The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers'
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplèmentaires:
This item is filmed at the reduction ratio checked below/ Ce document ert filmé au taux de réduction indiqué ci-dessous.

Price in Canada $\$ 180$ per An. United States - $\$ 2.00$

MONT CENIS TUNAEL.
Towards the close of 1870, when France and Germiay were in the midst of blooly strife, that great triomph of modern engineering-the tuaneling of Mont Cens-was accomplished.
All travelers between France and Italy vere obliged to lave the railway at Susa and endure a long and tedious rudn of six bours in the stagncoach over the mountan pass. The highway is considered one of the best built ruads m Europe, and well it might, costing upward of $12,000,099$ francs. During summer the view of the surrounding momatain peaks is grand beyond descricution, but to be foceed to nide for
hours through the snow, os encounter an avalanche, intimidated many from employing that route In 1863, during the bonag of the tunnel, the French built a railroal, asing a part of the pubhe road, this shortened the journey so ar three hours. It was a curious sight to see the traino hig-zic. ging up the mountain side.

Count Cavonr, the great Italian Staterman, in 1857. demonstrated the feasibility of connectin: Saroy, which pas then Itailinn territory, and Piedmoni, by means of a railroad through the $11 p s$, and was the first to propose the tuanel. Mont Cuns was selisted an the most ditect line betweon Turm and Gunca (Spitz-rland) Whe little town of Bardoneche wh chmend in the terminus ou the Itahisn, or gouth
side, thence through in a straight line to Modano, a small village of Savoy.

Of course they wont but slowly on at first, the Italian Government linving to bear all tho expease, but, soon after, when Savoy had been ceded to Franco and Napolcon commenced to bore at the Modano termiuus, the work went more rapidly forward. For thirteen years, night and day, the work progressed and the opposite gangs were steadily approaching cach other. For the first five years, tho work moved forward tardily enough_being at the rate of 1,643 feet per annum. The rock is of the hardest species of gneiss, and hand-drilling was consequently exceedingly arduous. 1862, however, marks A new ers in the history of this entreprise, for Sommeiller, a French savant, invented one of the most wonderful machines of modern times. It is especially adapted for the purpose, for, being put into action by pncumatic power, the dangerous boller and the air destroying fire, were rendered useless. Immediately the work took a fresh start and was pushed forward at the rate of 4,200 fect per year.

T'bis gigantic drilling apparatus was worked entirely by compressed air which was forced through pipes by a series of turbine wheels, driven by steam power at the entrance of the tunnel. The wonderful adaptability of this style of machines for working in close confined quarters, is shown in the fact, that the same air, after serving as the motive power, passed into the atmospher: and aflorded breathing material for the working men. Water to clean the drills was also forced into the machine by pumps crected in the vallers at either end of the tunnel, and as the tunnel lengthened, a new section of the pipes was inserted, to keep pace. To render moving the drill easy, the connecting pipes were of flexible India-rubuer.

When the holes had been drilled about thirty inches deep, the machine was drawn back upon the tracks, which were laid as rapid!y as the work progressed, not only for this purpose, but also for the transportation of the detached rock. Now the blasters filled each drill with a pound, more or less, of powder; the men drew back, and soon a thunder-like noise would resound, scattering the rock and shaling the mountain to the summit. To those who divelt near the opening of the tunnel the sound would resemble distant cannor. Immediately the air valves are opened, and soon all the smoke and dust is blown out of the tunnel into the open air. Soon all the detached stone is cleared away and the work proceeds as before.

Sommeiller lived to see his inventinn accomplish the work in about half the time it had been calculated at the outset would have been required. The most sanguine bad removed the completion twenty-four years ahead, but the inventor finished the work within thirteen years. He was amongst the first to pass through the tunnel, end to end, by rail, but did not long survive the severe exposure he had undergone during the work. He died the following summer.

The tunnel is a fraction less than eight miles in length, 41,815 feat. And to give an idea of the labor it required, we will give a few figures. For every foot of stone taken out it was necessary to drill from thirty-five to forty holes, and to loosen the stone from thirty to thirty-five pounds of powder were used; thus making in ali something like $1,580,970$ holes drilled, and requiring no less than $1,489,892$ pounds of powder.

From the entrance, on the French side, the bore ascends at the rate of sixty iset to the 1,000 , until about half way, then level to the ot ${ }^{2}$ rend. So exact had been the calculation, that when the workmen met, four miles from the starting point, they found that there had not been an inch of deviation from the straight line. What wondrous skill so to gude, that two lines shall exactly meet at the centre of a mountain nearly 10,000 feet in height!

We can hardly imagine the moment of intesse joy that thrilled the workimen on the 28th December, when at early dawn they heard, though dimly, each other working on either side of the fast waning rocky partition.

How they must huve redoubled their energy and with what strong entbusiasm, thay, flushed with the expectant victory, pressed on with ther work. Never did men feel more filled with the importance of their work than they. For many long and jaborious years they had gradually worked roward one another, and now their labours were soon to terminate in perfect success.

Quickly a messenger was scnt from the Italian workmen,
to go ovor the mountain and tell their Fronch co-workers to prepare a huge blast, and tonch it off at exactly twelvo, noon, and the Italians would do the same.

The hour came, and with it a tromendous blast which shattered the last remaining rock, and united the ends of this stupendous mastor work, \rightarrow Cal. Ill Press.

ON AN IMPROVED FORM UF ANEROID FOR DETER MINING HEIGUTS, \&c.*

By \& 2 . Mogers Firld, B.A., C.E.

The nuthor begins by stating that tho object aimed at in designing this improved form of aneroid was to simplify the correct determination of altitudes in cases such as ordinarily occur in England, and that the instrument is therefore ar ranged to suit moderate elevations, say of $2,000 \mathrm{ft}$. and under and is not intended for considerable clevati ns.

Before procceding to describs this instrument he briefly recaritulates tha general principles on which the measurement of heights by a mer urial barometer depends, and for this parpose he refers to the mercurial barometer as the original source from which the graduations on the aneroid are obtained If an observation taken at ono station is compared with that taken at a higher one the difference of the readings of the barometer will give the height of mercury which balances the column of air betwern the two stations, so that knowing the relative wijght of air and mercury we can determine the height of the column of air, or in other words, the vertical height between the two stations. The relative weights of air and of mercury are rarinble, being affected by the gradual reduction of the prossure of the air as we ascend, and also by variations of temperature ; the accurate determination of their relative weights is the principle which lies at the basis of the various formulic that have been proposed for barometrical measurement of altitudes, although the problem cannot be stated in such a simple form is this.

The preceding general principles apply to the aneroid equally with a mercurial barometer. A good anoroid is always graduated by direct comparison with a standard mercurial barometer, so that the readings of the ancroid represent those of a mercurial barometer, and the better the aneroid the more accurate this representation will be. A well constructed aneroid, however, ditfers froin a mercarial barometer by being compensated to a certain extent for the effect of the temperature on the instrument itself, so that this need not be taken into account, more especially as the effect of temperature on the instrument only becomes important when the temperatures of the stations difier considerably, which they will not do in moderate elevations.
The conditions, therefore, which have to be taken into account in the pretent case, are, (1) the pressure of the at nosphere, and (2) the temperature of the air.

Various formula are given by different authorities for determiniug the altitude readings of the barometer, but they do not differ much for small altitudes, though this is far from being the case with grcat altitudes. The table which is adopted in graduating the present aneroid is that given by the Astronomer Koyal in the "Proceedings of the Meteorological Society," vol. iii., page 406, and gives results which lie between those of the other authorities.

Aneroid; constructed for the determination of elevation by readings from an altitude scale consist of two classes, one in which the altitude scale is fixed, and the other in which it is movable at random. The first class of aneroid with a fixed scale is accuate in principle, but the scale only allows for one of the conditions which have to be taken into account, viz. the varying pressure of the atmosphere, and the other condition, or temperature of the atmosphere has to be allowed for by calculation. The second class of aneroid, that with a movable scale, is radically wrong in principle as ordinarily used, inasmuch as the movable scale must be graduated from one fixed position of the zero, and when the zero is shifted at random according to the position of the hand of the instru. ment, the scile necessar ly becomes inaccurate.

In the improved aneroid the scale of altitudes is movable, but instead of b ing shifted at random according to the pocition of the hand of th? instrumert, it is moved into certain fixed

- British Associatic r, Section (G.
positions, according to the temperature of the atmosphere, so that the shifting of the scale anwers the same purpose as if the origiand scale were altered to suic tho various temperatures of the atmosphere. The ancroid 18 graduated for inches i, the usual way on the face, but the graduation only extends from 31 in . to 27 in .80 as to preserve an open scale. The outer movable scalc is graduated in fect for altitudes, nnd the graduation is laid down by fixing the zero opposite 31 in. 'This is the normal yosition of the scale, and it is then correct for a temperature of 50 deg. For temperatures below 50 deg. the zero of the scale is moved below 31 in, and for temperatures above 50 deg tise zero of the scalo is moved above 31 in. ; the exact position of the zero for different temperatures has been determined partly by calculation, and tartly by trial, and marked on the rim of the nneroid. In order to ensure the altitude scale not being shifted after it has once been set in its proper position, there is a special contrivance for lock ing it in the various positions. The sltitudes are, in all cases, determined by taking two readings, one at each station, and then subtracting the reading at the lower station from that at the upper.

The movable scale requires to be set for temperatures be foro taking any observation, and not shilted during the progress of the observation. This whll practical'y not give any inconvenience in the case of moderate altitudes, as small variations of temperature will not appreciably affect the result, and so long as the iemperature docs not vary during the course of th- observations more than 6 deg. or 8 deg . from that at which the instrument is set, the result may bo accepted as practically correct.

In conclusion the author states that the principle of allowing for the variations of temperatures of the atmosphere by shifting the altitude scale does not profess to be theoretically accurate, but simply sufficiently accurate for practical purposes In order to satisfy himself that this was the case, the author carefully tested the aneroid by comparing the readings obtained for diferent temperatures from the shifted scale with the correct readings as given by calculations from the normal position of the scale, and found that the maximum error was 8 ft . and the average error is under 3 ft ., errors which are practicallv inappreciable.

The instrument was constructed by Mr. Cassella, of Holborn Bars, London.

MEYN'S PATENT BOLLER.

The Actien Gesellschaft der Hollerschen Carlshutte, near Rendsburg, have at work in the German Boiler House of the Exhibition, two of J. C. Meyn's patent high-pressure bollers, of which we present engravings on page 198. These boiters are vertical, and of a very novel construction, nad it will be seen from the experiments of which the results are given below, that they possess very considerable stcaming powers.

Meyn's boiler consists externally of two cylinders, of which the upper is the smalier. The furnace is half internal and half exteral, and it will be seen that it requires but little bulding. It is made in this way because sufficient grate surfare cannot be obtained on this syetem with an entirely internal furnace. The grate is 6 ft .8 in . by 2 ft .4 in , and has a surface, therefore, of 16.1 square fect. It has no bridge, but communicates directly through a short vertical flue, of which the upper opening is 2 ft . 1 in. diameter, with a central combustiou chamber. This chamber is $5 \mathrm{ft} 7 \frac{1}{3}$ in. diameter inside and 2 ft .8 in . deep at the sides. Its roof is somewhat disi di, and is stayed to the upper part of the boiler by ties as shown. The combustion chamber is traversed by 76 flattened vertical water tubes, which form one of the principal features in the boiler, and Fig. 2, shows their position in the cross section. They are wrought-iron welded tubes, with horizontal channels across their sides - the arrangement of which is shown to a larger scale in Figs. 4,5 and 6. Through these tubes the water cirnlates frum the lower part of the boiler, and between them the ${ }^{4}$ me must pass. From the roof of the combustion chamber a:'ruble ring of tubes leads up to the upper part of the lower suell, the upper eylindrical shell being of such a diameter that it stands inside theserings of tubes. This upper shell is inclosed in a smokebox of the same diameter as the lower shesl, and made of sheet iron. The ordinary water level is two-thirds up the height of the upper tubes, as shown on the drawing. The
upper shell, therefore servef, as a ste9m dome of large capacity, and has npparently been roally cflectual in preventing priming. The steam is led away from tho top of the builer through a pipe which forms a triple ring round it in the smokebox before it is allowed to go into the air.
'lhese boilers are mach ne-rivetted throughout, and if their rivetting is at all as good as that of some specimens (cut in half and planid) exhibited by the Carlshatte Company, it must be unusually excellent. The Company mako their own rivets, and make them, wo notice, with exceptionally large heada. The horizontal seams in the bobler are all single rivetted butt joints, and the vertical seams, plain single rivettid joints, but these latter would be better arianged to break joint than placed ns at present in one continuour line down the side of the boiler. Proper attention has been paid to making the different parts carily accessible for cleaning and repairs, and they are more casily to be got at than is generally the case in similar somewhat complimind boilers. The usual working pressure is 60 lb . per square inch shove atmospheric pressure Meyn's boilers are used, among other things, for heating with the flame and aases from puddling furnaces, but under those circumslances there is in general such a superabundance of heat that it can selucas be necessary to use such a complicated be iler in order to economise it.

The principal dimensions of the two boilers exhibited at Vienmare as follows:

Length of the lower shell
$\begin{array}{cc}\text { ft. } & \text { in. } \\ 8 & 4 \\ 6 & 3 \\ 6 & 5 \\ 4 & 4 \\ 14 & 9 \\ 74\end{array}$
Diameter

Diameter
74
96819
66
Number of flat water thbes
Total surface of tuber.
66
Number of round tubes.
Diameter of tubes.
2.48 in.

Surface of tubes (to water line)
80 sq ft .
Total surface in boiler to waier-line.
above wat r-line. .
Total heatine surface in boiler.
Le gth of grate 6 ft . 8 in.
Width
2 "4"
Grate surface
$16.1 \mathrm{sq} . \mathrm{ft}$.
A number of experiments have been made with Meyn'R boiler by engineers and others who use it, and from those published we select the following, which seem to have been made with care and completeness at the Essen Cast Steel Works, in Rhenish Prussia. The boiler tested was one with 355 square metres (371 square feet) total heating surface, of which 10.3 fquare metres (117 square feet) was above the water line The grate surface wai $1.5 \pm$ square metres (16.57 square fect). We have reduced the evaporation given to the correspording evaporation from and at 100 deg. centigrade (212 Fahr.), which afford; a better means of comparion than evaporation from 0 deg. and 100 deg which is the form given in the original table. The analy:is of the fuel used was as follows

$$
\begin{aligned}
& \text { Carbon. .. } 81.34 \\
& \text { Mydrogen uncombined................... } 3.45 \\
& \text { in combination } \\
& 0.74 \\
& \text { Oxygen and Nitrogen } 5.89 \\
& \begin{array}{ll}
\text { Sulphur . } & 0.64 \\
\text { Water } & 2.00
\end{array} \\
& \text { Ash. } \\
& 5.94 \\
& 100.00
\end{aligned}
$$

One pound of the coal to which the above analysis refers can evaporate theoretically 14.35 Ib . of water fromand at 100 deg. centigrade. The temperature of the gases in the chimnoy in the immediate neighbourhood of the smokebox was 215 deg. to 240 deg . centigrade (419 deg to 464 deg . Fahr.), and the ashes were frum 14 to 15 per cent. of the weight of the fuel. It is due to the inventor to say that these experiments were made by the boiler users at his request and quito indepondently of him or of the boiler makers, and wo see no reason to doubt their accuracy. The results which we have arranged in the adjoining table are not those most favourable to the boiler, but those which seemed, on the whole, the most complete. With a better fuel, a better evaporation should, and no doubt would be obtained. The boiler secms to be very free from priming, which is only what its exceptionally large
stanm room would lead un to expact. The meakent point about it will probably bo the upper end of the round flamo tuber, which aro only a amall distance above the water level We have almage found that tubes, the fastening of whach is exposed on ono ide to flame, and on the other t, very wet ateam, aro very apt to give troublo by laking.

Table Showng Result OLtasned with Menn', Hogi-Presoure Bowler

- Thin colomn is, of cuarse, the same as if pounds wero substituted for kilegrammos

Investiontions of a very interesting character, mado by an experienced house painter in Paris to ascertain whether emanations from certain paints containing such substances as white lead, ziluc white, linseod oil essence of turpentine, coal oil, \&c., are injurnous to health, show some noteworthy results. He catsed the instdes of some tozes to be painted, and within thom he placed wire cages containing ribbits, which were not ita contact with the paint, but only subject to the infuence of the emanations from it The rabbits suffered while that print wis fiesh, especially when it contasned cual cil, but nun" st thein ded Living in apartments recently painted, and whal ewat the odour of on of turpentine is not, therefore, permancutly ajarious to healtia. Some sther tebts wero madefur the purpuse of obtaining deposits of these emanatioub thom the \{resh paintings of houses Instead of jabbita, plates coutamang a small quantity rif f water wero placed in the b xes, and, aftel the water had evaporated from the plat. A, thete were twand some romarkable crystallisations like needider, cousistins of combinations in which the oils emploged formed the priucipal part. These crystalline combinatious were obtained even when linseed was used.

INSTRUCTIGNS TO ENGINEERSAND FIREMPN.

By R. Aragrrong, CE., in Van Nostrand's Magazine.

1. Engineers and firemen who would keep stram with economy, should do with as little stoking or starring of the fire as pubsible, if any. in order to do bo, they should see before starting that the furuace id properly constructed for the purpert, and large enough for the quantity of steam required. The ite-grato should havo atont 1 sq . it of effective fire-bar surface tur each nominal horse-powes of the engine, or for each cubic ioot of water required to be boilded away per beour. The fire-bers may bo trom \& to fin. thick on the face, with f to hin. draught spaces

betweon them, and with jog. gles to keep them nasunder Dearly the whole dopth of the bar. The boiler should have, at least, 8 or 10 sq. ft. of heating surface per horbe, and the chimner should be of sufficlent capacity to create a draught into the furnace equal to the presanre of a column of water $\frac{f}{8}$ to sin. deop, when the damper is set wide open
2. In firing, apread the large and small coals (dyuably mixed) on all parts of the grate, thicker at the back of the grate ncar the bridgn than at the front, because the draught is there the strongest, and the coals durn away the quickest.
3. The fire should never be less then about 3 or tin thick in the middle of its length, 2 or 3in. in front, and 6 or 8 in at the back of the grate. In no case should the fire exceed double the depth bere stated; and never more than twothirds of the fire-grate should be entirely covered with fresh coals at one time.
4. If a regularly uniform supply of steam is required, and the damper quite up, the quantity of fuel on the grate may be gradually increased; but when an inc-asing quantity of steam is wanted, the average thickness or quantity of fuel on the grate must not then be increased, but ought rather to be diminished, and supplied by smaller quantities at a time, and more frequently. So soon, however, as the supply of steam exceeds the demand the coal must again be supplied by larger quantities at a time, regularly increasing the quantity of fuel in the grate as before on the other hand, when a diminished supply of steam is required, close the damper a little, and take the opportunity of levelling the fire or cleaning the fire-bars, doing one-half of the grate at a time.
5. A steam-engine furuace worked in this way will make very little smoke; or, if any, it may be provented when desirable by opening the firedoor 2 or 3 in . for 1 or 2 min , after each firing bearing in mind that tho production of steam is commoniy lessened by doing so, but so is the consumption of the fuel.
6. Stokers should understand that they are not to mako a business of "stoking," but to leave it off entirely, excepting only when preparing to clear out the grate from clinkers and rubbish, which requires to be done generally three or four times a day with average qualities of coal, convenient times being chosen for the purpose when there is the least demand for atear
7. A fireman's business is, first, to see, before the fire-door is opened, that no coal is left in the heap ready for going on bigger than a man's tist and that very small coal or slark is wetted, at least damp, as well as a little water always in the ash-pit. Then begin by charging into the farther end of the furnace, reaching to about one-third the length of the grate from the bridge, as rapidiy so possible, frome a dozen to twenty or thirty spadefuls of coals, until they form a bank reaching nearly or quite up to the toy of the bridge, and then shut the
fire-door, until the other fires, If there are any, aro sorved in the asme way.
8. In firing up, throw the coals over the rest of the grate by scattering thom ovenly from sido to side, but thinner at the front, near the dead plate, than at tho middle or back. Tn this manner keep the fuel moderatoly thick and level across the bars, but always thicker at tho back than the front, not by pushing the fire in, but by throwing the cosls on exactly where they are wanted.
9. Never for a moment leavo any portion of tho bars uncovered, which must be prevented by throwing or pitching a spadeful of coals right into any hollow or thin place that appears; and always remember that three or four spadefuls thrown quickly one on tho top of the other, will make no more smoke than one, and gencrally less. But all depends on doing it quickly; that being the main, if not the only, point in which frecdom from smoke and cconomy of fuel agree. Some fircmen only put on three spadefuls, while another can put on four, and make 20 per cent. more steam in the same time by doing it.
10. In replenishing the fire, take overy opportunity of keeping up the bank of fuel at the bridge, by re-charging it, ono side at a time. Whenever this bank is burnt entirely through or low, a nd also when the fire is in a low state generally, take the rake and draw back the half-burnt fuel 12 or 18 inches from the bridge, and re-charge fresh coal into its place, upon the bare fire-bars as at first.
11. An engine-fire tended in this way will consume ith own emoke without difficulty, simply by admitting a very moderate supply of air (which for safety to the boiler should be heated) at the bridge, this being a more certain and cconomical mode of prevention than thet of diluting the smoke by the admission of much cold air at the firc-doors.
12. It may be set down as an axiom that a stenm-engine chimney cannot be too large, if only provided with a damper, although ninety-nine in one hundred, at the present time, are decidedly too small. They are unable to create a sufficient draught of the air through the furnace, consequently a smoky flame is produced, instead of a llame with little or no smoke.
13. Want of chimney draught is a defect which no smokeconsuming furnace in the worl I can remedy, whether using hot air or cold, unless by the application of an artificial Blast, which cummonly costs as much to work as the heat it creates is worth.
14. It being impossible to consume smoke without great Leat, which requires a good draught, and difficult to get a good draught without a large chimney, I here set down a table of chimuey proportions, which have been practically proved to answer well with the inferior steam coal of the manufacturing and Midland districts for many years past. It is true that somewhat smalier dimensions might serve where the cxtravagaut use of Newcastle coal is still continued, as in Londun; but even here those dimensions and proportions ought to be adhered to, because of the cunstant teadency to increase the engine and boiler power, while the same brick chimncy remains. For similar reasons I commence with a chimney suitable for a 10 -horse builer, although a 5 , or even a. 2-horse cagine only, may be required.

		Height of Chimney.	Inside Diameter at Top.	Nominal Horsc-power of Boiler.
20	yard		1 ft .6 in .	10
25	"		18	12
30	"		110	16
33	"		20	20
35	${ }^{6}$	26	30
40	"	30	50
40	*	- \cdot. \cdot. \cdot.........	36	70
40	"		40	90
45	"		46	120
50	"		50	160
55	${ }^{6}$		56	200
60	*		60	250

15. A common low.pressure condensing engine is usually overloaded when it has less than 25 circular inches in the
cylinder for each nominal horso power ; and a high-pressuro non.condensing engine ought to have from 10 to $12 \frac{1}{2}$, and to be Forked at doublo the effective pressure, at the least, of the former-say 30 to 40 lb . per square inch in the boiler.

RECENT SETVAGE NEWS.

The following resume of news concerning the sewage question will be of interest to our readers, not only in itself, as nows, but from the fact that the question is now being practically taken up in Canada. Tho Hochelaga sowage farm near Montreal h as begun to attract some attencion and the directors of that undertaking seem te have begun to experience some of the difficulties inseparable from theso undertakings. The able and lucid account which follows is from the columns of Engineering:
r. Hydra-headed, tho sewage question is constantly cropping up, and September has been prolific in accounts of the doings and non-doings of those who profess to afford 8 solution of this difficult question. Wu are at a loss to ascertain which of two important subjects-this and the ccal question-is of the most value to the community at large. On cither side much is to be, and has been, said, yet but littlo done. Our position is, therefore, not that of a judge, but to state all those facts which, having been ascertained carcful!y, can be placed before our readers for their decision.

In the past month we have had several items of fresh in. telligence, either pointing towards improvements of old processes. or suggesting new plans. At the meeting of the British Association at Bradford, we find that the treatment of sewage by precipitation methods is declared to be an entire, failure. On the other hand, we learn that the Native Guano Company, the patentees of the A B C process, has been favourably repcrted on at Leeds, and its rival, the Phosphate Sewage Company, has recently issued a circular, in which an absolute confidence in its ultimate results, both manurial and purifying is asserted.
A new scheme has lately been propagated for draining a large area west of Teddington and partially cast (in a direct line towards the Thames), of all the sewage products of the district, proposing, at the cost of some two millions, to convey the sewage to the Thames below Crossness, which is at present the position of outflow for the sewage of so-called South London. Pactically we may call this the west outer circle of our present metropolitan sewage arrangement. It will embrace numerous towns, villages, hamlets, \&c., which now, more or less, discharge their sewage into the Thames. The difficulty that has to be contended with is one almost entirely of an engincering chamcter. In other words, the "levels" are such that punping is inevitable to relieve these districts of the dangerous nuisunce to which they are now subjected.

We have frequently urged a combination of all the existing sewage schemes as most prubably leading to a solution of the whole sewage question. It is evident, however, that our effurts have been. and are likely to be, in vain. Irrigationists, chemical preuptationists, and the advocates of each form of earth-closet system, still maintain their individual superiority, and expect to defeat all their opponents. As an example of the presint position, the following abbreviated reports of each advocate is given as issued in September.

We take, first, the report of the effects of the A 13 C process at Lecds. In previous issues we have described and criticised the operations of the company at Leeds, Leamington, and Crossncss. It was shown that the manure produced at Leamington was generally attended with good results when a pplied to suitable soils. We have before us a report of experiments recently made by a sub-committec of the Strects and Sewerage Committee of Leeds, giving the comparative results that attended the use of various manures applied to parcels of land in the neighbourhood of that borough. At their last annual report they expressed themselves as quite satisfied with the effluent water produced by the A B C process. But the manurial question was not settled, and this-as wo have on many occasions pointed out-is a most i uportant item in the com. mercial value of any plan of dealing with raw sewages.

The Leeds anthorities tovk six patches of land, each consisting of half an acre, to make what we may properly designate reliable experiments on the value of the manure produced by their work at Knostrop, where they treat a portion
of the Lecds sewage by the A B C process. It appears that they employed six different dressings on an cqual number of half-acio patches, namely, of strect sweopinga, which at Lecds aro pretty good, considering the imperfect scavengering of the borough; of stable manure; of Peruvian guano; of "native manure," which, so far as we can learn, is a mixture of the nativeguano from the Knostrop Works, incorforated with the midden refuse; "native guano" pur et simple-that is, the product of the Knostrop Works; and sewage mud, which may be considered as the natural precipitate of the sewage gencrally. The pecuniary cost and produat of all and each of these experiments, which have been just concluded, were as follows:

It hence follows that $13 l$. was in round numbers, expended on three acres to obtain a return of about $16 l$., or about 812 . for each 1002 . of produce.

The results so obtained are somewhat anomalous. The Committec, who have had the management of these trinls, and whose impartinlity is undonbted, have resolved to make sure on future projects. The advocates of the A BC process maintain that their manure is nota stimulaut smply, but that its effects are lasting. We have every reason to believe that there is a foundation for this idea as our own experiments have verifiod it. The Committee at leeds therefore proposed to leave each plot exactly as it is this season, to test the permanent value of each kind of manure they have em ployed.

It is somewhat remarkable that th native guano destroys indigenous wecds, and encourages the growth of grain, and especially of dandelion, while sewage proper destroys the latter, and encourages the growth of a heterogeneous class of weeds. Our experience on this point has been respectively derived from a year's inspection ('wo seasons) of native guano at Leamington, and sewage at Barking In regard to the untFersality of the latter, we lay ourselves under correction, simply stating that by the term "weeds" we mean such products of a grass-feld as the generality of farmers object to for green food and hay produce. It appears that the experience of the Leeds authorities, in respect to the native guano, agrees with this opinion, and this is the more remarkable on account of the great difference which subsists between the so-called wecds of this Warwickshire and of the West Riding of Yorkshire. We have already urged on our readers, in our "Notes on Sewage," the importance of studying the "botanical" conditions of the sewage question. Mr. IIope, the great advocate of irrigation, is well aware of the importance of this point in regard to his model farm.
From these remarks it is evident that neither chemical, botanical, nor physical conditions are to be taken separately as an indication or \quad z value of any special mode oi treating sewage, for takins all the results of sewr treatment, with the same chemical element or compounds present, mbether at Croydon, Barking, Rugby, Leamington, Warwick, Lecds, \&c., the practical deductions are not uniform. In other words, a general law of produce should follow the presence of a certain amount of nitrogenous and carbonaceous matter in a given amount of diluent, whether that be water, clay, sand, or any other comparativsly inert material. This anomaly thus arising, however, is not inexplicable, for it is evident that, while the same manure may be applied to different soils, 0^{*} the same soil be treated by different manures, the results must be affected by the varying conditions of the two scts of experiments.

Wi have already pointed out that the manurial value of any deposit cffected by the A. B C process depends essentially on the kin. 5 serage treated. The same remarks hold good in
regard to every process amployed fur the utalisation of sewage We state this to prevent any circumlocution in our further observations.

We next remark on a circular recently issued by the Phosphate Sermge Company, which, as is well known, is the chief rival of the Native Guano Company, excepting, however, the General Sewage Company, working under Dr. Anderson's patent The distinction between these two processes 8 encily stated. The Phosphate (umpany treat a natuma phosphate of alumina by mrans of sulphuric acid, by whach they obtain a certain amount of phosphuric atid, phosphate of hme, sulphate of alumina, and sulphate of lime, the lime saits being produced by the addition of " milk of lime," sudded white the trented phosplante of nlumina is passing into the sewage. In our last volume, on page 46 , we gave a full description of the process just referred to, and wo niso, in that article, drew attention to the difficulties in which the company found itself placed in February last. I3y the circuiar recently issucd to the share. holders we learn that the company have nearly completed their experiments at Barking, which, to our knowjodge, have been in progress over a year It is a pity that public companics are formed simply to try experiments, when the prospectuses on which they are based usually state that such experiment had long previously insured entire and permanent success.

Tha Phosphate Company, like others, has had to contend with the difticulty of drying the residual product, which, generally speaking, is very intractable. Numerous gowag 'drying machines have been proposed, but wo learn that the practical suggestions of Mr Heury Morgan have solved this difficulty. A public trial, which is shortly to taku place at tho Barking Works, will afford an opporturity of judging of the amount of success thus suated to havo been arrived at. But a peculiar dificulty has been encountered by the company. It was originally formed to work the natural phos. phate of alumina obtained from the island of Alto. Vela. 'Ihe San Domiago authorities, bowever, ignored the concession which had been granted, and consequently the company's supply of material was stopped. We learn by their circular that they have now on hand about 18,100 tons of the phosphate, worth about $60,000 l$; and tbat they have taken pro. ceeding 6 in Chancery to recover the 64 m of $65,000 \mathrm{l}$, which had been paid for the now forfeited concession. Failing a further supply from Alto-Vela, they anticipate no difficulty in getting a similar phosphate from other sources.

Next on our list of sewage news is the report of the Sewago Committec of tho British Association. We aro not surprised that the committee prefer irrigation as the solution, and the only one, of the question. At cach of the recent meetings of that body, and of the Social Science Congress, irsigation has been alone considered as effective. For all practical purposes none of the chpmical processes yet introduced has shown any results approximating financially and chemically to those obtained by the direct application of sowage to land, as shown in the Darking and Croydon farms. Untll it is shown that similar or better results can be obtained by other means, the advucates of irrigation are justifled in claimıng the nearest approach to success for their plan. Having visited all the sewage farms in England repeatedly, at the different seasons of the year, we have come to the conclusion that their success i, entirely dependent on proper management. In ordinary farming precisely tho same results hold good. The chief dif. ficulty to bo contended with in establishing a universal system of ircigation will be that of obtaining suitable land in each place where the system is to be adopted. The present success of the existing sewage farms is cssentially dependent on the accidental circumstance that such land was readily available in the district to which tha sevage was to be employed. The great point is to have both in the surface and subsoil great powers of absorption, so that the water may be rapidly filtered away, leaving the manurial portions of the sewage ready for assimilisation by the radicles of the plant. It is evident, therefore, that a stiff clay land is utterly unfit for sewage irrigation.

Last in our list of reports is that of Dr. J. Whitmore, the Hedical Officer of Health for Marylebonc. It will be remenbered that only a short time ago the outbreak of typhoid fever in the parish, traced to the use of a certain supply of milk, lead to the assertion that cows fed on sewage grass bad their nilk so affected as to pr duce such distase. This, however, cannot be associated with the Maryichone epidemi4, except so far as the mi k was concerned, for the cows supplying this did
not touch sowngo-grass. Dr. Whitmore then states how he traced the evil to one farm. The company from which the milk was obtained, possesses eight farms. Dr. Whitmore, with Dr. Corfield and Mr. Chalmers Morton, visited these, and seven wore pronouncrd as generally satisfactory. 'At the cighth farm, however, the conjition of things which then existed (middle of August) coupled with sume antecedent facts Which had come to our knowledge, demonstrated beyond the possibility of any reabonable doabt that the fountain and origin of the cpidemic had been at last furund out. The farm, known us Chilton firove Farm, is situated some few miles from 1 hame, in ' turdshire' Having examined into the cause of death of pronuius resident un tho farm, and traced it to ty fhuid fever, Ut. Whitmore remarke, "The farmhuase and buldings are piaced on a slope, the privy, which is a mere open pit, being placed at the highest point, and at the lowest, the well." They discovered that the leakage frum the privy liad little to obstruct it in its passage to the latter, and this impurity was still further increased by adjacent manure heaps and pig-styes. The cans used to hold the milk were daily washed with this water, and Dr. Whitmore considers that a small portion of the liquid being left in the cans was sufficient to infect the milis afterwards sent away in them. The supply from the farm was instantly stopped, and one cause of the Jarylebono epidemic was as quickly removed.

We forbcar to make any further observation on the reposts of which we have given a resumf. Our object is to plaof betore our readers the latest phaser of the sewage question. It will
 repuring adt the aid that science ard duly diperitince can give to so importanifa subject.

AMERICAN LIGFTHULSES.

Last gear the Lighthouse Board of the l'nited States hac under charge 179 sea and lake coust lights, 394 river and harbour lights, 22 light ships, and 33 fog signals operated by steam or hot-air engiaes, besides large numbers of unlighted beacc ns and buoys. Naturally the great diversity of the conditions under which the American lighthouses have to be orected, and the fact that the great extent of coast has necessitated the division of the work of superintendence into thirteen dis. tricts, each with its own engineer, have led to considerable variety of design, and we propose in this, and some succeeding numbers, to illustrate some of the types of lighthouses lately erected by the Board, or now in course of constraction. This month we pablish on page 203, two of these l-signs from the columas of Engineering, the upper figure showirg 'he Race Rock lighthouse, and the lower figure that at "ihimble Shoal," Hampton Roads, Virginia.

The Race Rock lighthouse, at the enstern entrance to Long Island Sound, is one belonging to the third district, of which Colonel I. C. Woodruff is engineor. 'The general design of the structore is shown of the engraving, and we need merely add here that the foundation consists of about ten thousand tons of "riprap" stoncs, weighing from three to five tons each. The foundation was completed in November, 1871.
The "Thimble Shoal" lighthouse is in the fifth district, of wifich the engineer is Majur Peter C. Hains linis light has been erected to take the place of the Willoughby Spit lightship, and it is situated on the shoslest point at the entrance to Hampton Roads. A start was made with this lighthouse in May, 1872, and on the 'sth of June of that year the platform from which the screwirg of the piles into the shoal was carried on, was completed. Ihe shoal proved to be very hard, con. sisting of fine compact sand, but by the 18t of Augast, $18: 22$, the last pile was planted. The light is of the fourth order, and the general dusign of the structure is very neat. We mas add here that the chairman of the Engineering Committee of the Colted States Lighthouse Buard, is general Barnard, and th. ongineegeceretary, Majer cieorge H Ellios

The use of the sheath of the hop-stalk in the manufacture of paper, a French invention we recently montioned, is about to be practically tested in this country, a compsny being in course of formation to work the process.

FACTS ABOUT THE EABT RIVER BRIDGE.

(From the American Artisan.)

As the piors of tho great East Rivor Bridge, at Now York, continue to rise, even tho unprofessional beholder can, to a certain extent, begin to picture to himself the immonsity of the work. The three towers on the Eastern pier, have made such progress, that thoy now mount far abovo any of the neighbouring structures, get they lack seventy foet of cour plotion. It is hoped that this pier will bo ralsed to its fult height within the present gear. The western pier is also considerably advanced, and ís boing pushed as rapidly as the nature of the work will permit Encept when delayed by the setting of iron stays and staples for braces and gugs, the great atones go up at the rate of 100 per day, or one in six minutes Une can, especially if he is somewhat acquainted with the plan and drawings, form an approximate idea of the sppear. ance of the stupendous work, when the great cable shall be stretched from pier to pter, supporting the tridge - the only viaduct batween two of tho largest citics on the contlnent.

We often hear the question asked by non-professionals and sometimes by mon of some engineering ability, whether it is practicable to build a suspension bridgo of such ry immense span. And, indecd it is not remarkable that, to those who have not carefully considered the subject, a single span of 1,595 fect, considerably more than a quarter of a mile, subject to the action of the wind, and the vibrationsincident to travel and transportation, should serm sapracticable The first impression is that outh a struc ture could not be made to suatain its own weight, without even considering the extraneous strain to which it must bo subjected.

But a consideration of the conditions soon dissipates these fears for the fanl success of the enterprise, and tha bafety of the structure.

First, notice that the curve in which tho cables will hang is such as to preclude anything like the sort of leverage Which makes the strain upon a tubular, trestle-work, or other rigid bridge, increaso so rapidly with the span, of which causes the great strain upon a long tant line when a weight is saspended at or near its contre. The strain increases very little, if any, by reason of the span, except as the greater span necessifates increased quantity of material, increased surface for action of the wind, and increased weight passing so and fro ppon the structure. The action of the Find is the severest test, and is most carefally frovided against.

The tensile strength of steel, as given in the books, is $80,000 \mathrm{lbs}$. to the 1 ach of cruss-8ection. The weight of a tar of steel, having such a cross-section for a span of 1,595 feet at $3 \frac{1}{3} \mathrm{lbs}$. to the linear foot, is $5,316 \frac{1}{2} \mathrm{lbs}$., or about onefifth of its ultimate tenacity. But the temsile strength of iron or steel in bars or links, is far less than the strength of the same woight of material in wires laid up into a cable. Capt. Eads found a very great difference in the tensile strength of steal, a differemie depending largely upon the size of the rod or bar tested. Thas a bar of five and a balf inches in diameter, was luand tu pubsess a strugith of unly 20,000 lbs. per inch, one-fourth the strength given in tho books ; the strength per inch iacrea cd as the size of the bar diminished, so that while the inch bar endured $80,000 \mathrm{lbs}$ number seven wiro withstood 6 stra n equal to 160,000 lbs. per inch, nunber eight wire, 220,000, and number fifteen wire, 360,000 Ibs., or more than three times the ultimato tensile strength of bars or rods, as given by the best as. thorities.

Tha eignt of each of the four cables is to be about 400 lbs. to twe linear foos. The bame melgit of material in bar or links, would give a tensible strength of about 4,805 tons, while the strength of a cable of namber eight wire would be 11,00 tons, making the total altimate strength of the four cables, 44,00u toms. The coustrutsion of the bridge will be euch that the point of the greatest stran frum the action of the wind, that is, the centre of the bridge, will have the whole strength of these tremendous cables concentrated there, end the structure will be as safe and durable as any bridge in the world

Our illustration on page 206, of the Brooklyn cajssod, u from Engineering.

LIGHT-HOUSE AT RACE ROCK; EASTERN ENTRANCE TO LONG ISLAND SOUND.

LIGHT-HOUSE AT "TEE THIMBLE SHOAL," HAMPTON HOADS, VIRGINIA.

QUALITATIVE ANALYSIS FOR AMATEURS.-V.

By E. J. Mallock, A.M., in the Boston Journal of Chemistry.

(Continued from page 181.)

Group Thmd, (continued.)

Dissolve some iron filiugs, or wire, in dilute sulphuric acid, and allow the solutions to crystallice. The green crystals formed aro ferrous sulphate, or protosulphate of iron, $\mathrm{F}_{\mathrm{c}} \mathrm{SO}^{4}$. In an acid solution of this sulphydric acid forms no precipitate, but with ammonic sulphide a black precipitate is forned, soluble in dilute hydrochloric acil. After dissolving thas precipitate in bydrochloric acid, the hydrated protoxide of iron is precipitated from it ly boiling with caustic soda ($\mathrm{N} \cdot \mathrm{HO}$), or ca:stic potassa. To another portion of the original solution add caustic soda, and the same result is produced. To a third porion, quite dilute, add a drop of red prussiate of potash solution (potassic ferricyanide), and a dark blue precipitate, known as 'lurabull's blue, is formed. The yellow prassiate of potash gives, with fresh solution of a pure protoxide salt of iron, only a white precipitate which, however, turns blue in the air.
Dissolve some more iron filings, or clean piano wire, in hydrochloric acid, adding a few drops of nitric acid, to oxidise the iron. When dissolved, evaporate to dryness and dissolve in water. When H2S is passed through this solution of the sesqui-chloride of iron, it is decomposed by it, and the iron is redueed to a protochloside. The turbidity is due to finely divided sulphur. This reducing action of sulphydric acid is lepresented by the formula, $\mathrm{P}^{2} \mathrm{r}^{2} \mathrm{l}^{6}+\mathrm{HS}=2 \mathrm{~F}^{2} \mathrm{Cl}{ }^{2}+2 \mathrm{HCl}+\mathrm{S}$.
Ammonic sulphate prodince ${ }^{8}$ a black precipitate as before, soluble in acids. Caustic soda and ammonia give brown precipitates. If none of the proto salts are present, ferricyanide of potassium will not produc any bluc colour, which tests always serve to determine between the two classes of iron zalts Yellow prussiate of potash, of ferro-cyanide of potisisium ($K^{+} \mathrm{F}^{\prime}\left(y^{\circ}\right)$, produces, ceven in dilute solitions, a precipitate of Prussian blue. One drop of p rchloride of iron in a quart of water will yield with potassic sulphocyauide (KCyS) a red coloured solution. This is the most delicate test for iron.
Nangauese is a rare metal, but its compounds re-emble iron in sime respects. It fiequently occurs in the form of pyrolusite, or black oxide of manganese. When this is dissolved in hydrochloric acid, chlorme is abu:dantly given off. Ammonic sulphide produces a flesh-coloured precipitate, soluble in acids. From acid solutions it is precipitated by canstic soda. When fused in the borax bead it impants to the latter an amethyst red colour. Manganese is used in making glas-, both to uroluce :lass of that colour, and to neutralise the greenimpate ib ron. Fused with sodic carbonate and nitre a greca mass is furmed, which is readily changed by oxidising ag nts tato a rose pink or purple, whence it is called chanclisoumineral.
Zinc is readily soluble in sulphuric acid, forming a crystallisable sulp ate. In alkaline solutions Hys forms a white precipitate in acid solutions none is formed. Ammonic sulphide yields a white precipititr, soluble on acids; caustic so ta produces a precipitate soluble in an excess of the precipitat, so that this distiuguishes it from iron, manganese, and chromium. The blow pipe test for zine was given under the head of tin, and contrasted with the tin reaction.

Chromium forms a dirty-green precipitate with anmonic sulphide, soluble in acids Caustic soda produces a precipitate soluble in excess, but reprecipitated on continued boiling. With any salt of lead, chromium compounds give a yellow grecipithte, as mentioned in Group Fir-t.

Alum gives with am nonic sulphide a white gelatinous precipitate, soluble in dilute acids. Caustic sodr and potavh produce white precipit.tes also, but the precipitates dissolve on an excess of the alhali. Sal-ammoniac precipitates aluminun even from the potash or soda solution.

Uranium is one of the rare metals little used in the arts, execpt by photographers in their intensifiers. It belongs th the third group, because it gives a precipitate with armonic sulphide. This | recipitate is of a brownish-black colour, solubie in acids. Like :rou, chromium, and nagaesium, it yiedds a precipi ate with caustic soda, but this precipitate is soluble in carbonate of ammonium. With ferrocyanide of potassium it gives a
reddish brown rrecipitate somewhat resembling that with copper. Like irora, it gives Ω red colour with sulphocyanide of potassium or ammonium; but the metal is so rare that this will not easily confound it with iron.

Skparation of Metals of Groue Tulad.

The metals of this group are all precipitated, as we have seen, by amoonic sulphide. By treating the filtered and washed precipitate with dilute hydrochloric acid, we can dis. solve all the mewls except cabalt and nickel. In the insoluble residue, then, we mist seek for th. m , by the methods des. rib.d. The filtrate is boile, in a porectain dish for rome time with caustic soda, for the surpose of not only precipitating the oxides of the metal, bu* alno to redissolve zine and alumina, which we found would diss.lve in an exe ss of precipitant. On filtering, we shall find only tiuse two metals in the filtrate ; divide the filtrate into two parts, to one portion add sulphesdric acid, which is able to precipitane an.^ from an alkalne solution; to the recond portion add ammont : chloride, wh.ch precipitates alumina as a hydrated oxide 'Tie residue from boilng with camstic soda is first treated with ammonic carbo. nate to dissolve the urabium, whose presence is farthry proved by adding an excess of aceticacid, and then some ferocyamde of potassium. The portion which is insoluble sa ammonc carbonate contains, of course, iron, chromium, and mangauese.
(To le continued)

Cape Bratos Coal Trade-The shipping season for 1873 has about come to its clos ', says the North Sidney "Herald" We have had a remarkably fine fall for business operations, in spite of occasional storms of considerable severity, which have caused great damage, but more at a distance than in our immedinte vicinity. The aggregate shipments of our great staple from Sidney and outporte are in excess of a half million of tons. As nearly as we can approximate at the present, of thes quantity the Sydacy Mines have shipped over 100,000 .ons, the International Miues 70,000 tons, the Glasgow and Cape Breton Dlines 60,000 tons, the Victoria Mines 10,000 tons, the Caledonia Mines 75,000 tens, the Little Glace Bay Mines 60,000, the Lingan Mines 30,000 tons, the Block House Mines 44,000 tons and the Gourie dines 55,000 tous.

THE ANGLE OF WOOD-CUTTERS.

(From the Cabinet Alaker.)

While the operators of wood machines are not expected to construct their own cutter-heads, it is expected that they will furnish pla.is and instructions to others as to how they should be made; and as the angles at which the cutters act is an impostant matter in the making of machin's, it deserves some notice here.
The views given on the subject and
examples shown are not based upon theoretical infereuce so much as apon practical experiment. There are some very obscure conditions connected with the action of wood-cutters; if they muved as slowly as metal-cutting tools, we could observe and note the process of ther action, but when in motion they are practically invisible, and nothing can be determined except by comparatiocexperiments.

A general object among wood workmen seems to be to get as low or acute an angle for cutters as possible, regardless of the particular uses to which they are applied, and then to prevent sliverine, or pulling out the wood, by meaus of caps. There are, of course, exceptions to this rule, especially with small cutter-heads, as in the case of shaping machines, but exceptions are generally necessary from the form of cunstructing the cutter-head rather than the result of any plans that have reference to the work. Never trouble with or atterapt to use caps on the cutters of power machines; they are expersive, inefficient to perform the intended purpoce, aud, besides, unneressary.

Any kind of wood, including boxwood, ros.wood, soft wood, or gien wood of all descriptions can be worked without caps, or chip brakers, as they are somethats called, simply bs giving the edges a proper angle, and attending to other conditions to be noted.

In plaming vencers by hand it has long been demonstrsted that the plane iron requires a much higher angle than for other work. It is also kuown that seraping tools with bluut edges are the only tools that can be used in turning hard woods or ivory; in fact, with all hand tools, the principle of verying angles adapted to the work seems to be well-known and generally applied, but when we come to power tools we find planers and moulding machines made with their cutters at a constant angle, usually as acute as possible.

In determiunting the anglo of cutters the following proposi. tions are laid down:
lst. In cutting clean pine for surfacing, inatching, or moulding, the augle of the cutters can be as los as practicable to clear a goxd washer und holding bolt with a standard head.

2nd. An acute angle requires a thin edge, and a thin edge cannot at the same time be a hatd one, nor for that reasou, a sharp one, except in working soft clean lumber.

3rd. An edge may be hard, and kept sharp, as the angle is obtuse and the bevel short.
4th. In cutting thin shavings the operation is altogether cross cutting, and a sharp edge is more important than a thin one.
5th. As the angle of cutters becomes more obtuse, or higher, the shape of the edge approaches nearer to hajing the same profile as the work, and the cutters for molded forms are cherper and more casilg made and kept in order than if at a low angle.
It is becoming of lato years a common thing for planer men to grind a short bevel on the under side of the knives for working hard or cross-grained lumber, which is substantially the same thing as changing the angle of the cutters and making the bevel shorter. It is an excellent plan, as it wou'd be impossible to change the cylinders when a machine has a variety of work to do, but by having oome extra kuives ground at different bevels, it becomes an easy matter to change them, and one that will pay well for the trouble, especially if the knives are tempered harder as the bevel becomes more obtuse.

It will be found in practice that a set of knives that are hardened to a very pale straw-colour, and with a bevel ground on the face side, just enough to keep the edge from breaking out, will run twice as long and do smoother work on walnut, ash, or oak wood, and will not pull out the stuff where it is knotty or cross-grained.

It has also become a common practica in some parts of the country to turn the matcher cutters of hooring machines upside down, that if, to turn tho grinding bevel to the lumber, this is an effort in the eame dircction; a slow change from the necessities of practice, instead of from inference, as it might be. This way of getting an obtuse angl. is going a little farther than is recommended here, but to halve the matier by grindi ig on both sides will be found an advantage in matching bard wood, including yellow pine. The plan is an old one. The Enowles' matching heads, introduced about 1850, had this idea fully carried out by having the bevel on the inside of the cutters; they were solways considered as beiog capable of working any kind of lumber without tearing, and without clips ur pressury pads, yet, for some strange reison, the julan was not carried out in the common mateher heads, probably from their beiug too expensive. We will notice one more fact bearing on this matter-ihat of machines for making wave moulding; buch mouldings are cut smooth, and in partat an acute angle against the grain Tbese mouldinge are not, as a rule, torn or spoiled in working, yet the whole secret of tincir manufacture, often a matter of curiosity, is nothing more than to set the cutters at right angles to the face of the moulding. The feed movement is given to the woud, and the reciprocating motion to the cutters which act as scrapers.

In tho Jardin d'incelimation is a forl, the produce of an Arab horse and a Morocco mule. The foal, a female, is healthy, vigorous, and well formed, and as no such hybrid has cver been known beforc-in fact, mather, has been deemed im-possible-he young "mare" is regarded as a phenomenon. This may " make "for the Durwiniaus.

SCIENTIFIC NEWS

[We shondilie olat to recrice acientitic nenct, antiable to thit part of our paper, from any of our correspondentr.]

A New voltaic battery of economical construction has been contrived by M. Gaifir. He tises a rod of lead and a plate of zinc. The former rests on a layer of red lead in the bottom of tho containing vessel. The exciting liquid is a 10 per cent. solution of ammoninm chloride. The clectro-motive force is about one-third that of a Bunsen cell.

Is the Chronique de la Suciete d'Aceltmation, M. Ruimel states that by feeding salk-worms on vine leaves he has obtatined silk of a fine red colour; and that by giving the worms lettuce leaves, they have produced cocoons of an emerald green colour. ML. Delidon de St. Gilles, of Vendee, has also, by feeding silk-worms-during the last twenty days of the larve ocriod-on vine, lettuce, and nettle leaves, obtained greer ellow and violet cocoons.

Is .. new work entitled Telescope and Ificroscope, recently published in France, the following method of obtaininz a lene for a cheap microscope is ascribed to an experiment of Sir Hunphiry Davy The process consists of igniting one end of a wheat or hay straw and allowing the entire spear to consume gradually. The cinder is then h afted in the blue flame of a burner; and from the silex contained a solid globule of glass is formed, said to be well suited for microscopic purposes.

The new telescope manufactured by Alvin Clark \& Sons, of Cambridgeport, Mass., for the U S. Naval Observatory, has been successfully completed and will be sent to Washington withoutdelay. The instrument is, we believe, the largest refracting telescope in the world, having an object glass twenty-seven and a half inches in diameter, and twenty-six inch apurture, with a focus of thirty fect.

In a recent note on photo-lithography to the Chemical Society of Yaris, M. Paul suggests the use of slbumen instead of gelatine, as giving better results. The paper is covered with a layer of albumen and concentrated solution of bichromate of potash. After drying, a hard and smooth surface is obtained. After sufficient insulation under the negative, the paper is covered with lithographic ink, then immersed in cold water to dissolve the unaltered allumen, which is then removed with a fine sponge. One thus obtains a very distinct image suitable for transfurring to stone.

Is the French world of industry and science agreat sensation has been produced by an alleged discovery, the importance of which, if it turns ont to be true, it is at present impossible to calculate, nor the effect it may have on the sugar trade of the futuro. It is ass:rted that the French engineer, M. Jouglet, has succeeded in makian artificially bect root sagar, which, however, is not real beet root sugar, but a composition of chemical sugar, if we may be allowed to use such a terin. Alrcasiy has the eminent A Berthelot succeeded in making alcohol by a syntheric process; but the new discovery is of much more practical value, as it affects a commodity of such general use. Provided the accounts published in the Fench papers are not exaggerated, although such exaggeration is very likely, this new discovery may possibly bring about a change in the manafacture of sugar, for it is announced that by the new process sugar can be made not costing more than 5 fr. per 100 kilogrammes, or one farthing per pound; and that in order to make it, it is only necessary to bring together certain common articles, which, after being liberated from the coarser clements with which they are combined, are known to have Ω chemical aftinity to each other, and produce a sugar snid to be cqual to that made from canc-juice or beet root. Henceforward then, the manufacture of sugar would be placed in the hands of the maker of chemicals. It is added that the discoverer, M. Jouglet, has already sold his invention to a company for the sum of $1,200,000$ francs, who intend to work the inifentiou.

THE EAST RIVER BRIDGE, NEW YORK ; 'HIE BROOKLYN CAISSON.

FARALLEL MOTION.

Tho Imperial Technical School of Moscory exhibits at Vienna an interesting col lection of its cducational appliances and also a number of specimens-on a moro or less extended scale -of the actual work of ita pupils in wood and iron. One of these is an ingenious parallel motion made by the fupils. Of thiswe present an engraving. In the Exhibition the motion is attached to a working model with a cylinder some 3 in . or 4 in . in diameter; our illustration, however shows it as part of a sectional model, which makes its construction somewhat clearer. The motion is on: of those in which the stroke of the crank is only equal to haif that of the piston. The piston rod a has in its head a pin b to which are pinued two levers, c and d, with theis centre lines in the same plane. The length of c is equal to half the stroke of the piston, and is twice the length of d, which carries at its other end the arank pin e. The lever c is connected by a pin with the centre of a liuk f, the extremities of which are compelled to move in arcs of circles by two radius rods g aud h. The position taken up by the levers and links when the piston is in the same position in reference to the bottom of its stroke to that in which the full lines show it in r ference to the top of its stroke, is shown by dotted lines. The motion is of little. or no practical use, for we can scarcely imagine carcumstances under which it would bo more alvantagecns to use suth a complicated system of levers, with fo many jomes to le lubirscated and so many pins to wear, than a noul guble of smene kind, but at the same time the arrangement to wery nag mous, and in this respect refer ts grateredit on its deriguer.

The motion was worked out and practically cousirut d by Mr. Malescheff, assistaut in the Imperial Technical school of Moscow, the outline decign, embocising its proncipl', was furnbled by Akademiker Sheby bef. hunorary associate of the school-Enganeering.

```
=-~=-- =- 
```


MORE AmoUT MHOSPHMR BRUNZE.

Wr bare, on sevemal occasions, made mention of this new allog, noticing gucto geacral fates ax have reathed us regatding it. We add to this mformation the followims statement, extracted from the Journal of the Sorzety of Ars speakug of the inventions exhibited in the department of rucut ictentific investugations aud New Discoreri.s in the Aumar Iuternational Eshintiou at London, now holureg, it says:
"Foremost among the botabilities of the group on the preseat occasion stands a lage case of implements and castings (4,829 of ta catalogue), coutributed by the Phosphor Bronze Company, of Cavnon Street. The metal of which the articter aro made isa num kind of bronze, patented by Messrs Muntcfioro \& Kunzel, and is composed of varyiug proportions of copper,

PARALLEL MUTION, AI THE VIENNA ENHMBITION.
tin, and phosphorus. Tbe alloy is capable of being made tough anil malteable, or hard, at will, according to the proportion of the several ingrediepls It is rondered so liquid in the molten state by the adilition of the phosporus that it forms viry clean castugs The purposes to which it is proposed to put the bronze are well illustrated in the numorous objects shown, which comprise heavy bearings of machinery, cogged wheels, guns, and cartridge casce, wire, tuyercs for blast-furnaecs, and ornamental castings of various hinds; tools and appliances, such as hammers, kniven, scissors, hinges, locks, ke.js, bells, netting, aud sucves, are constracted of it for powder magazines, on account of the impossibility of their rielding sparks The broneo is in somewhat extensive use in these furms in the (Hovernment Powder Mill at Waltham Several railmay cumpaices are employnag it for the bearing parta of machuery exposed to great strain. Mesars. Merrywerther have dramn upon it for their fire-engines Messrs. Mackesn heve had rocit dralls and pinious made of it Messrs. Hrotherhood ε Eurdiughan bave adopted it in som" parts of their large threc-cylinder steam-cugines, and Mesers. Thornoscroft, of W lolverhmmpton, ase it for pit ropes, is purpose to which its constructors consider it esperially adapted, on acconnt of ito immunity from corrosion by damp They alio propose to aphly it. instead of copper, for the sheathing of ser-going 86ay.

Tar Union Pacific Bond is buitding a \quad now plow to bo driven by ave locomotives. They expect it will go through s drift twenis fect deep.

Mechanics' Magazine.

MONTREAL, OCTOBER, 1873.
lllustrations:
Mont Ceds tunnel 195
Moyn's patelt boller...... 198
Amoricnnlighthouses...... 203
Enst Rlver liridge, Now
York 20
Paralleimotion at Vienna Exhibltion 207
Torsional resistanco of materlals.................. 210
Torstonal resistance of materials 2
Three-oylnder engine at
\qquad
Three-cyllnder englue at
Vienna..................... 21
Wells or Gakdoul - Soll-
dan R1
An anclent lathe........... 21
Blacksmith's measuring wheel
Philadelphia Ceutemalal Exhibltion Building..... 222 Philadelphia Centeanial Exhibition Buidang.... 223
Gand blast apparatus...... 226
Contentss
Mont Cenis tunnel......... 195
On an Improved form of ancroid

100
Meyn's patent boller...... 197
Injurjous emanations from paint.................. 198
Iastructions to engincers and Iremen............... 10
Recent sowage news...... 200
American lighthouses ... 202
Facts about East River
Bridge, N. Y................ 20
Qualltative analysis for
amatcurs ...

The anglo of wood-cut. ters. 204
Sclentifie news
Parallel motionat Vien.
na......... 207
More about phosphor
bronze......................
Canadian meat in Fug.
land....
Boller tests 208
Reviews 209
Unlversal patent laws...... 209
On the torstonal resistance of material.....
Incombustible paper and freproof link.

210
.... 213
Testlug lubricants 213
Threc.cylinder engine at
Vleuna 213
Lightning and liphtningrods
Quantlative syectrum
annlysis...... 216
The Soudan rallway expedition 217
Biacksmith'i measuring wheel

219
An anclent lathe........... 210
Monument of victory at
Berlin 2
Bees as archltects 220
Niagara Suspenslon
Bridgo 221
Education and the brain 221
Fusion of platinum........ 221
Phlladelphta Centennial
Exhibition Building... 221
Welland canal $22 i$
Dominionnews............... 221
Subaqueous tumnelling... 224
The sand blant.............. 225
ly killed, bay on 'the Wallaby track' by 'poor Roger', and not the veritable Wapping butcher, Arthur Orton, The becf appears to be somewhat deflcient in fat over the rib, though the weight of suet appended to the carcase shows that the general accumulation of fat has been well up to the British iden of a good average. The specimens if mutton are not weighty, but rather of that light descrintion peculine to Wolsh muiton. 'Tho meat, however, is plump and fat. The turkoys are not by any means the largest that may bo found in Canada, and we gh only about 16 lbs . each. One of the wild turkeys, however, is a very fine bird, and is almost as heavy as the domestic biped. Some notion of the savoury morsel that may be obtained from a dish of wild turkey may be formed fiom the fact that these birds feed on no less dainty fare than celery. It may be mentioned that the Duke of Manchester takes considerable interest in the introduction of Canadian meat into England. 'Ihe Duke was a passenger on board the "Scandinavian," on her second last homeward voyage, and he had some of the beef which was then imported sent to him. Since then Captain Smith has had a letter from his Grace, in which he says that 'the Canadian ment was excellent.' The meat which is the subject of the present trial has been brought from Richmond, one of the Eastern lownships in the Province of Quebec."

With reference to the cutting up of the meat, that is a dift. culty which must gradually disappear. Good ment, well cut up and well packed, with a brand on the package to distinguich it, would soon command such a price as would lead to vast improvement in this matter. The Australians are wide awake to the value of this commerce and, in spite of the vastly greater difficulties they have to contend with, they are determined not to lose the chance of establishing Ω trade, without a struggle. An attempt was recently made to transport a cargo of fresh meat from Australia to England. Their plan was to freeze the meat solid, and then to keep it in that state by surrounding the vessels in which it was packed with ice and salt. But the passage across the tropics was too severe a trial. The voyage was oue of seventy-nine days and by the thirtyfourth the greater portion of the meat had to be thrown away. The experiment will, however, be repeated, under different conditions. It is claimed that the problem of sending fresh ment from Montreal to Liverpool was successfully solved, as long ago as eight years when a shipment was made via Portland. The meat in spite of fourteen days delay between Montreal and Portland, arrived sweet and found a ready market.

BOILER TESTS.

The Government of the United States will, during the months of Scptember and October expend the sum of $\$ 100,000$ in a series of boiler trials. Tho trials will take place at Sandy Hook and at Pittsburg. The boilers used will be of the best material and well built and will be placed in the positions they generally occupy. These experiments will, doubtless, be of great interest and we shall duly record the results. The trials will have reference to explosions caused by:

First.-Gradual increase of steam pressure.
Second.-Those caused by low water and over heating of the plates of the boiler.

Third.-Those caused by deposit of sediment, or incrustation on the inner surfaco exposed to th: fire.

Fourth.--Those caused by the generation of cxplosive gases within the boiler.

Fifth.-Those caused by electrical action.
Sixth.-Those caused by the percussive action of the water in case of rupture of boiler in the steam chamber, Clark and Colburn theory

Seventh.-Those caused by the water being deprived of its air.

Eight.-Thoso caused by the spheroidal condition of the water.

Ninth.-Those caused by the repulsion of the water from the firc surface or plates.

REVIEWS.

The Carpestir and Joner, Stabr-Buldig and Mand-Maller. By Robert Riddell. Edinburgh : Thomas C. Jnck, Indin Buildings. Montreal, Dawson Bros.
This is a very comprehensive and beautifully got ap work whose object is to aid and assist the workman by what is claimed to be " the most simple and perfect system of construction that has yet appeared in the English language, containing nothing either borrowed or pilfered Ev ory iden advanced belng entirely new and original." The trentment of the whole sobject is truly scientific, but so simplified by explanations and Illustrations as to constituts this a work almost indispensable to all classes of carpenters and joiners The subject of stairsace construction is treated in a specially exhaustive manner. The present edition also contins important improvements on the subject of construction of the Mansard roof. The work is profusely illustrated and contains also a series of very useful card-board models.

UNIVERSAL PATENT LAWS.

The argument of George Haseltine, M. A., LL. D., Member of the firm of Hascltine, Lake, and Co, the emincut patent solicitors, Southampton-buildings, London, in favour of the first resolution adopted at the Vienna Patent Congress.
Tue resolutiou under consideration, Mr. President, will be affirmed by the vote of every English and American member of this congress. These members have anted the marvellous resnits of efficient patent laws in the industrial progress of their respective nations, and they require no worl-logic to convince them of the policy or the justice of "special legislation for the protection of inventions." The thousands of modern inventions in this grand "palace of industry" have, with fer exceptions, originated in states possessing liberal patent systems, and these inventions arc in themselves eloquent advocates of the policy of patent legislation. In the absence of patent laws we may safely assert the Vienna Exbibition would be shorn of its chief attractions, if, indeed, this exhibition had becn among the possibilities of our gencration.-That a liberal patent system stimulates the inventive genius of a nation is proved by the ". logec of events," which have afforded forcible illastrations to the debaters of this resolution. The dreams of fortune rather than the dreams of fame inspire the inventive fraternity, and the States that offer the bighest prizes obtain the most and the best inventions. The inventors of America have during this centary produced more valuable inventions than the inventors of all Europe, and within a decade a hundred thousand pateuts have been granted to her own citizens for new inventions. Tho equitable patent laws which are the pride of her legislation, heve mado America literally the "home of inventions."-A liberal patent system is even more essential to the practical introduction than to the creation of inventions. Cspital is devoid of sentiment, and, as a rule, seeks investment where the prospects are brightest for a substantial return. The history of industrial civilisation, and the testimony of the most eminent of living inventors, prove that few important inventions would have been perfected Fithout the aid of patent laws. Inventions which ander liberal patent systems are developed by capitalists for the immediate benefit and the altimate freo use of the public vould be practised in secret, or long remain undeveloped theorics Mr. Heary Bessemer testifed before the Select Committee of the British Parliament that he should have been uaable to perfect his steel process, which absorbed a fortune, without the protection of patent laws, and without such protection this valuable invention would have been lost to the world. The worthy president of this congress (Dr. C. W. Siemens, F.R.S.) gave similar ovidence in favour of patent protection before the same committee, and also stated that he was attracted to England by the superiority of her patent system orer that of his native country. Theso cminent inventors, evea while enjoying patent privileges, have added immensely to the wealth of the nations which protected their rights, and the history of "modern stecl" affords a striking illustration
of the mutuality of interests betweon patenteea and the public. -A thousnad memorablo instances of tho value of inventions to a nation aro chronicled in the world's industrial records. The invention of Henry Cort has contributed, it is estimated, eight huadred millions sterling to the present wealth of Great Britnin, and the invention of Eli Whitney half as much to the Fealth of America.-The justice of "special legislation for the protection of inventions," even if such legislation were impolitic for a nation, will be generally conceded by the members of this congress. Inventors acquire their rights by virtue of creation, and their equitable title is superior to all legal enactments. The productions of the intellect belong to the highost class of possessions, as they may be enjoyed exclusively by their anthors without depriving other members of society of what was designed for the common inheritance of mankind. The possession of more than a proportionate share of land dop:ives others of their natural rights, and the title to the bouses we occupy is tainted by the natural claims of our houseless and less fortunato neighbours. The confiscation of invention-rights cannot be juttified by any reasons that would not justify the equal distribution of all material possessions. Intellectual productions, then, demand the highest consideration of the legislator, who may regulate the privileges of inventora, but cannot justly deprive them of the fruits of their labour without adequate compensation. The peculiar nature of these possessions renders "special legislation" necessary for their most beneficial enjogment, and in view of this legislation we concede the justice of the limitation of the term of use and other restrictions, the specific character of waich cannot, however, be discussed in this connection.-The true basis of all legislation is universal juslice, and fortunately for the objects of this congress, exact justice to inventors of all nations accords with the bighest natural interests There is no antagonism in these matters between policy and justice, and the more complete the justice to the individual, without regard to State boundaries, the greater the ultimate advantage to the nation. The statesmen of America have recognised this principle in their patent legibiation, and hare sought the public interest through equal justice to the inventors of all nationalitics. The merits of this legislation is appreciated by the people, and the opponents of the pateni laws, among a population of forty millions, might be scated in this hall, no one of whom has been honoured by a seat in the national legislature. The recognition of the "rights of invention" is an indiepensable condition of the assimilation of the patent laws of nations, and to secure this recognition is the first duty of the friends of patentecs.-The patent system of Great Britain, which has existed for over two centuries, originated in Royal favouritism and States necessities, and justice to inventors is an incident rather than a purpose of her legislationthe right of actual inventors being sill placed on a level with the rights of mere "importers" of inventions to whom patents wero granted. The practical effect of this system has bren to stimulate the production and importation of inventions but its mercenary inspiration has lowered the standard of Britioh patent legislation, imposing nareasonable charges and vesatious restrictions upon patentees, and creating an influential party in favour of the entire abolition of the patent laws. The British nation is more indebted to its judges than to its legislators for the justice or the advantages of the present patent system. -The attitule of Prussia upon the question of patent-rights,even if free trade in inventions contribute to material prosperity, is humiliating to ber people and unforthy a great nation; and failing to secure this result her policy equally outrages public interests and individual rights. The Prussian patent laws, in priaciple superior to the English, and hardly inferior to the American laves, have been readered inoperative by a despicable administration, and the nation scems contrnt with pirating inventions which other nations have originated when any special inducement offers for this species of naturalisation. This system has demoralised native ingenuity, and no great invention of modern times can be claimed by Prussia, who has been chicf sufferer by her illiberal policy. The State educates her sons for inventors, and leaves them to starve or to live upon the patent rewards of other nations. In scientific attainments, and lovo of investigation the Germans have no superiors, and the records of the English and American patent offices prove that the natives of Prassis, when in more congenial lands, are not less inventive than men of other nationalitics.-The opposition of some of our German friends to this resolation was, in view of their home experi-
ence, anticipated, nor do the advocates of patent laws deny the existence of ralid objections to local patent systeras. The most perfect of these syctoms will, especially in free trade countries, creato cases of individual hardship, and may, for a season, rotard the progress of a specifio branch of industry. These objections, however, may be removed by equitable legisiation, and assimilation of the patent laws of the leading commercial nations.-The British patent system, which has produced most beneficial results, and whose abolition would be one of the greatest calamities that could befall the nation, has received tho unmeritod condemnation of some of its most eminunt jurists and statesmen. These adverso opinions are more generaily entertained in Continental States, and the assimilation of the patent laws apon an equitable basis may become a necessity of their existence. This assimilation, which will conciliate the opposition, is in unison with the spirit of our times-it will tend to unite nations in bonds of universal brotherhood, and will secure to inventors a more adequate reward for their labours. Tho influence of modern inventions upon the political rolations of States has fortunately readered possible the assimilation of the various patent laws; and it is the true mission of this congress to publicly inaugurate the covoted reform by enunciating essontial principles that maj form the basis of a general system. The real work must be done elsewhere, but we may by wise council accelerate the movement, and do more for tho material interests of nations than any congress of modern times. The price of every great and bencficent reform is continued agitation, which in time creates public opinion-the supreme ruler in all liberal Governuents. The press, the educator and the organ of this opinion, by the aid of the electric telegraph, whose existence is due to patent logislation, and whose capacity has been duplexed during the past year by an American patentoo (M.J. B. Stearns, C.E.), has directed the attention of the civilised world to the objects of this conference, and upon the press we must depend for the ultimate success of our plans - The proposition to assimilate these laws is by no means a new invention, for which we are entitled to letters patent, though the honour, when success is secured, will be accorded to this congress. This assimilatio' was proposed seventeen jears ago by the able manager of the British Patent Office (Mr. Bennett Woodcroft, F. R. S), whose proposals then made to the Ruyal Commissioners are now submitted for your consideration by the sanction of their eminent author. This gentleman, whose absence from our deliberation is for various reasons to be regretted, not only proposed, but acted, and in 1856 visitei the chief European States to arrauge plans for an assimilation of the patent sytems, and his suggestions were favourably received by the authoritics. The assimilation has been recommended by the Select Committee of the British Parliament, and the most carnest advocate of patent abolition on that committee (Mr. R. A. Macfic, M. P.) has become a believer in assimilated or uniform patent systems, and was the first to urge upon British ministers the desirsbility of immediate action to secure such a reform The reason of his absence today has been made known; to you by our worthy vice-president (Mir. T. Webster, Q C.), through whom he has presented to this congress his instructive work on the patent laws. This movement may count few friends in official circles, and few believers among the people, but the times are favourable to success.-The President of the United States has accredited to this congress an official representative (Hon. J. M. Thatcher), and other natious have expressed a readiness to join in the movement. The British Government has taken the first step towards assimilation ky the collection and publisation of the patent laws and regulations of the various nations, and it is believed that even Prussia will not decliue concerted action. The success of the Vienna Patent Congress, Mr. President, if not the fate of patent reformation, depends upen a decisive vote in favour of this cardinal resolution. The influence of such a decision upon the amendment and assimilation of the patent laws of nations can hardly be overestimated, and is sure to result in practical lugislation. The haryest may be for others to reap, but by paying the price of reform wo may reasonably hope that in onr generation liberal petent systems, uniform in principle, will lecome co-cxtensive with civilisation.

Work has been coumenced on the Furt Duper and Labo Huron Railway, in the ricinity of simcoe.
on the forsional resistance of material. By Prof. R. H. Trobston.

(From the Journal of the Franklin Institute.)

While the classes of the Stevens Instituto of Technology were rocently ongaged in their rovision of coefficionts, as given by various authorities ou strength of msterials, the difficulty of determining how far the difforences noted were due tio errors of observation, and how far to variation in the quality of the materials nsed, suggested to the writer the adviability of obtaining an apparatus which should make its own record. I'his could readily be done by so constructing it that u curve might bo automatically registered at each test, which should represent all circumstances of experi. ment.
Such an automatic registry wonld evidently yield more reliable and instructive information in regard to the circum. stances of distortion and fracture than could any system of personal observation.
Representing the magnitude of the distorting stress at every instant, and under every degree of disturtion of the material, up to the limit of elasticity or even to the point of rapture, and exhibiting also the corresponding alteration of form at every point, the pencilled curve would be a record from which might be deduced the coefficients of elasticity, strength, and resilience, as well as the laws governing the celations of the distorting forces to the resistance of the material.

A simple but effective machine was thorefore designed and constructed, which accomplishes satisfactorily the desired result, and this machine, as planned by the writer and constructed by Messrs. Hawkins \& Wales, instrament makers to the Institute, is shown in Fig. 1.

As herearranged, it is intended for experiments ou the torsiou of materials. Its modifications, for the pur ose of experimenting upon transverse strength, will be described in a subsequent paper, " n which will be given the results of that senes of experiments.
In the figure, the frame $A, A, A^{\prime}, A^{\prime}$, supports two suspended arms C, E, E, D, which swing aboat independent axes in the same line. The arm B, carries at its extremity a weight D, ard the arm C, has a nandle E, by which it is moved. The axes of these arms are designed as shown in Fig. 2, each haring a rectaugular recess at I , and at M , which receive each an end of the test piect, which is squared to fit, as shown in Figs. 3 and 4

The frame A ', A ', carrics a guide curve F, of such form that its ordmates are proportional to the twisting moments exerted by the woighted arm B: D, while swinging through
the arc to which the corresponding abscibsa are proportional. A peacil holder I bears agninst this guide curve, and, being carried by the weighted arm, is thrown furward, as that arm swings out under the action of the force producing torsion, which force is transmitted through the test prece.

FIG. 3

FIC. 4.

The aron C, E, carries a table G, and the pencil 1 , therefore, troes upon the paper which is clampod apon it, a curve, tho ordinates of which are proportional to the torsional moments, Fhile its sbscisse represent the relative motion of the two arms, and, consequently, the amonnt of torsion to which the test piece bas been subjected.

The curves thus described, of which the accompanying plate exhibits a number, present, in a very legible and convenient, as well as reliable form, sil the results of the experimenta, of Which they wre the respective records.
The pointer J_{2} traversiag the arc K, K, $i 8$ arranged as a maximum hand, and affords a nseful check upon the automatic recond of masimum strength.
The plate represents the results of average experiments made upon a considirsble number of vaileties of woon, the test pieces of the farm ahown in Fig. 3, bcing osed the dinmetor of the neck of each piece was soven-eighths of an inch.
This diamoter happened to be that the best adapted to use in thls machine. A larger size was found frequently to yield
ly the dostruction of lateral cobesion, the square head peeling, leaving a prolongation of the cylindrical portion, instead of twisting off in the neck. This size is convenient, also, in consequence of the fact that the coefficiont of ultimate strength for the standard diamoter of one inch is obtained, with a close approximation to exactness, by simpls multuplyiug the twisting moment for each plece by 15.

These curves exhibit the relative atiffness, strongth, and resilience of tha wools tested very perfectly. The inclination of the straight lide, forming the first portion of each diagram, from the vertical is a muasure of stiffness, the height of the maximum ordinate indicates the ultimate strength, tho point at which deviation from this stmight line commences determines the limit of elasticity, und the area included within each diagram is proportional to the torsional resilience of the test picce.

The fact that the commencement is, in each case, almost a perfectly straight line is well exhibited in the curve a, a, a, of locust, where the horizontal scale is purposely magnified ; this justifes the usual ascumption that, up to the limit of olasticity, Hooke's law is correct, and that the augle of torsion is proportional to the twisting moment.

The short curve of small radius, notired at the foot of the straight portion of each line, is produced by the slight yiclding of the test piece by crushing where it is grasped by the machine, which yielding continues until a firas hold has been secuird.

It will be observed that, in most cases, the torsional resistance incrases with the total anglo of torsion up to a maximum, then, passing the limit of elasticity, it drops off moro or less rapidly, returning finally to zero. In the brittle woods the fall takes place suddenly, while, in the tougher and more elastic varictice, the resistance decreases very slowly, in some cases vanishing only after the test piece has betn tristed through a very large angle.

In the case of black walnut $6,6,6$, locust $11,11,11$, and in a silll more romarkable manner, in that of hickory $10,10,10$, astrikiap peculiarity is exhibited which is one of the mose interesting and unanticipated developments of this series of experiments. In these curves the resistance increases with the amount of torsion, until a maximum is reached; the line than drops to a point considerably below and thence again rises and passes another maximum, which, in the case of hickory, is only reached after a torsion of 75 deg. The resisting moment there becomes considerably greater than at the limit of clasticity.

This striking peculiarity was shown, by carefully repeated experimente, to be due to the fact that, in those woods in which it was noticed, the lateral cohesion seemed much less in proportion to the longitudiasl strength than in other varieties. Watching the process of yielding under stress, it could be seen, by close observation, that, in the examples now re-

ferred to, the first maximum was passed at the instant when, the Iateral cohesion of the fibres being overcome, thoy slipped upon each other, and the bundle $n f$, then, loofe fibres yielding readily, the curve dsopped until, by lateral crowding, further movement was checked, and the resistance again rose until the second maximum was reached. Hore yielding arain commenced, this time by tho breaking of the fibres under longitudinal atress-under that component of torsional stress which takes a direction parallel with that of the fibres in their now position In these cases rupture seems never to occur by true shearing in the transverse plane. Tho fibres part, one after another, the exterior ones breaking first, under a tonsile stress.
The following varieties of wood hare been subjected to torsional fracture, and the curves obtained are shown in the diagram which illustrates thisarticle:

1. White pinc (Pinus Strobus).
2. S. yellow pine (Pinus A ustralis), sap wood.
3. " " " " heart wood.
4. Black spruce (Abies Nigra).
5. Ash (Fraxinus Anericana).
6. Black walnut (Juglans Nigra).
7. Red cedar (Jumperis Virginianus).
8. Spanish mahogany (Suretenia Mahoganie).
9. White oak (Quercus Alba).
10. Hickory (Juglans Alba).
11. Locust (Robinia pseudo-acacia).

12 Chestnut (Castanea Essa).
The curves, the fac-similes of which are given in the diagram, exhibit well the relative values of the material tested for the various purposes to which they may be applied.

White pine, $1,1,1$, yields quite rapidly as the torsional moment increases, and the considerable inclination of the line from the vertical indicates its deficiency in stiffness. It soon reaches the limit of elasticity and the diagram exhibits the maximum strength of the test piece 15\% foot pounds. Passing the limit of elasticity and the naximum moment of resistance nlmost simultaneously, its resisting power decreases rapidly, and with tolerable uniformity, until at " a total angle of torsion " of 130 degrees, it is twisted completely off. The area comprised within the curve is comparatively small and it is thus shown to hase little resilience.

Yellow pine, in accordance with our already well-established ideas of its properties, is found by an examination of its curve, $2,2,2,3,3,3$, to have much greater stiffness, strength and resilience. The sap wood $2,2,2$, is equally stiff, in the exam. ples tested, with the heart wood 3,3,3,3, but sooner passes its limit of elasticlty, the former circumstance being quite opposed to the preconccived ideas of the writer. Notwithstanding the comparatively low yosition occupied by the pines in our list, they are excellent materials, the yellow varieties particularly, for geucral putposes. Our comparison is made with specimens of eq 1 size, and the important fact of the exceptional lightness of these words is now here brought to our notico by these tests.

Spruce, $4,4,4,4$, is less stiff than white pine even, but possesses greater strength and resilience, its moment of resistance reaching 18 ft . pounds, and twisting through a total angle of 200 deg .

Ash, $5,5,5,5$, seems to be weaker and less tough than is generally supposed; it is possible that the specimens tested were over seasoned. Its most strikir peculiarity is its very rapid loss of strength after passing its limit of elasticity.

Black walnut, 6, 6, 6, 6, of the excellent quality and good condition as regards scasoning of the samples tried, is very stiff, strong, and resilient, and is but little inferior to oak. Its resisting moment reaches 35 foot pounds, and one specimen reaches a total angle of tursion of 220 deg .

Red cedar, 7, 7, 7, 7, is stiff, but brittle, and loses all power of resistanceafter twisting through an angle of 92 deg. A torsional moment of 20 foot pounds only produces a total angle of torsion of 5 deg .

Spanish mahogany, $8,8,8,8$, is very stiff and strong. It is deficient in toughness and resilience, losing its power of resistance very rapidly after passing the limit of elasticity.

White oak, $9,9,9,9$, has less torsional strength than either good mahogany, locust or hickory, but it is remarkable for its wonderful toughness. It passes its elasticity at 15 deg but loses its resisting power very slowly indeed. We find the latter almost unimpaired until it has been subjected to a torsion of 70 deg.; it only gielded completely at 253 deg.

Millwrights are evidently perfectly correct in holding this rood in high esteem for strength, toughness and power of resisting heavy shocks and strains.

Hickory, $10,10,10,10$, exhibits in ite curre, the romarkable pair of maximb already alluded to, and hr s, apparently, the highest ultimate torsional strength, combined with unusual stiffness ind consideable resilience. Its moment of resist. ance to torsion reaches a maximum of 58 font pouads

Locinct, 11, 11, 11, 11, has greater stiffness than any othry wood on our list, and stands next to hickory in strength; it is also very resilient Threodiagrams aro given each of which possesses its own peculiarities. One specimen is only twisted through a total angle of 40 deg, by a torsional moment of 43 foot pounds.

When more than one curve is given for the same wood, it is a fact worth noticicg that the stifiness and ultimate strength are usually very nearly equal, and that the difference between the several specisens becomes marked, if at all, in their degree of toughness. In the formula for torsional strength, Pa: Cd3, the curves give, values of C , as follows

Determining relative stiffness by obtaining values of the ratio of twisting moment to the total angle of torsion, we obtain the tollowing :

1.	1.00	7. Red cedar
2. Yellow pin	sap... 2.25	8. Spanish mahogany . . 303
3.4	herrt. 2.25	9. Oak. 253
4. Spruce	067	10. Hickory 4.15
5. Ash	1.87	11. Locust 59 ,
6. Hack waln	2.63	12. Chestuut 163

'Taking the well-established value for oak as a standard, w: deduce the sollowing values for the coefticient to be usedit the formula:
$0 .=\frac{2 \text { Pa }}{G_{n}} \frac{a}{r 4}=\frac{\text { Total Angle of Torsion. }}{\text { Length of Part Twisted. }}$

Finally, by measuring the areas of the several curves, re deduce the following values for relative resilience, white pise veing taken as the standard.

The work done in twisting off these specimens is found th have relative values as follows:

The values of coefficients, as givon, will bo checked by 2 ditional experiments upon test pieces of the form shorna Fig. 4, carcfully turned to a diameter of $\frac{3}{4}$ in., and of a leggu in the neck, of 1 in .

Coefficients for metals will also be given in a later comen nication.

A New Yonk railroad company has recently instituted system of paying its employts with interest bearing checin called "saving bank checks." Attached to cach check four coupons, one payable at the end of each quarter, the bterest being at the rate of eight per cent., and the ultich payment being guaranteed by a special deposit of the ces. pany's first mortgage bonds.
incomblstiblai paper and fireproof ink.
Au invention has been recently patented in this country which, if it will only stand the teft, should have a wide- fuld of usefulness a really iocombustible paper, without a fire. proof ink, would be a very valuable article in many hasinesser, and for many purposes of every-day life, but if it can be supplemented by a fircproof ink, its value will he enhancert tenfold. Such a discovery Mr. G. W. Halfpenny believes he has made, nad has accordingly secured his rights by obtaining the Grent Seal We gather from his specification not that paper prepared by his process is absolutely indestructible by fire of any degrec of ferc-ness. but that, under such circhmstances as fires in houses, factorice, or other buildings, it is "ordicarily incombustible." The inventor prepazes his paper, in the usual manner, from a pulp consisting of vegetable fibre, asbestos, alum, and borax, in, or about in the following proportio s:-Vegetable fibre, 1 part; asbestos, 2 parts; borax, 1 -10th part; and alum, 2-10ths of a part. The vegetable fibres are minutely divided, and treated in the manner usual in the production of ordivary paper; the asbestos is also divided as much as possible, and the two are then intimatels mised with the alum and borax in a sufficient quantity of water to make a pulp of the requisite consistency, which is then made into paper by any of the well-known processes. The proportions given are not rigid, but may be varied to suit the qualiy and nature of the desired product, and also to suit the different qualities of the raw materials. Thu the inventor cass he has made incombussible paper in which the proportions of the ingredients varicd from 50 to 70 parts of asbestos, and from 30 to 50 parts of flax or other vegretable fibre, with only $2 \downarrow$ per cent. each of alum and boas. He proposes to use in some case: silicate of sodn, in order to insure hardness and coherence in the substance of the paper after it has been acted upon by fire. In order, we precume, to obtain a paper of great strength and flexibility, the sheets may be made of jinen or other woven fabric, and coated on both sides with the incombustible paper.
The fireproof ink used in writing or printing on the incombustible paper is made of the following substances in, or about in the proportions given, in apothecaiies' weight :-Graphite, 23 drachms; copal or other resinous gum, 12 grains; sulphate of iron, 2 drachms; tineture of nutgalls, 2 drachms ; and sulphate of indigo, 8 drachms. These materials are mixed together and boiled in water, the griphite of course being reduced to an impalpable porsder. This ulk, which besides bsing freproof 18 said to be insoluble in water, under ordinary circum tances is black; but when coloured inks are desired, the eraphite is replaced by an earthy or mineral pigment of the dexired colour.
Another portion of this invention consits in the application of the incombustible paper pulp to the manufactu e of covers for bo ths and of wrappers or envelopes for parcels and packages. The inventor also utilises tale for this purpose, singly or in combination, with his incombustible millboard or orsmary boards Thus the "back" of the book may consist o'. a number of slips of tale overlapping one another, secured to and supported by a picce of incombustible paper.-English Mechanic.

Propessor James Dana has written in the American Journal onf sctence ard tre the following on the condition of the carth's interior. It 8 rems now to be demonstrated by astronomical and physical arguments-arguments that are independent, it should be noted, of direct geological observation-that the interior of our globe is essentially solid. The condition of the earth's interiur here recognised is, as many readers will have observed, that suggested loug ago by Professor W. Hopkinsthe author who first offered (1839) a mathemaxical argument jn favour of the carth's either having a very thick crust or being solid throughout. In a paper on "Theories of Eleva tion and Earthquakes," in 1847, Professor Hopkins argues that the central mass of the carth becaune solid in consequence of the pressure whenever the temperature within reached a imit that permitted it; that crusting at surface from coolng commenced afterward; and that between the regions of inerior and ext rior solidification there long remaineda viscous Beer, whinch, in the progress of time, was gradually contractd by the union of the solid nucleus to the thickening shell. The possibility of solidification at centre from pressure, in
the face of a temperature too high for consolidation from cooling, bas not been experimentally demonstrated. Yet a number of facts favour the pribeiple It has been urged that since the soldification of rooks is attetaded by contraction, that is, by incrense of density, and since pressure tends to produce this greater density, therefore pressure may bring abuut the condition of the solid. The fact that ice, which has less density than water, changes to water under pressure, has been appealed to in support of the conclusion. The pressure to which the material within the earth is subjected is so great that experment can never imitate it, or directly test its effict. Bencath only 150 miles of liguid rock it would be not less than one million of pounds to the square inch. Leess than tins may have been sufficient to produce crstanllisation, and so geve rigidity to the viscous rock material, or at least so after the cooling the earth has undergone. The rigidity of slowly soluditied rock is beyond that of glass or steel-or the degree which. according to Sir Wim. Thomson, must exist in order that the carth should be as completely free as it is from tidal move ments in its mass. According to the above the solid part of the globe consists, as regards origin, of three parts : the central mass, consolidated by pressure-the solidification centrifugal, or from the centre outward; the crust proper, consolidated by cooling - the solddrication centipetal, or from the surface inward; the outer crust, or superficial coatiugs - the sunercrust - made chiefly by the working over and claborating of the material of the surface through external agencies, aided by tha everacting lateral force from contraction, and including all terranes from the Archean upward.

Ths following has refcrence to testing lubricants for ma-chinery:-To determine the viscosity a tube of about 15 mm . diameter and 10 centimetres long should be theen and drama out at one end soas to afford an orifice of abunt $1 \frac{1}{2} \mathrm{~mm}$. On filling this tibe up to a mark with the difictent oils and noting the tinse occupied in emptying, the relative viscosity may be found. The temperature should be kept as nearly constaut as possible at 15 deg . Water takes 9 sec.; linseed oil, 88 sec.; colz oil, 142 sec.; olive oil, 135 sec. To test the length of time duning wh ach the Iubricants will remain fluid, Nesmith's plan is recommended A weighed quantity of the lubricant is placed on a sheet of iron some two metres in length, which is set with a slight inclination The distance which the oil will rum before it gums, and the length of tiwe it takes to become gumay, aford means of estimating the valne of the lubricants in this respect. It is also well to test the lubricants to discover whether any of the acid used in purifying is left in th: in, in which case they will etch the surface of metals upon which they may be placed, and as also to theirliability to become rancid.

three cylinder fagge at vienna.

Among the numerous stcan engines exhibited at Vienna, few are deserving of more attention on account of tir special nature of their constructinn than that which forms the subject of the present notice, namely, the thre-ceylinder cughe of Messss. Brotherhood \& Hardinghan, of 56, Com,tun-street, Goswell-road. The accompany'ng eng aving frum Engineering shows a perspective view of one of these engines as adapted for ordinary pur oses. The details, however, will be best understoud by a reference to the views on page 215 , where the eagine is shown as arranged for driving direct one of Boulton and Imray's helical pumps. Bo'h the se arr.... cements are to bo seen at Messrs. Brotherhood \& Hardingb:am's stand in the Vienna Exhibition. F'g. 1 shews a vertical section of the engine and pump, Fig. 2 an elevation, and Fig. 3 a plan, and Fig 4 being a horizontal section of the engine Th coustructhun of the helical pump will be found fully illustrated at page 215. We shall onw confine our rreeent remarks to the engine, which replaces the ordinary single cyliuder type in use when we illustrated the pump.
In th new engine threo cylinders are arranged at angles of 120 deg. with each other, mound a central chamber, with which they communicate, he whole being cast in one piece.

THREE-CYLINDER ENGINE, AT TIE VIENNA EXHIBITION.

THREE-CYLINDER ENGINE AND MELICAL PUMP, AT THE VIENNA EXBIBITION.

Efl: c! linder has its own piston and connecting roa, the three rols whing on to one common crank. The crank pin, after passing through the connecting-rod gyes, is prolonged, and fits into s hole in a totary slide valve, which it thus actantes. The ralve has a steam and an exhaust port, which are alternately placed in communication with the passage belonging to eqch cylinder. In working this engine steam is admitted to the central chamber, and exerta an equal pressure on the inner sides of the three pistons. Thas far the machine would be in equilbio. But steam now passes through the slide valve to the outer side of one piston, thus throwing that piston into equilibrium, but the thre pistons collectively out of equilibrinm. In other words, it renders the pressure on the inner sides of the other two pistons effective. A rotary motion of tho crank and slide valve ensues, and the other pistons are alternately operated upon in a Elmilar manner, the constant
effective area for pressure being that of a piston and a half. It steam be not admitted during the whole of the invand stroke of a piston, it follows that the piston is not entirely thrown into equilibrium, and the crank has to assist it in the retarn stroke. Tho effect is of course equivalent to working steam expansively in an ordinary engine.

It will now be seon, and this in the most important festure of the engine, that a piston, when moving in one direction, pulls the crank, and when moving in the other, is pulled by the crank. Hence, the strain on the connecting rod is always a tensile one. No knock can therefore take place in the can-necting-rod eyes on the alteration in the direction of the piston's movement ; so the fit may everywhere be quito loose, and instcad of constantly adjusting brasses it is only necessary to renew a fow bushes when excessive wear has taken place. Similar!y, the slide valve ir free to slide on the erank pin, and
adjust itself to its face ns wear takes place, and the back of the crank disc always maintains a steam-tight joint in the same munuer. The lubrication at first proved a source of difficulty, but it is now amply seconred by the simple addition of an ilupermentor to the steam pipe, the dil biug carried by the steam as a medium to all the working parts.

In the cuturse of a series of exp riments undertaken with the view of determining the point, it was found that fuw inctals would stand hetwy work in high-pressure steam under such conditions. LIti watcly, hard phosphor-browe bushes for the connce ting-rod eyes working on a hardened ted trank-pin, were adopte d, and these are fuund to last a long time withont any oil whatever, the steran aflording of itgelf suftic iunt lubri cation for these two whetals. The whole machine being so well balanced, and there buing, as already puinted oat, no po-. sibility of a knock tukng place in any of the working parts, very high sp eds are permissible fur the engine, such for instance, as two thousand revulutions pat minute. An average speed, huwever, of about 300 ft . jer minate tor the pistons gives a very hishindicated horse power in proportion to the size and cust, be-ides which, the reare the duantages duc to the alisence of dead-centre, and conseq ent avoldance of tlywheel, involving a consi lerable amount of sav ng in weight. It will be seen that graat prutuction is affurded to the moving farts, and that cleanliness of working is insured. Tine ecunomy arisins from the fitition bing su mash raduced is very considerable, whilst the ready applicability of the engine to a great variety of uses is one of its chief merits.

LIGHTNLNG AND LIGHTNING-RODS.

By John M. Mort.
Read before the Meteorogical Section of tin Franklin Institute.

Sommary.

lst Lightning-rods, as usu.lly erected, do nut afford much protection.

2nd. Insulators, glasses, at the points of support, are of no use in any case, they destroy the most valuable iufluence of the 1od, and may, under certain cucumstanees, be the cause of mont terrific and destractive retua astrokes.

3 bl. The con lucting puwer of lightning-rods is proportional to their solid contents or sectional area, with similar metals of equal lengths, and not to their surfaces.

4th A lightaing-rod shondd have the conducting power of a cop, er rod out-halfinch square, and perfect thetallic union of all its parts. A rod made exclusively from copper wires, if of sufficient eize, constatutes one which is perfect in theory.

5th. Sharp ponts for the upper termination of rods are neceisatry. Rods are of but hitte value without them. Points should be phated, to preventoxidation. They are also of value when us dat the lower terminus of the rod.

Gh. It is necessaly t, place a pointat each gable, chimney, and vennator, to whmet all torcther, to conmelt the rod wath metallic rouff, gutters, valleys, steam-pipes, gas-pipes, watu pipes, speahtis thbes, and other permanent metallic budies about bualdars, abd the more mumerous the connections with the earth the better.

7:h. The rod must be attached directly to the building, the closer the better. It must not be insulated by being passed through or over rinss of glass, horn, or other non-couductang substances, nor be placed at a distance fiom the object to be motected.

8th. Ground rods must have two or more branches penctrating the earth to permanent moist are ; mint evtend below the foundation walls or the bottom of the cellar. In so. e instances, where it is difficult to reacin muist earth, they must be imbedded in charco.al.

9th. Lightuing-ruds, constructul and crected in accurdance wit' the foregoing proiplis, whll afford full prutection in the hour of danger, and their use is strungly urge it a a necessary means of safcty.

QUANTITATIVE SPECTRUM ANALYSIS.

The subject of spectrum analysis has of late been so fre quently and prominontly brought before the public that it is ouly necessary briefly to recapitulato what has been done in order to understand tho most recent tendency of investugation with this wonderful instrument, to which sciencealready owes so much.
We must remember then, to begin with, that chemical nub. stances, when volatilized in a firme, make known their com. position by causing certain light lines to appear in the mpectrum produced by making the light fiom the flane pass thruush a prism Every chemical olement has lines peculiar to teself, and their relative position in the spectrum is so constant that their appearance enables the observer at once to recognize the presence of substances. We can tell whether a light to be cxamined is due to a glowitig gas, or proceeds from a laptad or s lid body. A gas will produce bright colored bande suparated by dark spaces, while a liquid or solid will give nisu to a spectrum containug every shade of color without gaps I'hus the bature of the light coming from heavenly bodies is reveal. ed to us, and it has been found, for example, that about one third of the nubula are cumposed of incandescent gas. Aghw. ing vapour will absorb the same kiud of light as that whath it emits, if therefore a brilliant source of light is surroun bed bs a glowiog vapour, that vapour will not permit certaiu portions of the light ehind it to pass through, and the absorption will be indicated by dark lines in the spectru These dark liaes will be in the same places where the glowing vapour alone would produce bright ones. Hence it is that the spectrum of the sun, which is surrounded by an envelope of glowing gas, contains a great number cf dark liues whose posilion reveals to us the substances present in the inenndescent envelope. The same is true of the fixed stars, waco spectra are alıs characterized by dark lines.

When s luminous body is approaching us with geat velo. city, the waves of light crowd upon each other, beceme inore rapid and shorter, and hence more refrangible, than if the bods were stationary. Any given line in the spectrum of such s body will therefore bo found nearer the more refrangible or violet portion of the spectrum than its normal position. If the luminous body is teceding, the line will move towards the less refrangible or red end of the spectrum. The disphacement of the line being accurately measured, we cau calculate, trum its known wave length and the velocity of light, the rate at what is fixed star is approaching, or receding from, the varth.

Terrific hydrogen storms are constantly taking place on the surface of the sun. On account of the glare of the light, these conld only be seen formerly around the edge of the moon's disk during a total eclipse Now they can be observed at ang time by means of a spectroscope of hish dispersive power, which extinguishes the blaze of the sun sufficiently to allow them to be seen. 'lhe enormuas v locity of the curreuts of glowing hydrogen projected upwards from the sun's surface can be measured on the same priaciple as that of a star approaching the earth.
If the light passing through coloured solutions is examiand by the spe troscope, certain portions of it wall be fuund to bi absorbed, and their spectra will be characterized by dark lands, whose position and arrangement vartes with the nature of the solution. It is thus that we can distiguish between differ-nt dyes, detect artificial culouriag of wines (as, for example, by meaus of logquod), and decte upun the important yuction, likely to arise in eriminal cases, whether a substance tu becsamined is human blood or not.

The fluorescent light produced, in a large class of substances, when illuminated by blue and viulet light affords, on examiuation by the spectroscope, a ready and most delicate means of determining their composition and even ther stat: of hydration. Fluorescing substances, moreover, by rendering visible the actinic rays, increased the effective length of the spectrum and bence the delicacy o, analyois.

A Aoug many practical applicati , ns of spectrum analysis. "ae of the most anporlant is in the manufacture of stee! by the Bessemer process. A blast of air is forced through the melted iron to deprive it of a certain proportion of carbon. If this blast is coutasued a few minutes two long or stopped a few muates tou soon, the whole operation is vitated. By examiniag the flame of the converter with the spectroscupe, the proper time to stop the blast is clearly indicated by the
disappearance of tho ch. boll lines and the change to a continuous spectrum.

But the uses of the spectroscope do not stop here. Scientific men have of late been turning their attention in a new direction, that of quantitative analysis by means of the spectrum. Not content with discovering what subatances are counained in a given compound, they are devising means to determine the quantity of these substances.

In a session of the French Academy of Srience held November 7, 1870, Janssen stated that he believed he would soon be able to determino sodium quantitatively by means of the spectroscope. In his analyses, be was much annoyed by the constant presence of the sodinm line, caused by the sea salf in the air; so he directed the slit of the spectroscope upon the most brilliant portion of the flame of an ordinary gas burner instead of a Buasen burner, in order to get a cuntinuous spectrum in which the D line did not appear sensibly, because of the abundance of the neighbouring lines Sometimes he had to interpose several flames between the testing flame and the spectroscope. This red him to conceive the posaitility of estimating the quantity of the sodinm by the number if fla des necessary. He also stated that the lingth of time it takes the sodium to volatilizo might serve as a criterion of its quantity
These crude ideas form the basis of a series of experiments undertaken quite recently by MM Champion, Bellet and Grenier. After substituting coloured elankes and coloured solutions for Janssen's tiames, and making a great ranny experiments, they constructed the "spectronatrometer," an instrument of considerable delicacy, but rather romplicated in its arrangement. We will therefore confine ourselves to a description of its principles.
The sods in the substance to be analyard is converted into the eulphate, the volatility of which is found to be intermediate between that of the chloride and the phosplate. Into the solutiou obtained a wire, of platinum-iridium -0t of an inch thick, is dipped and dried. It is then carried into : that Bunsen flame with a perfectly regular motion by meana of clockwork; and the intensity of the sodium line, produced in the spectroscope directed upon the flame, is compared with that of a line produced from a solution containing a known quantity of sodium or from the volntilizing of solid pure sulphate of soda. The comparison is etfected by causing the rays of the substance to be examined to pass through a glass pri-m containing a co'oured solution. This prism b ing wedgeshaped, permits the experimenter to make the light pass through different thicknesses of the abso-bing liquid (that is, from 04 to 60 incli) until he gets a sodiun line equal in intensity to that of the standard of comparison. The inventors bave made a large number of obseryations on solutions of known strength, and constru:ted a curve, whose abscissas represent the thickncess of the layer of the solution in the prism throusn which the light hus to pass, and whose ordinates correspond to the quality of sodium present.
Dr. K. Vierordt, of ribingen, the inventor of a delicate metbod of photometry by means of the speotroscope, solves the problem of quantitative analssis of bodies giving an absorption spectrum in the tollowing way: The slit of the spectroscope, adjusted to a certain width, is divided into two parts Opposite one half is placed a solution of the body to be determined, and opposite the other a solution of the same body whose strength is known. The first slit is then narrowed or widened until the abs rption is the same in both halves of the spectrum, when the width is read off By using a series of solations varying decimally in strength, from the we - "st to the strongeat through which light will pass, curves may i constructed, in which solutions of unknown strength can be loterpolated and their value ascertained When a certain point is reached, further concentration of a solution will ot affect its absorbing power regularly, and it is therefore necesnary to dilute liquids which are very concentrated. Tables to facilitate calculation have bern computed by Dr. Vierordt.
The most recent and perhaps the most important method get discovered is duc to Lockyer of England. It is based upon the following principles: When an alloy is introduced into the electric arch, the most volatile metal will be carried across to the other pole first and its vapour will form so good a conductor that but little of the less volatile metal will get into the arch. To make the principle perfectly plain, we will quote an explanation given by Tyudall. Wher showing his audience the charactersstic lines of silver and thallium, be foand that the latter were far brighter, and that the former
were diminished, when a bit of thallium was put in with the silver in the electric arch "It is the resistance," he went on to say, "offered to the passage of the clectric carrent from carbon that calls forth the power of the current to produc. heat. If the resistance were materially leasened, the hent wonld to materially lessened: and if alt resistanes were abolashed, there would be tho herat at all. Now thallium is a much more fusible and vaporizable metal than silver, and its vapuar factlotates the passage of the current to such a degreo as to render it almost incompetent. to vaporiz. silver" the more, therefore, of the more volatile metal is present in an alloy, the less of the other can be vapori\%ed by the areh.

Now on examining the arch iny meane of the spectrosuope, Lockyer found liner extending arress the white width of the spectrum and shorter ones reaching only mart of the way. The former corresponded to the more volatile, and the latter increases with the quantity of the motal present, it is evident that by mensuring them we can ascerta n that gunatity. In these determinations, the ele tric cure ut is obtained ether from a nowerful battery, a Ruhmkorfi coil or a magnetu-electric machine ; and the heat of the spark is intensificed and at the same amo rendered consant hy mean of ler gien jars of constant surface. Instead of placing the alloy to be tested in one of the carbon electrodes, we might have the electrodes them. selves composed of the metals Suppose we make one of pure gold and the other of come alloy whose percentage of gold we wish to ascertain. Then by separating the electrodes sufficier tly, we finally arive at a point where the gold lines from the alloy no longer meet tho lines from the pure gold, but will extend only part of the way, leaving a gap on their half of the spectrum. If we now keep the same distance between the electrodes, and experiment on alloys containing different percentages of gold, the length of their gold lines will be found to vary with that percentage. 'the leugth of the lines can easily be measured by causing the refection of a graduated scale to fall upon the spectrum. In assaying, where wo frequently have to do with samples of gold whose fineness difers but little, a series of electrodes of known composition may le prepared; and by comparing them with alloys of unknown fineness, it is easy to tell, by simple inspection of the spectrum, which is the finer. The lines of the one contain'ing less gold will not extend all the way across.

Tho attention of the United States Sint has been called to this discovery of Mr. Lockyer's; and while this article was in course of preparation, an othcer from the Philadelphia branch was experimenting in the Stevens Institute of Technology with a view of testing its practical utility.-American Artısan

THE SOUDAN RAILWAY EXPEDITION.

(Continued from page 167.)

In the Bahiuda desert the rainfall takes place between May and August, but the quantity is very variable, and it sometimes happens, indeed, that two consecutive seasuns are entirely minless. The total absence of all regular observations leaves the question of this rainfall very uncertain.

A few remarks upon the drainage lines in thin district will find a suitable place here The desert plains, which are practically level, receive, rs course, a considerable amount of moisture during the rainy seasons, but this is soon evaporated by the heat ot the sun. At Abcu Halfa a river bed, and remains of trees washed up on its southern bank, show
line of drainage taken by the water from the neighbraing hilh. The hills near Gakdoul also pour downa considerabie quantily of water, which falls away towards the north, and culverts would have to be provided on the line of railway to carry off this water. The district here is, however, largely cultivated, at, 1 , as the suil is deep, and absorbs the moisture rapidly, the greater part of the rainfall would disappear before reaching tine culverts, and a maximum allowance of 4 ft . depth of wath r in times of highest flood would be ample.

The next important point along the line of railway in this district, where floods must be provided against, is at Abou Deleah, where the southern side of a range f sandstonc and porphyry hills drams into a Wady, and thence to the wells of abou Deleah. At this place a maximum depth of 4 ft would also be provided fin, but such an accumulation

THE WELLS OF GAKDOLL.

PLAN OF WELLS OF GAEDOUL.
has occurred only once in trwonty-four years, and it thon lastod buta very short time.

On the plains a low bank from the side cattings will alpays keop the rails above flood level, and sideditches would be made where drainage hos to be provided fcr, thas reducing the number of culverte, and consequently the skilled labous sequired, to 8 minimum.

We pabs nert to the consideration of the water supply along this section of the railway. At the commencement of the fourth division the wells of Abou Halfa, situated in the bed of the river, are the first requiring notice. They are formed like thoio of Abou Delesh and El Fouragh, and are used in the bame manner; although these wells are not lined they stand well, but in the wet seasons they become partially filled with sand and other deposit.

Certainly the most ramarkable wells in the desert are those of Gakdoul. They consist of three large water-worn cavities, each at a different lepel, and shat is by precipitoua cliff. The lowest of these pools forms an irregular oval in plan, about 120 ft . long, by 60 ft . broad, and for three-fourths of its leagth it is enclosed letween perpendicular rocks. Whether any labour has been expended in making these or. cavations it is impossible to say, but it is evident that the carities have been mainly produced by the torrents rushing through a small passage about 8 ft . abovo the highest water level, and thus wearing away the softer portions of the rock to a considerablo depth below the ground level. These reservoirs contain almays sufficient water for two vesra' supply of the existing demand, and are never dry. The lowest well is daily visited by large numbers of animals, and the water is consequently anfit for any other use. The second pool, abont 10 ft . above the first one, lies in the bottom of an almost inaccessible channel, the sides of the gorge rising in some places nearly perpendicular, and to a height of abont 80 ft . from the water. The approximate length of this pool is 200 ft ., and its width is 40 ft . The quality of the water is excellent, and from this, and the upper pool, the skins or Girbas, used to carry the drinking pister, are filled, a zord and bucket being employed to raise the water from the wells. The third pool is about 5 ft . $h_{\text {, }}$ her than the second, and liea in a dicection nearly at right angles to the latter. Its size is about 80 ft . by 15 ft .

A very tortuous and contracted channel, about 20 ft . long, and 3 ft . wide at the bottom, forms the connexion between the second and the lowest pool, and above this the gorge widens out, and by the construction of a dam, a fine reservoir and ample water supply would be obtained.

The wells of El Faar, situated about 8 or 9 miles east of the line at Gakdoul, consist of a number of holes 3 or 4 ft . in diameter, and a few feet in depth, which are formed in the usual manner, and they are sunk in the channel of a large river bed. The wells are rudely excavatod, and aso unlined; their falling in is therefore a matter of frequent occurrence, and these accidehts are repaired by the excavation of nem holes.

The water is drawn from these wells by skins formed roughly into buckets, by boing tied at the four corncrs, and lowered with a line. A basin with puddled sides is formed on the surface, for the use of aximals. During the raing atason the holes are rapidly filled with deposit, and they have then to be remade ; on the other haud, in the fry scason, the wells are gradually deepened, and the water level falls through ube, absorption, and evaporation. Cattle, sheep, and goats arc driven here in large numbers, and it is the custom durlag the hot geason to water the sheep and goats once every four days, and the cattle every other day. In the winter season they are driven to the frolls every sixth and fourth day respectively. The water at these wells is good, and the supply generally plentiful ; only once, icdeed, during the past thirty years have they dricd ap, after a continaed drought of two sears.

The river bed of El Fouragh, at the site of the wells, is about 150 gards in width, but the scoar on each bank, eitending for a distance of half a milo, points to the fact that a largo quantity of watar passes down this watercoarso daring a rainy geason. A few miles south of the wells, the river bed is from 12 to 15 ft . doep, and the width sbopt 300 yards. tifiny small tribataries cross the camel roate betroen Gakdoal and the wells of El Fouragh, which carry off the
dainage from the range of hills running in a north-easterly direction from Gakdoul to wards El Fourigh.

Following the river bed from its wells, it is scen to take a bend to the west, while on the aast it recoives the drainage from the hill range just mentioned. The principal drainage, however, runs towards that bend of the river which turns westward, near the hills. Following the base of a range of a eandstone hills for nearly half a mile, it suddenly sweeps round in a northorly direction, and passing through a gorge, enters a plain where vegetation is as abnudant as at Gakdoul. Tho hills of sandstone and porphery which surround this plain, provide an immense watershed, which pours from seven or eight mountain torrents into basms, and thence into the river bed of El Fourdigh, where it is gradually absorbed into the desert sand further south, or evaporated by the heat.
The wells of Abou Deleah lie close to the line of the proposed railway. They are sunk in the same manner as those just described, but as the soll does not stand so well, they are ccnstantly falling in, and have, thereforo, very fraquently to be reconstructed. The water at this spot is excellent for drinking, and the supply is good, having failed like that of El Fouragh only once during the last thirty years. Being on the camel route to El Metemmoh, the wells are constantly visited by caravans. They also form a favourito watering-place for the herds and flocks of the Arabs.
The well of El Shabocat is about 7 miles from El Metemmeh, and is also apon the camel route.

BLACKSMITE'S MEASURING WHEEL.

Mr. Thomas R. Way, of Springfeld, Ohio, is the inventor of the device herewith illustrated, for measuring the circumference of wheels and tho length of the iron from which tyres therefore are to be made. The peculiarity of the apparatus consists in en extra pointer pivoted to the hand which indicates the wheel messare, for the purpose of deducting from the latter the amount to be allowed for expansion of the metal.

The wheel shown revolves freely on its axle, to which, however, the hand A. is rigidly affixed. The pointer B, is secured to tho hand A, by a scrow, ss shown in Fig. 2, so that its end may be set at any desired distance from that of its support. The device is applied and carried around the wheol to be measured, as represented in Fig. 1, where the hand 1 , indicates the length of circumference passed over. The pointer B, is then fastened with its end at a distance to one side of the hand equal to the amount of expansion of the iron. The apparatus is aftexward carried over the tyre, which is cut at the point indicated by B.
The invention may also be employed by coopers for measuring boops, in which case the extra pointer may be used to indicate the allowance for lap.

BLACESMITE'S MEASURING WHEEL.

AN ANCIENT LATHE.

A correspondent writes to Engineering as follows concerning the above exhibit at Vienna by the Austrian Ministry of Commerce and Agriculture :
" Besides many interesting objects, we there find turned objects oi wood, such as wooden glasses, bottles, basins \&c., manufactured by the Huculen, the remnants of an old Asiatic nation which had settled at the time of the general migration of nations in the remotest part of Galicia in the densu forests of the Carpathians. These people manufacture the articles named above, and the instrument they are using for turning them is worth noticing, secing that it has been employed unaltered since times immemorial. If a Hucule wants to manufacture a turned basin, bottle, \&c., he arms himself with a a hatchet, a chisel and a rope, and onters the denso fcrest which surrounds all human habitations in his part of the country. After having cut the tree out of which he wants to manufacture the desired articles, he looks round for two trees of about 1 ft . or 2 ft . diameter, and sufficiently close together for his purpose. But it is an essential point in solecting these tree that a young maple or beech should also grow near at hand. Having found this necrssary combination for the work to be done, the Eucule makes two holes at a proper height in the two trees, and inserts in these opposite holes maple cones, serving as dead ceutres. One of these cones is fixed, and the other removable. In the annexed sketch of this arrangement these cones are manked $b b$. The woodblank to be turned is then prepared with the hatchet, soas to be fixed between the centres, and is fitted at one end with a small cylindrical part, a, to take up the rope for giving a rotary movement to the picce of work.

The rope is then taken two or threo times round the small cylindrical part, a, and is attached to the top of the young manle, as shown in the sketch. Tho lower end of the rope is fastened to a piece of wood c, which, at its other end, is attached to one of the roots of the trecs, and thas serves as a foot-boand. After this the man fastens a cross-bar, α, to the trees, and begins to turn with his chisel whatever he wants to produce.

It is clear that this latho has a reciprocating motion, but nevertholess tho objects manufactured with this primitivo machine aro nicely torned, and do not lead to the supposition of so rough a tool.

'THE MONUMENT OF VICTORY AT' BERLIN.

Every newspaper reader knows that the Monument of Victory at Berlin was unveiled by the Emperor of Germany with considerable military display on September-2, and as sketches of the event have appeared in the illustrated papers some notion of the column may be formed, but hitherto no technical dercription of the structure has been published. The monument, as is well known, is intended to commemorate the three distinct Prussian triumphs, first over Denmark, then over Austria, and, lastly, over France; and although the last of these was stall in the womb of time when the first stone was laid in 1869, the original design had to be but slightly altered when its object becarne the witness to future generations, not of tro, but of thrue successive triumphe.
I he monument consists, in the first place, of a square pedestal of dark 7 red Swedish granite, 93 feet by 93 feet and 23 feet high, having cornice die and base, with flat piers at the augles. Upon the die, between the piers, are affixed four brouze reliefs illustrating various scenes of the drama which the edifice commemorates. Upon the east side, a work by Calandrelli depicts the preparation and departure of troops, as also the storming of Duippel ; upon the north Moritz Schultz has reproduced the Battle of Kuniggratz, choosing the moment when the king, accompanied by Moltke and Bismarck, meets the Crown Prince The western relief, the work of Karl Keil, sbows the capitulation of Sedan, the delivery of the Emperor's letter to the king by General Reille, and the entry into Paris. The last, on the south side, is by Albert Wolff, and represents the re-entry of troops into Berlin at the close of the campaign on June 16,1871 . It was the architect's intention to gild these bronar reliefs, but he was (fortunately) oyorruled by his sculptor collengues, and the castings retain their original hue.

Upon the square pedestal rises a circular sort of temple, consisting of sixteer Doric columns about 20 feet high, standing upon a circular flight of four steps, the diameter of the top step being about 51 feet. The columns have architrave, frieze and cornice, the cyma recta of the latter being ornamented with lions' beads. 'The columus and cornice are of red po.ished granite, and the inner paneled ceiling is of green marble resting on ornamental bronze girders. From the centre of this circular space rises a column of grey bandstone, 24 feet 6 inches in diameter at the base, and, passing through the lowpitched stone roof, reaches a height of 115 feet, measured from the platform of which it stands; a bold attic base rests upon the circular roof, and above this the shaft is divided horizontally into three tiers of flutings, the lower poitions of each tier being filled with Danish, fustrian, and French cannor. connected by wriaths of laurel festooned from one cannon to another. All the metal wotk is strongly gilded, and is said to produce a vaty brilliant effect The cap of the column is 9 tect in height, ornamented with Prussian cagles and wreaths of laurel, above which the abacus is octogonal, with a diameter of 15 feet This forms a platform, which is reached by a circular stair passing up the centre of the column, and is protected for that purpose by a strong iron railiug of rich desige. sprivging from this platform is the pedestal of the colossal figure which crowns the whole. The latter is draped in flow ing skirts and tunic ; the lifted win.s measure 26 feet from tij) to tip; in her right uplifted hand she holds a victor's laurel crown, whilst in her left is grasped a furled standard surmounted by the "iron cross; "and on her head is perch. ed the Prussian eagle, apparently ready to soar off once more at any moment.

The entire structure, from the ground to the top of the standard, is 199 fect in beight. The cost of the whole is stated to be $9^{4}, 000 l$, and the architect from whose designs and under whose immediate superiatendence fae monument was erected was Herr Strack, whose official title, by the way, is an appallingly long one, to wit, Mr. Secret-Chief-Court-Councillor-ofBuildings. With him rere associated the architects Hollin Luthmer, Jacobstal, Haberlin, and Hosfeld, in minor capacities, the contractor having been M. Ravche, of Berlin. With recard to that portion of the great column which stands within the circular hall above described, it should be mentioned that a periphery of 74 fect by a height of 12 fect (888 8quare feet) affords a good opportunity for pictorial decoration. This is buing prepared at the Salviati Mosaic Works at Venice, from designs by A. von Weruers, the subjects chosen being-the French declaring war, the banding together of all Germaus in
he face of a common danger, and the proclamation at Versailles of the Prussian King as German Emperor.-The Archutect.

BEES AS AIRCHITEC'L'S.

Now we exercise a patient observation on Nature, annlyzing, invistigating, calculating and combining our facts, and say coolly with Professor Haughton, "Bees construct the largest amount of cells with the smallest amount of material ;" or with Quatrefages, " their instinct is certainly the most develuped of all living ceeatures with the exception of ants." ". The hexagons and rhomboids of bee arehitecture show the proper proportions, between the length and breadth of the cell, which will save most wax, as is found by the clo it mathematical investigation," says another great authority. Man is obligea to use all sorts of ragines for measurement-angles, rules, plumb lines-to produce his buildings, and guide his hand; the bee executes her work imm dately from her mind without instruments or tools of any kind. "She has successfully solved a prollem in higher mathenatics, which the discovery of the differential calcula-, a century and a half ayo, aloneenables us to solve at all without the greatest difficulty." "Ihe inclinat. on of the planes of the cell is always just, so that, if the surfaces on which she works are unequal, still the axis running through its inequalities is in the true direction. and the junction of the two axes forms the angle 60° as accurately as it there were none." The manner in which she adapts her work to the requirements of the moment and the place is marvelous. A center comb burdened witi honey was seen by Huber and others to have broken away from its place, and to be lean'ng against the next so as to prevent the passage of the bees. As it was October, and the bees could get no fresh materiai, they immediately gnawed away wax from the older structure, with which they made two horizontal bridges to keep the comb in its place, and then fastened it above and at the sides, with all sorts of irregular pillars, joists, and buttresses; after which they removed so much of the lower cells and honey, which blocked the way, as to leave the necessary thoroughfaresto different parts of the hive, showing design, sagacity, and resource. Huber mentions how they will find out a mistake in their work, and remedy it. Certain pieces of wood had been fastened by him inside a glass hive, to receive the foundation of combs. These had been placed two close to allow of the customary passares. The bees at first built on, not perceiving the defect, but soon changed their lines 80 as to give the proper distance, thongh they were oblig. d to curve the combs ont of all usual form. Euber then tried the experiment another way. Heglazed thi: floor as well as the roof of the hive. The bees cannot make their work adhere to glass, and they began to build horizontally from side to side; he interposed otherplates of glass in different directions, and they curved their combs into the strangest shapes, in order to make them reach the wooden supports. He says that this procecding denoted more than instinct, as glass was not a substance against which bees could be warned by Nature, and that they changed the diacetion of the work before reaching the giass, at the distance precisely suitable for making the necessary turns-enlarging the cells on the outer side greatly, and on the inner si te diminishing them poportionately. As different insects were worki if on the different sides, there must have been some means of communicating the proportion to be observed; while the bottom being common to both sets of cells, the difficulty of thus regularly varying thei. dimenstons mu,t have been great indeed. The diameter of the cells also varies according to the grubs to be bred 14 them. Those for males have the same six sides, wita thre: lezenges at bottom, as those for workers, and the angles ar the same; but the dameter of the first is $3 \frac{1}{3}$ lines -that for the workers only two-fifths. When changing from onc size to another, they will make several rowe of cells in vermediato in sice, gradually increasing or diminishing, as required. When there is a greut abundance of honey, they will inerease both the dinmeter and the depth of their cells, which are found sometimes as much as an inch and a half in depth.-Good Words.

An exchange says: "The Niagara Suspension Bridge, which connects the New York Central and Great Westera railways over Niagara river, has been for months past undergoing improvemert It has beeu thoroughly inspected, with a purpose to discover the condition of its anchorage and conccaled parts. Everything was found to be as perfect as when laid twenty yearsago. The entire wood work has been replaced with new, and there is nothing about the bridge which is not just as perfect as on the day it was first completed. A strong new cord has been put under the carriage way of the bridge and the one above has beon rebuilt. Engineers dechare that the bridge could not fall if the cables were whol:y removed The popular idea has been that the whole weight of the strurture depended on the cables. Those cables that have so long supported a bridge full of loaded cars without ninching will no doubt long continue to do all that is required of them.

Enceation asd the Beain-M le Dr. Broca, in a long dissertation published in the Revue scient fique, take's the grousd that education is reflected iu brain deselopment. He concludes as follows: "It is this influence of cducation upon the brain which I have sought to determine, and I think I have demonstrated that cultivation of the mind and the excruis of intellectual labour angment the volume of the brain, and that the iacrease is principally upon the frontallobes, which are the seat of the most elevated faculties of the inteligence. Education not only make: man himself better; it not only gives him that suprriority, relatively to what he would be without it, which enables him to use all the intelligence with which nature has endowed him; it even tran-forms him, and renders him, as it were; superior to himself, by increasing the volume and perfecting the forms of the brain Tho e who call for universal instruction justify their demand upoz grounds b th social and national. We may now invoke an interest, perbaps, still higher-that of the race To diffuse instruction is to improve the race. Society can do it, and it is the bighest duty."

FUSION OF PLATINUMI.

The following arrangement of a furnace enables us to effect this fusion easily, and to produce a temperature which nay be useful both in research and in practice. In a saltpetre retinery at Lil'e there is a large chimaty. 30 meties high and one-fifth metre in diameter. It serves for a vent to right large steam-boiler furnaces, fed with coal, and which maintain a constant and energutic draught. A s.nall door, op n ng into the base of the chimacy, and generally closed by a small briek wall, communicates with the mterior. Before this door, athe foot of the chimncy, a sman whiffurnace is constructed, of which the outside bulk dor not exceed a cubic metre The grate, of movable iron bars, is a square ot 030 metri. The capacity of fire-box is 45 litrec, and the thac communieatiag with the interior of the chmmey 18 one-fifth of a metre in width. The first experiments were made whit coke ar furl Parisian an I Hessian crucibles were tried, as well as those of black-le td and lime, and in each were placed, to try the beat, about 50 gramm s of irou neils. The operation lasted fearcely an hour; the combustion was very active, the draught ro red loudly, and the light of the fire was dazziiny. In every case, cructble and metal were fused togetter, leaving on the bars a vitreols slag. Cuke w s replaced with gas-coke, i, the hope of obtaining a more moderate action. The phenomena were the sa ce, but even more intense. The best result was obtained by cutting a piece of gas-coke zuto the shape of a crucible, aud placing it within a Hessian crucible. In this 50 grammes of platinum were placed, partly in the spongy sate and partly in clippongs. After the fire had been maictained for an do 5 , a bition of platinum was oltained, perfertly fused, and weighi ig 50 grummes.
The experiment of Ebelmen wa. repeated, who obtained rrystalline alumina, by heating in a porcelain furnace a mixture of alumina and borax Aft r the borax was volntilased the interior of the crucible was covered with a layer of small hard crystals of alumian, trauslucid and very brilliant.

PROPOSED CENTPNXIAL, IAPOSITION BUILDING, PHILADELPHIA.

To obtain the best building, or set of bmildings, for the Exposition proposed to be held in Philadelphia in 18ic, a competition was invited, and forty-three designs were sent in. From these ten were selected, the degigners of each being permitted to revine and alter the details, and having for this parpose access to all the others. There was then a secomd complation of the revised derigns, from which the succersful plan was chosta. This dengg is by our countrymen, Mr. Calvert Vaux, ami Mr. G. K Radford, sumewhat modified, we brlicre, by detals tahen trom a design furnished by Mes-rs. Sime s. Brother, of Philadelphia.

We have engraved a w w of the merior of the building and the plan, as origimally e ent, and whith it will be seen is novel in consaraction. We will let the designers speak for themselves.

Although several large structures are to be erected in connexion whin the propused scheme for the International Vxhibition in 1876, it was evillent that the problem to be first solved was the phat for the main temporary building, and to that they mainly confined themselves.

The schedule of instructions clearly recognised the advan. toges to be gained by providines for the various groups of exhibits in concentric zones, a- 10 the last Paris building.

The present study in its floor plan is based on a zone arringevent, with square instead of rounded ends, it being contended that this corresponds with the far ts better than the citcular plan, as the angle give to the nalions that req.ife it a greater proportiusal increase of exhibition space in the departments, illustrating the reeult, of high civilsation. It ha-, on the cther habd, the main element of the Vienna plan in its tw lee interior open courts, whech have been designed with the idea of mahing them as small as practicable, but are 60 ft . in diameter; and esemtial features in reference to the light and air of the buiding, and the descharge of water from ats rouf.
The delivery and distribution of goods was difficult and tedions in the Paris buikding, as its mode of construction did not allow of access by milroad cars to all partc of the interior This is proposed to be remedied in the pres.nt instancedirect commanications bing provided for throughout the building, on threc lines of donble-track railrond.

In the laris bulding no general interior effect was attempted, and no spetial em! hasis was possble anywhere, so that the impressions of the visitor in regard to povition were easily confused, and the intermmabl- circular line prevented vista effects of an! greater length than about one third of the short diameter.

In th.. Vienna building the nave and transept arrangement, which includes all the pruposed eshabiton-room, was not depended on to produce any sufticiently satisfactory general eflect, and a chatral dume, 333 ft . in dianeter, was erecter of perman in mati rials, to give an adequately grand impres-- on la the preine study the am has been to make the temporary building itself farmish the elements of a spacions and impressive desigu, hat shall be equal in destrablity for exhbition purposes in every part.

Instiad of one detached dome with a - pan of 333 ft , the present des'gn is made up of twenty-one domed or vaulted pavilions, rat 240 ft . in diameter, clustered together, and connected by arches of 150 ft . opeoing, and fountailu-courts 60 it in dameter. The wari us parts of the building are thus incladed in one gram whole, ant? the realt becomers a spacions hall, adequate to the emergenctes of the occasion. with long vistis, celitral and metermedate pounts of emphosic, direct haes of transit thrombint its lengeth and breadth, diagonal lius of communicaturn where really needed, and an - n ice reliof from any apparatuce of contraction anywhore, for the victor is always in an apartment over 200 ft . whir, that opens with ut any intermadiate corndor anto other apartments, also over 200 ft . wide. Thes result is obtaned by employing semi-arcular rouf-trusses, springing from the ground-h vel.

The dificulty odinarily experiened in this method of construction, is that a lung stretch of roof is hable to be blown over while in pre gress of ere cion, or a where moderate spans are used. bec, ine the design does not inchuce provaion for lateral support or stay. in the present pan this dificulty is avonded; for the principal trusses used in the construction of

cach pavilion are so arranged that each pair intersects another pairat right angles. the two groups being put in place at the fame time, from the same centre frame or scaftold, so that when the centre frame, aft rerving its immediate purpose, is moved on to the site of the next pavilion, the structure from which it is removed is left standing equarely on four broad feet, and is entirely secure from any incidental disaster arising from a sudden wind-storm

The trusses aud framing of the roof and flooring are to be of timber. with iron shoes and connexions as required, the roof-covering to be shingles, and the gables and skylight to be glazed with rough or fluted glase, and the interior to be lined with painted cauyas or other suitable material. The work would probably be started with a centre frame at the end of each main longitudinal passage-way, the building act. vancing by three pavilions at Ω time, from one end o the other.

The circular of instructions issued by the Commissioners calls for a floor-space of 25 acres, of which not more than five acres are to bo includedin a permanent memorial building.

In the design illustrated the main temporary building provides twenty-two acres of floor-space, exclusive of galleries.

The principle of classification that has been adupted bs the Commissioners requires that five departments and a portion of the sixth should unquestiomally be exhibited in the main building. The motive machinery and fine arts are intended by the scheme to be protided for in separate buildings, and it is suggefted that other defartments may with proprety also be accommodated in a separate structure, containing about 3 acres, and which may be located in a part of the park, which will be inore suitable for the permanent art building than any portion of the site to be occupied by the temporary build. ing.

Offices for the various exhibiting nations, buffets, retiringrooms for ladies and gentlemen, and other necessary conveniences, are provided in the galles, as shown on plan, and sites for exterior restaurants ane indicated. (ialleries are formed over the offices in which light refreshments may be served, and visitors enabled to rest and quietly survey the scene below.

A covered piazza surrounds the building, giving access to and commonicating with all the entrances and restauants The question of approaches to the building is a matter of detail requiring close examination and full discussion hereafter.
In the design as submitted it was proposed that a branci from the existing rai road, arranged for passenger traffic, should pass at a level of about 20 ft . above the side-walk, inside the boundary-line of the Lxhibition-ground, and parallel to Elmavenue, with high and low level entances to the building. This would bring all visitors who may arrive by railroad, to the main entrance, without interfering with pedestrians or those whu come in carriages or street-cars.

The cost of the designe, as modified and much enlarged, has been stated at about $\$ 4,000,000$. The committee of the Exhibition have now recommended the erection of the following buildings, viz.: - 1. The art gallery, covering one acre and a half. 2 The grand pavilion, or main industrial hall, covering thiriy-six acres. 3. The machinery hall, covering ten acres. 4. The agricultural hall, covering five acres 5 The conserlatory. 6. Also, from time to time, smaller buildings for sperific purposes, as annexes to the above.

For the art gallery, to remain as a permanent Memorial Hall, the design of Messrs. Collius \& Autenreith. architects, of Philadelphia, has, we believe, been selected.-The Bulder.

The St Catharines' Nears is informed by a gentleman from the line of the new Welland Canal, that the work on the enlargement is making extraordinary progress. The weather is musually favourable, and labour is very abundant ard cheap. The estimates were based upon $\$ 125$ per day tor labour but all the men that can be handlid, it is stated, are working for 75 cents and $\$ 1$ a day There is a sangul e belief that the enlargement will be completed at an carlier day than hat been fixed by former regulations

DOMINION.

Tue Sandwichites rant a railway to run from a point in the townchip of Mersea to intersect the Canada Southern on the Detroit River.

A manoansere mine has been discovered on the Six Mile Road near Wallace, Nova Scotia. In digging a ditch large quantities of this mineral were discovered, and samples were sent to Halifax and pronounced pure and valuable.

The St. Catharipes Times understands that a large number of contracts for new buildings, to be commenced as early as posible in spring, have been already let to our local builders, and that the coming season promises to be even better than the last.

Ir is expected that the Government Railway workshops at Halifar will cadergo i "purtant enlargement and extension carly next spring, as they are now smaller than they should be to meet the requirements of the railways. So fays the Acadi in Recorder.

The list of new vessels reported at Halafax in 1873 reaches the pplendid tutal of 47 , of 17,971 tons. The vessels transferred and registered anew were 34, with a tonnage of 4,072 tons. Of the new vesels, there were two ships and seventeen bargues. St.John, N. B., exhibits a progress in ship building and ship-owning equally gratifyng.

Tue Buffalo Commerci il says:-The work at the Sault canal is progressing finely. A gang of 400 men are constantly employed The weather has been favourable. From a letter from Sault Ste. Marie, date: Dec. 17, 1873, we learn that the coffer-fam was built this year in three days in cunsequence of the work having been commenced before the heavy frost set in; while herctof re, wh n the work commenced late in the feason, it took from three to four weeks to do the same work and mike it water-tight. The contractors have taken out abuut 10,000 yards of gravel and 4,000 yards of rock up to date. Fiom present prospects the work will be completed before the opening of navigation, unless that event occurs carlier than usual.

SUBAQUEOUS TUNNELLING.

A French engineer, M. Durand, has devised a method of constructing tunnels under water which, whatever may be its practical value, has at least the merit of novelty. By it the old-fashioned ways aro superseded, there are no cofferdamas needed, nor the costly process of exhausting the air.

It must be confessed that the new plan, when reduced to its simplest expression, sounds very oddly. It is nothing more than forming the tunnel within a strong waterproof bag attached to a shicld which is drawn gradually across the river. The perfection to which the manufacture of waterproof fabricsis brought, says the inventor, is now so great that there would be no difficulty in making such a fabric as would bear the pressure of a hundred mètres of superincumbent water.

The shield is formed of cast and wrought iron, and of such weight as to maintain itself at the bottom of the water in spite of the volume of air within, and a circular chamber is forma 5 around it in which the requred length of waterproof tubing is packed awry. The shielt is crossed in its central portion by iron girders, to which the necessary weights aro suspended, to give stability to the wholo apparatus, which is to be drawn forvard across the channel or river as the works proceeds, paying out the waterproof sack as it advances. From the fore end of the shield rises a vertical pipo for ventilation, maintained in position at the surface of the water by buoys.

The proposed method of operation is as follows :-The bed of the channel is dredged across to such a depth that the top of the tunnel shall be level with the bed, the ends of the trench thus formed rising by gentle gradients to the shores. The shitld is then placed in front of the dry cutting on one side of the river, and the end of the waterproof tube is there
made secure, an operation which would certainly present some difficulty in deep water. The shicld and tube being once in position, the masonry of the tunnel is commenced, the bottom being first constructed, then the sides, and lastly the roof, the new masonry being always within the strong iron sides of the shiel.s. When the other side of the channel is reached theoperation is finisbed, in the same manner as it whs commenced, in the dry cutting. At the conclusion of the operation the waterproof tube lies beneath the floor of tho tannel, and all around it, protecting the cement until it is thoroughly set.

THE SAND BLAST.

On Tilghman's Patent Sand Blast for Cutting. Griuding, Eagraving, and Ornamenting Glase, Stone, Wood, Iron, and other Hard Substances.

Paper read before the British Association at Bradfurd. We may mention here, also, that at the very successful soiree, held by the Br tish Association at Bradfurd, a sand blast apparatus of Mr Tilghman's was shown in acion, the necessary blast being furnished by a smdll Root's blower, provided by Messrs. Thwaites \& Carbutt, or Bradford. These wellknown blowers seem excellently adapted for supplying blast to the sand-engraving apparatus, and we understand that they are now being regularly adopted $f(r$ that purpose.

The cutting, grinding, engraving and ornamentincr of glass, stone, wood, iron, and other hard substances are operations lequiring a considerable expenditure of time and labour, and some of $t^{t} 1 \mathrm{~cm}$ a vast amount of skill.
'The object of Mr. Tilghman'sinvention is to economise time, and reduce the amount of skilled labour required to produce ornamental patterns and architectural devices in stone and other hard substances. The mvention is based upon the idea that if grain or sharp sand are driven with a certain velocity against a hard surface, such as glass, stone, wood, or iron, such surface will be gradually cut away. The action of the eand on the hard surface of the glass or stone is very rapid; nod if a sheet of plain polished glass be subjected to the sand blast it will be quickly depolished or ground; but if a portion of its surface be protected by covering it with some suitable material (cut to any particular pattern or device) all those parts so covcred will remain intact, while the exposed surfaces will bo ground or cut away by the impact of the sand.

The sand is fed into a jet or current of steam at from 60 lb . to 120 lb . pressure, or a blast of air may be used. The blast of steam or air carring with it the sand is directed upon the surface of the stone, glass, wood, or metal, which it rapidly grinds or wears away.

The machino employed resembles a Giffard's injector. 'The central tube is supplied with a jet of steam or a stream of air under considerable pressure, and sand is used instead of water the grains of sand being projected forward with a velocity proportioned to the pressure of the steam or air, or carried along by the steam.

In the stone-cutting machine the sand is introduced by a central iron tube, such as that shown at Fig. 1, page 226. This tube is about $\frac{1}{8}$ in. bore, and the steam issues through an annular passage (${ }_{1}^{7}$ in. external, and $\frac{5}{1}$ in. intı ral diameter) surroundrog the sand tube. Λ tube of chilled cast iron is fixed as a prolongation of the steam passage, and serves as thegun or tube in which the steam mixes with the sand, and imparts velocity to the latter. The central sand tube is connected by a flexible tube and funnel, with a box containing dry sand, and the outerannular thbe is connected by another flexible tube with a steam boiler. The apparatus is thus entirely movable, and can be held or moved in any direction either by hand or by machinery, and can be made to cut upwards or downwards, or at any angle of inclination.

Fig. 1, on page 226 , is, as has been stated, a sectional view of the simplesteam jet foracting on or incising stone, slate, granite, or wood. The operation of this machine is as follows. Steam of about 60 lb . pressure per square inch is turned on, and rushes with great vilocity through the steam tube into the annular tube of the injector; this causes a suction of air through the central tube.

A stream of sand of about a pint per minute is let fall into
the funnel, and is carried along by the current of air or steam, and is drawn into the annular jet of steam, and driven by it at a high velocity, and strikes upon the stone

To cut an ornament or inscription in relief upon a flat surface of stone, a pattern of iron is fastened to the stone. Tho movable jet pipe is mado to travers. to and fro over tho surface of the stone, which is pirced at a distance of 8 in. The stone is mounted on a carriago which has a slow motion in a direction at right angles to that of tho jet prpe, so that every part of the surface is thus exposed to the action of the sand. A cast-iron pattern about three-sixteenths of an iuch thick may be used 100 times to produce the same pattern. If made of malleable iron it will last about four times as long. A pattern made of caoutchouc, if held 24 in . to 30 in . distant, will last a long time, but if placed only 8 in. or 10 in. from the jet-pıpe, it will be cut through in a fuw minutes.
'lo cuta flat or curved surface of a block of rough stonc, a narrow groove or channel is first cut by holding the jet-pipe about 1 in. from the side of the stone, and makiug it move steadily along the desired line, which may be eather straght or curved. When the groove has been cut about an inch deep the overhanging lip or edge of stune is tu be broken off by the nammer. The jet-pipe is then adranced an inch, a new groove is cut, and the overhanging part is broken oft, and so on. Balusters have been thus roughed out of a block of gramie by a single suries of cuts.

To cut a long deep chanucl vertically or horizontally in a bed of rock, as in quarrying, two jet-pipes are used, making two parallcl grooves about 3 in apart, leaving a projecting pan or lip of the stone between them, which is bruken ofl by a wedgeshaped tool. The jet-pipes are then adsanced and new grooves cut. The sand employed is of the ordinary quality used for sawing stone, the harder and sharper the better. In cutting hard rock about one-tenth of the sand is reduced to powder, but the rest can be again used.

Small shot or grains of cast iron, of about one-twenty-fifth of an inch diametwr, and in place of the sand, lave been found to cut granite more rapidly, probably because they are not broken by the shock, and the whole force of the blow is thus expended in disintegrating the stone, iustead of beitg partly wasted in crushing the grains of cand.

When the object is to cut or engrave in fine lines, or to grind away only small quantities of the material the blast of air from an ordinary rotary ilower or fan is used a, the propelling medium, and the machine shown at Figs. 2 and 3 , page 226, is employed, and driven by an air blast of the pressure of 4 in. of water, will completely grind or depolish the surface of glass in ten seconds.

If the glass be covered by a stencil of paper or lace, or by a drsign drawn on any tough elastic substance, a picture will be engraved on the surface of the glass, the sand cutting on the bare parts, but being rebounded from the elastic lice or paint without touching the surface beneath. Photographic copies by shromated gelatine from delicate line engravings, have been thus faithfully reproduced on glass.

In the machine for grinding and engraving glass, shown at Figures 2 and 3, a rotary fail drives a curient of air downward through a vertical jet-pipe 15 in . deep, ard 36 in . long by $\frac{1}{2}$ in. wide, at a pressure of about four-tenths of a pound per equare inch. Into the top of this jet-pipe a thin regular stream of sand is made to fall, which beivg caught by the rush of air, is driven down with it through the plpe; or long narrow channel, and shouts out against any substance placed bencath.

A set of caoutchouc tapes moving horizontally at a speed of 8 in. per minute, and about 4 in. below the jet-pipe, will carry forward sheets of glass 3 ft . wide bencath the sind blast. This glass will come out on the other side perfectly ground or depolished, although cach spot of their curface has been exposed to the action of the sand during less than four seconds. The sand after striking the glass flees off at an angle, and is picked up by an elevator, and returned to the sand-box on tho top of the machine ready to be again used.

If we apply the sand blast to a cake of tesin on which a picture has been produced by photography in gelatine, or drawn by hand in oil or gum, the bare parts of the surface will be cut away to any desired depth. The lines left in relief will be well suppurted, their base being broader than their top. An electrotype from this matrix can be printed from an ordinary press. The sand blast has been applied to

(FOR DESCRIPTION SAB PAOE 225.)
cutting ornaments in wood, also for cleaning metals from sand and gcale, graining, or frosting metals, and for $\%$ variety of other parposes.

The sand blast may be used for cleaning the fronts of buildings by remoping the soul, dust, and other gubstancer the:e from. The impact of the sand on the sarface removes the soot or dust from all the crevices and indentations without perceptibly interfering with the sharpness of the architectural ornamentation.

With the exception of the motive power and blower, or other device for giving motion to the air or stcam, all the essential parto of the apparatus are shown at Fig. I. It will be seen, therefore, that the apparatus is of the simplest and must inexpensive character.
T. Nepar Thoring-Gizbars --Take a nowbpaper, or part of one, according to the size of the glass. Fold it small, and
dip it into a basin of clean, cold water; when thoroughly Fet, squecze it out in four hand, as you would a spongo, and then rub it liard all over the face of the glase, taking care that it is not so wet as to run down in streams. In fact, the paper must oaly be completely moistened, or damped all through. After the glass has been well rubbed with wet paper, let it rest a few minutes, and then go over it with a fresh, dry newopaper (folded small in your hand), till it looks clear and bright-which it will almost immediately, snd with no further tronble. This methor, simple as it is, is the best and most expeditious for clegning mirrors, and it will be found so on trial-giving a cleurness and polish that can be produced by no other process. It is equally convemient, speedy and effective. The inside of window frames may be cleaned in this manner to look beautifully clear; tho windows being first washed from the oncside; also the glasses of spectacles, \&c. The glass globe of an metral lamp may be cleaned with a newspaper in the above manner.

