

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CiHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurén et/ou pelliculéeCover itite missing/
Le titre de converture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couieur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Pelié avec d'autres documentsTight binding may cause shadoves or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieureBlank leavas added during restoration may
appear within the text. Whenever possible, thase have been omitted from filming/
Il se peut que certaines pages blanches ajoutdes lors d'une restauration apparaissent dans le texte. mais lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou peiliculéesPager discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionincludes supplementary material/
Comprend du matériel supplémentaireOnly edition available/
Seule édition disponible

Pages whollv or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuiliet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure im:age possible.Additional comments:/
Commentaires supplémentairas:

The copy filmed hero has been reproduced thanks to the ganerosity of:

National Library of Canada

The images appearing here are the test quality possible considering the condition and legibility of the origina! copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed cr illustrated impression, or the back cover when nppropriate. All other origine! copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustratod Impression.

The last recorded frame on each microfiche shat! contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applles.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too lerge to be entirely included in one exposure are filmed beginning in the upper left hand corner, laft to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Bibliothéque nationale du Canada

Les images suivantes ont 6t'́ reproduites avec le plus grand soln, compte tenu do la condition et de le netteté de l'exemplaire filme, et en conformitt avec les conditions di contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont flimés en commençant par le prerrier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par ie second plat, selon le cas. Tous les autres eicemplaires originaux sont filmés en commançant par la prerniere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernióre page qui comporte une telle empreinta.

Un das symboles suivants apparaitra sur la derniére image de c^{t} 'gque microfiche, selon le cas: le symbole \rightarrow signifie "A SLIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document ext trop grand pour être reproduit en un seul cliché, il est filmé á partir de l'angle supérieur gauche, de gauche à droise. et de haut en bas, en prenant te nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

AN INTRODUCTION

то
ZOOLOGY.

FOR THE USE OF HIGH SCHOOLS.

By
R. RAMSAY WRIGHT, M.A., B. Sc.

Professor of Biology in the University of $\%$-onito.

Toranto:
THE COPP, CLARK COMPANY (Limited). 1889.

Entered according to Act of the Parliament of Canada, in the year of our Lord one thousand eight hundred and eighty-nine, by The Corp, Clark Company (Limited), in the Office of the Minister of Agriculture.

PREFACE.

The present volume has been prepared with the object of aiding the study of Zoology in the Ontr.rio High Sichools. Already, one branch of Natural History-Botany-has been introduced with gratifying results, and it is thought that the addition of the clements of Zoology to the course may similarly awaken a wide-spread interest in animal life throughout the Province.

The plan of treatment adopted is substantially that of the Syllabus prescribed by the Education Department. Attention is first directed to the Vertebrates as the most familiar and conspicuous animals, but the essential characteristics of the chief groups of Invertebrates are also given, the greater amount of space being, however, devoted to such groups as have terrestrial or fresh-water representatives. In each of the classes of the Animal Kingdom, some easily obtainable form is employed as a type in which to point out the more obvious structural features of the class, and it is assumed that these will be verified by actual examination.

A number of figures have been introduced, partly with the view of facilitating such examination, partly to illustrate the less accessible forms. These have, for the most part, been copied from scientific works like the publications of the U. S. Fish Commission, Brehm's Thierleben, etc., but a few have been drawn for the occasion, Figs. 1 and 58 with several others, being from the pen of Mr. E. E. Thompson.

Much of the educational value of Potany as generally taught in schools results fron tine ascurate observation necsssary to employ the terminology correctly, and to make correct diagaoses: Zoology does not lend itecif so easily to this kind of exercise, but it affords an
equaliy valuable discipline-the tracing of the modifications of form throughout less nearly allied groups. A good deal of space has, accordingly, been devoted to this aspect of Zoology, although other aspects which may excite the interest of the young student have not been neglecterl. For example, the chapters on the Reptiles and Birds give prominence to the remarkable geological history of these classes; that on the Mammals, to the correlation of form and habit in the group ; while the last chapter aims at showing the connection of the various snbdivisions of zoological study.

Experience alone will show, what form zoological instruction in the Secondary Schools ought to assume, so as not to interfere with other departments of stuily : the text-books on the "type-system" seemed to be too advanced for the present purpose, and also not to afford as wide an acquaintance with the forms of Animal Life as is 'esirable, while many elementaly, systematic text-books prepared for school use do net demand the actual examination of types, so necessary for the formation of clear conceptions. It is hoped that the present volume which endeavors to combine the advantages of both systems may prove adapted to the purpose for which it is intended.

Toronte, July, 1889.

CONTENTS.

Page.
Chapter J.-The Structure of Vertebrates, as exemplified in the Catfish 9
Chapter II.-The Classification of Canadian Fishes 51
Chapter III.-The Structure and (lassification of Batrachians 80
Chapter IV.-Account of the Organization of the living and fossil Orders of Reptiles 90
Chapter V.-The Organization of Birds as exemplified in the Fowl, with the Characteristics of the Orders of Birds 121
Chapter VI.-The Structure of the Cat as a type of Mammalia, with an account of the modifications of form in the Class 142
Chapter VII.-The Crayfish, Spider and Grasshopper as types of the Morphology of the Arthropods, with the Characteristics of the Orders of Arthropods 190
Chaptrr VIII.-The Vermes, Mollusca and Molluscoidea 218
Chapter IX.-The Remaining Invertebrate Sub-Kingdoms 242
Chaprer X.-General Principles of Zoology 261

HIGH SCHOOL ZOOLOGY.

OHAPTER I.

Tife Sthucture of the Catfisin.

1. Botanical students will remember that plants are often subdivided into phanerogamic and cryptogamic forms ; the latter lack a certain characteristic way of producing secds which is present in the former, hut they raally embrace several distinet primary subdivisions of the Vegetahle Kingdom, whose only common character is the negative one referved to above. Similarly the Animal Kinglom is often subdivided into Vertebrate and Invertebrate animals, but the latter really include several distinct sub-kingloms sharing the negative character of the absence of a backlone. Although, then, the Botanist and Zoologist regard the termu eryptogamic and invertebrate as survivals from a period when less was known as to the structure of the contained forms than there is now, yet the terms are very convenient for every-day use, because they separate the less important, i. e., the lower and less conspicuous members of the Vegetable and Animal Kingdoms f. om those which are not only higher and more familiar, but also more economically important.
2. The history of Botany and Zoology teaches us that for varions reasons these sciences have progressed most rapidly at first with the study of the higher forms of life : similar reasons will render it more ccnvenient for us to begin our study of Zoology with an examination into the structure of a Vertebrate 2

Animal. In making our solection, however, it will be desirahle to choose a form which shall be so far typical, that a knowledge of the structure of its virious organs will enable us to interpret the nature and significance of the comparable or homologous parts in other Vertebrates. No cne animal is best in every respect for this purpose, because there is no unimal which mites in itself all the characters which we regurd as primitive or general. An example will render the meaning of these terms phin. Most Vertebrates have five fingers on the hand, and we regard that as a primitive or general arrangement in comparison with that in a cow where there are two, or in a horse where there is only one. Such a reduction in number we regard as a specialization associated with the function which the hand performs, and it is very much easier to interpret correctly the specialized condition if we have in the first place familiarized ourselves with the more primitive one. Our object must then be to find some fairly primitive form, which is common, easily obtained, und easily studied : our demands in all these respects are pretty well met by the common eatfish, the angling for which is attended by no great difficulties, which is tenacious of life and easily kept in captivity, and which finally occupies such a place in the class of the Fishes that we can, after acquainting ourselves with its structure, survey the other members of the class, and proceed to the study of the higher Vertebrates.
3. General Form.-All Vertebrates, like most Invertebrates, are bilaterally symmetrical animals, i. e., the body is divisible into right and left symmetrical halves by a plane passing from head to tail through the middle line of the back (or dorsal surface) as well as through the middle of the lower (or ventral) surface. This is the median sagittal plane; planes at right angles to it, which are parallel to the dorsal and ventral surfaces, are called horizontal, while those which transect the body at right angles to both are fronial.

Differ at regions of the boily have different duties to dischargs, and consequently differ in form und structure. We distinguish in a fish the head, trunk, and tuil, of which tho tirst lodges the brain and senso orgnns, secures food, and shelters the gills, the last is chiefly locomotive in function, while the trunk differs from both in being hollowed out so as to enclose tho intestines and other viscera in the so-called body-cavity (coalom). The regions referred to are said to be axial, becanse they are disposed round the chief axis of the body, while tho two pairs of limbs or appendages, much moro developed in the higher Vertebrates, project laterally from the trunk, to which they are attached in the neighbourhood of the cephatic and caudal regions respectively, and are described as appendicular. In a fish the anterior and posterior appendages are known as the pectoral and ventral fins, (Fig. 1) from which are to be

Fig. 2-Common Catfish, or Bullhead \ddagger Amiurus nebulosus.
distinguished the unpaired fins, occupying the middle line of the dorsil and ventral aspects of the tronk and tail, and assisting in locomotion. The latter are named from their position dorsal, caudal and anal. In the catfish, part of the dorsal is scparated as the adipose fin, which is regarded as the rudiment of a longer dorsal, and, instead of being supported by fin-rays, has only fatty tissue within it.
4. Apertures.-Certain apertures exist on the surface of the body; of these, the mouth is bounded by the upper and lower jaws and leads into the mouth-cavity, the nostrils or
openings of the olfactory sacs are foui in number on the dorsal surface of the head, but there are no external apertures for the ears. On the ventral surface in front of the anal fin is the nosterior aperture of the intestine, and immediately behind it that of the urinary and reproluctive organs. On the sides of the hoad behind the mouth : , certain large apertures-the gillslits, five in number, opening into the cavity of the mouth, but these are ordinarily concealed by the gill-cover or operculum, a flap which projects backward over them, and by a membrane attached to the inner surface of the flap, the branchiostegal membrane. In this way the gill or branchial chamber is formed, opening by the branchial aperture along the hinder and lower borier of the said flap. Both the branchiostegal membrane and the gill-cover have a supporting framework of bones, the branchiostegal rays in the one case, the opercular bones in the other.

In addition to the olfactory organs referred to above, the following sense organs are to be noted: the eyes; cortain holes and slits along the lateral line and on the head leading into camals and pits in which sense organe are situated; and the barbels, sensitive processes of the skin of the head, eight in number in the catfish, but frequently absent in other forms.
5. In most fishes the skin is strengthened by bony scales, either round in outline-cycloid-or with the hinder margin toothed-ctenoid-(Fig. 2), but the catfish is destitute of such, except for certain very minute ones which are in the walls of the lateral canal. The skin is therefore soft and slippery, and varivusly coloured according to the distribution of pigment in it. It is tightly bound down to the underlying flesh hy slips of fibrous tissue, luut in certain parts some loose subcutaneous tissue is accumulated between them. When a sharp cut is made through the skin it is possible to recognize two layers, an outer, the epidermis and an inner, the corium,
which layers indeed exist in the skin of all Vertebrates. It is chiefly but not exclusively in the latter that the pigment is contained. If the epidermis be removed by scraping, the exposed surface of the corium will be observed to be rough with

Fig. 2.-A, Cycloid Scale from Lake Herring. B, Ctenoid Scale from Rock Bass. $\%$. papilla, so that the smoothness of the surface is due to these interpapillary spaces being filled up with the epidermis. The papillæ are of importance as the channels through which nerves and nutriment from the blood-vessels reach the epidermis from the coritim.

6. Minute Structure of the Skin.

General Remarks on Histology. - That branch of the study of the structure of animals which deals with the minute elements of the various organs, and which requires the microscope and other tools in the arse of its investigations, is termed Histology. Each organ of the boty is built up of tissues, and each tissue is formed of ultimate elements named cells arranged in a characteristic way. Thus the skin, which is a complicated organ performing very different functions, is composed chiefly of two kinds of sissues-the epithelial tissue of the epidermis, and the connective tissue of the corium. The former may fairly be considered its most characteristic tissuc; but hoth are necessaly elements in its structure. It is still more complex, however, in virtue cf the presence of both muscle and nerve tissue, so that this one orgin of the body contains tissues of all the four categories under which histologistsarrange the component parts of the animal body.
7. Arimal cells have the same component parts as vegetable cells, i. e.. they are formed of a protoplasmic cell-body containing a nucleus and limited (frequently) by a membrane or wall. The latter, which plays so important a purt in the support of the plant, resigns this function in the higher animals to the intercellular substance, which, although like the cell-wall formed by the activity of the protoplasm, differs therefrom in rarely exhibiting the territories belonging to the constituent c.lls. All the cells of the animal body are, like those of the plant, derived from the division (and the differentiation of the products of the division) of one cell--the egg-sell, and the first results of such division and differentiation are the formation of embryonic layers somewhat analogons to the primary meristems of the plant-embryo. Perhaps the most characteristic difference between the plant and animal embryo is that in the latter some of the most important organs are cleveloped by the infolding of the originally superficial epithelial layer.
8. The four categories under which animal tissues fall may shortly be characterized as follows :-(Fig. 3.)
I. Epithelial Tissue is that which is disposed in the form of one or more layers of distinct cells on the free surfaces of the body, including the alimentary canal, the lining of the celom, the cavities of the nervous system, etc. The cells may be cylindrical, columnar, cubical or scalelike in form, their free surfaces may be covered with a resistant cuticle, or provided with delicate continuations of the protoplasm in the form of cllla or hairs. If their duty is to receive impressions and transmit them to nerves, they constitute neuro-epithelium; if they secrete some characteristic product they constitute glandalar epithelium, and are generally turned in from the free surface for protection; if they serve merely to form hard structures for protection of underiying parts or for defence, they are modified into horny epithelial scales, feathers, hairs, hoofs, nails, horns, etc., while if they are converted into eggs, ctc., they constitute gorminal epithelium.
II. Connective Tissues.-These constitute the framework of the body, which in some organs is of the utmost delicacy, in others, the true skeletal tissues, attains great firmness and hardness. Sometimes the cellular elements are distinct, in which case they may be free to wander. through the interspaces of the tissues in the form of amoboid or wandering cells, or be more limited in their mohility like the pigmentcells; or be fixed and flat like epithelium, or globular and filled with fat, or branched and communicating with their neighbours. Sometimes in the adult tissue the protoplasin is almost all converted into intercellular

Fig. 3.-Illustrations of the Simple Tissues of the Catfish

1. Egg, as type of an animal cell. 2. Scale-like epithelial cells from skin. 3. Columnar ones from intestines. 4. Neuro-epithelial aud supporting cells from ear. 5.

- Loose connective tissue formerl of branched cells (b) with fat (a) aud pigment-cells (c). 6. Blood cells ; a, colourless, band o coloured. 7. Cartilaye. 8. Bune 9. Tooth with pulp-aavity dentine and enamel-cap. 10. Simple muscle-cells. 11. Striated musclefibre. 12. Nerve-cells. 13. Nerve fibre.
substance, in which case nuclei with a scant surrounding film of protoplasm are left embedded in a matrix which may be soft and jelly-like, or converted into fibres, or stiff and homogeneous like cartilage, or hard through incorporation with lime-salts like bone aad tooth.
III. Muscle-tissue.-The cellular character is co be seen in the simpler kind which is formed of much elongated cells, whose protoplasm is lighly contractile, while the higher kind of muscle-tissue is that termed striated (from the appearance of the contractile substance of the fibres under the microscope). In the latter, each fibre is a unit of higher rank than the simple muscle cell, beeause it is the equivalent of several cells.
IV. Nerve-tissue.-Two elements are distinguished, nerve-cells and nerve-fibres. The cellular character of the former is always evident; the latter are to be regarded as processes of these cells, each nervefibre having for its core an axds-cylinder continuous with the cell protoplasm, which serves for conduction, and is generally isolated by one or more sheaths.

9. Histology of the Skin. - The microscopical examination of a thin prepared section of skin discloses at once the two chief component parts (Fig. 4). Of these the horizontal fibres of the corium are separated from the epithelial layers by a looser connective tissue, in which pigment cells are abundant and which projects into the papille. Some looser fatty connective tissue may separate the horizontal îbre-layers from the flesh. Filling up the interspaces between the papillæ are the epithelial cells of

Fig. 4.-Diagram of section of the Skin in the Catfish. Ep, epithelium; pap, papillary layer of the corium, co; sc, subcutaneous connective tissue, with nerves and blood-vescals. $\times 50$,
the epidermis; these present several varicties in shape and function, those next the corium being columnar, those on the free surface culical, while the intervening cells are intermediate in shape. Certain peculiar cells stand out from the others; these are the slime-cells present in all fighes, which proville the skin with its covering of mucus, and the clavate cells of unknown function, occurring ehiefly in fishes with a soft skin like the Eel and Burbot. A few pigment-cells wander out from tile corium into the interspaces of the epidermis. Finally certain special epithelial cells are to be found in bud-like groups on the end of some of the papilla. Each of these is provided with a delicate hair-like process at its tip, and is conueeted with a nerve at its basal end; they thus belong to the class of neuro-epithelial cells and they constituto the simplest form of sense-organ in the fish. It is supposed that they are affected by vibrations in the surrounding medium, and that they are tactile in function. That this is so may be inferred from the use to which the barbels or feelers, which are covered with these organs, are put. Elsewhere on the surface of the fish, groups of similar cells occur, not projecting freely on the surface, but retracted for protection into minute sacs opening by slits on the surface, or projecting at intervals into the cavities of the sensory canals of the lateral line and head, which communicate with the surrounding medium by distinct pores. The buttonlike hillocks of neuro-epithelium are generally protected by a bony scale, and it is the fusion of such scales which gives rise to some of the skin-bones of the head.
10. Skeletal System.-In the course of the above paragraphs reference has been made to bones developed and situated in the skin. When such bones acquire no connection with the deeper parts they are said to belong to the exoskeleton; the rough teeth in shark's skin, and the scales of a white-fish, e. g., are of this nature. It is evident from what has been staid that the catfish is very poorly provided with exoskeletal structures ; all of its bones belong to the internal or endoskeleton.
11. The skeletal system is formed chiefly by tissnes of the connectivetissue group, viz., fibrous connective tissue (in the form of ligaments and membranes), cartilage and bone. Of these the cartilage plays only a transitory part in the development of the catfish's skeleton, both it and the fibrous connective tissue being in great part converted into bone. Teeth are true exoskeletal structures, although they are only fouxid in
connection with the internal skeleton in the catfish : we know this by the development of their two constituent parts, the dentine-a member of the connective-tissue group allied to bone-and the enamel, which is formed by the modification of epidermal cells. (Fig. 3.)
12. In the skeleton we distinguish axial and appendicular parts, $\S 3$; to the former belong the skull with the hard parts of the gills, and the vertebral column with the ribs.

We shall study the latter first; it is formed of a series of separate bones, the vertebræ, which vary considerably in form in different regions of the columm, butare all characterized loy a central part (the body or centrum), which is hollowed out like a cup, on both anterior and posterior faces, (amphicolous.) (Fig. 5.)

Fig. 5.-Caudal Vertebra and Caudal end of Vertebral Column in the Catfish. Ns. neural spine; c, vertebral centre; hs, hmmal spine; nsh, bony sheath of the notochord ; er, caudal rays.

Within the space so formed is contained the gelatinous remains of the notochord, a rod present in the youngest stages of all Vertebrates, around which the vertebral column is built, but rarely continuons in the adult, except in the lowest Vertebrates.

Each centrum bears on its dorsal surface an arch, the neural arch, which terminates in a neural spine. The series of centra constitutes a flexible rod of great importance in locomotion, the series of neural arches forms a canal serving to protect that part of the nervous system known as the spinal cord,
while the series of spines (to which the common name of spine, spiant column, stc., for the vertebral column is due) chiefly serves for the attachment of muscles. In higher Vertebrates not only are the centra intimately united to each other, but the arches have certain projections (articular processes), forming joints with similar processes on the arches in front and behind. These are not very much developed in the cutfish, but this mode of union permits a certain amount of rotary movement between the vertebre, to which the word vertebrat owes its origin.

In all fishes there may be distinguished in the vertebral column two regions, the trunk and the tail, the former extending as far back as the colom referred to above, the latter bohind that. In addition to the neural arches and spines, the caudal vertebre have hæmal arches and spines, which protect the blood vessels running back through the tail below the centra, while the trunk vertebre have ribs which generally protect the contents of the colom, but do not meet below nor carry spines.
The ribs are not articulated directly to the centra, but to projections from them, transverse processes, which appear to be the real representatives of the hremal arches.

Some of the anterior trunk vertebre in the catfish and its allies are very different from the others, being modified in connection with the organ of hearing, and in all fishes the most posterior vertebræ are altered in connection with the tail. The special way in which this alteration affects the catfish may be seen in Fig. 5, as far as appearance goes the rays of the caudal fin seem to be equally divided above and below the end of the vertebral column, (the fin is said to be homocercal), but in reality the tip of the vertebral column turns abruptly upwards so that most of the rays are really on its ventral surface. We shall see that in certain other fishes this unequal division oi the tail-fin is much more apparent (heterocercal).
14. It is in the vertebral column that the segmentation or metamery of the Vertebrate body finds its most evident expression, but we shall find that many other organs are likewise divided into metameres, notably the muscular and nervous systems.
15. A study of the development of the catfish shows that not only is the vertebral column built around the notochord, $\S 12$, but also that the same is true of a considerable part of the skull, and that the notochord in the head is related in the same way to the nervous system and alimentary canal as it is in the trunk. It was at one time thought that it should be possible to distinguish constituent vertebræ in the skull, but this is impossible, for the very different functions which the anterior part of the axial skeleton has to discharge are associated with corresponding differences in form. Thus the fact that the anterior end of the central nervous system is dilated into the brain, is associated with the development of a sheltering box, the cranium, which is further modified by the apposition or incorporation with it of the protecting hard parts of the higher sense-organs, and the fact that the anterior end of the alimentary canal is devoted to securing food and to respiration is associated with the development of certain hard parts in connection there-with-the visceral skeleton. Of these we shall study first-
16. The Cranium.-The cranial box has certain openings, one (the occipital foramen or foramen magnum) to permit of the spinal cord joining the brain, others to allow the escape of nerves and the entry or egress of blood vessels. Although originally in the young fish largely cartilaginous in its texture, the box afterwards becomes partly converted into bone, and the bones formed in the cartilage are related in a definite way to these openings. Other bones are formed in the skin for the protection of the sensory canals; still others (especially in the roof of the mouth) for the support of the teeth, and both of
these kinds may be closely incorporated with those of the first category.
17. An inspection of the cranium from the upper surface (Fig. 6) discloses in the middle line two slits (the anterior and kull, way n the ssible iis is terior with t the to the box, on or iigher intary ciated there-irstnings, nit of escape hough xture, and o way or the in the th of

Fig. 6.-Cranium and Anterior Vertebrec of Catfish from above.
M. mesethmoid ; pm. premaxilla; a. antorbital ; n. nasal ; e. parethmoid; fr. frontal ; s. sphenotic; p.pterotic; ep. epiotic ; t. supraclavicle; so. supraoccipital spine ; 4. transverse process of fourth vertebra. posterior fontanelles) which separate the two frontal bones except for a short intervening bridge, where these bones (which form a considerable part of the cranial roof) articulate by a serrated suture. In front of the anterior fontanelle is the mesethmoid bone: behind the posterior, the supra-occipital,
the former terminating anteriorly in a notch, the latter posteriorly in a bifid spine. Four projections mark each lateral border of the skull, belonging to the mesethmoid, the parethmoid, the: sphenotic and the pterotic bones, while the hinder border presents a projection from the epiotic on cither side of che supraoccipital spine. Thus twelve bones enter into the formation of the cramial box, for all of the above-mentioned bones are in pairs with the exception of the mesethmoid and supra-occipital.
19. On the floor of the skuli (Fig. 7) the mesethmoid still forms

Fig. 7.-Cranium and Anterior Vertebro of Catfish, from below.
Pm, premaxila; m, mesethmoid; v, vomer; pa, parethmoid; o, orbitosphenoid; f, frontal; ps, parasphenoid; a, alisphenoid; pr, prooije; h, articular surface for hyomandibular on sphen- and pterotics; h, basioccipital with exoccipitals on either side; s, supraclavicle ; m, " malleus;" 4, 5 and 6, transverse processes of 4th, 5th and 6th vertebreo.
the anterior houndary, while the posterior is ocenpied by another unpaired hone, the basi-occipital. The latter articulates with the centrum of the first vertebra, and also ، ffords support to a bone of the shoulder-girolle (the supraclavicle or post-temporal) which abuts against the strong transverse process of the fourth vertebra and rests hy two other pronge on the epi- and pterotic projections. Betweon the mesethmoid and the basioccipital the following bones are to be noticed; the vomer, a T-shaped hone, the transverse bar of which lies across the ventral surface of the parethmoils, and the parasphenoid which continues back the leg of the vomer in the middle line. All of the latemal projections seen from above are also to be seen from below. Certain foramina furnish landmarks for the recognition of the other bones to be seen on this surface: on either side of the basioccipital are tho exoccipitals each with two foramina for the escape of the 9 th and 10 th nervos. The sutures between the basi- and exoccipitals, and the epi- and pterotics are occupied by cartilage and are thus very distinct, and the pro-otics (which are wedged in hetween the exoccipitals and the pterotics) are similarly marked out. In front of the pro-otics are the large apertures by which tho 5th and 7th cranial nerves escape, but these apertures are also partly bounded by the sphenotic above, the alisphenoid in front and the basisphenoid (an unpaired hone partly concealed by the parasphenoid) towards the middle line. Between the alisphenoids a id the orbitosphenoid: are the optic foramina for the esc:upe of the optic nerves; the latter bone is unpaired, and it forms a considerable part of the side walls of the skull and also of its floor, where, however, it is covered by the parasphenoid: it is also channelled ly the olfactory tracts on their way to the nasal sacs. Thus eleven additional bones are to be seen from this aspect, of which five are umpaired; viz., the basioccipital, the basi-, orbito-, and parasphenoids, and the vomer.
19. The shape of the cranial cavity will be better understood after a description of the brain and ear, but the cavity is narrower and shallower in front where the olfactory tracts are alone to be accommodated, and wider and deoper behind where the brain and ear are situated.
20. Reference was made above to some scale-like bones in connection with the sensory cunals. Several of these form an infraorbital chain below the eye; two of them, the antorbital and nasal, are in the roof of each nasal sac, while others have been incorporated with the underlying frontals, parethmoids, etc. ; for these and several other bones of the roof shelter sonsory canals.
21. The Jaws and Visceral Skeleton. - Immedintely below the lateral edge of the sphenotic is a groove lined with cartilage, which extends on to the pterotic, and is the articular. surface for the hyomandibular, an important bone suspending the jaws and the visceral skeleton to the skull. (Fig. 8). Inti-

Fig. 8.-Jaws and Hyoid Arch of Catfish, from the side.
Mx, maxilla; pmx, yremaxilla; pl, palatine; hud, hyomandibular; op, operculum; mpt, metapterygoid; qu, quadrate ; pr, preoperculum; sop, interoperculum; d, dentary; ar, articular ; h, hypohyal ; gh, glossohyal ; oh, ceratohyal ; eh, epihyal : br, branchiostegal rays.
mately united to it hy an intervoning symplectic cartilage is the quadrate, n bone which furnishes the articular surface for the lower jaw or mandible. Wedged in between the hyomandibular and quadrate is a flat bone, the metapterygoid, to the anterior end of which (by means of an intermediate sealo-like bone,) the palatine is related, a rol-like bone articulated to the parothmoid and anteriorly carrying the maxilla. In most fishes this bone forms part of the gape ; hero it acts merely as a support for the large maxillary barbels, while the premaxillæ attached to the ventral surface of the horns of the mesethmoid, and connected with each other in the middle line, hear most of the teeth of the upper jaw.
22. The mandibles also bear teeth on their so-called dentary part, while near the "angle" of the jaw is the articular part; on the inner surface of both the remains of the cartilage (Meckel's) on which this jaw is built are to be seen.
23. Closely united to the hinder border of the hyomandibular and quadrate is the preoperculum through which a sensory canal runs to reach the lower jaw. Behind it is the moveable operculum, the chief bone of the gill-cover, which however articulates separately with the hyomandibular. Between the operculum and the mandible, and united with both, is the third bone of the gill-cover, the interoperculum. In most fishes, but not here, there is a fourth bone, the suboperculum.
24. By means of a short interhyal piece of cartilage the hyoid arch is connected with the lower end of the hyomandibular ; it is itself divided on each side into three pieces, the epi-, cerato-, and hypohyals, which are united in the ventral middle line by an unpaired bone, the basihyal or glossohyal, which gives attachment to the retractor muscles of the arch. Articulated to the pos'erior horder of the cerato- and epihyals are eight branchiostegal rays, the uppermost of which occupies much the same position as the suboperculum of other fishes.
25. Very similar in construction to the hyoid arch are the succeoding five branchial arches, the upper ends of which curve in beneath the skull, to the base of which they are attached by muscle and ligaments, while the lower ends meet in the floor of the mouth. Epi- and cerato- branchials form the greater part of each arch but the upper onds are formed of pharyngobranchials, and the lower of hypo-branchials, united by certain unpaired pieces, the basi-brancials. (Fig. 9).

Fig. 9. -Visceral Skeleton of Catfish.
II. hypohyal ; oh, ceratoliyal ; eh, epihyal ; i, interhyal ; b^{1}, first basibranchial ; $\mathbf{h b}^{1}, \mathrm{cb}^{1}$, eb ${ }^{1}$, hypo-cerato- and epibranchials of first arch ; o, csophagus; ep and hp, epi- and hypopharyngeal tooth platrs.
26. The teeth on the premaxille and mandible have been referved to above, but the catfish has also a formidable array of tecth further back in the cavity of the mouth. The four plates which carry these are known as the superior and inferior pharyngeal plates, the former of which are attached below the upper ends of the third and fourth arches, while the latter are co-ossified with the ceratobranchials (the only parts present) of the fifth arch.
27. Appendicular Skeleton.-The pectoral fin is supported by a bony arch known as the pectoral arch or girdle,
(Fig. 10) which in its tum finds a firm hasis of resistance in the skull and vertebral column by means of the supraclaviclo or post-temporal described above. This bone is firmly wedged into a socket in tho clavicle proper which lies very close to the skin, (especially immediately above the fin where a rough process projecting backwards from it may be felt), and is regarded as a skin-bone, formed on the salstructure of the primary arch which it conceals and with which it is closely united. The

Fig. 10. - Pectoral Girdle of Catfish from behind.
Co, coracoidal, s, scapular portion of primary shoulder-girlle; el, clavicular, se, supri-clavicular portions of secondary shoulder-girdle; h, loasal elements, r, rays of the fin-skeleton.
latter is at first cartilaginous, the former never so. Buth the clavicle and the primary shoulder-girdle aro divided into upper and lower parts by the fin, the lower parts uniting in the ventral middle line and thus completing the arch. The upper part of the primary areh is known as the scapula, the lower as the coracoid, and the region where the fin unites with it the glenoid region.

2 . Let us now examine the skeleton of the fin itself. It is made up of fin-rays of which the anterior is bony thronghoui, and toothed on its posterior margin; it is a hard ray or
spine, in contradistinction to the other six rays which are jointed and fringed and are therefore known as soft or branched rays. The spine alone is jointed directly to the shoulder-girdle, while the other rays are fixed to it by intermediate pieces of which the hindmost (metapterygial basale) is the largest ; the spine in fact is a ray, plus the foremost intermediate piece, (mesopterygial basale) and their union is to be explained by the use of this ray as a weapon, which may be firmly set (hy means of a peculiar joint) and used for offence or deronce.
29. The structure of the ventral fin is similar to that of the pectoral. It has eight rays, of which one is hard. There is no pelvic arch, what is generally termed so, being the metapterygial basalia of both fins, united in the middle line.
30. Considerable resemblance to the above will be seen in the fin-rays of the unpaired fins. They are for the most part soft, but some are hard, and they articulate with the interspinals, which again fit into the cleft neural and hæomal spines of certain of the vertebre (§ 13). Of these rays the defensive spine of the dorsal fin deserves mention, as, from the peculiar arrangement of the interspinals with which it is connected, it may be "set" like the pectoral spine.

For the purpose of distinguishing different species of fish it is often desirable to count the number of rays and express them in a formula, (Roman numerals being employed for the hard, Arabic for the soft rays), e. g. for this species :-

$$
\left\{\begin{array}{llll}
\mathrm{D} . & \mathrm{I}, \mathbf{6} & \mathrm{~A} . & \mathbf{2 2} \\
\mathrm{P} . & \mathrm{I}, \mathbf{6} & \mathrm{~V} . & \mathrm{I}, 7
\end{array}\right.
$$

31. Muscular System.-The muscles of an animal are what wo ordinarily call its flesh ; their function is to contract on a stimulus received from the nervous system, and thus to bring nearer together the parts of the skeleton to which they are attached, or to narrow the tubes round which they are disposed. Those surrounding the blood-vessels and intestinal canal form the bulk of what is called the involuntary muscu-.
lature of the body. They reply slowly to a stimulus, and are not under the influence of the will, while those which unite the various parts of the skeleton are called voluntary, because they are controllable by the will, and reply rapidly to a stimulus.
Both kinds of muscles are formed of fibres, which contract on the receipt of a stimulus through moter nerve-fibres which terminate in them. The involuntary are formeci of bands of simple muscle-cellsthe voluntary of bundles of striated fibres, but in both the muscle-tissue has a framework of connective-tissue which suspends the vessels and nerves distributed to the muscle-tissue.
32. The voluntary muscles are also called "skeletal," for it is obvious that a very important relationship must exist between the skeleton and the muscles. Where muscles are of largesize, they must have a sufficient surface for their origin and insertion, and where they cause two parts of the skeleton to move upen each other, the nature and extent of the movements must determine the character of the joint. Thus those parts of the body where the most complicated movements are carried out will have the more differentiated muscles, and those where the movements are simpler, will have the less specialised muscles. In the caúfish the more specialised mascles are those which work the jaws, the parts of the visceral skeleton, the gill-cover, and the spines of the pectoral and dorsal fins, while the less specialised are those which form the fleshy mass of the trunk and tail. The latter exhibit the same metamery which we have seen to characterize this region of the skeleton, for the muscles are divided into myomeres, separated by membranous partitions which are attached to the ribs and vertebre, but the planes of these partitions are not vertical ones, as we may see from a cut through the tail, or from the curved form of the myomeres or flakes into which the flesh of the fish separates when boiled. Special muscular slips extend into the fins, and serve to depress or erect the rays, but these fin-muscles do not attain the size which the limb-muscles have in higher Ver-
tebrates, where the limbs are of greater importance in cornection with the support of the body and with locomotion.
33. Nervous System.-He:e we recognize two constituent parts; the central nervous system, and the nerves which course from it to their endings in the various organs of the body, and which indeed are developed as outgrowths from it. The nerves either carry impulses from the central nervous system to the muscles, glands \&c., or they transmit impulses to it from the various sense-organs; they are thus cither efferent or afferent in function. They originate from both parts of the nervous system-the brain and spinal cord, and are distinguished therefore as cranial and spinal nerves.
34. In our study of the skeleton we have seen that the brain and spinal cord are protected in bony canals, perforated for the escape of the nerves. The canals are not entirely filled $u p$ by these organs, for certain meimbranes are present whirh assist in the protection and nutrition of them. The cramial cavity for example is much larger than necessary to hold the brain, and the interspace is filled up with fatty matter which it is necessary to remove before the brain is exposed. When this is done, it is seen to have the form represented in Fig. 11 composed of alternately dilated and constricted parts. In front are the olfactory bulbs close against the nasal sacs, comnecting these with the rest of the brain are the olfactory tracts, and then come in order the cerebral hemispheres, the epiphysis projecting from the concealed thalamic region, the optic lobes, the cerebellum partly covering these and the medulla oblongata, with two pairs of secondary swellings upon it. From the under surface will bo seen the cerebral hemispheres, with the optic nerves crossing behind them after their descent from the optic lobes, the thalamic region in the form of the hypophysis and inferior lobes, and the medulla oblongata with the other cranial nerves springing from it.

A.
B.

Fig. 11.-Brain of Catfish.
A-From above. B-From below.
Rh, olfactory lohes; Ot, olfactory tracts; Pr, cerelral hemispheres; sIes, optic lobes; $\mathbf{C l}$, cerebellum ; Met, medulla oblongata; a and c, trigeminal and varal lobes of medulla; b, inferior lobes of thalamic rerion ; II-X, cranial nerves; Sp', first spinal nerves.
35. Transections of the brain show th. \mathcal{C} it is a tube, the walls of which are thick in some parts and thin in others, and the cavity of which is dilated into ventricles, communicating with each other. The roof of the cerebral region is so thin that the functions that are discharged by it in the higher animals, must have their seat elsewhere in the fish. A similar condition is observed in the thalamic region, and that of the medulla oblongata, (except anteriorly where the cerebellum is extriaordinarily developed), so that it is chiefly the floor of the cavity which is thickened in these parts. On the other hand it is the roof which is thickened to form the optic lobes and the cerebellum.
36. The various regions of the brain or encephalon have received the above names as they appear to be comparable to similiarly named regions in higher forms ; but the regions and ventricles are also nanned, by comparative anatomists, rhin-, pros-, thalam-,mes-,ep-and met-encephalon and the ventricles rhinocœle, prosocœle, thalamocœle, mesocœle, epicœle, metacoele. Of these ventricles the thalamocole is the most complicated as it projects above into the epiphysis, and below into the inferior lobes and hypophysis. The hypophysis and epiphysis are not formi.ed of nervous matter like the rest of the brain, for the former is glandular in its nature, while the latter is supposed to be the rudiment of an unpaired eye.
37. Like tho brain, the spinal cord is also a tube, its cavity, the central canal, being, however, more uniform, and its walls of similar thickness throughout, except that the side walls are more developed than either the roof or the floor (Fig. 12). The metamery of the nervous system is much better seen here than in the brain, for at regular iniervals corresponding to the vertebre,

Fig. 12. - Section through Spinal Cord and surrounding parts, in young Catfish. $\times 40$. No, notochord, with its sheath ; n, the neural arch; d, dorsal, v, ventral nerve-root ; g, ganglion of dorsal root; $\mathbf{d}^{1}, \mathrm{v}^{\mathbf{1}}$, dorsal and ventral mixed nerves; s, sympathetic ganglion; ao,
norta. norta. or ganglia, while the fibres are found both in the nerves and in the centres. The function of the fibres is to transmit impulses, and this is effected by the axis cylinder, while the function of the cells is to store up or modify the impulses that arrive through the afferent nerves, and to originate those which are discharged through the efferent nerves.
39. It is easy to understand the way in which the spinal nerves are distributed in the body. Each pair supplies chiefly a pair of spinal nerves is attached to the cord. Each nerve originates by two roots, which from their places of origin are k cown as dorsal and ventral; the dorsal roots have a knot or ganglion upon them, and they contain only efferent fibres, the ventral on the other hand are formed of afferent fiores: both kinds of fibres ure, however, soon associated in the mixed nerves of the body.
38. Of the two elements of nerve tissue distinguished in § 33, the nerve cells, also called ganglion cells, are most abundant round the cavities of the brain and spinal cord, but are also found in smaller certres
the parts of its own metamere, although for purpose of coordination, as \mathbf{e}. g., in the various movements of the pectoral fin, the nerves of contignous metameres communicate with oach other in plexuses. The parts above the level of the spinal canal are supplied by the dorsill division of the spinal nerves, those below by the ventral divisions, and finally the contents of the ceelom are supplied by special intestinal branches which are provided with ganglia, communicate intimately with each other before supplying the viscera, and constitute the Sympathetic system. The arrangement of the cranial nerves is however nuch more complicated, first, because their metamory is not so evident, and second, because the nerves as they emerge separately from the brain, are not each composed of a dorsal and ventral root, but some seem only to be ventral, others to be composed of several dorsal and ventral roots. Two of them, the 1st and 2nd pairs, olfactory and optic, go to the nose and eyes respectively, the 3 rd , 4 th and 6 th, are motor nerves which control the muscles of the eyeball, the 5 th and 7 th supply the greater part of the head with sensory and motor nerves, the 8th is distributed only to the internal ear, while the 9th chiefly ends in the lst gill arch, and the 10th is distributed to the remaining gills, but does not confine itself to the head, and sends branches to the heart, air-bladder and stomach. A separate branch of this widely-distributed (Vagus) nerve supplics the sense-organs of the lateral line. The fifth nerve is also not confined to the head, but communicates with the dorsal branches of the spinal nerves by a long branch which pierces the back of the skull on either side of the supra-occipital spine.
40. We must now turn our attention to the endings of these nerves, especially to those of the afferent nerves, which transmit impulses to the brain and spinal cord from tho sense-organs. Certain of the latter have been already referred to (§9), thero remain for discussion the higher sense organs, or the nose, eye and ear.
41. Olfactory Organ.-When the roof of the nasal sac is removed (\$4), the floor will be seen to be formed of a reddish mucous membrane, presenting a median groove and a series of transverse ridges ruming towards it. A current is establisherl from one nostril to the other, and tho odoriferous particles containol, are detected by special olfnctory cells, which are situated between the ridges, and are directly connected with the olfactory nerve-fibres. In some fishes the ridges are arranged in such a way as to suggost to anatomists that the nasal sacs are altered gills, which have been cenfined to this sensitive functions, but the examination of the cattizh alone would not saggest this view.
42. The Eye. - In higher Vertebrates the eye affects the shape of the skull considerably more than it does in the catfish, for thete is no orbit in the latter, and the eye is simply situated in some fatty tissue between the overhanging frontal bone, and the great muscle of the jaw. It is small in size and mprotected by lids, the skin being thin and transparent where it passes overthe surface of the bulb, and

Fig. 13.-Vertical Section of Eye of Catfish. $\times 30$
S, skin; oo, cornea; sc, sclerotio; ch, choroid; r, retina; o. entrance of the optic nerve; i, iris; i , lens; vh, vitreous humor. sufficiently loose to allow the latter some independent movement. This is effected by six muscles, four of which, the straight muscles or Recti, are grouped above, below and on either side of the optic nerve, as it courses from the optic foramen to the bulb, and two others, the oblique muscles, cross transversely to the eye from the skull. All the muscles are attached near the equator of the bulb to the sclerotic coat.
43. The examination of the bulb itself (Fig. 13) discloses three coats, the ontermost of which is sublivided into an anterior trabsparent part the cornea, and a posterior hard fibrous and opaque part the selerotic. Within this is the second coat, the choroid, which chiefly serves to distribute the blood within the bulh, and to form a dark background for the retina, lat anteriorly forms a museular screen-the iris, perforated by the pupil, through which the amount of light admitted to the sensitive part of ti.e oye may be regulated by the iris. Suspended from the junction of the choroid and iris by a special ciliary musele, is the lens a globular trimsparent body which changes the

Fig. 14.-Diagrammatio Section of Retina of young Catfish. $\times 400$.
1, layer of optio nerve fibres; 2 , of ganglion cells; 3 , internal molecular, 4, internal granular or tranglionic layer (containing nuclei of Miiller's fibres) ; 5, external molecular, (6, external granular layer, containing nuclei of the rodsand cones, 8 . but separated from them hy the external limiting meinbrane, 7 ; 9 , pirmentary retinal epithclium. course of the ratys of light admitted to the eyo, and casts an inverted image on the retina or nervons coat, which lines the whole of the choroid coat, and is separated from the lens by the fluid and transparent vitreous hunor. The optic nerve which terminates in the retina, must therefore pieree both the selerotic and choroid coats to do so, and indeed it perforates the retina also, for its fibres form the innermost of the several layers of which the retina is composed.
44. Study of the development of the eye shows that the retina is really an outgrowth of the brain, which like the brain has. a cavity, one wall of which
is formed by the single layer of tall columnar cells-the pigmentary epithelium of the retina, while the other, the retina proper, is formed of several layers, of which that towarl the eavity is the layer of the rods and cones, while that towards the vitreous humor is the layer of optic nerve fibres. Between the two are various layers of nerve-cells, supported by other elements which are not nervous in their nature. (Fig. 14). The rols and cones are the neuro-epithelial cells of the retina, and the original space between them and the pigmentary epitheium is obliterated by the close contact of the two layera. The lens on the other hand is shown to be developed from the epidermis, and the tibres of which it is composed are really altered epidermal cells.
45. The Ear. - In man the eur consists of three parts, the external ear, the middle ear or drum-cavity, and the internal ear or labyrinth : only the latter exists in the catfish. The two former in man are concerned with the concentration of soundwaves on the latter; how then in the absence of these, do sound-waves reach the labyrinth in tho catfish? In some fishes a rudimentary gill-cleft between the hyoid arch and the jaws, appears to be the channel through which the vibrations reach the internal ear, but no such gill-cleft exists in the catfish, so it is probable that they are transmitted through the bones of the head, and above all through the comparatively loose ones, which are suspended to the ear c:יpsule, by the hyomandibular (§21). Another possible channel will be referred to afterwards. In all animals the labyrinth is the essential part of the organ of hearing, as it is in it, that the anditory nerve terminates. In most forms the labyrinth is enclosed in a complete cartilaginous or bony capsule, (forming in the latter case the prootic, epiotic bones, \&c.,) and only perforated by small apertures towards the outside and towards the cavity of the skull, but in the group of tishes to which the catfish belongs, the side of the capsule towards the brain is very deficient, and consequently the greater part of the labyrinth can be seen by opening the cranial cavity.

Flg. 15. - Right Ear of Catfish, from within. $\times 1$.

Abstract

Asc, hsc. pse, anterior, horizontal and posterior semi-circular canals; an, ha, pa, their ampullm; ut, utriculns; ru, recessun utriculi ; VIII, anterior and bosterior hranches of auditory nerve ; co, larena cochlex; s, sacculas; tr, opening of transverse duet communicating with the left ear.

46. Of the two parts into which the labyrinth is divided, (Fig. i5) the lower is largely concealed by a little shelf projecting from each ex-occipital bone, and meeting in the middle line over the basi-occipital. This part is known as the saccule and lagena cochleæ, each of which is a delicate membranous sac, containing fluid (the endolymph) and an ear-stone or otolith and receiving a considerable part of the auditory nerve, the fibres of which terminate in certain cells of the lining membrane. The upper part is more easily seen ; it is connected with the lower by a narrow duct, and is formed of a central tubo, the utriculus, with a large membranous sac projecting forwards from it, and containing a very large otolith and corresjonding branch of the auditory nerve. Into the utriculus and its recess there open the thre? semi-circular canals, anterior posterior and external, which are respectively situated approximately in sagittal, frontal and horizontal planes. Their lower'
openings into tho utriculas are dilated into ampulla oach of which receives a twig of the auditory nervo.
47. Reference was male to the communication between the air-bladder and the car of the catfish ; this is brought ahout in the following way. Near the narrow tube between the ulper and lower parts of the labyrinth, there is a cross duct connecting both, and projecting backward into a little pearshaped sac, which lies in a groove on the upper surface of the basi-occipital bone. The whole labyrinth, and espocially this part of it float comparatively freely in the fluid contents of the cranial cavity (perilymph); if currents should be caused in this perilymph it is obvions that currents would also be established in the endolymph, and thus excite or disturb the terminal cells of the auditory nerve-fibres which project into it. Such an arrangement for caasing currents in the perilymph exists ; it consists in the fact that each half of the neural arch of the first vertebra, can be pressed closer into the neural r:anal or pulled out by means of a lever (m, Fig. 7), the hinder end of which is attached to the front end of the air-bladder; consequently any ehanges of pressure in the air-bladder are transmitted through this lever to the perilymph, and so to the auditory nerve. Whether sound-waves can affect the density of the air in the air-bladder (there is a spot behind the shoulderblade where it comes imwediately underneath the skin) or whether some other function is performed by this singular apparatus, cannot be decided with the knowledge at our disposal.
48. Considerable resemblance will be detected in the microscopical structure of the ends of the nerves of special sense. The labyrinth is lined with epithelial cells which here and there present a different character (neuro-epithelium) where the auditory nerve terminates within them. Two kinds of cells are to be seen, the supporting cells and the hair-cells, the latter alone being connected with the nerves. In the ampulle the hairs of the hair-cells are very long and delicate, in the other sensitive spots, short and stouter, for they carry on their tips the otoliths referred to above. The ampullie are supposed to be
concerned in the sense of engilihrinm and direction, for which purpose the arrangement in space of the semi-circular camals would appear to tit them.
49. The Intestinal System.-To this belongs the Alimentary camal, with its appenduges, the liver, air-bladder, \&e.; the gills, which also come under this category, wo shall, howover, reserve for separate treatment.

We have already studied the osseons boundaries of the gape, and seen the distribution of teeth on these. There are no anft flexible lips, although the skin in this position is more richly provided with the tactile organs described in $\S 9$ than else where. In other respects except in the distribution of pigment and thickness, there is little difference between the mucous membrane which lines the mouth-cavity and the external skin. There cin hardly be said to be a tongue in the same sense as in the higher vertebrates, but the mucous membrane which clothes the hypo-hyal bones is certainly thicker than it is elsewhere in the mouth. In the living fish the action of the superior and inferior pharyngeai tooth-phates can be seen; the presence of any foreign body causes them to close reflexly on it, and the muscles in connection wich them enable them to pass it down into the ossophagus. This is the begining of the alimentary tract proper, in which we recognize three chief divisions, the cesophagus and stomach, the small intestine, and the large intestine. The latter terminates in the anus, in front of the anal fin, and is separated from the small intestine by an ileo-coacal valve, while the small intestine is separated from the stomach by the pyloric valve. The linits of the various regions are therefore distinct, but there is no such limit between the ossophagus and the stomach, although considerable structural ditferences exist between these two organs.
50. The whole intestinal tract is constructed on the same general plan throughout; whero it lies free in the ceelom, it is covered by a serous coat which is continous with the colomio
or peritoneal lining by means of a donble fold thereof, known as the mesentery. If, as in most animals the intestinal canal be longer than the ccelom, it is evident that the mesentery must be longer along the line of its intestinal attachment than along that where it is continuous with the colomic lining. If then the intestine be thrown into coils, so as to be accommodated within the celom, the mesentery must likewise be complicated in its form. Between the two folds of the mesentery the blond-vessels and nerves which pass to and from the intestine are accommodated. Immediately within the serous coat of the intestine is the muscular coat, in which two layers are recognized, an outer of longitudinal, and an inner of circular fibres. These fibres are of the involuntary order, except in the eesophagus where the inner circular coat is wanting and the longitudinal fibres are surrounded by voluntary or striped fibres. Within the muscular coat we find more or less submucous tissue,

Fig. 16.-Longitudinal Section of Intestinal Wall of Catfish.

Ep, epithelium ; m, mucosa; cm , circular, Im , longitudinal nus. cles. answering to the subcutaneous tissue of the skin, and finally the mucous coat which forms the lining of the intestine, and in which, as in the skin, we recognize two layers, a con-nective-tissue and an epithelial. The latter is the characteristic tissue of the intestine, and forms the bulk of those glands which contribute the various digestive juices. (Fig. 16).
51. Although there is no marked boundary between the stomach and œsophagus, the former is decidedly wider, and much more abundantly supplied with blood. This is necessary for the proper discharge of the function of the gastric glands, tubes
lined by a continuation of the lining epithelium of the stomach, which dip down into the submucous coat, and consequently make the gastric mucous membrane of considerable thickness. The stomach forms a blind projection beyond the pyloric aperture; it is therefore said to be of the cœecal type, whereas in many other fishes its long axis is directly continued into the intesting. After the food has been subjected to the action of the gastric juice, which renders some of its ingredients moze capable of being absorbed, it passes through the pyloric valve (which is simply a local thickening of the circular muscular layer) into the small intestine. Here it is at once mingled with the sfecrecion of two important glands, the liver and pancreas to be afterwards described, further altered thereby, and finally for the most part absorbed by the walls of the tube and partly propelled further-into the large intestine.
52. In most higher animals there are folds or projections of the mucous membrane which facilitate this absorption by the small intestine ; except for longitudinal folds, thermucous membrane in the catfish is smooth, and the amount of epithelial surface is increased by tubes projecting into the submucous tissue which are however shorter and wider than the gastric tubes. The chief difference in the structure of the large intestine is in its greater size, and more developed nusculature.
53. Of the glandular appendages of the small intestine, the liver is the most important. It is formed for the most part of hepatic cells whish are continuous with the lining epithelial cells of the intestine through the bile-duct. The cells are suspended in a delicate frame-work of connective tissue, penetrated by blood-vessels, and the liver is therefore very soft in its texture. It has two lobes, a right and a left, each divided into subsidiary lobes, and oin the under surface of the right of these is the gallbladder, a reservoir communicating by several ducts with the liver, but only by one with the intestine. Side by side with the
last-mentioned duct, is the duct of the pancreas, a gland of different structure and function, which is independent of the liver in higher animals, but in many fishes, is either wholly or partly concealed within it, entering the frame work of the liver beside the portal vein, the chief blood vessel of that organ, through which, as we shall hereafter see, a considerable amount of the blood of the body passes on its way to the heart.
54. The liver like the intestine, is within the peritoneum and covered with a serous coat like the intestine, but the air-bladder which we have now to examine is only covered by the peritoneum on its ventral surface. It is therefore an extraperitoneal structure; it communicates with the hinder en? of the œesophagus by a narrow tortuous duct which lies between the folds of the mesentery, and enters the air-bladder a little in front of its middle. As the air-bladder is a recess or diverticulum of the intestine, we should expect to find a similar arrangement of its coats. As a fact however, the muscular coat is merely represented by a stout white opaque layer, in which only connective and no muscular tissue is present, while this separates with great readiness from the inner mucous coat on account of the scantiness of the submucous tissue. When the air-bladder is first exposed it appears to be undivided, but when the outer coat is removed there is seen to be a partition subdividing the hinder part into two cavities, and narrowing the apertures by which these communicate with the single anterior cavity. The inner coat can readily be removed without rupturing it, and then the three communicating compartments are readily seen : it is at the junction of these that the duct enters. As for the structure of the mucous coat, it is very unlike that of the intestine, for its connective-tissue layer is very delicate, very poorly supplied with blood-vessels, and its epithelial layer, is formed of thin pavement-like hexagonal cells. Only the outer coat is connected with the altered vertebree and their processes as described in $\S 47$.
55. As we shall see hereafter, the air-bladder in some fishes is so well supplied with blood, and commmicates so freely with the osophagus that it can act as a breathing organ. Such is obviously not its function in the catfish. Again there are fishes which live in deep water, and can by altering the amount of air in the air-bladder, accommodate their specific gravity to that of the water at any particular level. But such an hydrostatic arrangement must be of less service to a catfish than to many other groups. The connection with the ear renders it likely that the functions discharged by the air-bladder are of a complex character, but they are not yet well understood.

Fig. 17-Diagrammatic Section of Gill-arch.
0 , bony arch; ea, efferent artery; aa, afferent artery ; n nerve.
56. Respiratory System.-We have already studied the skeleton of the gillarches ; there remain to be examined the soft parts which clothe these. Within the cavity of the mouth there may be observed certain tubercles which fit into each other when the gill clefts are closed, these are the gill-rakers; they are sometimes of considerable size in other fishes, and may act as strainers of the water which flows out through the clefts, over the giils. On the convex side are the gill-filaments, disposed in two rows. (Fig. 17).
51. The vessels which supply the gillfilaments ascend the arches in a groove, which is easily seen on their convex side in the dry condition. Of the four arches, the last is decidedly the shortest, and the same is true of the slit behind it. All the slits open freely into the branchial cavity, and this by a very wide aperture to the outside, the apertures of the right and left sides being only separated from each other below by a narrow isth-
mus. In some fishes by the union of the gill-cover to the skin over the pectoral arch, this aperture may be much reduced insize.
58. In the roof of the branchial cavity in front of the pectoral girdle, an organ, the tiymus, is present in the fishes which attains a considerable size in some furms, and is difficult to make out in others. It is seen in the young catfish, but not in the adult. Again, below the floor of the moutheavity, round the origin of the vessels which ascend the gill-arches, is another organ, the thyroid, which is of some size in the adult. The functions of both of these structures are obscure, but the organs are found in similar positions in all Vertebrates.
59. Vascular System.-In all Vertebrates two subdivisions are present, the blood- and the lymph-vascular system. The former embraces the heart and blood-vessels and their contents, the latter the lymph-vessels and spaces and the lymph-glands in which certain elements of the lymph are formed.
60. Both the circulating fluids contain corpuscles, which in the blood are of two kinds, coloured and colourless, .while in the lymph only the colourless corpuscles are present (Fig. 3, a). The coloured corpuscles while passing through the fine vessels of the gills, have a remarkahle power of combining with the oxygen contained in the water which bathes the gills, but they just as easily give up this oxygen to the other tissues which require it. This power they owe to the hæmoglobin, which they contain, and which also is the cause of their colour. The amœboid colourless corpuscles have, on the other hand, a faculty which the coloured ones do not possess to any extent, that of changing their shape and incorporating foreign particles.
61. The centre of the blood-vascular system is the heart; from it in front are given off the arteries, through which the blood is distributed by way of the gills to the body generally, and towards it behind, the veins converge, through which the blood is returned to the heart to be again sent on its course. Between the arteries and the veins are the finer capillary

Fir. 18.-Diagram of the Circulation in a Teleost. (After Claus).
Ba, bulbus arteriosus; Ab, branchial vessels; V, ventricle; Ao, aorta; Lk, capillaries of liver; N, kidney; D, intestine.
vessels, the walls of which are so thin that the blood while flowing through them is enabled to effect exchanges with the surrounding medium. Thus in the gill-capillaries it readily gives up the carbonic acid, which it has accumulated in the tissues, and combines anew with the oxygen in the water, and, while flowing through tho capillaries of the rest of the body, gives up to the tissues the food they require, and receives from them the accumulated refuse which has to be removed through the intervention of the glandular cells of the liver and kidney, with which the hepatio and renal capillaries enter into intimate connection. (Fig. 18).

In the catfish the heart is situated between the floor of the hinder part of the mouth-cavity, and the ventral part of the pectoral girdle. A strong partition stretches from the hinder border of the girdle up towards the back bone, and bounds the cœom anteriorly; it is perforated by the œsophaguis and several veins. In front of this partition is the pericardial, sac, which contains the heart, and between the partition and the pericardium is the venous sinus, to which the various veins converge before they enter the heart. The venous stream is received from the sinus into the atrium or auricle, a thin-walled chamber, which (when the heart is inspected from below) is largely concealed by the ventricle, a thick-walled muscular chamber, which drives the blood through the gills to the body. Connected with the ventricle by a narrow neck is the bulb-like beginning of the great trunk artery, which lies below the copu-
læ of the gill-arches, and gives off the vessels to these. These various divisions of the heart are separated from each other by pocket-like semilunar valves, which prevent the reflux of the blood after the contractions of its cavities.
62. The blood-supply of the gills is one of the most interesting parts about the vascular system, because, as we find that the embryos of the air-breathing animals have gill-arches and gillclefts which disappear as development goes on, so we find that gill-vessels are present alsc, which afterwards, however, become much altered. These vessels, partaking of the shape of the parts they accompany, are called the aortic arches, and they are uninterrupted tubes which arch on either side from the arterial trunk below the alimentary canal, to another arterial trunk above it, which from its position is called the dorsal aorta. Before joining the dorsal aorta, some of the anterior arches give off branches which supply arterial blood to the head. A similar condition obtains in the adult fish, only instead of an uninterrupted aortic arch, there are two vessels to every gillarch, one which distributes the blood to the gill-filaments, the other which collects it from them. These are known as the afferent and efferent branchial arteries. It is therefore the latter which unite to form the dorsal aorta, after the foremost one has on each side given off the carotid arteries to the head. In its course backwards underneath the vertebral column, the dorsal aorta gives off various branches both to the contents of the colom, and to the other parts of the trunk and tail, but the venous streams, which collect the blood from these various parts, undergo some delay in their return to the heart. For example, the venous blood from the tail, is in part subjected to the action of the kidney, before it reaches the heart through the posterior cardinal veins, (situated immediately underneath the trunk vertebre,) while the rest of it, with the blood collected from the other contents of the coelom, enters the liver through the portal vein, and is there subjected to the action of
that gland, before it emerges through the hepatic veins. The venous blood from the head is returned more directly through the anterior cardinal veins, which join the posterior cardinal on each side befnre they enter the venous sinus.
63. The lymph presents a contrast to the blood in this respect, that it is not contained in well-defined vessels. There are however a series of thin-walled channeis, by which the system is put in communication with the cardinal veins. As for the lymph-glands referred to, the most important of these is the spleen, a deep red body of considerable size near the stomach, while the second almost equally as large and similau. in appearance, but very different in origin, is the head-kidney, which lies betwren the anterior end of the air-bladder and the partition which walls off the pericardial cavity.
64. Excretory System.-The structure of the headkidney is in the embryo catfish similar to that of the kidney proper, which occupies the posterior part of the colom, but in the course of growth the excretory tubes which it possesses are replaced by lymphatic tissue, and consequently it has no excretory function in the adult. On the other hand the kidney proper which is separated from the head kidney by the entire length of the air-bladder, is a true excretory gland, which selects by filtration and otherwise from the blood subjected to its action, certain nitrogenous excreta, which have to be removed from the circulation. The excretion is carried off from exch half of the kidney, by a separate ureter, the only indication here that the kidney is a paired structure, and that consequently the right and left organs have coalesced. The ureters join on leaving the kidney, and dilate into an urinary bladder before opening exteriorly.
65. There is little external difference between the sexes in the catfish, but there is one notable difference in habit which appears to be common to several allied forms. The eggs after
they have been laid and have begun to develop into the young fry, are carefully guarded by the male, who keeps them together and swims over them, returning pertinaciously even after he has been pushed away. A tropical form, the large eggs of which are hatched in the mouth-cavity, and a Southern species allied to our catfish, have been observed to take the fry into the mouth, and allow them afterwards to escape.

Fig. 19.-Diagram of several stages in Development of Catfish. (Modified from Ryder).

1, ovarian egg; 2, egg in which formative yoke has separated to upper pole; 3, embryo of second day; 4, section through such an embryo, showing epiblast with nervous system above, hypoblast below, and between then the mesoblast and the notochord; 5 embryo of sixth day.

Little more need be said about the habits of the catfish. It is remarkable for its tenacity of life, is regarded as a fair food fish, and has accordingly received some attention from pisciculturists who have found that it prospers also in ponds and streams of other regions besiles that in which it naturally occurs.
66. The artifical hatching of fish-spawn with the object of stocking depleted waters and increasing tho food supply is now being carried on very vigorously in Canala and the United States, as well as in some European countries. In Ontario the chief hatcheries are at Newcastle and Sandwich, whence vast numbers of the fry of White Fish, Lake Salmon, Pickerel, etc., are distributed for replenishing the waters of the Provinces. The eggs are hatched out in troughs supplied with constantly renewed water at a certain temperature, and thus many of the causes which, under ordinary circumstances m.y lead to the arrest of the development of the eggs are obviated. Some notions as to the gradual development of the body in a catfish may be gathered from Fig. 19.

The egg while still within the ovary of the mother, (1) is about oneeighth of an inch in diameter; it has two coats, the outer of which is penetrated by minute canals through which the necessary nutriment for the growth of the egg passes inwards. When the egg is laid, the space between the two coats inereases in size, and the two constituents of the yolk (the formative yoik which gives rise directly to the body of the embryo and the food-yolk which is utilised as food by the embryo), formerly evenly distributed, now tend to accumulate at opposite poles (2). The formative yolk with its contained nucleus begins to segment, the result being a disc of small cells lying upon the surface of the food-yolk. These cells gradually extend over the whole of the egg, those at the pole arranging themselves into the three layers of the embryo, which already, during the second day assumes a fish-like form (3). It is from the three embryonic layers (epiblast, mesoblast and hypoblast) that all the organs of the body are developed (4); a similar arrangement of these exists in all vertebrate animals. The embryo does not escape from the egg membranes until the sixth day, when, although only one-third of an inch in length (5), development has advanced to a considerable extent. Thus the heart is seen in front of the yolk-sac, from the vessels of which it collects the blood enriched by contact with the yolk, and pro-
pels it by way of the gills throughout the entire system. The senseorgans, fins, myotomes, and heterocercal tail are all evident, and eventually the yolk is all absorbed and the young fish begins to feed for itself. At the end of three months the form of the adult is attained, although the fish is hardly an inch in length. Teleosts differ very materially as to the length of time of hatching of the egg, and the rapidity with which the developmental processes run, but there is always less foodyolk than in certain other groups of fishes to be afterward referred to, where the development is much slower.

OHAPTER II.

Common Forms of Canadian Fish and their Clacbification.

1. The common small Catfish, Bull-head or Horned pout which we have been examining is known to zoologists as Amiurus nebulosus (Le Sueur). Zoologists as well as Botanists use the Linnæan binomial system of nomenclature, which involves the use of a generic and a specific name for the purpose of indicating to what species any individual animal belongs; of these the generic name stands first, the specific second, and both are followed by the name of the author who first described the kind of animal in question under that specific name, and (if that should be necessary) by the name of the author who first referred the species to its proper genus. The necessity of appending the author's name to a species will be realized when it is understood that two different authors may have described individuals of the same species under different names. Thus A. nebulosus has a host of synonymes, one of the most current of which A. catus (Linn.) Gill, is given on the assumption that Linnæus had already named our Catfish Silurus catus.

It is very hard to find a satisfactory definition for the term "species." In nature we find only individuals; certain groups of individuals resemble each other so closely that we have no hesitation in asserting that they belong to the same species, others may vary so much in colour or in the proportionate size of different organs or in other ways, that zoologists may hesitate whether or no the individuals exhibiting any constantly associated variations should have a separate specific name accorded to them or merely rank as a "variety." The absence of intermediate forms between two or more such groups of individuals is
generally considered a sufficient ground for regarding them as distinct species. Varieties are often the result of local conditions and are therefore spoken of as geographical varioties or sub-species, but they muy be also brought about artiticially by man, in which case they are generally spoken of as " races."
2. Certain groups of species resemble each other so much that they are grouped by naturalists under the same "genus." Some genera are large, embracing a number of species, others small with only one or two; when they are large it is convenient to arrange the species in smaller groups, which may be designated by sub-generic names. In this way instead of the binomial system, a polynomial system may be adopted in which the name of an animal may have four parts, the generic, sub-generic, specific, and sub-specific names. Although too cu ous for general adoption this system has the merit of requ.....g a close attention to variation, which is one of the most interesting questions in Natural History.
3. In regard to the species we have been studying, the generic name Amiurus embraces a large number of different kinds of catfish from different parts of North America. Of these different kinds three occur within our region, viz.: A. nebulosus, A. natalis (Le Sueur) Jordan, (the yellow catish), and A. vulyaris (Thompson) Nelson, (the long-jawed catfish); sume six other species are more southerly forms. The genus is a "difficult" one, the species being hard to characterise and it is doubtful whether all the species are "good." For example there is a southern form which is sometimes regarded as a distinct species [A. marmoratus (Holbrook) Jordan], sometimes merely as a mottled variety of our northern form, and consequently named by the zoologists who hold this view A. nebulosus var. marmoratus.
4. Those chancteristics which the individuals of a species possess in common, and which serve to distinguish them from individuals of mother species are expressed together with th ir habitat, or munge of geographical distribution, in a specific diagnosis; ns examples the following diagnoses of the species which occur in Ontario may be copied from a recognized authority :-

A. nebulosus (Le Suewr) Gill.

Colour dark yellowish-brown, more or less elonded, sometimes yellowish, sometimes nearly black. Bolly rather elongate ; depth contained 4 times in length (measured to the hase of the candal fin). Anal fin usually with 21 or 22 rays, its base contained 4 times in the length of the body. Dorsal fin inserted rather near the adipose than the end of the snout. Upper jaw usually longer than lower. Humeral process more than half the length of the peetoral spine. . Length 18 inches. Great Lakes, Ohio Valley, and Eastward. The common bullhead or horned pout of the North and East, abundant in every pond and stream, also introduced into the rivers of California, where it has rapidly multiplied.

A. natalis (Le Sueur) Jordan.

Yellowish, greenish or blackish. Body more or less short and ehubby, sometimes extremely obese (var. natalis), sometimes more elongate (var. lividus). Head short and broad. Mouth wide, the jaws equal (var. lividus), or the upper jaw longest (var. cupreus). Anal rays 24-27. Great Lakes to Virginia and Texas; generally alundant. Extremely variable, and running into several varieties.
A. vulgaris (Thompson) Nelson.

Dark reddish-brown or blackish. Body moderately elongate; depth 4-5 in length. Head 3-4. Barbel long. Mouth wide. Head longer than broad, rather narrowed forward. Profile rather steep, pretty evenly eonvex. Dorsal regions more or less elevated. Lower jaw strongly projecting. Anal rays 20 . Length 18 inches. Vermont to Minnesota and southward ; rather common.

It will be observed that the distinguishing features of these three species are to be found in the shape of the body, the length of the anal fin, and the relative length of the jaws,
5. The generic, specific, and varietal names are generaliy Latin or latinized Greek words in form, the generic name being ailways a noun, and the specific and varietal names sither adjectives agreeing therewith, or nouns in apposition. Although these names often refer to some characteristic of the form designared, yet this is not always the case, and there is no definite understanding among zoologists as to the principle on which such names shall be selected. For example the name Amiurus has been formed to express the fact that the taii-fin is not notched in this genus, whereas the name of the most nearly allied genua Ictalurus or Ichthælurus, where the tail is notched, is simply a Greek translation of Catfish. Again the specific adjectival name nebulosus is formed to express the peculiar clouded colouration of our Catfish, while its synonym catus, a noun in apposition with Amiurus is another reference to its common name; further, the varietal names marmoratus, lividus, cupreus are adjectives expressing some colour-peculiarity of the forms designated, while the specific name of our great forktailed Catfish I. lacustris refers to its occurrence in large bodies of water.
6. The species last referred to attains a large size, reaching occasionally a weight of 100 pounds; it is abundant in the Great Lakes and St. Lawrence, and is much used for food. Another allied form the Channel Cat (I. punctatus) is found in the channels of the large streams but does not reach the size of the great Catfish. In contrast to these are several species of Noturus-Stonc Cats, (Fig. 20) which are rarely more than 4 or 5 inches in length, have the habit of lurking under stones, and are marked by the long adipose fin which is almost continuous with the tail-fin.
7. These three geniera are the representatives in Canada of a very large group oir " i, ily" of Fishes, the nembers of which abound in the fresh wate of the tropics of the old and new world, but are oniy represented in Europe by one species the

Fig. 20.-Stone Cat. Noturus gyrinus.
(After Jordan).
Sheat-fish (Silurus glanis) of the Danube. By adding the patronymic ending "idae" to the siem of the generic name of this fish, the family name Siluridae is formed which thus includes all the genera of the group. Family names are generally formed in this way from some typical or well known genus, and if it is considered desirable to arrange the family into sub-families the termination "ince" is generally employed for such smaller groups. But, as in the case of species and genera, zoologists are by no means at one in recognizing the same limits to the classificatory sub-divisions employed. Nevertheless the divisions of various rank are always sub-ordinated to each other in a definite way, thus each of the great primary divisions of the Animal Kingdom or Sub-Kingdoms is divided into Classes, each Class into (Sub-Classes and) Orders, each Order into (Sub-Orders and) Families, while each Family (sometimes sub-divided into SubFamilies or Tribes) includes one or more genera according as the species belonging to it are more or less nearly allied to each other.
8. Thus the Siluroid family as generally understood is one of the largest of the class Pisces; it is also a very heterogeneous one, embracing such different forms as our Catfish and the curious mailed Siluroids of the South American Rivers, so that certain authorities consider it to have the rank of an Order (Nematognathi), and it certainly docs contain forms which are
structurally far more diverse than is the case in other Families of Fishes. All of its members possess the barbels, the well developed premaxillaries, and the rudimentary maxillary bones of the Catfish, they lack the sub-operculum; but they all have the curiously modified anterior vertebræ and air-bladder, although sometimes these are difficult to detect. They are for the most part fresh-water forms, but a few are marine.

As we have studied a representative of this group in detail, some account of its most striking tropical forms may be of interest.

Reference has been only made to the fresh-water catishes above ; there are, however, representatives of the family on the sea coast extending from Cape Cod southwards. These belong to two genera, Arius and elurichthys, which agree in having the head armed above with bony shields; in this respect they are less like our catish than the large catfish of the Nile (Bagrus) and of the South American rivers (Pimelodus) are, and they more nearly approach certain other South American formsDoras and its cllies, where the head is completely mailed, but where the branchial aperture is reduced to a mere slit so that water can be retaned in the gill-cavity. This latter condition also occurs in the Electric Catfish of the Nile (Malapterurus, Fig. 21) which has no exoskeleton, but has the superficial layer of muscles converted intc an electric organ.

Fig. 21.-Electric Catfish of the Nile. M lapterurus electricus. ${ }_{12}^{2}$.
(After Brehm).

A great many of the South American Siluroids have a very complete exoskeleton. Callichthys and Loricaria (Fig.22) are representative genera ; they all appear to be very tenacious of life out of water, their gill-cavities being arranged as in Doras. Aspredo is a singular genus in which the female carries about the eggs attached to papillæ of the skin of the ventral surface, until they are hatehed.

Certain old-world tropical forms are provided with arrangements better adapted than those referred to above for living out of water. Clarlas, Saccobranchus and others have a recess projecting backwards from each gill-cavity which can be filled with water.

Fig. 22.-Mailed Siluroid, from South America. Loricaria cataphracta. ł. (After Brehm.)
9. A very large number of our fresh-water fishes belong to a family nearly allied to the Siluroids, that of the Cyprinidae, embracing the suckers, carps, goldfish, minnows, shiners, etc., of which the suckers are sometimes reckoned as an independent family (Catostomidae). Although very different externally from the Siluroids (for they are generally scaled fishes and often brillantly coloured), yet they share the peculiar struc!ure of the anterior vertebre and air-bladder, which is present in that group. The gill-cover has all the four bones, but there is no adipose fin. There are no teeth on the jaws, but the pharyngeal bones are well provided therewith. On the roof of the mouth in front of the first gill there is a rudimentary fifth gill called a pseudobranch, through which only arterial blood
circulates; its meaning will afterwards be explained. This family is characteristically a fresh-water one, the section of the Catosomidae being nearly confined to North America, and including our suckers, lake-mullet (Fig. 23), carp and carp-suckers, while the rest of the Cyprinoids are abundantly represented in the Old World as well as the New. The suckers and their allies attain a large size, but the rest of the group are small and very similar in form and colour, so that they are difficult to diagnose, and much remains to be found out as to their distribution in Canada. Two further peculiarities of the family may be referred io, the bright colouring of the males at breeding time in the spring, and the division of the air-bladder into two or three compartments by transverse constrictions.

Fig. 23.-The Red Horse. Moxostoma macrolepidotum. ㄱ. (U. S. Fish Commission.)
10. The Siluroids and Cyprinoids, like several other families of Teleostei, have an open duct between the air-bladder and the œesophagus; all the families which possess this are known as the Physotomous Teleosts, while those in which the air-duct is absent are known as the Physoclystous Teleosts. We shall find some familiar forms among the remaining Physostomi, which have the anterior vertebræ separate from each other and unconnected with the air-bladder. Foremost in importance, from an economical point of view, is the family of the Salmonidæ, which contains so many valuable food-fishes. Chief among these is the Atlantic salmon, (Salmo salar, Linn.) (Fig. 24)
which ascends rivers on both sides of the Atlantic for the purpose of spawning, and is consequently described as migratory or anadromous, although it is able to live also permanently in fresh water. Such " land-locked" salmon used to bo abundant in Lake Ontario.

Fig. 24.-The Atlantic Salmon. Salmo salar. ${ }_{1}^{2}$. (U. S. F. C.).
'The Pacific salmon, which are canned in enormons quantities in British Columbia, belong to an allied genus Onchorhynchus.
11. Our common Lake Trout and Brook Trout belong to a genus Salvelinus differing from Salmo in the absence of teeth on the vomer; the former (S. samaycush) attains a large size, and is abundant in the larger lakes, the latter (S. fontinalis) is found in ponds and streams, and is well known by its brilliant colouring, except in those individuals which have access to the sea, and which replace the red spots and dark bars by an uniform silvery dress. Hardly less important are the common Lake species of White fish (Coregonus clupeiformis) and Lake Herring or Ciscoes (C. artedi) (Fig. 25) which differ from the

Fig. 25. -The Cisco, or Lake Herring. Coregonus artedi. \ddagger. (U. S. F. C.)

Salmons by their large scales and toothless jaws. Both Salmon and White-fish have certain appendages of the intestines which are not present either in the Siluroids or Cyprinoids; these are situated at the junction of the stomach and intestine and are known as the pyloric cœeca. They serve to increase the digesting and absorbing surface of the intestines. They are small and few in number in certain smaller marine Salmonidæ such as the Capelin (Mallotus villosus) (Fig. 26) and Smelts (Osmerus mordax) (Fig. 27), which in spite of their size are of some importance as food-fishes. All of the Salmonidæ have cycloid scales, a pseudobranch and an adipose fin.

Fig. 27.-The Eastern Smelt. Osmerus mordax. \&. (U. S. F. C.)
12. Another important family is that of the Clupeidae or Herrings which are nearly all marine fish with a much compressed body, a serrated abdomen and no adipose fin. The commonest species are the herring, C. harengus L . and the Shad, C. sapidissima; the former spawn in the sea the latter ascend rivers to do so. One species of Clupea the Alewife (C. vernalis)
is land-locked in certain inland-waters, and the same is true of the allied Gizzard-Shad (Dorosoma cepedianum) (Fig. 28). The latter is of no value as a food-fish nor is the Moon-eyr, (Hyodon) also allied to the Herring family, but the Anchovies (Engraulus) are much esteemed for their flavour.

Fig. 28.-The Gizzard-Shad. Dorosoma cepedianum-var. heterurum. $\%$. (U. S. F. C.)
13. More familiar to inland residents is the family Esocidae, a group which is found in the fresh waters of the northern parts of both hemispheres. The largest representative is theMuskallunge, Esox nobilior, Thompson (Fig. 29), but the com-

Fig. 29.-The Muskellunge. Esox nobilior. It. (U. S. F. C.)
mon species is the Pike, E. lucius, which is marked with light spots on a darker ground. All the species are voracious and are provided with a large mouth armed with strong teeth. The body is slender and elongated, there is no adipose fin, the pseudobranchs are concealed and there are no pyloric ceeca. As
allied to the Esocidae may be mentioned the Umbridm, one species of which, the little mud-minnow (Umbra limi), is to be found widely distributed in muddy ditches. The mud-minnow is in some respects allied to the Blind-Fishes of the Southern states (Amblyopsidæ), the best known of which and the largest is A. spelceus from the subterranean waters of the Mammoth Cave, Kentucky. In accordance with the suibterranean life the Blind-fish is colourless, the eyes are extremely rudimentary, but the sensitiveness of the skin is increased by tactile organs like those described in $\S 9$, which are elevated on rows of papillæ above the general level of the skin. In all this family the intestine turns forward and opens underneath the throat.
14. The last Physostomous family to which reference need be made is that of the Anguillidæ, chiefly marine forms, but represented in our inland waters by the common Eel (Anguilla rostrata). The absence of ventral fins, the confluence of the unpaired fins round the tail, the absence of hard rays, and the rudimentary scales embedded in the soft skin, are some of the chief superficial peculiarities of the group. Allied families are those to which the Bengal Amphipnous belongs, which has an air-sac communicating with the gill-cavity, and the Brazilian Gymnotus or Electric Eel, in which as in Malapterurus the muscles of the tail are converted into an electric organ.
15. Physoclysti.-In this division of Teleosts the ventral fins are usually in the course of their development shifted forward till they attain a position either beside or in front of the pectoral fins: they are then said to be thoracic or jugular. The unpaired fins have generally hard rays. This is especially the case in the Acanthopteri, the largest of the orders of Teleosts, to which a vast number of marine forms belong, but which are also represented in fresh-water by the bass and perch tribes. Although the air-bladder never communicates with the alimentary canal in the adult, yet it is developed from it in the
young, and is only afterward closed. It is filled with air from certain blood-vessels which are so arranged as to allow an interchange between the gases of the blood and those of the airbladder. However great the difference in this way between Physostomous and Physoclystous Teleosts, yet there are some of the latter which are transitional in other respects. The family of the Scomberesocidae recalls both the Pikes (Esocidae) and the Mackerels (Scombridae). In addition to the long-billed marine Gar-fishes, several interestir ry species of Flying-fish, Exocoetus (Fig. 30), belong to it, marked by the great size of the pectoral (and ventral) fins. These creatures throw themselves out of the water by means of the strong muscles of the tail; and sustain themselves in the air by spreading the fins.

Fig. 33.-California Flying Fish. Exocoetus Californiensis. i. (U. S. F. C.)
16. Before discussing the typical Physoclystous fishes a passing reference may be made to certain aberrant forms which attract attention by the peculiarity of their shape. The Pipe fishes (Syngnathus), and Seahorses (Hippocampus) (Fig. 31), agree with each other in the structure of their gill-filaments, which are arranged in tufts (Lophobranchii), like the seeth of a comb. The snout is much produced, sae mouth toothless and the gill-cover a single plate. The Tobacco-pipe fishes (Fistularia) have the ordinary gill-structure, but share the elongated body and produced snout of the pipe-fishes. Allied to them are the Sticklebacks (Gasterosteidsp) of fresh and brackish waters (Fig. 32), a group of tiny pugnacious fishes which live on the fry of larger fish, but take care of their own in a nest which is constructed and defended by the malc. Some of the species have regular bony plates on the side of the body: these however, are absent in our common nine-spined and Brook Sticklebacks.

Fig. 31.-Syngnathus (Pipe-Fish) and Hippocampus (Sea-Horse), (After Brehm).

Fig. 32.-Two-spined Stickleback. Gasterosteus aculeatus. (U. S. F. C.)
17. The most characteristic group of Acanthopteri in our region is that of the Sunfishes, Centrarchidæ, as a type of which family the common Rock Bass, Ambloplites rupestris (Fig. 33), may be examined. It shares the short compressed body of the rest of the family, the mouth is large and well provided with teeth, for all are carnivorous and voracious forms. The preopercle is serrated, the opercle ends in two flat points. The dorsal fins are confluent, there being eleven hard rays in front and
ten soft behind (written D, XI, 10), while the mal fin is VI, 10. Like the other members of the family the colouration is somewhat brilliant olive-green, tinged with brassy hues and mottled with darker colours. Ctenoid scales of considerable size clothe the body ; there are 56 of these along the lateral line in this species. The pseudobranchs are small, and the intestine short and provided with 7 pyloric coca.

Fig. 33.-The Rock Bass. Lmbloplites rupestris. \&.
(U. S. F. C.)

Besides the Rock Bass several other species of larger size and gamey habits attract the sportsman. These are easily diagnosed by the fin-formula, which for the Grass Bass (Pomoxys sparoides) is D.VII, or VIII, 15; A.VI, 17 or 18: for several species of Sunfish, (Lepomis auritus and gibbosus) D. X, 11 ; A. III, 9: and forthe large- and small-mouthed Black Bass (Micropterus salmoides and dolomieu) D. X, 13 ; A. III, 11. The two latter are well known game-fishes, and apart from the size of the mouth, may bo distinguished by the scales of the former being 65-70 along the lateral line and 7-8 in a vertical row above the lateral line, while in the latter they are respectively 72-75 and 10-12.
18. In the nearly allied family of the Percidæ, the dorsal fins are not confluent, the anal spines are less numerous, the pseudobranchs are smaller, and the pyloric coeca fewer. Two well marked groups, distinguished alike by size and habit, are
recognizod, the Percina (including the common perch [Perca americana] and the larger Pike-Perches or Pickerels [Stizostedium] as they are generally called in Ontario, and the Etheostomatina or Darters. The pickerels attain a greater size than the perch, and are valued food-fishes. The larger species, S. vitreum has three pyloric cœeca, its fin formula is D.XIII-I, 21; A.II, 12, while the smaller S. canadense (Fig. 34) has 4-7 cœeca, and the soft dorsal is shorter by three rays. Like the perch the pickerels have a good deal of brilliant yollow colouring on the sides and are called "dorées" in the Lower Province.

Fig. 34.-The Pickerel. Stizostedium canadense. t.
(U. S. F. C.)
19. Little is known with regard to the distribution of the Darters in Ontario. They are a characteristic American group, being amongst the smallest of the Fishes, and distinguished further by their bright colours, rapid movements, large fins, and the rudimentary condition. of the pseudobranchs and airbladder. Some of them conceal themselves under sand, the eyes alone remaining uncovered, tho better to pounce rapidly upon the active insect larvæ on which they feed. The largest of the group, the Log-Perch (Percina caprodes), attains a length of 6-8 inches, and may be reccguized by its black, banded sides, the smaller forms are the Sand-dartel (Ammocrypta), Tesselated darter (Boleosoma) and the Striped darter (Etheostoma).
20. Among the marine tamilies allied to the above that of the Serranidæ requires mention. It embraces the so called Sea-
bass, ono of which, the Striped bass (Roccus lineatus), is much valued as a food fish, and is represented in our inland waters by the white bass R. chrysops (Fig. 35). Both of them are

Fig. 35.-The White Bass. Roccus chrysops. f.
(U. S. F. C.)
marked by blackish longitudinal lines, which are more distinct and continuous in the former species. The pseudobranchs are large and the dorsal fins nearly or quite separate.
21. Of the other numerous marine forms of Acanthopteri, the following may be mentioned as of interest, the Mackerel Scomber scombrus (Fig. 36) with its numerous dorsal and anal

Fig. 36. -The Mackerel. Scomber scombrus. t.
(U. S. F. C.)
finlets, the Tunny Orcynus thynnus (Fig. 37) one of the largest of Teleosts, the Sword-fish (Xiphias gladius) (Fig. 38) with its upper jaw prolonged into a sword, and the Sucker (Echeneis remora) (Fig. 39) whose dorsal fin is converted into a sucking dise by which the fish attaches itself to moving bodies. A

Fig. 37. --The Horse Mackerel, or Tunny. Orcynus thynnus. 1_{2}. (U. S. F. C.)

Fig. 38.-'The Sword Fish. Xiphias gladius. io. (U. S. F. C.)

Fig. 39.-Sucking Fish. Echeneis remora. ł. (Aiter Brehm.)
similiar method of adhesion to rocks, \&c. occurs in the lumpsuckers (Cyclopterus) (Fig. 40) where the ventral fins form the centre of the sucking disc.

Fig. 40.-Lump Fish. Cyciopterus lumpus, $\boldsymbol{\lambda}^{2}$
(U. S. F. C.)

In addition to the Flying-fish above mentioned, one of the Gurnards (Triglidæ) possesses the power of flight. (Fig. 41).

Fig. 41. -The Striped Sea Robin. Prionoti: evolans. 4. (U. S. F. C.)
22. Of all the families of Teleosts mentioned, few can compare in economical importance with the Gadidæ and Pleuronectidæ, which differ very much from each other in their general appearance, but agree in the absence of hard rays from the fins,
whence they are sometimes called Anacanthini. They are marine forms for the most part, the first family including the Cod-fish and Haddock (Gadus callarias and aglefinus) with a host of less important food fishes, and being represented in our inland waters by the burbot, Lota maculosa (Fig. 42). The

Fig. 42.- The Burbot. Lota maculosa. t. (U. S. F. C.)
latter genus has two dorsal fins and one anal, the former three dorsal and two anal ; in both the ventral fins are jugular in position. To the second family belong the Halibuts, Flounders, and Soles (Fig. 43) which are generally spoken of as Flat-fish,

Fig. 43.-The Smooth Flounder. Pleuronectes glaber. $\frac{1}{3}$. (U. S. F. C.)
from the fact that at an early stage of development they swim upon one side, which brcomes colourless and blind from the eye moving towards the upper surface of the head.
24. Any account of the Teleostei would be incomplete with out a reference to the Plectognathi, a group which includes some tropical fish of very bizarre appearance. The File fishes (Balistes) (Fig. 44) receive their name from the form of the first dorsal spine, the Trunk fishes (Ostracion) (Fig. 45) are enveloped in

Fig. 44-The File, or Trigger, Fish. Balistes capristus. $\frac{1}{3}$. (U. S. F. C.)

Fig. 45-The Trunk Fish.-Ostracion quadricomus. $\frac{1}{2}$.
(U. S. F. C.)
a complete box formed of bony plates, the Porcupine-fishes (Diodon) (Fig. 46) are covered with long sharp spines, but all agree in the firm union of the bony elements of the jaws to which they owe their name.

Fig. 46.-The Porcupine Fish. Chilomycterus geometricus. ㄱ. (U. S. F. C.)
24. By far the greater number of the Fishes of the present day belong to the Sub-Class Teleostei, but in past geological times such was not the case, and large numbers of fossil forms are known which indicate that the other sub-classes, which are but sparingly represented by living forms, were at one time as abundant as the Teleosts are now. One of these Sub-Classes, the Ganoidei, we have exceptional opportunities for studying on this Continent, because out of the nine genera six are American. The peculiarities which distinguish the Ganoids from the Teleosts may be best learned by comparing any one of them with a catfish, which of all the Physostomi comes nearest to the Ganoids. As to its skin the Ganoid is rarely smooth, but generally covered with bony plates or scales which may be rough with teeth or smooth with enamel ; the skeleton is cartilaginous in the Sturgeon, but as well ossified in the Garpike and Amia as it is in the Catfish. The heart has a muscular arterial cone with several rows of valves; the pseudobranch of the Teleosts may be either present as such, or, as in the Sturgeon, as a functional half-gill on the hyoid arch. A gill-slit without any functional gill persists in the form of the "spiracle" in the Sturgeon between the hyoid and the mandibular arch, and is more or less complete in the other forms, but the other gill-slits are concealed as in the Teleosts by a gill-cover. The air-bladder opens by a wide duct into the eesophagus and is very richly supplied with blood, so that in some forms it acts as an accessory
breathing orcan. A fold of mucous membrane which serves to increase the internal surface of the intestine and known as the "spiral valve" occurs in all. Finally the vertebral column evidently turns up at the tip in such a way as to divide the caudal fin unequally or heterocercally

The American Ganoids fall naturally into two groups according to the nature of the skeleton; in the Chondrostel it is cartilaginous, in the Holostei osseous. To the former groip belong the two families Polyodontida and Acipenseridæ, of which the former includes the Paddle-fish, P. spatula (Fig. 47)

Fig. 47-.The Paddle Flsh Polyodon spatula. 2\%. (U. S. F. C.)
of the Mississippi, the latter the ordinary Sturgeon of our Lakes (Acipenser rubicundus) (Fig. 48) and the Shovel-nosed

Fig. ${ }^{48}$-The Lake Sturgeon. Acipenser rubicundus. $\frac{1}{1}$.
(U. S. F. C.)

Sturgeon of the Western and Southern States (Scaphirrhynchops). In all of these forms the skull is a cartilaginous box adapted to the shape of the brain and sense-organs, and covered with regular bony plates of the same nature as those further back in the body. Polyodon is remarkable for its paddle-shaped snout by means of which it stirs up the mud in the river bottom, on the minute organisms contained in which it feeds. These are sifted out by means of the long and close set gill-rakers which form a very efficient sieve for the muddy water which flows out through the gill-slit. In many respects Polyodon 6
resembles the Sharks in its structure, as indeed do all the Chondrostei, while the Holostei on the other hand approach the Teleosts. The skin is comparatively smooth in the Paddle-fish, but, in the Sturgeon, it is provided with five rows of bony keoled shields, one row on the back and two on the sides, between which shields, the skin is roughened with minute teeth.
25. Of the Holostei we have two genera, each representing a separate family, Lepidosteus and Amia (Figs. 49 and 50). The

Fig. 49.-The Garpike. Lepidosteus platystomus. $\frac{1}{4}$. (U. S. F. C.)

Fig. 60.-The Bowfin, or Mudfish. Amia calva. ㄴ. (U. S. F. C.)
latter at first sight looks more like a Teleost, but a closer examination shows the dermal bones of the $\mathrm{k} a \mathrm{ad}$, and the unequal division c^{f} the tail. The superficial resemblance is chiefly due to the regular rows of cycloid scales, while Lepidosteus is at once marked out by the oblique rows of rhombic enamelled plates, which encase it in a coat of mail. It is to this (and its voracity) that it owes its name of bony-pike, while it is also called garpike on account of the prolongation of both jaws into a beak, a peculiarity present in the marine gar-fishes (§ 81). In many cases where such complete protection is afforded by the exoskeleton, the endoskeleton is incompletely doveloped; such is
not the case in Lepidosteus however, for here all the parts of the latter are completely ossified, the vertebre being in fact more so than in other fishes, for their bodies aro joined together by a ball and socket joint, (the socket behind-opisthocœlous) instead of having a cup at either end as in Amia and the Teleosts. The commonest species is L. osseus, but this is replaced in the - Southern States by a larger form which reaches a length of eight or ten feet and is known as the Alligator gar.
26. Superficially very unlike the garpike, Amia novertheless resembles it very closely in internal structure. Its snout is short and rounded, the lower jaws peculiar in being separated by a flat skin bone, the jugular plate, but otherwise the skeleton of the head is very similar to the garpike's.
The dorsal fin is long and low, whereas in the garpike, it is very far back and short and high. The caudal fin is not so unequally divided, and it is marked out in the male by an eyelike spot which stands out against the general dark green hue. There is only one species of Amia, A. calva; it is known in different localities by different popular names, among which Mud-fish and Lake Dog-fish are the commonest.
27. In addition to the Ganoid genera already enumerated there are two other living forms confined to the rivers of Africa. These have scales like the garpike and gular plates like the Dog-fish, but their paired fins differ in structure, being composed of a disk-like part containing the skeleton surrounded by a fringe. The commonest species is the Polypterus bichir of the

Fig. 51. - Polypterus buchir. $\quad 12$. (After Claus.)

Uppe: Nile (Fig. 51) the generic name of which refers to the division of the dorsal fin into a series of finlets.
28. Reference was made above to the fact that of all Ganoids Polyodon is most nearly allied to the Sharks. This is not merely a superficial resemblance depending on the position of the mouth but it is seen also in other organs. The gill-arches, for example, bear between tho two rows of filaments, a membranons partition which is hardly present in any of the other forms but which in the Sharks is much more developed, andbears the gill filaments. Thus in the Sharks the gill-arches are not suparated by mere gill-slits, but by pouches, the anterior and pusterior walls of which are formed of the aforesaid partitions. The pouches are, at least outwardly, always five in number (sometimes seven), and they open by a series of slits uncovered by any operculum (except in the genus Chimaera). This disposition of the respiratory organs has conferred on the Sub-Class the name Elasmobranchii.

It embraces marine forms familiarly known as Sharks and Rays; the former have elongated bodies with the gill-slits on the sides of the head, the latter are flattened from above downwards, and as broad as they are long, from the enormous development of the pectoral fins, which form the greater part of the body. Their gill-slits are to be found on the lower surface of the head. Certain forms are intermediate, in respect to the size of the pectoral fins, between the Sharks and the Rays;

Fig. 52.-The Saw Fish. Pristis pectinatus. ì子. (U. S. F. C.)
the Sawfishes e.g., (Pristis) (Fig. 52), which are further distinguished by the enormous development of the rostrum or snout and the formidable lateral teeth of that organ. Again

Fig. 53.-The Torpedo or Electric Ray. Torpedo occidentalis. 스. (U. S. F. C.)
the Electric Rays (Torpedo) (Fig. 53) are singular in that the muscles of the pectoral in are largely convorted into an electric organ. The Sharks (Fig. 54) are all carnivorous and voracious

Fig. 54.-The Horned Dog Fish. Squalus acanthias. \&. (U. S. F. C.)
forms of great strength and activity; some of the smaller ones (Mustelus) live on Shell-fish, but the largest species are often dangerous to man and attain a length of thirty to forty feet (Carcharodon, Selache). In all the Sub-Class the skeleton is cartilaginous, and the skin either smooch or roughened with minute tecth which are similar in structure to the nore formidable teeth of the jaws. They resemble the Ganoids in the structure of the heart and intestine, and in the unequal
division of the caudal fin, but they have no air-bladder. The eggs are of large sizo and are either laid covered by a peculiar horny shell or else the young are born alive.
29. Only another sub-class remains to be discussed, that of the Dipnoi, so called on account of the fact that they breathe by the modified air-bladder as well as by gills. Three genera belong here, widely separated geographically, but all similarly situated in that, during the dry season they may have to depend wholly or partly on their lungs for the oxygenation of the blood. They are named Lepidosiren, Protopterus (Fig. 55) and Ceratodus

Fig. 65.-The African Lung Fish. Protopterus annectens. is. (After Claus.)
and they are found respectively in the Amazons region of South America, on the west coast of Africa, and in Queensland. As regards the structure of the air-bladder they resemble Lepidosteus and Amia, but in respect to the opening place of the airbladder into the œesopbagus as well as to the skeleton and fins, they more nearly resemble Polypterus. The group is of special interest on account of the amphibious habits, and the changes in the respiratory and vascular system rendered necessary thereby. A point in which they resemble the true Amphibia is that the nasal chambers open into the mouth, which is not the case in any of the other fishes.
30. Two aberrant groups of Vertebrates are generaliy associated with the fishes on account of their fish-like appearance, although in structure they are very unlike them. These are the Lampreys and the Lancelets. The former no doubt owe some of the peculiarities of their structure to their parasitic habits. They attach themselves by their round (Cyclostomi)
sucking mouths, which are armed with horny teeth but not supported by jaws, to the bodies of other fish and prey upon them. In general shape they are cel-like: several species are known, some of them marine, but the commonest inland species is the silvery lamprey, Petromyzon argenteus (Fig. 56). A_{l} part from the structure of the mouth, they aro singular in the respiratory organs, which have seven separate apertures on each side, but only one opening into the gullet. The marino genus Myxine has simiiar habits, but differently arranged gills. In all the forms the skeleton is cartilaginous, and the notochord forms the bulk of the vertebral column.
Petromyzon argenteus.
31. A still further departure from the ordinary vertebrate type is seen in the Lancelets, (Amphioxus or Branchiostoma) (Fig. 57) little fish-like creatures which burrow in the sand of

Fig 57-Amphioxis lanceolatus. (After Claus.)
C. oral cirri; ch, notochord ; rm, spiual chord; ks, gills; ov, ovary; l, liver: N , kidney ; P , branchial pore ; A , anus.
the sea coast. They lack the brain, skull, and heart of the vertebrates, but the spinal cord and notochord are present, and the anterior part of the alimentary canal is employed for respiration.
32. The same is true of the marine Tunicata, so called on account of the tunic containing cellulose, secreted by the skin around the body They pass through a larval tadpole-like phase, but afterwards lose the tail, and with it the notochord and overlying nervous cord, adopting for the most part a stationary life, during which many of them form colonies by budding.

OHAPTER III.

The Canadian Ampiibia or Batraciia.

1. Among the Dipnoi the genus Protopterus is the most truly amphibious, as during part of the year it lives in a torpid condition in the dried mud of the river-beds and is entirely dependent upon its lungs for respiration. It therefore deserves to be called amphibious, far more than do certain members of the Class Amphibia or Batrachia, such as the common Mudpuppy or Menobranch of our Lakes (Necturus maculatus) (Fig. 58), which can live but a very short time out of water. It

Fig. 58. -Canadian Lake Lizard, or Menobranch. (Necturus maculatus.)
is important to compare such a fish-like Batrachian with a true fish, to find out the precise structural differences between the two. The head in the Menobranch is flattened as it is in the catfish, but a distinct neek separates it from the trunk, and here are situated the three pairs of external gills attached to the outside of the corresponding gill-arches and separated by two gill-slits. It has been found that these slits correspond to those between the first and second, and second and third branchial arches in the fish.

No adult fish has external gills of this character, although the embryos of various Elasmobranchs have, and Protopterus has three filamentous gills attached to the pectoral arch.

Perhajs the greatest external difference is in the form of the paired limbs, which no longer resemble the unpaired fin as they do in fishes, but are jointed into tho same divisions as they are in the highor Vertebrates, and divided at the ends into fingers and toes, of which there are four to each limb in the Menobranch. But these limbs are not able to support the weight of the body; the chief organ of locomotion is still the tail, and that is flattened and provided with an unpaired fin as in the fishes. It is however not furnished with any skeletal support such as the tin-rays of the fish.

Fig. 59.-Skull of Menolranch, from above. (After Huxley.)
Pmx, premaxilla; vo, vomer ; pl, palatine ; s.1, sifuamosal ; pro, prootic; st, stapes; epo, epiotic; fr, frontal ; ant, antorbital cartilage; q, quadrate; pa, parietal; e, exoccipital.

Cartilage dotted; cartilage-bones heavily, membrane-bones lightly shaded.
2. At first sight the skin of the Menobranch is very like that of the catfish, but cave will be required to make out the system of sensory canals in the head and along the lateral line, and no traces of bony scales will be found in the skin.
Microscopically the most important difference is in the presence of numerous cutaneous glands which furnish the abundant mueus which lubricates the skin.
3. Important differences will be detected in the skeleton, but more in the skull than in the vertebral column. In the latter the individual vertebræ are amphicelous, and bear short ribs in the trunk region which do not encircle the body cavity. There are no interspinous bones.

Fig. 60.-Skull of Menobranch, Śrom below. (After Iluxley).
pmx. premaxilla; vo. vomer; mck. Meckel's cartilage; pl. palatine; ps. parasphenoid; hy. hyoid ; sq. squamosal ; pro. prootio; st. stapes ; epo. epiotic.
4. The skull retains more cartilage than does that of the cat. fish, and there are fewer bones to be recognised in it. (Figs. 59 and 60). Of the twenty-seven cranial bones present in the catfish ($I, 17-20$), only thirteen are represented, viz.,-paired exoccipitals, epiotics, prootics, frontals, parietals and vomers, and an unpaired parasphenoid. Some of the other bones are represented by cartil.ge such as the mesethmoid and parethmoid ; the nasal capsule also is a fenestrated cartilaginous capsule, but the other regions are only membranous. Two new bones are present, the squamosal and the suspensorium on each side, which lie on the outside of the otic capsule, and thus occupy somewhat the same position as the pterotic and preoperculum.

As to the jaws, Meckel's cartilage is furnished with a dentary and an inner splenial bone, and it is hung to the skull by the Suspensorium, a cartilage which corresponds to the hyomandibular and quadrate of the catfish. Part of the hyomandibular
may be represented by a small stapes or columella which fills up a gip or window (the fenestra ovalis) in the outer wall of the auditory capsule, present in all Vertebrates except fishes. A pterygopalatine rod and premaxillæ are pre:ent on each side, but the maxilla is even more rudimentary than in the catfish. There is nc gill-cover nor branchiostegal rays, but the visceral skeleton is well represented, although the hinder arches are reduced in comperison with the catfish. (Fig. 61).

Fig. 61. -Visceral Skeleton of Menobranch.
(After Huxley).
h. hypohyal ; ch. ceratohyal ; bb. first, bb^{2}. second basibranchial; cb^{2}, cb^{2}, first and second ceratobranchials; $\mathrm{eb}^{3}, \mathrm{eb}^{2}, \mathrm{eb}^{3}, 1 \mathrm{st}, 2 \mathrm{nd}$ andsard epibranchials; gl. glottis.
5. Great difficulty will be met with however, in comparing the limbs and the girdles which support them with the corresponding parts in the catfish (Fig. 62). There the coracoids are bony and articulate in the middle line; here they are cartilaginous and overlap the middle line; they furthermors each give off a process jutting forward, the precoracoid, some-
times called the clavicle, but a very different structure from the various parts so called in the catfish. Again, the scapula is of much greater size, is ossified and has a cartilaginous leaf-like part above, which nearly reaches its fellow of the opposite side near the middle line of the back. Still the limb is attached to the girdle at the junction of the coracoid and scapula, just as it is in the catfish, only the method of its attachment and the

Fig. 6e.-a, Skeleton of Anterior, b, of Posterior, Extremities of Mienobranch.

[^0]nature of its component parts are very different. Only one bone, the humerus, effects the attachment ind forms the skeleton of the upper arm ; two, the radius and ulna, are in the fore arm, carpal or wrist bones intervene between these and the skeleton of the fingers, which consists in each of a metacarpal bone and three phalanges. How are we to compare these parts with those in the catfish? It is only possible to do so by studying fishes more primitive in this respect, but investigation appears to show that the humerus is comparable to the metapterygial basal in the catfish, and the other bones to rays in connection therewith. Still greater difference is to bo found in the pelvic arch, for what is called so in the catfish is nothing more than the united basals of the fin, whereas in the Menobranch we have a partly cartilaginous and partly osseous pelvic girdle, with the three constituent regions which we shall find in all the higher forms. Of these the uppermost (ilium) enters into intimate union on oach sido with the transverse processes of one of the vertebre. A similar arrangement exists in all Vertebrates except fishes, and the vertebra (or vertehre) in question, by which this additional stability of the posterior extremity is secured, is called sacral. Corresponding to the glenoid cavity for the attachment of the humerus is the acetabulum for the hip joint. The structure of the skeleton of the hind limb is very similar to that of the fore, and the corresponding parts to those enumerated in the last paragraph are, l. femur, 2. tibia and fibula, 3. tarsal bones, 4. the metatarsals and phalanges.
6. As the greatest difference in the bony framework is in the limbs, so also the greatest difference in the muscles is to be met with there, but the limbs are of courso more differentiated in the higher Amphibia, where they have to perform more complicated duties in comnention with support and locomotion.

Fig. 63.-Brain of Menotranch. A. From almove. B. From helow.

Rh. Olfactory lobes; Pr. Cerebral hemingheres; Thal. Thalamic region; Mes. Optic lobes; cb. cerebellum; h. hypophysis; Met. Medulla oblongata; 2ud, bth, 8th, 9th. Cranial nerves.
7. In regard to the nervous system of the Menobranch, the most, notable difierence from the catfish will be found in the brain (Fig. 63). Here the olfactory lobes aro united with the larger and thicker-walled cerebral hemispheres; the inferior lobes are not present, the optic lober not so distinctly divided into right and left halves, the cerebellum quite rudimentary, and the medulla oblongata destitute of those swellings present in the catfish.
8. The teeth in the Menobraneh are mot; only less numerous, but they are confined to smaller surfaces within the month. There are two rows in the upper jaw, of which the poster: (on the vomer and pterygoids) is the longer, while the manditio has only a single row fitting in between the two of the upper jaw. Unlike the fish there is a fleshy tongue free in front and at the sides, and the tubercles on the concave surfaces of the gill-arches are not so prominent as in the catfish. The intestine hardly departs from the tubular form, the liver is more elongated, and the pancreas quite indepeudent and much subdivided.

It is interesting to compare the lungs with the air-bladder of fishes. The glottis is supported by two slips of cartilage which ocenpy nearly the position of the fourth branchial arehes; it opens into a common chamber whence the t thewelled lungs project backward and two short blind sacs foraty ; the attor remind one of the similar points which are poest in 4 en irbladder of Amia.

Fig. 64. - Diagram of Heart aud Great Vessuls of right side of Menobraneh.
Co. Arterial cone; v. ventricle; a. auricle; j , ii, iii, afferent branchial arteries; G^{1}, (${ }^{2}$, (i, the fliree gills; ce, ei, external \& finternal carotids; I'a. P'ulmonary artery; o. hamolit tu oxsphagns and stumath; L. lung; D. dorsal aorta.
9. A comparison is more casily effected between the heart and great vessels of the Menobranch, and those of Amia and Lepidosteus or one of the Dipnoi, than those of the catfish, because the ventriclo has a muscular cone in these forms which is ab. sent in the catfish. From this the arterial trunk comes off in front (Fig. 64) and divides into two right and left branches, which afterwards subdivide to form the three afferent bramchial arteries for the three gills. The blood which is aerated in the foremost and largest gill is partly sent to the head, but partly joins that from the efferent arteries of the second and third gills, so as to form the dorsal aorta. Some of the blood from the second and thirl aortic arches reaches the lung (only, however, in a partially aerated condition) through the pulmonary artery, a modified fourth arch; its aeration is completed in the lung, whence through a separate vessel, the pulmonary vein, it reaches a special compartment of the ntrilum, not quite separated off from the rest, but partly so by an imperfect partition. In higher Amphibia this partition is perfect, so that the blood within it is not mixed in the ventricle with the returning venous stream, until some of it has been already sent on to the head through the modified first arches (carotid arteries).
10. The kidneys aro narrow ribhon-like structures which extend throngh the greater part of the length of the body cavity. It is supposed that the Menobranchs spawn in spring, and that they lay eggs nearly of the size of a pea, but further information is desirable as to their habits in this respect.
11. Class Batrachia or Amphibia. This class is subdivided into several orders of which three are represented by living forms, the Urodsla, Anura, Gymnophiona, the others being known merely by their fossil remains. The first order contains the Menobranch and forms allied to it ; the second, the frogs and toads; and the third, certain tropical earthworm-like forms. It is, therefore, the first two which we have to examine more closely, the ordinal names of which refer to the most striking character, the presence (Urodela) or absence (Anura) of a tail in the adult.
12. Among the nearest Urodelous allies of the Menobranch are some which like it retain their gills throughout flife : they are said to be perennibranchiate forms, and in this respect are unlike some other Urodeles which lose their gills at a later stage ${ }^{*}$ * these are caducibranchiate. Undoubtedly the nearest relative of our Necturus is the Proteus (P. anguinus) (Fig. 65) which is found in underground waters in Carinthia and Carniola. Like the blind-fish of the Mammoth cave it has suffered the almost complete loss of the eyes and the loss of the pigment of the

Fig. 65. - Proteus anguinus. (After Brehm):
skin; the gills, therefore, with the red blood coursing through them, stand out very conspicuously from the colourless boiy. Instead of the four toes of Necturus, there are three on the front and two on the hind limbs. The only other genus of this group is the Siren, of the rice-swamps in the Sonthern States, S. lacertina (Fig. 66) which is eel-like in shape, and lacks the hind limbs. It is less aquatic tham either of the other genera, and is able to live out of water for a lo.ger time.

Fig. 66. -Siren lacertina. (After Brehm.)
13. Of the caducibranchiato Urodeles two genera, Amphiuma and Menopoma, must be regarded as nearest to the foregoing, on account of the fact that in spite of the loss of the gills, one gillslit on each side (that between the third and fourth gill-arches) persists, whereas in the other forms all trace of these disappears in the course of development. Amphiuma (Fig. 67) is an eellike form from swamps in the Southern States; both piirs of legs are present, carrying in ono species two, in the other three, toes. Menopoma comes further north, being abundant in the Ohio Valley whern it is known as the Hellbender (M. alleghani7

Fig. 67.-Amphiuma tridactyla. (After Brehm).
ense). It attains a length of two feet and has better developed limbs (with four and five toes) than the foregoing.

A nearly allied form, destitute of the gill-slit, is the giant Salamander of Japan, which grows more than five feet in length.
14. All the other Urodeles are aquatic only in their young stages, and afterwards leave the water for the land where they live either in moist or dry places. As a general rule the tail is rounded in those which have most completely abandoned the aquatic life, in the others it is somewhat compressed. When the new habit of life is adopted, the gills are discarded and all traces of them disappear, the respiration being entirely effected by the lungs. This change, which also involves ehanges in the vascular system and in the skin, is spoken of as a metamorphosis, and it may oceur when the creatures are still very small, or it may be postponed till they have attained their adult size, and have even laid eggs. Such is the case e.g., in a large Salamander from Nebraska, Amblystoma marortium, which attains the size of a Menobranch before it loses its gills. It was thought at one time that our Necturus might be such a
larval form, but such is not the case. Another example of arrested motanorphosis is the Mexican Axolotol. A few years ago, this was only known to naturalists in its larval stage, but it has been caused to undergo metamorphosis experimentally, and has been found to do so naturally in some of the localitios in which it occurs.

Several Urodeles belonging to this division occur in our region; they belong chiefly to the genera Amblystoma, Plethodon and Diemyctylus. The largest of these, Amblystoma punctatam, the spotted Salamander, attains a length of six inches of which two and one-half belong to the taii. The gills disappear when the creature is two inches long, the colour is purplish black, and each side of the back is ornamented with two rows of bright yellow spots. Of the Plethodons, P. erythronotus, the red-backed Salamander, is perhaps the commonest; this specios attains about half the size of the foregoing, but loses its gills mueh earlier than the former does. It lives in moss and underdecayed trees where the eggs also are laid. Some allied species are more aquatic in their habits. The newt, eft, or crimsonspotted triton, Diemyctylus miniatus, is very common under stones, generally near pools. Its dorsal surface is olive or red, the ventral surface yellow or orange, but the sides are spotted in both varieties with oye-like markings, red with a surrounding black rim.
15. Of the Old World forms allied to these, ono of the most striking is the European spotted Salamander (S. maculosa) (Fig. 68) which is black with golden yellow blotehes. Certain cutaneous glands secrete a milky irritating fluid which appears to be poisonous to small animals. It was thought in ancient times to be most deadly poisor, and to have the virtue of extinguishing fire when thrown into its midst.
16. While many Urodela undergo a metamorphosis chiefly chanacterised by the loss of the gills, the frogs and toads lose at that period not only the gills, but the tail, whence their

Fig. 68-Salamandra maculosa. (After Brehm).
ordinal name Anura. Any of the ec amon species of frog will serve as a type for the recognition of the peculiarities of the order. As to the general form, the absence of the tail, and the great development of the hind-legs along with the webbing of the toes indicate what an entire change in the method of locomotion is to be observed in them. The short plump body also strongly contrasts with that of tho Urodela. Most of the forms are somewhat brillantly coloured, and have the power of altering their colour so as to suit it to the prevailing surrounding hues. This is not the case in the common toad (Bufo lentiginosus) which remains concealed generally during the day time, but it is very marked in the Wood and Green frogs (Rana temporaria and clamitans), and in the Tree Toad (IIyla versicolor) which, indeed, is very difficult to detect on trees or fences owing to this faculty. The changes in colour are due to the presence of contractile pigment-cells in the skin which are controlled by the nervous system.
17. It can easily be conceived that the change to a new medium must be accompanied by changes in the skin. These chiefly consist in the greater richness of glands which keep the skin moist and allow it to discharge its subsidiary function as a
respiratory organ, and in the disuppearance of those nerveendings which are only adapted for a watery medium. Accumulations of cutaneous glands are best seen in the toad, behind the ear (parotoid) and elsewhere; they secrete an acrid fluid which must be regarded in the light of a defensive provision. Horny changes in the epidermis or bony plates in the skin, which are common in the Reptiles, are mare in the Anura.
18. As in the Urodela, the skull of the Anura rests upon the vertebral column by two condyles; it presents in other respects important differences, e.g. the girdle-like ossification of the cartilage in the orbital region, and the great reluction of the hyoidean apparatus brought about hy the disappearance of the gills. Again, the vertebral column is very much shorter, and its end together with the pelvis have been much modified, in such a way as to offer a solid basis of resistance to the legs in leaping. The shoulder-girdle is very different from tiat in the Menolranch, chiefly in the median meeting of the precoracoids and coracoids, and the presence of an episternum in front, and of a sternum behind that symphysis. In the skeleton of the limbs, likewise, we find much change, chiefly in the fusion of the bones of the fore-arm and lower leg, in the great length of the proximal bones of the tarsus, and in the incompleteness of its distal row.
19. In accordance with the gait of the Anura, the musculature of the hind-limb is extraordinarily developed, and the muscles of the trunk are no longer the chief locomotive organs. Apart from the fact that in the frog the brain is somewhat shorter, its olfactory lobes fused, and the optic lobes larger, there is little difference between the central nervous system in the Urodela and Anura. The ear, however, presents a well-marked difference, for there is a tympanic membrane, bounding on the outside a tympanic cavity, which communicates with the mouth by an Eustachian tube. This tube is comparable to the

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

spiracle of the slarks and Ganoids, and is closely related to the internal ear even in these forms. A columella longer than that in the Menobranch stretches between the tympanic membrane and the fenestra ovalis.
20. As regards the intestinal apparatus, the Anura, present many differences from the Urodeles. The tongue, which is little developed in the latter, beccues in the former the chief organ for securing the insects on which they feed, as it is free behind and can be shot out with great rapidity. It is only absent in two tropical forms, Aglossa. The males of some species are furnished with air-sacs, which serve as resonators to reinforce the sounds produced by the larynx, which is better developed than in the Menobranch. Although the adult Anura are carnivorous and their intestine is comparatively short, yet the larvæ or tadpoles have a very long coiled-up intestine. They are omnivorous, but chiefly live on vegetable substances which they gnaw with their temporary horny jaws.
21. It will be at once realized that the metamorphosis of the Anura brings about greater changes both in the form of the body and the habits of life than in the Urodeles. The period of development at which it occurs may be very different, the tadpole phase being sometimes very brief and in other cases much longer. It may in certain cases be retarded by external conditions where it ordinarily occurs early. Most of the forms lay their eggs in water, surrounded by a quantity of gelatinous substance forming the frog's spawn, but other forms which have not free access to water, adopt other plans. In one of the Aglossa for instance, the Surinam toad-Pipa (Fig. 69), the eggs are placed in enlarged cutaneous glands on the back of the mother, where they are hatched out and pass through their tad-pole-phase. The common toad, again, requires only very sinall pools in which the larve pass their short aquatic life.

Fig. 69. - Pipa Americana. (After Brehm).
Structurally the tadpoles (Fig. 70) differ from the adult chiefly in the presence of the tail, the want of limbs and the nature of the respiratory and circulatory organs. They possess adhesive discs near the mouth by which they attach themselves to aquatic plants and other obiects for support. The first gills are external, but these soon disappear, and give place to internal gills on the four gill-arches ; these are concealed by a gill-cover, which grows over them in such a way as to leave only a single aperture on the left side. Underneath this gfl-cover the fore limbs are first budded out and the hind limbs make their appearance immediately afterwards; both are fully formed before the tail shrivels up. Eventually the gills disappear, and the heart and vessels undergo such an alteration that the venous blood is sent to the lungs and skin to be aerated and the arterial blood to the body generally.

Fig. 70.-Stages in the Development of an Earopean toad. (Pelobates).
o. the gelatinous spawn containing developing eggs, 0°; a a group of tadpoles sdhering to a weed; b. one of these cularged showing the external gills; c. stage in which external gills are lost, the spiral intestine is represented; in d, the hind, and in e, all four limbs are developed, while the tail is shrivelled up in f amd lost entirely in g.
22. In III, 16, three genera of Anura are mentioned which forrn the types of so many families of Anura. The Ranidm are characterized by the great length of the hind limbs, by the presence of teeth in the upper jaw, and by the smooth skinthe Bufonids on the other hand, have shorter legs, a warty skin and no teeth, while the Hylidæ are specially marked out by the adhesive disks with which the fingers and toes are provided, and which permit the climbing habits of the genus. Two species of Hyla, one of Bufo, and five of Rana occur in our region. The largest of the latter is the bull frog (R. catesbyana)
ono of the most completely aquatic species. \quad. clamitans, the green or spring frog, rarely leaves the water for any distance, while the wood frog R. temporaria var. sylvatica is found among the fallen leaves of forests, with which its colour is assimilated, while the two remaining species, R. palustris, and halecina are both found in marshy places and are more varicgated in colouration, for there are four or two rows of black spots on the greenish ground of the back.

An interesting case of adaptation to an arboreal life is offered by a species of Ranidæ from the Malay ArchipelagoRhacophorus Reinhardtii-(Fig. 71)-in which the webs of the toes are used as a parachute in leaping from tree to tree.

Fig. 71.-Rhacophorus Reinhardtil. (After Brehm).
23. The remaining orders of Batrachia are only represented by fossils from the coal measures and the overlying Permian and Triassic strata. The teeth are generally complex in structure whence the name Labyrinthodontia. In form they resembled the Salamanders, but some attained a gigantic size, and others, such as those found by Sir W. Daw-
son in the hollows of fossil trees in the coal-measures of Nova Scotia, were as small as many of our Salamanders. Many resembled the Ganoids as io the skin bones of the head, but the notochord was persistent throughout life as in the Dipnoi.

Fig. 72.-Siphonops inexicanus. (After Brehm).
24. The remaining living order, the Gymnophiona, is interesting, because it embraces forms which, through adoption of a burrowing habit, have undergone the loss of limbs and eyes, and have acquired a hardened skin provided with horny rings. They are represented both in the tropics of the Old and New Worlds (the most northern form is Siphonops mexicanus, Fig. 72.), and they appear to be most nearly allied to Amphiuma, which they resemble in depositing necklace-like strings of eggs.

OHAPTER IV.

The Reptilia.

1. Our study of the Catfish and Menobranch has taught us that in auldition io the aquatic habits which these creatures share, there are certain anatomical features in which they are alike. The Classes Batrachia and Pisces are not separated from each other by any gulf such as meets us when we advance to the study of the Reptilia. It was possible to point out the existence of living forms intermediate in many ways between the Batrachians and Fishes, but we have no such living forms to bridge over the gap between the Batrachia and the Reptiles. Nor do we know any fossil remains which do so ; on the other hand, the Reptiles and Birds, at first sight so entirely unlike each other in structure as well as habits, are, nevertheless, closely allied by fossil forms which present all the important stages of transition between the two groups. Zoologists give expression to these relationships by uniting the Classes Pisces and Batrachia into a group Ichthyopsida, and the Clasces Reptilia and Aves into a group Sauropsida. The proof of the reptilian affinities of the Birds we shall postpone until we have studied the structure of some of our common Reptiles. In the meantime it is necessary to remark that the two Classes Reptilia and Aves are of very unequal rank, as far as the structural characteristics which mark them out are regarded. The Birds constitute a very homoger eous group, the different orders of which are chiefly remarkable for structural features associated witb minor differences of habit, but the Reptiles are a very heterogeneous group, and the various families, into which the living orders of Ohelonia (Turtles), Lacertilia (Lizards), Ophidia
(Snakes), and Crocodilia (Crocodiles) are divided, frequently differ more from each other anatomically, than do the orders of the Birds. The orders themselves, therefore, present still less in common with each other, so that the study of a type of each is necessary to enable the student to grasp the structure of the whole Class. Much attention has been devoted of late to a New Zealand. Lizard-like animal, Hatteria, because of all the living Reptiles it is the nost primitive form, and most nearly allied to some of the oldest fossil representatives of the Class. Some reference may afterwards be mado to this interesting species, but we are obliged to select a more accessible form as an introduction to the group.
2. Although the Turtles in respect to their skeleto. are really a very highly-specialised group, yet we shall find in the soft parts many structures which will remind us of the Urodela.

Fig. 73-Snapping Turtle. Chelydra serpentina. \& (After Brehm).

The common Snapper (Chelydra serpentina, Fig. 73) one of the least specialised, is a convenient starting-point for the studj of the others, but the following description will apply almost equally well to the little painted turtle (Chrysemys picta).

The most remarkable point in regard to the skin is the development in it of certain bony plates, which, however, are so closely related to the internal skeleton, as to he more properly dealt with in connection therewith. In other respects we have to notice here as well as in all the other Sauropsida the great development of the horny layer of the epidermis, no longerconfined to the extent of one or two layers of cells, or locally thickened here and there, but developed into the characteristic clothing of scales, scutes, shields or feathers. In the Snapper we distinguish two kinds of these epidermal appendages, the regular shields which cover the dorsal and ventral surfaces of the trunk, and the smaller and less regular scales and tubercles of the rest of the surface. In addition to these are the formidable claws with which the distal or ungual phalanges of. the digits are provided. Although all of these structures are formed of horny epidermal cells, yet the underlying mucons cells replace them from below as they are worn off above, and the corium likewise partakes in their formation. The dorsal surface has three rows of larger carinated shields (five unpaired vertebral, and four paired costal) surrounded by twenty-five smaller ones, of which eleven at each side are called marginal, while that in front is nuchal, and the two behind caudal. These shields are separated by very scanty connective-tissue from the underlying bones of the exoskeleton. Similarly, on the ventral surface there are six paired shields named from before backward, gular, postgular, pectoral, abdominal, preanal and anal, of which the abdominal are the largest. It is these large epidermal shields, which in one of the marine turtles, furnish the tortoise-shell of commerce. (Fig. 74). As in the other members of the order, the jaws are provided with horny sheaths like a parrot's beak instead of teeth, and the terminal hooks of these are of considerable size in the Snapper.

After the epidermal shields have been removed, it is seen that their outlines do not correspond to those of the bony

Fig. 71-Tortoise-shell Turtle. Eretmochelys imbricata. It.
plates beneath. The latter belong to the exoskeleton and are arranged in the form of a box, which shelters the greater part of the tiunk, and which is divisible into two parts, the dorsal carapace, and the ventral plastron, connected laterally with each other for but a short distance in this species. In the former we recognise a median row, of which the foremost, the nuchal plate, is the largest and is unconnected by bone with the vertebral column, while the eight neural plates which succeed it are co-ossified with the spines of the underlying eight (secund to nirth) dorsal vertebre, and the three pygal plates which terminate the median row, are again free from the vertebre beneath. Extending laterally from the neural platesare the eight pairs of costals, which overlie the second to ninth ribs, and extend out. ward for the greater part of the iength of these; however, the * free tips of the ribs alone are seen to join the bony marginal plates. From this point they are not continued towards the ventral middle line ; the bones of the plastron have, therefore, no relation to them.

In contrast to the immobility of the dorsal region of the vertebral column is the great mobility of the cervisal and candal regions. Two vertebre support by their ribs the ilia, and are consequently spoken of as sactal. With the exception of the mandible and hyoidean apparatus, all the bones of the skull are intimately united, the quadrate is firmly connected with the others, and two bones (which do not occur in the Iehthyopsida), the quadratojugal and the jugal, unite it to the maxilla. The hyoidean apparatus is interesting becauso it has undergone the reduction which wo would havo anticipated in an animal where there are no gills. The arches which persist serve for the origin of the muscles of the tongue.
3. As to the appendicular skeleton it has many points of resemblance to that of the Monobranch, the hands and feet are even more primitive, and the shoulder girdle resembles it in the freo termination of the coracoids, but the pelvic girdle is somewhat mere complicated, presenting a large perforation between the pubis and ischium on each side.
4. The chief points in which the brain of the Snapper differs from that of the Urodela is in the groater development of the cerebral hemispheres and the cerebellum in contrast with the other parts.
5. In the intestinal canal the absence of teeth and the great length of the short intestine are noteworthy, while that we have to do with an air-breathing Vertebrate is sufficiontly evident from the large size of the lungs. In most air-breathing animals the change of the air ir the lungs is aided by respiratory movements of the thorax, but as the thorax here permits of no such move-- ments, this function is undertaken by the thin wall of the bodycavity in front of and behind the bridges which join the carapace and plastron. The circulatory system is also adapted to the change of the method of breathing, for not only is the blood returned from the iungs into a different chamber from
that returned from the bods, but there is also Ω tendency towards the sub-division of the ventricle, so that the blood which his been aerated is kept towards one side of that chamber, and sent chiefly towards the head.
6. In an important respect the Snapping Turtle resembles the other Sauropsida and differs from most of the Ichthyopsida, viz., the large size of the eggs, which is due to the large quantity of food-yolk present. The eggs are like a bird's, except for the less calcarcous shell and the scantier white, and the embryo is gradually developed in it at the expense of the yolk. The period of oviposition is June, some twenty or thirty eggs of the size of a pigeon's being then laid by the mother in a hole scraped out by the hind feet, and not far from a stream or pond. The sun's rays beating on the sandy soil generally selected offer the requisite amount of heat for hatching the eggs out about Octolver.
7. Chelydra is the type of a family named from it which occupies a central position in the order of the Chelonia, and it is oasy to proceed from it to the wholly aquatic turtles on the one hand, and the wholly terrestrial forms on the other. At the two extremes are forms which differ very materially from each other in the adaptation of tho form of the body to the surroundings. The Marine turtles aro very much depressed, their feet are converted into flippers, and the carapace is not adapted for the protection of the retracted head and limbs; on the other hand, the purely terrestrial forms have a very convex carapace within which the head, tail, and limbs can be sheltered, and in some forms (the box-turtles) the plastron is hinged in such a way as to close effectually the anterior and posterior apertures into the shell.
8. We may first proceed in the direction of the more aquatic forms, of which the soft-shelled turtles, Trionychids, are fresh-water animals. There are two common species Amydla mutica and Aspiloncctes spinifer, abundant in streams opening into the great lakes from the South, and in
both the edge of the carapace, and the whole of the plastron are of leathery consistonce. 'These forms lie buried in mud and may remain for hours under water; their respiration is then effected liy water taken in mul rejected throngh the nostrils, in such a way that the mucous membrane of the pharynx, which is provided with vascular papillie arranged on the arches of the visceral skeleton, is constantly bathed with fresh water. This is an interesting point of contact with the Urorlela.
9. The feet of the Trionychide are broadly webbed, hut not converted into flippers as they are in the marine turtles, the Chelonids. In these the anterior flippers are largest, and the claws are much reduced. One of the genern, Dermatochelys, has a leathery skin in place of the horny shiclds which are present in the other genera, the green or edible turtle (Chelonia mydas), and the Tortoise-shell turtle (Eretmochelys imbricata), (Fig. 74), in which latter form the horny shields overlap each other.
10. Proceeding from Chelydra towards the turtles of more terrestrial habit, in all of which the plastron is much more complete than it is in that genus, we come first to the Cinosternidse in which the carapace is more vaulted, although the feet are still webbed, the creatures living for the most part in mudly ponds. The most northerly American form is the Musk tirtle (Aromochelys odoratus), the secretion from the cutancous glands of which has a somewhat offensive musky ordour. Closely allied are certain more snutherly mud-turtles, which are able to close the shells.

Fig. 75.-European Land-Tortoise. Testudo graeca. \&. (After Brehm).
11. Most of our species of turtles, however, belong to the Emydids, all of which are aquatic when young, some like the painted turtle (Chrysemys picta), and the spotted turtle (Nanemys guttata) throughout life, while others like the Wood turtle (Chelopus insculptus) are found in dry places away from water. The most terrestrial of the family is the common Box-turtle (Cistudo carinata), in which the plastron can be shut up over the retracted extremities. It lives in sandy hills, and forms burrows into which it retreats during rain.
12. Finally the Testudinida embrace the truly terrestrial tortoises represented by one species in the Southern States, but oceurring abundantly in the warmer parts of the Old and New Worlds. (Fig. 75).
13. The genus Hatteria (Fig. 76), referred to above is most nearly related in its abits and form to the Lizards, Lacertilia, but there are some respects in which its structure is much more primitive; e.g., its vertebre are amphicœlous and its pineal body (I. 36), presents more nearly the structure of an eye than does that of any other living reptile. Unlike the Lizards its quadrate bone is united firmly with the skull, and by an arch below the eye with the maxilla.

Fig. 76.-Hatteria punctata. \&.
(After Brehm).
14. In spite of the difference in habit between the extreme forms of the Chelonian series, there is not so much difference in exterial appearance as we meet with in the second order-the Lacertilia. A few aquatic forms belonging to the Varanidæ,
like the large water-lizards of the Nile, do not exhilit any special adaptation for locomotion in water. Most of the forms are terrestrial in their habits while some are arbereal, and others lead a subterrunean life. In accordance with such differences in the surroundings, we find great differences of external form. The members of the order are especially abundant towards the tropies, cnly two families being represented further north by the Blue-tailed Skink (Eumeces quinquelineatus) and the Brown Swift or Pine-tree lizard (Sceloporus undulatus): Both of these lizards are of small size and very active creatures, the last mentioned belonging to a large family the Iguanidæ, which emoraces most of the New-World lizards. The forms which lead an active arboreal life are generally compressed in shape, while those which creep about in sandy places depending on their colour for protection, like the Horned Toad of the Southern States (Phrynosoma cornutum, Fig. 77), are depressed. Among

Fig. 77-Horned Toad. Phrynosoma cornutum. (After Brehm).
the largest members of the family are the great: Iguanas of the Brazilian forests, which are alike remarkable for their size and for the singular crests and combs with which the sizin is adorned. An old world family the Agamidae contains forms which
resenple in hahit and appearance some of the Iguanidre. Thus there is an Australian species (Moloch) in which the skin, as in the Horued Toad bristles all over with spines, while again there are many active arboreal forms. Among the most interesting of these is the Flying Lizard (Draco volitans) (Fig. 78), a curious littlo Indian form in which the foremost

Fig. 78-Flying Lizard. Draco volitans. -
false ribs, which do not reach the breast-bone, project straight out from the body, and have the skin strotched between then in sucin a way as to form a serviceable flying membrane, which enables them to drop obliquely through the air in their hunt after the insects on which they live.
15. Scarcely less well adapted for an arboreal life are the Chamælenns and the Geckos, the former confined to the Old World, the latter found in the tropics of both O1A and New Worlds. In the former the feet are shaped something like those of a climbing bird, the five toes being arranged in opposite groups of twos and threes, the better to grasp the/branches on which they perch, while in the latter (Fig. 79), the toes are provided with adhesive discs, which enable them to climb up vertical surfaces such as walls and rocks. Both families are insect-eaters, but the Chamæleons secure their prey by shooting out the long worm-like tongue, while the Geckos spring upon theirs from a distance. While the Chamælcons are strictly arboreal forms and are protected in the foliage in which they live by assimilating their colour to that, the Geckos are ulso to

Fig. 70-Geckos. Platydactylus mauritanicus. 3.
(After Brehm).
be found in treeless districts, running over rocks and living in inhabited houses.
16. In several families of Lacertilia on the other hand we meet with a form of body adapted for creeping rapidly through underbrush and underneath stones, as well as for burrowing in the ground. In such creatures the body is cylindrical, almost snake-like, the limbs being either rudimentary or entirely absent. Generally the hind limbs are indicated even when the fore are absent, but in one Mexican genus (Chirotes), it is the latter which are alone present. In the Glass

Snake of the Southern States, Ophiosaurus ventralis, as in the European Blind-worm, Anguis fragilis, (Fig. 80), there are no limbs; both of these are extremely fragile

Fig. 80-European Blind-worm. Anguix fragilis. $\frac{1}{2}$. (After Brehm).
creatures, the tail being readily cast off in violent efforts to escape from a capturer. The most completely adapted for an underground life is the Amphisbæna, (Fig. 81), of South

Fig. 81-Amphisbcena alba. \ddagger. fter Brehm).

America. This curious lizard is cylindrical in form, the head and tail both abruptly rounded off; they live in ants' nests and feed on their larvæ.
17. From such footless lizards ${ }^{+}$; the true snakes, O phidia, the transition is sufficiently easy. Among the latter, indeed, are some forms which retain rudimentary hind limbs; such are the Pythons, Boa Constrictors and Anacondas of the Old and New World; again there are other smaller forms like the blind snake (Typhlops), which show the burrowing habit and the external form of the Amphishena, but lack the peculiar arrangement of the jaws which we see in the typical snake. All our O_{p} hidia, however, belong to two families which exhibit considerable dif. ference from the structure of any lizard. Not only are the fore and hind limbs absent, but there is no trace of the girdles supporting them, nor of a sternum. Locomotion, being effected by the ends of the ribs and by shields of the ventral surface whose hinder edges are free, presents a great contrast to the clumsier movements of the footless lizards. In the latter, certain of the orgins are affected by the length of the body, the tendency being for paired organs like the lungs and oviducts to become unequal in size, one of them assuming the function of both, but this tendency is carried further in the snake, so that one lung or one oviduct may alone be present.
18. The absence of the pectoral and pelvic girdles makes it impossible to recognise any but the trunk and ciudal regions of the vertebral column. A neck may be present in the form of a constricted part of the trunk behind the head, as in the Rattlesnake, but its vertebre do not differ from those of the region behind it. So heterogeneous an order is that of the lizards, that, we meet with the greatest variety in the epidermal coverings of the bociy, but the Ophidia constitute just as homogeneous a group on the other hand; nevertheless, in spite of the apparent similarity of the scales and shields, slight differences in the form and arrangement of these are used by systematists in the diagnoses of the species. (Fig. 82). The epidermis is cast off several times a year in the form of a slough, the first moult taking place immediately after the escape from winter quarters.

Fig. 82 - Scalet of the head in Coluber (Bascanium) constrictor. (After Garman.)
1, Roatral. 2, Nasals. 3, Loreals. 4, Preoculars or Antorbitals. 5, Postoculars on Postorbitals. 6, Temporals. 7, Internasals. 8, Prefontals. 9, Frontal, 10, Supraciliaries or Supraoculars. 11, Parietals. 12, Occipitals. 13, Labials. 14, Infralabials. (Between the infralabials are the submentals, and clothing the tip of the lower jaw the mental). 18, Ventrals. 19, Dorsais.
19. One of the chief peculiarities of the Ophidia is their method of securing their prey, and bolting it undivided. Some of the larger forms are dependent entirely on the flexibility of the vertebral column and the power of the trunk and intercostal muscles for strangling their prey, but the smaller snakes either seize their victims with their teeth, or first inflict a fatal wound with their poison-fangs. The poisonous snakes must sbe regarded as the most specialized of the Ophidia, for the teeth are not only reduced in number in comparison with the haruless forms (where they may be as numerous as in the 'Teleosts), but the poison-fangs (which are confined to the maxillaries), are either provided with a groove on the anterior surface, or with a canal connected with the duct of the poison-gland,-a specialized part of the glands of the upper lip, which is compressed by the muscles which close the jaws. That the snakes may be enabled to swallow their booty whole, a process which is often a very gradual one, the parts of the mouth are provided with extraordinary mobility. The pterygo-palatine bar is capable of greater movement than is even possible in the fishes, where it will be remembered its bones are not incorporated with the cranium, and not only is the quadrate bone freely moveable, but the squamosal which supports it, is hinged to the skull,
from which it projects backwards. Thus the articulation of the lower jaw, which is composed of two movable halves, is situated behind the head, and the gape is consequently extremely wide.
20. The Ophidia are destitute of the Eustachian tubes and tympanic cavities, the outer ends of the columellm merely ubutting against the quadrates.

Most of the snakes lay eggs, which are hatched without the aid of the mother, but some of the venomous snakes, as well as fresh-water forms, bring forth their young alive, and these are in certain instances taken care of by the mother.
21. Apart from the narrow-mouthed Typhlops and its allies, and the Pythons, Boas, etc., with rudimentary hind-limbs, the Ophidia fall into three groups, the extremes of which are formed by the poisonous rattle-snakes on the one hand with few canaliculate poison-fangs, and the harmless Colubridæ with numerous non-perforated teeth, on the other, while the various poisonous snakes with grooved teeth, like the briliiantly-coloured Bead-snake of the Southern States (Elaps), the spectacled snake of India (Naja), and the flat-tailed sea-snakes of tropical seas (Hydrophis), oscupy an intermediate position. In this region only the extreme forms are represented, the Crotalide and the Colubridæ-the former embracing the rattlesnakes and copperheads, the latter all our numerous harmless snakes.
22. Crotalus horridus, the banded rattlesnake, is marked by the head being covered with scales instead of regular shields, and by its alternate bands of two shades of brown. As in all the more venomous snakes the head is sharply marked off from the body by a neck. The movements are much more sluggish than in the Colubride, the greater agility of which compensates them for the absence of the peculiar weapons of the rattlesnake. One of the most characteristic features of the genus is the rattle formed of singular epidermal scales, the function of which has been much discussed. Observers are not agreed whether it is used to attract prey or to frighten away enemies. It is possibly useful for both
purposes. Suakes which are destitute of a rattle have been observed to make a rustling noise with the tail, and it is interesting in considering the origin of the rattle to recognize that each suecessive ring is merely the retained slough of the tip of the tail.
By the absence of a rattle, the presence of cephalio shields, and the smaller size, the Copperheads, Ancistrolon contortrix, are readily distinguished from the Rattlesuakes, which they resemble, however, in being very venomous. They are found in less roeky ground than the foregoing, are somewhat more active in their habits, but seek similar prey, viz., small animals, birds and frogs.

Of the Colubridx the Garter Snake, Eutcenia sirtalis, is certainly the commonest. Its dorsal scales are carinated, and arranged in nineteen rows, while those of the ventral surface of the tail are undivided. An alliod species, E. saurita, the Swift Garter Snake, is much slenderer, and has a longer tail.

The Garter Suakes affect damp swampy places, take readily to water, and are gregarious in their winter quarters. They are viviparous like most aquatic snakes. The commonest Water Snake is Tropidonotus sipeclon, which is to be seen basking on the shores of streams, to which it takes when startled. Another common form is Storeria Dekayi, the Little Brown Suake. It is also aquatic and insectivorous in its habite; its dull colours present a strong contrast to the bright green of the Grass Snake, Cyclophis vernalis, a form which lives in marshes, and attains a length of eighteen inches. Two larger species, the Black Snake, Bascanium constrictor, and the Fox Snake, Coluber vulpinus, prey upon larger animals such as mice and frogs, and attack birds' nests. Both of these species attain a length of five or six feet. The one is to be recognized by its uniform black colour, while the other is light brown with darker blotches. Finally the Milk Snake may be mentioned, Ophibolus triangulus, a whitish snake with oval brown blotches edged with black, found in dry situations, and visiting dairies for the milk; the Ring. uecked Snake, Diadophis punctatus, with its characteristic yellow ring, and lastly the Fiog-nosed Snake, Heterodon platyrhinus, a peculiar form generally supposed to be venomous, which has the habit of distending its neck with air so as to look formidable, and then emitting the air with a hissing sound, whence it is also called Blowing Viper. In the poisonous genus Naja, a similar formidable appearance is secured by the stretching out of the foremost free ribs at right angles to the vertebral column, so that the neck is converted into a flattened disc.
23. The fourth and last order of living Reptiles is that of the Crocodilia, aquatic forms of large sizo which are found in tropical rivers over the whole world. There aro three families represented by the Gavial of the Ganges (Fig. 83), characterized

Fig. 83.-Gavialis gangeticus. (After Brehm.)
by its very long snout, the Crocodile of the Nile and the Alligator of the Mississippi. Most of them are fish-eating f.rms, but many of them lie in wait for the smaller Mammalia when they come to drink. Their aquatic habit is associated with a powerful compressed tail, and compleicly or incompletely webbed toes, but the legs are, nevertheless, strong enough to enable them to leave one pond and drag themselves to another. As in the other Reptiles, the horny epidermal covering is well developed and characteristic, but there exist also in the cutis bony
shields on the back and behind the breast bone, which encase the creutures in an almost continuous coat of mail. Important differences from the Lizurds exist in tho ondoskeleton; the great elongation of the skull, e.g., with the formidable teeth lodged in sockets, the form of the nasal cavity, with the anterior nostrils at the tip of the snout and the posterior far back in the mouth, the intimate union of all the cranial and faeial bones with each other, etc. Many peculiarities of the other organs point to a greater specialisation than exists in the other Reptiles, thus the brain is of a higher type, and the heart is subclivided into four compartments, although there is still a certain mixture of the venous and arterial blood inmediately outside it. The order is oviparous like most Reptiles, the eggs, which are very fragile from the small percentage of lime in the shell, being laid in the sandy banks of the streams in which they live.
22. Although the Crocodilia hardly number more than twenty species at the present day, yet the Fossil species are far more numerous than is the case in any other of the four orders of living

Fig. 84-R(storation of Plesiosaurus. to.
Reptiles. The earliest of them had amphiccolous vertebre, and a much more complete exoskeleton than the living Crocodiles, probably for protection against the gigantic aquatic Reptiles
which inhabited the seas along with them. These arrange themselves under several orders of which the Sauropterygin (Plesiostaria) and the Ichtinyopiergin (Ichthyosauriut) are the best known. To the former (Fig. 84) belonged luge forms from 10-50 feet in. length, with flippers something like a seal's, and an extremely long swan-liks neck, which must have allowed great freedom of movement to the head with its formidable teeth. To the latter belonged short-necked forms resembling in shape the whales of the present day, but provided with n long and powerfully toothed snout. (Fig. 85).

Fig. 85-Restoration of Ichthyosaurus. rio.
25. A mong the fossil orders are likewise forms which attained a huge size, whose limbs, more lizard-like in form (Sauropoda), attest to a terrestrial or amphibious life, but whose teeth indicate that they were herbivorous animals feeding either on aquatic or marsh plants or on the forest vegetation. (Fig. 86.) Some

Fig. 80-Restoration of Brontosaurus sto. (After Marsh).
of them (Atlantosaurus) measured 100 feet in length by 30 in height, the locomotion of such enormous masses being only rendered possible by the fact that the skeleton was extremely light, the bones being filled with air. The Sauropoda were without the protection of an exoskeleton, whereas Stego
saurus had bony shields in the skin and projecting horns from the back which must have afforded a very complete defeusive umour. This genus also is interesting from the fact that the fore legs were shorter than the hind, and consequently that tho latter along with the tail supported the weight of the body. A transition is thus afforded to the Ornithopoda or bird-footed Dinosaurs, a remarkablo group, of which the best known is the genus Iguanodon of the Crotacoous period. (Fig. 87.) Recent

Fig. 87-Skeleton of Iguanodon in the Brussels Museum. .
discoveries in Belgium have disclosed complete skeletons of this reptile, which is characterised chiefly by the strong bird-like three-toed legs, the short fore legs used only for prehension, the lizard-like tail and the compressed body. The foot prints of this Iguanodon, which are also preserved, show that its gait was erect, and this is confirmed by examination of the sacral region of the vertebral column, which is formed of five or six united vertebre, evidently for the purpose of transferring the weight of the body to the hind legs. The Iguanodon was herbivorous, but there were carnivorous Dinosauria likewise, some like Compsognathus (Fig. 88) of such small dimensions that they hardly
deserve the ordinal name, others, like Megalosaurus, rivalling the largest herbivorous forms in size. Many of these carnivorons forma present features in their limbs and teeth which remind us of the carnivorous mammals, but the Compsognathus had an erect gait like the Igumodon.
26. In many respects the Ig. uanodon and its allies resemble the Ostriches, and, indeed, as we shall see there are fossil toothed birds which help to fill up the gap between them.

Fig. 88-Restoration o Compsognathus. \&.

So far the fossil reptiles we have considered have been either uquitic or terrestrial fqrms; some of the latter indeed walked

Fig. 89 Restoration of Pterodactyl. d.
erect, their forelogs being used for prehensile purposes. We now come to certain forms which lived an aerial life, being provided with orgins of flight of a chatacter peculiar to themselves. In this order, the Pterosavria, (Fig. 89) the limbs wero approximately of the same size, but the little finger of the anterior extremity was enormously long and strong compared with the others. It had four joints, and between it, the arms and the side of the body, a web of skin was stretched out, somewhat similar to the web between a bat's fingers. Some of them (Fig. 90)

Fig. 90-Restoration of Rhamphorhynchus phyllurus. (Marsh). t.
had a long tail terminating in a rudder-like membrane supported by the spines of the terminal vertebræ. But none of them had anything similar to the plumage of the birds, and we shall afterwards see that the skeleton of the bird's wing is constructed on quite a different plan from that of the Pterosaurian. Although many members of this group were small, others attained a gigantic size, one found in Kansas having a stretch of some twenty feet.

CHAPTER \quad.

The Birds.

1. From what we learned in last chapter it is neither the power of flight nor the supporting of the body by the hind limbs which constitutes a bird, for both these characteristics were present in certain fossil reptiles. It is the peculiar epidermal clothing of feathers, which we must regard as marking off the kirds from the flying reptiles to which they are allied. Yet there is not so much difference between the reptilian scales and the avian feathers as might at first sight appear. If we watch the development of the feathers in a bird, we may see that they arise at first very much like scales, along regular tracts, and that they are simply thickenings of the epidermis over papillæ of the cutis. But as the feather is developed it is retracted into a follicle in the skin, and the epidermis gives rise to the feather proper, the dried-up cutis-papilla to the pith.
2. In most birds we distinguish two different elements in the plumage, the feathers proper or contour-feathers and quills, and the down-feathers; but in certain birds destitute of the power of flight down-feathers alone are present. Both kinds resemble each other in having a quill by which they are in. serted into the feather-follicle, a shaft, and a vane which is composed of two rows of barbs, each provided with projecting barbules. If the barbules are so arranged that those on contiguous barbs interlock with each other, then we have a contourfeather, or if it is of special use in flight, is a quill-feather, but if the barbules are soft, and do not interlock, we have the down-feather. It is obvious that a creature only possessed of the latter cannot fly; the interlocking of the barbules is neces-
sary to give to the feather the requisite strength to encomnter the resistance of the air. The feathers, however, are not to be merely regarden as orgams of flight, but as a warm clothing for the body, necessary to prevent the great loss of heat which would otherwise attend the quick flight and rapid change of air round their owners.
3. A great many technica! terms are necessary in systematic ornithological descriptions; some of theen may be studied from Fig. 91.

Fig. 01--To illustrate the topography and the plumage of the Sparrow. (Passer domesticus). (After Thomé).

Abstract

1, Upper mandible with nostril ; 2, lower mandible; 3 , cuhnen ; 4, gonys; 5 , lore in front of the eye; 6 , forehead or frons; 7 , crown or vertex; 8, occiput; 9 , inalar or cheek reyiou; 10, throat; 11 , breast; 12 , alsdomen; 13 , back; 14 , rump with the upper tail coverts; 15, rectrices or tail feathers; 16, tarsus; 17, primaries; 18, secondary and tertiary remiges, or wing quills; 19, alula or bastard wing; 20, greater; 21, median and

 lesser wing coverts.4. Premising then that the plumage is to be regarded as the essential characteristic of a bird, let us see, in continuation of the subject of the close of the last chapter, how early the remains of true birds are to be met with in the geological history of the earth. Fortunately the feathers are well known in the earliest fossil bird which has been fourd,
becanse the remains are preserved in a very fine textured stone of Upier Jurassic, Age found at Solenhofen in Ǵermany, and usel for lithographic purposes. The hast found of the two specimens is very perfect, the carcase of tho bird having been bedded in the tine sediment of the sea-shore, in such a position that all the parts are very plain. From these we recognise that the Archcoopteryx, as it is

Fig. 92-Berlin specimen of Archæopteryx, \&, with ler from London specimen.
UF. Tibia. MF. Tarso-metatarse. Z. The toes. called, is in many respects more like a reptile than a true bird, espec. aily so in the fact of its tail being formed of a large number of distinct vertebre, so that the ordinal name Saururæ, was formed for it on this account. (Fig. 92). No other bird-romains hitherto found show this peculiarity, so that Archæopteryx stands alone with its lizardlike tail, while all other birds, living and fossil, show some union of the candal vertebre. In respect to its plumage and organs of flight, however, Archæopteryx is a true bird, and not a flying lizard. Two other fossil bieds have been found in the Cretaceous rocks of the Western States which share with Archæopteryx another reptilian character, that of toothed jaws, but in other respects more closely resemble the birds of the present day Of these two genera, one, Hesperornis, appears to have been destitute of the power of flight, because the boncs of the anterior extremity are much reduced and there is no keel upon the sternum, such as
there is in all hirds which havo that power, while the other, Ichthyorius, had a wing fashioned in the same way as the great majority of our birds, necessitating a keel upon the sternum. Thus at a very eurly period of the history of the birds, the distinction which we draw between those with a raft-like and those with a keeled sternum (the Ratitæ and the Carinatæ) was alrealy established. .But this distinction is of a comparatively unimportant character, because it would appear that at various periods of the world's history, members of different families of birds have lost the power of flight (and along with this, to a greater or less degree, the keel on the sternum,) by taking exclusively to some other method of lovomotion, such as swimming or running. Nevertheless, when we realize how the structure of a bird is connected with its power of flight, we shall more easily understand how the absence of that power may produce a superficial resemblance.
5. If we study, then, the structure of any typical carinate bird, we shall soon learn that apart from the plumage there are many other features which are evidently adapted to its mode of locomotion and halits of life, and that the wholo structure of the body is, indeed, modified in connection therewith. Although the common domestic fowl belongs to a family of poor fliers, yet a knowledge of its structure forms a key to that of all the Carinate. Numerous races are known but all belong to a single species, Gallus domesticus, the nearest wild ally of which is the Gallus bankiva of India. With the pheas.ınts, pea-fowl and guinea-fowl they form the family Phasianidie of the order Gallinacei, all of the birds included under which (prairie-fowl, partridge, turkey, etc.,) are indifferent fliers, seeking their food on the ground, partly by scraping, for which purpose the feet are provided with strong claws.
6. Let us now proceed to examine the skeleton of a fowl with the object of seeing in what respects it differs from that of the fossil birds and reptiles The vertebral column presents the five

Fig. 93.--Skeleton of Fowl.
cv. cervical vertelron; h. humerus ; r, u. rarlius and ulıa ; cas carpus ;"t. pollex ; il index; III. midhle finger; co. coracoid: se. scapula, cl. clavicle; es. crest of sternam; s^{\prime}. One of the processes of the body of the steruum; il. ilium; as. ischiunn; pu pubis; py. pygostyle ; f. femur ; t. tibis und fibula; tu. tarjo metatarse.
regions present in all the higher Vertebrates; of these, the cervical contains thirteen vertebre, and it alone retains any freedom of movement between the individual bones, for the vertebre of the trumk and the greater part of the tail are for the most part so united by bone that no such movement is possible. The last few vertebre are, however, movable, and the terminal one, the socalled mygostyle (which is really formed by the fusion of several centra) sel ves to support the tail-feathers. The chief characteristic, then, of the birl's vertebral column is that theiliac bones, instead of being united with a few sacral vertebres as in the reptiles, have acquired a union with the vertebre in front and behind these, so that the whole region is stiffened into one mass. It is obvious that such an arrangement is well calculated to transmit the whole weight of the body to the hind limbs.

A conspicuous difference between the higher and the lower Vetebrates is in the nature of the unica between the skull and the vertebral columu. In the fisk the basi-occipital elosely resembles and forms a part of a series with the vertebral centra; in the Airpohibian, on the other hand, the ex-oceipitals form two surfaces of contact (occipital condyles) with the vertelral column, but in the higher Vertebrates greater freedom of movement is conferred upon the head by the specialisation of the first two vertebre for this purpose. The auterior or atlas possesses surfaces for receiving the oue (Sauropsida) or two (Mammalia) oceipital condyles, and it itself rotates on a pivot (the odontoid process-which is really part of the centrum of the Atlas-) attached to the centrum of the second vertebra or axis.

As for the skull, the chief thing to notice is the early fusion of its component parts in such a way as to make it impossibie to distinguish the limits between the cranial bones, although the sutures between those of the face are easily seen. The premaxilla are of large size, and chiefly support the upper beak, (which is movable 10 a certain extent on the skull belind), while the maxillæ are insignificant and are united to the outer surface of the movable quadrate by a slender bar formed o. ${ }^{\circ}$ the jugal and quadrato-jugal. The quadrate moves partly on the skull and
partly on the pterygo-palatine bar, and it supports the mandible, which: in the adult is furmed of a single piece inclosed in the lower horny beak.

It is to be expected that the possession of the power of flight should be associated with alteration of those parts of the skeleton concerned, so that in addition to the rigidity of the thorax conferred by the immovability of the dorsal vertebre, it is not surprising to find other conditions adapted to offer a solid basis of resistance to the stroke of the wing, and protection to the delicate parts contained within the thonax. So the true ribs are not only bound to each other by uncinate processes, but their sternal ends, instead of being cartilaginous, are bony. Again, the sternum does not only afford protection to the thoracic organs by its great size, but by its keel offers a iarge surface for the attachment of the muscles of flight. Although the scapula is small, the ventral parts of the shouldergivlie aro both strong and connected with the sternum; especially is this true of the coracoid, through which the strain of the wing stroke is chiefly transmitted to the trunk. The chief peculiarity of the humerus is its strong crest for the insertion of the muscles of flight, while the ulna differs from the radius in its strong curvature, the convexity of which is roughened by the attachments of the secondaries. It is the wrist and hand that are most peculiar, however, for we see only two proximal carpals, the distal curpals being fused with the three metacarpals into one perforated bone, while the three fingers are independent. The second finger is the most important, the third being rudimentary, while the first, which supports the spurious wing when it is present, and like the second is sometimes provided with a claw, is also short.

Reference was made to the singular method of union of the pelvis to the trunk; the other parts of the pelvic arch are chicfly remarkable for their backward direction and for their not meeting in a symphysis, except in some of the more reptilo-
like Ratite. Another peculiarity of the hinder extremity is that only the proximal end of the fibula is present, and that the ankle joint, as in many reptiles, is situated between the proximal and the distal rows of tarsal bones, the former of which becomes fused with the tibia, into a tibio-tarsus, while the latter and the metacarpals of the second, third and fourth toes become fused into one tarso-metatarse. When the first toe is present, its metatarsal is generally rudimentary, but it has two joints, while the second toe has three, the third four, and the fourth five. The spur of the cock is simply a bony exsrescence attached to the metatarsus.
7. It is to be expected that the greatest peculiarities of the muscular system of the birds should be connected with theirmode of locomotion. From what has been said above, it will be gathered that the great muscles of flight take their origin from the sternum, and thus the centre of gravity of the body is shifted towards the most favourable position for flight. Not only the depressor of the wing, but also its elevator muscle arise from the sternum, the necessary change in the direction of the latter being acquired by its tendon passing through a pulley, at the junction of the three bones of the shoulder-girdle, to its insertion in the upper surface of the humerus. In reptiles and mammals where the full number of fingers is present, and the joints of these are freely movable upon each other and on the wrist bones, muscles are necessary for carrying out these movements, but the consolidation in the region of the hand of the bird dispenses with the necessity for these and therefore the chief muscles of the fore limbs are in its proximal end near the body. The same is true of the hinder extremity, tendons only being continued into the distal end to carry out the movements of the toes. Thus the great muscles of the limbs are likewise situated in a favourabie position of the body for flight. Cutaneous muscles, chiefly inserted into the feathers
and destined for shaking the plumage, attain a g :oater develop. ment in the birds than they do in the lower furms.
8. A great advance is to be seen in tho brain of a bird as compared with that of any reptile, for not only is tho cerebrum much larger, but the cerebellum is so also, with the result that the optic lobes are thrust aside right and left towards the base of the brain. The surface of the cerebrum is smooth, but that of the cerebellum is much folded so that the white matter is arranged in a tree-like fashion in its interior. Of the senses, sigth is decidedly the most acute; the birds of prey especially are gifted with extraordinary powers of vision, and in association therewith the bulb of the eye has a very different shape from the globular one present in other Vertebrates. Its principal axis is much elongated, the posterior part of the bulb being a segment of a sphere, while the anterior is drawn out in a tubular fashion. As in some of the reptiles, the sclerotic coat has a circlet of bony plates formed in it. Hearing is also more acute than in the reptiles; the tympanic membrane is situated at the bottom of a short external auditory passage (surrounded by special "auricular" feathers) and the Eustachian tubes converge to a common aperture in the palate.
9. Although organs both of touch and taste are present in the mouth-cavity of the bird, yet the tongue is generally clad to a great extent with horn, which varies in shape in different species. The most constant peculiarity of the cesophagus is the presence of a crop, which may be a projection from one side, as in the fowl (Fig. 94), or from both, as in the pigeon. The stomach is divided into a smaller glandular cardiac end, the proventriculus, and a larger muscular pyloric end, the gizzard. In the latter the muscular coat is very thick in two places, and the epithelial lining is converted into horny pads, which serve for the grtading of the food in the granivorons birds. As a compensation for small salivary glands, the pancreas is large, and tho length of the intestinal surface is increased by two
coeca, which open into the anterior end of the latge intestine.

Fig. 94-Viscera of the Fowl. (after Brandt).
oc, cesophagras; ig, crop; tr, trachea; m, muscle; la, syrinx ; p, lumir; c, leart; h, liver; dh, hepatic duet; vf, rall-bladder; deh, bile-duct; pv, proventriculus; sp, spleen; v, gizuard; d, duodenum; pia, pancreas; i, small intestine ; coc, its cecea; fo, erg-follicle burst; o, eggs; od, oviduct partly slit open containing a mature egre, o'; cl, cloaca; Bz, Bursa Fabricii.
10. Certainly the most remarkable featureabont the respiratory system of hirds is the development of air-sales, which receive their air from the lungs, and are situated partly among the visecta of the body-cuvity, partly botween the museles, and muderncath tho skin of the body, and finally within the bones, displacing the marrow in these. The function of these air-sacs is not confined to supplementing the size of the lungs, (although a certain interchanige of gases betweon the blood and the contents of the air-siles must take place), but they likewise serve to render the borly specifically lighter (especially as the bodily temperature is high), and thas more adapted for flight. As the bird's locomotion involves much muscular exertion, both the respiratory and circulatory systems are more perfect than in the reptiles, the presence of four chambers in the heart, allowing the complete separation of the blood which has been returned for aeration, from that which is sent out by the heart to the system.
11. In the lower Vertebrates the voice is little developed,
but in the birds, especially in the song-birds and parrots, it is not only of considemble range, but also capable of modulation. The larymx, which is the organ of voice in the other Vertennates, is here in the background, for the notes of the song-bird are produced lower down in the wiml pipe, at the point where it divides into the two bronchi. Here the "syrinx" is situated, in the formation of which, both membranes capable of vibration, and resonant dilatations capable of reinforcing the sounds produced by these, take part.
12. The kidneys in the liids are not so elongated as in the reptiles, and are monlded into the large and complex sacrum.

Only one oviduct, the left, is present ; the number of eggs laid is very diflerent in different species, but approximately constint in the same species. The sizo is not always directly proportionate to the size of tho bird, for the chicks escape from the egg (by the agency of a temporary tooth on the upper beak) at very different periods of their dovelopment. Of the various orders of Carinate birds, those which are the moro primitive escupo from the egg in a condition to fend for themselves (aves precoces), while the young of the highter orders required to be looked after by the parents for some time after they are hatched, their escape taking place at a much less developed phase (aves altrices).
13. The egg of the fowl owes its large size chicfly to the fool-yolk, which is associated with the germinal yolk ($\mathrm{I}, 66$). The yolk is, nevertheless, a single cell bounded ly a wall, the vitelline membrane. After bursting through its capsule in the ovary (Fig. 94), it escapes into tho colom, and is received by the open mouth of the ovidnct, the walls of which are "proviled with glands, which seerete the allumen or white, and with muscular layers, which propel it in a spiral direction(involving the formation of the ropy parts of the white) towards the lower end of the t.rlse, where the shell-glands secerete the shell. When the egg is laid, it has alreadiy vudergone some of the stages of segmentation, the white pateh upon the surface being formed of a layer of cells (the blastoderm), destined to grow into the bolly of the chick. The process of incubation requires twenty-oue days, and it can be carried out
artificially, if frest air and moisture, as well as the proper temperature $-104^{\circ} \mathrm{F}$. - be afforded to the eggs.
14. Having examined the structure of the fowl as a sonvenient carinate type, let us now see in what respects Archaopteryx and the Ratitie differ from it. As far as the phanage is concerned, Archropteryx approaches the Fowl more closely than do tho Ratite, for in the latter the feathers are more downs, while in the former quill-feathers were present, and probably also fine contour-feathers, although the impressions of those hive not been preserved. The quill-feathers were attached to the ulnar side of the hand and fore-irm, round the neek, to the leg as far as the tarsal joint, and in a singlo series along each side of the long tail. That is really the most important peculiarity of the fossil, for instend of the short tail of the Fowl, there were twenty independent vertebra, each with a quill-feather attached right and left to it. The trunk region, likewise, shows less of the concrescence so marked in the carinate bird, for the the vertebre are all amphicolous, and only a few of them are united into a sacrum ; furthermore, the ribs are decidedly reptile-like in their arrangement. In place of the horny sheath of the bird's bill, Archæopteryx was furnished with numerous little conical teeth, probably lodged in sockets; in other respects the skull was bird-like. It is argued from the absence of a crest on the humerus that Archæopteryx was a poor flier, (the sternum has not been found, so we lack the evidence which would have been forthcoming from it), but the hand was formed of three fingers with inkependent metacarpals and stout claws, so it is likely that the anterior extremity must have been of great service in ciimbing, the plumage serving, perhaps, more as a panachute than for truo flight. In the structure of the hinder extremity there is no great difference from that of a bird.
15. The Ratita or Cursorial Birds are unquestionably much closer to the Carinate Birds than Archæopteryx is ; indeed many
zoologists regard them as degenerate forms of carinate birds, which have in the course of ages lost the power of flight, while others, looking at their structure and their geographical distribution, think that they are a more primitive gromp than tho Carinata with more affinity to the reptiles, und that they never possessed the $1^{\text {wwer of flight. The plamage in this group never }}$

Fig. 95. -Skeleton of the Moa (Dinornis).
has the character of contour or quill-feithers, the plumes of the ostrich being nothing but gigantic downs. Insteal of the bones of tho head uniting early with each other, tho sutures are quite evident, and the cervical ribs are for a long time movahle, instead of being coalesced with the vertebre. Again, either the pubic or ischiac bones or botil may form a symphysis as they do in most living reptiles ; and, at least, there is a greater resemblance to the Dinosaur pelvis than there is in the carinate birds. Othor anatomical features of the Ratite are adaptive; the functionless nature of the fore-limbs is associated with the reduction in size of their bones and of the clavicles, while the adaptation of the hind limbs to rapid locomotion leads to a loss of one or two of the four toes.

There is great structural differencu between the families of Ratite, and they are also marked off geographically from each other. New Zealand has the Kiwis (Apteryx), small forms of about the size of a turkey with a very rudimentary anterior extremity and four toes, of which the hinder one is strongly clawed. Allied to it are the remains of various giant birds (Dinornithidec), recently extinct and found for the most part in New Zealand (Fig. 95). These Moas, as they are named by the Maoris, atood ten feet from the ground, and their eggs were of very large size. Allied to them is a similar form from Madagascar (EEpyornis), believed to be the Roe of Eastern Fables; the skeleton of this genus is not well known, but eggs. have been found of enormous size, wnich hold as much as two-and-a-half gallons, and have been estimated to be equivalent in contents to twelve dozen hen's eggs. In the rest of the Australian region two other genera, the Cassowaries (Casuarius), and the Emus (Dromeus), are found, while in South America, are the three-toed Ostriehes (Rhea), and in the deserts of Africa and Western Asia, the two-twed Ostrich (Struthio camelus).
Like the Carinatie the Ratite have no teeth in the jaws, which are simply clothed with a horny beak, but the genus Hesperornis, which as far as its sternum is concerned is one of the Ratite, had only a horny beak on its premaxillæ, while the maxille and the mandibles had teeth fixed in a continuous groove. Besides the teeth, there were numerous other characters which give it an intermediate position between the Dinosaurs and the Ratites. The anterior extremity is represented by the
humerus aloue, but the whole skeleton gives the impression of a large diving birl like a Grebe, living on fish, and swimming by mans of the jowerful feet. On the other hand, the genus Iethelhyornis was truly carinate, its anterior extremity being like that of an ordinary bird, but the rest of the skeleton presenting primitive features indicating reptilian affinities, sueh as teeth arranged as in Hesperornis (except that they were in sockets), and amphicelous vertebre as in Archeopteryx. Ieththyornis, therefore, occupies a middle position between Archieopteryx and the Carinate.

Fig. 90.-Fect of various Avian genera.
a. wading type, Cicnia; h. perching, Turdus; c, rasorial, Phasianus; d. raptorial, Falco; e. adherent, Cypselus; b. cursorial, Struthio; g. scansorial, Pieus; h. lonate, Podiceps; i. lobate and scolloped, Fulica; k. palmate, Anas; 1. totipalmate, Phaethon.
16. When we come to the classification of the Carinate birds we moet with great difficulties; for although we recognise that there are certain orders which are lower than the others, yet the adaptation to an aerial life has impressed a certain uniformity
upon all, concealing such struciural characters as might be relied upon for making a natural classification, and causing the ornithologist to depend frequently on characters which are in relation to the food or the manner of life (Figs. 96, 97). The

Fig. 97.-Outlines of bills of various genera.
L Leptoptilus, marahii; P. Passer, sparrow; Ca. Cancroma, Boatbill; D. Doei. mastes, Swordbill; PI. Phetalen, spoonbill; Pe. Pelecanus, pelican; T. Turdus, nrish; Re. Recurvirostra, avocet Ph. Phoenicopterıs, Flaminıo; Ry. Rhynchops, Skimmer. A. Anastomus, stork; B. Balaniceps, shoebill ; S. Sarcorhamphun, condor; Co. Columba, pıgeon; My. Mycteria, stork; Me. Mergtes, Merganser; I. Ihis.
difficulties of classification are chiefly met with among the higher orders, to which not only by far the greatest number of
the species belong, but which exhibit far less important differences between each other than lo the members of the lower orders.
17. The following arrangement of the orders of Carimatie is that generally employed; although there may be doubt as to the affinities of some of the groups, there is none that the swimming birls occupy the lowest place and the song birds the highest. Of the formor the Pygopodes, or Divers, are marked by the far back pesition of the legs required ly an erect or semi-erect attitude, by the shortness or rudimentary charaeterof the wings, by the complete or incomplete webbing of the three toes, and by their powers of swimming and diving. The most remarkable genus is the Penguin(Aptenodytes) of Southern Seas, (Fig. 08) in which the power of flight has been lost, and the wings are converted into flippers covered with scale-like feathers. Another interesting form, in which the wings, though feathered, were extremely short and incapableof flight, is the great. Auk (Plautus impennis (Fig. 99), which was common in

Fig. 08.--Penguin (Aptenodytes) (after Brehm.) the Arctic Seas at the beginning of this century, but is now thought to be quite extinct. Allied to it are tho Puffins (Fratercula) with their singularly shaped and brilliantly coloured bills, and the Sea-pigeons (Cepphus grylle)
the most elegantly formed of the group. More familiar than these marine forms are the Loons (Urinator) and the Greles (Porlicipille), the latter with the toes merely fringed, the former with the toes entirely webbed.
18. In contrast with these forms are the long-winged swimmers (Longipennes), in which the length of the wing is due to the length of the arm-bones, not of the hand. They are excellent fliers, and sweep down upon the sea and inland lakes for the aquatic animals (ohiefly fish) on which they live. The three front toes are webbed, the first, free and often rudimentary. The gulls (Larus), Terns (Sterna), and the Jagers (Stercorarius) all belong to this group. Nea-ily allied to it are the marine petrels, to which small forms like the stormy petrel or Mother Carey's chicken (Procellaria pelagica) belong, and the giant albatross, Diomedea exulans, with a wing-spread of 15 feet. The nostrils of the latter, however, ars tubular, ret mere fissures as in the gulls, etc. ; they are, therefore, often regarded as a distinct order (Turbinares).
19. The Steganopodes have received their name from the complete welbing of the toes, the first toe being turned for-

Fig. 99.-Great Auk. Plautus impennis. (after Breham.) ward and united by a membrane to the second, They are all fish-eating birds, but embrace such different forms as the tropic and frigate birds (Phaethon and Tachypetes), the darters (I^{\prime} lotus), gannets (Sula), and, more familiar inland, the cormorants (Phcilacrocorax), and pelicans (Pelecanus). The singular mandibular pouch of the last genus marks it from the others.
20. Unlike the above, the Ducks and their allies (Anseres) have the
hinder toe free; tho others are webbed, and tho heak is covered with a soft skin in which there are numerous tactile corpuscles, while the gipe is provided with horny lamelle (hence Lamellirostres), which serve for straining the muddy water in which they seek their food. The least duck-like forms are the Mergansers, which have a serrated bill and dive for fish. A very large number of species of wild ducks are known, from one of which, the Mallard (Anas boschas), the domestic duck is derived. To the same genus belong the Teal and Widgeon, but the Shoveller (Spatula), Pin-tail (Dafila), Wood-duck (Aix) and Red-head and Canvasback ($A y t h y a$) are sufficiently different to be separated under distinct genera. The same is true of the Buffle-head (Charitoneta), Harlequin (Histrionicus), the various species of Eiders (Somateria) and Scoters, and the Ruddy Duck (Erismatura). The domestic goose is derived from the Enropean Anser cinereus, which genus is represented in America by the white-fronted goose. Various allied forms, like the Canada goose and Barnaele goose, are ranged under the genus Branta. To the same order belong the Swans ($C_{y} y^{n i d}$ ice), and ailied to it are the Flamingoes (Phenicopterus) with; their singular bent bills, very long legs and brilliant plumage.
21. In the next order (Herodiones), we have various genera which like the Flamingoes have very long legs, the tibia and tarsus being much elongated, but they differ from them in the structure of the bill, and also from the following order in the same respect. The bill has no cere or fleshy part at the root as in the other waders, but it is very differently shaped in the different geuera, e.g., in the Spoonbills (Platalea) it is flattened and spatulate at the tip, in the Ibises compressed and arched downwards, in the Storks (Ciconia) much thicker than in the Herons (Ardeidce), from which the order derives its name. This family embraces the Herons (Ardea), Bitterns (Botaurus), the Night Herons (Nycticorax); the rest of the waders are sublivided into marsh-birds and shore-birls. To the former (Paludicolæ) belong the Cranes (Gruidee), and Rails (Rallidos) including the Gallinules and the Coots, while the latter (Limicolæ) embrace the Avocets (Recurvirostra), Snipes ($\dot{\text { Gallinayo, }) ~}$ Woodcoek (Philohela), Sand-Pipers (Tringa and Totanus), Curlews (Numenius), and Plovers (Charadrius and Eggialitis), etc.
22. In contrast to the long-legged Waders we now come to the Callinacei the legs of which are short, stout, and adapted for scraping. The Pheasant family (Phasianide), to which the domestic fowl belongs, is only represented in America by the wild turkey, Meleagris gallopuen, (the probable stem-form of the domestic turkey), but it is abundautly repre
sented in the Old World, and especially in India by the Pheasant (Phasianus colchicus), Peafowl (Pavo), Guineafowl (Numida), Argus Pheasant (Argus), etc. On the other hand, the Grouse family is as characteristically American as Old World, for we have Ruffed Grouse (Bonasa) Prairie-hen ('Tympanuclus), Ptarmigan (Lagopus), and other forms. Two aberrant families are associated with the Gallinæ which exhibit primitive characteristics in two different directions, - the Megapodidm of Australia, which do not hatch their eggs, ${ }^{\text {? but lay them in heaps, to be incubated by }}$ the heat evolved from decomposing vegetable matter mixed with them and the Tinamus of South Amirrica, which in the structure of the skull remind us of the Ratitr.
23. The Pigeons or Columbw are better adapted for flight than the, foregoing order, the feet aru more delicate, the bill has a soft cere, and the young are looked after by the parents on their escape from the egg. In this region we have merely the passenger pigeon (Ectopistes) and the mourning dove (Zenaidura) ; but the pigeons form a very large group, especially developed in the Australian region, where the ground-pigeons (Goura) and fruit-pigeons (Carpophaga) are abundant. Our numerous domestic races and varieties are all derived from the Mediterranean Rock-pigeon (Columba livia): Now extinct forms allied to the pigeon were the Dodo of Mauritius (Didus ineptus) and the Solitaire of Rodriguez (Pezophaps), their extinction being attributable to their rudimentary wings.
24. All the birds of prey (Raptores) agree in the possession of strong curved claws and bill, the upper beak projecting like a hook beyond the lower, and with a cere surrounding the nostrils. The tarsus may be scutellate or partly feathered. It is naked and extremely long in the Secretary Bird, Gypogeranus, a crane-like form from the African steppes, wh:ch chiefly hunts Reptiles, but it is comparatively short in the other genera, especially so in the Owls, where not only the tarsus is feathered, but also the foot. The whole plumage in the Owls is of such a character as to permit the noiseless flight so helpful to them as nocturnal birds. Their habit of concealing themselves during the day in trees, rocks, etc., is assisted by the climbing foot. Some of the species like the Barn-Owl (Strix), and Saw-whet Owl (Nyctale) have complete radiating disks of feathers round the eyes, others like the Horned Owls (Bubo), only horns. The tiny burrowing Owls of the Western States (Speotyto) have the singular habit of nesting at the ends of long burrows.

The above-mentioned families include extreme types of the Raptores, between which are the vultures, eagles, falcons, etc., more closely related
to each other. Among the vultures those of the New World (Cathartide) resemble those of the Old World (Vulturide) in the absence of feathers about the head, but differ in the structure of the bill, and in their habit of feeding on carrion. The Falconidie, on the other hand, have a feath. ered head, shorter bill, and include the various buzzards, eagles, hawks, falcons and the ospreys.
25. A large series of very different forms uscd to bo associated as the "scansorial birds" on account of their possession of "climbing" feet, but it is now recognized that they ought to be grouped under several orders. One of the most singular of them is that of the Psittaci or parrots, which are marked by the upper bill being shorter than it is high, strongly curved, movably articulated to the skull, and with a cere surrounding the nostrils. The lower bill, on the other hand, is short and truncated, and the tongue fleshy. This is essentially a tropical group, chiefly developed in South America and the Australian region. It embraces the cockatoo, macaws, parrots, and ground-parrots. Associated with the cuckoo under the ordinal name Coccyges, are a number of forms with the foot more or less adapted for climbing, and with a long bill, but forming, on the whole, a somewhat heterogeneous group. The Toucans of S. America with their gigantic bills, the Rhinoceros birds, with the singular horny process on theirs, the Cuckoos, Motmots, Kingfishers and Hoopoos belong to this order. The Picl are a more homogeneous order, embracing the Woodpeckers and Wrynecks; the toes which are turned forward are connected at the base, and the bill is sharp and chisel-like. Finally, the Macrochires receive their ordinal name from the length of the hand, which is longer than the fore-arm, and that longer than the humerus. They are good fliers, and embrace the Goatsuckers, Swifts and Humming-birds.

E6. More than half of the species of Birds belong to the last order, Passeres, in which the bill is differently shaped but always without a cere; in accordance with their " perching" habits the hinder toe is longer and stronger than the second toe; both the outer toes are connected at the Lase. They fall into two sub-orders, the Clamatores, which embrace the forms destitute of a syrinx such as the Flycatchers, and the Oscines or singing-birds, which include the Larks, Crows, Jays and Magpies, the Blaekbirds, Orioles, Finches, Sparrows, Tanagers, Swallows, Shrikes, Creepers, Warblers, Wagtails, Wrens, Nuthatches, Tits, Thrushes and Bluebirds,

CHAPTER VI.

Tile Mammals.

1. Among the classes of Vertebrates already studied we have observed much differeace as to the care taken by the mother of her young. In the Fishes, for example, large numbers of eggs are produced, and for the most part left to their fate, only a certain number of the fry reaching matarity. But there are examples of nest-building forms among them, and of parents which defend and protect their young, while there are others in which the young are retained within the body of the mother until they are able to look after themselves. (I, 94.) Similar differences are to be met with in the Amphibia and Reptilia as to this point, and we have also seen that some Birds make very little provision for the safe hatching of their eggs, while in the case of others, the eggs are incubated and protected until the young escape, either able to fend for themselves or in a condition to require further protection and feeding from the mother. As an example of special adaptation to the care of the young may be mentioned the Pigeons, in which the glands of the crop secrete a milky fluid during the time of incubation, which is used for the nutrition of the squabs.
2. We meet with an analogous condition of affairs in the Mammals, where certain glands of the skin are specially adapted to furnish milk for the nourishment of the young. Even in this group, however, we see great differences as to the condition in which the young are brought forth, for puppies are born blind and helpless, while the young of the Herbivora are able to run about shortly after birth. If such differences are to be
observed in familiar animals, still greater differences characterise two orders of the Mammalia which are almost confined to the Australian Region-tho Monotremes and tho Marsupials. In the first of these groups eggs are laid, large in size, containing much food-yolk, and surrounded by a shell which has a certain amount of lime in its composition. After a short period of incubation the young escape from the shell in a very helpless condition, and are now dependent on the milk which exudes from the cutancous glands of the mother. In one of the two genera which belongs to this order, the milk-glands open into a pouch, big enough to receive the head of the young, but in the other no such provision is present. The Marsupials, the second of these orders, however, in which the young are also born in a very helpless condition (the giant Kangaroo, as tall as a man, brings forth young of about the size of a newly-born rat), have a provision for shelter: ing them in the shape of the pouch, a foll of the skin on the ventral surface of the abdomen, which supports and protects the young while they are being fed by the milk-glands of the mother, and to which they resort in danger even after they are able to run about. In this respect, then, we are able to recognize three great groups of Mammalia, (1.) the oviparous forms; (2.) those which bring forth their young alive, but in such a helpless condition that they must be carried for a long time in the mother's pouch; and (3.) the higher Mammals, in which the development of the young advances to a much higher degree within the body of the mother. These groups or sub-classes have been called Prototheria, Metatheria, and Eutheria, respectively, and while each of the first sub-classes contains only a single order of Mammalia, the third embraces all the remaining orders, and contains all the most familiar and conspicuous quadrupeds. It is not to be supposed that this primary subdivision into sub-classes depends alone on the characters mentioned; there are certain other anatomical differences in the
skeletal and other systems, which, however; it will be easior to understand after wo have glanced at the structure of one of the Eutheria, and compared it with that of the foregoing classes.
3. Any familiar mammal will serve our purpose equally well, but the Cat (Felis domestica) is perhaps as accessible an example of the group as we can study. It belongs to the order of the Carnivores or Beasts of Prey (Carnivora), and is accordingly furnished with claws and teeth which are adapted to its mode of life, and is, indeed, one of the most highly specialised of the order in this respect, so that we must not expect to find it a primitive example of Mammalian structure.
4. With few exceptions, the mammals are clad with a coat of hair, which like the plumage of the birds enables them to preserve their high bodily temperature. The exceptions to this rule ure certain aquatic forms where a subcutancous accumlation of fat, the blubber, furnishes the necessary non-conducting envelope, and certain terrestrial forms, where the epidermis is either extraordinarily thick as in the Pachyderms, or has given rise to horny scales or other protective coverings. Even in these cases, however, scattered hairs are present, and in the aquatic forms referred to, bristles occur about the lips of the young. So the hairy covering is as characteristic for the Mammalia as the horny scales are for the reptiles. Although, like scales and feathers, hairs are epidermal structures, nourished by a papilla of the corium, yet there is a fundamental difference between them in their development. Both scales and feathers begin by a thickening of the epidermis which projects beyond the level of the skin, and, in the case of the feather, is only afterwards retracted into the follicle, but the hair begins by a thickening of the epidermis which grows inwards into the cutis, and only afterwards comes to project beyond the level of the skin. (Fig. 100.)

In the Cat two kinds of hairs are proient, those which con-
stitute the fur, and those which form the whiskers (vibrisse); the latter from the richness of their nerve-supply are especially tactile in function. In many of the Carnivorn and other orders a soft under fur is overlaid by stronger bristle-like hairs,

Flg. 100-Section through skin of horse-enlarged. a epldermis ; b, its Malphigian layer, c, papillary layer of corium, d; e, Subcutaneous tissue; f, hair In its follicle, g, with papilla h; i, old hair being replaced by $k ; l$, sebaceous glands; n, sweat glands; n, siveat duct.
which form the external coat. The hairs are lubricated by the secretion of the sebaceous glands, which open into the necks of the hair-follicles. The skin of the Mammal is therefore richer in glands than is that of the Reptiles or Birds. In addition to these, however, there are also sweat glands, which select from the blood certain materials which have to be excreted from it, and so the skin of the Mammal comes to be an important excretory organ. Aquatic Mammals alone are destitute of these glands. Of the two kinds of glands referred to, it is the sebaceous kind which the milk-glands resemble most as to structure.
5. In all Mammals (with the exception of some aquatic forms) it is possible to distinguish all the five regions of the vertebral column-cervical, dorsal, lumbar, sacral, caudei. In some aquatic forms (Fig. 101) the hinder extremities have so neurly

Fig. 101. Skelcton of Porpoise. (Phocama). ve, cervleal vertebre anchylosed; vth, dorsal ; vl, lumbar ; vx, caudal regions; 1 d, dorsa, pe, caudal fins; pl, pelvic rudiments; \mathbf{c}^{\prime} false, o true ribs ; st, sternum ; sc, scapula ; h, humerus ; r, radius ; ca, carpus; po, pollex; mo, metacarpus; ph, phalanges.
disappeared that it becomes impossible to distin ${ }_{乙}$. a sacral region, but the ribs are always present and connected to the sternum in such a way as to mark off the cervical, dorsal and lumbar regions. As we advance through the Vertebrate series we see a tendency towards the reduction in number, and towards a constancy in the reduced number of certain parts. The teeth, for example, will furnish us with a good illustration of this rule, but it is also well exemplified in the cervical region of the vertebral column, for not only is it much shorter than usual in the Reptiles, but (with the exception of a few genera which also in other respects present primitive characteristics) it always contains seven vertebre, and that in spite of the extremely long and short necks whicb we meet with in different members of the class. The other regions vary in different orders as to the contained number of vertebræ, within narrower or wider limits, the caudal most of all ; the Cat, e.g., has thirteen dorsal, seven lumbar, three sacral, and twenty caudal vertebræ. (Fig. 102). Instead of the sternal ends of the ribs being ossified as they are in birds, they are always cartilaginous, and

Fig. 102.-Skeleton of Cat. (After Strauss-Durkheim.)
oc, oceipital ridge; sc, scapula; il, ilimu; is, ischium; f, femur ; pa, patella; t, tibia; fi, fibula; c, calcanemm; nit, metatarsus; me, metacarpus; a, pisiform; r, radius; u, ulua; h, humerus; x, xiphoid cartilage; m, manubrium sterni; cl. clavicle; cr, cricoid; th, thyroid.
the sternum presents more traces of its original mode of formation than it does even in Reptiles. Thus, in the Cat, it is composed of eight pieces, the first of which, the manubrium, carries the clavicles in the mammals in which these bones are complete, while the last, the xiphoid cartilage, does not become ossified like the other pieces.
6. The skull of the cat is, of course, modified in connection with the strong teeth and muscular development of the jaws, but apart from such superficial characters, a knowlodge of its structure will enable the student to understand that of the other mammals, and to compare it with that of the lower forms. It is first to be observed that the bones of the cranium and face, with the exception of the mandible, are immovably united together, as in the turtle or bird, but the sutures remain quite distinct, and the bones can be readily separated from each other $/ \mathrm{h}$ a macerated skull. The first thing that strikes one in comparing
the skull of a cat with that of a lower Vertebrate is the relative proportion of the cranium to the face. Here it is obvious that the facial bones form only a small portion of the skull, the increased size of which, on the other hand, is chiefly due to the large surface of the frontal, parietal and squamosal bones which form the greater part of the brain case. A second feature is the widely-arched form of that bar (zygomatic or jugai), which extends from the articulation of the lower jaw to the superior maxilla, and is, therefore, comparable to the quadrato-jugal bar of the reptiles. It is widely arched, paitly to accommodate underneath it the great temporal muscle, which arises in the temporal fossa bounded behind by the strong lambdoid crest, and partly to give a wider origin to another muscle of mastication which arises from its convex outer surfice, the masseter. A third feature is the tendency to union of certain groups of bones separated by sutures in the reptiles; thus the mammalian occipital bone is formed of the four occipital elements and rests on the atlas vertebra by two condyles which are borne on the exoccipitals; it likewise absorbs in older animals an unpaired interparietal, which is wedged between the supraoccipital and the parietals. The mammalian temporal bone is similarly complex, because it embraces not only the three periotic bones with the tympanic and squamosal, but probably also the quadrate and quadrato-jugal. Within the bullate tympanic is to be found the chain of small bones answering to the columella auris of the reptiles. A third complex bone is the sphenoid, the elements of which, however, are more easily separated from each other. 'They are the basi-, pre-, ali- and orbito-sphenoids with the pterygoids. Finally the ethmoid, which looks into the skull with its perforated plates, into tho nassal cavity with the septum and the lmbyrinthine turbinals, and into the orbits with its orbital plates, is irmed of mesethmoid and parethmoids.

Attention should also be directed to the following points :-
the union of the frontal and jugals, the strength of the jugal processes of the maxillaries, and of the alveolar parts of these bones, tho hard palate with the incisive foramina between the nasal and mouth cavities, and the conccalment of tho vomers by the palatines, the foramina for the escape of the various cranial nerves, that in the lachrymal bone for the passage into the nasal cavity of the tear-duct, and, finally, the intracranial aspect of the various bones, with the ossified partition (tentorium cerabelli) which separates the cerebrum from the cerebellum, and the hollow on the upper surface of the basisphenoid (sella turcica) for the accomodation of the hypophysis.

Certain muscular processes on the lower jaw, esjecially the coronoid process to which the temporal muscle is attached, indicate the powerfit character of the parts concerned. The articular surface of the mandible is convex, and elongated transversely; it fits into a corresponding concavity (glenoid) bounded behind by a ridge (postglenoidal) on the root of the zygomatic process of the temporal bone. It is a question whether this part of the temporal bone is comparable to the quadrate of the lower forms or not. The fact that the Meckelian cartilage is continuous in development with one of the chain of bones within the drum of the ear (the malleus) caused anatomists to believe that, in comparison with the Sauropsida, the Mammalian mandible has shifted its articulation to the squamosal, but this continuity is not irreconcilable with the interpretation of the glenoid region of the temporal es the quadrate.

The complex visceral skeleton of the fish is conly represented in the Mammal by the hyoid bone and its two pairs of cornua. Both of these are attached to the extremities of a curved basal piece, the anterior representing the hyoid, the posterior the first branchial arch of the lower forms. The former is attached to the temporal region of the skull, and often unites with it forming a bony process (stylo-hyoid) of the temporal bone. In the
rest of its course it maty be ligamentous, or formed into ceratoand epi-hyal bony pieces. The posterior cornua are formed by one bony piece on each side, which on account of their supporting the larynx receive the name of thyro-hyal.
7. Considerable difference will be observed in the structure of the shoulder-girdle, and the mode of its attachment to the trunk. In the Sauropsida we saw that an intimate connection of the skeleton of the anterior limb to the trunk was secured by the union of the clavicles and coracoids to the sternum. But in the Mammals both these bones may be absent or very much reduced in size, the shoulder-girdle being represented only by the scapula, which is then connected to the trunk by muscles alone. In the cat e.g., the coracoid is in the form of a mere process projecting from the scapula in the neighborhood of the glenoid cavity, and the clavicle, which in man is connected to the spine of the scapula and the manubrium of the sternum, is rudimentary. As regards the rest of the appendicular skeleton little need be said, except to call attention to the comparatively primitive arrangement of the parts (with the exception of the position of the radius), to the incipient or complete absence of the first toe, the greater development of one element in the carpus and tarsus for the attachment of muscles, and the fact that the metacarpals and metatarsals (metapodials) are not in contact with the ground in locomotion.

In regard to the first point it will be observed that the radius, although related to the inner border of the carpus and hand, is connected with the oute: border of the humerus; this is attributable to a twist in the lower end of that bone, which changes the position of the radius at the elbow joint, and renders it necessary that it should cross the ulna so as to reach the inner border of the hand.

In many members of the cat's own order, so-called plantigrade Carnivores, the feet have a larger surface of contact with the
ground than in the cats, which are on this account caller digitigrade. The terminal joints of the toes in the cat-tribe are attached in such a way, that, when not in use, the claws which they bear do not touch the ground ; they are retracted into a sheath and are thus always kept sharp. In all the forms, the skin underlying the portions of the feet which touch the gruund is converted into pads or balls, the thickened epidermis of which affords protection to the underlying cutis.
8. A comparsion of the relative weight of the brain and body in the cat with that in any of the lower classes of Vertebrates will convince us that a great advance in intelligence is to be expected, and, indeed, the relative size of the brain-case and facial. region in the skull already discloses its superiority in chis respect. At first sight it may be difficult to compare the cat's brain with that of any of the lower forms studied, for certain of the regions which are visible in the reptile or bird are here concealed by the overgrowth of other regions. This is especially true of the thalamencephalon and the optic lobes, which are entirely hidden by the backward extension of the cerebral hemispheres. The cerebellum also has gained in size, especially its lateral lobes, which are joined by a series of fibres crossing transversely under the fore part of the hind brain, and constituting the pons Varolii. In front of the pons, the fibres which ascend through the medulla oblongata towards the cercbrum diverge in two masses, the crura, to the hemispheres, and in front of the crura is the only part of the thalamic region which reaches the surface of the brain, viz. the hypophysis and infundibulum. On the whole, the most important changes are those which have taken place in the cerebrum, for not only has it increased in size by growing forward, backward and towards the sides, but the grey matter of its surface, instead of being smooth, is folded inwards in such a way as to leave a series of fissures on the surface of the cerebrum with intervening convolutions. We
have already seen in the cerebellum of the bird a similar plan for accommodating a large surface of grey matter in a comparatively small space, and the cat's cerebellum also exhibits the characteristic "arbor vite" arrangement. The corebral hemi-

Fig. 103.-Median longitudinal section of brain of cat (Modiffed after Wilder.) spheres are not independent of each other, for, apart from certain transverse bundles of fibres present in the lower classes, there is also formed between those parts of the hemispheres which project ?, Spinal cord with contained central canal. mo, me- back over the true roof
uilla ohbongata ; p, pons Varoliii : $c b$, cerebelium, form. iuy the floor and roof of the 4th ventricle. men, optic of the brain (rig. 103) or " iter." the floor is formed by the crura in front of the pons. In front of the mid-hrain is the thalamic region, the cavity of which (3rd ventricle) is traversed by a conn- commissure, the corpus missure, c^{\prime}, uniting the side walls or thalanii ; the root is partly formed hy the epiphysis (above mes), and callosum, which serves the floor ly the hypophysis, h; but the chiasma, ch. of the optcic nerves. 11 , also forms part of the floor, while to effect communicathe anterior thin wall (terminal lamina) is above the chinsma. The cerebral hemispheres. cer, are right and tions between the two left of the lamina, and connected by c, the 3 orpus callo. sum ; ol, the oltactory lobe.
sides. In some higher mammals the cerebral hemispheres project so far forward as to conceal the olfactory lobes from above, but in the cat these are well marked off from the rest of the brain.
9. As far as the sense-organs are concerned, we shall find that the nose and ear are those which exhibit conspicuous advantages in structure over the lower classes. The olfactory cavity in the fowl is not entirely smooth, but in the cat the olfactory mucous membrane covers an extremely complicated surface, furnished chiefly by the ethmoid bone, but also supported by independent turbinal bones. The olfactory lobes rest upon the cranial surface of the mesethmoid, separated by a median crest in that bone, and sending the olfactory nerve-fibres dewn-
ward into the mucous membrane of the complicated labyrinth, through the perforated or sieve-like plates of the ethmoid. The right and left nasal cavities are separated by the perpendicular plate of the ethmoid, and by the cartilaginous partition (Septum), which extends as far as tho nostrils. Certain small cartilages not present in the lower forms are developed in the external nose for its support, and for the attachment of the muscles which move the nostrils. An organ of Jacobson, such as is well developed in the snakes, is present in the cat, but it has only a cartilaginous capsule, and it opens into the mouth on each side through the incisive foramina. In the far-back position of the posterior nostrils, the cat and other mammals resemble such reptiles as the turtles and crocodiles, but the pterygoid bones do not take part in bounding the nostrils.
10. Reference has been made above to the great development of the tympanic cavity, but there are also other modifications of the auditory apparatus, which make the ear of the mammal more efficient (5 ig. 104). In the first place the outer ear, or pinna, is formed with its supporting cartilages, which serve for the attachment of the muscles which move it. The chain of bones, also, which effects communication between the tympanic membrane and the labyrinth, is more complex ; it contains three elements, the malleus, incus and stapes, of which the first is connected in the young with Meckel's cartilage while the last, a stirrup-shaped bone, occupies the fenestra ovalis. Zoologists at one time thought that from the connection of the mallens with Meckel's cartilage, the former bone must be com. parable to the quadrate of lower forms, but the view is gaining ground that the whole chain is comparable to the columella auris of the lower forms.

With regard to the labyrinth, an important advance in structure, which we meet with in most mammals as compared with the Sauropsida, is that the cochlea, instead of being a straight 11
tube, is coiled up like tho coils of a snail's shell (from whieh indeed the name cochlea is derived), and the branch of the nerve which goes to it has to occupy the axis or columella of the coil, so as to reach the whole length of the tube.

Fig. 104.-Partly diagrammatic representation of auditory apparatus in man.
(The external and middle ear are in their proper position, but the labyrinth is rotated inwards through 90°; both tympanie cavity and labyrinth are twiee the natural size, the external ear is the natural size). ger, auditory passage; tf, tympanic membrane, ph, tympane cavity ; ot, Eustachian tube; h, malleus; n, incus; s, stapes; vh, vestibule of labyrinth; bgg, semicircular canals; vht, scala vestibuli of cochlea; tht, scala tympani, leading to fenestra rotunda, rf; sl, temporal bone; osd, parotid gland.
11. The mammals present just as great diversity in the nature of their food and in their method of securing it as do any of the lower classes. Important reactions on the structure of the creature, especially on its intestinal system, are to be expected, and the teeth as well as other parts are thereby affected, Much imporiance is attributed by systematists to these organs, because they are readily accessible to inspection, are the only parts of the intestinal system preserved with the skeleton in fossils, and are extremely constant, not only in number but also in form, for any partıcular species. Like most mammals, the cat
has two sets of teeth, the milk set and the permanent set: it is diphyodont. Some mammals are monophyodont, they have only one set of teeth, which are destitute of th.o fangs or roots of ordinary teeth, and are simply added to in length by the pulp, as their free surface becomes worn down. Other forms, which are diphyodont with regard to the greater number of their teeth, still retain some with this unlimited power of growth. Although in some reptiles certain teeth are distinguished from their neighbours either by their form or by standing isolated in the series, yet no such specialisation of tho teeth in the different parts of the gape occurs, such as we find in the mammals. Here the premaxillary bones lodge teeth of a distinct form, the incisors, which in the cat are six in number, and are separated by a gap or diastema from the large and sha". canines, the foremost teeth of the maxillaries. Corresponding but alternating with these are similar teeth in the lower jaw, but the gaps are in this case behind not in front of the canines. Behind the canines are the premolars, i.e. the teeth which replace the back teeth of the milk dentition, and behind these tho true molars, which only appear in the permanent set. Both kinds of grinders are reduced in number in the cat in accordance with the principle of specialisation referred to in § 5.

There are three premolars and one molar in the upper jaw but only two of these are functional, the first premolar and the molar being evidently rudimentary. On the other hand, there are two premolars and one molar in the lower, all three of which are functional teeth. The same alternation which is to be seen further forward in the gape is also to be seen here, so that the cat's dental formula of one side might be expressed thus:-

The teeth marked in full-faced type are the characteristic
teeth of the carnivorous dentition, the canines and sectorials, specially developed in accordance with the carnivorous halits, while the asterisk indicates the gap caused by the absence of the first premolar. It is interesting to compare this formula with the less specialised dentition of a log:-

Here it is obvious that the last premolar above, and the first molar below are, as in the cat, the sectorial teoth, and although the molars proper are more numerous, they show the same tendency to a rudimentary character at either end of tie series. As far as numbers go, the bear's formula is the same as the above, but there is no specialisation of the sectorial teeth, and both the bear and the dog present a formula, which is very near to what is generally considered the typical formula of the Mammalia, only differing therefrom in the absence of a third upper molar. Rewriting, then, the cat's dental formula after comparing it with that of the dog, we should have the following better exprossion of its dentition.

$$
\frac{\mathrm{i}^{1} \mathrm{i}^{2} \mathrm{i}^{3} \mathrm{c}^{*} \mathrm{pm}^{2} \mathrm{pm}^{3} \mathrm{PM}^{4} \mathrm{~m}^{1 * *}}{\mathrm{i}^{1} \mathrm{i}^{2} \mathrm{i}^{3} \mathrm{c}^{*}{ }^{*} \mathrm{pm}^{3} \mathrm{pm}^{4} \mathrm{~m}^{1}{ }^{*}}
$$

When it is not considered necessary to indicate the relative position and character of the teeth, the dental formula is generally simplified ; thus, (for the cat):- $\mathrm{i} \frac{8}{8} \mathrm{c} \frac{1}{\mathrm{f}} \mathrm{pm} \frac{3}{2} \mathrm{ml}$.

In respect to their form, the molars in the Carnivores hardly deserve the name of grinders, for the functional molars have sharp cutting edges not adapted for grinding. The bears and their allies, however, which are more omnivorous in their habits, show how a cuspidate molar may be worn down to a grinding surface.
12. In most mammals the lips and tongue attain considerable independence of movement; this is associated with the development of a complicated musculature which is hardly
represented in the lower forms. The hinder part of the roof of the mouth likewise is contractile, and becomes the soft palate, a flap of which, known as the uvula, hangs down in the middle line, so as to cut off a posterior chamber or phargnx from the true mouth-cavity. The aperture between the two is further narrowed by folds at either side, the pillars of the fauces, between which are the tonsils belonging to the lymphatic system. (I, 63). The pharynx communicates above with the nasal cavities, below with the larynx and cesophagus, the aperture into the former tube being always protected by the epiglottis, a movable fold behind the base of the tongue. The primitive mouth-cavity which we studied in the lower forms is thus not only separated into a respiratory chamber above (the nasal cavities), but into an alimentary chamber below, which further presents from before backwards, a buccal cavity between the lips and the gums, the mouth-cavity proper and the pharynx. The structural advance which we thus see in the mammals is partly determined by the use of the lips for prehension, partly by the longer retention of the food in the mouth, for admixture with the secretion of the salivary glands, for mastication and for submission to the organ of taste.
13. In all mammals the salivary glands are arranged in three masses, parotid, submaxillary, and sublingual, and their secretion partly serves to facilitate the swallowing of the food, and partly to aid in the digestion of the starchy constituents thereof. The organ of taste is composed of certain bud-like structures which recall the sense-organs of fisher, (I, 9), and which are chiefly situated in the walls of trenches surrounding the large circumvallate papillæ at the back of the tongue. Fungiform and filiform papillæ are also present in the tongue of all mammals, the latter clothed with horny epidermic sheaths in the carnivores, and giving the front of the tongue its rasp-like surface.
14. In the lower forms studied, the ccelom is an undivided
catvity, in front of which is the heart with its separate serous sac, the pericurdium ; the lungs, when present, project into the colom, and are covered with the same serous coat as the intestines, but, in the mammals, the coelom is sub-divided by a muscular partition (the diaphragm), into a thoracic cavity containing the lungs and the heart, and an abdominal cavity containing the other viscera. That part of the cavity which belongs to the lungs is now called the pleural cavity, the heart with its pericardium remaining independent between the two pleuræ. The diaphragm acts chiefly as a muscle of respiration, serving by its construction to enlarge the thoracic cavity, and thus to facilitate the changes of the air in the lungs. Certain structures like the œsophagos, the aorta, and various nerves, must pierce the diaphragm so as to reach the abdominal cavity ; they do so after traversing the mediastinum, or space between the pericardium, the pleure and the vertebral column. The intervention of the diaphragm thus forms a sharper boundary between the eesophagus and stomach than we have met with in the lower forms. In no mammal has the stomach the simplicity met with in the Ichthyopsida or Reptiles. If it be considered as a dilatation of the intestinal tube, it is always a one-sided dilatation, so that there is a short curvature (the undilated side of the tube), and a greater curvature (the dilated side). Its form in the Cat is quite simple, but in herbivorous animals there is generally a much more complex stomach, and in these also the intestine is relatively much longer. The chief difference in the mammal's intestine as compared with lower forms, is the proportionately much greater length of the large intestine.
15. As regards the respiratory system, apart from the differences referred to above, the most important is the more minutely "cellular" character of the lungs, the bronchi dividing up dichotomously into smaller tubes which eventually end in the alveoli or air-cells. There are thus no membranous por-
tions of the lung-walls or sac-li]. projections thereof, such as occur in the Sauropsida. The upper part of the windpipe is of great interest, however, because it is first in the Mammalia, in which we meet with the chanacteristic arrangement of the hard parts of the larynx, which attain their perfection in the vocal organ of man. In addition to the cricoid and arytanoid cartilages, such as are met with in the lower forms, a third, the thyroid, is developed which forms the "Adam's apple" of the human larynx and serves with the arytenoids for the attachment of the vocal cords. A membrane stretches from the outer edge of the thyroid cartilage to the thyrohyals (\$6), and the larynx is thus brought into connection with the hyoid bone.
16. We saw that the great respiratory activity of the birds requires a complete separation of the arterial and venous blood

Fig. 105.-Heart and Lungs of Man
a, deocending aorta; lk, left, rk, right ventricle ; rvk, right auricle; ha, inferior vena cava; 1 , trachea; c and f, the two carotids; beside these, dand g, the two internal jugular veins; cand i, subclavian arteries; b and m, subclavian vems. in the heart: this is effected in the same way in the mammals, the right auricle and ventricle, respectively, receiving the venous blood from the body and pumping it through the lungs, while the left auricle and ventricle, respectively, receive the ærated blood from the lungs and pump it through the system (Fig. 105). Some difference is to be observed in the great vessels which come off from the heart, notably as to the great aortic arch, which is the fourth arterial arch of the left, not of the right side, as in birds. The blood which
returns from the intestines is subjected to the action of the hepatio cells while passing through the portal circulation, but the venous blood from the posterior extremities is returned directly to the heart through the posterior vena cava, the kidney (which first attains in the mammals its reniform shape) receiving its blond supply entirely through the renal arteries.
17. Having now examined into the structure of one of the typical mammals, or Eutheria, let us see in what respects the Prototheria and Metatheria differ therefrom.

The Prototheria embrace only a single order-Monotrematarepresented by two well-known-forms, the Duck-mole (Ornithorhynchus paradoxus), and the Porcupine Ant-eater (Echidna hystrix) of the Australian region (Figs. 106 and 107). Outwardly, and in their habits, these creatures differ very much from each other, the Duckmole being an aquatic animal, with soft un-der-fur covered by stiff over-lying bristly hairs, which prevent the wetting of the fur, with webbed feet which adapt it for swimming, and with a horny, toothless bill like a duck's, evidently adapted to secure food in the same
 way ; while, on the other hand, the Porcupine Ant-eater is provided with stout burrowing feet, by the aid of which it opens the Fig. 107.-Porcupine Ant-eater. (Echidna hystrix). \& ants' nests, on the contents of which it feeds, is protected by stout spines instead of the bristly coat of the Duck-moles, has a sharp snout
like most of the ant-eaters, and secures its food with its tongue. There are no teeth, at least rudimentary teeth which are prosent in the embryo never break through tho jaw, so wo are obliged to consider the absence of tecth not as a primitive, character, but as an adaptation to habits of life.

Inwardly, however, the Monotremes agree with each other, and differ from the other mammals in many important respects, such as the presence of an episternum (III, 18), with which the clavicles articulate, and of complete coracoids, which unite the scapula and sternum. There are also other features which, like their oviparous habits and the structural characters associated therewith, remind us more of the Sauropsida than the Mammalia ; such are the simplicity of the brain and of the ear, and the temperature of the blood, which is much more liko that of the surrounding medium than in the ordinary mammals.
18. The Metatheria similarly correspond to a single order, the Marsupialia. This order receives its name from the pouch referred to above (§2), which is supported by two epipubic bones, present in all members of the order, whether the pouch is well-developed or not. The Monotremes also have these epipubic bones, so it is probable that they are not formed in connection with the pouch, but rather represent such structures as the fore part of the pelvis in the Menobranch. Although the Marsupials are specially developed in the Australian region, they are not exclusively confined to it, for in America there are several species of opossum (Didelphys), and in the Oriental region also, there are a few representatives of the group. Australia is, nevertheless, the home of the Marsupials of the present day, although it is of interest to note, that the earliest fossil remains of mammals, obtained in Europe and other parts of the world, indicate that they ought to be associated with the Metatheria instead of the Eutheria, and, therefore, that this sub-class was at one time much more widely distributed than it now is.

A great variety of forms occurs among the Anstralian Marsupials. There are some like the Tasmanian devil (Dasyurus), or like the native dog, (Thylacinus) which are distinctly carnivorous in their habits; other fruit-eating forms which are arboreal, and are adapted for their mode of life by the possession of a long prehensile tail, or even, as in the case of the flying phalangers (Phalangista), of a patagium like our flying squirrels; again, there are herbivorous forms like the kangaroos (Fig. 108), in which the fore legs are extremely short, the hind limbs chiefly used in locomotion and the toes reduced in number, and, finally, there are forms (Phascolomys) with gnawing teeth like the beaver's, which are associated with similar methods of securing fcod. Such features as the above are evidently adapted to the habits of the creatures, but there are

Fig. 108. Giant Kangaroo. (Halmaturus giganteus). \&
certain underlying structural peculiarities common to the whole group apart from those refered to in $\S 2$. The dentition e. g., is not referable to the same type as that of the higher Mammalia, the teeth being much more numerous; the tendency to union of different tracts of skullbones (86), is not so well-marked, and the angle of the lower jaw bone is turned in, in a characteristic way, which has assisted in the identification of the fossil remains of this nature.
19. When we finally study the group of the higher mammals or Eutheria, we find a wonderful diversity of form in the different orders, depending on their habits and methods of locomotion. Certain aberrant orders may first be referred to, which ocenpy a somewhat isolated position in the sub-class. Of these the Bruta or Edeatata is a very heterogeneous order, embracing the ant-eaters of the Old and New Worlds, and the slot ${ }^{2}$ ef South America. The former differ very much in the cl thing of the skin, for in the Indian genus Manis (Fig. 109), it is fi med of large overlapping horny sciles, while in the South American Myrmecophaga, coarse hair replaces these. Both genora havea long snout and a long protrusible tongue by means of which (and the secretion of the large salivarv glands) they secure their-

Fig. 109. Scily Ant-Eater or Pangolin. (Manis longicaudata), in food. The Brazilian armadillos (Dasypus) and some other South American allied forms have the skin of the back and sides converted into a mors or less complete shield of bony plates, while the African Orycteropus is clothed with coarse hair. Unlike the Carnivores, the teeth, if they are present at all, are all alike, often very numerous, and there is only one set.
20. Contrasting with thes: forms which have all strong burrowing feet are the sloths, in which the claws are curved in such a way as to be only useful for an arboreal life. The teeth are less numerous than in the insect-cating armadillos, and their surfaces are flat and not tuberculate; the toes in accordance
with their different function are reduced to threo (Bradypus) (Fig. 110, F) or two (Choloppus). Very complete remains of extinct forms intermediate between these two subdivisions of the order have been found in South America; these include gigantic forms like Megatherium, almost as large as an elephant, which probably fed on the foliage of trees, uprooted by their powerful limbs.

Fig. 110. Manus of various Mammalia.
P, Horse. D, Dolphin. E, Elephant. A, Orang. T, Tiger. O, Ox. F, Sloth. M, Mole. r, radius. c, carpus. m, metacarpus. s, sesamoid bone. ph, phalanges. ds, dew-claws.
21. A second aberrant order is that of the Cetacea, which owe their peculiarities to their aquatic life. This is not the only order of Mammalia in which aquatic habits are present, for certain carnivorous animals like the seals, sea-lions and walruses, are exclusively or almost exclusively confined to water, yet in the Cetacea, this adaptation is carried so far as to isolate them from the other orders of the sub-class to which they belong.

The general spindle-shape of the hody (Fig. 111), the hairless skin, the thick layer of blubber, the rudimentary character of the olfactory organ, and the consequent restriction of the nostrils to the respiratory function, the situation of the nostrils on the top of the head, the conversion of the anterior extremities into flippers (Fig. 110,D), the almost complete absence of the skeleton of the posterior extremities, the peculiar horizontal caudal fin, and the dorsal fin occasionally present, are all features which are asso-

Fig. 111. Outline of White Whale of St. Lawrence. (Beluga.) \& \% . ciated with the conditions of their existence. The whales have only one set of teeth, but these disappear in some of the mombers of the order, being replaced on the upper jaw by tho horny strainers (whalebone), which prevent the escape of the minute creatures on which the whalebone-whales live. Two groups of Cetacea are therefore distinguished-the toothed whales and the whalebone-whales. To the former belong the porpoises, (Ploocoena); dolphins, (Delphinus); white whales, (Beluga,Fig. 111); as well as the grampus (Orca) and the singular Narwhal (Monodon) ; they chiefly live an fish and cuttle-fish, for seizing which they are provided with numerous sharp eonical teeth, but tho Grampus has only a few very poworful and sharp tecth, in accordance with its habit of attacking the larger forms of its own order, and the adult Narwhal is quite toothless, except forthe single long spiral tusk of the male.

Only the lower jaw is provided with teeth in the Spermaceti whales (Catodon), which are chiefly remarkable for the enormous head swollen up by the accumulation of spermaceti between the skull and the skin.

A considerable proportion of the length of the boly in the whalebone-whales likewise belongs to the head. The members of this group attain the largest size of any whales, some of those with a dorsal fin (Physalus) measuring as much as one hundred feet in length, while the right whales, which are the chief objects of the whale fisheries, never measure more than sixty feet. (Fig. 112.)

Fig. 112.-Outline of Greenland Whale. (Baloena mysticetus.) bo
22. A third aberrant order, that of the Sirenic, have a certain superficial resemblance to the Cetacea, which is associated with their aquatic mode of life, but they are not so completely adapted thereto, being herbivorous forms, and thus necessarily frequenting the shallow waters of the shore-zone for sea-weeds, or ascending the estuaries of the great tropical rivers and browsing upon the vegetation which fringes their banks. The manatees (Manatus) of Western Tropical Africa, and of Eastern Soiuth America, are, indced, not completely helpless on land, the fingers in the flippers are marked by short nails, and in all the forms, the presence of a neek, the position of the nostrils at the end of the muzzle, and the less rudimentary character of the pelvis indicate less departure from the typical mammalian form than is to be seen in the Cetacea. One of the forms, the northern sea-cow, (Rhytina), exterminated little more than a century ago, was previously abundant on the shores of Siberia and Kamschatka. It was toothless, the mouth being provided with four horny-toothed pads, which served in place of the grinders of the living forms. These are more numerous in the manatee, than in the dugong of the Indian

Onmon (IIalicore, Fig. 113), but the latter has tusk-like incisors in the upper jaw, which are only transitorily present in the manatee. The caudal fin of the latter is by no means so effective a propelling organ as is that of the dugong, which creature is, on the other hand, quite helpless on land. While the skin in the sea-cow was extremely thick and hairless, that of the manatee is covered with stiff bristles, which are both fewer in number and shorter in the dugong. Some fossil

Fig. 113.-Dugong (IIalicore.) \%
members of the order are known, in which both the teeth and the skeleton of the hind limbs are more completely represented than in the living Sirenia, but these, instead of uniting the group to the Cetacea, rather prove an alliance with the hoofed animals, to the study of which we now proceed.
23. The remaining orders of Mammalia arrange themselves naturally in two series, the Hoofed Animals (Ungulata) on the one hand, those provided with claws and nails on the other (Unguiculata). Although, at first sight, this distinction appears to be of little importance, the hoof being a horny covering for the whole of the distal joint of a toe, while the claw or nail is merely developed on one surface (the anterior), yet it is the mark of a difference of function which is associated with some of the most characteristic peculiarities of the Ungulata. In by far the greater number of the living hoofed animals the extremities are devoted entirely to the function of locomotion, and in most cases the number of toes is reduced in accordance with a
principle referred to ahove. They thus eontrast with the Unguiculata, which retain for the most part the typical number of toes. If we, however, extend our survey from the living to the fossil Ungulates, we shall find that the reduction of the number of toes is comparatively recent in the history of their series, the oldest forms being five-toed like most Unguiculata.
24. The most primitive order of the hoofed animals in this respect (Fig. 110 E) is that of the Proboscidea or Elephants, although in other respects it is one of the most specialised and high. ly organised of the series. The only living genus is Elephas, represented by two species E. indicus and africanus, the latter distinguished from the former by its enormous ears, and by the lozenge-shaped ridges on the molar teeth. In both the living forms, the thick skin has only a few isolated bristles, but the fossil mammoth (E. primigenius), which was abundant in

Fig. 114-Skeleton of Mastodon.
Siberia and Alaska, and of which frozen carcases have been found, was covered with wool intermingled with coarse hair. Most of the peculiarities of the skull are attributable to the singular dentition of the Elephant, which consists of two huge incisor tusks in the premaxillaries and, in addition, six grinders
on each side in each jaw, which, however, instead of being present simultaneously, succeed each other, so that only one, or at most two of the six are in function at the same time. The length of the tusk-sockets causes the great height of the skull, which is especially large in the Indian elephant, not so much from the size of the brain, as from the great thickness of the middle or spongy layer of the cranial bones. In the fossil genius Mastodon, (Fig. 114) of which many remains are found throughout Ontario, there were tusks in the lower jaw as well ; the grinders succeeded each other as in the elephant, but they had from three to six transverse rows of tubercles, from which the genus derives its name. One can arrive at the structure of the elephant's tooth from that of the mastodon, by imagining the transverse rows added to in number, their surfaces worn down and the intervals between them filled up with cement.

The neck is so short that the proboscis or trunk, an elongated external nose with a finger-like process at its tip over the nostrils, becomes necessary for securing food ; it requires, therefore, to be very muscular and sensitive. The apparent disproportion between the length of the fore and hind limbs is due to the fact that the latter are inclosed within the skin of the loins nearly to the knee-joint, but the bones of the fore and hind legs are approximately of the same length. A curious difference of gait is observable between the elephant and higher Ungulates on account of the position of the elbow and knee joints in the former; they occupy the middle of the limbs, the metapodials being quite short and contributing to the formation of the soles of the feet, whereas in the latter, the metapodials become the long cannon bones, the wrist and ankle joints are raised to the middle of the limbs, being known as the " knee" and " hock" respectively, and the true elbow and knee joints are close up to the trunk. The higher Ungulates therefore are not plantigrade like the elephants, but walk on the tips of the distal joints of the digits. (Fig. 110, P and 0).

From what has been said above, it will be understood that the geographical distribution of the elephants was formerly by no means so linited as it is at the present day; for, in addition to the mastodons already referred to, true elephants were abundant in Ontario during the pleistocene period, and ranged southwards through the States to Mexico.
25. Associated with the earliest fossil elephants, there have been found in Miocene strata in Europe remains of a proboscidean of gigantic size (Dinotherium), the skull of which measures some five feet in length, and differs from the elephant's, in that some five molars replace the single grinder, and that the lower jaws contain the tusks. The conformation of the skull suggests a trunk like the elephant's, and the bones of the feet, which have also been found, prove it to be referable to this order. No examples of it have been found in America, but in the earlier Eocene strata are found remains of mammals of the size of elephants, and with bones so similar, that some nearer alliance is suggested than that they are mere predecessors in time. Their skull and teeth, however, were specialised in a very different direction from that of the Dinotherium, for the former was provided with three pairs of bony cores for the attachment of horns (whence the name of the principle genus and the order Dinocerata), and the latter were arranged in the following peculiar way :-

$$
\mathrm{i}_{3}^{0} \mathrm{c}_{1} \mathrm{pm}_{3} \frac{3}{\mathrm{or} 4} \mathrm{~m}_{3}^{3}
$$

there being do upper and very small lower incisors, while the upper canines were tusk-like, the lower ones small, and the small molars with two transverse ridges. Casts of the cranial cavity of these early Mammalia show that the brain was very small in size, and low in its type of structure.

More primitive than Dinoceras and its allies with regard to the teeth are Phenacodus and Coryphodon from the lower Eocene, which have the typical formula § 11, and, in the former case, truly tuberculate teeth. All the toes are present, the middle one in Coryphodon, however, being distinctly the longer, as in the tapirs. No such primitive hoofed animals persist till the present day, all of them (with the exception of the elephants) having undergone a reduction of the number of toes.
26. Before we proceed to the typical hoofed animals there is one aberrant genus (Hyrax) to be mentioned, which is placed in an order by itself (Hyracoidea). This order includes several species of timid little crea-
tures of the size of rabbits, which extend from the Cape of Good Hope to Syria (the coneys of Scripture), living in crevices in rocky and mountainous districts. The toes are four on the fore, and three on the hind limbs, being all provided with Hat hoofs, execrit the inner hind toe, which is clawed. Unlike those of the higher Uugulates, the hoofs do not support the weight of the body, which rests on the soft soles attached to the under surface of the other joints of the toes, and which, applied sucker-like to the rocks, enable them to perform marvels of climbing. Like the rabbits they have a rodent dentition, i.e., the incisors-i!-wear down to a chisel-shaped edge and have growing roots, the upper are curved, the lower horizontal, there are no canines and the mola". $\left(p m_{4}^{2} m_{3}^{3}\right)$ are provided with transverse ridges. In other respects the Hyrax is more nearly related to the true Ungulata, and especially to the order of the odd-toed Ungulates, which we now procced to study.
27. Reference was made to the fact that in one of the earliest fossil Ungulates the middle (third) toe is longer than the others, and therefore contributes more to the.support of the body. A similar preponderance of this toe is to be observed in all oddtoed(imparidigitate) Ungulates, which constitute the order called on this account Perissodactyla. The first and most primitive family of these is the Tapiridoe, represented by one Indian and two South American species of Tapir (T'upirus). These are swamploving creatures with short smooth hair, a short tail, an almost trunk-like proboscis, feet four-toed in front and three behind like che Hyrax, but with a more primitive dentition, $i \frac{3}{3} c \frac{1}{\frac{1}{2}} m \frac{7}{6}$. Although so limited in number at the present day, numerous fossil tapirs are known, as well as forms (Paloeotherium, \&c.), connecting them with the Coryphodons, and with the Rhinoceroses which constitute the second family of the order. This family (Rhinocerotidce) contains only a single genus with four species living in India, Java, Sumatra and Africa respectively, the two former being one-horned, the two latter twohorned species. In all, the skin is provided very, sparingly with hair, is very thick and often divided off into shields; the horns are not supported by a bony core. In the living forms there are only three toes (viz. nos. 2, 3, 4) present, but in certain

Cossil forms the fifth toe was also present in the fore foot, as in the Tapir. The carlier fossil Rhinoceroses had a more complete set of teeth than the living species, which have no canines, and have a tendency to lose the incisors, while the molars are present to the full number 7. Like the Elephants, the Rhinoceroses had once a much wider geographical distribution, for remains of the woolly rhinoceros are found with those of the mammoth in Siberia, and numerous American representatives of the family have also been found. Among these are Mioceno forms which had two horns side by side, and att:ined elephantine dimensions (Brontotherium).
28. The third family of Perissodactyla is represented at the present day by the single genus Equus, to which the horse and various species of asses and zebras belong. It differs from the foregoing, in that the bouy is supported entirely on the third toe, the distal joint of which (coffin-bone) is covered with the hoof, while the second joint (coronary) and proximal joint (fetter-bone), but especially the metapculials (cannon-bones) are much elongated, bringing the wrist and ankle-joint up to the middle of the leg (Fig. 110 P). The second and fourth toes have disappeared almost entirely, but they are represented by the rudimentary metapodials (splint-bones), the proximal ends of which only are complete. Occasionally it occurs that a horse is born with these rudimentary digits in a more perfect condition, the splint-bones not only being cemplete, but carrying short digits, the ends of which may be clad with miniature hoofs. Such a three-toed horse is evidently a reversion to a more primitive Perissodactyle type, and such reversions are known as instances of "atavism."

This family presents a more typical dentition than does the foregoing. The incisors are $\frac{3}{3}$, the canines small, especially in the mare, and there is a long diastema between the front teeth and the grinders which number for the first milk molar not
senppearing in the permanent dentition. A peculiarity of the incisors is that the surface enamel is folded in like the inverted finger of a glove, the result being a ring of enamel which constitutes the mark of the incisors, until, in the aged horse, the tooth has been worn down below the fold. In all the members of the family, the hair of the mane and tail is long, and there are present callosities in the skin near the knees and hocks, but in the asses and zebras, the hair is only long at the tip of the tail, and the callosities are only present on the fore-legs. The zebras are South African forms distinguished by black stripes on a cream-coloured ground; the asses occur in North Africa, Western and Central Asia, the North African species being probably the source of the domestic ass. Although horses are found in a feral condition (i.e., apparently wild, but really only secondarily so) in Asia and South America, it is uncertain whether the original stock still exists in a wild condition; some recent investigations, however, in the high table-lands of Thibet point to the conclusion that such is the case. The South American horses were imported by Europeans, but it is not to be supposed that the New World was until the time of its discovery uninhabited by horses. Fossil remains of true horses show that they were abundant in America long before their importation from Europe, and from the various Tertiary strata numerous representatives of the family have been discovered, so that the American fossil Equidæ are much more numerous than the Européan forms. Those from the lower Tertiaries had both a, more complete dentition and also a greater number of toes, recalling in this respect the genus Corypliodon (§ 25) ; but as we study the forms which occur in the higher Tertiary strata we find a gradual loss first of the fifth, then of the second and fourth toes until the third alone is left with the rudiments referred to above. The earlier Equide were small, about the size of a fox, but they gained in size
during the Tertiary period until they attained the stature of the horses of the present day.
20. The great bulk of the Ungulates belong to the order Artiodactyla, in which the third and fourth toes equally support the weight of the body. Hero wo have also primitive forms, and specialised forms adapted for rapid locomotion; the primitive forms being, as in the last group, swamp-loving or aquatio creatures, with comparatively hairless skin, and with teeth much more nearly approaching the tuberculato type than do those of the more spocialised forms. As far as the dentition is concernel, the swine are the most primitive of the living species, but the Hippopotamus is supported by all four toes, and therefore, in this respect, it is the more primitive form.

Fig. 115.-Reduction of the lateral toes, and coalescence of metapodials into a can-non-bone in Artiodactyla. (After Gandry.)
$\underset{\text { Abryor }}{\text { Ale }}$; B, Hyomoschus; C, roe; D, antelope (Calotragus); E, sheep; F, enibryo call.

These constitute two families, the Mipponotamidoe and the Suidoe, which differ from the remaining Artiodactyla in not chewing the cud. The first family has only a single genus, which, at the present day, is
represented by one or two species in the rivers of Africa. Their denittion is singular, for although the milk tecth are $i\}, \mathrm{e}_{1}, \mathrm{~m}_{4}^{4}$, the alults have only $\left.i_{2}, c\right\}, m_{8}^{8}$, there being no permanent successors for one of the milk incisors and one of the milk molars. The permanent front teeth are tusk-like, the incisors leing straight, while the canines are curved, and mect each other in such a way, that the pouterior faces of the much larger lower ones are ground flat against the anterior faces of the upper ones.

The second family has many more representatives, and a much less limited geographical distribution, for there are several Old World genera, as well as the Peccaries, which are peculiar to the Now World. The skin in all is more or less closely beset with bristles, their bodies are more elongated, and thus better adapted for rapid locomotion, and they are supported solely by the third and fourth toes; the second and fifth, although they are complete and furnished with hoofs, not reaching the ground. (Fig. 115-A.)

The Peccary even offers a further reduction in tho lind foot, for the fifth toe there is umleveloped. This genus (Dicotyles) is in many respects the most specialised of the family, for apart from the structure of the hind foot, and a reduction in the number of incisors and molars, the stomach resembles in its complexity that of the Ruminants. On the other hand, the genus Sus is tho most primitive, for its dentition is $i \frac{3}{3}, c_{1}^{1}, p m \frac{4}{4}, m \frac{3}{3}$, whereas in the other genera, there is either a reduction in the number of the incisors or molars, or both. The canines are generally tusk-like, the lower ones being the chief weapons in the family, but the upper ones may also attain a formidable size, as in the pig deer-Bahyrussa-of the Molnccas (Porcus), where they are curved upwards and backwards; the incisors are small and sometimes absent in the adult, as in the pigmy hog (Porcula) of India, and the wart-hog (Phacochorrus) of Africa, but the molars are always of a tuberculate pattern.
30. The foregoing families constituto the non-ruminant section of the Artiodactyla; all the other numerous genera are ruminant forms, the stomach being complex, so as to admit of their characteristic way of feeding. This and the reduction of the second and fifth toes are both to be regarded as subservient to the more rapid locomotion in this group, for these herbivora, which are the chief objocts of pursuit by the larger carnivores,
are able to secure and to bolt, without previous mastication, in a very short time, a large amount of food, which they afterwards masticate when they have got to some secure retreat. The mechanism concerned may be studied in the sheep's stomach, where the cardiac end has two compartments, the larger Kumen (paunch), and the smaller Reticulum (honeycomb), while the pyloric end has similarly two compartments, the Psalterium (manijil lies), and the Abomasum (rennet stomach). The resophagus is attached between the rumen and the reticulum, and the grass which is hastily swallowed passes first into these compartments; it is then moved from ono to the other, and finally thrown back into the month and subjected to a thorough mastication and insalivation, after which the semi-fluid product is again svallowed and strained off into the abomasum and in. testine, through the psalterium, which is connected indirectly with the ossophagus by a half-groove on the wall of the reticulum, capable of being converted into a complete channel.

A peculiar dentition accompanies the ruminant stomach; in the typical forms it is $i_{3}^{0}, c_{\frac{0}{1}}^{0}, m \frac{6}{6}$, there being only a pad in the upper jaw, against which the lower incisors and incisor-like canines bite. A wide gap separates the front teeth from the molars, which have flat crowns with semilunar folds of enamel on the surface. Such teeth are therefore said to belong to
selenodont forms, in contradistinction to the tuberculate teeth of bunodont forms, but it is obvious (as in the Hippopotimus, e.g.,) that a tuberculate
 tooth when worn down may present a peculiar pattern of enamel, and there- per jaw of Bundont and Selenofore bunodont forms are regarded as more primitive (Fig. 116).

The feet are also different in their structure in the ruminant forms, for not only are the second and fifth toes raised off the ground, becoming dew-claws, but they often disappear, and
the weight of the body rests entirely on the tips of the third and fourth toes, being transmitted to them through a cannon bone, which is formed by the more or less complete coalescence of the third and fourth metapodials (Figs. 115 and 1100). There are generally horns in this group, often confined, however, to the male sex ; when there are no homs, tusk-like canines may serve as compensatory weapons of defence. The sheep, oxen, antelope and deer are the typical ruminants, but there are some aberrant families which we may shortly consider first.
Of these the Camelider present some peenliar features ; for example, the psalterium is absent; the upper jaw in front is not destitute of teeth, for it retains one of the upper incisors and the camine on each side, which are absent in the ruminants: the canines, the npper especially, are tusk-like and the molars are only $\frac{5}{5}$. Instead of walking on the tips of the digits, they are digitigrade forms, all three joints resting on the ground ; the hoofs are thus of no use in locomotion, a single or double pad of skin being present on the under surface of the third and fourth digits. There are no dew-claws, but the third and fourth metapodials have not so completely coalesced as in the oxet. The geographical distribution of the family has the same peculiarity which we have noted of certain other groups, there being both Old and New World representatives, quite isolated from each other at tie present day. In the Old World the genus Camelus only occurs in a domestieated condition, as the Dromedary and the Bactrian Camel, the former in Arabia, Africa, and India, the latter (the two-humped eamel), in the Mongolian table-lands. Both are used as beasts of burden, and it is likely that the humps are the result of their employment as such. There is only a single cushion underneath the digits, which, therefore, present a suitable surface for the sandy soil of the desert. In the New World, on the other hand, there are both wild and domesticated forms belonging to the genus Auchenic ; these are smaller sized forms without a hump, they tread on a double pad, have fewer molars and larger ears than the camel. The wild speeies are the larger Huanaco, and the smaller Vicuina ; the domesticated forms, the Llama (the beast of burden of the mountain regions of Peru), and the Alpaca, which is kept in herds for its flesh and its wool. The explanation for the existence of the two brauches of this family is to be sought in the Miocene Strata of America, where numerous remains of Camelida are
found, with complete front teeth, and separate metapodials. The descendants of these must have made their way into the Old World by a bridge which existed between North Ameriea and Asia, and which afterwards subsided so as to form Behring Straits.

Like the Camelidee, the pigmy deer of Java and West Africa (Tragulide) have tusk-like upper canines in the males and only three compartments of the stomach; their metapodials are less completely coalesced than in the camels. In size and in the possession of tusk-like camines, the mask-deer of Central Asia (Moschus) resemble the pigmy deer, but the male has a peculiar musk-gland on the skin of the ventral surface.

A fourth group is that of the Giraffes (Camelopardalis) an African form much nearer the typical Ruminants than any of the foregoing. They differ from them both in the general form, and in the horns, which are skin-bones covered with soft skin, the most primitive of the horns of the ruminants.
32. It is according to the nature of these structures, that we subdivide the typical Ruminants into the hollow-horned (Cavicornia) and the antlered forms (Cervider). In the former, projections of the frontal bones form the so-ealled cores, which are covered with the varionsly-shaped but usually unbranched horn, in the latter, the frontal bones bear the antlers, with an intervening ring of bone, the "rose," where the antlers are broken off each year. The antlers are only covered loy skin (the velvet) while they are undergoing formation; that process complete, the velvet is rubbed off, and the polished bone exposed. We noted that, in several of the preceding families, only the males have tusk-like upper canines ; in theso forms, also, it is of common oceurrence that the males only should have the weapons of offence and defence in the shape of horns or antlers. Among the Cervide, the Reindeer or Caribon (Rangifer) is singular ir that both sexes have antlers, which like those of the Moose (Alces) are broad and palmated in form. Those of the Stag (C. Canadensis) as well as of the Virginia deer (Cariacus viryiniumus) earry rounded branches.

Among the Cavicornia, the Prong-horn of the Western prairies (Antilocapra americana) is the only form with a tendency to branching of the core. It comes nearest the Cervidec in this respect, as well as in the fact that it casts its horns at intervals. It is usually classified with the Antelopes, a sub-family of the Cavicornia, whose headquarters are Africa, bu'; which are less numerous in Europe and Asia. The only
other American Antelope is the Rocky Momatain goat (Haplocerus americanus). A well-known European genus is the Alpine chamois (Rupicapre), while the gazelle (Antilope dorces) is a common North African species. Some of the African antelopes approach the next subfamily, the oxen (Bocina), in their proportions. This group embraces the domestic ox (which includes various races probably derived from several wild speeies), the humped zebu (Bos indicus; and two or three other Indian species. Other genera are the Old Word buffalo (Bubalus:), the European and American bison, the yak of Thibet (Pöphayus) and the musk-ox of the Arctic regions (Oribos moschatus). A third sul). family (Ovina) embraces the sheep, which are found wild on high mountain ranges, e.g., the bighorn (O. montana) of the Rocky Mountains and the Argali of Central Asia, also the ibexes (Capra itere) and goats (C. hircus). Our domestic sheep are probably derived from one of the Asiatic forms.
33. We must now turn to the Unguiculate orders, looking in the first place somewhat more closely into the classification of the Carnivora, one form of which has been already studied.
Of the six families recognized in this order, the Urside is least specialised ; it embraces plantigradeforms, with a dentition in which the seetorial teeth are not prominent, and which are frequently omnivorous. Examples of these are the kinkajon of Brazil with its prehensile tail (Cercoleptes), the racoon (Procyon lotor) and the true bears (Urisus). Nearest to these are the badgers (Taxidect) and skunks (Mephitis), which form a plantigrade section of the weasel family (Mustelide), to which there also belong the chief fur-bearing animals of North America, the martens (Mustele), minks and ermines (Putorius), wolverines (Gulo), otters (Lutra), and seaotters (Enhydra). The third family (Viverides), embracing the civet cats and the ichneumons (Herpestes), is chiefly an Old World family, as is that of the Hy/rnider, but the dogs (Conider) and cats (Felidee) are ahmudantly represented on both continents, the former embracing the dogs, foxes, wolves and jackals; the latter, the lions, tigers, leopards, lynxes and cats of the Od, World, and the pumas, ounces and lynxes of the New.
34. A very interesting branch of the Carnivora is that of the Pinnipedia often placed in an independent order, and much modified in accordance with their aquatic mode of life. There is a marked tendeney in this group, which contains the Seals,

Walrus, etc., towards the reduction in number of the incisor teeth ; the canines are rarely tusk-like, and the extremities are converted into flippers, the hinder ones being turned backwards parallel with the short tail (Fig. 116). The seals proper are those

Vig, $110,-$ skeleton of Seal.
ve. cervleal, vid. dorsal, vl. lumbxr, , wheral, vea. caudal regions of vertebral column; h. hamerus; t, rulius; ce esppus; me. metacarpus; ph. phalanges; sc. scapula; co, ribs.
which are least adapted for locomotion on land ; the walruses and sea-lions, on the other hand, can ise themselves off the ground by the aid of their limbs, and the lippers of the sea-lions even have divisions, corresponding to the toes. As a rule there is no external ear, the head is rounded, and the cylindrical body diminishes in girth towards the tail.

Of the three families distinguished, that containing the cared-seals (Otaric), is nearest sueh Carnivora as the sea-otter, the strueture of the flippers and their habits suggesting a less perfect adaptation to an aquatie life than we meet with in the seals proper. In most of the speeies the coat is formed of stiff, bristly hairs alone, but in several, such as the Alaska fur-seals (Callorhinus ursina), the bristles are scarcer, and there is a thick, soft under-wool. These skius, when dried and the bristles removed, yield the valuable seal-skin furs, but the skin of the seal is also sought after for other purposes, and the blubber of all the species yields a valuable oil. Some of the Otame, anctas the California sea-lion (Eumetopias Stelleri), reach the durgs sias of Hiftees feet. The other species aro smaller.

The Phocilde chicfly differ from the above in the absence of external ears and the shape of the flippers, those of the hinder extremities being especially remarkable on accomnt of their notched ontline, due to the shortness of the middle and the length of the inmer and onter toes. The harp seal of the St. Lawrence is one of the commonest spenes (Phoca groenlandica, Fig. 195), but there are some singular forms also in this family, such as the hooded seal of the North Atlantic (Cystophora cristata), and the gigantic sea-clephant of the Antarctic Ocean, (C. proboscidea), which attains a length of twenty feet, and is distinguished by the prolongation of the nose into a proboseis. Some species of the family live in land-locked seas, such as the Caspian and the lakes of Newfoundland.

The Walrus (Trichechus rosmarus) is placed in a family by itself, characterized by the enormous upper canine tusks, by the shape of the trunk, which does not diminish in girth towards the loins, by approaching the Phocida, in respect to the absence of external ears, and the Otaric, in the ability of the creatures to raise the body on the limbs, and thus leave the sea, and even climb steep rocks so as to reach a safe place above high water, where they may bask in the sun.

It is observed that the young sea-lions take somewhat unwillingly to water, and swim at first awkwardly; this is one indication, among many others, that the Pinnipedia are a group of mammals which have gradually acquired aquatic habits, and with them their modified form. The same is thought to be true of the Sirenia, for fossil forms have been found allying them to the terrestrial Ungulata. Great uncertainty is felt by zoologists, however, as to the alliances of the third group of aquatic mammalia-the Cetacea; many, nevertheless, think that these carnivorous aonatic forms may have been originally more seal-like in form, and that the horizontal caudal fin had within it the hard parts oi the hind s extremities, of which hardly a trace is now to be detected; no fossils have yet been found to confirm this idea, although various anatomical considerations render it probable.
35. In turning to the other orders of Unguiculate mammals, we shall find some forms that exhibit more primitive features than the Carnivores, others that are specialised for an aerial, arboreal or subterranean life, as much as the Pinnipedia are for: a life in water.
36. As far as regards the dentition, the Insectivora are certainly the most primitive ; they are also all plantigrade forms, and have well-developed clavicles. The teeth are not more numerous than in the Carnivores, but the canine tooth does not assume the function which it has in most mammals, sometimes an incisor, sometimes a premolar, projecting further from the jaw than it does itself. Seven molars are by no means always present, but their surfaces are always tuberculate, in accordance with the insect-food.

Between groups of Rodentia and Insectivora, which correspond in their habits, a certain superficial resemblance is to be detected, a convergence of character which we attribute to the influence of their surroundings, but the Rodents, as we shall learn, including about one-third of all the species of mammals, offer a greater wealth of form than we find in the Insectivora. To these two orders belong all the smaller species of Mammalia, and, indeed, parallel groups of both ordors are to be be found, some adapted for a life on the surface of the ground, some for burrowing underneath it, some for a semi-aquatic, and some for a more or less completcly arboreal life.

Only two out of the six families are represented in our region, the Shrews (Soricil(c), and the Moles (Talpider). The former are monse-like Insectivora with an elongated muzzle, and a short velvety coat. In both the common forms, the cyes are small, and in one (Sorex platyrhinus) the cars and tail are long, while, in the other (Blarina brevicutda), botli are short. Both of these are terrestial species, but an aquatic genus (Myogale), in which the toes are webbed and which has a very penetrating musky odour, is found in South-east Russia and the Pyrenees. In all, the hinder feet are larger than the fore, but, in the Talpidæ, the fore feet are converted into broad shovel-like structures, with short toes and stout claws for digging the burrows in which they live (Fig. 110M); the limbs are very short, the body elongated and cylindrical in outline, the head very small, without either evident eyes or ears. The shape of the body is obviously adapted to the underground life, and the snout is provided with extremely delicate tactile sensibility. This is best seen in the Star-nosed moles (Condylura cristuftu), where the fleshy dise at the end is divided
up into projecting rays; in the other genera, Scalops and Scapanus, the Common and Hairy-tailed Moles, the snont is simply pointed.

The other families are confined to the Old World; their typical genera are Erinctcous, the Luropean hedge-hog, a terrestrial form in which the hairs are converted into stout spines; it protects itself by rolling itself into a ball, and thus causing the spines to diverge from each other. In another family, to which the Centetes of Malagascar belongs, the spines are replaced by bristles, which, with the pointed snont and strong lower canines, give the creature some resemblance to a miniature pig. The Malayan genus Trapaja and its allies are arhoreal insectivores with the soft fur and habits of squirrels, and, in the same region, a singular genus, Galeopithecus, is to be met with, proviled with a patagimn like our flying squirrels. It is the representative of an independent family, as is also the African Macroscelides, marked by the length of the hind limbs, like the Jerboa, and occurring, like it, in rocky and desert regions.
37. The chief contrast between the Insectivora and Rodentia is in the nature of the food, and the difference in structure and habit brought about thereby. Nowhere is the difference in structure more evident than in the dentition, where the incisors are reduced in number, grow from persistent pulps, and acquire a chisel-shaped edge, from having the enamel only on the anterior surface. Generally the incisors are only $\frac{1}{\frac{1}{2}}$, but in the hares and rabbits (Lepus), there is a small tooth behind each of the curved upper incisors; the canines are always absent, and the molars never tuberculate, but provided with transverse folds of enamel. As in tho Herbivora, the stomach is constricted into cardiac and pyloric chambers, and each of these may have recesses; further, tho alimentary camal is long in proportion to the body.
Nearly half of our N. American Mammalia are Rodents belonging to seven families, the Leporider, Hystrichidte, Murida, Dipodita, Geomyide, Custorider, Sciurides. The first of these includes the bares and rablits, and is sufficiently characterized by its dentition. The type of the second is the Old World Porcupine (Illstrix), represented in N. America by the common poreupine (Erethizon). Both of these forms have spines, which are more efficient weapons of defence than these of the hedgehog,
on accomut of the ease with which they can be detached from the skin. To the Muride belong the rats and mice (Mus), as well as the field-mice (Arricola) and the aquatic musk-rat (Filier). An interesting northern genus is the lemming (Myodes), which often migrates in vast numbers from one part to another in Northern Europe and Asia. The Diporlide include the Egyptian Jerboa (Dipus), marked by the length of the hind legs; the same peculiarity is present but less developed in the American jumping mouse (Zapus). I? the Western prairies, two genera of pouched gophers are met with, which constitute the family Geomyicle. They have cheel-pouches which open on the cheeks outside the mouth, and are lined with hair. As the gophers are burrowing forms, the fore feet are large and armed with strong curved claws. The most truly aquatic of the Rodents is undoubtedly the beaver (Castor fiber), the largest of our species. As in the musk-rat, the hind toes are elongated and webbed, and the flat, scaly tail is very characteristic. The last family -ii) : Sciurillce-includes several genera, chiefly arboreal forms with soft fur, and more numerous molars than the preceding, except the hares. Among those which are distinctly terrestrial in their habits, may be mentioned the gophers and prairie-dogs, while the chipmunk and the woodchuck are intermediate, in this respect, between these and the true arboreal squirrels and flying squirrels. The completely terrestrial forms have cheek-pouches which open into the buccal cavity; these are best developed in the gopher (Spermophilus) an the chipmunk (Tamias), while they are rudimentary in the prairie-dog (Cynomys), and absent in the woodchuck (Arctomys) and the squirrel (Sciurus and Sciuropterus). The last-mentioned genus includes the nocturual flying squirrels, which have a patagium stretching from the fore to the hind limbs and permitting a slanting leap, such as we have already observed to be possible in several mammalian orders.

As representatives of tropical families, may be mentioned the Chinchilla of Chili and Peru, valued for its grayish fur, the Guinea-pig (Caria cobaya, now only known in the domesticated condition), the Capybara ($/ I_{y / l}$ rochorrus, the largest Rodent), the Paca (Coelogenys) and Agouti (Dasyprocta) of Northern South America, which four genera have almost hoof-like nails, and, like most of the Rodents, are gregarious in their halints.
38. On the approach of old weather many animals of different classes pass through a resting phase, which, in the warmolooded animals, is usually spoken of as hybernation. This
phenomenon occurs in several orders of Mammalia, but nowhere is it more easily studied than in the Rodents. During this period the various functional activities are arrested as much as possible ; there is no food taken and little tissue consumed, so that, as respiration is also very inactive, the body temperaturo is assimilated to that of the surrounding medium, and thus the warm-blooded animals become temporarily cold-blooded.
39. After the Rodents, the greatest number of mammalian species belong to the bats-Chiroptera-our next order. Here we have a very different modification for aerial. life than we have hitherto met with; instead of a patagium like that of the flying squirrels, Galeopithecus and the Phalangers, certain of the fingers and the fore-arm are much elongated and serve to spreal a very delicate hairless web, which extends backward to the thighs and frequently also surrounds the tail (Fig. 117). The thumb

Fig. 117.-Outline and skeleton of Phyllostoma (after D'Alton).
oa, humerus; va, radius'and ulna: w, carpus; I, pollex; II-V, second to fifth fingers; m and $f^{12}{ }^{3}$, elongated metacarpals and phalanges; $z f$, femur.
alone does not take any part in the support of the web, this being chiefly effected by the third, fourth, and fifth fingers. Except in the fruit-bats, it is the only digit which bears a claw; in these, however, the index also is clawed, although, like the other fingers, it is entirely enveloped in the web. The web is very sensitive
and as the bats are nocturnal creatures, the nerve-terminations in it constitute one of the chief channels through which sensations reach the brain. In further accordance with their nocturnal habits, the bats have small eyes, and large ears; they hybernate in cold climates, where they are often to be found in large numbers, hanging in some cave or building, by the claws of the hind feet, wrapped up in the patagium. The bats are characteristically insectivorous forms, very few are fruit-oating, but the dentition of the two groups indicates a sharp contrast between them. As the patagium does not merely serve to break the force of a fall or to permit of an oblique leap, but is a true organ of flight, the pectoral muscles require to be specially developed to permit of such use of the anterior extremity, and consequently the sternum is provided with a crest, and the clavicles are stronger than t, y are elsewhere among mammals. It is not surprising that the bats should be the most widely distributed of Mammalia.
The fruit-bats are abundant in eastern tropical countries, and attain the largest size of any members of the order. Pteropus, the fox-bat, so called on account of the pointed snout, may be mentioned as a type of this section, the fruit-eating habits of which are indicated by the blunt tubercles of the molars. In the insectivorous bats, on the other hand, the tubercles of the molars are sharp or coalesce into a W -shaped cutting edge. The snout is short, and the external ears are of large size. Two groups are recognized--those in which the external nose is provided with a membranous expansion round the nostrils, and those in which there is no such membranous expansion. To the former belong the vampire-bats of S. America (Desmodus), which attack and suck the blood of horses and mules. With that exception, they are mostly insecteating forms, but the genus Vampyrus of Guiana lives chiefly on fruit. The ordinary bats (Vespertilionida), with the nose destitute of the membrane, are represented by two genera in cur region, as examples of which may be mentioned the little brown bat (Vespertilio subulatus) and the red bat (Atalapha noveboracensis).
40. As the Australian continent is peopled by a remarkably primitive mammalian fauna, so also the Island of Madagascar possesses characteristic mammals which are found nowhere else, the Spectres (Tarsins) in their distribution and habits. The Galagos are carnivorous creatures which vary from the size of a rabbit to that of a

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

\square
monse, while the Lemurs proper are of large size, attaining in the case of the tailless Indri (Lichanotus) nearly three feet in length. The other Lemurs are smaller in size and provided with a long tail which is coiled about them for warmth, while they rest during the day. In Propithecus the snout is short as in the Indri, the result being a monkey-like face, while in the ring-tailed lemur (L. catta) and its allies, the snout is prolonged.
41. However monkey-like certain of the lemurs are, they form a decidedly more primitive group than that of the monkeys proper. This is especially noticeable in the structure of the brain, the cerebellum being left uncovered by the cerebrum in the former group, while, in the latter, the hinder lobe of the cerebrum is so developed as to overlap the cerebellum entirely. In this respect, as well as many cther anatomical features, the monkeys agree in structure with Man, and, accordingly, they are generally placed together in the order Primates, in spite of the exceptional place which Man otherwise occupies in nature. In all Primates the incisors are $\frac{3}{3}$, the inner digits (thumb and great toe) are opposable (except in man, where this is only true of the thumb), and all the fingers are nailed, not clawed. The orbits, which have complete bony walis, are directed forwards, and the face, in comparison with the Lemuroids, is hairless.

Apart from Man, three families of Primates are recognized, twó of which are New World grcaps. Most of the S. American monkeys belong to the Platyrrhinl, so called on account of the width of the septum of the nostrils, which causes these apertures to look outwards. The tail is usually prehensila, assisting in their arboreal life in the dense forests which they inhabit; they differ
Fig.118-The Uakari.--Brachyurus calous. As an example of the Platyrrhini. (From Brehm.) from both the other families in
having an extra mclar tooth, and a rounded skull. Examples of this group are the howling and spider monkeys (Mycetes and - - teles), the bonnet-monkeys (Cebus), and certain smaller squ...rel-like forms, with soft, abundant fur, and nocturnal habits, which depend upois their feet alone for elimbing (Nyctipithecus, Chrysothrix). The remaining South and Central American forms aro called Arctopitheci; they have one true molar less than the Platyrrhines, tuberculate grinders, and fingers with claws instead of nails. Only one genus is recognized (Hapale), including several species of marmosets, the smallest of the Primates.

The Old World monkeys (Catarbini) have a thin nasal septum, the nostrils directed downwards and forwards, the same dental formula as Man, ($\left.\mathrm{i}_{2}^{2}, \mathrm{c}\right\}, \mathrm{pm}_{\frac{2}{2}}^{2}, \mathrm{~m}_{3}$) and the tail, if present, never prehensile. There are troo groups of them, those that approach Man (Anthropomorpha) in the absence of the tail and of cheek-pouches, as well as in the less prominence of the face, and the greater length of the anterior limbs, and those that approach the Carnivora (Cynomorpha) in the strength of the facial region, and the development of tusk-like canines, while they differ from the other group in having shorter anterior limbs, and, very often, cheek-pouches. To the Anthropomorpha belong the chimpanzee and the gorilla of Western Africa (Troglodytes), the orang-utan (Simia satyrus) of Borneo and Sumatra, and the gibbons (Hylobates) of the same islands and the continent of India. To the Cynomorpha beiong forins generally of smaller size, such as the sacred monkev of the Hindoos (Semnopithecus), the African Colobus, the squirr:- tae Cercopitheci of Africa, the macaques. (Macacus-chiefly Asiatic, with the exception of the tailless macaque, M. ecaulatus, of North Africa, which is preserved in Gibraltar), and the babocons, which are the most dog-like in face of the Cynomorpha, and include, among the African species, some very large iorms.

CHAPTER VII.

The Arthropoda.

1. It was stated in Chapter I., that the term Invertebrata includes several distinct sub-kingdoms, resembling each other in that they do not possess the arrangement of the nervous system and skeleton typical for the Vertebrates. It must not be understood that all are equally unlike Vertebrates, some worms for example, seem to foreshadow in their structure the vertebrate organization, but the most highly organized Inverte-brates-the Arthropoda-diverge - :ey widely from the type of structure which we have studied heretofore, although their organs are built up of histological elements, similar, in many respects, to those of the Vertebrates. The nature and extent of the divergence referred to may be studied in the crayfish, an Arthropod which forms a suitable introduction to the subkingdom to which it belongs, boih on account of its size and on account of its position in the group.
2. The Arthropoda are bilaterally segmented animals like the Vertebrates, but. unlike them, their segmentation is visible on the surface of the body, especially on aecount of the fast (from which the group derives its name) that each segment may carry one pair of jointed appendages. Throughout the sub-kingdom the rule holds good which obtains also in the Vertebrates, that, in the more primitive irmilies, the segments are not oniy more numerous but less constant in number, and show less tendency to be grouped into dissimilar regions. The nervous system partakes in the segmentation of the hody, but is situated on the ventral aspect, while the centre of the blood-vascular system is dorsal, so that there is a complete reversal of the neural and
hæmal aspects, as compared with the Vertebrates (Fig. 110) ; nevertheless, it is the neural aspect which is first developed in both sub-kingdoms. No endoskeleton affords attachment to the muscles of the body or protects the delicate organs, but this is functionally replaced by an exoskeleton of chitin, a hard substance of peculiar chemical composition, secreted by the skin, and sometimes rendered harder by the admixture of calcareous salts.

Fig. 119.-Diagram of transen Hons through the abdominal regions of a catish and a crayfish, to show the relative p ion of nervous system, N, and intestine, I.
D, dorsal; V, ventral surface; E, endoakeleton; B, aorta; K, kidney.
3. The last peculiarity is especially met with in the Orustacea, one of the four Arthropod classes, and that to which the crayfish belongs. The other classes (Insecta, Arachnida, Myriapoda) embrace chiefly air-breathing Arthropods, whilst almost all Crustacea are aquatic, so that there is, on the whole, a marked difference betweea the respiratcry organs of the Crustacea and those of the other classes.

Seiveral species of crayfish or crawfish (old English crevish, Fr. écrevisse, Ger. Krebs) occur in Ontario ; one of the commonest near Toronto is Cambarus robustua, Girard, (Fig. 120),

Fis. 120.-Cambarus robustus. (Girard).
but all are included in the genus Cambarus, while those on the Pacific slope of the Rocky Mountains, as well as the European crayfishes, belong to an allied genus, Astacvs. This genus gives its name to the family Astacidæ, which includes the lobster (llomarus umericanus), the marine representative of the crayfish. Any species will serve for making out the arthropodous charac-- ters already mentioned, as well as those peculiar to the Crustacea which follow.
4. Twenty segments, of which only the last (telson) is destitute of a pair of appendages, are invariably present in the group of Crustacea, to which the crayfish belongs, and these are
grouped in three regions, of which the head contains five, the thorux eight and the abdomen seven. On account of the extent to which a segment from one region differs from that from another, the segmentation is styled heteronomous, but the same fundamental plan of structure may be observed in all. The abdominal segments are iadependent, but the segments of the head and thorax are coalesced with each other into a cephalothorax: the fusion being more complete on the dorsal surface. Behind a line which marks off the cephalothorax into anterior and posterior regions, each side of the thorax is provided with a flap of skin which acta as a gill-cover, forming a cavity in which the gills, ettached to the bases' of the thoracic legs, are sheltered.
5. It will be convenient to study one of the hinder pairs of abdominal appendages first; they are biramous, consisting of a basal part, with two branches, internal (endopodite) and external (exopodite). Those of the sixth pair are modified with the telson into the caudal fin; while the first and second pairs are different in the two sexes.

Of the eight pairs of thoracic legs, the three foremost are turned forward as the foot-jaws (muxillipedes) to assist in securing food, while the five hindmost are the walking legs. Comparing these with the abdominal appendages, we find that although the endopodite is large in all, the exopodite is only present in the foot-jaws, while, with the exception of the eighth pair, all the thoracic appendages have in addition a membranous flap-the epipodite-concealed within the gillchamber, and carrying, with the exception of the first, gillfilaments. There are thus six gills of this nature on each side; the other gills are attached to the soft membrane which connects the legs to the thorax, and there are eleven of these on each side, the third to the seventh appendages each carrying two, while the second has only one. The fourth pair of tho-
ancic legs-the great claws-are adapted for prehension; they, like the fifth and sixth, are chelate, i.e., the penultimate joint is prolonged so as to be opposed to the terminal joint.

Of the five pairs of head-appendages, the two anterior (anternuloe and antennoe) are sensory, while the three posterior (the mandibles and the maxilles) are related to the mouthaperture as jaws. The second pair of maxillm most closely resemble the foot-jaws, but the exopodite and epipodite of each are united into a spoon-shaped flap, which lies in the anterior narrow aperture of the gill-cavity, and, by its movements, creates a current of water, which flows outward through that aperture. In both pairs of maxillæ as well as in the mandibles, the endnpodites ars feeler-like (palps), while it is the basal segments which are flattened and approxime ad to the mouth-aperture, tuose of the mandibles alone being hardened for cutting. Neither exopodites nor epipodites are present in the mandibles or first pair of maxillæ. On the other hand, both of the foremost appendages are biramous, the exopodites of the antennæ being, however, mere scales, while those of the anteanule are similar to the endopodites. On the basal joints of the antennes and antennulæ, respectively, are to be seen the apertures of the green glands or kidneys and of the ears to be afterwards described.
6. Having inspected the outward form of the body, we must now glance at the various systems of organs... It will be observed that the chitinous cuticle remains soft where movements are necessary, and that it is most densely calcified where it meets with the greatest strain, as e.g., in the chelm and mandibles.
7. The nuscles are formed of very plainly striped tissue; indeed the histology of this tissue can be more easily studied here than in the catfish (I, 8). The muscular bundles are attached to ingrowths of the exoskeleton, which can be seen very
well in the chelæ and elsewhere. Similar ingrowths protect the ventral nervous system.

Fig. 121. - Diagram of an ommatidium from the eye ommatidium from the eye
of the Crayfish ; cuticular facet formed by underlying hypodermal cells oh ; p, pigment cells surrounding the retinophoral cells and co, the crystalline cone; r. retinulm; rh, rhabdome; bm, basement membrane; n, nerve.
8. We distinguish in the nervous system, the brain and veutral nerve-cord, the lattir composed of a chain of paired ganglia, connected by longitudinal commissures. Of such ganglia the last eleven segments in front of the telson have each one pair, but the ganglia of the five segments in front of these have coalesced into an infracsophageal ganglionic mass. This is united to the brain, or supracsophageal ganglia, by commissures which lie at either side of the cesophagus. The brain supplies nerves to the eyes and antennæ. All of the nerves in the crayfish, as well as other Invertebrates, are of the nonmedullated type.
9. An examination of the sense-organs shows that they differ both in position and structure from those of Vertebrates. The eyes are elevated in this order of Crustacea (Podophthalmata) on movable sta!ks; and they are of the compound type so characteristic of most Arthropods (Fig. 121).
The stalk is partly occupied by muscles, but chiefly by ganglionic expansions of the optic nerve, from the outermost of which the nerve-fibres pass off through a basement membrane to end in the modified epidermal cells which constitute the eyes. These cells are disposed in three zones, the outermost of which secrete the cuticular facets of the , eye; each facet corresponds to an element (ommatidium) of the compound eye, and is formed by two cellis of the outermost zone; underneath these are ths four retino-
phoral cells, (surrounded by four pigment cells), which seerete the crystalline cone, and this is prolonged inwards into a tube (formed by seven cells of the innermost zone-the retinume), of which it forms a spindleshaped core-the rhabdome. The nerve fibre to each ommatidium occupies the axis of the rhabdome and of the crystalline cone; the cones, therefore, constitute the sensitive elements of the eye, like the rods and cones of the Vertebrates.

Auditory sacs are present in the basal joints of the antennulæ. They contain foreign particles, which play the part of otoliths ($\mathrm{I}, 46$), and the sensitive elements are stiff hairs in which nerve-fibres terminate. Both pairs of feelers obviously act as tactile organs, but peculiar setæ on the outer branches of the antennulæ heve been interpreted as olfactory in function.

When the various jaws have been removed, the mouth is exposed, bounded in front and behind by unpaired chitinous outgrow ths, the labrum and metastoma. The chitinous cuticle is continued into the spacious stomach, where it forms numerous calcified teeth, of use in comminuting the food. Digestive juices are furnished by the so-called liver, a bulky tubular gland which lies above and behind the stomach, and which opens into the mid-gut, the only part of the intestine destitute of chitin. Behind this is the straight rectum, the lining of which becomes continuous with the cuticle at the anus.
10. In comparison with the Vertebrates, the Arthropods have a less complete blood-vascular system, for, auring part of the circulation, the blood flows in interspaces instead of closed capillary vessels. These are, however, partly represented in the crayfish, and the heart, as well as the arteries and veins, is well developed (Fig. 122). The blood is driven out to the whole system througs the arteries, and is returned by venous sinuses through the gills to the pericardial sac.
11. The female crayfish may be found in spring with eggs attached to the abdoninal appendages, to which the young adhere until they have attained the form of the adult. In the

Fig. 122. - Diagram of circulation of Crayfish-a, heart in pericardium; b, a, d, anterior, posterior, and ventral arterics.
lobster, as well as most other Crustacea, tho young aro freed from the egg when they have attained three pairs of legs (Nauplius-phase) ; they only arrive at the adult form after a series of moults, and there is generally a complicated metamorphosis.
12. If we except a species of prawn (Palcemonetes) and another of Opossum-shrimp (Mysis) found in the Upper Lakes, the Podophthalmata are exclusively marine forms, including on the one hand the various kinds of shrimps and prawns, which resemble the crayfish in the long tail (Mucrura), and on the other, the crabs (Brachyura), where the short tail is tucked up under the cephalothorax. An intermediate group is formed by the hermit-crabs (Payuride), in which the cuticle of the tail-segments never becomes calcified, and the creatures resort to empty univalve shells for proteation. An allied East Indian genus, the cocoanut crab (Birgus latro), lives in holes in the earth, and, instead of depending on its gills for respiration, uses the wall of the gill-cavity as a lung. This is an instance of what is termed "change of function," a principle which must be borne in mind, in comparing the structure of animals which are nearly allied in form, but different in habits.
13. Two other orders of Crustacea, which resemble the crayfish in the number of the segments and the appendages, have fresh-watur representatives which are very common, although the majority of both are marine. These are the Isopuda and the Ampinipoda; but in both, only one of the eight pairs of thoracic appendages is turned forwards toward the mouth. The Isopods have the body depressed, while in the Amphipods it is compressed. A familiar example of the former is the water-slater, Asellus communis. (Fig. 123). It will be observed

Fig. 123 -Ascllus communis. $\times 2$.
that the four hindmost abdominal segments are coalesced above into a shield, from beneath which the last pair of legs project. The three pairs of legs in front of these serve for respiration, and the eggs are carried in the female on the under surface of the thoracic segments. Terrestrial Isojods, like the common Wood-louse (Oniscus) and its allies, exhibit an interesting adaptation for breathing air ; one of the pairs of abdominal legs being traversed by tubes which have the same function as the trachere of insects.

Among the marine Isopods several are temporary parasites adhering to the surface of fish; others are permanent parasites, which live in the gill- or body-cavity of other Crustacea, and which consequently loose much of their resemblance to the free Isopods.

Of the fresh-water Amphipods species of a genus Gammarus

(Fig. 124), are everywhere to be met with. The gills are on the thoracic legs, the abdominal legs being partly for swimming, and partly for leaping. Species of an allied genus, Pontiporeia, occur in the Great Lakes; they are inter-
Fig. 124.-Gammarus ep. $\times 3$. esting, like Mysis, because the other species are chiefly marine.
14. The lower orders (separated in a sub-class Entomostraca, from tho foregoing Malacostraca, exhibit by no means the same constancy in the number of segments which we meet with in the higher, nearly allied forms often presenting considerable differences in this respect. All of the orders except one-the Cirripedia- have fresh-water representatives, which are for the most part inconspicuous, often microscopic, creatures,

The most primitive forms, as well as the largest we have to mention, belong to the Phyllopocia, a group in which all the segments behind the head bear flat leaf-like swimming-legs,

A common form in spring pools is Branchipus vernalis
 (Fig. 125), with eleven pairs of such legs; an allied genus, Artemia, is very common in salt lakes. Other genera are protected by a shell, which may be horse-shoeshaped as in Apus, or formed of two valves as in Esthericu. Such shells are also found in another group of Phyllopods-the Oladocera or water-fleas(Fig. 126), in which there are only five puirs of legs, but which

Fig. 126 -Daphnia pulex. $\times 18$.

Fig. 127.-Cy;pris candida. $\times 10$. are otherwise marked by the large second pair of antenna: taking on a locomotive function. Another order, Ostracoda, includes forms with a still shorter posi-cephatic region, for only two pairs of legs are to be found behind the jaws (Fig. 127). The Copepoda, however, have a much longer post-cephalic region than this, there being five thoracic segments, the first of which is coalesced with the head, and five abdominal segments terminating in a furca. The latter are footless, but the thoracic segments bear biramous swimming feet, and the head-segments the usual appendages, although the second pair of maxillæ separate on each side into two independent so-called foot-jaws, which may undergo curious alterations. Many of the Copepodit live a semi-parasitic or parasitic life ; in the free forms (Fig. 129), the jaws are formed for biting, but in the parasitic forms, the parts of the mouth are more or less converted for sucking or adhesion (Figs. 129 and 130), in which the posterior antennæ may assist. As a rule the parasitic Copepoda do not appear to injure
much the creatures they attack, but one form, Aryalus, which attains the length of quarter of an inch, is found to kill the whitefish in lakes in the North-West in immense numbers.

Fig. 123. - Cyclops sp. $\times 12$.

Fig. 129.-Ergasilus with egresacs from gills of sunfish $\times 10$

Fig. 130.-Achtheres from gills of catfish $\times 6$.

This form attaches itself by the anterior foot-jaws, which are modified into suckers, but it is the piercing and sucking mouth which injures che fish.

The reraaining order-the Cirri-pedia-has only marine forms, which pass through an active larval phase, but eventually attach themselves by their heads and secrete a complicated shell (Figs. 131 and 132). The antennæ are rudimentary, but three pairs of jaws are present, and behind these, six pairs of biramous feet, which by their movements bring food

Fig. 131.-Shell of Balanus hameri.

Fig. 132.-Lepas anatifera.
15. On the Atlantic coast, from Nova Scotia southwards, there occurs a very remarkable animal called, on account

Fig. 133. of its shape, the horse-shoe crab, Limulus polyphemus (Fig. 133), the body of which is divisible into three regions cephalothorax, abdomen and caudal spine. The first of these bears six pairs of leg-like appendages, chiefly chelate, on either side of the mouth, possibly equivalent to the first six pairs of the Crustacean. The abdominal appendages are present in five pairs, the outer branches of which are beset with giil-leaflets. Limulus passes througk a "Trilobite-phase" (Fig. 134), in its development, so called on account of its resemblance to the singular fossil ArLimulus polyphemus. 3. thropods, which were so abundant during the Palæozoic period. (Fig. 135).

Fig. 13K.-Trilobite-rhase of Limulus.
(After Kingsley).

Fig. 135.-Asaphhus Canadensis. .Chapman. Utica Formation.
16. Bcich the Trilobites and Limulus have generally been considered as Crustacea, but many points in the stricture and 14
development of the latter seem to point to its being more closely allied to ike Arachnida. This resemblance is strongest to the Scorpions (Fig. 136), a group of Arachnida confined to the warmer zones of the Old and New Worlds. In these the appendages of the cephalothorax are similar to those of Limulus, the first two pairs(cheliceræ and pedipalpi) acting as jaws and prehensile arms, while the others are walking legs. Respiration is performed by four paiss of "lungs," which are cavities on the third to the sixth abdominal segments, containing leaflets that recall the gills

Fig. 136.-Scorpio europaeus, with its combs and ocelli. of Limulus, and opening by slits on the ventral surface. Development shows that these lungs arise as infoldings at tie bases of appendages, and that they are homologous with the gills of the horse-shoe crab. The abdomen differs from that

7ig. 137-Agailena nevia, with tre ocelli (Afcer Emerton). of the crayfish, in being differentiated into two regions, a preabdomen of seven, and a postabdomen of six segments, the last of which terminates in a curved claw, perforated by the duct of a poison-gland.

The little book-scorpions (Chelifer) Lave no poison-gland in the tail, nor is the abdomen subdivided into two regions; they belong to an independent sub-order, the Pseudoscorpionina, as do the daddy-long-legs (Phalangina), with their short abdomen and long walking legs. Both of these groups feed on minute insects and mites; with the Scorpions they form the order Arthro. gastra.
17. Of the various orders of Arachnida, the gpiders (Araneina) and mites (Acarina)
are the most important. Both have the two pairs of mouthappendages and the four pairs of walking legs, but the form of the body is very different in the two groups, on account of the separation oi the abdomen in the spiders proper, by a slender stalk, and the presence at its extremity of the spinnerets (Fig. 137).

Some of the chief structural peculiarities of the spiders may be gathered from Fig. 138. The two-jointed chelicere terminate in a powerful claw, perforated by the duct of a

Fig. 138.-Diagrammatic section of a'spider-E'peira. (After Emerton).
a, b, upper and lower lips ; c, csophagus: d, f, upper and lower muscles of the sucking stomach; e, stomach; g, ligaments attached to diaphragm under the stomach; k, apper, j, lower, nerve-ganglion; l, nerve to legs and palpi; m, m, branches of stomach; n, poison-gland; o, intestine; p, heart; r, lung ; s, ovary; t, trachea; u, apinning glands.
poison-gland. Between the bases of the pedipalpi is the mouth, which leads by an œsophagus into a sucking stomach, dilatable by muscles, and provided with lateral cœeca. The abdominal part of the intestine is provided with a liver, and with Malphigian tubes (slender cœea arising from the hinder end of the intestine in air-breathing Arthropods, and discharging the function of kidneys). The heart is elongated like that of the scorpion and of the lower Crustacea, but the nervous cord is concentrated into the thorax. Above the cesophagus is the brain, which sends nerves to the simple (not facetted) eyes, the arrangement of which on the head is of great use to systematists. The numerous lungs of the scorpion are only represented here by two air-sacs (four in the trap-door spiders), while, in addition, a
pair of branching air-tubes, such as are universally present in the insects, open further back near the spinucrets. These are three pairs of projections, through short tubes on the ends of which the spinning glands open. The secretion furnished by these glands hardens on exposurs to the air, and the threads so formed are guided by the hind legs into the characteristic webs, which serve as dwellings, or as traps for the prey, or even for flight.
18. In the Mites, on the other hand, the abdomen and cephalothorax are coalesced and unsegmented, while the mouth-appendages are frequently much modified by the aloption of a parasitic mode of life. Some of the Mites are parasitic on insects, during a larval stage, in which they have only six legs, afterwards seeking their food on plante (Trombidium). Some are aquatic forms, which may live free (IIydrachna), or parasitically on fresh-water mussels (Atax). Others are temporary parasites, like the ticks (Ixodes), but there are various forms which live a permanently parasitic life in the plumage of birds (Dermaleichus), or in the skin of mammals (Sarcoptes, Demodex). Finally, the cheese-mites and their allies (Tyroglyphus) have their mouth-parts adapted to the easy mode in which they secure their food. Plants are not exempt from the attacks of mites, for the species of one group (Phytoptus), in which the two hinder pairs of legs are rudimentary, maks minute galls in the leaves of various plants.

The effect of the adoption of a parasitic mode of life is best seen in the genus Pentastomum, a form destitute of apperdages, except for two pairs of hooks near the mouth, which lives in the nasal cavities of Carnivora.

With the exception of the larger mites and ticks, all of the above forms have no special respiratory organs, and this is the case also with the bear-animalcules (Tardigrada), a group of microscopic creatures living in moss, and feeding on minute larvæ or Rotifers. Like the latter, they may be desiccated and revived by moisture. They are associated with the Arachnida on account of the number of appendages, but the fourth pair of legs occupies the hinder end of the body.
19. Apart from such minute air-breathing Arthropods as are referred to in the alrove paragraphs, all have respiratory organs, consisting (with the exception of the lungs of the scorpions and spiders) of branched air-tubes, communicating with the outside by "stigmata," and introducing air into all the tissues of the
body. The walls of these tules are delicate, but they are provented from collapsing 'y the presence of a strengthening, spital, chitinous fibre, just as, in the higher Vertebrates, the windpipe

Fig. 139.-Segments of a Grasshopper (After Kingsley). An, antenna; Oc, ocellus in front of compounci eve; Ec, epicranimm; Cl, clipens; La, lal.rum; Mxp, maxillary palp; lip, labial palp: ln, pronotum; C, cona; T, Trochanter;
 is by its cartilages. They are, therefore, called tracheæ, and the air-breathing Arthropods are hence frequently spoken of as the " tracheate" in contradistinction to tho " branchiate" Arthropods. Two groups. of the tracheate Arthropods remuin for us to discuss-the Insecta and the Myriapoda. Although the latter contains the most primitive forms, yet some knowledgo of a very accessible member of the former class-the red-legged grasshopper -will serve to introduce to both.
29. Among several species of locusts which are abundant in the fields in the fall, there is none easier to obtain than the species above
named-Caloptenus femur-rubrum. Comparing it with the crayfish, we find that there are conspicuous differences both as to the number and grouping of the segments, and ats to the number and nature of the appendages. Instead of a cephalothorax and abdomen, we find a head composed of four segments (the number only to be arrived at from the appendages), a thorax consisting of three free segments (pro- meso- and metathorax), each of which bears a pair of walking legs, and the two hindnost, each a pair of wings ; and finally, an abdomen of ten segments without obvious appendages (Fig. 139).
21. In the abdomen, the exoskeleton of each segment is divisible into a sternum below, a tergum above s and a lateral piece s on each side-the pleurum-coalesced with the tergum, and only indicated by the stigmata. In the meta- and mesothorax (but not in the prothorax) a further differentiation is associated with the attachmenti of the wings, for each tergum or notum is subdivided into an anterior scutum and a posterior scutellum, while the independent pleurum is subdivided on each side into an anterior epinerum and a posterior episternum. Only the sterna of the head-segments can be recognized, for the dorsal part of the exoskeleton of the head (ericranium) belongs solely to the first segment.

Fig. 140.-Maxilla and labium of Caloptenus. (After Paikard). c, cardo: s, stipes; 1, lacinia; g, calea; p1, maxillary palp; sm, submentum; m, mentum ; pf, palpifer ; le and 1 , external and internal lobes ; $\mathfrak{p}^{2}, \mathrm{la}$. bial palp.

The thoracic legs are formed of the femur, tibia, and three-jointed "tarsus,"-these names must not be supposed to indicate any homology with the parts so-called in Verte-brates-articulated to the thorax by the "trochanter," "coxa" and "trochantine," but the head-appendages are more complicated. They embrace the filiform antennæ, the strong cutting mandibles, the maxillæ and the labium, which is formed of a second pair of maxillæ, coalesced in the middle line (Fig. 140). Certain unpaired struc-
tures, like the labrum and metastoma of the crayfish, are represented here also, for above the mandibles there is an unpaired labrum articulated to the epicranium by an intermediate clypeus, and projecting into the mouth-cavity as the epipharynx, while a hypophucrymx is found opposite in the floor of the mouth ; both of these are covered with stiff hairs.

Although the abdomen has no obvious appendages yet the blades of the ovipositor and the cerci (more conspicuous in the cockroach) are, in reality, appendages of the eight, ninth, and tenth segments ; traces of an eleventh segment are also present.
22. Of very different nature from the appendages, are the wings: these are to be regarded as outgrowths from the notum of the two hinder thoracic segments, which have become hinged to the thorax, and penetrated by vascular and respiratory organs. In this genus the anterior wings are less of nse in flight than the posterior, and serve partly as wing-covers (elytra).
23. In the locust, the nervous system is related to the segmentation in a way somewhat similar to what we found in the crayfish, but it is not so concentrated ss in the spider. The brain supplies the eyes, ocelli and antennæ; the infracsophageal ganglion, the mouth-parts; the three thoracic segments have each their own ganglion (the last of which supplies the ears) ; but there are only five abdominal ganglia situated in the third, fifth, seventh, eighth and ninth segments respectively (Fig. 141). The intestines have a special ganglion united with the brain by a visceral nerve.

Little definite is known with regard to the senses of the locust; the antennæ and palps of the jaws have undoubtedly a tactile function, but it is likely that some parts of them may be employed to detect odours and tastes as well. The compound eyes have a similar structure to those of the crayfish, but there are in addition three ocelli (comparable to a single ommatidium of a compound eye), one of which is situated batween the bases of the antenne, the other two, higher up on the front of the head.

Locusts are capable of producing sounds liy rubbing the hind legs against tha wing-covers, and they have also organs fitted for perceiving sounds. These are situated on the first abdominal segment, and corsist of a vesicular auditory sac, suspended on a stretched tympanic membrane.
24. Fig. 141 indicates the chief parts of the intestinal system. The oesophagus, on ascending from the mouth-cavity (into which salivary glands open), dilates into a crop, the lining of which is furnished with hairs regularly arranged. At the junction of the crop with the stomach are several cœca, which serve to increase the intestinal surface, while at the junction of the stomach with the intestine proper, the Malphigian or urinary tubes are situated. The heart is an elongated vessel occupying the first seven abdominal segments, and the respiratory organs are a complicated system of air-tubes, opening by ten pairs of apertures (stigmatia or spiracles) to the outside. Two of these are thoracic, being situated in front of and behind the mesothorax, while the other eight are on the anterior cight abdominal segments. The spiracles communicate directly with two longitudinal lateral air-tubes; these give off the smaller tracher to the tissues, but the spir

${ }^{\text {² }}$
acles are also very directly related to a series of large air-sacs, which buoy up the locusts in their flight.
25. There is a conspicuous difference between the end of the abdomen in male and female specimens ; in the latter (Fig. 141), the ovipositor serves to drill the holes in the ground in which the eggs are laid, surrounded by a stiff secretion furnished by special glands. Ovinosition occurs in the fall, and development begins at once, but is checked by winter, so that the young larvæ only escape from the eggs in the spring. Apart from the circumstance that they are destitute of wings, they resemble the parent in form; the complete resemblance is attained during a series of moults, after each of which the body becomes larger and the rudimentary wings more evident. No complete resting-stage occurs such as the "chrysalis" of the butterfly, but the insect is said to be in the "pupa" stage, before the last moult, which converts it into the adult (imago) stage: the locust and its allies are consequently said to develop without metamorphosis.
26. According to a recent computation, the number of species of living animals described, amounts to some 272,000 ; of these, 200,000 belong to the class of the Insecta, and are consequently constructed upon substantially the same plan as the locust dcscribed above. Although only some 6,000 of these occur in Canada, yet there is such a wealth of form, and such differences of habit within the limits of this single class, that it will be impossible to do more here than indicate the chief modifications of the insect type, which characterize the various orders.

Most of these are more specialised than the type described, so it may be as well to glance in the first place at the more primitive forms. Such, like the cockroaches (Blattidce), and earwigs (Forficulida), are to be found within the order (Orthoptera) and sub-order to which Caloptenus belongs. The order receives its name from the position which the wings assume in rest in the family (Acrydidce), in which it is
placed, and to which the carnivorous locusts and crickets are nearly allied; but the wings may be entirely absent, as in the singular walking-stick insects (Diapheromera femorata), or only partly developed, as in some of the cockroaches and earwigs.
The family Phasmides contains some of the most striking cases of protective resemblance to the environment, for the members may resemble dried twigs, or even leaves of the trees on which they live, as in the case of the East Indian winged Phyllium.
27. From the earwigs we are led to a group of insects characterized by the entire absence of wings, and the presence of caudal appendages, equivalent to the cerci of the locust and cockroach, and to the forceps of the earwigs. These are the spring-tails (Thysanura), inconspicuous on account of their sizo (Fig. 142), but interesting to the zoologist as the most lowly organized insects, some of them (Fig. 143) even having rudimentary legs on the abdomen, and thus resembling certain Myriapods (Fig. 144).

FIg. 142-Podura

Fig. 143-Cam. podea.

Fig. 144.-Ssolopendrella.
28. The characters :? this class, the Myriapoda, may be therefore briefly examined before proceeding to tho higher Insecta. It is a small group of less than a thousand species, in which the numerous segments of the body may each bear one or two pairs of appendages, but are never grouped, as they are
in the Insecta, into thorax and abdomen. There are no wings, and the maxillæ may only be present in ono pair. Most of the Myriapods fall into two orders, the Chilopoda and Ohilognatha, the former including carnivorous forms (Centipedes, Fig. 145),
 the latter, forms which live in decaying vegetable material (Millipedes and galleyworms). The parts of the mouth are adapted to their habits, for in the Chilopoda the first pair of legs end in powerful claws perforated by the duct of a poison-gland, and are turned forwards to supplement the three pairs of jaws. In tho Chilognatha, on the other hand, there is only one pair of maxillæ below the mandibles, and they are united to form a labium. The two Fig. 145.-Scutigera. groups further differ in that the Centipedes have only one pair of legs to each segment, the Millipedes two; and that, while the Centipedes resemble the insects in the position of the opening of the oviduct, this is near the head in the Millipedes. It will be apparent from what follows that these are much more important structural peculiarities than we find separating the orders of Insecta from each other.
Certain tropical worm-like forms (Peripatus) which have the habits of Millipedes, but whose segments bear unjointed appendages terminating in hooks, are of interest as being intermediate between the Vermes and the lower Arthropoda. A separate class (Protracheata) has been formed for their reception.
29. Returning to the locust and its allies, which are described as the Orthoptera proper (0. genuina), we must now proceed toward the higher orders of insects, glancing, in the first place, at certain forms associated by naturalists with the Orthoptera, on account of the structure of the mouth-parts and the absence of a metamorphosis, but differing from them in that both pairs of wings are alike. The wings resemble those of the nerve-
winged insects (Neuroptera), and, to distinguish them from these, the forms referred to aro callod Pseudo-nenroptera. Belonging here are the dragon-flies (Libellulidar), May-flics (Eyhemerides), stone-flies (Perlidec), all of which have aquatic larvo (into the traches of which air is absorbed through peculiar expansions of the boly-wall known as tracheal gills), lut there are also forms with terrestrial larve, such as the l'socille (very small insects which live like plant-lice chiefly on lardwood trees, and often attract attention by the woolly-looking masses which they form).

Allied to these are the tropical Termites, often called "white ants," because they live a social life in colonies and build nests. An African species-Termes bellicosus-builds towers 12 or $\mathbf{1 5}$ feet high; in addition to the maler, and females, the inhabitants are partly wingless neuters, most of which undertake the work, but some the defence of the colony, and are therefore called workers and soldiers.

Occupying an intermediate place between the Orthoptera and the next order, is the family Thrypsidre, ineluding minuto inseets which have the parts of the mouth adapted for sucking vegetable juices. They often attack cultivated plants in great numbers, causing destruction, e.g., of the hay and onion crops. The wings of the adults are margined by long delicate hairs.
30. Jike the Orthoptera, the Hemiptera are insects with an incomplete metamorphosis, but the parts of the mouth are generally modified for sucking, the labium being converted inio a grooved and jointed proboscis (generally folded back underneath the thorax), in which the mandibles and the maxilla lie in the form of slender stylets (Fig. 146, 2).

Fig. 146, 1, 2, 3.-Diagram of transections of the proboscis of dipterous, hemipterous, and lepidopterous insects. (After Dimmock, Graber, and Muhr, respeetively).
$l e$, labrum and epipharynx; $l b$, labrum, $l a$, labium, (between the two are the mandibles and maxille, and in 1, the hypopharynx); mx, maxillie.

Palps are absent, except in some low wingless forms-the Mallophaga-which live on the young hairs and downs of mammals and birds, and have, consequently, biting mouth parts. They, with the Pediculide, which live by sucking the blood of animals, form the sub-order Aptera. But the absence of wings is not confined to this sub-order, some of the plant-parasites (sub-order I'hytophthires) being also wingless. This sub-order includes the plant-lice, Aphidee, and the scale-insects, which are so harmful to plants (especially those cultivated in the house), the juice of which they suck by means of the proboscis.

Among the better known forms of these parasites are the Phylloxera vastatrix, which was carried from this continent to Europe, and has there done enormous damage to the vineyards, chiefly by forming galls on the rootlets of the vines, and the cochineal insect (Coccus cacti), a scale-insect which lives on the prickly-pear cactus in M.xico, and which is the source of carmine, one of the most valuable dyes of commerce.

The bulk of the Hemiptera belong to the two remaining suborders, the IIomoptera, in which the wings are alike, and the Heteroptera, in which the anterior are partly converted into elytra. To the former belong the musical Cicadidoe, the males of which have a vocal apparatus on the under surface of the abdomen, and the Cicadellidee, which are much smaller forms but include many more species. To the latter, belong the water- and land-bugs, Hydrocores and Geocores. In accordance with their aquatic life, the Hydrocores have one or more pairs of legs modified for swimming, their habitual mode of locomotion during the day, but their hind wings enable them to fly, which they do chiefly at night. All of them are predaceous forms, sucking the blood of fishes, Ephemerid larve, etc.; they are capable of inflicting a sting by means of their proboscis. The body may be elongated (Ranatra), or flattened (Belostoma), or keeled for swimming on the back (Notonecta). The Geocores, however, include many more species, partly living on animal, partly on vegetable juices. Some have extremely long legs, by
means of which they run over the surface of water (Gcrris); others have a flat, depressed body, with short legs, like the bed-bug (Acanthia lectularia), while among the phytophagous forms, to which some destructive species like the chinch-bug (Riyparochromus leucopterus), and the squash-bug (Coreus sristis) belong: a great variety of form exists.
31. All the Insecta mentioned above are spoken of as ametabolic forms (Aicuetabola), on account of the fact that they do not undergo a metamorphosis. Those on the other hand now. to be dealt with are metabolic (Metabola).

At first sight the Neuroptera, on account of the wings, seem to be closely allied to the May-flies referred to above, but their larvæ pass through a resting (pupa) stage, during which they attain their adult form. The terrestrial larve of Myrmeleon are called ant-lions, as they feed on ants, which they catch by preparing sand-pits for them to roll into. They spin a cocoon, in which they pass their pupa-stage. The aquatic larvæ of the caddis-lies (Phryganea) live in cases, formed of sand or bits of twigs, in which they afterwards pass the pupa-stage. This group (Trichoptera) is an interesting one, because it leads to the Diptera and Lepidoptera, both on account of the fact that the anterior wings are hairy, and because the mouth-parts approach the structure met with in these orders. The latter is true also or the genus Panorpa, which is further remarkable for having caterpillar-like larve.
32. From the carnivorous terrestrial larvæ of the Neuroptera wo pass naturally to the carnivorous forms of beetles-Coelop-tera,-which are marked by a more complete conversion of the anterior wings into elytra than we have yet met with, and by a greater resemblance of the mouth-parts to those of the Orthoptera, than exists in other insects. More than a third of the known species of insects belong to this order ; it may be gathered, therefore, that within comparatively narrow limits of structural modification there is a surprising wealth of form, associated
with adaptation to habits of life characteristic for each species. Thus we have the carnivorous Carabida, running forms often destitute of the hind wings, the allied aquatic water-beetles, Dytiscidae, and scavenger forms like the Sylphidoe and Staphylinidor, sevcral of the latter being always found in ants' nests, and presenting curious instances of dependence upon their hosts. Destructive household-pests like the Dermestidae (which attack furniture, carpets, museum specimens, etc.), are amongst the smallest of the order, while the Scaraboida, along with a number of familiar phytophagous forms like the May-beetle (Lachnosterna), include some tropical giants-Dynastes-which may attain a length of 5 or 6 inches. The fire-flies (Lampyridoc) are sufficiently marker? by the luminous organs on the abdomen, the weevils (Cu'rculionidoc) by the prolongation of the head into a sort of proboscis, the bark-beetles (Bostrychidoe) by the characteristic channels which they hollow out in trees. Several of the leaf-eating forms (Chrysomelidce), like the potato-beetle (Doryphora decemlineata), are familiar, and the lady-birds (Coccinellidae), which feed on plant-lice, attract attention as well by their form as by their colouration.
33. In the two next orders of insects, Diptera and Lepidoptera, the mouth-parts are formed for sucking, but this conversion is carried out in different ways in the two groups. In the former the labrum and the labium form an unjointed double tube, in which stylets formed of the mandibles, maxillæ, and hypopharynx are contained (Fig. 146, 1). In the Lepidoptera on the other hand, it is the maxillæ which by their apposition form the sucking proboscis (Fig. 146, s) ; the maxillary palps are rarely well developed, while the labial palps are. The Diptera receive their name on account of the aprarent absence of the posterior wings, which are converted into balancershalteres; the Lepidoptera, theirs, from the presence of scaless (which are generally coloured) on the wings.

To the Diptera belong the mosquitos (Culicides), black-flies (Simulida), and horse-flies (Tabanides), the females of which suck blood through wounds made by their piercing stylets. The larvæ are aquatic, or, as in the case of the horse-flies, they live in the earth. There are also forms like the Hessian-fly (Cecidomyia destructor), which are injurious to cultivated plants, eggs being deposited within the cellular tissue, and thus forming galls, in which the larvæ are developed. Again, there are the domestic flies (Muscidor) in which the ends of the labium-(labellce)-are converted into a rasping proboscis, which enables them to dispense with their piercing stylets. The larvæ (maggots) lead a parasitic or saprophytic life. Finally, the fleas (Pulicida) are distinguished by the absence of wings and by the serration of their mandibles, which adapts them better for their life of semi-parasitism.

Many differences of habit are likewise met with among the Lepidoptera. Small forms like the clothes-moths (Iinea) belong to the Microlepidoptera, which also include a host of forms destructive to vegetation, in one way or another, like the coddlingmoth (Carpocapsa). Such is also the case among the larger forms, Macrolepidoptera, which include the butterflies (Papilionidce), hawk-moths (Sphingidee), silk-worm moths (Bombycid x), and other families.

It is in this ordor that remarkable instances of protective resemblance to other animals (so-called mimicry) was first observed. The bee-moths (e. g., Sesia thysbe and others) receive their names from (and owe their freedom from attack to) their resemblance to various stinging wasps.
34. The most highly developed of all insects are undoubtedly the Hymenoptera. They exhibit this in the reduction of the number of the abdominal segments and in the concentration of the nervous system, as well as in the social life which characterizes the higher genera. It is possible to recognize in the parts of the mouth, all of those met with in the locust, but the characteristic " tongue" of the bee is formed by the fusion and prolong-
ation of the inner lobes of the laoium, while the external lobes so marked in the locust here only form the paraglosse (Fig. 147).

Fig. 147.-Part of the Head with the Mouth-parts of the Honey Bee.
Ol, labrum ; k^{1}, mandible; k^{2}, maxillw; ta ${ }^{2}$, maxillary palps; uk, submentumi k. mentum; g, palpifer ; al ${ }^{3}$, external lobe of the labium (paraglossw); il, internal lobe, (tongue);'ta:, labisl palps.

Both pairs of wings are transparent, the anterior larger than the posterior, and united with them in flight. The lowest group, the $\mathrm{sa}_{\mathrm{in}-\mathrm{si}} \mathrm{i} 3$ (Tenthredinida), have caterpillar-like larve which live on leaves, but are distinguishable from caterpillars by the greater number of abdominal feet. Most of the familics, however, either provide for the larvæ, cells of wax, or of paper, or in the soil, and stock these with suitable food, which may consisi of honey, or pollen and honey, or of paralyzed insects (Sphegidac), or else they deposit their eggs in the bodies of other insects, or in plants, in such a way that the larvæ on hatching are surrounded with suitable food. In either case the larve are footless, and have rudimentary mouth-parts. The first condition is met with in bees (Apidas), wasps (Vespidce), and ants (Formicidce), the females of which are furnished with a sting or modified ovipositor connecting with a poison-gland, the second in the Ichneumonidoe, which possess long ovipositors by which they deposit their eggs in other insects, and in tho Cynipidce (the gall flies), where the laying of the eggs by the short ovipositors, in the cellular tissue of plants, gives rise to characteristic diseased outgrowths-galls-, in the interior of which the insects live till they reach the adult condition.

CHAPTER VIII.

The Vermes and Mollusca.

1. In last chapter, reference was made to the prevailing heteronomy of segmentation of the Arthropods, but the class of the Myriaposs, and especially the genus Peripatus, were described as possessing a more worm-like form and homonomous segment ${ }^{-}$ ation. The latter genus, indeed, is destitute of the jointed appendages almost universal in the Arthropods, and its locomotive organs rather suggest the unjointed stumps of the highest worms. These belong to the class Annelida (of the sub-kingdom Vermes), a class which is chiefly represented by marine forms, but of which the earthworm and leech may be selected as more accessible types.
2. The Vermes admit of no such sharp definition as do the Arthropods, for although bilateral symmetry is present in all, yet some forms are segmented, others unsegmented, and thus, the structure of the body may be extremely different in the various classes. The highest class, the Annelida; includes all the segmented forms, and those, consequently, nearest the Arthropods: a comparison, however, of an earthworm and a leech, on the one hand, with a crayfish on the other, will disclose the essential differences which exist between ${ }^{\circ}$ them.
3. One of the most notable of these is the absence of any exoskeleton such as that of the Arthropods; a thin cuticle containing chitin represents it, and is formed by underlying epidermal (so-culled hypodermal) cells, but many of these are
glandular in their character, and thus the skin is softer than in the Arthropods. The external segmentation does not alvays correspond to the internal ; in the earthworm it does, partitions or septa being attached opposite the exteraal furrows, which tend to divide off the colom into so many chambers as there are segments. In the leech, however, there are several furrows, which are merely skin deep, to each true segment marked off by the septa. The completeness of the internal segmentation, brought about by these septa, necessarily affects the various organs contained in the celom, thus the intestine, the bloodvessels and. the nerve-cord all partake in it. It is not often that we observe any reduction in the number of repeated parts, (each segment, for example, having its own nerve-ganglion), and this is especially true of the exeretory system, each segment having a pair of coiled tubes, segmental organs or nephridia, which open outwardly and also into the colom (Fig. 148). Ho-

Fig. 148.-Diagram of transection of earthworm.
H, the hypodermis; c, the circular, l, the longitudiw, muscl layers; $S^{1, ~} \boldsymbol{S}^{\mathbf{2}}$. the upper and lower pairs of bristles; a, external, a^{1}, coclomic aperture of the nephridium (the external aperture is not exactly in the same plane as the set:e, nor is the internal aperiure in the same plane as the external); i, the intestine with its roof infolded (typhlosole): it is coated with gland lar epithelial cells; blood-vessels are eepresented in black, above and below the intestine, and around the nerve-cord- -3.
mologues of these are to be recognized in the green gland of the crayfish, and the coxal glands of various other primitive Arthropods, such as the storpions and mites, which have a similar position, but are not repeated in every segment as in the Annelids.

The excretory organs of Annelids find a closer parallel in the kidneys of the more primitive Vertebrates, which are also ui. posed segmentally ; the internal apertures may be retained, but the separate external apertures are replaced by a single collecting duct leading to the outside.
4. Instead of the elaborate muscles which are present in the highest Arthropods, we find that the muicles and the skin are closely united into a tube surrounding the colom. Immediately underneath the skin is a layer of circular fibres, within that, one of longitudinal fibres, and both are penetrated by radial fibres which extend from the skin inwards. Although locomotion is always effected by the alternate contractions and relaxations of this cutaneo-muscular tube, yet the precise way in which it is carried oit differs in the two subclasses of Annelids-the Chætopoda and Discophora-to which the earthworm and the leech respectively belong. In the former, locomotion is assisted by bunches of strong bristles (setæ) attached to the sides of the segments, and worked by special musculn, slips, while in the latter, one or more regions of the tube are modified into suckers, which fix the body, while the muscular tube alternately contracts and elongates.
5. To the Chætopods belong the bulk of the Class, marine forms with numerous bristles (Order Polychetta) fixed on short projecting stumps (parapodia), which may also carry feelers, gills, or protecting scales. The marine Annelids are either carnivorous in their habits, living a free life, and swimming or creeping about the seashore, or sedentary forms, which burrow in the sand (Fig. 149), or live in tubes of chitin or sand or lime, which are constructed with the aid of secretions from the skin.

The order to which the earthworm belongs, however, (Oligochæta) chiefly includes fresh-water (limicolous) or terestrial (terricolous) worms, where the bristles are few in number, and lodged in setigerous follicles, there being no parapodia, nor appendages of the nature of feelers or gills. The Limicolo are small forms living for the most part in the mud at the bottom of ponds or streams. Some of them, the Naidida, are particularly remarkable on account of their reproducing themselves by budding, so that they are often found in chains, still attached to each other. They live chiefly on decaying vegetable

Fig. 140.-Marine lob-worm. (Arenicola piscatorum). The bunches of setw are more apparent in front of the gills than behind.
matter, but one species of Chcetogaster lives a parasitic life in the lungs of various pond-snails. The earthworm (Lumbricus terrestris) is the most familiar of the Terricolæ; its setæ are not conspicuous, but each segment carries eight, disposed in four groups. One region of the body is often swollen and noticeable, bearing the clitellum ; it furnishes a cocoon in which the eggs are developed. The researches of Darwin proved the earthworm to be of the first importance in the loosening of the soil and the formation of mould. This is effected in the course of its burrowing, which it does partly by separating the particles of earth, partly by swallowing them. Although no special respiratory organs are present, yet the skin is traversed throughout by capillary vessels, which bring the blood close to the surface. The fluid portion of the blood (not the corpuseles, I, 60) contains hæmoglobin ; and its circulation through the sbin, as well
as through the rest of the body, is assured by heart-like loops which connect the principal longitudinal vessels. These are situated above and below the tubular intestine, and above and below and on each side of the nerve-cord.
6. The Discophora differ from the other Annelids in the entire absence of bristles, and in the presence of a sucker immediately below the posterior aperture of the intestine. Most forms also have the segment in front of the mouth (prestomium) converted into a sucker. In accordance with their habits of life, we find conspicuous structural diffciences in the Leeches, as compared with the other Annelids. They are sometimes temporary parasites, like the medicinal leech in Europe (Hirudo) or its American representative Macrobdella, living upon the juices of other animals, which they suck and store up in a sacculated intess tine, or carnivorous forms with a simpler intestine preying on the smaller Invertebrates (Nephelis). Both of these groups have jaws, which are used either for inflicting a wound before sucking, or for comminuting their food. Other para sitic forms are destitute of jaws, but have instead a protractile proboscis. Common examples are the fish-leech (Piscicola or Ichthyobdella), and the various species of Clepsine, large formof which attack the pond-turtles, while smaller species prey on the pond-snails. Another interesting form, destitute of the anterior sucker, is the curious little Branchiobdella, several species of which are to be found on the gills, and on the headparts, of the various species of crayfishes.
7. In contrast to the Annelids, the lower Classes of Vermes do not possess metameric segmentation. Certain marine forms-Gephyrea-have segmental organs, but the cœlom is undivided and the rorve-cord alike throughout. In the other Classes (Rotifera, Nematelminthes, and Plathelminthes), to which, for the most part, unfamiliar and inconspicuous forms belong, a
socalled water-vascular system-to be presently describedreplaces the segmental organs.
8. The Rotifera or Wheel-Animalcules are microscopicaquatic creatures, round the mouth of which are disposed lobes bearing cilia, which, when in motion give the appearance of rotating wheels (Fig. 150). They serve

Fig. 150. - Female of Rotifer. (IIydatina senta). to bring food to the mouth, and also for swimming. A longer or shorter tail, which is sometinies telescopic, assists in locomotion, and serves also, as it terminates in a pair of forceps, for temporary fixation. Some of the species are sedentary, living in tubes, either singly or in colonies. The intestine is absent in the males (which are not only more minute than the females, but also much fewer in number, and shorter-lived), but it is complete in the females, having near the mouth an expanded part containing a chitinous masticating apparatus, and, behind that, two lateral cœca. The water-vascular system consists of two convoluted tubes opening anteriorly into the cœlom and posteriorly into a contractile bladder, which communicates with the rectum. Inistead of the clongated nerve-cord of the higher Annelids, there is here only a single ganglion situated above the œsophagus, whence are distributed nervefibres to the various parts, including the eyes and tactile organs. There are no bloodvessels, and no respiratory organs. The Rotifers like the Tardigrades have considerable power of resisting death by desiccation.
9. The names of the remaining Classes, which include for the most part parasitic worms, are taken from the form of the body, which is cylindrical in the Nematelminthes but flattened in the Plathelminthes. According to the grade of parasitism, the intestinal system is more or less reduced, being absent in those most completely adapted for a parasitic mode of life. Organs of fixation suited to the nature and degree of the parasitism, are
also to be recognisod. The development is often complicated by a metamorphosis, and the creatures often pass through different stages of their parasitic life in different hosts, a phenomenon known as heterœcism.

Fig. 151.-Trichina spiralis
A, female; B, male; C, junction of cesophagus and intestine; D, encysted Trichina-larva between the fibres of muscular tissue.
10. Two orders of Nematelminthes are recognised, the Nematodes, which have generally a complete intestine, and the Acanthocephali, which have none. To the former order there belong some free microscopia forms, which live in decaying matter in water, also some vegetable parasites, like the wheat-worm (Tylenchus) and the beet-worm (Heterodera), but the bulk of the order are parasites, either during a part of their life (like the insect parasites Gordius and Mermis), or during the whole of it. All groups of Vertebrates have special Nematode parasites, which live in the skin, or the eyes (Filaria), or in the intentine (Ascaris), or the
muscles (Trichina), or the respiratory organs (Symgannus, Strongylus), or blood-vascular system (Sclerostomum), and cause many werious diseases. One of the most dangerous of these to which man is liable, is Trichiniasis, caused by eating insufficiently-cooked pork, in the flesh of which the minute encapsuled Trichine are living (Fig. 151). The Acanthocephali are so-named, from a proboscis covered with hooks, by which they fix themselves in the intestinos of their hosto-for the most part, lower Vertebrates.
11. The Plathelminthes also include some free forms, such as the marine Nemertini, unsegmented worms, which sometimes attain alength of thirty or forty feet (Lineus), and also the Turbellaria, for the most part very small creatures living in water or damp places. In both, the skin is covered with ciliated cells, which are absent in the other (parasitic) orders. The intestine is tubular and complete in tho Nemerteans, but in the Turbellarians it is sometimes much branched, and always opens to the outside only by the mouth. The commonest forms are species of Plan.

Fig. 152-Turbellaria a, Mesostomum, with rodlike; b, Planaria, with branched intestine; m, the mouth ; n, nerve-ganglia with eye-spots. aria (Fig. 152 b) little flat, leech-like forms, which are to be found clinging to stones or creeping ahout in fresh-water ponds or streams. They are rarely louger than half an inch, but some marine forms attain a much larger size. On the other hand, there are fresh-water Turbellaria with a simple rod-like intestine (Fig. $152 a$), which rarely exceed a line in length, and others, with no intestine at all, in which the food-particles are simply admitted by the mouth into the interior of the body, which is composed of soft cells.
12. The remaining orders of the Flat-worms are the Trematodes, and Cestodes. In the former, the intestine is a furked tube opening only by the mouth; in the latter, it is entirely absent, and there is no coelom in either. Organs of fixation in the form of suckers or hooks are always present. The Irematodes live either as ectoparasites on various animals, such as fishes and molluscs, in which case they are well provided with hooks and suckers, and form only a few eggs, which they fix direetly to their hosts, or as entoparasites within varions Vertebrates,-in which case they
generally have two suckers (genus Distomum), one round the mouth, the other on the ventral surface. The eggs are very numerous, for only a very small number of them can meet with the complicated conditions favourable to their complete life. They do not give rise at once to the Distome form, but, by internal budding, to intermediate broods, which differ from the adult in form, and aro found in some different animal (Fig. 153),

Fig. 153.-Developmental cycle of Distomum hepaticum.-The liver-fluke of sheep. (After Leuckart).
a, the adult showing the position of the suckers, and the branched intestine; \boldsymbol{b}, an egy with operculum, and contained ciliated embryo, with some unconsumed food-yolk.-This embryo gives rise to a "sporocyst" in which "redim," like c, are formed by iuternal buduling. The redia gives rise, also by internal budding, to larval distomes"cercaris" " d,-which loose the tail and after encystment attain the adult form, a_{0}
13. Apar: irom the absence of the intestine, the Cestodes differ from the Trematodes in the formation of chains by budding, each segment in the chain or proglottis, resembling its neighbour, but differing from the original or head-segment, by the absence of organs of fixation. The segments have sometimes more, sometimes less capacity for independent life. The eggs formed within them do not at once develop into original head-segments, but into larval bladder-like forms (Cysticerci)-which are found in some different animal from the host of the adult-and these may, by budding, give rise to more than one head-segment. The adult choins are found in the intestines of all the classes of Vertebrates; the cystic stages in the flesh, liver or brain of some animal, which serves as food for the host of the adult chains (Fig. 154). Thus the tape-worms of the carnivorous sharks pass through their cystio stages in the Teleosts,
on whichthey feed. Through eating insufficiently-cooked beef, pork or fish, man is liable to several forms of these parasites.

Fig. 154.-Developmental cycle of Taenice serrata. (A species of tape-worm which occurs in the dog). (After Leuckart).
1, A young tape-worm composed of the head, with hooks (a, b), and suckers, and a chain of immature segments; 2, a mature segment, the branched uterus of which is full of 6 -hooked shelled embryos, 3 ; these gain aceess to the liver cf the rabbit, loose their hooks, become encysted, 4 , and invaginated at one end whicb gives rise to the head of the future tape-worm, $5 ; 6$, a fully formed bladder-worm (Cysticercus pisifornis); 7 , section of the head before its eversion; r, the rostellun which carries the liooks ; 8 , two of the suckers.

Mollusca.

14. From the lowly-organised unsegmented worms, which we have been considering, to a sub-kingdom like the Mollusca, which contains some of the largest and most highly-organised of the Invertebrates, seems a very long step, and yet it is to the Vermes, and not to any of the other, sub-kingdoms, that we must look for any resemblance to the Molluscan structure.

The sub-kinglom derives its name from the softness of the tissues of the body, a peculiarity dependent on the fact that it is generally protected by a one or two-valved shell. Locomotion is effected by the specialised musculature of the ventral surface of the body-the so-called foot-which recalls, in many cases, the creeping surfaces of the Planarians, but is often curiously modified for other methods of locomotion. The respiratory organs are generally gills, situated on one or both sides of the body and protected by a fold of the skin called the pallium or mantle; it is this portion of the ekin which has the function of secreting the shell. One pair of excretory organs, similar in structure to the nephridia of the segmented worms, are present, but the nervous system is arranged on a plan entirely different from that of any of the Vermes studied.
15. Two subdivisions of Molluscs are recognized, which differ according to the amount of specialisation of the cephalic end of the hody. The bivalve shell-fish, from the peculiar inaniser in which their food is secured and their almost sedentary habits, have none of that concentration of the sense organs and of the nerve-centres into the "head," which we find in the other Molluscs. They are thus frequently called the Acephala, in con:trast to the Cephalol iora
16. The Acephala form a single class-Lamellibranchiata, called so on account of the plate-like gills, which are present in all. It is chiefly a marine group, but representatives of both of the orders into which it is subdivided occur in fresh water, the most conspicuous being the fresh-water Mussels (Unionida), any one of which will serve as a type for the study of the class.

The shell, like the body, is symmetrical, the right and left valves being similar; it is only in attached forms of Lamellibranchs like the oyster, in which any great degreo of asymmetry is to be observed. At the dorsal surface is to be noted the hinge, formed by an an uncalcified part of the shell, the ligament,
and often by teeth on the valves. In front of the hinge ame the umbones, the first-formed parts of the valves; they generally incline forwards. Three layers may be scen in the shell, the outer brown periostracum, the thick prismatic layer formed

Flg. 155.-Diagrammatio transection ${ }^{t}$ Anodon. (After Ludwig).
1 , lixament ; sh, shell ; m, mantle ; m^{1}. its thickened margin ; g^{1}, g^{2}, outer and inner gill-plates; ' f, in the mantle-cavity points to the foot, which contains portions of the intestine (i) and reproductive organs ; n, is in the glandular part of the nephridium, Topening of its non-glandular part into the mantle-cavity. by the activity of the thickened border of the mantle (Fig. 155), and the nacreous or parly layer, secreted by the whole mantle surface. Pearls are the result of repeated layers of this substance being formed round foreign particles, which have got hetween the mantle and the shell. The mantle corresponds in form to the shell, hanging down right and left of the body : in many Lamellibranche, the margins of its two lobes tend to unite, except in front, to allow egress to the foot, and behind at two points, the siphons, to allow water to get into and out of tias mantle cavity, but this union does not occur in the Unios, and the siphons (Fig. 156), are mere specialised parts of the mantle-margin, which can be fitted together.

Locomotion is effected by the ploughshare-shaped foot; muscular fibres are hardly developed elsewhere in the body-wall except along the border of the mantle, and especially at its anterior and posterior ends, where the adductor muscles which close the shell are situated.

Related to these muscular masses are the three pairs of nerve-ganglia-cerebral, pedal and parieto-splanchnic-with connecting nerve-cords A pair of flat, trianguler, tactile tentacles on
each side of the mouth, a pair of otocysts in the foot, supplied by the cerebral ganglia, and a patch of olfactory neuroepithelium near the posterior adductor are the chief seats of the special senses. In some forms, eyes are distributed along the mantle-margin, but not in the Unios.

The mouth lies under the anterior adductor and leads into a stomach surrounded by a bulky liver, and possessing a cœecum containing a " crystalline stylet" of unknown function. After several turns within the foot, the intestine ascends, and in its course to the upper surface of the posterior alductor, is envel-
oped by the heart. This organ is " systemic," driving the blool, which it has collected from the gills, forward and backward throughout the body. The most spacious part of the colom is the pericardium surrounding the heart ; it communicates with the outside (the mantle-cavity) by moans of a pair of nephridia (the Organ of Bojanus), which open into the pericardium anteriorly, and then turn upon themselves in such a way, that the distal non-glandular part of each tube lies above the proximal glandular part, and opens in nearly the same plane as the pericardial opening.

There are two gill-plates; each is formed of a number of vertical filaments attached to the side of the body-wall (as may be seen to the right of $*$ in Fig. 155) and curved upon themselves, the inner series to the inside, the outer to the outside. The plate results from the union of filaments to their neighbours in front and behind ; it is double, owing to the recurving of each filament, but the two layers are separated above, although the space between them is partly obliterated by junctions below.

Water is sucked through the inhalent or branchial siphon by means of ciliated cells on the gill-plates; the current sets through the surface of the plates into the spaces between the two layers, whence it is swept out through tho exhalent or cloacal siphon, carrying with it the excreta from the kidneys and intestine. Solid particles contained in the water are swept forwards towards the mouth, and guided into it by ciliated cells on the tentacles.

The reproductive organs are situated in the foot, and the eggs undergo the greater part of their development in the interlamellar space of the outer gills, which are thus turned into brood-pouches. The distribution of the larve (Glochidia) is provided for by their escaping thence and fastening themselves
in the skin of various small fish, where they undergo a resting stage before they attain their adult form.
17. The Unionid \neq belong to an order Asphonlata distinguished by the absence of tubular siphons ; the oyster (Ostrea) and scallop (Pecten) also belong here, but they have only one (the posterior) adductor muscle, and no foot. Intermediate between these types is the sea-mussel (Mytilus), in which the anterior adductor and the foot are small. These forms are attached, not by the shell, but by horny " byssus" threads secreted by the foot.
18. A second order Slphoniata is formed for those in which the mantle cevity is closed! except for the tubular siphons behind, and an apertnre for the foot in front. Numerous minute fresh-water forms (Cyclas, Pisidium) belong here, but the bulk of the forms are marine. When the siphons are long, and can be retracted into the shell, there is a corresr anding mark within the shell ($\mathrm{F}^{\prime} \mathrm{g} .157$), as in the Sea-clams (Mya and Venus). Some of the forms burrow in sand, others in rocks (Pholas), or timber (Teredo).
19. The higher division of the Mollusca (the Cephalophora) presents a much greater range of form than do the Acephala;

Fig. 15%. Tellina greenlandica. four Classes áre recognized, each of them exhibiting important modifications of the typical Molluscan structure. Most of the species belong to one of these, the Gastropoda, called so on account of the development of the foot into a locomotive organ, generally a flat creeping surface, occupying the ventral aspect of the body.

Very few Gastropods retain the bilateral symmetry which we see in the Acephale; the most primitive forms-the Chitonsdo, (a group, which of all the Mollusca, comes nearest to the Vermes), but in most a distinct asymmetry is present. This depends upon a separation of the vegetative from the animal organs, and the grouping of the former into a visceral mass or hump, abovethe head and foot, which are closely united (Fig. 158). The visceral mass is protected by a shell (similar in structure
to that of the Lamellibranchs), which, in the simplest cases, is formed of a single conical piece ; in most Gastropods, however, the shell is spiral, and the visceral mass has, in the course of development, become twisted in the same direction, so as to cause the intestine e. g. to open anteriorly. This twist results in the suppression of the gill and nephridium of one side, and also in

Fig. 158.-Diagram of Limnæa, to show the course of the intestine and tho arrangement of the nerve-ganglia in the head.
r, floor of the mouth occupied by the radula; r^{1}, a row of lingual teeth; g, position of apertures of reproductive organs; m, the free mantle margin; m^{1} the line of fusion of the mantle with the body-wall bounding the lung in front; l, the aperture of the lung : a, the anus; S, the stomach, receiving the tubes of the liver which occupies the apex of the shell : C, the cerebral, $p l$, the pleural, v, the visceral ganglion; be tween the two pleural are the two pedal, and betweea the visceral, the single abdominal ganglion.
the asymmetrical situation of the heart. The direction of the twist determines which side of the body shall be affected ; it is sometimes towards the right (dexiotropous), but generally towards the left (leiotropous), in which case the organs of the right side are retained at the expense of those of the left.

The mantle-cavity, which is so roomy in the Acephala, is much restricted in the Gastropods, and is confined to the sides of the visceral mass. The mantle-margin is rarely free, but generally forms an enclosed space opening externally by an aperture or tube, which lies on the right side in left-twisted (leiotropous) forms.

Apart from the asymmetry referred to, the most striking dif-
16
ference is in the organization of the head. Not only are the chief nerve-centres and the sense-organs aggregated here, but there is developed a complicated mechanism in connection with the mouth, consisting of horny jaws and a lingual ribbon or radula, the surface of which is beset with teeth like a rasp or file, and which can be everted by special muscles.
20. Three-fifths of the Gastropods are adapted for breathing air, the mantle-cavity being altered into a lung and the gills being rudimentary (cf. VII, 12); they form an important order Pusmonata, a key to the structure of which is furnished by the pondsnail figured above. It belongs to a sub-order, the memibers of which (Basommatophora) have the eyes at the bases of the tentacles, and possess thin shells, which may be spiral like Limnoea, or spiral and dexiotropous like Physa, or coiled in one

Fig. 150.-Shells of fresh water Gasteropoda.
Pulmonates,-1, Helix; 2, Succinea; 3, Physa; 4, Ancylus; 5, I'lanortis. Prosobranchs,-6, Paludina, with the operculum in the aperture; 7, Goniobasis. plane like Planorbis, or simply conical like $A n$ cylus (Fig. 159). More numerous, however, are the land-snails and slugs which carry the eyes at the tips of the tentacles (Stylommatophora), and which include shelled formslike Helix,Zonites, Succinea and forms with a rudimentary internal shell like Limax.
21. A second order of Gastropods-Prosobranchiata-includes, for the most part, marine forms, differing from the Pulmonata in possessing a gill in the mantle-cavity, and, usually, an operculum carried on the foot for closing the aperture of the shell. The ordinal name is derived from the fact that the respiratory organ is situated in front of the heart, as it is in the Pulmonata. Great varicty of colour and form characterizes the shells of the Order, the Chitons, e.g., having a shell formed of eight transverse pieces, the Limpets (Patella), a simple conical shell, while endless va-
rieties of spirals are to be met with in the Top-shells, ('Turbo and Trochus), Olives, Cone-shells, Cowries (Cypran), \&c., \&c. Some few Prosobranchiatcs, such as Helicina, Valvata, Paludina, are met with in fresh water (Figs. 159, 6 and 7).

Fig. 160.-Outline of 4 Heteropod (Atlanta). The foot is divided into three regions: pro- meso-, and meta-podium. On the mesopodium is a sucker, on the metapodium, an operculum.

Fig. 161. A naked Opisthobranchiate (Doris). A rosette of gills surrounds the anus
22. In the Heteropoda we have a series of Gastropols adapted for a pelagic life, the foot being compressed into a fin, and the visceral mass and its protecting shell much reduced ir. size, so as not to interfere with the transparency of the creature (Fig. 160); and in the Opisthobranchiata, a series of marine forms, in which the shell is small or absent, but the gills generally project free from the surface of the body, and are situated behind the heart (Fig. 161).
23. The Gastropods are the only Class of Cephalophorous Molluses which are represented inland; the others are exclusively marine, and embrace comparatively few living forms. They are contained in three Classes, the Scaphopoda or Tooth-shells, with burrowing foot and numerous slender tentacles (Fig. 162 b), the Pteropoda, pelagic forms with or without a shell, but with the foot converted into two wing-like fins (Fig. $162 c$), and the Cephalopoda, at present a small group in comparison with its development in past geological times (Fig. 162 a). To this class belong the most highly-organized Mollusca-the Cuttle-fishes (Sepia), Squids (Loligo), Octopus, \&c.; in all of which the shell is reduced to an internal "cuttle-bone" or "pen." The foot" is partly transformed into a circlet of ten or eight "arms" surrounding the mouth and carrying formidable suckers, and partly into a " funnel," which permits the water used in respiration to be forcibly ejected from the mantle-
cavity, and thus to be employed for swimming. Horny jaws bound the aperture of the mouth; and the nervous system and sense-organs, which are protected by a cartilaginous endoskeleton, attain a degree of development not to be met with elsewhere among the Invertebrates. These forms have two gills

Fig. 162 - $-a$, a Cephalopod (Loligo); b, a Scaphopod (Dentalium) ; c, a Pteropod (Hyalea).
m, mantle-margin of Loligo; f, the funnel : f^{\prime}, the fins of Hyalea, between them the mouth; m^{1}, processes of the mantle-margin.
(Dibranchiata) in the mantle-cavity, but the Pearly Nautilus (N. pompilio) has four (it is a Tetrabranchiate form), and it further differs from the cuttle-fish in the number of the oral subdivisions of the foot, in the presence of an external chambered shell, and the absence of the ink-bag, (a very characteristic organ of defence of the Dibranchiata, which furnishes the
"sepia" that they diffuse around them for concealment). Although fossil Dibranchiate forms are not uncommon (Belemnites), yet the bulk of the fossil Cephalopods belong to the Tetrabranchiata, the chambered shells of thousands of different species furnishing to the Palæontologist means of recognizing the relative age of the rocks in which they occur.

Molluscoidea.

24. Two classes of animals require to be noticed in the present chapter, which have been associated together as the sub-kingdom Molluscoidea, partly on account of real, and partly on account of fancied affinities to each other and the Mollusca proper. These are the Brachiopoda and Polyzoa; the former, long considered to be related to the Lamellibranchs on account of the possession of a bivalve shell ; the latter, on account of their forming colonies, formerly classod with the "zoophytes" to be described in the following chapter. There is no superficiai resemblance between the two classes themselves, but zoologists have determined by studying the development of both, that they are not only related to each other, but also to the Vermes.
25. The Brachiopods are exclusively marine animals, comparetively few species of which survive to the present dry ; in past geological periods, however, they were extremely numerous, and have, therefore, much of the same interest attaching to them as the Trilobites and Tetrabranchiate Cephalopods. Most of the living species are found in the warmer seas; of the few that occur in the Gulf of St. Lawrence, Rhynchonella psittacea is perhaps the commonest. This species exhibits the characteristic inequality of the two valves of the shell (Fig. 163), the smaller (dorsal) valve fitting like a lid on the larger (ventral) valve, which also has a projecting beak permitting the passage of a short staik by which the animal is attached. These valves
are secreted by mantle-lobes, which, of courso, have likewise a

Fig. 163.-Rhynchonella plena. Chazy Formation. totally different relation to the body, from what exists in the Lamellibranchs. Their edges are beset with setre, like those of worms, and they contain processes from the coclom in which the eggs are to be found. The animal is confined to the attached end of the shell (Fig." 164) the roomy mantle-cavity being occupied by a pair of coiled-up arms, fringed with tentacles, which take their origin on either side of the mouth. These arms (at one time supposed to be equiv-
 alent to the Molluscan Fig. 164.-Diagram of Rhynchonella, as seen from the foot-hence the name of the class-) are peduncle, 8 , stomach embedded in the liver and comOf the class-) are municating with the œesophagus in front, and the intestine often supported by a
calcareous endoskeleton; such is not the case in Rhynchonella, but in some of the fossil forms (Fig. 165), the complete skeleton is well preserved. It is obvious, then, that the arms are not for locomotion; their chief function is to bring food to the mouth, and this is effected by cilia on the tentacles, which create a current Fig. 165.-Internal surface of dorsal valve down the coils to the mouth. of a Spirifer.

One or two pairs of nephridia are present, more nearly resembling those of Vermes than of Mollusca. The intestine ends blind in Rhynchonella and other forms which have a hinge to the shell (Testicardines), but in

Lingula, (a form with a long flexible peduncle, which can
 displace laterally the upper valve of its shell owing to the absence of a hinge-Ecardines) the intestine turns forwards and opens near the mouth. Lingula is an example of a " persistent" type, as the generic characters do not appear to have altered from Palæozoic times (Fig. 1€6).

Fig. $166-L$. Quebecensis : Levis formation.

Although the adults are attached forms, the larve are free; they are decidedly worm-like, being formed of three segments, the hindmost of which becomes transformed into the stalk, the foremost becomes much reduced, while the middle one gives rise to the body and mantle-lobes.
26. Like the Brachiopoda, the Polyzoa are bilateral animals, sedentary in their adult condition ; they possess a circlet of tentacles about the mouth, and are protected by a shell secreted by the skin, but in other respects no resemblance is to be detected between them, except during developmental stages. The fact that the Polyzoa almost invariably form colonies by budding at once separates them from the forms heretofore studied; it is to this peculiarity that the class owes its name.

With the exception of Cristatella (Fig. 167), the colonies are

Fig, 107.--Colony of Cristatella, attached to stem of pond-weed. permanently sedentary, being attached by an extensive or limited surface. According to the relative position of the buds they may be, in the former case, massive, encrusting or straggling, in the latter, foliaceous or arborescent (Fig. 168). The moss-like form of the colonies has gained the class the alternative name of Bryozoa. Each individual in the colony secretes a "cell" into which the head with the crown of
tentacles may be withdrawn for protection, and these cells together with connecting tubes constitute the "ccenœcium." It may be of very different character in different forms, being sometimes gelatinous, but oftener horny or calcareous. The colonies may reach a considerable size, but the individuals rarely exceed one or two lines in length.

Most of the Polyzoa fall into two orders, which are nearly co-extensive with the Fresh-water and Marine forms respec-

Fig. 168.-Portion of a colony of Plumatella enlarged.
1 and 2 , expañded individuals; $3,4,5$, individuals in various stages of retraction Into the cells. a, the lophophorf ; b, cesophagus; c, stomach ; d, intestine ; e, anus; f, statoblast, attached to base of stumach.
tively. The former, which are abundant in our ponds and streams, have a horse-shoe shaped row of the ciliated tentacles and a cover (epistome), which closes the mouth (Phylactolæmata); the latter (Gymnolæmata)-of which Paludicella is the only Fresh-water example-a circlet of tentacles and no epistome.

Some idea of the form of the intestine and of the mechanism of retraction into the cell may be formed from Fig. 168. The nervous system is in the form of a ganglion between the anertures of the intestine, and there are no special sense-organs.

Neither are special circulatory or respiratory organs present, but a pair of excretory tubes put the colom in communication

FII. 109.-Statoblast of Crista. tella. $\times 25$ with the outside. In addition to increase by budding, the Fresh-water Polyzoa give rise to new colonies by winter-buds or statoblasts, which are protected by a double horny shell. (often ornamented with hooks-Pectinatella, Cristatella-(Fig. 169). These float up to the surface in Spring and give rise

In the marine forms, the colonies are frequently polymorphic, special individuals being modified for prehension alone, others, so as to act as brood-pouches for the developing eggs. Fossil remains of such as had calcareous cœncœcia (e.g. Fenestella) are abundant from the Silurian strata upwards.

CHAPTER IX.

The Remaining Invertebrate Sud-Kingdoms.

1. Four sub-kingdoms, the Echinodermata, Colenterata, Porifera, and Protozoa remain to be referred to ; with the exception of the last, however, they have but few fresh-water' repressentatives. In place of the bilateral symmetry of the forogoing sub-kingdoms, a radial symmetry is often more notice. able. On this account the groups in question were at one time knowr! as the " Radiata," but it must be understood that bilateral symmetry may co-exist with the radial.
2. The Echinoderms, exclusively a marine group, receive their

Fig 170.-Echinus esculentus. $\frac{1}{2}$.
Half of the shell is stripped of the spines, showing the double rows of imperforate plates, a; and of those perforaled by the tube-feet-b. name from the general presence of an exoskele. ton formed of more or less regular calcareous plates in the skin (Fig. 170), which carry protecting spines. As a rule the body is formed of five similar rays or "antimeres" grouped round a central axis. The intestine is usually complete and contained in a spacinus colom, from which there is separated off during develo, rent a system of blood-vessels, and also a characteristic system of water-vessels. The chief stems of the latter answer

to the rays, and are provided with reservirs, from which water can be forced into certain short processes of the stems, known as "tube-feet" (Fig. 171), which are thus caused to project from the surface of the body, so as to act as locomotive organs.
3. The larve are extremely unlike the adults, the developmental stages recalling in many respects those of a remarkable worm-like animal (Balanoglossus), the organization of which points to its being a very primitive form, presenting as it does, points of contact with several higher sub-kingdoms.
4. Of the various classes into which the Echinoderms are subdivided, the Holothuroidea are characterized by cylindrical form and a soft skin (Fig. 171). The tube-feet are often confined to a ventral surface so that the animals are then distinctly

Fig. 172. - Sand-dollar from above. - Hehinarachnius parma. 1. The ter double-rows of plates of which the shell is constructed may be seen; the upper ends of the perforated rows are modifled into petaloid ambulacra.

Fig. 173.-Pentaceros from above: A Bahaman Šarfish.

bilateral. The Echinoidea, on the other hand, may be globular (Fig. 170), or discoid (Fig. 172), but the skeleton is made up of regular rows of plates(generally twenty) some of which are perforated for the tube-feet. The Star-fishes (Asteroidea) and Brittle-Stars (Ophiuroidea) resemble each other in having a central disc and projecting arms, which bear tubefeet only on the ventral (lower) surface, but they differ in that the Starfish arms (Fig. 173) contain processes from the intestine, while this is not the case in the Brittle-stars (Fig. 174). Finally, the Crinoidea resemble the preceding in having a dise with arms, but the ventral surface with the mouth is uppermost, and the dorsal surface is temporarily or permanently fixed by a stalk (Fig. 175). Along with cer- show. Upper surface of the calyx with the arms cut off, tain allied forms, which

Fig. 175.-Living Crinoid (Pentacrinus) with pari of its stalk.
showing the mouth in the centre, and the furrows converging to it from the arms. are now quite extinct, the Crinoids were much more abundant in the earlier geological periods, than they are at the present day.

Fig. ${ }^{11} 6$. -Thread-cells of Hydroid. I, undergoing development; II, with the thread protruded.
5. The Colenterata also are "radiate," but the parts are usually disposed in twos, or fours, or sixes ; instead of the complete intestine and complicated ccelom of the preceding group, there is only one cavity which discharges the functions of both; peculiar modified cells (thread-cells or nettling organs, Fig. 176), take on a defensive function, by pouring an acrid poison into wounds inflicted by their microscopic barbs. From the tendency to form colonies (often plant-like in form) this group, which is almost exclusively marine, used to be called the Zoophytes.

Fig. 177.-Hydra viridis, attached to a weed, with buds in two stages of development. The expanded tentaclesappear granular owing to accumulations of thread-cells. a, a thread-cell.

Apart from some singular pelagic forms which have comb-like ridges of cilia on the surface (Ctenophora), the Colenterates fall into two classes-the Hydrozoa and the Actinozoa. The former name is derived from the fresh-water Polyp, Hydra (Fig. 177), a cosmopolitan form very much simpler in its organization than its marine allies. It does not form colonies, but buds off individuals which soon become detached from the parent. Eggs are formed, during a short period of the year, in the wall of the two-layered tube which constitutes the body.

One end of the tube is closed, and serves for attachment, the other opens by the mouth, which is surrounde? by tubular tentacles, capable of extraordinary elongation, and employed for seizing the minute animals on which they feed. Both layers of the body-wall (ectoderm and endoderm) take part in the formation of the tentacles. Hydra owes its generic name to its extraordinary power of recovery after injury, any fragment of an individual being capable of reproducing the rest. The marine Hydroids form colonies, often arborescent (Fig. 178), the connecting stems of which are always, and the individuals frequently, protected by a horny exoskeleton-the perisarc (Fig. 179). Eggs are formed in peculiarly-shaped individuals,

Fig. 179. - Diagram of Hydroid colony (after Allman) b, root or hydrorhiza; a, ccenosarc; a^{1}, perisarc; h, modified Indivadual with reproductive buds (i) about to assume the form of locomotive medusx likè k; c, nutritive individual ; e, mouth; g, tentacles.
Fig. 178-Hydroid colony. (Obelaria gelatinosa).
which, in sume cases, differ very much from the ordinary polyp in shape, and may even be detached and swim off as Meduse (Fig. 170). There is then an alternation between the Hydraform, multiplying by buds, and the Medusa-form multiplying by eggs. Some Medusæ, however, the larger jelly-fishes (Fig. 180), do not come from Hydroid colonies, but their eggs give rise to tube-like larvæ, which undergo multiplication by division into young Medusæ, related to each other like a pile of saucers. In such higher forms of Hydroids an abundant layer of gelatinous connective tissue (mesoderm) separates the endoderm from the ectoderm.

Fig. 180.-Higher Jelly-fish. (A urelia aurita).
6. The class Actinozoa (exclusively marine) derives its name from the Sea-anemone-Actinia - (Fig. 181). These creatures attain a considerable size, and are often very brilliantly coloured. They differ from the Hydroids by having the mouth-end of the tubular body turned in as a siomach-sac, which is connected by mesenteries or septa to the outer tube (Fig. 182). The chambers between the septa open above into the tentacles, which are separated from the mouth by an intervening disc. The Sea-anemonies have no skeleton, and do not form colonies, but allied forms give rise by budding, or division, to colonies, which may be arborescent or massive, and in which a skeleton or corallum is a marked feature. The corallum may be confined to the axis of the common flesh (cœnosarc), which unites the individual polyps, as in the Fan-corals and the Red Coral of commerce (Fig. 183), or it may invade the polyps them-

Fig. 181.-A Sea-anemone (Activiia). a, the mouth; b, the disc; c, the tentacles: d, margin of the disc ; e, the wall; f, the base.

Hydroid root or ,1, perisal with ut to as. omotive individ.

Big. 182. - Diagram of Actinia (From Ludwig).
a, tentacle ; b, mouth; c, stomach. sac; d, its opening into cœlenteron l; e, septum ; e^{i}, secondary septum ; f, g, apertures in septum; h, muscular silips; i, reproductive organs k, mesenteri al filaments.

Fig. 183.-Red coral. (Corallium rubrum).
P, the calcareous axis or sclerobase. A, conosarc investing the axis and containing the individual polyps, B, these are in different stages of retraction; d, tentacies; ω_{0}, stomach-sac ; m, mesenteries. The conosarc is cut through and turned back, so as to show the canals (1 and n) which traverse it, and the axis which it covers.
7. By many zoologists the Porifera or Sponges are regarded as Colenterates, chiefly distinguished by the absence of threadcells ; they have so many other peculiarities, however, that it is convenient to consider them apart. Although one family (Spongillide) is confined to fresh-water, and is abundantly represented in our lakes and streams (Fig. 186), yet it does not

Fig. 184.-Organpipe coral. (Tubipora musica). Some of the polyps are expanded.

Fig. 185.-Michelinea convexa. Devonian.

Fig. 186.-Spongilla lacustris.
(Spongidoe) of very many marine families, and in fact from comparatively few species of it. The skeleton in other families is either formed of calcareous spicules (Calcarea), or of siliceous and horny material, together or separate (Non-calcarez); it is only in one family of the latter that there is no skeleton.
8. The name Porifera is derived from the presence of numerous smaller and larger apertures on the surface of the living sponge, respectively called "pores" and " oscula;" water, carrying particles of food, is caused to stream through a more or less complicated system of celenteric canals, of which the pores are the inhalent, and the oscula the exhalent apertures. Certain parts of the canals-the ciliated chambers-are lined by tall ciliated cells of characteristic shape-"collar-cells" (§ 16) -and it is especially those which are active in bringing about the current. They are equivalent to the entoderm of the Colenterates, the rest of the canal-system and the outer surface being clad with flattened ectodermal cells, while the soft, gelatinous, connective-tissue between these layers, which constitutes the bulk of the "flesh" of the sponge, belongs to the mesoderm.

In some cases the coelenteron, or gastrovascular cavity, has only a single " osculum" (Fig. 187), and then the sponge may be compared to a single Colenterate polyp, but generally it is a more complicated canal-system with numerous oscula, and the resemblance to a Coelenterate colony is lessened by the absence of symmetry and of constancy in the form of the body and the position of the oscula.
9. Sponges are only possessed of locomotive powers in their early larval stages; they afterwards attach themselves, and possess, therefore, but little muscular tissue. Special sensitive cells are present in the skin, but there are no sense-organs, such as are found in the higher Colenterates. In addition to the formation of new individuals from eggs, a separation of buds,

Fig. 187.--Diagram of a Calcareous sponge, with a single osculum.
a, ectoderm ; b, mesoderm, with triradiate spicules; c, lining of gastro-vascular cavity; f, ciliated chambers lined with "collar-cells;" e, osculum. The arrows indicate the direction of the current inwards through the pores, sind outwards through the osculum.
others attain a considerable size. Some of those with purely siliceous skeletons, like Euplectella and Hyalonema, are most beautiful objects ; they occur in the depths of the ocean, anchoring themselves in soft mud by a wisp of glassy threads. In these forms, there are triaxial spicules in addition to the fibres, but in many sponges from shallow water, the spicules alone constitute the skeleton, which may
or even of parts of the living sponge, may also give rise to them. A peculiar kind of budding occurs in the fresh-water Sponges, which recalls the formation of the winter-buds of the Polyzoa, as it takes place under similar conditions. The buds are called statoblasts or " gemmules" and are protected by characteristic spicules (Fig. 183).
10. Fossil remains of sponges are abundant in the earlier formations, but they reached the height of their development during the upper Secondary period.
11. The Calcarea are chiefly minute forms found in shallow water; the same is true of the fleshy Non-cal-carea-Halisarca,-but most of the

Fig. 188.-Diagram of gemmule of a fresh-water sponge, showing the coating of amphidisks and the aperture ; b, an suphidisk of Ephydatia- the river sponge.
then be cork-like (Suberites) or friable in consistence (Spongilla). One genus-Cliona-has the singular habit of boring by means of its spicula into limestone and shells. The sponges of commerce, which come chiefly from the Mediterranean and the Bahamas, have the skeleton of apongin, either encirely free from foreign matter (in the best Turkey spongesEuspongia officinalis), or else somewhat coarser in texture, from the building of siliceous spicules and fragments of sand into the horny fibre (horse-sponges-Hipposponyia). Although much variety of form is to be met with in this family, still wider ranges in this respect are to be found in other families-not only massive, but tubular, funnel-shaped, dendritic and encrusting forms being met with.

The Protozoa.

12. All the foregoing sub-kingdoms have one feature in common, which is not shared by the lowest forms of animal life ; they pass through certain stages of development consisting of the segmentation of the egg, and the arrangement of the resulting spheres into a blastoderm, which always possesses at least the two primary layers, ectoderm and entoderm. The tissues, also, in all are the result of the further division and differentiation of these spheres; but in the sub-kingdom Protozoa, to which we now proceed, development does not take place in this way, and even the most highly organized forms are unicellular, the organs of the body being differentiated out of parts of one and the same cell. These important differences are expressed by uniting the foregoing sub-kingdoms under the one designation Metazoa.
13. The Protozoa are generally microscopic in size, and, with the exception of some parasitic forms, are confined to the sea and to fresh-water. Four classes are distinguished-the Sarcodina, Sporozoa, Mastigophora, and Infusoria. The two latter are often spoken of as Flagellate and Ciliate Infusoria, on account of their characteristic locomotive organs; neither flagella nor cilia are present in the first two classes; indeed the Sporozoa, being parasitic forms are destitute of any locomotive orguns, and, in the

Sarcodina these are of the cature of "psendopodia," i.e., less permanent processes of the sarcode or cell-plasma than the flagella or cilia, and either thread-like or lobate in form.
14. In passing from the study of the lower to the higher Protozoa we shall have an opportunity of seeing to what extent " organization" can be carried within the limits of a single cell. The Sarcorina offer comparatively little of such differentiation; food-particles absorbed by the pseudopodia are conveyed into the softer cell-plasma at any point of the surface, and the undigested remains are similarly thrust out anywhere. Reproduction is efferted chiefly by division into two or many cells, in some, a resting stage of "encystment," preceding division.
15. Among the simplest is the genus Amceba (Fig. 189), called so on account of its ceaseless change of form, the endoplasm, which contains the nucleus, is more diffluent than the ectoplasm which forms the pseudopodia and contains the "contractile vacuole," a structure which appears to discharge the function of an excretory organ in these and other Protozoa. The Sarcodina are not all naked like the Amoba; in the order to which it belongs (Rhizopoda,-called so on account of the root-like branches of the pseudopodia in many), most of the forms secrete shells (Thalamophora), which may be perforated all over for the escape of thread-like pseudoporlia, or have merely one aperture through which similar processes escape or lobate ones like the Ameba's. The latter is the case in Arcella and Difflugia (Fig. 189, 2 and 3), while in Euglypha and others the processes are thread-like (Fig. 189, 4). These are fresh-water forms, in which the shells are formed of chitinous matter, or of foreign particles cemented together, but the marine forms-generally called Foraminifera-have for the most part a calcareous shell. This may be imperforate or perforate, and is generally composed of numerous chambers disposed in variously formed spirals (Fig. 190). Although of small size, these Foramini

Fig. 189. -1, Amceb; 2, Arcella; 3, Shell of Difflugia; 4, Euclypha; 5, Actinophrys, a naked Heliozoon witi axial fliaments in the pseudopodia; 6, Clathrulina, a stalked shelled Heliozoon ; 7, Gregarinid, from an insect-larva; 8, Encysted Gregarina, tise contents trnisformed into spores; 9 , Spore from a Myxosporidinm.

Fig. 190.-Living Foraminifer: Rotalia veneta.
fera have a very great geological importance, rocis of the chalk and other formations being often formed largely out of the remains of their shells. A deposit of 'a similar nature is being formed at the present day at the bottom of the Athntic, dead shells of Gilobigerina and similar pelagic forms being rained down upon the bottom.
16. The pseudopodia in the Rhizopoda may flow together round a particle of food as represented in Fig. 19(), but in the remaining orders of Sarcodina, they are less subject to alteration in form, rarely coalesce, stand out radially from the body, and are sometimes strengthened by an axial filament. These orders are the Heliozoa and the Radiolaria, the former a small group, chiefly of fresh-water forms, sometimes naked, sometimes with a spicular or perforated shell (Fig. 189, 8) ; the latter, a marine group containing numerous forms with siliceons skeletons, which offer the most sturprising beauty and wealth of form (Fig. 191). The Radiolaria are also important from a geological, point of view, for deposits of "infusorial earth" are found consisting almost entirely of their shelis, and similar deposits are being formed in some parts of the ocean at the present day. The borly is more differentiated than in the Heliozoa, the endo-

Fig. 191.-Living Radiolarian :-Heliosphara actinota.
plasm being separated off by a special "central capsule" from the ectoplasm. In the latter there are often fou nd minute yellow Algæ, which appear to live "symbiotically" with the Radiolaria.
17. The Sporozoa are distinguished from the Rhizopoda not only by the absence of pseudopodia,but by the presence of a wellmarked cuticle which limits the contractions of the protoplasm ; they reproduce by spores, formed by the simultaneous division of the plasma of an encysted individual into a multitude of globular bodies, which eventually acquire characteristically-shaped shells (Fig. 189, 7, 8). They are all parasitic, some of them being intestinal parasites of the Invertebrates (Gregarinidae), others, so-called cell-parasites, which multiply in epithelial or blood-cells of both lower and higher animals, and others, finally, ectoparasites of fish, being found on the gill-filaments. The spores of the last forms have singular lasso-like organs of attachment (Fig. 189, 9.)
18. The name Infusoria (" occurring i- infusions "-an indication of the saprophytic life of many of the forms-) often amployed for the two remaining classes, was at one time used to cover a host of microscopic creatures, to many of which, such as the Rotifers, we bave already given some attention ; it is now restricted to the higher Protozoa, and frequently to those which are ciliated, the class name Mastigophora being reserved for those which have flagella. As they undoubtedly include the simplest forms, which touch both upon the Sarcodina and the Vegetable Kingdom, they may be mentioned first.
19. Many of the most minute animals belong to the flagellate Infusoria (Fig. 192), various monads-e.g., Monces termo-hardly reaching 1-2000th of an inch in length. Such a form presents definite specific characters, however, and retains a definite shape. There can hardly be said to be a mouth; rather there is a vacuole at the base of the flagellum, which takes up food-

Fig. 192.-Types of Flagellate Infusoria.

Abstract

1, Monas termo; 2 Ciliophrys in its two stayes; 3, Dinobryon, one of the shells contains an animal which haz given rise by budding to a new individual ; 4, Euglena; 5, Anisonema; 6, Salpingwea with delicate "collar" stancling up round the flagellum; 7, Ceratium ; 8, Noctiluca.

particles whipped into it. A simpler method of obtaining food occurs in Ciliophrys, which throws out pseudopodia for this purpose, and passes into a flagellate stage for locomotion. Many of the monads form colunies; Dinobryon e.g., not only does so, but possesses another peculiarity which is fonnd in many -the ability to secrete a shell. The most interesting forms with regard to the process of nutrition are Euglena and its allies. They are active locomotive forms provided with a mouth, but the latter serves merely to get rid of the contents of the mtractile vacuole, fluid nourishment being taken up through the cuticular body-wall, as in the lower plants. They further resemble plants, by possessing coloured bodies which have the same physiological significance as the endochrome of the Alga, i.e., they serve in the presence of light to decompose carbonic acid, so that the animal secures part of its carbonaceous food in this way. Various forms like Volvox, usually regarded as plants,
might be equally well placed along with these coloured Flagellata. There may be more than a singld flagellum ; Anisonema, e.g., has two, one of which is stout and used for springing; others have four or six alike in character.
20. A remarkable group, the members of which resemble the collar-cells of the sponges in form ($\$ 8$), has representatives both in fresh and in salt water. Salpingoeca, which has both the collar and a case, may serve as an example of it. Finally, reference must be made to two forms of marine Flagellata, which are interesting on account of assisting in producing the phosphorescence of the sea, in which they occur in great numbers. Ceratium may be taken as a type of the larger group, marked by the possession of a resistent case, and by a second flagellum situated in a groove, which looks like a row of cilia when in movement. Noctiluca, on the other hand, attains a much larger size ; it is peach-shaped, with a tentacle at the head of the groove which lodges the mouth, and a flagellum and tooth within the groove. It is distinguished by the reticular character of the protoplasm within the cuticle.
21. As a type of the Infusoria proper or Infusoria Ciliata, one of the largest and commonest forms, Paramecium-the slipper-animalcule-found everywhere in water containing decaying organic matter, muy be studied. It attains the size of 1-100th of an inch, and is, therefore, visible to the naked eye. Mouth and anus are both present, as they are in all, with the exception of s me parasitic forms (Opalina), and there is a distinct œesophagus leading inwards from the mouth to the endoplasm. The body is uniformly covered with similar cilia(it belongs to the order Holotricha) and there are, in addition, certain thread-like structures" trichocysts"-peculiar to this family, which can be thrust out from the cuticle and seem to have a function similar to that group. They are also active in conjugation, a method of reprodaction which occurs in other groups of Protozoa as well as in. the Algæ.
22. The trumpet-animalcule (Stentor) may be taken as an example of another order (Heterotricha) where the cilia which
surround the mouth-" adoral "-are different from those clothing the rest of the body ; there is, as it were, a division of labour between the locomotor and the nutritive cilia. A third order (Hypotricha) has the cilia confined to one surface, which therefore becomes a locomotor surface, and some of the cilia on that are generally converted into hooks or spines as in Onychodromus, while the fourth-Peritricha-which contains numerous spesies tending to be attached and to form colonies, have the cilia confined to the neighbourhood of the mouth. The Peritricha are, however, by no means motionless; they generally have a contractile fibre in the stalk of such forms as the Bell-animalcule (Vorticella), but they may be free or parasitic forms swimming, or creeping by their adoral cilia, or they may simply be able to retract themselves into a shell or case, in virtue of the contractility of the celi-body.

- 23. Many of the Peritricha are found living on the surface of various aquatic animals, especially in such places as the gills, where they have the advantage of a continuous change of the surrounding water. Such also is the case in the Suctoria, a group of Infusoria which begin life with cilia, but afterwards settle down and replace them by suckers or tentacles through which, in the absence of a mouth, they take in their nourishment. The suckers are tubular, and communicate with the endoplasm, to which they carry the juices of the other Infusoria on which they prey, or of the aquatic animals to which they are attached. Both fresh-water and marine forms belong to this group, as well as to the other orders of Ciliata, but the fresh-water forms are naturally lest known.

CHAPTER X.

General Principles.

1. In the preceding Chapters the principal forms of Animal Life have been reviewed, a particular standpoint having been selected in each of the chief subdivisions of the Animal Kingdom. An accessible and, where possible, a primitive type has been somewhat carefully examined, and the modifications of form then traced throughout the sub-kingdom or class to which it belongs. The examination has been confined to the more obvious characters of the adult organism, but occasional references have been made to minute structure, and to the developmental stages through which the adult form is reached. It has been made apparent that zoologists classify animals according to the degree of resemblance which they exhibit in these respects, and that, therefore, classification is a Synopsis of the results of such structural studies.
2. While it has been chiefly with this-the morphologicalaspect of Zoology that we have hitherto been dealing, other topics have been incidentally touched upon. It has been made evident that there is the closest relation between the form of organs, and the uses to which they are put (whatever may be the explanation of this relation), that the various kinds of animals are limited to certain parts of the earth's surface, that the forms of life at present on the earth are different from those which occupied it in past times, and that there is the closest connection between animals and their surroundings. The present chapter will be reserved for a more systematic discussion of such topics as these, and an endeavour will be made to
state briefly the general principles which have been arrived at by zoologists in regard to them, and to indicate the relations to each other of the various aspects of zoological study.
3. Zoology is one of the two divisions of biology (that science which has for its subject-matter all things which have or have had "life," in contrast to the lifeless objects of inorganic nature), it is, in fact, the Biology of animals, while Botany is the Biology of plants. It may be asked why, in the face of the palpable differences which exist between plants and animals, it should be necessary to have a common term for the study of the phenomena manifested by both. The answer is, that the phenomena manifested by living matter in both kingdoms present such a striking contrast to those manifested by not-living matter, that the study of the difference between them becomes a question of the first importance. It is not meant that the matter which enters into the composition of an organism is different from that of which lifeless things are made, for there is a constant exchange of matter between the living and the lifeless world. An organism has been well compared to a wave formed by an obstruction in a rapid, the shape of which is approximately constant, but the particles composing which are incessantly changing. So the living organism is constantly taking into it matter from the inorganic world around it, and, as constantly, parting with matter to its surroundings (as we see in its relations, for example, to the gases of the surrounding atmosphere). Nor is it meant that matter in an organism conducts itself in any exceptional way, for wherever it has been possible to follow the transformations of matter and of energy in the living plant or animal, it has been found that these take place in harmony with laws which have been deduced from the conduct of matter in the inorganic world. What then are these manifestations of "life" and the properties common to plants and animals, which induce us to regard Zoology and Botany as parts of a more comprehensive science-Biology?
4. They may be stated as follows :-(l) Life is always associated with protoplasm, which has accordingly been termed the " physical basis of life" Even in its simplest forms, this substance is undoubtedly extremely complex from a chemical standpoint, while in its more differentiated forms, it contains temporarily within it innumerable " organic compounds" which form a considerable part of the subject matter of Organic Chemistry. All forms of protoplasm are constituted largely of "proteids" -complex compounds of Carbon, Hydrogen, Oxygen and Nitrogen, with small proportions of Phosphorus and Sulphur, but they also form within them Carbon compounds of greater simplicity, such as starch, sugar, fat, etc., which, however, do not occur in nature except as the products of the organic world. (2) The life of protoplasm (as manifested, for example, by irritability and contractility) is accompanied by its partial destruction, and this involves repair by the incorporation and assimilation of new matter, or, in other words, the ingestion of food and changes whereby this food can be rendered available for replacement of the material destroyed. (3) If the income of food is in excess of the expenditure by waste, growth restilts ; but each individual organism has a limit of size which it cannot exceed. A process succeeding the attainment of the full size in the simplest organisms is that of division, whereupon the life of the individual terminates and a new generation composed of two new individuals replaces it. Similar phenomena of death and reproduction occur also in the higher organisms. Nothing like these characters is to be met with in the Inorganic world, but this is not the only reason for studying the life of plants and animals together, for, apart from the circumstance that there are certain organisms (IX, 19) which can hardly be said to have struck out on either of the diverging paths which lead to plant and animal peculiarities, there is so much interdependence between the two, that a knowledge of the life of either is not complete without considering both, and indeed this interdepen-
dence is in part due to the differences which we shall refer to hereafter. However great these differences are, it must, nevertheless, be understood that the resemblances between plants and animals are such, that the methods of Zoology are the same as those of Butany, and the aspects of the study of the Biology of plants, the same as those of the Biology of animals.

VARIOUS ASPECTS OF BIOLOGICAL STUDY.

(1) Morphological.
5. This division of Biological study involves, as we have seen, questions of form and structure. It admits of sub-division according as these questions deal with the adult, or with stages in the development of the adult: Anatomy, in its widest sense, being the term reserved for the former group of questions, Embryology or Ontogeny for the latter. In a narrower sense, Anatomy is restricted to such structural points as can be studied without the aid of the microscope, while Histology is employed for the study of the finer details of the tissues, and Cytology for those of their component cells. It is evident that questions, other than those of pure form, must be inseparable from the studies which have just been styled morphological. The changes of form, for example, in individual cells are merely the expression of physical and chemical changes taking place within them, so that Cytology might as legitimately be referred to the following aspect of Biological study.

(2) Physiological.

6. Morphology is sometimes described as statical Biology, because it involves the notion of rest; Physiology, on the other hand, as dynamical, because it studies the work-
ing of the plant or animal as a machine, its object being to follow the transformations of matter and of energy within the living organism. Although it is a comparatively easy task to trace how the energy locked up in fuel is made available by the steam-engine, it is an infinitely more difficult one to trace how the energy locked up in food becomes available as muscnlar work; yet there are other activities of the body which lend themselves far less easily to measurement than does that of the muscular system.

It is, then, the various activities of the organism which Physiology discusses. Function is the term employed for the role or duty discharged by any part of a plant or animal, and the part discharging a particular duty is termed an organ ; these terms are thus used correlatively. We have seen that different kinds of activity such as nutrition, locomotion and reproduction may be performed by apparently undifferentiated or little-differentiated protoplasm; it is therefore necessary to beware of supposing that organization or differentiation into separate organs is necessary for the display of the activities of life, although the term organism would seem to imply that.
7. The various functions of plants and animals may be grouped as follows :-
(a) Those essential to the process of waste and repair referred to in §4. The process of waste is mainly one of oxidation and involves the formation of waste-products, partly gaseous, partly fluid, which require to be separated from the tissues: Respiratory and excretory organs are therefore rendered necessary. The process of repair, on the other hand, not only involves the ingestion of food, but its assimilation, and, therefore, the nutritive organs first render the food soluble in such a way that it can be absorbed, and then elaborate it into forms suitable for repairing the waste. Circulatory organs are sub. servient to all three systems.

Plants as well as animals are provided with organs of these three categories, but important differences exist as to the nature of the processes discharged by them. The food of plants is drawn from the inorganic world, and consists of salts absorbed in solution from the soil, and of the carbonic acid in the atmosphere. This is decomposed by the combined action of the chlorophyll within the green plant-cells and light-part of the energy of the sun's rays being intercepted by the colouring matter-with the result that carbon is secured for forming simple carbohydrates like glucose, which are afterwards elaborated within the plant-body, while oxygen is disengaged far in excess of that required for the ordinary processes of oxidation.

Thus, from simple compounds, in which little energy is locked up, more enmplex ones are formed, which are highly energised, and which thus serve for fuel and food to the animal world. Animals are, in fact, dependent either directly or indirectly for their food on the vegetable world, and, as far as we know, not even the simplest among them (apart perhaps from such coloured forms as are referred to in IX, 19) can derive carbon from the inorganic world.
(b) Even more striking differences between plants and animals are to be met with in those organs which relate the individual to its environment ; in fact, the organs of locomotion and sensation are generally described as the specially "animal" organs. Not that vegetable protoplasm is destitute of contractility and irritability, but the further elaboration of these essential properties of protoplasm is characteristic of animals, to the exclusion of plants. Nor is it meant that the plant is less adapted to its surroundings on account of the absence of special organs of relation ; on the contrary, we shall see that the plant is just as plastic as the animal in its adaptability to its environment. The difference between them in this respect is no doubt to be largely attributed to differences referred to in last para-
graph ; competition for food on the part of animals having led to the necessity for the complex mechanisms of the muscular and nervous systems.

The functions of the nervous system include all those processes, which, in their elementary forms, appear as the simplest kinds of " reflex action," such as, for example, the contraction of the Amola on irritation, but pass by easy transitions through higher forms, till those extremely complicated inherited reflexes, which we call "instincts," are reached, and even those higher processes, which we ascribe to the "intelligence" of animals. Such psychical processes, from the simplest to the most complex, form the subject-matter of Animal Psychology and Sociology.
(c) The third group of functions is formed by those which refer to the production of new individuals. Very close paral. lels are offered by the vegetable and animal kingdoms in re spect to these, and multiplication by division (separation of the body into equal parts), the formation of buds (detachment of smaller portions), or, finally, the detachment of reproductive cells, and the formation of new individuals from eggs are to be observed in both. Similar phenomena in connection with this group of functions are also to be studied in both; such as (1) the limited span of life of the individual ; (2) the tendency for succeading generations to increase in number ; (3) the tendency of the offspring to inherit the form of the parent, and yet (4) to vary considerably from that form. These phenomena lead us to the discussion of various other aspects of Biology, in the first place, of those which exhibit the relations of present to preceding generations, viz.: Developmental, Palaontological and Taxonomic aspects.

(3) Developmental and Palfontological.

8. We know that the plants and animals living on the carth at present are the descendants of the immediately preceding gene-
rations. Further, it is evident, on reflection, that few traces of these preceding generations are preserved, such is the destructive power of the minute saprophytic organisms that live by pulling to pieces decaying organic matter Even the hardest tissues like bone and wood soon crumble to dust, if left to the ordinary process of decay. Now and then, however, the hard parts of a dead animal or plant are preserved, as, for example, when they are washed by a stream to some spot, where they become silted up by the sediment deposited from the stream, and thus protected from the destroying influences to which they would otherwise have been exposed. A reference to the skeletal tissues described for the various groups of animals in the preceding chapter, will make it easy to understand what parts would be likely to be preserved under such circumstances, although under specially favorable circumstances, impressions even of the softest bodied animals are to be found. The material held in suspension by a stream, and deposited as the sediment referred to, is the result of the wearing down or denuding of the land drained by it, and it is obvious that organic remains found in the upper layers of such a deposit must belong to more recent generations than those found in the lower layers.
9. Many of the rocks which form the earth's surface have been formed like the silt referred to, from sediment produced by the ceaseless action of the waves on the sea-coast, or by the denuding action of the various atmospheric influences-rain frost, snow, etc., and swept down by rivers to the shallow waters of the ocean. Such deposits vary much in their character according to the material held in suspension by the water, and result in sandstones, limestones, shales, etc., but they all exhibit a tendency to layering or stratification, depending on the way they were formed, and are, therefore, called Sedimentary Strata. The relative age of such strata is determined by their position, and it will be readily understood that the upper-
most or most modern layers will be most like those that we actually see in process of formation, while the oldest or lowest will have been subjected to many changes, such as pressure from those above, upheaval from disturbances of the carth's crust, etc. Now, the examination of the remains of organic life-fossils-preserved in these sedimentary rocks (an important branch of Biology - Palæontology-) shows that only a comparatively thin layer of superficial doposits contains remains of organisms like those at present alive; the deeper down we go, the more do we find different species of plants and animals replacing those familiar to us, until the latter disappear completely and leave us in the presence of an entirely new fauna and flora. Tho question now'arises,-have the species of plants and animals now living on the surface of the globe, and whose remains are found in the superficial deposits, originated entirely independently of the different species found in deeper strata, or are the uncestors of the former really represented among these unfamiliar remains, only unrecognizable at first on account of differences, which the recent forms have accumulated in the course of long ages? The latter solution of the question is the alternative generally accepted at the present day, and it will be seen that it involves relationship by descent of the present species of plants and animals to some of those ot former epochs, others having died out or become extinct without leaving any descendants, just as has bren the case within our knowledge of modern species (V, 15,23 ; VI, 22). Not only does it involve descent, but descent with modification, and indeed, when we look at the forms of life in the older rocks we recugnize that the modification must have been of a very profound nature. It has, furthermore, been of a definite, orderly character, because we find that the lower classes of plants and animals have appeared before the higher classes-fossil Mammalia, for example, being found only in comparatively recent strata. There has thus been (if we accept the view that the present
forms of plants and animals are the modified descendants of other species now extinct) a continuous development from lower to higher forms, presenting in its entirety what is often called the evolution of organic Nature. It is, in fact, possible to subdivide the sedimentary rocks according to the prevailing kinds of life during their deposition, into Archæan-which contain few, if any, traces of life-and Palæozoic, Mesozoic, and Kainozo c, in all of which fossils are abundant, but the last of which alone contain any resembling the forms of life at present on the earth. Some information may be gleaned from the accompanying Table as to the characteristic plants and animals of these various periods, and as to the order of their introduction. Not only is the appearance of the life of these periods characteristic, but the classification is assisted, in Europe at loast, by the occurrence of conspicuous 'breaks' between them, which indicate, for example, that the Palæozoic strata were elevated into dry land, partly denuded and upheaved, before they again sank, and had the Mesozoic strata laid down upon them einconformably-i.e. not in plains parallel to those below as if they had been deposited consecutively. Such breaks do not, of course, occur at the same 'horizon' in other parts of the world, but the classification from the prevaiing kinds of life answers all over the world. Each age is again divisible into various epochs, which are marked by more or less distinct breaks in different places, and also by characteristic fossils, so that the geologist is enabled to recognize the rocks of any particular horizon by diagnosing the contained fossils.
10. An important question which comes up in connection with these strata, is that of their age, and, consequently, that of the contained fossils. If we assume that the rate of deposition has been uniform throughout the various strata, then the maximum thickness may be taken as a measure of the relative duration of the time during which they were deposited. The
its of from a^{+}is fact, g to into alæo-abuny the ay be ristic order ife of \vec{u}, in eaks' ozoic and strata saralively. n^{\prime} in prege is more 1arace the ained
ction that eposin the lative The
'TAPLE OF THE SEDIMENTARY ROCKS, Showing their relative age and thickness, and their characteristic rockformations, plants and animals.

Agr or Prriod,	Epucin.	Ciaracteristic Rock- Formations.	Cilarac. Plants.	Cifarac. Animals.
$\begin{aligned} & \text { Quaternary } \\ & \text { Post-Kain'c. } \end{aligned}$		lindian shell momes. Rulised beachas, shell-marls loess Boulder-clay. "till" or drift.	Cultivated plants.	Man.
$\begin{gathered} \text { Tertiary } \\ \text { or } \\ \text { Kainuzoic. } \end{gathered}$	Pliocene Mocene Eocene	Loams, sands, shales, clays, \&c.	$\begin{gathered} \text { Augiosperm- } \\ \text { ous Ihanero- } \\ \text { garns. } \end{gathered}$	Mammais.
	Cretaceous. Jurassic. Triassic.	Lignites, Umestones, clays. and sandstones, Marls and llmestones. Red sandstones and conglomerates.	Conifers and Cycads.	Reptiles.
	P'ermian.	Limestones, sandstones and marls.	Vascular Cryptogams.	Amphibians and Fishes.
	Carboniferous	Coal measures and carboniferous limestones.		
	Devonian.	Sandstones, limestones and shales.		
	Silurian.			
		Sandstones, limestones and slates.	Alga.	Invertebrates.
	Cambrian.			
			.	
	Huronian. Laurentian.	Gneiss, mica-slate and various crystalline rocks.		Eozoon (?)
	Laurentian.			

accompanying table shows graphically that the Mesozoic Strata are about one-ninth the thickness of the Palaozoic, and it ought to represent the Kainozoic as about one-fifth of the Mesozoic, and the Post-Kainozoic as one-fifth of the Kainozoic, but the exigencies of printing have made the Kainozoic, and especially the Post-Kainozoic, too thick.

Varions calculations have been made as to the absolute time the deposition of the sedimentary rocks has required ; these do not rest on very certain data, but their results come between thirty to sixty millions of years, and are chiefly interesting, as convincing us of the length of time that has elapsed since the appearance of life upon the earth.

(4) Taxonomic or Classificatory.

11. Returning to the question of the descent of present forms of life from past forms, it will be observed that it throws a new light on the terms "allied" and "related," so frequently used in the preceding chapter :- the greater or less resemblance of structure, on which classification is based, is due to community of descent,-to more or less distant blood-relationship.

To facilitate the study of relationship between individuals, genealogical trees are framed on documentary evidence, and similar trees have been constructed (going beyond historical times) to show the relationship of nations to each other. The kind of evidence used in the latter case has been partly that obtained from observation of the nations at present, (especially the structure of their language, their folk-lore, etc.,) and partly of a paleontological nature, such as the contents of tombs, and implements, weapons, etc., preserved in the most superficial deposits.

Going further back, however, into geological time, attempts have been made to construct similar trees, to show the relationship of different groups of organic life to each other (phylogeny),
but it will be understood that although the advance of Morphology is constantly improving our evidence from the living forms, and althongh: hitherto modiscovered fossil species are constantly being unearthed, yet the evidence from the palaontological side must always be incomplete (§ 8). Phylogenetic classifications must, therefore, be tentative, except in the case of such modern groups as are distinguished by the profuseness of their fossil remains. The genealogical tree of the Animal Kingdom might be described as buried, with the exception of the terminal green twigs-the existing species; to trace the connection between these it is necessiry to dig down into the sedimentary stratil, and to piece together with infinite patience the fragmentary evidence which we there find. It must be remembered, however, that the principle of correlation depending on the constant association of morphological peculiarities (such as, for example, a ruminant dentition with a particular confor m ation of the skeleton of the foot), justifies us in making use of evidence from very fragmentary remains.
12. Such studies may, then, indicate the probable line of development which has culminated in a particular species; the discussion of tho nature and origin of species will be deferred to a subsequent section. In the meantime, in connection with the foregoing topics the accompanying table may be of use, which gives an approximate estimate of the number of described species in the various classes and orders, and serves to show what groups of animals are in "ascendance" at the present day, as exhibited by their comparative wealth in species, and to call attention to the former wealth as compared with the present poverty of such groups as the Brachiopods, Cephalopods, Crinoids, Pteropods, Trilobites, etc. It makes it apparent, also, how certain highly specialised groups, such as the Teleosts, the A nura, the Passeres, the higher Insecta, preponderate over more primitive allied groups.

TABULAR VIEW OF THE CLASSES AND ORDERS

OF THE ANTMAL KINGDOM,
Showing their relative richess in species.

	Livino.	Fossil.
I. -Verthibata-		
A. Urochorda or Tunicata.		
	270 30	
B. Cephalochorda.		
a. Acrania b. Craniota.	1	
Cluss I.-Pisces.......		$1000+$
Sub-class-1. Cyclostomi	17	
2. Elasmotranchii	285	
4. Dipnoi .	32 4	
5. Teleostei		
O. 1. Physostomi....	2500	
2. Lophobranchii	125	
3. Plectognathi	177	
4. Anacanthini	370	
5. Pharyngognathi	640	
6. Acanthopteri	3000	
Class 11.-Ampr ${ }^{\text {b }}$ bio.		
1. Urodela	93	
2. Anura	1300	
3. Gymnophiona \cdot	22	
4. Labyrinthodontia ...1. 6		100
Clas8 III.-Reptilia		300
O. 1. Chelonia	254	
2. Crocodilia	2.	
3. Lacertilia.	1251	
4. Ophidia	1009	
Class IV.-Aves		800
O. 1. Pygopodes	80	
2. higipennes	228	
3. Steganopodes............	60	
4. Anseres ...	180	
5. Ilerodiones	146	
6. Grallae $\left\{\begin{array}{l}\text { Paiudicolæ } \\ \text { Limicolæ }\end{array}\right\} .$.	470	
7. Cursores	17	
8. Gallinacei	400	
9 Columbae	369	
10. Raptores	540	
11. Marronhipep	500	
12. lici	325	
1, kinurges	736	
14. Dil tuei	400	
15. Ponita 6	5700	

TABULAR VIEW-(Continued).

	Livina.	Fossil.
Class V.-Mammalia		800
O. 1. Monotremata	$\stackrel{3}{9}$	
2. Marsupialia...............	149 42	
4. Cetacea	155	
6. Sirenia. ${ }_{\text {6 }}$ Perissodactyla	${ }_{23}^{5}$	
7. Artiodactyla	250	
8. Proboscidea	2	
9. Hyracoidea ...	12	
10. Rodentia	800	
11. Insectivora	150	
12. Pinnipedia	30	
	340 415	
15. Lemuroidea	55	
II.-Arthropoda-		
Class I.-Crustacea.		
Sub-class-Malacostraca (higher orders)	3525 2075	150 600
Gigantostraca and Trilobitæ	5	1700
Class II.-Arachnida.		316
O. 1. Arthrogastra (Scorpionina, Phalangina, \&c.)........	250	
2. Acarina	900	
3. Araneina	2500	
Class III.--Myriapoda Class IV.--Insecta.	800	40 2600
O. 1. Thysanura	100	
2. Orthoptera	6000	
3. Neuroptera.	1000	
4. Hemiptera ${ }^{\text {5. Diptera }}$. ${ }^{\text {a }}$. $\ldots \ldots \ldots .$.	14000 18000	
6. Lepidoptera	20000	
7. Hymenoptera	${ }^{25000}$	
III.--Vrrmes. .	5500	*
IV.-Mollusca- A. Acephalp.		
Cla3s I.-Lamellibranchiata	5000	9000
B. Cephalophora		
Class II.-Scaphopoda.........................	80	160
Class III.--Gastropoda.		
O. 1. Prosobranchiata	9000	6000
2. Pulmonata	6100	600
3. Opisthobranchiata	900	300
4. Heteropoda Class IV.-Ptiropoda.	60	160
O. 1. Gymnosomata 2. Thecosomata	$\underset{74}{24}$	225

TABULAR VIEIV-(Continued).

	Livina	Fossilu.
Class V.-Cephalopoda.		
O. 1. Tetrabranchiata	4	$42(1)$
2. Dibranchiata	140	310
V.-Molluscoldea-		
Clasx I.-Brachioporda.		
O. 1. Testicardines	80	2200
2. Eeardines	30	400
Class 11.-Polyzoa.		
O. 1. Phylaetolæmata	50	
2. Gymnolamata	690	1850
VI.-Echinodermata-		
Class I.-Molothuroidea.	440	
" II.--Echinoidea	300	2000
" III.-Ophiuroidea .	700	
" 1V.-Asteroidea..............................	500	
" V.-Crinoidea .	430	1170
" VI.-Cystoidea .		140
" V1I.-Blastoidea .		90
VII.-Chlemetmata-		
Class 1.-Ctenophora	45	
" 1I.--Hydrozoa .	1100	
" III.-Actinozoa .	1800	1800
VIII.-Porifera	600	800
IX.-Protozoa-		
O.1. Rhizopoda	700 40	1500
3. Radiolaria	2600	400
Class II.-Sporozoa .	55	
" III.-Mastigophora	290	
" IV.-Infusoria .	500	

-
* The fossil remains of Vermes, which consist chiefly of the tules of tubicolous Anuelids, and the jaws of Errantia, are too uncertain in character to allow of numerical estimate.

13. The preceding paragraphs have been devoted to the relations existing between different generations of organisms; no less important are the relations of the individual or the species to other organisms and to its inanimate surroundings. Questions of this character have been styled Mesological, as dealing relation to the "envi onment," but it will be more convenient to deal separately with the relations to the different elements of the environment, discussing, in the first place, the distribution of animals in space, which we shall find to be explained partly by the past configuration of land and water, and partly by climatic influences. These aspects of Biology are, therefore:

(5) Geographical and Climatic.

We are apt to think of the present distribution of land and water as something unalterable, and of climate as chiefly a matter of latitude and longitude, but a little consideration will show that not only is the latter dependent on the former, but that both have been, again and again in the history of the earth, subjected to change. In respect to the one point, we have merely to compare the mild winters of Britain with those of Labrador, or our own with those of the Riviera. The differences are attributable, in the one case, to ocean currents, in the other to our situation in the heart of a great continent. In respect to the other point we can find evidence of profound changes at our own doors. Wherever we find sedimentary rocks there we realize that the land in question has been submerged in the ocean, and often that this has oceurred, not only once, but repeatedly in the course of geological time. Ontario, for example, is everywhere underlaid by sedimentary rocks; those which contain fossits wem evidently formed at the bottom of Cambrian or Silurian seas, but the fact that we do not find any trace of the Upper Palieozoie or Mesozoic or Kainozoic strata covering them indicates that it has been long exposed to the dennding effects of the atmosphere. Again, the superficial deposits which cover these old formations,
and which belong to Post-Kainozoic Age, show that comparatively recently, Ontario, with the greater part of North America as far south as Washington, was covered by an Ice-Sheet, so that then the whole country resembled the present desolate and lifeless interior of Greenland. Can it be doubted that such changes taking place all over the world must have had the most important influence on the distribution of life?

While we recognize a distinction between tropical, temperate and arctic faunas and floras, and are obliged to infer climatic changes if we find that Magnolias flourished in Spitzbergen during the Miocene epoch, and that Hippopotamuses wallowed in British rivers in the intervals of successive Ice-Sheets, yet we must be careful not to attribute too great an influence to climate alone, without taking into account the geographical changes to which the climatic ones are secondary.
14. That such changes have been both recent and profound will now appear from some of the facts of distribution already cited, and the explanation of these offered by palæontology. First, however, let us look into the causes and effects of that Glacial Period, during and after which the surface deposits of Ontario were formed.

There are certain regularly recurring astronomical conditions, which affect the relative length of winter and summer, and which are dependent (1) on the relative proximity of the poles to the sun during these seasons, and, (2) on the amount of eccentricity of the earth's orbit. The relative proximity to the sun in winter of the North and South Hemispheres is reversed every 10,500 years, but the amount of eccentricity varies much more slowly. Now, it is at its minimum ; between 100 and 200,000 years ago it was very great, with the result of alternating periods of 10,000 years of long, cold winters, and short, hot summers, with the reverse. It is believed that these conditions, occurring simaltaneously with large elevations of land
within the Arctic Circle (where, as we know from fossils found, there had been warm seas during the Miocene epoch,) had the effect of producing the glaciation. It must not be supposed that the Glacial Period lasted with undiminished severity during all this time; we have evidence of interglacial milder periods, when the Ice-Sheet retired, and the life, which had been driven towards the south, again crept northward, but these very alternations must have been a fruitful source of change in the fauna and flora of the countries subjected to them.
15. Apart from the combined effects of the astronomical conditions referred to, and the raising of the land towards the North Pole, let us consider the effects of a general elevation of the seabottom outside the present shore-line, to an extent far less than we know to have taken place within comparatively recent times.

The summits of some of the Alps-the Deut du Midi, for example, 10,770 feet-are formed of Nummulitic limestone, a formation consisting largely of shells of Foraminifera, deposited during the middle Eocene ejoch, and elevated since then. Now, we know from hydrographic researches that if an elevation of the shallower waters of the world to half this extent were to take place, that it would entirely alter the configuration of the land. Not only would Great Britain be continuous with France, Denmark and Norway, but the whole of Europe, Africa and Asia would form one continuous Continent. It would be even possible to travel by land from England to Canada, viâ Iceland, Greenland and Labrador, and then on to Siberia by Alaska. The only large tracts of land remaining unconnected with this vast Continent would be Australia, which would still be an Island, and Madagascar, which would still be separated from Africa.

Ample evidence exists, and some of it has been already referred to (VI. 30), which shows that changes of such a character have occurred, not necessarily simultaneously, but at least at different times. The Camel family, e.g., flourished in North

America in Miocene times and spread thence to South America and to Asia where they had not previously existed, but to which the distribution of the modern form is limited. Agrain, the primitive forms of the Tapir family lived in Europe during the early part of the Eocene epoch, they spread during the later Eocene and Miocene epochs to North America, where, however, they died out without leaving any descendants, but they persisted in Europe, where they gave rise to the modern Tapirs, and these again spread to Asia and South America, where alone the modern species occur.

That Madagascar was at one time connected with Africa, we gather from the survival on the mainland of some of those peuliar lemurine fr ins, which are so characteristic of the Island. But these have ilmost been exterminated from Africa by the contact of the higher Eutheria, so that we conclude that the connection with Africa was submerged before the influx of the higher mammals from Eurasia. The persistence of the Prototheria and Metatheria in Australia is similarly to be attributed to its long independ nce from Asia.

The fatua of Gretat Britain, finally, can only be accounted for on the assumption that since the Glacial period it has been entirely submerged, raised again, and populated from the mainland, but again submerged before this repopulation could become complete. The freedom of Ireland from reptiles is not to be attributed to any unsuitability of climate, but to the fact that the channel was not dry land sufficiently long to allow these forms, which are slow at distributing themselves, to reach it.
16. Such facts lead us to the position that the geography of the past has had the most important intluence on determining the geographical zoology of the present. Each species has a certain area of distribution, which is called its habitat: it tends to widen this area, as far as the conditions of existence will per-

erica

 vhich rimiearly ocene they ted in these theted for
en en-mainsecome to be ct that v these h it. of the ing the certain inds to ill per-

IMAGE EVALUATION TEST TARGET (MT.3)

Photographic
Sciences 23 WEST MAN STRRET WEESTER, N.Y. 14580

Corporation

mit, but the most effectual barriers are high momatain-chains atad teep, seas. By mapping out the ranges of different species it is possible to mark out certain zoogeographical regions in which the simultaneous occurrence of the same or nearly allied species confers a certain similarity of appeame or freies to the fanna. A glance at these regions, as laid down by Dr. Willace in the accompanying milp, will shew that they agree pretty well with our ordinary geographical divisions, except that great natural barriers cut off the Ethiopian region from North Africa, the Oriental from the Palearetic, an! the Australian from the Oriental; these are the Sahara, the Himalaya, and the very deep sea along "Wallace's line," between Bali and Lombok, Borneo and Celebes. This is certainly a most instractive illustration of the effect of a deep-sea barrier, und of the fact that mere climate does not determine geographical distribution. From Bali to Lombok is hardly twenty miles, and yet there is more difference as to the fauna between these two islands, the climate of which is practically identical, than there is between Canada and Florida.
17. Although the distribution of aquatic animals admits also of geographical treatment, it is obvious that the barriers to their spreading far and wide must be of very different character, and, apart from those forms contined to the shore by limited locomotive powers, must be largely due to ocean currents, temperature and other surrounding conditions. Other elements of interest, however, exist in connection with them -their occurrence in fresh or in salt water, and their bathymetrical distri-bution-i.e., the depth at which they occur.

The greatest profusion of life is found in the shallow waters of the shore-zone, but recent observations have shown that it alsc abounds in the depths of the sea, even down to four or five miles. Again, there are so-called pelagic forms which live on the surface-waters of the open sea, and are only occasionally
driven upon the shore. It is believed that the littoral fanna originated from the pelagic in the first place, while many pelagic forms, such as the whales, are undoubtedly derived secondarily from shore forms. The origin of fresh-water fannas is another point of great interest; certain stages through which they must have passed may be seen in the mouths of rivers where different species extend upwards to a greater or less distance, according as they are more or less tolerant of the diminished salinity of the water. That part of the fresh-water animals are so derived may be gathered from such cases where they exhibit little or no difference in their new habitat, (VI, 34, VII, 13). There are many curious facts in the distribution of the fresh-water fishes, which indicate the early separation of some groups from marine forms, and which ca.. only be explained by realizing that changes in the configuration of the land must have involved many changes in the great water-crurses.

In inland lakes we have also littoral, deep, and pelagic faunas, the study of the nature and origin of which offers a wide field of inquiry in Ontario. Before leaving the subject of the distribution of animels in water, it may be noted that not only do ocean currents affect the ranges of aquatic, but also of terrestrial organisms, so that. apart from their climatic influence on these, they may frequently triansport animals and plants to new points at considerable distance from their original homes.

(6) Relations of Animals to the Conditions of Existence and to kach other.

By climate we mean tomperature, pressure and other atmospheric conditions, which do not seem to determine any conspicuous differences of form, but there are other conditions of existence which do seem to be always associated with corres.
ponding differences of structure; such are the association of underground life with the absence of eyes and of colour (II, 79) ; III, 12) ; and that of the shape of the body with the medium and mode of locomotion (Fig. 194). These offer a very tempt-

Fig. 194.-Harp Seal. Phosa groenlandica (from Brehm). ing field for investigation, and cause us to enquire how changes in surrounding conditions and in habits affect animal life.
19. Reference has already been made to the fuct that organisms tend to increase in number in geometrical progression. Sometimes countless eggs are produced by single individual, but in such. cases few of these reach maturity, and it is only now and then that we are startled by the disproportionate development of some one species, disturbing the course of Nature. When, however, one generation exceeds the previous one, even in the proportion of two to one, it is evident that there will soon be a competition or stringgle between the individuals for suitable food, and that the strongest and best adapted to survive will be those, on the whole, that do survive. Along with this we have to take into account the tendency of organisms to vary and to transmit their peculiarities to their descendants (§ 7). Those individuals whose organs vary in such a way as to adapt them better, however little, to their special circumstances of life, are,
therefore, rendered better fitted to survive, and will not only do so, but will transmit their peculiar variations to their off. spring; selection being thus made by Nature of the individuals best fitted to the existing conditions of life.
20. If those conditions were stable, a persistent equilibrium of organic nature would be established, and no opportunities for the development of new species would arise, but the conditions of life are never stable, and consequently we have a greater or less degree of instability of the balance of life, depending on the greater or less changes taking place in the conditions of existence. It is obvious that any apparent equilibrium would be upset by changes, however gradual, of the character indicated in § 14 and 15, and, therefore, that such changes must be regarded as those nost oprerative in the proluction of new forms. A species subjected to such changes must either prodnce variations fitted to cope with them, or else become extinct, perishing at once, or struggling on under the unfavourable influences, till a depauperate condition, such as has been observed in many fossils, as well as in living forms, is gradually reached. If it is a form caprable of adapting itself, by assuming now habits, it is possible that (as we see in varietios spread over a wide area) this accommodation should proceed along different lines with different varieties, and therefore, that several new forms would result from the original specics. It is evident that the intermediate forms being liker the original in character would tend to be eliminated by cheir relative unsuitability to the new conditiors, and thus, instead of a series of varieties, we should have two or more new 'species' distinct from each other. Another circumstance, tending in this direction, is that individuals of a variety tend to keep together, with the result that comparatively near spocies become incapabie of crossing, so as to form a mixed race. This was at one time considered to be an essential feature in the definition of a species, but several examples are now known of undoubtedly distinct species, which do form such crosses, where their areas of distribution come into contact.
21. The theory stated in the preceding paragraphs is that of the Origin of Species by Natural Selection, associated with the names of Darwin and Wallace ; it will be observed that while resting upon the large amount of variation offered, it does not attempt to explain the cause of such variation. This is attributed by certsin American zoologists,-of whom Cope is the chief rep-resentative-to the direct action of the environment, for example, the gradual preponderance assumed by the central digits in the Ungulates would be explained by the greater strain received by those reaching the ground. Strict Darwinists do not consider such an explanation to be sufficient, because there are many instances of protective resemblance and mimicry where just as remarkable modifications of form are to he net with, which could not be attributed to such a direct action of the environment. On the other hand, we have met in the preceding chapters with so many instances of the adaptation of the organism to its habits (vide Index, adaptation) that it seems difficult to believe that such remarkahle correspondence shouid only be the result of selection from variations tending to occur in every direction.
22. Not only have we to contemplate the effect of competition between different individuals as favourable to change in organic nature, but also the competition of different species This is readily seen in a garden which, if left to itself, soon becomes overgrown with weedg-those forms of plants which have either better means of protecting or dispersing themselves, or are able to cope with less favourable conditions of life than the plants formerly cultivated. It is easy to see, that such competition, where species come into contact for the first time, may lead to extinction of the form less able to protect itself; indeed the extinction of past forms of life is to be explained partly by such competition, and partly by reason of some forms being specialised to such a narrow range of conditions, that they have become
incapable of adanting themselves to any changes. On the other hand, we may explain to ourselves the persistence of certain types (VIII, 25), either by the little specialised character of their requirements, or by their gaining superior means of protection, as for example, the adoption of a subterran san life, by terrestrial animuls, or their retirement to the recesses of deep forests.

The competition of different species is interesting in another aspect-the regulation of the balance of life. It is obvious that the number of carnivorous animals is regulated by the number of phytophagous forms on which they feed, and that these, again, are dependent on their food-plants.
23. Wlile reference is being made to species which live in competition with each other, it must be rect.aed that many instances of association for mutual advantage are to be found in Nature. One of the most striking of these is afforded by some Sea-anemonies, which fristen themselves over the abdominal region of certain Paguridæ. They serve in place of the sheltering shells, which most of the genera select (VII., 12); and, in addition, protect the crab by reason of their thread-cells; in return, they are furnished with locomotive facilities not usually enjoyed by their relations. Other examples of such mutualism, or symbiosis, are not uncommon.
24. Still more common, however, are the cises of partial or complete parasitism, which are to be met with in all the subkingdoms. (See index). The various grades of parasitism offer such easy transitions from completely normal to much reduced organs, that we are tempted to seek an explanation for these in the direct action of the environment. It is especially the locomotive and digestive organs which exhibit such reduction, and the disuse of these scems to offer a rational explanation of their condition.
25. In the course of disappearance of organs which are under-
going reduction, and before all trace of them disappears, they are styled "rudimentary" organs; such are the rudimentary metapodials of the horse. Organs like these receive their only satisfactory interpretation when we look at them in the light of the doctrine of descent with modification.
20. The active relations between different species discussed above, lead us to the consideration of the remarkable phenomena of protective resemblance and mimicry (VII., 26, 33) -phenomena which appear to be explainable only by naturel selection. The word mimicry conveys a striving after similarity, which is entirely at variarce with such an explanation, and the term is now really taken to mean the preservation by Nature of variations in the direction of resemblance to some other animal, protected either by offensive or defensive weapons. Cases of such protection are recorded above. A further illustration is afforded by certain South American butterflies belonging to the family Pieridæ, which " mimic" those of another family, the Heliconidæ, protected from insectivorous birds by their offensive odour and taste.

Protection may also be secured, however, by resemblance in colour, or form, or both, to surrounding plants or inanimate objects. The winter white coat of Arctic animals, the colours of the nests and eggs of birds, the form of the leaf- and walkingstick insects (VII, 23), are all to be explained in the same way. Occasionally such likenesses are employed, not for defensive, but for offensive purposes. One species of the predatory genus Mantis (a member of a family allied to the Phasmidæ) resembles an orchid which is visited for its honey by bees, and a species of spider has been observed, which, in the attitude in which it waits for its prey, has the innocent appearance in colour and form oi a bird-dropping!

Colouration, in fact, is very generally protective in its function, and the transparency of most pelagic animals, the change-
able hues of the chamæleon and the tree-tond (which are effected reflexly throngh the nervous system), are to be explained on the same principles. This does not exhnust its functions; it would appear with gregarions animals to be useful in recognition of other individuals of the same species, also for warning, as in the case of the brilliantly coloured coral-snakes (Elaps IV., 21). That such warning colours are not unfavourable to their possessors, might lead us to suppose that the rattlesnake's rattle (IV., 22) is a similar warning to enemies not to interfere.

(7). Relation c: Animals to Plants.

26. Some of the phenomena recounted above serve to recall that plants are not destitute of defences provided by natural selection in relation to phytophagous animals. Such are the spines, and the bitter, acrid and poisonous excretions, such as tannin, which the best protected possess. It is only in comparatively rare instances that plants can be said to assume the agressive, and seize upon opportunities for securing fond by absorption of proteids from animals, instead of manufacturing them with the aid of the nitrates of the soil. Such cases do occur in the carnivorous plants, like the Venus' fly-trap (Dioncea), and the more familiar pitcher-plants (Sarracenia) and sun-dew (Drosera). It must not be forgotten that there is a whole division of the vegetable kingdom-the Fungi-which, being destitute of chlorophyll, require to get their nourishment from previously formed organic matter. They are either saprophytic or parasitic forms, the latter sometimes so actively aggressive, as to be one of the most fruitful canses of disease and death, both in the animal and vegetable kingdoms.
27. But there are also instances of plants and animals deriving mutual advantage from living together, which recall the cases of symbiosis of animals. Such are afforded by the "yellow
cells" of the Radiolaria, which seem to prosper in their hosts and to occasion them no inconvenience by their presence. Possibly they furnish oxygen to the tissues, and utilize themselves tho waste products, including carbonic acid, excreted by the animal tissues.
28. The most obvious instances of the association of animals and plants for mutual advantage are to be met with in the reproductive phenomena of the vegetable kingdom, chiefly in those connecter with the fertilisation and distribution of flowering plants. It is now known that by far the greater number of Phanerogams with conspicnons flowers are iertilized by ins clagency, and that the secretion of nectar, the colour and often the form of the flower are so many inducements, acquired by natural selection, to insects to visit them, while, on the other hand, many peculiarities of form, or of the relative development in time, of parts of the flower are so many obstacles to selffertilisation. So close is the relationship between flowering plants and the insect-world that they may be said to have been correlatively developed.

Similar mutual advantages exist in the relation of frugivorous birds to fruit-bearing plants; the distribution of such plants has been shown to be largely effected by the birds in question, and the bright colours of fruits as well as their sweetness receive a partial explanation in this way. Other examples of the co-operation of animals in the distribution of plants are furnished by those whose fruits (burrs), being clothed with hooks or spines, adhere tenaciously to the coats of various mammals, and thas secure a wider range.
29. Such considerations as those above emphasize the interdependence of the vegetable and animal kingdums, and the nocessity of studying the phenomena of both in connection with each other. This is rendered more imperative when we come to look at the economical aspects of Biology, and realize that the
diseases of cultivated plants and animals are frequently avert ible ty a proper knowledge of the life-history of the organisms in question. Many of these diseases are merely phases of the struggle for existence, which occurs not only between individuals of the same species but between species of the most different character. Other diseases are due to unfavorable surrounding conditions, which a due attention to physiology may make it posssible to remedy. Such disturbances of the normal or healthy processes of life form the subject-matter of Vegetable and Animal Pathology.

For further information on these as well as on the other topics discussed in this chapter, the student must, however, consult books which deal with them specially. The object of the present chapter has chiefly been to show the relations of facts scattered throughout the preceding chapters, and to indicate as far as possible the general principles which have been reached by zoologists.

avert

 anisms of the viduals fferent unding sake it mal or getablee other owever, bject of tions of to indive been

INDEX.

Abomasum 176
Acanthin 214
Acanthocephali 224
Acanthopteri 62
Acarina 204
Acephala 228
Acetabulum 85
Achtheres 200
Acineta 259
Acipenser 73
Acrania 79274
Acrydides 209
Actinia 247
Actinozora 245
Actinophrys 254
Adam's Apple 159
Adaptation of feet of Uugulata 174
of Ruminants for rapid locomotion 175
of sloths to arboreal life. 163
of Marsupialia to differ- ent modes of life 162
of Mammals to aquatic 180
of Mammals to ærial life 185
of Mammals to subter- ranean life 182
of birl's skeleton and 127-8
of bird's feet to different 134-5
of Amphibia to burrow- ing 98
of Lacertilia to different modes of life. . . . 107, 110
of insects to aquatic life 213
of Chelonia to aquatic and terrestrial life 104
Page Page
Adaptation of Hyla and frog to arboreal life. . . . 96 , 97
of fossil reptiles to differ- ent modes of life.. 117, 120
Afyialitis 139
AElurichthys 56
Ajpyornis 134
Agama 107
Agalena 202
A!/lossa 94
Agouti 184
Air-bladder of cyprinoids 58
Function of. 43
Connection with auditory laibyrinth 38
Vessels of in Physoclysti. 63
Coats of 42
Of Ganoids 72
In Acanthopteri 63
In Dipuoi 78
Air-bladder and duct of cat- tish 42
Air-sacs of biris-of locust. 219
Aix 139
Albatross 138
Alces 178
Alewife 60
Alligator garpike 75
Alligator 115
Alisphenoid 23
Alpaca 177
Altrices 131
Alternation of teeth in mam- mals 155
Alula 122
Alveolar part of maxillaries mammals 149
Alveoli of lung in mammals 158
Ambloplites 64
Page Page
Amblyopsiк 6%
Aortic arches of manmels 159
Amblystoma 90-1
Ametabola 214
Amia 74
Amiurus, species of 51-3
Auricle of catfish 45
Amoboid cells 14
Amœboid blood-cells 44
Amoeba 253
Amphibia 80
Amphiccelous 81, 18, 116, 16°
Amphidiscs of sponges 251
Amphioxus 79
Amphipnous 62
Amphipoda 197
Amphistana 110
Amphiuma 89
Ampullæ of auditory labyrinth 38
Amyda 104
Anacanthini 70
Anaconda 111
Anadromous. 59
Anas $135-9$
Arastomus 136
Anatomy 264
Anchnyy 61
Ancistrodom 114
Ancylus 234
Anguilla 62
Anguis 110
Anisonema 257-8
Annelida 218
A nodon 229
Anseres. 138
Anteaters 163
Antelopes 178
Antenne 194
Antennulae, craytish 194
Anterior extremity of Meno- branch compared with tish 85
Anthropomorpha 189
Antilocapra 178
Antilope. 179
Antimeres 242
Antlers 178
Ant-lions 214
Ants 217
Aibura S.3, 92
A orta dorsal 46
Aortic arches of catfish 46
Apertures of body in catfish.. 11
Aphis 213
Apis 217
Appendages abdominal of in- sects 207
Appendagen of crayfish 193
Appendicular J.
A pueryx 134
Aptenodyies 137
Aptera 213
Apus 199
Aquatic animals, distribution of 281
Arachuida 191, 201-4
Araneina 202
Arbor vitæ 152
Arcella 254
Archroopteryx 132
Archæan Rocks 270
Arius 56
Arctopithecini 189
Arctomys 184
Ardeida 139
Argali 179
Argulus 200
Argus 140
Arms of Brachiopod 238
Arm of starfish 243
Armadillo 163
Aromochelys 105
Artemia 199
Arterial cone 72, 87
Arteries of catfish 44
Artiodactyla 174
Articular processes 19
Arthropoda 190- 217
Arthrogastra 202
Articular element of man- dible 24
Arvicola 184
Arytennoid 159
Asaphus 201
Ascaris 224
Asellus 198
Asinus 173
Asiphoniata 232
Aspects of body in Vertebratea and Invertehrates 190
Aspidonectes. 104
Page 159
in-207
Aspredo 57
Page Page
Bed-Bug 214
Astacus 192
A atcrias 243
Asymmetry of gastropol 233
Of oyster 228
Atalapha 186
Atavism 172
Atcex 204
Ateles 189
Atlanta 235
Atlantoxations 117
Atlas. 126
Atrium 45
Aucheria 177
Auk $1: 3$
Auditoryciusule 36
Aurilia 247
Anstralisn region 161
Aves precoces and altrices 131
Avocet $1: 669$
Axial. 11
Axis cylinder 16
Axis vertebra 126
Axolotl 91
Aye-aye 187
Aythya 139
Babyrusa 175
Baboon 189
Bastrian Camel 177
Badger 179
Bagrus 56
Balazna 166
Balanice ${ }^{1 \times s}$ 136
Balancers 215
Balanoglossus 243
Balanus 20
Balistes 71
Barbels 12
Bark-Beetle 215
Bass-Tribe. 64.
Basibranchial 26
Basioccipital 23
Bascanium 114
Basommatophora $2: 34$
Basalia of Fin 28
Bathymetrical Distribution 281
Batrachia 80
Bear-Animalcule 204
Beaver 184
Beetles 215
Bee 217
Beetworm 224
Bell-Animáleule 561
Belostoma 213
Beluya 165
Belemuites 237
Bighorn. $17!$
Bilateral Symmetry 10
Commection of, with Form- ation of Locomotor Sur- face 243 , 259-(in)
Biology 262,264
Birds 121
Birgux 197
Bison 179
Bhatta $4(19)$
Blackfly 216
Blarime 182
Blackliril 141
Blastorlerm 131
Beadsnake 113
Bladler- Worm $\because 27$
Blind-Fishes 62
Blind-Snake 111
Blind-Worm 110
Blood-Cells 44
Blood-Supply of 1 iills 46
Blood-Temperature 161
Blubber 144
Bluebird. 141
Boa-constructor 111
Boatbill. 136
Bujanus, organ of 231
Boleosoma 66
Bombyx 216
Bonasa 140)
Bony-pike 74
Bone, structure of 15
Book-scorpion 212
Bostryckus 215
Botaurus 139
Bovina 179
Bowtin 74
Brachiopoda 237
Brachyurus 188
Brachyura 197
Branchial Arches ol Catfish 26
of Cat 149
Page Page
Branchial arches of Frog 93
of Menobranch 83
Brain.31, 86, 103, 129, 152
Branchial Arteries, Afferent and Efferent. 4687
Branchial Chamber and Aper- ture 12
Branchiostegal Membrane and 25,42
Rays
139
139
Branta
Branta
199
199
Branchipus
Branchipus
205
205
Branchiate Arthropods
Branchiate Arthropods 164
Bradypus
222
222
Branchiobdella
Branchiobdella
58
58
Breeding-colou
Brine-shrimps 199
Brontotherium 172
Brontosaurus 117
Brood-pouch in lamelli- 231
branchs 231
In Polyzoa
163
Bruta
239
Bryozoa
140
140
Bubo
Bubo
179
179
Bubalus
Bubalus
179
179
Buffalo
Buffalo
92-6
92-6
Bu, 0
Bu, 0
176
176
Bunodont
Bunodont
232
232
Burrowing Lamellibranchs
Burrowing Lamellibranchs
130
130
Bursa Fabricii
Bursa Fabricii
70
70
Burbot
Burbot
244
244
Butterfly 216
Byssus 232
Caddis flies 214
Caducibranchiata 90, 88
Calcarea 250
Calotragus 174
Caloptenus 206
Callorhinus 180
Callichthys 57
Callosities of horse 173
Cambarus 191
Campodea 210
Camelus 1.77
Camelopardalis 178
Cuncroma 136
Cannon-bones 169, 177
Canis 179
Canine teeth
Canine teeth 155 155
as compensating for ab- sence of tusks 177
Capra 179
Capelin 60
Capillaries 44
Capybara 184
Carp 58
Carmine 213
Cartilage in Cephalopoda 236
Cartilage, structure of 14
Carotid arteries of cat-fish 46
Cardinal veins 46
Carpus of Menobranch 85
Carotids of 87
Carcharodon 77
Cardo 216
Caribou 178
Carpocapsa 216
Carabus 215
Cariacus 178
Carp-suckers 58
Carnivora 144, 179
Carapace of turtle 102
Carpophaga 140
Carinatce 124, 137
Care of young in Vertebrates. 142
Catfish, specific name of 51
Catodon. 165
Catarhini 189
Cathartes 141
Catostomus 57
Cassowary 134
Casuarius i34
Castor 188
Cavicornia 178
Cavia 184
Cebus 189
Cecidomyia 216
Cells 16
Cell-animal, strncture oi 14
Cell, Polyzoa 239
Cephalopoda 235
Cephalophora 228, 232
Cephalothorax 193
Cepphus 137
Centetes 183
Centipedes 211
Centrum of vertebra 18
Centrarchus 64
Page Page
Page155
ab)177179604418458
187
187
Ceratohyal of cattish
Ceratohyal of cattish Chiromys Chiromys 32
Cerutium 184
109
109
Chirotes
Chirotes
Ceratobranchials 26
Chiton 232, 234
Chondrosti i
Chondrosti i 73 73
Cerebral hemispheres of cat-
Cerebral hemispheres of cat- 30
Cerebellum of catfish 30
Cercaria 226
Cervical region of vertebral
column in mammals 146
Cerebellum of mammals 152
Cerebrum of mammals 151
Cercopithecus 189
Ceratoclus 78
Cervidae 178
Cercoleptes 179
Cervus 178
Cerci 207
Cere 140
Cestodes 225
Cetacea 164
Chatogaster 221
Chatopoda 222
Channel cat 54
Chamaleon 108
Charadrius 139
Oharacteristics of birds 121
Chamois 170
Cheek-pouches monkeys 189
rodents 184
Cheese-mite 204
Chelæ 194
Chelate 194
Cheliceræ 202
Chelifer 202
Chelonia 100
Chelopus 105
Chelydra 100
Chemical composition of liv- ing bodies 263
Chinch-bug 214
Chimara 76
Chilognatha 211
Ohilopodn 211
Chinchilla 184
Chilomycterus 72
Chiroptera 185
Chimpanzee 189
Chitin 191
Chinams of optic nerves 152
Choroid 35
Chobepus 164
Chrysothrix 189
Chrysalis 209
Chrysemys 105
Chrysomeliulo 215
Ciconia 139
Cicadella 213
Cicada 213
Ciliary muscle 35
Ciliate Infusoria 253
Ciliated chambers 250
Ciliophrys 251
Circulatory organs 265
Cirripedia 200
Cinosternum 103
Circulation of crayfish 197
Circumvallate papille 157
Circulation of earthworm 221
of cat 179
Cistudo 105
Ciscoe 59
Clarias 57
Clavate cells 17
Classification. .9, basis of 261
Clamatores 149
Cladocera 199
Clam 232
Clathrulina 254
Clepsine 222
Climatic aspect of Biology 273
Cliona 252
Clitellum 221
Clothes-moth 216
Cloacal Siphon 231
Clupea 60
Clypeus 205
Cobra (Naja) 113
Coccinella 215
Coccoon earthworm 221
Coccus 213
Coccyges 141
Cochineal insect 213
Cochlea 37
Cochlea, scala of 154
Page Page
Cocoa-nut crab. 197
Cockroach 209
Cocoon 214
Coddling-moth 216
Codtish 70
Cocea, intestinal of birds. $1: 9$
Colenterata 245
Ceplogenys. 184
Colom of Cermes 919
Celom
of mammals11 Cowric
214
214
Corcus
Corcus
138
138
Cor'norant
Cor'norant
34
34
Cornea
Cornea
172
172
Ceronary
Ceronary
152
152
Corpora quadrigemina
Corpora quadrigemina 152
Correlation, principle of 273
Corypherdon 170
Coverts 122235
158 Coxal glamis 220
Conocium 240 Coxa 206
Conosarc 247 Craylish 191
Coffin-bone 179 Cranium 20
Coleoptera 214. ('ranial nerves 33
Collar-cells of Sponge 250 Craniam, proportion to face 148
Cololus. 189 Cranial bones origin 20
Colonies l'olyzo: 23:) Creepers 141
Colouration, funct ons of 278 Uricket 210
Colubrer 112 Cricoid 159
Columbise 140 Crinoidea 244
Colimisa 136 Cristutella 239
Columella auris 94, 83
Columella of cochlea 154
Compsognuthus. 118
Crystalline cone of a-the prol
Crystalline cone of a-the prol eye. 196Compound eye195
Comparison of earthworm and craytish 219
(Joncrescence of cranial bones in mammals 148
Connective tissue 13, 14
Contractile vacuole 253, 259
Corium 12
Conus arteriosus 72
Conus 235
Condor 136
Condylura 182
Coney 171
Condyles occipital 126
Coot 139
Copper-heal 114
Copeporla 199
Cope 285
Coracoids of Monotremes
Coracoids of Monotremes 161 161
mammals 150
cattish 27
Corallum 247
Coral 247
Corallitm 248
Coregonus 59
Crow 1.41
Crocorlilia 115
Crotalus 113
Crura cerebri 151
Crustacea 191, 200
Cryptogamic 9
Crystalline stylet 230
Cuckoo 141
Culex 216
Culmen 122
Curlew 139
Cursorial birds 132
Curculio 215
Cutaneous muscular tube, Ver- mes 220
Cutaneous sense-organs of tish. 17
Cuttle-fish 235
Cutaneous secretion, Bufo 93
Ctenoid 12
Citenophora 245
Cyclops 200
Cyclostomi 78
Cyclophus 114
Cyclopterus 69
Cyclas 232
Cyynides 139

Page

 214 138 34 172 152 152 273 170 122 235 220 206 191 20 :38 148 20 141 210 159 24 239 nd 196 141 115 113 151Cynips 2 Page age
Cynomys 184
Cynomorpha 189
Cyprinus 57
Cypris (Candcun) 199
Cypraea 235
Cysticercus 226
Cypselus 135
Cystopiora 181
Cystic stage of ('estoles 226
Cytology 264
Daphnia 199
Daddy-long-legs 202
Dafila 139
Darter 66
Darwin on earth-vorin 221
Darwinism 28.5
Dasyprocta 184
Dasypus 163
Dasyurus 162
Deer 178
pigmy. 178
Defensive habits of Heterodon 114
Demodex 204
Dentition Mammals 155
Insectivora 182
Rodents 183
Seals 180
Primates 188
Camel 177
Ruminants 176
Horse 173
Bats 186
Fossil Artiodactyla 176
Bear 156
Edentata 163
Dental formula, typicul 156
Dentary 25
Dentine 18
Dew-claws 176
Dermaleichus 204
Dermatochely, 105
Dermestes 215
Descent with muli.tc.ati., 1 269
Desiccation, resistance to 204
in Rotifers. 223
Desmodus 186
Development, locust 209
Brachiopoda 237
Dexiotropous 233
Diadophhis 114
Diastema 155
Diapheromera 210
Diaphragm
Dicotyles 158 158 175
Diemyctylus. 91
Didelphys 161
Didus 140
Dibranchiata 236
Diffiugia 254
Diphyorlont 155
Dipioi 78
Diptera 215
Dipus 184
Dinobryon 257
Dinosauria 118
Dinornis 133-4
Dinotherium 170
Dimorphism 223
Diodon 71
Diomedea 138
Dioncea 288
Discophora 220
Distomum. 226
Disuse of organs, effects of. 286
Docimastes 136
Dodo 140
Doris 235
Dorée 66
Doras 56
Dorosomit C0
Doryphora 215
Drace 108
Dragon-flies 212
Dromaия 134
Dromedary 177
Drosera 288
Duck-mole 160
Dynastes 215
Dytiscidae 215
Ear of cattish 36
crayfish 196
locust 208
Ophidia 113
mammal 153
Earthworm 219
Earwig 209
Lbcardines 239
Pr. Page
acheneis 67
Endoplasm
Page 253
Echinodermata 242
Erchinarachnius 243
Echinus 242
Echidna 160
Ectoderm of Hydra 246
Ectoparasitic Trematoda 225
Protozoa 256, 260
Ectopistes 140
Edentata 163
Eel. 62
Effects of external form on in- ternal organs, Ophidia 111
Eft. 91
Eggs, Amphiuma 98
Brachiopoda 238
of Catfish 48
of craytish 196
Crocodiles 116
Birds 131
Hydrozoa 246
Lamellibranchs 231
Menobranch 87
Monotremes 143
Ophidia 113
Pipa 94
Sharks 78
Turtle 104
Siphonops 98
Elaps 113
Elasmobranchii 76
Electric Catfish 56
Eel 62
Ray 77
Elephant 168
Elevation of land, effect of 279
Elytra 207
Embryology 264
Emu 134
Emys 105
Enamel 18
Encephalon 31
Encystment of Protozoa 253
Trematoda 226
Cestodes 227
Endochrome in Euglena 257
Endoderm of Hydra 246
Endolymph 37
Eninjalra 179
Kindoparasitic 'I'rematodes. 225
Endopodite 193
Endoskeleton, Cephalopoda
of Brachiopod arms 236 238
Endoskeleton of Vertebrates. 17
Entoderm 246
Entomostraca 198, 200
Eider 139
Environment, direct action of 285
Ephemerida 212
Ephydatia. 251
Epiblast 49
Epibranchials 26
Epicranicim 206
Epidermis 17
Epidermis, Sauropsida 101
Epiglottis 157
Epihyal 25
Epimerum 206
Epiotic 22
Epipharynx 207
Epiphysis of Catfish 31
Epipubic bone 161
Epistornum, Monotremes. 161
Epi'sodite 193
Epistome 240
Epithelium 14
intestinal 40
Episternum, amphibians 93
Equus 173
Eretmochelys 105
Ergasilus 200
Erinaceus 183
Ermine 179
Erismatura 139
Esox 61
Estheria 199
Etheostoma 66
Ethmoid of Mammals. 148
Erethizon 183
Engraulus 61
Euglena. 257
Euglypha 254
Eumeces 107
Eumetopias 180
Ehiplectella 251
Eusponyia. 252
Eustachian Tubes 93, 154
Eutarnia 114
Eutheria 143
Page Pare
Evvolution of Organic Nature. 270 270
Excretory Organa. 265
of Vertebrates. 47
of Insectss. 203
of Arthropods 203
of Vermes. 219
of Mollusca 228
of Polyzoa 241
of Protozoa 253
Exhalent Siphon 231
ubocretus 63
Exoccipital 23
Exopodite 193
Exoskeleton 17
of Turtles 101
Crocodiles. 115
Edentata 163
Echinodermat. 242
Eye, Vertebrate 34, 35
Compound. 195
Falco 135
Fan-coral 248
Fauna of Madagascar 186
Fauces of Mammals. 157
Feathers 122
Felis 144, 179
Femur 85, 206
Fenestellir 241
Fenestra Ovalis 83, 153
Rotunda 154
Fetter-bone 172
Fil 3 r 184
Filaria 224
File-fish 71
Filiform papillæ 157
Fins 11
Unpaired 81
of Cet.cea 165
Rays 2728
Pternporl. 235
Finches 141
Fire-flies 215
Fristularia 63
Fiesion in Protozoa 250
Flagellate Infusoria. 253
Flamingo 136, 189
Flat-fish 70
Flea 216
Flounder 70
Flipper, seal
Flipper, seal 180 180
Aquatic Mammals 165 165
Sirenia 166
Turtles 104
Ichthyosauria 117
Penguin 137
Fluke-worm 226
Flying-squirrel 184
Flying-fish (i3, 69
Flycatchers 141
Follicles hair 144
Feathers. 121
Setigerous 221
Fontanelles 21
Food-yolk 49, 131
Foot in Mollusca 228
Heteropola 235
Foramen magnum 20
Foraminfera 254
Formula of teeth 156
Forficula 209
Formica 217
Formative yolk 49
Fossils 269
Fratercula 137
Fresh water Faunas, origin of. 28:
Frigate-bird 138
Fruit-bats 186
Frontal plane 10
Frog 97
Fulica 35
Fungi 288
Fur-seals 180
Fur 179
Funnel $2: 5$
Fungiform 157
Function 265
Change of 197
Galeopithecus 185
Galea 206
Galago 187
Galls 216, 213
Galinacei 139
Gadus 69
Gallinago 139
Gallinule 139
Gallfies 217
Galleyworms 211
Callus 124
Page
Gall-bladder of catfish 41
Page
Page
Giraffe 17.
Gills, Mollusca
Gills, Mollusca 228 228
Gammarus 198
Gannets 138
Garfish, Scomberesox 74
Ganoidei 72
Ganglion-cells 32
Ganglia 32
Garpike 72
Garter-snake 114
Gastric glands 40
Gasterosteus. 63, 64
Gastropoda 232
Gastrovascular Cavity of Sponges 250
Gastrovascnlar Cavity of Cel- enterates 245
Gavial. 115
Gazelle 179
Gecko 108
Gemmules of Sponge 251
Gephyren 222
Geocores 213
Geographical Distribution,
187
Past and Present, of Lemurs 187
of Elephants 170
of Camels 177
Geological Importance ofRa:tiolaria255
of Foraminifera 254
Record, incompleteness of 272
Genus 54
(ienealogical Trees. 272
Germinal Epithelinm 14
Gerris 214
Germinal Yolk 131
Geomys 183
Gibbon 189
Gill-Rakers. 73, 43
Gill-Slits 12
Gill-Slits of Menobranch .80, 81
Gill-Filaments 43
Gill-Arches, Membranous Par- titions 76
Gill-Pouches 76
Gills, Urodela 89
Gills, External of Menobranch 80
of Tadpole. 95
Gills, of Cephalopoda 236
of ('raytish 193
Lamellibranchs. 231
Gizzard of Fowl 129
Gizzard-Shad 60
Glacial Period 278
Glandular Epithelium 14
Glass-Snake 110
Glenoid Cavity. 85
Glenoid Fossa of Manmal's Skull 149
Globigerina 254
Glochidia 931
Glottis of Menobranch 86
Goat 179
Goat-Sucker. $1+1$
Gold-Fish 57
Goniobasis 234
Gonys. 122
Gordius 224
Gopher 184
Gorilla 189
Goura. 140
Grampus 165
Grasshopper. 205
Grebe 138
Green-gland of crayfish 219
Gregarina. 254
Grouse 141)
Grus 139
Gulo 179
Guinea fowl 14)
Pig. 184
Gull 138
Gymnophiona 88, 98
Gymnolamata 240
Gymnotus 62
Gypogeranus. 140
Haddock 70
Hæmal arch 19
Hæmoglolin 44
Hair 144
Helicina 235
Heliconida. 287
Helix 234
Hellbender 89
Hemiptera 211
Hepatic cells 41
Portal Circula ion in Mammals 160

Page

Page
Honeycomb-stomach
Page
Horizontal plane 176 176
Horse-flies 10 10
Heredity 283 283
Herpestes 179 179
Herodiones 139
Hermit-crab 196
Heterocercal 19, 73
Herring 60
Hesperornis 123
Hessian-fly 213
Hawkmoth 216
Heteronomous 193
Heterodon 114
Half-gill (demibranch) 72
Halibut. 70
Halteres 215
Halisarca 251
Halicore. 167
Hapale 189
Haplocerus 179
Harp seal 181, 283
Hatteria 100, 106
Hag-fish (Myxine). 79
Head, Mollusca 228
Heart mammals 158
of Catfish 44, 45
of Menobranch 87
of Turtle. 104
of Crocodile 116
Hedge-hog 183
Heliosphara 255
Heliozoa 255
Heteropoda 235
Heteroptera 213
Heterœcism 224
Heterodera 224
Hippocarıpus 63, 65
Hippopotamus 174
Hinge in Lamellibranchs 228
in Brachiopods. 239 239
Hirudo 232
Hippospongia 252
Histology 16, 264
Holotricha 259
Holostei 73
Holothuroidea 243
Homonomy 210, 218
Homarus 192
Homologous 10
Hystrix 183
Homocercal 19
Hoopoo 141
216
Horns 178
Horse 173
Homopteru 213
Horned-toal 107
Huanaco or Guanaen. 177
Humerus 151)
H!/кешоschits 174
Пукепи. 236
Hyalonema 251
Hybernation. 184, 186
Hydrocherries 184
Hyoid of Mammals 149
Hydra 245
Hydrachna 204
Hydatina 223
Hydrozon 245
Hydrorhiza. 246
Hydrophis 113
Hydrocores 213
Hylobates 189
Hyla 96
Hymenoptera 216
Hyomandibular 24
Hyodon 66
Hypobranchials 26
Hypophysis. 0, 152
Hypohyal 25
Hypoblast 49
Hypopharynx 217
Hypodermis 195, 219
Hypotricha 260
Hyracoidea 170
Ibex 179
Ibis 139
Ichthyornis 124, 135
Ichthyobdella 222
Ichthyopteryyia 117
Ichthyosuurus 117
Ichthyopsida. 99
Ichthrelurus 54
Ichneumon (Mammaiia) 179
(Insecta) 217
Iguana 107
Iguanodon 118
Ileo-ccecal valve 39
Ictalurus 54
Imparidigitate Ungulates 171 Pagge
Kiwi 184
Imago 209
Incisive foramen 149, 153
Incisors 155
Incus 153
Inhalent siphon 231
Inferior lobes of brain 30)
Ink-bag 236
Infusoria 252, 256
Ciliata 258
Infusorial earth 255
Incubation of eggs 131, 132
Insecta 191
Insectivora 182
Instinct 267
Intestine of leech 222
of Crayfish 196
of Earthworm 219
of Cattish 40
of Menobranch 103
Indri 188
Interhyal 25
Intercellular substance 14
Interoperculun 25
Interparietal 148
Invertebrata teim 9
Iris 35
Interspinal 28
Isopoda 107
Ixodes 204
Jæger 138
Jacobson, organ of, in cat 153
Jaws, catfish 24
Turtle 101
Ophidia 112
Leech 222
Jay 141
Jerboa 183, 184
Jugal arch 148
Jugular fins 62
Jugular vein 159
Kainozoic 219
Kangaroo 143
Kidney of catfish 47
of menobranch 87
head- 47
Kingfisher 141
Kinkajou 179
Knee of elephant and other Ungulates 169
Labella 216
Labrum, craytish 196
Insects 205
Labium 206
Labrynth of ear ill catisis 36
Labyrinthorlontia 97
Lachnosterna 215
Lacinia 206
Lacertilia 106
Lady-bird 215
Lagopus 140
Lake-mullet 58
Lamellibranchiata 228
Lamellirostres 139
Lake-herring 59
Lampyridae 215
Lamprey 78
Land-locked seals 187
salmon 59
Lancelet 78
Larvæ Echinodermata 243
higher Medusæ 247
provisions for in Hymen- optera 217
Larks 141
Larus 138
Larynx in animals 159
Isateral line, catfish 12
Menobranch 81
Leech 220
Leiotropous 233
Lemming 184
Lemuroiden 187
Lemur 187
Lens 35
Leopard 179
Lepomis 64
Lepidosiren 78
Lepidoptera 215
Lepidosteus 74
Lepus 183
Leptoptilus 136
Libellula 212
Lichanotus 188
Life, characteristics of 263
Ligament in Lamellibranchs. 228
Limax 234
Limbs of higher Vertebrates. 81
Limicolae 139
Limicolous worms 220
Limnnea 233
Limbs, development of, in 95
Limulus, relation of, to Arach- nida 201202
Jimpet 234
Lineus 225
Lingula 239
Lips and tongue of mammals. 157
Lion
Lion 179 179
Littoral zone 281
Liver-fluke 226
Liver of catfish 41
Lizards 107
flying 108
Lobster 192
Locomotion in Cephalopola. 236
Ophidia 111
Log-perch 66
Llama 177
Loligo 235
Lomgipennes 138
Loon 138
Lophobranchii 63
Lophophore (circlet of tent- acles in Polyzoa) 240
Lore 122
Lori 187
Loricaria 57
Lota 70
Lungs of memobranch com- pared with air-bladder 86
Turtle 103
Ophidia 111
Mammals 158
Scorpion 202
Spider 203
Lutra 179
Lymphatic system 47
Lynx 179
Масасия 189
Mackerel 67
Macrochires 141
Macrolepidoptera 216
Macrura 197
Page Page
Macroncelides 183
Macrobilella. 222
Magpie 141
Malacostraca 191.8
Mollapterurus 56
Mallard 139
Malleus mammalia 149, 153
catfish 22, 38
Mallophaga 213
Mallotus 60
Malphigian tubes 203-8
Mammals 142
Manubrium sterni 147
Mammoth 168
Cave 62
Manatee 166
Mandibles-crayfish 194
Mandible-catfish 25
Manis 163
Mantis 283
Mantle of Mollusca 228
Gastropods 233
Manus of various mammalia. 164
Manyplies 176
Marabu 136°
Marine-worms 220
Mark in horse's incisors 173
Marsupialia 161
Marten 179
Masseter 148
Mastigophora 256
Mastodon 169
Maxillw, crayfish 194
Maxillipedes 193
Maxilla of catfish 25
Maybeetle 215
Mayflies 212
Meckel's cartilage ..25, 149, 153
Mediastinum 158
Merulla oblongata 30
Medusa-form 246
Medicinal leech 222
Megatherium 164
Megapodide 140
Megalosaurius 119
Meleagris 139
Mentum 206
Menobranch 80
Menopoma 89
Mephitis 179
Mermis
Page 224Merganser136,
Mesostoтит 225
Menenteries of Actinia 248
Mesoblast 49
Mesozoic 270
Mesethmoid 22
Mesentery 40
Mesology 277
Mesoderm of Hydrozoa 247
Metabola 264
Metastoma 196
Metapodials, rudimentary of horse 172
conversion of into cannon bones. 169
Metatheria 143
Metazoa 252
Metamorphosis of Crustacea 197
of Anura 91, 94
of Urodela 90
Metameres 20
Metapterygoid 25
Metacarpus, menobranch 85
Michelinea 249
Micropterus 64
Micronucleus of Infusoria 259
Microlepidoptera 216
Milk-glands of mammals 142
Milk-dentition 155
Mimicry 216, 287
Millipedes 211
Minnow 67
Mink 179
Moa 133, 134
Molar teeth 155
Mole 182
Mollusca 227
Molluscoidea 237
Monads -257
Monodon 165
Monas 257
Monotremata 143 160
Monophyodont 155
Moon-eye 61
Moose 178
Mosquitos 216
Monkeys 188
Moschus 178
Page
Motmot 141
Mould, formation of by earth- worms 221
Mouth-vacuole of Flagellats. 257
Mouth of Ciliated Infusoria 259
Moum-parts of Diptera . . 812, 215
of Insecta 206
of M , riapods 211
Mnult of locust 209
Mouse 184
Mouth-cavity, sub-divisions of in Mammals 157
Moloch 108
Moxostoma 58
Muccus membrane 38
Mud-puppy 80
Mudfish 74
Muride, Mus 183
Musca 216
Muscle-tissue 13-16
Muscles 28-29)
Mussels 428
Muskallunge 61
Musk-0x 179
Musk-rat 184
Mustela 179
Mustelus 77
Mya 232
Mycetes 189
Mycteria 136
Myodes 184
Myogale 182
Myriapoda 191, 210
Myomeres 29
Myntomes 50
Myrmeleon 214
Myrmecophaga 163
Mysis 192, 198
Mytilus 232
Myxine 79
Myxosporidium 254
Nacre 229
Naja 113-114
Nanemys 105
Natural Selection 279-281
Nauplius-phase 197
Nais 221
Nautilus 236
Narwhal 165
Nasal cartilages
Pare Page
Nasal septum mammals 153
Nasal cavitics of Dipnoi 78
Negative characters in classi-8)
fication

9

Nephelis
22
Nephridia of earthworm
219
moliusca. 228, 231
homologues of, in
Arthropols.
220
Brachiopods. 238
Nervous systern of craytish 195 spider 203
insects 207
Lamellibranchs 229
Central, of Vertebrates .. 30
Nests of fishes. 63
birds . 287
Nematelninthes 223
Nematodes 224
Nematognathi 56
Nemertini 225
Neuroptera212-214
Neuro-epithelium, auditory.. 38
Neural arch 18
Nerves afferent and efferent30, 32
function of
32
Nerve-cells 32
Nettling-organs 245
New World Monkeys 188
Newt. 91
Noctiluca 207, 208
Nomenclature51, 55
Notochord 18
Notonecta 213
Notum . 206
Noturus........................ . . 55
Nucleus of cells 16
Infusoria 259
Numenius 139
Numidr........................ . . 140
Nummulitic Limestone 279
Nutritive organs 265
Nuthatch 141
Nyctale 140
Nycticorax 139
Nyctipithecus I89
Obelaria 246
Ocean Currents, Effects of ... 282

Ocellus 203, 205,
$\begin{array}{r}\text { Page } \\ 207 \\ \text { Occipital Conilyles } \\ \text { 120 }\end{array}$
Octopus. 235
Octopme. 235
Odontoid Process. 126
Odd-Toed Ungulates. 171
Oli!gochapta 220
Oliva 235
Olfactory Organs, Lamellibranchs 230
Olfactory Bulbs and Tracts of Catfish 30
Olfactory Organ 34
Mammals 152
Crayfish. 165
Ommatidium 195
Onychodromus 259
Onchorhynchus. 59
Oniscus 198
Ontogeny 264
Opalina $: 59$
Operculum. 25
Of Gastropods. 234
Opisthocœlous 75
Ophioscurus. 110
Ophidia 111
Ophiothrix 244
Ophiuroidea 243
Opisthobranchiuta 235
Opposable Digits of Primates. 186
Opossum-Shrimps 197
Opossum 161
Optic Lobes 31, 152
Ophibolus 114
Orang-atan 189
Orbitosphenoid 23
Orcynus 67
Orca 165
Organization 253
Oriental Region 287
Oriole. 141
Ornithopoda 118
Ornithorhynchu* 167
Ornithological Terms. 122
Otoliths 37, 196
Orthoptera. 209
Genuina 211
Orycteropus 163
Otter 179
Oscines 141
Osculum of Sponge 250221
ia 259
312, 215206
Pare
Organ 266
Organism 265
Organisation 265
Osmerus 60
Ostracion 71
Ostracoda 199
Osirea 232
Ostrich 134
Otarice 180
()tocysts 230
Ovibos 179
Oviparous mammals 143
Oviposition locust 209
turtles 104
Ovipositor 207, 217
Ovis 179
Ounce 179
Owl 140
Oyster 232
Paca 184
Pachyderm 144
Pa!lurus 197
Paddle-fish 73
Palate 157
Palæontology 269
Palæozoic 270
Palemonetes 197
Palcochærus 176
Palceotherium 171
Paly 194, 206
Palpifer 205, 217
Paludicola 139
Palatine 25
Pallium 223
Paludicella 240
Paludina 234, 235
Palps or tentacles, Lamelli- 231
Panorpa 214
Papilla of tongue 157
Skin 13
Papilio 216
Pancreas 51, 52
Paraglosse 217
Parapodia. 220
Parasitism in Infusoria 259
Grade of 286
Effects on organs 223
In annelids 221Pagc
Parasitism in Leeches
Fish 78
Parasitic Protozora 256
lsopods 198
Copepods 199
Mites 205
Ichneumons 217
Larval Diptera 213, 216
Patella 234
Parethmoid 22
Parasphenoid 23
Parotid 154-7
Parotoid 93
Passeres 141
Parrot 141
Parallel groups of Rodents and Insectivora 183
Pataginm 184, 186, 162
Paunch 176
Pavo 140
Peafowl 140
Pearls 229
Pearly Nautilus 236
Pectoral girdle mammals 150
Pecten 232
Pectinatella 241
Peduncle of Brachiopods 238
Pelecanus 136
Pelican 136
Pelagic animals. . . . 245, 235, 281
Pelvic arch 93
Pen of squid 235
Perca 65
Penguin 137
Peccary 175
Pedipalpi 202
Pediculus 213
Pentaceros 244
Pentacrinus 245
Pentacta 243
Pentastonumm 204
Percina 66
Perennibranchiatt 88
Pericardium 45, 158
Periostracum 229
Periotic 148
Peripatus 218, 211
Perisarc 246
Perissodactyla 171
Peritoneum 40

Pagc 222 78 256 198 199 205 217 213, 216 234 22 23
Peritricha 260
Perla
Perla 212 212
Pineal body 106
Pinnipedia
Pinnipedia 179 179
Persistent types. 239
Petrel 138
Petromyzon 79
Pezophaps 140
Phäéthon 138
Phacochorus 175
Phalacrocorax 138
Phalanges 85,185
Phalangina 202
Phalangers 62
Phalangista 162
Phanerogamic 9
Pharyngeal teeth 26
Pharyngobranchials 26
Pharynx 157
Phascolomys 1/2
Phasianus 124, 135
Phasma 210
Phenacodus 170
Phocoena 146, 165
Phoca 181
Pholas 232
Phoenicopterus 136, 139
Phosphorence of sea 258
Phryganea
Phryganea 214 214
Phytophthires 213
Phyllopoda 198
Phylloxera 213
Phyllium 210
Phylactolomata 240
Phyllostoma 185
Phylogeny 272
Physiology 264
Physostomi 58
Physoclysti (i2, 58
Phrynoso:na 107
Phytoptus 204
Physa 234
Pici 135
Pickerel 66
Pieridae 287
Pike-perch 66
Pike 61
Pigeon 140
Pigment in skin 142 92Pipa
Pipe-fish 6394,95
Pinna of ear 153
Pintail 139
Pisidium 232
Piscicola 222
Pimelodus 56
Planaria 225
Planorbis 234
Plantigrade 179
Plants contrasted with Ani- mals 266-7
Plants, protective organs of. 288
Plants, carnivorous 288
Plants, relations to animals 288
Plantlice 213
Plastron 102
Platalea. 136, 139
Plathelminthes. 225
Platydactylus 109
Platyrrhini 188
Platypus (duck-mole) 160
Plautus 137
Plectognathi 71
Plethodon 91
Plesio.ํurus. 116
Pleuronectes 69, 70
Pleural cavity 158
Pleurum of insects 206
Plotus 138
Plover 139
Plumatella 240
Podiceps 135, 138
Podophthalmata 195
Podura 210
Poephatgus 179
Poison apparatus of Ophidia $112 \cdot 3$
Oi Scorpions 202
Spiders 203
Insects 217
Polychata 220
Polyodrm 73
Polypterus 75
Polymorphism of Polyzoa 237
of Hydrozoa 247
Polyzoa 237
Polyp 245
Porcupine 183
Pomoxys 64
Pondturtle 100
Porifera
Page 249
Pseudoneuroptera
Page
Page
Pons Varolii 151
Pontiporeia 198
Porcupine anteater 160
Porcus 175
Porcula 175
Porcupine-fish 71
Pores of sponges 254
Portal vein 42
Posterior extremity 85
Potato beetle 215
Pouch of Marsupials
Prairie-hen 14.3 14.3
dog 184
Prawn 197
Precoces (aves) 131
Precoracoid 83
Premaxilla 25
Premolars 155
Preoperculum 25
Prestomium 222
Primates 188
Primaries 122
Primary and secondary girdles 27
Primitive characters 10
Pristis 76
Proboscis of insects 212
Proboscidea 168
Proboscis of leeches 222
Procellaria 138
Procyon 179
Proglotcis 226
Propithecus 188
Pronghorn 178
Prosimii 187
Prosobranchiata 234
Protection and protective re-
semblance 210, 216, 287
Colouration 82, 108
In Cephalopoda $2: 3$
Proteids 263
Proteus 88
Protracheata 211
Protoplasm 263
Protopterus 78, 80
Prototheria 160, 143
Protozoa 252-261
Proventriculus 129
Psalterium 176
Pseudopodia 253, 255
Pseudobranch 57
Pseuloscorpionina 202
Psittaci 141
Psocus 212
Psychology 267
Ptarmigan 140
Pterosauria 120
Pterodactyl 119
Pterotic 22
Pteropola 235
Pteropus 186
r-...n 137
Pulex 216
Puma 179
Pupa of Locust 209
Putorius 179
Pulmonary artery and vein 87
Pulmonata 234
Pyloric cœca 60
Python 111
Pyloric valve 39-41
Pygostyle 126
Pygopodes 137
Quadrate 25
Homologue of in Mammals 149
Quadrumana. 187
Race 52
Racoon 179
Radial Symmetry 242
Radiata 242
Radiolaria. 255
Radius 85
Radula 234
Rallus. 139
Rana 92, 96
Ranatra 213
Rangifer 178
Raptores 140
Rat 184
Rattle, Functions of 113
Rattle-Snake. 113
Ratita. 132
Ray (Raja) 76
Rays 242
Rectrices 122
Recurvirostra. 136
Red-Coral 248
Page
Redia 226
Regions of Body in Vertebrates 11
Retlex Action. 39, 267
Reindeer 178
Remiges 122
Renal-portal circulation ..49, 57
absence of in mammals 160
Reptilia 99
Rennet-stomach 176Reproduction by budding, Nuis 221
Respiratory system43, 265
turtles 103, 105
earthworm 221
Reticulum 176
Retina 35
Retinophora، cells 195
Retinula 195
Reversion in horse 172
Rhabdome 196
Rhacophorus. 97
Rhantphorl!!nchets 120
Rhea 134
Rhinoceros 171
bird 141
Rhizopoda 053
Rhynchonella 237
Rhyparochromas 214
Rhynchops 136
Rhytina lü
Roc 134
Rock-pigeon. 140
Kose of Autlers 178
Rostellum of Cestodes 227
Rostrum of sharks 76
Rotalia 255
Rotifera 204
Rudimentary organs 287
hind limbs of Uphidia. 111
Rudly-duck 139
Ramen 176
Ruminants 175
Rupicapra 17.1
Saccobranchus 57
Sacculus 37
Sacral region 85
Salpingreca 257, 258
Sagittal plane 1)
Salamander 90
Salivary glands 156
Salivary glands, Insects
Page
Sulmo 208Sauropoila58
Sauropterygia: 117117
Sauropsidia 99
Sandpiper. 139
Saprophytic life of Infusoria. 256
of Fungi
Sarcorhamphas 136
Sarcoptes 204
Sarcodina 253
Sarracenia 288
Saururce 122
Sawtish 76
Sawflies 217
Scales of turtle 101
of fish. 12
of insects 212
of $U_{p h i d i a}$ 111
Scalops 183
Scallop 232
Scansorial feet. 141
Scaphopode 235
Scapula. 27
Scapanus 183
Scarabous 215
Sceloporus 107
Scaphirrhynchops. 73
Sclerotic coast of eye. 34
Sciurus 184
Sciuropterus 184
Sclerostomum 225
Scolopendrella 210
Scomberezox 63
Scomiber 67
Scoter 139
Scorpion 202
Scutum of insects 206
Scutigera 211
Scutellam 206
Sea-anemony $2+7$
Sea-cow 166
Sea-cucumber 243
Sea-elephant 181
Sea-lion 180
Sea-horse 63
Sua-pigeon 137
Sea-otter 179
Sea-urchin 242
Sea-snake 113
Page Page
Seal 180 125
Skelcton fowl
Skelcton fowl
Sebaceous glands 145
Secondaries 122
Sedimentary Strata 268-71
Segmentation of egg in fowl 131
of Crustacea 192
of Myriapoda 211
Segmented and unsegmented 220
Segmental organs 218
Selache 77
Sella turcica 149
Selenodont 176
Semi-circular canals, mammals 154
of Fish 37
Semnopithecus 189
Serranus 66
Senses of insects 207
Sepia 235
Sepia 237
Septa of Actinozoa 248
Serous coat of intestine 3.
Sesamoid bone (formed in ten- don)" 164
Sesia. 216
Setæ of earthworm 220
Siphoniata. 232
Shad 60)
Sharks. 76
Sheat-fish 55
Shell of Molluscia 236
Shell Brachiopoda 237
Sheep 179
Shiner 57
Shrew 182
Shields of turtle 101
Shrimp 197
Shrike 141
Shoveller 139
Shovel-nosed Sturgcon 73
Sieve-plate of ethmoid 153
Silkworm 216
Silurus 55
Simia 189
Simple eye 203
Simulia 216
Siphons 229
Siphonops 98
Siren 89
Sirenia 166
17
Skeletal system 248
of Protozoa 254
of Radiolaria 255
of Sponge 250
Skull of cat 147
of Menobranch 82
Skull 103, 134
Vertebrate, theory of 20
Union of, with vertebral column 126
Skunk 179
Skin 12
of Menobranch 81
of Turtle 101
of Aquatic Urodela 92
Skink 1.07
Skimmer 136
Slater 198
Sloths 163
Slough of snake 111
Slime-cells 17
Slipper-animalcule 258
Smelt 60
Snakes 111
Snapper 100
Snipe 139
Social life of Hymenoptera 216
Soldiers of 'Termites 212
Sole 70
Solitaire 140
Somateria 139
Sorex 182
Sparrows 141
Spatıla 139
Spawn of frog 94
Species 51, 284
Specialisation 70
Spleen 47
Spectre (T'arsius) 187
Spermophilus 184
Speotyto 140
Sphenotic 22
Sphenoid, complex, in mam- mals 145
Sphex. 217
Sphinx 216
Spinal cord 3
Nerve routs 32

Page

Page
Spinnerets 201
Spiracles of locust 204, 208
Of fish 72
Spiral valve 73
Spirifer 238
Sponges 249
Spongilla 250
Spoonbill 139
Spores of Sporozoia 256
Sporocyst 226
Sporozoa 256
Squid 235
Squash-bug 214
Squamosal 82
Squirrel. 184
Stapes s3, 153
Stapkylinidu. :215
Startish 243
Statoblasts. 240, :241, 951
Steganopotles. 138
Stegosaurts 117
Stenops 187
Stercorarius 138
Sternum 93
Of Insects 206
Stentor :59, 260
Sterni 138
Stigmata 204
Stickleback 63
Stipes 206
Stizostedium 66
Stomach Ruminant. 176
-Sac Actinozoa 248
Cocal Type of 41
Mammals 158
Stonecat. 54
Stoneflies 212
Stork 139
Storeria 114
Strix 141)
Stronimy/us 225
Struthio 134, 135
Sturgeon 72, 73
Stylets 21:, 216
Stylommatophin't 234
Stylohyoids 150
Subcutaneous 'Tissue 12
Suberites 252
Sublingual Gland. 157
Submentum 206
Pare
Sulmucous Tissuc 40
Submaxillary Gland. 157
Suboperculum 25
Succinea 234
Sucker 57
Suckers of Leeches 222
Sucking-Fish. 67
Suctorial Infusoria 261
Sus. 174
Sula. 138
Sunfish 64
Surinam Toad 94
Supraclavicle 27
Supraoccipital 22
Suspensorium 82
Suture. 21
Swallow 141
Swan 139
Sweat-Glands 145
Swift 141
Sword-Fish 67
Sylphide 215
Symbiosis 255, 282, 286
Sympathetic nervous sys- tem 33
Symphysis of pelvis. 128
Syrinx 130, 131
Syngamus 235
Synynathus (i3, 64
Tabentus 216
Table of species 274-6
Sedimentary strata 271
Tachypetes 138
Tadpole 94
Tania 227
Talpa 182
Tamias 184
Tanager 141
Tapirius 171
Tape-worm 226
Tardiyrada 223
Tarsius. 187
Tarso-metatarsus of hirils 128
Tarsus of Menobranch 84
of insects 206
Tasmanian devil 162
Taste-buds 157
Taxiclea 179
Taxonomy 22
Teal Page Tongue of Anura
Page
Teeth, Leenciranch. 86
Echidna. 161
Whales 165
Formula of 156, 157
Correlation of to habits:. 154
Teleosts, development of 50
Teleostei 1. 10, 71
Tellina 232
T'elson 192
Temperal bone mammals 148
Tentacles of Hydra. 245
of suctorial Infusoria 260
Tenthr cilo 217
Tentorium cerebelli 149
Teredo 232
Tergum of insects 236
Terminal lamina 152
Termites 212
Terricolous worms 220
Testicardines 238
T'etrabranchiata 236
Tern 138
Tertiaries 122
Testudo 105
Thalamic region of brain. .31, 152
Thalainophora
Thalainophora 254 254
Thorax of arthropods 193
of insects 206
of mammals. 158
Thread-cells 245
I'hrush 141
Thryps 212
Thylacinus 162
Thymus 44
Thyrohyal 150,159
Thyroid 44
Thyroid cartilage 159
Thysanura 210
'Tibia of insects 206
Tibio-tarsus of birds 128
licks 204
Tinamu 140
Tinea. 216
Tissues 16
Tits 141
Tiger 179
Tobacco-pipe fish 63
Tooth, Structure of 16
Tooth-shells 235

Page
94
Page
Turdus 136
Turkey 139
Turtles 105
Tusks of Sus 175
as compensatory to ab- 177
Tylenchus 224
Tympanic bone 148
Tympanic cavity 93
Tympanic membrane 93
Tympanuchus 140
Typhlops 111
Typhlosole 219
Tyroglyphus 204
Uakari 188
Ulna 85
Umbo 229
Umbra 62
Uncinate processess 127
Unconformable strata 270
Unguiculate 167
Unguiata 167
Unicellular animals. 252
Unio 228
Unsegmented worms 222
Üreter 47
Urinary bladder 47
Urinator 138
Ursa 179
Utriculus 37
Urodela 88
Uvula 157

- Valvata 235
Vampire-bat 186
Vampyrus 186
Varanus 107
Variation 267, 284
Variety 52
Vascular system 44-5
Cray fish 196
Velvet of antlers 178
Veins 44
Venous sinus 45
Ventricles of brain 31
Vermes 218-232
Vertebrata 9-189
Vertebrate 9
Vertebral column
Page
$18,19,98,103,111$, 146
Vertex 122
Vespa 217
Vespertilio 186
Vestibule of Labyrinth 154
Vibrisse 145
Vicuna 177
Visceral skeleton $20,24,93,103$, 149
Vitreous 35
Viverra. 179
Viviparous snakes 114
Vocal organs locust 208
Vocal-sacs frog 94
Vomer 23
Vorticella 249, 60
Vultur 141
Wallace 285
Wallace's line 281
Walking-stick insect 210
Walrus 181
Warbler 41
Wart-hog 175
Wasp 217
Water-bug 218
-flea 199
-vascular system of worms 223
of Echinodermata 243
Weasel 179
Web, spiders 204
Weeds 285
Weevil 215
White-ants 212
White-fish 59
Wheel-animalcules 223
Wheat-worm 224
Whales 165
Widgeon 139
Wings, bird's 122
Insect's 207
Wolverine 179
Woodchack 184
Woodeock 130
Wood-duck 139
Woodlouse 198
Woodpecker 141
Wren 141
Wryneck 141
Page Page
Xiphics 67
Xiphodon 176
Zapus 184
Xiphoid Cartilage 147
Zebu 179
Zebra 173
Zenaidura. 140
Yak. 179
Zonites 234
Yellow-Cells of Radiolaria. 255
Zoophytes. 245
Yolk-Sac 49
Zygomatic Arch. 148

Page
. . 184
.. 179
. . 140
. . 234
.. 245
. . 148

[^0]: pc. precoracoid; s. scapmala; ss supraseapula; co. coracoid; yl. plenoid cavity for h, humerus; u. ulna ; r. radius ; $u+i$. unare + intermedium; r^{1}. radiale $;$ c. centrale ; 1-4, distal carpal row. m. metacarpals; I-1V. digits.
 fibuare + intermedinm; t. tibiale; c. centrale ; 1-5. distal tarsal row; m metatarsals; I-IV. dirits.

