The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculèeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches ei/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

\square
 Coloured pages/ Pages de couleur

Pages damaged/Pages endommagéesPages restored and/or laminated/
Pages restaurèes et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
$\square \begin{aligned} & \text { Pages detached/ } \\ & \text { Pages détachées }\end{aligned}$

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionContinuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la liyraison

Masthead/
Généique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

CANADIAN JOURNAL

OF

INDUSTRY, SCIENCE, AND ART:

CONDUCTED BI

THE EDITING CODDITTEE OF THE CANADIAN INSTITUTE.

NEW SERIES.

VOエ. II.

TORONTO:

PRINTED FOR THE CANADIAN lNSTITUTE, by LOVELL AND GIBSON, TONGE STREET, MDCCCLVII.

CANADIAN INSTITUTE.

EDITING COMMITTEE, 1857.

GENERAL EDITOR . . . DAN. WILSON, LL.D.

1. Geology and Mineralogy: E. J. Charman; Prof. of Geology and Mineralogy, Univ. Coll. Toronto.
II. Physiology and Natural History: James Bovele, M.D., Trin. Coll. Toronto.
III. Ethnology and Archecology: Danmer Wilson, LL.D., Prof. of History and English Literature, Univ. Coll. Toronto.
IV. Ayricultural Science : IF. Y. Hind, M. A., Prof. of Chemistry, Trin. Coll. Toronto.
V. Chemistry. Hfnry Croft, D. C. L., Prof. of Chemistry, Univ. Coll. Toronto.
VI. Mathematics and Natural Philosophy : J. B. Cherrman, M.A., Prof. of Natural Philosophy, Univ. Coll. Tcronto.
VII. Engineering and Architecture : F. W. Cumberland, C.E., and Alfred Brunel, C.E.

THE CANADIAN JOURNAL.

NEW SIERIES.

No. VII.-JANUARY, 1857.

THE DECREASE, RESTORAIION, AND PRESERVATION OF SALMON IN CANADA. by me nel. William agar adamison, b.c.l.

Read before the Canadian Institute, December 6th, 1850.
Brillat Savarin, in his "Physiologie du Gout," asserts that the man who discovers a new dish does more for the happiness of the human race than he who discovered the Georgium Sidus. If this be true, then he who could devise means for the preservation and increase of an old, wholesome and highly coveted article of food would not labor in vain, nor would, I imagine, his endeavors be despised by the members of the Canadian Institute, however humble his abilities, and however unskilled he might be in scientific lore. Actuated by this belief, as well as desirous to respond to the demand for co-operation among the members of the Canadian Institute, I would venture to lay before you some notes upon the decrease, restoration, and preservation of the Salmon (Salmo Salar) in Canada.

It is unn "ossary to magnify the importance of this fish as an economic production, or as an article of commerce. As food it is beyond comparison the most valuable of fresh water fish, both on account of the delicacy of its flavor, and the numbers in which it can be supplied. By prudence, a little exertion, and a very small expense now, it may not only be rendered cheap and accessible to almost every family in Canada, but also an article of no smali commercial importance as an export to the United States, in which country, by YOL. $\mathrm{II} .-\mathrm{A}$
pursuing the course which Canada has hitherto imitated, this noble fish has been almost exterminated. Twenty-five or thirty years ago every stream tributary to the St. Lawrence, from Niagara to Labrador on the north side, and to Gaspé basin on the south, abounded with salmon. At the present moment, with the exception of a few in the Jacques Cartier, there is not one to be found in any river between the Falls of Niagara and the city of Quebec. This deplorable decrease in a natural production of great value has arisen from two causes; 1st.-the natural disposition of uncivilized man to destroy at all times and at all scasons whatever has life and is fit foi food; and ?nd.-the neglect of those persons who have constructed mill-dams, to attach to them slides, or chutes, by ascending which the fish couk pass onwards to their spawning beds in the interior. It is supposed by many that the dust from the sawmills getting into the gills of the salmon prevents them from respirating freely, and so banishes them from the streams on which such mills are situated, but I am persuaded that this is a mistake, for salmon are found in considerable numbers at the mouthy of many such streams, below the dams. In the Marguerite, in the Saguenay, at the Petit Saguenays, the Es-quemain, Port Neuf; Rimonski, Metis, and others that might be named, the real cause of the decrease is the insuperable obstacles presented by mill-dame, which prevent them from ascending to the wrated waters, high up the streams, which are essential for the fecundation of their ova, and so for the propagation of the species. Would you then-it may be asked, pull down our mills in order that we might have salmon in our rivers? mostcertainly not, I reply, for it is quite possible to maintain all our mills, with all their mill-dams, and yet afford to the fish an easy and inexpensive mode of passing upwards to their breeding places.

Marvellous storics are told of the great heights which salmon will leap in order to surmount the obstacles which nature or art may have erected between the lower parts of a stream and the upper waters which are suited to breeding purposes. Natural historians used gravely to tell us that salmon, in order to jump high, were in the habit of placing their tails in their mouths, and then, bending themselves like a bow, bound out of the water to a considerable distance, from twelve to twenty feet. The late Mr. Scrope, in his beautiful book "Days and Nights of Salmon Fishing," calculates that six feet in height is more than the average spring of salmon, though he conceives that very large fish in deep water, could leap much higher. He says, "Large fish can leap much higher than small ones; but
their powers are limited or augmented according to the depth of water they spring from; in shallow water they have little power of ascension, in deep they have the most considerable. They rise very rapidly from the very bottom to the surface of the water hy means of rowing and sculling as it were, with their fins and tail, and this powcrful impetus bears them upwards in the air, on the same principle that a few tugs of the oar make a boat shoot onwards after one has ceased to row." However this may be, we know that salmon use almost ineredible efforts to ascend their native rivers. Modes have recently been adopted in France, in England, scothand and Ireland, by which they can do so with ease, and which can be much more cheaply appiied to Miil-dams in Canade, than in any of the countries above mentioned. This is simply by eonstracting below each milldam a congeries of wooden boxes proportioned to the height of the dam-which could be done, in any weirs I have seen requiring them, for a sum not exceeding twenty dolhars. We will suppose that the mill-dam to be passed over is fifteen feet high from the surface of the water, and that the salmon can surmount the height of five feet at a single bound, then it would be only necessary to erect two bowes; each five feet high, one orer the other (as in the illustration) to enable the salmon, in thece leaps, to reach the waters which nature prompts him to seek for the propagation of his species. In many Camadian rivers-such as Metis, Matanc, Pimouski, Trois Saumons, etc.- this simple apparatus might be put in operation for one half the sum I have mentioned, and I trust it has only to be suggested to the gentice. men residing on their banks to arouse their patriution and excite them to activity in the matter. There can be no doubt that were the milldams removed, or boxes constructed adjacent to them, and protection afforded to the spawning fish, many of the rivers in Upper Canada would again abound with Salmon. I have myself, within a few years, taken the true Salmo Salar in Lake Ontario, near Kingston, and many persons in Toronto know that they are taken annually at the mouths of the Credit, the Humber and at Bond IIead, in the months of May and June, which is carlier than they are generally killed below Quebec. Whether these fish come up the St. Lawrence in the early spring, under the pavement of ice which then rests upon its surfacc, or whether they have spent the winter in Lake Ontario, is a question which I must leave to naturnlists; merely mentioning that there is some foundation for belicving that salmon will not only live, but breed, in fresh water, without visiting the sea. Mr. Lloyd, in his interesting work on the field sports of the North of Europe, says,

GANAOLAN SAEMON EGAPS.
"Near Katrineberg, there is a valuable fishery for salmon, ten or twelve thousand of these fish being taken annually. These salmon are bred in a lake, and, in consequence of cataracts, cannot have access to the sea. They are small in size and inferior in flavor," which rasy also be asserted of salmon taken in the neighborhood of Toronto. Mr. Scrope, in his work previously quoted, states that Mr. George Dormer, of Stone Mills, in the Parish of Bridport, put a female of the salmon tribe, which measured twenty inches in length, and was caught by him at his mill-dam, into a small well, where it remained twelve ycars, became quite tame and familiar, so as to feed from the hand, and was visited by many persons of respectability from Exeter and its neighborhood.

But the fact that salmon are annually taken near the Credit, the Humber and Bond Head is sufficient ground on which to base my argument for the probability that were the tributary streams of the St. Lawrence accessible to them they would ascend and again stock them with a numerous progeny. Even were this found not to be the case,-then we have the system of artificial propagation to fall back upon-a system which according to the Parliamentary Reports of the Fishery Commissioners has been practised with immense success in different parts of Ircland-according to M. Coste, Member of the Institute, and professor of the college of France, in his reports to the French Academy and the French Government, has answered admirably in France, and according to Mr. W. H. Fry and others, queted by him in his treatise on artificial fish-breeding, has been generally effective in Scotland. This system, as is well known, consists simply of transporting from one river to another the impregoated eggs of the salmon, and placing them in shallow waters with a gentle current where they are soon hatched, and become salmon fry or par and atie to take care of themselves. In consequence of the ova of the salmon, which are deposited in the spawning beds'in the months of October, November and December, becoming congealed by frost in the subsequent months, Canada appears to offer greater facilities for thsir safe transport than those countries in which the system has been sa: suecessful, but whose climates are more temperate. Surely, supposing this is a mere untried experiment-which is far from being the case-it would be well worth the while of some of the many wealthy and intelligent dwellers upon the banks of our beautiful rivers to test it value, particularly when they call to mind the well known fact in the natural history of the salmon, that he invariably returns to the setconil in which his youth was spent, and that so they may calculate
upon having their present barren rivers stocked with as valuable articles of consumption and of commerce as their fowl-houses or their farm-yards.

I shall, for brevity's sake, abstain from enlarging on this subject, merely observing that ample information can be obtained upon it by consulting the works of M.M. Coste and Fry, which are to be found in the libraries and bookshops in this city; and that in the streams in which it may be put into operation-if there are mill-dams upos them-the artificial construction to cuable the fish to descend and ascend to and from the sea will still be requisite.

Having said so much on the decrease and restora un of salmon in Canada, let us now turn our attention for a few moments to thein preservation in the rivers in which they still abound. These rivers I believe to be as valuable and inexhaustible as any others upon the face of the globe, but so circumstanced that their capabilities have not been developed, and that one year of neglect will cause their serious injury, if not their utter destruction, as salmon streams. Whey extend along the northern shore of the St. Lawrence from Quebec to Labrador, a distance of about 500 miles, and are many in number. They are chiefly held under lease from the Go: ernment of Camada, by the Hudson's Bay Company, who fish some of them in an unsystematic manner, with standing nets, because they can be conveniently and cheaply so fished, whilst others are left wholly to the destructive spear of the Indian. In the smalier streams on which the fishermen of the company are employed, a series of standing barrier-ncts, (which kill indiscriminately every fish of every size and weight.) is used, a process, which in European rivers, would have long siace banished salmon from them. But in Canada the high water in the spring enables some of the largest and strongest of the breeding fish to ascend the streans before those nets can be set, and when they get beyond them, they are comparatively safe in the mountain rivers and lakes which never hear a human footfall till winter-which congeals their surfaces into ire-tempts the poor Indian to tread their banks in pursuit of the bear, the marten, the mink and the atter.

In well regulated salmon fisheries in Europe, the fish-by the construction of proper weirs and reservoirs-are almost as much under the control of the managers as the sheep on their farms or the fowl in their poultry-yards. They can send such of them as they please to market, permit the fittest for the purpose to pass on to propagate their kind, allow the young to enjoy life till they become mature, and suffer the sich and unhealthy to return to their invigorating pastures
in the depths of the ocean. But no portion of this system is practised in cur American rivers. There is not a salmon weir in the province; and the consequence is, that young and old, kele and grilse, worthless and unwholesome, the fish are killed by the undiscriminating net and the crucl sipear.

It appears to inc that the Fiudson's Bay Company set little value on these fisheries, and maintain them merely as an accident appertaining to the fur trale which is far more profitable. The appronching termination of their lease and the consequent uncertainty of their tenure may perhaps appear a sufficient reason for their not incurring the expense of erecting weirs, by which much more profit could be made of their fisheries. Unprotactive and wasteful as their mode of fishing is, the protection the Hudson's Bay Company ufiords is the only present safeguarld for the existence of Sulmon in Cancada. I am persuaded that were that protection withedrawn for one sumwer, without the sulustitution of some other as effective, this nobic fish would be uticrly e.cterminated from our country. Fishermen from Gaspé, Rimouski, Nuw Brunswick, Labrador, Newfoundland, the Magdalene Islauds and the United States-whose numbers and skill would enable them to do thoroughly what the servants of the H. B. C. from their paucity and inexperience do ineffectuallymenid swarm up our rivers, and with nets. spears, torches, and crery other engine of piseine destruction, would kill, burn and mutilate every fish that ventured into the rivers. Already has this been attemuted. For the hast two or three years schooners from the Enited States, have regularly arrived, in the salmon season, at the Day of Seven Islands, their crews well armed, and have set their nets in the river Moisie, in despite of the officers of the I. B. C. Similar circumstances have occurred at other fishing stations in the tributarics of the St. Lawrence; no means, that I am aware of, having been resorted to for pumishing the aggressors or preventing a repetition of their outrages. The river Rersibics has this year (1856) been altogether in the hands of a speculating and rapacious American, who employed the spear of the Tudian to furnish him with mutilated salmon, several boxes of which he brought to this city, in the month of Sentumber, when they were ent of season, unfit for food and flavorless, having previously glated the markets of Portland, Joston and New look with more palatable fish.

There can be but litule doubt that many of the salmon streams in Lower Camada would be as productive, under proper managemeat, as rivers in Europe for which large aunual rents are paid; but it must
be admitted that the great distance at which they are situated from Civilization, the want of the means of intercourse between them and the inhabited parts of the country, the liability to trespass by armed ruffians, and the dreadful rigor of the climate in winter, present very serious obstacles to those who might wish to undertake such management : for obviating some of which I see no better method than the employment, during the summer months, of one or two armed stamers of light draught of water, such as are used for a similar purpose on the east coast of Denmark. These stemers should cach have a commander on board, who should be a magistrate and empowered by parliament to act summarily in cases of infraction of the Fishery Laws, and beside supplying the lighthouses aud other public works with stores, oil, building materials, etc., conveying the workmen managers and fishermen to their several stations, and protecting the lessces of the Province, might also be profitably employed as the means of transporting the fresh caught salmon from the several rivers, packed in ice, to the Rail-road Stations at St. Thomas and Quebec; from whence they could be distributed to the markets of Canada and the United States. Two Bills for the protection of salmon and trout in Lower Canada have recently become Acts of Parliament. These may possibly be productive of some good in civilized and inhabited districts, but must be itteriy inefiective in those parts of the Province where there are no settled inhabitants, no magistrates, and no tribunals before which those who infringe the Law can be cited; and this is the case of all the best rivers in Lower Canada.

I cannot close these observations without endeavoring to impress on all who hear me, the necessity for prompt action in this matter; for there can be no doubt upon the mind of any man who is acquaintted with the localities, that if the King's Posts should be abandoned by the Hudson's Bay Company, before some well devised system be adopted for carrying on the work which they have hitherto effected, two melancholy results will be the inevitable consequences, viz.the salmon rivers will be take: possession of by hordes of lawless men, who will in no way contribute to the revenue of the country, but will quickly and recklessly exte:minate the fish, and then desert our shores, leaving behind them no trace of their temporary occupation except the destraction they have wrought-and more terribic still-a whele tribe of fodians (the Momagnards) will be reduced to a state of positive starvation, for upon the Iludson's Bay Company they have hitherto been, and are now:? ependeat for their anmunition, guns, and other meaus by which they obtain their food and clothing.

ON PRESERVING TIMBER FROM DECAY.

BY JOSEPR ROBINSON, TONONTO.

Read before the Canadian Institute, December 20th, 1856.

The economic value of timber, and the immense outlay required for the constant restoration of works executed in the cheaper but least durable varieties of woods, have long directed the attention of practical men to the desirableness of discovering some process by which greater durability could be given to a material, in all other respects so admirably adapted to the objects in riew, without affecting its original cost to such an extent as to render it no longer available for the numerous ordinary purposes to which it is now applied. To this subject, attention was anew directed in the last number of the Canadian Journal, in an article on the " Preservation of Timber;"* and it may not be out of place, by way of adding to the existing fund of information upon a subject of such general interest, to bring before the Institute, a well attested and valuable process invented and used by the eminent French chemist, Dr. Boucheric.

This process is the result of twenty years experimental labor and study, and is regarded in France and Englaud as of the highest importance, being the only mode yet brought into practical and extensive application, by which the durability of woods, liable to decay, can be ecouomically and effectually secured.

It accomplishes two objects : first, that of expelling the sap; and, secondly, filling the pores of the timber with a preservative solution.

The mode of impregnating trees hitherto adopted, has been by saturation only, assisted sometimes by great pressure, and by previously subjecting the timber in cylinders to a vacuum or to heat.

Dr. Boucherie's process differs entirely: inasmuch as he applies a moderate pressure, and to one end only of the sap tubes of the tree, the effect of which is to expel the sap by the preserving liquor which takes its place. By some of the processes hitherto used, the sap (the fermentation of which is admitted to be the catuse of decay) is allowed to remain in the tree; in the process now under review, the sap is expelled, and the tubes are thoroughly cleansed from the fermenting matter, which is displaced by an injected solution of a preservative nature.

The tubular structure of trees has been long known, but it has not
beeu known that no connexion exists between the tubes laterally; and this is shewn by the interesting experiment of stopping up or shutting off certain of the sap-tubes at the end of the tree, leaving exposed such as form a word : which word, or name, by the injection of a coloring liquor, can be driven from one end of the tree to the other; so that wherever the tree is cut through, the name appears distinctly in colored letters on the exposed sections.

This experiment is interesting, not only in a scientific point of view; but it shews that none of the processes hitherto used, wherein lateral pressure is involved, can force any preserving liquor into a tree without a degree of violence, which must injure the fibre of the wood, and destroy its strength and use for many purposes.

The advantages which would result from expelling the sap and replacing it by an antisceptic fluid, have been long known; and the idea of effecting this by applying the fluid under pressure at the end of a piece of timber is not new, haring been suggested and patented many years ago by Mr. Bethel. But the means then used did not accomplish the object in such a manner as to admit of its commercial application. Hence the more expensive process of croosoting has been adopted; where the timber is totally immersed in the oil, under pressure, a method which does not permit the sap to escape.

By the old process of violent pressure, the preserving liquor is forced at right angles to the tubes through the woody fibre of the tree, injuring its strength as well as its capability, in railway sleepers, for example, to resist the wear of the chairs; consuming at the same time an unnecessary amount of the preserving liquor, without (whatever pressure may be applied) thoroughly impregnating the timber, while one-sixth or one-eighth of the force only is necessary by the new process, and the portion alone requiring the preservative infusion, viz. the soft matter between the rings, is impregnated, the woody fibre remaining unbroken and undisturbed.

Another important advantage in Dr. Boucheric's process, is derived from the simplicity and moderate cost of the apparatus, which, for operations on a small scale, will not excecd $£ 10$ or $£ 15$, and for a railway of two hundred miles, under $£ 50$.

The practical application and entire success of this invention in Europe will be seera by the primed official reports. The first of these was made, by order of the Prench Government, in the year 1S50, the second in 1S52, and the third in 1556 : being an abstract from the official jury report of the Exposition Universelle of 1555, whereby it will be seen that the distinguished honor of one of the large gold
medals was awarded to Dr. Boucherie, of which only four were conferred in all.

The mode of application is as follows:-Soon after the tree is felled, a saw-cut is made in the centre, through about nine-tenths of its section. The tree is slightly raised by a lever or wedge at its centre, and the saw-cut thereby partially opened; a piece of string is then placed round the cut, close to the outer circumference of the tree, the support is withdrawn, and the saw-cut closes on the string, thereby making a water-tight joint. An auger-hole is then bored obliquely into the saw-cut; a wooden tube is driven into the hole, the conical end of which is attached to a flexible pipe, which is in connexion with a cistern or reservoir, at an elevation of from 30 to 40 feet above the tree intended to be preserved.

When it is necessary to prepare timber in long lengths, a cap is placed at the end of the tree by serews or dogs. The most efficacious soluiion is composed of sulphate of copper and water, mixed in the proportion of 1 to 100 . The strength is easily ascertained, by any intelligent workman, by an hydrometer;-and the cost of such a solution is so triffing, as to offer no impediment to its universal application for the purpose in view.*

It would be difficult to cnumerate all the classes to be benefitted by this invention, and the uses to which it may be appliets. Railway companies, ship-builders, telegraph companies, and land owners, would alike benefit by it. Post and rail fencing, field gates, wood farm buildings, frame buildings, and dwellings in general, would last many additional years. Mr. R. Stephenson, the President of the Institute of Civil Engineers, in his inaugural address, adverts to the great consumption of railway sleepers by decay, and estimates it at 2,600,000 per annum, costing upwards of $£ 500,000$. Taking the resistance

[^0]of the proposed sleepers to decay as the only basis of the calculation, a large proportion of this sum would be saved. Assuming the duration of the sleeper to be doubled, and taking into account the mechanical causes of destruction, a saving of $£ 300,000$ per annum, would be effected to the railway interest in England alune.

From these data, the value of the invention in Europe will readily be seen, and although it has been patented in France and Englaud, and, as it would seem, to some extent, in Canada, it is believed that the use in this Province is unfettered; 1st, because by the Statutes of Canada, no foreigucr can obtain a patent monopoly in this country; and, 2nd, because, being already known and used in other countrics, it camot be patented here.

THE CHINOOK INDIANS.

BY PAUL KANE, TOHONTO.
In accordance with an invitation of the Council of the Canadian Institute to communicate notices of some of the tribes of Indians amongst whom I have travelled, I selected the Chinooks, one of the tribes most remote from this part of the continent, and whose manners and customs are so much at variance with our own, as to render some notice of them, from personal observation, probably both novel and interesting. Other communications of the incidents and results of my travels among the Indians of the North West, having since appeared in the Journal, I have revised my account of the Chinooks, with a view to its appearance, along with the notices of the Walla Wallas, and others of the dborigines of this continent in the New Series.

The Flat-Head Indians are met with aloug the banks of the Columbia river from its mouth castward to the Cucales, a distance of about 130 miles; they extend up the Walamett river south about 30 or 40 miles, and through the district lying between the Walamett and Fort Astoria, now called Fort George. To the north they extend along the Cowlitz river and the tract of land lying between that and Puget's Sound. About two-thirds of Vancotaver's Island is also occupied by them, and they are fotand along the coasts of laget's Sund and the Straits of Juan de Fuca. The Flat-Ifads are divided into numerous tribes, each hasing its own peculiar locality, and differing more or less frem the others in language, customs, and manuers.

Of these I have selected, as the subject of the present paper, the Chinooks, a tribe inhabiting the tract of country at the mouth of the Columbia river. Residing among the Flat-Fleads, I remained from the fall of 184.6 to the following autumn of 1847 , and had consequently ample opportunity of becoming acquainted with the peculiar habits and customs of the tribe. They are governed by a Chief called Casenov. This name has no translation: the Indians on the west side of the Rocky Mountains differing from those on the east, in having hereditary names, to which no particuliar meaning appears to be attached, and the derivation of which is in many instances forgotten. Casenov is a man of advanced age, and resides principally at Fort Vancouver, about 90 miles from the mouth of the Columbia. I made a sketch of him while staying there, and obtained the following information as to his history:-Previous to 1829 Casenov was considered a great warrior, and could lead into the field 1,000 men, but in that year the Hudson's Bay Company and emigrants from the United States introduced the plough for the first time into Oregon, and the locality, hitherto considered one of the most healthy, was almost depopulated by the fever and ague.

Chinook Point, the principal settlement of the tribe, at the mouth of the river, where King Cumcomley ruled in 1811, was nearly reduced to one-half its numbers. The Klatsup village now contains but a small remnant of its former inhabitants. Wasiackum, Catamet, Kullowith, the settlements at the mouth of the Cowlitz, Kallemo, Kattlepootle and Walkumup are entirely extinct as villages. On Sovey's Island there were formerly four villages but now there scarcely remains a lodge. They died of this disease in such numbers that their bodies lay unburied on the river's banks, and many were to be met with floating down the stre:m. The Hu?son's Bay Company sipplied them liberally with Quinine and other medicines, but the good effects of these were almost entirely counteracted by their mode of living and obstinacy in persisting in their own peculiar mode of treatment, which consisted principally in plunging into the river without reference to the particular crisis of the disease.

From these causes the numbers of the Indians have been very much reduced, and the effective power of the tribes so greatly diminished that the influence which Casenov owed to the number of his followers has correspondingly declined; his own immediate family consisting of ten wives, four children, and cighteen slaves, being reduced in one year to one wife, one child, and two slaves. Their decrease since thitt time has also been fearfully acceicrated by the introduction of
ardent spirits, which, in spite of prohibition and fines against selling it to Indians, they manage to obtain from their vicinity to Oregon city, where whiskey, or a poisonous compound called there blue ruin, is illicitly distilled. I have scarcely ever met with an Indian in that vicinity who would not get drunk if he could procure the means, and it is a matter of astonishment how very small a quantity suffices to intoxicate these unfortunate beings, although they always dilute it largely in order to prolong the pleasure they derive from drinking.

Casenov is a man of more than ordinary talent for an Indian, and he has maintained his great influence over his tribe chiefly by means of the superstitious dread in which they hold him. This influence was wielded with unflinching severity towards them, although he has ever proved himself the firm friend of the white man. For many years, in the early period of his life, he kept a hired assassin to remove any obnoxious individual against whom he entertained personal enmity. This bravo, whose occupation was no secret, went by the name of Casenov's Skücoom or evil genius. IIe finally fell in love with one of Casenov's wives who eloped with him. Casenor vowed vengeance, but the pair for a long time eluded his search, until one day he met her in a canoe near the mouth of the Cowlitz river and shot her on the spot. After this he lived in such continual dread of the lover's vengeance that for nearly a year he never ventured to sleep, but in the midst of a body guard of forty armed warriors, until at last he succeeded in tracing his fue out, and had him assassinated by the man who had succeeded him in his old office.

The Chinuoks over whom Casenor presides carry the process of flattening the head to a greater extent than any other of the FlatHead tribes. The process is as follows:-The Indian mothers all carry their infants strapped to a picce of board covered with moss or loose fibres of ceddar bark, and in order to flatten the head they place a pad on the forehead of the child, on the top of which is laid a piece of smocth bark hound on by a leathern band passing through holes in the board on either side and kept tightly pressed across the front of the head. A sort of pillow of grass or cedar fibres is placed under the back of the neck to support it.

This process commences with the birth of the infant, and is continued for a period of from eight to twelve months, by which time the head has lost its natural shape and aequired that of a wedge, the front of the skull becoming flat, broad, and higher at the crown, giving it a roost unnatural appearance.

It might be presumed that from the extent to which this is
carried the operation must be attended with great suffering to the infant, but J. never heard the infants crying or moaniag, although I have seen their eyes seemingly starting out of the sockets from the great pressure. But on the contrary, when the bandages were removed I have noticed them cry until they wete replaced.

From the apparent dullness of the children whilst under the pressure I should imagine that a state of torpur or insemibility is induced, and that a return to consciousness occasioned by its removal must be naturally followed by the sense of pain.

This unnatural operation cives not how er er seem to injure the healh, the mortality amonst the Elat-IIead children not beine perceptibly greater than anongst other Indian tribes. Nor does it seem to injure their intellect; on the contrary, the Flat-Heads are generally considered fully as intelligent as the surrounding tribes who allow their heads to preserve their natural shape; and it is from amongst the round-heads that the: Flat-Meads take their slaves. They look with contempt eren upon the whites for having round-heads, the fat-head being considered as the distinguishing mark of freedom. I may here remark, that, amongst the tribes who have slaves there is always something which conspicuously marks the difference between the slave and the firee, such as the Chimseyan, who wear a ring in the nose, and the labbenes who have a large piece of wood inserted through the under lip. The Chinooks, like all other Indian tribes, pluck out the beard on its firs: appearance.

I would give a specimen of the barbarous language of these people, were it not impossible to represent by any combination of the letters of our alphabet the horribly harsh, garping, sphittering someds which proneed from their throats, apparently unguided either by the tongue or lips. It is so difficult to acquire a mastery of their language that none have been able to attain it unleṣs those who have been born amongst them. They have, however, by their intercourse with the English and French traders succeeded in amalgamating, after a fashion, some words of each of these tongues with their own, and have formed a sort of Patois, barbarous enough certainly, but still sufficient to enable them to communicate with the traders.

This Patois I succeeded, after some short time, in acquiring, and could converse with most of the chicfs with tolerable ease. Their common saiutation is Clah hoh ah yah, originating, as I beiieve in their having heard in the early days of the fur trade a gentleman named Clark frequently addressed by his friends, "Clark, how are you ?" This salutation is now applied to every white man, their own
language affording no appropriate expression. Their language is also peculiar in containing no oaths, or any words expressive of gratitude or thanks.

Their habits are extremely filthy, their persons abounding with vermin, and one of their chief amusements consists in picking these disgusting insects from each others' heads and eating them. On my asking an Indian one day why he ate them, he replied that they bit him and he gratified his revenge by biting them in return. It may naturally be supposed that they are thus beset from want of combs or other means of displacing the intruders; but this is not the case, they pride themselves on carrying such companions about them, and giving their friends the opportunity of amasing themselves in hunting and eating them.

The costume of the men consists of a musk-rat skin robe, the size of one of our ordinary blankets, thrown over the shoulders, without any breach-cloth, moccassins or legrings. Painting the face is notmuch practised amongst them except on extraordinary occasions, such as the death of a relative, some solemn feast, or going on a war party. The female dress consists of a girdle of cedar bark round the waist, with a dense mass of strings of the same material hanging from it all around and reaching almost to the knees. This is their sole summer habiliment. They, however, in very scvere weather add the muskrat blanket. They also make another description of blanket from the skin of the wild goose, which is here taken in great abundance. The skin is stripped from the bird with the feathers on, and cut into strips, which they twist so as to have the feathers outwards. This malses a feathered cord, and is then netted together so as to form a blanket, the feathers filling up the meshes, and rendering it a light and very warm covering. In the summer these are entirely thrown aside, not beingin any case worn from feelings of delicacy, and the men go quite naked, though the women always wear the cedar petticoat.

The country which the Chinooks inhabit being almost destitute of furs they have little to trade in with the whites. This, coupled with their laziness-probably induced by the ease with which they procure fish, which is their chief subsistence-prevents their obtaining ornaments of European manufacture, consequently anything of the kind is seldom seen amongst them. They, however, wear long strings of small shells found on the coast called Ioquas, and used by them also as money.

A great traffic is carried on amongst all the tribes through the medium of these shells, which are found only at Cape Flattery, at the
entrance to the Straits of De Fuca. They are fished up from the bottom of the sea, and are found an inch and a-half to two inches in length; they are white, slender, hollow, and tapering to a point, slightly curved, and about the size of the stem of an ordinary clay tobacco pipe. They are valuable in proportion to their length, and their value increases according to a fixed ratio, forty shells being the standard number required to extend a fathoms' length, which number is in that case equal in value to a beaver's skin, but if thirty-mine be found long enough to make the fathom it would be worth two beaver skins, if thirty-eight three skins, and so on, increasing one beaver skin for every shell less than the standard number.

The Chinooks evince very little taste in comparison with some of the tribes on the eastern side of the Rocky Mountains, in ornamenting either their persons or their warlike or domestic implements. The only utensils I saw at all creditable to their decor.....e skill were carved bowls and spoons of horn, and baskets made oi roots and grass woven so closely as to serve all purposes of a pail in holding and carrying water. In these they even boil the salmon which constitute their principal food. This is done by immersing the fish in one of the baskets filled with water, into which they throw red hot stones until the fish is cooked, and I have seen fish dressed as expeditiousiy by them in this way as if done in a kettle over a fire by our own people.

The salmon is taken during the months of June and July in immense numbers in the Columbia river and its tributaries by spearing and with gill nets. They have also a small hand net something like our common landing net, which is used in rapids where the salmon are crowded together and near the surface. These nets are ingeniously contrived, so that when a fish is in them his own struggles loosen a little stick which keeps the mouth of the net open while empty, but which, when the net is full, inmediately draws it together like a purse with the weight of the salmon and effectually secures the prey.

The salmon taken during this period of the year are split open and dried in the sun for their winter's supply. I have never seen salt made use of by any tribe of Indians for the purpose of preserving food, and they all evince the greatest dislike to salt meat.

I may here mention a curious fact respecting the salmon of the Columbia river; they have never been known to rise to a fly, although it has been frequently tried by gentlemen of the Hudson's Bay Company, with the very best tackle. The salmon go up the river as far as they possibly can and into all its tributary streams in myriads; it is, however, a well known fact that after spawning they never
return to the sea, but all dic in the river; the Columbia is hardly ever free from gill nets, and no salmon has ever been taken returning; and in the fall, wherever still water occurs, the whole place is tainted by their putrid bodies floating in immense masses. I have been obliged to travel through a whole night trying to find an encampment free from their disgusting effluvia.

The Chinooks also catch a considerable number of sturgeon, which here attain to an enormous size, weighing from four to six cwt. ; this is done by means of a long-jointed spear handle seventy or eighty feet in length, fitted into, but not actually fastened to a barbed spearhead, to which is attached a line, with this they feel along the bottom of the river, where the sturgeon are found lying at the spawning season. Upon feeling the fish the barbed spear is driven in and the handle withdrawn. The fish is then gradually drawn in by the line, which being very long allows the sturgeon room to waste his great strength, so that he can with safety be taken into the canoe or towed ashore.

At the mouth of the river a very small fish, about the size of our Sardine, is caught in immense numbers. It is called there Uhlekun, and is much prized on account of its delicacy and extraordinary fatness. When dried this fish will burn from one end to the other with a clear steady light like a candle. The Uhlékuns are caught with astonishing rapidity by means of an instrument about seven feet long; the handle is about threc feet, into which is fixed a curved wooden blade about four feet, somewhat the shape of a sabre, with the edge at the back. In this edge, at the distance of an inch and a-half, are inserted sharp bone teeth about an inch long. The Indian standing in the canoe draws this edgeways with both hands, holding it like a paddle, rapidly through the dense shoals of fish which are so thick that almost every tooth will strike a fish. One knock across the thwarts safely deposits them in :he bottom of the canoe. This is done with such rapidity that the Indians will not use nets for this description of fishing.

There are few whales now caught on the coast, but the Indians are most enthusiastic in the chase. Upon a whale being seen blowing in the offing they rush down to their large canoes and push off, with ten or twelve men in each. The canoes are furnished with a number of strong seal skin bags filled with air, and made with great care and skill, capable of containing about ten gallons. To each bag is attached a barbed spear-head by a stroug string about eight or nine feet long, and in the socket of the spear-head is fitted a handle five or
six fect in length. Upon coming up with the whale, the barbed heads, with the bags attached, are driven into it and the hamdles withdrawn. The attack is continually renewed until the whale is nu lenger able to sink from the buoyancy of the bags, when he is despatched and towed ashore. The blubber of the whale is much prized amongst them, and is cut into strips about two feet long and fuur iaches wide, and eaten generally with their dried fish.

Clams and oysters are very abundant, and seals, wild ducks and geces, are taken in great plenty, but their fishing is so productive that the Indians subsist with little labour. They are also very fond of herrings' roe, which they collect in the following manner:-They sink cedar branches to the bottom of the river, in shallow places, by placmg upon them a few heavy stones, taking care not to cover the green foliage, as the fish prefer spawning on anything green, and they literally cover all the branches by next morning with spawn. The Indians wash this off in their water-proof baskets, to the bottom of which the roe sinks; this is cqueczed by the hands into little balls and then dried, and is very palatable.

The only vegetables in use amongst the Chinooks are the Camas and Wappattoo. The Camas is a bulbous root much resembling the onion in outward appearance but is more like the porate when cooked and is very good cating. The Wappattoo is somewhat similar but larger and not so dry or delicate in its flavour. They are found in immense quantities in the plains in the vicinity of Fort Vancouver, and in the spring of the year present a most curious and beautiful appearance, the whole surface presenting an uninterrupted sheet of bright ultramarine blue from the innumerable blossoms of these plants. They are cooked by digging a hole in the ground, then putting down a layer of hot stones, covering them with dry grass, on which the roots are placed; they are then covered with a layer of grass, and on the top of this they place earth, with a small hole perforated through the earth and grass down to the vegetables. Into this they pour water, which, reaching the hot stones, forms sufficient steam to completely cook the roots in a short time, the hole being immediately stopped up after the introduction of the water. They often adopt the same ingenious process for cooking fish, meat, and game.

There is another article of food made use of amongst them, which from its disgusting nature I should have been tempted to omit, were it not a peculiarily characieristic trait of the Chinook Indian, both from its extraordinary character, and its use being confined solely to this tribe; it is, however, regarded only as a luxury and not as a general
article of food. The whites have given it the name of Chinook Olives, and it is prepared as follows:- - bout a bushel of acorns are placed in a hole dug for the purpose close to the entrance of the lodge or hut, and covered over with a thin layer of grass, on top of which is laid about half a foot of earth; every member of the family for the next five or six months regards this hele as the special place of deposit for urine, which is on no occasion to be diverted from its legitimate receptacle. Even should a member of the family be sick and unable to reach it for this purpose, the fluid is carefully collected and carricd thither. Howerer dingusting such an cdoriferous preparation would be to people in civilized life the product is regarded by them as the greatest of all delicacies; so great indeed is the fondness they evince for this horrid preparation that even when brought amongst civilized society they still yearn after it and will go any distance to obtain it. A gentleman in charge of Fort George had taken to himself a wife, a woman of this tribe, who of course partook with himsclf of the best food the Fort could furnish; notwithstanding which, when he returned home one day his nostrils where regaled with a stench so nauseating that he at once enquired where she had deposited the Chinook olives, as he knew that nothing else could poison the atmosphere in such a manner. Fearful of losing her dearly-prized luxury shestrenuously denied their possession: his nose however, led him to the place of deposit, and they were speedily consigned to the river. His mortification was afterwards not a little increased by learning that she had purchased the delicacy with one of his best blankets.

During the season the Chinooks are gathering Camas and fishing, they live in lodges constructed by means of a few poles covered with mats made of rushes, which can be easily moved from place to place; but i_{1} the villages they build permanent huts of split cedar boards. Having selected a dry place for the village, a hole is dug about three feet deep and about twenty feet square : round the sides of this, square cedar boards are sunk and fastened together with cords and twisted roots, rising about four feet above the outer level; two posts are sunk at the middle of each end with a crutch at top, on which the ridge pole rests, and boards are laid from thence to the top of the upright boards. Fastened in the same manner round the interior are erected sleeping places, one above another, something like the berths in a vessel, but larger. In the centre the fire is made, the smoke of which escapes by means of a hole left in the roof for that purpose. These lodges are filthy beyond description and swarm with vermin: The fire is procured by means of a fiat piece of dry cedar, in which a small hol,
low is cut, with a channel for the ignited charcoal to run over; this piece the Indian sits on, to hold it steady, while he rapidly fwirls a round stick of the same wood between the palms of his hands with the point pressed into the hollow of the flat piece. In a very short time sparks begin to fall through the channel upon finely frayed cedar bark placed underneath, which they soon ignite. There is a great deal of knack in doing this, but those who are used to it "al light a fire in a very short time. The men usually carry these sticks about with them, as after they have been once used they produce the fire quicker.

The only warlike implements I have seen amongst the Chinooks were bows and arrows. The bows are made from the Yew tree, and the arrows are feathered and pointed with sharp bone. These they use with great precision.

Their canoes are hollowed out of the cedar, and some of them are very large, as this tree grows to an immense size in the neighiourhood. They make them exceedingly light, and from their formation they are capable of withstanding very heary seas.

Slawery is carrieci on to a great extent along the North-West coast and in Yancouver's Island; and the Chinooks, considering how much they themselves have been reduced in numbers, still retain a large number of slaves. These are usually procured from the Chastay tribe who live near the Uimqua, a river south of the Columbia emptying into the Pacific. They are sometimes seized by war parties, but are often bought from their own people. They do not flatten the head, nor is the child of one of them (although by a Chinook father,) allowed this distinguishing mark of freedom. Their slavery is of the most abject description : the Chinook men and women treat them with great severity, and exercise the power of life and death at pleasure. An instance of the manner in which the Chastay slaves are treated presented itself to my own observation one morning while I was out eketching on Vancouver's Island. I saw upon the rocks the dead body of a young woman whom I had seen a few days previously walking about in perfect health, thrown out to the vultures and crows. I mentioned it to a gentleman of the Hudson's Bay Company, who accompanied me to the lodge she belonged to, where we found an Indian woman, her mistress, who made light of her death, and who was no doult the cause of it. She said a slave had no right to burial. She was furious on being told that the slave was as good as herself. "She, the daughter of a chief, no better than a slave!" She then stalked out of the lodge with great dignity; the next morning she had taken
down the lodge and was gone. I was also told by an eye witness, of a chief who, having erected a colossal idol of wood, sacrificed five slaves to it, barbarously murdering them at its base, and asking in a boasting tone who among them could afford to kill so many slaves. One of these slaves was a handsome girl who had lived from her infancy in his family, and begging most piteously for life, reminded him of the care she had taken of his children and all the services she had rendered; but her pleadings were of no avail, and the brutal wretch with his own hand plunged a knife four times into her body before she ceased her appeals for mercy. The only distinction made in her favour was that she was buried, instead of being, like her miserable companions, thrown out on the beach.

The principal amusement of the Chmooks is gambling, which is carried to great excess amongst them. You never visit the camp but you hear the monotonous gambling song of " he ha, ha," accompanied by the beating of small sticks on some hollow substance. Their games do not exceed two or three, and are of a simple nature. The one most generally played consists in holdirg in each hand a small piece of stick the thickness of a goose quill and about an inch and a-half in length, one phain and the other distinguished by a little thread wound round it, the opposite party being required to guess in which hand the marked stick is to be found. A Chinook will play at this simple game for days and nights together, until he has gambled away everything he possesses, even his wife. They play, however, with much equanimity, and I never saw any ill-feeling evinced by the loser against his successful opponent. They will cheat if they can, and pride themselves on its success; if detected no unpleasant consequence follows, the offending party being merely laughed at and allowed to amend his play.

Another game to which the Chinooks are very partial is played by two or three on each side. The rivals sit on the ground opposite each other with the stakes lying in the centre, one begins with his hands on the ground in which he holds four small sticks covered from sight by a mat, these he arranges in any one of a certain number of forms prescribed by the rules of the game, and his opponent on the opposite side endeavours to guess which form le has chosen; if successful a mark is stuck up in his favour, and the sticks are handed to the next, if not the phayer counts and still groes on till discovered. When those on one side have grone through, the others commence. At the conclusion the marks are counted and the holder of the greater number wins. This game is also accompanied by singing, in which all the bystanders join.

Another game which I have seen amongst them is called Al-kolloch, and is one that is universal along the Columbia river. It is considered the most interesting and important as it requires great skill. A smooth level piece of ground is chosen, and a slight barrier of a,couple of sticks laid lengthways is made at each end. These are forty or fifty feet apart and a few inches high. The two opponents, stripped naked, are armed each with a very slight spear about three feet long and finely pointed with bone. One of them takes a ring made of bone or some heavy wood, about three inches in diameter, and wound round with cord, on the inner circumference of which are fastened six beads of different colours at equal distances, to each of which a separate numerical value is attached; the ring is then rolled along the ground to one of the barriers and is followed at the distance of two or three yards by the players, and as the ring strikes the barrier and is falling on its side the spears are thrown so that the ring may fall on them ; if only one of the spears should be covered by the ring the owner of it counts according to the coloured bead over it. But it generally happens, from the dexterity of the players that the ring covers both spears, and each count according to the colours of the beads above his weapon. They then play towards the other barrier, and so on until one party has attained the number agreed upon for game.

The Chinooks have tolerably good horses, and are fond of racing, at which they bet considerably; they are expert jockeys and ride fearlessly. They also take great delight in a game with a ball, which is played by them in the same manner as by the Cree, Chippewa, and Sioux Indians. Two poles are erected about a mile apart, and the company is divided into two bands armed with sticks, having a small ring or hoop at the end, with which the ball is picked up and thrown to a great distance, each party then strives to get the ball past their own goal. There are sometimes hundreds on a side, and the play is kept up with great noise and excitement. At this game they also bet hearily, as it is generally played between tribes or villages.

The sepulehral rites of this singular tribe of Indians are too curious to be entirely omitted. Upon the death of a Chinook the body is securely tied up in rush matting and placed in the best canoe they can procure, without any peculiar ceremonics. This cance is as highly decorated as the family of the deceased can afford. Tin cups, kettles, plates, pieces of cotton, red cloth. and furs, and in fact cucrything which they themselves most value, and which are most difficult for them to obtain; are hung romed the canoe; inside: beside the body
they place paddles, spears, bows and arrows, and food, with everything else which they consider necessary for a very long journey. I. have even found beads, Ioquas shells, brass buttons, and small coins in the mouths of the skeletons. The canoe is then taken to the ber ial place of the tribe, generally selected for its isolated situation. The two principal places are rocky islands in the lower part of the Columbia River. One is called Coffin Rock from the appearance it presents, covered with the raised biers of the deceased members of the tribe. To these they tow the canoe, which is then cither fastened up in a tree or supported on a sort of frame four or five feet from the ground made of strong cedar boards, and holes bored in the bottom of the canoe to let the water run out; it is then covered with a large piece of bark to protect it from the rain. Before leaving, the uscfulness of every article left with the corpse is destroyed, by making holes in the kettles, cans, and uaskets, cracking the bows, arrows, and spears, and if there is a gun they take the lock off, believing that the Great Spirit will mend them upon the deceased arriving at the hunting grounds of their Elysium. The greatest crime which an Indian can commit in the eyes of his people is that of desecrating one of these canoes, and it very seldom happens that the slightest thing is removed.

In obtaining a specimen of one of the peculiarly formed skulls of the tribe I had to use the greatest precaution, and ran no smail risk not only in getting it, but in having it in my possession afterwards. Even the voyageurs would hase refused to travel with me had they known that I had it among my collections, not only on account of the superstitous lread in which they hold these buriai places, but also on account of the danger arising from a disc.very, which might have cost the lives of the whole party.

A few years before my arrival at Fort Yancouver, Mr. Douglass, who was then in charge, heard from his office in the Fort the report of a gun inside the gates; this being a breach of discipline he hurried out to enquire the cause of so monsual a circumstance, and found one of Casenov's slaves standiag over the body of an Indian whom he had just killed, and in the act of reloading his gun with appareat indifference, Casenov himself standing by. On Mr. Douglass arriving at the spot, he was told by Casconor, with an apology, that the man deserved death according to the laws of the tribe, who, as well as the white man inficted punishment propurtionate to the nature of the offence. In this case the crime was ge of the greatest an lindian could be guilty of, mamely, the wobbing the sepulche canoes. Jir.

Douglass after severely reprimanding him allowed him to depart with the dead body.
sacred as the Indians hold their burial places, Casenor himself, a short time after the latter occurrence, had his only son buried in the cemetery of the fort. He died of consumption-a disease very frequent amongst all Indians-proceeding no doubt from their constant exposure to the sudden vicissitudes of the climate. The coffin was made sufficiently large to contain all the necessaries supposed to be required for his cumfort and convenience in the world of spirits. The chaphain of the fort read the usual service at the grave, and after the conclusion of the ceremony, Casenov returned to his lodge, and the same eveniag attempted, as narrated below, the life of the bereaved mother, who was the daughter of the great chicf generally knowa as King Comeomly, so beautifully alluded to in Washington Irving's "Astoria." She was formerly the wife of a Mr. McDougall, who bought her from her father for, as it was supposed, the enormous price of ten articles of each description, guns, blankets, linives, hatchets, \&e., then in Fort Astoria. Comcomly, however, acted with unexpected liberality on the occasion by carpeting her path from the ennoe to the Fort with sea otter skins, at that time numerous and valuable, but now scarce, and presenting them as a dowry, in reality far exceeding in value the articles at which she had been estimated. On Mr. McDougall's leaving the Indian country she became the wife of Casenov.

It is the prevailing opinion of the chicfs that they and their sons are too important to die in a natural way, and whenever the event takes place they attribate it to the malevolent influence of some other person, whom they fix upon, often in the most unaccountable manner, frequently selecting those the most dear to themselves and the deceased. The person so selected is sacrificed without hesitation. On this occasion Casenov selected the affleted mother, notwithstanding she had daring the sickness of her son been most assiduous and devoted i_{1} her attentions to him, and of Cascuov's several wives she was the one he most loved ; but it is the gencral belief of the Indians on the west side of the mountains, that the severer the privation they inflict upon themselves the greater is therefore the manifestation of their grief, and the more pleasing to the departed spirit. Casenov assigned to me, as an :additional motive for his wish to kill his wife, that as he knew she had heen so aseful to her son and so necessary to his happiaess and comfort in this world, he wished to send her with him as his companion on his long journey. She, how-
ever, escaped into the woods, and next morning reached the Fort, imploring protection; she was accordingly secreted for several days until her own relations took her home to Chinook Point. In the meantime a woman was found murdered in the woods and the act was universally attributed to Casenov or one of his emissaries.

I may here mention a painful occurence which took place on Thompson's River, in New Caledonia, in further illustration of this peculiar superstition. A Chief dying, his widow considered a sacrifice as indispensable, but having selected a victim of rather too much importance, she was unable for some time to accomplish her object; at lenglh the nephew of the chief, no longer able to bear the continual taunts of cowardice which she unceasingly heaped upon him, seized his gun and started for the Company's Fort on the river, about twenty miles distant. On arriving, he was sourteously received by Mr. Black, the gentleman in charge of the Fort, who expressed great regret at the death of his old friend the chief. After presenting the Indian with something to eat, and giving him some tobacco, Mr. Black turned to leave the room, and while opening the door was shot from behind by his treacherous guest and immediately expired. The murderer succeeded in escaping from the Fort, but the tribe, who were warmly attached to Mr. Black, took his revenge upon themselves and hunted him down. This was done more to evince their high esteem for Mr. Black than from any sense of impropricty in the customary sucrifice.

I never heard any traditions amongst the Chinooks as to their former origin, although such traditions are common among the Indian tribes on the east side of the Rocky mountains. They do not believe in any future state of punishment, although in this world they suppose themselves exposed to the malicious desigus of the $\mathrm{Sk} \ddot{0} \mathrm{coom}$ or evil genius, to whom they attribute all their misfortunes and ill luck. The good spirit is called the Hias Soch-a-li Ii i.yalh, that is the Great High Chief from whom they obtain all that is good in this life, and to whose happy and peaceful hunting grounds they believe they shall all eventually go, to reside for ever in comfort and abundance.

The medicine men of the tribe are supposed to possess a mysterious influence with these two spirits, either for good or evil, and of course possess great power in the tribe. These medicine men form a secret society, the initiation into which is accompanied with great ceremony and much expense. I witnessed, whilst amongst them, the initiation of a canditate, which was as follows:-The canditate has to
prepare a feast for his friends and all who choose to partake of it, and make presents to the other medicine men. A lodge is prepared for him, which he enters, and remains alone for three days and nights, without food, whilst those already initiated keep dancing and singing round the lodge during the whole time. After this fast which is supposed to endue him wi:h wonderful skill, he is taken up apparently lifeless and plunged into the nearest cold water, where they rub and wash him until he revives. 'Phis they call "washing the dead." As soon as he revives he runs into the woods, and suon returns dressed as a medicine man, in a costume which generally consists of the light down of the goose stuck all over the body and head with thick grease, and a mantle of friezed cedar bark. With the medicine rattle in his hand he now collects all his property. blankets, shells and ornaments, and distributes the whole amongst his friends, trusting for his future support to the fees of his profession. The dancing and singing are still continued with great vigour during the division of the property, at the conclusion of which the whole party again sit down to feast, apparently with miraculous appetites, the quantity of food consumed being perfectly incredible.

I witnessed one day their mode of treatment of the sick whilst passing through a village. Hearing a horrible noise in one of the lodges, I entered it, and found an old woman supporting one of the handsomest girls of the tribe I had ever seen; cross-legged and naked in the middle of the room sat the medicine man with a wooden dish full of water before him, and twelve or fifteen other men sitting round the lodge. The object in view was to cure the girl of a disease affecting her side. As soon as my presence was noticed a space was cleared for me to sit down. The officiating medicine man appeared in a state of prufuse pespiration from the excrtions he had used, and soon tool his seat amongst the rest as if quite exhausted; a younger medicine man then took his place in front of the bowl and close beside the patient; throwing of his blanket he commenced singing and gesticulating in the most violent manner. whilst the others kept time by beating with little sticks on hollow wooden bowls and drums, singing continually. After exercising himself in this manner for about half an hour, until the pespiration ran in streams down his body, he darted suddenly upon the young woman catching hold of her side with his teeth and shaking her for a few minutes, as one dog does another in fighting. The patient seeming to suffer great agony. He then relinquished his hold, and cried out he had got it, at the same time holding his hands to his muth, after which he plunged
them in the water, and pretended to hold down with great difficulty the disease which he had extracted lest it might spring out and return to its victim. At length having obtained the mastery over it, turning himself round to me in an exulting manner, he held something up between the finger and thumb of each hand, which had the appearance of a piece of cartilace, whereupon one of the Indians sharpened his knife and divided it in two, leaving one end in each hand. One of the pieces he threw into the water and the other into the fire, accompanying the action with a diabolical noise which none but a medicine man can make; after which he got up perfectly well satisfied with himself, although the poor patient scemed to me anything but relieved by the violent treatment she had undergone.

My principal object in travelling among the Indian tribes of the Far West was to obtain accurate sketches of their Chiefs, medicine men, \&c., and representations of their most characteristic manners and customs, but it was only by great persuasion that I could induce the Indians to allow me to take their portraits. They had an undefined superstitious dread of losing something by the process, as though in taking their likeness snmething pertaining to themselves was carried off. The women, moreover, had the idea that the possessor of their picture would hold an unlimited influence over them. In one case I had taken the likeness of a woman at the Cowlitz river, and on my return about three months afterwards, I called at the lodge of Kisscox, the chief of the tribe, where I had been in the habit of visiting frequently, and had always been received with great kindness, but on this occasion I found him and his family unusually distant in their manner, and the children even running away from me and hiding; at last he asked me if I had not taken the likeness of a woman when last amongst them, I said I had, and mentioned her name, "Cawitchum," a dead silence ensued, nor could I get the slightest answer to my enquiries. Upon leaving the lodge I met a half-breed, who told me that Cawitchum was dead, and that I was supposed to be the cause of her death. The silence was occasioncd by my having mentioned a dead person's name, which is considered disrespectfill to the deceased, and unlucky. I immediatly left the neighbourhood, well knowing the danger that would result from my meeting with any of her relations.

Upon trying to persuade another Indian to sit for his likeness he asked me repeatedly if it would not endanger his life. Being very much in want of tobacco he at length appeared convinced by my assurances that it could do him no harm, but when the picture was
finished he held up the tobacco and said it was a small piece to risk his life for. I asked another Indian while he was sitting in his lodge surrounded by his eight wives, for the same favor, but the ladies all commenced violently jabbering at me until I was glad to get off: he apparently was much gratified at the interest which his wives took in his welfare. I however met him alone some short time afterwards and got him to consent, with my usual bribe, a piece of tobacco. I could relate numerous instances of this superstitious dread of portrait painting, but the foregoing sufficiently illustrates the general feeling on the subject.

I shall conclude this paper by relating a legend told me by an old Indian while paddling in a canoe past an isolated rock on the shores of the Pacific, as it gives an idea of the general character of the legends on the coast, which are however very few, and generally told in an unconnected and confused manner. The rock with which the following Indian legend is associated. rises to a height of between six and seven feet above the water, and measures little more than four feet in circumference. I could not observe any very special peculiarity in the formation of this rock while paddling past it in a canoe; and, at least from the points of observation presented to my eye, no resemblance to the human figure-such as the conclusion of the legend might lead us to anticipate,-appeared to be traceable. Stand ing, however, as chis rock does, entirely isolated, and without any other visible for miles around, it has naturally become an object of special note to the Indians, and is not uncalculated, from its solitary position, to be made the scene of some of the fancifin creations of their sujerstitous credulity.
"It is many moons since a Nasquawley family lised near this spot. It consisted of a widow with four sons; one of them was by her first husband, the other three by her second. The three younger so:as treated their clder brother with great unkindness, refusing him ady share of the produce of their hunting and fishing; he, on the contrary, wishing to conciliate them, always gave them a share of his spoils. He in fact was a great medicine man, although this was unknown to them, and being tired of their harsh treatment, which no kinduess on his part seemed to soten, he at length resolved to retaliate. He accordingly one day entered the lodge where they were feasting and told them that there was a large seal a short distance off. They instantly seized their spears and started in the direction he pointed out, and coming up to the amimal the eldest drove his spear into it. This seal was 'a great medicine,' a familiar of the
elder brother who had himself created it for the occasion. The foremost of them had no sooner driven in his spear than he found it impossible to disengage his hand from the handle or to draw it out; the two others drove in their spears and with the like effect. The seal now took to the water, dragging them after it, and swam far out to sea. Having travelled on for many miles they saw an island in the distance, towards which the seal made; on nearing the shore they found that they could, for the first time, remove their hands from their spears; they accordingly landed, and supposing themselves in some enemies' country, they hid themselves in a clump of bushes from observation. While lying concealed they saw a diminutive canoe coming round a point in the distance, padedled by a very little man, who, when he came opposite to where they were, anchored his boat with a stone attached to a long line, without perceiving them. He now sprang over the side, and diving down, remained a long time under water, at length he rose to the surface and brought with him a large fish, which he threw into the boat; this he repeated several times, each time looking in to count the fish he had caught. The three brothers being very hungry, one of them offered to swim out while the little man was under water and steal one of the fish; this he safely accomplished before the return of the fisherman, but the little fellow no sonner returned with another fish than he discovered that one of those already caught was missing, and stretching out his hand he passed it slowly along the horizon, until it pointed directly to their place of concealnent. He now drew up his anchor and paddled to the shore, and immediately discovered the three brothers; and being as miraculously strong as he was diminative, he tied their hands and fee together and throwing them into his canve, jumped in and paddled back in the direction from whence he had come. Having rounded the distant point where they first descried him. they came to a village inhabited by a race of people as small as their captor, their houses, boats, and utensils being all in proportion to themselves. The three brothers were taken out and thrown bound as they were into a lodge, while a council was convened to decide upon their fate. During the sitting of the council an immense flock of birds resembling geese, but much larger, pounced down upon the inhabitants and commenced a violent attack. These birds had the power of throwing their sharn quills like the porcupine, and though the little warriors fought with great valour they soon became covered with the piercing darts, and all sunk insensible on the ground; when all resistance had ceased the birds took to fight and disap-
pearch. The three brothers had witnessed the conflict from their place of confinement, and with much labour had succeeded in releasing themselves from their bonds, when they went to the battle ground and commenced pulling the quills from the apparently lifeless bodies, but no sooner had they done this than all instantly returned to consciousness. When all of them had become well again they wished to express their gratitude to their preservers and they offered to grant whatsoever they should desire. The three brothers therefore requested to be sent back to their own country. A council was accordingly called to decide upon the easiest mode of doing so, and they eventually determined upon employing a whale for the purpose. The three brothers were then seated upon the back of the monster and proceeded in the direction of Nasquawley: however, when they had reached about half way the whale began to think what a fool he was for carrying them instead of turning them into porpoises and letting them swim home themsclics. Now the whale being a "Soch-a-liTiyah" or great spirit-that is the highest of all animal spirits-but of course inferior to the "Hias Soch-a-li Tiyah," who is the Great Spirit over all things, was able to do this at will, and he accordingly tnrned the three brothers into porpoises. This therefore is the way that the porpoises first came into existence, and accounts for their being constantly at war with the seals, one of which species was the cause of their first misfortunes. After the three brothers had so strangely disappeared their mother came down to the beach and remained there for days watching for their return and bewailing their absence with tears. While thus engaged one day the whale happened to pass by and taking pity on her distress he turned her into that stone."

ÑOTE ON THE OXALATE OF MANGANESE.

BY IIENRY CROFT, D.C.I., F.C.S., PROPLSSOR OF CUEMISTIRT, UNIVERSITY COLLEGE, TORONTO.

Read before the Canadian Institute, December 20th, 1856.
In Gmelin's Handbuch, Vol. IV., the oxalate of the protoxide of manganese is described as having been obtained by Grabam, combined with 5 equivalents (24,16 per cent.) of water, by precipitation
of a solution of one part of manganesc-salt in 100 of water, by means of oxalate ot potassa; and this compound is stated to lose no water at $212^{\circ} . \mathrm{F}^{3}$. Nothing is said with regard to the amount of water in the precipitate obtained from concentrated manganese solutions by oxalic acid.

There is eridently some error in the above statement, for the formula $\mathrm{MnO}, \mathrm{C}^{9} \mathrm{O}^{3}+5 \mathrm{HO}$ requires 38,60 per cent. of water, and $\operatorname{In} \mathrm{O}, \mathrm{C}^{2} \mathrm{O}^{3}+3 \mathrm{IIO}$ requires 2739 .

In the S0th volume of the Annalen der Chemie and Pharmacie, Hausmaun and Lüwenthal give an analysis of the oxalate obtained by acting on freshly precipitated carbonate of manganese with oxalic acid, from which they deduce the formula $\mathrm{MIn} \mathrm{O}, \mathrm{C}^{2} \mathrm{O}^{9}+2 \mathrm{HO}$, for the salt dried at 212°. F.

The following experiments were made for the purpose of explaining the discrepancy.

Strong solutions of sulphate of manganese were precipitated by saturated solutions of oxalic acid, a granular white precipitate was obtained in both cases, which did not lose water at 212°. F. I. and II.

Similar solutions were mixed when boiling. TII.
Sulphate of manganese was dissolved in 30 parts of water, and oxalic acid added, a light pinkish crystalline precipitate was formed after a time, which, in the course of a ferr days, changed into a perfectly white granular powder. IV.

Sulphate of manganese was dissolved in 30 parts of water, and a solution of oxalate of potassa added, a light pinkish cryslalline precipitate gradually formed, haring the appearance and lightness of benzoic acid, it absorbed and retained water like a sponge, and remained unchanged in the air at ordinary temperatures, but became perfectly white at 212°. F. V.

Sulphate of manganese was dissolved in 100 parts of water, and oxalate of potassa added; the same pink salt was obtained. VI. This should be the compound described by Graham, with 5 HO .

WHide salt.

I.	1.391	grms. gave	0.5890	$\mathrm{Mn}^{3} \mathrm{O}^{4}$	$=3938$	per cent.	MnO	
II.	1.292	$"$	$"$	0.5566	$"$	$=40.07$	$"$	$"$
III.	1.717	$"$	$"$	0.7510	$"$	$=40.68$	$"$	$"$
IV.	1.295	$"$	$"$	05515	$"$	$=39.83$	$"$	$"$

The formula $\mathrm{MnO}, \mathrm{C}^{2} \mathrm{O}^{3}+2 \mathrm{HO}$ requires 39.72 .

	pink salt.						
V.	1.0575	grms. gave	0.418	$\mathrm{Mn}^{5} \mathrm{O}^{4}$	$=36.77$	per cent.	3 LnO
	1.3700	" "	0.536	"	$=36.79$	"	."
VI.	1.4395	" "	0.567	"	$=36.64$	"	"
	1.5300	" "	0.597	"	$=36,39$	"	"
				Mean	36.62 .		

1.5300 heated to 212°.IF. lost 0.134 IIO $=8.75$ per cent. HOO, and became perfectly white.

The formula $\mathrm{NinO}, \mathrm{C}^{\circ} \mathrm{O}^{3} \div 3 \mathrm{HO}$ requircs 36.09 per cent. MnO and one equivalent of water would $=909$ per cent.

The red oxide of mangmese is obtained by heating this salt, in a crystalline form; the complete conversion of the protoxide into the red oxide is only effected after is rather long roasting.

Burin du Buisson is of opinion that pure salts of the protoxide of manganese are colourless when in an anhydrous state, but reddish when hydrated, while Reither and others ascribe the red colour to the presence of a salt of the sesquioride. The pink colour of the above hydrate can scarcely be owing to the latter cause, inasmuch as the salt is produced both by oxalic acid and by oxalate of potash; and the salt with 2 HO is generally obtained perfectly white. (This salt is described by Liebig as having a tinge of pink, but in my experiments it was always white.) The pink crystallized salt changes in a warm atmosphere, even when kept in a close vessel, into the white coupound, evolving water.

The oxalate dissolves readily in a hot solution of oxalate of ammonia, and crystalline compounds can be obtained as already described by Winkelblech: these crystalline crusts, however, seem to vary much in their composition, and are probably combinations of the true double salt with rariable proportions of oxalate of ammonia, similar to the magnesia compounds lately described by Souchay and Leussen.

REVIEWS.

Canada at the Eniversal Exhibition of 180̃. -Printed by order of the Leegislative Assembly. Toronto: John Lovell, 1856.
The success which attended the Canadian exhibition at London, in 1851, naturally led to the expectation that no efforts would be spared to present at Paris, in 1850, a correct representation of the Natural Productions and Industry of this vast Province.

It was a triumph of no common order to receive a public acknowledgement of "the superiority of the Canadian collection at London, as far as the mineral kingdon was concerned, to all countries that forwarded their products to the Exhibition," and the "very remarkable specimens of the chief varieties of Canadian timber," together "with the finc supply of wheats, every sample of more than average excellence," ss favorably noticed by the jurors, inspired the hope that Canada would be fairly represented and appreciated at the great Paris Exhibition, in 1805. Nor has this hope been disappointed, when the vast distance which separated us from the scene of rivalry and display is considered, and the facilities which wealth, leisure, and position, conferred on the majority of European Exhibitors.

With few exceptions, it could scarcely be a subject of personal pecuniary interest to the farmers and manufacturers of this country to send the results of their industry or skill to compete with ages of experience in Liurope. Even the products of our forests, though if known in all their wariety and excellence beyond our borders, they would doubtless create a profitible market, yet, if theirrepresentation had been altogether left to the unremunerated zeal of private contributors, it is scarcely probable that even they would have been fairly represented. Hence the Provincial Committee, appointed to secure a fitting representation of the products of this Country at the Paris Exhibition, arrived at the conclusiom, that any attempt to induce voluntary efforts by local fairs, such as those which were held at Toronto and Montreal previous to the Exhibition of 1S51, would be fruitless, and that it would be absolutely necessary that the Provincial Committee should have the authority to purchase such articles as they deemed it expedient to transmit to 卫aris.

In accoidance with this suggestion the Canadian Government appropriated a sufficient sum to cover all the expenses of the transit and ultimate purchase of the articles sent. It was further suggested by the Executive Committee that every effort should be made to secure a satisfactory representation of the great staple products of CanadaMinerals, Agricultural Praducts, and Timber-so successfully represented at London in 1851; and alsn, that the manufactures of the country should be exhibited in their progressive stages up to the highest point of perfection. Local exhibitions were held ai 'Toronto and Montreal, and selections made as in 1851, for transmission to Paris. Hence it appears that no effort was spared to have Canada properly represented, and with what success we are informed by Mr. Tache's Report of "Canada at the Universal Exhibition of IS50."

FOL. II.-C

We are told that the display of the products of Mines, Forests, and Agriculture " was truly magnificent," and that the premiums olitained were such as to give full satisfaction to all who were interested in exhibiting the natural resources of Canada to the greatest advantage. The samples of agricultural product were very fine, and included every variety of the cereals cuitivated in this country. Fifty-six different kinds of minerals are enumerated in the catalogue of articles sent, and sixty-four kinds of woods, together with numerous models in wax of the vegetables and fruits grown in the Province. The Executive Council close their report, which forms the first part of Mr. 'Tache's volume, "with the consoling reflection that the most complete success has crowned the undertaking, for the due carrying out of which, the country has manifested such earnest solicitude."

The two special Commissioners, Sir W. Logan and Mr. Tache, divided the duties of cheir office, the former undertaking the arrangement of the exhibition ; the latter, the diffusion of information respecting Canada throughout Europe, and of the entire exhibition throughout Canada. These efforts resulted in attracting a larger share of public. attention to Canada, in proportion to its population, than to any other country ; and, Count Jaubert, in his work entitled "La Botanique à l'exposition universelle de 1855," reproachfully says, " now we can form an estimate of the value of those few arpents of suow ceded to England with such culpable carelessness by the Government of Louis XV."

The testimony of many distinguished men may be adduced to shew that the most complete success crowned the efforts made by this country at the Universal Exhibition, and in one history of that wonderful pageant, Mr. Robin, the author, remarks: "the efforts made by Canada, that old French Colony, to make a suitable appearance at the great Exhibition of 1805 , efforts which have resulted, moreover, in the most complete success, coupled with the undoubted importance of that fine country, whose future cannot be otherwise than brilliant, render it a duty on our part to devote to it a distinct chapter." Canada obtained one grand medal of honour (Sir TV. Logan,) and is the only colony which secured that distinction-one medal of honour for the collection of woods and grains, thirteen silver medals, thirty bronze medals, and forty-eight 'honorable mentions,' -making sltogether ninety-three prizes carried off at Paris, while at London the number of prizes awarded to this country amounted only to sixty-three. Mr. Romain's Steam Cultivator was not exhibited, it having been purchased and withdrawn from the exhibition by the celebrated

Agricultural Machine makers, Crosskill \& Co., and is now designated. as "Romain's Canadian Steam Cultivator."

Mr. Taché published in Paris his prize eszay entitled "Esquisse sur la Canada consideré sous le point de vue économiste,"-and in the report before us a translation of this little work is given. He also published a descriptive catalogue of the productions of Canada, exhibited in Paris in 1S55, and at the end of each enumeration of articles embraced in the different classes, he gives their prices in this country, and appends remarks as to their distribution, commercial importance, de. With reference to our progress in mining industry, we find that the exporiations of metals from our mines was valued at $£ 8,350$ in 1852 , and $£ 74,000$ in 1854 . Attention is directed to the value of the Tamarack, as a serviceable wood, rapidly growing into favour in Europe. The oil of the black porpoise, Delphinus minor, is particularly noticed, on account of its remarkahle property of retaining its fluidity at a very low temperature. Porpoise leather is altogether an article of Canadian manufacture, and possesses many valuable peculiarities. Birds'-eye maple was found to be excluded from general use in the Paris cabinet manufactories, on account of its price, and Mr. Taché very appropriately mentions the fact that it is used for fuel in Canada, and ought to be supplied at a price little above that of the commonest woods.

We are next furnished with "Observations on the Exhibition," which have already been published in the form of correspondence, addressed, during the exhibition, to a portion of the French. Press of Lower Canada; these are republished in the Report, by order of the House of Assembly. Among many facts of interest to Canadians, contained in these instructive and attractive letters, we are told that the rotal area of the Crystal Palace at London, in 1851, was about S00,000 square feet-that of the Palace of Industry and its Annexe at Paris, exclusive of the Palace used for the exhibition of Five Arts, $1,200,000$ feet. The number of exhibitors at Londou was 14,540 , at Paris 20,539.

Bearing in mind the depopulated condition of many of our Canadian rivers, which ance swarmed with fish, Mr. Taché notices the illustrations of the new art of Pisciculture, and the specimens of young fry and spawn exhibited by Mr. Mallet, "who rears jike, carp, eels, \&c., as other people do puppies." Various plans of fish-ways up mill dams are eminently suggestive, and ought to be introduced on every Canadian river where a dam is constructed, tending to oppose the upward progress of the fish in spawning time, and thus to depopulate our rivers,

Mr. Letailleur's success in replacing rare furs by sheep skins prepared and dyed in various ways and colours, appears likely to commend itself to Canadian manufacturers.

Comparing the Canadian part of the Exhibition with its European rivals, Mr. Taché says :
"In the first class, embracing all that relates to the extraction of mineral substawees, and to the minerals themselves, we were among the last, and far behind most countries, in regard to metallurgical operations, for the very simple reason that we are deficient in the population and capital which earry on, and still more deficient in the men of science, who in France, Englaud, Austria, Prussia, Belgium, and other countries, direct and eulighten the labors of the mine. But if we proceed to an examination of the minerals iu their natural state, our section at ouce assumed the first rauk, aud no country was in a condition to compete with us for a moment, either in the aggregate or the details of the department. The class of Canadian miucrals was the must complete, and had the advantage of displaying at a glane to the learned observer the geologieal configuration of the country, with reference to the industrial results which it may yield. For this success, which is a mere repetition of that obtained at Loudon in 1851, Canada is indebted entirely to the geolugical commissioners; and this shews to demonstration, the necessity of continuing the labors of that commission on a more liberal seale. We possess in the bosom of the earth the untonched riches, which in Englaud have been the main element of iulustrial and commercial greatuess; but the conditions of progress tomards that greatness, are the light of science, and extensive enterprise. Mining operations camont be profitably conducted ou a small scale.
When we reflect that the iron whieh abounds in Canada is nearly of the same quality as that of Sweden, that it, is found in places, surrounded by immense forests, and that, we have at hand the stone, saud, and other matters which are necessary for the smeltivg, moulding, and easting of the metal, we may well wonder that every year we import fron England, Sweden, and the United States, manufactured irou to the amount of more than $£ 1,000,000$. But, we must again observe, success attends such euterprises, ouly when undertaken on a grand seale, whatever the abuadance of the raw material. The working of an irou mine is not for limited means, nor to be carried on on a petty scale. A cheap market must be : full market. In Europe blast furnaces are now built, capable of smelting $s 0,000 \mathrm{lbs}$. per diem. The mant of coke in Canada, be it observed, does not oppose an obstacle to the sucecssful prosecution of iron-works. Owrs is a country of rich forests 270,000 equare miles in extent. Sweden smelts ber iron with charcoal only, and sells it to Englaud for a paying price; the English convert it iuto steel and send it to other countries. Other European countries use charcoal, notwitistanding the general searcity and dearness of wood in Europe."
It appears also that " no country could compete with us in the show of woods, and particularly of the kinds used in ship-building, including in the cstimate all the various species. In this class are embraced, moreover, all the products of the chase and the fishories, in which departments the Gulf, and the vast territories of the Saguenay and the North-West, place us beyond competition, if not as producers,
at least as proprietors of the finest field for production, in the whole world." The hints derived from an inspection of the raw material used by cabinet makers and carpenters among European nations, suggest very extensive alterations in the mode of getting out timber in our Canadian Forests, which deserve special rotice.
"In lumbering, as the making of timber is termed in Canada, just that amount of intelligence is brought into action, which is required for the squaring of the logs, and the sawing of them into the planks of commerce. None of that skill of wooderaft is exercised which turus to the best and most profitable account the various species, by atteading to their several degrees of adaptation to the mechanic arts, and to the preparation to be expended on them to make them fit for market. As before observed, two things only are known, square timber and the plank three inches thick. A more recondite study of the application of timber to the mechanic arts, would instruct us in the fact, that there are conditions of length, girth, and diameter required in those arts, by the influcuce of which the square \log of 50 feet long by 20 inches square, and plank of 12 feet by 10 inches, lose their intrinsic value as compared with that higher value which is derjvable from compliance with those conditions. How many are the trees left to rot in the forest because they are not reducible to a saw \log of the standard measure, or a square stick of the required dimensions: which, trimmed io anotber form, would in other markets bear a greater value, though diminished in volume.

Of more than sixty principal species of timber which we possess, we make profitable use of scarcely ten, the rest are left to absolute decay. In Europe the birds'eye maple is considered as equal to the most precious of the woods used in cabinet-work. It is indeed hardly attainable, aud when found, it bears a higher price than mahogany. From this cause arises the dearness of all the articles made of maple in Parisian cabinct-work, the finest in the world."

Our agricultural productions when compared with those of other countries placed us on a level with the foremost: " our grain won the admiration of all who saw it." The absence of Hemp, Flax and 'Tobacco, however, was particnlarly noticed in the Canadian section, and our climate and soil were thought to furnish very farourable conditions for the cultivation of those valuable articles. It is not perhaps generally known by those who expressed surprise at the absence of Tobacco, that the late spring frosts to which our climate is subject, render the growth of robacco an expensive and very hazardous exper. iment. Where labour is very dear and sowing time very transient, it becomes a mere matter of calculation how far the growth of Tobacco may be made remunerative. It has ofien succeeded admirably in the western peninsula, but the occurrence of late frosts has not unfrequently destroyed the crops over wide areas and discouraged the cultivation of this important marcotic. Femp and Flax give better promise of remuncrative returns, and will no doubt soon form an im. portant article of Cinadian production.

Our castings did not meet with much favour, and the reasons may be drawn from the: following observations by Mr. Taché :
"What lightuess is found in the railings, the iron seats, \&e., of the English manufacture of the Coalbrookdale Company in Shropshire, aud how cheap also are the articles? The reason is plain, the purchaser has not to pay for a lot of uselcss iron."
"What elegance there is in the stoves and other articles of French mavufacture, from the blast furnaces of the Marquis de Voguc of France? These designs of hunting and historical scenes are bas-reliefs of art, and the articles are not dearer on that account, because the material is not wasted; and as to the easting, the beautiful costs no more than the most deformed piece that ever was moulded. This is now generally understood; and in Euglaud where art is less perfect than in France and Belgium, the proprictors of foundries endeavour to procure artists from those two countries. A French sculptor, M. Geneste, is at this moment, in the receipt of a salary of $£ 2000$ per ammum from an Euglish manufacturer."
"The art of combiuing the useful with the agreeable is the climax of material progress. The study of the beautiful in art, is, to the intellectual man, what the study of truth is to his moral existence."

From many admirable inventions and applications which commend themselves to the attention of Canadiaus, and which are specially noticed with that object by Mr. Taché, we select some which appear likely to meet with adoption and favour. A smoke consuming coal grate, which is in the shape of an endless chain, and uncoils as the coal is consumed, thus combining advantages of health and economy. A machine by $M C$. Chevalier, which by means of an endless steel wire adapted to pullies, saws with the greatest regularity the hardest stoue, as quartz, granite, and even crystal. Two machines by M. Sautreuil, of Léchamp; one for preparing flooring boards by a single stroke, the other a planing machine, for smoothing timber for building purposes, on four sides at once. Messrs. Irey and Roly, of Paris, have introduced caoutchouc as a material for springs in all their machines. In the manufacture of chemical matches, for the production of an instantansous light, Austria employs not less than 20,000 persons, and the inighest price for round matches is only one penny per thousund. Mr. Quinti, of Viemna, showed how by interrupting the current by non-conductors, two communications may be transmitted simultancous!y in opposite directions by the same wire. The preservation of food by the perfect exclusion of external air is easily accomplished by the immersion of game, or other meats, in a warm solution of gelatine. The celebrated Russia Leather is tamned with the decoction of willow bark, and impregnated with an oil extracted from the bark of the boulcata. A curious result of the artificial preparation of a valuable pigment is shown in the manufacture of Ultramarine. The nat-
tural mineral used to cost £75 per pound, and no more than four pounds were used in Europe in a year ; now Europe manufactures and consumes $5,000,000 \mathrm{lbs}$. per annum, at a cost of one shilling per pound. One of the active prineiples in opium having been artificially produced there is no doubt but that quinine and other valuable medicinal agents will he prepared on a large and cheap scale in the laboratory. Vegetables may be prepared, for keeping by exposure to hot air and powerful compression, so that 1200 lbs . of dried vegetables may be packed into a space little exceeding a cube yard ; but 1200 lbs . of dried vegetables represent $\$ 000 \mathrm{lbs}$. in their natural condition, which would require nearly forty cubic yards to contain them. The allied armies in the Crimea were provided with vegetables thus prepared to the extent of $42,000,000$ rations. M. Coignet, of St Denis, exhibited a stonc consisting of coal ashes and quick lime; or of sand, small shingle and lime: it is run like grouting. We may here observe that this method of building has long been practised in Amerca and even in the neighbourhood of Toronto.

It is unnecessary to advert to the "Sketch of the Geology of Canada," by Sir W. Logan and Mr. Hunt, or to the beautiful geological map accompanying the sketch, which are together appended to Mr. Tache's report, a. these admirable and instructive illustrations of our mineral wealth have already been noticed in the Canadian Journal (new series, vol. i, p. 379.) We shall draw this brief summary of Mr. Tachés report to a close with a quotation from M. Fresca's work on the Exhibition ; deeming it more satisfactory to receive and accept the testimony of a distinguished foreigner, than to express the favourable opinions of our great success at Paris which the perusal of Mr. Taché's report create.
"Canada," says M. Fresca, " is a land of hope not likely to be disapointed. Active, intelligent, and enterprising beyond all other natious, which equally abound in the elements of industral production, she claims and demands our attention."
H. Y. H.

The Tenth Anmual Report of the Smithsonian Institution for the year 185̃5. Washington, 18 อ̃6.
To such of our readers as are unacquainted with the origin and operation of this splendid establishment, the following brief notice may not be unacceptable :

Hugh Smithson, from whom the institution derives its uane, was a relative of the Duke of Northumberland. He was much devoted to physical science, and at Oxford, where he graduated, enjoyed the reputation of being the best chemist in the univessity. He was a cosmopolitan in his views, and used to express himself to the effect that the man of science belongs exclusirely to no country; that the world is his country and all men are his countrymen. It was, it is believed, at one time his intention to leave his property to the Royal Society of London, for the promotion of science, but in consequence of a misunderstanding with the council of the society, he changed his mind and left it to his nephew, and, in case of the death of that relation without issue, to the United Siates of America, to found the institution which now bears his name.

In 1829 Smithson died, learing his fortune, $£ 120,000$, in case of the death of his nephew, to whom it was first bequeathed, to found at Washington, under the name of the Smithsonian Institution, an establishment for the increase and diffusion of knowledge among men.

In 1838, the nephew having died, the money was paid over by the English Court of Chancery to the Agent appointed by the Government of the United States; and eight years afterwards, in 1846, an Act was passed through Cougress for the establishment of the Smithsonian Institution.

By this Act the immediate government of the institution devolred upon the Board of Regents consisting of the following 15 members:

The Vice-President of the United States, the Chief Justice of the Supreme Court, the Mayor of the City of Washington, ex-officio; three members of the Senate, to be appointed by the President thereof; three members of the House of Representatives, appointed by the Speaker; six persons chosen from the citizens at large by joint resolution of the Senate and House, two of whom shall be members of the National Institute, and the other four inhabitants of states, and no two from the same state.

With a view of carrying the wishes of the testator into effect the Secretary, Professor Henry, was empowered to draw up a programme for the organization of the institution, which was presented in his first Ammual Report to the Board of Regents and adopted by them in 1847 .

As this programme is presented in the report before us we are enabled to give some extracts which serve to exhibit the principles
that guide the governing body, as well as the mode of carrying the objects of the institution into e:fect.
"Geucral considerations which should serve as a guide in adopting a plan of organization.
(1). Will of Smithson. The property is bequeathed to the United States of America to found at Washington, under the mame of the Sminhsonian Instrictriov, an establishment for the increase and diffusion of knowledge among men.
(2). The bequest is for the benefit of mankind. The Goverment of the Unitod States is merely a trustec to carry out the design of the testator.
(3). The institution is not a national establishnent, as is frequently supposed, but the establishment of an individual, and is to bear and perpetuate his name.
(4). The objects of this institution are, 1st., to increase, and 2nd, to diffuse, knowledge among men.
(5). These trio objects should not be confounded with one another: The first is to enlarge the existing stock of knowledge by the addition of new truths; and the second, to disseminate knowledge, thus increased, among men.
(6). The will makes no restriction in fivor of any particular kind of knowledge; heuce all branches are entitled to a share of attention.
(13). It should be recollected that mankind in general are to be benefited by the bequest, and that, therefore, all unnecessary expenditure on local objects would be a perversion of the trust.
(14). Besides the forgoing considerations, deduced immediately from the will of Smithson, regard must be had to certain requiroments of the Act of Congress istablishing the institution. These are, a library, a museum, and a gollery of art, with a building on a liberal scale to contain them."

In order to carry out the two leading objects of the will of Mr. Smithson, the increase, namely, and the diffusion of knowledge, the same report recommends the following plans:

To increase knowledge one means proposed is to stimulate men of talent to make original researches by offering suitable rewards for memoirs containing new truths. The memoirs thus obtained are to be published in a series of volumes, and entitled Smithsonian Contributions to Knowledge.

Among the various objects of research named for which pecuniary appropriations may be made are included, a system of meteorological observations for solving the problem of American storms; Explorations in Natural History and Geology; Magnetic and Topographical Surveys; the solution of various experimental problems; and Statistical, Historical and Ethnological eaquiries.

To promote the diffusion of knowledge the two leading means suggested are the publication of periodical reports on the progress of different branches of kuowledge, and the publication occasionally of separate treatises.

For the preparation of these reports it is proposed that men
eminent in the respective brauches be employed, that they be furnished with journals and other necessary publications, and that they be paid a certain sum for their labors.

In virtue of the Act of Congress, the Secretary and his assistants, during the session of Congress, will be required to illustrate new discoveries in science and to exhibit new objects of art; distinguished individuals will also be invited to give lectures on subjects of general interest.

On the occasion of the meeting of the Regents in 1847, it was resolved to divide the income into two equal parts; one to be appropriated to increase and diffuse knowledge agreeably to the scheme above given; and the other part to be appropriated to the formation of a library and a collection of objects of nature and of art.

This resolution was, however, rescinded at the meeting of January, 1855, when it was determined that
"The amnual appropriations should be apportioned specially among the differ. ent objects aud operations of the institution, in such mamer as might, in the judgment of the Regents, be necessary and proper for each, according to its intrinsic inportance, and a compliance in good faith with the law."

Admirably adapted as the foregoing scheme would seem to be for carrying out bona fide, the design of the founder, efforts have been made by some persons to divert from their legitimate channel the funds destined for cosmopolitan purposes, and to expend them on objects of a comparatively local character The good sense and honorable feeling of the nation have, however, triumphed, and will, it is hoped, insure the permanence of the institution on its present footing. The mode of procedure adopted by the Regents in conducting the affairs of the institution having been brought under the notice of Congress in 1855, the matter was referred to a Special Committee of the House of Representatives and to the Judiciary Committee of the Senate. In reporting subsequently on the matter the Judiciary Committee unanimously approved of the acts of the Regents in construing the law of Congress, in interpreting the will of Smithson, and in what they had done in the way of increasing and diffusing knowledge among men.

In the verdict of the Judiciary Committee we find the following language:
(Referring to the legacy). "It is not bequeathed to the United States to be used for their own benefit and adrantage only, but in trust to apply to the increase and difusion of knowledge among maukiad generally, so that other men and other nations might share in its advantages as well as ourselves."

Again, in reference to the proposed application of the funds to the formation of a library, the Judiciary Committee go on to say:
"Such an application of the funds could hardly be regarded as a faithful execution of the trust; for the collection of an immense library at Washington would certainly not teud to increase or diffuse knowledge in any other country, not even among the countrymen of the testator; very few even of the citizens of the United States would receive any bencfit from it.
"This is the construction which the Regents have given to the Acts of Congress, and in the opinion of the committee, it is the true one, and, acting under it, they have erected a commodious building, given their attention to all the branches of science mentioned in the law; to the full extent of the menos afforded by the fund of the institution, and have been forming a library of choice and valuable books, amounting already to more than fifteen thousand volumes. Tho books are, for the most part, precisely of the character calculated to carry out the intentions of the donor of the fund, and of the Act of Congress. They are chiefly composed of works published by or under the auspices of the numerous institutions of Europe which are engaged in sceentific pursuits, giving an account of their respective researches and of new discoveries whenever they are made. These works are sent to the Smithsonian Iustitution in return for the publications of this institution which ale transmitted to the learned societies aud establishments abroad. The library thus formed, and the means by which it is accomplished, are peculiarly calculated to attain the ubjects for which the munificent legacy was given in trust to the United States. The publication of the results of sciontific researches made by the institution is calenlated to stimulate American geujin, and at the same time evable it to bring before the public the fruits of its ls rs. Aud the transmission of these publications to the learned societies in Europe, and recciving in return the fruits of similar researches made by them, gives to each the benefit of the increase of knowledge which either may obtain, and at the same time diffuses it throughout the civilized world. The library thus formed will contain books suitable to the present state of scientific knowledge, and will keep pace with its advance; and it is certainly far superior to a vast collection of expensive works, most of which may be found in any public library, and many of which are mere objects of curiosity or amusement, and seldom, if ever, opened by any one engaged in the pursuit of science."

The Judiciary Committee concludo their report in the following, terms:
"From the views entertained by the committee, afteran impartial examination of the proceedings referred to, the committce have adopted the language of the resolution, 'that no action of the Senate is necessary and proper in regard to the Smithsonian Institution; and this is the unanimous opinion of the committee."

Having then briefly considered the origin, proposed objects and mode of action of this magnificent establishment, it remains for us to examine from the report for the year 1855 how far the proposed objects are in course of accomplishment.

The following are the principal contents of the report of the Regents for 1855;

The Report of the Secretary to the Board of Regents; the Report of the Assistant Secretary and Curator; Reports of sub-committees relative to expenditure; Journals of meetings of the board; outlines of several lectures delivered in the rooms of the institution; directions to meteorological observers and various reporis and suggestions relative to metcorological observations; correspondence relative to Ethnological and 'Topographical researches; and, finally, a long and able report on the present condition of the science of galvanism, by Professor Mïller, of Freiburg, and translated from the German by Mr. Baker, of the Const Survey.

secretary's report.

Among the memoirs which, in accordance with the announcement in the Secretary's Report, form the eighth volume of the Smithsonian Contributions are the following : along with others, by Major B. Alvord, and Dr. Joseph Jones; and a record of Auroral phenomena, by P. Force:
(1). On the progress of information and opinion respecting the archæology of the United States, by Samuel F. Haven, Librarian of the American Antiquarian Society.
(2). A paper on the recent secular poriod of the Aurora Borealis, by Professor Olmstend.

One useful function of the Smithsouian Institution is that of effecting literary and scientific exchanges between individuals and societies. The extent of their operations in this department may be judged of by the fact that in the year 1855, 8585 packages for distribution passed through the hands of the institution.
The Smithsonian agency is not confined to the transmission of works from the United States, but is extended to those of Canada and Central and South America, and its foreigu relations embrace every part of the eivilized world. It brings into friendly correspondence cultivators of original research the most widely separated, and emphatically realizes the iden of Smithson, that "the man of seience is of no country;" that "the world is his country, and all mankind his countrymen."

The system of axchange has fouud favor with foreign governments, and the Smithsonian pachages are now admitted into all parts to which they are sent, without detention and free of duty.

METEOROLOGY.
Since the publication of the former report an arrangement has been made with the Commissioner of Patents, by which the system of Meteorological observations established under the direction of the institution will be extended, and the results published more fully than the Smithsovian in some will allow.

With respect to the complaints that have been made that but ferr of the materials collected have been published, the report remarks,
"It is more important that the information should he reliable than that it should bo quickly published," and "what may be lost by delay is more than compensated by the precision and value of the results.

The reduction of the meteorological observations have been continued by Professor Coffin. He has completed the discussion of all the records for 1854, and those of 1855 as far as they have been sent in.

IIDRARY.

It is the present intention of the Regents to render the Smithsonian library the most exteusive and perfect collection of Transactious and scientific works in this country, and this it will be enabled to accomplish by means of its exchanges, which will furnish it with all the current journals and publications of societies. The Institution has already more complete sets of transactions of learned societies than are to be found in the oldest libraries in the United States.

MUUSEUM.

It is no part of the plan of the institution to form a Museum riorely to gratify the curiosity of the casual visitor to the Smithsonian building, but it is the design to form complete collections in certain branches, which may serve to facilitate the study and increase the knowledge of natural history and geology.

With respect to the condition of the Museum, the report asserts that no collection of animals in the United Siates, nor indeed in the world, can even now pretend to rival the richness of this Museum in specimens which tend to illustrate the natural history of North America.

In the report of Professor Baird, the Assistant-Secretary, many details are given relative to the additions to the Muscum. These additions have been made in great measure through the agency of the goverument exploring expeditions, and partly also through that of individuals under the orders of the institution.

IECTURES.
The titles of the lectures, of which the substance is given in the volume before us, are as follows:
(2). A course of lectures on Marine Algæ, by W. H. Harrey, of the University of Dublin.
(2). Natural History as applied to farming and gardening, by Rev.J. G. Morris of Baltimore.
(3). Insect instincts and transformations, by the same.
(4). On oxygen and its combinations, by Professor Chase. of Brown University
(5). On meteoricstones, by Lawrence Smith, of the University of Jouisville, Ky
(6). On jlanetary disturbances, by Professor Snell, of Amherst College.

The first lecture, by the Rev. Mr. Morris, on natural history as applied to farming and gardening, will be read with peculiar interest at the present time, when attention has been so much attracted to insect ravages on the corn crops. One practical evil, spoken of by the lecturer, arising from ignorance of the habits of insects, is that farmers and gardeners, by destroying one class of noxious animals,
expose themselves to the ravages of more numerous and destructive creatures, whose numbers, the first, if suffered to live, would have kept within bounds. Sipeaking of one kind of moth, peculiarly hurtful to the vineyards in France, and of what may be done to check the evil if the habits of the creature be understood, he states that in twelve days from twenty to thirty romen and children destroyed upwards of forty millions of eggs that would have been hatched in a few days. From the sketch of this lecture given, wo are led greatly to regret that the abstract should not have had a greater space allotted to it than five pages.

LECTUILE ON METEORIC STONES, BY DR. J. L. SMITH.
The lecturer distinctly maintains the lunar organ of meteoric stones. The discussion which, even in its abridged form, occupies twenty-four pages, is concluded in the following terms:
> "To sum up the theory of the lunar origin of meteorites, it may be stated that " the moon is the only large body in space of which we have any knowledge, " possessing the requisite conditions demanded by the physical and chemical pro"perties of meteorites; and that they have been thrown off by volcanic action, "(doubtless long since extinct) or some other disruptive force, aud encountering " no gaseous medium of residence, reached such a distance as that the moon ex"ercised no longer a preponderating attraction, the detached fragment possessing " an orbital motion and an orbital velueity, which it had in common with all parts of " the moon, but now more or less modified by the projectile force and new condi"tion of attraction in which it was placed with reference to the earth, acquired " an independent orbit more or less elliptical. This orbit, necessarily subject to " great disturbing influences may somer or later cross uur atmosphere and be " intercepted by the body of the globe."

> The lecture of Professor Sncll is an able popular exposition of the subject of pianctary disturbances.

METEOROLOGT.

Of the matter contained in the present volume, that of the greatest importance on account of its immediate comnection with a great scientific morement now in progress in Canada, is the body of directions for the meteorological observations adopted by the Smithsonian Institution. These instructions are well worthy of the study of all persons interested in this class of research.

Following the directions to observers is an account of a series of observations carried on, chiefly for the purpose of ascertaining the duration of thunder claps.

The Report of Professor Müller on galfanism, exteuding as it does through upwards of 100 closely printed pages, puts any attempt at aualysis in our limited space utterly out of the question; we can
only, therefore, refer our readers, for more ample details, to the pages of the wor ${ }^{7}$

In laying down for the present the report of the Smithsoninn Institution, (and it is with no little regret that we lay it down, we derive our chief consolation from the recollection that it is not a solitary work, but one of a series, and that we may look forward to a renewal on each succeeding year of the enjoyment we hare found in the perusal of the volume that we have just closed.
G. T. K.

SCIENTIFIC AND LITERARY NOTES.

GEOLOGY AND MINERALOGY.

EOSSILS FROM ANTICOSTI.

During a recent visit to the Muscum of the Geological Survey in Montreal, we Were much gratified by the inspection of a fine collection of fossils, just received by Sir William Logan, from the Tsland of Anticosti. The g.catest praise is due to Mr. Richardson, by whom, in the short space of a few months, this really magnificent collection was obtained. A preliminary examination by Professor Hall, of Albany, and Mr. Billings, the palæontologist attached to the Survey, has shewn the existence of a great number of new Brachiopods and other types-some, indeed, of a claracter at present altogether problematical. Amongst other facts of interest brought to light by the collection, we may mention the simultaneous occurrence in one of the Anticosti beds, of many well-marked forms belonging to both the Lower and Epper divisions of the Silurian series: a phenomenon not hitherto obscrved, or at least to a similar extent, in American rocks-the line of demarcation between the Upper and Lower Silurians of the Western World, being, as a general rule, very strongly pronounced. The lowest of the observed beds in Anticosti itself, belongs to the Ifudson River Group; but the Sillery formation (the next in an ascending order) so largely developed along the Southern shores of the St. Lawrence, appears to be entirely wanting. Geologists may look forward with much interest, to the results of Professor Hall's detailedexamination of this imporant addition to our knowledge of Paleozoic forms.

> ASAIMUS LATIMARGINATUS.
> [A.CanadCnsis-E.J.C.]

In the Canadian Journal for September of last year (rol. 1, p. 482), we called attention, under the name of Asaphas Canadensis, to a new form of Trilobite, from Whitby, in Canada West. Quite recentls, we have received a letter from Professor Hall, in which that able palroutologist suggests to us that the Trilobite in question is probably his Asarlus latimarginalus. Professor Hall states that the

Museum of the Geological Survey of Canada has lately received some very perfect specimens of that species from the neighbourhood of Whitby; and he kindly promises us a drawing and revised deseription of his original species, for an ensuing number of the Journal. The only figures of Asaphas latimarginatus that we have had an opportunity of examining, consist merely of two more or less imperfect caudal shields given in the first volume of Hall's Palicontology of New Xork. Neither thorax nor buckler has, we believe, been hitherto figured or describedat least beyond the brief description given in our note in the number of the Canadian Journal already alluded to. If the two forms prove to be identical, the original name of A. latinarginatus, as applied by Prof. Mall to the species founded on the two imperfect caudal shields figured by him in his laleontology, must, of course, take the place of A. Canadensis, notwithstanding the appropriateness of the latter. Up to the present time, indecd, it is only in Catada that anything like complete speciuens have been met with. The following is a deseription of tho form to which our original remarks applied:
Cephalic shield pointed anteriorly, and in its general outlive elosely resembling that of Asaphus platycephalus", but with the posterior angles terminating in horns \dagger which extend downwards to the bottom of the fourth thoracie segment. Facial sutures united in front at the extreme antevior, margin of the buckler, and terminating as in A. platycephalus abont miduay between the glabella and the angles of the head-shield. Glabella very feebly raised; brond, and somewhat equared above; but without furrows of any kind. Eyes apparently as in A. platycephalus, but much destroyed in all the specimens examined. For dimensions, see below.

Thorax with eight segments. Pleure somewhat sabre-shaped (the curve upwards \ddagger); grooved to about half their length from the axis outwards, and then crossed obliquely by a curvilinear ridge : the points of the pleura beyond the ridge, delicately striated.

Caudal shield with well developed axis: the axis tapering, and terminating rather abruptly before reaching the extremity of the pygidium; number of the rings not observable in the specimens examined.§ Pleure 14 in number, without grooves or ridges; bent downwards abruptly near the striated margin into which they merge. The lower ones, almost vertical.
Whole auface of the trilobite finely punctured, except at the striat. d linb. The punctures on the pleuree, larger and farther apart than those on the axis. Also of a crescented or semi-circular form, with the convex and more deeply indented side turned inwards.
Relative (approximate) dimensions:-Assumed length of Buckler $=1$. Glabella, length $=\cdot$ Sid. Thorax, length $=\cdot 855$. Pygidium, length $=1 \cdot 06$. Middle lobe of Thorar, bread $\mathrm{h}=\cdot 50$ to $\cdot 60$. Outer lobes (each). breadth $=\cdot 70$. The small breadth of the middle lobe in relation to the side lobes, as compared with A saphas platycephatus, appears to be of some importance, unless it be a mere sexual

[^1]difference. Where, however, the ' ure are bent, the length of the side lobes can rarely be estimated with any great exactness.

The average adult size of these trilobites appears to be about $4 \frac{1}{2}$ inches in length, by about 3 inches in breadh; but, judging from isolated fragments, larger individuals no doubt occur. Many of the Whitby specimens, at the same time, are much below the above dimensions. Most of them are converted into iron pyrites. The Asuphus Barrandi of Hall appears to be a closely related species.

foSSILS FROM ALTERED ROCKS IN EASTERN MASSACHUSETTS.

A very intaresting discovery of a trilobite-a species of Paradosides-in the metamorphic rocks of Quiney and Baintree, about ten miles South of Boston, has just been anounced to the scientific world, by Professor W. B. Rogers. The true place of these rocks, isitherto of uncertain palcozoic range, would thus appear to belong to quite the base of the Silurian series: at least it the trilobite in question be really a paradoxides-in which case, it will also be of interest, as constituting the first true species of that genus met with in American rosks since the announcement of Green's debatable Paradoxides Harlani in 1S32. Full particulars of this discovery will be found in the last October number of the Edinburgh New Philosophical Journal; and in the Proccedings of the Natural History Socicty of Boston, for the same month.

BURR-STONE.

A curious deposit of Burr-stone, constituting a vein of considerable thickness, has lately been discovered by Sir William Logan, in the gneiss of Chatham, in Ca nada East. The stone, probably a siliceous deposit from beated waters, oecurs, accordiag to Sir William, in close association with several complicated veins of igneous rock of at lenst three different periods of formation. As the stone is of. excellent quality, and readily obtainable, the discovery-apart from the scientific interest belonginer to the mode of occurrence of the deposit-is oue of no litlleimportance. Specimens may be seen in the Museum of the Geological Survey at. Montreal.

RED OMIDE OE COPIER.

Mr. James Gibbert, lately returned from California, has presented to the Institute, some specimens of red copper ore from the Arizona mines, 110 miles S. E. of Fort Funia, and about 35 miles from the River Gila. As samples, the specimens are extremely rich, being almost free from rock matter. They contain small, strings of native copper, from which the $\mathrm{Cu}=\mathrm{O}$ has evidently been derived; and. by a further process of alteration, the ore is converted externally, into malachite, The occurrence of red copper in California has not hitherto been announced in any of our treatises on Mincralogy. We are ignorant of its geological associations..

VANADINITE.

In the last number of the Jontrnal, (rol. 1, page 553), an analysie, by Rammelsberg, of Vanadinite from Windisch-Kappel; was given; the results of which lead to the inference that VO^{3} and PO^{5} are isomorphous. Adolf Kengott, (in Poggendorff's Ammalen, 1Sá6, No. 9), has subjected this analysis to a very elaborate discussion, in which he seeks to maintain that the loss of 3.21 per cent. therein exhibited, must be due to some cause other than accidental. To account for this loss, he assumes the original existence in the mineral of the hypotietical comYǒn. II. -D
pound VOs. Rammelsberg's analysis gave 17.41 per cent. of VO^{3} : a value corresponding to 20.31 per cent. of VO^{5}. In this maner the total results of the analysis are brought up to 90.69 ; and the isomorphism of Vanndinite with Pyromorphite satisfactorily explained. Before this view can be received, however, it will be for the chemist to determine if there be any real grounds for the assump. tion of the existence of this higher oxygen compound. So far as present researches go, the tendency of vanadic acid, VO^{3}, would appear to be altogether towards reduction. 'Ihe question, however, here, is not the conversion of VO^{3} into VO^{3}, but the reverse: a process which we might readily conceive to take place, were the existence of the latter compound allowed to be probable.
E. J. C.

THE BRITISH ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.

Cheltrnitam, 6th August, 1856.
After the requisite preliminary business, conducted by the General Committee of the Association, and including the reading of the Report of the Council, and of that of the Kew Committee, the body of members nssembled to witness the resignation of the Chair by the Duke of Argyle, to his suesessor, Professor Daubeny, and to hear the President's Address. On this occasion the occupation of the Chair of the British Association by 0: - tt only distinguished as a Chemist, but by one who is no less emineut as a Bota...st, gave a new character to the Presidential Address. After some preliminary remarks of a personal nature, Ir. Daubeny proceeded with his address, from which we have only room for a brief selection of passages of special interest. Referring to the British Association as alike valuable as an efficient instrument for the furtherance of scientific objects, and as a model after which other associated scientific bodies have been organized, the President thus proceeded:

It is rather remarkable that the first idea of an Association of such a kind shonld have suggested itself only a year after death had deprived us of our three most distinguished philosophers:-for who had we then leit to compare with Davy for the brilliancy and importance of his discoveries; with Young for the singular union of almost universal acquirements with admirable powers of invention; and with Wollaston for an acuteness of mental vision, which gave him the same advantage in the pursuits of science which the naturalist, armed with a microscope bas orer the unassisted observer? Just as in the animal economy the vis medicatrix natura sometimes makes an extraordinary effort to repair the damage inflicted by injury or disease, so it would seem as if Science, conscious of the loss she had sustained in the almost simultaneous extinction of ber three brightest luminaries, endearoured to make good the deficiency ly concentrating into one focus those that get remained, to light her onwards on her path. At any rate, the progress which the Natural Sciences have made since that period, although doubtless attributable to several concurrent causes, is a fact which must not be overlooked in estimating the services rendered by this Association to the cause of human advancement; nor can I in any better manner point outits value than by bringing before your notice a few of the additions to our knowledge which have been made since I last addressed you

Beginning then with Chemistry, as the subjoct with which I am most familiar, let mo remind you, that at a period not much more remote than the one alluded to, all of it that could be quoted as renlly worthy the name of a science was comprehended within the limits of the mineral kingdom. Here at least the outline had been traced out with sufficient precision-the general laws established on a firm basis-the nomenchature framed with logical exactness-the facts consistent with each other, and presented in a scientific and luminous form. Thus a philosopher, like Sir Ilumphrey Davy, who had contributed in so eminent a degree to bring the science into this satisfactory condition, might, at the close of his career, have despaired of adding anything worthy of his name to the domain of chemistry, and have sighed for other works to subdue. But there was a world almost as little known to the chemiste of that period as was the Westem Hemisphere to the Macedonian Conqueror,- World comprising an infinite varicty of important producte, called into existence by the mysterious operation of the vital principle, and therefore placed, as was imagined, almost bejond the reach of experimental research. This is the new World of Chemistry, which the Continental philosophers in the firot instance, and subsequently those of our own country, have during the last twenty years been busy in exploring, and by so doing have not only bridged over the Gulf which had before separated by an impassable barrier the kingdoms of inorganic and of organic nature, but also have added provinces as extensive and as fertile as those we were in possession of before, to the partrimony of Science.

It is indeed singular, that whilst the sunposed elements of mineral bodies are very numerous, the combinations between them should be comparatively few; whereas amongst those of vegetable and animal origin, where the ultimate elements are so limited in point of number, the combinations which they form appear almost infinite. Carbon and hydrogen, for instance, constitute, as it were, the keystone of every organic fabric; whilst oxygen, nitrogen, and less frequently sulphur and phosphorus, serve almost aloue to build up their superstructure. And yet what an infinity of products is brought about by ringing the changes upon this scanty alphabet! Even one scries of bodies alone, that known by the name of the Fatty Acids, comprises several hundred well-ascertained combinations, founded however upon a single class of hydro-carbons or compound radicals, in which the carbon and hydrogen stand to each other in cuual atomic proportions, and are in each case aciditied by the same number of equivalents of oxygen. These acids are all monobasic, or combine with only one proportion of base; but add to any one of them two equivalents of carbonic acid, and you obtain a nember of a second series, which is bibacic, or is capable of forming two classes of salts. The above therefore constitute a double series, as it were, of organic acids, the members of which are mutually related in the manner pointed out, and differ from each other in their mode of combining according to the relation between their respective clements. But already, by the labours of Mofmann and of other chemists, two other double series of acids, the one monobasic, the other bibasic, mutually related exactly in the same manner as those above, have been brought to light; each series no doubt characterized by an equally numerous appendage of alcohols, of achers, and of aldehydes, to say nothing of the secondary compounds resulting from the union of each of these bodies with others.

Hence the more iusight we obtain into the chemistry of organic substances the more we become bewildered with their complexity, and in investigating these phe-
nomena, find ourselves in the condition of the explorer of a new continent, who, although he might see the same sun over his head, the same ocean rolling at his feet, the same geological structure in the rocks that were piled around him, and was thus assured that he still continued a denizen of his own planct, and subject to those physical laws to which he had been before amenable, yet at every step he took was met by some novel object, and startled with some strange and portentous production of Nature's fecundity. Even so the chemist of the present day, whilst he recognizes in the world of organic life the same general laws which prevail throughout the mineral kingdom, is nevertheless astonished and perplexed by the multiplicity of new bodies that present themselves, the wondrous changes in them resulting from slight differences in molecular arrangement, and the simple nature of the machinery by which such complicated effects are brought about. And as the New World might never have been discovered, or, at all events, would not have been brought under our subjection, without those improvements in naval arebitecture which had taken place prior to the age of Columbus, so the secrets of organic chemistry would have long remained unelicited, but for the facilities in the methods of analysis which were introduced by Liebig. Before his time the determination of the component elements of an organic substance was a task of so much skill as well as labour, that only the most accomplished analysts-such men, for instance, as my lamented friend Dr. Prout in this country, or as the great Berzelius in Sweden-could be depended upon for such a work; and hence the data upon which we could rely for deducing any general conclusions went on accumulating with extreme slowness. But the new methods of amalysis invented by Liebig hare so simplified and so faciliated the processes, that a student, after a few months' practical instruction in a laboratory, can, in many instances, arrive at resulte sufficiently precise to be made the basis of calcuiation, and thus to enable the master mind, which is capable of availing itself of the facts before it, to breathe life into these dry numerical details,--just as the sculptor, by a few finishing stokes, brings out the expression of the statue, which has been prepared for him by the laborious chiselling of a number of subordinate workmen. And as the established lars and institutions of the Old World have been modified-may I not say in some instances rectified?-by the insensible influence of those of the New, so have the principles that had been deduced from the phenomena of the mineral kingdom undergone in many instances a correction from the new discoveries made in the chemistry of the animal and vegetable creation. It was a great step indeed in the progress of the science, when Lavoisier set the example of an appeal to the balance in all our experimeutnl researches, and the Atomic Theory of Dalton may be regarded as the necessary, athough somewhat tardy, result of the greater numerical precision thus introduced. But no less important was the advance achieved, when structure and polarity were recognized as influencing the condition of matter; and when the nature of a body was felt to be determined, notonly by the condition of its component elements, but also by their mutual arrangement and collocation-a principle which, first illustrated amongst the products of organic life, has since been found to extend alike to all chemical substances whatever.

Formerly it had been the rule to set down the bodies which form the constituents of the substances wo analyzed, and which had never yet under our hands undergone decomposition, as elementars; but the discovery of cyanogen in the first instance, and the recognition of several other compound radicals in organic chemisary more lately, naturally suggest the idez that many of the so-called elements of
inorganic matter may likewise be compoumds, differing from the organic radicals above mentioned merely in their constituents being bound together by a closer aftiaity. And this conjecture is confirmed by the curions numerical relations subsisting between the atomic weights of several of these supposed elements; as, for example, between chlorine, bromine and iodine :an extension of the grand generaiization of Dalton, which, nlthough it was unforeseen by the Founder of the system, and therefore, like Gay-Lussac's Theory of Volume, might very possibly have been repudiated by him, had it been proposed for his acceptance, will be regarded by others as establishing, in a manner more conclusive than before, the soundness of his antecedent deductions. What, indeed, can be a greater triumph for the theorist, than to find that a law of rature which he has had the glory of establishing by a long and painful process of induction, not only accommodates itself to all the new facts which the progress of diseovery has since brought to light, but is itself the consequence of a still more general and comprehensive principle, which philosophers, even at this distance of time, are still engaged in unfolding?

But passing over speculations which have not as yet received the general assent of chemists, let me advert to others of an older date, possessing as I conceive, the strongest internal cvidence in their favour, which the case admits, from the harmony they tend to introduce into the chaos of facts which the late discoveries in organic chemistry have brought to light. Amonget these, one of the most generally receired, and at the same time one of the most universal application, is that which represents the several combinations resulting from organic forces, as being put together according to a particular model or type, which impesses upon the aggregate formed certain common properties, and also causus it to undergo change most readily, through the substitution of some other element in the place of one of those which already enters into its constitution. And this principle, having been established with regard to one class of bodies, has since been extended to the rest; for it now begins to be maintained, that in every case of chemical decomposition a new element is introduced in the place of one of those which constituted a part of the original compound, so that the addition of a fresh ingredient is necessarily accompanied by the climination of an old one. The same doctrine, too, has even been extended to the case of combination with a body regarded as elementary, for here also the particles are considered as being in a state of binary combination one with the other, owing perhaps to their existing in opposite electrical conditions, and therefore possessing for each other a certain degree of chemical affinity. Thus, when we unite hydrogen with oxygen, we substitute an atom of the latter for one of the former, previously combined with the same element.

To the microscope we owe all that is as yet known with respect to the reproductive process in cryptogamous plants, which are now shown to possess a structure analogous to that of flowering ones in respect to their organs of reproduction; not, indeed, as Hedwig supposed, that parts corresponding to stamens and pistils in appearance and structure can be discovered in them, but, that as the primary distinction of sexes seems to run throughout the Vegetable Kingdom, new parts are superadded to a structure common to all as we ascend in the scale of creation, until from the simple cell, which, in consequence of some differences of structure, to our eyes imppreciable, appears to exercise in one case the function of the male, in another of the female, as is found the case in certain of the Conferve, we arrive
at length at the compliented machinery exhibited in flow ering plants, in which the cell containing the tecundating principle is first matured in the stamen, and afterwards tramsmitted, through an ehaborate apparatus, to the cells of the ovale, which is in like manner conveloped in its matrix, and protected by the series of investing mombranes wheh constitutes the seed-vessel. Ihus, as Goethe long ago observed, and as modern physiologists have siuce shown to be the case, the more imperfect a being is, the more its individual parts resemble eart other-the progress of development, both in the Animal and Vegetable Kingh ans, always proceeding from the like to the unlike, from the general to the particular. But whilst the researches of Brown and others have shown that there is no abrupt line of division in the Vegetable lingdom, and that one common structure pervades the whole, the later inquirics of Suminski, Hofmeister, Unger, Griffith, and Henfrey, have pointed out several curious and unlooked-for amulogies between plants and mimals. I may mention, in the first place, as an instance of this analogy between plants and animals, the existence of moving molecules, or phytosperms, in the antheridia of ferns and other Cryptogams, borne out, as it las been in so remarkable a manner, by the almost simultancous observations of Bischoffand Meissner on the egg, confirmatory of those formerly announced by Barry and Newport, and by the researches of Suminski, Thuret, and Peingsheim, with respect to the ovale of plants. I may refer you also to a paper read at the last Meeting of the Association, by Dr. Cohn, of Breslau, who, in bringing this subject before the Natural History Section, adduced instances of ${ }^{4}$ distinction of scxes which hed come under his observation in the lower Alga. In like manner a curious correspondence has been traced between the lower tribes of animals and plants, in the circumstance of both being subject to the law of what is called altermate gencration. This consists in a sort of cycle of changes from one kind of being to another, which was first detected in some of the lower tribes of animals; a pair of insects, for cxample, prolucing a progeny differing from themselvesinoutward appeasance and internal structure, and these reproducing their kind without any renewedsexual union,-the progeny in these cases consisting of females only. At length, ifter a succession of such generations, the offspring reverts to its primxval type, and pairs of male and female insects, of the original form, are reproduced, which complete the cycle, by giving rise in their turn to a breed presenting the same characters as those which belong to their own progenitors. Aningenious comparison had been instituted by Owen and others between this alternation of gencratious in the animal, and the alternate production of leaves and blossoms in the plant; but the researches to which I especially allude have rendered this no longer a matter of mere speculation or inference, imasmuch as they have shown the same thing to occur in ferms, in lycopodia, in mosses, nay, even in the conferre. We are indebted to Irof. Henfrey for a valuable contribution to our Transactions in 1851 on these subjects, given in the form of a Report on the Higher Cryptogamous Plants; Irom which it at least appears that the proofs of sexuality in the Cryptogamia rank in the same scale, as to completeness, as those regarding flowering plants did before the access of the pollen tubes to the ovale had been demonstrated. Indeed, if the observations of Pringsheim with respect to certain of the Algæ are to be relted upon, the analogy between the productive process in plants and animals is even more clearly made out in these low cr tribes than it is in those of higher organization. It also appears that the production in ferns and other Acrogens of what has been called a procmbryo; the evolution of antheridia and archegonia, or of malo and female organs, frum the former; and the generation from the archegonia
of a frond bearing spores upon its under surface, is analogous to what takes place in flowering plants in general; where the seed, when it germinates, produces stem, roots, and lenves; the stem for many generations gives riso to nothing but shoots like itself; until at length a flower springs from it, which contains within itself for the most part the organs of both sexes united, and, therefore, occasions the reproduction of the same sced with which the chain of phenomena commenced. This is the principle which a learned Professor at Berlin has rather obscurely fbadowed out in his treatise on the Rejnvenescence of Plants, and which may perhaps be regarded as one, at least, of the means of which Nature provides for the stability of the forms of organic life she has created, by imparting to each plant a tendency to revert to the primeval type.

To the elder De Candolle we are also indebted for some of our most philosophical views with respect to the laws which regulate the distribution of plants over the globe,-views which havo been developed and extended, but by no means subverted, by the investigations of subsequent writers; amongst whom Sir Charles Lyell, in his 'Principles of Geology,' and the younger De Candolle, a worthy inheritor of his father's reputation, in his recently published work on Botanical Geography, have espescially signalized themselves. But it is to the late Prof. Edward Forbes, and to Dr. Joseph Hooker, that wo have principally to attribute the removal of those anomalies, which threw a certain degree of doubt upon the principles laid down by De Candolle in 1820, in his celebrated article on the Geography of Plants, contained in the 'Dictionnaire des Sciences Naturelles,' where the derivaion of each species from an individual, or a pair of individuals, created in one particular locality, was made the starting point of all our inquiries. These anomalies were of two different kinds, and pointed in two opposite directions: for we had in some cases to explain the occurrence of a peculiar Flora in islands cut off from the rest of the world, except through the medium of a wide intervening ocean; and in other cases to reconcile the fact of the same or of allied species being diffused over vast areas, the several portions of which are at the present time separated from each other in such a manner, as to prevent the possibility of the migration of plants from one to the other. Indeed, after making due allowances for those curious contrivances by which Nature has in many instances provided for the transmission of species over different parts of the same continent, and even across the ocean, and which are so well pointed out in De Candolle's original essay, we are compelled to admit the apparent inefficiency of existing causes to account for the distribution of the larger number of species; and must confess that the explanation fails us often where it is most needed, for the Compositm in spite of those feathery appendages they possess, which are so favorable to the wide dissemination of their seeds, might be inferred, by their general absence from the fossil Flora, to have diffused themselves in a less degree than many other families have done. And on the otber hand, it is found, that under existing circumstances, those Compositæ, which aro disseminated throughout the area of the Great Pacific, belong in many cases to species destitute of these auxiliaries to transmission. But here Geology comes to our aid; for by pointing out the probability of the submergence of continents on the one hand, and the elevation of tracts of land on the other, it enables us to explain the occurrense of the same plants in some islands or continents now wholly unconnected, and the existence of a distinct Flora in others too isolated to obtain it under present circumstances from without. In the one case we may suppose the plants to have been distributed over the whole area before its several parts became
disunited by the entastrophes which supervened; in tho other, we may regard the peculiar Flora now existing as merely the wreck, as it were, of one which once overspread a large tract of land, of which all but tho little patel on which it is now found had been since submerged. Upon this nubject our opinions may in some mensure bo swayed by the nature of the conclusion we arive at with respect to the length of time during whieh seeds are capable of mantaining their vitality; for if after remaining for an indefinite period in the earth they were capable of germinating, it would doubtless be easier to understand the revival, under favorable eircumstances, of plants which had existed before the severance of Ω tract of hand from the continent in which they are indigenous. An inquiry has accordingly been enrried on for the last fifteen years under the auspices of, and with the aid of funds supplied by, this Association, the results of which, it is but fair to say, by no means corroborate the reports that had been from time to time given us with respect to the oxtreme longevity of certain plants, exemplified, rs it was said, in the case of the mummy-wheat nnd other somewhat dubious instances; inasuuch as they tem to show, that none of the seeds which were tested, although they were placed under the most favorable artificial conditiona that could be devised, vegetated after a period of for-ty-nino years; that only twenty out of 288 species did so after twenty years; whilst by far the larger number had lost their germinating power in the course of ten. These results, indeed, being merely negntive, ought not to outweigh such positive statements on the contrary side as come befure us recommended by respectable authority, such, for instance, as that respecting a Nelumbium seed, which germinated after having been preserved in Sir Hans Sloane's Ilerbarium for 150 years; still, howerer, they throw suspicion as to the existerace in seeds of that capacity of preserving their vitality almost indefinitely, which alone would warrant us in calling to our aid thes principle in explaining the wide geographical range which certain species of plants affect.

Amougst the many services rendered to the Natural Scieners ly Dr. Wooker, in conjunction with his fellow traveller, Dr. Thomson, one of the grentest I conceive to be, that they have sut uuly protested against that undue multiplication of species, which had then place by exalting minute points of diflerence into grounds of radicaland finary distinction, but that they have also practically illustrated their views withespect to the antural families which have been described by them in the volume alluded to. They have thus contributed materially to remove another dificulty which stoud in the may of the adoption of the theory of sperific centres, -I mean the replacenent of furms of vegetation in adjoining countries by others, not identical, butonly as it should seem allied; for it follows from the principles laid down by these authors, that such apparently distinct species may after all have been unly varieties, produced by the operation of extemal causes acting upon the same species during long periods of time.

But if this be allowed, what limits, it may be asked, are we to assign to the changes which a plant is capable of undergoing,-and in what way can we opposo the principle of the transmutation of species, which has of late excited so much attention, and the admission of which is considered to involve such starting consequences? l must refer you to the writings of modern physiologists for a full discussiun of this question. All that I shall venture to remark is, that had not Nature hersulf assigned certain boundaries to the changes which plauts are capable of underguing, there would seem no reason why any species at all should be restricted
within a definite aren, since the unlimited adaratation to extemal comlitions which it would theu possess might enable it to diffine itself thronghout the worhl, as casily as it has done over that portion of epace within which it is actually circumseribed. Dr. Mooker instances certain species of Coprosma, of Celmisia, and a kind of Australian Fem, the Lomaria prucera, which have undergone such striking changes in their passage from one portion of the Great Pacific to another, that they are searcely recugnizalile as the same, and have actually becn reyneded by preceding botanists as distinct species. But he does not state that any of these phants have ever been seen beyond the alove-mentioned precinets, and yet if Natuc had not imposed some limits to the suscptibility of change, one duas nut sec why they might not have spread over a much larger portion of the earth, in a form more or less modified by external circumstances. The younger De Candolle, in his late admirable treatise alrendy referred to, has enumerated aluut 117 specics of plants which have been thus diffused over at least a third of the surface of the glohe, but these apparently owed their power of tramsmigration to their insusceptilility of change, for it does not appear that they bave been nuch modified by the fiect of climate or locality, notwithstanding the extreme difference in the extenal conditions to which they were subjected. On the uther hand, it seems to be a general law, that plants whose organization is mote ensily aflected by cxternal agencies become from that very canse, more circumscribed in their range of distabution; simply because a greater difference in the ciscumstances under which they would be phaced brought with it an amount of change in their structure which exceded the linits preseribed to it by Nature. Inshort, without pretending to du mote thanto divine the eharacter of thuse impediments, which appear ever to prevent the changes of which a plant is suceptible from proceeding bejond a certain limit, we secm to cateh a glimpse of a gencral law of Nature, not limited to one of her hingdoms, bat extending everywhere throughout her jurisdiction,-a law, the aim of which may be inferred to be that of maintaining the existing order of the universe, without any material or permanent alteration, throughout all time, until the fiat of Ommipotence has gone forth for its destruction. The will which eonfines the variations in the vestable structure within a certain range, lest the order of creation should be disturbed lay the introduction of an indefinite number of intemediate forms is apparently the same in its metive ae that which brings iath the celestial luminaties to their original orbits, after the completion of a cycle of changes induced by their mutual perturbations; it is the same which says to the occan, Thus far shate thou go, and no further; and to the winds, Your violence, however apparently eapricious and abuormal, shall nevertheless be cunstrained within certain prescribed limits-

> Ni faciat, maria et terras columque profundum, Quippe ferant rapidi secum, verrantque per auras.

The whole, inded, resolves itselfinto, or at least is intimately comected with, that law of sy mmetry to which Nature seems ever striving to conform, and which possesses the same significance in the organic world, which the law of definite proportions does in the inorganic. It is the primiple which the prophetic genins of Guethe had divined, long before it had been proved by the hathurs of physiolugists to be a reality, and to which the poct attached such importance, that the celebated discussion as to its merits which took place in 1830 between Cuvier and Geoffry St. Hilaire so chatosod his mind, as to dephive him, as his biographer infonms us, of all intercest in one of the most portentuas political evente of nodern days which was enacting at the very same epoch,-I mean the subrersion of the Buarbun djnasty.

It is, indeed, not less calculated to subserve to the gratification of our sense of the Beaut:.d than to provide against tou wide a departure from that order of creation which its great Author has from the beginning instituted; and, as two learned Professors of a sister kingdom have puinted out in Memuirs laid before this Association, and have since embodied in a distinct treatise, munifests itself not less in the geometrical adjustment of the branches of a plant, and of the scales of a fr-apple -nay even, as they have wished to prove, in the correspundence between the form of the fruit and that of the tree on which it grows-than in the frequent juxtaposition of the complimentary rays of the spectrum, by which that harmony of colour is produced in Nature which we are always striving, however unsuccessfully, to imitate in Art. The law, indeed, seems to be nothing else than a direct consequence of that unity of design pervading the universe, which so bespeaks a common Crea-tor-of the existence in the mind of the Deity of a sort of archetype, to which His various works have all, to a certain exteat, been accommodated; so that the earlier forms of life may be regarded as types of those of latter creation, and the more complex ones but as developments of rudimentary parts existing in the more simple.

I might be disposed to claim for the recent investigations of butanists some share in tixing the relative antiquity of particular portions of the glube, for from the Floras they have given us of different islands in the Great Pacific, it would appear that the fimilies of plants which characterize some groups are of a more complicated organization than those of another. Thus, whilst Otaheite chiefly contains Orchids, Apocyneæ, Asclepiadex, and Crticee; ; the Sandwich Islands possess Lobeliacea and Goodenovix; atd the Galapagos Islands, New Zealand and Juan Fernanuicz, Composita, the highest form, perhaps, of dicotyledunous plants. In deducing this consequence, however, Iam proceeding upon a principle which has lately met with opposition, although it was formerly regarded as one of the axioms in Geology. Annongst these, indeed, there was none which a few years ago seemed so little likely to be disputed as that the classes of animals and vegetables which possessed the most complicated structure were preceded by others of a more simple one; and that when we traced back the succession of beings to the lowest and the earliest of the sedimentary formations, we arrived at length at a class of rocks, the deposition of which must be inferred, from the almost entire absence of organic remains, to have followed very soon after the first dawn of creation. But the recognition of the footsteps and remains of reptiles in beds of an earlier date than was before assigned to them, tended to corruborate the inferences which had been previously deduced from the discovery, in a few rare instances, in rocks of the secoulary age, of mammalian remains; and thus has induced certain eminent geologists boldy to dispute, whether from the earliest to the latest period of the earth's history ang gradation of beings can in reality be detected. Into this contruversy I shall only cnter a. present, so far as to point cut an easy method of determining the fact, that organic remains never can have existed in a particular rock, even al. though it may have been suljected to such metanorphic action as would have obliterated all traces of their presence. This is simply to ascertain that the material in question is utterly destitute of phosphoric ncid; for inasmuch as every form of life appears to be essentially associated with this r rinciple, and as no amount of heat would be sufficient to dissipate it when in a state of combination, whatever quantity of phosphoric acid had in this manner beenintruduced into the rock, must
have continued there till the end of time, nutwithstanding any igneous operations which the materials might have afterwards undergene. But as the 'iscovery of very minute traces of phosphotic acid, when mixed with the other ingredients of a rock, is a problem of no small difficulty, an indirect wethod of ascertaining its presence suggested itself to me in sume experiments of the hiud which I have instituted, namely, that of sowing some kind of seed, such fur instance as barley, in a sample of the pulverized iv.' and determining whether the crup obtained yielded more phosphoric acid than was present in the grain, it being evident that any excess must have been derived frol.. the rock from which it drew its nourishment Should it appear by an extensive induction of particulars, that none of the rocks lying at the base of the Silurian formation, which have come before us, contain more phosphoric acid than the minute quantity I detected in the slates of Bangor and Llanberris, which were tested in the above manner, it might perhaps be warrantable hereafter to infer that we had really touched upon those formations, that had been deposited at a time when organic beings were only just beginning to start into existeuce, and to which therefore, the term Azoic, assigned to these rocks by some of the most eminent of our geologists, might not be inappropriate. The proofs of the former extension of glaciers in the Northern hemisphere, far beyond their actual limits, tend also to complicate the guestion which has at all times so much engaged the attention of cosmugonists with respect to the ancient temperature of the earth's surface, compelling us to admit that, at least during the latter of its epochs, oscillations of heat and cold must have occurred, to interfere with the progress of refrigeration whici: was taking place in the crust. On the uther hand, facts of an opposite tendency, such as the discovery amuunced at our last meeting by Capt. Belcher, of the skeletun of an Ichthy woaurus in lat. 77°, and of the trunk of a tree standing in an erect position in lat. 75°, have been multiplying upon us within the same period; inasmuch as they appear to imply, that a much higher temperatare in former times perviaded the Δ retic regivis that ean be referred to local causes, and therefore force upon us the admission, that the internal heat of the nucleus of our globe must at one time have influenced in a more maked manner than at present the temperature of its crust.

Twenty years ago it was thought necessary to explain at our meetings the character and objects of this Association, and to vindicate it from the denuuciations fulminated against it by individuals, and even by parties of men, who held it up as dangerous to religion, and subversive of sound principles in theology. Now so marked is the change in public feeling, that we are solicited by the clergy, no less than by the laity, to hold our meetings within their preciucts; and we bave never received a heatier welcome than in the city in which we are now assembled, which values itself so especially, and with such good reason, on the extent and excellence of its educational establishments. It begins, indeed, to be generally felt, that amongst the faculties of the mind, upon the development of which in youth success in after life mainly depends, there are some which are best improved through the cultivation of the Physical Sciences, and that the rudiments of those sciences are most easily acquired at an early period of life. That puwer of minute observation -those habits of method and arrangement-that aptitude for patient and laborious inquiry-that tact and sagacity in deducing inferences from evidence short of demonstration, which the Niatural Sciences more particulaly promote, are the fruits of early education, and acquired with difficulty at a later period. It is during child-
hood, also, that the me:nory is most fresh and retentive and that the nomenclature of the sciences, which, feg:a its crabbedness and techinicality, often repels us at a more advanced age, is acquired amost without an effort. Allhough, therefore it can hardly be expected that the great schools in the country will assign to the Natural Sciences amy important phace in their systems of instruction until the Universities for which they are the semiuaries set them the xample, yet I camot doubt but that, the signal once given, both masters and scholars will eagerly embrace a change so congenial to the tastes of youth, and so favorable to the development of their intellectual faculties. And has not, it may be astied, the signal been given by the admission of the Physical Sciences into the curriculum of our academical education? I trust that this question may be answered in the affirmative, if we are entitled to assume that the recoguition of them which has already taken place will be constantly followed up by according to them some such substantial encouragement as that which has been :fforded hitherto almost exclusively to classical litcrature. Our ability to accouplish this, with the means and appliances at our command, does not, I think, admit of dispute. All, therefore, that seems wanted, is, on the one hand, a more equal distribution of the existing moluments between the several professions, and on the other, the admission of the clains of the sciences received into our educational system to share in the emoluments which up to this thus o have been monopolized by the Classics. And, as it is far from my wish to curtail the older studies of the University of their proper share of support-for who that has passed through a course of academical study can lee insensible of the advantages he has derived from that early diszipline of the mind which flows fron. their cultivation?-I rejoice to think, that when the Legislature shall have completed the removal of those restrictions which have iitherto prevented us in many instances from consulting the chaims of merit in the distribution of our emolunents, there will be ample means affiurded for giving all needful encouragement to the newly recoguized studies, withouz trenching unduly upon that amount of pecuniary aid which has been hitherth ceorded to the classics. In anticipation of which change, I look forward with confideace to the day when the requirements at $0 x f$ ford in the department of Physic:al Sciences will become so general and so pressing, that no institution which professes to prepare the youth it instracts for academical competition will venture to risk its repatation by declining to admit these branches of study into its educational courses.

ON the throny ce combound colouns witir heference to mintures of blue AND yEILOW J.IGHT. BX MR. J. C. MIXWERL.
When we mix together blue and yellow paint, we obtain green paint. This fact is well known to all who have ever handled colours; and it is universally admitted that blue and yellor'make green. Red, yellow, and blue being the primary colours among painters, green is regarded as a secondary colour, arising from the mixture of blue and yellow. Newton, however, foumd that the green of the spectrim was not the same thing as the mixture of two colours of the spectrum, fur such a mixture cuuld le suparated by the prism, while the green of the speetrum resisted further decumpuition. But still it was beliered that yellow and lue woild make a green, though not that of the spectrum. As far as I an aware, the inst expetiment on the subject is that of M. Platean, who, before 1819,
 th...t, when spinnius, the acsuhtant tint was a i green, but a ncutral grey, incining
sometimes to yellow or blue, but never to green. Prof. J. D. Forbes, of Edinburgh, made similar experimento in $18+10$, with the same result. Prof. Helmholta, of Künigsberg, to whom we owe the most complete investigation on visible colour; has given the true explauation of this phenomenon. The result of mixing two culoured powders is not by any means the same as mixing the beams of light which flow from each separately. In the hatter case we receive all the light which comes either from the one powder or the other. In the former, much of the light coming from one powder falls on a particle of the other, and we receive only that portion which has escaped absorption by one or other. Thus, the light coming from a mixture of blue aud yellow powder, consists partly of light coming directly from blue particles or yellow particles, and partly of light acted on by beth blue and yellow particles. This latter light is green, since the bluc stops the red, yellow, and orange, and the yellow stops the blue and violet. I have made experiments on the mixture of blue and yellow light-by rapid rotation, by combined reffection and transmission, by viewing them out of a focus, in stripes, at a great distance, by throwing the colours of the spectrum on a screen, and by receiving them into the cye directly; and I have aranged a por:able apparatus by which any one may see the result of this or any other misture of the colours of the spectrum. In all these cases blue and yellow do not make green. I have also made experiments on the mixture of coloured powders. Those which I used principally were "mineral blue" (from copper) "and chrome yellow." Other blue and yellow pigments gave curious results, but it was more difficult to make the mixtures, and the greens were less uniform in tint. The mistures of these colours were mado by weight, and were painted on discs of paper, which were afterwards treated iu the mamer described in my paper 'On Colour as perceived by the Eye, in the I'ransactions of the Royal Society of Edinburgh, Vel. xxi., Part 2. The Fisible effect of the culour is estimated in terms of the standard colourcd papers: -vermiliua (\mathcal{V}°) ultramatiue (C_{F}) and emerald green (E.) The accuracy of the results, and their significance, can le lest melerstood by referring to the paper befure menticued. Ishall deuvite mincral blue by B, and cherene ellow by Y; and $\mathrm{B}_{8} \mathrm{X}_{3}$ means a mixture of three parts blue and five parts yellow.

-The columus F., U., F. gire the propoations of the stardard culuurs which are equivalent to 100 of the given colvur; and the sum of T. \bar{U}., E. gives a co-cfficient, Which gives a genemal idea of the lnghtness. It will be secu that the first admixture of yellur diminishes the brightuess of the lune. The negatire ralues of U . iudicate that a mixture of V., \mathbb{E}., and E. cannot be made equivalent to the giren solour. The experiments from which these results were taken had the negative
values trausfered to the other side of the equation. They were all made by means of the colour-top, and were verified by repotition at different times.
 ng THEM," BE DR. GLADSTONE.
This paper was an extensiun of Sir John IEerschel's ubscrvatiuns on dichromatism, that property whereby certain bodies appear of a differeat colour according to the quantity seen through. It depends geacrally on the less rapid absorption of the red ray as it penetrates a substance. A dichromatic solution was examined by placing it in a wedge-ehaterd glass trough, hald in such a pusition that a slit in a window shatter was seen traversing the vary ing thichacses of the liquat The diversely coloured line of light thus produced was analy ved by a prism; and the resulting spectrom was represented in a diegram by means of colvured chalks on black paper, the true position of the arparent colutrs being determiued by the fixed lines of the spectrum. In this way the citrate and comenamate of iron, sulphate of indigo, litmus in various conditions, cochiuerl, and chromium, and cobalt salts where examined and represented. Amomg the more notable results were the followiug:-A base, suchas chromic oxide, produces very uearly the same speetral image with whatever acid it may; be combined, although the salts may appear very different iucolour to the unaided eje. Citante of ircn appears green, brown, or red, according to the quantity seen through. It transmits the red ray most easily, then the orange, then the green, which covers the space usually oceupied by the yellow; it euts off eutirely the more reframgible haliof the spectrom. Neutral litmus appears blue or red, aceording to the strength or depth of the solution. Alkalies cause a great development of the blue ray; acids cause a like jucrease of the orauge, while the minimum of laminasity is altered to a position much nearer the blue. Doracic acid causes a development of the violet. Alkaline litmus was exhibited so strong that it appeared red, and slightly acid litmus 60 dilute that it looked bluish purple; indeed, on aceount of the easy transmissibility of the orange ray through an acid solution, the apparent paradox was maintained that a large amount of alkaline litmus is of a purer red than acid litmus itself. Another kiud of dichromatism was ex:mined, dependent not on the actual quantity of coloured material, but on the relative proportion of the solvent. Diagrams of the changing appearanes of sulphocyanide of iron, of chloride of copper, and of chloride of cobilt were exbibited.

*on a method of drahing tie thiorttical forms of faraday's hines cf force without cal.celation," by mr. J. g. maxweid.

The mathor applies more particularly to thuse cases in which the lines at entirely parallel to oue plame, such as the lines of electic currents in a thin plate, or those round a system of parallel electric currents. In such cases, if we know the forms of the liues of force in any tro cascs, we mity combine them by simple addition of the functions on which the equatious of the lines depend. Thus the system of lines in a uniform magnetic field is a series of parallel straight lines at equal interrals, aud that for an infuite straight electric curv .ut perpendicular to the paper is a series of coneentric circles whose radii are in , metric progression. Having drawn then two sets of lines on two separate shects of paper and laid a third pic eabove, draw a third set of lines through the intersections of the first and second sets. This will be the system of liucs in a uniform field disturbed by an electric current. The most interesting cases are thuse of uniform fields dis-
turbed by a small magnet. If we draw a circle of any diameter with the magnet for centre, and join those points in which the circle cuts the lines of force, tho atraight lines so drawn will be parallel aud equi-distant, and it is ensily blewn that they represent the netual lines of force in a paramagnetic, diamagnetic, or erystallized body, aceording to the nature of the original lines, the size of the circle, d.c.

ON THE FOHM OF ITGHTNING.

Mr. J. Nasmyth read a paper to the effect that the form of lightning as exhibited by nature was an irregular curved line, shouting from the earth below to the clond above, and often continued from the cloud downwards again to some distant point of the earth; and this appearance was the result of the rapidly-shooting point of light, which cunstituted the true lightuing, leaving un the eye ile impression of the path it traced. These views led to much discussion in the section.
(I'o be continucd.)

AMERICAN ASSOCIATION FOR TIIE ADVANCEMENT OF SLIENCE.

The Teuth Mecting of the American Associatiou for the Advancement of Science was opened at Albany, in the Capital of the State of New York, on the 20th of August, by Professor James B. Hall. A deputation from Montreal was introduced to the association on the following day, and Principal Dawson of MeGill College, in the uame of the deputation, communicated the invitation to the Asso-ciation,-which at a subsequent meeting was accepted,- that the next mecting should be held in Montreal.

The Americau Association is still on a much smaller scale than its British prototype; and in some respects presents characteristic differences. The arrangements of business, which are left in the British Association exclusively in the hands of the Central Committec, were at Albany repeatedly made the subject of discussion by the whole body; and a good deal of time was lost in debates in geaeral mectiug, upon questions of order and constitutional forms, little calculated to interest those who had been attracted from a distance by the desire to listen to the communications of the distiuguished representatives of American Science assembled on the ocension. Anvther characteristic, which cunld scarcely fail to strike those who are familiar with the proceedings of the British Association, was the absence of that numerous body of youthful aspirants for a place among the ranks of the Scientific Legion, which constitutes so valuable a feature in the Sections at Home. Already, chairs in the Culleges of Englaud, Scotland, and Ireland, are filled by those who uwed their furst introduction to the Scientific world to the Sections of the British Association; and not the least of the benefita traceable to that institution pet tain to this inportant feature of its organization, which has been so employed as to invite the younger students of Science into the arena, and stimulate them to compete with thuse whose rank has long been established by universal consent. The American Association on the contrary seems chiefly composed of the veterans of Science; nor was there wanting some appearance of an appreheusion of any greater infusion of the popular element, such as the influence of the political institutions of that Country on all large and some-
what miscellaucous assemblies may perhaps fully justify. But whatever may be the effects of this absence of the predominatiug element of youthful aspirants for honors in the field of Scientific adventure, the assembly of so many of the most distinguished representatives of American Scientific Veteraus, was a peculiarly acceptable feature to those who were allured from other countries, by the echo of their fame. Nor must it be overluoked that in whatever uther respects the popular clement mey work, it is scarcely possible for a warmer or mute luspitable welcome to be offered any where, than that which the citizens of Albamy, and the Official representatives of the State of New York, tendered to the assembled Cougress of American Science, and to the visiturs attracted by the j astly earued reputation of its members.

The great feature of interest at this mecting was the inauguration of the Dudley Astronomical Observatory. This ubservatory has been fumded by the liberality of some citizens of Albany, among whom Mrs. Dudley, whose name it bears, has not only coutributed upwards of $\$ 25,000$ for the building and instruments but has annumed a further donation of $\$ 50,000$ tuwards its permanent endowment. The Hon. Edward Everett delivered a splendid oration on the occasion, in the presence of the Association, the dignitaries of the State, and the citizens of Albany, the venerable foundicse hascif occupying the seat of honour. The observatory is built in a solid and massive style, and fincly situated on the brow of a hill ; its erection was superintended by a committee of eminent astronomers, and the construction of the instruments was enti usted to Dr. Gourn, whohas acecpted the appointment of Director. At a meeting in Section, Dr. Gocud deseribed in detail the new instruments. The minor instruments have beca received, and the Observatory has been fitted up with these and uthers lent by Prof. Bacne from the Coast Survey, but the reception of the larger instruments will be delayed for a few weeks longer. The Transit circle, combining in one the Transit telescope and meridian circle, was ordered from Piston and Martius, the celebrated manufacturers of Berlin, by whom the new instrument at Ann Arbor was made. A number of improvements have been introduced in the Albany instruments, not perhaps all absolutely new, but an eclectic combination of late adaptations with new improvements. Dr. Goble made a distinction of modern astronomical instruments into two classes, the Euglish and the German. The Euglish is the massive type; the German, light and airy. The English instrument is the instrument of the engineer; the German, the instrument of the artisi. In ordering the instruments for the Albany Observatory, the Ductor had endeavoured to combine the two, with, however, a preference to the German type. The circle is three feet in diameter, graduated to intervals of two ninutes, and read by micrometers to tenths of seconds. The microscopes are four in number, and are not carried by moreable frames, but are imbedded in the piers. The piers thenselves completely surround the circle so as to climinate the effect of changes of temperature by radiation. The tube of the telescope is eight feet in leugth, and the object glass is eight inches clear aperture. The glass was made by Chance, of limmingham, and ground by Pistor himself. The eye-piece, in addition to the diaphragm, is furnished with two mierometers, one fur vertical, the other for horizontal motion, the use of these being fur the circumpolar stars, witose motion is too siow for registration by the Chronographic method. One principle has been adhered to in the whole of the instrumental arrangemeuts, namely: that every error is capable of being determined in two independent ways.

Much tronble was experienced in securiag a gool ensting for the steel axis of the iustrument. Three were foumd imperfect under the lathe, and the fourth was chosen, but even then, the pivots were made in separate pieces, whieh were set in vers deeply, aud welded.
Dr. Gous.s said he would have preferred a smaller instrument, in which the facilities of manipulation would have been greater, but was lampered by one proviso, unon which the Irustees of the institution insisted-that this should be the biggest instrument of its kiad, and the instruction was ubeyed. He had been requested by the gentlemen who had this enterprise in charge, to suggest, is a mark of respect to a gentleman of Albany, who was a munificent patrou. of Seience, that this instrument be known as the Olcott Meridiam Cirele. The other large instrument for the Observatory, the Ifelimeter, has been entrusted to an Americau artist, but is nut yet completed. It was also announced that the American Astronomical Jouraal, hitherto supported at Dr. Goutio's own expense, was in future to be published at Albany, under Dr. Guenil's elitorship, the respon."hility of its cost having beeu assumed by a number of gentemen of that City.
Among the Astronomical papers read before the Association was one by Dr. Perers on a Periodical Comet of thirtecn years. This Comet was discovered by Dr. Petens, at Naples, in 1846. He has prepared an efhemeris of the Comet from 1857 to 1860 . The comet was very difficult to observe; its light was so faint in IS 46 that he could not perceive it until he had reposed his eye for some seconds in darkuess. Even under these circumstances he had unly seen it at inter. vals during a period of twenty days. He bad devoted sume time to eatculatiug where the comet might be luoked for us its re appearance, and had drawn lines on a map, from eight days to eight days, su that tho ubserver would be saved much of the labor of sweeping, aud the comet cuuld readily be discovered. The probable orlit gives an ellipse of thirtecu years, with a probable error of oue year, so that its period might be twelve or fourteen years. In 1854, Saturn came into nearly the same position as this comet, aud some uncertainty exists as to its distance, it having been difficult to ascertain whether it was nearer the interior or the exterior of that planeli Unless some accident had happened, the comet, might be looked for cither fifty-six days bcfore or fifty-six days after the loth of Ma; ch, 1859. This enquiry had become of more importance since two comets pronounced periodic, those of de Vico and Brünuow, had failed to re-appear. Dr. Petens remarked that the discovery of comets has deereased. Last y car, not more than one or two were discovered, Ife thought this falling-off is owiug parlly to the fact that the award of a comet medal has been abandoned by the Kiug of Demmark. For many years, the discoverer of any telescupic conet received a comet-medal from the King, but in 1845 the custom was abulished, and the zual for discovery has since declinod. He hoped the institution of the cumet-medal would be renewed here.

Dr. Gound observed that it was not a little curious that since the establishment of the Observatory at Pultowa the realm of Deumark had contributed $200 \mathrm{pe}-$ ccut. more to the progress of astronomical science, in proportion to its population, than any other country. The comet medal, whose iustitution was suggested by Schumacher, continued to be awarded for fifteen years, during which period the discoperies of comets averaged five to seren per aunum, and the average discover-

YOI. II. - \mathbf{E}
ies of each comet by independent observers three to four. Since it has been abolished the discuveries of comets lave not averaged over three per anoum, and the independent simultancous discoveries of the same cumet hate become exceedingly rate.

THE UNITLD STATES COAST SURVEI.

The progress of this magnificent work has furnished, as usual, many valuable results in Science since the preceding meeting of the Assuciation; the following abstracts of the Papers read will shew how great credit is due both to the energy and skill of the conductors of this undertaling, and to the wise liberality of the Government which supports it.
"The Distribution of Terrestrial Magnetism in the United States," by l'rof. Bache and J. D. Higard.

The magnetic observatious made in connection with the Survey were scattered. at 100 different stations, along the eutire sea coast, and the data were reduced to the common period of the year 1S50. The line of no variation, or that passing throngh all the places where the magnetic needle points to the true north, intersects the coast near Ocracoke, between Cape Frtteras and Cape Fear, in a N.N.W. direction, curving gradually to the North, and passing through the middle of Lake Eric.

To the north and east of this line the declination (or ratiation of the compass) is to the west of north, being 6° near New York, 10° near Boston, and 10° in the eastern part of Mainc. To the south and west of the line of no variation it is east of north, being S^{∞} east along a line rumning directly south a little to the west of St. Louis and New Orleans, 13° near San Diego, and 21° near Cape Flattery on the western coast. The dip of the needle varies from 75° in the North eastern States to 60° alnug the northern shore of the Gulf of Mexico, aud the horizontal force from 3.5 to 6.0 in the same regions.
SUPPLFBEET TO TILE PAPEH PCBLISIIED IN THE PROVIDENCE PROCEEDINGS, ON TUE SECULAR VAISATION IN MAGNETIC DECIINATION IN THF ATLANTIC AND GULF COAST OF THE UNITED STATES, FROM OBSERVATIONS IN THE SEVENTEENTI, FIGITEENTII AND NINETEENTH CENTURIES, UNDEH VEMMISSION OF THE SUPEMINTENDENR. BY chas. A. schott.
In a paper cummunicated to the Association at the Providence meeting the secular change of the magnetic declination was investigated by Mr. Schutt. In the course of last summer he made some additional observations by direction of the Superintendent of the Cuast Survey, and in the paper now presented the results are combined with those previously obtained. The former deductions have gained considerably in accuracy, and have received important additions. The number of stations is increased from ten to thirteen. The recent observations appear to show a slight diminution in the rate of inerease of westerly declination, leading to the supposition that the infiexion in the curve representing the secular variation corresponds to about 1850. All the observations concur in placing the minimum about 1500 . The present rate of increase of westerly declination is about five minutes amually along the Atlantic coast.
disclission of tae secular variation of magnetic inclination in the mortiLASTERN STATES. COMMUNICATED, UNDER PEMMISSION OF THE SUPEMNTENDENT AND AUTHORITE OFTTHE TREASURK DEPARTMENT, BY CHARLES A. SCHOTT.
The results are confined to the limits of 38 deg. and 44 deg: of North latitude, ihero being too few observations in the southem part of the Enited States to permit
safe inferences there. The clement of magnetic dip, though less important practi, cally than that of declination, is of value in navigation in certain latitudes, and from its connection, through Ganss' investigations, with the declination and intensity, assumes a high degree of importance. While the declination observations on this coast go back to the seventeenth century, the dip has only beenaccurately observed for 23 yenrs; for the earliest observatious made in 1782 were, from the imperfection of the instruments, of little valuc. During this period the dip las decreased, reached a minimum, and begun again to increase, so that it has been a highly interesting period for observation. The lines of equal dip have been deduced by Professor Loomis, from the observations which he had accumulated before the date of his paper. The present memoir includes additional results, and discusses 161 observations made at the different stations between Toronto on the north, and Baltimore on the south. The average probable error of the result at any one station is about one minute and six-tenths of dip, and the time of minimum dip is ascertained to be about two years and seven-tenths. This time was the year 1843 , or rather the close of 1842 (1842-7). Mr. Schoti points out why these results do not agree with Professor Hanstecu's, who had not observations enough to determine the epoch of minimum dip with accuracy. Observations on the Western coast confirm these results for the Eastern.
on the oaise of the increase of sandy hook. iy prof. bache.
It is well hown, as one of the developments of the Survey, that the Hook is gradually increasing, growing to the northward into the main ship channel. At a spot north of the Hook, where there were forty feet of water when Captain Gronex made his survey, in less than ten years it was nearly bare. The importance of determining the cause of this increase, as leading to the means of controlling it cannot be over estimated. The Commissioners on Harbor Eneroachments had early attended to the matier and requested that the necessary observations for its investigation should be made. These were under the immediate direction of ProfBache, the observations having been made by Henry Mitcuele, one of the sub-assistants in the Coast Survey, with all desirable zeal and ability.

Various causes had been assigned for this growth from the action of the waves and the winds, sometimes on the outer side and sometimes on the inside of the HookThe effect of the opening and closing of Shrewsbury inlet had also been insisted upon.

To examine these and other probable cnuses laborious observations of tides and currents had been made in the vicinity of stations which Prof. Bacue showed upon: the map. Careful measurements of the low water line had also been made in connection with these observations, and with others of the force and direction of the winds. Objects easily distinguished from the sand, and of various specific gravitie ${ }_{8}$. and shapes, had been deposited near the shore of the Book to determine the porer and direction of transportation of matter along the shores of the Hook. Theresults. of these nbservations have not yet been worked out in all their detail, but the conclusions from them are perfectly safe, and are of the highest importance. Itturns out that this growth of the Hook is not an accidental phenomenon, but goes on regularly and according to determinable laws. The amount of increase depends upon variable causes, but the.general fact is that it increases year by year, and thecause of this is a remarkable northwardly curreut, the amountand duration of which. these observations assign along both s.ores of the Hook, the outer one extending across the whole breadth of False Hook channel, with varying velocity, and the one.
inside of the Hook extending nearly one-third of the distance across Sandy Hook Bay. These currents run to the north, during both the ebb and flood tide, with varging rates, and result from those tides directly and indirectly. The inner current is the one by which the flood and ebb tides draw, by the lateral communication of motion, the water from Sandy Hook Bay, and the outer is similarly related to those tides as they pass False Hook channel. The velocities and directions found, favor this conclusively.
An important observation for navigation results from this, for eleven hours out of the twelve, there is a northwardly current running through False Ilook channel, which assists yessels entering New York harbor on the ebb tide, and is to be avoided in passing out with the ebb.

It is the conflict of these two northwardly currents outside and inside, and the deposit of the materials which they carry to the point of the Hook, which causes its growth.

Within a century it has increased a mile and a quarter, and at about the rate of one sixteeuth of a mile a year, on the average, for the last twelve years.

Flym's Kuoll, on the north side of the main ship channel, does not give way, as the point of the Hook advances. The importance of watching this movement cannot, therefore be over stated.

The mode of controlling the growth is obvious from the result obtained. The observations are still continued, to obtain the necessary numerical results.
approximate cotidal lines of diunial and skmindidrnay tides of the coast ok thr united states on tue gulf of mexico-by a. d. Bache, slipfinintendent united Statrs Coast survey. Communicated by authority of the treasury departMENT.
This paper is supplementary to those on cotidal lines of the Atlantic aud Pacific coasts heretofore communicated to the Association. Preparation was made at the last meeting for these conclusions by presenting the type curves of the Gulf coast The tides from Cape Florida to St. George's are of the usual type, with a large daily inequality. From St. George's to the mouth of the Mississippi they are of the single day type. Then the half-day tides reappear to extend beyond Galveston, the day tides recurring at Aransas, in Texas, and southward. When the type curves were presented, the mode of decomposing them with a diurnal and semi-diurnal wave was described. The tide stations extend along our whole coast, but observations are much wanted beyond it to complete the investigation, on the south side of the Straits of Florida, on the eastern coast of the Gulf of Mexico south of Texas, and especially between Cuba and Yucatan, at the entrance of the Gulf from the Caribbean sea.

A table of the stations at which the observations were made, of the heights of tide (rise and fall) observed, and of the half-day and day tides, was given; and another showing the period of observation and the name of the observer. The first table is represented on a diagram by which a navigator may find the rise and fall of tide approximately on any part of our Gulf coast. The least observed rise and fall is at Brazos Santiago, Texas, and is nine tenths of a foot. The greatest is at Cedar keys, Florida, and is tro and a half fect. The difficulties of the problem presented by these tides are explained, removable in part by the progress of the survey of the Gulf, inherent in them in part. The labors of Mr. Pourtales and other gentlemen concerned in the discussion of these tides are acknowledged. The single:day tides have not been so elaborately discussed by former physicists or mathe-
maticians as to prepare the way fully for this work. The formula for the times given by Professor Avery in his "Tides and Waves," when compared with the observed times, differs remurkably in certain parts of the lunar month. A diagram shows the general form of the curve of interval between the moon's transit and high water. Advantage is takno of the part of the curve which changes but little in ordinate to obtain an average lunitidal interval corresponding in kind with the number for semi-diurnal tides, known at the establishment. These tides occur about the period of greatest declination of the moon. These intervals, at greatest declination, vary greatly during the year; and the form of curve showing the amnual change is presented, as deduced from observations at key West, Fort Morgan (Mobile entrance), and Galveston, as well as from San Francisco, on the Western coast, where the results are remarkably regular. These annual curves are used to deduce the average number for the interval of the daily tides from the short series of observations; the limits of uncertainty of the process are pointed out. These intervals are next turned into cotidal hours by the usual process of correcting for the difference of longitude, for transit, for depth, and by the process just described for the aunual change. A table of cotidal hours for the various station- is then given. By it the cotidal lines are traced, the tide waves entering the Straits of Florida, passing through them, crossing to the entrance of the Mississippi, and passing laterally to the western coast of the peninsula of Florida from south to worth, and along the southern coast of Upper Florida, along the eastern coast of Louisiana from the Southwest Pass northward, and along the const of Mississippi. Also, into the Gulf between Southwest pass and the Rio Grande, in such a way that Galveston has, as the head of the Gulf, the latest cotidal hour. By forming groups of stations, the direction of the cotidal lines, the mean cotidal hour, and the veloci,y of the wave's movement are roughls determined. The difficulties of forming the groups are explained, and the general character of the results given by them are shown in a table and upon a diagram map. Upon the map also are given the cotidal hours of the stations, and the results of the grouping. Finally, from the study of the groups and their connection, the cotidal lines or the daily tides are drawn upon the map. The main cotidal hour of the northern shore of the Gulf is twenty-six hours, twenty sever. occurring at the head of the bight in which Galveston lies. The twenty-five hour line appears at Cedar Keys, and touches the coast again at Brazos Santiago. Twenty-three is at the Tortugas and Key West, and ninetcen at Cape Florida.

A similar course to that just described is followed in the discussion of the semi-diumal tides. The table of stations, their positions, and the other data pecessary to obtain cotidal hours is given. The progress of the semi-diurnal wave as indicated by three houns is also shown. The general motion of the wave is like that of the diurnal wave, with very characteristic peculiarities. From the line of deep water joining the Tortugas and Southwest Pass at the entrance of the Mississipi the semi-diurnal wave reaches the stations on the western coast of the Florida peninsula in this order, from soutin to moth and west. The movement west of St. George's appears to be in the order of Pensacola, Fort Morgan and Cat Island, while for the diurnal wave it was Cat Island, Fort Morgan, Pensacola. To the westward of Southwest Pass there is a sudden increase of estabiishment, as if another semi-diurnal wave brought the tides there. The mean cotidal hour of the five sections west of Southwest Pass is 20 h .6 m ., while that of Southwest Pass and three east of it is 16 h .17 m ., a difference of about four hours. This taken with
the remarks already made in regard to the appearance of two high waters in the curves for Isle Dernier and Calcasicu, indicate a system of interferences yet to be unravelled. As was the case with the diurnal wave, the stations at Isle Dernier and Calcasieu gave cotidal hours very like those of Brazos Santiago and Aransas, and Galveston is later then either.

The differences between the cotidal hours for the diurnal and semi-diurnal tides are shown in a table. The grouping of the semi-diurnal results is next made, and the results tabulated and drawn on a diagram map. This map also shows the cotidal lines deluced. The cotidal lines of thirteen and fourteen hours only appear on the coast of the Florida Keys; that of sixteen hours is well marked, near Egmont Key (Tampa), and passes around the shore of the great Bay, between Louisiana and Florida, to near Southwest Pass. The line of cighteen hours is at the head of the heights, between St. George's and Cedar keys, and seventeen in that near Cat Island ; the lines of sixteen and twenty-one have succeeded each other closely in the bay to the westward of Southwest Pass.

In comparing the two sets of cotidal lines for the diurnal and semi-diurnal waves, we find a general resemblance in the great bay between the western coast of Florida and the eastern const of Louisiana. The lines of 24,25 and 26 of the diurnal tide on the eastern side of the bay, corresponding generally with $16,1^{t}$ and 18 of the semi-diurnal tides and 25 and 26 hours of the diurnal tide on the vestern side of the bay corresponding generally to 16 and 17 of the semi-diurnal. On iue couthern coast of Florida, by the Keys, on the contrary the lines of 19, 20, 21, 22 and 23 hours succeed each other rapidly between Cape Florida and the Tortugas, in the diurnal series, along the same shores in the semi-diurnal tide. On the contrary on the west of southwest Pass, the lines of 26,27 and 28 hours only occurat considerable distances in the diurnal system, while $16,17,18,19,20$ and 21 occur in the same space between Southwest Pass and Brazos Santiago in the same diurnal tide-
notes on the phogress made in the coast survey, in prediction tables for the tides of the dilted states coast, by a. d. bache, surtd., etc. Communicated by authority of the Treasury Dept.
As soon as tidal observations had accumulated sufficiently to make the task a profitable one, I caused them to be treated, under my immediate direction, by the methods in most general acceptance. The observations at Old Point Comfort, Virginia, were among the earliest used for this purpose, and the labors of Commander Charles E. Davis, U. S. N., then an assistant in the coast survey, were directed to their reduction chiefly by the graphical methods pointed out by Mr . Whewell. This work wassubsequently continued by Mr. Lubbock's method, by Mr. Henry Mitchell ; and next the tides of Boston harbor were taken up as affording certain advantages in the observations themselves, which could not be claimed for those of Old Point.

The system of Mr. Lubbock is founded on the equilibrium theory, and in it the inequalitics are sought by arranging the clements of the moon's and sun's motions, upon which they depend. Having obtained the coefficient of the half monthly inequality of the semi-diurnal tide at Boston, from seven years' observatione, through the labors of the tidal division, and approximate corrections for the parallax and declination, I was much disappointed in attempting the verification by applying to individual tides for a year during which we had observations. There was a general agreement on the average but a discrepancy in the single eases, which was quite
unsatisfactory. Nor were these discrepancies without law, as representing their residuals by curves did not f.il to show. By introducting corrections for declination and parallax of the moon increasing and decreasing, we reduced these discrepancies, but still the results were not sufficient approximations. With the numerical reductions of the observations before referred to, was commenced in 1853, under my immediate direction, by Mr. L. W. Meech, a study of the theory of the tides, directed chieflo to the works of Bernoulli, La Place, Avery, Lubbock and Wheweil The immediate object which I had in view was the a?plication of the wave theory to the discussion of our observations. I thought that the mind of an expert mathe matician, directed entirely to the theoretical portions of this work, with directionby a physicist, an i full opportunities of verifying results by extenced series of observations, the computations of which should be placed by others in any desired form, would give, probably, the best result in this combined physical and mathematical iavestigation.

The general form of the different functions expressing the tidal inequalities is the same in the different theories, and may be said on the average to be satisfactory as to the laws of change which these inequalities present. Whether we adopt, with La Place, the idea that periodical forces produce periodical effects, or with Avery, that the tidal wave arrives by two or more cauals; or with Beraoulli and Lubbock, the results of an equilibrium sphesoid; or with Whewell, make a series of inequalities, semi-menstrual, parallax and declination, with duferent epochs, we arive at the same general results, that the heights and times of high water may be represented by certain functions, with indeterminate coefficients, in the form of which the theories in a ge:eral way ugree. By furming equations from the observations, and obtaining the numurical values of the co-efficients by the methods used so commonly in astronomical computations, the result is accomplished.

A general consideration of the co-ordinates in space of the moon and sun, without any special theory, would lead to the same result, representing the lani-tidalinterval by a serics of sines and co-sines, with indeterminate co-efficients.

The grouping of the observations of one year at Boston, to apply this methodthe formation of the equations and their solution by the method of indirect climination has been the work of Mr. R. I. Avery.
To test the co-efficients, computations, for the predicted times of the tide at Boston harbor were made for a period from March 1853, to January 1854, and from comparison of these with the observed, it appears that in twenty pairs of tides, the morning and afternoon being grouped to get rid of the diurnal inequality, there are two differences of less than two 2 m ., thirteen of more than 2 m . and less than 4 m ., three of more than 4 m . and less than 10 m ., two of more than 10 m . The probable error of the prediction of a single pair of tides is 4.12 m . so that greater accuracy of prediction has been attained by this method from a single years's observations that was found at London bridge from a period of nineteen years.

LAW OF MORTAIITY.

Prof. McCoy, of Albany, read a paper in which he announced the important discorery of a mathematical formula which correctly expressed the law of mortality for all ages; it was first evolved from an analysis of the Carlisle and Northampton tables, but the Professor had compared it with a large uumber of others and said that, "so complete is its agreement with all, that at no age does the calculated number of the living differ from the number given in the tables by
a single year's mortality." The formula is, that, for the age x, the rate of mortality or the ratio of the dead t. the living for that age is expressed by

$$
a b^{c^{x}}
$$

where, a, b, c, are coustants which differ for different tables. From this the Professor drew the following conclusions;

1. The rate of mortality invariably increases from youth to old age.
2. This rate is continually accelerated even in a higher ratio than in geometrical prugressiou.
3. In early manhood, the rate does not differ much from a slow arithmetioal progression.
4. There are no crises or climacteries at wbich the chances for life are stationary or improving.
5. There are no periods of slow and rapid increase succeeding each other ; but one steady, invariable progress.
6. The law, though not the rate of mortality, is the same for city and country, for healthy and unhealthy places, for every age and country and locality; and this iaw is that the differences of the lognrithms of the rates of mortality are in geometrical progression.

OZONE OBSERVATION.

Prof. Rngers gave an account of some observations made by him on the existence of ozone in the atmocphere. In the first instance these were made at Boston, and he here found winds blowing from the sea heavily ozonised, while those from the land were less so; on removing, however, fifly miles inlaud, he found the indientions of ozone apparently independeut of the quarter from which the wind was blowing and depending more on its velocity; in a calm there being but slight ozonic effect, the increase being marked with the violence of the wind. This was to have been expected from the imperfect character of the mode of observation, since the effect produced on the test paper would depend on the quantity of ozone brought in contact with it, and this of course depended on the quantity of air that passed over it in a given time. To remedy this defect, he had arranged an apparatus by which the number of cubic feet of air passing over the test paper could be measured.
Dr. Websiter, of Norfolk, added an important observation, "Last year, while the yellow fencer was at Norjoll: and Porlsmouth, I kept an ozonometer constantly exposed to the air, and nover detected ozoue. This year I have used the ozonometer in the same place, and at the sume period of timr, and I find ozone in abundance." mhermic fafect of the sux:s rays.
In a paper, by Mrs. Eunice Frote, some interestiug results of experiments on this sul.ject were given. The experiments were made by exposing freely to the Sun's rays a thermometer, with blackened bulb, enclosed in a glass receiver, which contained the various gases experimented on. The effect was found to be greatest of all in Carbonic Acid gas: for example, when in air the thermometer stood at 106°, in Hydrogei it stood at 104°; in Oxygen, at 105°, and in Carbonic Acid at 195°. It was aiso found that the thermic effect was increased in air by an increase of its deasity and also by an increase of the moisture in it.

73

'soupul sious	

$\begin{array}{c:c} \circ & 0 \\ 5 & \underline{0} \\ \hline \end{array}$		On
		刃
		ํㅜㅇ 우우욱
		ลิ.

			B	＝旁		914
		苞			1	
				－11｜｜｜｜｜	1	
		\％	－sэypuy	111 内人	\because	
			21000	macturnownoromeds		
			ssupur		E ¢ ci	
			s．Sujoon		$\stackrel{\square}{\vdots}$	
			－231แy		\％	
		$\stackrel{*}{\circ}$	－ponasqдo （thn！u！ 15	¢ \because ○ 	\％	
		$\underset{y}{5}$	－po．a．asqo cunalxeje	 	¢ Cid d	
				 ${ }^{\circ}$｜$\|\|\|1+1\|+++++1+++$	：	
					䓂	
			妾		产	

9.5th-Dense Fog at Midnight.
30th-First Sleighing in loron lailfthe averame.
Wind-the mean velocity of the wind was 2.23 above the average, and was but
Rain-The searcity shown by the record of October, continued to a great extent The Resultant Direction of the wind for so
76
 30.0 .48
28.016 Lrighest Barometer
Lowest Babometer perature Iowest reylstered tempurature Mean maximum 'Xhermonter.
fol.... from n. m. of 20 th to a. m. of sth. Greatest daty range
 Grentest inteusity of so......
 Aurornl Light observed on 1 night, viz. 4 th; possible to see Aurora on 10 nights ; impossible to sec aurom on e 0 nights.
Snowing on s days.-deptio 0.5 inches-s.

 least clolldy houl ouserved, 10 1. 1 h. , ineill, $=0.7 .4$.

Sum f the Almospheric Curvonl, in mil
f the Almospheric Currenl, in miles, resolved into the four C'ardinal
diorth. \quad Soulh. North.
1206.20
1.12\%.63
1.411.56 1.4之3.63 3530.50

Resultant didection of the wind, $\$ 8.5^{\circ} \mathrm{W}$. ; Resultant Felocity 2.05 miles per Mean velocity of the wind......... 8.75 miles per hour.
laximum velocity 40.8 miles per hour, from 4 to $\% \mathrm{p}$, m. on $\cdot \mathrm{th}$. Most windy day........................ Ith.... Mran velocity 20.03 miles per hour. ditto.
ditto. ditto.
BY CHARJIES SMALLWOOD, M. D., ILL.D.

$78:$
MONTHLY METEOROLOGICAL REGISTGR, ST. MARTMT, ISLE JESUS, CANADA EAST-NOVEMBER, 1856.

Sva | नबल
REJMARHS ON THE ST．MARTMF，ISLE JESUS，DETEOROLOGICAL REGISIER FOR OCTOBER．

（Mighest the 1ath clay．
30.254
Iowest the ESth day
..... 29.310
Barometer Monthly Mean．
..... 20.533
（Monthly lange
..... 9 .4

lligheat the 10th day

lligheat the 10th day

..... $S 6^{\circ} G$

..... $S 6^{\circ} G$
Thermometer ．．．．．$\left\{\begin{array}{l}\text { Lowest the eyth daj }\end{array}\right.$
..... $20^{\circ} 6$
Montin！Mean
..... $46^{\circ} 0.4$
（Monthly Range
..... $66^{\circ} 00$
Greatest Intensity of the Suns Ray＇s
..... $99^{\circ} .4$
Towest Point of＇rerrestrial Raliation
..... $18^{\circ} 9$
Mran of Inmidity
..... ． $\mathrm{S09}$
Amomat of livaporation
..... 2.17 inches
Rain fell on 10 days，amounting to $\overline{5} \cdot \boldsymbol{2} 20$ inches ；it was raining 50 hours and \bar{v} miuntes．
Most macalent wind，W S WF．Least prevalent wind，IE by S．
Most windy day，the enth day；mean miles per hour， 16.55.
Least windy day，the oth day，mean miles per hour， 0.23
Most windy hour，from 10 to 11，A．M．，soth day ；veiocity 31.00 miles．
There wene 226 hours and s mimutes cabn．
There were 4 cloudless days in the month．
Total amount of miles of wind， 3732.70 miles，which hing acsolved into the Four CardinaPoints，sives N S ： 3 miles． S 371 miles，W 2270.10 miles，and E 248 miles．
Aurora Roreslis visible on $\overline{5}$ nientes．
Eelipse of the Jfoon on the 13th day visible．
The electric state of the atmosphere has been marlsed by moderate intensity．
Ozome was in moderate quantity．
REMARKS ON TME ST．M：MRTMN，ISLE JESUS，MPTEOROLOGICAY REGISTER FOR NOYEMBER．
$\left\{\begin{array}{l}\text { Ifighest，the fith day } \\ \text { Lowest，tho thin day }\end{array}\right.$ 20.23 S
Barometer Lowest，tha 4 th
Month！Mean． 29.057
Monthly Rampe 1.171
Thermometor． towest，the egth day 60.1
（ Trontlity Jange $100^{\circ} .0$
Greatest intensity of the Sun＇s Rays S9 ${ }^{\circ} .7$
Lowest point of Terrestial Radiation $11^{c} .6$
Mean of Irumidity ．S3ij
I．－in fell ons days，amounting to 6.990 meines；it was raining 31 hours．
Snow fell on 7 days，amomeng to 3 inches；it wan snowing 10 hours 30 minutes．
Most prevalent Wind was Wミ゙W－．1ect miles．
Least prevalent Wind was N゙NE－． 1 mile．
Mose windy day，the 5 th；mean miles per hour， 20.62.
Least windy day，the 12th；mean miles per hour， 0.0 ．
Most windy hour from 3 to 4 a ．m．，on tine Sth， 36.40 miles．
There were 149 homrs calm during the month．
There were 3 days cloudless．
The whole distance traversed by the wind was fint miles；resolvedinto the Four Cardinalloints，sives N 053 ； 5050 ；WV 2356 ；E 075 miles．
Aurom Toreais risible on 2 mixhts．
The Zodiacal Lisht first seen on the 10th day，and was very bright on the 20 tin day．
A Rainhow was visible on the morning of the 7 th，at 7.30 which was followed by kain－Snow Jirds firsi seen on the $26 t h$ day．
The clectrical state of the dinospiser has iect anarked ly very monerate intensity，

Mean rescits of meteorological obserfations at hamilton, c. w., FOR THE YEAR 1556.

REGLSTER, THERMOMEMER. BAROMETER. \&C.; HAMILTON, $1 S 56$.

[^2]
[^0]: * On comparing the above account of Boucheric's process with that described in the Canadian fournal (No. 6, pp. 559-561) :nd for which a patent was taken out in May, 1S56, the two processes appear to be identical so far as the employment of hydraulic pressure is conceruci, and if such is the case, this part of the patent is void.
 The following is the text of the patent Law bearing upen this point. "If at " the trial in my such action [for infriagement of Patent,] it shall be mude appa"rent to the satisfacion of the Court....that the thing thus secured by Patent " was not origimally discovered by the Patentee, or party claiming to b: the "Inventor or Diecoverer in the specification referred to in the Pateut, but had " been in use, or had been describedin sume public work, anterior to the supposed " diseovery of the Patentec......the Patent shall be declared void." 13 aud $1 \pm$ Vict. " 79 , c. S.- (Ed. Can. Jour.)

[^1]: - Ksotclus gigas, suct.
 t This part of the head-shield is very obscure in the specimens hitherto examined. We were led at firsi to believe that the angles were rounded.
 \ddagger This, however, is only to be seen when the pleure have become accidentally separated to a certain extent from one another.
 § Since the above description was writien, the son or Mis Execllency the Governor General, has kindly submitted to us some specimens obtained by him persomally from the Whithy quarries. In one of these, the pegidimn of a young individual, fourteen rings may be counted in the aris.

[^2]: Mean 'Xemperature of the Month
 Miphest
 Lowest

