The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction. or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur

Covers damaged/
Couverture endommagėeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculèe

Cover tit!e missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/

Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
Lareliure serrèe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/
If se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte. mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Insti\%ut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
\square Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endornmagées

Pages restored and/or laminated/
Pages restaurees et/ou pelliculées

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquėes

Pages detached/
Pages détachées

Showthrough/

Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary maierial/
Comprend du ma:ériel supplémentaire

Only edition availeble/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues, eic.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata. une pelure. etc., cnt été f!!mées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

"The profit of the earth is for all; the King himself is served by the field."-Eccess. v . 9.
GEORGE BUCKLAND, $\}$
WLLIAM MGDGUGALL, $\}$
VOL. II.

©ly $\mathfrak{G m a d i a n} \mathfrak{A g r i c u l t u r i s t ,}$ Published Monthly, at Toronto, C. W. terms.

One Dollar a-Year, in Advanoe.
riscire copies, for one year 3s. 9d. cach. Ti Clubs and Societies.
Twenty-five copies and upwards . . . Halfa-dollar each
New Subscribers can be furnished with back numbers for 1848 and 1849.
Bound Volumes, for 1849, will be supplied for 5s., -delivered at our office.
All remittances should be forwarded to Willias McDojgati, Proprietor, Toronto.
Letters are expected to be post-pnid.

WORK TO BE DONE.

We proceed to offer a few practical staggestions to our Agricultural readers in addition to those contained in the last number.

The season, contrary to general expectation a few weeks since, promises to be a late one.At the time we are writing (April 18) scarcely any of the characteristics of Spring are visible; vegetation has not awakened from its wintry slumbers, and the severe frosts which we have experienced for some time past, with the frozen driftes of snow in the more backward and elevated situations, have prevented the all important
operations of the plough. The sudden freshet experienced in the beginning of this month throughout this Province has not only done immense damage to bridges, roads and other pub. lic and private works; but in many cases it must have been greatly injurious to farmers, who will have their energies taxed to their utmost when the season for active operations fully arrives.

Before this sheet reaches our readers we hope to experience a more genial temperature, and that the main operations of the farm, such as ploughing and sowing will have fairly commenced. In such a seison as the present, when the ordinary horse-jower on most farms, is very inadequate to immediate and pressing wants,every thing relative to the preparation of the soil and sowing the seed, haring to be done in so short a time, what an advantage wouli it be to the farmers, of any considerable extent to porsess that invaluable and economical implement the Cultivator. By this we do not mean that dittle convenient implement usually termed so horse-hoe, which is so admirably adapted for the cultiration of growing crops planted in forms but something approaching the large and beaoy implement known in the old country asprob-
bers or Cultivators, requiring the draft of thrce or four horses. Such an implement would thoroughly pulverize even the heaviest clays, to the depth of ten or twelve inches, and still deeper if desired, and several acres could be gone over in a single day. Tlums a decep land bed might be readily obtained, which is an tinportant object in this climate for all kinds of crops, and one that we might say is cessential to the success of root culture. Heary soils ploughed in the fall, and so drained or furrowed as not to allow of the stagnation of water, are immensely benefitted by exposure and frosts, and a good Cultivator will easily bring them into a fine and deeptilth for Spring crops, without an additional ploughing. Light sandy soils are in general but little bencfitted by fall ploughing, an operation that may be deferred, without any serious disadvantage till Spring.

Wheat that is thin and weakly should receive as soon as vegetation becomes active, a topdressing of manure; wood ashes and soot, with a portion of gypsum are recommended: Potash, soda (Nitrates) and Guano are used in the old countries with gread advantage; but the price of these articles precludes their general use, at least for the present, in this country. We are of opinion, however, that an occasional application of artificial manures for special purposes,-as when a crop is in immediate want of one or two ingredients essential to its growth will even in Canada, frequently pay expences and bear a profit. In the selection and application of these Jind of manures, however, both experience and some degree even of scientific knowledge are necessary. When a top-dressing is given to wheat, and clover is sown, a slight harrowing is much to berecommended, finished by the application of the roller. Harrowing wheat when done with judgment and care is a beneficial practice, whether seeds or manure are sown or not.

The preparation of the land for Potatoes, and -other root crops must be proceeded with with-out-delay, as it is of importance that most kinds of vegetables should be sown in good season:Although the potato is yet far from being restored to its former healthy condition, and the cause of its disease continues wrapt in obscurity; still extended observation and scientific investiration, have suggested several raluable and practical hints to the cultivator of this impor-- tant vegetable. In all countries, and with all varieties, early planting thas been found beneficial; the late crops having suffered the most fitom the ravages of disease. We should consider it hazardous to recommend to our readers
to enter upon an "extensive cultivation of this very uncertain plant; yet by the prudential observance of a few simple conditions upon a comparatively small scale, a tolerable degree of success may be, in most instances, realized.Select healthy tubers, plant early in a soil that is dry and well cultivatted, and moderately rich in organic substances. Strong animal manures should not be applied, at leasi but very sparingly; Jime or wood ashes, would be far preferable.

The ground for Barley requires to be of good natural fertility, or well manured; and should receive the best cultivation. Drilling the seed, or ribbing, will be found advantageous with this as with most other kinds of grain. Frona two and a half to three bushels of seed to the acre, provided it be clean and good, will be sufficient, and should be sown as early as possible, but not exposed to the risk of frosts.

Such varicties of Indian Corn as are suited to this northern climate might be more extensiycly cultivated with advantage both for grain and fodder. The land for this crop should be dry;" warm and rich; and the cultivation liberal. It is useless to attcmpt to grow maize, on cold backward soils; but much of our rich, wet land abounding in organic matter might, if thoroughly drained, be profitably brought under the culture of this crop. It is an excellent plan as soon as the leaves have made their appearance to sprinkle a little stimulating manure over the hill, such as gypsum, ashes, \&c., with a-view to push forward the young plants at this early stage beyond the depredations of insects, and thereby also ensuring an carlier harvest; which is an object in our climate of the very greatest importance.

As to Turnips, Mangel Wurzel, Carrots, \&ce., all that we can nows say is, that no prudential farmer ought to be without them. In these matters we recommend a thorough and liberal cultivation on a small scale, as much safer and far more profitable, than an imperfect and slovenly treatment of a large breadth. One acre in root crops well managed, will yield a larger produce than treble that extent, under the treatment thet is commonly practiced:

As the season is now far advanced, those of our readers who are anxious to secure a liberal store of food, both in hay and roots for carrying their stock through the next winter, must not lose a single moment in completing the necessary preparations. Meadows kept in good condition by liberal seeding and manuring, and suitable soils selected for root crops subjected to a system of efficient management, will generally enable the persevering farmer, notwith-
standing the length and usual severity of our Canadian winters, to make ample provision for sustaining his live stock, in a comfortable and improving condition.

ON PRACTICAL FARMING.

[The following article from the pen of a farmer in l lizabethtown, was originally addressed to the Direntors of the Johnstown Agriculiural Society, who have kindly permitted us to publish it.]

TILLAGE FASNS

Are the most profitable to the community, because they give enployment to the greatest number of persons, and are the most productive of human sustenance, fur although the quantity of fodder used for the support of the cattle employed in cultivating them, must be deducted from their produce, and the remainder is all that is available to man, yet that will exceed the largest amount of human food that can be obtained from an equal number of acres of the same soil, under pasture or meadow. In a privale point of view, however, grass land, when of good quality, is of the greatest value, because it produces an abundant crop without the expense of cultivation. It is, also, for that reason, a more secure investment to the owner; and, therefore, unless seduced by the very high price of grain, they rarely allow such to be broken up. But in point of convenience, of general profit, and of pleasure, a farm composed of both arable and pasture is to be preferred to one of either alone.

Itis still an undecided question whether farms of mixed soil are preferable to those of one equal quality. The advocate of the latter urge advantages atterdant on a uniform system, fewer implements, and the consequent greater ease and economy of management; while the supporters of the former insist ont their superiority in affording a wider rang for experiments, a greater varicty of crops and seasons; and a better division of labor and hazard; which remarks apply with peculiar force to stiff clays, on which the teams must remain idle during many days when they might be employed on land of more various quality. A bad soil it has been justly observed, is an exhaustless source of amusement to the possessor; an untoward one, the plague of aatumn-the pest of his winters-and the never failing curse of spring. To which it may be added, that bad land is dear at any.price. By bad land, however, is not meant poor land, from much of which, when of a kindly nature, money is to be made under proper management; but cold and
wet clay and gravelly soils should be carefully avoided; for although subject to heavy and constant expenses for draining, and of a dificult tillage, they are uncertain in their returns, and only fit to be laid down to grass. Rich soils are scarce, and not easily obtained, but a sound hazel loand, bhough not of the first quality, yet if decp enough not to be easily affected by drought, and both dry and friable enough to work kindly in the carly part of spring, will seldom disappoint an active and intelligent farmer.

The choice of a farm is an object of the deepest importance to the man who depends on it for subsistence; but it is only rarely that he can select such a one as would prove in all respects desirable. Yet, although in most instances the competition for land may compel him to take what he can get, rather than what he would choose, there are still considerations which no one of prudence can overlook. The nature of the market, the eost of essential improvements, and the price of labor, are each deserving of serious reflections; in the ag?regate they determine the requisite amount of that which demands the most especial attention, namely:-

CAPITAL.

Most farmers are anxious fôr làrge fàrms, and many are thus betrayed into the error of purchasing a greater quantity of land than they have the means of managing to advatage; some in the delusive hope of acquiring those means by future slaving; others from the vanity of holding more land than their neighbors.Hence arises deficiencies of stock, imperfect tillage, and scanty crops, all the consequent train of evils, arrears, wages ill-paid, and debts unsatisfied, distress, and final ruin in many cases. Where, as he who is prudently content to commence only with such a number of acres as he has the power of cultivating with proper effect, is certain of obtaining the full return from the soil; while, not being burdened with more land than he can profitably cultivate, keeps his engagements within his means, and thus, while. enjoying present case of mind, he lays the surest foundation for his future prosperity.

There is no mistake more common, nor more injurious than that of supposing the more land a man bolds, the greater must be his profits, for the profit does not arise from the land itself, but from the manner of using $1 t$; the best soil may be made unproductive while the poor may be rendered profitable by the opposite course ; but without sufficient capital no land can be properly cultivated. There is nothing to which capital can be applied yith greater certainty of
a fair retern for its liberal expenditure when correctly employed, than land; but on the other band, there is nothing more ruinous when the capital is cilher insulficient or injudiciously laid out. Ia daet-assuming always that the expenditure be direeted with judgement, it will be found that the profit upon the outlay increases more than in proportion to the amount of expenditure. It therefore behoves a man to weigh well the charges witl his means, and not allow himself to be seduced by an ideal prospect of gain, into the impradence of trying to cultivate a larger farm than his capital will enable him to manare with the spirit necessary to insure success.

Mfuc: larger capital than was formerly resuired has becomu indispensable since the general adoption of the alternate system of husbaidry; for the fuandation of that system, and ahl good farming, is the support of more live stevek than possible when the land ras brought round to the reproduction of wheat by means of repeated fillurs, instead of green crops. The charges, being then contined to thuse incidental t) nere tillage, wure comparatively light; where as now there are arable farms mithout an acre of pasture in England.. By soiling, more stack is kept and more nanure is made. But the produce is proportionately larger and more g'yain is raised or: meat produced. Of two farzaers, each possessing the same quantity of land, and devoting the same proportion of it to grain, he who can.support the most live stock, will not ouly: realize the customary profit on that sticet, but will also grow the most grain. The farmer who has the means, as well as the discermment, to make some of the various branches of grazing or the darry, an essential part of his business, and thus nurses a.proportion of his land, preserves the tillage in constant heart with the additional manure; and although the gross nmount of grain may be less than if more ground were under the plough, yet. the profit will be greater andithe deficiency will be more than made up by the supply of cheese and butter, and of flesh. He also divides his risk;: so that, in the event of an unfayorable harvest, the loss upon his crops will probably be reimbursed by the profit on his cattle. It, is a common obzervation, that grazing and dairying are the most reguiar profit, tonwhichit. may be added that the bane of all.necessitous farmers, and the ruin af land are being. under stocked aud over cropped.
By the Old ${ }^{-}$Fusbandry I mean thisprevailing afstem of the country which is progressively dinteriorating:our lands. lessening their products,
and sinking our farmers to ruin; a syst $\geq m$ which neither makes the land dry, nor keeps it rich, and which tills and mows, and pastures the same fields till the plough limd is worn out, grasses in the meadow land run out, and the pastures over grown with bushes and noisome weeds and mosscs. I call it an cxhausting systen, for it not only exhausts the soil, but the purse of the cultivator. By the new husbandry I mean the system which has enriched England, and which is now enriching every farmer of our country where it has been fully adopted; the system of draining, manuring, alternating of clover and roots with grain, dee, and of blending cattle with grain husbardry. I call this the augmenting system, because it augments, or at least proserves the fertility of the soil, and secures profits of agricultural labor. It is affirmed by intelligent practical men, that under this system more cattle cam be fed and fattened, upon the routs and straw of the tillage land than can be fud and fattened upon a like number of acres. kept permanently im meadow and pasture, leaving the grain as extra profit. The new system prevailed long in Fhaders, ere it was introdured into Great Britaill, and it is perhaps no where now carried to highes perfection than in Scotland. The Sutch excel in their system of draining; and perlaps are behind fev in the improven:ent of their stock, and judicious alternation of their crops. Grass grounds are there almost invariably broken up the second or third year after seeding.

> PREPARATIDX YOR, IED ROP.KPIOY OU CROPS

First. If land is wet, either fiat or rolling, it must be dmined, either by under-ground or open drains, in order to bring it into a proper state-for the rotation of crops. If land should be spouty or springy, and the soil decp it must be drained by under drains to ensure success to the agriculturist, Jut flat and shallerv soils may be drained by open oncs. First: place, divide your farm into say six large fields and as many small ones, as you think neeessay near your house. Take- No. is ploughy in the fall or autumn, in the spring sow peas and oats, potatocs and root, crops; this breals the srard. The second-year summer fiallow, if the landis thistly plough deep the beyinining of June; harrow when the land is dry, the weather-hoty and not let a thistle show an indzabove grouad Plough the beginning of Jrusse and' agiain tiber frst of August and drag-thoroughly, then it will be fit for the ssed furrrow;) or ridge, which should run Norts to South; and should be from 8 to 12 feet ride; when ridges-run Eitat and

West, the one half shades the other balf; the North side is shaded so that it keeps frozen two or three days longer in spring than when running from North and South. Manure must be put on the fallow, ifit is free from foul seed, it should be put on before the first ploughing. If foul, by the common practice of throwing out with the chaff all foul seed was not removed, it must be heaped and fermented, so as to kill all foul seed, and applied the lait time of ploughing. In regard to ploughing for the seed furrow it should be ribbed so that the seed will fall -in roms or drills, the advantage of this is the roots stand combined together which resist the frost in the spring, which is so apt to heave out the wheat. Another is the air circulates between rows and the crop is not so apt or liable to rust. The quantity of wheat sown varies from one and a half to two bushels per acre; if fell wheat, should be sown the last days of August or beginning of September. However I think that me and a half bushels is sufficient on good laud, -aie seed should be steeped and prepared as follows:-2 oz. of blue vitriol to the bushel, dissolved in sufficient water to wet the wheat, put into a cask and soaked four or six hours; then dry with new lime by sifting three or four quarts to the bushel. Another way is to lay down your wheat on a barn floor, then wet the
wheat perfectly with water, then sift four quarte new lime apon it, stir it well, in six hours.wet it again, and stir it well, let it lay twelve hours, and do the satue in six hours after occupying in alletyenty four hours. In cither way 1 am not troubled with smut; and if our farmers would mind the foregoing remarks and sow clean secd, we should not hear so much complaint by the farmeres, that the buyers knock off two or three pounds tor chess to the busheh, and the cry that wheat-turns to chess, woukd not be advocated by so many as it is at the present day. The quantity of grass seed to the acre, 8 quarts and 4 lbs . of clover secd in the spring, some time in April.if .dry enough, 2 roller should pass over to press.the seed intothe ground, some peefer a harrow with wooden teeth, with one horse. I think a harrow is quite as:sgood on account that the roller packs the land, if wet, quite hard, and if dry weather follows it is injurious to the crop. Cut. the - grass fourth aud tifth years and sixth year, pasture. After this summer -fallows may be dispensed with if properly subdued, if not go through the same process again untill wild grasses and weeds are totally destroyed. The above applics to heavy clay soils and vegetable mould or wheat soil and grass land.
(To be continued.)

:IDE'S WIEEL CCLEIVAROR

This is an implement of an improved kind in the Cultivator line. Wei heard parties at the New York Stute Tair, who had wsed:this implement, speak highly of ifs merits. Itwwill be seen by the cut that there is $-a$ contrivanceifor raising or loweripg the firame to which the iron cultivators are fistened. By- this - meaus the teeth may be set to any depth required.

The use of the Cirtivator insteid of the harrow would often prove:a decided advantage. Where fall ploughing is practised and spring
crops sown without a second ploughing; as is frequently done in Canada, this Gultivator would answer a good purpose in preparing the soil-for seed. The rapidity with which tbe - work could be done wauld in an cconomiear point of view warrant the expense of procuring the Cultivator. We are not aware of the existence of a manvfactory in Canada at which these implements are made. They may be ob-tained-at Rochester, Nesy Yorl, at:a wery reasomible price.

SUB-SOIL PLOUGH.

In our last number we published a short arti--le on sub-soiling, which we would advise the seader to turn to a second time. A great deal has been written on the subject, but the article ".n question contains all the principles and some of the practice necessary to elucidate it. In yome parts of the State of New York the attention of the farmers has been aroused to the sfeat advantage to be derived from a judicious use of the Sub-soil Plough, and thousands are Deing manufactured and sold. The above represents a kind in common use, which may be made for $\$ 12$ or $\$ 15$ cach. As the reader will see, the object of a Sub-soil Plough is not to turn the clay or pan upon the surface, but to loosen it, to allow air and moisture to prenetrate, and thus secure a deep, friable soil which must in all cases be an advantage. Try it, 5 c whose soils are not already too rich. Try it.

PRICE OF BUTTER IN THE WEST INDIES.

To the Editors of the Canadian Agricalturist.

Gbntlemen-

In looking over some files of DeCordova's Mercantile Intelligencer (Jamaica,) 1 perceive that Halifax Butter usually commands there a higher price than Americun. Thus, while Irish brings 9 견d. @ 102tal., Hulifux figures at 8d.@82d. and . Imerican only 6d.e8d. per lb. These prices are, nowever, in stcrling money which is the Jamài currency.

Undeniable as it is, that the climate of Nova Scotia is well adapted for dairy farming, I should like to know whether our farmers, could not make prices like the above available for profit, by paying attention to the making, curing and preparing butter?

Perhaps under our orèinary prices, good butter meets a more profitable market at trome. But, Sirs, why have we so much bad butter, which is both discreditable and profitless to the producer?

I remain, Gentlemen,
Your obedient sêrvant,

* * *

[We quite agree with our Correspondent that the farmers of Cpper Canada should give more attention to the important subject of the Dairy. At present, good butter commands a high price
in the 'loronto market, and very little that is really good can be obtwined at any price. If the price of grain for the future should rule low -which we think will be the case-our farmers will be compelled to resort more to dairy products; and with good management, both cheese and butter may be.produced in Canada of the best quality, and in quantities sufficient to supply all home demands, with an annually increasing surplus for exportation.]

Equirit of the 2gricaltural 引3ress.

IMPROVEMENT OF CLAY LATRDS.
The change that has been wrought in the wet, tenacious clay soils of England and Scotland, by means of thorough drainiug, and trenc. . or sub-soil ploughing is trily marvellous. These improvements have been. going on most rapidly within the last $\boldsymbol{r}^{\boldsymbol{r}}$ zen years, matrthe produce in most instances has been doubled, in some trebied, and even quadrupled. Too much praise cannot be given t, Mr. Smith, of Deanston, who ranks first among those enterprising individuals, that first wakened up the public mind to the importance and practicability of these improvements. Although in Canada, an expenditure so large as these operations cost in the old country, is not required, nor would it be profitable, yet much might be done,-and we think must be done,-in this direction, before our Agriculture can settle down under any intelligable system of correct principles, and fully remunerate our most intelligent and spirited cultivators.

AGRICULTURAI EDUCATION.

We are happy to learn that at the College of Chambly measures are about to be adopted to ensure Scientific Agricultural Education. A farm of 54 acres attached to the College, will be cultivated on the best principles, and Agricultural Chemistry will be carefully studied. This arrangement we understand, is to take place from the first of May, 1850.-Montrẹal Pilot.

DE安P PLOUGHING.

In a recent number of the Michigan Farmer it is stated, that two adjoining fields were ploughed, one four inchcs decp, the other cight; the first gave only seven bushels of whent to the acre, the last thirty-tioo! It is possible that other causes might, in this instance, have combined to produce this result; still there can be no doubt whetever that deep cultivation, particularly in climates subject to summer droughts, has a wonderful influence on the amount of the crop. We have seen ourselves similar instances ta the above.

IMPORTATION OF MANURES INTO GREAT BRITAIN
It is calculated that the amount of Guano consumed in England and Scotland, amounts to upwards of tro -hundred thousand tons a jear, and of Bones an equal quantity; which at a very moderate calculation must cost upwards of three millions of pounds stel ling.

PROFESSOR JOHNSTON'S LEĆTURES.

We have seen as yet, only the first lecture of the interesting course which Professor Johnston recently delivered before the members of the New Yoak State Agricultural Society at Albany. The report, which we find in Moore's Rural New Yorker, is very copious, and appears to present in many parts the rery words that were used by the learned Professor. We shall present our readers, from time to time, with such extracts as our space will admit. The first lecture is on the relutions of Physical Geography to practical Agricultuic. The following remarks on the practical bearings of general science on the farmer's pursuits, we recommend to the attention of our Λ gricultural readers.
It will be impossible for me to fill up a single one of the ntemerous outlines 1 shall have occasion to present to yon. My purpose will be to impress on you the great breadth of existing knowledge which bears on the farmer's art. And first, to show the charactor, the tue practical position which his own art occupies among human pursuits. And in the second place, to satisfy men ongaged in other occupations, that whatever farmers, as a class, may lo. in any country, at any time, thoy ought not, eifther for their own individual interest or for the juterest of the country.to which thoy belong, to be less intelligent, or loss instructed in general and spocial knowledge, than other classes of the community are.
Such a course of lectures is likely to be useful at the present time; in the first place, because of the position which according tomy judgment practical agriculture now occupies in this State; and secondy, because of the measures which tho State Logislature, during the present session, are likely to take-I hope will take-in order to improve that condition.
I shall also niake it one of my objects to show that natural science has not onty a direct money bearing on the pockets and property of the farmer, but opens up ats large views of the natural capabilities of countries, and of the iclations of these capabilities to the comfort
and welfaro of man : which are not only jintereating in thomselvos, but such as belong to Elatesmen to become familiar with.

influence of latitude on vegetation.

Xou know, that if you pass from the bouthorn ex tromo of this largo country northwards you pass over different climates, so to spealk; you pass over difforch: parts of the carth, the latitude of which differs. Λ_{s}, for instance, in passing from the extrome south towatds Groine, you know that you pass from tho sugar and cotton-protuoing country, into tho whoat-producing, and froin this to tho batloy and oat-producing country -which descliption properly represonts Maincmand that whaterer is true along the soa-board, is true of ail the interior portion, and of all America, from the extreme north to the extremo south; that Jatitude very matorially modifies the kind of culture which it is no cessary to adopt to malko crops grow best.'

On this I nced not dwell; but to show you how vory small ditforences in latitudo most matoriany affect the Frowth of planis and crops, take one single oxample. The grow th of sugar presents this examplo. According to the lesults of exponionce, the sugar canowill thinive whore the mean temperature is from 64° to. 67° of Fahrenheit. By mean temperature, I mean that nhich is obtained ly averaging the tomporature of every day in the yoar. If this tomperature is from 640 to $6 \tilde{j}^{0}$ in any givon place, there is the place whero tho sugar cano will thrito. But though tho sugar cane may thtive in such a latitude, and may be cultivaied with success shere the tomperature ranges from 67 to 68^{n}, still, it grows most luxuriantly, and yields the largest return at the least cost, whore the mean annual temperature ranges from 70° to 77°. All oulher thingy heing equal, the counties whore the highest temperature prevails, are those where the sugar cane can be grown at the least cost, and drive all cthers out of the market.

The southern part of Spain, near the Straits of:Gibraltur, prosents the first degree of temperature spoken rof. Hure the sugar cane will thrive; and hore was grown tho first sugar that came into the market. Tho northern part of Africa has a temperaiure of the sccond grade- 67° to 68 , or nearly 70°. There, and in the Azores and the Canary Islands, the sugar cane •ras cultivated profitably; and there it was cultivated after southern Spain had ceased the culure. But in J_{a} maica, and other noighboring islands and countries, with which all are familiar, and where the temperature is abont 77°, there the sugar cane grows most luxuriantly. But Cuba, and tho northeasiorn part of Brazil, possoss the most favourable temperature for the growth of the sugar canc. Thus the single circumstance of varicty of tomperature, depending on latitude, designates the placos where tho culture of sugar.cane can be carricd on most successfully.-All other:thinge. being the same, the cost of labor, the energy aind eitterprise of the people, the institutions of the countryallithese conditions being equal-these two countries ought to drive every other country out of the sugar market of the world. But these conditions.do not oxist; and in other countries the energy of their papulation, and the effect of their institutions,.come into play, and they may compete successfully even with those most favored by cliniate for the culture of sugat.

\because effects of water on chimate.

The distribution of land and water, is a most importatit eloment in the determination of what erops will grow bost in countries having the samo latitude, Your trow that all along the sea-baard of any one of titeso continents the climate difers from that of the interior:
and stat tho climato of tho intorior of tho country differs from that of tho soa-coast, whother of tho Ailantic or pacific sido. So in tho intorior, bordoriag on theso takes at the north and wost, rouknow that theso bodics urf wator very much modify tho clinato. All who livo agar thoso lakos, know vory woll that the climato is vory much modificd by thom, that is to kay, that tho capability of tho land io produco cortain crops, is modicied by tho position it occupios on the bordors of theso -groatinland soas. You know furthor, that the rivers of a country have a groat influence, not only on tho -rgicultural products of a country. Supposo lic intorior of this country wore not intersected by theso groat urors. Largo rivers, aro tho groathighways to markel, -ad you. know liow litilo-prould ba the profit to the farutor, who is distait from market, but for theso rivors, theygh ine might raiso nuyiquasi:ty of grain.

¿ELEYATIOAR-DKLTAS, Sic.

SNomost important point in physical geography, is tho tiovation of a placo above tho lorel of the sca. In rarious parts of the world thore are great ridges of inountains all of which you aro familiar with, as well Tremwith the high tablo laints, which aro to bo found in uany. locnlities in Europe and Amorica. All thoso : mountnin elevations,"tabto lands, and plains, aro charactorized from certain circumstances, by peculiar agicealiaral predacts, ontiroly deponding on physical conrormatios These things aro obvious and I pass over - chera.

But the effect of elorations is folt at a groat distanco. Two illustrations will sulfice, on tho first, I do not, I will meecly namo it. Prof. J. hore pointed to the map - oi Europe-to tho North sea-to Holland- to tho Rhine, :racing its rise in the motintains of Switzerland, untilit empties into the North sea, forming at its mouthr islands or deltas. All of yoa, ho contiluued, recolioct the riact, I shall hereafter advort to, of tho pectriar anliealthiuess of the deltas thore. -Now, the character of theso mlands, and of the low comntry at the mouth of tho Rhine, is detorminod very much by the naturo of the elevations from which the water comes. Whas ficen , published :of tho Natural Ilistory of your own Fstate, teills you hov much tho region through which tho water'flows, determincs its quality, what it holds in sblution, and how, when it roaches tho sea this maticr is deposited in the form of deltas and islands that occupy the mouths of rivers. This is an illustration of the clfect of elepations to modity tho charactor of a country, through which the rivers coming fiom them flow.

But a more striking illustration is presented in another part of the world. The river Nile rises in Abyssinia, ~hows through Nubia and Egypt into tho Meditorranean, ysitis remarkable that tho countries through which the stile flows, aro bounded by deserts.-These countries would have formed part of these great deserts, but for - tho waters of the Nile. This river ises in the Mountrins the Moon, which are covered with snow at their summits. At certain seasons of the year, this snow melts, .and swells the Nile to such a degree as to overfion sand cover this vast plain, anid fertilizes twhat twoold - Dherwise be barrop, thus giving to tho soil its caps-- 3̈lity to grow crops, and sustain a population which, in somote times, was very great. It is intercsting to remark how, on apparently small thirgs, which have their con-- yection with distinct branches of human knowledge, the comfort and even existance of whole nations is foand cleary y.and'distinctfy to dopend.
Mnother rematkable.plisnomena, which has aftracted che attention of physical geographers, is the large deltas formed at the meuths of great rivers, evcrywhere. Those at the mouth of the Mississippi, are familiar to .you all. You know that these deltas found at the
meuths of all great rivers, being formed of rich alluvial soils, aro gonorally of an unhealthy charactor; unhealchy, because of thoir richnose, and becauso of that unhealing charactor in othor situations, and undor othor circumstances, would not bo cultivated nt all. If time permitted, 1 might horo show jou, how muth tho agitcultural prosperity of a country, not its capability; (for theso dettas avo capable of tho highoet degree of production,) but how mueh sgricultural products dopond on tho healthy, charactor of tho climate. Farmers thrivo in countrics far moro cold and sovoro, than othors; becenso thoso cold and seroro countrios aro thostly hoalthy. - I am suro tho hardy farmers, who cultivata tho soil of Now Brunswick, ihough they suffer from the extremo,cold of the country, and complain ofil, yot certainly onjay far more happiness, so far as happincss doponds on bodily hoalth, than the inhabitants of othor richor countrics, such as Georgia, the Carolinas, Flotida, and other southorn Statos, which aro far richer. and pioduco more, with far less labour. Henco, in all cases, in the tomperato and colder climates, rural economy in gonoral, attains much highor stato of improvament, than in the richer and riarmor, but lesshoalung combties.
There is ono circumstance, in connectionavith theno deltas, to which I will draw your atontion, and ouly ono ; that is to say, of tho landsat tho mouthe of rivers. and the character of tho banks:of the rivers themselves, when they are of great width, and whon dgpositos haso formed of alluvial soil, as is tho case at tho mouth of tho Mississippi, andis.other parts of the world. It is the charcter ofthose deposites to a highor clovation at the oxtarior than tho interior patt; and from this poculiar conformation-the dopression of the intorior partsmarshes and bogs, and bogs of peat marsh, in somelocalities are formed in theso depressed portions.
DEPRESSIONS—RELATITE' LEYEL-CTCASPIAS, ELACK AXD JFAD SEA.
Among the most interesting phenomena of phrsical goography, aro the depressions in certain pats of tho world, compared with the lovel of tho sea. 1 have spoken of elevations; bnt thers aro parts of the world, below tho jovel of the sea, which notwithstaniding, grow crops artí anourish a Jargo population.
I draw your attention to the Caspian Sea. This isra large bod of wator, from the cdges of which, start plains in every direction. This boxy of afreter is considorably bolow the lovel of the Black Sea and the Atlantic. If any circumstance should happen, by which a connection werciformed between the Blaek - Soa and the Caspian, the watersosthe lattor woutd bo raiscid frern' 60 to 80 foot: a very grat area of cotintry would bo submerged. and tho bordorsiff that sea:groatly enlarged.

But the most remmakablecaso of this kind is presented in that part of the work with which wo are familiar by name, iarfd that:is Palostine. In the interior of this country, is the Dead Soa, into which the river Jordan flows, through certain lakes, among them the Lake Theorias. The Doad Sca is twelve hundred or thirteen hundrod feot below the level of the Mediterranean. Tho Lake Tiberias is some five hundred feet bolow:the level of that sea. If any circumstance should open a track or canal from the Mediterranean into the valey of the Dead Sea, its waters wonld rise twelve hundred feet and drown a large portion of the people of that country, with which our oldest and mostsacred associations aro connected.
I shall hare occasion in a subsequent lecture, to draw your attontion to tho circumstance of there being certain parts of the world in which no rain ever falls, and cortain other parts where the quantity of rain is very small. It is because t:e rain that falls in this country.,
bordoring on tho Doad Sea and tho Caspian, is no greater than tho ovaporation, that it remams as now. and has not beon submetrod long ago. With such a clumato as you have, and as wo havo in Great Britain, whoto the rain that fals is proator than the evaporation. tho population of those regions would havo boen-annihilatod by tho rising waters.

swabrs and wet IEETEL LAND.

Thoro aro largo tracts of countre, which aro not oilhor nbove or below the level of tho sna: but whith aro so flat, that the water that fally, remains and stagnatos. In this country, large tracts are rendered usoless for agricultural-purposes, by the extremo erenness of the surface. In Now Brunswick, there aro largo fracts of this charactor, and which scom to defy agricelltural improvement.
Again, thoro is a tract of country on ths bay of Chalours, which though excecdingly flat, is naturally fitted to becomo as rich as some of tho richest linds of Scotland, even thoso celobrated for their richness. It is so ftal, that the water cannot escnpe. It is not a bog, or a swamp, but so wet that it camnot be cultivated profitably by tho sctiors.
Bosidos thes, $y^{\text {henenomena, thero are certain natural }}$ obstructions, which present themselyes, in tho course of rivers, and givo riso to now conditions of the countre hordering on them, whith are more or less unfarorable to the growth of crops, but which farmers make profittable. In New Branswich, thero aro many suchwhich may bo called bogs, or ewamps. In your own States, in Cayuga county, I bolieve chicfly on tho outlet of Caynga Lake, lios the Montezuma Marsh. I hare net risited it myself, lut am advised, that the marsh is formed by obstructions, which can on! by bo removol'by opciations on a large scalo, by which a partial drainage is oficeted, and thus the water emabled to flois from the lake, and thus a large oxtont of land, capablo of being mado of tho most productive charactor, may bo redeomod from barrenness. In other parts of your counry, in Georga, for instanco, thero are La-ge swamps, and in Flotida, there are what aro callod evorglades; in regard to which, I am happy to hear, thas ktepls ers talised of for draining and reclaunng.

THE RFIESEPORSISTON OR HOLEAND.

I promised to craw sour attension to the Rhino. The Rhine, when it reaches the North of Europo, becomes loaded with mud to s. great degree-hot so great as the Mississippi; lhat thoro is the difference: tho Hhue empties itself into a bay, where the waters from the noth and south-west meet, and a-drawing back twhes placo, and a precipiation, of tue earths in suspension soes on at the mouth of the tifer tiself Now, there was a time when theso desposites trok place without being heoded; when thore wern formed islands of small oxtent, the edges of which being raised above the rest, br the action of the waves and the current, formed strips of landion which trees and-plants-growthe axtorne! being higher than the- internal. parts -thus forming a Jarge extent of boggy, nsuddr, and sandy country, stretchiug from the mouth of the Rhine, northy to the Zuycer. Zee; that is to say, forming the country now called Holland By degreos, the fiehertuen settledtou thess little linolis, and fortluy being soon knama; the farmers were atracted thither, and by indomitable persevernice and enterprise, these and the adjacent lands were reclaimed by artificial works, and form what is now the limited province of Holland. I will not dwell on the history of this people; but you must see that the character of a people in such a country, formod originally by natural operations, and reduced to a habitablo region by human perseverance
and skill-you must seo in the naturo of tho coun:n.. whicts musithiavo monidod the charactor of the inhabitant, and formed the national cliaracter of its peoplesomethinn of their remarkable ethinacteristics. If time. permitted; I might edtor into detai's illustrativo of fliese -tho result of personsl obsotvatio 1 in that countrygoing over its dykos, sailing on its canals, and witnoseing overvwhere tho triumphe of human porror and art over extrnordinary difficultios, a country which, fromtho beginning of ihe Christian ora, has been subjector' to continually repeated inundation. Recordy go back through a prriod of thi-teon centuries, during which havo boen great inundationa, which haro broken upe dyker, let out canaly, ovorforsed citics, and drowneil large numbers of peopin, oneo in sevon yenrs: For thirteen centuries, the Hollanders havo been subjectedi. on an avorago oneo in sevon years, to theso inundations. I havo thought, in going through that country, Ines many strugglez that peoplo havo undergono, what persererance they have displayed, what victories they have achiered over stubborn ond apparently indomitablio nature, what effect tho consciounness of having dono all this must havo npon individtual ne woll as national, charactor, and what n great tsiumph it is in isself thms. to have fixed themselves firmly on the eoil !-

Gentlemen, it is necful to us-it cartios with it in great moral lesson-to snrvey such a country as this; teaching us that those who possess great natural advantages, whotheras nations or as individuals, aro not alwars citler most blessed or happr; that dificulios bring: out energies of individuals and nations, and that thone: notions and those individuals a:e not only happiest. but in goneral most successful, who havo those dificutties to oncounter.

TiDE: is THE E.AT or FUSDY.

Wilh the subject of livers aro connectod the tides.. The flowing of tivers is naturally connected with the flowing of fides, and tho fluwing of tides is a physical phenomenon intimately connected whth agrictilturah prospority in many parts of the world. Inecúmol'ms far for an illustration-if I tahe you to tho Bay of Fundy, which separates Nuva Scoua from New-Bruns--wick-tho waters of which rush up with great velocitr. and rise to a great height. Fifte or sixty fect is no unusual tide at the head vaters of the bay, As they rush up, they swcop the banks on either sude, which on theNova Scotia side are composed of a species of rock antit clay, and arrive at tho extremity of tho bay loaded with mud to a vory great degree. They aro the muddiosi waters I ever saw. This mud is deposted a! the head. waters of the bay, in great quantuiss, and forms therinhest land existing in that patt of the world. The, richest land in Nova Scotia and Now Brunswick, is formed of such doposites as these-mainly from the waters of the Bay of Fundy, which not enty bring nith. them the ingredients that ferilize the soil to $\%$ fo - . themselves, hut bring the industrious farmer then means to fortilize the u, lands to a great extent. I da, not mean to say that there, or in other parts of NottrAmerica that 1 have visited, tho advantages of thefodespositos are fully put to use; but still, the meana. these marshes afford of enriching the uplands is very groat, and capable of producing enough to nourish. a. large pqualation.

Amourt of Ruta-Baga Turnify Cọssumed ey Stock per Day -An ox weighing 40 stone, (560 lbs) will eat about 100 lbs of ruta-baga or Sivedish turmipm a-day along with straw or chaff. Ten sheop of 64 Ws, each, will eat about 200 lbs . in tho field, and rather less in the house.-Agricultural Gazetts..
stephen's "Farmers guide to scientific

AND PRACTICAL AGIICLILTURE."

Mr. IIenry Stephens, of Edinburgh, the author of that excellent work "The book of the Fiarm," has published the 1st Volume of a worl: under the above title, "detailing the labors of the farm as they successively occur." An arrangement has been made to republish this work in the United States from the stereotype plates of the original; Professer Norton, of Yale College, undertaking to adapt the work to farming operations on this Continent. We have had the first No. of this republication laid on our table by Mr. Maclear, bookseller of this city, and we have no doubt the entire work will be a most valuable acquisition to the Farmer's Library. Every thing we have seen from the pen of Mr. Stephens bears the stamp of a mind well versed in all the practical details of the farmer's art, and possessing a most accurate knowledge of the improvements and diseoveries which science has so largely yielded. Professor Norton's contributions will be in the shape of an appendix to the scveral parts of the work; a clumsy arrangement which could wot rery well be avoided. The author goes inte the minutio of all important operations which, of necessity, sull the work to a large size; but.it will be a library in itsclf, and althougin many of his directions will be quite inexplioable to C'anadian Farmers, yet every line may be read with poofit. The intelligent agricultarist will easily distinguish those methods of culture, crops, de., suitable to the soil and climate of this country from those recommended for Scotland, and to the uminitiated and unskilled, we trust the explanations and additions of the American Editur will make every thing plain.

We shall fiom tine to time extract for our readors such passages as we may deem most useful, but we hope they will nevertheless buy the work itself. Village, Township, and School Libraries should secure this book as soon as possible. ' Mr. Maclear will, we dare say, be most happy to take orders.

The following passage may be read with some profit br those who camnot see the adranlage of Agricultural Schouk, or a system of specialinstruction for farmers' sons who intend to adont their father's profession: .We may remark that it is a frequent practice in the old country to place young men who are intended for farmers, for two or three years with sume good practical Agriculturist to be taught the business, and Mr. Stephens seems to have had these pupils, in his eye (we beg pardon for the qua), when he wrote his book.

ON THE BRANCHES OF SCIENCE MOST APPLICABLE TU AGRICULTURE:

I beliove I have said onough on the bost means, in oxisting circumstancos, of acquiring a thorough knowledgo of practical agriculture: it is now incumbent on mo to indicate those branches of science which will most onlighten the mind oi the pupil for the most ready appreciation of agricultural practico; and I may, porhaps, oxcito general surprise, whon I stato that no art bears so close a relation to so many brauchos of science as agriculture.

Indeed agriculture may po:haps be considered one of tho oxperimental sciences, as its principlos are no doubt demonstrable by the test of experiment, although farmers have not yet attompted to deduce principles from practics. Tho necessity for such a deduction is, no doubt, the loss urgent, that husbandry is usually pursued as a purely practical art; and the facilty of thus parsuing is successfully, of course renders practical men indifforent to science, as they consider it unnecessary to burden their minds with scientific results, whilst practice is sulficient for their purposes.. Could the man of practice, however, supply the man of science with a series of accurate observations on the loadmg operations of the farm, the principles of these might be thuly evolved; but 1 conceive the greatest obstacle to the athvancement of scientific agieulture is to bo sought for in the unacquaintanco of men of scionco with practical agicilture. Would tho man of scionce becomo acgramed with practice, much greator advancoment ia scientific agriculture migl:t bo expected than if the practical man were to become a man of science; because men of science aro best capable of conducting scientific research, aid, being so qiailified, could best understand the relation which their intestigations bear to practice; and, matil tha relation betwixt principles and practice is well madersteod, scientific investigation, though mportant in itself, and interestang in its results, would tend to no practical utilty in agriculture. In slort, until tho facts of hasbandry aro acquined by men of science, these will in rain endenvour to construct a satisfactory theory of agriculture oa the pinciples of tho inductive philosophy.

If the science of agricultaro in its present position be thus correctly repucsated, it may be expected to romain in an incipient stato until men of scionce becomo practical agriculturalists, or, what would still prolong such a stato of lethargy, uatil farmers acquiro sciontifio knowledge. It is centainly romarkable that so few scientific men wero for a very lony period induced ta subject agricultural practico to sciontific investigation;: though of late many, both at home and abroad, have. dovoted a portion of their time to such a study, and which has already afforderl abundant proof, that extensive as the fielt of researoin is, it has omy to be occupred by numerons observers to produce results interesting atike to tho man of science and tho man of practice. The long neglect of agriculture by scientific mon may porhaps havo arisen from the circuinstance of its having so intimato a relation to almost evory physical.sciance, so that until all its relations woro first invostigated, no sufficient data could bo obshined for a satisfactory explanation of its practice. A short review of the actual rolation which the physical scionces bear to agriculturo will render this suggestion tho moro probabio.

The sciences which agriculture most immodiately affects are mathematies, natural philosoply, chemistry; natural history, comparativo matome, and velerinary science. Of mathomatics, the mosi nsoful parts aro geometry and trigonomotry, and tho application of those to the measuroment of surfaces and solids. Without a knowledge of mathomatics no one can uadorstand
natural philosophy; becauso it is they alone which can demonstrato the powers of those laws which detormine the motion of matter- Of natural philosophy, the most usoful branches to the agriculturalist are micchanics" the science of the laws of matter and motion, so far as it is accossary to tho construction of machines which, acting ander those Jaws, answer some purposes in tho businoss of life," sueh as the culture and manufacture of crops; pueuralics, "that branch of physics which treats of air, and the laws according to which it is condensed, rarifiod, or gravitates;" hyfrualics, that branch of hydrodynamics which treats of thuids in motion, and in particular of the conveyance of water through pipes and channels; clectricity, which endeavours to dotermine "the operations of a priaciphe of very vide milhence through natare: a causo which is, and perhaps can be no otherwiso conceived, than as a highly attennated form of mattor existing in difforent substances, and passing from one to anviher with varous effects, among such boades as can bo excited to give or to receive it;" optics, by which the laws of light, as affecting vogetation by tho iufluence of color, are investigated; and heat, which, by ditiusing itself through neighboring substances, gives to every object iss existing form. By the aid of chemistry, "the manufacture of manures may be expected to continuo to improve, the supply of mahure further augmenied and cheajened, and tho development of the resources of the suil thereb hastened and increased.' Of the branches of natural history, the most useful to agriculturalists are enctecrology, "tho science of the atmosphore and its phenomena;" botun:/, "which treats of the structuro, functions, properties, habits, and arrangement of plants;" and zoology, as restricted to the natural history of quadrupeds and insects. The branches of the mettical science useful to agriculturalists aro compurative anutomy, which treats of the structure of the bodies of animals as compared with the of the body of man; and zootomy, which treats of the structure, and explians the principles n^{5} the art of healing the diseasos of the domosticated animals.

Viewing the general aspect of theso sciences as prosented to the agiicultural pupil, ia the definitions just given of them, he must at onco observe the advantages ho would dexive by studying them. It is woll observed कy Sir John Herschell that "between the physical sciences and the arts of life thero subsists a constiant mutual interchango of good officos, and no considerablo progress can be mado in the oue, wilhout of necessity giving rise to the corresponding steps in tho other. Oin the ono hand, evory art is in somo monsure, and many ontirely, dopendent on thoso very powers and qualitios of the material wotd which it is the objoct of physical inquiry to invostigato and oxplain." It is ovident that most farming oporations aro much affected by extornal influenees. The state of the weathor, for example, regulates ovory field operation, local infuonces modify the climato very materially, and the nature of the soil gonerally detormines tho kind of crop that should bo cultivated. Now the pupil should desire to becomencquainted with the ciucos which give rise to thoso influencos, by understanding the lawis of nature which govern erory natural phoniomenoi. The seionce which invơstigätos thoro laws, is cialled Natural Philosujhy, Which is dividod into as mary branchies as thore are classés of phenomena occurring in tho earth, air, waior, and heavens. Those laws, boing unering in their oporation, admit of absolute domonstration; and tho scienco which affurds tho domonstration is called Ifatheminatics. Agáau, ovory object, anintato or inanimato, possocssos an individutil cliaractor, so that it can bo identifiod, and the scienco which makos uis aéquainted with is chariacteristics, is tomeat Natirat History:

Farther, every object, animate or inanimate, is a componind body made up of. certain elements, of which Clucmistry makies us acquainted with their naturo and combinations. The putpil thus sees how suitable those sciences are to the explication of the phonomena around him, and their utility will bo the more apparent to him, the more minutely each scienco is investigated.

MODE OF CHURNING IN SOME ON THE COUNTIES OF NEW york.
At a mecting lately held in the County of Norfolk, (. W., on the uccasiof of a dinner being given to the Ilun. II. J. Boulton, M. P. P., a Mr. Bowlby in reply to a toast to the "Agriculturists," described one of the " Iankee" methods of Chuming as follows:-

It soems to be a favorite practice with the politicians of the evening, to press into political matters on tho other side of the water, and compare the working of different moasures among the "sirrewd Yankees" with laws tre have in oxistenco here. Now, sir, why cannot the agriculturists profit by the same practice as the politicians? I would simply draw your attontion for a moment to the manner in which butter is made in some of the principal countios in New York. They churn all there by mill. They churn it slow, and continue tho operation about four hours when it is sweet and cold; by which means they obtaih about one third more bitter from the same quantity of milt, and that usually of a botter quality, than we gonerally get in the ordmary way of setting the milk and churning only the cream when sour. By this method of keeping dairy, the labor of churning is considerably increased to obviate which they use a tread wheel power suitable to the number of cows kept; for 10, 15 or 20 cows, the power is propelled by a large dog; or more frequently a sheep is used, tho preforence is given to tho sheep as it is stoadior than a dog; it can bo kept in a small vard close at hand, whilo a dog will soon loarn to con. 3 up missing about the time of churning. Whon their cairy is very largo they uso horse powor. Their whol, business is reduced to a $s y$ stom. Instoad of turning tueir mills into paus, \&c., to raiso the cream, as is usually done here, the labor of which, in skimming and cloaning dishes alono, oxceeds that required for finishing their wholo dairy, they turn the milk drawn at night into.one charn or nore according to the numbor of cows leept, in the morning they repeat tho samo process, mising tho morning and ovening's milk so that it will cool and be ready for churning about ten o'clock thosame morning. Whon the weathor is very warm they add cold wator freely to koop the milk at the proper tomperature whilo churning, which operation they continue till.two in the afternoon. If the buttor is likoly to gather soon they stop the motion of the churn, or lesseri its mdion and churr slow. By this.procosis the same amount of buttor will bo outained by loss than ono-half the labor required in the usual mothod of making it.
That the dairy businoss would bè roënunorative in thio townships is readily proved from the frict, that largo dairios aro kojt in Gonosee County, ichich is considerod the best coumty in tho State of Now Yoitifor growing whot, and being in tho vicinity of Rochiester, it domands a good price, from 10 s. to I2s. poribnshel, whilo horo whoat is only 5 s. or' 6 s . por bushè. Thoir land is worth $\$ 50, \$ 60$ and $\$ 80$ per acre, whilo our land, that will viold oqualiy as much pasture, is worth $\$ 10 ;-\$ 15$ and $\$ 20$ por acro. Notwithstanding thioir great advaiitago in the prico or grain,' arid disadivantago in'tino
arice of dand, thoy find it more profitablo to lsoep dairy, :and pay 1a f per cent. for tho privilego of supplying tho Canadian markots. As the evening is advanced P will . 1 doso my remarks by a recommend to the agriculturists of Townsond to turn their attention more to this line of phusiness, and supply thoir own markets.

'MILK-HOUSES.

Opinions have changed as to milk-housesSome years ago, those made by a spring or cold brook, so that gold water would constantly run uround the pais, were considered the best; and whose who had not the advantages of a stream of .eold water, chose a cold part of the cellar as the vaext most cligible situation.

But experience shows that spring-houses are doo damp, if not too cold, and the bottom of a wellar, if neither too cold or damp, is generally without sufficient vertilation; and in a cellar Were are generally many substances injuriuus to milk, and if a room is made in the cellar purposely for milk, it often communicates with other parts that are used for various purposes.

WVe think that milk-rooms may be made mbove the ground, or partially above it, so as to have a good ventilation, and, of course, a pare sir, and at the same time sufficiently cool. If no ice is to be used to mitigate the extreme heat, it may be necessary to have the bottom of the house a few fect below the surfece of the wround, or to have it constructed on a plan sianilar to that of an icc-house, in part, excepting urranging it for thorough ventilation, which is not necessary in ice-houses.

If a part of the cellar is used for a milli-room. it should be in the driest pait, and where the house is most elerated, that there may be an opportunity for windows well-arranged for ventilation. In a close dcep cellar, foul air setules to the bottom, which leas an unfavorable effect on milk and butter.

One important objection to cold, damp, and anventiliated milk-rooms, is their unhealthy condition for those who attend to the mills, and to rhurning, and working and packing butter in :such rooms in very hot weather.

We take the following intercsting article on this subject from the Wool-Grower, an excelfint paper, recently started by Mr. Peters, of whe Buffalo Wool Depot.

Exporienco had taught me that the great difficuly to so encountored in the manufacture of butter, in warn woather particularly, is tho preservation of tho mills aftor it is takon from the cow, until all the cream can riso to the surface, be talion off, and transforred to the amurn in 2 nerfect state. To obviato this difficulty after a consultation with my wife, who, by the wry I must the allowed lo purfa lititle, is au fuit in all matters of this Kind. -wo dovisod, and had constructed, a milk-louiso pa tho plan and of the dimonsions following. Iatending to make bulter for my own family use ouly, the ar-
rangomonts wwore to be, of course, upon a corrosponding scalo.
Now, then, to a description of the building: -
Framo of joice and scanting, seven by ton feet; six and a half feet fion floor to plate, covered with inch pine stuff, planed and matched, painted on the outtide; roof of the same. At oach ond, and near to one side, a window, exactly opposito each olher, twonty inches wide, extending from the floor to the bottom plato, covered with wiro cloth sufficiently fino to exclude flies, and painted to prevent rust. In tho front end a door, and in the rear ond a window exactly opposite, about twenty by thirty inches, covered the same as the othor windows, and placed sufficienty high from the floor to be on a level with a stationary taile, (one and a half inch plank,) for the convenienco of straining, skimming, wooking out butter, \&ic. Six stedtes on one side of the room, ranged one above the other. Thiese shelves ano each composed of two strips of pine stuff, eno and a halr inchess in diamoters and of the longth of the room, joinced together at the ends and middle by c:oss pieces framed in, leaving the longitudinal strips about four iaches apart. 'These sholves are supported at the ends by stips nailad to lio window frames inside, at suitable distances, and at two places between theso points by coresiponding strips fastoned at omo ond to a stud, and at the other to a stanclicon placed about, twenty incl.es in fonts of the stud, and secured at the top and bottom. This distameo is necossarr, that the shelves may slido back and forth, as convenience in handling pans of milk roquires. In this way but a small part of the bottom of the pan is covered by tho shalf, leaving a feo circulatien of air, which comul in at the window of earh extremity. The building is pleced undor a cluster of fruit-trees, which effectually shields it rays of the sun during the heat of the day:A second roof of rourgh boards clev d, say two fect above the top of the milk-house, and of sufficient dimonsions so cast a shado all round it, would doubtlees answer evory purposo.
I do not protond to say that this is the very bost kind of milh-hcuse that can be constracted, Bat it is the bert that we could dcrise, and with its rosults we are perfoct? satisfied. It answers admirably all the purposes for which it was intended. The milk keops much longer bofore chauging, giving an opporturity for all the cream to sise; zand during the warmest weather in July and August, we are enabled to make the chaicest kind of butter, and, for aught I can discover, as much in proportion to the quantity of milk, ass at azy oitrer time of tho soason. Wo have the benefit of an icc-house in close proximity, the contents of which I consider an indispeasable ausihary in the manufacture of buttor in warm weathor.
Before the orection of this building, we had tried in vain to mako butior in warm weathor. The collar was too damp or too cold, or too something; and the pautry too hot.
cherse mating.
Oar columns bear more and more to an arrukening interost in this branch of business. It has not received the attertion it dosorved in past sears, from the alinost invariable devotion to wheat growing which has characterized the West; but as discouragemont prevails in regard to that, from the genoral failure of the crop. attention is turned to this among other brauchos of basiness.
Λ correspondont asks for a recipo for choeso making. While wo would say that no ono can expect to matio. first rato cheose from a sccipe, yet a recipe will do to bogin on, and experience vill carry us forward to any degree of oxcellenco.

Wo will suppose the romet procurod and got ready, and tho ciseose to be made to wcigh 25 or 301 it ., which will bo made of the night's and morning's milk. Tho night's milk being set, and coolod if nocessary, must be ekimmed in the moming. This done, and tho mik of night and morming mixed togother, all must bo warmed to 90° of Farenheit, or thereabouts, and tho croam which was taken off roturned to tho milk. Whon tho milk is warm onough, a gill or a littlo moro of good rennetis to bo added, and thoronghJy stirred in. TIho whole is now let alone till it coagnlatos, or becomes cured, which will be in an hour if the rennet is good. Wiili a long woodon knifo it is now ceut through and through at right angles, so as co mako : equares of about an inch in size. A strainer is now thrown overit, and tho whey dipped offas long as it can bo donc. The curd is then again broko up, and the whey noto completely dipped orthan before. Sunte of the first whoy is to be heaiod as soon as dipped oif, for tho parposo of scalding the curd. Great caro matt bo taken not to seald the curd too much. Two puilsful at 180° will scald a curd of egllos.; but tho weather and tho quantity of curd miat boconsulted to detormino correctly. When the hoi whey is poured on, the curd should be broken up aiad mixed by hand, that all parts may bo oqually troated, and mada as fino it as can bo broken. It is now removed to a strainer and baskot, and when the curd is drainod, it i : returned to the tub for salting. Ifalf ain ounce of good salt to a p-und of cheose, will prove a good ru!e, but the taste of the dairy woman is perhaps as good a regulator of this matter as any. Ihe salt must be pure and fine, and thoroughly mived with the cu:d, or it wilt not ripon equally, and tho unsalted places will acquiro a bad fla-zor.-Prairie Earmer.

ENET-ROOT SUGAR.

Tho following is a cheap and casy way to manufacture Boot-Rout Sngar, for domestic use, and which I have ofton tried with success. It will prabably bo new to many of our readers:

There is hardly a good housewife, of oven the most limited means, to be found, who would not prepase hor apple, peoch, cherry, quince, or other proserves at tho proper time. That is all woll enough, but why notalso lay in and propare the annual stock of sugar and molasses, if it can bo dono with a trifling expenso? A littlo plat of land for the culture of beet-roots can alvays be found, and if we consider the fact, that 160 pounds of hoot-roots will yield twenty pound of syrup or molasses, or 8pounds of brown palatablo sugar and 8 pounds of syrup, the little troublo tconnected with the manufacture, should bo shunned by no good housowife. Excopt she raw material, the exponse will amonnt to but a fow shillings, and the procoss roquiros noiber costly utonsils os matorials, nor a vast doal of chemical krowlodga.

UTENSILS AND THPREATENTS.

1. A grator, for the purpose of mincing the roots.
2. A small wooden scrow prese, or if that can not bo had, two boards loaded with heavy stones.
3. Two straining bags, one of cotion or linen, the obier of flannel.
4. A barrol, smallor or largor according to the quantity of sugar to bo made. This barrel is 10 be perforated by holes, three inches distant from oach other, throughout its whole longth, from the top down to about four feet from the bottom. These holes aro filled by cork stoppors. A kettle. The flattor the lattor is, the moro appropiato will it bo for tho purposos of manufacturing 84gar.

PREPALEATOMY LADORS.

1. Preparation of tice Lime Milh.-Tako one pound idf whito, well slacked lime, pour hali a pound of fokewarm water upon it, and, after the lime has becomo pulverized, add nine quarts and a hali' of water, the wholo mass to be etirred up well daring the application of water.
2. Preparation of Animul Charcoal.-Take a quantity ol bone-black (cuur ustume) which is to bo had in evory drug store, as much as necossary, put it into an oarthen unglazed pot, and set it into the fire to reman theio matil it is red-hot. After hasing cooicd oft; put it into a dry well closed vessel. Tho best will be a guod bottle.

manufictune of thi: synup on sug.ar.

Early ia November remove the bact root from the ground, free chem f:om the loavos and wash thom ctean. Atter they have dried ap. grate hom on a common grater, put the grated mass into the flannel straining bug, and press out the juice by mean, of a common wuodon sere:v prose, or by putting it betheen tio woll loaded boa:de. As soon as the projer quantity of juice has been pressed out, measuro it into a kettle by the quart, and kindle a fie under tho samo. Thie juice, hewever, must nat ho alloned to boil at onece, but lipsi in a very warm state, so that you may i:atroduce yonr finger without foeling pain. Afterwards ada to every thirty guarts finice throo quarts of lime milk, mix it well together, and pour it moto the barrel, we!l supplied with holes, so as to dischas go tho flud whon it becomes mecessary. Horo tha juico is to remain for threo hours. One part of it will swim on the surface, and is to bo sbinmed off; anothor will sink to the bottam. The clear mattor is to be removed from the barrel, isy means of the discharging holes, strained again throutri the well-washed strained flannel cloth, and poured into a clean kettlo, after which it is boiled down by a brisk fire to one-third of its volumo. To ascetain the third part, measure the third part of the juico into the kettle, mako the latter stand straight and fix a small stick in the centse of it. Sign the point of the stick up to which tho liquid matter reachos, by a mank, and tho latter will crivo the test after furthor boiling whethor two-thirds have been evaporated. As soon as that is done to every thirty quarts of juice, one pound of woll-bruised bone black or animal charcoal, but keop the wholo mass constantly boiling, and apply the bono-black only in small dosos. After having done so and tho boiling boing contiuued aquarter of an hous, reducs the fre somewhat, so that the masseppears so ho beiling aronnd the rim of tho vessel. If you moan to have only syrup, boil the whole for two houre, adit to thirty quarts of juice the whito of six equs, cause it to boil up again, strain it through a cotton oi fincn cloth, and you will receive from thirty quarts of juico, ton to twolve pounds of tho finost syrup. If it is your cbject to have sugar, boil the whole so loag, as to leavo tivo quarts of liçuid matter of thirty quarts of juice, add then balf a pound of finesugar, clear the wholo by the whito of six oggs, strain it, and leave it till it bocomes lukewarm, put it then into an onlarged oarthen vessol aud tho sugar will crystalizo within a fow days. The syritp is pourod out, the sugar dried in a warm place, and stored up for uso. It is neecessary to tako great care of the fire at the last boiling, as too strong a fire will bo apt to provent the crystalization or consolidation of the sugar.
The wholo processis a very simplo ono, and as sugar is an important item in domostic uses, itis worth trying the experiment. Wo ought to mention, yot, that it is only tho whito Silcsian sugar beet that can bio used for
the production of sugar, all the red or:reddish varietios ere unfit for use. A. L. Krause. - [Wool Grower.

AMOUNT OF FOOD RAISFD ON AN ACRIE.

The amonat of human food that can bo produced upon acre is worthy of great consideration. Cne hundred bushels of fidian corn per acre is not an uncommon crop. One peck per week will not only sustain life, but give a man strength to labor, if the stomach is properly toned to that amount ot food. This, then, would feed one man 100 weeks, or almost eight years!

Four humdred bushels of northern potatues, can also bo raised upon an acro. This would givo a bushel a week for the same lougth of time; and the actual weight of an acre of sweet potatoes is $21,34.4$ pounds, which is yot considered an extraordinary crop. This would feed a man six pounds a-day for 3,557 days, or nine and two-thirds years!

To vary the diet, we will occasionally give rice.This has been grown at the rate of ninety-three bushels to the acre ovor an ontire lield. This at 45 lbs. to the bushel, would bo $4,185 \mathrm{lbs}$; or, at 28 lbs . to the bushel when hulled, 2,604 lbs., which at two pounds a-day would feed a man 1,302 days, or more than three and a hali yoars!
Upon reflection, it is not very wonderful that so many non-producers are able to find food, whon wo seo how many mouths one laborer can fill.-American Agricutturist.
Smath. Pox in Surer.-A renowed outbreak of small pox among the sheep of Norfolk is amounced in the English pepers.

Isfportast to Stock Breeners. - Farmers are strongly recommended is wash all roots before giving them to catte. Professor Dick states that ho hasseen 100 lbs. of car.h taken out of a horse which had been destroysd by it.

maple sugar.

It is hardly probable that the sugar crop will be very large this year, as the season has thus far been extremely unpropitions, at least in theso parts. Still there will in all probability, be some mado yet in this month; and it may not be unprofitable to rolate a plocess of refining that we onco learned in the days of our bushzohacking, which wo know to be simple and quite suporior to most practices in use.
When the sap is boilod to about the consistence of good salo molasses, set it by to cool, preparatory to applying the finings. Both milk and eggs are used, but eggs aro entirely preferable, as in the rising of the curd to bring up the impurities, the wholo matorial of the egg coagulates and rises, while the milk only sends up tho curd, leaving the whoy to mix with tho sugar, and injure its qualitios.

Take three or four egrs to each gallon of syrup, and beat them well and thoroughly-mix them with the syrup while cold. Then pass it through a woolen cloth (woolen, miud that,) in preferenco to any other; for this is ono of the important features of the manfacture, to strain through flamol after fining, and it is all the straining or settling that is requirod during the whole procoss. Reduce it by boiling, till, whon dropped into cold wator, it will retam its shape and not dissolve; take off the white scum and it is ready for graining.
It is a curious fact, that the process of refining maple sugar till it is enturoly white, destroys its peculiar dolicious flavor, and renders it a simple sweet, like cane sugar.-Moore's Rural New-Yorker.

Experiment with Plaster on Cons.-As accurato experiments are what wo all want, I give below the result of which may be of interost to some of your readors.
Last spring I procured two barrols Flaster of Paris, at $\$ 225$ per barrel, which was pat on tiventy acres of corn, with the exception of four strips across the field, that I in'yht obeurve the difference. Forty-eight rows in the most even part of the fiold was chosen for the experiment- 16 rows plastered upon each side of 16 rows not plastered; all having the same cultivationthe rows 120 hills in length. The corn whero plastered grew much fastor than the othor, which enabled mo to work closer while small, and when cut up, the stalks averagod about eighteon inches taller. Whon measured, strip No. 1, yielded 35 bushols; No 2, (not plasterod) 28 bushols; and No. 3, 35 本 bushols.- (There was no apparent difference in the soil.) This gave me seven bushels, or one-fifth more corn for what cost me only 36 conts.-Cor. of Ohio Cult.

Diskase in Swine.-A breeding sow was turnod off to fatten. A few days after she was noticed to stand with her head down, and to bo broathing with great distress, but yet, withont any perceptiblo sound. This continued for a day or two, when supposing she was laboring under an attack of inflamation of the lungs, I cut off her tail, from which sho bled freely. Thiş was followed by immediate relief, and in a day or two she was quite well.-Am. Ag.

Important Discovery.-Mr. Smith of Doanston, has made an important discovery in the treatment of the fleces of sheo;, whereby the fleece of the living animal is rondered repoilaint of water by a simple and cheap process; so that the sheop are defended from the pernicious effects of wet, whilst the natural omanations from the body remain unchecliod, and the growth and quality of the wool are improved. 'ithe effect of this: waterproofing has been practically tested on some of tho most exposed sheep walks in Scotland, and with signal success. This process, it is expecied, will effecthally supersede tho laying with tar and butter, and other salves, at one-third of the cost, whilst the wool will be preserved white and pure. Though the laying or salving of sheep hitherto has boon applied chiefly to flocks on mountainous or oxposed situations only, it is believed that the new mode of treatment will be found beneficial to flocks on the most sheltered and southern pastures; and that it will go far to prevent or to mitigate that destructivo disease, the rot, which is ueither more nor loss than dysentery, cansed by the continuance of wet weather, wherebr the ficeces of the sheep become soaked with rain, and produce the samo effect as is produced on man by wetclothing. It is also presumed that this mode of treatmont will lead to the succossful introduction of the Spanish shoop, and the Alpaca, which are known to have suffered from the prevalence of wet weather in this country. Mr. Smiith has secured patents for the United Kiiggom and the colonies.-Scotlish Papcr.

The Value of Oil in Indian Corn.-According to Professor Johnston, the popping propertios of corn dopend upon the expansion of the oil, on the application of heat. A barrol of pop corn would give six barrels of popped corn; while the rice corn, which contains a still largor proportion of oil, would give thirty six barrols of popped corn from one unpopped; whilo thero are some knds, which, from the absence of oil, would not pop at all. The structure of grains is a most important study. It is particularly important in its bearing upon the feeding of stock, The same explanation he applied also to wheat, which ho said contains a smaller proportion of oil than corn.

隹orticulture.

GRINTING.

As this is an important opexation which crery farmer who has an orchard, (and cevery farmer should have an orchard) ought to be able to perform himself, we insert explanatory cuts and a few brief explanations..

When the branch to be grafted is of the same size with the scion, the operation of grafting is very simple and perfect. This mode is called splice grafting. (fig. 1.) By a smooth sloping cut upwards on the stock, a, and downwards on the scion, b; you make the two fit so that the inner bark of one corresponds with that of the other; then bind them firmly together with a strand of matting, or the like, cover the wounds with grafting clay or wax, and the operation is complete. But as the size of the stalk is generally larger than the scion, other modes are necessary which require more skill. The two most common are called tongue grafting, (fig. 2:) and cleft grafting; (fig. 3.) The following with the aid of the cuts will sufficiently describe them:-

In Tonguc Grafting. - Having chocon your stock of the proper size, cut it off at the point where, a, it appears best to fit the graft. If the stock is quite small, it may be within three or four inclies of the ground.Then, with a very shap knife, make a smooth cut upwards, b, about two inchos in length. Naxt make a slit, from the top of this cut about one-fourtio of the way downwards. c, taking out a thin tongue of wood, Cut the scion four or five inches long, or so as to have three buds; then shape the lower end with a singlo smooth sloping eut, c, about the same lengh as that on the stock, and make the tongue upwards, f, to fit in the sht of the downward stock.. Reoreapply the scion aceurately to the stock making stio innor bark of tho
scion fit exactly tho imer bark of the stock, at lea t on ono side. Withont elhanging theis position, tio thom together carefully with a pieco of bass-matting or fape, h. And finaliy cover the wound with well prepared grafting slay or wax, i. This ball of clay should moro than cover the union, by an inch ebovo and below, and should be about an inch thich. If frafting was uscd! the oovering nsed not bo above half an inch thick.
In a month's time, if the grafthas taken, it will be expanding its leaves and sonding out shoots. It will then be neecssary:torub or cut off all shoots botwee tho ball and the ground, if it is a small stock, or all those which would rob it of a pincipal share of nourishment, if upon a large tiee. If the scion or stock is very weak, it is usual to leave one or two other buds for a time to assist in drawing up the sap. About the end of Jaly, after a rainy day, you may remove the ball of clay, and, if the graft is secuncly united, also the bandage; and the angle loft at the top of the stock, a, shonld now be cut off smoothly, in order to allow the baik of the stock and the scion to heal neatly over the whole wound.

Though it is lithls attonded to in cornmon practico, thio amateur will be giad to know that the success of a graft is always greatly insured by choosing the parts so that a bud is left near the top of the stock, l, and another near the bottom of the scion.
Cleft grafting is a very easy modo, and is in more common use than any other in this country and tho United Statec. It is chiofly practiced on large stocks. or treos the brauches of which have been headed back, and are too large for tongue-grafting. The head of tho stock is firt cut over horizontally with the saw, and'smoothed with a knife. A cloft about two inches deep is then made in the stoch with a hammer and splitting linife. The scion is now propared, by sloping its lower end in the form of a wedge about an inch and a half long, leaving it a litule thicker on the outor odgo. Opening the cleft with the spliting-knifo, or a small chisel for that purpose; push the scion agrefully down to its place, fting its inner barfion one side to that of ono side of the stock. When the stock is large
i_{1} is usual to insert two scions, fig. 3. On withdrawing tho chisel, the cloft closes firmly on the acions, when the gratt is tied and clayed in tho usual man* ner.
Tho great mumber of modes described in books, says Mr. Thomas in his "fruit culturist," havo tended rathor to bewilder than enlighton begimens; the following rematks, therefore, aro more tor tho purpose of laying dow: reasons on which succoss dopends, than for pointing out the peculiar modes of operation, which may bo vaied accordiag to convenieneo, provided attontion is given to the essential particulars.

Proparation by gratting dittors manaly and ossentialIf froin incroasing by cutinge, by insenting the cutting tato the growing stock of anciher tree, instoad of di-rectly into the suil. The stock thus supplios the sap, as tho soil does in the case of a cutting; and the g:at?,. instead of making roots of its own, extends is torming wood downwards, through tho inner bark, into ths stock ikelf. Hence there aro two chict requisites for success: the first, that the graft baso set in the stoek, that the sap may flow upward without interruption; and the second, that tho forming wood nay: ficw downsard minterruptedly throurg the inner bark.
To effect theso two requisites, it is needful, first, that the operation be performed. with a sharp linife, that tho vossels and poses may bo cont smoothly and ovenly, and the two parts bo brought into immediate and oven contact. secendedy, that tiso opration be so contrived that a prmenent and consideablo preseure be applied to keep all parts of these cut faces closely torother.. Thirdly, that tho lino of division between the inner bark and the wood, shonld coincile or exactly correspond in each; for if the inner bark of the cus sets whally on the wocd of the o:har, the upward: eurront through tho wood and back through tho bark, is b:oken, and the graft camnot flourish nor grow.And, filurthly, that the womided paits mado by the operation, bo effectually excladed from tho exiernal wis, chichly ro :ctain a due quanity of moisture in the traft, but also to excluad the wot, until, by the growth of the graft, ite union is effected.

1. Tho fist requisite is bost atsined by keeping a keen, flat-j)aded tinite to cut he faces, and anothor knife for other pirposes.
2. The second requires that the jaws of the stock in oloft-gratting, press with somo force, Lut not too much egainst the wedged-shaped sides of the graft. Λ stock onc-third of an iuch in diameter winl sometimes do this sufficiently; but three-quarters of aninch is a moro convenient size. In whip-grafing, the tongue and alit should be frmly crowded or bented together.
3. The thisdrequisite is attained by closo cxaminetisn.
4. Tho fourth is accomplished by plasters of grait-ing-wax, and by the application of grafting-clay.-Gruftimg-20ux may bo mado by molting togesher ono pound of beoswax, two of tallow, and four of rosin. More wax and less rosinis less adhesive to tho hands, but more expensive. Ibis spread, when melted or softonod, onmuslin or thin unsized paper, with a brush or. spatula. It is samenmes applied without plasters, in which case itshouldite worked with wet hauds, until it may bo drawn out into ribbons of wax, which are wrapped round the part. In all cases itshould be applied closeIy, so as to allow if possible no intersticos, and cover overy cut or split surfiace otherwiso exposed to the air. In cool weather, a lantern, chafing-dish, or hot bick, is nocessary to soften the plastors before applying them.

Grafting-clay is prepared by mixing one-third hoosedung, free fiom straw, and two-thinds clay, or clayey bban:, with a littlo hair, jika that used in plaster, to pie-
vent its cracking. Boat and temper it for two or throo days, until it is ihronglily incorpurated. When used, it should be of such a consistency as to bo oasily pat on and shaped with the hands.
It is hardiy necessayy hero to montion that propagation by grafting and by cuttings is to be porformed early in spring bofore tho buds swoll; and that the grafts or cuttings may be cut lato in autumn or at any time daring winter, provided the natural moisture is proserved until they are ured. A convonient mode of thus preserving them, is to wrap or imbed them in damp, not wet, moss; or bury them in a box, boneath the surfice of a dic spot of earth, the box to be open downsaads, and tho grafts to bo kept from oontast with the eazth by sticlis across the in ildo of the box.

HixTS ON HORTICLLTCRAK SLDJECTS.

DY GEORGF I.rs..nc:
A few remarks on the peculierities of such Troes and Shrubs as are hardy, and easily procured from a Nursery, might be servicable in assisting to make-a selection. All trees are useful by affording shelter, producing shade and scchnsion, conccaling disagrecable objects, and enhancing futwe value. They are also ornamentel, never failing to create or add beanty to a residence or landseape,

The IIorse C'hesnut and Silver Maple may be ranked first in stateliness ard general clo. gance. For rapid growing trees of a harge siac, we may take the English Elm, Chinese Λ bele, European Larch, the Locust, European Ash, W'ecping Willow and Poplar. To these may be added, as eminent for the beauty of their flowers and foliage, but attaining less size, the Duuble Flowering and Mard Shell Almond, and Double Flowering Cherry.

The most rapid growing Shrubs are Lilates of different sorts, Fringe Mree, Upright Honeysuchle, Privet, Syringo, and. Guelder Rose.Such shrubs as are adapted to grow under the shade of Trees are Privet, Buckthorn, and Missour Currant. The most remarkable for the beauty of their flowers are Deutchia Scabras. Mezcreon, Double IIawthorns, and Tree Pœonias. The best climbing plants are the Queen of the Prairie Rose, Scarlet Trumpet, and Striped Monthly Honcysuckle, the latter rare, and of exquisite fragrance.

Some trees and shrubs retain their fruit and. berries till veny late in the fall, after having. dropped their leaves. of these among trees are the Mountain Ash and Siberian Crabs. Shrubs of this description are Sirawberry Tree, red and white, Parberry, and. different descriptions of Snowberries.
the rlower aframa.
The Rose has been a favorite flower from time immemorial among all nations. The at:
rention given to its culvure of late jears in Europe and the United States, has created many new and splendid varieties, impossible- to enumerate. They require a rich deep soil somewhat heary. Early in Spring all surplus shoots should be cut out, and considerably shortening last years growth of the remainder. "Let some rutted manure be dug in around the roots, as carly as possible, and suckers remorda; a good bloom may then be expected.

Herbaceous Pconias_These are beautiful hardy flowers, of the casiest culture, , thriving in any ordinary soil. Mfter being planted let them remain severhl years without removal, as they increase. annually in size and abundance of flowers. The finest varietics are Rosca, large nase color and fragrant; Humei, double crimson, exccedingly large flowers; and Whitlejio, double white, large, beautiful and fragrant.

Phoxes-Of all hardy perennials none are so ormamental to the flower garden from June to November, or so perfectly hardy and casily cultivated as the Phlox. When planted out they require no care, cxcept to tie the flower stalks of the tall sorts to a small stakc. They can bea obtained of a great variety of colors-pure Thite, piak, purple, striped, de. The following vould be a good selection:-Maculata, reddish purple-flowers in Junc. Picla, beautiful white with purple eye-July. Frelinghuysen, striped light purple and white - July and August. -icuminata, purple, tall-July and August. Breckii, purple with white eye, tall-and flowers in perfection in October: Decustata, very fine white, three feet high-August. Panicilata, fine pink-August.

It would be superfluous to enumerate mere raricties, but where required, the axriter can supply 20 distinct sorts, different in color, height and season in Dowering. Price of Phloses, single plant, 1s. 3d. A dozen varictics assorted 12s. 6d.

The Verbena is one of the wichest of all flowers. They are tender and require to be housed in winter, butwhenturned out in spring they blooni in the greatest profusion all summer. Wherever flowers.are culiveted they are perfectly indispensable, being particularly adapted to a hot dry climate, they appear bright when all else.seems to shrink and wither.
iEvergreen Trees, Dahlias, dre., will be noticed fy your next.
'ITur:onto Nersery: March 30, 1850.

MANURING ORCHALEDS.

When orchards bear profusely, or tho soil through twhich their roots oxtond, yields crops swhich aro ree-
moved from the ground, the troos ought to bo sup plied with an annplo droseing of manure, as often, at least, as onco in four or fiyo jears Wo think, however, a better way is to allow the orchard to take its place in a rotation. Uulite many others, we would not object to occupying the ground with any particular species of ycgetation, but let it be potatoos, corn, wheat or oats, asthe soil or the judgment of the owner may dictato. But wo do insist, that whero an exhausiing crop has beon taken, amplo compensation in manures should bo mado, for tho exhaustion thus occasioned.

It is better, however, as a genoral rule, that orchaids bo plowed only in their younger days, bofore their top* become much doveloped; then put the ground in tho highost condition of sforility, and lay it down to graes, and invite the extremities of the outsproading, pendant branchos to fall as low as tho. ground, if thoy prefer. This groally facilitates sud economises harvesturg whon fruit is hand picked, as all valuable fruit shoudd be, and the grass may be equally we!l socured undor such trees, as when tho branchos aro moro olevated. Wo admire a luxuriant orchard. with its broad. umdrella top, sweeqing the goond wher loaded with rich, blushing fruit, and no fields can bo bettor occupied than with such a harvest, if the varieties are well chosen and the trees have received the proper caro.

If tho orchund is in a meadow, and the..grass and apples aro ammally-removed, the leaves will of couss follow then, -assoon as the autumnal blasts or wintry winds sweep over tho smooth surfaco; and thus is tho ground robbed of all the vegotable matter to which it has given life through the season. Were the orchard as well protected ast the forost. by its numerous low swales, fallen branchos, or upturned trunks and roots, and the innumorabls standing trees, the decaying loaves and branches, and fallen trunks would restore to the soil all it had abstracted; butin the absence of these, its naturè? manures, it must receivo othors or starve.

Ashesareone:of the best applications for an orchard; so, aliso, is swampranuck, or a compost of barnyard manure; charcoal is excelient, as is also limo, and oceasionally bonednst, plaster, and salt, each of which is appropinately appliod around the roots. Scraping the trunks when theyrbecome arthrifty, mossy or bidebourd, and washing with strong soap suds or wood'ashosiloy, anid then giving a strong coat of whitewash, aro attoided with tho bost efiects. These act both an , manure and destructive of insects and worms.-Ameazsicun Agricultarist.

Couve Troncuda.-This is a epecios of masamoth calbage, which grows in Portugal to a height weffour or five feot. The sceds are sown and troated oxactly like those of the common cabbage. The most valuable parts of the plent are the heart and tender flowers buds, which, when boiled tendor, and served up with pepper, salt, a little garlic, olive oil, and vinegar, forni a most delicions dish with the Portugese. The white ribs, also, when cooked, somowhat resembles seakale. The outer leaves and chopped stalks male oxcellent food for milch cows.-American Agricuttarist.

New Green-Houst: Plant.-Fow recont acquisitions to the green-house, are of more menit than the Asiatic torremuia (Torrenuin Asinaiat). Its equisitelyshaded flower is small, and of a dolicate light-blue. shaded towards the top with a rich, purplish-Hfito Ihid.
Promicg Resivous Trees.-The worst time to prano these is in the spring when they aro beginuing to grow. the safest in qutumn or wintor:-Agriculturul raceetle.

NORMAL SCIIOOL, TORONTO.

The half-yearly examination of this valuable instiiution, which seems destined to ran a career of increasing usefulness, took place in this city, on the 17th, 18 th, and 19 th of April. Our limits necessarily compel us to a brief general notice. The examination, upon the whole, was creditable alike to the indefitigable teachers and their pupils, and was witnessed by large and respectable audiences with evident satistaction. His Excellency the Governor-General's prizes for the two pupils evincing the greatest proficiency in Chemistry, Goology, Animil and Vegetable Physiology; more particularly in their bearings on the theory and practice of Agriculture, were presented by His Excellency in persun. It will be seen that the second prize was divided bet.scen two competiturs, one of whom was a female, buth being considered by the .judres on a par. The following report of his Lordship's remarks, we copy from a city paper.

His Excollonoy was then callod upon to prosont the quizes. Ho said, that bofore doing so, he desired to oxpross his acknowledgments to thoso gentlemen who had been good onough to act as judges on the occasion, withont whoso assistance, and the admirable manner in which thoy had been secorded by the labours of Mr. Hind, what he (Lord Elgin) had done, would have beon entirely usoloss, Whion the public mind of England liat been aroused to the nocessity of popular oducation, it was thought that thero would bo no difficulty: in finding a suthicient rumber of toachers for the schools then ostablished, that where the domand was created the supply would spoodly follow ; this was soon discoverad to bo a mistake, and that it was necessary to supply the want by carofully training them. It was satisfactory to think that iu the oarly days of Canadim education, this fact had beon recoguised, and the desire to remedy it been evinced by liberal grants by Parliament to this institution and the attondance of large numbers of pupils. Tho prizes which ho had offored were in ons department only of the studies prosocuted in the institution; he hoped however, that ther would not think from that circumstance that he was disposed to undervalue tho o:her branches of instruction; he thought that the knowlodgo imparted should bo as extonsive as circumstances would admit, that the education of the porsons who were to undertake the task of moulding the minds of the rising goneration of the province, should be as high as possible, with a due segard, which should alsyays be paid, to the great principle of roligion and Christian morality. Ho did not undervaluo other branches, but he had offored prizes to thoso who had attainod most proficiency: in the knowledgo ol scientilic hasbandry, becauso he bolioved that too litte attention had hitherto beon paid to it, and bocause it was one from which .the Province might dorive groat benefit. Ho knew that there was a prejudice amongst practical men, against sciontific agriculture, and it was not altogether unroasonable, as there had been, no doubt, a great many things sot forth under high sounding tilles, which wero not founded on a sound basis, and had proved only sources of loss to their projectors; these failures, however, aroso from not understanding thorotighty the true principles of tio art. 'The diffurence between the two parties was simply this, the practical man judgod of matters on a small scalo,
the scientific man on a largo one; the practical man was in dangor of taking an oxception for a rule, a consoquence for a cause; both agreed in thero boing certain natural laws, by which thoy were obliged to act ; but tho practical man judgod only from his own oxperiense of thoso natural laws-ho refusod to belifeo or profit by anything which ho had not soen. He adoptod thio fallacy of Hum3, who said that all contrary to experionce was falso-that miracles wero contrary to naturo, and the history of thom therefore me true. He bolieved that in giving the practical man sciontific infurmation, they woro not only giving him the means of a direct benofit to himsoli, but giviug him a guard against the projocts of mere speculators. Qne other reason actuated him in choosing this subject. Ho thought it of the utnost importance in this country to raiso the character of the agriculturist, to make the pursuit honorable, that young men might not supposo that their time was thrown away in cultivating tho soil. In Groat Britain, all the loading public men, statosinen, and even warriurs, the Consurt of Her Majesty himself, were sciontific agriculturists, and oven in knowledgo of detail could put practical farmers to the blush. In the noighbouring country also, he kad Jately seen that at a trial of a now plough, the gallant soldior, who now occupied tho position of Prosident of the Republic, handled the instrument with the skill of a workman. Inthis age no art would would lseep its place among honourable pursuits anless science was called to its aid and ho trusted that those before him, in the positions which thoy would shortly fill, would inculcate on thoir pripils the great inportance of its introduction into Caneidian Agriculture. His Excollency concluded with an earnest prayor that they might be successful in doing so, and that God might bless them in all parts of tho labotious duty in which they were about to libe ongaged.

His Excellency thon prosented the prizes, which were in the form of vory handsome books, to the successful competitors.
1st. Mr. Weston Herriman, of tio Township of Whitby.
'2nd. Mrs. Dorcas Clarko, of Pickeriug, and Mr. Finlay McNab, of North Elmsley, County of Lanark.

NATURAL PHILOSOPHY.

No. IV.

on tie mechantcal powens.

Thore aro six mechanica! powors, viz., the lever, tho pulley, the zohecl, and axlc, the inclined plane, the zocdge and the screvo. One or more of these enters into the composition of every machine.

In order to understand the powor of a machine, thore are four things to bo considered. Firstly, tho power that acts; this consists in the effort of men or horsos, of weights, springs, steam, \&e. Secondly,the resistance which is to be overcome by the power. The offect of the power must always be superior to the resistance, otherwise the machine could not be put in motion. For instance, were the resistance of a caisriage equal to the strength of the horses omployod to draw it, thoy would not bo able to draw it. Thirdhy, we are to conisider the centre of niotion, or, as it is termedin mechanics, the fulcrum, which means'a prop. And lastly, the respective velocities of the powor, and of the rosistance.

THE LEVER.

The lever is an inflexible rod or beam, thet is to say one which is not supposed to bend in any di: action.For instance, the stoel rad, to which a pair of scales
is susponded, is a lover, and tho point by which it is suspended, called tho prop or fulcrum. is also the contre of motion. The two parts of ea lover, divided by tho fulcrum, are called its arms. Now, both scales boing ompty, they are of the same weight, and consoquontly balanco each other. Wo havo stated that if two bodios of equal weight are fistoned together, the contre of gravity will bo in tho middlo of the line that connects them; the centro of gravity of the scales must, thereforo, be in the middlo botweon them, as - the fulcrum is, and, this being supported, the scales "balance oach other.

You recollect, that if a body bo susponded by that point in which the contre of gravity is stluated, it will romain at rost in any position indifierontly; which is not the case with this pair of scales, for whon we hold thom inclined, they instantly rogain their oquilibrim. The reason of this is, that the contre of suspension, instoad of exactly coinciding bith that of gravity, is a littlo above it. If, therefore, the equilibrium of the scales be disturbed, the centre of gravity moves in a small circle round the point of suspension, and is theroforo forced to riso; and the instant it is restored to fiberty, it desconds and resumes its situation imnediately below the point of susponsion, when the equilibrium is restored. It is this property which ronders tho balance so accurate an instrument for weighing goods. If the scales contain different weights, the centre of gravity will be removed towards the scalo which is hearior, and being no longer supported, the heaviest scale will descend. If the lever be taken off the prop, and fastened on in another point, that other point then becomes the fulcrum. In this case the equilibrium is
 dostroyed; the longor arm of the lover is heaviest, and descends. The contre of gravity is not supported, because it is no longer inmediately below that point, as it is now situated, the scalos swill again balauce eabh ouler. Thus if a hoavier weight be placed in the scalo suspeaded to the shorter arm of the lever, and a lighter one into that suspendod to tho longer arm, the equibibtium will
 bo rostored. It is not, therefore, impracticable to make a heavy body balance a light one; and by this an imposition in the woight of goods is sometimos offected. An ingenious balance, called a steolyard, has been invented, on the principle that a weight increases in offect in proportion to its distance from the fulcrum.

When a lever is put in motion, the longer arm, or acting part of the lever, must movo wilh groater vo-
locity than the shorter arm, or resisting part of the lover, becauso it is further from the centre of mution. Whon two boys ride on a plank drawn over a lug of wood, tho plank bocomos alover, the log which supportsit the fulcrum, and the two boys, the power and resistence at each end of the lover. When tho bove are of equal woight, tho plarlk must bo supported in the middlo to make the two arms equal; if they differ in weight, the plank must bo drawn over the prop, so as to make tho arms unequal, and the lightor boy must be phaced at tho extremity of the longer arm, in order that the greator velocity of his motion may compensats for tie superior gravity of his companion, so as to ronder their mome hitums equal. Bat wo know that the action of the power must bo groator then the resistance in ordor to put a machine in motion. For this purpose each boy at his descent touchos the gronnd with his feet; and the support he receives from it diminishes his weight, and onables his companion to raiso him, thus each boy aiternately reprosents the power and the weight, and the two arms alternatoly perform the function of the actiug and the rosisting part of the lever.

A lever in moving, descrihes the are of a circle, for it can move orify atound the fulcrum-or teatre of no-

tion. It would be impossible fur one child to riso porperdiculary to the point a, or for the other to decend in a straight lino to B ; thoy each descibe ares of their respoctive circles; and it may be judged from the different dimensions of the eircle how much greater the velocity of the dittle child must be than that of the bigger one. Enormous weights may bo raisod by levois of this description, for the longer the acting part of the lever is in comparison to the resisting part, the greater is the effect produced by it; bocause the greater is the velocity of the power compared to that of the woights.

We have all seon a heavy barrel or tun rolled over by thrnsting the end
 of a strong stick heneath it and resting it against a log of wood, or any othor object which can give it support, near the ond in contact with the barrel. The stick, in this caso, is a lever, the support, the prop, or fulcrum; and the nearer the latter is to the resistanco, the more easily will the power be able to move it.

Thore aro theo difforont kind of lovers: in tho first, which comp:ehends the sovoral lovers wo havo doscribed, tho fulcrum is botwoon tho powor and tho weight. Whon the fulcrum is situated equally botwoon tho powor and the weight, as in tho balance, the power mast bo somothing groator than tho woight, in ortder to move itt for nothing can in this saso bo gained.by velocity. Tho two arms of tho-levsr being equel, the velocity of thoir oxtremisies mustube so likewise. Tho balanco is thorefore of no assistance as a.mpechanical powor, but it is extremely usoful to ostimato tho reapoctivo weights of bodies. But whon the fulcrum, x, of. a lover is not equally distant from the powor and tho weight, and that the
 power, P , acts at tho extremity of the longor arm, the pewar may thon be less than the reight, w, its deficisncy boing compensaled br its greator relocity; as tro observod in doscribing the sec-saw. Thereforo, when a great weightis to be raised, it must bo fastoned to tho shorter arm of a lover, and the power applied to tho longer arm. But, if the caso will idmit of putting tho ond of tho jevor.auder the weight no fastoning will bo roquired, as you say porceice by etirring the fire. The poker is a levor of the first lindid . Tho point, where it rests against tho bar of the grate, whilst stirring the fire, is tho fulcrum, the short arm or tho resisting part of the lover, is omployed in liftiug the weignt, which is the coals; and the hand is tho powar, applied to the longer arm, or aoting part of tho lover. Λ pair of scissors is an instrument composed of two levers, united in ono common fulcrum: the point at which the two lovers are screwed together, is the fulcrum; the handlo to which the power of the fingers is applied, are the extremitiessof tho acting part of tho levers; and the cutting part of the scissors are the resisting parts of the levers: therefore. the longor the handles, and the shorter the points of the scissors, the more easily will they cut. Thus, when pasteboard, or any hard sulstance is to be cut, that part of the scissors noarest tho screw or rivet is used. Snuffors, and most kinds of pincors, aro levors of a similar description, tho great force of which consists in the resisting part oi the lever being short in comparison of the acting nart.

In lovers of the second kind, the weight, instead of oing at one ond, is situated between tho power and鹵 power mast nocossarily wioight, as it is more dis-
F tant from the centro of motion. Whamay somotimes see a barrel moved by means of atevor of tho second hind, as well as by one of the first. The erid of the stick is thrust under the barrel rests on the ground which becomes tho fulcrum; the barrel is the weight to be moved, and the power the hands applied to the other and of the levor. In this instance there is an immense difference in the lengh of the arms of the lover, the woight boing almost, closo to the fulcrum, and the advantago gained is proportional. The most conmon oxamplo that wo have of levers of tho socond hind is
in the doors of our apartinents; in thoso the hinges roprosont the fulcrum; the hand, the powor applicd to tho other end of tho lovor; and the door, or ratherits inortia is the weight which occupies tho wholo of the space betwoen-tho power and tho fulcrum. Another very common instance is found in the oar; the hlado is kopt in the same place by the retistance of the water, and becomos tho fulcrum, tho resistance is applied whore the oar passes over tho sido of the toa:; and the hande at the handlo are the powor. Nut-crackers aro donbio sovers of this kind: tho hinge is the fulcum; the nutcracliers tho rosistarce, and tho hands the power.

In levers of the third kind, the fulcrum is also at oes of the oxtremitics, the weight or esistance at the otl:or, and the power is applied between tho fulcrum and the - the resistance. Thus at:o fulcrum, the weight, and tho power oach in its turn, oceupies scme part of tbe lever between its extremitice. But in this third hind of lover, the weight being further from the centro efe xof motion than the ":W power, tho difficulty of paising it, instead of being diminished is increared. Lovers of this description are used when the object is to produce great velocity. Tho aim of mechanics, in :general, is to gain force by exchanging it for time; but it is sometim es desirablo to produce great velocity by zn expenditure of force. The treddle of the conmon turning lathe-affords an examp!e of a leven of the third kind employed in gaining time, or velocity, at the cxapenso of force. A man, in raising a long ladder po:pendicularly against a wall, eannot place his hauds on the upper part of the lodder; tho powor therofore, is necessarily placed neazer the fulcrum than the weight. for the hauds aro the power, the ground the fulcrum, and tho ladder, the weigit, which, in this, as well as in the door, may be considered as coilected in the contre of gravity of tho ladder, about half way up it, and coneeguestit beyond the point whore the hands aro applitec. 'Tlyis kind of lever is omployed in the structure cof the human frame. In lifting a weight with the hand the lower part of the arm becomos a lover of the third - Hind; the clbow is the fulcrum; the muscles which move the arm, the power; and as these are noarer to the elbow, than the hand is, it is necessary that their power should excced the weight to be raised. It is.af more consequerce that we sliouid be abie to move our limbs nimbly, than that we should be able to overcoma great re:istanco; for it is comparatively soldom that we meet wilh great obstacles, and when wo do, they can bo overcomo by art.

White Zinc Paent.-The Socioty for the Encouragemont of National Industry, in Pais, has grantedua medal of gold worth $3,000 \mathrm{f}$. to M. Leclaire for his substition of white of zinc for white of lead. It appears that, from 1838 to 18.17 , no less than 3,142 persons entored the Pais Hospital, attacked by diseare, originating in the uso of dead Of those, 1,898 pensens worked at white lead or an minium; there wore also 712 painters, 63 grinders of colors and 10 preparers of risiting cards with porcelain surface. Since 1846. no person has been attacked in M. Leclaire's establish-ment.-The Builder.

Salt Injuriols to Poultif.- -Do not givo pouley sali, nor salt foed. It is poisonous to tkem .

medicing for honses.

As a gencral rule, any medicine. cercy an cmetic, is good for a horso that is good for the sams complaint in tio human system. Multiply an ordinary doso for a man by nine, for a common horse, or even by twolvo for a vory largo horse.

Tho abovo was obtained upon a lato vi-it to Col. Wado Hampton, of South Carolina, and few men in this country aro moro comperiont to give proscriptions of the kind than that gentleman. Ho has boen long known as one of the hest breeders of horses, in tho United States, as well as ono of the first rate cotton plauters and stock breeders in tho south.-Ibil.

NETV MODE OE VENTILATION.
The discovory, in England; of a now pincipal of rontulation; the trath of which seoms established beyond quostion, will furnish in important desideratum in ficon-houso management..
It has been ascertained that air, like water,.can bo mado to ciiculate though a syphon, but inversely with tho lather fluid. That, whereas, wator will enter a syphon by the shorter arm, and discharge itelit try the longer, air on the contrany, will always onter biy the longer a:m and diseharge itelf by the shorter.
[Tlis surely is a mistake-the illustration cit the chimney proves it. The difierene of action between air and water is not in the arms of the syphon by which the fluids enter, but in the position of the syphon. In the case of water the kng arm is tanned down, in the case of air ap. Both enter by tlie short arm.-ED. Caradian Agarcultcrist.]
Thus, if a storo-pipo olthow bo inserted in the chimnoy, with one of its orifices faring the colling, a syphon will bo formed of witroh the chinmey will bertholongor arm. The air will resh into the shorter arm of the stove pipe, a!d dischargo itcolf by the longer arm of. tho chimney, withont tha necessity of a fro in the chimnoyr to canze a dranght, which is often required where there is simply a hole in the chimnoy for ven-. dilation.
One groat adrantago of this pinciple, as wo undoratand it, is, that thero is no inward current of cold air fiom tho cutside-that the syphon can only work in one direction. Thus, when there is no chimuoy, tro stove-piro elbows united cau be insented in a sash pano with the shorier elhow in the reom. The current of air will set strong!y fiom tho ruom, and a person may sit immediately under the pipe without dangor from the deseent:of the cold air upon him, which always takes place when a sash is lowered.
This principle is of no slight inportance in its spplication 10 greonhouses. Every gardener knows the importance of getting rid ofthe bid air in his houses, and also knows the difficuly of. doing so withour har-ing his plants cat, to uee a tochmical term, by the cold air rushing in upon them. Now this discovery remedies the dificulti-ai:once. Alf he requires, is a sufficient number of these stove-pipe elfiowse introduced, cithor into the back wall or rocf, with means of closing thom.atephasures, and ho cenp, inutha most extreme weather, throughly vertitato tite house without the Leastimjury to his planks, from the cold.'
Thayy of:the inventions of the prosent day seem to to lesg thenovel application of old principlos, than the disconary of ontively nare principles in natural scirnce. Guch is the casebch reiter Rumaiso heating, and with the pragrassixo tandonsiAs of the age - still. moro im-
portant results inny be anticipated from tho exortion of mental inquiry in this diroction.-American Agricult_{1} itist.

manumactune or parchamet.

Vellum is made of the slins of calrce, kidv, and dosd. born lambs; and' parchment is mado of thix shoep and she goat skins. This wout or haif must bo removed from them first, and thon they aro steoped in a pit of lime water. Ater thay are taken out of the lime pit, they are slaved nad well wasled, and then strecthed $n n^{\prime}$ a framo mads of'upright and cross pieces strongly fastened togethor, and the bary aro porfointed. with a selies of holes to receivo hard wood or iron tapered pins. Eachi.pinghas a lolo in itilike a violin pin, to lacta tho string tiedto the skin, to strotch it, and prevent it from prokering while dy ying. Skewers aro also omplored to steetch moro or less of the skin on this frame, (ícrse,) according as a greater or less pieco is renuired to get hold of. Some cimploy hoops in placo of the horse, and this :answers tolo:ibly well. The great point is to strotch the stiins as much as poss ible, lireping ont all the wintses. While the thin is on the stietching frame, the woknen wihn a currying donblo cuged knife, venove the fleshy excresences by drawing the knifo downwads. The skin is then sprimided upon tho flesiny eido with chalt, and woll mbled wihl a piece of flat pumice stone. Tho pumice stone is then over the other surface of the skin wishout chath. The shin is then allowed to dry, but mast be protected fiom sumshine and frost. It mu:t not be dried too suddenly: When it is refectly dry. the chalk is removed ber inbling it with the wooly tide of a lamb's shin ; but great ca:o muse bo taken in this process, not to injure the sumfaco. All gicase must of necessity be reinoved foom it; this is tho object of sleeping it in the lime.
Alter tho shin is dried, it is transferred to a framo celled the scioper, whero it is extended with cords, generally apon a pieco of calf-skin well stretched. Tho skin is placed with the tall downwards, when the rougin edges are paised off with a sharp knife, and then the outside surface is scraped obliquely downwards till it bceomes parfectly smooth, and whatever irregularitues mey remain, are ranuved by a flat, smoo h rieco of pumise rone. To do this, the skin is placed-upon a stool stuffed with wool alid coveled with soft parchment. It is callod the cushion. The pumice storo should be vory fine, the finer they are the better.Soneetimes there aro sinall holes nade in the parct-ment skin : theso are neatly patched by cutting tho edges thin and pasting on smail picees with gum water. Parchment is ofien colosed green, which is done by a mixture of crearn of tatar, virdigris and nituic acid, (only a small quantity of the latter) It is made into a solution of water and laid on evenly with a spongethe skin having been first wot. Parchment reccivos its necessary lustre fiom tho white of cgess, or weals gum water.-Sci. Anaerzam.

DEEDICAL USES OR 3AITT.

In many cases of disorderod stomach, a teaspoonful of salt is a certain curo. In the violont internal aching, termed cholic, add a teaspoonful of salt to a pint oftcoldwater-drink it, and go to bed; it is one of the speediest remedios known. Tho same will revive a person who seeme almast dead, from recoiving a very heavy fall, \&c.

In an apoplectic fit, no time should be lost in pouring down salt and water, if sufficient sensibility remain to allory of:swallowing; if not, the head must be
sponged wih cold water until the senses return, when salt will completely restore the putuent from the letharg:
In a fit the fret should be phaced in warm watee with mustard added; and the legs briskly rubbed, all handages removed from the neck, and a cool apartment procured if possible. In many casos of sovero bloodsing at the lumgs, and when other remedies fail, Dr. Rush found two toaspoonfuls of salt complotely stayed the blood.
In cases of bite from a mad dog, wash tho part widn strong brine tor an hour, then bind on some salt with a rag.
In toothache, warm salt and water held to the part, and renowed two or three tumes, will reliove in moat casce. If the grums ho affected, wash tho mouth with brine; if the teeth bo covered with tartar, wash them twice a day with salt and water.
In swelled neck, wash the part with bine,, anci drink it also twice a day until curod:
Salt will expel worms, if used in the food in a moderate degreo, and aids digestion; but salt meat is injuious if used much.

NEW CANDLE MACHINI:.

Wo learn from the Balimoro American that the Miessm. Mathowson, of that city, have rocently introduced a new patont candlo makingromehine foom Eugland, which is said to be simplo and ingonious in its construction, and promises to be of much ntility,
It consixts of a number of moulds, holding eighteen asch, whieh aro furnished with a bobbin to oach mould holding wick for over ono hundred candles on each bobbin.
At the connencement the first mould is threaded by hand. It is then placed on a railroad and brought under a cistern from which it is filled with tallow; it is then shoved along to a carriage, which when it has received its load, i, conveyed ly rail ontside to an open shod in the yavd, whero it is allowed to cool. When that operation is completed it still continues its circuit on the railroad, until it arrives at the machine, upon which it is placed and a stroko of a lever ojocts the whole eichnteen candles, at the same time threading the monlds fur a fresh charge ;- a revolring saw lnite cuts off tho wicks as fast as th: hand can move it across the machine, the ends of the wieks aro soized by pinchers, which grip each of the:n as a porson wonld with the finger and thumb; it is again placed on tho rail and contimes its courso to undergo tho same operation. On thoir way over the rail they aro interrupted by a person who removes the pinchers and trims the buti onds of the candlo.-Farmer ane Mreciatuic.

To Decompose Diad Ammals for Maxure.-The most raphd way to offect decomposition of doad carcases is to mix theni with something already docomposing. Chop the flesh up, and lay it in alternate beds with hot stable manure, and cover over wuh vegetable mould, burnt earth, or charred stufi of any kind. Any of thoso will detan the effluvia.-Agricult:avel Gazette

Extectricity.

The earth is the great resorvoi: of electricity, from which the atmosphere and clonds receive their portion of the fluid. It is during the process of evaporation that it is principally excited, and silently conveyed to the regions above; and, also. during the condensation of this same vapor, the grand and terrific phenomena of tiunder and lightning are manifest to eur senses.

In order to form a correct estimate of the immenso power of this agm in the groduction of olectricity, wo must bring to our viow tho quantity of wator ovaporated from the surface of the earth, and also tho amount of olectricity that may bo doveloped from a grain of this liquid. According to the calculation of Carvallo, about tive thousand two hundred and eighty million tons of water aro probably evaporated from the Moditerranean Soa in a singlo summor's day: To obtain some idea of the vast volume of water thus daily taken up by the thirsty heavens, lot us comparo it with somothing rendored moro apparent than this invisible proenss. P'sosident Dwight and Profesoor Darby have both ertimatod tho quantity of wator precipitated over the Falls of Niagara at more than eleven million tons per hour. Yot all tho water passing over tho cataract in twonty days would amount only to that asconding from the Mediterramoan in one day. More recent es. timates maku the mean evaporation frum the whole oarth as equal to a column of thirly-five inches from every inch of its surface in a year, which gives ninctyfour thousand and fifty cubic miles as the quantity annually circulating through the atmosphero. Thus wo seo tio magnificem scale on which the great machine works.

Dr. Farraday has shown that a singlo drop of water contains as much electricity as an ordinary flash of lightning- ev:ough at least to destroy tho life of an olephant. Thus the litle dewdrop, from which the poet has dorived such sweet imagos, may suggest to us dèas of a more sublime nature.

to presenvi eggs.

I have oftea heard it remarked, and obsorved it mysolf, that egrs that romain in the nest will hatch much ietter than those taken out and returned, when the hen begins to sit. I know of no other reason why this should be, except the fact that the hen turns hor eggs aver, every time she goes to hor nost. I think, if your correspondent C., will turn his oggs every day, and keop them in a cool, dry place, he may calculate on them a much greater length of time. I havo kopt thom a month in this way; and preserved their vitality; and I don't know but the same rule would hold good for a longer tine. Turning the eggs prevents the yolk from sot:ling.
Λ Yingee.
-[Busion Cultivator.
Remurks.-Dr. Bennott informs us, if eggs are kept in-a cool and dry place, their vitality might be calculated upon for many woeks, and even months.-B. C.

EEMLALE IMPROVEMEST:

Mrs. Kiskland, in insisting upon the duty of females to improve their minds while young, ash 3 the following "home question:"

- Who are the women that sow dissension in society -the tale bearors-the whisperers of scandal? The really well informod and accomplished? Those $\boldsymbol{r}^{2} 10$ enjoy the best books, love to read aloud to, their criends luxuriate in high toned poetry-covet the convonsation of instructed peoplo, and are able to bear a part in it themselves? It is not necossary to answer this qurestion. It is undeniable, that even sincere piety encounters a most formidable obstacle in the emptiness which has led to a habit of gossip and detraction, while an utter distaste to whatever is low or false, protects oven the moro women of the world from this class of faults. On whom doos this life of care and trial fall soonest? On her who has made its every day frivolities her objoct, or on the studont of nature, of character, of books, whose thonghth have something on which to rost, little
dapondent on fortune, and not at all on fashion? Who torments us by a potty, prying curiosity so much, as one whoso rational curiosity has nofor been exercised upon objects of real interest? Who that knows how to value books, will be likely to run mad after dress and vulgar show."

HOME.

Thout, whose every hour, Is spent in home's sweet bower, Whoro love, like golden fruit o'orhanging growsWhere friends to thy soul sweet, Unitod, circling meot-
As lapping leaves that form the ontire roseThank thy God well ! soon from this joy thy day Passes away.

Thon at whoso housohold fire Still sits thy aged siro-
An angol guest; with lore as those of old-
Make thy young children's caro, That crown of hoary hair,
Which the calm heavens love as thoy bohold :
Soon, soon the glory of that sunset ray
Passes away:
Thou from whose household nooks Poop forth gay, gleaming looks.
Those 'fairy-heads' shot up from opening flowers, With wondrons porfunne filledThe fresh, the undistilled, This overfuwing bliss that childhood showersPraise Him who gave, at whose word their stay Passes away:
Thou, with another heart
United, though apart,
As two close stars, that, mingling, shine but one-
Whose pleasant pathway lies
'Neath tonder watchful eyes,
Whero lovo shines clearer than the morning sun-
Praise God for life that in such soft array
Passos away.
More-more-thon hast yet more !
These, thy heart's treasured store,
Transferred to hoaven, may win immortal bith-
With radiant seraphs there,
May tune ambrosial air
To evory glorying hymn of praise-while earth,
Lite lingoring music from some harper gray,
Passes away.

how do you spend your evemings?

Young man, how do you spend your ovenings?Answer this question, and we can tell you, almost to a certainty, what will be jour future character. In our view, more deponds upon the manner in which young men pass this season, as it regards their course and conduct in years to come, than upon anything else. Wo have been an observer of mon and things for the last twenty years, and can point to many a youth, who has caused weeping and sorrow in his family, disgraced his name, and is now an outcast in the world, or has sunk to a dishonoved grave, who commenced his career of vice, when he broke away from wholesome restraint and spent his evenings in the company of the abandoned. On the contrary, we know many ostimable young men-the pride and hope of their friends-who are working their way to favor and wealth, who spend their leisure evenings in some useful pursuit.

Young man, listen to us, and lako heod to our - ords-110t that wo wish lo deprivo you of a singlo ploasure, or dobar youl from any imnoccint amusement. Wo entreat you to bo particuiar tehcre and hovo you pass your evening hours. If you lounge about tho bar-room, partaking of the vulgar conversation that is introduced, and join the ribbald song, or stand at the corner of the streots, using profano and indecent language, you will soon habivato yoursolf to low blackguardism and vilo conversation, that no young man who respects himsolf will bo found in jour company:

Imbesolurion.-In matiors of great importance, and which must bo done, there is no surer argument of a treak mind than irresolation; to bo undetermined where the case is so plain, and the necessity so urgent; to bo always intending to load a now life, but never to find timo to sot about it; this is as if a man put off eating and drinking, and sleeping, from one day and night to another, till ho is starved and destroyed.-ritlotson.

WHAT is Dint ?

Old Dr. Cooper, of South Carolina, used to say to his stadente, "Don't ho afraid of a little dirl, young gentlomen. What is dirt? Why nothing at all offensive, when chemically viowed. Rub a litle alkali upon that ' dirty grease spot' on your coat, and it undergoes a chemical chango and becomes soap. Now rub it with a little water and it disappears: it is neither grease, soap, wator nor dirt. 'That is not a very odious pilo of dirt,' you observo there. Well, scatter a little gypsum over it and it is no longer dirty. Everything you call dirt, is worthy your notice as students of chemistr. Analize it! Analize it! It will separato into very clean elomonts.
"Dirt makes corn, corn makes broad and meat, and that a very sweot young lady that I saw one of you kissing last night. 'So, aftor all you wero kissing dirt -particularly if sho whitens her skin with chalk or fuller's earth, There is no telling, young gentlomen, what is dirt. Though I mustsay that rubbing such stuff upon the beantiful skin of a young lady is a dirty practice. 'Pearl powder,' I think is mado of bismuthnothing but dirt."

The memory ought to be a store-room. Many make theirs a lumber-room.
Newly Constructeo Ofen.-Mir. John Case, of Burlington, N. J., has in operation an oven, which is said to be of a new construction-the fire being in a separate chamber, while a valve in the chimney draws the smoke, gas, \&c., entirely out of the oven before the bread is introduced, and the oven is kept constantIy hot, by which mode, bread, dinnors, pies, or cakos can be baked at any hour when they may be wanted.

RBCIPES FOR HOUSEIVIVES.

Cream Tatter Sponge Cake.-1 cup of sugar, 1 cup of flour, 4 eggs , 1 teaspoon of cream tartor; halfteaspoon of saleratus, dissolved in milk. Flavor with lemoa; grato in the rine, or if extract, 1 teaspoon.
Snow Bale Cake.-Half cup of butter, 1 cup of loaf sugar, the whites of three eggs; stir thick as eup cake. Teaspoon of saleratus. Bake in small tins.
Cream Care.- 1 cup of croam, 1 cup of sugar, 1 egg, 1 teaspoon saleratus, 1 of salt. Thick as pancakes.

Fried Care.-1 cup of sugar, 2 of milh, 2 egge, half cup of butter, salerntrs and flour.

EDitors' Notices SEf.

To the Editors of the Agriculturigt

Sirs-
Every person with whom I have convarsed has erpressed a nost ardont desire to have Canada fairly and nobly represented in the great Exhibition to be hold in London in May, 1851. This I believe is the general feeling in Camada. To carry ©tat this noble object it will be necessary to raise a fund to bear the expenses of transporting sach artieles as may be consideced. by compernt fudger, worthy of such cistinction.
I would propose, as one moans of raisng the neecesary funds, smath subscriptions to be phaced nt the disnonal of the Agriculteral Assuciation; and widi be one of one hutidred subscribers to mase flu0 for that purpose. From conversations with some members of the Agricaltural Aseociatron, lhave no doubt but they will, at theirncet Amiversayy, give, ia premiums, \&e, as hbmally as theiz funds will jusufy, for the purposi of theilitating this gecat olject. I woultalso icence.mblly sugzest that applic.tion bo made to the Goverament by the A sociation for a grant for the same purpose.

If this proposal should meet with your epprowal, please give it a place in your gaper.

Torento, Apail 24, 135J.
[We quite agre with our Corresponlent that tiis matter shoald be taken up with spirit by the prople of Comada. Not a momont, however, should be lost, as the Exinibition is to come off m Mity, 1850. Wo wouid suggest the propriety of having a pubiac mecturg in Turont:, when a fund, no doabt, coild be raised for promoting the objects whie: Mr Hulburi montions. The Provincial Assuciation, we are aysured, will be as liberal as their funds will admat, in awardiug descreionary premiems to such deserving aricles, as may bos sent to the Cxhitition at Niagra, ia Neptember next His Exen linacy, the Governor General, we obsere, has signited his intention to onbe $£ 10$) steching, to be distributed in prizes to such Canadian productions of destingashec. merit, as may be exbibited in Einglani. We thas more natiy or effirt is required thronghout the Proviace in reitenca to this object, and that some plan of uated actuon sheuld be adopted, by winch all parnes mobth be made acyuamed with each others proceelhng. Application ω Governhent might, with proprimy, be made fin aid, in carrying out objects, ia wheh the character and meurest of the cJuntry sere deeply involved.-En. Agbu.visurist.]

Rofil Agricutporat Sochite of Exglant.-At the special request of lrince Albert, the Council have deterthincd to hold the Anatal Exhibition next year ial London, in conjanction with the Graml Exhibition of the Industry of all Nations, which is fixed to take place some time in May.

Gramd Pinvgiming Matan.-This important trial of akill iz to come off on May Brd, near Thornhill. The competition is fera purse of $\dot{E} t 00$, which will be contested by $2 J$ ploughmen ef the townshp of Scarborough, with an eq̧ual number from the township of Vaughan. We shall wive particulars ot the result in our next.

Mr. Teatas Reali, of Galt, has undertaken w frocure a list of subscribers in accurditace with our publishod terma, so as to secure one of the prizes we offer. Ang person subscribing to Mr. Ryall may, we think, rely upon bis natne being transmitted to us and tho paper being seni.
Courty of Yorr Agricultural Suov.-The Spring Gxhibition of this Society will be held in thas Caty, on Wednosday, Alay 8tb. A larger gathering than usual is anticipated.
Coly an Ilorses.-At this season of tho year, colidend eoughs are very frequent among horses. The throde is sumetimes $s 0$ sure, as to pieveit tho animal from cajing, and very commoniy a considerable time inust elapse befuro recovery talice place, sufficiently to allow him to be pat to
work. Ihave found the greatest benelit in themselves from steaming or fumigating the head, this seams to allay the irritation of the discase, and to bring on a discharge which,sery soon relieves, or, us farriars sometimes say, "draws away the complaint." The famuration I con dact as follows - A good siaed pail is half cilled with bran, chopped hay, or almost any material which will tate upic consuderable quantity of fund, and booling hot water is surred among it ull the pail is three parts ithl. The pail is then to be plaed in the hottom of a good sized sack. sueh as is conmonly used for grain, and the mouth of the sack is to be drawn over the amimals head, and gnthered preaty closely round the throat, just behind the jaws and ears. If the horse will hold down his head, so that the mil may stand on the foor, it will be all the better, bias the will nut tio tate quetly, the pail may be raised on any convemeat object. Some ammars are a little shy, in at lown, ther ticuls to be pat in the bag for the first time, but with coanmg and gooil usage, they may nearly in ceery case be brought to submit, and from the relief which the steannag seems to afford, will atterwards readily allow repethesn vi the remedy. This plan of steaming the head muea better than mercly holdiag a box of sealded bran under the nose, or simply pattin; the same in the manger. When the steamiat is conctuded, the head should be wifed wat: adey cloth, and fi comeniont, subsequenty covered with a hood.-Li.m.
Manters, fic.-The las adtices from Engiand inctcate a thatus inpisyement in wheat and ilvar, which tras giveld a bitic buve firmaess to prices here. The ratate of the back colatey roads has prevented large arrivale, ynt a
 at sula, what ina; rutch atwo. Stuchs buth of wheat and flour ta the western States are said to be very low, and a lare poation of suathern demond will have to be surs died from the Nurtiurn and Lastera ports. We thints, therefore, the chene:s are goul ona brish deman!? fur Cop nadiun wheat frea the states, and if the Reciprocity bill should pas, intu han, of which ther: is reason of cnterhaining sumginchotes, tilis branch of trad. would soon b. culat gat of gach inport luee, posscosing a capability of F.ugressive incease. Welcara irom reliable private iniurmatiun recciv.l per last mail hat many of the larga expurters of sf...it, Entlat will satain heavy losses in conse juenc- wi i recinted prices, and that reacion may now be reasoinh!y bosed ror. If, however, the growing cio, is in the bitioh fles and on the Continent shoald progress fivorably, prices, mader a system of frec importation, camat advance much. It appers that the briti.h corn dealars have iinported comparatively littic on their una responsinhtity, the greaier part haviag been mported enider by speculators miending to pay in Dritish manufaotured goods, or by fureiga merciants.
The wheat platio in Caanda, like the scason, is very backward, an.I we are glad to learn that the recent severo frouls have not injured it, to anything like the extent that was apprchended. In must parts of the States, wheat is sail to luok promising-particularly in the west, when it so signally hatled lase year. The weather has now become more genial although vegetation has as yet mado scarce any visible progress. Ploughing, sowing, and tho other normal agricultural operations are proceeding with grcat aciutity, ard tiae cacrgics of the firmer must be fully brought out. Notwithstandiag the setson opena late, the crops may prove abundant.
The following are city quotations,
Flour, 19s. a 21 s per bbl, of 19 Glbs ; What, 4s. a 4 s Gd. per hushel of G0ibs.; Spring Wheat, 38. 9d. a 4s. pe: bushel of 601bs.; Rye, 2s. per 6illbs.; Barley, \%s. a 2s. 2 d. por bushel of 431 lbs ; Peas, 2s. 3d. a 2s.9d. per bushel of $601 b s . ;$ Oats, $1 \mathrm{s}$. 3d. a 1s. 1d. per bushel of 341bs. IIay; $5 \overline{3}$. a $6 \overline{3}$ s. per ton, Straw, $2 \bar{s}$ s. a 38s. perton; Buther, fresh, 10d. a ls. per 1 b .. Butter, in tubs, $5 \mathrm{~d} . \dot{a} 7 \mathrm{~d}$. . per lb.: Eggs, 5 d a 7 Al . per doz.; Grass Sced, 3s. Gl. a 1018. per bushcl of 43!bs., Tlax Sced. 9s. a 10s. per bushel, Clover Sced, 208. a 25e. por bushel.

