The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Reliè avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been n;nitted from filming/
Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas ètė filmées.

L'Institut a microfilmé le meilleu: exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualitė inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/
Le titre de l'en-téte provient:Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison
Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

Origimat and situted iandro.

LAO DYE.
BY ร. D. SHUTTLFWWO:TH.
Although all are familing with the purplish powler sold in our shops as lac dye, but few are acguninted with its history and application. It is generally supposed to bear some relation to shellac, and to be used as a red dye in a manne: not gencrally understood by those not actually engased in the operations of the dye-house. 'Whis seeming want of information is our apology for introducing a subject upon which wo have littlo to offer which cam, with adue sense of propriety, be termed original.

The substances known in commerce as seced lac and sluclke, bear so close a relation to lac dye, that in givi::g a histury of une, we must necessarily include that of them all. They are all derived from a common su ree-a substance known as sticl. luc, which we have never scen in this country, but which is sometimes found in other malets. We are not acquainted with any authority which describes with accuacy the maner in which stick lac is produced. By some it is said to be an exudation from certain trees; others maintain that it is secreted by an insect. This point we cannot deternine, but, from the nature of the trees infun which it is foma, we incline to the opinion that the resinotis portion is of regetable origin, while the coloring matter is certainly the production of the animal kinglom.

Stick lac is found as an incrustation upon the branches of certain trees-Ficus Indice, the banyan tree, Fr: weligiosa, Croton Lacciforum, Butca frondosa, and Mhamazes jujuba, growing, principally in the eastem part of India, and, more particularly; in tho districts of Bengal, Assam, Siam, and Pega; a supply is also said to be obtained from the Malabar coast. The incrustation varies from a line to a quarter of an inch in thickness, but, occesionally it takes the form of a knotty excrescence, like that scen on plum trees, in this country. At first sight the lae anplears to be devoid of regular stracture, but closer investigation reveals the existence of numbers of small pores, or cells, which are as regnlarly distributed as in the honcycomb, although arranged somewhat differently. The incrustation of lace is, in fact, a structure of a similar mature witr that formed by the bee, and answers a similar purpese, being used for the storing of provision, as well as for the protection of an infant colony.

The lac insect, coccus lacca or a. ficus, is one of the genus to which the cochinena and Fermes insects belohg. It is described by

Ure as being about the sizo of a louse, red, roumd, fat, with twelve abdominal cireles, and six claws. The malo insect is about twice this size, and is providently fumished with wings, as the fecumdation of five thonsand females depends upon his efforts. The female, provious to clepositing her egrs, attaches herself to the twis on which the young brood is to be brought forth, and, by puncturing the bark, surrounds herself with the milky juico which exudes therefrom. This secretion is to serve the donble purpose of providing nomishment and shelter for the youms, which, in due time, issue from the esgs under the mother, and talle possession of the cells proviled for their reception, where, previous to full development, they elaborate the coloring matter which coustitutes the tinctorial principle of lac dye. The usual number of the brond is between twenty and thirty, Lat meny colunics of these censt upon the same branch; indeed, the name lalisha, which signifies une lundred thousand, and is applied by tho Hindoos to the hanitations of these insects, would lead us to infer that the progeny is munerous.
The incrusted twigs, which constituta the stick lac of commerec, are collected by the matives before the brond has made its escape, as, at this time, the coloring matter is present in greatest quantity, probally from the presence of the bodies of the insects. The twigs aro finally dried in the sum, and are then ready for exportation, or further manipulation, with a view to the purification of the resin, and tho sepuration of the coloring matter. The following amalsis, made by Dr. John, will give an idea of the composition of this crude lac:

$$
\begin{align*}
& \text { An odorns common Resin } 80 \tag{so}\\
& \text { Resin insoluble in cther } 20
\end{align*}
$$

Coloring matter, malngous to cochi-neal.4.50
Bitter balsamic matter 3.00
Pure yello:r extract. 4.50
Laccic acid 4.75
Fatty matter, like max 3.00
Skin of the insects and coloring
matter. 2.50
Salts 1.25
Eaxtis. 0.55
Loss. 4.75
120.00

The extraction of the coloring matter is nidely effected by removing the steins and other woody matter from stick lac, coarsely pulverizing the resin, and subjecting it to the iction of water, by which the greater portion of the coloring matter is dissolved. The watery solution is oraporated nearly to dryness, and the pulp is formed into cakes of about tro inches square, and half an incls thich, which are, usually, stamped with the
initials of the manufncturer's name, and, flatily, dried in the sim. These cakes constitute lac dye as it comes into the hands of the drug grinders.
Before proceeding further, it may be necessary to mention that the washed lac of tho previous oparation is dried, and then takes the form familiarly known as seed lac. If a iurther purification is reçuired, the seed lac is placed in coarse bags of about four fect long, and six inches in circumference ; mo of these bags is held by two men, who suspend it, for some short time, over a charconal fire, until the lae is liquid enough to pass through the pores of the canvas. The bag is then twisted by the men at ench end, and dragged over the smooth surface of a plaintain tree, which causes the resin to nssume the form of the thin plates known as sheluce.

To return to lac dye wo have said that tho processes used for the extraction of the coloring matter were crude, and capable of improvement. This is obvious from an examination of the cakes, which rarely contain half their weight of coloring matter. We are not aware of any exact analysis having been mblished, but Tonlinson gives the composition as coloring matter 50, resin 25, and alumina, sulphate of lime, carbonato of lime and sand, 22 per cent. An attempt was mado by Mr. Stephens, a surgeon of India, to precipitato the coloring matter by means of alum, and it is said that the lake produced, of which a quantity was forwarded to England, produced very fine colors.

Wo are not acquainted with any method for the estimation of lac dye, except the trial of a weighed sample by means of the color produced on a given weight of wool, and its comparison with the results of provious experiwents. This is the method we always employ, and lin the absence of ono moro exact, it answers a good purpose. Another plan which lately suggested itself for the determination of the coloring matter, consists in the treatment of, say, 100 grains of the dye, in very fine powder, with hydrochloric acid, followed by water, until all soluble matters are dissolved. The residue; when dried, should not exceed 50 grains. It will bo necessary to have the dye in fine porder, from the fact that the contained resinous matter might shield the particles of coloring matter from the action of the acid. This hint might prove uscful to drug grindera, who almost invariably grind too coarso, making ain articlo difficult of solution.

The coloring priaciple of lac is but slightly soluble in trater. When used for dyeing it is always necessary to employ an acid for solution. Various acids and mixtures have been tried, but hydrochloric has been found to gire tho best results. Threo parts of hydrochloric acid sp. gr. 1.15 diluted with
an oqual weight of water aro, usually, sufficient to dissolve eight parts of lac dye ; the mixture should be allowed to stand twentyfour hours. The correct mordant is made by dissolving one part of feathered tin in twenty parts of hydrochluric acid. Twelve flaid ounces of this suffice fur each pound of the solution of lac dye. The solution and mordant should bo mixed before using. Some dyers modify the tint by the use of crean of tartar and smanel, in the bath.

The coloss produced by lac dye are various shades of red and pink. It is used on the score of economy, as a substitute for cochineal, aud the colors developed are but slightiy inferior, pussessing moreover, a decided advantago in not being so liable to discoloration by perspiration. The dye is not adapted for use on cotton, and is therefore confined to silk and wool.

On the Uso of Tinfoil for Preserving Substances

 Liable to Ohange on Exposure to Air.*
HY ERNEST L.AUMR:GONT.

Tin reduced to thin sheets has for many yenrs been employed for preserving a great number of substances from the action of air and moisture. The thin leares (foil) of this metal are essentially repellant to moisture. When cemented to the surface of damp walls, they protect the paperhaugings which may be afterwards applicd, and they we in like manner used for lining the interior of boxes and drawers in which dried medicinal leaves and fowers are kent. It has long been the practice to enclose choculate in tinfoil, to prevent the fatty matter contained in it from suiling the paper which forms the outside wrapper; in the same way butter of cacao itself is preserved, and some sorts of srectmeats, suusages, and cheose are among the articles similarly motected. Tobacco-ponches are lined with tinfoil to prescrve the flavor and humidity of the tobacco. Cakes of opium aro kept in a moist and uniiorm state by wrapping them in this material, and bisulphate of soda is kept in the same way, for use in making artificial Scltzer water with Briet's apparatus. Lastly, on accumat of the opacity of tinfoil to the rays of light, bottles are coated with it for the purpose of eacluding light from regetable substances which would be injured by its action.

Notwithstanding the knowledgo of all these facts, it might be said that the application of tinfoil for the preservation of substances liablo to change is still rather limited and there scemed to be a prospect of its aimitting of a more general use than has hitherto been made of it. At the same time there Was an absence of any preciso experiments for the purpose of determining in a scientific manner the degree of impenetrability of tinfoil. Having been engaged for some time in the investigation of this subject, I have obtained tho following results :-

For many years past I have observed that cacso butter, which readily becomes rancid cren when kept in bottles into which it has

[^0]been introduced in the melted stato, if the bottles bo opened from time to time, does not umdergo the same change when moulded in tablets and wrapped in tinfoil. This fact, which was confirmed by many observations, and could only be explained by assuming the impenctrability of tinfoil to ntmospheric air, formed the starting-point for sume experiments in the same direction, which moved satisfactory. Thus, a pieco of well-burned quicklime, cnclosed in a double wrapper of tinfoil, was exposed to the atmosphere of the habnratory by the side of anuther similar piece which was expused without protection. Whilo the latter became slacked, that which was protected by the tinfoil, and weighed $02 \cdot 2$ grams on the 1st of December, 1867, had only gained 3 decigrans in weight at the expiration of one month, and after being kept until the 20̈th of March, 1868, it had only increased 94 grams. It lad thus gainel only 1.8 grams in four months. On being then taken ont of its metallic envelope much heat was developed from absorption of moisture, and it fell into powder.

Satisfied by this experiment of the efficacy of tinfoil for preserving bodies from the action of air and moisture, it secmed probable that sulustances tho most susceptible of change might bo lept in the same way. It was found that substancos so deliquescent as chloride of calcium and liver of sulphur, and efilorescent salts such as carbonato and sulphate of sola, remained almost unchanged when wrapped in tinfoil, increasing or diminishing only to a few thousandths of their weight in several weeks.
Uther cxperiments were made of a more preciso character. It is well known that fresh lemon become rapidly dried and ultimately hard, when exposed to tho air, and they also become perished and covered with mouk. I had endeavoured to prevent this drying and moulding by placing the lemons in close vessels, in dry arr, in sand, and also in bran, but none of these methods proved efficacious. Thus, for example, in twentyone days the lemons lost on an average, 17:33 per cent. of their weight in sand, and $17 \cdot 13$ per cent in bran. Experiments were made for the purpose of ascertaining the effect of enveloping the fruit in tinfoil, and also of coating it with a film of collodion. Some of the frut prepared in each way, and somo unprepared, was weighed, exposed to the nir, and again weighed at intervals of a month This methorl was applied to lemons and oranges, and the following results were ob-tained:-

1. The umprepared fruit became rapidly dried. In two months the lemons had lost 42 per cent; of ther weight, while oranges, in the same time, had lost 26 per cent.
2. Collodion, when applied to the fruit alone, exert but a feeble preservative influenco in retarding spontaneous cevaporation. If two months lemons conted with collodion had lost 29 per cent., and oranges 22.5 per cent.
3. Tinfoil almost entirely provents the drying of the fruit. In tro months lemons had only lost 108 per cent., and in three months 3 .I6 per cent. In one case tho loss was only 0.02 per cent luring the longer period. Oranges lost about 5 per cent. in two months. On the remoral of the metallie envelope, the fruit was found to bo as fresh and fragrant is when the experiments were commenced. These observations and experiments will tend to show the remarkablo power
of tinfoil in preserving substances enclosed in it from the influence of air and moisture derived from air, and may induce thoso who are interested in the subject to extend the application of this preservative means.

The present Status of Potash Produotion.*
Hy phof. challes r. williams.
From being the most abundant and cheapest of the alkalies, potash has rapidly passed to the pesition of the dearest and most expensive, and one of the chief problems in techmical chemistry is comprised in the efforts to 'essen its consumption by the substitution of other bascs, or to cheapen and increase its production by tho utilization of the abundant raw materials offered by the mineral kingdom. The first step has in very many instances, been successfully accomrlished by the employment of soda, ammonia or lime, as basic factors to accomplish a given result previously and almost exclusively brought about by potash. Thus, the puro potash alum has disappeared almost entirely from the markets, its place being assumed by a chemical equivalent in which at least one half of tho original potash is replaced by ammonia-an ammonia potasi alum. So also, the manufacture of the somewhat useful chlorate of potash was formerty effected by the passage of chlorino gas into potasla solution-a process rusultiog in the production of five equivalents of the much less valuable and less useful chloride of potassium for each one equivalent of the desired salt. Now, a mixture of lime and potash is employed and chlorate of potash and chloride of calcinm are produced. These two salts are much more readily separated by crystallization than were the two products of the fld method, at the same time a great savimg of portash is effectel, forty-six parts of canstic alkali, producing nearly three humdred and twenty-three parts of chlorate, where formerly upwards of theeo hundred and thirty-six were required for the same opcration.
In spite of these and similar sulstitutions, potash becomes scarcer and more expensive. We can not. get rid of its use entirely. There are many important technical operations in which it is, as yet, a sine qua non, and some in which it must always remain such. In the production of it pure crystal glass, soda can not replace potash, since it imparts a greenish hue to the product. Nitiate of scda can not be substituted for saltpetre in the manufacture of gunpowder, though it has already talien off the burden from the nitrate of potiosh in very many of the operations of the manufncturing chemist. In the formation of the simple and compound cyanides potash will probably always be a reguisite.
Hence, new sources of supply must be sought after and bo made available. The slow process by which the regetable kingdom extricts snd assimilates the valuable potash from nineral matter must be replaced by the quicker changes of art operating on the same substances. The original forests of this country -one of the great eentres from which potash has been sent into commerce-are so rapidly disappearing or finding such maniold uses and demands for their wouts and

- From the Scle:atife American.

timbers that the old source of supply and means of production-that from the incineration of terrestrial vegetation-are fast losing their prominence by the supercedure of new raw materials and new methods of manipulation. We presure potish now by the incinoration of marine and litoral plants, as well as by that of land vegetation. We derive it from inorganic nature by tho decomposition of feldspar and other potash-bearing minerals, and by the treatment of certain material from the rock-salt mines of Prussia. Farther, oven the animal kingdom has been placed in cortain countries, muder contribution towards the samo end. Let us exmmino into these soveral sources, and arrive at the present status of potash production tho world over, omitting, howover, the old source of the ashes of land vegetation as being sufficiently familiar to require nothing further than mere mention.

The salt deposits which underlie the variegated sandstone of Stassfurt, Prussia, have a thickness of more than six hundred feet, and present marked differences in appearance and composition at various depths. Four distinct levels are easy to bo recognized, and there are, according to Daubree, in the ascending order, as follows :--107 metres of beds of rock-salt soparated by thin layers of water-free sulphate of lime (anhydrite) ; 312 metres of rock-salt in beds separated by seams of polyhalite (hydrated sulphates of lime, magnesia and potash, containing from 15 to 26 per cent. of the last-mamed salt ; 28 metres of mixed rock-salt (70 per cent.) Kieserito (hydrated sulphate of magnesia, 17 per cent. of the mass) and carmallite (the potash salt-a donble chloride of putassinm and magnesium, 13 per cent.); oin this last is superimposed the layer in which the carnallite forms 05 per cent., the rock-salt 20 per cent., and the kieserite 16 per cent., asscciated with several allied mincrals, such as tachydrite, sylvite and kainite. "The explorations have developed the existence of a mass of carmallite equal to $6,000,000$ tons of chloride of potissinu." The quantity removed from two pits, one at Starsfurt and one at Anhalt, about half a mile distani from each other, has gradually increased from 2,500 tons in 1861 to 100,000 tons in 1866, and is now worked at thirteen establishments into chloride of potassimm, which, at some of thom, is converted into caustic putasin and the carbonate, as well as into potesh cuanpounds designed for employment for fertilizing purposes. The effect of the opening of these deposits " has been greatly to diminish the cost of potash, to disturb its production from other sources, and to excend its use even to agricultural parposes. As yet, no other workable deposits of carnallite have been discovercd, although it is fumal in small quantities in many other mines of rock-salt, and there is every reason to suppose it will be discovered in large quantities elsewhere." From 20,000 to 30,000 tons of 82 per cent. chloride are now annually produced at this lueality and find ready salo in all parts of Europe, bringing in Fromee, abult $\$ 40$ per ton.
Feldspar, containing say about $15_{\text {jer cent. }}$. of potash, has been proposed as a source of one alkali. Lawrence suggests its cxtraction, in the form of the canstic or carbonate, by mixing the finely pulverized orthoclise with sawdust and strinw, and armangity the mixture in heaps, which are to be dampened from time to time with uine or some other
nitrngenous liquid. After undergoing for six months this process of deomposition through formentation, the materials are mixed with a thick cream of hunc, made into bricks, which are calcined at a high temperature By leaching this residue, the potash dissolves and silicato of lime, etc., remain behind.
Hack proposes to lyeat the mineral with lime, and to treat tho calcined mass wilh water under a pressure of eight atmospherss. for the production of a strong lye, thr ugit which carbonic acid is passed for the precipitation of silica and alunima, and for the formation of carbonato of potassa. Meyer's plam is essentially the same ats Hack's. Ward uses fluor spar along with lime for the decomposition of feldspar for obtaining the potash. Nohe of these methods hase as yet been utilized on a practical scale, but doubtless, in time some of them, as well as those of Wurtz and Tilghman, for extracting the alkali as chloride or sulphate from green sand marl or fehdspar, will become technically maportanc.

From about twenty-two tons of wet seaweed there are, on the average, produced somewhat more than five handred pounds of chloride of potassium in addition to bromide, iodine and various soda salts. This source of potash has, however, since the discovery of the Stessfurt deposits, become of minor impurtince, but the weeds still contmino to be collected, mainly for the extraction of the bromine and the iodine, more especially for that of the latter. In 1802, when American "ashes" were selling at thirteean and a half cents per pound, the chloride from this source corresponding to 49 per cent. of anhydrous potassa, cists about one humired dollars per ton, naking the real potash cust nine sud one half cents per pound.

About twenty-five years ago it was suggested by Dubrunfant that the molasses from the mamfacture of beet-rout sagar conld be utilized in the direction of the production of potash compounds, by first cuaverting tho uncrystallizable sugar ints alcolool, which is distilled off, and subsequently evaporating the liguor to dryness and moneratmes the residuc. Accorlung to Payen, the ash of this molasses contains 49.85° per cont. of put.sh suluble in water, sad 1.5 per cent insuluble. This plom was first carried anto practice at the distillery of Se:Tut \& Co., but las sinco been alonted on a large seale at several places in buth France and Germany. The establishment at Waghauschm, Baden, anmually produces upwards of 300 tons of commercial potashes, contanaing from 85 to 04 per cent. pure carbonate of potassia.
In 1862, Dr. Hoffinan, in his report on the London Exhibition, called attention toa new source of potash utiiized in certan paris of France, more especially at the great seats of the woollen manufacture, as Rheims. Fourmies and Elbauf. Here the hquors in wheh mure thim $27,000,000$ kilog. of sheep's wool are washed are bunght for the "sunt" they contain. This "sumt" is a compound of potash with a peculiar nitrogenous anmal acid, about which but little is known, which was first pointed out by Chevrenl as forming no less than a third of the weight of raw merino wool, and a somewhat less propsithon of ordinary, cuarser wools. It furn:s on the average about fifteen per cent. of the weight of raw flece and is excecedingly soluble in colr? water. The wrashiugs of the amount of ilecce above given rould gire, according to
J. Lawrence Smuth, abont $1,167,750$ kilog. of pure potash, worth, at the average rate of American potashes, from $\$ 400,000$ to $\$ 400$,000 . The process of extraction is a simple une, and consists smply in benturg the wasiing liphor dunn to dryness and calcuing tho residue, which somewhat resenibles baked molasses in appearance, in retorts with tho production of gas, tar, and ammonical liquid, tugether with in coke-hke substance wheh is leached. From the sulution thous obtamed, sulphate, chluride and carbonate of potassa, free jrom corrcspomding soda compornds, are separated by contmued evaporation.

Unguentum Sabina.*

by t. h. batenan.

To julg. from the limited demand for this ointment, it does not now find much favor among the medical professisn generally, although, in the opinion of somo eminent surgeons, forming ono of the best external irritants and (scharotics we have, acting much mure efficiently in keeping upen blisters, etc., than does the m g. elemi. of the British Pharmacojovia, which, to some extent, has taicon its place.
Looking at this ointment from a phammaceutical point of viow, it is cxceedingly unsatisfactory; the specimen I have before me (supplied by a London wholesale house) is perfectly rancid, and resembles in appearance "old green clder ointment."
Dr. Royie says, "Wl on made in a porcelain vessel, or a water-bath, it is of a yellov ish-greent colour, efficient and actire, and will keep goud fur a long time," which it certainly does not, as far as my cexpericncegocs.
the 13. P. orders fresh savin-tops, collected in spring, to be used, thas compelling manufacturers to maho their year's stock at once, which is decidedly objectionable, as it is thus frequently seat out rancil. Although this condition does not in any way interfere with its effect as an irritant, yet it prevents its coming under the category of "elegant wreparatimas."

Pharimice cutists (cacciptiag those in a large way) are in tlec lubit of trustong to their "hulesale dragsists for it, the demand as a rule, leing two suall to justify thenr making even the quatatity ordered a:2 the Pharmacopecuis; liesides, mallo un a small scalo, it is execedingly wastefal, the saviu-tops bemg so bulky as to render it duficult to stram the vintarent foom then.
Fur satisfactiun's sake I hare prepared some myself, adupting the somewhat-modified furmula, whicin differs only from the B. \mathbf{P}. in the addition to gum benzom :-

Fresh Savin-tupis (brused)..... 8 oz.
Ycllow Wax. 3 oz.
Prepared Lard............................. 10 oz.
Gum Bunzuin (coase porder) 1 oz.
Melt the wax and lard on a water-bath, add the gum benzom, and digest for half an hour, constantly stirming, then add the savin-tops, and further digest for twenty minutes; lastly, strain rith pressure through calico or flannel, stirring occasionally until cold.
Resulting ointinent, palo yellowish-green, With the vilour of swim distinctly marked, which odour I have faled to detect in most, if not all bought specimens. The addition of gum beazvin (judging from its preserva-

[^1]tive effect on other ointments) will, in this case I hope, tond to provent any decided change from taking place.

Mruby Grove, Stratford, Junc 2ud, 1870.
Iodide of Onlcium, and Byrup of Iodido of
Oalcium.
in uttimall edemmach.
Having land, on numerous occasions, to use the chemical specinlities called iodide of lime nud symup of iodide of lime, and finding that tho articles sold muder these very mchemical names wero not simple chemical combinations, (as for cxample, iodide of iron or syrup of jodide of iron, but mixtures (tho former a mechanical mixture of iodine and quicklime, the latter of the two distinct chemical combinations, called iodide of calcimm and iodate of oxide of calcium; altogelher different in their medical propricties,) as I was desirous to obtain a Ireparation m strict accordance with the alove title, and at the instigation of Prof. Sacer, MoD., I investigated the matter, with the following results:

The preparation, called udude of lime, is a mechanical mixture of iodine and quick. lime, which, when put into liot water, undergoes a chemical reaction, forming iodide of calcium and iodate of the oxide of calcium, as illustrated by the fulluwing equation:
$6 \mathrm{CaO} \mathrm{O}+6 \mathrm{I}=5 \mathrm{CaI}+\mathrm{CaO} \mathrm{O} \mathrm{O}^{3}$
Theso combinations are both contained in the so called symup of iodide oflime. To prepare the iodide of calcium free of the iodate of oxide of calcium, there are different methsods, the most practical of which is as follows : \rightarrow prepare first a solution of the protoiodide of iron, by mixing iodine with a small excess of iron and sufficient wister; let this stand until the sulution assumes a pale green color; filter, and add to the filtrate one third as much iodine as had leen used to make the solution of protoicdide of iron ; licat to the boiling point, and add sufficient milk of lime to precipitate all of the iron, which precipitates in the form of Wholler's granular magnetic oxide of iron, accurding to the following cquation:
$\mathrm{FeI}+\mathrm{Fe}_{2} \mathrm{I}_{3}+4 \mathrm{Ca}_{\mathrm{a}} \mathrm{O}=\mathrm{FoO}$. Fen $\mathrm{O}_{3}+$ 4CaI.
To obtain the iodide of calcium filter the solution, and evaporate the filirate with ${ }^{+7} 1 e$ exclusion of air, as carbonic acid has the tondency to decompose it. Out of the concentrated solution it crystalizes in the form of needles; by cvaporating to dryncss it forms a white fusible mass. It is soluble in alcohol, very deliquescent, and decomposes When fused in contact with air, form oxide of calcium and frec iodine. To make the syrup of iodide of calcium, the fullowing formula is proposed by us. Tialic of :

$$
\begin{aligned}
& \text { Iodine, } \\
& \text { Iron, (in form of wire) } \\
& \text { Distilled water, } \\
& 7 \frac{1}{2} \text { dr. } \\
& \text { Milk of Lime, (fresh) } \\
& \text { Sugar, } \\
& \text { Simple Syrup, } \\
& \text { 9. } 3 . \\
& 280 \% \\
& \text { Mix } 3 \text { or of iodine with q. s. }
\end{aligned}
$$ 4 oz . of water, in a thin fast with and neck; shake occasionally until the reaction has ceased and the solution assumes a pale green color ; filter the solution and add the remainder of iodine; heat to the boiling point and add milk of lime until all of the iron is

${ }^{*}$ From the 3tichisan Cnicersity Medical Journal.
precipitated; filter and wash the pricipitate with hot water until all tho ionlide is washed out, then bring the whole to the measure of 20 oz. ; add tho sugal and dissolvo by a gentlo heat; to tho solution add enough simplo syrup to matio it measure 40 oz.; mix thoroughly and fill into 2 oz . bottles well corked.
The syrup is a transparent colonless liquid which does not tinge starch paper blue. Mixed with sulphuric acid it gives a white precipitate of sulphate of oxido of calcium and tums the supermatant liguid brown, which, by leating, emits violet vapors of iodine.

On a Solution of Krorphia for Hypodernic Injection.

The mode of adninistering opiates hypodermically, whoreby a much less dose proves eflicacious, und the derangement of tho stomach and other disagrecablo eftects, when taken by the mouth, are avoided, has almost become universal in eases whero these objections would tend to prohibit their use. To quote Sir Wilham Jemner: "Who that has suffered from a painful local affection can think of the alleviation to his sufferings which followed on the subcutancous injection of an anodyne, without gratitude."
The solution fur the prorpose should be an aqueous one, neutral if possible, and of such strength that six minims contain a maximum dose. The syinge communly used is graduated up to six minims. In addition to this graduation, some have the piston worked hy a screw, of which so many tums are equal to a minim ; others are worked by pressure in the ordinary mamer.
A solution of morphia-one grain in six minims, the most convenient strengtl-mav be mado by first dissolvmes one drachm of the acetate (recently prepared) in alsout four fludd drachms of loot distilled water, addings in drap or two of diluted acctic acid, if the solution le not complete. Filter into a graduated measure while hot, and, the fluid being all passed through, wash the filter by sprinkling over it suflicient distilled water, that the whole filtered podnet, when cold, u:ay measure cxactly six fluid drachms.

It is important that the acetate of morphain be recently prepared. It has then, as found in commerce, a faint acetic odor, and is an almost pure white dry powder. If of a pale brownish-grey color amd having a somewhat musky odor-charactcristic ot age-it will be less soluble. This is not due to the loss by volatilization of acetic acid mercly, as this lose, if replaced, and a completo solution effected by applying heat--the strength of onc grains in six minims being adhered to-the solution, probably on account of the salt having undergone some molecular change by lieeping, will, when cold, become a mass of feathery crystals.

The solution shoukl not be lept long. When prepared as above, it is almost void of color, fut gradually clanges to a vinegarbrown. If the accate of morphia be not quite fresh, this color is produced in the solution when first prepared.

When there is not much demand for the acelate, it will be impossible to lave it aluays recently prepared. In such cases it would bo better to prepare the solution direct from puro morphia and acetic acid, using 23 per cent. less than vould be reguired of the
acetate, to allow for the combined acetic acid.

To make six fluid drachms of tho solution in this mamer, forty-five grains of morphin and about four duid drachms of diluted acetic acit will bo xcquited. Mix them in n small flask or ordinary ounce plian, and apply thu heat of a water balh till dissolved, adding a drop or two more of the acid, if necessary, being areful that the solution at last is nentan or only slightly acid. . Filter as directed above, and add suficient distilled water to matio six lluid drachms. In this solution one grain of pure morplaia will havo been dissolved in ejght minims, and it will contain ono grain of tho ncetato in six muims.

Other sults of morphia might bo used with advantage. Among these, tho so-called bimeconte is very soluble, and makes a tolerably stable solution. Injected, it appears to bo quite as activo as the acetate, although it represents about one-fourth less of pure morphia; but being uncrystallizable its composition as generally mado may not bo so uniform. The citrate is likewise a very soluble salt.

The hydroclonate and sulphate require upwards of sixteen parts of water to hold them in solution. This prohibits their use for injecting lijpudermically, as a largo dose could not be conveniently administered by the syringe in modern use. As regards the sulplate, this statement is opposed to the statement of Abl. quoted in Gmelin's Chemisty, and Storer's, Dictionary of Salubilities, that it is soluble in two parts of water at $18 \cdot 75^{\circ}$ C. (about 66° IJ.) From repeated experiments, both with tho freshly-prepared salt and others, I find this to be an error. This salt of morphia, which is casily crystallizable and very stable, is most preferred in the United States. - Pharmaccutical Joar. Lond.

Manufacture of Red Lead from Nitrate of Lead.
DI. Pichon.-After referring to the fact that the red lead (minium) of commerce almost always contains some metallic lead and some oxide of lead (massicot), incompletely oxidized, the anthor proposes to take nitrate of lead and granulated metallic lead in the proportions of one equiv. of nitrate to four of metal ; these muterials are placed in a cast-iron caldron, lined inside with lead; water having been added, tho mixture is heated to 60° or 80°; after two hours time a ycllow sandy mass is found to havo settled at the bottom of the vessel ; the liquid should then be decanted into a leaden vessel, wherein the nitrate of lead soon crystallizes; after the crystals hare been drained they are decomposed by means of heat, by being placed for that purposo into retorts similar to those in use for the manufacture of nitric acid; the acid vapors giren off are condensed by suitable means, and the oxide of lead, which is deep black-coloured and perfectly homogeneous, thus obtained is employed for the mannfacture of red lead instead of massicot; the red lend thus produced is, according to the author, perfecily homogencous, freo from lead, and its composition is $3 \mathrm{PbO}_{4}+\mathrm{PbO}_{5}$; there is a difference of opinion as regards the fommula to be assigned to minium- $\mathrm{PbO}_{2}+$ ${ }_{2} \mathrm{PbO}$ (Dumas) ; $\mathrm{Pb}_{2} \mathrm{O}_{3} \mathrm{PbO}$ (Winliclblech); $\mathrm{L}^{2} \mathrm{~b}_{2} \mathrm{O}_{3}, 4 \mathrm{PbO}$ (Longchamp); $\mathrm{Pb}_{4} \mathrm{O}_{5}$ (Mulder). - Ilcuuc Ifcudom. Chicm. Nreles.

ONTAIEIO GOLLEGE OE PHIARIIACY

in the light of personal gain, thero is little policy shown by the adoption of such a course, and but littlo advantage is gained. In nine cases out of ten, the observation is stowed away in the noto book, or the memory, and becomes so middewed, by age, as to become altogether obscured, and lost sight of.

We do not think, hquever, that mmy of our readers belong to the narow-minded and miserly class to which wo havo alluted, but incline to the opinion that our communications are limited in number from the fact that our friends do not rightly appreciate the valuo of the information which they might impart. We have, sometimes, spoken to thoso of our acquaintances who, in the exercise of their daily avocation must meet uccasionally, with new facts. Un alludng to the propricty of committing these experiences to print, we almost invariably recsive the same answor-such and such a thing is not worth writing about. This is a mistake; the most trining item, if it be not generally known, is worth recording-the.glightest inprovement is auther step nearer perfection. If the camphor pills won't roll, and a drop of castor oil removes the dificulty, give the fict publicity, and it may bo tho means of saving humdreds of hours of valuable time, and no end of munoyance.
We occasionally meet with the excuse-at all times a bad one-that time camnot be spared for writing. Of course, our friends know their own business best, and we would only remind them of the old adage, "Where there's a will there's a way," and hope that the incliation will not be wanting.
Again we say, give us a helping haid. 'Hhe Jocheat was not institated, nur is it carred on, for selfish purpeses, but for the mutual benclit of all. Wos solicit, then, the cooperation of our friends, espectally those connected nith tho Cullese, and trust that our request will meet with a retely response.

Cultivation of Ipecac in India.

The cultivation of ipecacumba has been attempted in India, but so far with but limited success. Mr. Auçerson, tho superintendent of the Butanical Gardens, Calcutta, obtained, in 1860, a plant from the Royal Gardens at Kew. This plant has died, but seven other plants, proparyated artificially from the original une, are still in existence, though growing very slowly. Mr. Clarke, in the Indian Medical Guacttc, says: "It is very possible that when the plant onco gets up, it may not prove slow growing, and that when we once have plants that seed, it may not prove slow of propagation ; but I fear many days will elapse before any prodnco is likely to be obtained." We trust the attempt will ultimately prove successful, and this is not unlikely, when we remenber the diliculty
with which tho cultivation of cinchoma was at first attendel, and the progress that is now being made. According to a late report, tho number of cinchona phants at Darjeeling, alone, excceds $3,000,000$; some of tho plants being nineteen feet high.

Preparation of Liquor Plumbi Subacet. by the Cold Provess.
M. Nerning (Jour, de Pharmacie) proposes to obviate the formation of a precipitato of insolublo basic acetate, by shaking together the litharge, acetate of lead and water, without the employment of heat. After the oxpiration of twenty-four hours the liquor is filtered, and, if kept in well stopperad bottles, is said to remain clear fur a length of time. If we remember rightly, most of the foreign Pharmacopocias recommend a prolonged digestion, at a yeutle heat; and Wittstein, long ago pointed out the disadvantages of boiling the solution, at the same tino calling atiention to the fact that the solution could be male with an equal certainty of dissolving the oxide, without the employmont of heat beyoud the ordinary temperature of the air.

New Agent for the Removal of Iron Stains from Fabrics.
A writer in tho Chemical Netcs says that the following method is not attended with the usual bad results, in regard to the destruction of the fibre, which, on account of prolouged contact, enswo when oxalic acid, or salt of sorrel are uscil. Tho stain must be touched with yellow sulphide of ammonimm, ly wheh it will bo immediately blackened; after tho hapse of a mimute or so, wath out the cacess of sulphide, and treat the hack spot wilh dilute muratic acid, by which it is entirely ccuoved; finally, wash well with water.

New Stain for Wroods.

A correspondent of the Scicatijic Ancrican says, that butternut may be stained in imitation of black walmut hy washing it over with liquor calcis. Chery, treated in a similar maner, is said to resemble mahogany. Other woods had not been tried.

Artemprs are lecing made in varions parts of Canada io push a business with the masuspecting or ignorast, by the salo of so-called patent rights, for the manufachure and vending of certain forms of sulphurous acid, or its salts, to be used for antiseptic purposes. It is necelless to say that, as the preservative action of these agonts has been known and reconnized thronghout the civilized world for many years, it would be impossible for any person to patent their use in this country.

It is, however, possible to contrivo a new name for the compounds, and to allix printed directions, which may be copyrighted. This has been tho courso pursucd, and some of the names ndopted are certainly original enough-Liquid Ozonc, for instance. As wo know thero is considerable effort being made to delude parties into the purchase of these "patent rights," we insert this note to put our renders on their guard.

The publication of the Amcricin elition of the Chemical Neves has been discontinued, or rathor it has beon morged into anew form called the American ("irmist. It is under the oditorial charge of Dr. Chandler and Mr. W. H. Chandler, and is in most respects an independent publication, slthough tho greater bulk of the matter appears as published in the Chemical News. The Anerican Chenist is published by Messrs. W. Baldwin © Co., Now York, at the former price-sis per annum.

Tue July number marked the commencemont of a new series of the I'hamacentical Jonnal and Transections, of London, England. For many years the joumal has been under the cditorial charge of Prof. Redurood, and up to last month has been issued monthly. It is now published in weekly numbers, and by a decision of the Council, the cuilturship has been transferred to Mr. Benjamin H. Panl, Ph.D., F.C.S., who obtained twelve votes, Dr. Redwood obtaining seven; the remaining candidate, was not successful in obtaining any support.

We are pleased to notice the election of Mr. J. C. Brough, the well linown editor of the Clicmist and Druggist, to the ollice of Principal Librarim and Superintendent of the London Institution, a pust which has previously been held by several eminent men, including the celcbuated Grech scholar, Porson. Mr. Brough has, of course, to resign his cunnection with the Chemest and Dineggst, but promises to continue contributions to its pajes, and to assist in its further developmont.

Redrect:- Fusion of Silvan. - (1) The melting point of silver is about 1850° Falr. ; that is, at a fall rad leat. (2) When pure silver is retained for some time at this temperature, it absorbs oxygen equal to twentytwo times its bulk. On the cooling of the metal, this gas is cxpelled, giving rise to the "syirting" to which yeu refer. If the silver contains a small percentage of copper, the absorption of oxygen is prevented. You
may have remarked that it is, principally, from metal reduced from samples of wellwashed chloride that the expulsion of gas takes place. (3) Silver may be most readily freed from copper, when in a melted state, by projecting upon its surface small portions of nitrato of potash, or borax ; by this means all the baser metals are oxidized, and will be retained by the flux. (4) Silver is volatilo at a ligh temperature; the loss from this causo is, however, but slight, but by the violence of the boiling of the contents of a heated crucible, particles of silver may be mechanically carried over. The presence of arsenic or antimony increases the volatility of silver, and ly prolonged contact with the chlorides of the alkaline metals, a cunsiderable loss may bo sustained from the formation of chmpide of silver, which mixes with the thux.

Dr. McI.- We have handed your commernication to tho Committee on Legislation, who will doubtless return it for publication, with such remarks as they think necessary to prevent a misunderstanding of tho points ursed.
M. D.-Cinfhonine vs, Qumise.-In the face of such conflicting oridenco, it would indeed be dificult for us to determine the relative valne of these two alkaloids in the treatment of intermiteent fevers. By some authorities, the action of each is described as quite similar ; this 13 demed by others, who aftirm that there is a marked diversity, and that ono can nevar become a substitute for the other. Dr. Daniell, a surgeon in chargo of troop3 at Sicria Leone, says, in a letter to Prof. Bentley, published some time ago, (Plur. Jour., 1803,) that a large yuantity of cinchonine was furnished for the purpese of testing its remedial powers, and also of ascertaining whether it could not be used as an coonomical substitute fur quinine. The doctor had ample scope for experiment, but after a failhful trial, the cinchonino had to be abandoned, from the pain and cerubral distubatues produced. Other investigaturs realized similar results. At ono time, during the Sonthern relellion, the writer wis in chargo oi a reginent, consisting of some seven hundred men, who were principally engaged in the swamps of Southern T'ennessce. Fevers of the remittent and intermittent type were, of course, very prevalent, and the consumption of quinine was consequently conaiderable-often amounting to one and a half to two ounces per day. A small lot of sulphate ci cinchonine, consisting of some thirty ounces, was receired from the Medical Dejartment, with orders to test and report on its valuo as a substituto for quinine. Wo gave it a fair trial-as far as trifling with tho health of the men would allow-but found it by no means cqual to
quinine. Doses of thirty grains to a draclum wero ineffectual in cases where the effects of twelve grains of quinino were decided and prompt. About one lalf the cinchonino was thus consumed in unsatisfactory experiments; the remainder wo lad not, conscience to use, in urgent cases, but had it mixed with a quantity of spiritus frumenti, by way of " bitters." So ended our experienco with cinchonino. Thero is, however, no lack of ovidence on the uther side of the question. In a work on quinino and anti-periodics, by Dr. Macpherson, Surgeon-General in the East Indies, it is stated that tho effects produced are precisely analagous to those of quinine, the same cerebral dasturbances being produced, and in the same degreo; its power, compared to that of quinine, being, however, as one io threc. Briguct (Traité Therapethtique Quinquiau) bears similar testimony. He snys that the power is from one-third to one-fourth. Parcira says: "When we take into consideration tho analogy uf composition and of chemical properties of these two alkaloids, we are led to suspect analogy of physiological effects. When they were, in the first instance, submitted to examinntion, cinchonia and its salts were thought, principally on the evidence of Chomel, to be much inferior to quinia and its salts. But the subsequent obscrvations of Dufour, Petroz, Poticr, Bally, Nieuwcnhuis, Mariani, Bleynie, and others, have proved that the disulphates of the alkaloids may bo substituted for each other. Nay, Bally gires the preference to the disulphate of cinchonia, on the ground that it is less irritating than the disulphate of quinia." In tho presence of so math eridunce, we must leave the subject to your own experimenting. Experience is the best teacher.
R. M.-Prepamition of Iodofomy.-A good form is found in Wittstein :-2 parts of carbonate of potash, 2 parts of iodinc, 1 part of alcuhol of 90 por cent., and 5 parts of water are put into a retort, the latter placed in a water bath after attaching a receiver, and heated until its liquid contents are entirely colourless. A sand bath may bo used, but in this care must be taken that the temperature is not more than sufficient to leep up the $m{ }^{-}$t gentle evolution of gas; the receiver must. uring the operation, be well cooled. When the retort is quite cool its contents are poured into the receiver, the latter emptied into a cylindrical glass, and allored to subside; the mass of yellow scales are collected on a filter, well washed with water, and dried by pressing soveral times between filtering parier. The yield is about 17 per cent. or $\frac{1}{6}$ the weight of the iodine used. Iodoform forms lemon-ycllow laminated scalcs, which magnificd appear more or less as six-sided plates; it is soft to the touch, and of an

Tho English Commeroin! Soda Test.

Mr. Jolm Pattinson writes as follows to the Chemical News, in regard to a common sourco of error in alkalimetrical determinations of sodas:-

My attention has lately been dawn to a strange crror made ly some amalysts in attompting to apply the English commercial test for soda to samples of alkali, soda-ash, Sc., the result of which error is to make tho test indicato from 1 to $1 \frac{1}{2}$ per cent. more soda than the sample contains by the proper Engs lish test. It is well known that this (the English soda test) had its origin in the early day's of the sula trade-when chemists believed the equivalent of soda to be 32, and that of carbumate of soda 54 ; and that, consequently, test acid was made so that 40 parts of sulphuric acid neutralized $5 t$ parts of carbomate of soda curual to 32 of sula. This method of testing has always been, and still is, used by the soda trade throughont England; and it is a custom well uncerstood by both buyers and sellers. It indacates 0.66 per cent. more soda in a 50 per cent. alkali, than the rigidly correct test based on tho new cquivalont 31 would indicate. It is certainly desimble, for the sake of scientific accuracy, that the correct equivalent, 31, should be used in testing; but seeing that manufacturers have expended their capital in plant, and made their contracts for their various materials on the understanding that a product containing a certain percentage of soda would be obtained, and, seeing that there aro other comme reial customs of the trado still in force, which tell as much agninst the manufacturer as the test does in his faror-such, for instanco, as that of not charging for fractions of porcentages, it is more the province of an association liko the Alkali Manufacturers' Association, than that of an analytical chemist, to mako alterations in trado usages affecting such rast interests. Certainly, if any alteration be mado at all by chemists, it should be made in the direction of scientific accuracy, and not in the contrary direction, as in the case to which I have referred. The error, I find, arises in this way : The testacid is made so as to indicate the exact amount of soda according to the new and correct equivalen'; 31-that is, that 40 parts of sulphuric acit should neutralize 53 parts of carbonste of sula, cqual to 31 parts of suda.
To convert the results obtained by this testacid into the Euglish commercial sola-test, it is incorrectly issumed that the 31 parts of soda are equal to 32,-in other words, that tlie 53 parts of carbonate of suda contain 32 parts of soda. This is where the error lies; for, according to the correct English test, 54 parts of carbonata of soda, and not 53, contain 32 of soda; and, thercfore, by the Engglish test, 53 parts of carbonate of soda contain only 31 - 41 of soda. By thus nixing up the old and the new systems of equivalents, a sample of soda-ash which, by the correct English: test, contains 50.66 per cent. would be returned as containing 51.01 per cent. of soda. A sample of canstic soda which, ly the correct Enlish test, would contain 750 per cent. of soda would, by this eirmacons methon, indicate 76.4 per ccant. lt is only necessary to point out this crror in order that it may bo avoided and guarded against by any of your readens iutcrested in the buying and selling of alkałi.

Tho New Patent Laws of tho United States.
It may be useful to some of our readers to learn somothing in regard to the new Patent laws. We subjuin the following from the Scientific American:
The adrocites of tho free trade system, if they did not succeed at the late session of Congress in realizing all their aims, certainly made a clere swep so far as patents are concerned.

This cuuntry is now thrown freoly open to all forciguers in respect to patents, and the peoples of all countries may como or sond here sind compete with American genius nnd industry on tha most favorable terms.

The law which required furcigners to put and continue their inventions on sale in this country, within eighteen months after obtaining their patents, has been repealed, and furcignors, hike our citizens, may choose their own time for working their patents.

Another provision of tho new lav permits a foreigner to patent his invention here at any time, ever after it has been introduced and patented abroad for years, provided it has nut been used hero for mors than two years prior to application for an American patent.

The old law prohibited the grant of a patent for any foreign invention that had Leen brought into uso hero, oven for a day, prior to application for a patent.
In the same way the new law also throws open to foreigners the right to take out patents for designs, and as thas virtually includes all the new figures and pattern for every description of fibrous and textilo goods, such as carpets, silks, laces, calicocs, trimmings, etc., tho law becomes important to our home manufacturers.

The following is the provision of the new statuto in relation to design pattern :
"Any person who, by his own industry, genius, efforts, and expense, has invented or produced any new and original design for a manufacture, bust, statue, alto-relicvo, or bas-relief any now and original for the printing of woolen, silk, cotton, or other fabrica; any new and original impression, ornament, pattern, print, or picture, to bo painted, jcast, or otherwise placed on or worked into any article of manufacture ; or any new, useful, and original shapo or configuration of any artucle of manufacture, the same not laving been hnown ur used by others before his mvention or pruduction thereof, and patented or described in any printed publicasion, may, upon payment of the duty required by law, and other ine proceedings had the same as in cases of inventions or discoveries, obtan it patent thercfor:"
The Govermment fee for a design patent is $\$ 10$ for $3!$ years, $\$ 15$ for 7 years, and $\$ 30$ for 14 years, with privileges for extension.

Another novel provicion of the new law consists in the registration of trade-marks. When a patent inis been granted for the article or the pattern, a further security may be obtained in the shape of a patent upon the trade-mark that is placed upon the article or goods. The following is the law for trade-marks :
"Any person or firm-domiciled in tho United Statces, and any co:poration creatcd by the anthority of the United States, or of any state or'tervitory thercof, and any person, firm or corporation resident of or located in any fareign country which by treaty or con-
vention affords similar privileges to citizens of tho United Stater, and who are entitled to the exclusivo uso of any lawful trade. marks, or who intend to adopt and use any trade-mark for exclusive uso within the United States, may obtain pintection for such lawful trade-mark, by complying with the followng requirements, to wit:"
Tho Govermment feo for registration of a trade-mark is $\$ 2 \overline{5}$. Duration 30 jears, with privilego of renewal.
One effect of the above now haws will bo to put an end to that extensive class of American industries which has grown up and flourished by tho manufacture of articles and goods copied from foreign sources. All who undertake such reproductions without consent of the foreign originator, will bo liable to be interfered with at any time, by the grant of a patent, and the stoppago of their works.

Another effect of these laws will be to compel our citizens to invent thei- own designs, and thereby artistic inveption on our own soil will perhaps bo encouraged.
Wo have in preparation. to be issucd in a few days, a now edition of our widely-known instruction book. It will contain the now patent laws, with full dircctions for those who wish to avail themselves of its benefits. We shall be happy to forward copies of this book gratis to sll who will send us their names with the stamps to pay the postagefour cents.

The Mulloin Plant.

The Drugistos Circula, gives the following information in regard to that very common plant, the mullein-Verbascem thansus:-
Mullein is a biemnial plant, with a straight, tall, stout, woolly, generally simple stem, occusionally with one or two branches above, winged by the decurrent bases of the leaves, and from three to five feet high. The leaves are alternate, oblong, acute, rough, and densely tomentose on both sides. The flowers are at golden yellow color, rotate; nearly sessile, and are arranged in a dense, spiked, cub-shaped receme; calyx five-parted and downy; corolla five-lobed, rotato.
Mullein is common to the United States, growing in recent clearings, along the sides of roads, in slovenly fieds, ctc., flowering from June to August. Sone botanists consider it to have been introduced from Europe. The leaves and flowers are the parts used. They have a faint, rather pleasant odor, rescmbling that of a mild narcotic, and a somewhat bitterish, albuminous taste, ind yield their virtues to boiling water. Mullein is demulcent, diuretic, anodyuc, and anti-spasmodic. The infusion is useful in coughs, catarrh, hemoptysis, diarrhoua, dysentery, and piles. Its diuretic properties are rather weak, yet it is very useful in allaying the acridity of urine which is present in many diseases. It may be boiled in milk, sweetened, and rendered more palatable by the addition of aromatics, for internal use, especially bowel complaints. A fomentation of the leaves also forms an cxcellent local applicition fur inflamed piles, ulcers, and tumors. The leaves and pith of the stalk form a valuable cataplasm in white srellings, and, infused in hot vinegar or water, it makes an excellent poultice to be applied to the throat in cynache tonsillaris, cynache maligna, and mumps. The seeds, it is said, will pass rapidly through the intestines, and have
been successfully used in intestinal oustructions. Thoy aro marcotic, and havo been used in asthma, infantile convulsions, and to poison fish. Tho infusion may bo drank frecty. Tho flowers, placed m a well-corked buttle, and exposed to the sum, are said to yield an excellent rolaxing onl.

Inseots as Food.

The Rev. Dr. Nash is pablishing in Zion's Ifcrald a series of articles on "Insect Life." On the subject of food ho says:
"Man does not refuso to uso insects as food. Even we, highly civilized as we are, do not reject tho lobster, the crab, or the shrimp, which, though not strictly insects, are only articulato animals, and, until recently, wero classed with insects by cur best entomologists. Now the Arab would be disgusted to see us feeding on lobster salad; yet ho finds great delight in mastic ting a locust. In both tho Indies epicures eat the grub of the palm weovil, which is as large as your thumb; aud Sir John La Foroy contcurs in opinion with the ancient Greoks mentioned by Aslian as esteeming a ronsted grub very delicious food.
"Pliny tells that the Romans regarded the lossus--probabaly the larva of Prionus Coriarius, found in the oak-a very great delicacy. In Jamaica, and in the Mauritius, the grub of the Prionus Damicornu?, which is as large as a man's finger, formis an article of food. The Mexican Indians prepare a drink from a bectle (the Cicindela curveia), by macerating in water and spirits.
"Locusts are an article of food in many parts of the world. The Ethiopians were called locust-caters on this account by the Romans. The Arabs make them into bread, first grinding or pounding them, and then mixing them with their flour. They not unfrequently eat them boiled or stewed. The Hottentota esteem them highly, and grow fat on them. They all make their eggs into soup. Their traditions teach that they are indebted to some great conjurer for the coming of the locust. He lives a long way northward, they say, and remores a huge stone from the mouth of a deep pit, so that the locusts escare and fly to them for food. The Moors of Barbary prefer them to pigcons.
"Cicalle, according to Athenus and Aristotle, wero highly relished among the ancient Grecks. Pliny says the Parthians used them freely for food. Our native Indians were fond of them, as were those of New South Wales.
"The Chinese, who cannot afford to waste any edible thing, cook and eat the chrysalis of the silk worm and the harve of the hawk moth. The caterpillars of butterflics are eaten by the natives of New Holland, and also the body of the butterfly called bugong.
"Ants have their places with articles of human diet. Hottentots eat them raw and boiled. East Indians mux them with flour and convert them into popular pastry. In India, ants are used to flavor brandy.
"In Ceylon, bees are used for food. In New Caledonia the people eat a large spider, Arachnis ebulis, estecming it a luxury. Reanmer says he knew a youne German lady who ate spiders. It is recorded that Aman Maria Schure:nent ate them like nuts, and declared they were not unlike that fruit in taste. Lalande, the celebrated astronomer, was
equally fond of theso dolicacius; and Rosel know a German who spread them on his bread like butter. Humboldt caps tho claumax of these ediblo monstrosities, assuring us that he has seen Indian children drag centipedes, eighteen inches lung and more than half an inch broad from their holes and devour them.
"While theso curious facts illustrate the adge that there is no nceounting for tastes, they also show that insects are useful as food for man, and that in great extromitios ho might be saved from destruction ly placing them among his articles of diet. But I have written enough on the uses of insects-enough to show that the Great Architect of nature did not create these curious little animals in such vast numbers without a purpose. Small as they are, and contemptable as they appear their countless numbers and varied powers to do both good and evil, constituto them one of the most important forces in the economy of nature. By merely destroying a fow classes of insect-famna, and thereby permitting the others to multiply indefinitcly, tho Almighty Ruler coald bring about the entire destruction of the human race in a surprisingly brief space of time."

A Nerv Antiperiodic.

Dr. Lomaser, of Vienma, gives in the Wicner Mcdizinische Wochensehrift, for May 14th, the results of a number of objervations made regarding the effect of a new remedy for intermittent fover. Tho remedy is tho tincture of the leaves of the Eucalyptus gloluthes, a plant of the natural order Myrtacea. In 1869, Dr. Lorinser mado some experiments, tho result of which he published; but he was brought to a standstill by a want of a supply of the medicine. The plant hes since been cultivated by Herr Lamatsch, an apothecary ; and a sufficient quantity of tincture has been made from the leaves to supply a number of medical men in the districts of the Theiss and Dambe, and in the Banat. The records of fifty-threo cases of intermittent feverin which the encalyptus wasadministered have been communicited to Dr. Lorinser; and he gives very brief outlines of each, with the following summary of the results oblained. Of the fifty-three patients, forty-three were completcly cured; in five, there was a relapse in consequence of a failure of the supply of the tincture of encalyptus, and quinine had to be employed; two of the cases were not true ague; in one case. neither the cucalyptus nor quinine cured; in one, the medicine (as well as other remedies) was vomited; and in one the patient would not allow the treatment to be continued. In eleven of the cases, quinine had been ured without effect; and nine of these were cured by the cucalyptus. There was return of the fever in ten cases, at intervals varying from one to four weeks, in five of theso quinine had to be used in consequence of their being no tincturo of cucalyptus, and in the other five the c:acalyptus was successfully employed. The tincture is said to be casily made, and to lave a pleasant aromatic taste; it acts favorably on the digestive organs. Dr. Lorinser believes that in it we have a valuable remedy for internittent fever. It may be so; but, considering the comparative fanlure of the substances which have hitherto been recommended as substitutes for ciachona and quinine, still more extended and careful observation will
bo neceszary before recomizing the claims of the cucalyptus globulus to rank as an antiperindic min which dependence can lo placed. The districts which Dr. Lurinser has chusen for testing th. e effect of tho remedy are, wa beliove, well fitted for tho purpuse--intermittent fover boing very provalent in them. Philu. Med, and Surg. Rep.

The Arsenic Eaters of Styria,

Men of science who traversed Styria havo long roported the fact that there were people in Styria who consumed arsenic. Howover, this statement was demed by others, who aftirned that the white mineral they ate was nothing but chalk.

Prumpted by the importance of this subject, the royal medical counsel, Dis. Von Vest, ocensioned the issue of a circular to the phyaicians of Styria, requesting them to communicate their experiences with regard thereto. Suventecn reports were obtained, from which the following is an extract:

The principal seat of the arsenic eaters-according to these-is in the northern and northwestern part; the sonthern part, however, is free from then. The district of Hartberg, in the former, counts not less than forty individuals who indulgo in that habit. From the various sorts of arsenic, tho white arsenic, or ratsbane, is mostly taken ; less so tho commorcial yellow, and still less the natural red arsenic, or orpiment. The arsenic eaters begin with a close the size of a millet, and increase this quantity gradually to the dose the size of a pea, the weight of these quentities ? jeing $0,22,0,50$, and 0,02 grains avoirdupois, respectively.

These doses are cither taken daily, or every ouner day, or only onco or twice a week. In the distrii u of Hartberg the custom prevails to suspend this umwise usage at the time of the new moon, to commence at the timg when she is on her increaso with the relative smallest dose, and to increaso with it to the time of the full moon. From this period the quantity is diminished, but aloes aro taken in increased doses till strong diarrhcea is produced. Directly after the administering of arsenic, most people abstain from drinking, and withe regard to aliment some prefer pastry to meat, while others abstain from the taking of fat. However, the majority will take all kinds of food, indulgint also comsiderably in the use of alcoholic beverages. Older persons who have been accustomed to that habit from their boyhood feel a sensation of warmth in their stomach shortly after taking the poison, complaining only of dizziness in the head after excessive use.
The ratsbane enters beluag mostly to the lower classes-wood cleavers, stable grooms, charcoal burners, aind wood warts. They fall into that labit at the early age of fifteen, and continue it until the ages of screnty and seventy-six. Althuugh the female sex is not averse to it, the majority belong to the male sex. They are generally strong and healthy persons, couragoons, pugnacious, and of strong sexual dispesitions. Fhe reason of this habit is rery probably attributable to the fact of its apparcat farvorable action upon, horscs. If requested to cxpiain the reasom, of their indulging in it, iney will siay that it is to make them strong and healthy. -Phil. MEed. and Serg. Reporter.

Alcoholato of Chloral.

The fulluwing abstract is tahen frum the reput of a commission appointed ly the Suci té do Pharmacio of P'ais, to impuire into the cause of the differences in the characters presented by the chloral hyirate prepared accordlng to tho respective methods of MM. Roussin and Persome.

The preparation obtained by the former of theso two chemists is now declared to bo a compound not of water, but of alcohol with the anhydrous chloral. It can be prepared with great facility by a muthud similar to that adnpted for the production of the hydrate ; that is to say, ono moleculo of the anhydrous chloral (147t parts) is added to one molecule of absolute alcohol (46 parts.)

The combination is effected with the disengagement of considerable heat, and the product on cooling solidifies, after a few minutes agitation, to a mass of crystals.
The amount of chlorine in this compound was found by cxperiment 55.49 and 55.43 per cent.
Tho formula, $\mathrm{C} 2 \mathrm{HCl} 3 \mathrm{O}, \mathrm{C}: \mathrm{H}_{6} \mathrm{O}$, requires 55.0, whilst that of tho hydrate, $\mathrm{C}_{3} \mathrm{HCl}_{3} \mathrm{O}$, H2O, requires 64.3 per cent. On distilling the hydrate with water and caustic potash, a distillate was obtained, which, after removal of the whole of the chloroform produced, was found to consist solely of pure water ; whilst the alcoholato yielded a liquid in the receiver which, after separation of the last traces of chloroform, yielded a proportion of alcohol corresponding very nearly with the amount, 23.3 per cent, indicated by theory as resulting from the decomposition of the body already formulated; $\mathrm{C}^{2} \mathrm{HCl}^{3} \mathrm{O}, \mathrm{C}^{2} \mathrm{H}^{6} \mathrm{O}+\mathrm{K}$ HO, yielding
$\underset{\text { Chiloroform. }}{\mathrm{C}_{2} \mathrm{HCl}_{3}}+\underset{\text { Formatu of Putasb. }}{\mathrm{KCHO}_{\mathrm{s}}}+\underset{\text { Alcotol }}{\mathrm{C} 2 \mathrm{HuO}}$
Tho alcoholate melts at a temperature a little abore the fusion point of the hydrate. Between the boiling points there is a greater interval ; the lyydrate boiling at about 97^{n} C., the a coholate at about 113.6°; and whilst the density of the hydrate is 1.57 , that of the alcoholate is 1.34 .

Add to these characters the differences obseryable na crystalline structure-the hydrate deliquescent and having somewhat the aspect of loaf-sugar ; the alcoholate consisting of much larger and translucent crystals, which do vot abstract moisture-and it will be easy to distinguish these two bodes from each other.
It is worthy of observation, that whilst the hydrate contains 88.3 per cent. of chloml, the alcoholate contains only 70.3 per eent., and is, therefore, probably less active than the hydrate-Pharm. Jour. Lendan.

Use of Sarsaparille in Syphilis.

Dr. T. Clifyord Allbutry states (Pructitiwner, May 1870) that tho antisyphilitic effects of sarsaparilla depend upun the duse in which it is giren, and that given in adequate doses it is one of our best remedies. It has beea uscel in the Iecels Intirnary fur at least a quarter of a century, in the form of decection, and it is made there in large quantitics. "Of this decoction, which differs unly in unimportant details from the compuind diccoction of the Pharwaze pacia, we ::dminister from four to ten ounces three times a day; or prescribe some such guantity is a pint or a pint and a half to be takea at will
during the twenty fuur hours. This medicntion is expensive, no doubt, but that treatment is the cheapest which most fuickly curos the patient. The cases in whif:h sarsaparilla is must useful aro casess in which the system is thoroughly infected with syphilin, durin: the tertiary and viscoral modes of its appearance.
"In persons who are in a thoroughly cachectic state, who havo lost flesh and strength and who are suffering from sluggish ulcerations and indolent gummana, the sarsaparilla is really of very great valuc. I behove there is scarcely a pracitioner among my readers who will not rejoico to hear of a remety which will help him to cleanse and to re-cstablish old syphilitic patients-patients whose constitutions have been undermined by want of nourishment or by excesses, who havo gono through many courses of mercury, whose irritable mucous membranes will not bear any more ivdide of potassinm, and who aro so salluw, so worn, so bruken duwn, so eaten up by disease, as to seem fit only for the grave. These persons clear up on such quantities of samsapailla as I have named, and it is here that the drug fills so important a gap. It need not, and it will not, slipersede morcury and iodide of potassium in striightforward cases, but it has its place whero these means have failed, or where they are on sonio grounds to be avoided. How far wo aro xight in claiming this innportant place for sarsaparilla san only be known after an extended uso of the drug according to our method by the profession at large.

Action of Sulphureted Hydrogen on the System.

M_{x}. Schaffice has recently made some observations on the action of sulphureted hydrogen that are worthy of publication, as the facts are not generally known.
When a workman remains for days or weeks in an atmosphere containing a very small quantity of sulphureted hydrogen, the symptoms are loss of appetite and headache. The sudden respiration of a large quantity of the gas produces immediate insensibility, as if the person had been shot by a bullet, all the museles become rigid and motionless, the cyes aro staring, and the lungs give out a rustling sound. Brought into the open air, and the head washed with cold water, the patient revives in a few ninutes, and complains of lassitude, but not of any pain. Too long delay in such an atmosphere would be certain death, and probably a painless one. In one instance a workman who lad been rendered insensible by the cas, onhis recovery had his combativeness so much aroused that lie attacked the bystanders, and was with difficulty kept in bounds. The action of the gas upon the eyes is to inflame them ; they becune red and swollen, and finally closed, with severe pain. As a remedy, a wash composed of one-third of a grain of corrosive sublimato in threo ounces of water, was applied.

A mixture of air and sulphureted hydrogen is remarkably explosive. A wire heated red hot and allowed to cool until its color is dark, is sufficiently hot to occasion the explosion of the mixture. The presence of a small quantity of water vapor will prevent the ignotion of the gases. Great caro should be olsserved in factorics where sulphure 1 lyydrugen is likely to be produced, as its
action is subtile, and liable to occasion unexpected explosions as well as loss of life from its poisunous efiects upon tho system. Scientific Ancrican.

The Origin of the Word Avoirdapois.

It is generally accopted that this term is derived from the French, aroir-du-poids (to havo weight), and the French also write it in this manner; but no clue is given by thas explanation to tho origin of the word, as ap. plied to a class of weights.

We find this term for the first time in the fourteently century, in an act of Edward III. (statuto I.,) whero it is written "averdeboiz" and "haberdepois." At first, a certain class of goods was understood thereby; then the weight used for them; and, fimally, the ordinary weight of commerce. In another act of Edward III. wo read, for instance, "Wool and all kinds of avoirdupois" (that is, avoirdupois goods). To these aroir-dupois-wares belonged wineand corn. "Averdupois" is met with in more recent times, but all the older forms seem to point to the fact that it originated from the English "average," which meant proportionality, cquipoise (formerly poize, and in the old French, poiss) signifying weight, cquilıbrium, or balance. To poise (formerly to poize) meant iguratively "to weigh."
Tho saying, for instance, still prevails, "The weisht of a hair will turn the scales between their avoirdupois." Averdupois or aroirdupois may have been symonymous with average poise, signifying common weight; avoirdupois-goods were synonymous with or:dinary goods. This derivation 4 ems to be the most natural one ; and it is confimed by the acceptation of the IInglish commission of weights and measures, necording to which aroirdupois consists of a corruption of the barbaric Latin word areric, which means coarsc or common goods, and tiac Frencla word poids (weight). The word Troy, for the other kind of weight, is derived from Troja Nova (New Troy), a name which was given to Lonton by the monk-authors of the niddle ages, whose belief it was that this city had been founded by Trojan exiles Trojin or troy-weight is, therefore, synonymous with London weight.-Manufacturer and Bnilder.

Death from Strychnia by Frescrpption.

In the Americon Jomnal of Pharmary for July, Charles liullock reports ia case of death consequent on the last dose of the following prescription, the vial being drained by it:
R. Strjchnio muriat., gr. iss.

Iiq. ferri iodid., dr. rj.
Syr. Zingiberis, q. s. ut ft. f. oz. iij.
7r. Sig.-Dose, a tea-spoonful.
The patient had partiai paralysis, and after using the portion prescribed, hadit renewed, incrensing the dose by half a tea-spoonful. An hour afiter draining the vial he was scized with tonic spasms, which were reliercd by the proper remedics, but the prostration was so great as to cause death in a fer hours afterrard. A jury of experts pronounced the death duc-to strychinia; and finding that the phamacentist had simply mixed thic ingredients and stirred them with a spatuhn, they consured for improper manipulation. They also censuren the physicima indirectly; by findiag that the ingredients of the pre-
scription are subject to such chemical changes as render tho strychmia liable to bo precipitated, and thus an overdose of strychnin may be given unless tho vial be slaiden. It appears that an iodido of strychnia, almost insoluble, is likoly to bo precipitated from the solution in question, aud that it possesses the qualities of strychnia, notwithistinding the well-known fact that iodine is, to a certain extent, an antidote for strychmia. Mr. Bullock concludes his cumments with the Well-judged caution to prescribers, that when strychnia is to be administercd in full doses, it is best to give it uncombined.-Parific Mcdical and Surgical Jönnal.

Forrated Wine of Wild Oherry.

R. Cortex prun. Virg. contus..... 12 oz . Amygdalo dulc.................... Ferri oxid. hydrat................. ${ }^{\frac{1}{2}}{ }^{\frac{2}{2}}$ " Ferri. citratis $\left.\begin{array}{l}\text { Alcoholis } \\ \text { Aqua font }\end{array}\right\}$ of each sufficient. Aqua font
First exhaust the bark of its tonic principles with the alcoholic menstruum, and evaporate the resulting alcoholic tincture carefully, to expel the alcohol. and then mix the residue with SAx ounces of vater, and ndd the hydrated sesquioxide of iron ; allow it to macemate for six hours, occasionally agitating, and filter into a bottle containimg an emulsion of the almonds (maysd. dulcis two ounces, aqua pura six ounces). When the reaction has ceased between the emulsion and amygdalin, it is again filtered and the sugar added, and for every cunco thus to be prepared add 24 arains of citrate of iron, previously dissolved mi water suficient to make the whole fluid extract measure twenty-four fluid ounces. The addition of iron to the bitter principle and hydrocyanic acid of the simple extract of wild cherry, we think should render it mach more efficient as a tonic, and greatly add to tho mine af the preparation.-Dugjests' (eir.

Iodine from Ohili Soltpeter.

Professor Wagner, in his reports, says that the manufacture of iodine from Chili saltpeter alrendy amounts to $30,600 \mathrm{lbs}$ per annum. The method invented by Thicreclin for its reciaimation from the crude material is as follows: The mother liquors resulting from the manufacture of salipeter are treated with a mixture of sulphurous acid andsulphite of soda, in proper proportion, and the iodine will be precipitated as a black powder. The precipitated iodine is put into earthen jars on the bottom of which are layers of quartz sand, fine at the top, and coarse at the bottom; from this it is removed by carthen spouts into boxes lined with gypum, and a greater part of the water thus removed. It is sometimes sold in this impure state or further purified by sublimation.-Scientific - 4 zerican.

On tho Action or Sugar on Oinchoma Barks.

In the Union Pharmaceutique an article cccurs which draws attention to a proposed medification in the method of preparing quisinc into wine. In a mote on the action of sugar un the prequation of cinchona bave, MI. F. Defresue confincd himself to proving the casy solubility of cinchona rel in sac-
charino fluids. Tho present articlo sets forth tho interest which would bo attached to a study of the solvent action of sugar on the compounds of alkaloids. It is proposed that quinime wine bo prepared by the simple maceration of powdered cinchona in a diluto syrup, and subsequent filtration. With rapidity of exceution this process unites tho advantage of avoiding the addition of alcohol to the wine. The quantity of sugar may be so small as to be umnticed; tho bitterness is equal to that of ordinary quinine wine. A samplo exposed for fifteen days experienced no alteration. The comparative analysis of samples of wine prepared by each process furnished sufficiently accordent results.Chemists and Druggist.

On a Variety of Dextrino Insoluble in Water.

Musculus describes, in tho Jourmal de Pharmacic et de Chimie, a variety of dextrine insoluble in water. He had prepared this substance by heating starch grains with glacial acetic acid, the product retaining the organization of the starch grains from which it was obtnined, although chemically altered. This insoluble variety may bo rendered soluble by heating ten or twelve hours to 212° Fahr. By evaporation, a yellow powder analogous to ordinary dextrine is ubtainced. By stopping the evaporation when a syrupy consistence has been obtained, and allowing the concentrated solution to strain for some days, an insoluble matter is deposited, which may be washed with several quantitics of vater, and which consist of insoluble dextrine, having however, lost the structure of the starch grins, cxammation indicating mothing moro than an amorphous nowder.-Chemist and Druggist.

On the Prevention of Monldiness in Solutions of Iartaric Acid.

Mr. W. H. Wood has made experiments with tho riew of discovering a method of preventing the mouldiness which occurs in aqucous solutions of tartaric acid, shortly after their preparation; he communicates a preliminary note on tho subject to the Chenical Netes. The author found that a single dron of croosote effected the preservation of aia ounce solution of one part acid and tro parts water. In Bowman's "Practical Chemistry" a similar method is mentioned, where it is stated that the monidiness "may be prevented by adding a very minute quantity of carbolic acid.
Mr. Wood further discovered, that if a soliation of tartaric acid in water, whether mouldy or not, bo filtered, and then binied for a short time (say ten minutes) it will not afterwards becoire mouldy, whether corked or stoppered un in a bottle, ur left cexposed to the air. Further experiments nre promised. -Chemist and Druggist.

Production of Sulphate of Sodium from Gypsum.

H. Remoch describes a method by which ho has succeeded in preparing sulphate of soda from sypsum. He mixes tro parts of sulphate of lime or gypum with one part of carbomate of ammonia; on pouring water over this mixture, compicte decomposition of the gypsuna enstics, sulpinto of ammonia and carbonate of lime being formed. The
sulphato of ammonia is, in its turn, deconposed by means of common salt, the result being tho formation of sulphate of soda and chloride of ammonium, the latter salt boing reconverted into carbonate of ammonia by trentment with chalk.

Improved Formula for Ohall R Sixtue.

To obviate umpleasant and dangerous souring of chalk mixture as counmonly prepared, glycerine may be substituted for the sugar, according to the following formula :-R. Crete Preparat, Glycerini itiz $\mathrm{z}_{\mathrm{s} .}$; Pulv. G.
 iv. Rub well together matil thoroughly mixed. This mixtuso will keep during n whole summer. The glycerine exerts positively a snothing elfect upon tho bowels, as well as in some degree arresting fermenta-tion.-Boston Joumal of Chemistry.

Peruvian Bismath.

The increasing price of bismuth which has lheretofore been almost exclusively obtained in Saxony has cansed search to be made for this metal in other countries, which has resulted in bringing Peruvian bismuth into tho market. According to Berth it contains:

Bismuth....................... 93.36
Antimony with a little tin... 457
Copper with a hittle iron... 2.06
This metal is superior to the Saxon, as it contains no arsemc or sulplur.- Journal "f App. Chemistry.

Purification of Chioral Hyärate.

Prof. F. A. Fluckiger states that much of the commercinl chloral hydrate is impure, and unfit for use until purified. It is usually met with in irrgular masses containing moisture, and having a sharp, pungent odor, indicating partial decomposition. The salt may be readily purificd by dissolving it in pure bisulphide of carbon (soluble in fortyfive parts oi the menstruum at $18^{\circ} \mathrm{C}$.) and allowing the salt to ro-crystallize by the spontaneaus evapomtion of the solvent. The producl appears in colorless prismatic crystals, not lyygroscopic, and frec from acid re-action.-Mham. C'ent. Malle in Pharmacist.

Extraci of Oalabar Bean.

J. B. Enz recommends the following process for preparing this extract : lieduce the bean to a moderatciy fine powder, and macerate in alcohol, sp. on^{5}. S30, for ten days; then transfer the porider to a percolator and pass thirough alcolinl until the percolate becomes colorless. Nix the tincture obtainel by maceration with the percolate, distil off the alcoliol, and craporato the residuc, over a water bath, to the proper consistence. The yield of extract is about tiro per cent.Pharm. Gent. Halle in Mharmacist.

New Use for Hyposulimite of Soda.It is said that experiments mado with this salt haro prored it to bo rery superior for washing linen to the earbonato of soda now in use; it has no corrosivo action, and docs not cause a ycllow coloring oi the fabrics after some time. Borax, largely used in tha jectherlands and Belgium, is a better substitute still, and, by its use, white fabrics as-
sumo an as recable bluish hac, which, in many instances, renders tho subsequent use of washing bluo manecessary.

The nilletecure forllens.

The old remedy for colic, of a bullet or quicksilver taken intu tho stumach, has been revived, in a modified form, by Dr. Maydeu, of Argent, France. In tho Jutrmal de Mcd. Pratique, Dr. BI. declares that, after seventeen years of the ordinary treatment, in which he always failed, he has beem mavaiably successful in the twelve cases which he has treated with shot. He mixes No. 5 shot, after carcful washing, with olize oil sufficient to cover them, and gives a desertspoonful every half hour. In five or six hours the vomiting ceases, gases are cxpelled, and the bewels are moved. Warm baths, formentations, and injections of milk and honey are always superadded. Ayrupos of this treatment, we take the liberty oi telling a little ancedote. Some forty years ago a trovellins preacher in England was taleen sick with colic, in the honse of a good old hady where he was spending the night. The grod lady brought a bullet, which, after warning, she induced him to swallow. He was soon relieved from pain, and then began to reflect on the course of the bullet, and at least suggested to his nurso a doubt whether a body su heavy could find its way through the antestinal labyrinth, fearing that it would budge thero permanently. "You need not be the least afraid," said the lady cheeringly, "for that very bullet has gone through nic at least twenty times!"-Pucific Mcd. and Sury. Jourral.

Aluiteralion or eatecha.

J. Tissandier.-It is a well-known fact that catechu is too often adulterated; and the sophisticated substance has often imjuriously aficeted various operations wherein it is employed, especially dyeing and calico-printing. According to this author, genmane catcchu, when exlinusted by means of ether, loses 53 per cent. of weight, leaving, after drying, 47 per cent. of residuc. A mixture of catechu and alum gives a white precipitate with nitric acid and with chloride of barium.

Ansldote to carbo!tc .telit.

Sirect oil or castor oil swallowed in large quantities is recommended as the most efticient antidote to carbolic acid, when it has been taken in poisonous doses.

Trade ghymet.

The past month has been oue of considerable activity with wholesale houses. Orders have been numerous, and business hes been well sustained throughout.

A reference to our prices current shows a considerable adrance in reserd to some classes of goods; while others, owing to increased demand, are scarcely obtainable. This is the caso with quinine; the manufacturers having to refuse numbers of lange orders. We omit, altogether, quohations for this article. Bismuth and its preparations are higher. Opium has, as usuad, been nuciua-
ting, and at present is steadily advancing. Owing to the war in Europe, tho price of Bromido Potassium is much higher. Sulazzi licorice, at date of last advices from London was quite out of market. Gentian is held at advanced rates, and cardamoms have gone up to an extremo figure.

Antim. tart, balsam cobaiba, and tolu, curt. sassafras, oil wintergreen, cod liver onl, castor oil, sal. Epsom, and loptandrin are all quoted lower.

The demand for dyestuffs has been very large, and prices, with the exception of best Dutch madder, which is slightly lower, remain at former figures.

Oils have not been in such active demand, and prices are a little easicr. Cod, and palo and straw seals are lower ; genuine sperm is held at $\$ 2.1 \overline{5}$ to $\$ 2.25$.

Paints, as last month, with the oxception of genuine lead, in oil, which has fallen to \$2.30.

THE EUROPEAN MAIL:

A Weckly Summary of News for North America

USUAL CONTENTS: Accilents; Att and Science; Births; Jlarriages and Deaths; C'ommercial Summary; Correspondener; Court; Criminal; Emisration; Foreign and Colonial; Gazette, Guncral Summary; limicrial liarlianent; Ireland; Iatest Shipping; Efenal; Literary; Market lleports; Medical; Screamtile; Militery; Miscellanrous: Music and the Drama; Natural Historg; Naral; Obitnare; Political, Prices Carrent; Scotland; Shipping and Freights; Special smerican Notes; Sportiag; Stocks and Shans; Wills and Dequests; sic. isc.
Sulucription, payable in adrance, 77 s . sd. per anmem, inclusire of yostage

PERFUMIERY,

HANDKERCHIEF Extracts, Jockey Cluh, Frangipanni, Patchouly, West End, Musk, Sinring Flowers, XLignonctte, Neis Mown Hay; Strect Pea, and all the popular scents.

Extra Quality.-6 oz. Octagon Cut; 3 oz. Octagon Cut; 1는 oz. Plain, stoppered.
Bast Quality.-1 $\frac{1}{3}$ oz. Plain, stoppered.
No. I Qurality.-1 12 oz. Squat Cork'd; 1 oz. Stone Jug; Iuz. Glass Jugs; ${ }^{3}$ oz. Pancl; 1 Io\%. Squat; foz. Squat; s oz. Oral; foz. Squat. Hair Oils, Pomades, Tooth Washes, Tooth Powders, Colosnes, Lavinnders, Sachets, Camphor Ice and lloll, Toilct Vinegar, Milk of Roses, cte, in all the popular styles.
Price Lists on application to
LXXIAN BROS. \& Co.,
1-1y.
107 King Street Exat, Toronto.

WIIOLESALE PRICES CURREMNT-SEPREMEER, 18\%O.

[^0]: -Prom Jour. do Pharmacio et d: Clienic.

[^1]: *From the Marmacentleal Jouraal, London.

