Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

\mathbb{T} lye (f)motim fommal.

TORONTO, OCTOBER, 1855.

Hints for the Formation of a Canadian Collection of Ancient Crania.

The value which attaches to ancient skulls as indiees of the characteristics of extinct races, is being more and mure generally appreciated with the increasing results of extended ubservation. Camper, the oriminator of the ideal facial angle, was the first of modern scientific craniologists who aimed at establishing a system of classifyiug races by means of cranial confurmation; and with him mast be nuted Daubentun, the coutemporary and fellow-labourer of l3uffou, who first drew attention to some of the most remarkable elements of comparison, in the characteristics of the base of the skull, both in comparative anatomy, as between the ape and man, and between the known rices of men, as the Negro and liurupen. These were lollowed by Blumenbach, to whom we owe the accepted application of some of the most familiar ethnological terms, such as Mongolian, Ethiopian, and, above all, Caucasiun. Of these the last was undoubtedly fuunded on error, and, as now commonly cmpluyed, has a falser and more misleading import than any it was designed to convey by its origimator. Ilunter, Cuvier, and other naturalists, more or less incidentally neticed the same elements of comparison, and Dr. Prichard, with a rare combination of learning and powers of observation, began so early as 1505 , iny the publication of his De Ilominum Farictatilus, a series of works which have exercised the most important influence on the science of Eithnology.

While the latter of these works were in progress, a distingruished American physiulurist, Dr. Samuel George Mortun of Philadelphit, devoted limself to craniological investigation with a special view to the clucidation of the many obscure points relative to the ancient and existing mative races of the new world. The first task he proposed to himself was the examination and cumparison of the crania of the Indian tribes of North and South America. In following out his investigation he enlisted many zealous coalintors m his service, and obtained skulls from aneient Mexican and Peruvian sepulchres, and from the grave mounds of the Southern States and of Central America. The first fruits of this was the publication, in 1839, of his Crania Americana, a work of the utmost value in this department of physical ethnology. Dr. Morton next proceeded to extend his labours into the most ancient areas of human colonisation, and with the aid of Mr. G. 12. Gliddon, the United States Consul at Cairo, in Egypt, he obtained an important collection of skulls from the venerable catanombe ci the Nile valley. The result of this was the publication of another work, the Crania -Egyptiaca, in 1844, which met with the highest commendations from the Archavologists and Ethnologists of Europe. Dr. Morton's death took place in 1851, while engrged in the prosecution of researebes calculated still further to elucidate the science to which he had already made such raluable contributions. The extensive collection of crania which he had made, including those which furnished the data for the two great works named above, has since been purchased from his widuw and added to the Cabinet of Natural Sciences of Philadelphia.

Siuropean lithnologists lave not failed to appreciate the importance of such observations, and valuable collections of ancient amia are nuw to be met with in Paris, Stockholm, Copenharen, lidimburgh, and other European capitals. Especial attention has more recently been directed to the subject in 13ritain, and a work is now projected by Joseph 13arnard Davis, Esq., and 1r. John 'Ihurnan, atier the model of Dr. Morton's Crcenial Amerirame, specially devoted to the illustration of the Ethnolugy ot (ireat Bitain and Irelame by means of "deliniations of the skulls of the aboriginal inhabitants of the British Islands, athd of the races immediately suceceding them."

The fulluwins catract from the prospectus of this work, which is to bear the title of Citmin Brifatetica, will suffice to show the aim of its nuthurs, and the bature of the truths they hope to clucidate :-

- Amidan attention to the Natural History of Man, such as hasnever wefure beet cacited, embracily the whabitants of every region and remote island of the glube, it seem- an amonaly, that the people who first roamed the wilds and forests of our natice country should have hitherto attracted so little regard. There have been many controversies to decide tho exact position beld by the ancient britons in the scale of civalication. ditiogaries have appealed to tho numerous relics of their arts, :tha histiry aduces evidences of their prowess, their patiotic salour, and of their heroic resistance of even lioman compuest. Their remaining works have been traced out and deciphered with the most patient inrestigation. But it is remarkable, that their personal remanns-their bones,-entombed in Burrows over so many districts of these islauds, hate, unthl recently, not been objects of attraction even to cullectuls, --unlike the geologist, who has gathered up and treasured erery osteological fragment of tho races of animals coming rithin lis domaiu. Hitherto no publication has been deroted to the chief vestige of the organization of the primitive Briton and his s:accessors, that must important and instructive of all-his Cranium. In the skulls themoches, we have the very "heart of heart" of all their remains, which the ganwing "touth of time and razure of oblivion" bave spared. These present an exact measure of their differing cercbral organization, of their intellect and feelings; and may be said to bo impressed with a vivid outline of their very features and expressions.

It is leliered that a sufficient number of these precious relics hare now been exhumed frum lharrows and ether Tombs, in which the living hands of their brethren (observing the dictates of eternal love, or the rites of an all-pervading superstition, based in inextinguishable aspirations) deposited them, to emable us not mercly to reproduce the most lively and forcible trats of the primeral Celtic hunter or warrior, and his Roman comqueror, succeaded by Saxon or Angle chieftains and settlers, and, later still, by the Vikings of Scandinavia; but also to indicato the peculiarities which marked the different tribes and races who have peopled the diversified regions of the British Islands; and as we thus picture our varied ancestry, to deduce, at the same time, their position in the scale of ciralization by the tests of acurate represcutation and admeasurement.
These primitive remains are of great interest-of real national raluc,-and deserve the most careful examination and study, that they may be delincated with the utmost precision-with artistic skill worthy of the subject; and, being thus perpetuated, they will be rescued from the grasp of accideutal destruction, and the further inroads of fretting age.
In some countries of Europe, collections of Crania, such as are abore alluded to, have thrown much light on the history and relations of the early races inhabiting them. The results obtained from researches of this kind in tho Scandinavian kingloms, have been presented to the world in the writings of Eschricht, Retzius, and Nilsson. In America, the great master uf the science, the late Professor Morton, founded hisclassical works on the. borigines of the Western World and the ancient Egyptians, upon skulls obtained from the mounds and burialplaces of the former, and the Catacombs of the land of the Pharaohs. In our own country, as Dr. Prichard, our best cthnological authority, repeatedly laments, nuthing of the kind, except on the most inadequate scrle, has get lueen attempted. Few countries, howerer, present grenter facilities for an inquiry of this description."

The authors accurdingly propose to issue this work by subscription, in six parts of an imperial quarto sizc, cach contain-
ing ten lithographic plates, accompanied with a descriptive narrative, giving the history of each exhumation, an aceount of any antiquities disinterred with it, and also, when necessary, illustrations of such, along with exact measurements of the skulls, similar to those furnished by Dr. Morton. The collections of the Society of Antiquaries of Scotland, the Phrenological Socicty of Edinburgh, the Royal Academy of Dublin, and of various other scientific bodies, have been placed at the service of the authors, and both the lioyal Society of London and the British Association fur the advancement of Science have granted pecuniary aid towards the requisite investigations.

When the importance of such eridences of the physical characteristics both of extinct and living aaces, in relation to historical investigation, is thas becoming so widely appreciated, it appears to be desirable that Canada should not lag behind in the good work. Such a collection of native Crania as that with which Dr. Morton has enriched the Cabinet of the Academy of Sciences of Philadelphia, would form a valuable addition to the muscum of the Canadian Institute, and many facilities uudoubtedly exist for its attainment. Every year agricultural operations are extending into new districis, and breaking up virgin soil. In the progress of clearing the ancient forests, and bringing the land into cultivation, places of sepulture must frequently be invaded, where the remains of the long-buried chief lie undisturbed, alongside of specimens of the rude arts which furnish proofs of the condition of society to which he belonged. Railmay and other operations are in like manner leading to numerous extensive excavations in regions hitherto untoucled by the spade or plough; and these also must frequently expose to view similar clies of the ancient or more recently displaced aboriginss. It is scarcely to be hoped that the rude railmay aavvy, or eren the first agricultural explorers of the wild Jands of the North and West, will greatly interest themselves in objects of scientific curiosity; but now that the members of the Canadian Institute are scattered over nearly every district of the Province, it may be hoped they will be found prepared for hearty coüperation in all such objects, and that by such means the muscum of the Institute may become, through time, an object of just pride and interest to the commanity at large.
In many eases the condition in which the skulls and other remains of the former occupants of our Canadian clearings are found, is such as to present no obstacle to their ready transmission for the purpose in view. It is to be noted, howerer, that the more ancient such remains are, they are likely to possess the greater interest and value. No indications have yet been noticed of a race in Canada corresponding to the Brachy-kephalic or square-headed mound builders of the Mississippi, and the discovery of such would furnish an addition of much importance to our materials for the primeval history of the Great Lake districts, embracing Canada West. Such remains, if found at all, are likely to be in a very fragile state, and will require much care in their remoral. As it is not to be doubted that zealous coüperators in the object here referred to will be found among the members of the Institute, it may not be altogether useless to add a few hints relative to the collecting and preserving such ancient remains. It is not to be overlooked indeed, that the entire skeleton, as well as the skull, frequently presents features of interest and value, as cvidence of peculiar distinctions of race, or as traces of habits and conditions of life, to those who lhave made such renains their special study. It is manifestly, however, ouly under very rare and peculiar circumstances that it can be expedient
or even desirable to have the entire skeleton preserved. But the decision of this point must be left to each explorer.

In the first place then, let it be noted that it is desirable to possess the whole of the bones of the head and face, including the lower jaw and the teeth. The slender and fragile bones of the nose are of special importance, and when remaining in their place should be carcfully protected from injury. In all cases they are highly characteristic, and in none more so than in the races of American Indians, whose strongly marked profiles derive their chicf character from the prominence and peculia: form of the nose. It is also to be observed in the case of remains found under circumstances indieative of great antiquity, and consequently possessing peculiar value for the purposes in view, that though the bones may be wholly disjointed and even fractured, if the whole, or the greater number of the frogments be collected, and carefuliy packed so as to protect them from further injury, it may be quite possible to rejoin them, and so reconstruct the ancient cranium. The following incident derived from the experience of Dr. Mortun, may suffice as an illustration of this :-
In the summer of 1842, a friend of his met in New York the π ell known American traveller, Mr. John S. Stevens, then receutly returned from his second visit to Iucatan. The conversation turning upon Crania, Mr. Stevens regretted the destruction of all he had collected during his travels in consequence of their extreme brittleness. One skeleton he had hoped to sare, but on unpacking it that morning, it was found so dilapidated that he had ordered it to be thrown away. A sight of it was immediately requested,-it was secured in its fragmentary and apparently hopeless condition, and forwarded to Dr. Morton. Its condition may be inferred from the fact that the entire skeleton was ticd up in a small handkerchief, and carried from New York to Philadelphia in a hat-box. The next day, howerer, Dr. Morton was found with a gluepot beside him, industriously engaged in an effort to reconstruct the skull. A small piece of the occiput served as a basis, upon which he put together all the posterior portion of the cranium, showing it by characteristic marks to be that of an adult female. Frum the cundition of another portion of the skeleton he derived evidence of a pathological fact of considerable moment, when viewed in relation to the antiquity indiented by the accompanying relies, and the peculiar circumstances under which this skeleton had been found; and the results of his ubservations, which have been published by Mr. Stevens in the narrative of lis second visit to Iucatan, suffice to show how much interesting and valuable information may be deduced by the intelligent student of science from what, to the ordinary observer, would appear to be a mere handful of rubbish.

In Canada it is to be presomed that, in the great majority of cases, such remains will be discovered by chance, and their preserration from further injury in the hands of their original exhumers will be more a matter of aceident than design. By and by, however, we may hope to create an intelligent interest in this department of scientific inquiry, and so find zealous explorers of the sepulchral chronicles of Canada, as well as of those of Egypt, Britain, or Central America. To such, a few additional hints may be of value.

Whether it be a grave-mound, ossuary, or cemetery, that is being explored, the ruder instruments of excavation, such as the pick-axe and spade, should be laid aside as soon as auy portion of a skull or skeleton has been exposed. The whole must then be cleared from the surrounding carth liy means of
some light implement, such as a garden trowel, with the assistance of the hamd. In removing the earth strict attention should be paid to any small objects contaned in it : as the practice of the Indians of this continent, ns well as of most other surage races, of burying weapons, implements, and personal oruaments with the dead is well known. 'the better to avoid any injury to the more essential parts, it is advisable, where it can be dono without great inconvenience, to pursue the final process of laying bare the skeleton, by proceeding from the feet towards the head. The bones ought not to bo attempted to be removed from the inclusing soil when they indicate the slightest fragility, until the carth has been cautiously removed all round them, so as to admit of their being lifted out. Where the skull has been fractured, or any of the bones of the face are crushed or displiced by the pressure of the carth, every fragment, however small, should be carefully collected; and if the soil has been damp, or the bones are rendered soft by moisture, they should be exposed to the sun, before being wrapped up in paper.

Care should also be taken to note all the circumstances attendant on the discovery, which are likely to throw any light on the characteristics of the race, their mode of sepulture, or their arts, customs, or habits. Nothing should be trusted to memory, but all the facts noted at the moment and on the spot. Some of the most important of the facts to be observed and noted down are : The position of the body, whether lying at full length, on the baek or side, or with the kne?s bent or drawn up; also the direction of the body, and positijn of the head in relation to the points of the compass.
Next the nature and relative position of any relies, such as urns, implements, weapons, de., should be carefully noted; and among such, particular attention is to be paid to animal remains, such as the bones and skulls, horns or teeth, of beasts, birds and fishes. It is a common fishion among savage tribes to hold a burial feast over the grave of the dead, and such relies may tend to throw considerable light on the habits of the people, as well as ou the period to which they belong.
In transmitting ancient skulls, they should be first wrapped up in paper,-an old newspaper will be found the most suitable for the purpose. Where tiere are detached pieces each should be put up in a separate wrapper. The whole may then be put in a box with a little hay, which furnishes an inclosure sufficiently clastic to protect the most fragile bones from injury during carriage.

As such relics loose much of their value when the locality and circumstances of their discovery are unknown, it is extremely desirable not only to attach to each skull, package of bones, or accompanying relies, the name and description of the locality where they hare been found, but also as soon as possible to mark this neatly and indelibly upon the object itself. Where more than one skull has been procured, and any of them are in a fragmentary state, it is scarcely necessary to ad 1 that the utmust care should be takeu to keep the several purtions of each skull distinct from the others; as even where it may be possible afterwards to separite them, this must almays be attended with much additional labour, and generally with some uncertainty. It may be further added that in no case should a skull, or other relic of this class, be deposited finally in a collection, without a distinct note of the locality of its discovery being marked on it in a durable manner.
D. W.-

On the Extent to which the received Theory of Vision requires us to regard the Eye as a Camera Obscura.

13Y (ifoncif, WII.SON, M.J., E.It.S.E:

Discctor of the Industrial Muspime of S.ovland, and Professor of Kchnoloyy in the Liniersily of Exinhurgh.
In the last issue of the Irmsactions of the Royal Society of 13dinburgh,* a highly interesting paper bearing the above title furnishes views un the structure and function of the oye in relation to vision, which will tend to modify to a very considerable extent the views of physidlogists on this important subject. Dr. Wilson takes it for granted that, according to the received theory of vision, tho cye of man, as well as that of most of the lower mimals, is regarded as essentially realizing, during the performance of its function of sight, the condition of a darkened chamber, or camera olscura. In support of this assumption of the existing views of physiologists, he cites one of the highest living authorities, Professor Muller, and then proceeds to say :-"Thus far, then, there does not appear to be room for two opinions concerning the internal darkness of the human cye being a condition of perfect sight. But recent discoveries require us to look at the theory of vision from an opposite point ot view. It is now beyond question, that even in the darkest human eye, there is reflection through or across its chamber, from the surface of the retina, as well as from that of the choroid; and the observation is a very old one, that in a large number of animals, a part, and sometimes the whole of the retimal surface is covered, or replaced by a reflector rix:alling in brilliancy a sheet of polished silver.
"That the eyes of living men and women emitted light, and shone like those of the eat, had been occasionally noticed and recorded from an early time, but the phenomenon was supposed to be an exceptional, and indeed very rare one, and was either credulously magnified into a highly marvellous occurrence, or despised as of questionable accumey, and of little real significance. In (or about) 1847, however, Mr. Cumming, an English medical prattitioner, pointed out that the phenomenon in question might be witnessed in every human cye, if lovied for in the right way; and a little later and independently, Brucke nade the same discovery in Germany, through the curious circumstance, that ocensionally when louking through his spectacles, at the face of another, he saw his neighbour's cye glare like a cat's.
"The demonstrability of the proposition, that the eye is not a camera obscum, depends upon the fact, that when rays of light enter the eye, and fall upon its back wall, as many of them as are reflected from the retina, or from the choroid behind it, will exactly retrace their course, and pass out through the pupil to the luminous body or illuminated object from which they came. Thus the diverging rays of a gas-flame are converged by the refracting media of the cye, to a focus upon the retina, where they unite to produce a picture, and thereafter in great part traverse that membrane and fall upon the choroid. If from either of these membranes rays are reflected (and for the sake of simplicity, we may, for the present, limit ourselves to the retina, which is the more powerful reflector of the two), they will follow in a reversed direction, the very course which they took in reaching that mevibrane, and return to the gas-flame, producing there an image of the picture on the retina, so that the reflected image of the flame is placed upon, and coincides in size and position with the actual flame.

[^0]To seo, therefore, into the deeper chambers of a living cyo, we must arrange maters so that we can look along the straight line of the reflected mays, without intereepting the light from which they origimally ome.
"The experiment is thus made:- 'In a dark room, with a single flame at the side of the experimenters, and on a level with their eyes, the person whose eye is to be observed holds a piece of glass (a microscope glass slip), so as to catch the image of the flame on it; lo then, by inclining the glass, brings the image of the flame opposite the pupil of the observer's eye; the latter will then see the pupil of the observed eyc laminous, of a reddish-yellow bright colour. A person may also see one of his own pupils luminous : standing before a lookingglass, and seeing the image of the flame in tho reflector with his right eye, दet him brimg this image opposite the pupil of the left cye in the looking glass; tho left cye will then perecive the right pupil in the mirror haminous." "

Various German physiologists have invented instruments ealled ophthalmoscopes, for the purpose of vierving the refleeted light from the retina. It appazs, however, that the choroid as well as the retina is a reffector of light, and thas deprives the cye of the character of a camera obscura. Yet, notwith standing these facts, which cannot fail to have been for some timse noticed by plysiologists, Dr. Wilson is not aware that any material altemtion in the carrent theory of vision has been proposed by any writer. With respect to Albinos he observes :-
"It cannot then, I think, be questioned, that in those amimals which exhibit the full development of long heroditary albinism, the sensitivencss of the retina to light has undergone a permaneat abatement, whilst the iris has probably utered also in thickness and contractikty. I venture to predict, that if ever an albino race of men shall be observed or developed, they will prove, after the lapse of a genaration or two from their founders, to have eyes as serviceable as those of the majority of mankind.
"It is sufficient for my present purpose to point to the albino animals, whose cyes are totally destitute of pignent, and refleat light from erery point of the surface, both of the retiba and the choroid, but, nevertheless; exercise the faculty of sight in perfection. Their eyes, even when the iris is fully contracted, remain, in virtue of the transparency of that membrane, camere lucidx; their possessors cannot render them camera obscures; and yet they are excellent organs of vision.
"If the reasoning pursued in reference to the albino eye be valid, it will serve also to dispose of the difficuly experienced by some in explainiag how vision is compatible with the presence of a tapetum lucidum in the eyes of many animals. This tapetum is equivalent to a concave mirror of polished metal, replaciter the pigraent of the choroid over a greater or smaller part of its surfiace, especially at the deepest or most posterior portion of the chamber of the eye, so that lying behind the retina, it is more or 'ess directly opposite the pupil, and receives the light which enters by it. A brilliant refectling sarface of this kind is forvd in many of the mammalia, both graminivorous and carnivorous, as the horse, the on the sheep, the cat, the dog: It is present in the eyes of the whale, seal, and other marine mamamalia; and in fishes, auch as the shark, in which it is peculiarly brilliant. It occurs also in certain of the mollusca, as the cuttle-fish; in certain insects, as the moths; but neser, I beliere, in birds. It is most largely developed in animals which are nocturual in their habits, or live like fishes in a medium which is dimsly illumivated. A 13 must be familiar with the glare of light which it throws from
the eye of the eat or dog, when these animaly exhibit diated punits in twilight.
"This tonsetum lucishom, Mas keen a great stumbling block to physiologists. The alhino eye was ses aside us abnomal ; and the reflection of light in norma! eyes from the retina and choroid was ovelooked, or regarded as accidental, but that from the tapetum could not be. Most writers, howerer, dismiss it with an unsatisfactory and very brief comment, unable evidently te reconcile its presence with the maintenance of that intersal darkyess of the cye, which is supposed to be cesenstial to vision."

Ia presenting a resume of the whole question, Dr. Wilson enumerates many curious facts relating to vision and its object, the following extracts furnish as condensed a viers of this extrencly interesting subject tas wo feel warranted in giving :
It thus appears that the laws of luminous refection do not necessitate imperfect rision, as applied to the fact, that the retimat and choroid return much of the light which renches thess, for:-
1st. In the normal and also in the albino vision of all anim mals, man included, the amount of direet retimal and choroidal retlection is necessarily coincident with the width or degree of dilatation of the pupil; the larger the pencil of light entering tho pupil, the larger the pencil learing it, so that in every case the refiected mys are thrown out of the eye and do not disturb vision: further,-
2nd. In those animals provided with tapeta lueida, such as the cat, the dog, or the os, which are only partially nocturnal in their habits, the tapetum is so pheed that in bright light it is not opposite to the contracted pupil, or is so only to a swall degree. When, however, the choroidal mirror is called ints action in twilight, the pupil is correspondingly diated, and als the light which the tapetum reflects finds a free passage for its escape.
3a. In the cye of man, as well as in that of a harge number of other animals, the background of retina and choroid on which the image is depicted, is not the darkest portion of the ocular screen, nor even so dark as those parts of the inner walls of the eye on which objects are never figured. On the other hand, as John Hunter has shown, and illustrated by existing specimens, the front and the anterior sides of the eyechamber are the darkest, so that the reflecting power is greatest at the botion of the cye.

4th. In the human eye, where, more than in those of the lower mimals, it has been contended that the conditions of a camera obscum must be realised, the place of perfect vision, instuad of being additionally darkened, is occupied by the wellknown yollow spot, which has a marked refective posser, and is casily discerned by ophthalmoscopes.

The results which are announced in the preceding argument may be summed up as follows:-

1. The total absence of pigment from the choroid, the cilising processes and the iris is compatible \{especially where this condition is hereditary) with perfect vision.
2. The replacement of the pigment of the choroid lining the bottom of the eye by a concave mirror (tapetum lucidum) powerfully reflecting light, characterizes animals whose vision is very acute.
3. The non-tapetal or mirrorless eye of man, and of many animals, differs only in degree from the tanetal or mirrored eye of others; for the retina and choroid att as a tapetum, and refleet light in the same may.
4. The oyes of vertebrate animals are only to a limited extent cumere obsewre, and internally are least dark in the portions most directly exposed to the action of hight, and whinse the seat of perfect vision is pheed.
5. The back of the iris, over which the retim does not pass, is the darkest internal portion of the eye in vertebrates ; and next to it, in the majority of these, are the ciliary processes of the choroid, and is anterior hateral portions.

From theso premises the conchsion is deducible that in vertebrates much light is reflected from the bottom of the eyechamber during tire excreise of vision without disturning it ; but that iittle is refleeted agmin, so as to return to the bottom of the eye, in consequence partly of its absarntion by the pigmont of the anterior portions of the choroid, partly of its esenpe through the pupil.

It may secm to some that this reasoning proves too much, for why is there in man and many other anmals a pigment at the bottom of the eye, if reflection from the membrine there is so free to take place? To this I reply that the pigment. which is never altogether inoperative, comes into special action when the eye is exposed to very bright hight, and saves the retina from the paralyzing intluence of intensely luminous rays. Fision, however, cannot be continuously excreised under such exposure, even where the hight is not excessively brilliant, in consequence of the instinetive elosure of the cyelids, and the abundaut secretion of teass wheh then take place. The pigment at the bottom ot the eye is thus, I ayprehend, a safeguard against sudden exposure to intense light; but durang eontinuous vision under an illmmination which does not dazale the eye, its action is secondary as an absorber of light, and it always acts as a reflector.
Hitherto I have been arguing almost solely for the negative conclusion, that the vertebrite, and especially the human eye, is not the kind of darkened chamber which it has beea supposed to be. It is impossible, howerer, to regard the deep intra-ocular reflection which so certainly occurs in most animals, as an incidental or uscless phenomenon. That it has a direct and bencficial influence over vision I camot doubt, and I proceed brictly to indicate where the proof of this is to be found.
Intra-acular reflection, as a normal phenomenon, is at a maximum in the tapetal or mirrored eye of the lower auimals. It is desirable, accordingly, to stady it first as occurring in them; nor can a better example of a mirrored eye be found than that presented by the shark. In it the tapetum lucidum occupies the whole of the sottom, and one half or more of the lateral surfuee of the choroid, which is covered by pigment only in front. The iris, as in other fishes, is incontmetile, so that the diancter of the pupil never raries; and the tapetum, which is colourless and very brilliant, is thus alrays in action as a reficetor. The shark, however, swims near the surfice of the sea, where the amount of light is considerable, and the acuteness of its vision is proverbial. I have selected it, rather than a mammal, with cyelids and a contractice iris, because is the shark luminous reflection never ceases untess in alsolute darkness; and when light is shining oceurs the more, the brighter the light is. Its eye is thus alpays in the condition in which that of a cat, or dog, or ox is, when subducd light causes the iris to expand, and allows the reflecting tapetum to come into play, so that the considerations which 1 have to urge apply to the mammal as much as to the fish, provided they are taken with punils equally diated; but as the tapetums in the shark is very large, very briliant, aud almays in action, I shall restrict myself for the present to it.

Tho light, which penetrates to the bottom of a shark's cye, will, in part, be reflected from the retima (a phenomenon which for the present I disregard), in part traverse it, and reach the tapetum, where a portion will be lost by absorption and irregufar reflection or dispersion, and (what alone concerns us here) in part undergo direct rellection, return through the retina, nid escape by the pupil. This returned light will impress the retina in traversing it, and illuminate external objects on leaving the ege.

The first question, then, is, "How will this light impress the retimap" Aceording to J. Miller and W. Mackeazio, zs we have already seen, only injariously, so far as freedom from the sensation of dazaling, or distinctness of visual perception, are conecrned; according to Todd and Dowman "probably" by "increasing the visuil power, particularyy when the quantity of light adaitted into the eye is small." I have urged elsewhere that "what is equivalent to two rays of light falliag upon the retian will produce two impressions. We send is capillary sumbeam through the retina in one direction, and instantly return it through that membranc, a little diminished in satensity, in the opposite direction; if it determined a sensation in its first passage, what is there to prevent its doing so in its secund? If, fur simplicity's sake, we suppose exactly the same puiuto of the retima to be traversed by the ineident and the reflected ray, then (ankess the buminus intensity of the incident ray was so great as ly its passage to exhaust the sensibility of the retinal), the reflected ray will repcat somewhat less powerfully the jupression made by the incident one. The differessec will be as great as there is between a sound aud its ccho, lut not greater.

On this view of matters, the tapetum, especially in twisight, will serse the important parpose of making every perceived ray of light tell trice upou the retion, so that the sensation it produces will either be increased in distrinetness or in duration, and probably in both.

I will not deny that we are notentithed at onee to infer that because a molecular change (molulation, vibration, polarization?) trimsmitted through a special strueture in one direction prodaces a peculiar sensation, it will eertainly produce the same sensation on being transmitted through that structure in the opposite direction; but there are strong amalogies ia favour of such a view, and it is emitled to be regarded as a likely hypothesis

The first probable use of the tapetum, then, is to donble the impression which light produces upon the retina, whilst that light is within the eye.

The greater part of this light, however, after traversing the retian with little diminution by absorption, passes outwards through the pupil, and, along with the light refected from the retina, is thrown upon external objects, and illouninates then. A singular reluctance has been showa by mysiologists, especially in recent times, to acknumledge this. The supposed necessity of maintaining the chamber of the eye dark, the apparent impossibility of the cye reflecting and receiving light stmoltaneously, and the faintuess of the light emitted from tapetal eyes, have led most writers to contemn the doctrine that the tapetum is a serviceable reflector of light. But the objections to this doctrine are in reality of no value, and were not entertained by the older writers, suck as Hunter and Monro, who not only regarded the tapotum as casting light ouexternal objects, but, in the case of graminivorous animals, as affordiag them, by the green colour of the light which is reflected, an assistance in discovering their food; an opinion which Cuvier in part countenances.

As I have discussed this question at length elsemhere, I shall merely observe here that as the light cuitted from a cat's or a slark's eye, ex. gr, is serimble light, there is no rown for afimbing that its illuminating powers are sot, cateris peribus, ergual to light of the same quality from any other sonree. If we can see a cat in the apparent dathocss, which otherwise would render it invisibse, by the hight which issues from its eyes, it camot be guestioned that it will see us by so much of that light as our persons reflect back into those eyes. The trapctum lucidum is, for every ereature which possesses it, a iantern, by which it can guide itself in the dimmest twilight, and make cach ray of light do double or triple service, in assisting it to steer its course, and to find its food or prey.
But if the tapetum assists carnivorous animals in finding their living prey, it smust also give the latter warning of the approach of the destroyer. I an not aware that this use of the tapetum has litherto attracted attention. But a lion or a shark does not more certainly loing into view, by means of tapetal light, the creature it would desour, than it betrays its own presence to that ereature, and the balance is thas mercifully maintained beiween the preyer and the prey. That singular "lypaotising" or "mesmerising", power which, in the case of the serpent, is called "fasoination," is probably largely possessed by the glaring tapctal cye, which aces with all the adrantage of surroundiag darkness to increase its impressiseness, and prevent other objects from distracting the attention of the subject of fascination. On the other hand, however, the tapetal light is peculiarly starthesg to all observer, for it is alsays coloured and nubike that of day, resembling in chanacter (in the case at least of the cat and the dug) those fluorescent rays of the spectrum, whieh Mr. Stukes deseriles as "ghostly" and of which it probably hargely consists. At all crents, its umfaniliar appearamee specially qualifics it to alame creatures who suddenly perceive it, and are led by instinct to fiec from all strange lights.

In the lower amimals, then, the tapetum is prubable servies-able-
1°. By doubling within the eje the impression of each ray upon the retina.
2. By reflecting light from the eye upun external ubjects, so as to render food or grey more visible.
$3{ }^{\circ}$. $33 y$ warning, thruagh the agency uf that light, creatures on which carnivoruus animals prey, of the neighburhoud of their enemies.

In the discharge of thuse functions the retina more or less conspires, differing from the tapetum chiosy in reflecting a less coloured light than tho later does. Further, in such of the lower animals as haye not tapetia, there must occur in most, alike from the choroid and the retina, and in all at least from the retina, reflection of light. In those rhose eyes exhibit choroidal refection, the same good ends will be served by it, though is a much less degree, as are secured by tapetal reflection, and of these prubably the most impurtant is the first, wheh cannot be attained with light refected from the retina.

How far human wisum is sensibly influenced by the choroido-retinal refection which is continually occurring within the living eye, it is difficult to decide; but it must be influenced to some extent by it. It seems probabie that the acute vision in faint light which characterizes those who are imprisoned in dark chanbers, and which the astronomer sometimes purposely indues by long shading of his eyes before making observations, is in part due to the return of light from the choroid through the retina; in part to the passage through the highly-dilated pupil of light reflected hoth from the choroid and retima, which
is thrown upon external objects. It may startle ns at first to be cold that we see in part by light issuing from our eyes, but it must be soj sud thase texditions of fearned men who conld read by the light of their own cyes in what was darkness to others, ne only exagererations of a power more or less exercised by every human orgm of vision.
To one result of this choroike-retinal reflection in tho human eye, I would, in conclusion, refer. The light which is thus rehected, is ahways colourel, being, as wo have alrealy seen, red, yellowish-red, or brownish-red, and differing necessurily in its timt, according to the abundance of pigment in different eyes. Each of us thus adds to every object on which he looks so much colour, but no tivo pairs of eyes the same nuount, and hence one great reason why no two persons, aluost, will be fwund to agree as to the ssateling of oas colour with another where the culoured substanes compared consist of different ssaterinals; and why very marked differences present themselves in the judguents of persons equally practised in observing and copying colours.
Two artists, for example, paint from mature the same flower. The pirments which they cmploy for this purpose, will, of course, be as much affeuted by the colour communicated from the eye, as the flower is, so that, conde the latter be imitated in its own-materials, the copies might be idrntical. But as these must he made with substances whose lustre, trmspareacy, and partieular timt, differ from those of the body conied, the added colour from the cye tells unegually on the original and the cops, as compared together, and as seen by different ejes. Jach, accordungly, objects to the other's colouring, but seither can induce his neighbour to adopt his tints, and both appeal cunfuently to third parties (who perbaps differ from both), assured that the adjudication will le in favour of the appellant. Here each may have been equally skilful and erually binithful: and neither has any meams of testing to what extent he sees everything as if through coloured spectacles, which gire all oljects a tint for him inseparable from their natural colour. A "chromatic equation," thus originated, belongs, I believe, to avery cye.
P.S.-From my friend Professor Goodsir, who recently (June 2-th) delivered a lecture of greatiuterest and ariginality on the retina to the anatomical students of the University of Ealiaburyh, I learn that, from the observations and sperulations of the Continental Physiologists, it appears very probable that only the rays of light which are returned from bohind through the retina produce a luminous sensation, and that the nhicetive perception of light commences physinally at the choroidal, not the hyaloid extremity of the opiceally sensific constituents of the retina. According to Kalliber, this objective perception begins at the extremitics of the rods and bulbs whick are in contact with the pigment of the choraid,-a riev of matters not readily reconcilable with the arganization of the yellow spot, where rision is most nerfect; according to Briucke, luminous sensation begins in a layer of gray nervis substance, situnted nearer the front of the retina; but both observers agrec in ascribing entirely to that light, which is passing back from the cloroid, the power of initiating luminous perceptions. I have argued, in the preeeding paper, for such returned light being aressory to vision, but according to this view it is the only light by which it is exereisco. If this hoctrine (horsever modified in details) be established, the reflection of liyht from the choroid will prove to be essential to the function of secing, and the necessity for the living eye being a Camera Lacida, will be based upon deeper grounds of proos than I have attempted to offer.

The Prize 1 -says.

1.-Whnama; An Kissay-m. To whieh res ameraled the First Prize by the I'wis Exhhibition Cammitte of Contede. By J. Shrmidan IIonan. John Lovell, Montreal.
 wos wantend the Sccond Irine lay the Pheris Exkibition Committec of Cimeuta. $13 y$ Aresanmer Momus, A.M., Barrister at Laby. Johun Lovell, Montreal.
3.- Canada: Pmysical, Ecunomic, and Social., Ky d. Lanink, D.D. Maglear \& Co., Turunto.

On the 18th Xovember, 1854, the Executive Committe of the Paris Eshibition issued an adverthement amouncing their intention of offering for public computition three prizes firs the best three essays on "Cameda, and its resources; its geolugical structure, geographical seatures, matum products, manufactures, commerce, social, educational, and political institutions, and gesseral statistics." Practical utility and comprehensiveness, combined with comeiseness, were to be among the chief considemtions on whieh the awards of the juiges would be lased. The Essays were to be sent to the Secretary of the Executive Committee on the 15 th February, 1855 , thus allowing exactly ninety-two days, or threc months, fur the production of a work un Canada cmbraciter a comprehemsive deseription of the physical and social condition of the country.

No one, we suppose, who takes the trouble to consider the nature and extent of the subjectssumgested by the Committee, can fail to be convinced that the time allowed was much too short. Indeed, as the nerived for the reception of the Eissays drew to a cluse, the Executive Committee appear to have become cuavinced of the necesity of extending the time as much as lay in their purver, and aceualingly they added fifteen days to the three months before granted.
The opportunities thus afforded for olitaining literary distinetion were, however, sufficiently enticiag to bring into the fielu no less than mineteen competitors for the honours and emolument offered by Government. Of the essays suljeceted to the consideration of the judges, three were reported "prizeworkhy" three receised lioustable mention, une was passed over as illegibly written, and twelve renain in the hands of the Assistant Secretary of the Committee, from whum they may be elitained by the authors. The judges leing unable to decide apom the order in which the three essays reported prizeworthy should stand, requested his Exeellency the Guvernor General to make the arrard. No more capable or disituterested judge could have been selected, or one from whose expressed upinions disappointed competitors or their frionds would feel inclined to appeal; and after a careful perusal of the two competing essays which are named at the commencement of this article, we do not hesitate to avow our conviction of the justice of that award. We do not wish it to be understwod, however, that any one of the essays befure us yresents a complete picture of Casada; it is not to be suppdsed that the short pesiod of fourteen weeks would embrace time cnough fur any writer, however familiar with its physical bistory and its sucial condition, to deseribe the country, its rosources and its people with minuteness and detail. The evident object of the Executive Committee of the Paris Exhibition was to oblain a readable account and description of Canada and its institutions, in crder to place in the hands of the middle classesin Europe a popular exposition of what we offer here to industry and enter, cise. Mr. Mogan has furuished us with such an essay, which, though certainly
not free from sims of omission and a sprinliling of errors, is capable of creating a vesy interesting, encouraging and truthful inpression of many leadiug features in Canadian life, and of tho encouraging futare which lies within tlse reach of every immigrint, and is the sire sestiny of the country at large. In the introductory ehapter to Mr. Mogan's essay, wo find especial allusion males to the class of people for whoss information and guidance the essay was, with judicious care, more particularly written. After alluding to tho significant facts, that the population of Western Camada in 1829 was ouly 190,000, and the value of the real and personal esiate of the people estimated at $525,000,000$, that, in 3854 the number of its inhabitants hak swollen to $1,237,600$, and its assessed and assessable property to $250,000,000$, Mr. Mogan osks:-
"And who and what aro the people who divido nmong them this. maguificent property? Ahd huw haso they acyuired it? Did thoy come in as cosmuerors, amd nopropriato to themselves the wealth of others?-They came in but to substuo a wilderncss, and have reversed tho lars of cournest; for plenty, good neighbourloond, amd cigilization mark their footsteps. Ordid capitalists accompany them, to reproduco their wealth by applying it ta the enterprises and inprovements of a new country ${ }^{\circ}$ No; for capitalists wait till their piuncer, industry, first makes his report, and it is but now that they aro studying the interesting one from Canada. Or did the generosity of European Prinses, or Enropean wcalth or benevolence provido them widh sucls outtits as securad their suceess? On tho cosstrary, tho wrongs of l'rinces, and tho poverty of Xations, have been tho chicf causes of tho settienent of hamerics. Her pruspeaty is the offepring of Europem hopelessness. Her high position in the world is the result of the subb3ime cfforts of despar. And he who would learn who they are who divide among them the splembid property created in Canada has lut to go to the quays of Liverjuol, of Dubin, of Ghasgow, and of Manharg, and sed cmigrants there embarhing, who knew neither progress nos hopes whero they were horn, to sitisfy himself io the fullest."

The description of the geugriphical features of the country is vury geneml, and in sumse imotaness unnecessarily so, for we find no reference made, even in name, to the rivers, Thames and Grand River, which unwater the richest and most fertile portion of the Western Prosince. The chapter devoted to the "Geolugical features and suil" uf the country is occasionally obscure, and not without mistakes, which, with a little redection and care, might lave been avoided. "All the great lakes aro phaced in the line of contact between two vast chains of Granite and Yinkstune." II apply to Iake Ontaris and Lake Erie, the lakes peri eccellezce of Canada. The Granite is met with at the castera extremity of Lake Ontariu, and the lake itself is excavated wholly out of unaltered Lower and Upper Silurian rocks. Lake Erie is excavated entirely out of Lyper Silacian and Devonian rucks, and in no part is less than 200 wiles frum gminte expusures. The ohservation is partially correct with regard to Lakes Luron and Superior, the least impurtant of Camadian lakes. Agaiu, "From Quebec tu Nixpari the red shate [?] is perhaps the prevailing rock," and in the very nest line, "the subsoil arouny, Lake Ontario is limestone on granite." . . . "On Lake Exic the strata are limestone, slate [?] and sandstone." These contradictions and errus aceuire imporance in Cauada where the real facts are lucally known, because they leave room fur cavil and ungenerous eriticism, and may affect the value of the essay and the interests it is well Besigned to subserve.

The chapter desciling the struggles and hopes of the carly settler of Upper Canada is a truthiful pieture; the one which fullows it, portraying the farmes of Upper Canada as distinguished from the early -setther, is also well drawn and very eucouraging :-
"Were I asked what is the leading characteristic of the Upper Camadian farmer, I shouh umucstionably maswer, Prears. Plenty
reigns in his granary, plenty is exhibited in his farm yard, plenty gleams from his corn fields, and plenty smiles in the faces of his chitdren. Hut lot it not be imagined that this plenty is gnined without continuous labour, anid tio exercise of judgnent and intelligence. Many of tho finest farms in Opper Camada havo passed out of the hands of those whose fathers won them from the forest; and many more aro oxhausted and unproductive, through injudicious management, indolence, or inattention; and in some instances the very labourers on the farms which have been sold and wastod by the second generation, have been able to purchase then. Industry literally converted the labourer into the lord, whilst extravagnace and indolence reduced the lord to tho labourer."

Canada contains a population at the present moment exceeding two and a quarter millions, and, as Mr. Hogan justly re-marks:-
"There is perhans no part of tho world known to modern history, with the exception of Califormia and Australia, where a greater incrense has taken place in the population. In the latter countries the discovery of gold has imparted an unnatural stimulant to sottlement; but in these places, unfortunately, the chief things which labour leaves to mark its footsteps are unsightly cuttings and mounds, -the monuments too' often' of hardshins without rewards, and bitterly disappointed hopes. But in Canada labour is marked by corn fields, which contribute to the riches and comforts of tho wholo wor!d; and success is of that character, that it raiscs man by its example, and makes whole races'respectable."

The chapters on manufactures and ship-building; trade and commerce; revenue and expenditure; banks; inducements to emigrants ; wages; and price of land, are sufficiently amplified to afford a general idea of a rapidly growing commerce, and a condition of progress and prosperity which is only paralleled by the States of the Union in the region of the Great Lakes. It is a favourable feature in the financial condition of Canada, that the bugbear taxation presses so lightly unon the farmer. Perhaps no country in the world is more free from this iacubus than Canada with reference to the country at large, and it is a matter of individual regret to every one interested, that the same remark does not apply to our cities and towns, many of which are beginning to acquire an unenviable notoricty for the rapid increase of this objectionable burden:
"From a table recently compiled in England it appears that the sum contributed by the iuhabitants of Canada to tho revenne is considerably less than that contributed by any other British Colony. The inhabitants of the Australian Colonies contribute two pounds per head, the West India Islands one pound, and the other British North American Provinces ten shillings. Canada contributes eight shillings and two pence. The revenue for 1854 is estimated at $£ 1,423,520$, and the expenditure at $£ 939,595$, or at the rate of 8 s .2 d . for each inlabitant. The 130 ston Almanac gives the expenditure of the United States at $£ 12,929,876$, which, divided into the population, mukes 11s. Id. per individual, or thirty-seren per cent. higher than the indirect taxes of Canada; but this includes $3,204,067$ slaves, or nearly one-serenth of the whole population, who are not taxed; deducting these it would add fifteen per cent. per indiridual to the tax on the freo inhabitants of the States."

A long and interesting chapter is devoted to the subject of "Internal Communication," it has ovidently been hastily written, and requires a few corrections and additions, which may gencrally be effected by the introduction of a letter or a word, as in the following extract :-
"The remaining link of canal-for I may as well speak of it in this connection-betreen the Gulf of St. Lawrence and the head of Lake Superior, is the Welland, which unites Lakes Erie and Ontario, and avoids the Falls oi Niagara. Its locks are little less capacious than those on the St. Lawrence Canals, but are equally well built. They have chambers a hundred and fifty feet long, by trenty-six and a-half feet wide, and the arailable depth of water in both is between nine and ten feet."

The Sault St. Marie Canal, which unites Lakes Huron and Supcrior has been overlooked,-its locks have chambers. 350 feet long and 70 fect in width.

Mr. IIogan's views of the importance of the River St. Jawrence, and of the magnitude of that commerce of which it is destined to become the uninterrupted highway, are fully and eloquently expressed. The following extract will show that he entertains decided viows respecting the future of our noble river :-
"The first thing that strikes one, in contemplating it, is its alapta. tion, in point of imucnaity, to tho vast regions it waters. Whilst the business necessitics of tho West, and thoso portions of America which nro universally admitted to be, both by their rolative position to other rivers and to it, its natural feclers, have literally shamed the enterprises that wero intended to provide for them, its mngnitude and its valuu aro being but discovered by the contrast. Tho Exio Canal, lighly raluable as a work, and successful bogond comparison, has been made little by progress. The St. Lawrence, on the sontrary, only requires chormons use to test its greatness. It is impossible, indecd, to contemplate this river, in connection with the canal which was made to rival it, withont being atruck with the indequacy of tho ono and the amplitude of the other.
"The valleys and plaing watered by the St. Lawrence, bcing largely in tho United States, have chieffy contributed to the Erie Canal's business. Their fruits were literally wooed aray from their nntural channel to minister to its, prosperity. The St. Lawrence, in so far as American policy, and great restrictions upon commerce, could affect it, has been sacrificed to tho Eric Camal. Nature's outlet had navigation laws, which drove commerce away from it, to contend against. The Erie Capal had all these disadrantages to the river converted into so many advantages in its favor. Yet the laws of progress, which lave swept away the obnosious navigation restrictions, have, at the snme time, established the failurd of the Erie Canal. Not that it is unprosperous as an enterprise, nor that, as a local weork, it is not unsurpassed as a speculation, but that, for tho great purposes of its construction, namely, to conrey to the ocean the fruits and productions of the West and North-west, it is empbatically a failure,-because progress has completely over-burthened it; it is lilerally surfeited by its oicn prosperily. And it matters not to him,-an individual, in such a case, being the nation,-who has boards or flour to send eastward by it, Whether they are stopped by reason of strrvation, or because of a surfoit. The impediment to his business is the all-important question with him. And though the Erio Canal paid larger profits than any other rork in the world, yet, in a national point of vicw, if it afforded not adequate facilities for business, or stopped it in its course, it might, by drawing to it what it could not do, be the means of wide-sprend evil, instead of general good. And that this is, to a great extent, the present position of the Erie Canal, is universally admitted.
"To obviate these difficulties, enterprise has again undertaken to swell its dimensions to meet the chormous demands of progress. But in view of the vast regions which are common alike to it and the St. Lawrence, and which are as yet but in the infancy of their population and business, is it not probable; nay, is it not certain, judging by the past, that twenty years hence will find the Erie Canal again choked up with business; again made litlle by progress? When the magnificent tracts of country embracedir. Michigan, Wisconsin, thenorthern portions of Ohio and Indiana, Illinois, Iowa, Minnesota, and the west and north-westere portions of the State of New York, which now wholly or largely use the Erie Canal as a highway to the ocean, come to bo. settled up, and to have, instead of some five or six millions of inhabitants, at least eighteen or twenty, what mere canal, with its hundred locks, and its huadred other impediments, will be equal to their rast business necessities? will be in keeping with their splendid progress? will satisfy their craving for rapidity, magnitude, and commercial conveniemce ? Will not the Erie Canal then, enlarged though it be; bo but another added to the numerous examples in Americo: of progress utlerly distancing enterprise, and prosperity shaming the criculations evert of talent?"
The remaining chapters are devoted to the enterprise of Ca nada in relation to Railroads; their valne and importance; their intent, construction, and routes. The Municipal System of Upper Canada; the Government of Canada and its future. We shall conclude our notice of Mr. Hogan's excellent essay with a few of its closing paragraphs-and the expression of a hope that an opportunity will soon be offered of avoiding; in a
second edition, those inaccuracies and omissions, which aro clearly traceable to the hary in which the essay was prepared:

Abstract

"The people, I may say, of all North America-I mean the deseenlants of the Britisll race, and emigrants from l3ritain-are, perhaps, of all others the lest trained to understand and to enjoy the benetits of representatuve mstitutions. Their habits of selfereliance aud the necessity for combination to effect the simplo purposes of existenceto build the log liut far in the woods; to "log" the first aeres of ground cleared; to throw a bridgo over a stream, or to clear a road into tho forest, -naturally lead them to respeet skill, and to put themselves under the guidance of talent. The leading spirit of a "loyjing bee," and the genius who presides over tho construction of a barn, what more natural than that they should be elected, at the anmual meeting of the neighbourhood, to oversee the construction of bridges, nad to judgo of, and inspect, tho proper height of fences? And this is tho first lourislation such a peoplo have to do. The useful individual, too, in a settlement, who draws deeds aml wills, and settles disputes without lave, and gives good advice withont cost, what more natural, also, than that he should be selected by the penple he benefits by his elucetion and his kinduess, to make their laws, and to guard their interests? The Canadian people, too, have no temant righty, nor "trades unions" to secure higher wages, or to grevent too many hours work. Their necessitics ate their orators. Their ways and means of living, and taking the best care of what their labour brings them, are the principles by which they are gozorned. Theirdemocracy beginsat the right end; fir, instead of weaving theories to control the property of others, they think of but the best means of taking care of their own. Need it be womdered at, then, that a people so educated-and such has been the universal education of North America-should know how to govern themselves; should gradually rise from the comsideration of the affars of a neighbourhood to those of a county and of a country; that they should have sufficent conservatism to guard the fruits of their industry, and suficient democracy to insist upon the right to do so. And such is a truo picture of the Canadian people. Their municipal system is but a small remove from the leader of the "loyging be" being elected bubder of the bruge, and their palament is but a ligher class in the same school of practical self-government. Their being given in fact the entire control of their own affairs was but removing expert seamen into a larger ship; and Great Ibritain has but to consider, in dealing with her othor colonies, that the ship is almays adapted to the sailors. For, the understanding a people is of infinitely greater jmportance, in givng them a constitution, than the uaderstanding ever so well abstract principles of govermment."

We now procecd to cxamine the essay by Mr. Alexander Morris, A. M., to which was avarded the second prize. Mr, Morris in his preface "diselains all pretension to origrinality," and tells us that " his labour has been the plodding one of a compiler." This essay is about one-fourth longer than Mr. Hugan's, and embraces copious extracts from the admirable reports of Messrs. Lugan and Murray; the first chapter, referring to the geolomical structure of Canada, being condensed from the Report of Progress for the year 1843. The descriptions of the reographical features of the Ottawa Region and of the Dastern llownships, are very full and complete, and in general, the geography of Canada is given with considerable minuteness of detail.

Mr. Morris has, hovever, succecded in disarming criticism, by limiting limself strictly to the duties of a compiler, without entering into any speculations or descriptions, which give a charm to Mr. Homan's essay, and contribute so much to make it a readable book. Inleed the second prize essay may be described as a condensed series of miniature Blue Books, in which the chicf facts relating to the products of the forest, the mines and fisheries, agricultural produce, manufactures, and commerce, are given with considerable precision and in the plainest language. The chapters on social institutions, educational institutions, political institutions, and statistics, while containing a very large amount of information, are evidently written by a gentleman whose form of thought and style of expression have been influenced by the study of a rigid profession, which
of all others is least susecptible of adding a charm to the deseription of sucial propress, or interest to the dry entmeration of political and commercial trinmphs. Mr. Morris's professional position enables him to write with alvant age on the political affaits of C'anada:-
"The Guvernment of the Prorince is conducted by a Covernor General, nppointed by the Czown, who presides at the deliberations of an Executive Council nominated by the Crown, but who must, according to the theory of lesponsible Government, in practical forco in Comada, possess the cuafulence of the people, as evinced by a majority of the Honse of Assembly; and who, cunsepuently, may iose their places on a vote of what of contidence. The Executive Council is composed of the following olficials, viz.: a l'resident of the Committees of tho Counch (who is alsu Chairman of the Burean of Agriculture, and of the Board of Registzation and Statistics;) a Prorincial Secretary, an Inspector Gencral, a Commissioner of Crown Lands, a Receiver General, one dttorney and one Sulicitor General, one of each for each section of tho l'rovince; a Commiosioner of the Board of l'ublic Works, and a l'ostmanter General. These incur.uents preside over the public departments indicated ly their titles, in addition to excrcising the functions of Executive Comeiliors. On the acceptance of office, the incumbent elect, unlesy a Legi lative Councilor, must present himself to tho peopic for re-clection. The Suliciturs General are not neecssarily Members of the Cabinet.
"Such is the system of governing by Legislative majorities and responsibility to the clector*, which is in force in Canada. Irnctically the Gosermment of the l'rocince is self-goverument, the British Gorermment rarely interposing the weight 0^{r} its authority, but, on the contrary, distinctly enanciating it* desire to allow tho Province tho widest latitude in self-government, compratible with the Coloninal relation. La fact, the Canalas cojoy the lareret mensure of political liberty posse -scal by any comatry or penple. The public offices, and the seats in the Legislature, are practically open to all. The people, by their representatiees in P'arliament, regulate all matters of Provincial interest, and iy their municipal system they regulate their municipal matters, white they possess anl evercise the porser of rejecting at the polls those who hate forfeited their confidence. The inhabitants of Camada are bound to Britain by the ties of common interest, common origin, and filial attachment. Oring a grateful allegiance to their Sorereign, they are proud to share the heritage of Britain's ancestral glories, white they are not slow in evincing their sympathy with her struggles, as the magnificent grant of $£ 20,000$ sterling, gracefully appropriated by the I.egislature to the Patriotic Fund, and to tho sidows and orphans of the soldiers of her ally, France, proudly shews. The policy of Britain is a wise one. She is building un, on tho broad foundations of a souml political liberty, freedom of thought and conscience, a culony which will one day, (thorgh the comection will never be rudely severed, attain the position of a nation, and peopled by inhabitants knit to britain by the strongest ties of blood, and identity of feeling, will strengthen her hauds and support her position by the reflex influence of sound, national and constitutional sentiment.
" The future of Canalia is a brilliant one: a great problem is being wrought out in her lustury ; and, un review of her immense resources, and on a glance at her hardy, self-reliant population, the mind is irresistably urged to the conclusion that her destiny is a grand one, and that, on this American continent, she may yet bo destined to play no insignificant part among the role of people."

Dr. Lillic's essay, entitled "Canada-Physical, Economic and Social," was passed by unread, "on the alleged ground of the illeribleness of the manuscript;" the author has therefore assumed the responsibility of its publication, partly on account of the fact of his having written being generally known, and partly in the hope of diffusing information respecting Canada. Dr. lillie's essay is more than double the size of Mr. Hogan's, and considerably excecds that of Mr. Morris,-it contains nearly $29 \pm$ pages of printed matter, together with two excellent Maps, one of Upper Canada and the other of Lower Canada. The essay is divided into three parts, as its title implies. One hundred and thirty pages are devoted to the physical description of the country, the subject of geology forming by far the most important and extensive of this division. One lundred and seven pages are devoted to the economical history of Ca -
nada, and the remaining portion of the work, embracing fiftyfive pares, is oceupied with a marration of the sucial pusition of the inhabitunts of the country. The absence of a good, copious index is much to te regretted. Dr. Lillic hars shownan extraudinary degree of industry in prephang this essay for couptation ; and the number and ditcrified charateter of the authurs he quutes, testify to the large amount of literary labuur he has bestowed upon the comprehensive suljects of which he treats. Here again we have to regret the shortness of the time which vas allowed to competitors. We do not hesitate to say, that several startling discrepancies which occur in the first part of Dr. Lillie's work would have been avoided, if the subject had been lecsurely, instead of hastily, treated. It is also extremely probable that if more time had been allowed, the author would have seen cogent reasons for rejecting certain authorities he has advanced, and for bringing into more harmonious form the disjointed descriptions of the geological structure of the Province, which, in their present shape, will we fear, zadly pazzle even an "intelligent stranger." liake for example the statement on page 12 and compare it with the actual condition of things. "In New York and Canada it (the third division of the Lower Silurian) bears the name of Utica Slate and Mudson River Group. * * * Graptolites sith fragnents of 'Trilobites are the only fossils found in this division." The Mudson River Group, which extends from the Rouge to the Credit, and at very small depthimmediately underlies the City of Toronto, is cminently fossilifernus, containing besides Graptolites and Trilobites, Corals, Fucoids and numerous genera and species of shells in vast abundance. On referring to Marcou's work we found that he had evidently misled our author, for Marcou says: "Fossils are rare in this division, the only ones are Graptolites, sometimes in great abundance, and fragments of Trilobites, especially the Trimucleus Caractaci." Anhour's inspection of the quarry opposite the pariament buildings, or of the rocks in the Ilumber river valley rould have satisficd Dr Lillic of the value of M. Marcou as an authority. On page 13 we find the following: "13eds of hock Salt are often found in America, in connection with the Upper Silurian." It is possible that the occurrence of salt springs may have given rise to this supposition, but we are not aware that any proof of so remarkable a phenomenon has ever been obtained in America. M. Marcou appears to be the authority in this instance also.
We are thus induced to direct attention to these discrepances as Dr. Lillie's has not only drawn largely from M. Marcou's work, but also made very copious extracts from the reports of Messrs. Logan and Murray, and adopted a style of descriptive narrative in scientific language, which remores the subject beyond the reach of the class of general readers. At pages 12 and 13 our author adopts M. Marcou's distribution of the rocks in Western Canada, simply styling them Lower Silurian, Upper Silurian, and Deronian, and from pages 5 S to $6 \pm$ he goes over the same ground, following Mr. Mrurray's classification, using the terms applied to the suburdinate members of the rock's before named, withont stating how widely Mr. Murray and M. Marcou differ in their classification, or in their cnumeration of the fossil remains distinguishing them. This is to be regretted, and we venture to say that the object would hare been better attained if Dr. Lillie had expressed in his own language a general view of the gevlogical structure of the country, based upon the reports of the Canadian surres. We cquestion whether Dr_{r}. Lillic is amare that of Marcou's classification of the mountain system in - merica-from which he has drawn to the extent of nearly four pages of his work-it has leeen said by a truly
emunent gevlugist, "if we needed a parody on Llic DeBeatmont and his systems of mumitains, we have it here."

The chapiter. on the suils of Canada East and West, consists chicily of extracts from the report of Mr. Hunt. On the climate of Canada chiefly of abridgments of articles contained in this Juurnal, and the same may be said of the enumeration of the natural productions of the country.

The second portion of the essay before us consists of extracts from a great variety of sources and authoritics. Numerous passages from Dr. Lillie's own pen cause us howerer to regret that he had not adhered more elosely throughout to an original form of expression, rather than content himself with transcribing the precise words of his authority. Here is a graphic Fieture, far more intercsting, impressive and useful to the general reader than half a dozen extracts from "authorities:"
"Cannda is constantly outgrowing the descriptions which are being given of her. The picture which was correct a few years ago thus misleads, if, instead of being yrgaded as exhibiting what acas, it is viered as illustrative of mhat is. lad so it will continue to be. Without the gift of prophecy, the production now of a work which shall be true to the facts of eren half a dozen years herec is an impossibility. It is only by frequent rerisal, bringing them up erery few years to the state of things which lass grown up since their first appearance, that the rery best works can be made to possess a permanent value as sources of information. Thus it is that the works of Mr. Macgregor and Montgomery Martin make the approximation which they do to the present actual state of the country.
"By way of example, we shall present a fer statements from the works of Talbot, who published in 1894; and of Buckinghan, whose trarels in Aucrica appeared so late as 1843.
"Torento, our inguirer fill learn from the same authority, (Talbot Who publishel in 1824) should he consult him, contains 1335 inhabitants, $\begin{aligned} \\ \text { ith about } 250 \\ \text { houses, many of which exhibit a very neat }\end{aligned}$ appearance. Its public buildings are a Protestant Episcopal Church, which is a plain timber building of tolerable size, Fith a steeple of the same materinl; a Roman Catholic chapel, not yet completed, which is of brick, and intended to be very magnificent; a Presbyterian and a Methodist meeting house; the Hospital, which he pronounces the most exteusire pablic building in the Province, describing it, at the some time, as showing a very respectable extcranl appearance; the l'arliament Honse, and the residence of the Lieutenant Gencral. As for its strects, rinich are regularly laid out, intersecting ea vis viner at right angles, but being in wet кeather unhappily, if possible, muddier and dirtier than those of Kingston-only one of then is as yet fuished.
"Lay down Talbot, and take up Duckingham's "Canada, Nora Scotia, and licw Brunswick,"-bearing date London, 1843-and you will learn (p . 101) that the city of which you have been reading has adranced so far as to hare 13,000 inhabitnats, with orer 200 brick buildings, and nine newspapers, chicfly weekly, some twice, and some thrice, but none dails. So soon as you have got orcr your sarprise at this prodigious growth, look into Tremenhecre, if you can lay your harei upon it, and lio Fill tell you, on the anthority of the last census, that the popalation of Toronto amounted, in 1851, or rather beginning of 1852, to 30,763 . At last you feel that you have got at the truth; the truth you hare got certainly as to January or February, 1852 ; but this is January 1855. The population now, according to information receired by me nt the Ctamberlain's office, is somewhere in the neighbourhood of 45,000 . In 1851, the cetimated ralue of property, real and personal, was $£ 2,116,400$, he assessed value (calculated at six per cent. on the estimated) $£ 186,983$ ös. Last jear the assessed ralue amounted to $£ 206,500$ real, with $£ 61,450$ personal - in all, $£ 290,950$; and the estimated to $£ 3,755,000$ real, with $£ 1,110,000$ personalmaking together, $£ 4,885,000$."
The third part of this essay is devoted to the social condition of the peonle of Canada, an ${ }^{2}$ Tike the preceding divisions, contains an inmucnse amount of information, chicfly in the form of quotations. In taking leare of Dr. Lillie's cssay we confess to two regrets, one beirg that a work containing so much valuable information, and giving cridence of considerable industry and application in its production should, by any alleged defert in the manuscript, have been passed unnoticed by the judges;
the other-befure expressed-that Dr. Lillie shuuld have "lessened the attractiun of his pruduction by taking aw.iy from it the air of origitality which it might with much less ladour than has been bestured uren it hane been made to wear," ly a too rigid adhereace to quutations from different authuritics, while their views and facto might, in many instances, hatelucu presented quite as truthfulay, and far mure impressively, in a simple narrative furm, similar to the uriginal paragraphs which are interspersed throushout the work.

Vermes in Grasshoppers.

Early in September last I visited a brother Entomologist, who resides in Montreal, and my stay having been limited to one week I resolved to make good use of my time; therefore, the forchoons were devoted to collecting insects, and on a few occasions in the eveniugs, I accompanied my friend in his boat to the Rapids opposite the city, where we fished. The bait generally used for still-fishing are grasshoppers, freshly collected and kept in a bottle. On one occasion I selected a specimen measuriug about 14 lines (probably an Edipola), found commonly ou the island of St. Ifellens. It had been a short time in the water, and I lad indication of a "nibble;" shortly afterwards, on esaming the bait, the posterior part of its body had been bitten off, and something protruded, having a resenblance to white thread, and which, at first sight, I took to be its intestines. I disengared the thread-like substance, and discovered it to be an intestince measuring at least ninetecn inches in leneth.
lirom one grasshopper two vermes were taken, and three from another; the latter were longitudinally coiled, and occupied the whole of the insect's body.

One of the oarsmen informed me that the grasshoppers which he kept in the bottle, since our previous ereming's fishing, were dead on the following moming, and that a large quantity of vermes lay at the bottom-evidence enough to exhibit a common disease in this opecies of Orthoptera.

Judging from its form and lengat, I take it to be a species of Echinorlynclus-a type chiefly infesting the ligher orders of animals, and am led to think, have not been hitherto found in insects. They are cylindrical, without joints, with a sharppointed retractile proboscis.

Should students of Ifelminthology, or Microscopists wish to examine them, they can be seen at the Muscum of the Canadian Institutc.

Toronto, October, 185̄. WN. COIPER.

Parasites in the Bat.

$$
\text { I)etroit, 15̄th Sept., } 185 \overline{5} .
$$

In dissecting a small bat, a few days ago, my attention was directed to sume round spots of incunceivable miunteness in that purtion of the mescutcry which connects the spleen, stumach, and small intestine. On examining the spots with the microscope, they proved to be Cistoid entozoa, of a species that I have not seen before, nor do Ibeliere thes have jet been described. Seen with low power, they appeared to be identical with Trichiua spiralis, fuund vecesionally (and only funnd) in human musele, fanting, however, the remarkable external cyst, supposed to result from the irritation of the cyst containing the entozon; but, with increased magnifying porer, it is allugether a different animal, simply agrecing with the former in the spiral form it asmmes in the cyst.

The body is composed of a great number of delicate segments, while its interiur displays a well-develuped alimentary canal, pusecsinga distinctly marked pluric cunstriction: murcover, the sturitich is provilcd with a mucum. membranc, and muscular cuat uf cunsiderally density.

On cuntiauils my cxamination, I fuund one similar cyst in the echtre of the urinary blader, and three at its neck.

Illese parasitus vecupicd the fat lubules, and 12 of them, all that, there were, occurred in a space less than onc-eigth of an inch square. They now form permanent preparations for the microscope.

> HENIRY GOADBY, M.D.

Asucrican Association for the Advancement of Scienees

The folloring notices of the proceedings of this scientific body, at their ammal mecting held in the city of Irovidence, Mhode Island, tugust 15ih, 16 th, $1 ;$ th and $18 t h$, are necessarily extremely brief; but of the more mportant papers read at the several mectings, we shall have an opportunity of giring more complete abstracts in future numhers of the Journal:

luysics.

Notice of Earthpuake Hares. Jy I'rofessor A. D. Bache.-On the 2id of becember, 18j!, at 9 A. In., an carthquake occurred at Simoda, on the Islamd of Niphon, Japan, that resulted in the wreck of the llussina frigate liana. The harbor was first emptied of water, then came in an cnormous wave which again receded. (It appeared from the Rev. Mr. Jones that the whole elharacter of the harbor of Simoda, previously surveyed by the Yowhatan, has been clanged by the carthquake.) A report from tice Ifonin Istands is not sufficiently eract to use for our main purpose, but points to Simodat as the centre of disturbance. (Simoda, aceording to the Rer. Mr. Jones, is volcanic; Bonin appears not to be.) Xom the Const Surrey has three self-acting tide-gauges at Astoria, on Columbia Kiver, San Francisco and San Diego. They record the rise of the tide on a cylinder turned by a clock. The apparatus is protected more or less from the oscillations that wind-mares would cause, which only cause a trembling of the inder or stylus. The gauge at Astoria was but slightly affected by the carthquake ware, owing to the bar on the river and the distance it lasd to ascend. At San Francisco, 4,800 miles fron Simoda, the ware arrived 12 hours 16 minutes after the beginning of the carthquake. A series of seren waves, cach abont half an hour in duration, or 35 minutes, cach series successively smaller, and separated by a quict time of an hour from the preceding, was recorded at San Francisco. At San Diego the wave had traversed $\bar{J}, 200$ miles in 12 hours 38 minutes, and produced likerise a scries of seven wares, each nearly corresponding to those nt San Francisco, but the second series stronger than the first and third. In height they were less, the highest at San Francisco being . \bar{z} of a foot, at San Diego .G. The wares at San Diego could not have come from San Francisco, as they would have arrived much later. The relocity with which a wave trarels depends on the depth of the ocean. The second and third series were lut repetitions of the first wave that had reachell the same points, travelling through shallower water. The calculations based on these data gire for tie Pacific Ocean a depth of from 14,000 to 15,000 fathoms. It is remarkable how the estimates of the occan's depth have grown less. La Haco assumed it at 10 miles, Whewell at $\dot{8} . \overline{5}$. While this estimate brings it down to nolout \because miles.
Frozen Wells.-Two deci wells at Onego, Tioga county, N. Y., seen to frecze in the latter part of winter, and to remain frozen until September. In the Jurassic formation of Europe, Prof. Gayot alluded to the ice carcs common in that formation. IIe instanced one of these carcs, 3000 fect abore sca lerel, about 60 fect deep, whose bottom was always corered with ice sereral fect in thickness, while stalactites of ice depended from the roof. The whole was a small giacicr. The staiactites were formed by kater percolating through tise covering of the care. It mis also statell that there was a cleft in the mountain not fir west of Williams Cullege, called the Snowhole, where snow might always be frund. Similar occurrences had also been noticed in a ranfe of mountains, composed of a porous sand rock, in Southern Virginia.
It was remarkela by Prof. Agassiz, that he had nerer been able to find any large accumulations of iec with a temperature much below
the freezing point. He would ask if there wero any such. I'rof. Henry said that during the past winter he lised been struck with the fact that pieces of ice wrippedin a cloth were frozen to it, although not one out of the several thermometer would go down to 43 . It appeared from this, as from the old observation ot La leiace, who foum that the iee surrounding the wom through whici. they were tanmenitumg gases was soon frozen to the worm, that meltari ice produced a certain degree of cold. The temperature of a mixture of ice and alcohol, in the form of wine, brandy, \&ic., was lower than 3*․ . Hence ice aud alcohol was a freezing mixture.

Professor Agassiz explained the different kinds of ice. First was that produced by the freczing of the surface of the water and successire layers of rater bencath it, a laminated schistose mass. Into this bubbles from the bottom of the prom were frequently frozen, and when it was subjected to the action of the sun the bubbles became heated, melted the ice around them, and rendered it of no marketable value. It would therefore be worth while for ice gatherers to corer their ponds with clothe, or something which would prevent these bubbles from rising. Glacier ice was formed like pudding stone; compact masses being cemented together, so that when you exposca a large lump of glacier jec to the heat of the sun it Would crumble in pieces. It was like the decomposition of congiomerate; Te had ice sand. Icebergs could be deternined to be derived from glaciers, and not to be the frozen surface of the occan, by their conglomerate composition. l'ebbles in glaciers becoming leated melted the ice beneath then, and quarried their way down to where the heat of the sun could not reach them. The pot lioles formed in this way were soon corered with a thin film of ice, but it was only during the protracted cold of winter that they wero frozen through.

ASTRONOYY.
Solution of the Adams l'rize I'rollem for 15:3-T'art First. By Jrof. Benjaman I'erec.-The problem has for its subject the Motion of Saturn's Hings, allowing them to be solid or tluid, concentric or eceentric, lle reserved the consideration of solid rings of immoveable parts for a meetiag of the Mathematical section, when by use of formule he would prove it untenable. Can it be made up of a mass of satellites moveable among themselves? Then they must be in continual motion among themselves; rerolving among themselves about their common centres of grarity, perpetual collisions ere this would lare reduced them to powder. We assume now that the rings are fluid. Then they may vary in form. It was first shown that they had raried by Otto Strure. The diameter of the outer part of the ring is not known to hare changed. The inner edge is contracting as it seems to me. Huygens, in 1657, made it (allowing for the irradiation of his telcsenpe) 6.5" Huygens and Cassini, in 1695, made it $\mathrm{G}^{\prime \prime}$; Bradley, in 1710, 5.4"; Herschell, in 1798, $\mathbf{5}^{\prime \prime}$; Strure, senior, in 18ㅇ, 4.36"; Facke and Galle, in 1838, 4.04 ${ }^{\prime \prime}$; and Otto Strure, in 1851, 3.67" Does it decrease uniformit? I think it is decreasing more rapidly, and the present rate will liring the ring to an end, in certain parts of it, in about 80 jears from now. I will show in the mecting in section that the planet does nothing cither to maintain or destroy the equilibrium of the ring. The satellites tend to maintain it in place. The ring is not gas; its density is nenrly that of water. If the zodiacal light be a gascous ring of the carth, it would need some solid parts to give body to it. May that gas be the atmosphere around an infinity of small masses revolving about cach other and about the earth? May there not be collisions among these rerolring masses that throw down parts of them to the carth? Is not that as good a reserroir of meteors as the moon? Their meltel state seems to lead us to a lunar volcanic origin; but unless some lunar volcano pointed expressly at the carth were put in furious operation, such a bombardment could not lit the earth with one in ten thousand of its projectiles. Prof. lierce is inclined to adept this hypothesis. The action of Saturn would tend to bring a solid inflexible ring against itself.

Dr. Peters $\begin{gathered}\text { Fould } \\ \text { conclude } \\ \text { from the data of Prof. Pierce, that the }\end{gathered}$ cataclysm of the contact of the ring rouk occur about 1893 instead of $193 \bar{j}$. But Strure has strangely omitted the observation of Bessel made with the heliometer, a more accurate instrument than the filar micrometer used by Struve at Dorpat, and by Encke and Galle at Iferlin. By using these data the time woald be reluced so that the present gencration may hope to see it.

Prof. lierec thought the data too imperfect to usc in a calculation of time. It does nut appear ccriain that it is not a vibration which
wull go on in due time to recede again from the planct. Jut of this we can as yet obtain $n 0$ cridence.

On the Asteroid I'laniet. Jif I'rof. S. Alranader.-liy a most masterly use of circumstantial evidence of a delicate matue, l'rof. Alexander has arrivel at almont a certainty that jn the pace betwern Mars and Jupiter once revolved a jlanet a little more than 3.8 times as far from the sun as our earth. The efuntorial diameter was ahout 70,000 miles, but the polar diameter only 8 miles! It was not a glabe but n wafer-nay a disc of a thichness of only $1-9,600$ of its dinmeser. Its time of revolution was 3.608 days, say 3 days 15 hours 45 minutes. The inclination of its orbit to the ecliptic was about 4°. It mect a fate that might have been anticipated from sothin a body, whirling so furiously, for its motion on its axis was l-l 6th of its velucity in its orbit, sny, 2,476 miles per hour. It hurst as grindstones ami fywhecls sometimes do. We have fouml $\overline{\mathrm{S}} \mathrm{s}$ fragments of it and call then asteroids. When it burst some parts were moving $2,5 \%$ miles per hour faster than the centre did, and some as much slower; that is, some parts mored $4,9 i 4$ miles per hour faster than the others. These described a much larger orbit than the planet did, and the place where it burst was their perihelion. Others described a sualler orbit, because they left that point with a diminished velocity; it was their aphelion. Some flew above the orbit of the planet and hat their ascenting node. Others tlew below, and it was their descending node. They scemed to go almost in pairs. Two rrent very far out of the plane of the onbit, so that they pass the limits of the zodiac, and it is found that the ascending node of 18 errrespond nearly with the descending node of 17 , so nearly even were they distributed. And thin as was the planet, it liad not cooled so anuch at the time of the cxplosion that none of the fragments could assume a splacrical form.
The planct's place mas first to be fuuml. Three or four independent processes were used for this, and they agreed surprisingly. Ife interpolated it as a lost term in a geometric serices, from Mars to Satura, for the first approximation. He compared it with Saturn and Jupiter, and with Mars and Jupiter. Ile found w!ecre a planct mould be dropued of in the succes-ive cooling and contracting of the solar system. And lic compared its orbit for size and ellipticity with those of the asteroids. Some of them gave solutions very far from the average. Rejecting these, the others coincided with previons deductions aml with each other surprisingly. Its day he found by KirkFood's analogy. Its equatorial diameter mas the result of tro calculations, one of which would ineritably give a result too large, and the other too small, in all cases when the planet did not explode at its equinox, mhen it would be exact. These numbers were $\mathbf{7 S}, 4: 5$ and GS,616 miles. A just comparison gave 70,470 . Jut we can follow these calculations no further.

It is curious to see how the history of this planet rerifies the theory of Ia l'lace, that a hearenly body must be cither nearly a sphere or a dise, and that the latter mast be unstable. And this reminded Prof. Alexander agrin to allude to the carth's ring-the zolliacal light. Ile hal long been convinced that the moon could not be the only satellite thrown off by our planct in taking on its present form, but knew not where to look for the rest. A more carcful calculatinn of the data furnished by the lRev. Mr. Jones, had giren him for the diameter of the ring $17,000 \mathrm{miles}$, and a time of about half a day for rotation. Ami curiously cnough, half a day mas the time that hail been assigned by a previoas calculation for the revolution of an serolite round the earth.
Solar Red F7ames.-Trofessors Alesander and IIenty were obsersing together upon this phenomenon. It is now settled that this red light comes from the edge of the sun, and ean be seen only by the aid of peculiar colored light. But using a large Fresnel lens, and throwing the image tro inclics in liameter on rood, it took fire, and behold in the smoke I saw the red flames of the sun as seen serenteen years before! And strange to say, they were only risible in the glass which showed the red flame in the sun. When the ere becomes tired by gaxing on bright white light, the flame of a cande is incisible through all other screcus but that kind; in that it is crimson. It is probably a subjective coloring existing in the ese, and is the result of white light.

Grot.ons:

Graptohtes.-Prof. James IIall pare some notes upon the genus Graptolithus. The genus Graptolithus includes nor about ten species of fussil remains, must of which are American, and of some of which Prof. Hall has recently found better specimens than ever before.

They are compund amimals of the family liryozua, the lowest type of the class Mollusea. 'lhey consist of a hind of radiating fatane apparently covereal in whole or in part with a kind of web, so as to resemble the a:ays and cloth of a parasol. But they do not radiate from a centie, but fom two ends of a line by bifurcation or trichotomy, so as to preselve a bilatelat symmetry. The separate rays only have generally been obeerved, which have been referred to Cephalopoda or Ihadiata. 'lley appeared to be tubes with one or two rows of serratures on their cedges. The Professor now regaris these notehes as each a part of as simple animal, and that w..ero there is but one row of serratures visible, it is because they aro so folded as to lide the other.

Prof. Agassiz thought the case befure us a good cxample of the difficultics with which the fossil zoulogist has to contend. Who would ever make out the structure and uec of this tool (the parasol) by finding only single sticks of wne? The difficulty is greater in Ω compound amimal, for if a man substituted the lavs that hold a community togecher for the physiological laws that prevail in the buman system, le would go widely astriy. But l'rof. Agassiz liad met something very like the Groptolithus anong the marine animals of Key West, furnished him by the Const Survey. And here we find n further instance of the fact that ancient races, extinct in the Eastern Hemisphete, are still represented by a few species in the New World.

The Maurai es Terres.-Professor James IIall gave some acecmut of the Geologr of Nebraska and tho Mauvaises Terres. The country on the Uppea Missouri lirer-Xcbraska-lhe said, had been known to us for may years. Uutil within a few years past our knowledge had been derived from Lewis and Clark, Nicolay and some others. All these had brought specimens from Xebmska, from which we had learned that for a great distance along the Missouri river, beginning at the month of the 11atte, and extending several d."ndred miles northerly, there was a cretaceous formation, the mont prominent fossils of which were Ammonites and lacealites. Ill had shown that this existed in a largely developed scalc, but with the exception of Nicolay, no attempt ras mado to establish sub)divisions. In 1857 we had for the first time a published notice of the existence of an extensire tertiary formation in that region, given by 1 Dr . Prout, of St. Louis. This ras, however, to the West of Missouri. Subsequently; Mr. Culbertsou brought collections, nad Dr. Oren directed Mr. Evaus to make collections, from which we had an pretty good knowledge of tertiary and its mammalia. Mr. Hall's principal object in making collections was not to make discoreries of new species, but the investigations of Dr. Owen did not tell us whether there were distinct formations or not, and moreorer it seemed nn important cousideration that the flora corresponding to the ancient fanua should be known. That was not accomplished by the expedition, but we lad some more details rith regard to the tertiary and cretaceous formations. In the neighborhood of the mouth of the liatte the carboniferous formation terminated. I'assing up the Missouri we found that the carboniferous passed into cretaceous. At their junction was as sandstone which might perhaps be older than the cretaceous. Upon it lay a buff calenteous ruch, which would mark like chalk, contaning scales and jatrs of fielies. Abore this was a great thichuess of elays which contained most of the species that hat been brought from this part of the country. A thinner bed abore the clay was characterized by a large baculites. Those subdivisions extended over the western country, and we had yet to seek their charneteristic fossils. The species already described already amounted to between thirty and forty, and he had about an equal number of new species. At a considerable distance rest of the Missouri the cretaccous beds began to dip slighty to the west. Abore the bed characterized by bacalites and 80 miles west of the Slissouri commenced athe tertiary; at first containing no fossils, but about 80 miles further on tlere were palaotherium and fossil turtles within twenty feet of the cretaceous, although the tertiary nearer the river was 00 or 60 fect high. They concluded, therefore, that the beds were unconformable, the cretaccous dipping westwand and the tertiary being deposited horiznntally upon it, so that the castern tertiary began to bo deposited rhen the western Fins already $\underline{O S O}_{0}$ feet thich. The mauvaises terres were formed of this tertiary extensirely denuded. Tro new species of mammals had been discorered, one of them allied to the musk deer and the other a small carnirerous animal. He mas inicebted to Mr. Meek and Mr. Hagien for the specimens which he exhibited. The shortest term to express the characior al Nebraska was to say that it was a perfect desert, incapable of suppurtand men or rnimals excepit
in a nuigrafory cundition. The Luftalues came in the frinin with the grass, and went away in midsumer whan it was goue, and the ladians followed them. There was almost no wood; some few shrublby willuns, amd a cottun-numl a fuot in diancter was aiways known as the bige coton-wuen, and nuw that it was gone the place was still called Big Cotoon Woul Sping. I'ure water was ravely met with. There were oceasimally some springs in the haculite formation which commenced io miless west of the Missouri. Tho deep clay beneath it was almost impassable. In the spring it was all mud, and in the summer the clay cracked so as to draw out the roots of vegetation and destroy it. Aloug the bottoms were occasionally a little good soil, hut it was not valuable. Jhis clayey soil mas dark, hut not with organic ratter. He had seen in Mr. Meek's notes that night after night lie was compelled to camp with bitter water, and send ont the men to gather a few stumed willows or cotton-wool for fire. Most of the water was imprewnated with saline materia!s; and as all the water in the Mantaise Terres contains sulphate of manacsia, the party was compelled to submit to its medicinal ctects. Southsard toward the latte was some better lame but little wood. Kansas was much like Nebraska. and the climate ras such that in a great part of the territory it would be diflientt for : ow England r... an to exist. Ile knew that Nebraskia wis a desert, and rould remain 24 for all time to come. [This curse of barremess dues not :pply to settled portions of kimsas. They are carboniferous.]

On the Polishing of Granite Ly Driving Sizad. I3y Mr. Whar. Blate -A short paper on the cutting mad polishing of granite by dryving sand in the Colorado Pass, was read by Mr. Matio, who cinithtemp specimnns of the growes and chamel-, as well as a te polished surface of the rock. The whote surfate of the granite in the pass, lio said, was cat int. iong and beantiful grooves, which had a fine polish. Even quartz was cut aray and polished by the incessant action of the samp. Garnets imbedded in feliepar stoon out and protected die fehtipar beland them. The litale hagers of stone tans producelat and pointed to a contant west wan drawing through the pass. This grooving and pohe:thing mint he seen an :ill parts of the desert where there were rocks to beacted upon. The poiish was nu: line that of the lapilary, hut tookel more as thongh the rocks had been oileal or varnished. Some of the grooving and polishing which had been ascribed to glacers, might perhaps be refered to thas cause.

Prof. Agassiz, stid that he was particularly interested in these phenomena, since he had devoted so many years to the study of the glaciers. To know that there was another serics of phenomena similar to the glacial was very intercsting, and suggested cantion in ascribing any :uparent phenomenon to cither the one or the other cause. If mas pleased to s:e that no ohjection had been made to the possibility of glaciers having produced similar phenomena, that their existence mas achnowiclged by Mr. Make. It becane necessary to distinguish the two sets of plienomena. Sand in order to be mo. ? orer such surfaces must be of very nearly uniform -ze . Now in : ic glacier me had tru different phenomena proluced simultaneous. ; one was the potishing of the surfaces, and the other:- grooving:-: scratching produced by the larger masses of rock in ti a placier. These features were cer -inly sufficient to distiaguish between glacial action and the wearing of currents of same.

Coal Fichls © Jissumeri and Illinars.-Prof. If 'l expressed an opinion that nbout threc-fourths of \cdot. Missomi illinais co:ii fields anarked out he Oren wonld have to be wiped off the map, :wai its place supplied by silurian, with its pentunerns, oblongus, and other characteristu fossils. He hat seen lower silurian anil upper silurian fossils over large areas of Urean's conl feld. He suppan. I most of that coal to be outlayers restang in basms, wat having in ennnection with each wther.

Tcolosy in Ancrica.

ment wif Scence, assembled at L'rucidenct, Rhodi Indand, Alugus! īth, 1,j.j, by Professor J.asis D. D.na.

In selecting a topic for this occasion, I hase not been without perplexity: Ilefore on Association for the Mdrance:ment of ScicaceScience in its ride range-a discourse on the progress of science. Ancrica for the past year would seem legitimate. it is a fact P $^{-}$ original memuirs in most demartment:, phbli-hed π. hin that prot i, would make a sery meagre list. Mureuser, it is much to f : ert
of any one to romm over others' territories, lest he ignorantly gather for you noxious weeds. I bave, therefore, chosen to confme myself to a single topic-that of Gcology, and I propose, instead of simply reviewng recent geological papers, to restrict myself to some of the gencral conclusions that tlow from the researches of Americm Geologists, and the bearings of the facts or conclusions on geological science.
I shall touch brietly on the several topics, as it is Ω subject that would nore easuly be brought into the compass of six hours than one. In drawing conclusions atuong conflicting opinions, or on points whero no opinion lans been expressed, I shall endewour to treat the subject and the views of others in all fairness, and shall be satisfied if those who dififer from me shall acknomledge that I have houcstly sought tho truth.
la the first place, we should have a clear apprehension of tho intent or aim of Geological Science. It has been often said that geology is a hussory, the recurds of which are in the rocks; and such is its lighest department. But is this clearly appreciated? If so, why do wo find text-books, even the highest in authority in the English language, written back-end foremost-like a history of England commencing with the reign of Victoria? In history, the phases of every nge are deeply rooted in the preceding and intinately dependent on the whole past; there is a literal unfolding of erents as time moves on, and this is eminently true of geology.

Gcology is not sinply the science of rocks; for rocks are but incidents in the earth's history, and may or may not have been the same in distant phaces. It has its more exalted eni-even the study of the proaress of life fromits canliest dawn to the appearance of man; and mestead of saying that fussils are of use to determine rocks, we should rather say that rocks are of use for the display of the succession of fossils. Buth statements are correct, but the latter is the fundamental truth of the science.
From the progress of life geological time derives its division into Ages, as has been so beautifully enhibited by Agassiz. The successive phases in the progress of lite are the great steps in the carth's history. What if in one country the rocks make a consecutive series without any marked interruption between two of these great ages, while there is a break, or convenient startins-point, in another? Does this alter the actuality of the ages? It is only liko a book without chapters, in oue case, and with arbistrary sections in another" Again, what if the events characteristic of an age, that is, in geology, the races of plants or ani-mals-appear to some estent in the preceding and following ages, so that they thus bend with one another? It is but an illustration of the principle just stated, that Tome is One-ages have their progressire derelopement, flowing partly out of carlice time, and casting their lights and shadows into the far future. We thus distinguish the ages by the culmination of their great characteristics, as we would mark a have by its crest.
Divisions of time sulordinate to the great ages rill necessarily depend on revolutions in the carth's surface, marked by an abrupt transition ether in the organic remains of the region, or in the succession of roeks. Such drisions are not universal. lach continent has its orm feriods and epochs, and the geolugists of New York and other States have visely recognized this fiact-disregarding European stages or subdivisions. This is as true a principle for the cretaceous and tertiary, as for the Silurian and Devonian. The nsarpation of Cromwell made an epoch in linglish annals-not in the Erench or Chinese. We should study carcfulty the records before nimitting that any physical event in America was contemporancous with one in Europe. The unity in geological history is in the proaress of life, ind is the great physical causes of clange-not in the succession of rocks.
The Geological Ages, as haid doma ly Agassiz, are the follorring:I. The Age of Fishes-including the Silurian and Devonian. II. The Aye of heptile:-emhracing from the Carboniferous throught the Cretacewins. III. The Age of M/ummals, or the Tertiary and lost-Tertiary. 11. Tle Alge of Man, or the recent cria-fishes being reparded as the bianhest and characteristic race of the first age, reytates of tie second, illill mammals of the third.

Miore recent rescarches abroad, and also the investigations of Mr. Hall in this country, have shown that the supposed fish remains of the Shurian are prolably fragments of Crustacea, if we exeept those of certain leds neas the top of the Silurian; and hence the Age of Fisbes properis begins mith the Deronian. What, then, is the Silurian? It is pre-eminently the Age of Monerscs.

Untike the other two Invertebrate Sub-kingdoms-the Radiate and Articulate, which also appear in the carliest fossiliferous beds-the Moiluscan Sub-kingdom is brouglat out in all its grander divisions. There is not simply the type, lut the type analyzed or unfolded in its
sereral departments from tho Brachiopods and Bryozon up to tho highest group of all-the Cephatopods. And among these Cephatopoils, although they may have been inferior in grade to some of hater periods, there were species of gigantic size-the shell reaching the length of ten or twelve feet. The silurian is, therefore, most appropriately styled the Mollescas Age.
The l'ulevzoic I'ribolites wero the lowest among Crustacea, and Crustaceat rank low annong Articulates; morcover, Crustacea (and the Artienlata iu general) did not zeach their fullest developuent until the Human Era.
The lhadinta were well represented in the Silurian periods, but, while inferior to the Mollusca as n Sul-hingdom. only the Corals and Crinoids -the lower fixed or wegetable species-with rare exceptions, occur in the Silurian or Alolluscan Age.
Viewing the history, then, zoologically, the nges are, the Ago of Molluses-of Fishes-of Reptiles-of Mammals-of Man.
We may now change the point of view to the Vegetable Kingdom. The ages thence indicated would be three:-
I. The 4 ge of Algac or Marine Plants-corresponding to the Silurian and Deronian.
II. The Age of Aerogens, or Flowerless Trees-that is, the Lepidodendra, Siyillaria, and Calanites-corresponding to the Coal I'priod and the Perminu-a nawe first proposed by Brongmiart, and which may still be retained, as it is far from certain that the Sigillarice and Calamites are most nearly related to the Conifera.

1II. The Age of Angiosperms, or our common trees-like the oak, clm, Sc.-beginning with the "'ertiary.
The interval between the sccond and third of these ages is occupied mainly by Conifers, the pine tribe, and Cycadea, the true Gymnosheaus, species of which were abundant in the Coal period, and havo continued common ever since. The Coniferes, in the simplicity of their flowers and their naked seeds, are next akin to the Acrogens, or flowerless trees. Ahthough in the main a flowerless vegetation-for the supposed remains of thowers observed abroad hare been recently referred to undeveloped leaf buds-it appeas from the observations of Dr. Nerberry, that there were true tlowers over the Ohio prairies, apparently monocotylediuous, and reiated to the hily tribe. But no palms or monocotyledinous trees hrie been found herc.
Combining the results from tho Animal and Yegetable Kingdoma, we should introduce the age of Acrogens, for the Coal period and lermian betreen the age of Fishes and tho age of Reptiles-a space in time zoologically occupied by the overlapping of these two ages.
The order then reads: the age of Molluses, of Fishes, of Acrogens or Coal ${ }^{\text {Plants, }}$ of Reptiles, of Mammals, of Minn.

The limits of these ages are as distinct as History admits of; their blendings where they join, and the incipient appearance of a type be forc the age it afterward characterizes fully opens, are in accordance with principles already explained.

The reality of progress from lorer to higher forms is not more strongly marked in these names properly applied than in the rocks. If hereafter mammals, reptiles, or fishes are found a little lower than now known, it will be changing but a sentence inthe history, not the grand idea which pertades it.

A theory lately broached by one triose recent death has caused unirersal grief to science, supposes that the lieptilian was an age of diminished life between the two extremes in time-the Paleozoic and Mammalian ages. Iut in fact, two grand divisions of animals, the Mollascan and lieptilian, at this time reach their climax and begin their decline, and this is the earliest instance of the higluest culnination of a grand zoological type.
Preceling the Silurian of Mollusean Age, there is tho Azoic Age, or age without mimal life. It was so named by Murchison and De Vernenil, and first recognised in its full importance and formally announced in this country in the Geological Report of Messrs. Foster nnd Whitney, although preriously admitted as a gencral fact by most geologists.
It cmbraces all the lowest rocks up to the Silurian, for much of the lowest granite cannot be excluided. The actual absence of animal life in the so-called dzoic Age in this country is rendered lighly probable, as Foster and Whitney shor, by the fact that many of the rocks are slates and sandstones, like fossiliferous Silurian rocks, and yet haro no fossils; and, moreorer, the beds on this continent were uplifted and folded, and to a great extent crystallized on a rast scale, hefore the first Silurian layers were deposited. A grand revolution is here indicated, apparentis the closing event of the early physical history of the globe. As plants may live in water too hot or impure for animals, nnd zoreorer since nll nature exemplifies the principle that the carth's surface was occupied with life as sonn as fitted, and with the highes
forms the conditions of the time allowed, wo may reasonably infor that there may have been in Azoic times marine plants and plant infusoria, forms adapted to aid in the carth's physical history; and this vegetation may have long preceled animal life on the globe.

After these general remarks on the divisions of geological time, I now proposo to take up tho characteristic features and succession of ceents in Americin Geology.

In the outset we aro struck with the comparative simplicity of the North American continent, both in form and structure. In outline it is at triangle, tho simplest of mathematical figures; in surface it is only a vast plain, lying between two mountain ranges, one on cither border; the Appalachian, from Labrador to Alabam on the east, the Rocky Momiains on tho west; nul on its contour it bas water, east, west, north, south.

Obserre, too, that its border heights are proportioned to the size of the oceans. A lofty chain borders the Pacific, a low one the narror Atlantic ; while the small Arctic is faced by no proper mountain range.

This principle, that the highest mountains of the continents face the largest occaus, is of wide application, and unlocks many mysteries in physical geography. South Anerica lies between the same oceans as North America; it has its eastern low range, its western Andes; and as the occans widen southrard, the continent is there pinched up to almost a narrow mountain ridge; it differs from North America in having a large expanse of ocean, the Atlautic, on the north, and correspondingly it has its northern mountain ridge. The world is full of such illustrations, but I pass them by.

This simplicity of ocean bouudary, of surface features and of outline, accounts for the simplicity of geological structure in North Auerica; or we may make the wider statement, that all these qualities are some way connected with the position and extent of the occun, they seeming to point to the principle that the subsidence of the occanic basins has determined the continental features. Ancerica has thus the simplicity of a single evolved result. Europe, on the contrary, is a world of complexities. It is but one corner of tho oriental continent, which includes Europe, Asia, and Africa, and while the occan bounds it on the north and west, continental lands enclose it on the south and cast. It has ever been full of cross purposes. American strata often stretch from the Atlantic west beyond the Mississippi; and east of the Rocky Mountains, it has but one proper mountain range of later dato than tho Silurian. Europe is much broken up into basins, and has mountains of ail ages; cven the Alps and l'yrences are as recent as the tertiary. This wife contrast accounts for the greater completeness or gencrality of American revolutions, and the more abrupt limits of periods and clearer exhibition of mauy geological principles.
The genlogicalstructure of this country has been made known through the combined researches of a large number of investigators. The nanies of Maclure, Silliman, Eaton, lead of the roll. Witchicock, the Professors llogers, the well-known Geologists of the New York Suryey, Owen, Yercival, Morton, Conrad, Tuomeg, and many others, hare contributed to the collected results. Yet the system may be said to hare been mainly laid open by three sets of obserrer;-Morton and Conrad for the Cretaceous and Tertiary, the New York Geologists for the Palreozoic strata ; and the l'rofessors llogers for the Carioniferous beds and the Appalachians.
The succession of Silurian aad Devonian rocks in the State of New York is the most complete in the country, and it was mell for tho science that its rocks were so early studied, and with such exactness of detail. The final display of the Palcontology by Mr. Iall has given great precision to the facts, and the system has thereby become a standard of comparison for the rhole country, and even for the world. This accomplished, the carboniferous rooks were still to be registered, and the grand problem of New England Geology solved. The Professors Rogers, in tho surrey of rennsylvania and Virginia, followed out the succession of strata from the Deronian through the Goal period, and thus in a gencral way completed the series. And more than this, they unravelled with consummate skill the contortions among the Appalachians, bringing order out of confusion, and elucidating a principle of moun-tain-making which is almost universal in its application. They showed that the Silurian, Deronian, and Carboniferous atrata, which were originally laid out in horizontal layers, wero sfterward pressed on to tho north-westward, and folded up, till the folds were of mountain height, and thus the Appalachians had their origin; and also, that by the escaping heat of thoso times of revolution extensive strata rerc altered or even crystallized.
This key soon opencd to us a knowledge of New England Gcology, mainly through the labours of Mr. Hall, and also Professor II. D. Rogers, following up the survey of I'res. Hitchcock; and now these so-
called primary rocks, granite, gnciss, mica-schist, and crystalline limestones, once regaried is the oldest crystallizations of a cooling globe, are confidently set domn as for tho most part no olider than the Silurian, Devonian, and Carboniferous beds of New York and Yennsylvania.

Let us now brielly review the succession of epochs in dmerican Geological history.
The Azoic age tended, as mas observed, in a period of extensivo metamorphic action and disturbance; in other words, in a great revolution. At its close, some parts of the continent were left ag dry land, which appear to have remained so as a general thing in after times; for no subsequen' atrata cover them. Such aro a region in Northern New York, others about and beyond Lake Superior, and a largo territory across the cominent from Labrador westward, as recoguized by Messrs. Whitney and ionster, and tho geologists of Canada.

Tho Silurian or Mfolliscan Age next opens. The lowest rock is a sandstone, ono of the nost widely spread rocks of the continent, stretching fo.n New Er gland and Canala south and wegt, and reaching beyond the difooissypi-low far is not known. And this first leaf in the record of life is liko a title-page to tho whole volune, loug afterward completed; for the nature of the history is here declared in a fer comprcheusive enunciations.

1. The rock from its thin, even layers and very great extent shows the wide action of the ocean in distributing and working over the sands of which it was made; and the ocean ever afternard was the most active agency in rock-making.
2. Moreover, ripple-marks such as are mado on our present seash -res or in shallow waters, abound in the rock both through the east and west, and there are other ev.. Iences also of moderate depth and of emerged land. Thes all announce tho wonderful fact that even then, in that early day, when life first began to light up the globe, the continent hail its existence-not in embrgo, but even of full-grown extent, and the whole future record is but a working upon the samo basis and essentially within the same limite. It is true that but little of it was above the sea, but equally true that little of it was at great depths in the occan.
3. Again, in the remains of lifo which appear in the earliest layers of this primal roch, three of the four great branches of the anmmal kingdom are represented: Molluses, Tribolites anong Articulates, Corals and Crinoids among Madiates-a sufficient representation of lifo for a title-page. The Xew York beds of this rock had afforded only a fer Molluces, but the investigations of 0 rea in Wisconsin have added the other tribes; and this diversity of forms is confirmed by Barrande in his lBohemian researches. Among the genera, while the nost of them were ancient forms that afterwards became extinct-and through succecding ages thousands of other gencra appeared and disappearedthe rery carliest aud most universal was one that nor exists- the genus Lingula--thus connecting the extremes of time, and declaring most impressively the unity of creation. Mr. Hunt, of the Canada Geological Surrey, recently discorered that the ancient shell had tho anomalous chemical constitution of bones, being mainly phosphate of lime, and afterward he found in a modern Lingula the very same compositiona further anmouncement of the larmony between the carliest and latest events in geological history.
The earliest sandstone, called in New York the Potsdam sandstone, and the associate calcifcrous sand-rock, mark of the First l'eriod of the Molluscan Age, the Potsdam P'criod, as it may be called.

Next followed the Trenton Period-a period of limestones (the Trenton limestone among them) equal to the carlier beds in geographical limits, and far more abundant in life, for some of the beds are literally shells and corals packed up in bulk; yet the species rere new to tho period, the former life laving passed aray; and cren before the Trenton period closes, there were one or tro eppochs of destruction of jife, followed by ner creations. The formation of theso limestone beds indicated an increase in the depth of the continental scas-an instance of the oscillation of lerel to thich the carth's crust ras nlmost uuceasingly subject through all geological ages until the present.
After the Trenton period, another change came over the continent, and claycy rocks or shales were formed in thick deposits in New York and to the south-tho Utica Slate and Hudson Miver Sinieg-While limestones were continued in the west. This is the Mudson Period, and with it the Lourer Silurian closed.
Tho seas were then swept of their life again, and an abrupt transition took place hoth in species and rocks. A conglomerate corered a large part of New York and the States south, its coarse material cvilence of an epoch of violence and catastrophe; and with this deposit the liper Silurian begins.

the Onondaga, the Losocr Helderberg, and many subordinate epochseach one characterized by ats peculiar organic remains; each ovidenco of the nearly or quite universal devastation that preceded it, and of tho act of omnipotence that re-instated life on the glow, ench, tou, bearing evidence of shallow or only moderately deep waters when they wero formed; and the Unondaga period-tho period of tho New York salt rocks-telling of a half emerged continent of considerablo extent.
duother devastation took place, and then opened, as De Verneuil lins shown, tho Devonian Λ ge, or Age of Fishes. It commonced, liko the Upper Solurian, with coarse sandstones, cvidence of a time of violeace; theso were followed he another grit-rock, whoso few organic remains show that lifo hadamindy re-appeared. $\mathrm{I}^{\prime \prime}$ tanother chango -a change evidently in depth of water-and limest is were forming orer the continent, from tho Ifudson far westward; the wholo surface became an exuberant coral-recf, far exceeding in extent, if not in brillunsy, any mouern coral sea; for such was a portion, at least, of tho Ir ier Ifelderbirg poriod.

- wain, there was a general derastation, leaving not a trace of the former lifo in the wide seas; and whero were coral reefs, cspecinlly in the more eastern vortion of the continental seas, sandstones, and shales aecumulated for . . ousauds of fect in thickness, with rarely a thin layer of limestone. $2:$ aus passed tho Ilamilton, Chemung, and Cattskill Pertods of the Deronian Age. The hfe of these regions, which in some epochs was excecdingly profuse, was three or four times destroycd and renerred, nut renewed by a re-creation of tho samo species, but of others; and although mostly like the earlier in genera, yet each havind characteristic marks of the period to whichit belonged. And while these Devonian periods were passing, the first land plants appeared, foretellers of the age of verdure next to follow.

Then come vast beds of conglomerato, a natural opening of a new chapter in the record; and here it is convenient to place the beginning of the Carbouiferous, or the A ge of derogens. Sandstone and shales succecded reaching a thickness in New Jersey and I'ennsylvania, accordiug to Professor Rogers, of thousands of feet; while in the basin of the Ohio and Mississippi, in the course of this era, the carboniferou, iimestono was forming ammense Crinoidal plantations in the seas.

Another extermantion took place of all the beautiful life of the waters, aud a conglomerate or sandstone was spread oser the encrinital bed: and this introduced the true Conl period of the Carboniferous Are; for it ended in leaving the continent, which had been in long entintud oscillations, quite emerged. Over the regions where encrinites were blooming, stretch our vast prairies or wet meadows of the luxuriant coal vegetation. The old system of oscillation of the surface still continues, atid many times the continent sinks to rise again-in t sinking extincushing all continental life, and exposing the surface to new depositions of samlatonc, clays, or limestone, orer the accumulated veget.tble remains; in the rise depopulating the sens by drying them up, aud preparing the soil for verdure again; or at times convulsive movements of the crust carry the seas over the land, Jeaving destruction behind. Thus by repeated alternations the coal period passes --some 6000 feet of rock and coal beds being formed in Pennsylvania, and 14.000 fect in Noria Scotia.

I have passed on in rapid review, in order to draw attention to the series or succession of changes, instead of details. So brief an outline may lead a mind not fambiar with the subject to regard the clapsed time as short, whereas, to one who follows the various alternations and the whole order of events, the idea of time immeasurable becomes almost oppressive.

Ijefore continuing the reviow I will mention some conclusions which are here suggested:

1. In the first place, through the periods of the Silurian and Deronian, at twelve distinct epochs at least, the seas on this American Continent were swept of nearly all existing life, and as many times it was repeopled, aml this is independent of many partial exterminations and reaewals of life that at other times occurred.
If omnipotent porrer had been limited to making monads for after development into higher forms, many a time would the whole process have been utterly frustrated by hot water, or by mero changes of level in the earth's crust, and creation would have been at the mercy of d. 1 farces. The surface rould hare required again and again the Eownig of monads, and there would hare been a total failure of crops after::!l: for these exterminations continue to occur through all geolopical time into the Mammalian Age.
\because. Irann, I Jave observed that the Continent of North America has never heen the :' ${ }^{\prime}$ occan's bed, but a region of comparatively shallun ieas, ami at thes emerging laml, anl was marked ont in its great outlines even in the earliest Sifuriat. The same view is urged by De

Verneuil, and appears now to be the prevailing opinion nmoner American geologists. Tho depth at times may have been measured by tho thousand fect, but not by miles.
3. During the first half of the Lower Sihurinn Ere, the whole Finat nad West wero alike in being covered by the sen. In the first or Potsdam period, the Continent was just benenth ito surfice. In the next, or Trenton neriod, tho depth was greater, giving purer waters for abundant marino life. Afterwards the enst and west were in general widely direrse in their formations; limestones, as Mr. Mall and tho l'ruls. llogers havo remarked, were in progress over the west; that is, tho region now the great Mississippi Valley, legond the Appalnchians; while sandstones and shates were forming through northeastern New York, south and south-west tlirough Virginiz. Tho furmer, therefore, has been regarded as an area of deeper water; tho latter as in general shallow, when not actually emerged. In fact, tho region toward the Atlantic border, afterward raised into the Appalachians, was already, even before the Lower Silurian Era closed, the angher part of the land; it lay as a great recf, or sand hank, partly hemming in a vast continental lagoon, where corals, encrinitea and mulluses grew in profusion; thus partly separating the already existing Athantic from tho interior waters.

Tho oscillations or changes of level over the continent throurli tho Upper Silurian and Devonian had somo reference to this border regiva of the continent; the formations appronch or recede from it, and sumetimes pass it, according to the limits of the oscillations eastward or westward. Along the course of the border itself, there were deep subsidences in slow progress, as is shown by the thickness of tho beds. It would require much detail to illustrate these points, and I lease them with this baro mention.

The IIudson Niver and Champlain ralleys appear to hare had their incipient origin at the epoch that closes the Lower Silurian; for while the preceding formatious cross 'this region, and continuo over New Eugland, the rocks of the Niagara and Onondaga periods (the first two of the Upper Silurian) thin out in New lork before reaching the IIudson River. Mr. Logan las recognized the division of America to tho north-cast into two basins, by an anticlinal axis along Lake Champlain, and observes also that the disturbances began as early at least as the close of the Lower Silurian, mentioning, too, that there is actually a want of conformity in Gaspiebetween the beds of the tpper and Lower Silurian-another proof of the violence that clesed the Lower Silurian cra.
llut let us pass onward in our geological reriew. All the various oscillations that were in slow movement through the Silurian, Devonian and Carboniferous ages, and which were increasing their frequency throughout the last, raising and dipping tho layers in many alternations, wero premonitions of the great period of revolution, so well elucidated, as already observed, by the l'rofessors Rogers, when the Athantic border, from Labrador to Alnbami, long in preparation, was at last folded up into mountains, and the Silurian, Devonian and Carboniferous rocks were baked and crystallized. No such event liad happened since the revolution closing the Azoic period. From that time on, all the various beds of succeeding ages, up to the top of the Carboniferous, had been laid down in horizontal or nearly horizontal layers-over New England as well as in the West; for the continent from New England westward, wo have reason to believe, was then nearly a plain cither aboze or below tho water; there had been no disturbances except minor uplifts; the deposits with small exceptions Were a single unbroken record, until this Appalachian revolution,

This epoch, although a time of rast disturbances, is more correctly contemplated as an epoch of the slow-measured movement of an agency of inconccivable power, pressing formard from the ocean toward tho north-west; for the rocks were folded up without the chaotic destruction that sudden violence would havo been likely to produce. Its greatest force and its carliest beginring was to the north-north-east. I have alluded to tho disturbances between the Upper and Lower Silurian beds of Gaspe to tho North. Another epoch of disturbance, still more marked, preceded (according to Mr. Logan) the carboniferous beds in those north-eastern regions; and New England, while a witness to the profound character and thorougliness of the Appalachian revolution, attests also to the greater disturbanco toward its north-castern limits. Somo of tho carboniferous strata were laid down bere in Rhode Island, as clay and sand, and layers of vegetable debris; they came forth from the Appalachian fires as you have them, the beds contorted, the coal layers a hard silicious anthracite or cren graphite in places, the argillacous samds and clays, crystallized into talcose, or even gncies aud spenitc.

I'licse very coal beds, so ilvolved in the crystalline rocl:s, are part
of the proof that the crystalization of Niew England took place after the coal ago. Fossils in Maine and Vermont add to the evidence. Tho quiet required over tho continent, for the regular succession and undisturbed condition of the rocks of the Silurian, Devonian and Carboniforous formations, shows that in neither of those nges could such rast results of metamorphic action and upheaval have taken place.
The leagth of tume occupied by this revolution is beyond all estimate. Every restige of tho ancient Carboniferous life of the continent disappeared before it. In Europe a l'ermian period passed with its varied life; yot America, if we may trust negative evidence, still remained desolate. The Iriassic period next had its profusion of living beings in Europe, and over 2,000 feet of rocks. America, through all, or till its later portions, was still a blank, nor till near the beginning of the Jurassic period do we find any traces of now life, or even of another rock aboro the Carboniferous.
What better evidenco could we have tban the history of the oscillations of the surface, from the carliest Silurim to the close of the Carboniferous age, and the final cresting of the series in this Appalachian revolution, that the great features of the continent had been marked out from the carliest time? Even in the Azoic, the same north-east and south-west trend may be observed in Northern New York and beyond Lake Superior, showing that although the course of the great Azoic lands was partly east and west, the same system of dynamics was then to some extent apparent, or at least in development.
The first erent in the records after the Appalachian revolution is the gathering up of the sands and fragments of the crystalized rocks and schists along the Atlantic border into beds-not over the whole surface, but in certain valleys which lie parallel with the Appalachian chain, and which are evidently a result of the foldings of that revolution. The beds are the red sandstone and shales which stretch on for 120 miles in the Connecticut Valley; and similar strata occur in South-eastern New York, in New Jersey; Virginia and North Carolina. Theso long valleys are beliered to have been estuaries or river courses. The period of theso deposits is regarded as the earlier Jurassic by Prof. Wm. H. Rogers. Dr. Hitchcock supposes that a portion of the preceding or Triassic period may be represented. Many of the layers show by their shrink-cracks, ripple marks and foot prints, as others have obyerved, that they were formed in shallow waters, or existed as an exposed mud flat. But they accumulated till they were orer a thousand feet thick in Virginia, and in New England two or three thousand, according to the lowest estimate. Hence the land must have been sinking to a depth equal to this thickness, as the accumulations went on, since the layers were formed successively at or near the surface.

Is it not plain, then, that the oscillations, so active in the Appalachian recolution, and actually constituting it, had not altogether ceased their movements, although the times were so quiet that namerous birds and reptiles were tenants of the Connecticut region? Is it not clear that these old valleys, occurring at intervals from Nora Scotia to South Carolinn, originally made by foldings of the earth's crust, were still sinking?

And did not the tension below of the bending rocks finally cause ruptures? Eren so. And the molten rock of the earth's interior whick then escaped through the crystaline rocks beneath and the overlying sandstone, constitules the trap mountaine, ridges and dykes, thickly studding the Connecticut Valley, standing in palisades along the Hudson, and diversiffing the features of Ner Jersey and parts of Virginia and North Carolina. The trap is a singularly constant attendant on the sandstone, and everywhers bears evidence of having been thrown out soon after the deposition of the sandstone, or in connection rith the formation of its later beds. Even the small snndstone region at Southbury, Ct., has its trap. Like the Appalachian rerolution this epoch had its greatest disturbances at the North.
Thus ended in fire and violence, and probably in submergence beneath the sea, the quiet of the Connecticut Valley, whero lived, as we now belicve, the first birds of creation-kinds that were nameless until some countless ages aftermard. Prof. Hitchcock tracked them out, found evidence that they were no unrorthy representutives of the festhered tribe, and gave them and their reptile associates befitting appellations.
Such vast regions of cruptions could not have been without effusions of hot water and steam and copious hot springs. And may not these heated waters and vapors, rising up through the crystaline rocks below, have brought up the copper ores that are now distributed in some places through the sandstone? The same cause, too, may havo given the prevalent red color to the rock, and produced changes in the adjoining granite.

After the era of these rocks, there is no other American record during the European Jurnssic period.

In the next, or Cretaccous period, the seas once more abound in Animal life. The position of the Cretaccous beds around the Atlantic border show that the continent then stood above the sea very much as now, eacept at Ω lower level. The Mississippi Valley, which from the Silurian lud genernlly been the region of deeper waters, was even in Cretaceons times occupied to a considernblo extent by the sca-the Mexican Gulf then renching far north, even far up the Missouri, and covering also n considerable part of 'Texas.
An age later, the Cretaceous species had disappeared, and the Mammalinn Age (or the Tertiary, its first period, begins, with a wholly new Fauna, excepting, accurding to Prof. Tuomey, some half a dozen species, nbout which, however, there is much doubt. The continent was now mure elevated than in the preceding age, and the salt waters of the Mexican Gulf were consequently withdrawn from the region of lowa and Wisconsin, so as not to reach beyond the limits of Tennessee.
Two or three times in the course of the Tertiary period, the life of the seas was exterminated, so that the fossils of the later Tertiary are not identicnl with nuy in the earliest beds, excluding somo fish re-mains-species not coufined to the const waters. The crust of the carth was still oscillating; for the close of the first Tertinry epoch was a time of subsidence; but the oscillation or clange of level was slight, and by the end of the Tertiary, the Continent on the cast stood within a few fect of its present elevation, while the Gulf of Mexico was reduced nearly to its present limits.
[To be continued.]

Preparation of Altiminiume

The following are two methods giren by M. St. Claire Deville, for obtaining Aluninium:

1. Sonios Process.- Introduce into a glass tube of about an inch in dianseter frou 200 to 200 grammes of chloride of aluminium, closing the ends with a plug of asbectos; then conduct hydrogen gas, dry, and perfectly free from atmospheric air, into the tube, and heat the chloride of aluminium in this current of gas by means of charcoal. This will hare the effect of driving of the hydrochloric acid, chloride of silicium, and chloride of sulphur, with which it is almays impregaated. Capsules of as large size as possible, containing each some grammes of sodium, previously crushed between two sheets of dry filter paper, are then introduced into the glass tube. The tube being full of hydrogen, the sodium is melted; and the chloride of aluminium on being heated, will be distilled and decomposed with incandescence, whicls may be easily moderated. The operation will be complete when all the sodium has disappeared, and the chloride of sodium formed, has absorbed a sufficient quantity of chloride of aluminium to saturate it. The aluminium will now exist in the state of a double chloride of aluminium and sodium, which is a very fusible and volatile compound. the capsuleg are next to be remored from the glass tube, and placed in a large porcclain tube, furnisued with a pipe leading to a receiver. Through this porcelain tube, while heated to a lively red heat, a current of hydrogen, dry and free from uir, is couviv wo pass; and the chloride of aluminium and sodium will be thereby distilled without decomposition, and collect in the receiver. After the operation, all the aluminium will be fornd collected in the capsules in the form of large globules; these are washed in water, which will carry off a little of the salt produced by re-action, and also some brown silicium. In order to form a single mass of all these globules, after being cleansed and dried, they are introduced into a capsule of porcelain, into which is put, as a flux, a small quantity of the product of the preceding operation-i. e., of tho double chloride of aluminium and sodium. On heating the capsule in a muffle to the temperature of about the melting point of silver, all the globules will be seen to unite in a brilliant mass, which is allowed to cool, and then washed. The melted metal must bo kept in a closed porcelain cruciblo until the vapours of the chloride of aluminium and sodium with which the metal is impregnated have entirely disappeared. The metallic mass will then be found surrounded by a light pellicle of alumina arising from the partial decomposition of the fux.
2. Process by meaxs of Galvanisx. -This procees is carriod on by means of the double chloride of aluminium and sodium. For this purpose the aluminium bath is prepared by taking two parts by weight of chloride of aluminium, and adding thereto one part of dry
pulveriscl marine salt. Tho whole is mixer in a porcelain capeule, heated to about 200°. The combination will soon take place, wifh disengagement of beat. Tho liquid thus obtained is to be introducedinto a capsule of glazed porcelain, which is maintained at n temperature of about 200°. The negative electrode is a plate of platinum, upon which the aiuminium will be deposited, mixed with mariac aalt, in the forms of a greyish layer. Tho positive clectrode consists of porous vessela, perfectly dry, and containing melted chloride of aluminium and sodium, in which is immersed a cylinder of charcan, which generates the ciectricity, and to which pass tho chlorine, and s small quantity of chloride of aluminium, arisiaf fram the decomposition of the double salt. The double fixed chloride is re-constituted, and the vapours cease. A small number of elements are necessary for decomposing the double chloride, which presents but slight resistanco to the action of electricity.

When the platinum plate is sufficiently clarged with metalliferous deposit, it is removed, and allowed to cool; the saline mass is then cleaned off, and the plate agnin introduced into tho current. Tho matter thus detached from tho electrode is melted in a purcelain crucible, which is enclosed in an earthenware one; and after cooling, it is treated with water, which dissolves a largo quantity of marine salt; and a grey metallic powder is obtained, which is, by several successive meltings, formed into a single mass; the double chloride of aluninium and sodium being emploged as a flux for that purposo.

The first portioas of metal obtained by this process are nearly almays brittie; as fine a product may, bowerer, be obtained by it as by the sodium process; but the chloride of aluminium employed for that purpose must be purer. In fact, by the sodium process, the gilicium, sulphur, and iron are carried off by means of hydrogen, -the iron passing off in the state of protochlorido: whilst all these impurities remain in the liquid which is decomposed by the battery, and are carried off along with the first portions of metal reduced.

In addition to these processes of M. Derille, wo haro
M. Bossen's Metriod of Paeparation.-Tako oxide ofaluminium obtained either by the calcination of ammoniacal alum, or from sulphate of alumiaa, or by the decomposition of alum by chloride of barium; and having mixed it with charcoal, introduce the mixtureinto 2. stone retort capable of containing about two guarts, and corer it with s thick layer of cement composed of argil and iron scales. Place the retort in a reverberatory furnace, with its neck projecting borizontally therefrom, from 8 to 5 inches, and connect this neck with a glass receiver, for the reception of the chloride of aluminium, which is sublimed on the introduction of chlorine. This gas is introduced into the class receiver by a tube of large diameter, made of glass not casily fusible. The stone retort is hented to a dall red heat, and a carrent of chlorine (rell wasied and dried) is caused to pass therein. Chloride of niuminium is then freely formed; and at the expiration of some hours the receiver will at least contain half a pound of product. When this chloride is well cooled, it is mixed with its equivalent of melted and pulverised chloride of sodium, and heat is applied thereto. The mixture will melt at a temperature below 200° dentigrade. It is introduced into a closed poreelajn crucible, divided into two compartmeats by a porcelain partition which does not quite reach to the bottom, and closed by means of a porcelain cover, haring imo boles for the reception of the conductors of the battery. Six or eight pairs of Bansen's plates Fill suffee to soparate the nluminium. If the temperature remsins at 200° centigrade, the metal will be deposited in the state of powder; and, for the purpose of converting this into a compact mass, palverised chloride of sodium is gradually introduced into the mixture, until the liquid has reached the temperature of the meltiag point of silver. After cooling, large balls of aluminium will be found in the mass, which are caused to unite by throwing them into melted sea salt. The ingots thus obtained possess all the characteriarics of M. Deville's aluminium.

Wodem of tegting Bratiding Matexinls.

At the last meetiag of the American Association for the adrancement of science Prof. Henry read a paper on the modes of testing buitding materialsandanaccount of themarblesused at Washington. Hehad been appointed on a committee to test the material offered for the extension of the Capitol at Washington. The committee had to take into consideration many minate sources of disintegration, such as that erery \#ash of lightning produced sn appreciable amount of nitrio acid, which diffused in rain Fater scted on the carbonate of lime, and the
action of dast carried by tho wind against the building. The committee subjected specimens to nctual freezing and after several experiments a good method was obtained. It was found that in ten thousand years one inch would be worn from tho blocks by tho action of frost. jllocks of $1 \frac{1}{2}$ inch cube were subjected to pressure, and thin plates of lead, as lind been tho case in former experimeats, being introluced to equalize any equalities which might occur in tho surface. But upon experiment it was found that whilo one of these cubes would sustain 00,000 pounds Fithout the lend plates, it would sustain only 30,000 with them. They had therefore to invent a machine to cat the sides of the block perfectly parallel, when it was found that the marble Which was chosen for the Capitol, from a quarry in Lee, Massachusctis, would sustain about 25,000 pounds to the square inch. Tho manner of its breaking was peculiar. With tho lead plate interposed, the sidey which wero free ficst grve way, leaving the pressure on two cones wiose bases joined the plates, and whose apexes met each other, and that they then yiclded with comparative case. This marblo absorbed water by capillary attraction, and in common with oller marbles was permeablo to grses. Soon after the workmen commenced placing it in the walls it exhibited a brownish discoloration although no trace of it appeared while the hocke remained in the stoneeutter's yard. A variety of experiments were mate with a view to ascertain the cause of this phemomenon, and it was finally concluded to be due to the previous absorption by the marbie of water holding in solution organic matter, together with the absorption of another portion of water from tho mortar. To illustrate the process, he supposed a fino capillary tube with its lower end immersed in water, whose internal diameter wis sufficiently small to allow the liquid to rise to the top to to exposed to the atmosphere. Eraporation would take place at the upper surface of the column, and new portions of water would be drawn up to supply the loss, and if this process were continued any material which might be contained in the water would be found deposited at the top of the tube, tho point of evaporztion. If, howaver, the lower portion of the tube were not farnished witha supply of water, the cyaparation at the top would not take place, and the depoaition of forcign matter would not be exhibited, even though the tube itself were flled with water impregnated with impurities. The pores of the marble, so long as the blocks remained in the yard, were in this last condition, but when the bame blocks were placed in the wall of the building tho water absorbed from the mortar at the interior surface gives the supply of liquid necessary to carr ${ }_{j}{ }^{\text {the coloring materials to the ex- }}$ terior surfuce and deposit it there at the mouths of the pores. The cause of the phenomenon being known, a remedy was readily suggested; the interior surface of the stono was conted with asphaltum, rendering it inpervious to the moisture of the mortar, and the discoloration was gradually disappearing. In a series of experimeuts made some ten years ago he had shown that the aftraction of the particles for each other of a substance in a liguid form was as great as thet of the same substance in a solid form. Consequently, the distinction between liquidity and solidity did not consist in a difference in the attractive power occasioned directly by the repulsion of heat; but it depended upen the perfect mobility of the atoms, or a iateral colesion. He night explain this by assuming an incipient erystallization of atoms into molecules, and consider the first effect of heat as that of breaking down these crystals and permitting each atom to move freely around every other. When this erystalline arrangement was perfect, and no lateralmotion allowed in the atoms, the body might be denominated perfectly rigid. We had approximately an exarople of this in cast steel, in which 20 slipping took place of the parts on each other, or no materinl elongation of the mass; and when a rupture was produced by a tensile force, a rod of this material was broken with a tranverse fracture of the same size as that of the original section of the bar. In this case every atom was separated at once from the other, and the breaking Feight might be considered as a measure of the attraction of cohesion of the atoms of the metal. Tho effect, however, was quito different when we attempted to pull apart a rod of lead. The atoms or molecules slipped upon each otler. Tho rod Was increased in length and diminished in thickness until a soparation was produced. Instead of jead we might use still zofter materinis, such as war and putty, until we arrived at a substance in a liquid form. This Fonld stand at the extremity of the scale, and between extreme rigidity on the ons hand and extreme liquidity on the other, wo might find a series of substances gradually shading from one extremity to anothex. According to the views he had presented, the difference in tenacity of steel and lead did not consist in the attractive cohesion of the atoms, but in their carshility of slipping upon each other. From this vicw it. finvered that the form of the material ought to have some effect upon
its tenacity, and also that the strength of the article depended in some degree upon the process to which it had been subjected. He had for instance found that softer substances in which the outer atoms had freedom of motion, while the inner ones by the pressure of those exterior were more confined, broke unequally, the inner fibres, if ho might so call the rows of atoms gave way first and entirely separated, while the exterior fibres showed but little indications of a chango of that kind. If a cylindrical rod of lead, three-fourths of a inch in diameter wore turned down on a latho in one part to nbuut lanlf an inch, and then gradually broken by a force exerted in the direction of its length, it would exhibit a cylindrical hollow along its axis of half an inch in length, nad at lenst a tenth of an inch in dinmeter. With substances of a greater rigidity this effect was less apparent. It existed, however, even in iron, and the interior fibres of a rod of this metal might be entrely separated, while the outer surface presented no appearance of change. From this it would appear that metals should never be clongated by nicre stretching, but in all cases by the process of wire drawing or rolling. A wire or bar must always bo weakened by a force which permanently increases its length without at the same time compressing it. Another effect of the lateral motion of the atoms of a soft heary body when acted upon by a percussive force with a hammer of small dimensions in comparison with the mass of metal was that the interior portion of the mass acted as an anvil upon which the exterior portion was expanded so as to make it separate from the middle portions. Prof. Henry exhibited a portion of bar originally four fect long, which had been hammered in that way so as to produce a perforation through the whole length of its axis rendering it a tube. This fact appeared to him to be of great importance in a practical point of riew, as it might bo connected with many of the lamentable accidents which had occurred in the breaking of the axles of locomotive engines. These ought in all cases to be formed by rolling and not with the hammer.

CANADIAN INSTITUTE. Conach Meeting-September 8th, 1855.
The following gentlemen were provisionalls* elected members of the Institute:-
John Wilson, M.P.P................................ London.
S. V. Wolcomb..... Hamilton.
Romeo H. Stepliens Montreal.
Dr. Thomas Carvdry....... Cobourg.
Rev. Mr. Geikie................................. Toronto.
Willian Hind
Geofrey B. Hall Nanticoke.
William Mercer Simcoe.

[^1]The following draft of a Circular from the Council addressed to the members, on the subject of a Building, was submitted, approved of, and copics ordered to bo distributed:-

chellart fion the cuunch of the canadian institute.

The anticipated removal of the sent of Government to Toronto, and the consequent ejectment of tho Canadian Institute from the rooms allotted to them in the old Government House, has forced on tho attention of the Council the necessity of providing accommodation for the Institute in a buildiug suited to the purposes for which it is established, and to the position which it has already achieved as a Provincial Scicatific Institution.

In taking the requisite steps for this purpose, one great difficulty has been removed-by the gift of G. W. Allan, Esq., of a raluable site in Pembroke Strect, on tho Moss Park Estate; and, on application being made to the Government, two successive grants of $£ 500$ each have since been made in aid of the Building Fund.

Under these very favourable circumstances, tho Council have determined upon appealing to the Members of the Institute, as well as to all persons likely to feel an interest in the success of the first purely scicatific Institution founded in Upper Canada. The Council anticipate that at least $£ 500$ may be thus readily obtained, thereby increasing the Building Fund to $£ 1500$, and providing a sum which will justify them in commencing immediate operations.

The building which the Council propose to erect, is degigned with a view to additions hercafter, so as ultimately to provide accommodation for the Muscum, Library of Reference, Reading Room, and apartments for transacting the ordinary business of the Socicty; the present cost not to exceed $£ 2,500$.

It is proposed that the subscriptions be paid either at once or in the following manner-one-fourth immediately, nad the remainder at six, twelve, and cighteen months thereafter; the mode of payment being at the option of the donor.

Gentlemen proposing to subscribe are requested to transmit their names, with their remittances, or a statement of the amounts they in. tend to subscribe, to the Treusurer, James i svenson, Esq., Bank of Montreal, Toronto, as speedily as possible, in order to enable the Council to commence the building without delay.

Building Committee.-G. W. Allan, Esq.; D. Wilson, L.L.D. ; H. Croft, D.C.L. ; and F. W. Cumberland, Esq.

Toronto, September 4th, 1855.
The Secretary submitted a letter, dated 6th September, 1855, from
E. Chads Hancock, Secretary of the Toronto Athenæum, enclosing certified copies of two resolutions of that body, authorizing its immediate amalgamation with the Canadian Institute, and the transfer to the latter of certain portions of its Library and Museum.

Donations since August list, 1855.

Prom the Usited States Patext Office, Washington.
Report of the Commissioners of Patents, year 1854. Arts and Manufactures. Vol. II., Mlustrations.

From the Societies, through Mr. Rowsely.
The Quarterly Journal of the Geological Society, Vol. XI., Part 2, No. 42, May, 1855.
The Journal of the Royal Geographical Society, with Maps and Illustrations. Vol. 24, 1854.

From Dr. Josepa Workman.
Insanity of King George III. ; Dr. Ray.
From the Author, through Dr. Carwett.
Nap of the Province of Canada, and the Lower Colonies, showing the connection by steam navjgation with the United States and with Europe, by the route of the great Lakes, andehowing aleo the connection
by Railroads andCanals with the New lingland und the Nortli-western States of tho Inion, preparel for the ('anmelian Commissioncrs of the Paris Exhibition, by Thomas ('. Keefer, C.l:.

Mercators Prujection, with the Great Circle [shortcst sailing] or nir lines, illustrating the directions and capacities of the River St. Lawrence, from Lake Eric to the Atlantic, as a means of communication between Europe and the commercial centre of the Great West; showing also, the extension of the Northern l'acific railway route through Canadn to the nearest Atlantio sea-port at Montreal. Preparel fur the Camadian Commisaioners of the Jaris İslubition, by Thomas C. Keefer, C.E.
l'rom J. M. Strarit, Esq.
Report on tho Xiagara Railway Suspension lbrilge, by John A. Roebling, C.E.

Mr. Allan having intimated that, in view of the possible extension of the contemplated Institute building on I'embroke Street, he proposed ts add to his gift of a frontago on that street of ninety feet, a further donation of frontage northward of sixty-four feet.
It was resolved-That the Council gratefully accept of the valunble addition, and instruct the Secretary to record on the Minutes their cordial thanks for this further prouf of his generous interest in tho advancement of the Institute.

CANADIAN INSTITUTE BUILDING.

The attention of Members of the Institute is respectfully called to tho Circular which will bo found in the foregoing extracts from the Ninutes of Council. The present position of the Canadian Iustitute is such as to warrant the Council in taking immediate steps for the crection of a suitable building, in which ample accumuladation for a Museum, Reading Room, nna Library of Reference may be provided. G. W. Allan, Esq., has increased his former valuable gift of a building site, 90 feet by 140 , to one possessing a frontage on Pembroke Street of 154 fect and a depth of 140 fect. This munificent donation wall allow of the construction of a building designed to admit of successive additions, as the means and material of the Society increase. The present number of names of members on the books of the Institute exceeds four hundred, and on the completion of several matters of detail, connected with the amalgamation of the Toronto Athenæum with the Institute, the Library of Reference will contain about fifteen hundred volumes. The progress of the Museum has been necessarily slow, owing to the state of uncertainty in which the Institute has been placed with respect to the necessary accommodation for the Models, Birds, Mincrals, Geological Specimens, Insects, \&c., already accumulated. The condition and prospects of the Institute being thus far extremely favorable, it is to be hoped that members will not allow the present valuable opportunity of giving material assistance to the building fund, to pass by unheeded.

Twenty-nth Mecting of the British Associntion for the Advancement of Sclence.-Glasgow, 1555.

The Annual Geperal Mecting for the present year of tho members of the British Association, opened in the City of Glusgow on the 12th September, and continued until the following Monday (17 th). The Mensers present included about 1200 Gentlemen and 000 Ladies. The Financial condition of the Association is represcnted as very finvourable. The President's address Fas delivered in person by the Duke of Argyll. The next meeting is to be held in Cheltenham.

The following office-bearers were elected for the ensuing ycar: -President, G. R. Daubeny, M. D.; Vice-Prestdents,, The Earl of Ducie, The Bishop of Gloucester, Sir Roderick 1. Murchison, B, Baker, Esq., The Rev. F. Close; Secretaries, Capt. Robertson, R.A., R.

Beamish, lisa., W. Hugall, Esal.; Treasurers, J. Wclester, lisu., J. A. Gardner, lisq.

The folluwing absiracts of gimers read at the different Sections are from the Athenamm.

On the Cunctorm Inserptions of Assyria and Labyloma, by Colonel Livwi.nsox.-Col, Ritwlinson began by sajing le feared tho vastuess, as well as to a grent extent the novelty; of the subject wonld prevent him doing it anything like justice in the very limited time he had at hs disposal. The excuvations which lad been catrict on in Assyria and lbabyloma had been continued through six or seven jears -they had ranged over tracts of country 1,000 mules in extent-the marbles excrvated would be sufficient to lond theee or fomr whips, und the historical information coutained in them would excced ton thousand volumes in clay. Of course, in dealing witio such a suliject he could ouly select a portion of it, -and even of that he could only consmunerate the heads. The part to which he wished to direct their attention kas the Cuneiforni Inscriptions. This phrase merely signified the wedged-shaped form of writing, and was not employed in any particular language or by ono particular nation. The cunciform ystem of letters was a species of picture-writing, invented, not by the semitic inlabitants of Babyion, but by those who preceded them. Hisis writing was, however, reduced by the Semitic race to letters, and Idapted to the articulation of their language. Their mode of writing consisted of several elenents. There was the ideographic, or picturewriting, and the pltonetic, which was eqivalent to the alphabet of their language. Ite hud been fortunately able to obtain amoug the ruins of Ninoveh a tablet which actually eshbited tho sereral developments of this system of writing into a regular alphabet. The cuneifonminsciptions were divided into three branches-Persian, Scythic, nud Assyrinn; -and it was on the third of these that he wished to say a few words. He then proceeded to explain how the decipherment of these inscriptions had been obtained. About twenty years ago lis attention had been directed to a series of inseriptions in cuneiform characters on a rock at Behistan, near Kermaixlah. The tablet was divided into three compartments, giving three different rersions of the same inscription, and on the simplest of these, the Persian, he set to work, and tound by comparing it with the two others that they corresponded, with the exception of two or three groups, from which, on futher mvestugation, he made out-Hystaspes, Darius, and Xerxes. Iy means of these proper names he obtained an insight into the lersinn a!phabet, and by analyzing the names of the ancestors of Darius and Hystaspes, and obtaining a list of the tributary provinces of Persia, he managed to form the alphabet. This was, however, but the first step; the great sbject heing to decipher the Assyrian inscription, and this could only be dono by comparing it with the Persian. The tablet was situated on the face of the rock, 500 feet from the ground, with a precipice above it of 1,200 feet, and, in order to reach it, it was necessary to stand on the top rung of a ladder placed almost perpendicular. Nor was this all, for there was still the Babylonian to be copied, and it was engraved on the overhanging ledge of rock, which there was no means of reaching but by fastening tent-pegs into the rock, langing a rope from one to the other, and, while thas swinging in mad-air, copyng the inscription. An insight into the system of writing being thus obtained, the fortunate discopery of the ruins of Ninevela furnishcd a great mass of documents to which it might be applied. Wherever they had found tumuli, or any appearance of a ruin, trenches were sunk, galleries opened, and in almost every case they cnme upon the remains of inscribed tablets. Whether it was the king who wished to issue a bulletid, or a shopkeeper to make up his accuunts, the same process had to be gone through of stamping it on clny tablets. The decipherment of these inscriptions led to important results in an ethnological point of view, both as indicating the race to which the writers belonged, and affording important information with reference to the habitat of races and their migrations. Among the many points which they were now enabled satisfactorily to settle, he alluded to the connexion between the Turanian and Hamic families, and to the occupation of Western A sia by the Scythic, and not the Semitic race. He also mentioned that from the inscriptions he beliered it would be shown that the Qucen of Sheba came from Idumea. As to the advantages conferred on geography by these discoveries, he would not attempt to give in detall the ramifications of geographical knowledge which had been thus obtained. He would proceed to the most intercsting and important branch of the subject, the historical. An erroneous aupression was at one tume in carculation that the information obtained from the inscriptions was adverse to Scripture. But so much was it the reverse of this, that if they were to draw up a scheme of chronology from the inscriptions, without having seen the statements
of tho Scripturea, they would find it coincide on every important point. The excavations at Chalden furnished them with inscriptions showing the names of kings, their parentage, the gods they worshipped, the temples they built, the cities they founded, nud many other particulars of their reign. He then mentioned some circumstances with reference to the mound at Birs-Nimroud, which he lad recently uncovered, and which he found laid out in the form of seven terraces. These were arranged in tho order in which the Caldeans or Sabeans supposed the planetury spheres were arranged, and each terrace being painted in different colours, in order to represent its respective planet. Another curious circumstance with reference to this excavation was the discovery of dqcuments enclosed in this temple. From the appearance of the place, ho was enabled at once to say in what part they were placed, and on opening the wall at tho place ho indicated, his workmen found two fine cylinders. Ife also mentioned another sinnll ivory cylinder which ho had discovered, and round which were engraved mathematical figures, so small that they could hardly be seen with the nakel eye, and which could not hare been ongraved without the aid of a very strong lens. In concluding, he said that before the lbritish Association net next year, ho hoped to be able to bring before them the decipherment of severul highly important inscriptions.

On the less-known Fossil Floras of Scotland, by Mr. Mugu Mileen. -Scotland lass its four fossil Floras: its Flora of the Old Red Sandstone, its carboniferous Flora, its oolitic Flora, and that Flora of apparently tertiary age, of which His Grace the Duke of Argyll found so interesting a fragment, overfown by the thick basalt beds and trap tuffs of Mull. Of these, the only one adequately known to the geologist is the gorgeous Flora of the coal-measures, probably the richest, in at least individual plants, which the world has yet seen. The others are all but wholly unknown; and the Association may be the more disposed to tolerate the comparative neagreness of the fow bricf remarks which I propose making on two of their number-the Floras of the Old Red Sandstone and the oolite-from the consideration that the meagreness is only too truly representative of the present state of our knowledge regarding them, and that if my descriptions be scanty and inadequate, it is only because the facts are still few. How much of the lost may yet be recovered I know not; but the circumstances that two great floras-remote predecessors of the existing one-that once covered with their continuous mantle of green the dry land of what is now Scotland, should be represented but by a few coniferous fossils, a few cycadaceous fronds, a few ferns and club mosses, must serve to show what mere fragments of the past history of our country we have yet been able to recover from the rocks, and how very much in the work of exploration and discovery still remains for us to do. We stand on the further edge of the great Floras of by-past creations, and have gathered but a few handtuls of faded leaves, a few broken branches, a few decajed cones. The Silurian deposits of our country have not jet furnished us with any unequivocal traces of a terrestrial vegetation. Prof. Nicol, of Aberdeen, on subjecting to the microscope the ashes of a silurian anthracite which occurs in Peebles-shire, detected in it minute tubular fibres, which seem, he says, to indicate a higher class of vegetation than the alge; but thes: may have belonged to a marine vegetation notwithstanding. Associated with the earliest ichthysic remains of the Old Red Sandstonc, Fe find vegetable organisms in such abundance, that they communicate often a fissile character to the stone in which they occur. But, existing as mere carbonaccous markings, their state of keeping is usually so bad, that they tell us little else than that the antiquely-formed fishes of this remote period had swam over sea-bottoms daikened by forests of algm. The immensely developed flagstones of Caithness seem to owe their dark colour to organic matter, mainly of vegetable origin. So strongly bituminous, indeed, are some of the beds of dingier tint, that they flame in the fire like slates steeped in oil. The remains of terrestrial vegetation in this deposite are greatly scantier than those of its marine Flora; but they must be regarded as possessing a peculiar interest, as the oldest of their class in, at least, the British Islands, whose true place in the scale can be satisfactorily established. In the flagstones of Orkney there occurs, though very rarely, a minute vegetable organism, which I have elsewhere described as having much the appearance of one of our smaller ferns, such as the maidenhair spleenwort or dwarf moonwort. But the vegetable organism of the formation, indicative of the highest rank of any yet found in it, is a true wood of the cone-bearing order. I laid open the nodule which contains this specimen, in one of the ichthyolite beds of Cromarty, rather more than eighteen years ago; but, though I described it, in the first edition of a little work on 'The Old Red Sandstone' in 1841, as exhibiting the woody fibre, it was not until 1845 that, with the assistance of the op-
tical lopidary, I sulijected its structure to the test of the microscope. It turned out, as I anticipated, to be the portion of a tree; and on my submitting the prepared specmen to ono of our highest authorities, the late Mr. Willinm Nicol, be at once decided that the "reticulated texture of the transverse section, though somewhat compressed, clearly indicated a coniferous urigin." I may add, that this most nncient of Scuttish liguites presented several pecularities of structure. Liko some of the Araucarimns of the warmer latitudes, it exhibits no lines of yearly growth: its medullary rays are slender, aud comparatively inconspicuuss; and the discs wihich muttle the sides of its sap chambers, when viewed in the lungitudinal section, are exceedingly pinute, and are ranged, so far as can bo julged in their imperfect state of keeping, in the alternate order peculiar to tho Araucarians. On what perished land of the early Paleozoic ages did this venerahly antique tree cast root and flourish, when the extinct genera P'terichithys and Coccosteous were enjoying life by nilliuns in the surrounding seaslong ere the Flora or Fatuna of the conl measures had begun to be? The Caithness flagstones lave furnislied one vegetable organism apparently higher in the scate than those just described, in a wellmarked specimen of Lepidodendron, which exhibits. like the Araucacarian of the Lower Old Red, though less distinctly, the internal structure. It was found about sixteen yems ago in a pavement quarry near Clockbriggs-the last station on the Iberdeen and Furfar rail-way-as the traveller approaches the latter place from the north. Abore this grey flagstone formation lies the Upper Old Red Sandstone, with its peculiar group of ichthyic organisms, none of which seem specifically identical with thuse of cither the Caithness or tho Furfarshire beds; for it is an interesting circumstance, suggestive surely of the vast periods which must have elapsed during its deposition, that tho great Old Red system had its three distinct platforms of organic existence, each wholly different from the othery. Generically and in the group, however, the lipper fisties much more closely resemble the fishes of the Lower, or Caithoess and Cromarty platiorm, than they do those of the Forfarshire and Kincardine one. In the uppermost beds of the Upper Old Red formation in Scotland, which are usually of a pale or light yellow colour, the vegetable remains again becomo strungly carbonaccous, but their state of greservation continues badtoo bad to admit of their determination of cither species or genera; and not until we rise a very little bejond the system do we find the remains of a Flora either rich or well preserved. But very remarkable is the change which at this stage at once occurs. We pass at a single stride from great poverty to great wealth. The suddenness of the change seems suited to remind one of that experienced by the royager when, after traversing for many dags sume wide expanse of ocean, unvaried save by its banks of floating sea-weed, or where, occasionally and at wade intervals, he picks up some leaf-bearing bough, or marks some fragment of drift-weed go floating past, he enters at length the sheltered lagoon of some coral island, and sees all around the deep green of a tropical vegetation descending in tangled luxuriance to the water's edge-tall, erect ferns, and creeping Lycapodaceæ; and the pandanus, with its acrial ruots and its screw-like clusters of narrow leaves; and high over all, tall palms, with their huge pinnate fronds, and their curiously aggregated groups of massive fruit. In this noble Flora of the coal-measures much still remains to be done in Scotland. Our Lower Carboniferous rocks are of immense development; the limestones of Burdie House, with their numerous terrestrial plante, occur many hundred feet beneath our mountain limestones; and our list of vegetable species peculiar to these lower deposits is still very incomplete. Even in those higher carboniferous rocks with which tho many coal workings of the country have rendered us comparatively familiar, there seems to be still a good deal of the new and the unknown to repay the labour of future explorers. It was only last yearthat Mr. Gourlic, of this city, adied to our fossil Flora a new Volkmannia from the coal-field of Carluke; and I detected very recently in a neighbouring locality, though in but an indifferent state of keeping, what seems to be a new and very peculiar fern. There is a Stiginaria, too, on the table, very ornate in its sculpture, of which I have now found three specimens in a quarry of the coal-measures near Portobello, that bas still to be figured and described. In this richlyornamented Stigmaria the characteristic arcola present the ordinary aspect; each, however, forms the centre of a sculptured star, consisting of from eighteen to twenty rays, or rather the centre of a sculptured flower of the Composite order, resembling a garden daisy. The minute petals-if we are to accept the latter comparison-are ranged in three concentric lines, and their form is irregularly lenticular. Esen among the vegetable organisms already partially described and figured, much remains to be accomplished in the way of restoration. The detached
pinno of a fern, or a fer fragments of the stems of Ulodenatron or Sigillaria, givo every inadequate ideas of the plants to which they had belonged in their state of original entirencss.
Eicperimental Obscrvations on an E'lectric Cable, by Mr. Windman Whitsiouss.-After referring to the rapid progress in submarine telegraphy which the last four years have witnessed, Mr. Whitehouse said that he regarded it as an established fact that tho nautical and engineering ditficulties which at first existed had been alrendy overcome, and that the experience gained in submerging the shorter lengths had enabled the projectors to provide for all contingencies affecting the greater. The nuthor then drew the attention of the Section to n serics of experimental observations which ho had recently made upon the Mediterrancan and Nowfoundland cables, before they sailed for their respective destinations. These cables contained nn aggregate of $1,1: 5$ miles of insulated electric wire, -and the experiments were condested eliefly with reference to the problem of the practicability of estiblishing electric communications with Indin, Australia, and America. The results of all the experiments were recorded by a steel stylo upon electro-chemical paper by the action of the current itself, while the paper was at the sane time divided into seconds and fractional parts of a second by the use of a pendulum. This mode of operating admits of great delicacy in the determination of the results, as the seconds can afterwards be divided into hundredths by the use of a "vernier," and the result read off with the same facility as a barometric observation. Enlarged fac-similes of the electricautographs, as the author calls them, were exhibited as diagrams, and the actunl slips of electro-chemical paper were lnid upon the table. The wellknown effects of induction upon the current were aecurately displayed; and contrasted with these were other autographs showing the effect of furcibly discharging the wire by giving it an adequate charge of the opposite clectricity in the mode proposed by the author. No less than cight currents-four positive und four negntive-were in this way transmitted in a single second of time through the same length of wire (1,125 miles) through which a single current required a second and a half to discharge itself spontaneously upon the paper. Having stated the precautions adopted to guard against crror in the observations, the details of the experiments were then concisels given, including those for "velocity," which showed a much higher rate attainnble by the magneto-electric than by the voltaic current. The author then recapitulated the facte, to which he specially invited attention:-First, the inode of testing velocity by the use of a voltaic current divided into two parts (a split current), one of which shall pass through a graduated resistance tube of distilled water, and a few feet only of wire, while the other part shall be sent through the long circuit, both being made to record themselves by adjacent styles upon the same slip of electro-chemical paper. Second, the use of magneto-electric "twin-currents," syachronous in their origin, but wholly distinct in their metallic circuits, for the same purpose, whether they be made to record themselves direct upon the paper, or to actuate relays or receiving instruments which shall give contacts for a local printing battery. Third, the effects of induction, retardation of the current, and charging of the wire, as shown autographically; and contrasted with this-fourth, the rapid and forcible discharging of the wire by the use of an opposite current; and hence-fifth, the use of this as a means of maintaining, or restoring at pleasure, the electric equilibrium of the wire. Suxth, absolute neutralization of currents by too rapid reversal. Serenth, comparison of working speed attainable in a given length of wire by the use of repetitions of similar voltaic currents as contrasted with alternating magneto-electric currents, and which, at the lowest estimate, seemed to be seren or eight to one in favour of the latter. Eighth, proof of the co-existence of several waves of electric force of opposite character in a wire of given length, of which each respectively will arrive at its destination without interference. Ninth, the velocity, or rather amount of retardation, greatly influenced by the energy of the current employed, other conditions remaining the same. Tenth, no adequate adrantages obtained in a 300 -mile length by doubling or trebling the mass of conducting metals. The anthor, in conclusion, stated his conviction that it appeared from these experinents, as well ay from trials which he bud made with an instrumeut of the simplest form, actuated by magneto-electric currents, that the working speed attainable in a submarine wire of 1,125 miles was ample for commercial success. And may we not, he added, fairly conclude also that India, Australin, and America, are accessible by telegraph without the use of wires larger than those commonly employed in submarines cables?

Remarks on the Chronology of the Formations of the Moon, by Prof. Nichol.-Prof Nichol stated that, through the munificence of the

Marquis of Breadalbane, ho had been enabled to bring to bear on the delicate inquiries, whose commencement he intended to explain, a very great if not a fully adequato amount of telescopic power. A speculum of twenty-one inches, originally made by the late Mr. Ramage with the impracticallo focal length of fifly-five feet, had, at the expense of that noble Lord, been re-ground, polished, mounted as an equatoreal, and placed in the Glasgow Observatory, in its best stato only about six weeks ago. Prof. Nichol showed some lunar photographs, which indicated tho great light with which the telescope cndowed its focal images, and entered on other detailsas to its definition. The object of the present paper is the reverse of speculative. It aims to recn!l from mere speculation, to tho road townrds positive inquiry, all ooservers of the lunar surface. To our satellite hitherto those very ideas have been applied, which confused the whole early epochs of our terrestrial geology, the notion, viz., that its surface is a chaos, the result of primary, sudden, short-lived and lawless convulsion. We do not now connect the conception of irregularity with the history of the earth:-it is the triumph of science to havo analyzed that apparent chaos, and discerned order through it all. The mode by which this has been accomplished, it is well known, has been the arrangement of our terrene mountains according to their relation to time: their relative nges determined, the course of our world seemed smooth and harmonious, like the adrance of any other great organization. Ought we not then to attempt to apply n similar mode of classification to the formations in the moon,-hoping to discern there also a course of development, and no confusion of manifestation of irregular convulsion? Prof. Nichol then attempted to point out that there appeared a practical and positive mode by which such classification might be effected. It could not, in so far as he yet had discerned, be accomplished by tracing, as we had done on earth, relations between lunar upheavals and stratifed rocks; but another principle was quite as decisive in the information it gave, viz., the intersection of dislocations. There are clear marks of dislocation in the moon-nay, the surface of our satellite is orerypread with them. These are the rays of light, or rather bright rays, that flow from almost all the great craters as their centres, and are also found where craters do not at present appear. Whatever the substance of this highly reflecting matter, it is evidently no superficial layer or strcam, like lava, but extends downwards n considerable depth into the body of the moon. In short, we lanve no likeness to it on earth, in the sense now spoken of, except our great trap and crystalline dykes. It seemed clear, then, that the intersection of these rays are really intersc !ions of dislocations, from which we might deduce their chronology. Can the intersection, however, be sufficiently seen?-in other words, is the tclescope adequate to determine which of the two intersecting lines has disturbed or cut through the other ? Prof. Nichol maintained the affirmative in many cases, and by aid of diagrams, taken down from direct observation, illustrated and enforced his views.
Note on Solar Refraction, by Prof. Piazzi Smytir-Amongst other interesting and important consequences of the dynamical theory of heat, Prof. W. Thomson having deduced the necessity of a resisting medium, the condensation of this about the sun, and a consequent refraction of the stars seen in that neighbourhood, Prof. Pinzzi Smyth had endeavoured to ascertain by direct astronomical observation whether any such effect was sensible to our best instruments. 0 wing to atmospheric obstructions, only three observations, yielding two results, had been yet obtained; but both these indicated a sensible amount of solar refraction. Should this effect be confirmed by more numerous observations, it must have important bearings on every branch of astronomy; and as the atmosphere at all ordinary observatories presents almost insuperable obstacles, the author pointed out the advantage of stationing a telescope for this purpose on the summit of a high mountain.

Erratum. - The Lithographer of the Map of tae Township of Colchester, which accompanied the conclusion of Major Lachlan's paper in the last number of the Journal, has introduced an error in the direction of one of the Canoe Canals, which we take this opportunity of rectifying. Instead of running straight through Round Marsh and Long Marsh, it should run due north along the borders of Long Marsh as far as the 8th Concession, and then across Ruach's Marsh only, until it approached the River Canard. A draic from Round Marsh into the Canoe Canal will accomplish all that is required with respect to the drainage of Round Marah.

Monthiy Motcorological Ileginter, at tho Provincial Magnetical Obeervatory, Toronto, Canada Wento-Angant, 185n.

 Latitude, 43 deg. 39.4 min . North. Longitude, 79 deg 21. min. West. Elevation above Lake Ontario, 108 fcct.| Barom. at temp. of 32 deg . | | | | | Temp, of the Nir. | | | Mean Temp. + or of the Average | Tension of Vapour. | | | | id | | | Wind. | | | MeanYcl's | $\left\{\begin{array}{l} \text { Rain } \\ \text { in } \\ \text { Inch. } \end{array}\right.$ |
| :---: |
| E. | | | 10 | | 6 | | 10 | | 6 | 2 | 10 | | | 10 | | | | Direct. | | |
| | 6 A.M. | 2 r.s | p. ${ }^{1}$ | Mean. | A.3. | | | | A.s. | x. | P.M. | A. | | | | $6 A$ | | 10 P.M. | | |
| 1 | 20.701 | 20.688 | $29 \cdot 68$ | 29.686 | 68.7 | | | | 0.686 | . 674 | $0 \cdot 60$ | | | | | | EbS | Calm "E 20 N | | |
| 2 | 716 | -719 | 721 | $\cdot 715$ | 67.8 | | 69.871.8 | +4.9 | -556 | -642 | -642 | -627, 85 | | 92 | | NEbN | Ebs | NbEE 13 S | | |
| 8 | . 760 | -701 | -618 | -685 | 67.6 | 82.1 | - | + 78 | 590 | 711 | -600 | -665, 92 | $6{ }^{\circ}$ | 85 | 81 | N ${ }^{\text {a }}$ | S | S W ${ }^{\text {W }} 17$ S | $4 \cdot 74$ | 16 |
| 9 | -619 | . 667 | :505 | $\cdot 603$ | $71 \cdot 4$ | 75.1 | $70 \cdot 472.8$ | + $5 \cdot 3$ | -668 | 738 | -644 | -681., 89 | 87 | 89 | 87 | W b N | S | EbNS 10 E | | 0 |
| 6 | -691 | -52 | | | 63.7 | $73 \cdot 7$ | | | $\cdot 478$ | . 526 | - | - ${ }^{\prime \prime} 88$ | 66 | | - | N NE | EbS | NWbN N 17 E | 6.14 | |
| 6 | -628 | - 664 | -611 | - 575 | $62 \cdot 1$ | 76.2 | 65.768 .8 | +2.0 | $\cdot 416$ | . 600 | - 516 | -4691170 | | 84 | 70 | b W | S b W | N iN 43 W | 6.8 | |
| 7 | ${ }^{6} 598$ | - 618 | -801 | -673 | 66.8 | 72.7 | | -1.4 | -410 | - 585 | ${ }^{-381}$ | -434 91 | | 72 | | N W | $\mathbf{N E}$ | EbN E 32 N | $9 \cdot 4$ | 20 |
| 8 | -748 | . 640 | -204 | $\cdot 501$ | 61.6 | 68.6 | | -1.1 | - 433 | -482 | -616 | -509, 88 | | 96 | 83 | EbE | ${ }_{\text {W }}$ | ESEE 12 N | 7.88 | .095 |
| ${ }^{8}$ | $\cdot 143$ | -16i | - 205 | - 204 | $72 \cdot 0$ | 75.3 | 63.659 | + 31 | -673 | 488 | -456 | -510. 85 | 56 | 80 | | S 1 | W | W iv 2 N | 16.95 | |
| 10 | -41 | $\cdot 491$ | -582 | . 502 | 57.8 | 67.2 | 56 | -5.7 | - 347 | - 364 | . 282 | -320, 74 | 56 | 64 | 6 | W | Wbs | NbW W $\mathbf{W} \mathbf{0 N}$ | 8.21 | |
| 11 | -639 | -66 | -650 | -658 | 54 | ${ }^{68} \mathrm{C}_{1}$ | 62.1 | -3.7 | $\cdot 311$ | -444 | -463 | $\cdot 432_{i 1} 7$ | | 85 | 77 | N E | ESE | EbN E 11 S | 6.79 | |
| 12 | -688 | -68 | - | | 64 | $72 \cdot 1$ | | | $\cdot{ }^{-524}$ | $\cdot 737$ | - 275 | $\overrightarrow{-408}^{1 .} 8$ | ${ }^{97}$ | | | AEbE | Sb W | W .'V11N | $6 \cdot 3$ | 10 |
| 13 | -775 | -7\% | -802 | -786 | $62 \cdot 5$ | 76.1 | | -0.1 | - 288 | $\cdot 524$ | -275 | ${ }^{-408} 87$ | 60 | 63 | | | N W | NWbN N40w | $6 \cdot 6$ | |
| 14 | -837 | -800 | - 762 | . 793 | 61.8 | | | - 1.8 | -284 | -514 | -389 | -395: 63 | 72 | 73 | | | S | N HN 9 W | $5 \cdot 27$ | |
| 10 | . 716 | -492 | -447 | $\cdot 633$ | 54.2 | 75 | | +1.6 | -368 | -503 | -673 | -517 84 | | 85 | 781 | N b E | Sbe | S W is 17 E | $5 \cdot 13$ | -205 |
| 16 | -366 | -356 | $\cdot 428$ | $\cdot 377$ | 65 | 80 | , $63 \cdot 563 \cdot 1$ | +3.1 | - 569 | - 594 | -354 | -497 93 | 69 | 62 | 71 | SW bS | SWbw | N W \|'W 17 N | 9.06 | nap. |
| 17 | -424 | - 502 | $\cdot 714$ | - 560 | $50 \cdot 4$ | 64.8 | | - 9.0 | -264 | - 218 | -289 | -260, 64 | 3 it | 79 | 69 | W b N | W | W II W | $15 \cdot 4$ | 0.035 |
| 18 | . 808 | -876 | -92i | . 878 | 47.0 | 62.6 | $50 \cdot 653$ | -11.9 | -26i | - 271 | -264 | -263 ${ }^{84}$ | $4!$ | 72 | | W N W | NWb | | $8 \cdot 35$ | |
| 19 | 30.019 | -934 | | | 45.6 | 62 | - - | | 231 | - 60 | - | - 7 | 6ú | | | N N M | EbS | E IE 42 S | $4 \cdot 45$ | |
| 20 | 29.915 | -841 | -797 | . 816 | 6 | $72 \cdot 5$ | | -8.8 | -316 | -488 | -447 | -409 ${ }^{\text {It }}$ | 63 | 87 | 76_{1} | NbE | SSE | SSWIS6E | 4.9 | |
| 21 | 777 | $\cdot 707$ | -711 | $\cdot 730$ | 55 | 17. | 62.160.5 | + 1.0 | $\cdot 410$ | - 551 | -496 | -4931 95 | 50 | 91 | 79 | N E | S | S S W'S 13 W | $6 \cdot 9$ | |
| 22 | $\cdot 714$ | . 648 | . 577 | -641 | 60.1 | -1 | 0 | + | -464 | - 534 | - 517 | - 51314 | :1 | 89 | 84 | Calm. | EbS | EbN:E8S | $3 \cdot 7$ | |
| 23 | - 508 | - 460 | . 608 | 491 | 62.6 | 71.9 | | -0.3 | - 513 | -605 | - 384 | -5071, 94 | 80 | 72 | 84 | N ${ }^{\text {W }} \mathrm{F}$ | S W | N NW 44 W | 5 | |
| 24 | $\cdot 505$ | -5605 | -611 | - 581 | $54 \cdot 6$ | 73.9 | $61 \cdot 464 \cdot 6$ | -04 | $\cdot 310$ | - 436 | -459 | ${ }^{4} 90.74$ | 52 | $8{ }^{\text {c }}$ | 72 | W b | S | SblWS 10 W | $5 \cdot$ | |
| 25 | $\cdot 701$ | - 676 | . 623 | $\cdot 665$ | 68.9 | 72.7 | $63 \cdot 265 \cdot 6$ | $+0.8$ | -425 | 499 | -520 | $\cdot 45718$ | 64 | 94 | 8! | S S W | E b S | Caim, ell | $3 \cdot 61$ | |
| 20 | -610 | -739 | | - | 61 | 66 | | | $\cdot 483$ | -455 | - | - 91 | 71 | | | Calm. | NNW | N b EN 14 N | 9.94 | |
| 9 | $\cdot 942$ | 8875 | -833 | $\cdot 875$ | $48 \cdot 5$ | 59.7 | $48 \cdot 85$ | -11.4 | - 215 | -269 | $\cdot 273$ | $\cdot 256_{11} 64$ | 54 | 80 | ${ }^{60}{ }^{\text {ci }}$ | NbE | ESE | NbWE42N | 7.88 | |
| 28 | - 810 | - 776 | -687 | -758 | 46.7 | $65 \cdot 3$ | $4{ }^{\circ}$ | - 8.6 | $\cdot 235$ | - 318 | - 302 | 290174 | 62 | 88 | 69 | W | SbE | SES 42 E | $4 \cdot 6:$ | |
| 29 | -604 | -446 | -603 | - 566 | 45.9 | $68 \cdot 2$ | $60 \cdot 760 \cdot 9$ | - 3.0 | $\cdot 276$ | - 523 | - 378 | ${ }^{-390_{i}}{ }^{30}$ | 48 | 72 | 76 | W | SSW | NW UESS | $1 \cdot 6$ | Inap. |
| 30 | $\cdot 856$ | -899 | - 037 | $\cdot 897$ | $50 \cdot 4$ | 62.9 | $50 \cdot 654.2$ | - 9.4 | $\cdot 291$ | | . 271 | -274.\| 81 | 53 | 75 | | $\begin{array}{lll} N & b & W \end{array}$ | Sbe | N ${ }^{\prime}{ }^{\text {c }}$ W | 7.54 | |
| 31 | . 970 | ،941 | $\cdot 752$ | -865 | 47.9 | $61 \cdot 1$ | $55 \cdot 3$ 56.1 | -7.2 | -267 | $\cdot 361$ | $\cdot 396$ | -352: 81 | | 03 | 79 | NEbN | ESE | EbN:E12 | $4 \cdot 64$ | Inap. |
| | 29.67 | 64 | 29.650 | $9 \cdot 6$ | 58.2 | | , $61 \cdot 0 \cdot 6$ | -1. | $0 \cdot 40$ | $10 \cdot 480$ | 0.436 | $15 \cdot 4$ | -6 | $\overline{81}$ | -74 | $5 \cdot 22$ | 10^{20} | $5 \cdot 06, \overline{\mathrm{~V}} 2 \mathrm{~N}$ | 6.97 | $\cdot \cdot \underline{56}$ |

Highest Barometer...... 30.019, at 6 a.m. on 19th $\}$ Monthly range: Lowest Barometer....... 29.130, at 8 a.m. on 9th 0.883 inches. Highest registered temperature $83^{\circ} \cdot 5$, at p.m., 3rd $\}^{\text {Monthly range : }}$ iowest registered temperature $40^{\circ} \cdot 0$, at a.m. on 19th $\} \quad 43^{\circ} \cdot 5$.
Mean Masimum Thermometer \qquad $74^{\circ} \cdot 61$ Mean daily range: Mean Minimum Thermometer \qquad $\left.54^{\circ} \cdot 09\right\}$ 20.52

Greatest daily rango.......... $8^{\circ} \cdot 2$, from p.m. of 16 th to a.m. of 17 th. Least daily range $8^{\circ} 8$, from p.m. of 8 th, to $\mathfrak{a} . \mathrm{m}$. of 9 th. Warmest day....... 3rd. Mean temperature......740.67 Difference, Coldest day......... 27th. Mean temperaturc......520.93\}210.74.
Greatest intensity of Solar Radiation, $98^{\circ} .4 \mathrm{on}$ p.m. of 4 th $\}$ Range,
Lowest point of Terrestrial Radiation, $30^{\circ} .2 \mathrm{on} \mathrm{a} . \mathrm{m}$. of 10 th $\} \quad 68^{\circ} \mathrm{O}$.
Aurora observed on 5 nights: viz. on 4th, 14th, 17th, 18th and 23rd.
Possible to see Aurora on 24 nights. Impossible on 7 nights.
Raining on 7 days. Raining $8 \cdot 1$ hour3; depth, $1 \cdot 455$ inches.
Mean of Cloudiness, 0.44.
Thunder storms occurred on the 4th, 16th, and 31st.
Sheet lightning observed on the 8th and 15th.
In observing for the periodic appearance of Meteors considerable
numbers were noted on the nights of the 11th and 13th.

Sum of the Atmospheric Current, in miles, resolved into the four Cardinal directions.

North.	West.	South.	East.
1795.01	1899.31	144332	1208.52

Mean direction of Wind, $\mathrm{W} 27^{\circ} \mathrm{N}$. Mean velocity 6.97 miles per hour. Maximum velocity, 32.6 miles per hour, from 1 to 2 p.m. on 17 th. Most windy day, the 9 th; mean velocity, 16.95 miles per hour. Least windy day, the 22nd; mean velocity, 8.71
Most windy hour, 1 p.m.; Mean velocity, 10.47 miles per hour.
Least windy hour, 1 a.m.; Mean velocity, 4.78 " "

Mean diurnal variation, $5 \cdot 69$ miles.

16 th . 5.30 to $8.20 \mathrm{a} . \mathrm{m}$., violent Thunderstorm, the quantity of rain which fell in this storm was 0.295 inch. on the surface, and the velo-
city of the wind, from 6.12 to $6.18 \mathrm{a} . \mathrm{m}$. attained the rate of 75.0 miles per hour.

17th. 6.45 to $7.05 \mathrm{p} . \mathrm{m}$. very perfectly defined double Rainbore, beautifully exhibiting the prismatic colours.
26th. $7 \cdot 54$ p.m. a Metcor about three times as large as Jupiter observed in S.W., lenving a train of light behind it, which lasted fully a minute after the disappearance of the meteor.

The Mean Temperature of this month has been $2^{0} .1$ below the average, and the quantity of Rain has been less than the Mean by 1.264 inch. on the surface, whilst the velocity of the Wind hus been in excess of the average by 2.39 miles per hour. The month may therefore be characterized as cold, clear, dry and windy.

Comparative Table for August.

芝							"へ1		
		$\begin{aligned} & \text { Max. } \\ & \text { ols'rd } \end{aligned}$		Range	Dss.	In	M'n Diree	$\left\lvert\, \begin{gathered} \text { Mean } \\ \begin{array}{c} \text { elocity } \\ \text { in 3Hle } \end{array} \end{gathered}\right.$	
1840	64.7-1.5	$80 \cdot 1$	47.4	32.7	12	2.905			
1841	64.4-1.8	$83 \cdot 5$	46.7	368	-	$6 \cdot 170$		$0 \cdot 19$	Ibs.
1842	65.7-0.5	80.7	$45 \cdot 3$	$35 \cdot 4$	6	$2 \cdot 500$		0.30	tbs.
1843	$66.4+0 \cdot 2$	85.5	44-4	$41 \cdot 1$	4	4.850		$0 \cdot 12$	tbs
1844	64.3,-1.9	82.5	44.3	38.2	17	impt.	...	0.16	lbs.
1845	$67 \cdot 9+1 \cdot 7$	82.5	44-4	$38 \cdot 1$	9	1.723	...	0.13	tbs.
1846	$68 \cdot 4+2 \cdot 2$	86.3	$50 \cdot 4$	35.0	9	1.770		0.17	lbs
1847	$65.1-1 \cdot 1$	$83 \cdot 1$	44.9	38.2	10	$2 \cdot 140$		$0 \cdot 19$	ibs
1848	$69 \cdot 2+3 \cdot 0$	87.5	$49 \cdot 3$	$38 \cdot 2$	8	0.855	S 20 E	$4 \cdot 55$	Miles
1849	$66.3+0 \cdot 1$	79.5	$61 \cdot 4$	28.	10	4.970	W 19 N	3.76	Miles
1850	$66.8+0 \cdot 6$	84.2	43.0	41.	13	$4 \cdot 365$	N 15 E	$4 \cdot 46$	Niles.
1851	63.6-2.6	79.8	43.6	30.2	10	1.360	W 27 N	4.62	Miles.
1852	$65.9-0.3$	81.2	46.7	34.5		$2 \cdot 695$	E 20 N	3.30	Miles.
1853	$68 \cdot 6{ }^{\prime}+2 \cdot 4$	91.6	$47 \cdot 6$	44.0	11	2.575	S 29 E	4.23	Miles.
1854	$68 \cdot 0 \cdot+1 \cdot 8$	98.1	47.0	$51 \cdot 1$		$0 \cdot 455$	W 28 N	4.74	Miles.
1855	$64 \cdot 1$-2.1	82.1	$44 \cdot 9$	$37 \cdot 2$	7	$1 \cdot 455$	W 27 N	6.97	Miles.
								0.19	
M'n.	66.21	84		3	9.3	32.719		$4 \cdot 58$	Miles.

Inatro and re	in．cor aluced Jinhr．	$\begin{aligned} & \text { to } 3: 00 \\ & \end{aligned}$	＇Temp of the dir．			Tension of Tiapor：			Humidity of Air．			Dircetion of l ： mml ．			Velocity in Niles per Hour．		$\begin{array}{l\|l} \text { Miles } & \text { nain } \\ \text { nur. } & \end{array}$	Weather，de． A clondy sky is represented by 10； x clomdless sky ly 0.		
c		$\begin{aligned} & 10 \\ & 1 \cdot 13 . \end{aligned}$			$1 \cdot . \mathrm{st}$ ．	is． 4.3	21.3	． M ．	in．		10	（\％）．．s．				1．，．2．	．Inches	©＾．．м．	2 р．м．	10 m.
$120.97 \cdot 1$	2.826	29．95！	68.9	80.0	68．6	． 106	0,17	－5．52	－2	\cdots	． 81	E	N 1：b $3:$	1：S ：	0.00		0.95	Cle	Cla	Cum．Sir． 4.
$2: 0.010$	． 8111	． 900	（ibie	93.4	74.0	bis	607	6：18	89	41	78	N F, bl		S W	$2 \cdot 19$	0.37	$0 \cdot 62$ ．．．			Str． 2.
3 20．070	． 020	．817，	73.9	80.4	73.9	692	731	693	86	81%	85	\＄W	S W	S W	$3 \cdot 17$	$3 \cdot 6$	4.28	Do．		Cum．Str． 2.
4.680	． 112	． 868	T2．0	8．2．1	68.0	670	69\％	496	86	$6!$	7	IV	iv：	N ${ }^{\text {c }}$	0.02	$2 \cdot 3 ;$	10.08	Cir．Cum．Str．	Cum．Str． 2.	Do． 3.
6.781	． 700	． 702	60.0	$8: 3$	62.8	$31:$	727	445	81	168	79	NE	Wir b	SWbs	$0 \cdot 16$	$0 \cdot 53$	Innp．	Clent．［10．	Do． 4.	Clear，ft．aurora．
G ． 782	． 706	． 816	50.2	78.0	68.7	372	473	338	84	60	71	Pbl：	If S W	NWいい	$2 \cdot 67$	1.34	6.63		Do． 2.	Do．
．850	．82．4	． 016	61.3	68.0	62． 1	3415	646	340	81	91	87	Nibls	NEUE：	NEbs	luap．	lnap．	Conlm 0．436	Cirr．Str． 8.	liain．	Do．
8830.000	． 024	． 690	01.2	c9． 9	60.1	301	461	441	93	6.5	84	W S W	SbE：	SbE	（map．	0.42	4.02	Clear．	Cir．Cum．Str． 4.	St！． 10.
9． 20.301	． 109	．201	62.1	6tio	66．0	546	615	080	9	9.	90	S	Wb N	Wbs	9． 62	3.61	4 －50） 0.630	Rnin．	Rain with Thun．	Do． 8.
10.360	． 405	． 700	63.0	65.0	52.2	346	449	319	70	73	87	W	WN W	NWbur	16.63	14.18	10.31	Cl	Cir．Cum．Str． 6.	Clear，ft．aurora．
11.806	． 009	． 062	C0．0	80.4	61.1	421	532	456	80	53	84	UNW	S	S 5	0.38	0.21	$0 \cdot 11$		Cum．Str． 2.	str．$\frac{1}{\text { d }}$ do．do．
12.066	． 007	． 854	64.7	81.1	68.8	176	670	613	73	64	89	（1）	S b E	S ：	luap．	$2 \cdot 20$	$2 \cdot 06$［nnpp．	Cir．Str． 4.	Do． 6.	Str． 10.
13.844	． 812	． 004	66.1	70.4	64.4	c： 1	628	476	09	61	39	N w b w	\％	W	$2 \cdot 00$	$3 \cdot 93$	5.15 0．876	Cum．Str． 4.	Clea	Do． 8.
1430．001	30.012	30．023	52.2	76.4	65.9	33.	6188	363	89	61	79	W \％W	WbN	if bis	Inap．	$8 \cdot 37$	Calm	Clear．		Clenr．
16.20 .940	29.733	29.051	40.3	82.1	67.4	292	668	026	93	53	98	WbN	Sbl	NWbu	Calm	$4 \cdot 30$	$2 \cdot 18$ 0．233	Do	Cir．Cum．Str． 4.	Rain
16.	． 462	． 62.4	70.1	83.1	73.0	628	787	692	86	71	86	S S W	WS W	SWbw	0.93	5.00	4.030 .850	Str． 4.	Cum．Str． 4 ，thu．	Uo．
17 ． 401	． 480	． 6906	65.4	7．4．3	60.0	605	481	31：	89	58	30	IV， s	S W	V	$\underline{9} 01$	7.60	$13.50{ }^{1.15050}$	Cirr Str	Do． 2.	Cir．Str．4，ft．A． 33.
18.808	． 93	30.031	62.7	64．0	60.6	304	363	326	76	61	87	W	V1	W	11.23	11：21	（6．14）inapp．	Cirr． 2.	Do． 4.	clear
1030.121	30.090	30.123	43.2	71.6	\＄5．6	279	458	372	92	${ }^{611}$	84	W	SW	W：W	lunp．	$3 \cdot 62$	$2.31{ }^{1}$ ．．．	Clear，Frost．	Cir． 2.	
20.30 .013	30．122	30.007	63.1	76.6	63.0	302	641	491	88	61	88	S Ubs	W S W	S W b 11		$4 \cdot 3$	$3 \cdot 50$	Cum．Str． 4	Clear	Cum．Str． 4.
21.20 .012	－9．860	29.881	${ }^{63.6}$	83.2	70.6	616	715	Gf8	89	64	78	${ }^{1} \mathrm{~S}$ W ${ }^{\text {W }}$	Wsw	S W	0.83	T－50	8.60	clear．	Do．	Do． 4.
22.038	． 850	． 8.17	67.6	73.2	${ }^{64.6}$	603	692	56.5	89	71	94	S W	Nwbw	Niz	Calm	$1 \cdot 68$	$3 \cdot 68$	Cum Stre 9.	Cir．Cum．Sir． 0 ．	Do． 10.
23.6018	． 688	． 623	6． 4.1	81.7	68.6	670	304	646	$9{ }^{96}$	68	94	NE	WS W	wbs	0.75	luap．	0.21	Fog．	Cuni．Str． 6.	Do．4，Aur． 1 b．
24.67%	． 680	． 800	c6．1	82.2	54.0	626	${ }^{660}$	373	82	6	87	Wbs	SS W	Niw	tuap．	$1 \cdot 35$	$5 \cdot 39$	Clear	Do． 6.	Clear．
$25) .083$	． 907	． 916	${ }^{6} 0.6$	80.5	63.4	467	617	488	89	61	84	ES S	F b ${ }_{\text {c }}$	1： 10	$2 \cdot 12$	2.01	$111, \ldots$	Do．	plear．	Cir．Str． 4.
20.5014	． 815	${ }^{33} .090$	70.1	75.2	51.5	541	623	274	74	61	71	SSW	W N W		4.00	13.90	$8.31 \mid 0.173$	Do．	Cum．Str．A，thu．	Lright Cum． 2.
2730.193	30.089	30.048	10.6	63.4	43.5	297	3156	272	85	50	90	N NE	ENE	位	4.00	$3 \cdot 10$	Calm	Clear，Frost．	Clear．	Clear．
28.30 .020	20.033	28.01 G	316.0	73.4	66.0	112	489	385	83	61	84	Sbe	（1）	S b W	Calm	0．2．5	$0 \cdot 19$	Do．		
20.20 .723	． 62.4	． 661	64.6	70.0	61.0	373	668	511	87	78	94	S b W	Wbs	NW ${ }^{1}$	Calm	7.74	$9 \cdot 40$	Do．	Cir．Str． 7.	lain．
30.054	． 060	30．04！	47.0	57.1	40.1	2.51	249	$2 \cdot 11$	7.4	58	88		Nwbw	NWbll	6．29	12.81	9.12 0.170	Uo．	Cir．Cum． 4.	Clear．
$31 / 30.109$	30．083	30.067	30.4	BJ．：3	62．6	234	361	3.3	01	68	87	Wbil	If i S	S W	Calm	0.84	0.78 0．142	Do．	Cir．Cum．Str． 1.	Rain．

	（ Ilighest，the 31st dny．．．30．10． 3
Baromeler ．．．．	Lovest，the 9th iny ．．． 29.198
	Monthly Menn ．．． 20.862
	14 Jange ．．． $1 \cdot 00$.
	（Ifighest，the Edl lay ．．． 970.0
	J，owest，the 31st day．．． $3 \mathrm{Ba}^{00.2}$
Thermomoter	Monthly Mean ．．．64． 6.3 ！
	＂linnge．． 64.
	Mican Ifumidity．．－73
Createst Intensity of the Sunis linys．．．1320． 8	
Lumest l＇oint of	of＇＇errestrinl llaliation．．． $8 .$.
Amount of Ei	poration，：8 \＆0 inclecy．

[^0]: Transactions of the Royal Socicty of Edinburgh, Vol. XXI., Part II.

[^1]: - During the interval between the Sosslons of the Insitute, gentlemen desirous of becoming members may be provistonally elected by the Counch, when duly proposed. and their election conirmed at the first ordinary meeting of tho Instituto in the on. sulng Seasion. The formal election of members can onls take plase at an ordinary or genoral meoting, f the Institute.

