, which is but a minimum with our well pro. tected mills by first-class sjstems, than run the risk of shrinking beams and settling floors.

The power house should be located conveniently to the mill, also conveniently to the railroad, so as to have the least amount of handling of coal. I would advocate the stean engine and electric generntors as the prime movers and carry the power to motors in mill, the said motors to be located on the ceiling over the spare floor in the centre of the rooms in long mills; and at the ends in short mills; the motors located far enough below the ceiling to be handily oiled and operated. Each main line should have a separate motor, and each long countershaft should also be drawn by a separate motor, having all switcires located on the wall, convenient so that the overseer or secondhand could operate easily in case of danger or accident, by the use of electricity. The extra heavy shafting, pulleys and belting are all done away with, and the fire risk reduced, as the power can be isolated from the main buildings.

Picker zooms to.day, I think, have reached the standard of perfection, and 1 strongly advocate the opening of cotton one week in advance before it reaches the feeders attached to the picking machinery. This opener should be connected by a short trunk, of not less than 10 feet or over 15 feet in length, to the first breaker. From breaker the cotton should pass to intermediate lapper by doubling four into one, thence to finisher with same amount of doubling. This will insure every time an even, clean lap, providing you have given the fans an ample dust room, with at least three square feet of outlet to each fan. It is but six or eight short years ago that cutton manufacturers complained that first-class carding engines were not built in this country, but to-day there is no need of any such complaint, because the machinery manufacturers have built, at a great expense to themselves, a carding engine equal in all respects to any made in the world. Now, have the manufacturers of cotton done their part?

You buy an expensive and accurately made machine that is built to be adjusted. to a few thousandths part of an inch and set it on a florr that will settle and give more or less each and every day with the weather. You expect this finely made machine to do good, accurate work. If you want good, first-class carding, set your carding engine on a foundation made as firm and solid as you make the foundation for your steam engine. You will then not only get extra good carding, but the repairs for your cards will be reduced to such a small amount that you will hardiy know that you have any in your mill. Carding rooms should be located on the ground floor.

Drawing frames, although the simplest machines in the mill, are about the most important and have given the machinery manufacturers no small amount of trouble and expense to perfect, but that has now passed over and a first-class machine may be bad. Fly frames should be jocated with cards and drawing and have equally as good
a foundation to insure long life and smooth working with a small amount of horse-power. I have now in mind a mill where the frames were set lengthwise with the flour beams and in one year they settled, as also did the beams, one inch. This was in what is termed " a modern mill," built to see at how small a cost per spindle it could be done for, and not to see how low the running cost could be made, which should be the all-important factor. In selecting a fly frame, care should be exercised to get one that will give the most even tension to the sliver, and look out for lost motion caused in the gearing by reverse of bobbin rail; also see that proper differentia! gearing, oiling arrangement, roll stands, cap bars, fine adjustments to cone belt traverse, etc., can be produced.

But I think there has been and is to day a great mistake made in the system of banding of spinning frames. I would advise the system used by all worsted mills on their frames, i.e., banding four spindles with one band by means of binder or idle pulley which swings on an arm hung on a rod under the frame near the cylinder. If this system was used, we would hear no more about slack twisted yarns, tight and loose band, weather affecting the bands, extra large amo:nt of horse-power consumed by bands being too tightly put on, tight bands in damp weather, complaints that the bands were put on toc slack, or too tight, as I used to put them when working in the spinning room. To be sure, they were tight enough so I would not be sent for because the new band just put on had got too slack. I would advise the mill men of this country or any other to look well into this system of banding. The spinning room I would locate on second floor of mill and use the third floor for spooling, warpers, drawing. in, etc.
-Up to about 1850 superiority was the guiding principle of the manufacturers, whose study it was to excel. Tu-day their position seems reversed, and inferiority rules, and we seem to study how far we can deteriorate our goods, whilst maintaining an outward appearance of quality.-Ex.

NEW DYESTUFFS.

[^1]bined with Diazo Red Hlue 3 R. or the new Diazo Bhes 3 R. The last named color produces clear reddish blue shades when dinzotized and developed on the fiber. Besides dyeing easily level. these colors do not affect the the natural softness of the cotton or deteriorate it for spinning. In price they are much cheaper than indigo.

Benzo Chrome Brown 3 R.-The above brown is the fourth and neweat addition to the Benzo Chrome Brown family. The G, B, and K brands of which were recently brought out by the Fivenfai)riken Co., of Elberfeld, met with such success, that the above Ben. - Jhrome Brown 3 R has just been added to the group, and will prove a very useful color. lenzo Chrome Brown 3 K direct, produces a clear deep reddish brown having the same properties as the older brands, and is therefore applicable either as a direct color c: for after treatment with chrome and bluestone, and in the latter case is noteworthy for its great fastness to washing, light and rubbing. For dyeing half wool it should prove extremely useful, since it dyes both fit re equally as co the older brands ; is is also suitable for dyeing half-silk.

Lazuline Blue R.-Lazuline Blue R. is the latest addition to the list of acid woo: dyeing blues. It dyes very easily level, being in this respect equal to the average acid violets, to which, however, it is much superior in its fastness to light and rubbing and being therefore very suitable for the production of slates and drabs or bright navy blues, upon ladies' dress goods, 'yarn, etc. It is fast to milling and stoving and should prove useful in blanket manufacturing. Samples, dyed shades, and circulars of any of the above new products will be mailed gratis by applying to the Dominion Dyewood \& Chemical Co., Toronto, sole agents in Canada for the Farbenfabriken, vorm. Friedr. Bayer \& Co., Elberfeld, Germany.

SLIE FLAX INDUSTRY IN THE UNITED STATES.*

A half century before the manufacture of cotton, Per..asylvania, Rbode Island aud New York offered special inducements for the manufacture of certain kinds of linen goods. In 1810 over $20,000,000$ yaris of linen fabrics were made in this country in families. In addition to this nearly 25.000 .000 yards of linens of coarser quality were made. Water and steam power, as well as labor-saving machinery, had been introduced provious to this, which resulted in a considerable extension of the industry. But it was still largely a household industry. Litlle.by little the cheaper cottons have found their way into the homes, silencing the spinning wheels and almost all the looms engaged in the manufacture of the finer linens. At the present time the use of flax fiber in this country is chiefly in the making of twines, bagging, and the coarser fabrics ${ }^{-}$to which our other fabrics are not so well suited. In certain parts of kentucky and the Virginias the bousehold industry still flourishes But this is chiefly in the backwoods districts, which still cling tenaceously to the old ways. The manufacture of the finer fabrics by machinery is confined almost exclusively to experimentation.

In spite of the decline of the linen industry, the culture of flax has steadily increased in the United States. At the present time the annual production of faxseed and straw is approximately $12,000,000$ bushels of soed and $300,000,000$ tons of fiber. It is doubtful, however, if the farmers can continue to grow flax indefinitely for the seed aloneUnless some use can be made of the fiber, this great agricultural industry will doubtless suffer a considerable decline during the next decade

It is conceded that, next to cotton, flax is the most useful and valuable of all commercial fibers. It was thought at one time that cottongoods, on account of improved methods of manufacture, might eventually almost entirely take the place of linen goods. But, plainly. this is not to be. More and more flax is coming to be again what it was from the time of the earliest Pharaohs of Egypt to the beginning of the present century, the fiber of luxury, while cotton fiber is takin ${ }_{b}$ its place as the fiber of the masses. The United States is importing annually from foreign countries over $\$ 30.000,000$ worth of linens -more than one.tenth of its total output of manufactured cottons. It has been estimated that the world's consumption of linen goods is not far from one-third the consumption of cotton goods in money valuation It must be evident that any country that pretends to lead in the manu.

[^2]factures of the world can ill allord to have no part in this important branch of human industry. Une need only to visit the great centres of Imen manufacturing in ireland and on the Continent to beconvinced that, next to the manulacture of cotton goods, this is the most remunerative of the fiber industries. A study of the comparative consumption of linens and cottons shows that with the steady rise in the sta.idard of living of th: masses in civilized countries, the per cent. of linen roods used is steadily increasing. To one in possession of the facts about this areat industry, and especially about its carly establishment in this country, it must be a matter of great surprise that this enterprising nation has allowed the industry to slip from its control.

Certain agricultural conditions are necessary. The most importanc of these is the cheapness of lands compared with values in Ireland and on the continent, where flax is now largely produced. Next to this in importance is the greater native fertility of our soils. A yet further condition in favor of the United States, especially in New England, is the fact that thousands of the best feraca have been abandoned and ten thousands of acres of land of much higher native fertility than those under cultivation in Europe, now lie in idleness, or practically so. These conditions joined with the proverbial skill and enterprise of the American farmers, should give them a decided advantage in this enterprise over European compettors. We need only learn their methods of close and intense farming to surpass them easily in the growth of flax: at least to the extent of providing fiber lor the producfion of linen fabrics for home consumption.

A final condition worthy of note which would be established by the introduction of this industry into New England, is the building up of a home market for all kinds of manulactured grods. If the abandoned farms of New Fngland could be repeopled by the growers of fax, Nicu England by this intense form of farming could support a rural population many times as great as she has ever supported

After a careful examination of ail that has been written upon the subject, and as a result of personal investigations covering a period from my visit to Ireland and the continent for special investigation in 18st to the present tume, 1 venture the following practical sugfestions about how to proceed in the estabishment of the fiax and linen indus. tries in this country. What is needed first is a capable and progressive commatice from a representative bod; of manufacturers to co-operate with the United States Department of Agriculture in carry. ing their recommendations into effect. Abundant information of the most duated and reliable kind is at hand. illustrating every phase of the industry from the selection and preparation of soils up through every step of the agricultural ieatures, as well as the processes of manufacturing, to the finding of the consumers for the finished manufactured prolucts.

A commutuec, representing a body of capitalists of adequate resources, such, for example, as uur Neu 1:ngland Association, is an absolute prerequstie as a preliminary step. Such a committec, with a paid secretary, who should detote las whole time to the business, should address aself at unce to the folluwng tasks. Tirst, they should acquire by lease or otherwise a plant sufficiently commodious for adequate expermentation, in a locality where a score or two of farmers are willing to grou a detinite number of acres of gax each. The commatice should hase pwore to impurt the very latest and best machners. boith for scutch mills and for the manufacture of linen goods-in shurt, should be empowered to io in New England what has already breen so successfull, dune in Canada and Michigan When such a cummate is ready to proceed. backed by such an organization and by the representatives in Cungress of such a constumenty as Dew England buasts, there is no doubt that adequate protection in the form of a tariff on importations coald be secured. Even without protection a beginning can be mads in the opiaton of all experts on the question. But with protection. by making use of the abundant information at hand, there is not the slightest risk Indeal there is every reason to believe that financial success is certain from the lexinning it is equally certain that the growith of the industry will the steady and substantial from the first, since every jussibility of failure has been anticipated by previous experment. Once sure of their ground through such an initial step. the commitice should be authorized to acquire large tracts of samatile
lands in the vicinity of present plants and water privileges, to which the industry may be extended as rapidly as is expedient, the distinct aim all the time being to supersede the making of coarser cottons by the making of linen fabrics. As fast as the space now occupied by coarser cotton machinery can be utilized by linen machinery, the cotton machinery should be transierred to the South, where mills should be established or acquired by the asrociation. This double plan will secure to New England the great and remunerative linen industry to take the place of the coarser cotton manufacturing that you are bound to lose in the end, anyway, and will enable New Eng. land capital and brains to compete on equal terms on its own grounds with the South, that is taking the coarser cottons from us on account. chießy, of certain distinct local adrantages, as we believe.

PEARL BUTTON MAKING.

In former years pearl bustons were foremost in the list of exports from Austria to the United S:...s. Nowadays a pearl button destined for sale in the American market is a rarity. For some time, says a writer in the Dry Goods Economist, a movement has been on foot to develop in the United States a domestic manufacture of pearl collar and other buttons. American manufacturers whop have branched out in compettion to the Austrians enjoy advantages which only good machinery can give, and what is more important. they are willing to pay slightly better prices for the shells, a condition arising from time and moues saved by machinery and better prices realized. The production of pearl buttons in the United States, howeter, has not as yet had much to do with the general falling off in Austrian exports. Dealers here say that thus far ouly inferior goods can be made in the Unted States, viz. : buttons for use on underwear anid other garments, where quality is secondary. Good, one-piece collar buttons cannot successfully be produced there in wiew of the fact that no machinery capable of doing the same clear, symmetrical work that is done by hand in the United States has been put on the market. But they expect the problem of machinery to be solved satisfactorily ere long.

The lethargy of the Vienna button trade. resulting from the clos. ing of the American market to their output, is remarkable There used to be a number of large factories, employing 25 many as two hundred workingmen, in active operation all the year round. To-day many of them are shut down. The employees earned gocd wagesoften $\$ 6, \$ 7$ and $\$ 8$ a week, amounts that are uncommon hert The majority of these men have had to quit work and learn some other trade. The commission merchants, who yearly cleared big profits, tave been obliged to take up other lines or retire on their earnings: so not only have the general class of factory employees suffered

The manufacture of buttons was also carried on largely as a "Hausindustrie." which means that the laborer was permitied to carry the material supplied him home to be fashioned The machinery being crude, all the members of the family were able to help the paterfamilias, and in this manner one family could get through with an exceedingly large amount of work every week and lay away snug litte sums for a rainy day This happy epoch in the button-makers' life has passed. for the demand will not supply so many with work

True, when the dealers recognized the hard fact that America would never again be the market it used to be, they cast about for new outlets, with the result that fair sized shipments go pretty regularly to the East This markes, it is hoped, will, when worked vigorously and systematically, bear appreciable fruits, but naturally, merchants do not expect to find in the Orient a second imerica
A comparison of the prevailing prices for different grades of riw pearl with those of years gone by elicits the information that tariff and competition alone are not wholly to blame for the present slug gishness of trade. The Austrians have had to contend, 102 great extent. against high prices. Within the last eight or ten months, and even earlier, the cost of raw material has advanced almost so per centum, and in addition thereto difficalty is found to obtain shells in sufficient quantities owing to the fact that better terms are offered to producers by America

In Vienna, the shells used mostly in ine manufacture of one-piece collar buttons are of lied Sea and Mediterranean growth, which cost. per pound. in the neighborhood of 35 cents The product of these shells are the so-called hand-made battons. which are still exported in
small quantities to the United States. There is, however, a more expensive variety of shells, brought trom Australia, and costing about fo cents a pound First-class buttons, opera glasses and umbrella handles are manufactured from them. Cheaper varieties from the 1iji Islands are sold for 25 cents per pound, and a still more inexpensive kind is grown in Panama and sold here for 20 cents. The poorest shells used for inferior grades of buttons are grown in Persia, and sold to manufacturers at the low figure of 3 cents.

The main cause to which can be attr. uted the ocarcity of raw materials is that the beds are in a worked or sundition. When business was prosperous, in order to meet the demand, pearl producers drained the beds to their utmost capacity, and, with 2 lack of foresight which has cost them dearly, neglected to allow the growing shells to reach maturity. As an example of such a lamentable state of affairs, dealers here cite .he case of Egyptian shells. I understand that Egyptian shells were once comparatively plentiful, but so popular did they grow that they were gathered irrespective of the growth they had attained. Hence Egyptian shells can seldom be obtained except at unreasonable figures.

The rise and fall of the button trade is but an instance of the unstable condition of many lines of Austrian manufacture. The Austrian manufacturer of to-day, it seems, is a very different sort of man from what he used to be. The Germans are forging to the front with raquenchahle energy, and in their strides for new felds are pushing the Austrian to the wall. Fortunately, the government is coming to realize the bad state of affairs. It is putting forth acimisable efforts toward the establishment of new trade schools and kindred institutions that will tend both to improve the quality of manufactures and to do away with antiquated foreign trade methods, and if producers do not shove forward a peg or two under this new stimulant, they will have themselves to blame for Austria's future commercial position among manufacturing nations.

FLOCKing.

The flocking process is one of the most important parts of fulling. Not only does it require some additional calculations, but with them also keen judgment, for the material out of which the flccks are maje has an important beating on the subject. As to the calculations necessary we refer our readers to the Fuller's Ready Tables, for the whole matter is there treated in a most comprehensive manner, says a writer in the Boston Journal of Commerce. So we will take it for granted that the amount of flocks which the goods require is known, and our che' aim will therefore be to devise the best way of getting them on the goods. There are several methods in use among finishers, all of which have their merits and some also their drawbacks, and among them we first find the dry flocking method as employed by some. The greatest benefit ascribed to this method is the even distribution of the flocks all over the goods. this being made possible by reason of the goods being dry. This plan will hord admirably on some classes of goods, and may be employed on kerseys, meltons and such like fabrics. Un cassimeres we should not want to advocate the use of this method tor the reason that too much of the flocks are apt to find their way through the fabric to the face, and it fancy colors are present, espectally of the lighter kinds, these are apt to appear muddled and will lack the brighiness which they are inteaded to possess when they are made part of the fabric. Then again it will require extra tume to the running of the goods, for at will surcly take a quarter of an hour to distribute the flocks properly, and these nfteen minutes added to the regular running tume will be found to be an appreciable stem in case we are driven. We therefore cannot see any great benefit to be denved from dry flocking. and although we have tried it several tumes we never could find the results sufficiently good to warrant its adoption as a permanent method. When flocking dry, the amount of flocks required for the roods is put on them immediately after starting the mill, and after they are well distributed the soap is added to wet the goods down. It is claimed that by this way of doing the goods do not get a setback the same as they do when the flocks are applied when the goods are wet and begin to felt. However this may be, we can. not find anything in our experience withich will bear out the assump. t:on. After the goods are wet doun the procoeding is much the same as described in the fulling process.

We next come to the wet flocking method, and here the greatest objection raised is that stated above. Of course if we intend to proceed in the wet flocking process the same as in the dry, the objection pointed out will no doubt hold good, and even then we can see no further harm done than a trifle more ume required in the process, which is about equal to from five to ten minutes. But we do not intend to treat the goods to any such process as that, for when flocking wet the greatest advantare of the method is lost if we should dump the whole amount of flocks on the goods and then let tbem run. Therefore we take a small amount of the flocks required to be put on and sprinklo them on the goods lightly, and as soon as these have been taken up we can give them some more, and thus proceed till all of the flocks are put on. This again is objected to as being too much work, but for all that it is the only reasonable way to flock goods, and weight can be made with less flocis than with any otber method. We think that the amount of work required is the greatest objection urged against this way of doing, but we have yet to find a way of getting goods finished in an Al fashion without having to use zonstderable work. The nocks thus put on will stick better to the goods and becomepart of the fabric. because the flocks are not fed to the goods until the goods are in a condition to take care of them, ard that is only when they become heated. for it is only then that felting begins. If to this is added a little felting capacity in the flock it can be easily seen that the process must be successful. Flocks which do not possess the felting qualities are not fit to use in any sense. but we would rather risk them on the goods, if they are put on in the way stated, and at the proper time, than to take a much better flock and put them on dry. We think that between the two the first named would be the better fabric all around. Not only will the colors be brighter, but the flocks will have been felted into the goods in such a manner that they will stay and not drop out at the first handling the goods get after they become dry. Une of the best tests as to the truth of this may be found in the looks of the dry finish. ing rooms where the two methods are in operation. Where the dry flocking is carried on it may be noticed that the tables, etc.. become quickly covered with flocks as snon as they are not in use, and we will be continually brushing tables. This shows that the flocks have not been incorporated into the goods enough to hold them, and as soon as they become dry the sifting-out process begins to stop only when the goods are worn out. No such state of things will be found where the wet flocking method is in use unless the quality of the flocks is entirely below what might be expected, but given the same quality of focks as in the dry process there will be no sifting out, at least while the goods are in the mill. and not for quite a while after the goods have begun to wear.

Another method of flocking is half dry, half wet, and this method is used only when the amount to be put on the goods is excessively large. When that is the case, it would take too long to apply the flocks as described in the wet flocking method, for the goods would be up in width and length long before we had got them all on. Therefore we take the half of the flocks and put them on dry, and the other half as described before. We do not du this because is is the best way of doing the uork, for there is no best way to choose, it is simply the only way the flocks can be got on, and for that reason we do 3 . While it may not make much difference on all-wool goods which are flocked in reasunable amuunt. how he flocks are put on, whth the exception of cassimeres, noted above, it becomes quite an important item on the lowes grades, that is, cotton-warp goods. The wet process should only be employed on them as giving the lest results, but as this class of goods are cheap the amount of work required to do the flocking right is often grudged, and they generally recerve the treatment which is of the least benefit to them. In our next we will treat of the gigging process.

CARE IN DYEING.

The perfection in dyeing any kind of stock can be accomplished only by using every pussible caution. There is a difference of opinion among superintendents as to whether each kettle of stack should be perfectly even in color and matched to sample, or whether it is suff. cient to have the stock, when picked up, blend to make the destred shade. The perfect matching of a color in the dyehouse is a very
difficult matter, and, in fact, it is impossible except by chance. If a lot of 2,000 pounds to be dyed brown in called for, in many places it would be divided into kettles of 200 pounds each If you have made the sample and have an exact rocipe, generally you will start all of your tubs on the same recipe You may have six tettles, and when done you will find each one of a different shade. but when all the slock is carded together it will match the sample Some of the stock may be of an ollice shade, some of a red. and some quite dark; stlll, each had the same amount of dye, and, as nearly as possible, the same quantity of water, and each was boiled the same length of time. You will find the same result if you dye one lot to.day, and onea few days later Of course, if your superintendent is one who requires each bettle to be an cxact match with the sample, you must throw out the dark lot and dje a new lot. The lot is not lost, as it can be dyed into zome darker shade. The lighter ones must be shaded to the sample if you are using the concentrated dyestuff, the llquor must be run off and the stock redyed, as it may call for a few ounces of dye It may require only an ounce. or even as small an amount as one quatter of an ounce, if the shade be a delicato one If the cost of this color be three cents a pound, the extra work will add at least two cents a pound, and will the shade be any better than if you were working for the superintendent who would say. " Try these different lots: weigh out equal parts from each, when dry take to the picker, and after picking have a small sample carded and show me" After doing thia you may be a llitlo short of red, and he will say, " what can you do with it ?" Supposing, after several trials, 3 per cent of a reddish brown is added, and it matches to his satisfaction, then be passes it. The two ways will give the same result, but the one costs almost double the other. The writer has used both ways and under the fitler one was able to turn off double the amount of work, and at balf the cost of the first process. I should be very giad to learn the opinion of others as to why the expense is so great in one and so amall in the other, but, at the same time, the result the same. Again, the same point is seen in regard to each separate kettle. In one way one must have every fiber of the same shade; in the other. as long as the fibers card to the shade deaired it does not matter. There must be taken into consideration the manner in which the wool hisbeen sorted. If sorted at all No superintendent or overseer has any right to expect even dyeing when there are grades in the wool from the coarsest to the finest, even paint and tag locks. Coarse wool always takes the dye quicker tban fine, and in brown will take the red before the fine bas any, thus making a very uneven color. If wool of different kinds, as to grease and dist, is mixed, uneven scouring is the result, for, if the wool is scoured until the greasy portion is clean, the other will be over-scoured; and, if otherwise, grease will be left on part of the wool, so the result is as bad one way as the other, and the dyeing is equally uneven

There is one way in which this state of affairs can be overcome. but the unevenness will still be there, only it will not be so appareat. Blace a picker in the dyehouse, and run the wool, after it comes from the rinser and has passed through the squeeze rolls, tbrough it: you will pick it up perfectly. This will save time, as one man can do all the picking for a 25 set mill, and save the time lost for breaking it up by hand before puting it in the kettle. This also makes poling easy, and your kettle can be poled double as much as when the hand breaking is done "f after extracting. the dyed stock is again put through the same pich r, it will dry in half the time, and save at least one picking in the picker house This picking will not require any more labor, but will save it by saving time, and will make the work look more even. although it is not. Very even color can be obtained in this way, and if the wool is well graded the color will be almost periect.

THE ORIGIN OF THE IMPORT SILK TRADE IK JAPAN.

An interesting paper on this subject is published among the Trans. actions of the Historical Society. We think it worth reproducing in an epitumized form. Among the articles brought to japan by Clinese and Iortugueso ships in the exaly days of foreign irade, observes Yokoi Tokiluyu. the author of the paper, raw silk was the chief. In those days japan produced 00 silk of ber own. Not antil abcut the middle of the eightecath century did Japapese begia to cultivate the
silk-worm to any extent. Mr. Yokoi says that, when preparing a history of Japanese commerce, he was struck by certain facts connected with the silk trade in its incipient stage and thought them worthy of forming the subject of a separate paper, which he now publishes.

In 1602 a Dutch ship arrived in Nagasaki laden with raw silk. But it was just after the war which culminated in the battle of Sekigahara, and traders were by no means flush of money. The captain of the ship waited in vain for the arrival of purchasers and eventually was so distressed that he appealed to the Nagasaki bugyo for help. The bugyo proceeded to Kyoto and consulted Ieyasu on the matter The Shogun sent for ten merchants of Sakai and Kyoto, and pointed out to them that if the Dutch ship were allowed to go away without selling her casko she would not return, and that the country would thus lose the benefits to be derived from foreign trade; he therefore advised them to make offers to the captain for the purchase of the silk. The Nagasaki merchants soon came to hear of the steps the Shogun had taken, and, anxious to share the profits of the trade, asked for permission to purchase a portion of the cargo. Their request was granted, and thus the merchants of the three abuve-named places formed silk purchasing companies, to which leyasu subsequently caused a charter to be granted. This charter, dated May 3rd, 1604, and appearing over the signatures of Honda Kotsuke-no-suke and Itakura Igano-Kami, forbids other parties to buy silk, prior to the conclusion of such purchases as the favored companies wished to make.

It is stated that the first silk buyers lost money over the business and that they appealed to Ieyasu to iniercede on their behalf and persuade the Dutch to allow them to make good their losses by cheap bargains the following year, which arrangement was effected. Ieyasu appointed from among these merchants certain persons whose duty it was to superintend the trade. The proportions in which the three towns were allowed to purchase annually were 100 hyo for Kyoto, 129 for Sakai-ura, and 100 for Nagasaki.

During the early part of the Kanyei period, the merchants to whom the monopoly was first granted made great profits, and consequently an urgent application from the traders of Edo induced Iemitsu in 1631, to grant them permission to purchase annually to the extent of filty hyo for ordiaary merchants and sixty for mercers.t The same privileges were granted in respect of the purchase from the Dutch of woven silk, crape, and other materials. Osaka next applied and obtained permission for ordinary traders to purchase rasy silk to the extent of thirty hyo a year, and mercers to the extent of sixty. Charters were granted to other places subsequently, but the quantities allowed to be purchased were comparatively small.

In 1636 a proclamation forbidding Christianity was issued, and at the same time the following restrictions were put on trade. (i) On the arrival of foreign vessels an incoice of the cargo was to be sent to Edo, and permission received for the sale of goods. (2) Within tweaty days after the price of silk had been pocided, the quantity sold was to be paid for and delivered to the five chartered companies of Sakai, Kyoto, Nagasaki, Edo and Osaka. (3) Other goods were not to be sold sill the price of silk had been determined. (t) The sailing of foreign vessels was not to be postponed later than Septeraber 20th, unless in case of vessels that arrived late, $t 0$ which an extra fifty days was allowed. (5) Woald be purchasers of silk were to reach Nagasaki on or before September gth. Traders arriving after this date were not entitled to purchase silk that jear. (6) No sales of silk at Mrado were allowed prior to the fixing co the price for the year at Nagasaki. Judging by the number of presents given to the Shogun by the chartered companies, they mast have realized very large profits.

In 1658 the silk trade regulations were withdrawn, and merctants were allowed to purchase how and when they pleased. But it was found that this freedom only tended to increase the profits of the Dutch, who, naturally enough, made good use of the jealousies of competing buyers, and stood out for high prices. Again the Government was applied to, and afain it interferod, and the five original companies were reinstated in power. A new method of determining what should be the market price of silk year by year was adopted.

[^3]On the arrival of the first vessel laden with silk the companies were required to send in sealed tenders, and the price per hyo was i.xed by striking the balance between the highest and lowest bid. But the quantity allowable for each company to purchase was, not fixed, as in former days, and this soon led to practices which the authorities deemed undesirable, and hence the old restrictions as to the quantity 13 be purchased were, in $\mathbf{1 6 8 5}$, again enforced. It must be understood that the quantities given above were ouly proportionate and relative to the total quantity of silk annually offered for sale. However large the purchases which in any one year a company desired to make, it had 10 maintain its ratio vis-avis other companies, unless in rare cases, "here. for some reason, another company wished 10 forego its rights.

The same year in which the above restrictions were enforced witnessed the passing of regulations limiting the total value of silk purchasable annually from China to 8,000 kwamme of silver and that from Holland to 50,000 ryo. At this time two government officials were appointed to superintend the distribution of the silk which arrived year by year among the various companies. The companies seem to have increased their membership and to have elaborated larke organizations as time went on.

To take one instance. the Sakai Company originally consisted of some four or five traders, but in 1757 we find it had a membership of 150, with six directors, called toshiyori, and that it purchased during the year 5,000 lbs. of raw silk. The officers of the company were remunerated as follows.-The six directors receivel annually fifty pounds of silk and seven $k w a m m e$ of silver: iwo silk inspectors, three kwamme of silver, clerks, 500 me; assistant clerks, 500 me ; one ser. vant, 250 me. From 1764 onwards Japanesò sericulture grew apace and the import of foreign silk decreased correspondingly. The purchasing companies, though gradually diminished in size, were not dissolved, however, until 1859 .

LEATHER BELTS.

Leather, in the process of manufacture, previous to the application of grease, has little strength, and may be torn, according to thickness, much like brown paper. Grease causes such action of the fibers upon each other, that great streagth comes back: in fact, the leather may be said to return to a condition akin to its original state as a hide. The ever-fertile mind of the American worker in belt leather has sought for new methods in the greasing process to gain in value of product. but to this day a universal method exists of using gallow and cod oil, these two are usually combined for the flesh side, while cod alone is used on the grain. They are allowed to slowly penetrate the leather which has first been thoroughly wet: the hides are hung in the open air, or in a drying.room, and as the water dries out, the grease penetrates, leaving. however, the stearine of the tallow, which latter is fially scraped off. The future manipulation consists in wetting and stretching. rubbing down, or stoning, finally, much working on the surfaces with a slicker and trimming. A just limit to the quantity of grease which belt leather shall have, has been well determined, to give to it a character of elasticity and toughness peculiar to no other material. It is an interesting fact that the best cod oil contains only a faint trace of an active acid. Also, in using tallow, the active acid principle, the stearine, is left upon the outside to be scraped off: thus, all which !enetrates is of a neutral nature, and not injurious to the fiber. Bels. ing is now made and carried in stock in large rolls, and by long stand. ing it becomes dry. When a new belt is put to work upon pulleys there is a rigidity in its character not in keeping with our ideas of a minimum of power to be expended: ordinarily also, when a belt is put to its largest duty. ihere is more or less sipping. In the first making of iron-faced-pulleys, they were left rough, but pulleys were soon made as smooth as possible by finishing, z belief prevailing that a close contact between leather and ron gave the best adhesion, and then, 100 , if slipping occurred, less wear came to the suriace of the leather. To provide for still better adhesion, pulleys are covered with leather, also with patent covering of paper. There have again come into use pulleys made with ron arms and wood rims, also all wood pulleys. To prevent the slipping of belts, or to make them more pliable and durable, various substances have beep used: powdered resin 10 produce immediate
adhesion, or castor oil to give pliability and adhesion. The first is proved by all experience to be very injurious to lenther, causing it to harden and crack. Castor oil has been much used, but never with entire satisfaction, where all conditions of a belt are considered. Castor oil has an active acid principle ; also. it is drying in its nature; its continued use saturates a belt and changes its nature from its legitimate state of elasticity and toughness-a belt thoroughly filled with castor onl is in a poor condition, when it comes to repairs. The writer has given much close study to the care of leather belts, with respect to a proper dressing to apply to them, and after eight years' experience, has produced a neutral compound, which thoroughly prevents slipping, while still leaving the leather practically as at comes from the belt-makers' hands. Its endurance is very remarkable, and the quantity necessary to prevent it from slipping is surprisugly small. it leaves nothing further to be desired. The writer does not hesitate to say that, with a polished faced iron pulley, the full value can be had from a leather belt. Whatever the conditions of use for belting, it should be positively kept free from machinery oil, and free from dust, as far as possible. Run the grain sude to the pulley, Belts should be run as slack as possible, without, however, so much slack. ness that a flapping motion can exist . this keeps the fibers from undue strain, saves the laced joints, saves the bearings from unnecessary wear, and, perhaps, above all, prevents the shafting from being pulled out of line. The inquiry is made as to the exact cause of the electricity developed by belts. As 1 have observed that, in the extreme case of 2 dynamo belt, running over two thirds of a mile per minute, no electricity is developed in the belt when my belt dressing is used, the question seems legitimately asked, if the electricity in belts docs not come unly with slipping.-Fiber and Fabric.

THE BELGIAN SYSTEM OF CARDING.

Swire Smith, Keighley, England, who is considered a good autbority on textile matters, recently referred to the compelition of the Belgian yarn spinners, and to the $15.000,000$ pounds of yarn they send annually to England. He and the late John Slagg. of Manchester. paid a visit to the town of Verviers, some years ago, in order to investigate personally this particular branch of competition. They weresurprised with what they saw, the machinery being of the newest and most advanced types, and its adaptation most skilfully planned and arranged so as to turn out a maximum quantity of well spun yarn 2t a minimum of cost. This yarn was principally spun from the "burry" wools of the River Plate-2 class of wool much rejected in England on account of excess $j 0$ burrs.

They considered the Belgians much in advance in this particular line, and that this competition could not be despised. but was really serious, as the cost was so much less thad their own yarns. There was great truth in that statement -a fact which compelled the writer to investigate the cost and system of production for himself, in order to combat this competition in the markets. Finding that he could use Belgian yarns to aduantage, as the cost was 15 per cent. less than English, he became a customer and a buyer.

As it is our desire to explain the advantages and disadvantages of the various systems of carding wools, we will take the Uelgian system first. The wool yarns are a specialiy, and marle chichy from luenos Ayres wools, ora mixture of those wools and noils. which means she short wools from combing. Buenos dyres wools are more infested with burs than any other class, and in the extracting of burrs by machines the staple gets broken, so that the wool is short in staple when ready for carding. Carbonizing the burrs is the most recent process. but both processes tend to shorten the staple, which is wiry and tough compared with any of the English colonial wools.

It is to suit this special class of wool the Belgian carding system has been devised. and it has certainly been developed to a success The counts chicfly spun are if's, $26^{\circ} \mathrm{s}, 1 \mathrm{~S}^{\prime} \mathrm{s}$ and $20^{\circ} \mathrm{s}$ woolen counts, the 16 's and 1S's predominating. Many spinners limit themselves to two counts, and seldom change a method which avoids a good deal of lost time and keeps the cards in perfect condition A set of carding machines comprises three siagle.cylinder machines, with eight rollers to each, at:d one doffer and one swift or fancy This is the sys tem of Celestin SJartin. the leading machinist in Verviers, who
also invented the condenser (frotteur) with dividing straps or tapes. The leeds are blanhet or sheet feeds letween the first and second and also between the second and third machines, but quite different to the Himmeres feed, being of circular action, and requiritig to be broken off in blanket form after a given number of revolutions. The shont-stapled wool makes the system a necersity. The card wire is sat in a culcanite cloth, with a thick layer of "wool felt" to support the wise up to the bend of the tooth. This is equivalent to the old svistem of tlocking cards formerly prevalent in this country, and gives a firmness and strength to the wire much greater than in English cards As a matter of fact, the tough fibers of this wool render this strength a necessuty. Another important point lies in the fact that these machunes are only 4 s inches wide, a width obsolete in Yorkshire. but stll exasting in the llest of England. Where pure wool is used and spun to fine counts, and evenness of yarn is required, this width still holds good. especially in the last machine of the set.

13y the atd of Martuns patent condenser with driving straps, the delivery is mety-six threads (and four waste threads) ready for the mule, on four spools of twenty-four threads each. From this delivery they spin direct at one draft to the small c ,unts named. This avoids roving, and the yarns are as well spun as any to be found. The spinning mules are of English make. Fxcellent though this system may be in Belkium. it has been little adopted in England. One eminent firm of machmsts paid $\$ 30,000$ for the royalty alone of Martin's condenser, and soon sold the half share to a rival firm. Yet, so few have beens sold that it is an open guestion how much they have lost by it

Full time in Verviers means night and day, and with two sets of hands working shifts of eleven hours each, they turn out the maximum quanity of work liages are about one-third less than in England yet Verviers is saud to be a hagh-wage town. Whit with raw material of a cheap grade. cacellent machinery. long hours and cheap labor, and then a free and open market in lingland, is it any wonder they feel this competition in the latter country. Of course, this system of carding is not suitable for shoddy and mungo, and does not suit the Yorkshire trate, where it has been tried The yarns are largely used in Glasgow for worl shirtings, skirtings, etc

These goods can be warped and checked in great variety. Scotch wool skirtings. woven in rep weave, are made with these yarns, and may be seen in beautiful stripes, often combined with silk, in most drapers' shops The winceys of former days have also been displaced by those l3elgian yarns. and the Angola yarn trade of the Hucklersfield district has almost disappeared. It was stated by one witness from Hluddersficld lefore the Royal Commission on the depressipn of trade that 50 per cent. of the yarn spinuers in that district had failed in seven years Spanish stripes. formerly pa prosperous branch of trade in the leeds district, can be made from the same yarns, and that tranch has appareuly been transferred to Germany, Anywhere, and almost everywhere. in cases where long hours and cheap labor form a consulerablecost in uoolen grods, the English meet with the same conpperitaon.

Wontel coatings have had the largest sale, and the most successful designs cyerknown are termed corkscrews. Being neat and stylish. they first found acceptance in the Einglish markets, then in the American markets, and held suay for twenty years. The strike of the weavers in Hudderstheld, alrout fifteen years ago, guckly shifted the coatugg trabe to lbratford. and that town bring depressed at the time it was a welcome introduction. The jarns having been previously, spmen in Bradfo:d. but woven in Huddersfield chiefly, the bradford manufacturers quickly seized such an casy opportunity, and with wages as per cent. les, than liuddersfield, concurrent wath the introduthori of the new fast-speed coating looms. Bradtord somn took the lead an plan coatings, and the depression was shifted to biuddersfichl. where slow looms and high wages had no chauce against the new condatoms in Bradtord Jet, with these conduons on thers favor, the liradtord manulacturers have talled to wrest the fancy irade and supernne plan trade from Huddersfield.

As the fates wall have at. assisted by the vagaries of changeable tarifts, the deprension tas afaun shifted to Bradford, while Hudderstheld manufacturers are apain well employed. This resula has been toreseen and prodiciad by the imitatod, as it was quise evident that Huddersfeld must come to the front again with the revival of the
fancy trade. As a matier of fact, Bradford has been mainly depend. ent on Huddersfield and Leeds all along for the dyeing and finishing of its wursted coatings. as customers' contracts often. if not always, stipulated for a Huddersfield finish Surely this has been a compli. ment to, if not an acknowiedgment of, the superiorit; of Huddersfield goods

Textile Design

No. 1.-3360 ends in warp: 52 ends per inch: 13 s reed; 4 in a reed. G_{4} picks per inch. ϵ_{4} inches in reed: 56 inches wide when finished. Weight, 22 ounces: 10 healds, straight draft

Warp:
Ends
86 gray. 2.18s, 2 brown.

58 ends in pattern.

Weft:
Pleks.
78 gray, 2.18s, 2 brown.

86 picks in pattern.

No. 2.-2700 ends in warp; 42 ends per inch, $101 / 2$ s reed: 4 in a reed: 52 picks per inch; 64 inches in reed; 56 inches wide when finshed. Weigbe, 13 ounces. S healds, straight draft.

Warp : 2-24s. Weff: 2-24s.
No. 3.-7650 ends in warp; 120 ends per inch; 155 reed, 8 in a reed: © 0 preks frer inch, 04 inches in reed; 56 inches wide when finished. Weight, 15 ounces: 12 healds, straight draft. Warp:

Ends.
2 red. 242 s .
5 dark slate.
4 light slate.
8 dark slate.
2 red,
4 light slate.
so dark slate.
$+\begin{aligned} & 4 \text { light slate. } \\ & 8 \\ & \text { dark slate. }\end{aligned} 5$ times.
${ }_{6} 6$ light slate. 16 times
6 dark slate.
${ }_{8} 8$ lipht slate, ${ }^{2}$ dark slate. 5 times.
4 light slate.
io dark slate.

+ light slate.
e36 ends in pattern.
Weft. Dark slate, $2 \cdot \frac{725}{}$.
-13. J. of C.

LATE PATTERN CARDS.

Benzo Chrome Brown 3 R , on cotzon yarn. cotton cloth and loose cotton. Some fifteen patterns are shown dyed with different percentages of the above new dyestuff.

Diazo indigo Blue 13 and Diazo Blue 3 R. -These are both new colors. Some six shades on skein cotton diazotised and developed in the usual manner, forming very fast cotton colors.

Alizarine Cyanine Green, and combinations on worsted yarn extremely fast to light (No. 603, r998).-This card shows thinty shades on yarn, many of whicb never before having been produced. makes it a desirable pattern card Such colors as Alizarine Yellow 3 G, Anthracene Brown G. Alizarine Blue Black B. etc, were used, the lastness of which colors being excellent has resulted in producing perfectly fast combination shades

Alizarine Chrome and Diamond Colors On loose wonl, dyed in one bath (No. 656, 159S) Owing to the number of baths and the large amount of sime taken up in successfully dyeing alizarine and chrome colors on vool, the Farbenfabriken of Elberfeld bave published a very valuable pattern card, containing over 100 shades, all of which have been dyed in one bath with the subsequent addition of fluor chrome and bichrome of potash. The first fourteen patterns are selfcolors, various combiations of which producing the remaining hundred
hades. The quantities of dyestuff are boited on for half one hour with to to 15 per cent. Glauber salt and 2 to + per cent. acetic acid. the bath being then somewhat cooled, bichrome and fluor chrome are .dded and slowly raised to the boil for three-quarters of an hour. rpectal directions given for dyeing carbonized wool. Any of the above vards will be promptly mailed on application to the Dominion Dye. wood and Chemical Co., Toronto, sole agents in Canada for the Farlenfabriken, vorm. Friedr. Bayer \& Co., Elberfeld, Germany.

AMERICAN SILK ASSOCIATION'S ANNUAL REPORT,

The annual report of the Silk Association of America has now been completed.

The imports of silk and silk goods during 1897 are given, together wth those of the two preceding years, for purposes of comparison. The ports of New York, Boston, Philadelphia and Chicago are covered by this report, which shows that the imports of manufactures of silk have been less than in most preceding jears, whe the importation of raw material has steadily increased untul the volume thereof in 1897 exceeded all previous records.

Articles. Silk piece goods....	$\begin{gathered} 1897 . \\ \$ 12,8,42,282 \end{gathered}$	$\begin{gathered} 1896 . \\ \$ 10.707 .172 \end{gathered}$	$\begin{gathered} 1895 . \\ \$ 15.098 .145 \end{gathered}$
Satins	S1,468	67.885	82.613
Crepes	21.202	7.353	22.783
Plushes	134.549	127.367	359.647
Velvets	1,665,684	1.980 .508	2.927.379
Ribbons	1.356 .760	825.432	1.459 .379
Laces	2.854.155	2.399 .860	2,060,314
Shawls	36,465	53.657	73.164
Gloves	81.888	117,224	197,20S
Cravats	10,621	12,870	47.471
Handkerchiefs	327,604	418.554	706.329
Hose	42,971	87,924	87,378
Threads and yarns..	918.c97	671.332	1.031.582
Braids and bindings	S31,112	556.844	551,381
Silk and worsted	168.152	119.688	165.759
Silk and cotton	1,709,523	1.549 .917	2,460.939
Silk and linen	13,626	26,296	1.305
Totals........	\$23,166,218	\$19.734.938	\$27,322,8c9

Total imports and values of raw silk at all ports in the United States for the last five years ending December 31st, 1893, 1894, 2895, 1896 and $3 \mathrm{SS}_{97}$:-

Imports of waste silk, pierced coccons and noils at all ports in the U'nited States for the tuo years ending December 3ist, of 1 Sg 6 ard 1S9; inclusive :-

硣	Halcs.	Value.
1596	4.330	\$435 923
${ }_{1597}$	6.776	586,601

Imports of raw silk, etc, at all ports in the United Staies for the year ending December $3^{\text {tst, }} 1897$, in pounds avoirdupois

Raw silk.	$\underset{10,092.555}{\text { Lus. }}$
Waste silk	1.649,566
Noils	43,600
Total	11.786 .021
Total value	31,028,574

-" The I'erfect Incandescent Jight I'rotertor" is a simple but -genious device tor the protection of the delicate " mantle " used in the iuer light. This apparatus, while an ornament to the lamp, is - t only a protection to the mantle. but prevents the smudging of the -iling from the soot of a gas jet. The inventors and patentees have irpointed Ci 13 Fraser, 3 Wellington street east, Toronto, as their wile Canadian agent. and Mr Fraser will be glad to hear from respon. rihle agents as to the disposal of local rights for this fast selling article

LITERARY NOTES.

The June number of The Century has several features of particular timeliness Captain Alfred T. Mahan, recently recalled to acuse setvice as special adviser to the Naval Strategy Board, contributes a paper describing the reasons for the failure of the Spanish Armada, This is introductory to a general article on the Armada, illustrated by Varian, and written by William Frederic Tilton. Mr. Tilton's paper is chiefly based on the manuscript Irish correspondence in the L.ondon Record Office, and on the narratives of survivors and other authentic Spanish papers, gathered hy Captain Duro, the historian of the Armada. Mr. Emory W. Fenn, who served as a major in the Cuban army, recounts bis experience under General Garcia in an article entitled "Ten Months with the Cuban Insurgents." Mr. K. O. Crowley, formerly electrician of the Torpedo Division in the Confederate Navy, describes "The Confederate Torpedo Service." which he was largely instrumental in organizing. Mr. Crowley laid the mine which blew up the first gunboat ever destroyed by this means. Mr. Stephen Bonsal, formerly of the American Legation at Madrid, writes of "Toledo, the Imperial City of Spain," the illustrations teeing by: Joseph Pennell. Accompanying a number of hitherto unpublished drawings by Vierge for Cervantes' masterpiece, William Dean llowells has an article on " Pictures for Don Quixote." Bret Hart contributes one of his characteristic Western stories. "The Passing of Enriquez,." the central figures of which are characters already familiar to readers of The Century. "The Three R's at Circle City." by Miss Anna Fulcomer, is the description of a queer polyglot school that thourished in the Arctic regions. Another story in the serics of "Gallops" by the new Century writer, David Gray, is called "Carty Carteret's Sister." Two illustrated papers make up "An American School of Dramatic Art;" one by J Ranken Towse, giving " 1 Critical Review of Daly's Theatre," and the other, by the late George Parsons Iathrop, presenting a pen picture of "The Inside Working of the Theatre." Andre Castaigne's illustration this month in "The Seven Wonders of the World " is a striking reconstruction of the Hanging Gardens; of Babylon. Of special interest to women is Mirs. Amelia Gere Mason's "Clab and Salon."

TEXTILE IMPORTS FROM GREAT BRITAIN.

The following are the sterling values of the textule anports from Great Britain for April, $3897-1893$, and the four months ending

	$\begin{array}{c}\text { Month } \\ \text { Aprit. }\end{array}$		Lour months to Al ril.	
	1897.	1819.	1807.	1858.
Wool	¢5,252	-1.117	2 7.924	$\int 19.716$
Cotton piece-goods	27.606	2S.475	162,112	193.542
Jute piece-goods.	6.544	9.342	33.252	+4.954
Linen piece-goods	7.441	S,132	+13:699	58.680
Silk, lace.	$3+5$	346	2.303	3.694
. articles partly	1,136	656	7.1.41	S.iso
Woolen falrics	8.219	8.713	79.765	83.036
Worsted fabrics	26.753	26.836	204.645	234.347
Carpets	7.448	10,583	72.252	Sc, ri,
Apparel and slops.	30.741	36.937	100.473	121.764
Haberdashery	11.692	19.805	64.658	60.309

THE LATE GEORGE UNSER.

By the recent death of George C'nser in Toronto, a quaint figure is removed from the textile manufacturing tradies of Untartu. When the northern part of Toronto was known as Yorkville. Mr. Unser operated the Yorhville carpet factory, once the largest carpet mill in Untar:o. and running 30 or 40 looms at the tume the writer first visuted it. Mr. Unser, who was an dustrian and was a giant in stature, understood carpet manufacturing well, and turned out some substantual lines of goods, but unfortunately he hail not much talent for the unstiess department of his trade. and in addition to suffering repeatel losses through agents and others, who took adiantage of him, he thal troubles with his employees, as well as some of his castumers, thruugh an
unfortunate infirmity of temper. When he started his factory he was worth a good many thousands of do'?2rs, but losses upon losses reduced him till his plant was sold out as a result of "giving security" for a friend, and at the time of his death he was keeping a litile curiosity shop at the corner of Davenport and Bishon streets. He brooded over his losses cominually, and it was in the hope of getting him lifted out of bis melancholy that his family induced him to start the curiosity shop. His daughter l.izzie, who helped him at the shop, had a sign put up, "Music taught by a native of fiermany," but the poor old fellow was no longer "pleased with the concord of sweet sounds," but mumbled continually of his losses, and finally took to his bed and died, his last words being. "They robbed me of my property !" The old gentleman had many excellent qualities, and his case nas a very sad one.

- Japan has begun in Sakai the manufacture of rugs, of which the warps and weft are cotton and the filling wool yarn, the latter being made from Chinese wool yarn, spun in Osaka. Fast dyes and beautiful shales are now being turned out that show a marked improvement over ihose of a year ago As yet the product is represented by a daily output of 120 yards. from 320 looms, operated by 480 weavers There are other rugs made from jute, the manufacture of which gives employment 109.600 hands, mostly children between seven and sixtecn years of age.
- Joseph Williams \& Co., isosicty manufacturers, of Glen Willians, Ont., who have lreen in deep water for some time, have had a meeting of creditors. The liabilities were said to be about $\$ 8,000$, with nominal assets of about $\$ 3,500$. The principal creditors are Sykes \& dinley, woolen manufacturers, of the same place, who, it is reported. have taken over the plant and agreed to pay the other creditors 25 cents on the dollar. While the manufacturing plant is not of much value the estate has a good water power, from which the electric lights of the village are supplied.

A new bi.product of the dairy is the manufacture of sizing to be used liy paper manulacturers to put the glazing on hne quality papers 1feretolore a fine quality of glue with otter compounds has been used, but 11 wa, recently discovered that a much better and cheaper sizing cuuht be tuade from skim inilk. The Standard Co., of Newark, N J.. has now made a five-jear contract to furnish this to some large paper manufacturers The skim milk is put in a vat, treated with chemicals and beated until curd is formed, then the curd is washed and pressed, and shipped to the headquarters plant, at Owego. There the curd is fround fine, and put in a large and inproved drying kiln, where it is dried in about iwelve hours, then bagged and is ready for shipment.

GIGGING.

In siggong a labric one of the things that must be taken into comederaton in the material of wheh the fabric is made. If cotton happens to emer itto the composition of the cloth, no matter whether it is carded ints it along with the wool or "hether it ts woven in as warp or filling yarn. the gigging can be most satisiactorily done when the cloth is essemtially free form mointure. Extractung should be well undergone before the doth koes to the kies. When the goods are to have a Hear worved fimb the closth wants to be about the same as to cumact at each eghader The last or fomshing eylinder may buperly have a hute sharper work in it. but only a little, ane the atenten is that the nap may be in this way had out a little more straghtitad aven that by the action of the first cylinder. All goods of these grades need all the tame that can possibly lie given to them on the wid teacts or on the less sharp kind of work, whatever the kind of sig is employed it is necessary ahayes to work the cheth ur showly as to tension and as to preswors con the puints at the piace of contact. After an hour at this Mant the tomb, may be carded away and the gooms given still atother hetur Aher this the sigsing should be pretty nearly complete laamme the soods carciulls, and if the warp threads are covered us by the felt, as can be seen by stretehing the cheth over the finger. then a liether grade of work mase be added mad anether hener of work will be reguired To fanish up with, a litsle sharger work in the finishing cylinder, and half an hour
or so of a run on it, will fully mect the requirements of the case.

One of the things that meets the man who handles the gig is the dificulty athd danger of streaked goods-mgoods with i streak running through the face or nap appearance of the cloth Streaks due to gigging are not so common where wire gigs are employed, but with the old teasels they could always oceur whenever cloth was allowed to run too long on one cylinder, or whenever the changes in slats were infrequent or were made in so few slats at a time that they really failed to affect the real quality and character of the cylinder and its work. It often serves very well to escape streaks in gigging, if instead of changing two or three slats at a tine in the cylinder, we change. say, a whole half of the cylinder at once. If the work is not too much sharper than that which is taken out, it cantot possibly cause any real harm. When gigging with teascls, it is a very common thing to discover that cloth will not stand the use oi very sharp work, and the inevitable result is tender goods. This is an inu.sputable fact, and our course is to make use of sharp teasels, only upon the strongest and sturdiest fabrics that we have to handle; then, after the teasels have reached a lighter stage, we can change and put them on the lighter goods. The work on the heavy cloth fills up the teasel with flocks and limbers up the points so that the degree of sharpness is very soon reduced.

It sometimes happens that with the very nicest sort of treatment which can possibly be given at the gigs, wo yet fail to derive the finish we want, and in getting the finish that we do get, we find that we have succeeded in making the goods tender in the bargain. It always takes a liberal gigging to get the face clear and soft and right in all respects, and when the needed gigging has been undergonc. the cloth turns out tender after all. There is only one remedy for this so far as we are aware. and that is to change the course of procedure slightly and let the goods get partially sheared before they are finally finished up on the gigs. Aiter partial gigging, take the cloth and give several runs on the shear. Then finish up with a few runs on the gig, thus completing all the gigging which is required Finally, complete the shearing and it will be found that a more desirable finish is obtained with less gigging and with little or no danger of tender goods. Caution and judgment will have to be exercised in cases of this sort, for it could not safely be practiced on all finishes or on all fabrics. One of the most troublesome evils that comes to the attention of the gigger is the unevenness in goods, which gets its formation in the fulling mills. A cloth that binds at the selvages, or hangs loose at the selsages and tight at the centre, is a very difticult tining to bandle. All sorts of methods to stretch and straighten the geods have to be resorted to, and yet the result will not be entirely satisfactory. The only hope usually is to try to have the matter remedied in the breceding stages of manufacture.

The importance of the way a piece is gigged, perhaps more seldom than any other process, scarcely cver appeals to the usinitiated. We sometimes get hold of a suit of clothes that looks dirty and dusty all the time. We may brush and brush it. and yet in five minutes aiter the most vigorous application it looks just as dirty as ever. Such a condition is generally duse to inadeguate higging and cleaning up of the face fibres. A loose mat of bibres on the surface is surc to catch and hold dust par. ticals. While if this mat or pile is gigged down till it is worked out, and then followed by a shearing. the dust will have no coante to cling and annoy the wearer. Taken as a general thing, if 2 man desires to possess a really voluable suit oi clothes, what might be called a nice suit, a suit for the better kind oi wear, he will get a cloth which has been well gigged The thorough gigging carries along with it usually all the better an' value-producing processes. All steam-finished fabrics. doe s: iv. beavers, etc., have a better grade of gigsing. and hence the result is a finer finish and a more desirable cloth.- Buston Jourmal of Commerce.

THE MOST HON. THE MARQUESS OF DUFFERIN AND AVA.
Not only those who are competing in the 'Witness' Canadian Song Compelstime, but every one who remembers lord Dufferin an Governor-Geveral is Canada, and who hat followed line brit. lint carver since then as Viceroy of India and Ambamador to the great eapi tales of Europe in most critical times, as well as the host of autograph collector. will be iterated in the following auto. graph letter. Any of our sulweribers can enter the competition referred to, and both gold and glory await the mac. coesful competitors. Full particulars of the handsome money prizes offered by the 'Witness' for the lest Canadian National Song, can, no doubt, le had by addressing Mowers. Jclm Dougall \& Son, Montreal. The conppelition clover on Aug. 1 , instead of May 1, sos previous. is announced, and we understand it is open to all without entrance fee.
The judges of this patriotic contest are Dr. S. E. Daw eon, Queen's i'rinter; Professor Murray. Megill University, Montreal, and Prof. Clark, of Trinity Univercity, Toronto, who are to select the beast ten songs from which lord Dufferin will pronounce on the three lest.

METHODS BY WHICH ODD LOTS OF YARN CAN BE UTILIZED.

A colored goods manufacturing concern, to be worked on a satisfactory remunerative scale, must have all details carried out with a view to the strictest economy. The yarn room and the warping room of a mill are often the scenes of laxity, and accumulations of varied lots or small quantities of disused counts and colors are fond to be of considerable dimensions in a short space of time. The accumulations may be the leavings of completed orders, occasional miscalculations, or the yarn may come from the dyers an a state not satisfactory for the particular work for which it was intended, and a second supply correctly dyed leaves the first quantity on hand. This first yuancity is often returned to the dyer, and the price taken off his account; but in other cases the yarn is left on hand to be used at the mill. A few manufacturers rid themselves of these accumulatons. observes a writer in the Textile Recorder, by making a warp from the oddments of warp yarn, and picking it with oddments of weft. This cloth, with its often objectionable combination of colors, is sold to the female employees, who wear it over their aprons; but any intervention of this kind tends to create a loose, slovenly disposition, which should be studiously avoided in manufactories where neatness of work is essential. Also, this method of using up the odd yarns detracts from their selling price as compared to their use in marketable cloth. Striped goods allow of the inproduction of a considerable quantity of threads of odd yarns at the edges of the colored stripes. Threads of indigo much lighter in shade than the body of the stripe would pass muster if placed at the edge of a blue stripe at the positions where it borders on to a stripe of white. Threads of from two to four counts finer than the body counts are used in these positions; also blue stripes edged with dark green may be inserted without any conspicuous results.

When cloths are built with a preponderate amount of weft, colors of even greater distinction may be safely introduced in the warp. The alien threads should be placed at regular intervals across the cloth, and not used lavishly; at the commencemont of a warp, compelling the use of another kind at the finish, as any irregularity serves to make their introduction more conspicuous. The Oxford weave of cloth allows of the introduction of these threads if heavily wefted: but if only lightly wafted it is dangerous to venture fang, because the two threads working together occasionally change position, and a thread which is light and intended to edge the white stripe may orcasionally come second in position, and appear rather prominently, Sate ens and similar warp-faced cloths should be treated cautiously, as they show up the imperfections of the warp so clearly; but designs containing narrow striper of two o: more the reads may be treated in so far as these: stripes allow.

In figured fabrics the weave of the cloth must be taken into account when introducing alien threads, because the weave has considerable influence in covering or disclosing the variations. I: some weaves the edges of the stripes are thrown up very prominently, while in others they are
monducd more han in the planer weaves. It is of great advantage to the management of the preparation department if the person th tharge has some knowledge and experience of the "oven cloth, because, in additon to the placing of odd threads in pesmons least mehned to shon them. any tendered or solt-atzed yarns mught be placed an posituns the least likely (1) carry the stram of the warp, or be subject to an andue athoum of dreteon an weange. In the delbos Harsard shirting the figured strupe is often primepally componed of the catico order of weave and regmes a well-shed and strong thread, beamse the figured stripe thends merneave frequenty. and, as a matural consequence, take up more sarn than the gronad portoon, and bear all the stran in pullang rotmed the weater's beam. dmother design may have a figured stripe working four preks ujp and four packs down, thus stipe wouk mork dack and take a more tender or suft-sazed yarn, or if a fourcond mathong is used a tender thecad sould be eashy carried through its work along with three threads of ordmars strength

The accumulations of weft yarns also requare viligath attention, especially in cases where self-colored cloths are mannathered Spoted hanks or weft yarn, not eren an color, would show their imperfections very clearly if woven meto self-colored cloth, but these can be used in many small checked patterns without risk or injury to the cloth. If the weft is two fine for a suitable checked cloth, another thread the connts of which will bring up the imperiectly dyed garn to the requred conms), may be doubled with the fine counts. A twill chacked cloth is often treated with odd weit in this way, as it is fairly well covered with the warp. The advantage of using oddments of weft is the satety with whel they may be used, because a few pieks may be inserted as at atal before procedding to weave a quantity. Dark green and mdgo, pronte and indigo, and other mixtures have been mserted (mastead of a coarse indigo weft), in a twill cloth. and still the difference it appearance is very slight.

A novel mode of usug very conrse indigo weft in a iwill cloth is to phace une phech an a bar mintead of two, as originally momaded. The is dune in an ordmary cieck fonm provided with a dobby, by ghacang wate pich ith the cloth and the return phek on the top, all the healds are depresoed in oreler to allow thas to take phace. When the nest bar of indigo is required, the first pheh is sent wer the warp and the second piek in mserted in the cloth. The shate is arranged to put a quantity of drag on the coarse weit sulticient to take up the loose "eft on $1 t$ second return, also the emples require to be set a good dnatace bach to present them gripping the loose weit Solled, whate wetts are often used in the small white hars of cheeked pattern, an extra shattle being cmplosed for this purpose. The designer may be of great sernice if he is in touch wath the pratteal worh of the mall, because when arranging nen cloths be can heep an ge to the meroduction of those colors and comats of weft wheh are likely to aceumulate iron other cluths in course of mantiacture, and cypecially when these are of sold wolur, as previonsly mentomed the accumahatoms are semerally large when the best results are acguired. In onder to domber the yarns pwhich are required to be ased matead of a coarser yarn), one e" the winder's pirns may be ranged to wand the welt irom two pirns placed in a vertical posthon, a lathe tension berng plated on the threads in their course. Thesc threads will reguire very litle attention as the "eft is wers malikels to hreak darmg the unwoding from the pros. The system deveribed neresstates swoe winding of the the cal. bout the extra expense is more than recouped be asing the weit do groater adamtage lif pernsemt advantase was tahen of coers opportumity for ming up the accumalitoons of ode warf and wett yart- and evers attempt was made (1. Kecp denn the canses .if acennmbations the varn roon of many manufacturmg concerns would be less crowded. and better order. system and coonomy obtained.

TESTING THE FASTNESS OF THE DYE.•

The demands made on the permanence of "fastacss" of dyes are mamfold. Smee, however, absolute permanence is unattanable, the term has to be somewhat limited and quali fied with the designation of the miluence to be withstood. suith as light, arr, wear, washing, etc. Dyes for military cloths. wheh when in wear are exposed durnge the greater part of cach day to the athence of light and air and frequently rain. mathe stand different tests as regards fasthess, to such as are apphed to goods like valuable silks, wheh are rarely exposed to the sun's rays, are but seldom worn, and then only in an artficial hight. In curtams and carpets the capacity to with. stand the actoon of hglt is the chacf essentat, whereas in under wear the colors must stand the effect of soap in washing, and in the case of stockings it is necessary that the colors stoothd not come off whalst in wear. No special fastness towards light is demanded of colored hangs, bat ont the other hand they should not stan in wear, and must be able to resist the action of perspuration, and the same applies to mattress and corset fabrics, etc. One requirement frequently made in respect of dress materials, is that the color shall not fly under the inflaence of street muld. In requrmg fastness of color, regard should be had to the material of whinch the fabric is composed. In the case of shoddy or inferior woolen goods, that are only intended to wear for a short time. expensive, permanent colors that would last longer than the cloth itself, will not be needed. On the other hand, a correspondungly high quality of material and capacity of resistance to light and air are righty demanded in the case of mulitary cloth, which is exposed to a great deal of rough wear. So far as the dyes themselves are concerned, they can be determined on the labric with a greater or smaller degree of factlity, the examination necessitating, however, some acquantance with dyestuffs and methods of dyeing.

Kelerence is here necessary to a very common error, viz., that the same dye is equally permanemt on all fibers. A consideration of the different chemical constitution of the fibers will explain why indigo carmme, for example, is very fast on salk, but not at all so on cotton. Another carcumstance of fre quent occurrence should also be mentioned, siz., that a fast color when used in a diluted condation for dyeing light shades, a good example of wheh is afforded by the alizarine colors. which are faster on wool than any other dyes, but which are less permanem when used for the production of mode colors than for dyeng darker and richer shades. The test for permanence in dyes are applied as follows:
(a) Washing Fastness.-Colors to be proof against washing must be able to stand both the mechancal friction as well as the action of the alkanne hqued and high temperature of the operation. If, under these conditions, the color remains almost or quite umaltered, and does not stan other colored or white fabrics waslied in contact with it, it is sand to be fast under washing. For the purpose of testing thes quality, colored yarn is plaited with whate yarn, or a cutting of the fabric under camination is taken, and immersed in a solution of 5 grams of soap in i litre (0.8 oz. ger gallon) of distilled water, and pressed therein for two or three minuses at $40^{\circ} \mathrm{C}$. (hand temperature), then left for twenty minutes in the solution, rinsed and left for another wenty minutes in the rinsing water, to be tinally wrung and dried. If the color ought to be particularly fast the soap solution is heated to $35^{\circ} \mathrm{C}$, and the treatment repeated several tumes over. Thus test is applicable to fabrics, whether composed of wool, cotton or a maxture of both.
(b) Fastnens under triction.-Colors on stochings, hosiery yans, corset stuffs and other fabrics antended to be worn aext the skin, must be permanent under íretion, and must not rub off. stan or run, i.c., the dyed materials must not give up their color when worn or in rubbing contact with white or light colored artucles of clothong or the human epidermis. The test
"Fiom "Tectanical Testing ot Yaras and Textice Fiabrics," by Dr. J. Hrezfeld).
, onsists in rubbing the material by hand on white-not too amooth-paper, or, better still, on a white, mustarched cotton rabric. In order to obtain reliable, comparable results, the rubbing must be equal in all cases and froction surfaces of as near as possible the same constitution should be empluyed.
(c) Resistance to Perspiration.-In adhtion to fastness under frection, power to withstand the action of perspiration is also reguired, more particulary in stuffs coming in contact with the human skin, and having to absorl) the excretions therefrom. This action is intensified by the warmenth of the budy, by friction, and above all by the fact that the perspiration III the absence of air is obliged to dry with all its constituent matters on the absurbent fibers, and that by we lleyluelte repethton of this process the acids of perspiration (acetic. formic and butyric) become so concentrated that they act destructively ant the fiber. The effect of perspiration on stochings which are repeatedly worn during prolunged journeys on foot, can le estimated. For testing a color it has been recommended to place a piece of the dyed material on the back of a horse beneath the saddle and examine the effect of a brisk ride, or the test may be periormed as follows. A bath of di:ute acetic acd-containing about 6 cc . of 30 per cent. acetic acid i.a 1 litre of distilled water-is prepared and warmed to a temperature (37° C.) corresponding to that of the body. In this the sample is dipped and rubbed vigorously with the hand being then dried, without rinsing, at $20^{\circ}, 25^{\circ} \mathrm{C}$. between parchment paper. This operation is several times repeated, and the more frequently this is done the nearer will the test approximate to actual conditions of wear.
(d) Fastness aganst Rain.-Thus quality is more particularly required in salk materials for umbrella making. The skens of silk matended for the manafacture of such fabrics are tested by plaiting them with undyed yarns, and left to stand all night in cold, distilled water. The water should not be more than slightly discolored, whereas the white yarn should not be stamed in the least. For woolen yarns this test is occasionally made more stringent. the yarn is phated with undyed yarn to a queue, and then boiled for ten minutes in water. When wrung and dried the color should not have deteriorated, nor should the white yarn be stained.
(c) Resistance to Strect Mud and Dust.-This quality is specaally exacted for lades' dress poods, and is tested as follows:

1. Sprinkling the mosstened sample with lime and water, drying and brusiing.
2. Sprinkling with to per cent. solution of soda. drying brushing and noting any change of color.
3. Ammonia Test.-Immersing the fabric in concentrated ammonia tor three munutes and obsersing the color both in the diamp and in the dry state.
4. Ten grams of soda are dissolved in I litre of water and mixed with 10 grams of hme-grevonsly slaked and reduced to milk of lime by the addition of water-and 12 cc . of ammoma. After starring well un together, the mixture is left to settle, the supernatant hequid poured off. and the residue employed for stecpung the sample for fise to ten minutes, after whirh the latter is dried without rinsing and is finally brushed, any alteration in color being noted.
(i) Fastuess to Weather, Light and Air.-Every shade of whor succumbs to the influence of the sum. light and air, atthough in some cases it is unly after prolonged exposure that adong becomes noticeable. The degree of permanence can only be determaned by exposure to light, to wheh end one-half of the sample is covered with a closely surroundag. but readily movable paper wrapper. and the whole suspended in the open ar in such a position that it is fully exposed to the sun's rays. but sheltered from rain. The object of tite paper wrapper is to enable (by removing it at any time), the degree of alteration effected by the exposure to be ascertamed. In order to establish a time standard of the fastness to be expected from
any dyestuff under these condtions, normal ehech lest, are made with one or two colors of known permanence, e.p., Turhey red or a medinm indigo blac unt coltons. The sampla: should be examined daily in order to asecrant the cadct thme when alteration begins. In the case of Turkey red this will be on the twenty fifth or thirteth day, and between the tiwlith and fiftecnth days for indigo, in summer, or demble tha periods in winter time. The fastuess of wher whors att then be estimated in comparison with these. Altempt has been anade to set up standard degrees of dastacos, according w which colurs that remain without apprectable alterathom atte an exposure to direct summer sumight for about a mont: ate classified as "fast," and those undergomg apprectable change mader the same conditions as "fairly fast" "Menferatcly fan" culors are those altering considerabiy in fourtect days, and. finally, those more or less completely faded in this latter ter.in are designated as "heeting." A "light test", appratus for yunch determinations has been desised by Ferd. Victor Kallab, of of fenbach, Germany. The samples to be tested are sumpended vertically in the apparatus and comtinuonsly exposed to the sun's rays, the position of the apparatus being changed in conformity with the apparent movement oi the solar orb. The action of the rays is strengthened by concentration on a smal!! surface by the aid of a lens $200 \mathrm{~m} . \mathrm{m}$. (8 in.) in dhaneter, and with a local length of $42 \mathrm{~m} . \mathrm{m}$. (16!': in.s.

Professor von Perger, of Vienaia, Anstria, proposes a testing apparatus consistmg of a plano conex and a bi-comes lens, the former with its flat surface turned towards the light. serving to parallelize the rays of an are lamp, situated at the focal lengths of the lens, which rays encommer the second lens placed in their path at a suitable distance anay. A metal dise placed at a point between the second lens and it, focts receiver the sample to be tested. In estimating the capacity of a dye to withstand weather, the country where the material is to be worn must be taken into consideration. since the climate and seasons of various latitudes exert a considerable imbluence on the rate at which a dye will fade from one and the same material. Thus it is certain that, for eaample, the color will be more strongly affected in a given time on the sea const than in inland districts, and that dark colors are nut so durable in southern countries as in northern climes. Permanence is. iurthermore, influenced by the material on which the color in dyed; on poor material, e.g., shoddy, the same degree of fastness cannot, by reason of the price, be expected as in stuff of better quality. Finally, it will be noticed that deep, fill colors do not fade so rapidly as light shades.
(g) Resistance to Ironing and Steaning.-Stuff. espectally for men's wear, which are to come under the hamb of the tailor, and corset materials, should not lose their whor when itoned, or, at any rate, the color should recover its original appearance after short exposure to the air. Thists tested by hot aroning a sample or by drying it on a hot metal plate. In the same manner, eapacity to withstand steaming is demanded of many cluths, this latter property being determmed by steammg a sample laid between the folds of a larger piece of stanned cloth, during which operation the color should remann un altered.

BLEACHING MIXED GOODS.

The cotton mixed into a woolen fabric was mabubtell, at first meant to be unsuspected and unperecocd. and wety pern
 the maternal profit of the first "gemus." lientuills lin, weme was found out by his competheors, whom he bat bean undir sellang, and they in turn began to reap the rewaril of then business enterprise. Meannhile, the public waverathel be a stason of very cheap, woolens. bat these halegen day, hat to wanc to an end. probably through the comber of some mann facturer of the old. ruggedly honest school, athe the wowd. were thereafter sold on their merits alone, and depresed of the halo
of a higher pedigrer than was due them Prices had, meanwhile, through compettion, dropped to a lesel commensurate with the cost of the goods, but the publice had grown to like the many geod gnalities of the mixed ware: the fine appearance, the comfortable "feel," the fact that they did not shrink, etc. It is but matural that there should have also been diawbacks, and anong these the worst was the poor wearing guality -short life-coupled with bad colors, which grew more unsatisfactory with time, says a writer in the American Woot and Cotton Keporter.

The wearers of these goods were surprised to see in how short a time it was necessary to replenish their supply of underwear, or how quickly light colored stuffs had to be laid aside on account of defects which had developed in the body of the material as well as in its colors. They could not get one-hall the wear out of the goods because they became weak and apparemily rotten long before cither cotton goods or woolen goods would show signs of old age.

It did not take manafacturers long to locate the fault in the bleaching. They had bleached both ingredients, the wool as well as the cotton, with chloride of lime; the animal fiber had been partly rotted by the chlorine, and in wear, soon disintegrated; or, the material had been whitened in the smoke house, or with bisulphate, in consequence of which the cotton had been partly decomposed, and soon gave out. The remarkable part was that mills did not at once hunt for a better bleaching process, but it is a fact that even now on this side of the Athantic, there are yet a great many factories who turn out mixed goods which have received their death sentence even in their cradle.

Germany, on the other hand, though it was the last country (o) take up the manufacture of this class of goods, was the first to try to overcome these faults. At the start they experimented with very weak, but numerous baths of bleaching powder, or with a series of smokings, with very indifferent success. Then "grassing" (Influence of ozone on the goods while spread on meadows) was resorted to, and magnificent results were obtaned, both as to color and as to strength. This method, howerer, was too cumbersome to satisfy this age of activity and quick processes, and a chemical was hunted for which mould supply the ozone artificially. It was found in hydrogen prroxide, and this superb, though expensive, bleach served for many years to produce the snowy and durable fabries which we meet on the Continent.

However, competition increased, and prices were forced down; it became necessary to cheapen all stages of manufacture until the bleaching represented the most expensive period in the manufacture of mixed goods. At this point the chemical factorics of De Haen in Hanover, and Koenigswarter \& Ebell, in linden, introduced peroxide of sodium as a less costly substitute for hydrogen peroxide. It was found that the same and better results could be oltained with the new comer, as after the peroxide of sodum powder had been dissolved in acidulated water, it furmshed a bath of hydrogen peroxide, but with clastic hmuts; it was possible to produce bleaching solutions of any strengeh desired, if aeed be. much above the strength of concentrated hydrogen peroxide, and at about one-half the cust. Moreover, there was no loes of strength in the powder: it occuped only a fraction of the space, and freight charges were but one-fith of those on hydrogen peroxide. The German bleacher was guck to realize these advantages. and peroxide of sodhum has now very generally supplanted hydrogen peroxade it the old countries for the bleaching of mixed goods.

Before we enter deeper moto the actual bleaching of mixed soods with the peroxides, let us for a moment digress to the extremely mportant subject of preparatory cleaning.

In handling the peroxides we are not dealing with bleaching powder or sulphur, at, say, ac. per pound. but with chemicals enormously dearer per pound weight, though nearly as cheap
in bleaching units. Where it will not harm to carelessly waste a pound here and a pound there of the former, witi regard to the latter every possible economy must be practised. Although satisfactory results camot in any case be expected from bleachang uncleaned goods, yet, as far as the cost of the agent is concerned, the goods may be thrown into the lime bleath but half cleaned, trusting to the chllorine to act a lazy mans part; that is, making the lime bath strong enongit to cradicate the dirt, oils, ete., naturally not to the advantage of the goods, In employing the peroxides, it will not, as in the case of the lime bleach, harm die goods to rely on the chemical to do the cleaning, but it will be mighty expensive. If the peroxides have no otber object in life than to teach the science of veollomy and carefuiness in the too frequently loose and slovenly methods yet prevalng in a good many dye-houses, they will have sufticient reason for existing.

To thoroughly clean mixed goods of the dirt, foreign mateer, and oils, which have been taken up in the preceding processes, they should be treated as though composed entirely of wool. The cotton part will thus be thoroughly eleansed, yet without damage to the wool or silk fibers. Any approved process for cleaning woolens is available, but we do not think it amiss to once more lay stress on the importance of using good soap-potash soap.

We now come to the bleaching itseli, and, as the hydrogen yeroxide method has been sufficienly deseribed, we at once proceed to explain the peroxide process. Deroxide of sodium is a strong alkali, which, if decomposed, for instance, by means of dilute sulphuric acid, forms glauber's sulte and hydrogen feroxide. The glauber's sales remain in solution, athe need not be further considered, while the bath of hydrogen peroxide, after the addition of a small quantity of an ulkali, is ready for the bleaching. In doing so it parts with a portion of its oxygen, which latter combines with the coloring matter of the materal to be bleached, that is, oxydizes it. A sharp distinetion should be made between "oxydizing" and "reducing' a color. la both cascs decolorization takes place; if "oxydiyed," the colormg matter is decolorized, and presumably becomes soluble and is washed out; in any event the color does not again lose its oxygen under natural conditions, and therefore it remains permancutly invisible.

If the color is "reduced," as in bleaching with sulphur fumes or their equivalent, sulphurous acid, bisulphite of soda, oxygen is extracted from the color, it becomes invisible but not soluble, and therefore tomains in the goods. Upon exposure to the atmosphere the previously lost oxysen is replaced by oxygen drawn from the air, and the color compound once more becomes visible. Thus straw hats, bleached by "smoking," after a short time regain their yellow color to a large extent, while, if bleached with peroxide, they remain white.

The best practice seems to be to add the neeessary acid, sulphuric, oxalic or acctic, to the cold water in a wooden vat, then stir in the peroxide-small quantities it a time--until the bath is exactly neutral, after which a little silicate of soda or ammonia produces the alkalinity called for for quick bleaching. If the bath be made alkaline by ant exiess of peroxide, this excess produces caustic soda. which, so far as the woolen fiber is concerned, should be avoided.

After entering the goods the bleaching solution is slowly heated by means of a lead coil, to a "wool" heat, say 120 degrees F., the goods turned at intervals and treatment continued from one to five hours, according to the color of the goods. Then lift, drain back into vat, and give warm wash, which takes away the glauber's salts, passes through a sour bath containing $/ 2$ per cent. of oxalic acid: wash again very thoroughly and dry. To the hath should at once be added one-third of the acid previously used, to aroid further evolution of the bleaching oxysen, and after cooling off. the solution is again neutralized with peroxide. and after adding the

Wkali, is ready for the next batel of koods, Aecoriling to how clean the goods are when entered, this process can be repeated a number of times, however, adding a smaller yuannty of the chemicals each time. The goods dry to a very brillant whac, possess all the strength they did before bleaching, and actually mprove in color at every washing. The color, as explatiled above, is forever removed, yellowing with ako in avoided; no iorcign odor is present, and if the goodn are to be dyid, less dyestuff is necessary, and the color woen on very evenly and thoroughly. A very similar treatment producen manniticent results on silk and linen, but of these at mother time. We close by giving an approved bleachnge formula:

For 100 pounds of wool and cotton mixed gooxly, take three pounds, four ounces oxalic acid, two ponimls peroxtede of sodium, 1/4 pound silicate of soda or ammona.

THE INVENTOR OF THE LOOM.

Lord Masham, the principal of the famoms Mamingham Sills in Bradiord, has expressed his desire (o) Commemberate the services of Cartwright, the inventor of the power loom and combing machine, and in crmbection with llis project, to replace the Old Hall, in Lister Park, whth a more worthy building. He expressed his willingness in phaw $E 30,000$ to £ 40,000 at the disposal of a Bradiord commiltee which should be appointed to consider his suggestions, Alluding to Cartwright's discovery, he characterized the invention of the power loom as one which even transcended the dixcoveries of Watt and Stephenson. He considered he owed his suecess to Cartwright's ingenuity, and he was anxious to show his gratitude in a practical form. The revolutionary effect of the invention also fully warranted a national movement for a stathe, and he hoped that some effort would be made in that direction also. Edmund Cartwright, D.D., the inventor of the power loom, was born at Maruham, Nottinghamshire, in 1743. In 1784 he paid a visit to Matlock, near which town Arkwrigit's spinning mills were situated. Here he said that Arkwriglit "would have to set his wits to work to invelt a weaving mill," and argued that it would not be more difficult to make a weaving machine than it had been to construct the automatio chess player. On April 4 th, 1785 , he took out a patent for his first puwer loom, which however, proved inadequate as a xubsibitite for the hand loom. The machine was improved, and furlier patents were taken out in 1786 and :787. He huilt at Duncaster a factory of his own for weaving and spinning. He also invented several wool combing machines. His inventions were hot a source of profit to him, and he found himself deeply in tueln, from which he was extricated in 1809 by a Parliamentary krant of $£ 10,000$. He died at Hastings, October 30th, 180,3,

THE DYEING OF SHODDY.*

нY G. н. Hомя.д.

There is no more difficult branch of dycing wool than that of dyeing shoddy, especially when in the loose condition. This of course is brought about by the very helerogencons nature of the article. manufactured as it is from woolen tissues of all kinds and colors. Moreover it contains cotton, the proportion of which is unknown and may be large or only small, but still has an appreciable effect on the nature of the dyeing operations. As presented to the dyer, shodidy is of various colors, snmetimes black, at others of a dar'k brown, then slaty. perhaps dark red or may be dark green, while others are of a mottle character from the presence of fibers of a varicty of colors. In regard to what can be done with such material, the shoddy dyer must bring to bear that knowledse which is born of experience. Naturally he cannot expect to dye lisht or bright colors on shoddy that is already of a dark color, although he may successiully dye bright shades on a lipht colored shoddy

- In the Dyer and Calico Pilinict.
and dark shades on a dark colored shoxidy. Although much may be done it the way of attemptung to destroy or discharge color from shoddy, yet too much camot be dune int the direction, for the dyer must have some regard to preserving the nature of the fiber, and volent attempts to destroy color from shoddy might result in lac destruction of the material itself. Boiling with 3 per cent. of bichromate of putash and 6 per cent. of stuphanse acid is a good plan, there is not alone a discharge of the color but mordanning of the fiber with chrome, wh.ch is beneficial in many mstances. Bothng the goods with 8 per cent. of their weiglt of sulphuric acid is also a good plan, taking care to rinse well afterwards.

Boiling also with 4 per cent. of oxalic acid and + per cent. of sulphuric acid is a good plan. The dyer should, when he gets a batch of dark colored shoddy, test a small portion in each of these ways to see which gives the best results, and he will then be able to see what he can do with the batch he has before him. It is hardly necessary to point out that, after using these stripping baths, the shoddy should be well washed in water to remove acids. It might be worth whlue, before procecding to dye light colored shoddies, to boll thein ul with soda to remove any grease they may contain and enable them better to take up the colors afterwards.

As shoddy may contain both wool and cotton. the shodly dyer will find it worth while to use those colors belonging to the direct series of dyes, which will dye wool most satisfactorily, as such dyes also go on to cotton and will cover up very well any cotton fibers the shoddy may contain. In the accompanying recipes such dyestuffs are used and the propurtions are calculated for 100 lb . weight of goods.

Colors on Dark Colored Shoddies.-Tie mere act of stripping these often leads to the production of a useful color. Thus a dark grey stripped with sulphuric acid may turn a gold brown, or with bichromate of potash and sulphuric acid a light olive brown.

Blue Black.-Strip with sulphuric and and then dye in a fresh bath containing 2 lb . Formyl Violet ioB, working at the boil for one hour.

Dark Bluc.-Using a shoddy which is not very dark, make the dyebath with $11 / 2 \mathrm{lb}$. Formyl Violet 1013, 1 lb . Diamine Dark Blue, and 20 lb . Glauber's salt, working at the bot for one hour.

Dark Brown.-Strip with sulphuric acid, then dye in a bath containing 1 lb . Diamine Catechine G. and 1 lb . Diamine Brown N, working for one hour at the boil.

Black or Dark Shoddy.-Make a dyebath with 3 lb . Union Black S, and 20 lb . Glauber's salt, and work at the boil for one hour.

Dark Crimson.-Strip with bichromate of potash and sulphuric acid and dye in a fresh bath with 2 lb . Diamine Red $5 B$, at the boil for one hour.

Dark Chestnut.-Strip at last, then dye in a new bath with t lb. Diamine Catechine G, and $1 / \mathrm{lb}$. Diamine Brown M.

Dark Black Blue.-Strip with bichromate of potash and sulphuric acid, and dye with 2 ll . Formyl violet iob.

Bronze Green.-Strip as above, then dye with i lb. Diamine Green B, and $1 / 2 \mathrm{lb}$. Thiotlavine S .

Dark Claret.-Strip with sulphuric aced and dye in a fresh bath with I lb. Diamine Green B, and $1 / \mathrm{li}$. Thioflavine S .

Bright Blue on Cream Shoddy.-Prepare a dyebath with 1/2 lb. Alkali Blue B, I lb. borax and to ll . Glauber's salt. Work for one hour at the boil, then pass mito a bath containing 2 lb . sulphuric acid to raise the blue. then ruse and dry.

Rose on Cream Shoddy.-Make the dyebath with $11 / 2 \mathrm{lb}$. Rhodamine B, 10 lb . Glauber's salt, and 2 lb . acetic acid. Work for one hour at the bon. If the dyebath be not exhatusted, add some bisulphate of soda.

Bright Crimison.-Make the dyebath with 2 Il. Damine Fast Red F, 10 lb . Glauber's salt, and 2 lh . acetic acid, working for one hour at the boil.

Green--Prepare the dyebath wilh $1 / 2 \mathrm{lb}$. Thocarmine K , $1 / 2 \mathrm{lb}$. Millng Yellow (0 , 10 ll . Giauber's salt, and 5 Hb . acetic acid. workillg at the beol.

Violet-In the dyebath use $21 / 2 \mathrm{ll}$. Formyl Violet $S_{f} B$. to 16 . Glauber's salt, and 5 ll . acetic acid.

Ohve Xellow.-Make the dyehath with $1 / 4 \mathrm{ll}$. Anthracuic
 sill. Work for one hour at the boal, then add 1 Ih. acetic acil. workillg for is hour longer.

Dark (huve Brown-Make a dyebuth with $11 / 2 \mathrm{Ib}$. Diamine Catechace (1, 1! 2 ll . Damme Fast Jellow 13, fi lb. Umon Black S, and ro lb. (ataber's salt. Work for one hour at the bool. then add 2 ll . bichromate of potash and 1 lb . acetic acid and work for $1 /$; half hour longer.

Bright Vellow.-Use ithe dyebnth 2 Ib. Millitg Yellow (), and 10 lb . bisulphate of soda.

Bright Green.- We a dyebath made from :' llt. Diamine
 After working for one hour at the boil, add $1 / 2$ lb. Huoride of chrome and !'2 lb. acetic acid, working for $1 / 2$ hour longer.
bate Ulive Green.-Use in the dychath ith. Diamine liast Vellow 1B, if Ib. Diamine Bhac HW, ! Ib. Anthracenc Yellow C. and so Ib . Glauber's salt, fixing afterwards with $: \mathrm{lb}$. Auoride of chrome, and 1 H . actic acid.

These recipes will perhaps be sufficient to show the lines on which the shooldy dyer may work.

Koreign Textile ऍentres

Mancolestis.-Makers of Burnley prints are quet. and calico printers are not doing well in the foreign branches. The plague news has a very serious effect upon the Calcutia trade. the exodus of natives from the city being so serious that business is almost at a standstill. This is a very serious drawback at the present tme, when the Bombay trade was just commencing to recover aiter a prolonged period of stagnation. Any sain resulting from the nmprovement on the Bombay side of the peninsula now promises, by the irony of fate, to be destroyed by the shrinkage in Calcuta. Dundee. lowever, may suatch some advantage from the plague, provided the exports of raw jute are not interiered with. Many of the Bengal jute mills, the deadly opponents of Dundee, are having trouble with their workers, and busness has been much hanpered by the searcity of labor. The prompt disppearance from Calcuta of many members of the Marwars trading commumiy has roused the ire of the liritish restdents.

Letben - The leceds clothing trade is for the sime being busily engaged in getting om orders for the Whitsmatide holiday trade, but after this rush is over there is not much work in vew for later delivery. In the heang woolen districts. with the execputon of a tew clothing orders, there is not mach minrovement to be moted, but a few mahers of medum tweeds and serges are farly busy. In Morley the rade in dress metcons is hardly up to the average, but a ten spectal novelties in hdies' cheap costume cloths are domg well.

Hemberatimen-Makers of the 'eest faney woolens and worsteds continue busy on home accomat, but makers of medium and low goods are still complanng, and the United States demand for worsted coanngs is still masually smalt. As the season adranes the demand for good whte blankets for home use is improving slighty, and there is a steady trate doing in colored blankets and rugs. The Yorkshare thannel trade, althot.ah quet, is showng some signs of mprovemem, and some of the carly merchants are asking for dehveries. which are gate u_{1} to the average.

Kımbkmisorthe - "Reprats" are coming in fairly well. but the cool weather is handerng a good deal oi business. Tr:nckers are keeping in touch with customers. The season
so far is described as satisfactory in volume, good Brussels showing a distinct advance. Spinners are now quiet: instructions come to hand slowly. The clip is very late, but the Heeces to hand are of excellent quality and of quite an average weight. Prices remain unchanged.

Nottineilam-Prior to the holidays, as is ustual at these perwods, there was much actwity displayed in the lace market to get orders cleared off as far as possible. Some extensibe shmments were made to the colonial and distatut markets, but humess with parts of North and South America is in an unsettled state ith consequence of the war. The demand from some contumental centres was only moderate, while the home impuiry in most cases, was not up to expectations. This week business has hardly got into full swing yet. and naturally manufacturers and warehonsemen are to a certain extent affected by the unsettement of arade consequent on the holidays. Manufacturers of mate-up goods have been busier than of late. Fancy ties, streamers, aprons, blouses and other fancy goods have moved in good quantities, and spotted nets and streamers are extensively employed. There has been a good inquiry for chenilfe nets and veilings. Honiton braids, beadings athd purls have sold at home and abroad for trimmings and for manafacture of point laces. The Irish, Swiss, and embroidery trimmings branches appear to have lost their former vitality. Bobbin nets and mosquito nets for export and embroidery have sold extensively. From appearanees there is every indication of continued prosperity in all the plain branches. Brussels, Mechlin, and Zephyr tulles have been in average request, and prices keep high. There has been only a moderate denand for hat nets. Paris and rice nets and stripes. Spotted nets are in strong request for mak-ing-up and millinery purposes. Corset nets and laces are in moderate request. Competition is severe in silk nets and veilings; nevertheless these goods have moved. in good quantites. Many lace curtain manufacturers complain that the actual demand is below the possible production, and that the outside competition is very severe. There is a steady inquiry for these goods, and finishers find plenty of employment, al. though a lot of the goods passing through their hands are not manulactured in this city. Fancy articles in antis and toilets have met with a moderate demand. Frilled window blituds are moving for the home and a few other markets. There is a good home and colonial demand for merino and casimere hose. Cotton stockings and socks continue slow on sale, and prices keep unproftably low. Fancy cotton and muxed half-hose have been in average request. Merino, cas! 1 mere, and matural wool vests and combinations are firm in value. There is a steady though not a full sale, owing to tle closing of some markets. The fancy silk branches have been only moderately employed.

Brabront. - Up to the commencement of the Whitsurtude holdays there was no improvement in the tone of the wool trade here. Prices of the finest classes of merino wools are stili quite firm, and as there has recently been more inquines for worsted coating yams and also for fine warps and weit for dress goods purposes, and the local supplies of both raw material and tops are not large, it is probable that the prices of these fine wools will be iftly sustained. Although there is not as yet any defined upward movement in crossbred wook, the unmsually low level of prices to which both raw material and tops of this class have fallen has induced makers who devote special attention to these wools to produce new makes of dress goods and coating serges, which are of such wonderfully good value and possess such an attracti-e appearance and good wearing propertics, that it seems certan that new business must result. There can be no douht that the very low prices rulng in this. class of material are largely accounted for by the re-imposition of the heary-weight dulies on imported fabrics sent into the United States, and
also by the long-continued depression of trade in the Contumental centres. where two-fold cross-bred yarms have been consumed in large quantities for braid and cher purposes. t.nglish wools continue very quict. and there is no likelihood of any change before the earliest of the wool fairs for the ale of the new elip of wool, which commenced at Doncaster it the second week of June. Both mohair and alpaca in the wiw state are gutite firm, and collectors at the sources of supply whsider that the present ranges of prices are so low. that tiey are prepared to hold for a longer time than usual in hope of a use, under the impression also that both users and mercha its -11 this side have been pursuing a "bear" policy on the local market. Spinners complain that users of alt classes of worsted yarns are still disinclined to follow the upward tendency which the prices of colonial wool have 'aken this year, and that business in this department is very stale and unprotitable. In both mohair and alpaca yarns there is rather a better inguiry on continental account, and there is no falling off in the use of mohair yarns in the home market both in the form of warps for crepons and in the form of weft for plain and figured mohair goods.

Rochbatas.-Not much new business has been transacted recently. Those hierchants who have not completed their arrangements for the coming season are gradually doing so. The prosiect, so far as the total quantity is concerned, is likely to be about the same amount as that of last year. Prices, however, are very umremmerative, and unless the manufacturers should find some relief in the value of the raw material during the year, business must necessarily be umprofitable. The Yorkshire goods trade was of a sluggish character. Prices were unchanged.

Soutil of Scotandi-The dullness in the South of Scotland tweed trade, which has been referred to, continues. Orders are not plentiful, and consequently a number of looms are ide. At present prices are low, but they cannot be maintained in face of the firm rates for wool and yarns. Wool is expected to still further advance.

Dundee.-The failures recently announced in the linen trade continue to exercise a most depressing effect on the market generally. This may be accounted for by the fact that buyers are inclined to wait in case any stocks may have to be realized, in the event of the concerns in question being wound up. The unsatisfactory state of affairs of the industry in Irehand also easts a gloom over the trade in this district: whilst the idea now gaining ground that the war between the United states and Spain may not be so speedily terminated as was at one time expected, adds to the general depression.

Beifast.-The market for brown cloth shows little apprewable change. Thirty-cight inch power loom linens for beaching continue to sell steadily at late rates. The activity III the demand for damasks and houschold goods is fully nustained. Town-made goods are still in poor request. L'uons are passing freely into consumption, and prices remain lirm. Handkerchicis are much the same. A quiet, steady business has been transacted during the week in bleached and fimished linens. Cross Channel demand has been of a sortinguf character. The shirt and collar factories are ordering frecly of white linens. Tailoring linens are in moderate request. A ready satusfactory business is passing in damasks and honse hold goods. Trade with the United States shows little change. A fair number of orders have been received. and advices indicate that the war will not depress business to any great extent. but on its termination it is expected there will be a decided yurt. Canadian trade is going ahead, and a steady business is done in Australasia. South American trade also is improving. Orders from the Continent are about up to the average of recent weeks.

WOOL MARKET

Tononro.-The bulk of the Canadian feece wool has come on the market during the past month, and at present the market is rather dull. Some large dealers are hardly taking any wool, and all are doing much less. Fleece is quoted at 16 cents, but the dealers say that this price is not justi.ted by the facts of the case, and that there will require to be a very great expansion in the United States market hefore possible prices, there for Canadian wools will justify such prices here. There has been considarable competition amons country buyers, who have in many cases paid more than 16 cents, and now find themselves unable to turn over thsir purchases without loss.

Montrbal. -There is more demand for fine wools, and prices are firm at former quotations, viz.:-Capes, it to $16,5 \mathrm{c}$.: Natal, 16,3 to 18c.; B.A., from 26 to 34 C . Manufacturers are very busy, and they say orders are coming in freely, but advence is hard to get on their product. Canadian fieece is being bought from the farmers, itc. for greasy, and 17c. for washed.

PABRIC ITEMS.

H. Samuel, dry goods, Sherbrooke, Que, has removed to Montreal.
J. H. Rogers, furrier, of Toronto, is opening busiuess in Winnipeg about |uly ist.

A final dividend of 5 cents, making a total of 55 cents has been declared by Assignee Barber in the estate of A. Cohen, dry h,uds merchant, of Chatham.

Collins \& Co., dry goods, of Kincardine, Ont., have assigned to J. G. Hay. At a meeting of creditors, held in Toronto, the firm were given a short time to make a satisfactory offer.
-Many manufacturers of woolens are anticipating a considerable falling off in production after july 1 st, when the second $221 / 2$ pei cent reduction of duties on British goods comes into effect.

Among the commercia! effects of the Spanish-American war has bsen the sharp advance in the price of rope. Sisal rope is now quoted 93/4 cents, and manilla is on a basis of 11 cents per pound. A month ago sisal was quoted at $73 / 4$ cents, and manilla $8 \frac{1}{2}$ cents per pound. Values have been forced up by several causes outside of the present belligerency. First, there is the blockade at Manilla, which threatens to shut off the supply of manilla hemp from the Phillipine Islands. second, the unusually heavy crops in agricultural countries, creating an active demand for binder twine, and third, the short crop of sisal in Mexico. These factors combined have caused a rapidly advancing market. The strength of hemp has been marked during the past year. and within that period prices have in the case of Manilla advanced 100 per cent., and in sisal 150 per cent in primary markets.
-The annual meeting of the Canadian Colored Cotton Company was held in Montreal on May 25th, and, on the whole, the meeting was inharmonious. Those present were. T. King, 1). Morrice, 1). Morrice, jr., A. Roy, J. Grenier, Hon. A. W. Jgilvic, C. O. Dixter, I.. Lichtenheim, W. Weir, F L. Beique, C. D. Owen, A. C. Clark, P. R. Gault, P. C. Spragge. S. H. McDowell, W. B. S. Reddy, Jas. Crathern. Jos. Wilson, Geo. Caverhill, id. Neild, Hill Campbell, Jas. Rodger, M. Thompson, W. J. Morrice, R McDonald, M. L. Henders n, A. Skaife, J. T. Molson, Wm. McMaster, S. H. Ewing, J L. Marler, and Ald. Clearihue In the absence of A. F. Gault. C. D. Owen presided. The fin incial statement showed a profit on the year's business of $\$ 10,000$, which was thought unsatisfactory. in view of the large out pu! and general improvement in business. Defore proceeding with the election of officers, it was announced that A. F. Gault had decided to retire from the presidency. David Morrive was chosen to succeed him, and C. 1) Owen was re-elected vice-president. The two remain. ing directors. T. King and D. Morrice, jr., were also re-elected, while W. J. Morrice was selected to fill the vacancy on the board, caused by Mr. Gault's retirement.

Alexander listher, formerly of Galt, Ont., has obtained a position in the carpet house of John ?amfield. Winnipeg. the only establish. ment, it is satd, of tho kind in - nitoba.

The partnership existing between Cressman \& Hallman, dry goods, merchants. Berlin. Ont., was dissolved last month, E. S. Hallman retiring. E. C. Bowman has gone into partnership with Mr. Cressman and the new firm is known as Cressman \& Bowman.
-The Farber \%eitung describes a simple and quick manner by which the testing and mixing of a new tint may be accomplished. It is called the dry process, for it is simply by using gelatine or glass plates, which are dyed in all primary and secondary, and some mixed colors for this purpose, with all the gradations from light to dark of each color. If two or more of these colored plates are put together and held against the light, the effect of the blend of colors can be seen immediately. Suitably arranged in a receptacle, these colored plates are the simplest and most convenient means of producing any desired color mixture and testing the effoct at once.

Among the Mills

Co-apermitun to one of the Euiding priselpies of induntry to-day It appllew io mewapapers an to erergthing oloce Take athare In "The Canadian Journal of Erabrioa" by contributing ocon. alonally such limme ae wisy wome so jour knowledge, an" rarelie as divifond an improved paper.

A G. Morton, Almonte. Ont., has begun busidess as a carpet weaver.

The grounds ai-ut the Brodie Mills at Hespeler, Ont., have been beautified by the planting of trees and flowers.

Thos. Rolph, Galt, Ont., has succoeded W. Scrimger as master mechanic in the Rosamond Woolen Co's Mills, Almonte, Ont.

Ilenry Scolt, recently with Brodic \& Co., Hespeler, has started in Guelph in the thit goods business, and is running three hand machines on hosiery.

The Guelph. Ont., Carpet Mills, formerly the Armstrong Carpet Co., are ranning full capacity, and are turning out some handsome new patterns.

The Island of Manitoulin, Ont., is becoming quite a wool producing centre. From two small villages alone last sesson, 30.000 lbs. were shipped.

Miss Schofield and Wm. Baird, loom fixer in the Gillies, Son \& Co.'s woolen mill, " = married recently at the home of the bride's riother, Carleton 1 ace. Ont.

M \& J. Adams are now sole proprietors of the Guelph Fringe Co, having recently bought out the interest of Mr. Taylor, of Guelph. They manufacture a good class of cotton, woolen and silk fringes for upholsterers use, also double cloth rug fringes and buggy fringes. Mearrs. Adams also cunternplate the manufacture of Smyran rugs at an early date.

The Minerva Manufacturing Company, of ${ }^{6} 6$ Richmond street west. Toronto. was offered some time ago liberal terms to remove to St. Therese, Que., but upon beink promised an assessment of not more than $\$ 5.000$ for the next ten years in Toronto. has decided to remain there. The company has bought the McMaster building on Front street, where it will enlarge its business, expecting sho:tly to employ $=50$ hands.

The Elora carpet factory is not in operation just now, and it is not likely it will start up again in Elora.

The C. Turnbull Co., Galt, Ont., has let the contract of its new mill building, which will be $133 \times \in 0$, to Kiribs \& Co. Hespeler.

The Waterloo Woolen Co. has completed a large order for klondyke roods, which they filled for the Sanford Manulacturing Co., Hamilton.

It is reported that the carpet factory of Mcl'herson Bros., Guelph, Ont., will shortly be amalgamated with the Guelph carpet mills.

The Guelph, Ont., Woolen Mills Co., Lid., have been awarded the Government contract to supply drawers for the N.W. Mounted Police, to extend for thre years.

The shoddy and flock manufacturers of Ontario are particularly busy just now, their great difficulty being to get sufficient stocks of raw material.
M. B. Perive \& Co., Doon. Ont., are erecting some new additions to their extensive twine mills at Doon. The capacity of these mills now is one ton per day of various kinds of twine.

Joseph Ruddy, who is Jeaving the Slingsby Wcolen Mills, Brantford. Ont., of which he has been secretary.lreasurer, in order to take up a position at the Brantford Starch Works, was presented with a clock by the mill employees.

An effort is being made to form a joint stock company in Guelph for the purpose of establishing 2 large modern tannery for the manufacture of sole leather. H. Swackhamer, of Acton, formerly with the Beardmore Co., in their Acton tanneries, has succeeded in interesting the Guelph Board of Trade.

Letters patent have been issued incorporating the Fraser Hat, Cap and Fur Manufacturing Crmpany, of Iondon, Limited, capital $\$ 20,000$, in $\$ 100$ shares, the following being the provisional directors: A. W. Fraser and J. 1. Allenby, F. W. Fraser and W. V. Onslow, and N. Brovost, all of London, Ont.

Walter Scrimger, master mechanic in the Rosamond Company's mills, Almonte, Ont., has accepted a position as traveler for Clare Bros, Preston, Ont. Before leaving Almonte Mr. Scrimger was presented with a complimentary address and a purse of \$100 by the citizens and leading employees of the mill.

Early one morning recently two men endeavored to effect an entrance to the storeroom of Jas H. Wylie's Golden Fleece Woolen Mills, Almonte. Ont.-for a second time within a week-by prying up the windows. B. Weedmark, the watchman, saw them and ordered them away. Refusing to leave. Mr. Weedmark fired a couple of shots at the pair, who took to their hee!s.
T. A. Code. Perth, Ont., is again making extensive improvements on bis woolen mill. The old dyehouse has been removed to the orth side of the main building, and in its place is being erected a new boiler house. As the mill's capacity is to be idereased, it was necessary to procure a larger boiler, hence the change. The new smokestack will be brick and about 75 feet high.
-It is stated by a New Brunswick journal that the capacity of the Dominion Pulp Company's mill, at Chatham, is to be doubled, so that it will within a short time turn out 30 tons of pulp per day. At the Mispec pulp mill, says the same paper, the contractors are anxious to push the work forward with all possible despatch. so the firm asked the masons, who are union men, to work ten hours α day in order to. facilitate the work, and offered to pay them for the extra work at union wages. The men refused, and the Messrs. Mooney are, in consequence, looking for non-union men who have more sense and more enterprise.

Operations are to be begun immediately on two additions to the Barlin Felt Boot Factory:
M. Erb \& Co., Berlin, Ont., have been awarded a three years' Government contract to supply gloves to the Northwest Mounted Police.

The Queen City Oil Company. Toronto, has moved into its handsome new offices in the fine buildings just completed at the corner of King and Yonge streets, Toronto.

The Kingston Hosiery Co., Kingston. Ont., is shipping largely from the output of the new hosiery machines which are turning out large quantities of very fine hose.

Win. McCullough, who has been appointed manager of the Paton Mills, Sherbrooke, Que., hasarrived from Tillicoultry, Scotland, where he managed J. R. Archibald's woolen mills.

Andrew Nicol, employed in the Magog, Que., print works, had his arm caught in a cylinder right up is the shoulder. Though badly crushed, the doctors expect to be able to save the arm He was taken to the General Hospital, Montreal.

The Government has amended the tariff, and made the duty on rubber belting 25 inste of 20 per cent., as it had been reported to the House by a clerical error when the tariff was brought down.

The Forbes Manufact uring Company, of Hespeler. Ont., and the Waterloo Woolen Company, of Waterloo, have put in double-bed Gessner presses, and one has been ordered for the Brodie mills, Hespeler.

The Sherbrooke Yarn Mill, Sherbrooke, Que., is now ruuning full time on knitted goods, and has given up the production of yarns for the present. The new manager, W. H. Priest, who is also largely interested 2.2 the business, has made a number of improvements in the machinery of the mill, some of which are very ingenious and have materially improved the output.

The trend of the neckwear trade seems to be towardis manufac. turing in Canada. Until recently, E. \&e S. Currie were the only firm in this country making their own goods. Tooke Bros. added this branch to their business some time ago, and the Gault Bros. Co. are also equipping a neckwear factory. It is likely that in the near future Cookson, Louson \& Co. will follow in the footsteps of the other houses named.

Alexander Hope, for the past two years manager of the Paton Mills, Sherbrooke, Que., sailed with his family from Montreal, May 2ith, by steamer " Tritonia." for Glasgow. Before leaving Sherbrooke Mr. Hope was presented with a case of cutlery and an address by Mr. James Hall on behalf of the overseers of the Paton Mill. The directors of the company also presented Mr. Hope with a cheque for $\$ 500$.

Alexander \& Anderson, wholesale dry goods, who have been in business in Toronto for a great many years, have not been making money recently, and bave consulted with their creditors. It is underrisod that they will liquidate the wholesale dry goods portion of their business and continae in the manufacturing of cloaks and mantles. A statement is being prepared for the creditors, who are chicfly Old Country and Montreal woolen and cotton houses.

The Trent Valley Woolen Mill Co., Lid., Campbellford, Ont , is running full time.
A. W. Brodie, Hespeler, Ont., has been running his mills over. tinue for some time.

Gordon \& Phillips, Chatham, Ont., are to establish a woolen mill at Tweed. Ont. It will be lighted by electricity

The old woolen mill at South Lancaster, Ont., was totally destroyed by fire June 3 rd. Loss about $\$ \mathbf{2}, 000$: insurance, $\$ \mathbf{0} 00$. The mill will not be rebuilt.

The village of Lancaster, Ont., is offering inducements for manufacturers to locate there. The shipping facilities, water supply, etc., are very favorable.
W. C. Maclaren, manager of the Ontario Glove Works, Brock ville, Ont., has gone to Europe for the three months' tour of the chief gloveproducing centres.

Miss Jennie Lamb, formerly with the Almonte. Ont., Knitting Company, is now forewoman in the finishing cispartment of the Granite Milis, St. Hyaciathe, Que.

George Imeson, the new boss weaver in the Hawthorne Mills, Carleton Place, Ont., was presented with a handsome clock and a very kind address before leaving Glen Tay for Carleton Place.

Miss Emma Trojan, an employee of the Berlin Felt Boot Works Co., bad her left arm badly lacerated recently, while employed in running a winder, by getting it caught between two cog-wheels.

The newest industry in Paris, Ont., is the manufacture of the shoulder brace, for which A. Copeman has applied for a patent A representative of the Ballingall-Cupeman Company recently submitted samples to Turonto and London wholesale houses and secured good orders, which have since been supplemented by still larger. Machinery, now being made by P'. Hay \& Co., Galt, will be shortly installed, when the firm anticipate giving employment to from a doien to twenty hands.- Yaris Review.

Harry Jenkins, son of Samuel Jenkins, superintendent of the Electric and Operating Company. Brantford, Ont., met with a painful accident recently in the cotton mill, where he works. The youth, who is about 15 years of age, was fixing 2 mule, and had his head in the machine, when it suddenly started. The boy's head was badly squeezed, and a couple of holes inflicted by the protruding parts of the machinery. Had it not been for the plucky conduct of a young woman operative, who saw the affair and stopped the machinery, nothing could have saved him.

Negotiations hare been going on for the last few months between some Galt business men and the proprietors of the Dominion Brussels Carpet Co., Elora, for the purchase and removal of that establishment to Galt. So far no definitc agreement has been reached, and appearances indicate that the deal is unlikely to go through at present. The Galt men, a correspondent writes, were favorably impressed with the prospects of the industry, but as most of those taking hold of the matter had large businesses to look after, they found it difficult to give time and attention to additional enterprises.

The Royal Electric $\underset{\text { onnadun manuraotunere of the }}{\text { Con }} \frac{\text { MONTREAL }}{\text { TORONTO }}$

 S. K. C. TWO-PHASE APPARATUSTurnbull \& Co, Lid., Galt. Unt., is running overtime and is turn. ing ont a line of full-fashioned underwear, which is said to be fully equal to any imported lines on the market.

The Granite Mills, limited, St. Hyacintbe, Que., are running full time, and are turning out some very fine lines of silk and wool under. wear. The general manager is E. Ladewig, and the assistant general manager, II. Meyer.

Ontario letters patent have been issued incorporating i. 0 . 1)raper. Hopedale. Mass., machinist:A.F. Gault, merchant: S H Ewing. broker, R. R. Stevenson, manufacturers' agent, Montreal; Louis Simpson, Vallef field, manager, and Samuel Finley, of Montreal. gentleman, for the purpose of manufacturing iron foundings and textile machincry, and machinery of any and cvery kind whatsoever by the name of "The Northrup Loom Company of Canada," nith a total capital stock of $\$ 100,000$. The works of the company will be situated at Valleyfield, Que., which town has voted a bonus of $\$ 10,000$.

SITUATION WANTED

Wantent shluation as manager or superintendent of woolen mill by a man who has liad a latce and most sucecssful experience on shoddy coode Married: 39 yrs. of ake. sddress J. H.C. I... cate Canadian Journal of Fabrice.

SITUATION WANTED

Experientel long chain dyer and yarn rintet deairet altuatlon. Fast colors licononical. Nine ycars wilis leading ginxham, shirting, and fancy cotton, woolen and sllk deass eoods tuill in New England. Are 39 - Married. Address "M,"care of Canadian Jouraal of Fabrics.

Wanted.

By arpertenect Cotton Hleacher ant Finisher, yituation in Canadian mill licse of references covering a tong period of years. Ake forty. Married. Apply "WEST IOINT:"

Care Canadian journal of Fabries.

Situation Wanted.

WANTED, situation by an TNGIIBE DYER; an all round band ; used to alt the nirw colors and lasest ingrovements Willing to come to Canadia to thll a imenancat prosition. Addtess.
"J. D.,"
Care of Camamian jousmal or Fammes.
FIBRE AMD FABRIC A, weth rive dewil Subseripion $\$ 200$ per yeat. $\$ 1.00$ \& $\boldsymbol{T} 6$ months.
Advettising kates furnished on application.
 ilfy us when in need of eniployees, our buran. Tenitc trochs and directorics furniabed at pubilithers' prices. JOS. M. WADE \& CO , Boston, Mass.

THE C. TURNBULL CO.,

 OF GALT, Limited.maktyactuakns or

Full Yanhloned Imubia Fool Underclothlige, Honlery and Kiltilng linrma, Porfect Fithas Ledies Ribbed Veets. Nwenters, Jerseya, Kaickers.
THOMAS KER
J. HARCOLIRT

ESTABLISHED 1857

CIrders hy Mall Will recrive yrobapt aclenttan.

PINISHEU-who is an expert fuller. is open for a clianke: bas family of woikers. A very valuable man for medlum slied mill. or would aecept fecond hand in first-class thili. Giddress "D." care of Caliadian Journal of Fabricy.

FOR BALE a FELT MANUPACTURING PLANT

Picker, Cards, Felter, Fulling Mill, Cloth Press. All in tood order-will be sold en bloc or singly.
Lancrstor Mectine Works, cex merout Lancaster, Ont.

CHE®ICALS AND DYESTUFFS.

The demand for shemicals and dyestuffs is fairly brisk, and spring arrivals, although not unusually heavy, are well up to the mark. Some lines are firmer owing to demand from the United States. Sulphur, chlorate of potash, sulphate of copper and cocoanut oil are higher. The following are current quotations in Montreal :-
Bleaching powder $\$ 200$ to $\$ 210$
Bicarb. soda 2 n5 " 2 10

Carbolic acid, z lb. botties 0 . 35 " o 37
Caustic soda, 60°............................. 175 " 180

Chlorate of potash 013 " 015
Alum 135 .. 150
Copperas o 70 . 075
Sulphur flour 250 .. 300
Sulphur roll .. 300 ". 350
Sulphate of copper 4 ju " 500
White sugar of lead............................... 007 .. 008
Bich. potash.................................... 0 . ${ }^{\text {.. }} 0$ sо
Sumac. Sicily, per ton 55∞ " 6000
Soda ash. 4° to 5°. 1 又 5^{150}
Chip logrood 190 .. 200

Cocoanut oil $006 夕^{\prime}$.. 007

A.KLIPSTEIN \& CO.

 122 Penal. STheet, mew york. Chemicals \& DyestuffsFinet Color for Wool-Dry Alizarine, Phenocyanlac, Gallocyanine. Direct Cotton Colors-Au:anlac, Congo Red.
Axo Colors-Naphthol Yellow, Oranpe, Scarlets, Fast Red. heaiguageters for

Caustic Potash gox	Carbonate of Potash
Chlorate of Potash	Bleaching Powder
Phosphate of Soda	Refined Cutch A.K.C.

WRIGHT \& DALEYN, Agents, Hamilton. Ont. EI. W-KAICEI, HESPELER, ONT.

Dead Spindle Spooler for Warp orfDresser Spools, Sat. Double Actiog Gigs, Dyeiag, Kachinet.

Ses that all your LINEN THIEAD and . . . SHOE THREAD carries

Mis Trade Mark

THOS. SAMUEL \& SOM, BOLE AOBNTS

8 st. ERelen Street, Montreal 9. Wellington 8treet Weat, Toronto 173 8t. Valler Street, Queboo

FULL BTOOF OARRIED AT EAOE ADDRESE

"We hold thee safe."

The Dominion Burglary Guarantee Co.
 Iimited

Head Office, Montreal, Can. OAPITAI, 5200,000.

Insurance against burgiary and housebreaking. Policies clear and free from vexatious or restrictive clauses.

Jown A. GRESE, GEmeral Mameen.

DICK, RIDOUT \& CO’Y rerenfe, exs.

Minnufacturers of

Jute and Cotton Bags

Horse Blankets, Hessians, Buckrams
Tailors' Canvas
Hop-Sacking, Binder Twine, Yarns, Etc.

> Ageats for LOUIS BEERRENS \& SONS, Mancheuter, England, Velvetoenn, Volvettas, Furniture Covering.

ROSAMOND WOOLEN CO., ALKONTE, Ont.

Fine TWEEDS, CASSIMERES, and Fancy WORSTED SUITIMGS AND TROUSERINGS

Colors warranted as fast as the best British or Foreign goods

Richard Schofield, Toronto

 Menufncturer of all kinde ofPower Knitting Machines Cylinder Dlals Cams
Yarn Guides
Cut Pressers
Kill Supplies
14 COURT ST.

Onario akent for the well-knuwn Union Speclal Sewing Machinc for plain and ornamental stitching, as used in the thabufacture of shoes, sloves. underwear, ctc. 14 Court Strent.

... MICA... Boiler Coverings!

All Steam
Users should
See the
New Mica
Boiler and
Pipe
Covering
It Is Fioxible, Durable
and m Mimgiflcent Neu-Cunductor ... of Heat...

Tested by Mechanical Experts of the Canadian Pacinc Railway Co., Grand Trunk Railway Co., Michigan Central Rallway Co., Boller Inspection Insurance Co., and proved to be the Best of all Mon-Conductors.

Full particulars, reports of trials. prices, testimonials, **e. Ac. from
Hica Boilep
Covering CO .
l.ivirko.

9 Jordan street

mandonTo

ROOT, BENA \& CO'Y
 Wool and Noil Merchants Combers and Top Makers
 Cable Adderss-
 thuota,
 istadfural. BRABFORD, ENG. Australian, Cape and B. A. Wools Tops, Noils, Wastes
 ACENT:

 3 ST. HELEN ST., MONTREAL

\title{

EOUR HNOENEEK OUGAT TO HAVE A COLI ! !

 The Manual of 工obrication,

 The Manual of 工obrication,
 Or, IHow in Choone and How to Uioe Lubrloants for miny dencrifilion of Machinery
 With Methods of letetmining the Irurity and other Propertics of Oils, etc. Br Louis Simison.
 | Prioe 81.00 | Address | BIGCAR, EABUEL \& CO. |
| :---: | :---: | :---: |
| l'ust jrald | | Framer fide. MONTREAL, Can. |

Windleg Machinery Ymproyed Self-Aoting Mile, Suaponded Stenm IDrives Oomtrifural Eydro-Extrachor, Tenterint and Dryinf Machines. Patemt Wool and Cotton Dryer, Patcnt Wool Soouring Machiac, Croma Ralalng Machine. Patont Crabbing ana WIadingon Minchinc. Warp Binimg. Cool Air Drylug and Bemmlag Machlae, and ocher Voolen Mimchlaery.

CATALOQUE ON APPLICATION
SHAW BROTHERS, - Agents 164 MoCill stmeet. - Montreal.

Have You Forgotten

Have You Forgotten

It costs you nothing, and will be to your advantage.
If you do not report, do not complain if your name and business are incorrectly given, or, possibly, omitted.

The following is the information required in the various branches of trade. Hoolen Mills, Cotton Mills, Carpet and other Factories where Weaving is done: Name and address of proprietors, and names of the officers, if a joint stock company: the capacily in sets of cards, looms and spindles (in the ease of kniteing mills, the number of knitting machines, and whether hand or power machiness; when estab. lished. whether water. steatn or electric power. description of goods manulaciurad, whether the mill has a dye house. and names of selling afients, if any When sumated in chtes, the strect addiess is desired

Cardinu or Fulleng mills: Name, address: capacti! . date establishad, and whether stram, water or electric power
Cordago and Tuine. Jute and Flax Mills: Name. address. date established; capacity . steam, water or electric poner , kind of goxis mate and material usedi whether cotton, hemp, tha, ete 1. selling agents. if any

Sail, Tent and Awning Factories: Uphols. tery, Wall Paper and Window Shade Factories; Rulber, Oil Clothing. Filt, and miscellaneous Factories in Textile Fab. sics: Name: address: date established: steam. water or electric power: description of goods made: and selling agents. if any.
Clothing. Glove and Mitt, Collar and Cuff. Suspender and other factorios in Men's furnishings; Button Factoriss; Corset and Ladics Wear Factories: The same as in preceding list, adding. whether selling through agents, or to the trade direct: or whether manufacturing for custom work only.
Hat Factories: Name; address; date established; steam, water or electric power: whether manufaciuring Wood Felt, Fur Felt, Silk. Cloth or Straw Hats; and whether selling to the wholesale or retail trade.

Fur Manujacturers: Name; address: kind of guxds manufactured, and whether selling to the wholesale or retail trade.

Bleachers. Dyers and Feather Dressers : Name: address; whether Job Dyers, etc. of garments only, or feathers, etc.
Laundries: Name: address: and state whether a machinery or hand laundry.
Paper and Pulp Mille: Name: address: Officers, if a stock company: capacity. in tons per 24 hours: date established: steam, water or electric power: number and capacity of engines and cylinders: kind of paper manufactured: selling agents, if any.
Manufacturers' Agents or Commission Merohants: Name and address; and in what branch of the Textile trade (whether Woolens, Cottoos, Hats, Furs, Carpets, etc.
Wholecale Dwalers: Name, address and line of business: spocifying whether dealing in any or all of the following branches: $D_{\text {ry }}$ Goods. Clothing. Men's Furnishings. Tailors' Trimmings, Carpets, Upholstery Goods, Hats, Furs, Millinery and Ladies' Wear. In case you manufacture Fabrics also, state in what lines.
-It is a moot point whether the largest carpet now in watence is at the Carlton Club, Lundun, or at Windsor Castle. i.wh of the earpets qualified to compete for the title are noteworthy, the former, it is asserted, having cost a sum equivalent (o) an annual income of $£_{400-r a t h e r ~ a ~ l a r g e ~ a m o u n t ~ t o ~ b e ~}^{\text {a }}$ thampled upon-and the latter containing almost $60,000,000$ titelics, and having occupied twenty-eight weavers during © urteen months to make.
-Johann Schumacher, of Wermelskirchen, Germany, has wented a dupe shait attachment for looms that will produce a mamber of ribbons in one sheet of fabric covering the full wulth of the loom, which, when cut apart, have true selvages or cdges that cannot be unraveled with the fingers. This is ac-
complished by providing a dupe shaft carrying a heddle sur-
 to carry a bindung thread to and iro around the same. In this way producing a weave for sach ribbon.
-The Ender process of bleaching cotton consists in intpregnating the goods with an alkaline lge contamang potassinm chloride or similar compound. and then pressing and drying by heat, the effect of the chloride being to loosen and dissolve the gummy matter enveloping the cotton. The goods are sarched in the machine and treated with the usual canstic alkaltes (soda or potash), with an addition of sodimu bisulphite and potassium chloride. They are subsequently phat under heary pressure and heated in the hot chamber for $30 \cdot 60$ minutes. aceording to their thickness.

Canadian Coloped Cotton Mills Company.
 Cottonades,
 Tickings,
 Denims,
 Awnings,
 Shirtings,
 Flannelettes,
 Ginghams,
 Zephyrs, Skirtings,
 Dress Goods,
 Lawns,
 Crinkles,
 Cotton Blankets,
 Angolas,

Yarns, etc.

WHOLESALE TRADE ONLY SUPPLIED.
D. Morpice, Sons \& Co. Agents, Montreal and Toronto
 xaxuructurzto or Gametted Wastes and Shoddies Waste Openers and Pullers Office ${ }_{3}$ St. Helen Street Works, so Mannocklumf

KLONDIKE NOTICE.
 JAS. W. W00BS, ottawa

cannolity $_{\text {GOVRement }}$ Klondike Outfitter

AND MANUFACTURER OI:
LUMBERMEN'S SUPPLIES

We will send a representative from head factory with complete set of samples to intending parties wishing 10 purchaso their outhts. All information re prices, etc., Rladly given on appllcation to our Oltawa office. Our lincs inclutic anh that is needed to ensure constort with least possible weight, and buying front as you save the retailers' profit.

NOTLCE-Messrs. Wreyford \& Co, (Dr. Jaeger) 8s King St. West, Toronto, are not any longer our agenis.

JAS. W. WOODS, OTTAWA

OF SUPERIOR QUALITY

TEXTILE MACHINERY (New and Second Hand)

CARD CLOTHING Condenser Aprons

Oak-Tanned and White Belting
Cotton Banding, Rim Spindle and Braided Shuttles, Pickers, Heddles, Harness Patent Frames, GENERAL FURNISHINGS
ROBT. S. FRASER
Erenglish Sales Atsended.
3 ST. FEIFN ST. MONTREAI

ROTHSCHILD BROS. \& CO.
Manufacturera, Manufacturers' Agenta and Importern

BUTTONS.

 as Rue de la Victolro, Paris, France. is a is Front St. Eaat. Toronto.

Sherbrooke Yarn Mills Co.
Manufacturens of
 In Imitation Worated.
Write for
Prices and
Sharbrooke Yarn Mills Co. Prices and
Samples. Nherbroske, Que.

ROBERT \& COMPANY
Manufacturers' Agent,
Woolen \& Cotton Mill Supplies
14 St. MlChael's, - MONTREAL, Que

GEORGE REID \& COMPANY

succrssors to
PAUE, FRIND WOOLEN ILACERMERE CO., Imited

WOOLEN MACHINERY
Cards, Mules, l.ooms, 'lickers, etc. All hinds for sale.
WOOLEN MILL SUPPLIES
Eivety descripiton kept fa atock.
WOOL
Sole Afcats lor IRANCIS WILLEEY S CO., Hiradiord. Eng. A larie stock always on hand.

BEAM WARPS
Sole Agents for hamilton cotton co. MILLS FOR SALE

CARD CLOTHING
Our MR. REID is Sole Agent for Measrs Sanuel Law \& Sons. Cleckbeaton, Eng., and has alwaysa large stock on hand.
E. W. MUDCE \& CO.

5 St. Potor St. - Montral.
TRIMMINGS - FOKE

TYING-UP RIBEONS. Pink White Cotton Tapes

CHAS. F. TAYLOR

gacoeneor to Burgess Cop Tube Co.
Mansufacturer of PATENT MACHINE
PAPER Cop Tubes

48 Custom House St.
PROVIDE NCE, R. I. U.S.A.

The R. Forbes Co. (Limited)

Manufincturern of
\qquad
For Honiery and other work सHEPEEIER。ONTI.

${ }_{\text {The }}$ 'Pearl' ${ }^{\text {LETTER }}$
 800

WHITE PAPER
Strongly Bound Gray Canvas.

${ }_{\text {The }}$ 'Diamond'

BUFF PAPER

(Extra Strong) Strongly Bound Brown Duck.
The above are made in 1,000 page thickness. \$r.50. \$15.00 per dozen.
And 500 page, $\$ 1.00$. $\$ 9.75$ per dozen.
Epectal quotasions to large consumert.
. MORTON, PHILLIPS \& CO.
8tatloners, Blank Hook Makers and Printern
1755 \& 1757 Notre Dame St., Montreal

G. B. FRASER,

3 Wellington Street East TORONTO

HEPRESENTINO
Miller Bros. \& Co., Monteal; Paper and Celluloid Collars, Cufs and Shirt Bosoms.
W.D. VanEgmond.Scaforth Woolen Mill: Etoffes, Friezes and Tweeds.
Writ. Clark \& Son, West Flamboro: Drugrets. Tweeds, sc.
Chamberlin. Donner \& Co., Bradford, England. Dress Goods, se.
Peter Besenbruch \& Co., Elberfeld, Germany; Huttons. Sc.
Merrimack Prins Mfg. Ca, I_owell, Mass.
Burton Eros. \& Co., Niew York: Linlngs, \&e.
II. T. Lamkin \& Co., Couton Brokers, Vicksburg Mississippl Long Staple Cotion a specialty.

19?
 WM. GRAHAM
 84 and 86 Foulington Be. Enat, TORONTO Dealer in

Foreign and Domestic

 WoolsMs manufacturiog experience assists me in lmport. ling wool for may desired goods.

The Montreal Blanket Co.

Manalacturers of
Shoddies, Wool Extracts and Upholstering Flocks

Oftee and Forka: COTYS Sr. PAUL. P.O. Addrene: MONTREAL

JOHN HALLAM,
83 a 85 Yront 8t. Icmat, - - Toronto and
as Prinoem Street, - - - . Winpipus Wholesale Dealer in
DOMESTIC AND FOREIGK WOOLS Eumac. Japoaloa, \&o.

HOTE AT ETET:

dealkre is
Forelgn and Domeatic
wn L All BITM
GENERAL COMMESEION MEROHANTS HAMIRTON, ONT.
$\square \longrightarrow$

A. T. PATERSOM \& CO.

MERCHANTS,
35 Francois Xavier St., Yontreal, Representxd ar Mr. DAVID GUTHRIE.

THE SMITH WOOLSTOCK CO.

Manufactarers and Dealera In all Iines of Wool Stook, Shoddles, ife, Graded Woolen Rage, Caribonixing and Neutralising.
estreat prices pald for Wool Pickings, Woolen and Cotton Rags, Metals, Ac. Hard Waste, \&c. jurchased or worked up and returned.
219 Front 8t. IE. Toronto / Foot of Ontario St.
B. Spedding \& Co.

72 St. Henry St., Montreal
Wholeazie Deniorn in all kinds of Forelce andDouentic Woolon a Cotton Sase. Paper Stock and Metals. Graded new Woolen Clipps a specialty. Asent for
Coorgo Hirst \& SOnS, Exporter of Wooien
Telephone $2 s 52$.
Cable-"Spydulsc." Montreal.

ROBT. 8. FRABER Wools, Cotions, Noils, Yarns

Specialthas:

English Pick Lambs and Dotuns
Foreign Wools and Noils
Eauptian and Pernvian Cottons Fancy Yarms
3 St. Helen St., MONTREAL
WM. D. CAMERON,
Woolen a Cotton Manufacturers' Agent,
HALIFAX, R.S., \& ST. JOHN, N.B.
Addreat P.O. Boz 401. - BALIFAX. X.8.

WRIIE TO TPEB
 PATON MFG. CO. sherbrooke, Que. FOR
 Worsted Kiiting and Fingoring Yapns

Lachute Shutto and Bobbin Works

MISSISSIPPI IRON WORKS

Mannfacturers of Emglleh or Amortoan Frulling Mille and Washers, Woot 1Hokers, ExAamet Fan Driers, Dusters, Rotary Forec Puyps for Firo Duty, Boller Feod Pwmps, Shafting, Hangers, Cactings, Pulloys, Goaring, Ferginge.
Frull equipmont of wille of every itind.
YOUNG BROE., AImonte, Ont.

WILIIAM CRABB \& CO.

Manufacturere of all kinds of
Hackle, CIII, Comb and Card Pins, Picker Teeth, Needle Pointed Card Clothing in Wood and Leather for Flax, Jute, Tow, otc.
Hackles, Gills and Wool Combs made and repaired; also Kope Makers* pins, Picker Pins, Specia Springs, Loom and Shuttle Springs, English Cast.Steel Wire, Coton Hatiding and General Mll! Furnishingsl

Bloomfield Avenue and Morris Canal, NBWARE, N.J.

Manufacturer of

Loom Pigkers,

LAWRENCE, MASS.

Hamilton Cotton Co., Hamilton

 MaNuFAOTURMing OEWhite and Colored Yarns, SIngle or Double, Hosiory Yarns of all descriptions, Warps. Twines, white or colored. Webblings \& Bindings in great variety, Lampwicks, etc.

SRLLLING ABKNTS:
WM. K. BTEWART, in Front Et, East, Toronto. Axent for Warps: GKO. REELD, 118 Dake Street, TOKONTO

DEROCHIE BROTHERS, Gomwort
 We bulld

MPPMA MallaEs

uf to 8 linchee wide, to hap one or two pieces in widib. The mechlae naps cotion or woolen goods; can either furuish folders or winding attachmenta: this machlne is so eemr. ed that the chanking of stmall gears changes the nap on cloth that is needed. The maln shaft is 3s in. in diameter. All Roller Bearinks are btonxe and zell-oillng. All Rolls are made of hydraulic plping first-clase in furt of the machine ts St-class in every respect.
Sonie of the machioes aro running at Canada Mille, Cornmall: Montreal Cotton Co.'s Mille Val: leyteld : Wut Parks a Sons. St. fohns: Dominion cotion Mills, halifax,

This style of Spinning Frame Separators Is the surest and best.
Lancaster Machine Works, 113 OAK BTREKTT,

LANOAETETR - ONTARIO

a Better

 GiftCould not be given to the old folks than a copy of "The Anecdo. tal Life of Sir John Macdonald." It is at once the most interest. ing biography and the best collection of his jokes, repartees and witty sayings ever published. As ove of the reviewers put it, "it is a biogriphy, joke book, history and anecdote book all combined in one." Price, $\$ 2.00$ post-paid.

Asarus Biggar, Samuel \& Co., 62 Church St., Toronto, or Fracer IBdg, Montcen.

Have you a Cotton Mill, Woolen Mill. Kniting Eactory. Carpet Fac. sory, Carding Mill, Silk Mill, Flax Mill. Jute Factory, Felt Factory. lubier liactory. Cordage Eactory. Asbestos lactory, Yaper Mill, or Wall Paper Eactory?

$$
000
$$

- 00

Are you a Manufacturer of Cloth. ing, Men's Furnishings. J.adies' Wear. Iluttons, Feathers, U'pholstery Goods. Sails. Tents, Awnings or Window Slades?

000
Aro you a Manufacturer of llats or Furs?

000
Are you a Minnufacturers' Agent or Commission Merchant in any of the above lines?

$$
000
$$

Are you a Wholesale or Retail dealer in Dry Coods. Clothing. Men's Furnishings, Ilats and Furs, Millinery and Ladies' Wear, or ''pholstery Goods?

000

Do you want to refer to details of the Tariff on Textiles, or to statistics of all branches of these trades and their relations with other countries?

000

sf eo, you need this book and yow ought to bo in it,

SOME QUESTIONS

THE first edition of the Canadian Textile Directory was published in 1885, and made a work of 318 pages. It has since grown till it has made a volume of 486 pages, and the coming edition will probably be larger still. Some new features will now be added, and every pains will be taken to make it comprehensive and correct.

Taking it all round, there is no work published containing the amount and variety of information on the textile and allied trades that will be found in the Canadian Textile Directory; and the number of copies ordered from abroad for purposes of reference is continually increasing, the last edition having been exhausted some time since by such calls.

The advertisers who patronize it, are, as a rule, the very best in the trade, and the number of the firms represented in $i^{\prime} s$ advertising pages has increased with every issue.

If you have not reported your name and address, please do so For forms and particulars, address

Frawer Bundilag, Montrol, Cenate.
BIGGAR, SAMUEL \& CO.. Publisiors

BROADBENT'S HYDRO EXTRACTORS

 Direot Steam Driven. No Shafts or Belting required. Suspended on Links and requiring no Foundation.
 Adapted for Manufactories, Dyehouses, Laundries,
 Chemical Worke, Sugar Refineries, etc., otc. ———BEND FOK CATALOGUE
 \qquad
 TH0mes 5roediosyt \& Sons, Tumiteo OENTRAL IRON WORKS
 HUDDERSFIELD, - - - ENGLAND
 Telegramat "HROADBENT, HUDDERAFIELD."
 Agents for Canala: - - SHAW BROTHERS, LG4 MíGill street, Montrcal.

NORTHEY TORONTO, ONT LAURIR RNGINR CO.
 Sole Agents for Quebec

St. Catherine St, MONTREAL

Brooks and Doxey

Telegrams: Union, Manchester, Athains, Boston

muer of Cotton, Cotton Waste and Woolen Machinery

WE have a complete set of our latest Cotton Machinery at work in our Show Rooms at igi Pearl Street, Boston, and our agents, Messhs W. L. Haines \& COMPANY, will always be glad to see buyers and to explain the various valuable improvements embodied in the machines. Our machinery is made of best materials only. particular adre being paid to the finsh of the various parts, and is constructed very substantially so as to withstand the highest speeds, and give the greatest production combined with best quality of work.

D. K. MCLAREN

Genuinc Oak Tanned Leather Belting

Lancashire Hair Belting English Card Clothing

Western Trade - llease note our stock depot at GALT, ONTARIO, is now open, and our MR R M W. McLAREN will be pleased to answer any enquiries, also to fill orders.

Inst ab monthit in the interesth of the

CIVIL, MECHANICAL, RLECTRICAL, LOCOMOTIVE,STATIONARY, HARINE, MINING, AND SANITARY ENGINEER; THE MACHINIST AND FOUNDER, THE MANUFACTURER AND CONTRACTOR. SUBSCRIPTION, \$1

- - AYEAR - -

The increase in its circulation is remarkable, as is shown by the following detailed statement confirmed by the affidavit of A W. Law, Secretary of The Moneiary Times lrinting Co, our printung contractors The Canabian Engineer stands today un. rivalled amung Canadian trade papers for the wide distribution and character of its circulation

Volurte ill.			Date of issuc.		Copies Printed and Mailed.
1)ate of Istue.		Copics Printed ath Mailed		$\text { 4. Aug, } 180$	
No	1, May, :89	2,000	\cdot	5, Sept., *	3.975
-	2. Junc.	. 2,000	\cdot	6. Oct., " 3.745
-	3.)uly,	. . . 2.100		7. Nov." 3,800
"	4. Aus. " 2,200	\cdots	8, Dec. ${ }^{\circ}$	4.050
'•	5. >cpi.. ${ }^{\text {a }}$. . $2 \ddagger$ ¢00	${ }^{4}$	9. Jan, 1897	4.100
\cdots	6. ()ct. ${ }^{\text {- }}$. 2,400		10. Fcll. ${ }^{\prime \prime}$	4.350
\cdots	7. Nov. ${ }^{\text {- }}$ 2,500		11, March." 4,350
\because	S. Ince. 2,800		12, April. " 4.350
\cdots	 3,500		VOLUN	
10	10. Veb. ${ }^{\text {a }}$ 3.000		Volu	
1	11. March."	. 3.800	No	1. May, 18	. 4.350
1	12, Apri. ${ }^{\text {. }}$	3.750	.	2. June, ..	- 4,000
	VOLUM		"	3. July, ". 4,350
No	İ		"	f. AuR. ${ }^{\text {f. }}$ 4,400
*	2. June. .*	... 3.450	${ }^{*}$	6, Oct. ${ }^{\text {b }}$ 4,400
	3. July. *	. . . 3.600	*	7. Nov. " 4,000

Ifeparinents devoted to Civil Engineering. Surveying and Mining. to Mechanical, Electical. Locomotive, Stationary, Marme and Santary Engineering Sample copies sent free to intending subscriters Adverusing rates on application

Teleurams:-" Kuolin," Manchester. Ohina Olay Co.,

JOHN A. SLatbk, Man's Director. 20 Intinater Ohamber, It, Ann's Aquare, MANOHRTTER, EnE
Mimea-RuAdio, Bolen, Colchester, South Nine. stones. St. Austell, Cornwall.
Depotem Manchester, Kuncorn, Yreston, Leith London.
Contractors to II M. Indian Governmeat.

BIGGAR, SAMUEL * CO., Publishers
FRASER BUILİiidG, MONTREAL.

HAWTHORNE WBOLEN CO., Inmm.

 OARLETON PLACE, Ont. \qquadMANUPACTURERE OF

 sollime Agenta, Tromento.

THE McCORMICK TURBINE

peatures worth consideration:
Great Capacity, High Speed, Unequalled Efficiency, Steady Motion, Eany Working Gate, Greatest Power from a Limited Quantity of Water, at Smallest Cost.

Undoultadly the Most Popular Turbina Manufacturod,

S. MORGAN SMITH CO., York, Pa.

Barker's Patent Double Apron Rubbing Motions for Condenser Cards

4w in swoceseful operation on all grades of stock, betng generauy adoptod bocaune they change cosvilng and spinning ra sms for the better.
James Bantsar, cotton and Woolon Machinory
secomi and somerset streets, PMILADELPMIA, Ha.

Have You Tried

THE BEaT BACKING YETI

No stroteh. Greater strength Mover requires redrawing on. Does not grow hard. Set with polished, hardened. and tempered steel who. Impervious to all. Outwears leather. Send for Prices and Samples.

YET J. O. MOTARTHT BRTMPNG COMPANY,
 Factory: montreal.
 69 Bay street, TORONTO

Machinery for Preparing and Spinning Flax, 'ToW, FIemp and Jute

Special Machinery for the Manufacture of Binder and Ordinary Twines

Good's Patent Combined Heeding

 and Spreading MeetingPatent Artomatic-Spinning Frames Improved Laying Machines
and other special machinery for the manufacture of Rope Yarns.

ALsO OF

Brunel's Pleat Twisting and laying Motiles or Trines
Council Medal. I. olden. Iss, Grand Medal, Paris. in, Jilec Medal. Alosrin, size, iniplotha

Made on latent Automatic Machines.
The Lightest, Most Exact and Uniform Wire Heddies Ever Made.
and durable narnitic macho erin ono or tito

 For minos apis to JACK \& ROBERTSON, 7 St. Helen Street, MONTREAL.

[^0]: - buger read by Malcolm Campbell. Woonsocket, R.l., before the New Eugland Colton Manufucturers Association.

[^1]: Direct Deep Black E and Direct Deep Black E extra.-This is a new homogeneous Benzidine color in two concentrations. The black corresponds to the well-known brand Direct Deep Black 3 , being somewhat clearer in shade. It exhausts better and is of the same strengtb. The Ext:a brand, however, is double as strong. Up to the present time the cheapest direct blacks he.:- i.7d preference, irrespectue of their shate. Many dyers have c., momd to cheaper blacks, even when the shades have been totally 0 .; cicient to that which they bave been usivg. Direct Deep Black E extra being just twice as strong as other direct blacks, is proportionately cheaper in price as saving in freight and packing can be effected.

 Diazo Indigo Blue B and Diazo Blue 3 R.-Theso products are the two latest substitutes for indigo on cotton just placed upon the market by the Farbenfabriken of Elberfeld. The disadvantages of indigo in cotton dyeing, viz.: high price, bad penetration, looseness of color tc washing and rubhing and consequent continual stripping of coor, have been long recognized by textile manufacturers as well as color makers.

 Diazo Indigo Blue B gives of itself light or medium shades of indigs when diazolized and developed. For dark sharles it is com.

[^2]: - Extract from a paper by Jones S Davis, Holyoke, Mass., before the New Evglard Manulacturess' Association.

[^3]: t Hereens in other sowns semo so have eajojed special privitefos under the Tocogowa ratise.

