THE GOOD CANADIAN:

OR,
 HOÜSEHOLD PHYSICIAN.

Happy the man who by Nature's laws, through knom effects can trace the cause.

ANATOMY OF THE EAR.
The meatus exturnus is detached from the bone at ${ }^{6}$; the oblique direction of its internal end shown at $d_{3} e$; the membrana tympani (or drum of the ear) stretched on its bony ring and bulging inwards; f, g, h, the malleus; f, the handle or process attached to the membrana tympani; g, the long process; h, the head; i, i, the incus; i, the short leg or process; π, the long process; m, the stapes; ∇, A, H, the curved labyrinth; n, p, the cochlea; n, its beginning ; p, its termination; this is followed by the vestibule; ∇, the bony case of the an-
terior, or smaller of the semicircular canals; H , the posterior, or largest semiciroular canal; A, the outer, or smallest canal.

Hearing is simple in its arrangement, and beantifully adapted to the purposes of life, and contributes remarkably to some of our most exquisite and refined enjoyments. The organ of hearing consists of a nerre, gifted with peculiar qualities, upon the surface of a delicate membrane; there is also connected with this a piece of cartilage, in the form of a funncl, leading to the internal parts. The bottom of this tubular cartilage is truncated obliquely, and its aperture closed by a firm membrane stretched across it, which separates this external part of the ear from the middle portion of the organ. Beyond this membrane we meet with a small cavity hollowed out in bone, which is termed the barrel of the tympanam. There are several openings into it, but there is one most important to us here: it is the inward aperture of a tube, the only extremity of whick opens at the hinder part of the nose, behind and above the palate, through which the air is admitted with an equality of force to the pressure of the atmosphere on the opposite side of the membrane. Across the cavity there is extended a series of small bones, the exterior of which is attached to the membrane we have just mentioned. The most internal of them (four in number) is firmly comnected with another membrane, which together shuts up the entrance to a deeper carity called the labyrinth. This last hollow-excavated as it were in the solid bone-consists of a middle portion, irregular in appearance, from which different channels proceed in various directions, and finally return, with the exception of one only, to the same chamber. All taese passages are lined by a membrane on which the extremity of the auditory nerve is expanded in different shapes; from these it is collected into one trunk, and goes on to a particular part of the brain, thus compliting the communication between the external agent and the sensorium. The four small bones of the tympanum which help the hearing are as follows: First, the malleus or hammer; the upper part of its round head rests upon the concavity of the tympanum. This bone has several muscles, which move it in different directions and cause it to stretch or brace the membrana tympani when we wish to hear with accuracy. Counected
with the malleus is another small bone called the incus, or anvil, which is connected with another called the stapes, or stirrup, (from its shape). These two bones are connected by a small oval shaped bone, ealled os-orbiculare, placed between them; the whole forming a chain of bones which are the smallest in the human body. The stapes or stirrup has its end of an oval form, which fits a small hole called funestra ovalis, in the labyrinth of the ear. There are many anatomical parts of the car not likely to interest the general reader, which I shall omit. There is, however, one part which shoald be cescribed, namely: the Eustachian tube, so called from Sustachius, an anatomist who is said to have first described it. This tube opens by a wide elliptical aperture iuto the tympanum behind the membrane, the other end of which gradually grows wider, opensinto the cavity of the mouth, by this canal the inhaled air enters the tympanum to be changed and renewed. It likewise serves some important pnrposes of hearing, for if a watch be placed in the month and the ears stopped, its ti king may be distinctly heard; also persons partially deaf can hear better by a piece of wire being placed between the speaker and the hearer, with one end between the teeth of each person; the vibration of the sound is carried along the wire into the mouth, and so helpeth the hearing by the Custachian tube. Also by placing a piece of wood or wire, with one end upon a musical instrument and the opposite end between the teeth whilst it is being played, it may be sometimes heard by people who are totally deaf to outward somits. Much might be said of the musles, nerves, and cartilages of the car, which probably I may mention another time. I shall now mention some simples and their curative effects on the cars.

Syringing the ears in the morning with a warm solution of soap and water, is very scrvicable in all cases of deafuess.

For deafness, distilled waters of Shepherd's purse, plantain, and marjoram, the same quantity. Mix, and drop a few drops into the ears apon going to bed, or a strong decoction of the same herbs (continued with) will have the same effect.

The juice of the herb Agrimony aropped in the ears, helpeth impostumes and fouluess therein.

The juice or distilled water of wood betony. dropped in the ears, cureth running sores in them and easeth pains in them.

The juice of cleavers will also ease pains in them.
The juice of figs will sometimes procure hearing in cases of slight deafness.
The juice pressed from the green leaves of knot grass, will cleanse ears that are foul and have running matter therein.

A piece of baked onion is an admirable remedy for pains in the ears, by placing a piece in them.

The oil of peach or juice of peach leaves, will remove pain in the ears.

The distilled water of walnut wonderfully helpeth deafness.
Those who have been born deaf, must of necessity he dumb also; for as they know not what sound is, they cannot copy it.

ROOTS AND THEIR PROPERTIES.

Parsnip root is exceeding good and wholesome, though rather windy. It fatteneth the body-If frequently used, it is servicable to the stomach, and to provoke urine.

Parsley roots, if boiled and caten as parsnips, greatly provok eth urine, and openeth the body also, and is very useful to expel wind in aged persons. It openeth the obstructions of the liver and spleen, and helpeth to expel the dropsy and jaundice by urine.

Caution! Mistakes hath been made by persons taking the herbage of hemlock for parsley, or the root instead of parsnip, (as they bear a great resemblance to each other), causing phrenzy and the stupefaction of the senses. I mention this that persons might be careful.

If such accident should take place, a good draught of strong vinegar would be a present remedy.

Carraway root is a better food than the parsnip, aud is pleasant and comfortable to the stomach, helping digestion; and if
eaten as parsnip they strengthen the stomach of aged persons exceedingly, and no need to make a whole meal of them neither. They are fit to be planted in any man's garden ; they are a most admirable remedy for those who are troubled with wind.

Carrot root-garden carrot-is said to break wind, but experience teacheth that it breedeth wind first, and we must thank Nature for expelling it, not they. Wild carrots doth expel wind, provoketh urine, helpeth to expel and break the stoney gravel; it helpeth the cholic and obstructions of the kidneys.

Turnip roots are comforting to the stomach and cooling, digesting easily, and may be reckoned a wholesome kind of food. A syrup for coughs may be made of them. See page 14.

Horse radish-the distilled water thereof-mired with honey and:small quantity taken, helpeth sciatica, jointache, and the hard swellings of the liver aud spleen. The root bruised and applied outwardly to the place affected, will greatly help.

The garden radish is eaten as a salad in summer time, but if too much used, tendeth to corrupt the blood; yet, for such as are troubled with the gravel, or stone, or stoppage of urine, they are good physic. They should be made into a syrup for the purpose, as follows: Slice the radishes thin and place them in a deep stone jar, with honey spread upon the slices; let them stand for about ten hours and then strain off for use.

The later large radish has a better effect on the blood, and more suitable toward the fall of the year in cleansing and opening obstructions of the inward parts.

Beet roots are of a cleausing, digesting quality, (the white beet more so than the red;) they are good for the headache and swimming therein, and complaints of the brain; it helpeth burning if used without oil; they loosen the belly; the juice of them received into the nostrils occasion sneczing. If gently boiled and eaten with vinegar, they procure an appetite, and suppress choler in the stomach. The root boiled in vinegar and water, and the head bathed therewith, healeth the running sores and cleanseth away dandruff, and scurf, and dry soabs, and rendereth some heip to baldness and shedding of hair.

Hartichokes, or Artichokes, if used much, purgeth by urine; but if prudently used with other food, tendeth to strengthen the body much, and are well adapted for use in some peculiar cases.

Onions are flatulent or windy, yet they do case the bowels. The juice of onions is courted good for scalds or burns; and used with vinegar, taketh away all llemishes, spots and marks in the skin; and dropped in the ears, easeth the pain and noise therein. If onions. are beaten together with figs, they help to ripen and cause suppuration in imposthumes. Onions, if bruised and mixed with salt ar a honey, will destroy warts. Onions steeped in water all night, and the water taken from them in the morning and given to children fasting, will destroy worms in them. The juice of onions received into the nostrils, purgeth the head; yet the too frequentiy using of them canseth the headache.

Leeks participate of nearly the same quality as the onions. Being boiled and applied warm, they help the piles.

Potatoes are windy in general, but according to their kinds; also their effects are different in persons, which their own experence teacheth them, therefore, as food, little need be said. Potatoes caten raw are good for the scurvy; also to make a decoction of the peelings and wash the surface therewith, will remove scurvy; also spots and freckles in the face, \&c.

Garlic. The same may be said of this as of ouions; but in addition, garlic resisteth putrefaction. It is antidotal against the effects of wolfbane, henbane, and hemlock, or other poisonous herbs. It is exceeding good for jaundice, cramps, convulsions, and other cold discases. Caution! Melancholic persous should be very carefuì in using it, for its heat is vehement, and tendeth to confound the idea with strange visions and fancies, conveys ill vapours to the brain, and in choleric cases addeth fuel to firc.

Ginger is warming to the joints applied outwardly, and of a healing, drying quality, taken inwardly, warming the bowels and stomach in cold complains. If used with some carraway seeds
and a little anisced, it disperseth the wind comfortably. I consider ginger should be usel in sauces for winter more than it is.

Having mentioned some of the most common and well known root: of domestic use, and their principal effects, I shall next collect a number of useful 3 Iedicinal roots that are well known and treat upon their principal effects in the next Magazine.

THE VOICE OF NATURE.

In Nature the simplest remedics are found to produce the most salutary effects; and in earlier times when the art of Med icine was less obscured, and practised more from motives of benevolence, the world was less afficted with disease, and the period of human life less contractel. 'Jhe laboratory of nature, were it but consulted, furnishoth ample remedies for every carable disorder incident to mankind; for notwithstanding the parade oir compound medicines, the art of healing consists not so much in the preparation, as in the due application of the remedy,

Hence it happens that persons without education or ability, by the help of a simple herb gathered in its full strength and virtue, will sometimes perform very extraordinary cures in cases where the regular bred physician is absolutely at a loss how to treat them.
I would not here be understood to cast any unworthy reffections upon those exalted characters, who hare made physic and the alleviation fof human infirmity the principal study of their lives. The many invaluable discoveries added to the pharma copœia, both from the vegetable and mincral worids, are strong arguments of the necessity of regular practice, and of professional education in forming the physician; but, were these gentlemen to reguiate their prescriptions according to uature and the patient's coustitution, and depend on herbs, dec., that is the regetable kinglom, only, for internal use, rather than follow a systematical list of prepared medicines and their appropriations, 'I am persuaded more immediate and lasting relief wond
by in most cases afforded the sick and languishing patient. Too often doctors are so intent upon dosing the patient that they forget to instruct the patient concerning diet and habits, which is of the most inportance.

It is not, however, the humane and liberal professors of physic whose practice deserves censure, but that mercenary tribe of catch dollar pretenders to physic, who pervade the country, and, like a swarm of locusts from the east, prey upon the vitals of mankind, these creatures in the shape of men with hearts callous to every sentiment of compassion, have only fees in view, or the sale of some mock preparation said to cure all kind of diseases. Governed by this sordid principle they sport with life, unmoved amidst the bitter anguish and piercing groans of the tortured patients, whom, when too far gone for human aid to restore, they abandon to despair and death. To prevent the growth of this imposing traffic, it requires that the practice of physic, instead of being clothed in a mystic garb, should be put upon a level with the plainest understanding, and the choice and quality of our medicines be rendered as obvious and familiar as our food. Instinct in the brute species furnishes this discrimination in the most ample and surprising manner; and in the primitive ages of the world, when men were blessed with length of days and were rich in years, it was iheir custom to consult individually their own complaint and their own cure The knowledge of which lies open to the wayfaring man, it grows in every field and meets us in all our paths; and was mercifully given to alleviate the pangs of disease, to irradicate the pestilental seeds of infection-to invigorate the constitution, and strengthen nature-eventually reducing the perils to which we are exposed and making rosy health the companion of onr lives.

> Nature hath her laws of action Wisely planned, infallible, Teaching by a knowledge of them, All diseases curable.

She declares a mild prevention
To be better than a cure,
Select your food with that intention, And your hoalthiness is sure.-T. B. H.

MISCELLANEOUS RECEIFTS FOR GENERAL USE.
A Cepralic Mean.-Take Valerian root, two ounces; rosemary or sage, three ounces; mustard seed, six ounces; Virginia snake root, two ounces; place them in a bag, then boil $1 \frac{1}{2} \mathrm{lbs}$. of honey in ten gallons of water, skim off the top and put in the bag of herbs and boil gently together for a whole day, then it is fit for use.

The above Mead is good against Epilepsies, Apoplexies, Palsies, and all diseases of that kind, it is also of use in almost all neivous complaints, especially such as arise from too great moisture and cold.

A Comaron Decoction against gripes, and cramps, and such diseases as are caused by heat of urine, also to be used for lotions and emollient clysters; may be made thus:-Take of mallow leaves and camomile flowers, each two ounces; water two, quarts; boil till one quart of the liquor is wasted, then strain the remaining Decoction for use.

A Poultice to disolve hard impostumes and assuage inflammations, may be made thus:-Barley meal, vinegar, honey and a few dry figs boiled together and applied.

A Poulutce to cure swellings under the ears, throat, neck and such like-Barley meal and onions boiled together with a little water, and applied.

Boms.-Linseed pounded with figs is good to bring to a head, hoils and other swellings.

Hoarseness of tee Throat and Voice.-The fruit or kernel of cocoa-nut is very good if eaten at night.

BOTANY.

BOTANF OR PHYTOLOGY DEFINED.

Botany (or Phytology) is a science which hath for its subject herbs, plants or vegetables of all kinds: the word Botany being derived from the Greek word Botane, whioh signifies an herb
in that tonguc. Hence a treatise on this subject is called Botanology. The book which gives an alphabetical account of the names, nature and uses of plants, is called an Herbal ; and a person well skilled in this science is called a Botanist, Herbalist or Simpler.

rife gient palis of this science.

A Treatise of Botany should contain four great parts, viz:(1.) A general theory of Tegetation, explaining from the principles of reason and experimeat, the nature and manner of the life and growth of plants and vegetables. (2.) A just and orderly distribution of herbs and plants intc their several general kinds, and a particular e:mmeration of the species and individnals contained in each. (3.) A division of plants into their natural component parts, as Roots, Stalks or Trunks, Branches, Leaves, Flowers, Fruit, \&e., with observations on the variety and differences of each par:, in the various kinds of plants. (4.) A declmation of the various affections of plants and vegetables, as their place of growth, time of blooming, their several qualities and uses in medicine, and other affairs of life. This latter part is the subject of an Ilerbal, and so camot be expected here at large. I shall give the lest account of all these parti culars that I can come at, and shall begin with the definition of a Vegetable.

A Fegetable is a body orgamically formed, adhering to some other body by some pari of iself; by which part it attracts and receives the matter of ratrition and inctense, which is called Vegetable Iife. Such are all Plants, Shrubs and Trees.
Fegetation is the way of growth, or increase of bulk, parts and dimensions, by means of a proper disposition of organicar parts or instruments receivines nourishment or nutritions juices; and which thercby circulates through all the substance of the vegetable, and is the immediate canse or principle of Vegetalive Ijfe.

In a perfect theory of vegetation, therefore, we must hare regard to three tinggs: (1.) The Original or Genesis of s: vegetable substame or plant. (ㅂ.) The Mlechamism or organical dispositition of parts uccessary to regetative life. (3.) Then

What the vegetative Principle is, or what those nutritious juices are by which the regetable is made to grow and increase in bulk.

By the Original or Genesis of a vegetable is not here understood the common generation or propagation thereof by seed; but what that is in the seed which primarily gives form and essence to the phant, or how it com,s to be or appear what it is. On this head the learneid say much; and all, of late, agree that God, when le created the various kinds of vegetables, did even tiuen alko create and form every individual future plant belonging to) every soit or kind, and included them in proper cases or seed one within mother; so that the original seed did ruliy and formerly comain in it all the future plats of its lind in inconceivable smallnesis or miniatarc: and thercfore when any seed is planted, we are not to expect the production or creation which was not before in being, bat only that the Binbryo phant hath, by this means, power to vegetate, or to unfold and umravel its ports, to burst its matrix seed, to become visible, and to increase its bulk to its appointel dimensions.

This docirine of gemeration of phants seems to be intinated by Moses, when he sass, And God said, Tet the eartin bring forthe grass, the herb yiclding sectl, and the fruit trec yielding fruit afler its hind, echose sced is in itself゙ upon the earth. But it is abundantly confirmed by microscopic observations and reasoning thereon; for not ouly all sorts of grain and fruit appear in due form and proportions of parts, by the Microscope, even in the bud, before the blossom is seen, but in the very seed, while yet on the plant; by the help of the microscope the plant of next year may be seen. Fur instance: take a full ripe bean, and riew the germen with the glass, and you will phaiuly perceive it io be nothing but the stalk, leaves, \&ic., of the next year's plant in miniature. If therciore the plant of this year produces seed, and in that seed we descry, the plant of the next year already formed, it is reasonable to suppose the seed of that small plant also contains another to be disclosed the second year, and that another for the third year, and so on ad infinitum or to to the ond of things.

The modern Philosophers have not only established a new Theory of the generation of vegetables, but have moreover found that there is such a thing as sex in plants as well as in animal nature. And hence the distinction of male and female, as well as Hermaphrodite plants is become very familiar: for the vegetable female require impregnation by the male vegetables in order to generation, as much as animals; nor will the seed produced by the female plants, if sown, grow without it, any more than eggs will produce chickens, which were laid by hens not impregnated: but since the parts serving to gencration in regetables are indeed the flowers, notwithstanding they are so beautiful, so gay, and so much admired; I shall hare occasion to say more of this matter when I come to treat of that part of a plant.

The next thing to be considered in vegetation, is the mechanism or system of organs or ressels in a plant, by which a circulation of alimentary juices is carried on througin the plant, and its vegetation eflected. In order to this there is found to be tro series or orders of vessels in regetables. First-Such as receive and convery the alimental juices from the root to all the parts of the plant. These answer to the arteries, lacteals and veins in animals. Second-Trachex or air vessels, which are long hollow pipes, wherein air is continually received and expelled, i. e., inspired and expired. Within these air-pipes, Malpigbi (the discoverer of this vegetable mechavism), shens all the former series of vessels ari contained.

Hence it appears that the heat of a year, a day, yea single hour or minute, must hare an cffect on the air included in these tracher, i. e., must rarify it, and consequently dilate the tracher, whence arises a perpetual spring or source of action to promote the circulation in plants; for by the expansion of the trachere, the vessels containing the juices are pressed, and by that means the juices contained are propelled and accelerated, and also comminuted and rendered more and more subtile, and so enabled to enter ressels still finer and finer; the thicker part of it being at the same time secreted and deposited into the lateral cells or vesicles of the bark, to defend the plant from cold and other external injuries.

The juice (or what is vulgarly called the sap), having thus gone its stage from the root to the remotest branches, and hav-. ing, in every part of its progress, deposited something both for ailment and for defence, what is redundant passes out into the bark, the vessels whereof are inosculated with those wherein the sap mounted; and through these it re-descends to the root, and thence to the earth again; and thus a circulation is effected.

The third and last part of the theory of vegetation, is a true knowledge of the vegetative principle, or that which is the immediate matter of the growth or increase of the plant. 'Tis certain this is a juice furnished by the earth, and imbibed by the absorbent vessels in the roots of the plant; this is circulated through the substance of the plant, and, in part, is assimilated thereto; and thus by the constant addition of new matter in every circulation, the plant is made to grow or increase its bulk; but more particularly, originating as follows:-

This nutritious juice is imbibed from the earth, and therefore must contain some fossil parts, other parts derived from air and rain, and others from putrelied plants and animals, \&ec, and consequently in vegetables are contained all kinds of salts, oil, water, \&c., if not mineral particles too. This juice enters the root in form of a fine and subtile water.

the state of the sar in its different stages of cIncelation.

In the root then it is earthy, watery, acid, poor, and scarce oleaginous at all. In the trunk and branches it is further prepared, though it still continues acid. In the germs or buds it is more concocted, and, entering the ressels of the leaves, causes them to unfold and shew thenselves. From hence it proceeds to the leaves of the flower, where it is still further digested; these transmitted to a greater degree of fineness to the stamina; these again to the farina or dust in the apices, where, having undergone a further maturation, it is shed into the pistil or style, whicl receives it in the manner of a womb, where it acquires its last perfection, fecundates the seed, and gives rise to a new piant.

The sap in plauts performs the same ofice as the blood in animals, viz, to be a rehicle to convey the food or aliment to the
several parts of the vegetable by circulation. This vegetable aliment is (according to Dr. Woodward), a certain terrestrial matter contained in all water, and is of two kinds: viz., the one properly a vegetable matter, the other of a mineral nature. The former of these is principally the matter by which the regetable is nourished. That this is more than probable, and that the plant owes litile or nothing of its growth to earth or water, is made evident by divers experiments.

Thus Mr. Boyle raised a plant of 3 lb . and after that anotherof 14 lb . was produced from a quantity of earth watered with rain or spring water, and which being carefully weighed dry at first and last, was found to have lost scarce any thing of its weight.

Again: Van Ffelmont dried 200 lbs . of earth, and therein planted a willow weighing 5 lb ., which he watered with rain or distilled water only; and after five years he weighed the tree, with the leaves it had borne in the time, and found the weight thereof to be 169 lb .3 oz ., but that the earth had lost only 2 oz . of its weight; so that the increase of the plant was $13,113 \frac{1}{2}$ times more than the expense of earth, and consequently earth has but a small share in vegetation.

That water likewise conduces but little thereto, is evident from Dr.Woodward's experiments. He took a plant of common spearmint which weighed 27 grains, and placed it in a vial of water: for the space of 7h days; in which time it drank up $255 S$ grains of spring water, and then being taken out, weighed 42 grains; so that its whole increase was but 15 grains, which was but 170th part of the water expended.

He took another plant, weighing 127 grains, placed it in water for 56 days, when it weighed 255 grains, and the water expended was 14,100 grains, which was 110 times more than the increase of the plant. From these, and many other experiments, 'tis plain that water also has but a small share in vegetation, and that therefore it muse proceed from a peculiar vegetable matter in water and the moisture of the carth, as before observed.

