Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

THE CANADIAN JOURNAL.

NEW SERIES.

No. III.-MAY, 1856 .

THE ANCIENT MINERS OF LAKE SUPERIOR.

> BY DANIEL WILSON, LL. D.,

PRORESSOR OP HISTORT AND ENGLISII YITERATLIRE, CNIVERSITY COLLEGE, TORONTO.
Read before the Canadian Institute, January 26th, 1856.
During the past summer of 1855 , it was my good fortune to accomplish a long desired visit to the ancient copper country of Lake Superior, where, more perhaps than on any other spot of this contineut, may be witnessed the incipient traces of aboriginal arts and civilization. On that occasion I had an opportunity of exploring part of the rich copper-bearing region of Keweenaw Point and the adjacent country, and witnessing for myself evidences of ancient mining operations, which prove the existence, at some remote period, of the rudiments of native metallurgic arts.

The Keweenaw Peininsula is traversed obliquely by a range of trap rock, rising in some places into magnificent cliffs of sereral hundred feet in height; and in this igneous rock, which passes in a southwestern direction across the Keweenaw Lake into the inland country, are found the rich copper veins which hare already conferred such great commercial value on that district of Michigan. In their present state, it is difficult to realize the conception that these copper regions were ever ransacked for their mineral treasures, or explored by any other but the stray hunter of the forest, until the commencement of regular mining operations in very recent years. •

Landing at Eagle River, I made my way some miles into the country, through dense forest, over a road, in some parts of rough corduroy, and in others traversing the forest in its gradual ascent,
over the irregular exposed surface of the copper-bearing trap. Our track at length lay through a gorge, corered with immense masses of trap and crumbling debris, amid which pine, and the black oak and other hard-wood, had contrived to find a sufficient soil for taking root and growing to their full proportions; while here and there the eye lighted upon some giant pine overthrown by the wind, and turning up its great roots grasping the severed masses of the rounded trap in their convolutions, like the gravel clutched from the ocean's bed in the hands of a drovned seaman. On the summit of the ridge the trap rock rises into a range of cliffs, which, judging by the eye, I should suppose cannot be less than two bundred feet high, and in front of them is a sloping tail, the accumulated debris of ages, on which the trees have in some places attained to an immense size, notwithstanding the apparent poverty of the rocky scil.

In traversing this route the road lies in part along the banks of the Eagle River, and there, some four or five miles from its mouth, I had an opportunity of examining a bearer dam, flooding a part of the river banks, by means of the ingenious structure. No traces, however, gave the slighest indication to the passing traveller that the hand of man had ever wrought any changes on the aspect of a region characterised by features so singularly wild and desolate-looking as those described above. Beyond the cliffs, in a level bottom on the other side of the trap ridge, is the mining settlement of the Cliff Mine, one of the most important of all the mining works yet in operation in this region. The great extent of the works at the Cliff Mine is all the more surprising to the visitor, after finding his way to them through a region where it might seem that human foot had never trod.

I descended the perpendicular shaft by means of ladders, to a depth of sixty fathoms, and explored various of the levels; passing in some cases literally through tunnels made in the solid copper. The very richness and abundance of the metal proves indeed a cause of diminution of the profits arising from working it. I witnessed the laborious process of chiselling out masses from the solid lump, of a size sufficiently small to admit of their being taken to the surface, and transported through such a tract as I have described to the shores of Lake Superior. The floor of the level was strewed with the copper sharings struck off in the effort to detach them, and the extreme ductility of the pure native copper was poipted out to me as a cause which precluded the application of any other force than that of slow and persevering manual labor for separating it from the parent mass. I saw also some beautiful specimens of ailver, in a matrix of crystal-
line quartz, obtained from this mine, and the copper of this district is stated to contain on an average about 3.10 per cent. of silver. One mass of copper quarried from the Cliff Mine has been estimated to weigh eighty tons. It was sufficiently detached from its rocky matrix without injuring its original formation, to admit of its dimensions bsing obtained with considerable accuracy, and it was found to measure fifty feet long, six feet deep, with an average of about six inches in thickness. The total yield of this mine amounted during the past year to sixteen hundred tons of copper, a quantity exceeding, by nearly five hundred tons, the combined product of the other copper mines-eleven in number-of Keweenaw Point, and surpassing by a still greater amount the yield of the Minnesota Mine, the richest of all the works now in operation in the neighboring district of Ontonagon.
At the Cliff Mine some specimens of the ancient copper tools of the native metallurgists are preserved, but it is to the westward of the Keweenaw Peninsula, that the most remarkable traces of the aboriginal miner's operations are seen. The copper-bearing trap rock, after crossing the Keweenaw Lake, is traced onward in a southwesterly direction till it crosses the Ontonagon River about twelve miles from its mouth ; and at an eleration of upwards of three hundred feet above the Lake. At this place the edges of the copper veins appear to crop out in various places, exposing the metal in irregular patches over a considerable extent of country. Here, in the neighborhood of the Minnesota Mine, are traces of the ancient mining operations, consisting of extensive trenches, which prove that the works must have been carried on for a long period and by considerable numbers. These excavations are partially filled up, and so overgrown during the long interval between their first excavation and their observation by recent explorers, that they would scarcely attract the attention of a traveller unprepared to find such evidences of former industry and art. Nevertheless some of them measure from eighteen to twenty feet in depth, and in one cf them a detached mass of native copper, weighing nearly six tons, was found resting on an artificial cradle of black-oak, partially preserved by immersion in the water with which the deserted trenches had been filled, in the first long era after its desertion. This large mass had evidently been thus disposed prepar ratory to an attempt at remoring it entire. It appeared to have been raised several feet by means of wedges, and then abandoned on account of its unmanageable weight; and probably portions nad afterwards been detached from it, as its surface bore abundant traces of
the rude stone implements with which the old miners seem to have chiefly wrought.

The stone hammers, or mauls, by which these ancient workers in metal carried on their operations, consist for the most part of oblong water-worn stones, weighing from tea to twenty pounds. Around the centre of these a groove bas been artificially wrought, for the purpose of fastening a handle or withe of some kind, with which to wield them. Some of the specimens that I saw were worn and fractured as if from frequent use ; many are found broken, and they are met with in such abundance in the neighborhood of the ancient Ontonagon diggings, that a deep well was pointed out to me, constructed, as I was assured, almost entirely of the stone hammers picked up in its immediate vicinity. I was greatly struck with the close resemblance traceable between these rude mauls of the ancient miners of Ontonagon and some which I have seen obtained from ancient copper workings discovered in North Wales.

In a communication made to the British Archrological Institute by the Hon. William Owen Stanley, in 1850,* he gives an account of an ancient working broken into at the copper mines of Llandudno, near the the Great Orme's Head, Caernarronshire. In this were found mining implements, consisting of chisels, or picks of bronze, and a number of stone mauls of various sizes, described as weighing from about 2 lbs . to 40 lbs ., rudely fashioned, having been all, as their appearance suggested, used for breaking, pounding, or detaching the ore from the rock, and pertaining, it may be presumed, to a period anterior to the Roman occupation of Britain. These primitive implements are stated to be similar to the water-worn stones found on the sea-beach at Pen-Mawr, from which very probably those most suitable for the purpose might hare been selected. Mr. Stanley also describes others precisely of the same character, and corresponding exactly with tbose found on the shores of Lake Superior, which had been met with in ancient workings in Anglesea. Were we, therefore, disposed to generalize, as some of the archæologists of this continent are prone to do, from such analogies, we might trace in this correspondence between the ancient mining implements of Lake Superior and of North Wales, a confirmation of the supposed colonization of America, in the twelfth century, by Madoc, the son of Owen Gwynnedd, king of North Wales, who, according to the Welsh chroniclers, having been forced by civil commotions to leave his nstive country, set sail with a small fleet in 1170, and directing his course westward, landed, after a vorage of some weeks, in a country

[^0]inhabited by a strange race of beings, but producing in abundance the necessaries of life. Leaving behind him a colony of settlers, Prince Madoc, according to the same authorities, returned to Wales. equipped a larger fleet, and again set sail for the new regions of the West; but neither he nor any of his followers were ever more heard of. The general story has nothing improbable in it. If a small colony of Welshmen effected a settlement on the shores of America at that early date, their fate would be like that of the still earlier Stendinavian colonists of Vinland.* But the resemblance between the primitive Welsh and American mining tools, can be regarded as nothing more than evidences of the corresponding operations of the human mind, when placed under similar circumstances, with the same limited means. It supplies an argument, which, if pressed to all its remotest bearings, might rather seem to furnish proof of the unity of the human race, than any direct relations leading to a correspondence in the arts of such widely severed portions of the common family. It might, indeed, in some sense, be fitly classed among the instinctive, rather than the imitative operations of human ingenuity when called into action to accomplish similar purposes-instinctive operations akin to those to which alone we cau refer such resemblances as that between the nest of the American blue-bird and the English thrush; and which in like manner, from the first rude arts of the primitive savage, produces the bone-lance, or the flint arronhead, wherein we trace the same type, whether we look for them in the British barrow of ante-Christian times, or among the recent productions of the Polynesian or Red Indian artificer.

The evidences of ancient mining operationsin the Ontonagon district have been observed over an area of several miles in extent, and hare evidently been abandoned for unknown centuries. A forest of primeval growth seems to cover the whole region, and the mind realizes with difficulty the conviction that, in the trenches traversed by the roots, and cumbered with the fallen trunks of giant trees, we have the indubitable proofs of an ancient race of miners having wrought for the same mineral treasures which are now once more attracting a population to the solitudes of the forest.

A writer, whose narrative Dr. Schoolcraft has embodied in his His-

[^1]tory of the Indian Tribes, remarks of the ancient mining excavations of this region: "The great antiquity of these works is unequirocally proven by the size of the timber now standing in the trenches. There must have been one generation of trees befo.e the present since the mine was abandoned. How long they wese wrought can only be conjectured by the slowness with which the miners must have advanced in such great excavations with the use of such rude instruments. The decayed trunks of full grown trees lie in the trenches. I saw a pine over three feet in diameter, that grew in a sink-hole on one of the veins, which had died and fallen down many years since." Above a mass of copper, detached and marked by the rude tools of the ancient miners, there was also noted a hemlock tree, the roots of which spread entirely over it, and a section of the trunk exposed two hundred and ninety annual rings of growth. An uncertain, yet considerable interval must be assumed to have intervened between the abandonment of those ancient works and their once more becoming a part of the wild forest wastes; and when this interval is added to our calculations, we are at once thrown beyond the era of Columbus in our search for a period to which to assign these singular relics of a lost civilization.

When, and by whom, then, were these works carried on? In the early part of the seventeenth century, when the wild regions around Lake Superior were first partially explored by Europeans, the Jesuit missionaries of Canada and others, they appear to bave pertained to the Algonquin tribes. But the climate and soil of this region seem alike conclusive as to the improbability of the permanent settlement of any civilized race along the shores of Lake Superior. The soil is affirmed to be, for the most part, little adapted to agriculture, and the length and severity of the winter leave the modern miner entirely dependent on the accumulated stores laid up during the summer. This, therefore, may seem to justify the conclusion that the mining operations have been carried on intermittently by migratory workers, just as the modern Indians are known to explore the detritus and out-cropping veins at the present day, for the readily attainable fragments of the miskopewabik, or red iron, as they call it. But, although the native copper has probably never been altogether unknown to the Indian tribes of the continent, lying south and west of the great lakes, yet many evidences tend to prove an essential diversity of character and operations between the ancient and modern native metallurgists. The very name of red iron is clearly post-Columbian, and proves the dissererance of the links which should connect the ancient
miners of Lake Superior, with the modern tribes who have found there their hunting grounds.
There was a periud in the long-past epochs of America's unrecorded history, when the valleys of the Mississippi and the Ohio were occupied by a numerous and settled population, . sown to the modern Archæologist as the Race of the Mound-builders. Alike in physical conformation and in arts they approximated to the races of Central America, and differed from the Red Indians alone known to Europeans as the occupants, and by them familiarly styled the aborigines, of the whole northern regions of the American Continent south of the Arctic Circle. The Mound-builders were not, to all appearance, far advanced in civilization. Compared with the tribes of Central America, first visited by the Spaniards, their arts and social state were in an extremely rudimentary state. The contrast, however, is no less striking betreen the evidences of their settled condition, with the proofs of extensive co-operation which their numerous earth-works supply, and all that pertains to the nomade tribes which have been alone known to occupy the American' zests during post-Columbian centuries.

The Mounds of the Mississippi Valley abound in copper ornaments and implements, proving the familiarity of their builders with the mineral wealth of the Lake regions; and to just such a race, with their imperfect mechanical skill, their partially developed arts, and their aptitude for continuous combined operations, would we ascribe, a priori, such ancient mining works as exist on the shores of Lake Superior, overshadored with the forest-growth of centuries. The Mounds constructed by the Ancient brachycephalic Race are in like manner overgrown with the evidences of their long desertion; and the condition in which recent travellers have found the long-forgotten cities of Central America, may serve to show what even New York, and Washington, and Philadelphia; what Toronto, Montreal, and Quebec, would become after a very fer renturies, if abandoned, like the desolate cities of Chicheniiza or Lxmal, to the inextinguishable luxuriance of the American forest growth.

The history of the cities of Central America is known, and the date is well ascertained when the irruption of a new race extinguished their advancing civilization, and threw back into primitive barbarism the remnant of the ancient race which they failed to extirpate. It seems no illegitimate assumption to affirm of the Mound-builders of the Mississippi, aud the ancient Miners of Lake Superior, in like manner, that some great catastrophe,-the intrusion it may be of the present Red Indian Race, or more probably the still deadlier influence
of pestilence, such as in the seventeenth century, swept away the Messacheuseuks nud Narragansetts of New England-appears to have abruptly arrestod their labours, and to have restored the scenes of their industrious progression to the silence amid which the later forest-wilderness aroso. It is not necessary to assume a very great nutiquity for the cra of this abortive American civilization. It has been a farourite theory with some, to trace analogies between the arts of Central America and those of Egypt's primitive civilization. But those who do 80 , forget that the era of Monteauma is known, and that to a past so recent as that we can assign so much of Aztec and Toltec art, that a very few more centuries, at most, may suffice to embrace the utmost that we know of. Assuredly nothing has been observed, as yet, pertaining either to the ethnology o: the archaeology of the new world, which may not be compatible with its first occupation by a human population subsequent to the Christian era. Much, however, may yet be brought to light, in reference to America's prehistoric centuries; and meanwhile itseems premature oo aflirm as Dr. Schoolcraft does of the Lake Superior basin: "There are no artificial mounds, embankments, or barrows in this basin, to denote that the country had been anciently inhabited; and when the inquiry is directed to that part of the continent which extends northward from its northern shores, this primitive character of the face of the country becomes still more striking. It is something to affirm that the moundbuilders, whose works have filled the West with :ronder,--quite unnecessary wonder,-had nerer extended their siray here. The country appears never to have been fought for, in ancient times, by a semicivilized or even pseudo-barbaric race. There are but few darts or spear-heads. J have not traced remains of the incipient art of pottery, known to the Algouquin and other American stocks, beyond the Straits of St. Mary, which connects Lakes Huron and Superior ; and am inclined to believe that they do not extend in that longitude beyond the latitude of $36^{\circ} 30^{\prime}$. There is a fresh magnificence in the ample area of Lake Superior, which appears to gainsay the former existence and exercise by man, of any laws of mechanical or industrial power, beyond the canoe-frame and the war-club. And its stormbeateu and castellated rocks however imposing, give no proofs that the dust of human antiquity, in its artificial phases, has ever rested on them."

Observation has already disclosed in these northern regions the trenches of the ancient miners, who supplied to the mound-builders of the south the copper which they are proved to have so abundantly used; and the country has not get been so thoroughly explored
throtigh all its vast unoccupied wildernesses, as to preclude the possibility that there yet may be discovered among the recesses of its forests, grave mounds of the ancient Brachyeephatic race, whose physical characteristics seem clearly to prove that the race of the mound-builders of America and the red Indian tribes that succeeded to the forests are distinct.

The numerous ancient implements and weapons of copper already found in the mining regions of Lake Superior, entirely correspond with the other evidences of combined operation protracted over long periods of time, disclosed by the ancient Ontonagon mines; and concerning which no traditions of the present mative tribes of the country indicate the slightest knowledge. At the Bigelow IIouse at Ontonagon, I had an opportunity of examining an interesting collection of copper relics found, a few months before in the neighborhood. These consisted of three copper spear-heads, ono about fousteen inches, and the others about twelve inches in length; and two singularily shaped copper gouges (':) about fourteen inches long, and two wide, che precise use of which it would be diflisult to determine. It was my good fortune to make the acquaintance, while at O^{n} tonagon, of Captain Peck, whose knowledge of the native languages, and residence for years among the red Indians, have given him good onportunities of judging of their habits and arts; and his idea of the copper gouges was that they were designed for cutting holes in the ice for fishing, according to a method still pursued by the Indians for obtaining their winter supply of Lake fish. A different and more probable opinion, however, was advanced by a practical miner, who stated that he had been among the first who opened some of the ancient digginge found at the Mimesota mine, and the copper gouges seemed exactly adapted to produce the singular tool-marks which bad then excited his curiosity. Sabjoined is a representation of one of the spear-heads, sketched from the original. Its form is singular,

the blade being three-sided like that of a bayonet. The socket has been formed by hammering out the lower part flat, and then turning it over partially at each side. Previsely such a mode of fitting the
blade to receive a haft is common in the more primitive forms of bronze implements found in Britain and the north of Europe. In the pure copper spear-heads of Lake Superior, it may be assumed, as a confirmation of the conclusion suggested by numerous other copper relics of this continent, that the ancient miners and mound-builders were ignorant of the arts of welding and soldering, as well as of that of smelting the metallic ores. An indentation made in the inner side of the rude socket closely resembles the device adopted for the same purpose in the class of bronze implements of ancient Europe, known as paalstaves; its object evidently being to present a point of resistance to the haft. The European implements, however, are made of a metallic compound, and mostly cast, thus proving a lnowledge of metallurgic arts far in advance of the old workers of the metallic treasures of Ontonagon, and the copper regions of Lake Superior.

I mas informed by Captain Peck, that a fourth spear-head had been found along with the above. The whole were discovered buried in a bed of clay on the banks of the river Ontonagon, about a mile above its mouth, during the process of levelling it for the rurposes of a brick field. Above the clay was an alluvial deposit of two feet of sand, and in this, and over the relics of the ancient copper workers, a pine tree had grown to full maturity. Its gigantic roots gave proof, in the estimation of those who witnessed their removal, of considerably more than a century's growth; while the present ordinary level of the river is such that it would require a rise of forty feet to make the deposit of sand beneath which they lay. It is possible, horrever, that the original deposition of the relics may have been made in an artificial excavation, above which the pine tree struck its roots in later times, for along with the implements there were also found fragments of copper, the remains, as it might seem, of the operations of the ancient manufacturers, by whose skill these, or similar weapons and tools, were wrought on the spot.

This locality has been celebrated for the traces of its mineral wealth from the earliest date of European exploration of the Lake Superior regions. Alesander Henry, in his "Travels and Adventures in Canada, and the Indian Territories," mentions his visiting the River Ontonagon, in August 1765. "At the mouth, was an Indian village; and at three leagues above, a fall, at the foot of which sturgeon were at this season so abundant, that a month's subsistence for a regiment could have been taken in a few hours. But-he addsI found this river chiefly remarkable for the abundance of virgin copper which is 0 . its banks and in its neighbourhood. The copper presented itself to the eye in masses of various weight. The Indians showed
me one of twenty pounds. They were used to manufacture this metal into spoons and bracelets for themselves. In the perfent state in which they found it, it required nothing bit to be beat into shape."* On a subsequent occasion, in the following year, Mr. Henry again visited the same region, "On my way," he says, "I encamped a second time at the mouth of the Ontonagon, and now took the opportunity of going ten miles up the river, with Indian guides. The object which I went most expressly to see, and to which I had the satisfaction of being led, was a mass of copper, of the weight, according to my estimate, of no less than five tons. Such was its pure and malleable state that with an axe I was able to cut off a portion weighing a huudred pounds." \dagger This object, which thus attracted the adventurous European explorer nearly a century ago, has since acquired considerable celebrity, as one of the most yrominent encouragements to the mining operaiions projected in the Ontonagon and surrounding districts. These notices, moreover, are interesting as showing to what extent the present race of Indiaus were accustomed to avail themselves of the mineral wealth of the great copper regions.

The details of another, and in some respects more intercsting discovery, than that which was brought under my notice at Ontonagon, were communicated to me in reply to the inquiries made while there. This took place, at a still more recent date, at a locality lying to the east of Keweenaw Point, in the rich iron district of Marquette. There, not far from the mouth of the river Carp, in what appeared to be the ancient bed of the stream, and about ten feet above the present level of its channel, various weapons anci implements of copper hare been recently found. Large trees grew over this deposit also, and the evidences of a remote antiquity seemed not less obvious than in that of Ontonagon. The copper relics included knives, spear or lanceheads, and arrow-heads, some of which were ornamented with silver. One of the knives was described as made, with its handle, out of a single piece of copper. It measured altogether about seven inches long, of which the blade was nearly two-thirds of the entire length, and of an oval shape. It was ornamented with pieces of silver attached to it, and was inlaid with a strip of silver from point to haft. Along with these relics were also found numerous fragments, or chips and shavings of copper, some of which were such as, it was assumed, could only have been cut by a fine sharp tool; and the whole sufficed to indicate even more markedly thau those at Ontonagon, that not

[^2]only was the native copper wrought in aucient times in the Lake Superior Regions: but along its shores, and on the banks of its narigable rivers, there existed mauufactories where the native artizan fashioned the metal into tools and weapons for war and the chase.

This would seem to be still further confirmed by the evidences of permanent settlement at some former period described as still visible at the mouth of the Carp river, where those relics of its ancient manufactures were found. The foundations of old structures are still clearly traceble. The outlines of the buildings can be made out by the ridges of clay remaining, and in places the ruined masoury seems to show where the hearth had stood. Such traces, I was assured, suffice to indicate that whole ranges of dwellings must have occupied the site, so that here unquestionably, at some remote period, there existed a settlement of considerable extent, and a town conveniently situated for commanding the Lake. The buildings must have been slight when compared with those which have lefi their mighty ruins amid the forests of Central America; but the traces which remain correspond with what might be expected of the Mound-builders of the Mississippi, and over their works has waved for unknown centuries the forest, which, by the age it lays claim to, suffices to divide that ancient and unknown past from the era of the new race of workers, who are now ransacking the mineral veins of the copper regions, and turning their metallic treasures to account for the aggrandisement of the intrusive Anglo-Saxon.

A lively interest is felt throughout the Copper regions in the relies of the ancient miners, and the modern occupants of their works manifest an intelligent appreciation of the uses of such antique remains as a means of throwing light on the history of former ages. I found a peculiar importance attached by the miners and others to the hardness of the wrought copper implements. This they contrasted, in more than one case, with the ductility of the chips and fragments of unwrought copper found along with them, as well as with the condition of the native copper when first brought from the mine, and maintained that it afforded proof of a knowledge acquired by the ancient metallurgist of some hardening process unknown to the modern copper-smith. It is well known that copper and brouze chisels are frequently found among the ancient relics of the Nile Valley, and that the paintings of Egypt exhibit her sculptors hewing out the colossal memnons of lime-stone and granite by means of yellow-coloured tools, which may fairly be assumed to be made of the copper wrought by the Egyptians in the mines of Maghara, near Sinai, so early as the reigu of Suphis, the builder of the great pyra-
mid. We know, moreover, that iron was equally unknown in Central America, and that by similar tools-untempered by the addition of tin, which the Egyptians early learned to mix with their copper,the highly sculptured monuments of Mexico and Yucatan must have been wrought by native artists. I have had no opportunity of testing the real hardness of such tools, but I observed the edges of some of the ancient implements found at Ontonagon to be dinted, just as well-hammered copper would be, by a blow of unusual force; and it is not improbable, that when due opportunity for examining into this question is furnished, the art of the ancient metallurgist will be found to have amounted to no more than the inevitable hardening of the copper, consequent on the laborious plying of it with the oft repeated strokes of his stone hammer to bring it to the desired shape. The difference which this makes on the wrought copper is abundantly familiar to the copper-smith, and also to the engraver on copper, though it is less likely to be known to the miner, working with his keen iron tools only upon the virgin metal in its native ductile state.

It seems specially worthy of note that the evidences of various kinds thus adduced to prove the existence at some former period of a mining population in the copper regions of Lake Superior, seem also to indicate that their labours had come to an abrupt termination. Whether by some terrible devastating pestilence, like that which appears to have exterminated the native population of New England, immediately before the landing of the Pilgrim Fathers; or by the breaking out of war; or-as seems not less probable,-by the invasion of the mineral region by a new race, ignorant of all the arts of the ancient Mound-builders of the Mississippi, and of the Miners of Lake Superior: certain it is that the works have been abandoned, leaving the quarried metal, the laboriously wrought hammers, and the ingenious copper tools, just as they may have been left when the shadows of the evening told their long-forgotten orrners that the labours of the day were at an end, but for which they never returned. Nor during the centuries which bare elapsed since the forest reclaimed the deserted trenches for its own, does any trace seem to indicate that a native population again sought to avail themselves of their mineral treasures, beyond the manufacture of such scattered fragments as lay upon the surface. Snch a rude manufacture is, however, traceable among the Indians, even far to the north of Lake Superior. Mr. Henry found tine Christinaux of Lake Winipagon wearing bracelets of copper ; and such employment of this metal-simple as its manufacture is-may, perbaps, prove to be the remnant of arts pertaining to a higher civilization, once widely diffused over this continent.

the canadian geological surver and its director, sir william edmond logan, kt. fr.s.

BY Sandford fleming, C.f.
Read before the Canadian Institute, February 23rd, 1556.
Previous to the two great Industrial Exhibitions at London, in 1851, and Paris in 185士, the world at large may be said to have been in total ignorance of Canada's resources. Many people indeed appear to have been scarcely cognizant of her geographical position on the surface of the globe. Even our enterprising neighbors of the $\mathrm{U}_{3 i}$ ited States were but partially aware of what the country was capable of producing; and each member of our own population was too much eagaged with his own pursuits to have any defined idea of the character or productiveness of those districts remote from his own immediate neighborhood.

Within these five years, however, through the medium of the above mentioned sources, it has been shewn that, while in various branches of mechanism and manufactures, the mechanics and manufacturers of Canada are in some respects in advance, and in the generality of cases equal to those of other nations-and while Canadian agricultural products are admitted to be of the highest qualityCanada can produce an amount and variety of raw material, equal, in proportion to the extent of area, to any other country in the world.

For the superb collections of minerals, which appear to have been the theme of universal admiration on both occasions, the country is mainly indebted to the Geological Survey of the Province, and the unwearied exertions of its Director, on whom Her Majesty has recently conferred the merited honor of Knighthood. The fruits of his labors are only now beginning to be developed, and his untiring zeal, energy and disinterestedness, cannot be over-estimated; and, with these convictions, it is incumbent on the people of this Province to show that they fully appreciate the great benefits rendered to their country, by a unanimous expression of their approbation of Sir W. E. Logan's services as Director of the Geological Survey, and as one of their principal representatives in London and Paris.

It is scarcely possible, in a brief communication like the present, to convey an accurate idea of the labor and diligence with which Sir W. E. Logan has conducted the Geological Survey of Canada; but to impress the fact upon those who are little aware of the magnitude of his undertaking, it may be well to record as concisely as possible the results of the investigations carried on under his direction, and in
doing so I may be permitted to add a fer remarks on the position accorded to him by men of science both in Europe and America.

Previous to his engagement with the Canadian Government, the reputation of Mr. Logan (as we shall still call Sir William in refering to his past career,) stood deservedly high, although his merits were then only known and appreciated by the comparatively few scientific men with whom he had direct communication. At an early period he made a very valuable collection of the birds and insects common to Canada, included in which were many species previously unknown, which he subsequently presented to the Institution at Swansea, of which he was one of the founders, and a zealous promoter of its interests during his residence in that locality.

But it was in the field of geology that Mr. Logan was destined to bear a conspicuous part, and it was during his residence in South Wales, that he performed a work which has been declared by the first scientific men in Europe to be "unrivalled in its time, and never surpassed since." This great work was his Geological Map and Sections of the Glamorganshire Coal-field, the minuteness and accuracy of which were such, that when the Government Surrey, under Sir Henry de la Beche, came to South Wales, not one single line drawn by Mr. Logan was found to be incorrect, and the whole was approved and published rithout alteration. Nor was this all:-the system Mr. Logan had pursued in following out the details of the coal-field was so vastly superior to any hitherto adopted, that the principle has been fully adopted by the British Survey. Mr. Logan's map may be said to be the model one of the whole collection. It ought to be borne in mind also, that at this time he ras not employed as one of the geological staff, but simply as an amateur, and that -in the same spirit as so many of his Canadian observations have been carried out,-he generously presented the fruits of his labors, without fee or remuneration, to the British Government.

While engaged in the examination of the coal-formation, Mr. Logan contributed many interesting and valuable papers to the Geological Society of London, among which may be specially noticed one on the "Stigmaria beds" or "under clays" which accompany every coalseam; as from the observations recorded then, the long disputed theory as to the origin of coal was finally set at rest, and the inferences it led to universally acknowledged. Another paper, contributed prior to his connexion with Canadian Geology, also deserves notice here, as it refers to a matuer in which a portion of Canada is deeply interested. It is entitled: "On the effect of the packing of the Ice in the River St. Lawrence opposite the City of Montreal." The principles laid
down in this latter paper appeared so indisputable to Mr. Stephenson, the eminent engineer, that he has been materially guided by it in reference to the construction and site of the great Victoria Bridge.

In 1812 the Canadian Legislature came to the determination of having the Province geologically explored, and it was in the same year that Mr. Logan-haring been recommended most strongly by the leading geologists of Great Britain, from each of whom he received the most flattering testimonials-was applied to by Lord Stanley, then Secretary for the Colonies, to undertake the investigation. In the same year be proceeded to Canada, completed a preliminary examination, made arrangements with the Colonial Government and returned to Britain,-the whole expense of which visit he paid out of his own pocket,-and early in the following year (1843) he finally returned to Canada, accompanied by an assistant, to commence the investigation in earnest.

It was in 1842 , also, that Mr. Logan examined and accomplished the measurement of the remarkable section of the coal measures at the South Joggins, in Nora Scotia: a work acknowledged to be one of the most important in American geology, as the key to the structure of the whole Eastern coal basin;-and which was published as an appendix to his Report of Progress in 1843.

The first grant of moncy made by the Canadian Legislature to carry out the proposed survey for two years, was only £1500 currency, so that it will be obvious it was only by the strictest economy that the salaries could be paid, and travelling and other expenses met; indeed, notwithstauding all the care possible, the necessary work could not be effecied with this small grant, and, accordingly at the expiration of that time, Mr. Logan found himself out of pocket upwards of $£ 800$.

During the summer and autumn of 1843 Mr . Logan was employed in an examination of the coast of the Gaspe Peninsula, while he sent his assistant to make a section of the Upper Province, through the country lying between the Lakes Huron and Erie-one grand object of the expedition being to determine what the probabilities were of the existence of coal measures at either end of the Province. In 1844 both Geologists were occupied in exploring and completing a topographical survey of the Gaspe Peninsula, and in 1845, while the Director made a survey of the Ottawa River up to Lake Temiscameng, and of its tributary the Mattawau to Lake Nipissing-his Assistant continued the examination and topography in Gaspé. In 1845 the Legislature made a farther appropriation to the Survey of $£ 2,000$ currency per annum for five years, and the same was renewed in 1850
for five years more. In 1846 the Copper region of Lake Superior occupied the entire attention of the Survey; and since that time an immense amount of country has been examined in various parts of the Province, the greater portion of which being entirely wild and unknown, it was found necessary to survey topographically. Besides the geology,-much of it of the very highest economic importance,which bas been followed out on both sides of the St. Lawrence, both above and below Montreal, in the Eastern Townships, and in the region around the confluence of the Ottawa; the courses of all the main rivers of Lake Huron on the one side of the "Height of Land," and of the Ottawa on the other, have been traced and measured to their sources, the Lakes and principal features of the interior surveyed, and the elevation of every fall and rapid ascertained trigonometrically or by spirit level. Those surveys have since been mapped on a scale of an inch to a mile, with every particular noted thereon.

Moreover, a regular system of measurements has not been confined to the totally wild and unfrequented parts, but has been found absolutely necessary throughout nearly the whole of the settlements, in consequence of the numerous inaccuracies and omissions in the various township plans. Where a more accurate method could not be obtained, all the observations were connected by a registration of each step taken by the observer, the bearings from one point to another being taken by compass. And as an example of the amount of work accomplished by this means-Mr. Richardson (who has been employed as an explorer since 1845) in 1853 registered paces, in his note book, making a total distance during the season of upwards of 1000 miles. The results of this process have also been mapped on a scale of an inch to a mile, and have supplied, on many occasions, much material to fill up deficiencies, and correct discrepancies, on the old published maps.

The result of these investigations is already acknowledged to have been of incalculable benefit to science, as having most essentially thrown light, where there was muoh misapprehension before, on the whole of American Geology ; and they have, moreover, beyond dispute, been productive of the most valuable information as regards the distribution of economic materials. While the position of such useful materials as do exist can be readily recognised by reference to the Geological map, in which the various formations are represented by different colors-those that do not exist, will be found wanting and, consequently, need not be looked for; such, for example, is the case with regard to Coal-a mineral not likely to be found among racks recognised as belonging to the Silurian and Devonian epocha.

Maving thus glanced over the Field operations of the Survey, let us shortly consider the mems the Director has had at his disposal to accomplish what nlready has beon done.

In 1843, Mr. Lngan, accompanied by a single Indian with n bark cance, made a thorough examination of the whole of the Gaspe Coast, counting every step he took from Cape Rosier to Port Daniel, besides making many pedestrinn excursions into the interiorand collecting a large quantity of most valuable fossils and other specimens. And while he was thus employed his assistant, Mr . Alexander Murray-frequently entirely alone, and often in parts remote from all settlements-collected sufficient information to give a tolerably correct iden of the structure of the whole Western leninsula. In 1844 and 1815, a triaugulation was effected across the Gaspe Peninsula from Cape Chat to Bay Chaleur, a large portion of the range of the Notre Dame or Shick-Shock Mountains surveyed, most of the principal rivers measured, the geological character of the rocks ascertained, and specimens collected. This service was performed with a party consisting of only four Indians with two canoes. In making the survey of the Otiawa more assistance was found to be absolutely necessary, but, except in few instances, neither Mr. Logan nor Mr. Murray's party have exceeded the complement of sie altogether-inclusive of four Indians and an assistant.

Since 1845, when the additional appropriation was granted, an explorer has been added to the staff whose labors have been incessant and of great value; but while fully admitting the greatly improved circumstances under which the survey was then placed, and the more extensive scalo under which the operations were enabled to be carried on, it must be clear to any one at all acquainted with the nature of the service, and of the difficulties to be encountered in a perfectly new country, that the amount of work performed and reported upon never could have been accomplished but by the most indefatigable perseverance and continued application. Accuracy with Mr. Logan is everything-nothing is allowed with him to be of the slightest value that is not essentially correct. With regard to the office work, we have simply to refer to Mr. Logan's own answer before the Select Committee of the House of Assembly to question 73, on page 26 of the published Report, to show how his time is there employed:

Question 73, page 26 (referred to.) -"Each one on the Survey has so much to do connected with his own individual department, that all the general office work falls upon me. I keep all the accounts, and for that purpose a set of books by double entry, in which I enter no gross sums, with a reference to accounts, but everything in detail for easy and immediate reference if required, and I render an account to the Government with the same detail on the face of it; so that any
one who choones, either publicly or privately, to look at the account, can see at onco how ovory penay has been spent. I used at first to make, with my own hands, four manuscript copies of the annual Report of Progress, often reaching more than one hundred printod pagos-one copy for the Government, one for the House of Assembly, one for the Legislative Council, and one for the printer; but of late I have been forced to employ an amanuensis for part. The fittings of the Muscum are scarcoly yet completed; when they are I must employ additional aid, if it should cost me my whole salary. The accumulated materials of eleven yoars are to be classifled and arranged."

Emulating the exmmple of their chief, the assistants have also laboured with diligence and credit to themselves, and have undergone similar fatigue and hardship. In the Chemical Department Mr. Hunt has, since his connexion with the Survey, established a high reputation among the foremost rauks of the men of science both in Europe and America ; whilst the others have acquired a fair proportion of merit by their contributions to the Geology and Geography of the Province.

It has frequently been urged by some that the proceedings of the Survey were too scientific and not sufficiently practical-that great attention has been paid to fossils, and to remote and comparatively Northern districts of country-while a partial attention only has been given to certain known Mineral districts, and the more densely settled and more available lands. In answer to this, let us take the concluding portion of Mr. Logan's reply to question 93, page 39 of the Report of the Select Committee.

Question 93, page 39.-"Thus, Economics lead to Science, and Science to Economics. The physical structure of the area examined is, of course, especially attended to, as it is by means of it that the range or distribution of useful materials, both discovered and to be discovered, can be made intelligible. A strict attention to Fossils is essential in asnertaining the physical structure. I bave been told that some persons, observing how carefully attentive I endeavour to be to this evidence of sequence, have ignorantly supposed the means to be the end, and while erroneously giving me credit as an authority upon Fossils, have fancied Economics to be sacrificed to them. In their fossil darkness, they have mistaken my rush-light for a sun. I am not a naturalist. I do not describe fossils, but use them. They are geological friends who direct me in the way to what is valuable. If you wish fuformation from a friend, it is not recessary that you go to him, impressed with the idea that he is a collection of bones peculiariy arranged, of muscles, arteries, nerves and skin, but you merely recognise hic face, remember his name, and interrogate him to the necessary end. So it is with Fossils. To get the necessary information from them you must be able to recognise their aspect, and in order to state your authority you must give their names. Some tell of Coal; they are cosmopolites; while some give local intelligence of Gypsum, or Salt, or Building Stone, and 80 on. One of them whose family name is Cythere, but who is not yet specifically baptized, helped us last year to trace out upwards of fifty miles of Hydraulic Limestone."

In concluding these observations on the character of Mr. Logan's labors in conducting the Geological Survey, carried on as it has been with unusual earnestness and zeal, I cannot do better than refer to a quotation from the London Quarterly Review, October, 1854, which occurs in the Report of the Committee above named-and in doing so, express a hope that in this instance the old adage will not hold good, that "a Prophet has no honour in his own country," for, in fact and in spirit, Canada is Mr. Logan's country. He was at one time applied to by the East India Company to undertake an examination of their territory for Coal; a work for which, by his past investigations, he was peculiarly fitted. The field of research was new, and India was then attracting much more attention than Canada. The emoluments would have greatly exceeded those of his present office; his staff was to be ample, and of his own selection; unlimited aid was to be afforded by the Indian Government; and although he felt quite convinced that the investigation would lead to a very extended reputation, yet being influenced by a rooted attachment to this country, and feeling that he was in some degree pledged to it because he is a native Canadian, the munificent offer of the East India Company was not accepted. The quotation above referred to reads as follows:-"In Canada, there has been proceeding for some years one of the most extensive and important Geological Surveys now going on in the world. The enthusiasm and disinterestedness of a thoroughly qualified and judicious observer, Mr. Logan, whose name will ever stand high in the roll of votaries of his favourite science, have conferred upon this great work a wide-spread fame."

As I have already said, the services rendered to the Province by Sir W. E. Logan in London and Paris would alone suffice to entitle him to the unanimous acknowledgments of his country; may we hope that the Legislature will give substantial expression of its approbation, as well as of its appreciation, of the justly merited distinction which Her Majesty has conferred on the representative of Canadian science; and there is no manner, I feel assured, in which this could be done more acceptably to Sir W. E. Logan himself, and more creditably and lastingiy beneficial to the Province, than in extending to the Survey increased support, and in placing at his disposal ample means to enable him to carry on this most important service to a successful termination. By such means the wealth and character of Canada will be equally advanced. Science will receive such valuable contributions as, we believe, no country, at so early a stage of its existence, has ever before rendered to it; while the practical returns will prove a hundred-fold in their additions to the material wealth and resources of the Province.

NOTES ON THE POPULATION OF NEW ENGLAND.

by the nev. a. CONstable geikie.

Read before the Canadian Institute, February 23rd, 1856.

On a recent visit to New England, I was led to pay some attention to a matter which has long interested me, viz, the supposed deterioration of the population of that country. My observations and the remarks of others, years ago, called my thoughts in this direction, and finally led me to examine such reliable statistical tables as were within my reach. The results of this investigation I shall now lay before the Institute. I state them with the belief that the people of New England are degenerating, and shall endeavour to prove the accuracy of this opinion.

The last Census of the United States was taken in 1850, and a compendium of this was published in 1854 by Mr. J. D. B. DeBow, Superintendent of the United States Census. From this I shall quote, and presume that its general reliability will not be questioned.

The first point I would notice is the proportion of births among the married inhabitants of Massachusetts, native and foreign. In page 122 of the Compendium are the following statements, contained in extracts from the letters of Dr. Jarvis to the Census Office. I need only add, that I believe the writer to be one of three persons appointed by the Legislature of Massachusetts to draw up the report on the lunacy and idiocy of that State, and which was published in 1855 , Dr. Jarvis having been really the compiler of it. His statements above referred to are as follows :-"In Massachusetts and in Boston, where we have, the means of making the comparison, there is a much larger proportion both of marriages and births to the population of each kind, among the foreigners than among the natives, within three or four years. The marriages were in Massachusetts during the years 1849, 1850, and 1851, Americans 18,286, or 220 in 10,000 of their own race ; foreigners, 7,414 , or 450 in 10,000 . This is 104, 5 per cent. excess of foreign over native ratio. The marriages in Boston in the three and a half years from July, 1849, to December 31st, 1852, were, Americans, 4,078 , or 541 in 10,000 of their own race ; foreign, 5,073 or 793 in 10,000 . This is 84,8 per cent. excess of foreign over native ratio." So much for the superior uxoriousness of the old world people; now for the results of the two sets of marriages. "The births," continues the Doctor, " were in Massachusetts in the three years 1849, 1850, and 1851, of American parents, 47,982, or

578 in 10,000 of their own race ; foreign, 24,523, or 1491 in 10,000 of their own race:" a difference of a most sigaificant character. "In Boston there were, Americans, 7,278 , or 966 in 10,000, foreign, 13,032, or 2,053 in 10,000 in three years." He adds,--" These facts certainly show a much greater tendency to marriage, and a more rapid production among the foreign than anong the native population here." He says on page 121-"foreigners generally intermarry with each other, so far as we have means of observation; there are comparativelw few instances of natives and aliens uniting together; so few are there that they do not militate with the general rule. With the Irish especially, this rule is almost universal, and with all it will be safe to say that there are no more marriages of foreigners than there are foreign marriageable females, the exceptions are so rare as not to destroy any extensive calculations made in regard to it." Dr. Jarvis seeks to weaken the facts thus brought out, by intimating that the children of foreigners dying young are more numerous than those of the natives who die young, and that the rapid increase among the former may thus be partly accounted for. This, however, is not enough. The deaths must indeed be wonderfully frequent among the offspring of emigrants, if they can make 598 births in 10,000 , equal to 1,491 in 10,000 , or 966 in 10,000 equal to 2,053 in 10,000 . The facts I believe must stand, the excess of births among the foreign orer the native population indicating one of two things respecting the latter,-either that ther are an enfeebled race, or addicted to practices which I will not name.

These figures confirm all my own observations. A large family is comparatively seldom met with in New England. Indeed, the absence of children altogether, appears to be a far commoner thing than any large number of them in a household. The remarks of the old people likewise sustain my view. Such can run over l.ong lists of households, which, during the past generation, were like households at the present day in Britain, crowded with little people; and when they do so, they invariably note the difference between thirty or forty years since and the present time. I am now speaking chiefly of New England, of which Massachusetts is the best State; but the Census returns for the entire Union, show a general decrease, rather than an increase in the number of the young. The following abstract is taken from some remarks which I have already published on this subject:-Thus, "in 1830, there were, in the whole Union, a fraction over eighteen per cent. of males, and seventeen per cent. of females umder five years of age; while in 1850, there were under five years, only fourteen and rather more than a half per cent. of
the former, and rather less than fifteen per cent. of the latter. In 1830, there were furteen and a half per cent. of males under ten years, and the same number of emales under ten years; in 1850, there were thirteen and a half per cent. of the former, and rather less thnn fourteen per cent. of the latter. This difference on the whole Union is striking enough, and confirmative of my opinions; but I am certain that if we had any such eratistics as to the present number of children in New England, compared with forty years since, we would find the difference fay more remarkable."

The second point in proof of the physical degeneracy of New England, is found in the prevalence of insanity and idiocy among its inhabitants.

Let us first look at the statements of the Census on this head, merely premising that, in so far as it is inaccurate, it is so because it understates the matter. From this source it would appear that in 1840 , the ratio of white insane persons in Massachusetts was as 1 to 605 ; in 1850 , it was as 1 to 403. In 1840, the ratio of white insane persons in Connecticut was as 1 to 606; in 1850, it was as 1 to 486 . In 1810 , the ratio of white insane persons in Maine was as 1 to 932 ; in 1850 , it was as 1 to 514 . In 1840, the ratio of white insane persons in Rhode Island was as 1 to 520 ; in 1850, it was as 1 to 449. In 1840, the ratio of white insane persons in Vermont was as 1 to 732 ; in 1850, it was as 1 to 366.

From these figures it is certain, either that mental disease is on the increase, or else that the Census of 1840 was singularly imperfect. Leaving this question, however, I shall now state, as by the Census of 1851 , the ratio of.insane and idiotic in the New England, as compared with some other States:
": Tassachusetts had, in 1850, 1 ineane or idiotic white person, for every 403 sane whites. That same year, the ratio of ingane or idiotic whites, to sane whites, was-in Michigan, 1 to 1,242 ; in Mississippi, 1 to 1,227 ; in Missouri, 1 to 1,031 . Connecticut had, in 1850,1 insane or idiotic white for every 488 sane whites.That same year, the ratio of insane or idiotic whites to sane whites was-in Columbia, 1 to 1,649 ; in Florida, 1 to 1,276; in Illinois, 1 to 1,417; in Iowa, 1 to 1,410. Maine had, in 1850,1 insane or idiotic white for every 514 sane whites. That same year, the ratio of insane or idiotic whites was-in Arkansas, 1 to 995 ; in Louisiana, 1 to 1,022; in New York, 1 to 738. Rhode Island had, in 1850, 1 insane or idiotic white, for every 449 sane whites. That same year, the ratio of insane or idiotic whites, to sane whites, was-in Texas, 1 to 1,185 ; in Wisconsin, 1 to 2,087 ; in Minnesota, 1 to 3,019 ; in New Mexico, 1 to 1,118 . In 1850, Vermont had 1 insane or idiotic white for every 366 sane whites. That same year, the ratio of insane or idiotic whites, to sane whites, was-in Oregon, 1 to 1,454; and in Utah, 1 to 1,888."
"In all the comparisons made, New England retains a fearful pre-eminence. In comparing her with some other old States, this is not quite so great. Take the following table:-

Such are the indications of the Census. It may be supposed, however, that the returns in the New England States were more complete than those of the new settled countries. This is no doubt the case. Still, making every allowance, I cannot doubt but that there is far more cerebral disease in New England thau in any other portion of the Union.

We shall now leave the Census tables, and turn to a more complete document, to wit "the Report on Insanity and Idiocy in Massachusetts, by the Commission on Lunacy, under the resolve of the Legislature in 1854." Respecting this authority it seems safe to say that, with regard to " accuracy, completeness and pertinence," it has never been surpassed. The means employed for procuring facts were most efficient, and the chances of error were as greatly reduced as it seems possible to have reduced them. The returns in the British Census for 1851 bear a poor comparison with the fullness of those contained in this Report. It refers to Massachusetts only; but as this is a type of all the other New Eugland States, the facts established respecting it may be taken as a fair indication of the condition of the rest. These are peculiarly striking.

A careful separation of the insane and idiotic is kept up throughout this document. Of the former, Massachusetts contains a total of 2,632; of the latter, a total of 1,087: giving 3,719 as the sum of both
classes. A distinction is again made of the mentally diseased among the native and the foreign population, which gives of native insane, 2,007 , and of foreign insane, 625 ; of native idiotic, 1,043 , and of foreign idiotic, 44. We have bere data of the most reliable kind; but there are different ways of dealing with them. Thus the Commissioners, or rather Dr. Jarvis, in stating the comparative numbers of native and foreign demented, carefully keeps up the distinction hitherto followed, and by doing so shews that insanity is more common among the immigrants than among his own people. By this mode of reckoning he shews the ratio of insane among natives to be as 1 to 445 , and the ratio of insane among foreigners to be as 1 to 368. The excess of lunacy among these strangers is unquestionable and noticeable, but it is neither a strange fact, nor an unaccountable one. Their trials explain all. The case is greatly altered, however, when he deals with idiocy. This same comparison shews that among the natives, the idiotic are as 1 to every 889, while among foreigners they are as 1 to every 7,931 .

Were we anxious merely to prove great derangement in both classes, this mode of computation might suffice. But as we are anxious to discover the actual amount of mental disease existing amongst a particular class, in common with the writer on lunacy in the North American Review for January last, I cannot help deeming it unsatisfactory, to say no more. I believe that the New Englanders are degenerating, that every kind of mental disease is degeneracy, whether for convenience sake the species be styled lunacy or idiocy; and therefore must, and am entitled to conjoin both classes in order to reach the actual state of the case. The saneness of a country can only be decided on by knowing the total of the unsaneness found in it. I believe, therefore, that thuugh the Commissioners gave peculiar prominence to the excess of foreign lunatics as compared with native, every one, themselves not excepted, will admit that, in an enquiry like that which I now indicate, we are fully entitled to lay aside their specific distinctions, and so speak of all the demented as comprehended under one genus.

When we do so, the apparent exemption of the natives from cerebral disease disappears at once, and most painful results become manifest. In 1854 the uatives in Massachusetts amounted to 894,676 , the foreigners to 230,000 . The insane and idiotic among the former amounted in all to 3,050; the insane and idiotic among the latter amounted in all to 669. The application is now easy, and the result, that the mentally diseased among the foreigners are in the ratio of 1 to 367 , while the mentally diseased among the natives are in the ratio
of 1 to 295 , giving a difference of 72 in favor of the immigrant population. This is the mode of reckoning adopted by the North American Reviewer, who suys that the Report proves one or both of the following results-"either that insanity (using the word generically) is more prevalent in Massachusetts than anywhere else, or that its dimensions have been more accurately guaged."

The insanity then, among the native population in Massachusetts, is as 1 to 293 ; and that the reader may perceive the value of this ratio, I would state that, about the year 1838, the insane of England were reckoned as 1 to 1,000 ; in Wales as 1 to 800 ; in France as 1 to 1,000 ; in Prussia as 1 to 1,000 ; in Scotland as 1 to 574 ; in Norway as 1 to 551. The last Census of our Province gives for Lower Canada 1 in 513, and in Upper Canada 1 in 890. The British Census for 1851, gives the insane of Great Britain as 1 to 1,115 , which, however, is probably under the mark.

Another proof and source of degeneracy in New England, is the prevalence of strumous diseases among its native inhabitants. I cannot indeed quote figures in reference to this matter. Every one, however, is aware of the fact that such diseases are alarmingly common. In Britain, people look with dread on such a taint. Among the Scottish peasantry it is almost unknown, and, generally throughout all Scotland, there prevails a fear of intermarrying with parties affected by it. As for the state of feeling in England I cannot confidently speak. I believe, however, that it resembles more or less that of the population north of the Treed. In New England the case is far otherwise. In town or country, no one makes any secret of being afflicted with such diseases. Contrariwise, people tell you all about it, and discourse on the matter as if it were the measles which ailed them. Such affections seem to be so universal, that no delicacy is felt, or possible in the circumstances.

I need not go on to multiply proofs. People who visit New England will find them if they use their eyes. The men are for the most part lathe-like, angular, and sallow; their shoulders have a most jagged squareness, and their chests a hollowness equal to any which ever troubled Theodore Hook. Then one looks in rain for calf or hip. Such accessories seem by universal consent to have been discarded by the entire population, raising the tailor from the rank of a mechanic to that of a sculptor. When, again, we turn from the men to the women, we find equally striking proofs of degeneracy. Not only are their shoulders narrow to a most unatural degree, but their chests likewise are hollow and contract-
ed in a manner which helps to explain the marvellous prevalence of consumption among them. That they are pretty in mere girlhood is unquestionable, but in the slight form, blanched cheek, and flat bust, one sees only the beauty of decay. They are ever more and more becoming incompetent to be mothers of children, and I am assured that the number of deaths among young married females is quite remarkable. One looks in vain through any part of New England for the round, full, vigor of glorious health, which, everywhere in Old England, shows a population as replete with sturdy, vital energy, as at any period in the long story of our dear Mother-land.

I would, further, call attention to the portraits painted seventy years since, and those taken at the present day. These, if all else were wanting, demonstrate a great falling off.

The causes of all this seem to be as follows:
I. Climate, possibly, has much to do with it. Even in Canada the children are not so vigorous as their fathers.
II. The thing eaten, and the mode of eating, have much to do with it. Americans eat quantities of unwholesome food, and the bulk of the people never chew what they swallow.
III. The women abjure all out of door exercise.
IV. The men do the same.
V. They live in a perpetual state of excitement, such as no race on earth can endure, or were ever meant to endure.
VI. The population receives little accession of fresh blood, and blood relations frequently intermarry.
VII. It is alleged that vice has no small share in the work of destruction.

THE ABORIGINES OF AUSTRALIA.

BY JAMES BROWNE, TORONTO.
Read before the Canadian Institute, Felruary 16th, 1856.
In the following paper I purpose attempting to give an account of the Ahorigines of Australia, a subject not without interest to us as relating to a people situated in a remote portion of the British Empire, but on whom its civilization hes produced no beneficent influences. On them it is effecting, even more rapialy than on the Aborigines of this continent, the fatal effects which appear ineritably to flow from the contact of savage with highly civilized life, and these
notes accordingly refer to a people who are fast disappearing from the earth. Imperfect as they are, they may possess some value from the fact that they are in no degree derived from books, but embody the results of personal observations of the natives of Australia, concerning whom few among the numerous writers on the great southern region of British colonization appear to feel the slighest interest, or to have thought their habits and characteristics worthy of remark.

It was my fortune to pass the greater part of my boyhood at King George's Sound, a settlement on the western coast of Australia. There the Aborigines were my companions and playfellows, and thus the following account embodies facts which came under my own observation, or were related to me by the natives themselves. It narrates principally the result of my obserrations on those with whom I sojourned; but it may be added that the manners and customs of the A borigines of the western, southern, and eastern coasts of Australia vary so little that a description of one may answer for all. Of those inhabiting the northern coast I could speak only from report. They are a still more sarage race, with whom little intercourse has hitherto been held, and they appear to present a striking contrast in some respects to the natives of other regions of the Australian Continent.
Referring as I do to a people rapidly becoming extinct, it will not cetract from any value these notes may possess, that they do not embody a description of Australia of the present time, with its wonderful gold fields, and its vast and multifarious population gathered seemingly from nearly every country of the known world; but they refer to Australia as it was twenty years since, when Melbourne and Port Philip were iahabited only by the savage, when South Australia, as a Colony, was unknown, and Western Australia was only beginning to be settled by the white man.
The entrance to the noble basin of Princess Royal Harbour, on which the town of Albany in Western Australia stands, is formed by two high and rocky hills about half a mile apart, and here, some twenty years since, on a bright morning in the month of May (which be it remembered is the depth of an Australian winter,) I obtained my first sight of the Aborigines of the Southern Continent. The first impression produced by a sight of the grinning native in the bow of the harbour master's boat-black as coal, but with a pair of keen sparkling eyes, and a row of teeth disproportionately prominent from the large size of his gaping mouth,-was that we were looking on a baboon or some strange creature of that new world, rather
than on a human being. A. short cloak of kangaroo skins, the invariable costume of the natives, as we afterwards found, was his only garment, reaching about half way down his thighs, and exposing the lower limbs, which were disproportionately small and shapeless. His arms were sinewy though lean, but as is invariably the case with the Australian savage, larger and better developed in proportion to his general figure, than the meagre shapeless lower limbs. He was, as I ascertained, about thirty years of age, but looked much older, of low stature and slight figure. His hair, which was thick and curly, grew far down over a low and poorly developed forehead. His oyes were small, deep-set and lively; his nose delicate though somewhat flattened, and his mouth large and protruding. Such was Wan-e-war, the first of the Aborigines of Australia it was my fortune to see, and no unmeet type of bis degraded and doomed race. We soon had further opportunities for observing the aboriginal owners of the land in which we proposed to sojourn.

Towards dark on the day of our landing, we heard a great shouting and jabbering amongst the natives, from which we were led to believe that they were preparing for some special festivities. The men were collected round their fires very busy in "getting themselves up, "-plastering their locks plentifully with a pomatum made of grease and red ochre, and beautifying their persons in a variety of other ways. All this preparation was for a corroberry or native dance, which they intended to have in honor of the arrival of the strangers. Accordingly, soon after dark, they assembled round the large fire kindled for the purpose near our dwelling, and the proceedings of the evening commenced. The cloaks of the dancers, instead of being thrown over the shoulders, as usually worn by them, were fastened round their middles, leaving their bodies completely bare, which, with their faces, were painted in the most grotesque manner with red ochre, and shining with grease. Some had bunches of feathers or flowers stuck in their hair, while others completed their head dress with the tail of the wild dog. One or two had a small bone of the kangaroo passed through a hole in the cartilage of the nose; all carried their spears and wameras; and as they thus stood gathered round the fire, which threw a virid glare on their greasy and shining bodies, the effect was truly picturesque and savage.

Those who intended to take a part in the dance ranged themselves on one side of the fire; on the other side sat the old men and the women and children. The corroberry commenced by the dancers breaking out into a sort of mournful chant, in which the old men
and the women occasionally joined. The whole burden of the song cousisted in the words "Yunger a bia, mati, mati," which they -epi sted over and over again, beginning in r loud and shrill tone, the voice gradually dying away as they proceeded, until at last so low and soft was it, as to be hardly distinguishable from the breeze which rustled amongst the bushes.

Whilst thus chanting the dancers remained in a bending posture, and kept time to their voices by lifting their feet with a sort of jerking step from the ground, and at the same time pulling the two long ends of their beards through their hands. Suddenly they would change their music into a loud "Haugh heigh, haugh heigh, haugh heigh," whilst they clashed their spears and wameras together, and stamped their feet with full force against the ground; then drawing themselves up with a sudden jerk, a loud and startling "Garra-wai" was shouted. Then again they would resume their first movement, but in double quick time, the whole rank now moving quickly up and down side-ways, shoulder to shoulder, now going round in a circle, and all to the same music, and with the same stamping steps.

Tiring of this, the sport was changed to the "Kangaroo dance." This dance is very similar to that already described, but with the difference-that, in the midst of the uproar, one of the men came bounding and jumping like a kangaroo between the dancers and the fire; this movement put a sudden stop to the dancing, and one of the party started off as if in pursuit of the game, the two then went through the whole proceeding of hunting down and spearing the kangaroo, which, being at length accomplished, they all once more joined in the dance, and in the midst of the uproar, the stamping of feet, the clashing together of spear and wamera, and their shouting and yelling, the fire died away, darkness covered the scene, and the entertainments of the evening were brought to a close. And thus also closed the first day of my sojourn in Western Australia.

The country in the immediate vicinity of King George's Sound, an arm of the sea on the western coast of Australia, is inhabited by four tribes of the Aborigines. These are the Murray, the Weal, the Cockatoo, and the Kincannup. In saying, however, that this part of Australia is inhabited but by four tribes, it may be necessary to explain that this distinction of people is altogether that of the natives themselves, and the four divisions here mentioned are applied to the relative position of that portion of the country occupied. Thus, for instance, all those natives inhabiting the country to the westward of Albany are called Murray men; those to the northward, Weal men, and those to the eastward, Cockatoo men. Each, therefore, although a distinct
division, can hardly be looked upon as one single tribe, but rather as a combination of many small tribes, inhabiting a territory lying in a certain position.

The Murray tribe, the most numerous of all, occupies a territory exceeding in extent that of any of the rest ; that is, the whole of the coast running some 300 miles from King George's Sound westward to the Murray River in the Swan River Colong.

The natives belonging to the Weal tribe wander over the coun. try to the northward of Albany. They are, perhaps, not so numerous as the Murray tribe, but they are, I think, physically stronger, and of greater importance in the estimation of the aborigines generally.

The district of the Cockatoo tribe extends a considerable distance along the sea-coast to the eastward of Albany, and runs also from the coast far back into the interior.

The Kincannup tribe inhabits the country in the immediate vicinity of Albany. It is a small and weak tribe, and in comparison with the others, can hardly be looked upon as a distinct one. Kincaunup is the native name for that district upon which the town of Albany stands. The natives who generally stayed in and about that settlement, style themselves, therefore, Kincannup men; but they may be regarded, I think, as merely a branch or family of the Weal tribe, those inhabiting the country to the northward of the Sound. Be this as it may, many causes have combined to extirpate the Kincannup people. The white man has driven the kangaroo from the native's grounds; he has therefore to depend principally upon the colonists for a scanty means of existence. These and other causes, which I shall notice hereafter, have rendered this tribe nearly extinct. When we left the colony, they could not probably muster more than from twenty to thirty souls.

Although of the same stock and possessing the same characteristics as a people, it is not difficult to distinguish the individuals of the different tribes by their general appearance, which corresponds in some measure with the nature of the country they inhabit. The men of the Murray tribe, for instance, are short, strong, and hardy looking fellows. Their country, lying on the coast, is scarcely more than a barren waste, with little shelter from the violent storms that sweep over the exposed shores of this part of Australia. From this cause, the kangaroo, which is almost the only animal food these people have, is not so plentiful in the district as farther in the interior, and thus from the insufficient supply of animal food, the people of this tribe do not present so robust an appearance as others more favourably located. This deficiency of animal food, however, is made up in a great measure, by the im-
mense quantities of fish they are euabled to procure in the innumerable bays and inlets on their const.

The Weal men again are a much finer and strouger race than those inhabiting the coast. They have the advantage of possessing a country lying deep in the interior,-for the most part thickly wooded,well protected from the cold winds of winter,-and abounding in kangaroo and game of every description. Not being stinted, therefore, in their supply of animal food, they appear to be proportionably stronger and more robust.

Again the Cockatoo men are markedly distinct from oither of those mentioned. They are genorally tall and large-boned men, with high foreheads and aquiline noses. Their appearance indicates, indeed, a higher degree of intellect than their neighbors, over whom they have contrived to gain \mathfrak{a} strange and mysterious influence, which will be explained hereafter when referring to their superstitions.

As each tribe is distinct in appearance, so too is it noted for some one article or weapon, in the manufacturt or use of which it is famous. The Murray man possesses the best wood for spears;-the Weal man is envied for his long, full, and beautiful kangaroo skin cloak, and also for his hammer of stone;-whilat the Cockatoo man excels in making and throwing that most eccentric and wonderful of all weapons, the boomerang or kilee.

I have already stated that each tribe occupies its own separate division of territory. The district thus occupied is again subdivided into vaguely defined portions, every family or individual of the tribe having its or his recognised tract of country. This property descends in the family, from one to another, and is considered in every way private property, and the proprietors of such are boastful and proud of their hunting grounds in proportion to their extent and nature.

But although thus appropriated, it is difficult to say in what the rights of ownership cunsist,-for agriculture is altogether unknown amongst them, and the various members of the tribe hunt indiscriminately over each other's grounds. The case, however, is somewhat different in regard to strangers, for should an enemy, or one of another tribe wilfully trespass on these grounds, such a liberty would be immediately noticed, and would in all probability lead to acts of violence and retaliation on both sides. And in this right of taking umbrage when convenient, and in making the subject a matter of quarrel, consist, I think, the sole advantages of proprietorship.

Although thus divided into tribes and families, yet nothing resembling a set form of government exists among the Australian Aborigines; nor have they either chief or ruler to guide or advise them-

Occasionally, however, they might be heard talking of some one great and distinguished individual, who, to judge from their manner of describing him, held a high and influential position in the tribe; and this has induced many to believe that a sort of chieftainship was recoguised amongst them. It was always found however, when the subject became thoroughly sifted, that this great personage had acquired his intluence over his fellows, as perhaps an expert and ready spearsman, solely from being more bloodthirsty and domineoring than his neighbors, and from having killed all,-men, women, and children,-who were unfortunate enough to fall under his anger. And thus knowing, from bitter experience, that to contradict so dangerous a character would be auy thing but prudent, the respect paid to him by the rest of the tribe was altogether a matter of policy on their part, induced by fear, and not from his baving any distinct right to dictate or command.

I have already stated that each tribe is ceiebrated for the manufacture of some weapon or other article. In order to exchange these different articles, as well as to have a sort of jollification and grand Kangaroo hunt, the different tribes assemble by appointment at a given spot at certain seasons of the year. The scenes here enacted are exciting and varied; they generally begin in harmony and good fellowship, and end in quarrels and an angry dispersion.

The place of rendezvous is usually in a part of the country where the Kangaroo is plentiful, and in the vicinity of a small Lake. When all are collected, operations commence by the tribes forming an immense circle, having the lake for its centre. The hunters at first are a considerable distance from each other, and extend over a large tract of country. At a preconcerted time, they all gradually draw in towards the Lake, shouting and striking their spears and wameras together. The Kangaroos are thus driven from all quarters into the centre, where they find themselves blocked in and completely surrounded by the natives. The Kangaroos now make a general rush to escape, and a scene of confusion and noise ensues which baffles description. Spears, kilees, and other weapons are thrown in from all sides, and immense numbers of the game are killed in their vain efforts to clear the boundary. Some in desperation take to the water, but these, being out of their element, are soon despatched. The natives return to their bivouac laden with spoil, and do nothing but eat, drink, dance, and sleep, until hunger again drives them forth for a further supply.

All would appear to be going off smoothly and amicably enough at these general assemblies of the various tribes, nevertheless, some-
thing most frequently occurs to put an unpleasant stop to these jovial proceedings. There is some old quarrel to be settled, some old sore to be healed, and thus the evil disposed contrive to get up disputes, or to recall wrongs still unsettled and unrevenged. Each party has his friends and relatives about him, who feel themselves called upon to take a part in the matter, and thus the whole camp gets involved in a general quarrel. From wrangling, matters proceed to blows,the wamera is seen to flourish in the air,-spears begin to fly about; pierced legs and broken heads are the consequence, and the parties separate voring vengeance against each other.

These fights however rarely prove fatal to any one, for the belligerent parties generally contrive to make a great noise without doing much damage, beyond perhaps one or two wounded legs and a broken head or so, which are looked upon as mere trifles. It is absurd, indeed to witness an affair of this kind. It commences by one of the men jumping up and throwing down his spear somewhere near his opponent, who immediately springs to his feet to revenge the insult. The encampment is immediately in an uproar, and the friends of both rush to hold the combatants. Thus secured the foaming warriors tug and struggle away at a fearful rate, and show great indignation at being prevented, by their unkind friends, from totally exterminating each other; they are careful, however, not to exert themselves to such an extent as to prevent their being held without much difficulty. But other relatives or friends soon appear for the purpose of taking part with the combatants, these in like manner are held by other friends; until at last the whole party are either holding or being held. And thus, giving vent to their feelings in abuse and threats, they gradually calm down from pure, exhaustion, and having arrived at this stage, they promise to lay aside their weapons for the time being; they are then released, and return sulkily to their huts, to repeat, probably, the same farce the next day.

The reader must not come to the conclusion, however, from the description of such a scene, that the natives of this part of the world never kill each other. Far from it. When one of the tribe dies, either from natural causes or otherwise, the nearest relation of the deceased is expected to take the life of one of another tribe; they, in their turn, retaliate in the same manner; they are, therefore, in a continual state of dread and warfare. But it is not open warfare; by treachery alone is it carried on, andoften does the Australian meet his death from the hands of him he receives as a friend at his fire. Cunningly disguising his base intention, and watching until slumber seals the eyes of all around, the enemy will drive his spear deep into the
breast of his victim and then plunging into the woods, return to his tribe, proudly boasting of his crafty deed. Or silently prowling about in search of an oportunity of revenge, he will, probably, come upou the wigwam at a time when the husband is away hunting, and the wives and children are dozing around the fire, unconscious of all danger. Silently and serpent like, the blood-seeker nears his prey, then springing into their midst, drives his spearinto all that are unable to escape.

The principal, if not indeed the oniy, food of the Australian, is that procured in the chase. His life, therefore, is necessarily a wandering one, ever moving, as the scarcity of food, or other circumstances may dictate. Policy has also no inconsiderable share in producing these frequent changes. For in thus roving over the country the Nomades render it a more difficult matter for their prowling enemies to mark their encampment; and to take advantage of an unguarded moment to wreak their vengence. These changes also tend to free them from smaller, but hardly less disagreeable neighbors, which always increase at a prodigious rate, around a spot inhabited for any length of time by a people totally void of everything like cleanliness. Thus influenced by the exigencies of the moment, on breaking up the establishment they may, perhaps, move off for miles from the old position; or they may erect their new wigwams within sight of the old ones. As these huts, however, are of the most simple description, and can be finished in a workmanlike manner in a very short time,-their household furniture, too, being of the smallest quantity known in the economy of house-keeping,-no very great inconvenience is experienced in these constant movements. Their huts are chiefly formed of long grass, rushes, the bark and branches of trees. Each one is sufficiently large to admit of two or three persons curling themselves up inside like so many hedgehogs. Their shape is that of an arch, the highest part of them being about three feet from the ground, with the front completely open, and sloping down gradually in the rear. To give a better idea of one of these establishments, imagine a bowl or tea cup, turned with the bottom upwards and then cut down through the centre, each half will be a minature model of an Australian mansion. At all seasons, summer and winter this is their only shelter; with but a small fire in front, men, women, and children, each one coiled up in the cloak of kangaroo skins, sleep through storm and tempest, and set all weather at defiance. In their ordinary mode of living, and when in their own district, the tribe is usually broken up into small parties or families, each party forming an encampment, of some six or eight of these wigwams. It is seldom that the tribe musters except when
about to leave its own territory for a distant part of the country, or when some mighty question, having reference, perhaps to a general expedition against another tribe, has to be discussed and planned.

During the summer months the tribes of the interior generally make towards the sea coast for the purpose of enjoying a feast on the various kinds of fish which are there to be obtained. They have several methods of proceeding in this sport, but that usually adopted is for the whole of the natives in the neighborhood to assemble together near some shoal or sand bank, which at low water is left covered with but a few inches of water. Early in the fine mornings of summer, just as the sun breaks forth, these sand banks may be seen sparkling with innumerable fish which seem to frolic about in sportive glee, now darting along and chasing each other with the speed of an arrow; now flinging themselves far out of the water as if to exhibit their bright armour in the shining rays of the sun. But man, the universal enemy of creation, has to satisfy the cravings of nature; he also is up and stirring, and cannot permit so tempting an opportunity to pass, and so calling to his companions they all pull armfuls of branches from the trees and then hurry to the beach intent upon the sport. The attack is commenced by erecting a sort of weir with the branches and twigs; this is made in a semicircular form with one end touching the beach al d the other towards the edge of the shoal. The whole party now wade into the water and spread themselves over the shoal at some distance apart from each other, then gradually drawing in toward the open side of the weir, their splashing and noise cause the fish to rush into the snare laid for them. Thus entrapped, spears pour in from every point, each man trying to outdo his neighbour in shrieking, kicking, and splashing; here some may be seen probing right and left with their spears within the weir, there others are skipping through the shoal water in chase of runaways who have managed to dart through or orer the bounds, and thus in a short space of time an immense supply of food is secured. It is astonishing indeed to see the quantities of fish taken in this manner. These fishing parties may number perhaps some forty or fifty men, and it is no unusual thing to see each one come off with as many fish as he can well stagger under. When I add, however, that it is not uncommon to see upwards of five cwt. of a fish called the skipjack taken in a single haul of the seine, what I have related will excite less surprise.

On the approach of winter the tribes draw off from the coast into the interior of the country, where, encamped in the depth of the forest, they lie sheltered from the severe stomn with which the Aus-
tralian shores are then visited. The fact of the kangaroo, their principal source of sustenance also seeking the shelter of the interior at this season, has, of course great influence in attracting them from the coast. I have already endeavoured to describe their mode of capturing this animal when the tribes are mustered in force. When hunting individually, which is the ordinary method, the hunter sallies forth alone, without even a dog, and armed with only one or two spears and his wamera. He is not long in coming upon the track of the game he is seeking. This he follows up, sometimes for miles, with a sharpness of vision and noiselessness of movement which to the white observer is extraordinary; but he is now gaining on the prize, and symptoms of its close vicinity are evident; with breathless caution and with spear poised, he gradually advances upon his victim, taking advantage of every stump or bush to cover his approach; at length a glimpse of the game is gained, which may be quietly grazing, or perchance enjoying a siesta under cover of some thicket unconscious of danger; a sharp and whizzing sound in the air is all the notice it gets, and the next moment it lies transfixed with the spear.

The clothing of these people consists of but one garment, a cloak made of the skins of the kangaroo. This cloak which is worn by both sexes, they contrive to make serve for all weathers and seasons. The usual manner of wearing it is with the fur next to the body; but when exposed to heary rains it is reversed and the fur turned cutside in order to allow the wet to run off without penetrating the skin. During the warmer summer months and when roring in the woods array from the settlements, eren this is generally dispensed with; they then wander about unencumbered and free of all restraint as far as artificial covering is concerned, and but seldom use their cloak except merely to wrap about them when sleeping around their fires, to protect them from the dew and cold night air.

The men also wear round their waists, under the cloak, a fine string made of the fur of the opossum, about as thick as common grey worsted, which it much resembles in appearance. This is wound about them in innumerable folds, until it forms a belt about as thick as a man's wrist. When suffering from want of food, which is often the case, this belt is drawn tightly round the body, and by thus compressing the stomach, it tends to alleviate, for a time, the cravings of hunger. It also serves as a depot for their kilees, stone tomabawks, knives, or any thing else that they may wish to carry about them.

On my first landing amongst the savages of Australia on the beach at Albany, I observed that some of the men had small bones, or
pieces of wood, passed through a bole in the cartilage of the nose. These I afterwards learned were persous of some consideration in the tribe, men of distinction, who sported this conspicuous badge with no small degree of ostentation. The hole is pierced through the nose when the individual is young, and for the following purpose. The tribe wish to communicate with the neighboring tribes on some particular subject, or to send a complimentaly message of peace and goodwill to those around them. The chosen messenger is a boy between 12 and 15 years of age; but before starting on his embassage, it is necessary that the individual thus honored undergo the operation of having his nose bored. This is performed with a small bone of the kangaroo, sharpened and made almost red hot, which being forced through the cartilage just below the nostrils is there allowed to remain until the wound heals. But in the mean time the boy proceeds on his mission, and as long as the wound remains unhealed his person is held sacred, and he is treated with the greatest friendship and respect wherever he makes his appearance. On starting he is accompanied by one or two of bis relatives or friends as far as the next tribe, in whose charge he is left;-remaining some short time with these, he is passed on to the next tribe in the same way; and so on until all the . es have been visited, when he is returned to his people in like manner from tribe to tribe. By this time the bole in the nose is pretty well healed, but the bone, or something else of the kind, continues to be worn by way of ornament and as a mark of distinguished services. The same description of ornament is mentioned by Cook as existing amongst the South Sea Ishanders, and to it our sailors gave the not inappropriate designation of "spritsail yard." It would appear, indeed, that this barbarous fashion of disfiguring the body, in order to decorate it in some such way, is common to many nations. The aborigines of Australia, and the South Sea Islauders have their "sprit-sail yard," others have their nose-ring, whilst the negress of Africa, and the refined and intellectual female of Europe, have their ears pierced to receire the not less becoming and useful ear-ring. But rhether it be the bone in the nose of the Australian, or the ring in the ear of the English moman, the custom is the same, and equally civilized or equally barbarous.

In speaking of ornamentation I have to mention another and no less barbarous method of the Australians for beautifying their persons. I allude to the custom amongst the men of lacerating their bodies in order to produce long welts or protrusions of the skin. This is done with a sharp stone or flint, and the incisions are made on the breast, shoulders, and upper part of the arms; they vary in
length and thickness, some being about an inch long and raised the thickness of a straw, others perhaps three inches in length and as thick as one's finger. The operation to produce these marks consists simply in cutting the part quickly but slightly with the sharp point of the stone; the blood is allowed to dry on the wound, but the welts soon appear and never diminish in size through life.

From the scantiness of an Australian's wardrobe, he is prevented from exhibiting his taste or expending his vanity in a variety of costume, he consequently falls back to the one course left open to him, that of painting his body and decorating his head. The greater part of the time he devotes to his toilet is altogether taken up in plastering his uncut hair with a thick cement made of red ochre and grease. A diversity of style is adopted in its dressing; some have the head covered with quantities of small and shining red ringlets, some have it bound around with cord, and then covered with a solid mass of stiff and clay-like pomatum, giving the head quite an Asiatic appearance; this is generally surmounted by a bunch of feathers from the emu or cockatoo, or by the tail of the wild dog, and sometimes encircled with a wreath of flowers. Others, again, have innumerable small lumps of clay appended to the ends of the hair, which keep up a rattling accompaniment to the movements of the wearer.

But of all outward adornments the beard is the one most coveted and prized. Indeed, this appendage to the visage appears to be a youthful Australian's highest ambition, and its primary symptoms are regarded by each stripling much in the same light as, amongst us, the school-boy looks on his assumed induction to the honors and privileges of manhood. To the Australian, throurhout life, the beard is an object of great pride and care, and the affectionate manner in which it is ever caressed and stroked, evinces the satisfaction felt in its bushy charms. Nor is it merely as an adornment to the outward man that a beard is so much an object of solicitude; there are also certain rights attached to it, not the least important of which is, that no man can get married until in the possession of one, nor is he allowed to kill an emu. In their combats, too, no inconsiderable part is assigned to the beard in producing an effect, and it is next to impossible to make an impression in an affair of this kind without such an accompaniment ; then, with its long ends gathered up into the mouth, and there held firmly between the lips-with feet stamping, eyes starting from their sockets, and every muscle of the body quivering with savage rage, it may easily be imagined that the whole appearauce of the Australian warrior is fervcious in the extreme.

Thus far I have attempted to give some slight idea of the men of this race. It is now time that something were said of the other sex; and I wish much it were in my power to draw a more pleasing picture of this portion of the Australian population. No where clse is it possible to meet with more miseral _ und degraded specimens of humanity than the women of Australia. Naturally small in stature, from starvation their bodies and limbs appear shrunken to a degree sometimes frightful to coutemplate; and were it not for the glare of the eye, the generality of them would look more like mummied skeletons, from which the soul had parted company for months, than beings possessed of life.
Every bone in the frame is risible-the shapeless arms and legs seemingly destitute of muscle-the sunken eye and hollow cheek-all tend to form a picture of wretchedness which beggars description. And, as if their natural unsightliness were not sufficiently startling, their faces, and heads, from whick the hair is cut quite close, are generally corered with scars and scratches, either the tokens of the chastisement of an enraged spouse, or the effects of violence committed on themselres in manifestation of their sorrow for the untimely departure of a child, or some one of their numerous relations or friends; and when, upon these still bleeding wounds, chalk and charcoal are smeared, it can readily be imagined how revolting is the spectacle presented to vier.
The dress of the female, like that of the men, consists solely of a Kangaroo skin cloak; but to this is added a large bag, made of the same material, and which hangs at the back by a strap crossing the shoulders. In this bag is generally deposited the smallest child, along with any other portable articles it can hold. For the purpose of digging up roots, upon which they in great measure subsist, the women are armed with a long stout stick, formed into a blunt point at one end. Whatever labor has to be performed in their domestic arrangements devolves entirely upon them. They are the Architects and Artificers in erecting the family mansion. In their journeyings they carry the extra spears and other weapons of the men, in addition generally to one or two children, and perhaps also a young dog. In this plight they are to be seen toiling along under a load seemingly sufficient to bring the frail bodies of the unfortunate creatures to the ground.
Polygamy to the fullest extent is an Δ nstralian Institution; the man is allowed to hare as many wives as he can manage to take care of, or can possibly beg, steal, or otherwise obtain. There is nothing like a marriage ceremony in any case, a simple bestowal on the part
of the ginl's father, or other guardian, concludes the transaction. As soon as a female child is born, nay, sometimes for years before that event, she is promised to some one of the tribe, without reference to his age, although his years may exceed those of her own father. She remains with her parents until old enough to be able, in some manner, to shift for herself, when she is transferred to the care of her future husband, under whose protection she is then brought up. But as this, in most cases, is too long a process to go through, the method usually adopted by the Australian native to obtain wives is that of seizing the first favorable opportunity of running off with those of another. It is absolutely necessary to the Australian that the stock of wives on hand should always be considerable, as the whole domestic labour devolves on them, and consequently on their number depend the comforts of his wigwam and fire. The practice of eloping with each other's wives, is so much a matter of course that it furnishes an additional reason for maintaining a large female establishment in order to provide against these frequent contingencies, so that one or two of the number can abscond, without any great degree of anxiety or discomfort being experienced by the deserted one, until the number can again be completed by his helping himself in like manner from the establishment of some of his neighbors.

But although the women are treated by the men with savage brutality, although from the birth to the grave theirs is a life of misery \therefore d privation, they, nevertheless, are not deficient in those keen feelings which are the characteristics of the sex in all lands. Their affection for their offspring is strikingly evident on all occasions, and it is sometimes painful to hear the wailing of the bereaved mother as through the long night she sorrows over the loss of her infant. Nor are these feelings less intense in other respects. One might imagine, to judge at least from the manner in which the poor wretches are neglected by their lords, that if any thing like feeling existed on their parts for their partners, it would be that of supreme indifference. The reverse, however, is the case, and in those general mêlêes, which so often disturb the peace of the encampment, they are not slow in entering into the spirit of the affair, and raising their voices to vindicate the honor of their belligerent spouses. Absurd to a degree is a scene of this kind. Sitting around their fires, within sight of the combatants, they gradually join in the excitement around them; tauntingly and sneeringly they speak of the insignificant deeds, and contemptible efforts of the opponents of their respective husbands. Suddenly one will spring to her feet, and begin to strut up and down, flourisking her long stick over her head, her cloak thrawn back and
fluttering out like the tail of an angry cat; in this beligerent state she continues to move about, singing at the same time some sarcastic and insulting words. Irritated and excited by such proceedings, another now starts up with a bound, and in like manner commences tu strut, sing, and flourish her stick, -and thus working themselves up to the required pitch of anger, they gradually approach each other until within striking rasge, when the war of words being changed for a more forcible one of sticks, the engagement becomes warm, and broken heads and bloody faces are the result.

Such is the Australian in life, let us now reverse the picture and view him in death.

In the midst of a tall forest, some four or five wigwams are clustered together, the thread like wreath3 of smoke ascending from the small fires alone indicating the spot. In one of these huts lies the emaciated form of a savage, the limbs drawn up to the smallest possiBle compass under the scanty cloak. Sitting around are the wives and childreu of the dying man, watching in silence for death to take possesion of his prire. Other women belonging to the camp are also sitting about. One or two men alone remain; these are perhaps sleeping, or quietly sharpening their spears. All is silent, the hard breathing and the convulsive sounds in the throat of the dying man are alone audible, even these gradually cease and the soul has fled.

As soon as the fact is known the wives and children and all those gathered round the body set up a dreadful and startling cry. The women in particular send up a most piteous lamentation, and tear their heads and faces until they are frightfully smeared and disfigured with blood. The male relatives of the deceased also scratch their noses, but do not mutilate themselves to the same extent as the women. Butno time is lost in making preparations for the interment of the corpse. On the spot where he drew his last breath is the grave sunk, a shallow and circular hole scooped out, barely deep enough to keep the body below the level of the earth; into this the still warm corpse, wrapped in its cloak, and with the knees bent up to the mouth, is placed, lying on its side; the earth is then thrown lightly and scantily over it; that thrown over the corpse however, is not the earth which hasbeen scooped out of the grave, for that is allowed to remain in a heap on one side, but is cut away from the oposite side. The spear, wamera, and other weapons lately used by the deceased, are now placed upon the grave, and after making a small fire near the feet, the grave and camp are deserted by all, and. far remored from the spot, a new encampment is formed, from which the mournful wailings of the women may be beard floating down on the wind night after night.

On the evening of the death, the wives and relatives of the deceased smear the scars on their heads and faces with white chalk, and on the following day with charcoal, after that again with white chalk, which is allored to remain on until the wounds are healed. After death the name of the departed is never uttered, and should there be another native with the same name be immediately assumes a new one.

It would appear, however, that the mode of interment differs in some cases; for being on one occasion with an exploring party some ninety miles from the settlement, we came upou three or four native graves, in which it was evident that the bodies had been laid at full length as the graves were long and narrow, presenting indeed much the appearance of our own.

In a letter received from a brother at. Perth on the Swan River, in describing the Aborigines of that part of the country, he gives the following account of a death scene:
"Understanding that the native Wattup had died from the effects of a spear wound in the thigh, which he had received about five weeks before, I went up to see the body. I was directed to the spot by the cries of the women, and the scene that presented itself there was very striking, and differing from any that you ever witnessed at King George's Sound. The corpse was stretched out under a large gum tree, and closely around it, an old man and a number of women were crouched on their heels. At times they bent over the body, uttering a mournful chant, and addressing it, apparently in affectionate terms; then again they would burst forth in loud lamentations, tearing their faces and hair, and exhibiting every token of the most violent sorrow ; maintaining, however, throughout a regular cadence. Three or four yards from these, sat an old man, probably the father of the deceased, resting his head on his knees in silence. His wife sat beside him with her arms thrown over his shoulders, crying most piteously, and calling (as I understood it) on the dead man to return to her. One or two elderly men stood at a short distance leaning on their spears, attentively watching the proceedings. No other men were present but those I have mentioned; the rest appeared to be collected at the foot of Mount Eliza, where they were holding a noisy deliberation, concerning, I suppose some scheme of revenge. I bad not time to remain until the termination of the ceremony, but just as I was leaving, two men came up from Mount Eiiza, armed with their spears, and evidently prepared for some conflict,-after exchanging a few words, the mourning party broke up-the men going off to the Council of War, leaving the corpse in charge of the
females. In the evening a number of the natives birouaced on our promises, where they had a Corroberry."

Of the many strange facts that come before us in studying this people, perhaps none is more extraordinary than the paucity of weapous and implements in uso amongst them; and still more so is the fact that they are probably the only savages on the face of the earth, inhabiting the sea consts, who have no means of aquatic transport, and are unacquainted with the art of swimming. When we cxamine their const and find it dotted with innumerable Islands or indented with Iulets swarming with fish, we are more struck with this peculiar feature in the habits of the Aborigines of the western, southern, and eastern coasts of Australia. Turn in what direction we will, we find all other savage people excelling in these arts. The New Zealander and the South Sea Islander are noted for the beauty and size of their War Canoes; and men, women and children appear as much at home when diving andswimming about in the sea as any sealor walrus. Again, the Indiaus of this vast Continent, from the Arctic regions to Florida, are skilful and dariug navigators in their bark and other canoes. Let us even visit the northern coast of Australia itself, and we find the Aborigines, much more savage it is true than those I am describing, but at the same time furnished with Canoes and catamaraus, or sallying forth even upon rough logs of wood, and quite indifferent whetber their bark carries then through the surf, or parts company with them in the attempt, so fearless and expert are they in the water. How is it, then, that those inhabiting the opposite coasts should be thus deficient in arts that instinct itself should force them to acquire? This peculiar feature in their economy, strange as i may appear, will help us, I think, to trace their origin, and that toc to a people emincutly maritime in their habits. I allude to the Malays.

The proximity of the Malay Islands, and the fact of immense fleets of Malay prows having visited the Northern coast of Australia annually from time immemorial, in search of the Trepang for the Chinese Market, will go far to bear out this opinion. It may not be improbable, therefore, that some of these people were thrown by shipwreck, or other accident, on this coast, or upon one of the Islands on the other side of Torris' Straits, and that thus the North was the first portion of Australia peopled. The race, gradually increasing, spread through the interior of this vast Continent. In their approach to the western and southern shores they necessarily passed over an extensive inland region, without doubt perfectly destitute of Rivers or Lakes of any maguitude. When, therefore, ages after, they had ex-
tonded to the opposite consts, they had lost the knowledge of every art connected with water, and were unable to make use of or apprecinte the advantages which lay before them on the sen shore. Whilst upon this subject I may mention that I have seen, in the settlement of Albany, natives who had never before gazed on the sea. In thus treating the subject, however, I am merely venturing an opinion; it may be correct, or the reversc.

The extent of the knowledge of the Arts and Sciences existing amongst the Auatralians may be gaged by their weapons and implements. These are the spear, the wamera or tbrowing stick, and tho kilee or boomerang; a stone hammer or tomahawk, a short and heavy club or stick, and a rude description of stone-edged knife.

The spear is merely a straight rod some nine feet in lengih, ns thick as an ordinary walking stick, rather smaller at one end than the other. The sharp and needle like point, at the heaviest end, is hardened in the fire. Rather more than an inch froin the point of some is fixed a neat wooden barb of about two inches in length. Others again have small and sharp pieces of quartz, fastened in gum, extending some six or eight inches from the point. This latter description of spear is dreaded by the natives much more than the barbed one, as its sharp and uneven edge lacerates the flesh dreadfully, besides leaving pieces of the stone in the wound. The wound inflicted by the barbed spear, is hardly less severe, and, unless the spear-head be driven directly through the part struck, is dangerous in the extreme, for the barb once getting buried in the flesh, it is impossible to withdraw it, and the only chance of extrication is to force the whole through the limb: a process, however painful, by no means uncommon.

The trees from which the spears are made, seldom exceed the thickness required, and are found growing in great abundance in the swamps and marshy grounds; the wood is of a hard and dark descrip. tion, and after being in use for some time assumes the appearance of mahogany.

The spear is thrown by means of the wamera or throwing stick, which is a flat piece of wood hardly thicker than the cover of a book, some two feet in length, about four inches in breadth in the centre, and gradually decreasing in width, and running to a point at either extremity. At the end held in the hand is a lump of hard resinous substance, obtained from the Grass Tree, which prevents the wamers slipping from the grasp when throwing from it the spear; at the other point is fixed a little piece of stick, about an inch iu length, forming a sort of hook, and which fits into a shallow hole at the small end of the spear. When fixed for throwing, the spear
runs along the length of the Wamera, and passes through the forefinger and thumb, which, from the manuer in which the Wamera is held, are left free for that purpose. The spear is therefore burled from the wamera somewhat on the same principle as a stone from a sling, and, is sent with much greater force than if merely thrown from the hand. In the use of these weapons the natives exhibit surprising dexterity; it is seldom indeed they fail to transfix their object within a distance of fifty or sixty yards. The wamera is made of a very hard wood, a coarse grained and heavy mahogany, which generally obtains a good polish after being a short time in use.

The wamera never leaves the hand of the native; when his spears are exhausted he mikes use of it in clese combat, as a sword or battle axe, and its sharp and hard edges lay open gashes in the heads of the combatants hardly less severe than those produced by t'se sabre of a heavy Dragoon.

But of all weapons the Australian kilee or boomerang is the most wonderful. Its form is nearly that of a crescent. It is made from the crooked limb of a tree curred naturally in the form required, this is nicely scraped down, and made flat on one side and slightly convex on the other; its size is about fifteen inches from point to point, and nearly two inches in width. Its course through the air is eccentric and very varied, greatly depending upon the skill with which it is thrown. Some have mure command over the weapon than others, and an experienced thrower can almost make it take any direction he may please. He will throw it with all his force against the ground, some ten or twelre feet in front of him, when it will rebound, and taking a circular course, will fall at an immense distance to hir right or left. Again he will dash it to the earth in the same manner, and it will ascend from it with the speed of an arrow, until almost out of sight, when, remaining poised some instants in the air, it will return with fearful velocity and fall probably some distance behind the thrower. It is used thus in killing birds. For instance; a flight of Cockatoos is seen approaching; the native waits patiently until the birds are nearly over his head, he then throws the kilee in the way I have described in front of the flight; the kilee returning, after having risen a certain height, meets the birds in their course and thus knocks several of them down.

The boomerang is the most dangerous weapon ased by the Australian. Its course through the air is so swift that it is with difficulty one can follow it with the eye, and its ever varying movements render it nearly impossible to get out of its way;-it is the only weapon that the natives themselves find a difficulty in avoiding; those who
fancy themselves quite safe, and clear of its manœurres, are not unfrequently the ones hit, and it is no unusual thing to see the native, from whose hands the weapon has sped, obliged to throw himself on the ground, to avoid being struck by it on its return.

The tomahawk or hammer is a rude and shapeless piece of stone fastened on in the centre with the gum of the grass tree to a slight wooden handle; its principal use is to notch the smooth trunks of trees, just sufficient to insert the great toe in, to enable the native to ascend after the oppossum and other small animals.

The only other article is a short heavy stick, rather thicker at one end than the other, and about eighteen inches in length; it is used for throwing at short distances, and it also forms a weapon by no means contemptible when wielded in the hand as a club.

The quickness of vision and dexterity exhibited by the Australian savage in avoiding the different weapons, are truly astonishing. This is particularly the case as regards the spear ; so much so, indeed, that it seldom occurs that one is struck by it, if he be at all prepared for the assault. Five or six spears will be thrown at a man in rapid succession, and, without moving from the spot, he will escape them all by a slight bend of a body. From his childhood, practising with the spear and. koomerang is the principal pastime of the Australian, and for hours together, mere infauts may be seen amusing themselves by throwing their tiny weapons at each other.

A REVIEW OF THE TRILORITES: THEIR CHARACTERS AND CLASSIFICATION.

part 1.
BY E. J. CHAPMAN,

PROFBSSOR OF MINERALOGY AND GEOLOGY, UNIVERSITY COLLEGB, TORONTO.

Read before the Canadian Institute, February 23rd, 1856.
Amongst the fossil forms met with in our Canadian rocks, or, indeed, in the palæozoic strata generally, few can compete in interest with the Trilobites. We may cite as some of the more salient points which impart to the study of these extinct crustaceans an attraction of no ordinary kind-the early date of their creation, and the immeasurable periods that have rolled away since their total obliteration as living types. And, again, the wide geographical range of certain species; their varied forms; and, perheps, as a further incentive to their study, the very obscurity with which, in part, their history
is still surrounded. In the present sketch, it is proposed to consider our subject under the following heads:-The general organization of the Trilobites; their probable habits and affinities; their geological relations; and their classification.

1. General characters. Viewed both transversely and longitudinally, the trilobite presents a tripartite form. Transversely, we have the head, the body or thorax, and the abdomen, or so-called tail. Longitudinally, the form becomes three-lobed, by the presence of two linear depressions or furrows, extending in general, almost from one extremity of the animal to the other. Occasionally, however, as in the genus Homalonotus for example, these longitudinal furrows are but very slighty developed.

We will consider separately the structural characters of the head, the thorax, and the abdomen: or rather of the crustaceous integuments by which the back of these parts was defended; for of the internal couformation of the trilobites, our knowledge is almost entirely conjectural.
2. The anterior portion of the trilobite is covered by a single shield composed of several united pieces. To this shield the term of $b u c k$ ler or head-shield is commonly applied. The middle division, formed by the anterior prolongation of the two longitudinal furrows mentioned above, is called the glabella. In some species the glabella is very strongly pronounced, whilst in others it is scarcely raised above the general level of the head-shield. It is usually lobed or furrowed by short transverse grooves, or variously embossed; although occasionally quite smooth and simple. In some species again, it narrows towards the summit, whilst in others it expands. The separate pieces of which the head-shield is composed, are united by distinct sutures: a character peculiar, amongst crustaceans, to the trilobites. This, as suggested by Barbande, probably facilitated the periodic casting of the shell. One of these sutural lines, the great or facial suture, is of considerable importance as a classification element. In the majority of instances, it passes on each side of the head-shield, from the angles (calymene), or from the lateral or lower border (phacops, asaphes) along the inner margin of the compound eyes (where these exist), and either surrounds the glabella, or terminates beyond the anterior margin of the shield. In the latter case, it is said to be open above. The buckler or head-shield is thus divided into three pieces; the middle piece, including the glabella and the "fixed cheeks" or parts between the glabella and facial suture; and the side pieces, or ordinary cheeks. The latter are very commonly wanting in trilobite specimens, or are found separated from the other portions of the
head. The facial suture is, however, in some cases entirely marginal, and hence not apparent on the surface of the shield, as in the genus Trinuclets. According to its direction, consequently, the trilobites might be arranged in four groups: 1.-with the facial suture terminating at the base of the head-shield; 2.-at the angles; 3.-at the sides; and $4 .-$ with the suture marginal. A classification of this kind, howorer, if carried out too exclusively, would tend, as founded on a single structural peculiarity, to various groupings and separations of a more or less artificial character.

The eyes, when present, are situated on each side of the buckler in the line of the facial suture, where this, at least, occurs upon the surface. They are sessile, but more or less clevated above the inmediate surrounding parts; and cither compound after one of two types, or pseudo-compound : consisting in the latter case of simple stemmata in merely approximate union, as in the genus Harpes. The compound eyes in the family of the Phacopsida are covered by the common cephalic test, but this is pierced with numerous small apertures through which the transparent cornea projects.* This forms the reticulated eye, properly so-named. In the other families possessing compound eyes, the cephalic test gives place around the eye to a common comea, which exhibits, in comparison with the eyes of the Phacopside, a very delicate reticulation The reticulated appearance is caused by the underlying facets.

Many species appear to hare been entirely destitute of eyes, properly so-called ; but it may be questioned whetber this deficiency, at least in certain cases, was not compensated by the presence of isolated ocelli, destroyed more or less by the process of fossilisation, or perhaps obliterated by age-as in some existing crustaceans-during the lifetime of the animal. In the modern limulus, a crustacean type having certain cbaracters in common with the trilobites, a pair of ocelli accompany the compound eyes. Indications of ocelli are, I believe, actually traceable in some of the apparently eyeless trilobites. Two small median points or tubercles, which may perhaps be legitimately attributed to ocelli, occur, for instance, on the glabella of many specimens of Trinucleus concentricus. On the other band, it is well known, that amongst some of the marine parasitic crustacea, to which again the trilobites are in a measure related, only the males

[^3]are provided with eyes; whilst amongst others, as stated above, these argans become obliterated by age.

The buckle of the trilobite does not terminate immediately at the upper margin or sides, but bends owr as in the limulus or apus, and thus forms the margin of an under shiedd. Virectly benenth its formination on this under side of the head, and exactly facing the ghabella, is situated a peculiarly shaped organ, called from its general characters and presumed function, the hypostoma or latrom. With the exception of a second piece, the epistoma, found only in a few rare examples, it constitutes all that is known respecting the mouthorgans. In its general form, the labrum somewhat resembles a pointed or rounded glabella, with its attached base, placed in a reversed position, or with the narrower end downwards. From its resemblance to the labrum of the apus, it has been inferred that these creatures were carnivorous: a view sustained by other considerations.
3. The body or thorax of the trilobite is made up of a number of separate rings or segments. By the two longitudinal furrows already mentioned, each segment is divided into three parts: the middle part, called the rachis or axis, and the sides or pleura. It is still uncertain whether the pleure form a continuous portion of the axis, or whether they are united to it by suture. Basing our observations on those species which bave the longitudinal furrows but slightly developed, we might naturally infer the former. In most specimens, if not in all, the shell is certainly continuous. Single, disjointed segments are constantly met with; their three-curved outline is one of the most common markings on the weathered surface of trilobitic rocks. The central rings are sometimes furnished with short spines. The pleure also frequently terminate in spines; and they are either grooved in the direction of their length-id est, from the axis out-wards-or otherwise raised in the same direction into a narrow plait or band. The former modification constitutes Barrande's Type de la plèvre à sillon: the latter his Type de la plèvre à bourrelet. The character in question is brought prominently forward by Barrande* as a classification element, and Picter has also adopted it in the last edition of his "Palæontologie;" but its employment as a leading character, appears to me, for reasons stated in the sequel, to be open to many objections. The well-known power of rolling themselves up into a ball, possessed to a certain extent by probably all trilobites, and by many in an eminent degree, was chiefly due to the mobility of these thoracic segments. Further reference will be made, how-

[^4]ever, to this property when discussing the allinities of the trilobites. In the absolute number of their body-segments, a considerable differenee is exhibited by different species In fully developed forms, omitling the still doubtful agnostide, the number varies from five to twenty-eight. Several paleontologists-more eapeeially Quexstrint and Bunmbisten-have placed great stress on the relative numbers of these segments: making the character indeed, the basis of their classifications.* That the character is one of considerable value, is undoubtedly true; bat its application is beset with much difliculty, since the able researches of Barmande have shewn that, in most, if not in all species, the number of the rings, although comstant in the adult form, varies with the earlier age of the individual. He has thus traced the metamorphoses of one species (Sao hirsuta) from its embryonic condition with merely a head and caudal shicld visible, up to its full development, in which successive rings are added to botin thorax and abdomen, until, in the formeralone, their umber amounts to seventeen. The adult form in this small specics is frequently under an inch in length.

1. The caudal shieh, to which the term of pygidium is also applied, consists, like the head-shield or buckler, of a single piece. This, however, as shewn by its divisional markings, is evidently made up of consolidated or united segments. With certain special exceptions, we here recognize, as in the thorax, a middle portion-the caudal axis, tail-rachis, \&c.; and sides, or pleura. The segment lines in these divisions are often strongly marked, but always undivided, unless at the ends of the pleure. In some species the pygidium is very small; in others well dereloped. The axis also is in some species continued far down, or almost to the extremity of the shield; whilst in others it is extremely short. Occasionally the shield terminates in a point or spine, or is furnished with various spine-like processes. The ends too of the caudal pleura are sometimes free, sometimes merged in a continuous limb. According to Barrande, the more developed the pygidium, the higher the developement of the animal-in substantiation of which it is pointed out, that in the trilobitic forms of earliest occurrence, this organ is comparatively small; whilst in those of the higher rocks, the contrary is generally the case. To this, however, there are many exceptions; witness, for example, the Ogygia Minnesotensis (Dikelocephalus of Owen) of the Potsdam sandstone on the one hand, and the Harpes macrocephalus of the Devonian series on the other.

In order to assist the general reader in following the above descriptions, an outline figure with accompanying explanation is annexid.

> G-glatuella.

F E-eyes.
F F-facial sumare [sec $\frac{2}{} 2$ above.]
C C-cheeks; c c-fixed cheeks.
A-body axis.
P1. Pl.-pleure.
P-pygidium.

5. Probable habits and affinities.- Much is here umavoidably conjectural: for the habits and affinities of these extinct forms of life aie veiled, to a great extent, in an almost impenctrable obscurity. The following are, perhaps, the only really undebateable points connected with the inquiry. First, the trilobites were marine crustaceans. Their evidently articulated structure and the character of their shelly covering, combined with the compound eyes, which so many of them exhibit, and with their geological conditions of occurrence, are sufficient to establish this. The possession of compound eyes would alone serve to separate them from the oscabrions or chitons, with which they were at one time placed by Latreille and other observers. Secondly, the trilobites were gregarious, liring in vast communities-as proved by the abundance of their remains in aress of $\mathrm{o}^{\text {cten }}$ very limited extent. From this, it has been imagined by the well-known naturalist Macleay, that they adhered in masses one upon another, after the manner of many of the sedentary mollusks; but the large compound eyes, the ornamented and frequently spine-bearing shells, and the symmetrical habitus, are broadly opposed to this riew. Thirdly, feet were either absent, or, if ever precent, were of a more or less rudimentary, soft and perishable nature. No traces of these organs, nor of antounes, have yet been found: although from time to time imaginary discoveries of such have been announced.* Fourthly, the trilobites were able, to a cer-

[^5]tain cxtent at least, to roll themselves up into a ball. This property amongst crustaceans, is shared by the terrestrial oniscidct, and by several marine genera; notably by : ' " romu, a gemus of small isopodous crustaceans inhabiting the Baltic, the Moditerrancan, and other seas. These marine isopods possess, however, peculiar swimming appendages attached to their caudal extremity: a contrivance of which the trilobite was apparently destitute.

In accordance with the views of Burmeister, the place usually assigned to the trilobites at the present day, is amongst the phyllopods: or, at least, in the section branchiopoda. With certain probabilitics in faror of this distribution, there are yet many considerations against it. A more or less constant motion of the branchial feet rould seem to be almost essential to the economy of the branchiopods; but, in the case of the trilobites, a function of this kind can hardly be reconciled with the rolled up condition in which so many of them are fomm. If, as may be reasonably inferred, this condition were assumed as a protection under the influence of fear, it would probably be retained by the animal for a considerable time. Amongst existing branchiopods, not one appears to have the power of thus contracting itself into a ball; whereas, amongst the isopods, both terrestrial and mariue, the property is almost universal. The shell again, in branchiopodous crustaceans, if present at all, is delicate and tragile, and scarecly to be compared in any way with that of the trilobites. Finally, the minute size-and size may be here legitimately considered as a not unimportant clement in the inquiry -the minute and often microscopic dimensions of the branchiopods, together with their general conditions of existence, offer further points of dissimilarity. The trilobites rere certainly as nearly allied to the isopods as to the brauchiopods; and, at the same time, they had certain strong analogics, if not homologies, with the limuli: in the position and aspect of the large compound eres, for instance: in many characters of the shell; and to a certain extent in size, and possibly in mode of life. It seems adrisable, therefore, to keep them as a distinct order, and so 10 frame the classification of the crustacea generally, as to shew their relations to the isopods and phyllopods on the one hand, and to the limuli or xiphosura on the other. The chief difficulty is in the collocation of the latter order. To place the limuli with the suctorial parasitic crustarea, according to a still frequently adopted system, is manifestly in opposition to all natural malogies. And, again, if we place then at the end of the class, as a distinct subdivision, their typical relations become altogether lost. Lis this, moreover, their proper place:- Are
not the limuli far more ne:rly related than any one of the ordinury entomostracous orders to the decapods ? The grand distinction is the well-known character of the month-organs. But may we not consider the six pairs of oral feet in the one, to represent an carlier typical condition of the six pairs of foot-jaws in the other? With all their points of difference, at least, a tramsition from the limuli to the decapoda, may cortainly be conecived with far less violence to nature. than one between the last-named group and the phyllopods or other entomostraca. On this riew, a distribution of the crustacean orders may be arrived at, as shew in the amesed table. A combined vertical and horizontal reading of the table brings out the affinities of these orders in accordance with the principles discussed above.

We have yei to consider a few other points of inquiry appertaining to this fortion of our subject. These are embraced in the following questions:-Wirst. were the trilobites inhabitants of littoral or of deep-sea zones; and secondly, were they of sedentary or of active habits--and if the latter, what were their means of locomotion? For the satisfactory determination of these questions, our data are far from complete. Analogy, sud the fact of a very general occurrence in ripple-marked shales and other rocks indicative of a littoral origin, would seem to denote a shelving coast-line, or, at least, a moderate depth of water, as the ancient habitat of the trilobite. Trilobites
are found, however, and not unfrequently, in limestone deposits, associated with brachiopods and other forms usually referred to deepsea types. But the brachiopods are now well-known to range from extreme depths up to the very tidc-line: and heuce their presence in trilobitic rocks, does not speak against the littoral origin of such deposits. In many instances, it is evident, that the palseooic limestones, as those of other ages, were derived more or less directly from coral reefs; and these reefs may have afforded shelter to may trilobites. Along the imer edge of the great barrier reel of northeastern Australia for example, where in many places a depth of no more than ten or twelve fathoms existe, diflerent species of both brachiopods and crustaceans are often met with.

Whilst some observers imagine the trilobites to have been more or less sedentary, others contend that they must have been in constant motion-swimming, back downward, at or near the surface of the sea. The truth lies probably between the two. As already pointed out, the presence of cyes is a strong argument againet a sedentary existence, and the rolled up condition of body (so commonly witnessed) speaks equally, on the other hand, against a state of constant motion. It is difficult to conceive that these extinct forms could have been endowed with stroug swimming powers, for no traces, even under the most farorable circumstances for preservation, of floaing appendages have been met with; and their branchial feet, allowing such to have been present, conld not have constituted swimming organs of any force. The unequally balanced extremities of many species, although in part perhaps compensated by the downward extension of the genal angles of the head-shield, is also an obstacle to tho satisfactory adoption of this view. At the same time, it should be observed, that their shell, from its general thinness, must have been comparatively light ; and the flattened form of body conducive to a certain degree of buoyancy. A slight movement of the itexible thorax and caudal extremity probably formed a sufficient propelling porer for the animal's wants. When alarined, the contraction of the body would enable it to sink with ease in:o deeper water; and in its power of adhering by its under side to rocks and to the sea-bottom generally, it possessed a further means of defence against its enemies. By this power of adhesion, moreover, individuals may bave been carried on floating bodies over a wide range of coast or across open s'as, and thus have giren rise to colonies in localities far distant from their normal centres. In this manner the extended geogra phica limits of certain species may periaps be accounted for.

Little can be suggeated with any certainty respecting the food of the trilobite; but by comparison with existing crustaceans, and from the form of the labrum, it may be inferred that these creatures were carnivorous. Soft-bodied radiata, the coral polyp, decaying matter drifted into sheltered bays-such may have formed, in part at least, the sustenance of the trilobite. A further insight into this question might be obtained, could we trace out the compensating agents in Nature's economy, which serred to replace the trilobites after these had passed away.
6. Geological relations. The trilobites appear to have been called into existence almost at the earliest dawn of animal life. They die out at the base of the great carboniferous formation, and thus belong entirely to the earlier and middle portions of the palæozoic age. The separate specics offer, with few exceptions, admirable test-forms for the various subdivisions of the Silurian and Devonian groups. Even the genera are in many instancea restricted to comparatively narrow limits in their upward range. Thus, the genus Trimuclews is unknown above the deposits which mark the limit of the lower Silurians. Asaphus, Illuenus, Paradoxides, follow the same law; but other generic forms, Calymene, Phacops, \&c., pass upwards, although as a rule with different species, iuto the higher Silurian and Devonian periods. Phillipsia, very rare in earlier groups, becomes, \& the Lower Carboniferous, almost the only remaining type of the class. But these characteristies will be found in full under our enumeration of the more common species belonging to each genus. At present, let us briefly glance at the geological relations of the Crustacea generally.

The decapods comprise three well-marked groups:- the brachyura, anomoura, and macroura. The brachyura, or short-tailed decapods, the highest group, are first met with in the Cretaceous rocks; the anomoura in the Jurassic; and the macroura in the Carboniferous. The entire order is on the increase.

The stomapods are scately known in the fossil state. A single species has been met with in the upper tertiaries of Monte Bolca, and afew doubtiul forms in the Jurassic and Devonian strata.

The amphipods and the lemodipods are also rave in the fossil condition. The only certain examples are from tertiary beds.

The marine isopods exhibit fossil examples from the Jurassic formations, upwards. Terrestrial species occur only in amber.

The xiphosures-including the pterygotus in this order-date from the upper Siurian. They are on the decline.

The trilobites appear at the base of the Silurian formations, and die out in the lower Carboniferous. They constitute the only order of crustaceans of which we have no living representatives.

The phyllopods appear also at the base of the Silurians. The lophyropods (cyprids, \&c.) follow the same law. The cirrhopods commence their existence with the lias-at least, if the doubtful bostrichopus be excluded from the group. Of the siphonostota..., no fossil representatives are known.

These geological relations are presented at a single view in the accompanying scheme:-*

Azoic
7. Classification. The arrangement of the trilobites in natural groups is beset with considerable difficulty. This arises in part from e fragnentary condition in which so many species are commonly met with; and partly from our still imperfect knowledge of the true value of the various organization characters on which we are obliged to base our collocations. Owing to the first source of error, it has often happened that distinct types have been formed into a single species; whilst on the other hand, imperfect specimens of one and the same species have been referred to even different genera. A sys-

[^6]tem of classification very commonly adopted, is founded on the number of the thoracic segments or body-rings. This was first proposed by Prolessor Quenstedt, of Tubingen, in 1837. Of the importance of this character there can be no doubt, more especinlly when we take into consideration its constancy throughout one entire group of crustaceans (the malacostraca), and the results of Barmande's researches, shewing its definite nature with respect to adult trilobitic forms. It can only be looked upon, however, as possessing a specific value; for there are several well-known types which differ from one another in tho number of the body-rings, but which can be readily shewn to be generically alike. Hence, by the udoption of this system, without regard to other characters, many unnatural separations necessarily arise.

In Barrande's chassification, the trilobites are arranged in two sections, each comprising various families. These sections are founded respectively on the presence of raised or furrowed pleure, a character often of diflicult recognition even in perfect specimens (illomus nileus), and one that appears at the best to be of questionable ralue. The divisions founded upon it, like all indeed based upon a single character, break through many natural analogies, and place in distant parts of the system, forms which are evideatly akin to one another. A single example may sulfice to corroborate this assertion. Respecting the existence of a close relationship between phacops and ceraurus, there can be, I think, but one opinion. The peculiar direction of the ficial suture; the anterior expansion of the glabellat; the (at least in normal cases) eleren thoracic segments-and other characters-render this sufficiently evident. But in Barrande's system, the two are placed widely apart. At the same time it is not inteuded to deny that ceraurus is also rolated to acidaspis (with which it is placed by Parrande). It holds undoubtedly a middle place between placops and this latter geaus, and such is the order in which it occurs in the classification given below; whereas, by adopting Barrande's subdivisions, various unrelated genera would necessarily intervene. Betreen bronteus and illcenus again, evidently allied trpes if regard be paid to all their characters, a wide separation occurs in Bamrande's system.

In the classification now proposed, the trilobites (omitting the agnosti) are arranged in thirteen families. Some of these divisions might be thought perhaps, on a first consideration of the subject, to possess simply a generic value; but their adoption as true families may be sustained, I believe, on really satisfactory grounds. If certain of them exhibit but few genera at present, that need be no ob-
stacle to their assumption, because now forms are being constantly brought to light; and, by widening ont the gonera as here done, ample space is left for the reception: of these new comers, and both generic and specific distinctions rendered far more rigorous and minuto. In a linear system of arrangement, like that necessarily employed, it is extromely difficult, if not indeed impossible, to convey a just idea of the relations of these families to one another. An attempt to effect this bas been made, however, in the following distribulion, in which, with certain unavoidable exceptions, cach family will be seen to form a natural transition from that which precedes to that, which follows it. The weakest point in the comexion, occurs perhaps between the second family and the third.

> Ibrgenide.
> Bbontide.
> Liciasid.f.
> Acidaspide.
> Ceraurid.e. Pieacopsidn:.
> Trintclidas.
> Asmphide.
> Proetides.
> Calymenine.
> Habresidn.
> Olenime.
> Pabadoxide.

Here the trean of alfinity flows from the asaphide in an upward and downward direction. Thus, through the genus stygina, the asaphidec connect with the trinuclide. These latter have certain aflinities with some of the phacopsider, and the asaphide and phacopsider are still nearer related. The cerairita and phacopside, again, have the same number of body-rings, the same expanding character of the glabella, the same facial sutures. With acidaspidec and lichaside, the cerauride have also much in common. Brontide are but slightly related to the family below them in the list, but in both the tailrachis is very small, and the pygidium itself of a peculiar character. The illomide and the brontide are closely related by the large buckler and pygidium, the slightly-developed tail-rachis, and the normal number of body-rings, with other characters to be pointed out in the sequel.

Oin the other hand, the proetida form a transition group between the asaphider and the calymenide, whilst these families are also more or less immediately related by the genus homalonotus. Betireen
the last family and the harpesidce and olenide there might appear, at first sight, to be few connecting points; but we have here the same general tapering form of body, the gradually diminishing pygidium, the increasing segments, and the contracted glabella. The genus cyphaspis (usually placed with the proctidce) is undoubtedly related to each of these three types. Finally, the olenide and paradoxidce have so much in common, that in general they are united into a single family. The opposite character, however, of the glabella (and of the buckler generally) should keep them distinct. If, indeed, it could have been so contrived without breaking through other relations, the paradoxide would have been placed higher in the series; for 1 think it will be found that paradoxides is related to the genus Plucops, much in the same way as havpes or olenus is related to calymene. A certain transition, at least, is presented through the genus remopleurides, with its largely-developed buckler and glabella, its eleren thoracie segments, and its dwarfed and modified pygidium.

Although, when riewed in the manner just pointed out, the above arrangement indicates to a certain extent the relations existing between the families adjacent to one another in the series, it is yet in other respects contessedly of an imperfect character. It is obvious, however, that such must necessarily be the case, where it is attempted to shew these natural transitions in a purely linear system of arrangement. Thus, in the above method, the asaplida, required as a transition group, are placed in a centric position, unaroidably remote from their allied forms, the illonide. But where complicated relations exist, it is impossible for all to be met in a satisfactory manner in any linear distribution of the kind.

Four type-forms appear to hold a prominent place amongst the trilobites, and indeed, when considered in all their modifications, to constitute centres of classification, as it were, around which the other types may be at least conveniently if not naturally grouped. Admitting this, we obtain the distribution eshibited in the following table:-

Ilienians.	Asaphians.	Caitmperans.	Pificopsians.
Illonide.	Asaphidx.	Calymenidx.	Phacopsidx.
Brontidæ.	Trimuclidæ.	Harpesidæ.	Cerauridx.
	Proetide.	Olenidæ.	Lichasidx.
			Acidaspidæ. Paradoxidx.
			Paradoxidæ.

Phacops and calymene are frequently placed together as members of the same family, but it canot be too strongly insisted on, that their characters are essentially distinct. Amongst those of a constant value, we may cite-the number of the body-rings; eleven in the one form, thirteen in the other. Secoudly, the conformation of the glabella: large aud expanding in phacops; comparatively small and contracted anteriorly in calymene. Thirdly, the direction of the facial suture. Fourthly, the character of the eges-and so on. Besides which phacops (or its kindred genus dalmannia) is most intimately connected with ceraurus-the character of the glabella, the facial suture, the number of the body rings, are the same in eacha form with which calymene has certainly no relations. Hence the two may be legitimately placed apart : each as the trpe-form of a special group.

In Part II. a brief amalysis of the more important genera and species belonging to these families will be given: shewing more fully the connecting points between the various groups, and the data on which the above arrangement is chiefly founded. In order, however, to render the present $P_{\Delta r t}$ complete within itself, a rapid enumeration of the essential characteristics of each family is here appended:

Illoenide-Buckler and pygidium large and smooth. Caudal axis searcely developed. Glabella feebly raised ; simple. Eyes far apart. Body-rings 5-10.

Brontide-Buckler and pygidium large; the latter with fan-like furrows and rery short axis. Glabella slightly raised, furrored. Eyes far apart. Body-rings 10.

Asaphida-Buckler and pygidium large; the latter with well-developed axis, and usually with striated limb. Glabella simple (or slightly furrowed). Eyes tolerably near together. Body-rings S.

Trinuclida-Buckler large, horned; generally with perforated limb. Glabella oval, strongly pronounced. Pygidium of medium size. Body-rings 5-6.

Proetide-Backler and pygidium of good size; the former bordered, the latter with well-developed axis. Glabella large, smooth (rarely furrowed.) Body-rings 8-12.

Calymenida-Buckler bordered, without horns. Glabella furrowed \% smooth, narrowing anteriorly. Facial suture terminating at the angles of the buckler. Pygidium and its axis well-developed. Bodyrings 13.

Harpesida-Buckler large, crescented, with perforated limb. Glabella narrowing anteriorly. Pygidium small. Body-rings 25-26.

Olenilce-Buckler of moderate size, but comparatively short. Glabella small, narrowing anteriorly. Facial suture terminating at the lower margin of the buckler. Body-rings 12-17. Pleure spined. Pygidium small.

Phacopsida-Buckler and pygidium generally large; the latter with well-developed axis, often terminating in a spine. Glabella lobed or pustulated, widening anteriorly. Facial suture terminating at the sides of the buckler, about on a level with the eyes: these latter very visibly reticulated. Body-rings 11-12. Pleure rounded or spined.

Cerauride-Buckler large, horned. Pygidium with short axis, and with horns or spines. Glabella widening above, furrowed. Facial suture and body-rings as in Phacopsidx.

Lickaside-Buckler broad, but short and somewhat pointed. Glabella prominently oval, with several accessory lobes. Facial suture terminating at the lower margin of the buckler. Pygidium with short axis, and denticulated or spined limb. Body-rings 11.
acidaspida-Glabella in separate lobes, strongly pronounced. Buckler broad, and somewhat short. Pygidium small, or of moderate size with short axis, and spined or denticulated limb. Bodyrings 8-10. Pleure spined. Entire shell more or less ornamented.

Paradoxide-Buckler large, horned. Glabella well-dereloped, widening above. Pygidium very small. Body-rings 11-20.

Appendrx.-Agnosti. Small inconspicuous forms, exhibiting in general a couple of nearly similar shields (buckler and pygidium) separated by two or tbree thoracic segments. When more fully studied, the agnosti will be found, probably, to comprise a distinot group, embracing several families.

ON THE REDUCTION OF THE GENERAL EQUATION OF THE SECOND DEGREE IN PLANE CO-ORDINATE GEOMETRY.

BY J. B. CHERRIMAN, M. A. CANTAB.

PROPESSOR OP NATURAL PHILOSOPHY, UNIVERSITY COLLEGE, TORONTO.
Read before the Canadian Institute, January 2d, 1856.
The general equation of the second degree in plane rectangular co-ordinates, under the form
$a x^{2}+2 c x y+b y^{2}+2 d x+2 e y+f=0$, where a is essentially positive, and where the quantity

$$
\left\{(a+b)^{2}-4\left(a b-c^{2}\right)\right\}^{\frac{1}{2}}
$$

will be denoted by m, can always be made identical with the equation

$$
(x-h)^{2}+(y-k)^{2}=\epsilon^{2}(x \cos \theta+y \sin \theta-p)^{2}:
$$

for this latter is an equation of the second degree wit' all its terms complete, and containing the requisite number of aribia.... r constants.
Since the left-hand member of this equation is the square of the distance between the points (x, y) and $(i, k), \in$ is a constant, and the other factor of the right-hand member is the square of the distance of the point ($h, i)$ from the line $x \cos \theta+y \sin \theta-p=0$, it follows that the general equation of the second degree expresses the locus of a point whose distance from a fixed point (real or imaginary) is always proportional to its distance from a fixed, real or imaginary, straight line.

Adopting the usual nomenclature, the point (h, k) is a focus, ϵ is the excentricity, and the fixed line $x \cos \theta+y \sin \theta-p=0$ is a directrix.

Multiplying the first equation by an arbitrary quantity (λ); arranging the second equation by porers of the rariables, and then equating corresponding coefficients, we obtain the six following equations from which to determine the six unkmorns, $\epsilon, h, k, \lambda, \theta, p$;

$$
\begin{align*}
\lambda a & =1-\epsilon^{2} \cos ^{2} \theta \tag{1}\\
\lambda b & =1-\epsilon^{2} \sin ^{2} \theta \tag{2}\\
\lambda c & =-\epsilon^{2} \sin \theta \cos \theta \tag{3}\\
-\lambda d & =h-p \epsilon^{2} \cos \theta \tag{4}\\
-\lambda e & =\pi-p \epsilon^{2} \sin \theta \tag{5}\\
-(3) & (4) \tag{6}\\
\lambda f & =h^{2}+k^{2}-p^{2} \epsilon^{2}
\end{align*}
$$

By taking (1) $\times(2)-(3)^{2}$, we obtain

$$
\begin{equation*}
\lambda^{2}\left(a b-c^{2}\right)=1-\epsilon^{2} \tag{7}
\end{equation*}
$$

Hence, according as $a b-c^{2}$ is positive, zero, or negative, ϵ is less than, equal to, or greater than 1, corresponding respectively to the three rarieties of the ellipse, parabola, and hyperbola.
Also from (1) $+(2)$ we obtain

$$
\begin{equation*}
\lambda(a+b)=2-\epsilon^{2} \tag{8}
\end{equation*}
$$

and then $(8)^{2}-(7) \times 4$ gives

$$
\lambda^{2}\left\{(a+b)^{2}-4\left(a b-c^{2}\right)\right\}=\epsilon^{*}
$$

or, substituting m,

$$
\lambda m=\epsilon^{2}
$$

from which, by substitution in (8), we have

$$
\begin{equation*}
\epsilon^{2}=\frac{2 m}{a+b+m} \tag{9}
\end{equation*}
$$

In this expression for the excentricity, m may bear either sign (+ or 一), but we nbserve thas when, as in the ellipse, $a b-c^{2}$ is positive, which requir's a and b to have the same sign, and therefore (since a is essentially positive) $a+b$ to be positive, m is less than $a+b$, and the negative value of m makes \in impossible. So also in the parabola, where $a b-c^{2}=0$, the positive value of m gires $\epsilon=1$, while the negative value makes ϵ infinite.

Hence in the ellipse and parabola, the positive value of m must be taken: but in the hyperbola, where $a b-c^{3}$ is negative, either sign gives possible values to ϵ, one of them referring (as will afterwards appear) to the hyperbola, and the other to its conjugate, and the two values are evidently connected by the "elation

$$
\frac{1}{\epsilon_{1}^{2}}+\frac{1}{\epsilon_{9}}=1 .
$$

It will be shewn in the sequel how to discriminate between them. We have now

$$
\lambda=\frac{\epsilon^{2}}{m}=\frac{2}{a^{+}+b+m} ;
$$

and substituting for λ and ϵ^{2} in (1), (2), (3), we find

$$
\begin{aligned}
2 \cos ^{2} \theta & =\frac{2}{\epsilon^{2}}-\frac{2 \lambda a}{\epsilon^{2}}=1+\frac{a+b}{m}-\frac{2 a}{m} \\
& =1-\frac{a-b}{m} \\
2 \sin ^{2} \theta & =1+\frac{a-b}{m} \\
\sin \theta \cos \theta & =-\frac{c}{m} .
\end{aligned}
$$

Of the four values for θ determined by either of the first two equations (m bearing a determinate sign) the third equation will shew which of the pairs, namely, θ and $\pi+\theta$, or $\pi-\theta$ and $2 \pi-\theta$, is to be selected, and it is then indifferent which of the angles in that pair we take, due regard being had to the direction in which p is to be drawn from the origin as indicated by its sign; for, the change of θ into $\pi+\theta$ in our original equation only changes the sign of p, and we thus obtain in both cases the same determinate position for the directrix.

There remain now the equations (4), (5), (6), from which to complete the determination by finding p, h, and k. Eliminating h and k from these equations, we have

$$
p^{2}+\frac{2 p \lambda}{1-\epsilon^{2}}(d \cos \theta+e \sin \theta)-\frac{\lambda\left(d_{2}+e^{2}\right) \lambda f}{\epsilon^{2}\left(1-\epsilon^{2}\right)}=0
$$

From this we perceive tn t there are two and only two directrices corresponding to these $t r o$ values of p, (for θ is restricted to one of
two values differing by 180° which, as before noted, only changes the sign of p, and gives for each value the same line), which are also parallel, and to each of which corresponds a single focus, given by the corresponding values of h, k, from equations (4) and (5)*.

These values of p may however in particu' $:$ cases either coincide, or be both imaginary, or one or both may be infinite or indeterminate : it will liowever be more simple to deduce from our equations the ordinary constants of the curve, which may be effected as follows:

The equation to a directrix being

$$
x \cos \theta+y \sin \theta-p=0,
$$

that to a line drawn through the corresponding focus at right anglea to the directrix will be

$$
\frac{x-h}{\cos \theta}=\frac{y-k}{\sin \theta} .
$$

The length of the perpendicular dropped on this from the origin is

$$
h \sin \theta-k \cos \theta
$$

which by virtue of (4) and (5) is equal to

$$
\lambda(d \sin \theta-e \cos \theta)
$$

or, denoting this by K,

$$
K=\frac{1}{2} \frac{a+b-m}{a b-c^{2}}(d \sin \theta-e \cos \theta)
$$

This expression being the same whichever focus be taken, it follows that the line thus determined (the 'transverse axis') passea through both foci and is at right angles to both directrices; and, from the mode of generation, the curve must be symmetrical with regard to it.

The curve is also plainly symmetrical with regard to a line parallel to both directrices and midway between them: the length of the perpendicular dropped from the origin upon this line (the 'conjugate axis') is the semi-sum of the values of p : calling this H we have from the equation for p,

$$
\begin{aligned}
\boldsymbol{H} & =-\frac{\lambda}{1-\epsilon^{2}}(d \cos \theta+e \sin \theta) \\
& =-\frac{1}{3} \frac{a+b+m}{a b-c^{2}}(d \cos \theta+e \sin \theta)
\end{aligned}
$$

Projecting H and K upon the axes of x and y successively, we obtain the co-ordinates ($x, y^{\prime} y^{\prime}$) of the intersection of these two lines

[^7]and a similar expression for k by interchanging a and b, d and a. A discussion of them woald lead to the same results obtained more simply in the text.
(the 'transverse' sud 'conjugate' axes), a point about which the carve is symmetrical, or the 'centre.' Thus
\[

\left.$$
\begin{array}{rl}
x^{\prime} & =H \cos \theta-\mathbb{K} \sin \theta \\
& =-\frac{1}{2\left(a b-c^{2}\right)}\left\{\begin{array}{l}
(a+b+m)(a \cos 2 \theta+e \sin \theta \cos \theta) \\
+(a+b-m)(d \sin 2 \theta-e \cos \theta \sin \theta)
\end{array}\right\} \\
& =-\frac{1}{2\left(a b-c^{2}\right)}\left\{\begin{array}{l}
\left.(a+b) d+m d\left(-\frac{a-b}{m}\right)+2 m e\left(-\frac{c}{m}\right)\right\} \\
\\
\\
=\frac{c e-b d}{a b-c^{2}} . \\
y^{\prime}
\end{array}=\frac{c d-a e}{a b-c^{2}} .\right.
\end{array}
$$\right\}
\]

which are the usual expressions.
To find the points in which the curve is cut by the transverse axis, whose equation is

$$
\frac{x-h}{\operatorname{sos} \theta}=\frac{y-k}{\sin \theta}=r ;
$$

substitute these values of x and y in the original equation, and we obtain

$$
r^{2}=\epsilon^{2}(h \cos \theta+k \sin \theta-r-p)^{2}
$$

and the two ralues of r are expressed by

$$
\frac{\epsilon}{ \pm \boxed{ }}(h \cos \theta+k \sin \theta-p) .
$$

The difference of these values is the part of the transverse axis intercepted by the curve : calling this length $2 d$ we have

$$
\begin{equation*}
A^{2}=\frac{\epsilon^{2}}{\left(1-\epsilon^{2}\right)^{3}}(h \cos \theta+k \sin \theta-p)^{2} \tag{11}
\end{equation*}
$$

now
(4) $\times \cos \theta+(5) \times \sin \theta$ gives

$$
\begin{equation*}
h \cos \theta+h \sin \theta-p \epsilon^{2}=-\lambda(d \cos \theta+e \sin \theta) \tag{12}
\end{equation*}
$$

and $\quad(4)^{2}+(5)^{2}-(6)$ gives
$-2 p \epsilon^{2}(h \cos \theta+k \sin \theta)+p^{2} \epsilon^{2}\left(1+\epsilon^{2}\right)=\lambda^{2}\left(d^{2}+e^{2}\right)-\lambda f \ldots$ (13) Hence by means of (12) ${ }^{2} \times \epsilon^{2}+(13) \times\left(1-\epsilon^{2}\right)$ we have

$$
\begin{aligned}
& \epsilon^{2}(h \cos \theta+k \sin \theta-p)^{2} \\
= & \lambda^{2}\left\{\epsilon^{2}(d \cos \theta+e \sin \theta)^{2}+\left(1-\varepsilon^{2}\right)\left(d^{2}+e^{2}-{ }_{\lambda}^{f}\right)\right\}
\end{aligned}
$$

$$
=\lambda^{2}\left\{d^{2}\left(1-\epsilon^{2} \sin ^{2} \theta ;+e^{2}\left(1-\epsilon^{2} \cos ^{2} \theta\right)+2 d e \epsilon^{2} \sin \theta \cos \theta-\frac{1-\epsilon^{2}}{\lambda} f\right\}\right.
$$

$$
=\lambda^{2}\left\{\lambda b d^{2}+\lambda a e^{2}-2 \lambda c d e-\frac{1-\epsilon^{2}}{\lambda} f\right\}
$$

$$
=\lambda^{3}\left\{a e^{2}+b d^{3}-2 c d e-\left(a t-c^{2}\right) f\right\}
$$

and, hence,

$$
d^{3}=\frac{1}{3} \frac{a+b+m}{\left(a b-c^{2}\right)^{2}}\left\{a c^{2}+b d^{2}-2 c d e-\left(a b-c^{2}\right) f\right\}
$$

Again, observing that the semi-sum of the values of r above found is the distance between the focus and centre, and that this semi-sum is $\frac{\epsilon^{2}}{1-\epsilon^{2}}$ ($2 \cos \theta+k \sin \theta-p$) and therefore $=A \epsilon$, by (11), we may write for the co-ordinates of the ceutre,

$$
h+A \epsilon \cos \theta, l+. A \epsilon \sin \theta:
$$

and the equation to the 'conjugate' axis becomes

$$
(x-h-A \epsilon \cos \theta) \cos \theta+(y-k-A \epsilon \sin \theta) \sin \theta=0
$$

To find the points where the curve is cut by this axis, we combine this equation, or

$$
\frac{x-h-A \epsilon \cos \theta}{\sin \theta}=\frac{y-k-A \epsilon \sin \theta}{-\cos \theta}=r,
$$

with the equation to the curve,

$$
(x-h)^{2}+(y-k)^{2}=\alpha(x \cos \theta+y \sin \theta-p)^{2}:
$$

substituting for x, y in terms of r, we obtain

$$
(r \sin \theta+A \epsilon \cos \theta)^{2}+(-r \cos \theta+A \epsilon \sin \theta)^{2}
$$

$$
=\epsilon^{3}(\Lambda \epsilon+h \cos \theta+h \sin \theta-p)^{2}=\epsilon^{3}\left(\Lambda \epsilon+\frac{1-\epsilon^{2}}{\epsilon} A\right)^{2},
$$

or,

$$
r^{2}+A^{2} \epsilon^{2}=A^{2}
$$

givin.: two points, which are real in the ellipse, and imaginary in the hyperbola. Hence denoting the intercepted part of the conjugate axis by $2 B$, we have

$$
\begin{aligned}
B^{2}= & A^{2}\left(1-\epsilon^{2}\right) \\
& =\frac{1}{2} \frac{a+b-m}{\left(a b-c_{2}\right)^{2}}\left\{a e^{2}+b d^{2}-2 c d e-\left(a b-c^{2}\right) f\right\}^{*}
\end{aligned}
$$

We may now go on to discuss the varieties of form which the curve may assume for particular relations among the constants.
I. In the elliptic class, where $a b-c^{2}$ is positive.

Here m is always to be taken with the positive sign, and $(a+b+m)$, and ($a+b-m$) are both finite and positive, and A and B are therefore either both real or bcth imaginary; also they may vanish together, but neither of them can become infinite except by passing into the parabolic class.

Also $a b$ being greater than $c^{2}, a c+b d^{2}-2 c d e$ is always positive, and therefore if f be negative, the curve is always real: if f be positive, the curve is real or wholly imaginary according as $a e^{2}+b d^{2}-$ $2 c d e$ is greater or less than $\left(a b-c^{2}\right) f$.

If $a c^{2}+b d^{2}-2 e d e=\left(a b-c^{2}\right) f$, then A and B both vanish, and the curve is reduced to a point whose co-ordinates are given by (10) and

[^8]for 0 . This might have been inferred from consideration of the imaginary directrice
which is always real and finite. The curve in this case resolves into two imaginary straight lines which have a real point of intersection.

If $A=B$, which requires $m=0$, and therefore $a=b$, and $c=0$, the curve becomes a circle, tho co-ordinates of the centre reducing to ($-\frac{d}{a},-\frac{e}{a}$), and the square of its radius being $\frac{1}{a^{2}}\left(d^{a}+e^{x}-a f\right)$.
As before, this reduces tu a point if $d^{2}+e^{2}-a f$ vanish, and is wholly imaginary if $d^{2}+\epsilon^{y}-a f$ be negative.
II. In the hyporbolic class, where $a b-c^{2}$ is negative.

Here either sign of m is admissible; ($a+b-m$) and ($a+b+m$) are both finite but of different signs, and of the two quantities A and B, one is real and the other imaginary : the curve is therefore always real, and we must take that sign for m which renders A real and B imaginary; the other sign having reference to the 'conjugate' hyperbola : that is, m must be taken of the same sign as the quantity $a e^{2}+$ $\delta d^{2}-2 c d e-\left(a b-c^{2}\right) f$. As in the previous class, A and B may vanish together, but neither can vanish separately, nor can they become infinite except by passing into the parabola. When they both ranish, which will be when

$$
a e^{2}+b d-2 c d e-\left(a b-c^{2}\right) f=0
$$

the curve is reduced to two real straight lines, whose intersection is given by (10), and which are equally inclined to the transverse axis (whose direction remains determinate): in this case, both foci and centre coincide with this point, and both directrices coincide with the direction of the conjugate axis: hence from the mode of generation, the angle of inclination of each of these lines to the transverse axis is $\sec ^{-1} \epsilon$ or $\tan ^{-1}\left\{\frac{m-a-b}{m+a+b}\right\}^{2}$, that sign of m being taken, which makes this guantity real.

If $A=B \sqrt{ }-1$, which requires $a=-b$, the byperbola is known as the 'equilateral.'
III. In the parabolic class, where $a b-c^{2}=0$.

This may be treated as the limiting case of the foregoing classee. Here $m=a+b, A$ becomes infinite, and B takes the form $\frac{0}{0}$ but is really also infinite (since $\frac{a+b-m}{\left(a b-c^{2}\right)^{2}}=\frac{4}{a b-c^{2}} \frac{1}{a+b+m}$) unless at the same time $a e^{3}+b d^{2}-2 c d e=0$.
Since $a b=c^{2}$, this requires $a e^{2}=b d^{3}$ and therefore $b d=c e$ and $a e=c d$, and then

$$
\begin{aligned}
a e^{2}+b d^{2}-2 c d e & =a e^{2}-c d e \\
& =a e^{2}-\frac{c^{2} e^{2}}{b}
\end{aligned}
$$

$$
=\frac{a^{2}}{b}\left(a b-c^{2}\right)
$$

and therefore

$$
\begin{aligned}
B^{3} & =\frac{1}{a+b}\left(\frac{c^{2}}{b}-f\right) \\
& =\frac{e^{2}-b f}{c^{2}+b^{2}} \text { or } \frac{d^{2}-a f}{c^{2}+a^{2}}
\end{aligned}
$$

In this case the curve reduces to two parallel straight lines, parallel to and equidistant from the transverse axis (which still remains determinate in position), the distance between them being double the foregoing value of B .

If $e^{2}=b f$ (which is the same as $d^{2}=u f$), these two lines coalesce into the transverse axis, and if $e^{2}-b f$ be negative, they are imaginary.

In general, however, for the parabola, the elements obtained in the ellipse and hyperbola are insufficient when the co-ordinates of the centre become infinite : the original equations (1).....(6) admit howover in this case of easy solution. For, since $a b-c^{2}=0$, we have $m=a+b, \epsilon^{2}=1, \lambda=\frac{1}{a+b}$, and the equations become

$$
\begin{gather*}
\sin ^{2} \theta=\frac{a}{a+b}, \sin \theta \cos \theta=\frac{-c}{a+b} \\
-\lambda d=h-p \cos \theta \tag{4}\\
-\lambda e=k-p \sin \theta \tag{5}\\
\lambda f=h^{2}+h^{2}-p^{2} \tag{6}
\end{gather*}
$$

from which we obtain at once by simple equations

$$
\begin{aligned}
& p=\frac{1}{2(a+b)} \quad \begin{array}{l}
\frac{d 2+e 2-(a+b) f}{d \cos \theta+c \sin \theta} \\
h=\frac{1}{2(a+b)} \\
k=\frac{1}{2(a+b)} \frac{c\left(e^{2}-d^{2}\right)+2 a d e-(a+b) c f}{c d-a c} \\
\\
\frac{c(d 2-\varepsilon)+2 b d t}{c-b d}-(a+b) c f
\end{array}
\end{aligned}
$$

If we draw a line through the focus parallel to the directrix, the portion intercepted by the curve is double the distance of the focus from the directrix, as is evident from the mode of generation.

If we call this portion L (the 'latus rectum'), we have

$$
\begin{aligned}
\frac{1}{2} L & =h \cos \theta+k \sin \theta-p \\
& =\lambda(d \cos \theta+e \sin \theta), \text { by (4) and (5). }
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{4} L^{2} & =\frac{1}{(a+b)^{3}}\left\{a e^{2}+b d^{2}-2 c d^{2}\right\} \\
& =\frac{1}{(a+b)^{2}} \frac{a b c^{2}+b^{2} d^{2}-2 b c d e}{a b+b^{2}}=\frac{1}{(a+b)^{2}} \frac{(b d-c e)^{2}}{c^{3}+b^{2}}
\end{aligned}
$$

We will now proceed to recapitulate the values of the elements necessary and sufficient for the determination of the curve in the general cases.

For the ellipse and hyperbola, the co-ordinates of the centre aro

$$
x=\frac{c e .-b d}{a b-c^{2}}, y=\frac{c d-a e}{a b-c^{3}} ;
$$

the semi-axes, transverse and conjugate, are given by the values

$$
\begin{aligned}
& A^{2}=\frac{1}{2} \frac{a+b+m}{\left(a b-c^{2}\right)^{2}} \quad\left\{a e^{2}+b d^{2}-2 c d e-\left(a b-c^{2}\right) f\right\} \\
& B^{2}=\frac{1}{2} \frac{a+b-m}{\left(a b-c^{2}\right)^{2}} \quad\{\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots
\end{aligned}
$$

In the ellipse $a b-c^{8}$ is positive, and m is always to be taken positive : in the hyperbola $a b-c^{*}$ is negative, and n must be taken of the same sign as the guautity within the $\{-\}$.
The inclination (θ) of the transverse axis to the axis of x is then given without ambiguity by the equations.

$$
2 \cos ^{2} \theta=1-\frac{a-b}{m}, \quad \sin \theta \cos \theta=-\frac{c}{m},
$$

θ being measured by revolution from the positive part of the axis of x to that of y.

In the parabola, $a b-c^{3}=0$; the co-ordinates of the focus are

$$
\begin{aligned}
& h=\frac{1}{u(a+b)} \frac{c\left(c^{2}-d^{2}\right)+2 a d e-(a+b) c f}{c d-a e} \\
& k=\frac{1}{2(a+b)} \quad \frac{\left.c^{\prime} d^{2}-c^{2}\right)+2 b d e-(a+b) c f}{c e-\frac{b d}{b d}}
\end{aligned}
$$

The position of the directrix is given by the angle θ made by its normal with the positive part of the axis of x (θ being measured by revolution towards that of y) and the leugth p of this normal, including sign as indicating a direct or backward measurement from the origin. These are given without ambiguity by the equations

$$
\begin{aligned}
\sin ^{2} \theta & =\frac{a}{a+b}, \quad \sin \theta \cos \theta=\frac{-c}{a+b}, \\
p & =\frac{1}{2(a+b)} \cdot \frac{d 2+e^{2}-\cdots(a+b) f}{d \cos \theta+e \sin \theta} .
\end{aligned}
$$

These elements are sufficient to determine the position and dimensions of the curve as well as the dircetion towards which its concavity is turned;* but the latus-rectum I is also given directly by the value

$$
L^{2}=\frac{1}{(a+b)^{i 2}} \cdot \frac{(b d-c)^{2}}{b^{2}+c^{2}} .
$$

In particular cases, the ellipse may degenerate into a point, or bo wholly inaginary; the hyperbola may degenerate into two intersecting

[^9]straight lines; both curves have for their limiting form the parabola, which itself may degenerate into two parallel straight lines, or into a single straight line, or be wholly imaginary.

REVIEWS.

Chemical Method, Notation, Classification, and Nomenclature. By Auguste Laurent, formerly Professor of Chemistry at the Faculty of Sciences of Bordeaux, \&c. Trauslated by William Odling, M.B., F.C.S., Professor of Practical Chemistry and Natural Philosophy at Guy's Hospital. London: Printed for the Caveadish Society by Harrison \& Sons. 1855.
Modern Chemistry can boast of few more persevering and successful cultivators than the late Auguste Laurent, who occupied so prominent a position among the most distinguished chemists of France. Not only did he enrich the science with the discovery, we might almost say, of an iufinity of new and interesting compounds, but he was led during their investigation to propose theories respecting their formation and constitution, which, although, mo:t fiercely combatted on their promulgation, and for a long period by no means generally received, have during the last few years attracted a large share of attention, and have been, at least in part, almost universally adopted.

Dumas first put forward the idea of substitution, or rather of the law which regulates it, but it was Laurent who first pointed out the real value of the discovery, and inmensely extended the theory. While the greatest credit must be allowed to the many cminent chemists whose labors in organic chemistry are daily enriching the science with most interesting discoreries, it cannot be denied that in many cases they are but following on tine path opened by the investigations of Laureut.

The career of the celebrated French chemist is peculiarly interesting as connected with the history of chemistry and of chemical polemics, for his publications drew down upon him the poaderous and gigantic learning of Berzelias, and the acute and cutting irony of the belligerent Liebig. Some of the most learned, but at the same time most polemical papers of the celebrated chemist of Giessen, arose from his discussions with Laurent. Many who have watched the progress of chemistry during the last twenty years will well remember the doubt, not to say ridicule, with which many of Laurent's assertions were received, both in France and Germany, but they will also confess that
many of our present theories and assumptions are but echoes of what we once were taught to consider absurd. Chemistry is essentially progressive, and a science of facts; theories and views, founded on a comparatively small number of facts, must necessarily receive alteration when new facts, bearing on these theories, are discovered. We should scarcely be willing to adopt Williamson's explanation of the nature of ether and of its formation, were it not for the discovery of the compound ethers; the discovery of the compound anhydrous acids has led to some remarkable changes in our theories respecting the organic acids generally.

Liebig more than once quizzed Laurent about his spirit of prophecy, but was in himself a remarkable instance of a trut prophet, having predicted in 1839 the existence and properties of the compound ammonias, which were discovered in 18.49 by Wurtz.

The idea of the dualistic nature of the vegetable alkaloids, maintained by several of the older chemists, seems to be entirely refuted, for we can scarcely believe that the composition of the natural products can be differeut from that of the artificial ones which they so closely rescmble. It is not at all extraordinary that those who commenced the study of chemistry when that science was almost in its infancy, and when all organic relations were compared to inorganic, should bave been induced to extend to the one depariment, the dualistic theory so generally adopted in the other; every man has his own peculiar hobby, swears by his own side of the shield, and is very unwilling to admit the arguments of others. For long years the conflict raged among chemists of the different schoole, but at the present day there seems to be a fusion between the opposing factions, while portions of the compound radical theory are conceded to be erroneous, parts of the Laurentian hypotheses, and of those of the newer French school, are willingly adopted.

Laurent's papers are diffused through so large a number of jrurnals, and his views have been so imperfectly represented in most manuals of chemistry, that the publication of this excellent translation of his last work (on which he was engaged, as Biot says, even when in the grasp of death, will prove an exceedingly acceptable addition to the library of every chemist.

Laurent alludes to most of the attacks which have at different times been made upon his theories and researches by Berzelius, Liebig, Wöhler and others, and with no feeble pen makes a fierce onslaught upon the dualistic hypothesis. However ingenious his propositions with regard to chemic! ! yomenclature, we cannot conceive that they will ever be generally adopted ; nitronaphthase and nitronaphthise are
by no means preferable to nitro, binitro, and trinitro-naphthalide, for when we once assume that the numerical prefix shall indicate the number of equivalents of hydrogen, replaced by $\mathrm{N} \mathrm{O}^{4}$ the words nitro, binitro, and trinitro, indicate three numbers much more directly and distinctly than the a, e and i in the final syllable of the Laurentian names. In the present work we meet with an overwhelming mass of new names with which it is sincerely to be hoped chemical nomenclature (already sufficiently confused) will not be deluged. Aplones, Diamerones, Dianhydes, Anames, Anoses, Aziles, Aleses, Alcinyles, Metoyles, Rhizonyles, Diameraies, Synehteres, Dixerides, Udolides, \&c., \&c., ad infinitum. But these are euphonious compared with Gmelin's designations of which the following may serve as specimens : Alan, Alen, Ofun, Apuk, Patakplatek, Patanafintalkanafin, and last, but not least, for simple Alum, Atolantelminojafinweso!!

The work is of such a nature as scarcely to allow of any extracts, but we have appended a note in which Laurent explains the difference between his and Dumas' ideas respecting substitution, which were by many considered to be identical.
"The notion of substitutions, if we understand thereby, as we ought to understand, the replacement of chlorine, by bromine, iodine, and thaorine, or the replacement of silver, by copper, iron, or potassium, is as ancient as are the ideas of Richter and Wenzel upon the deromposition of salts. We have known for a long time that the ningle bodies displace one another mutually from their combinations, most generally by exchanging equivalent for equivalent, but not unfrequently in a different manner.

We have known that chlorine, by its action upon certain organic substances, as eyanhydric acid, essence of bitter alnonds, wax, de., expels a certain number of atoms of hydrogen, which are replaced by an equal number of atoms of chloriue. We have known that oxygeu sometimes comports itself in a cimiliar mamer, and also, that in some bodies the hydrozen set free is not replaced by its equivalent of chlorine.

Two questions present themselves: 10. Can we know à priori, whether the hydrogen set free, will or will not be replaced by its equiralent of chlorine, and how much of it may be liberated without substitution? 2°. What becomes of the chlorine in the new chloro-compounds; what fuiction does it fulfil; of what nature are the compounds into which it enters, either by an equivalent, or a non-equivalent substitution?

These two questions are, we perceire, altogether independentof each other. Wo might discover the law presiding over substitutions, without knowing what takes place within the chloro-compounds, and vice versâ.

Dumas coufined himself to the first question, and under the name of the theory of substitutions (he himself remarked that he ought to have said law of substitutions) he announced the two following propositions:
1°. When we treat an organic substance by chlorine, bromine, iodine, or oxygen, these bodies generally set frec hydrogen, and for one equivalent of hydrogen liberated, there is retained in the compound one equivalent of chlorine, bromine, iodine, or oxygen.
2. If a part of the hydrogen of the organic substance exists in the state of wator (as in alcohol), it woill be set free by the chlorine or oxygen, without substitution.

The law is precise, and void of ambiguity : I do not purpose to inquire whether or not it is correct (vide what I have said concerning chlorine and oxygen subatitutions in this and the preceding chapter respectively). All that I hare to say is, that I hare not adopted this law, and that I bave myself formulated certain propositions which are altogether different, and are applicable alnost solely, to the hydrocarbons. I then have nothing whatever to claim in the above law of substitutionsIt belongs entirely to Dumas.

With regard to the second question, Durnas never concerned himself with it, unless indeed, after I had done so. It is this subject that I have for a long time had in view in iny researches (vide my opinion thereon in this chapter); it is in reference to it, that I have advanced the foliowing proposition: when there is equivalent substitution of chlorinc or bromine for hydrogen, the chlorine actually takes the place that icas occupied by the hydrogen, and to a certain degree, fulfils the functions thereof, conscquently the chloro compound must beanalogous with the compound from which it was derived.

Thus there is but little anaiogy between my opinion, my propositions-and the law of Dumas. Here is the reply of this illustrious chemist to Berzelius, by whom be had been rendered somewhat responsible for my extravagances. 'Berzelius attributes to me, an cpinion precisely contrary to that which I have alrags maintained, batmely, tinat the chlorine in this case* tajes tue psace of the hydrogen. I have never said anything of the kind, neither can anything of the kind be deduced from the opinions I hare put formard with regard to this order of facts. To represent me as saying that hydrogen is replaced by chlorine, which fulfils the same functions, is to attribute to me an opinion against which I protest nost strongly, as it is opposed to all that Ihave written upon these matters. The law of substitutions is an empiric law and nothing more; it expresses a relation between the hydrogen expelled, and the chloine retained. I am not responsible for the gross exaggeration with which Laurent has invested my theory; bis analyses moreover do not merit any conidence.'
Dumas and I made use of the sume word substitution, from which circumstance arose much of the confusion that prevails on this subject. This confusion was still further augmented, by our employment of special terninations in ase, ese, and ise, \&c., terminations conceived by Dumas as expressive of the relation between the number of hydrogen atoms liberated, and the number of otier atoms retained, but employsd by me to indicate that the chloro-compound in the case of an equivalent substitution, mast still preserve the constitution of the original substance.
Thus Dumus represeated the constitution of essence of canella by this formula : $\mathrm{C}^{18} \mathrm{H}^{14} \mathrm{O}^{2}+\mathrm{H}^{2}$; that of chlorite of cinnamyl by this: $\mathrm{C}^{18} \mathrm{H}^{14} \mathrm{O}^{2+}+\mathrm{Cl}^{2}$; and the composition of chlorocinnose ($=$ the hydride $-4 \mathrm{H}^{2}+4 \mathrm{Cl}^{2}$) by $\mathrm{C}^{18} \mathrm{U}^{8} \mathrm{Cl}^{8} 0^{2}$, observing that he called the body chlorocinnose provisonally, inasmach as he did not know how to represent its molecular constitution, nor with what body to compare it.

My opinion was very different. If I had considered essence of canella as forming a unique molecule $\mathrm{C}^{18} \mathrm{~K}^{1}{ }^{6} 0^{2}$, and had ramed it cinnamyl, I should have called the

[^10]chloro-compound, chlorocinnose. If I had regarded the essence as a hydride $\mathrm{C}^{18} \mathrm{H}^{14} \mathrm{O}^{\circ}+\mathrm{H}^{2}$, I should have named the chloro-compound chloride of chlorocinnise $\mathbf{C l}^{18} \mathrm{H}^{8} \mathrm{Cl}^{6} \mathrm{O}^{2}+\mathrm{Cl}{ }^{2}$; If I had considered the essence as a hydrate of cinnamyl $\mathrm{C}^{8} \mathrm{H}^{140}+\mathrm{H}^{2} \mathrm{O}$, I should have called the chloro-compouid hydrate of chlorocinnose, \&c., \&c.

Thus despite the similitude of the terminations, despite the eame values ascribed to the same vowels by Dumas and myself, there is not any analogy between the ideas which these two nomenclatures represent, excepting, that they both express the quantity of hydrogen set free, and the quantity of chlorine fixed.

I will adduce the following examples, th show the absolute difference that exists between my opinion and that of Dumas.

Dumas represented alcohol by $\mathrm{C}^{4} \mathrm{H}^{8}+\mathrm{H}^{4} 0^{2}$, and anetic acil by $\mathrm{C}^{4} \mathrm{HI}^{6} \mathrm{O}^{3}+\mathrm{H}-0$ and nevertheless suw a case of substitution in the conversion of the first into the second:

$$
\text { Alcohul }-2 \mathrm{H}^{\mathrm{P}}+20=\text { acetic acid. }
$$

Since at that time, Dumas maintained thit alcohol contained 2 atoms of water, while acetic acid contained only one, it is clear that in his law of subatitations, he considered only the ratio between the hydrogen liberated, and the chlorine or oxygen fixed, without pretending that the primitive and the derised bodr, belonged to the same type.

This is rendered still more evident by the following exanples, which Dumas brought forward in support of his law:

$$
\begin{aligned}
& \text { Alcohol -4 } \mathrm{H}^{2}+40=\text { formic acid, } \\
& \text { Acetic acid }-2 \mathrm{H}^{2}+20="
\end{aligned}
$$

It is certain that Dumas, nutwithstanding the equiva!ent substitution, did not consider alcohol, acetic acid, and formis acid, as belonging to the same tgpe.

It was some considerable time after this, when he had discorered the chloracetic acid, that he adopted my opinion concerning the functions of chlorine in substivution compounds, which view he extended so as include oxygen, although I had myself ceased to apply it to this last body."

We strongly recommend this valuable work to the attentive perusal of all interested in the higher departments of theoretical chemistry. H. C.

A Treatise on Analytical Statics, with numerous examples. By J. Todhunter, M. A., Fellow and Assistant Tutor of St. John's College, Cambridge. Cambridge: Macmillan \& Co., 1353.
In a reriew of Mr. Todhunter's Analytical Statics, which appeared in a late number of the Canalian Journal,* we pointed out what appeared to us a fallacy in Poisson's proof of the Par lelogram of Forces. Since that review was written we have discovered that the defect lies in a much smaller compass, and may be remedied in much fewer words, than we at first imagined : though Poisson's num wording certainly leaves his reasoning open to the objection laid against it.

We may remind our readers, that Poisson, in the first place, shews

- Ante, Reviews, No. 1, p. 63.
that if $2 x$ be the angle between two equal forces, P, and R their resultant, we may write

$$
R=P f(x)
$$

and that if $2 z$ be the angle between anotber pair of equal forces, we shall have

$$
f(x) \quad f(z)=f(x+z)+f(x-z) \ldots \ldots \ldots(1)
$$

and it is from this runctional equation that the solution of the problem is to be derived. He notices that the assumption $f(x)=2 \cos c x$ satisfies this equation, and asserts that it is the only solution: an assertion which is true only if it be understood that c may be either a possible or an impossible quantity, and which, even with this modification his reasoning does not establish. What he does attempt to shew is this, that if the particular assumption $f(x)=2 \cos x$ is verified in two cases it must bs true generally. That it is true when $x=0$ is apparent from the equation itself by putting $z=0$: an appeal to mechanical considerations shews that it is also true when $x=60^{\circ}$. The proof, then, to which we objected starts from these data: that equation (1) holds: that $f(0)=2 \cos (0)$, and $f\left(60^{\circ}\right)$ $=2 \cos 60^{\circ}$: and from these data he professes to shew that $1(x)$ must be equal to $2 \cos x$ for every value of x. We objected to this, that the very same reasoning might be employed to shew that $f(x)$ must be equal to $2 \cos 5 x$: and we inferred that the reasoning must therefore be defective, and that the defect.could be remedied only by a fresh appeal to mechanical considerations. In effect it is not diffcult to point out where this appeal becomes necessary. He first shews that if the relation $f(x)=2 \cos x$ is verified when $x=a$ it will also be true when x is any multiple of a : he, then, has to shew that it will also be true when x is equal to a divided by any power of 2. This is not generally true: it is true in the particular problem we are solving: but as far as the data go this is not the case. In order to make the proof hold generally, it would be necessary to add the words, "provided that we know from independent sources that $f\left(\frac{a}{2^{r}}\right)$ is of the same sign as $\cos \frac{a}{2^{r}}$ ". Thus starting with the known fact that $f(a)=2 \cos a$, he arrives at the equation

$$
\left.f\left(\frac{a}{2}\right)\right\}^{2}=2 \cos a+2
$$

whence he at once infers that

$$
j\left(\frac{a}{2}\right)=2 \cos \frac{a}{2}
$$

taking the upper sign in the ambiguity on extracting the root: in doing which generally he is obviously not justified; and the same re-
mark will apply to all the succeeding steps, unless the additional condition which we have indicated be introduced. This condition really is introduced in the question before us, by mechanical consi-derations-by the assumption, in fact, that the direction of the resultant of two forces necessarily lies in the angle contained by the directions of the forces themselves. From this it will follow that so long as x is not greater than $90^{\circ}, f(x)$ is positive: so that a standing for 60°, it will follow that $f\left(\frac{a}{2^{r}}\right)$ and $\cos \left(\frac{a}{2^{r}}\right)$ being both nocessarily positire will have the same sign. Thus for example we should get from the data

$$
\begin{array}{r}
\left\{f\left(30^{\circ}\right)\right\}^{2}=4 \cos 30 \\
\text { or } f\left(30^{\circ}\right)= \pm 2 \cos 30
\end{array}
$$

and the mechanical considerations justify us in taking the upper sign. And it is easily seen that though it is true that $f\left(60^{\circ}\right)=2$ $\cos \left(5 \times 60^{\circ}\right)$, yet when the additional mechanical considerations are taken in, he above proof will not serve to shew generally that $f(x)$ $=2 \cos 5 x$. In fact, if these considerations are fairly introduced, the proof becomes perfectly unexceptionable.
G. O. I.

note on

Poisson's Proof of the Parallelogram of Forces.*

The general functional equation, from which Poisson obtains his solution by an indirect process, may be treated directly as follows:

The equation is

$$
f(x) f(z)=f(x+z)+f(x-z) .
$$

If we expand in ascending puwers of z, by Maclaurin and Taylor's theorems, we obtain

$$
\begin{aligned}
& f(x)\left\{f(0)+f^{\prime}(0) z+f^{\prime \prime}(0) \frac{z^{2}}{1.2}+\ldots \ldots\right\} \\
& =2 f(x)+2 f^{\prime \prime}(x) \frac{z^{2}}{1.2}+\ldots \ldots
\end{aligned}
$$

Equating corresponding coefficients of z, we have

$$
f(x) f(0)=2 f(x) ;
$$

which is satisfied either by $f(x)=0$, or $f(0)=2$.
Confining our attention at present to the latter solution only, and proceeding to equate coefficients, we find $f^{\prime}(0)=0$, and all the succeeding derivatives of an odd order also vanish. Also we have

$$
2 f^{\prime \prime}(x)=f^{\prime \prime}(0) . f(x) ;
$$

[^11]and by further proceeding we shall only obtain the same result as by integrating this equation at once. Writing, then, $2 c^{2}$ for $f^{\prime \prime}(0)$, being any arbitrary constant, real or imaginary, we have
$$
f^{\prime \prime}(x)-c^{2} f(x)=0
$$
the known integral of which is
$$
f^{\prime}(x)=a \epsilon^{\varepsilon x}+b \varepsilon^{-s} .
$$

To determine a and b, we have

$$
\begin{aligned}
& 2=f(0)=a+b \\
& 0=f^{\prime}(0)=a-b
\end{aligned}
$$

and therefore $a=1, b=1$, and

$$
f(x)=\epsilon^{e x}+\varepsilon^{-c x}
$$

Combining this with our former solution $f(x)=0$, we have for the complete solution,

$$
f(x)=\frac{1}{2}\left\{1+(-1)^{n}\right\}\left(\epsilon^{\epsilon x}+\epsilon^{-x}\right)
$$

where n is an integer, and c any real or imaginary constant. Of this there are four, and only four, forms which make $f(x)$ real, namely,

$$
\begin{aligned}
& \text { (1), } n \text { odd, } \ldots \ldots f(x)=0 ; \\
& \text { (2), } n \text { even, } c=0, \ldots \ldots f(x)=2 ; \\
& \text { (3), } \ldots \ldots \ldots c \text { real, } \ldots \ldots f(x)=\epsilon^{s x}+\epsilon^{-i z} \\
& \text { (4), } \ldots \ldots \ldots c \text { an imaginary of the form } c \sqrt{ }-1 \text { by which }
\end{aligned}
$$ we may replace it..... $f(x)=2 \cos c x$; and from these we have to selert by mechanical considerations the particular one which belongs to the case proposed. Now (1) and (2) are plainly inadmissible, and so also is (3) since it makes $f(x)$ increase indefinitely with x; hence (4) is the one to be selected. To determine the value of c, we observe that $f(x)$, by the mechanical axiom, is always positive between $x=0$ and $x=\frac{\pi}{2}$; therefore $\cos c x$ must be always positive between these limits, and ccannot therefore be greater than 1 . Also $\cos \frac{\epsilon \pi}{2}=0$, for the resultant vanishes when $x=\frac{\pi}{2}$, hence we must havo $=1$, and our required solution is $f(x)=2 \cos x$.

Ј. B. C.

The Pilgrimage, and other Poems. By the Earl of Ellesmere. With Illustrations. London : Murray, 1856.
We are tempted to notice this bandsomely illustrated addition to those literary productions of "Royal and Noble Authors," catalogued by the Earl of Orford in 1758, mainly by a special mark of distinction it has received from an American critic, which we are disposed to
regard as a curiosity in the way of Republicnn criticism! The New York Monthly Trade Gazette for April thus prefaces a borrowed notice, under the heading A 'Noble' Poet. "The London Titerary Gazette reviews a recent volume of poems from the pen of . : Earl of Ellesmere-or perhaps firm that of his Secretary, as is more likely; English noblemen having frequently been detected in trichery of that kind. The Gazette, however, appears to receive the work as the genuine offspring of the Earl-although the artful manner in which it qualifies its opinion in the second sentence would seem to leave a doubt on this head;* as if it meant by damning the work with qualifying praise to leave a loop-hole through which to escape the charge of having been caught, ir case one of less noble (!) blood should yet be found to be the father of the work. Those who are acquainted with the reprehensible practices of English neblemen in this respect, and the servile character of English critics, will need no explanation of this paragraph."

This, it must be owned, is a very pretty little sample of literary criticism, adapted to the latitude of New York; where, it is plain, whatever other republicanisms may be in vogue, there is to be no Republic of Letters tolerated. The rank taken by Francis Leveson Gower is not among the foremost in the literary guild, literature having manifestly been with him only a pleasant pastime,-but his name is no novelty among the authors of England, and this discovery of the anonymous Secretary, of "less noble blood," stowed away in some secret garret of Bridgewater House to manufacture verse for him, should be looked after for the next edition of the "Curiosities of Literature." The present edition of Lord Ellesmere's poems introduces to the reader various new pieces including "Blue Beard," a burlesque tragedy, pubiished for the first time, though not unknown by repute. The verse is generally characterized by a pleasant gracefulness and elegance, though certainly exhibiting no such unwonted force, or striking originality, as to suggest to ordinary minds the impossibility of an Earl being capable of the feat, without having recourse to those "reprehensible practices of English noblemen," so cleverly detected by the Broadway critic.

A stanza or two will sufice to give some idea of the Earl's poetical powers. "The Pilgrimage," from which the main title of the volume is derived, as well as others of the author's larger poems, are written in

[^12]the same stanza as "Cbilde Harold," but they will not otherwiso stan:. emmparison with the work of that noble poet, whose " Hours of Idlene: s," were criticised to such good purpose by the "Scotch Reviewers." An extract or tro from the Edinburgh article for Janua:y 1808, we should have thought would better have answered our New York critic's purpose-with only a very slight adaptation,- than the "servile" article he borrowed from the London Gazette. "He certainly," says the older Reviewer, in reference to the presumptuous loxdling then taken to task, "does allude frequently to his family and ancestors-sometimes in poetry, sometimes in notes ; and while giving up his claim on the score of rank, takes care to remember us of Dr. Johnson's saying, that 'when a nobleman appears as an author his merit should be handsomely acknowledged.' " And then how much better would the following passage, from the same anti-aristocratic Reviewer's pen, have served as an introduction to the Earl's stanzas than the faint praise of English critics. Who knows but it might have provoked the Earl into setting that invaluable anonymous Secrotarial genius of his to work on an Enalisif Bards and Yankee Reviewers! "We must beg leave seriously to assure Lord [Ellesmere] that the mere rhyming of the final syllable, even when accompanied by the presence of a certain number of feet, -nay although (which does not always happen) those feet should scan gularly, and have been all counted accurately or the fingers,-is not the whole art of poetry. We wuuld entreat him to believe that a certain portion of liveliness, somewhat of fancy, is necessary to constitute a poem, and that a poem of fancy in 'ie present day, to be read, must contain at least one thought, either in a little degree different from the ideas of former writers, or differently expressed. We put it to his candour, whether there is anything so deserving the name of poetry in verses like the following :"-and here should follow the sample of stanzas, which, however, we take not from the volume under review,-if indeed ours be not rather the review of a review,-but from a popular selecti.n, culled years ago, as pieces, by various authors, worthy of special note, and before the writer of these pleasing reminiscences of his own Arabian Nights' Entcrtainments which "The Pilgrimage" supplies, had gone the unpardonable length of becoming an Earll

[^13]The applause resounds, as eacis invented sleight
Of magic art, or fate of Afrite strong
By Genii quelled in preternatural fight,
Fills, as the story rolls, each breast with fiesh delight.
IIf little thinks, the tale he loves to tell,
Which cheats his willing comrades of their rest,
Through many a midnight hour defrauds as well,
In foreign garb and other language dressed,
Of slumber's boon the children of the West;
How many a sad or vacant mind, the page,
With the same legendary lore inpressed.
Ilas cheered, assuaged life's ills through every stage, Given youth one smite the more, one wrinkle snatched from age.

For not alone beneath the palm-tree's shade
Amid the nargile's ascending cloud, Does Eastern fiction dwell, or Scherezade Dispense het favours to the listening crowd. All ranks, all nations at her shrine have bowed;
The pictured forms her lively pencil drew
Please in ali climes alike; and statesmen proud
In grave debate have owned her lessons true,
Finding that ancient lamps sometimes exect the new.
Far other tasis meanwhile for me delays
The needful gift of well-carned sleep's repose;
The beam that from my ticinulous cres st plays,
Its lifht upon the sacred volume throws.
Oh! who in distant climes the rapture heows, E'en on the spot of which the taic is told, To mark where Tabor frowns or Jordan flows.
To feel at morn our steps shall print the mould, Where Gideon pitched his camp or Sisera's chariot rolled!

Such rapture ours, when, on Esdraclon's plain, Tabor in front and Jezreel left behind, By Kiehon's source we pitched. Oh ! ne'er agnin
Shall jors, of power like these to fill the mind, Rise in the civilized haunts of human kind.
How went I forth to watch the shivering ray
On Carmel's crest; to hear upon the wind
The jackal's howl; or rippling sounds betray
Where Kishon's ancient stream rolled on to Acre'sfbsy.
How, to our tents when merning's moisture clung,
Our memory turned to that oracular dew
From the full fleece which pious Gideon ${ }^{\text {w }}$ wrung!
'Twas here perchance that Israel's champion knew
The sign which spoke his high commission true;
Down youder vala perhaps, by Kishon'z ford,

On towards the slumbering heathen's camp he drew
His chosen hundredn, silent-till the aword
Flashed to the frightened skies, of Gideon and the Lord.
from a piece entitled the "Military Execution," which appears, wo believe, for the first time, in this new edition of Lord Ellesmere's poens, we select the concluding stanzas as all that our space will allow us to cull from a volume, which will form no discreditable addition to the works of the Royal aud Noble Authors of England :

His kindred are not near
The futal knell to hear,
They can but weep the doed when 'tis done;
They would shriek, and wuil, and pray :
I. Asw.e os him to-dny

That his friends are far away-
All but one.
Yes, in his muto despair,
The faithful hound is there,
He has reached his master's side with a spring ;
To the hand which reared and fed,
Till its ebbing pulse has flod,
Till that hand is cold sud dead,
He will cling.
What art, or lure, or wile,
That one can now beguile
From the side of his master and friend?
He has gnawed his cord in twain;
To the arm which strives in vain
To repel him, he will strain, To the end.

The tear drop who can blame?
Though it dim the veteran's aim, And each breast along the line beave the sigh.
But 'twere cruel now to sare;
And together in that grave,
The faithful and the brave,
Let them lie.
Few, we think, will deny that there are traits of force and pathos in these lines; and others of like character-though with more of grace and refinement of thought than any strongly marked individual characteristic or striking originality, -are to be found scattered through the volume, to which the noble author, in imitation of Rogers, has striven to give additional attraction and ralue by the supplementary aid of artistic illusiration.
D. W.

gCIENTIFIC AND LITERARY NOTES.

GEOLOGYANDMINERALOGY.

thx wollaston medal.

At the Aniversary meeting of the Geological Society of London on the 17 h of last February, the president, Mr. Ihanilton, placed the Wollaston medal in the hunds of Dir Roderick Murchison for transinission to our provincial geologist, Sir W.E. Loşan. This additional honor, the highest in the power of the Geological Sooiety to :onfer, must be gratifying to all who wish well to Canada. We are glad to lear" that, in accordance with thoprinciples embodied in Mr. Cangton's late report, sufficient means will now be placed at Eir Walliam Logan's disposal, to enable him to carry on our Canadian survey with undiminished success. The projected paleontological publications under the partial superiatendance of 1 rofessor James Hall, whose assistance in this department, Sir William has been so fortunate as to secure, will add still more, if possible, to the reputation already acquired by the Survey in European circles.
omgin of the carbonate of ibon of the coal meascaeg.
At a late mecting of the Boston Society of Natural History, Prof. W. B. Rogers communicated scme interesting observations on the probable origin of theironstone bands and nodules of the coalmeasures. Assuming that the actual amount of iron in a given thickneas of the coal-bearing rocks is nct in excess of that present in an equal thickness of the permian or other sandstone strata, Professor Rogers adopts the conclusion, that the originally diffused sesquiozide of iron was converted into the proto-carbonate by the conjoint action of \boldsymbol{c}^{\cdots} buretted hydrogen and earbonic acid evolved from the intermixed vegetable instters. Aud, secondly, that by solution in percolating waters charged with this carbouic acid, the process of segregation into bands and nodules, or the deposition of the ironstone abeve impermeable layers, was more or less readily effectod.

rossil μ uisk ox.

The existing musk cx-bos̀ or Bubalus moschatus-it is well known, is a denizen of the inhospitable regions of our American cont at, north of the parallel 60°. Fossil remains of this species occur however in th... Post-tertiaties of various parts of Europe, and in Siberia. A well charncterised cranium, the first British example, was discovered at the close of last year in a gravel bed at Maidenhead in Berkshire, Englaud. Professor Owen in describing the fossil specinen at a meeting of the Geological Society, first offered his reasons for regarding the so-called musk-ox, as having been unnecessurily separated from the buffuloes, and then gave an account of the few fossil skulls of the musk-buffalo get known-viz, those sigured by Pallas, Ozeretskowsky, and Cuvier. A comparison was then made of the fossil remains with recent crania; and, although the ekulls somewhat differ in a few purnts, especially in the relative curvatures of the born-cores, ret the author was led to conclude that, as far the materials for comparison at his command would scrve, the differences between the fossil and recent mush buffaloes are uot of specific value; that the Bubalus moschatus of the Arctic regions, with its now restricted range, is the slightly modified descendant of the old comyanion of the manmoth and the Tichorine rhinceeros, which, with them enjoyed a much wider range, both in latitude and longitude, over lauds that now form three divisions or continents of the northern bemisphere ; and that the circumstances which have bronght about
the prohably gradual extinction of tho northern rhinoceros and elephant, have not yet effected that of the erntemporary spectes of Arctic buffito.

GRAYHITK IN MEILOLIC STONES.

An analysis of the metworites which fell at Mezemadars in Transylvania on the 24th of Septenber 1852, has been communicated to the Philosophical Magazine by Profesaor Wehler and Dr. Athinson. The amalysis shews the presence of nickeliferous iron ($\mathrm{Ni} 7 \cdot 4$, and Co 0.25 p.c.) iron pyrites, chrome-iron, schrcibersite? olivine, augite, labradorite, and graphite. The latter is of some interest; for although previonsly announced, and on more than one occasion, the presence of graphite in meteoric stones las been held in doubt by many observers.

WOLFRAK.

The accompanying figure represents n crystallized specimen of Wolfram- $(\mathrm{FeO}, \mathrm{MnO}) \mathrm{WO}^{3}$-discovered by the writer in a boulder on the west shore of "Chief's Island," Lake Couchiching, Camada West. The mass of the boulder consisted of gneiss, twayersed by a vein of ecarse granite, with red orthoclase, in which th: epecimen was found. Magnetic oxide of iron, in small gramular pieces, was also present in
 the boulder.
Our specinen exhibits the same peculinity of structure as that observable in the Schemnite and other crystals. Apart from the proper cleavage direetions, it may be redily subdivided parallel to the various planes. The plane 1 is a face of the fuadamental octahedron; $\frac{1}{2}$, a face of the commoniy-occurring macrodome; $\stackrel{C}{\infty}$, one of the nommon brachydone; and $\infty \pi \bar{z}$, a face of the prism (or vertical) series, exhibiting the usual atria. Aithough the edges between these planes are sharply cut, and the planes themselres exceedingly bright, yet, owing to surface inequalities, no well-defined retiection is obtainable, and hence the measured angles are merely approximative. The following are the means of several measurements, taken under different conditions: $\frac{1}{2} \widehat{\infty}: \breve{\infty}=132^{\circ} 40^{\prime} ; \frac{1}{2} \bar{\infty}$: $1=148^{\circ} 16^{\prime} ; \bar{\infty}: 1=142^{\circ} 22^{\prime} ; \frac{1}{\bar{\infty}}: \ddot{\infty} \bar{z}=117^{\circ} 6^{\prime} ; \stackrel{\infty}{\infty}: \infty 2=104^{\circ} 24^{\prime}$; $1: \infty=143^{\circ} 18^{\prime}$.

Kerudt gives the following values for the ratios of the axes in Wolfram: $a: \bar{a}$ $\grave{a}=0.8659: 1: 0.8134 ;$ with $\infty:=101^{\circ} 45^{\prime}$, and $\stackrel{\sim}{\infty}: \stackrel{\sim}{\infty}$ (over the summit) consequently, $98^{\circ} 13^{\prime} 17^{\prime \prime}$. If the angles of our specimen be calculated from these values as a baits, we obtain the results exhibited in the following table.*

$$
\begin{aligned}
\frac{1}{2} \bar{\infty}: \breve{\infty} & =131^{\circ} 52^{\prime} 10^{\circ} \\
\frac{1}{3} \bar{\infty}: 1 & =149^{\circ} 20^{\prime} 30^{\circ} \\
\check{\infty}: 1 & =141^{\circ} 10^{\prime} 30^{\circ} \\
\frac{1}{2} \bar{\infty}: \infty \bar{z} & =115^{\circ} 48^{\prime} \\
\breve{\infty}: \infty \bar{z} & =104^{\circ} 16^{\prime} 40^{\circ}
\end{aligned}
$$

Bricthupt subdivides Wolfram into two species: mangano-wo'framit and ferrowolframit. The first has a reddish-brown streat, with $G=6.98-7.17$, and the
formula $2\left(\mathrm{FeO}, \mathrm{WO}^{\mathrm{s}}\right)+3\left(\mathrm{MnO}, \mathrm{WO}^{2}\right)$. The second exhibits a blackish-brown streak, with stionger metallic lustre, and $\mathbf{G}=7.3-7.5$. Its formula shews: $4\left(\mathrm{FeO}^{2} \mathrm{WO}^{3}\right)+\mathrm{MnO}, \mathrm{WO}-$. Our apecimen' is of the first kind. Breithaupt's angles for $\infty: \infty$ and $\check{\infty}: \breve{\infty}$, differ considerably from both those of Gustar Rose and Kernde; and the moa urements given above tend to confirm these variations. Descloizerux also, it must be remembered, obtained still other results, in. dicating seemingly a monoclinic erystallization. He character of the twin-crystals of Wolfram, however, (as pointedont b liaumam) and its relations to Tantalite (see Dana's Min. 4th edit. ii, 351, for angles), are opposed to this latter view.

Our apecimen exhibits the following blowpipe reactions:-Per se, it fuse easily, and without intumescence or bubbling, into a dull iron-grey globule, the surface of which isccoriaceous rather than crystalline. The globuie is not attractable by the magnet.

It dissolves readily in borax, producing before the of a dark amethystine glass. Quickly cooled, after exposure to the R F, the ghase is yellow. With a sufficient quantity of the assuy, the surface of the bead may be enamelled (or rendered milk-white) by the flaming process.

It diesolves also readily in salt of phospborus. A very small quastity senders the bead opaque, but no effect is proluced by flaming.

With carbonate of soda, effervescence talies place, but a very small portion of the assay dissolves, so that no striking manganese reaction is produced. If, bowever, a minute quantity of bo:ax be added, the greenish-blue enamel is at once obtained. On cooling, the fused mass shoots into erystals.

E. J. C.

CHEMISTRY.

NITRIC ACID.

Cavendish proved that nitrogen can be made to unite directly with oxygen by means of the clectric spark, if the two gases be moist, and eqpecially if an alkali be present, when a nitrate is formed. In other words, ozone (modified oxygen) is capable of uniting with nitrogen to form nitric acid. Honzeat shewed that naseent oxygen, from peroxide of barium and sulphuric acid, is capable of oxidizing ammonia, and of separating chlorine and iodine from its combinations behaving exactly like ozone. Clocz has shown that the osygen and nitrogen of the air can be made to combine by the influcuce of porous thoties.
S. de Luca has obtained nitrate of potassa by passing moist o\%onized air over potassium or potassa for several months. It appeared from some experiments, which require confirmation, that this change twhes place more readily duritg the winter and at night than in summer and in the day time.

PHOSIMORES.

E. Mitscherlich recommends the following procese for the detection of phosphorus in cases of poisoning. The substance to be tested is mixed with sulphuric acil and water and distilled, the vapours are pased through a gas tube into a vertical cooling tube which is kept cold by passing through a veesel of water. If phosphorus be prescat, its vapours pass over with the water aud produce a luminous

[^14]appearance (visible in the dark) at the point where they entor the cooled part of the tube. This luminosity may be observed even when the mixture bas been exposed to the air for a long time, one part in one huadred thousand of flour can be readily detected. The liquid which condenses contains small globules of phosphorus; one-third of a grain was detected thus in five ounces of material. When much phosphorts is present, phosphorous and phosphoric acids may be detected in the diatillate, which is not the case if tho acids themselves are subjected to distillation with sulphuric acid.

SILIUA.
Ludwig has shown that hgdruted silicn, precipitated from its solution in potash by chloride of ammonium, obstinately retains traces of ammonia and potash, and is soluble in 10,000 parts of water. Also that by treatment of the silicate of potash with hydrochloric acid in excess, the whole of the alkali cannot be removed, but a portion remains, probably as an acid silicate. This even afier calcination is somewhat soluble in water, in the proportion of one part of silica to $\mathbf{2 5 , 0 0 0}$ parts of water.

SILICIUM.

Wohler prepares silicium by fusing aluminum with an excees of the double fluoride of silicium and potassium in an ordinary crucible at a heat about that required for the fusion of silver. On breaking there is found in the midst of the fused salt a very brittle ingot of crystalline texture and dark iron colour. This appears to be the compound of silicium and aluminum observed by Deville, containing in this case a very large quantity of silicium in the state of graphite. According to the length of fusion it contaius from 75 to 80 of silicium, which is easily obtained by treating the ingot with hydrochloric acid.

Deville has obtained siliciut. in measurable crystals by passing the vapour of chloride of siliciuia over aluminum heated to bright reduess; the crystals thus formed are treated successively with nitro-lydrochloric acid, boiling hydrochloric acid, and fused bisulphate of soda. When the operation is not complete, siliciuret of aluminum is formed, containing 40 to 50 per cen^ of siliciun. In this operation the silicium being separated from the chloride is dissolved in the aluminum forming a solution, which when eaturated allows the silicium to separate. It appears that boron may be obtancd in the same mamer, but is very diffisult to purify. Carbo:, not being soluble in aluminum, cannot be obtained in this way, but if pig iron be empioyed instead of aluminum the carbon is obtained in a foras differing from graphite.

If fluoride of silicium be emplosed instead of chloride, beautiful crystals of fluoride of aluminum are obtained, having much resemblance to fluor spar. They are not acted upon by sulphuric, hydrotuoric or nitrofluoric acids; the same crystals can be obtaimel by treating calcined numina with excess of hydrofuoric acid and heating to whiteness in a tube of platinum in a current of hydrogen.

SALT DF COBALT.

A. Stromerer finds that the yelion salt obtained by Fi;her on mixing a salt of cobalt with titrite of potash, has not tine formula given by St. Evre but the following: $\mathrm{Co}^{2} \mathrm{O}^{3}, 2 \mathrm{NO}^{3}+3 \mathrm{KO} \mathrm{NO}^{3}+2 \mathrm{II} 0$. Its formation may be employed as a test for cobalt if not more than 300 parte of water be present to 1 part of Co 0 .

A triple salt is formed when lead is present. Stromeyer forms the nitite of potash by fusing 101 parts of ritre in amiron pan aud adding 208 parts of lead, con-
stantly stirring．A yellow powder is suon formed，and the herit is raiked to red－ ness．Digsolve in water，precipitate oxide of lead by carbonic acid or by sulphuret of ammonium，evaporate，fuse，and redissolve．

ANTIMONIAL VERMILION．

Mathicu－Plessy has obtained afulphide of matimony ivalling vermilion in itm colour，by the action of ε solution of hyposulphite of soda upon chloride of anti－ mony，aided by heat．

SUl．PHATE：OF SODA．

Marguerite prepares this salt by heating sulphate of lead with cbloride of sodium， sulphate of soda nid chloride of lead are formed，which latter is evaporated by the heat and condensed in a cooling apparatus．On being triturnted and kept suspended in a solution of suiphate of magnesia or other solubie sulphate，it is reconverted into sulphate of lead；this can he effected with very little loss，and the original quantity of sulphate can be made to convert a large amount of the chloride of sodium．

Processes are also described for oltaining caustic soda and its carbonate directly from common salt，and sulpuric acid from sulphate of lime and other sulphates； but the methods do not appear to be very available．

CHEMCICAL AFFINITE，hitc．
Calvert has shown that sulphate of baryta is not so insolable in nitric acid as was supposed，its solubility being affected in a much higher degree by the bulk of the acid than by its strength，and that its non－formation in a mixture is influenced not only by the respective bulks of an acid of specific gravity 1.167 ，and the respec－ tive quality of saits employed，but that the relative quantity of matter put in pres－ ence has a decided intiuence on chemical affinity．These olservations are of consid． erable importance as affecting quantitative determinations of baryta and sulphuric acid．

どれAざ！

Peligot has obtained this metal by acting on the proto－chloride with sodium or aluminum；it resembles nickel or iron in colour，acquires a yellowish tint from partial oxidation，burns brilliantly when heated，forming a black oxide，and pos－ sesses the remarkably high epecific gravity of IS．4．

SANGUINARINE．

The principle contained in the Sanguinarin Canadensis has been su－nosed to be identical with Chelerythrine obtained from Chehdonium majis．The identity has been proved by Dr．Shiel．

hematoidine．

Homatozine，the red colouring matter of the blood globules，is uncrystallizable， but when blood is effused into the tissues of an organism，microscopic crystals are formed in from four to twelyy days；these were called Ifematoidine by Virchow in 1847．（See Lehmann＇s Chemistry and Funke＇s supplementary plates，in publica－ tions of Cavendish Society．）M．Robin obtained three grammes of this substance in a crystalline form from a cyst of the liver．Its properties were investigated and its composition determined to be the same af flematozine，with the substitu－ tion of one equivalent of mater for the one equivalent of iron．

PHLORETINE.

Hlasiwetz lias resolved this body by the action of potash, into phloretic acid pnd phloroglucine. a compound much resembling orcine. (See Chemical Garette No. 321.)

ACETATE OP MAGNESIA.

Karl vou Haucr has prepared this salt in a crystallized form altiough generally described as amorphous, and gives the formula $\mathrm{Mg} \mathrm{O}, \overline{\mathrm{A} c}+4 \mathrm{H} O$. The salt loses 32.73 per cent of water after long heating. The formula requires 32.29 . [In my note-book I find an (unpublished) analysis of a commercial crystallized acetate of magnesia, made in 1832 in Rammelsberg's laborators.

The salt consisted of Acetate of Magnesia 64.77
Acetate of Potassa. 2.65
Water and loss... 32.58
100.00,
from which I deduced the sarue formula as Von Hauer. H. C.
NAPHTEAIAMENS.
W. H. Perkin has examined the activu of chioride of cyanogen upon naphthalamine (naphthalidine, and has obtained a base analogous to melaniline, and rarious compounds resulting from the setion of cyanogen npon it, similar to those derived from aniline.

NIJTHIALDINE.

Arppe has obtained a body having the furmala Crigersor by the setion of sulphuretted bydrogen upon a solution of nitraniline saturated with ammonia; hyposulphite of ammonia is formed at the same time. Nithaldine does not seem to possess either basic or acid properties.

CAFFRINE.

Puccetci prepares caffeine froin the inspissated extract of tea, by adding to the extract 2 oz. of fincly powdered pearlash for every pound of tea. the mixture is well stirred, and when effervescence is orer, is either dried into cakes, powdered, or is at once treated with alcoinol for several days, the alcohol being often renewec; on eraporation a caffeine is ot ained which caa be readily purified by means of auimal charcoal. In this nancer he obtained 8.55 per cent. from Congou tea.

ARILIDES.

Arppe has examined the anilides of malic acid : the malanilide is conrerted by potash into tartanilide.

STIBAMYLE.

F. Berle mas examined the products of the action of potassium-antimony Sb 2 K , upon iodide of amyle. He has prepared Stibtriangle, $\mathrm{Sb},\left(\mathrm{C}^{10} \mathrm{H}^{11}\right)^{3}$, its oxide, chforide, bromide, iodide, with two equivalents of oxysen, \&cc, and the compounds of nitric and sulphuric acids with the oxide, these bodies containing two equivalents of the acid. Siv mal other compounds have also been obtained, resulting apparentl. from Stibbianyle.

TAORINE.

Dr. A. Cioettit has found In site, uric acid, taurine, and leucine in the tissuc of the ungs; Verdeil's Pulmonic acid seems to hat ve been nothing but taurine.

ACFTYLE.

H. Ritter prepares the protochioride of acetgle by acting upon glacial acetic acid with perchloride of phosphorus, the proto-bromide is obtained in the same Way; during its formation a quatity of oxy-bromide of phorphorus is generated, which can be separated in a pure state. Glxdstone's oxf.bromide was not pure. It is erystalline fuees at $113^{\circ} \mathrm{F}$, boils at $383^{\circ} \mathrm{F}$, spec. grav. $m 2,822$.

ALCOHOL VAPOU'RS.

Reinsch has observed that a spiral of copper wire fastened on to the wick of a spirit lamp, remans incandescent for two or three minutes after the flame has been extinguisined. If a small piece of coke be placed in the spiral, the incandescence continues, and if the coke be removed the wire atill continues to glow having apparently acquired some peculiar property by contact with the coke.

ALLOXANIC ACID.

Staedeler propares the liae salt by saturating the mother liquor from the preparation of alloxan with chalk, crystals are formed which may be readily separated from the excess of chalk by suspension. It is advisable to use a considerable excess of chalk, and to purity the crystals by solution in boiling water, \&c. The acid can be obtained from the leat salt.

METHYLOTETRASU゙IPHORIC $A C I D$.

By the action of fuming sulphuric acid on acetonitryle, Bucktou and IIoffmann have obtained sulphacetic acid ad a new boly to which they have given the above name. Its conprosition is $\mathrm{C}^{2} \mathrm{H}^{4}, 4 \mathrm{SO}^{3}$; in the salts H^{2} are reptaced by $\mathbf{4}^{2}{ }^{2}$.

NEW 3G:TALLIC ALLOF.

Mr. Francois Josepi Auger his inrented ann alloy, which is remarkable in its resemblance to gold, not changing colour by use, and being dense, malleable, ductile, homogeneous, a id sonorons to 1 marked degree. The following is his process: In a cacible the pateutee firat 1 . sits 100 parts of good copper, to which, whilst in a state of perfect fusion, he adds 17 parts of zinc, 6 parts of magnesite or substance of a like nature, though possibly differing in uarne, 3.6 J palts of ammonia or balts of ammonis, 1,80 parca of quicklime or other salx, and nime parts of crude tartar. The erucible is coverel, and the whole is made to c me to a complete etate of fusion, when the metal may be be poured into moulds, or made into ingots. According to the ductility or shade of colour which may be desired in the metal, the propurtions of the ainc and other added substances are varied. Tin may de substitute! for rinc if the metal is sught to be more tenacious in character.

IMPROVGD ADPARATUS FOR PCRIFEING AND CARNONISING GAS.
Mr. S. M.whands, of Birmingham, has taken out a !atent for a new mode of treating gas, consisting of a vessel or chamber, through which gas is made to pass, and broug'at into contact with a large surface of the liquid to the action of which it is intended to be sabjected. In this chamber is a float of cork, or other light material, haring a spiral channel, which gires it a siow rotary motion. When it is wishel to impregnate coal gas with the rapour of naptha, the vessel is partly filled with the liquid. which is kept in a state of agitation by the rotation of the noat as it siaks. Otiser earimac:ous A.ads thay be employed with like effect.
II. C.

Mathematics and natural philosophy.

NEW PLANET.

A dew planet, of great brilliancy has been recently diccovered by M. Chacornac, of the Paris Observatory.

THE COMRT OP 1856.

M. Rabinet, as eminent French astronomer, aud menber of the Academy of Sciences, in an article recently published, has given sone interesting details respecting the comet which is expected to make its appearance about the year 185E:" This comet is one of the grandest of which historians make mention. It was seen in the years 104, 392, 683, 975, 12 $\hat{6} 4$, and the last time in 1556 . Astronomers agreed in predicting its returu in 1848, but it failed to appear. A!ready the observatories began to be alarmed for the fate of the beautiful wanderi:ig star. Sir John himself had put a crape upon his teloscope, wheu a learned calculator of Middleburg, M. Bomme, reazsured the astronomical world of the continucd existence of the vencrable and magnificent comet. Disquieted, as all other astronomers were, by the non-arrival of the comet at the expected time, M. Bonme, aided by the preparatory labors of Mr . Hind, has revised all the calculations, and estimated all the actions of all the planets upon the comet for three hundred years of revolution,the result of this patient labor gives the arrival of the comet in Angust, 1858 , with an uncertainty of two years, more or less; so that from 1856 to 1860 we may expect the great comet which was affirmed to be the cause of the abdication of the Emperor Charles Y., in 1556."

COLORS SEEN THROUGII THE 8TEREOSCOPE.

At a recent meeting of the Manchester Photographic Society, Mir. Dancer read an interesting paper on the stereoscope and its applicatiou to photography. A practical discussion followed, in the course of which Mr. Sidebotharn drew attension to the results producad by looking at two different colors through the stereoscope. Blue and yellow, he said, produced (to his sight) green; red and gree: produced a dirty white; a blue spot and red bars produced purple bars and white; and the two colors that seemed most readily to combine were blue and red, producing a bright purple. Blue and yellow did not form a good green in the first instance, and required looking at a short time.-Mr. Dancer eaid that to some persons' sights different coi Jurs combined more easily than to other persons', to whom each colour seemed to predominate alternately; and the eye, he thought required some education, as it was only by looking steadily that the colours were re-composed and the result seen. -In one instance, Mr. Sidebotham stated that bars of different coiors produeed a check of one colour, the other being entirely lost; and the solution of this singularity, it was suggested, nisht be arrived at br throwing the prisnatic colors upon paper.

AMERICAN TFILESCOPE.
The Telescope recently procured for the Ohservatory at Arr. Arbor, Michigan, is the third in size in tise world. The object glass is thirteen incles in diameter Few persons have a correct idea of the time, the toil and the shill requisite to pre pare one of these glasses. First, there are the manufactures of the rough disks. \triangle mass of glass weighing about 800 lbs . is melted together. When in a state of perfect fusion, the furnace is ralled up, and the whole is left en cool gradua!!y. The cooling process occupics some tro montlis. By this process the glass is annealed.

Afterwards the furnace walls are removed. The entire mass is then fractured, the manner of doing this is a secret with the manufacturers; but it is accomplished in such a way that every piece ishomogeneous in refractive power. The pieces are next softened by heat and pressed into moulds, giving disks of different sizes. The telescope-makers purchase these and grind them into the required thickness and lens form. Two separate disks, one of crown, and the other of fint glass, are necessary to form an object glass. One of these is concave, the other convex. It is by the union of the two that the object ghast is made achromatic. The grinding is a slow and most difficult process as the utmost exactitude must be attained. First the edge is ground to enable the maker to see whether the glass is clear and without air bubbles. It not unfrequently happens that many disks have to be rejected. When a very superior glass is finished, it is of great value. The twelve-inch of the Cincinnati Observatory alone cost $\$ 6,000$.-Chicago Journal.

CANADIAN INSTITUTE.

SESSION 1855-56.

yourta ordinary mreting-Saturday, 19th Januayy, 1856.
Professor Bovari, M. D., Vice President, in the Chair.
The following gentlemen were elected Mernbers:
Viscount Bury, Toronto.
Alfred Rosch, Esq., Toronto.
Grorgr Desbarats, Esq., Toronto.
Capt. Alexander Crke Meik, Toronto.
John Shaw, Esq., Toronto. .
James Fiskin, Esq̧, Toronto.
Junior Members:
Mr. Clarence Moberly, Toronto. Mr. C. W. Patterson, Toronto.
On the motion of Profossor Wilson, seconded by Sanford Fieming, Esq., it was resolved:

That the Canadian Institute knowing the persevering and valuable efforts which have been made by its first President, F. E. Logan, Esq., to bring the Geological resnurces of the country prominently formard, and observing with much satisfaction the honorable position in which Canada has been placed in England, and more recently in Paris, in a great measure through his endeavors: it is the opinion of this Institute that some acknowledgment of Mr. Log m's valuable services is richly due to him-and with that vie:: it is rosolved that the following gentlemen constitute a Special Committee to report at the next mecting, on the best manner in which the oh:ect should be carried out:-Messrs. (9. W. Allan, F. W. Cuaberland, and S. a leming.

The donation was announced from the Hon. J. M Brodhead, Washington, of the "United States Astronomical Expedition," vols. 1 and 2, quarto; and the thanks of the Institute were voted to the Donor.

The folloning Papers were read:

1. By the Rev. Professor Young, M. A., "Examination of Professor Ferrier's Theory of Knowing and Being."
2. By Professor Hind, M. A., "Communication from Major Lachlan, relative to a simultancous systen of meteorological obserrations throughout the Province, including a letter on the subjoct from Professor Hen:y, Secretary of the Smithsonian Institute."

On the motion of F. W. Cumberiand, Esg., seconded by T. Henning, Esq., it was resolved:

That the comnnunication of Major Lachian be refrered to the Editing Committee, with the request that if the same be published in the Journal, it may be accompanied by an explanatory statement of the present position of the subject in Canada, and the action hitherto taken in the matter by this Institute.

> yifta ordisary meeting-26th January, 1856.
> G. W. Allan, Esq., President, in the Chair.
> The following Gentlenen were elected Members:
> George Rreburn, Esq., Toronto.
> F. W. Jantis, Esq., Toronto.
> I. F. Taxlor, Jun., Esq., Toronto.

The following Donations were announced, and the thanks of the Institute woted to the Donors:

1. From George W. Moneypenny, Esq., Commissioner of Indian Affairs, U. S. per the Hon. J. M. Broadhead, of Washington:
"Nchooleroft's Eistory of the Indians in the United States." Purt 5th.
2. From the Rev. A. C. Geikie, of Toronto:
"Grammoire Raisonnée de la Langue Russe," by Ch. Ph. Reiff, St. Petersburg; 1828-29. © vois.

The President intimated that the Special Ccmmittee appointed to consider the most proper measures to be taken in achnowiedgment of the public services of \mathbf{W}. E. Logan, Esq., had the subject still under consideration, and would report to the Institute at its next meeting.

George William Allan, Esq., President, then read the Annual Address.
On the motion of the Rev. Thomaa Schreiber, seconded by Oliver Morat, Esq. Q. C., the thanks of the Institute were poted to the President for his Address, and ordered to be entered on the minutes.

Dr. Wilson presented the Report of the Comenitsee to which was referred the Communication of Major Lachlan on the subject of a system of Meteorological 01sorvations througbout the Prorince.

The Report having been read and adopted, was ordered to bo priated in the Jouroal, along with Major Lachlan's communication.

The following Papers scere then read:

1. By J. G. Hodgins, Esq., Deputy Superintendent of Schools:
"Memorandum on the steps which have been taken by the Educational Department to establish a system of Meteorological Stations chroughout Upper Canada."

Resolved, That Mr. Modgrss' communication be printed along with the other papers relative to Meteorological Observations in Canada, and that it be accompanied by a reduced cops of an illustrative map exhibited by Mr. Hodgins.
2. By W. D. C. Campumic, Esq., of Quebec.
"On a Method of Determining the Errors below $32^{\circ} \mathrm{Ft}$. of Mercurial Thermometera which have been compared and cortected abore the freering point."

Ordered, That the thants of the Institute be conveged to Mr, Campbell for his communication.
3. By Professor Wilson, LL.D.:
"On the Traces of the Ancient Miners of Lake Stperior."
sixth ordinary meeting-Fibtuaty $2 d, 1856$.
G. W. Allan, Esq., President, in the Chair.

The following Gentlemen were elected Members:
W. R. Ross, Esq., Toronto.
J. R. Williams, Esq., Bond Head.
R. H. Brett, Esq., Toronto.
A. J. Pell, Esq., Toronto.
R. J. Griffith, Esq., Toronto.
R. S. Wcods, Esq., Chatham.

Join Glass, Esq., Toronto.
Hon. J. A. Macdonald, Toronto.
The donation from John Fisk Allen, Esy., of Salem, Mass., was announeed, of his illustrated account of the Yictoria Regia, or Great Water Lily of America.

Ordered, That the thanks of the Institute be conveyed to the donor for tis valuable gift.

The President, on behalf of the Special Committee appointed with a view to some fitting recognition of the ecrrices rendered to Canada by W. E. Logan, Esq., the First President of the Canadian Institute, reported as follows:

REPORT.
The Special Comnittee appointed to consider the best means to be adopted to mark the sense the Institute entertain of the very valuable services rendered to Canada by W. E. Logan, Esq., both in his capacity of Provincial Geologist, and as Commissioner to the great Exhibitions of London and Paris, beg respectfuliy to recommend:

That immediately upon Mr. Logan's arrival in Canada, a communication be ad dressed to him by the Secretary on behalf of the Institute, requesting that he would be pleased to sit for his portrait, to be painted at the expense of the Institute, and bung up thereafter in their Hall: That as soon as possible after Mr. Logan's arrival in Toronto, a special general meeting should be convened, at which that gentleman should be invited to attend, to receive an address to be presented to him by the Institute, expressing the high sense they entertain of the services rendered by Mr. Logan to the cause of science generally, and more especially acknowledging the very great obligations all Canadians are under to him, for having by his untiring energy ard perseverance in the discharge of his duties, as one of the Commissioners to the great Exhibitions of 1851 and 1855, contributed to make the mineral resources of Canada most wicely and favorably known, both in England and on the Continent.

The Report was adopted, and remitted to the Council to carry out the recommendations contained therein, so soon as Mr. Logan shall arrive in Canada.

Mr. Pell intimated, in furtherance of the same object, that he rould be happy to present to the Institute a frame for the contemplated portrait of its former President, so soon as it shall be completed.

The following Papers were tien read:

1. By Jayes Browne, Esq.
"Experiences in Australia; forming the first part of a series of Papers on the Aborigines of Australia."
2. By Professor Kingston, M. A. :
"Mean Meteorological results of Toronto for 1855."
318

maximum temperature and the lowest minimum but one during the same period， The column of daily means exhibits several remarkable changes． BNow．－The fall of snow during the nonth was 8 inches below the ayerage of 14 when，as a compensation，the fall of rain was more than double its average amount． Rans．－No rain fell in Feb．；nor has there been any rain since 15th Dec．The only 1se6：butin cach of these cases there had been an unusual amount of rain in the

Wind．－The mean velocity of tho wind exceeded the average by 8.34 miles，and is the ercatest yet recorded in February by $2.5 \pm$ miles．

COMPARATIVE TABLE FOR PEBRUARX．

$\underset{\sim}{4}$		－笑些 9 名 omicosomokesnemo	
		 	\vdots -
$\begin{aligned} & \dot{\hat{E}} \\ & \frac{0}{6} \\ & \dot{6} \end{aligned}$	8，y04I		$\stackrel{\square}{-}$
	$\cdot \mathrm{SLSt}$		
$\underset{A}{\underset{A}{A}}$	$\cdot s, 4041$		$\begin{gathered} \text { Bi } \\ \stackrel{\text { B }}{2} \end{gathered}$
	－8．8uct		
	Ex	$11+7111111++11111$	｜l｜l｜l｜
	$\begin{aligned} & \text { rig } \\ & \text { No } \end{aligned}$	 	－
	参品号	 $+1+1++11+1++4+111$	$1 \vdots$
	E		$\begin{aligned} & \text { せ } \\ & \text { む่ } \end{aligned}$
	$\begin{gathered} \underset{\sim}{\mathbb{W}} \\ \text { - } \end{gathered}$	※	

320

821
REMARKS ON TORONTO MERTEOROLOGICAL REGISTEE FOK BIARCF.

823
yONTHLY METEOROLOGICAL REGISTER, ST. MARTIN, ISLF JESUS, CANADA RAST-MAROH, 1835.
Latitudo-4s deg. 38 min. North. Longitude-78 deg, 38 min. West. Height aboce the Level of the Saa-118 jet.

328

MONTHLY METEOROLOGICAL REGISTER, ST. MARTIN, ISLE JESUS, CANADA EAST-FEBRUARY, 1856.

REMARKS ON TIF ST. MARTIN, 1SLE JFALIS, METFOROLUGICA: REGIN'RER FOL MARCH.
(Hichest, the 31st day 31.130

$\left\{\begin{array}{l}\text { Mimanthy Mean.. } \\ \text { Monthly Ranse }\end{array}\right.$ 291847
(Ilichest, the 2fth dry $54^{\circ} .2$
Thermoneter. $\left\{\begin{array}{l}\text { lownt, tha int } \\ \text { Month!y Mean } \\ \text { Monthly Rauge }\end{array}\right.$ -950.7
Greatest Intensity of the Sun's Rays $119 \cdots .4$
Lowest Point of Terrestrial Radiation 804
Snow fell on 10 days. smounting to 1147 inches; it was snowing 77 hours 55 minntes.
No rain during the month,-it is now a period of 100 days since rain fell.
The most prevalenc Wind was $W-1119.20$ miles.
The lenst prevalent Wind was W by $s-1.00$ miles.
The minst windy day was the esth; mean miles per hour. 17.52.
The least windy day was the 2 end mean miles per hour, 0.00 .
Most windy hour, from s till 9. a. m., Ind day-39.n0 miles;-total mlles traversed by the wind, 5 S66.40-resolved with the Four Cardinal Points, gives N 074.80 miles, S 917.30 miles, $W 3700.60$ miles, $E 507.70$ miles.
There were 17% hours of ealin during the month. nights.
Zodiacal Y.ight visible.
Lunar Halo scen on 2 nights.
Ozone-was in rather large quantity.
The elcctrical state of the atmosphere has been marized by bigh tenuion, the Electrometer has been almost constantly affected.
Crows first reen here on the $19 t h$ day.

826
Latitude, 46 dcg .43 .2 min . North; Longitude, 71 deg .16 min . West. Eltvation abonc the level of the Sea, 200 fect.

RNMARKS O THHE QUEBEO METEOROLOGICAL REGISTBR FOL HEBRUART.

Maximum Barometer, 6 a.m. on t^{2} osth 30.020
Mininum Barometer, 2 p.m. on the 1ath 28.878
Mouthly Range 1.441
Monthly Mean 29.3561
Maximum Thermometer on tho 12th 8109
Minimum Thermomoter on the 13th -19.0
Monthly Range 49.9
Mean Maxinum Thermoneter 17.80
Mean Minimum Thermoneter 3.03
Mean daily kango 14.95
Mican monthly Temperature 11.80
Greatest daily Range of Thermometer, on 12th $49^{\circ} 3$
Ifonst daily Kange of Thermometer, on leth :35
Warmest Day, 3lth. Mean Temgerature 25.4
Coklext Jay, 13th. Mean Temperaturn, -11.8
Olimatic Diflirernco 37.2
Possible to sec Aurora on 13 nights.
Aurora visible on 11 nifhts.
No liain fell.
Total quantity of Snos, 20.0 inchem.
Snow fell on 12 days.

REMARKS ON THE QUEBEC METEOROLOGI REGISTER FOR HARCH.
Maximum Barometer, 10 p.m. on the 31st 29.088
Minimum Barometer, 2 p m . on 23 th 28.987
Monthly Range 985
Monthly Mean. 29. 4604
Maximum Therrsometer, on tho $10 t h$ $39^{\circ} 0$
Minimum Thermonuetor, on the 10 th. -11.0
Nontily Range 50.0
Mean Maximun Thernometer 24.28
Mcan Minimum Thermomuter -9.11
Mean daily Range. 1517
Mean monthly Temperature. 17.60
Greatest daily Rango of Thermometer, 8th 31.1
Least daily Range of Thermometer, and 7.3
Warmest day, 20th 32.8
Coldest day, 9th -3.4
Climatic difference 88.2
Pessible to see Aurora on 19 uights.
Aurora observed on 17 nights.
Evo Rain fell.
Total quantity of Snow, 82.8 inches.
Enow fell on 11 days.

MONTREAL NATUKAL LISTORY SOCLETY.

Ordinary Monthly Meeting-SHarch, 1856.

L. A. H. Latocz, Esq, First Vice-President, in the cbair.

The following donations were laid on the table, and ordered to be acknowledged with thanks. viz. - From the Minister des Colonics Franfaises, through Mr. A. Perry; one pair of sandales du Sénégal, one cartouchiere du Sénégal, and four birds-From W. H. Boulton, Esq., throngh hir. Jerrs, one minie riffe bullet, and a jiece of shell gathercd on the heights of Scbastupol-From Mr. Yerry, a few French coins-From E. Crisp, M. D., (the aution') a enpy of his work ou "Structure and Use of the Spleen"-From L. A. Ii. Jatour, Esq., a copper coin of Ferdinand III. hing of Spain, with eleven other copper coins, and five Rep nts published by order of the Legisiature-From Col. Sione, of Plattsburgh, through Mr. Rennie, some bullets takea from old houses on each side of the River Saraanc, and an account of the celebration of the Battle of Platteburg-From Mr. D. Browne, a specimen of soap-stone. The thanis of the Society were unauinously voted to Mr. A. l'ery, for his exertions to advance the interests of the Natural History Society while in Paris. Mr. Perry ackuomledged the compliment that had heen paid him, regretting that be be had been able to do so little for a Suciety which deserred so well at the hauds of the public. It way want of time, however, that prevented him, not want of will. He made many applications for apecimens, and, as might be expected, got many refusals. He hoped at the next Worlits Fair, the Society mould make arrangements to bave iteeli specially represented there. He bad several oiher specimens on their way to Xontreal for the Society, and hoped they wond reach eaiely. Sir. Peryy having also stated to the Society that M. Milner, the Director of the Jaucin des llantes, in lais, was anxious to put himself into communication with the Society, to ohtaln possession of specimens of living animals peculiar to this country, it was ordered that the Corresponding Secretary write to M. Ailner, offering in the pame of the Society to do all in its power to formard his views, and assist him in carrying them out. Dr. Baraston was also requested to onen a correspondeuce with Sir William Hooler, of Kew Gardens, respecting the plants and roots he wishes to procure. Hessrs. Dutton and Perry rere named a Conmittee to prepare a paper on the subject of fish-breeding in our river:, and bring it lefore the Society at its next ordinary mecting. The mecting then proceeded to ballot, when T. M. Taylor, Esq., Janses Taylor, Esq., aud F.F. Mullins, Esq., were unanimonsly elected ordinary members.

A. N. Renvie, Sccretary.

ERRATA.

Page 35-The sentence in the third line of note to description of Necrophila affinis should read thus:-N. Canadensis is evidently the q (Venus) of Aimericana.

Page 38- δ (Mars, sig. male) should be at the beginning of the description of O. Bicornis; and the second paragraph thus:-q samo color as ${ }^{\circ}$.

[^0]: - Archæological Journal, vol. vii, p. 6s.

[^1]: * When the poet Southey made the adventures of the Welsh Prince the subject of an cpic, the knowledge regarding even the older regions of this continent was sufficiently vague tosanction any theory, and he accordingly wrote in 1805, "Strong evidence has been adduced that Madoc reached America, and that his posterity exist there to this day, on the southern branches of the Missouri, retaining their complexion, their language, and in some degree their arts." Ten sear: later, howe"cr, the poct added a foot-note, to state, that these "Welsh Indians" had been sought for in vain on all the branches of the Mlissouri, as well ae elsewherein all the explored regions of America.

[^2]: - Henry's Travels and Adventures, p. 194. New York, 1509.
 + lbid, p. 20-4.

[^3]: * Barrande. Owing to the incompleteness of most specimens, it is rarely that these characters can be observed. If the eje, however, be at all prescrved, a common magnifyiag glass will show a remarkable difference between the strongly-facetted phacopsider, and tho more delicately reticulated forms. It may not; perhaps, be useless to add, that the aid of the lens is almost invariably required for the proper obsorvation of the facial sutures and other struotural details.

[^4]: * See the Appendix to this prper, at the closo of Part II.

[^5]: Seo more especially plate 2 in Casteinau's Essaj sur lo Systeme Silurien de l'Amérique Soptontrionale: 1St3.

[^6]: * All the fossiliferous rocks below the Devonian group are here inciuded in the term Sill. rian. The Lophyropoda should le drawn down to the lowest horizontal line.

[^7]: - These values are as follows
 $p=-\frac{1}{2} \cdot \frac{a+b+m}{a b-c^{2}}\left[-(d \cos \theta+\varepsilon \sin \theta) \pm\left\{\frac{1}{m}\left(x c^{2}+b d^{2}-2 c d e-\overline{a b}-c^{2} . f\right)\right\}^{\frac{3}{2}}\right]$

 $$
 h=\frac{1}{a b-a}\left[-(b d-c \theta) \pm \frac{1}{3}\left\{2(m-a+b)(a d+b d z-2 c d e-\overline{a b-c s . f)}\}^{\frac{1}{2}}\right]\right.
 $$

[^8]: * The value of B mionit have been deduced from that of A by changing the sign of se also K might have been deduced from $I I$ bs changing the sign of m, and writing $\left(\frac{\pi}{2}+\theta\right)$

[^9]: * In the ordinary methods of reluction, this drection is undetermined.

[^10]: * "I had just mado the chlorhydate of chloretherise, and an ecetate of chloromethylenc. I maintained that the first body had the sanc constitution as Dutch liquid, and that in the econd, the atoms were disposed cxactly as in the acctate of methylene. It was in reference to this opinion, that Berzelius chose to render Dumas responsible for my errors."

[^11]: * Vide No. 1, Reviews, " A Treatise on Analytical Statics," dec., ante, p. 63.

[^12]: * "Lord Ellesmere's poems deserve republication in tie handsome form in ch they appear in this illustrated edition. Correct taste and good feeling are charcteristic of his writings, compensating largely for the want of striking originality or unusual power in his poetry."-Literary Gazetle.

[^13]: Round yonder watch-fire's blaze the muletcers
 In circle close.-The leader of the throng,
 Fluent and fast, to never sated cars
 The tale rec:ies, or chants the Arab song, -
 Wild stanras, strange adventures. Loud and long

[^14]: * These calculated angles may be of use to the siudent in the detemination of oroken or
 the writer's knowledge.-E. J. C.

