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PRBFACE

THE pr«Mnt book to intended, u far as poarible.

to give an exact imight into the heory of Re-
lativitj' t) thoie readers who. from a general

scientific and pkiloeophical point of view, are interested

in the theory, but who are not convers'uit with the

mathematical apparatus » of theoretical physics. The
work presumes a standard of education corresponding

to that of a university matriculation examination,

and. despite the shortness of the book, a fair amount
of patience and force of will on the part of the reader.

The author has spared himself no pains in endeavour

*The mathenutical fnadamanti of be •tpcual theory of
relativity en to be fonnd in the oflgiiul p«pen of H. A. Lorants,
A. Binstain. H. MinkowtM. nabUihed taier the titie Dm
MttMtmtpHndp (The ft :. ite of iv^iatlvity) in & G.
Teabner'e coUectloo of mooo^nphB FortsekritU d»r nmA*.
moHtchtH Wi$t$ntckmft»» (Adveaoee in the Me^htmatiiaJ
Sdenoee). aleo in M. Lane's ttdtaaetive book Dmt RtUOMms-
pr*nMip—pu\3i)thtd by FHedr. Vieweg ft Soa, Braanachireif

.

The general theory of relativity, together with the neoesaarv
parti of the theory of invarlanta. ie dealt with in the author 'a

book Dig Crundhgtn i»r Mgmtimn RtkaUtiUUitktoHt (The
Ponndatioo^J of the General Theory of Sfdativity)—Joh. Ambr.
Berth, 1916: thiebo^aeenmeeaomefamiliatlty with the epecial
theory of mlativity.
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to present the main ideas in the simplest and most in-
telhgible form, and on the whole, in the sequence and con-
nection in which they actually originated. Intheinterest
of clearness, it appeared to me inevitable that I should
repeat myself frequently, without paying the slightest
attention to the elegance of the presentation. I adhered
scrupulously to the precept of that brilliant theoretical
physicist L. Boltzmann, according to whom matters of
elegance ought to be left to the taUor and to the cobbler.
I moke no pretence of having withheld from the reader
difficulties, which are inherent to the subject. On the
other hand. I have purposely treated the empirical
physical foundations of the theory in a "

step-motbr-rly"
fashion, so that readers unfamihar with physics may
not feel Uke the wanderer who was unable to see the
forest for trees. May the book bring some one a few
happy hours of suggestive thought

!

Dtcemder, 1916
A. EINSTEIN

NOTE TO THE THIRD EDITION

IN the present year (1918) an exceUent and detailed
manual on the general theory of relativity, written
by H. Weyl, was published by the firm JuUus

Springer (Berlin). This book, entitled Raum-Zeit-
Materie (Space-Time-Matter), may be warmly recom-
mended to mathematicians and physicists.



BIOGRAPHICAL NOTE

ALBERT EINSTEIN is the son of Gennan-
Jewish parents. He was bom in 1879 in the
town of Ulm, Wurtemberg. Germany. His

schooldays were spent in Munich, where he attended
the Gymnasium untU his sixteenth year. After leaving
school at Munich, he accompanied his parents to Milan,
whence he proceeded to Switzerland six months later
to continue his studies.

From 1896 to 1900 Albert Einstein studied mathe-
matics and physics at the Technical High School in
Zurich, as he intended becoming a secondary school
(Gymnasium) teacher. For some time afterwards he
was a private tutor, and having meanwhUe become
naturalised, he obtained a post as engineer in the Swiss
Patent Office in 1902. which position he occupied tiU
1909. The main ideas involved in the most important
of Emstein's theories date back to this period. Amongst
these may be mentioned : The Special Theory of Rela-
tmty. Inertia of Energy. Theory of the Brownian Move-
ment. and the Quantum-Law of the Emission and Ab-
sorption ofLight (1^^). These were followed some y«are

Wm
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later by the Theory of the Specific Heat of Solid Bodies,

and the fundamental idea of the General Theory of

Relativity.

During the interval 1909 to 1911 he occupied the post

of Professor Extraordinarius at the University of Zurich,

afterwards being appointed to the University of Prague,

Bohemia, where he remained as Professor Ordinarius

until 1912. In the latter year Professor Einstein

accepted a similar chair at the Polytechnikum, Zurich,

and continued his activities there until 1914, when he

received a call to the Prussian Academy of Science,

Berlin, as successor to Van't Hoff. Professor Einstein

is able to devote himself freely to his studies at the

Berlin Academy, and it was here that he succeeded in

completing his work on the General Theory of Relativity

(1915-17). Professor Einstein also lectures on various

special branches of physics at the University of Berlin,

and, in addition, he is Director of the Institute for

Ph3rsical Research of the Kaiser Wilhelm Gesellschaft.

Professor Ei istein has been twice married. His first

wife, whom he married at Berne in 1903, was a fellow-

student i;rom Serbia. There were two sons of this

marriage, both of whom are Hving in Zurich, the elder

being sixteen years of age. Recently Professor Einstein

married a v/idowed cousin, with whom he is now living

in Beriin.

R. W. L.



TRANSLATOR'S NOTE

IN presenting this translation to the EngUsh-
reading public, it is hardly necessary for me to
enlarge on the Author's prefatory remarks, except

to draw attention to those additions to the book which
do not appear in the original.

At my request. Professor Einstein kindly supplied
me with a portrait of himself, by one of Germany's
most celebrated artists. Appendix III. on "The
Experimental Confirmation of the General Theory of
Relativity," has been wntten specially for this trans-
lation. Apart from these valuable additions to the book
I have included a biographical note on the Author
and. at the end of the book, an Index and a list of
Enghsh references to the subject. This list, which is more
suggestive than exhaustive, is intended as a guide to those
readers who wish to pursue the subject farther.

I desire to tender my best thanks to my coUeagues
Professor S. R. Milner. D.Sc., and Mr. W. E. Curtis.
A.R.C.SC., F.R.A.S., also to my friend Dr. Arthur
Holmes, A.R.C.Sc, F.G.S., of the Imperial CoUege.
for their kindness in reading through the manuscript.

Mi iBH
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for helpful criticism, and for numerous suggestions. I

owe an expression of thanks also to Messrs. Methuen

for their ready counsel and advice, and for the care

they have bestowed on the work during the course of

its pubUcation.

ROBERT W. 1AWSON

The Physics Laboratory

The University of Sheffield

Juna 12, 1920
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RELATIVITY
PART I

THE SPECIAL THEORY OF RELATIVITY

PHYSICAL MEANING OF GEOMETRICAL
PROPOSITIONS

IN your schooldays most of you who read this^k made acquaintance with the noble buiS^ oEuchds geometry, and you remember-perhaw^th more respect than love-the magnificent stmct^fon the lofty staircase of which you were chaid ajZlfor uncounted hou:^ by conscientiJus t^et Bvreason of your past experience, you wo^d certai^vregard everyone with disdain who sh^^uld^^oi^'e^^^^^

wUdwtl^'^ff 'f
^"« '' p-«<^ -^ty

you ''mat^tLn ^"^^ ^ "^"^ °"^ ^^« *° ^k
these pr:^^:.t''^:r'i^/Z':::^T *^^
this question a little consideration

^^^ *" ^^'

"ptnT''*?^St '•* 'r.^^^" ^o«^ePtions such aspane. pomt. and "straight line.' with which



2 SPECIAL THEORY OF RELATIVITY

we are able to associate more or less definite ideas, and
from certain simple propositions (axioms) which,
in virtue of these ideas, we are inclined to accept as
" true." Then, on the basis of a logical process, the
justification of which we feel ourselves compelled to
admit, all remaining propositions are shown to follow
from those axioms, i.e. they are proven. A proposition

is then correct (" true ") when it has been derived in the
recognised maimer from the axioms. The question
of the " truth " of the individual geometrical proposi-

tions is thus reduced to one of the " truth " of the
axioms. Now it has long been known that the last

question is not only unanswerable by the metho^^s of

geometry, but that it is in itself entirely without mean-
ing. We cannot ask whether it is true that only one
straight line goes through two points. We can only
say that Euclidean geometry deals with things called
" straight lines," to each of which is ascribed the pro-

perty of being uniquely determined by two points

situated on it. The concept " true " does not tally with
the assertions of pure geometry, because by the word
" true " we are eventually in the habit of designating

always the correspondence with a " real " object

;

geometry, however, is not concerned with the relation

of the ideas involved in it to objects of experience, but
only with the logical connection of these ideas amouj?
themselves.

It is not difficult to understand why, in spite of this,

we feel constrained to call the propositions of geometry
" true." Geometrical ideas correspond to more or less

exact objects in nature, and these last are undoubtedly
the exclusive cause of the genesis of those ideas. Geo-
metry ought to refrain from such a course, in order to



GEOMETRICAL PROPOSITIONS s
give to its structure the largest possible lorical unifv

one eye. under „u.abi. choice ., our Z'^iZT.
If. in pursuance of our habit of thnn^h*

nl^' P™P«i«io„ that two points o^ IJ^Z^

with the geometncal ideas. In less exarf frJT
exnrMc tHo u. .

exact terms we canexpress tlus by saying that bv the " fm,*u .. , ^^

is chosen wch that the sum of thTdl-i 5 J**°« «*^«°' -»

hort 03 DOMihl« TM- • .
distances ^fl and BCia aaompZSt^ "''°°P'''*« "«««««o° *i" suffice f«



4 SPECIAL THEORY OF RELATIVITY

Of course the conviction of the "truth" of geo-

metrical propositions in this sense is founded exclusively

on rather incomplete experience. For the present we
shall assume the " truth " of the geometrical proposi-

tions, then at a later stage (in the general theory of

relativity) we shall see that this " truth " is limited,

and we shall consider the extent of its limitation.



II

THE SYSTEM OF CO-ORDINATES

Ofant ^.I^'h"" S'^"^ '»t«Pretation of dis-tance which has been indicated, we are alsoma position to establish the dis ance tetwe^two pomts on a rigid body by means ofmc^^^

ernXVa-str^r^r ir„^'w"™r
£X5thl\c-«^^^:~:
S tae atrtimn 1\

"' "" """ »« '"' ^^«
these^^o^Sirre^tre^'Jnt numl^L"""""'

"^

of the distanrp A n T-iT- • ,
numercal measure

ment oflell^h • ^""^ " '"^ "^ °' "^l »-^"-

t °
If" raS?hrr^'™°'« 2- *-:^yanalyse the place specification "

Trafalgar

is got over by the use ofduSJ number. This difficulty
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i! I

hIl;

Square, London," » I arrive at the foUowing result.

The earth is the rigid body to which the specification
of place refers; "Trafalgar Square, London," is a
well-defined point, to which a name has been assigned,
and with which the event coincides in space.^

This primitive method of place specification deals
only with places on the -surface of rigid bodies, and is

dependent on the existence of points on this surface
which are distinguishable from each other. But we
can free ourselves frcu both of these limitations without
altering the nature of our specification of position.
If, for instance, a cloud is hovering over Trafalgar
Square, then we can determine its position relative to
the surface of the earth by erecting a pole perpendicu-
larly on the Square, so that it reaches the cloud. The
length of the pole measured with the standard measuring-
rod, combined with the specification of the position of
the foot of the pole, supplies us with a complete place
specification. On the basis of this illustration, we are
able to see the manner in which a refinement of the con-
ception of position has been developed.

(a) We imagine the rigid body, to which the place
specification is referred, supplemented in such a manner
that the object whose position we require is reached by
the completed rigid body.

{b) In locating the position of the object, we make
use of a number (here the length o' the pole measured

» I have chosen this as bemg more fa-^lJar to the EngUsh
reader than the " Potsdamer Platz, BerUn," which is referred tom the original. (R. W. L.)

2 It is not necessary here to investigate further the significance
of the expression " coincidence in ipace." This conception is
sufficiently obvious to ensure that diflFerences of opinion are
scarcely likely to arise as to its appUcability in practice.



THE SYSTEM OF CO-ORDINATES 7

with the measuring-rod) instead of designated points of
reference.

(c) We speak of the height of the cloud even when the
pole which reaches the cloud has not been erected
By means of optical observations of the cloud from
different positions on the ground, and taking into account
the properties of the propagation of light, we determine
the length of the pole we should have required in order
to reach the cloud.

From this consideration we see that it will be ad-
vantageous if, in the description of position, it should be
possible by means of numerical measures to make our-
selves independent of the existence of marked positions
(poss^smg names) on the rigid body of reference. In
the physics of measurement this is attained by the
apphcation of the Cartesian system of co-ordinates

This consists of three plane surfaces perpendicular
to each other and rigidly attached to a rigid body
Referred to a system of co-ordinates, the scene of any
event will be determined (for the main pa<t. by the
specification of the lengths of the three perpendiculars
or co-ordinates {x.y, z) which can be dropped from the
scene of the event to those three plane surfaces. The
lengths of these three perpendiculars can be deter-
mined by a series of manipulations with rigid measuring-
rods performed according to the rules and methods laid
down by Euclidean geometry.

In practice, the rigid surfaces which constitute the
system of co-ordinates are generally not available

;furthermore, the magnitudes of the co-ordinates are not
actuaJ^^y determined by constructions with rigid rods, butby indirect means. If the results of physics and astron-omy are to maintain their clearness, the physical mean-

-'^^^t^'-^



8 SPECIAL THEORY OF RELATIVITY
ing of specifications of position must always be sought
in accordance with the above considerations.!
We thus obtain the foUowing result : Every descrip-

tion of events in space involves the use of a rigid body
to which such events have to be referred. The resulting
relationship takes for granted that the laws of Euclidean
geometry hold for " distances," the " distance "

being
represented physically by mearis of the convention of
two marks on a rigid body.

neLtSr unS*
^""^ '"°^'fif*r °f these views does not becomenecessary until we come to deal with the general theorv nf

relativity, treated in the second part of thisUk ^

1
>:



Ill

SPACE AMD TIME IN CLASSICAL MECHANICS

THE purpose of mechanics is to describe how
bodies change their position in space with

«,nc : J "^ ^^^^ ""y conscience with grave
sins agamst the sacred spirit of lucidity were I to
formulate the aims of mechanics in this way. withoutsenous reflection and detailed explanations."^ Lett
proceed to disclose these sins.

It is not clear what is to be understood here by

raZv'" -^^ >''•"
^ ^*^"^ ^* *he window of arai way carriage which is travelling uniformly, and dropa stone on the embankment, without throwing it. Thendisreg^ding the influence of the air resistancf. I see thestone descend m a straight line. A pedestrian who

.tone faUs to earth m a parabolic curve. I now ask :Do he^ positions" traversed by the s.one lie "inreahty on a straight line or on a parabola ? Moreoverwhat IS meant here by motion " in spac. "
? FromThe

self-evident In the first place, we entirely shun the

aSwlZ'
'^''^'" '' "^^^' -^ ™-t honest?,

tion and we replace it by "motion relative to a

mb nL n ?l ^^,
°f Reference (railway carriage oremb .nkir ant) have akeady^been defined in detail in the
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preceding section. If instead of " body of reference

"
we insert " system of co-ordinates," which is a useful
Idea for mathematical description, we are in a position
to say

: The stone traverses a straight line relative to a
system of co-ordinates rigidly attached to the carriage,
but relative to a system of co-ordinates rigidly attached

ml u^""""^
(embankment) it describes a parabola.

With the aid of this example it is clearly seen that there
is no such thing as an independently existing trajectory
(ht. path-curve " i). but only a trajectory relative to a
particular body of reference.

In order to have a complete description of the motion,
we must specify how the body alters its position with
time

; i.e. for every point on the trajectory it must be
stated at what time the body is situated there. These
data must be supplemented by such a definition of
time that, m virtue of this definition, these time-values
can be regarded essentially as magnitudes (results of
measurements) capable of observation. If we take our
stand on the ground of classical mechanics, we can
satisfy this requirement for our iUustration in the
foUowing manner. We imagine two clocks of identical
construction

; the man at the raUway-carriage window
IS holding one of them, and the man on the foot-
path the other. Each of the observers determines
the position on his own reference-body occupied by the
stone at each tick of the clock he is holding in his
hand. In this connection we have not taken account
of the inaccuracy involved by the finiteness of the
velocity of propagation of light. With this and with a
second difficulty prevailing here we shall have to dealm detail later.

' That is. a curve along which the body moves.



IV

THE GALILEIAN SYSTEM OF CO-ORDINATES

A S is weU known, the fundamental law of the

.ndicates the reference-bodii „rtSe^ of t°ordmates. permissible in mechamcs, wS c» 1^ u^'m mechamcd description. The visible fixed sL^bod,es for Which the law of inertia certainly howTto ahigh degree of approximation. Now if we iL a s«.™of co-ordinates which is rigidly attached trtheSST
I cteklr' '" *'^ '^'™' '^-y fi-^O Star dtsS^
m c™ dayTS wht?

'

"
*"' "^ °' ^^ "*'»-"y ^^"" ^"^^^'^ IS opposed to the stafpm^nf

we't^t^rlr^tf• ^"^* " "^ ='dhe:e to^tTa^we must refer these motions only to svstem^ nf n«_

.^tc'^r'fr° ^'T ''- ^^^ ^taTd^oti;:
ofIZ r*^™ ""^ co-ordinates of which the state

it ^XaT'G^r- ^'^ ''^ °^ ^^^^- ^^^^^ ^^a^v^o
la^^of h

5^^!^^^^" system of co-ordinates." The

-TaUd 0^^^^^^^^
can be regardedvalid only for a GalUeian system of co-ordinates.

irfiiii 'JtigLiggasa^si



THE PRINCIPLE OF RELATIVITY (IN THE
RESTRICTED SENSE)

IN order to attain the greatest possible clearness
let us return to our example of the railway carriage
supposed to be travelling uniformly. We caU its

motion a uniform translation ("uniform" because
It IS of constant velocity and direction, "

translation "
because although the carriage changes its position
relative to the embankment yet it docs not rotate
in so doing). Let us imagine a raven flying through
the air in such a man .er that its motion, as observed
from the embankment, is uniform and in a straight
line. If we were to observe the flying raven from
the moving railway carriage, we should find that the
motion of the raven would be one of different velo-
city and direction, but that it would still be uniform
and in a straight line. Expressed in an abstract
manner we may say : If a mass m is moving uni-
formly in a straight line with respect to a co-oSin.te
system K then it will also be moving uniformly and in a
straight hne relative to a second co-ordinate systemK

,
provided that the latter is executing a uniform

J.wl ?•
"°*'''" ^^^ '^^^^ *« ^' In accordance

with the discussion contained in the preceding section,
it follows that

:
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IfK is a Galileian coordinate system, then every other

tTon to^:
'^*'" ^? " ^^«^^" ^^'' when, b^ rda-lon to Kit ISm a condition of uniform motion of trans-lation. Relative to K' the mechanical laws of Gaind-Newton hold good exactly as they do with respecTfo 2We advance a step farther in our generalisadon whfnwe express the tenet thus: If. relative to if 1' is aumfornUy mo>ang co-ovdinate system devoid of rotatLthen natural phenomena run their course with respSctTo

respect to K. This statement is called the MncMs
of relativity (in the restricted sense).

^ ^
As long as one was convinced that all natural pheno-mena were capable of representation with the helpSclassical mechanics, there was no need to douM thevalidity of this principle of relativity. But in view ofthe more recent development of electrodynami^Ldoptics It bec^e more and more evident t^at cL^dmechamcs affords an insufficient foundation foTth^

physical cescnption of all natural phenomena. At this)unc ure the question of the validity of the prindole ofrelativity became ripe for discussion, and Td d ttappear impossible that the answer to this questLnmight be in the negative.
question

onSr^^^'u
'"' ^^^'^ "* ^'^^ ^*"«^*^ ^acts Which at theoutset speak very much in favour of the validity of the

pnncipleofrelativity. Even though classical mi^hl^^'does not supply us with a sufficiently broad basis for th^h oretical presentation of all physical phenomena
still we must grant it a comiderable measure of ''tmh''smce It suppUes us with the actual motions oTtie

^^ouderful. The pnnciple of relativity must theref. -

AtmmM msi
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apply with great accuracy in the domain of mechanics.
But that a principle of such broad generality should
hold with such exactness in one domain of phenomena,
and yet should be invalid for another, is a priori not
very probable.

We now proceed to the second argument, to which,
nioreover, we shaU return later. If the principle of rela-
tivity (in the restricted sense) does not hold, then the
Gahleian co-ordinate systems K. K', K', etc., which are
moving uniformly relative to each other, will not be
equivalent for the description of natural phenomena.
In this case we should be constrained to believe that
natural laws are capable of being formulated in a par-
ticularly sim^^Ie manner, and of course only on condition
that, from amongst aU possible Galileian co-ordinate
systems, we should have chosen one (/:„) of a particular
state of motion as our body of reference. We should
then be justified (because of its merits for the description
of natural phenomena) in calling this system " absolutely
at rest," and all other GalUeian systems K " in motion."
If, for instance, our embankment were the system K^.
then our railway carriage would be a system K,
relative to which less simple laws would hold than with
respect to K^. This diminished simplicity would be
due to the fact that the carriage K would be in motion
{t.e. " really ") with respect to K^. In the general laws
of nature which have been formulated with refer-
ence to K, the magnitude and direction of the velocity
of the carriage would necessarily play a part. We should
expect, for instance, that the note emitted by an organ-
pipe placed with its axis paraUel to the direction of
travel would be different from that emitted if the axis
of the pipe were placed perpendicular to this direction.
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Now in virtue of its motion in an orbit ronnd the sun
our earth U comparable with a raUway carriage travel-
ling with a velocity of about 30 Idlometres per second,
if the principle of relativity were not valid we should
tuerefore expect that the direction of motion of the
earth at any moment would enter into the laws of nature
and also that physical systems in their behaviour would
be dependent on the orientation in space with respect
to the earth. For owing to the alteration in direction
of the velocity of rotation of the earth in the couree of
a year, the earth cannot be at rest relative to the
hypothetical system K^ throughout the whole year.
However, the most careful observations have never
revealed such anisotropic properties in terrestrial physi-
cal space, ».«. a physical non-equivalence of different
directions. This is very powerful argument in favour
of the principle of relativity.



VI

THE THEOREM OF THE ADDITION 0^ VELOCI-
TIES EMPLOYED IN CLASSICAL MECHANICS

LET us suppose our old friend the railway carriage
to be travelling along the rails with a constant
velocity V, and that a man traverses tL e length of

the carnage in the direction of travel with a velocity wHow quickly or. in other words, with what velocity W
does the man advance relative to the embankment
dunng the process ? The only possible answer seems to
result from the foUowing consideration • If tbo man w» o
to stand stiU for a second, he would advance relative to
the embankment through a distance t; equal numericaUv
to the velocity of the carriage. As a consequence of
his walking, however, he traverses an additional distancew relative to the carriage, and hence also relative to the
embankment, in this second, the distance w being
nuB.rncaUy equal to the velocity with which he is
waliung. Thus in total he covers the distance W=v+w
relative to the embankment in the second considered.We shall see later that this result, which expresses
the theorem of the addition of velocities employed in
classical mechanics, canuot be maintained ; in other
words, the law that we have just written down does not
hold m reality. For the time being, however, we shall
assume its correctness.

16



VII

^"^, .APPARENT INCOMPATIPJLITY OF THELAW OF PROPAGATION OF i IGHT Wm^THE PRINCIPLE OF RELATIVITY

T^^^ '" ^^'^^y ^ ''™P^"' ^*^ »" physics thanthat according to which light is propagated inempty space. Every chUd at sch^l knows or

At ^?viL r r^ ^ .^''^^*y ^'300.000 kmysec!At all events we know wth great exactni*^.; *h^t\u
velocity is the same for all coC. SseTf tt Jet'not the case, the minimum of emission would noHe'observed simultaneously for different colours Tmimthe eclipse of a fixed star by its dark neiehbour Bvmeans of similar considerations based on o^r^/tions of double rtars. the Dutch astronomerl^^ !!:

o^thfhis
* '""""* ^"P^"^ °" *^« ^^^o^ity of'^motfonof the body emitting the hght. The assmnption thatthis velocity of propagation is dependent !^C d^ltion in space " IS m itself improbable,m short, let us assume that the simple law of thp

•^11

AtaJl^a
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J

i

Let us consider how these
intellectual difficulties?

difficulties arise.

Of course we must refer the process of the propaga-
tion of light (and indeed every other process) to a rigid
reference-body (co-ordinate system). As such a system
et us again choose our embankment. We shall imagine
the air above it to have been removed. If a ray of
hght be sent along the embankment, we see from the
above that the tip of the ray wUl be transmitted with
the velocity c relative to the embankment. Now let
us suppose that our railway carriage is again travelling
along the railway lines with the velocity v. and thatIS direction is the same as that of the ray of light, but
ts velocity of course much less. Let us inquire about
the velocity of propagation of the ray of light relative
to the carnage. It is obvious that we can here applv the
consideration of the previous section, since the ray of
ight plays the part of the man walking along relatively
to the carnage. The velocity W of the man relative
to tae embankment is here replaced by the velocity
of light relative to the embankment, w is the required
velocity of light with respect to the carriage, and we

w = c~v.

The velocity of propagation of a ray of light relative totne carnage thus comes out smaUer than c
But this result comes into conflict with the principle

of relativity set forth in Section V. For. hke eveivother general law of nature, the law of the transmissio^
of

1 ght xn vacuo must, according to the principle of
re atmty be the same for the railway Lrfa^e as
reference-body as when the rails are the body ofrefer-
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ofrdal^^" '""" ""'^^'K^tory to the prindpk

el«"oHrtCf„1,™r """ "1^"= '° •« nothing

»ho« however ttafr^f " "'^°"«-' P^^^'cs""wcver, mat we cannot pursue this rniir=«The epoch-making theoretical investi^ns of H a

found Which were contradictoiyt^^Sprin^^^^^^^
been

aret*"^IJrrL^Se^o/rV- ^^^^^^^^^^ the

ceptions of tiT and 1^ ^^^' °^ *^" P^^^^ <^on-

y ^nere ts not the least tncompatibilUy between the
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20 SPECIAL THEORY OF RELATIVITY
principle of relativity and the law of propagation of light.
and that by systematicaUy holding fast to both these
laws a logically rigid theory could be arrived at. This
theory has been called the special theory of relativity
to distinguish it from the extended theory, with which
we shaU deal later. In the foUowing pages we shaU
present the fundamental ideas of the special theory of

li

'-

f



VIII

ON THE IDEA OF TIME IN PHYSICS

LIGHTNING has struck the rails on our railwayembankment at two places A and B far Snt
that thrt^otl^Jn. I T' ''' ^^'^^^^"^ --'^^-
If now I asTyf'X'heftL?-'^^^

simultaneously,

ment vo„ win ,
^^^^^^^ ^^e^e is sense m this state-

^Yes''"^ BuMfT^^^ ™y q'^^^tion with a decided

oc^Z^Z'%U'^'^l'^ '°"<^"« ^«-- would

Clear to iJ^Vand trntS":' "^'•"-"* «
co«^ i. would re,^:trcS:STl'™4 ,"'
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the same difficulty with all physical statements in which
the conception " simultaneous " plays a part. The
concept does not exist for the physicist until he has the
possibility of discovering whether or not it is fulfilled

in an actual case. We thus require a definition of
simultaneity such that this defimtion supplies us with
the method by means of which, in the present case, he
can decide by experiment whether or not both the
lightning strokes occurred simultaneously. As long
as thij requirement is not satisfied, I allow myself to be
deceived as a physicist (and of course the same applies
if I am not a physicist), when I imagine that I am able
to attach a meaning to the statement of simultaneity.
(I would ask the reader not to proceed farther until he
is fully convinced on this point.)

After thinking the matter over for some time you
then offer the following suggestion with which to test
simultaneity. By measuring along the rails, the
connecting line AB should be measured up and an
observer placed at the mid-point M of the distance AB.
This observer should be supplied with an arrangement
{eg. two mirrors inclined at 90°) which allows him
visually to observe both places A and B at the same
time. If the observer perceives the two flashes of
lightning at the same time, then they are simultaneous.

I am very pleased with this suggestion, but for all

that I cannot regard the matter as quite settled, because
I feel constrained to raise the following objection:
" Your definition would certainly be right, if I only
knew that the light by means of which the observer
at M perceives the Ughtning flashes travels along the
length A—>M with the same velocity as along the
length B—* M. But an examination of this supposi-
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f,

tion would only be possible if we already had at our
disposal the means of measuring time. It would thus
appear as though we were moving here in a logical circle.

"

After further consideration you cast a somewhat
disdainful glance at me—and rightly so—and you
declare :

" I maintain my previous definition neverthe-
less, because in reality it assumes absolutely nothing
about light. There is only one demand to be made of
the definition of simultaneity, namely, that in every
real case it must supply us with an empirical decision
as to whether or not the conception that has to
be defined is fulfilled. That my definition satisfies
this demand is indisputable. That light requires the
same time to traverse the path A—>M as for the path
B—>M is in reality neither a supposition nor a hypothesis
about the physical nature of light, but a stipulation
which I can make of my own freewill in order to arrive
at a definition of simultaneity."

It is clear that this definition can be used to give an
exact meaning not only to two events, but to as many
events as we care to choose, and independently of the
positions of the scenes of the events with respect to the
body of reference 1 (here the railway embankment).
We are thus led also to a definition of " time " in physic.>.
For this purpose we suppose that clocks of identical
construction are placed at the points ^4, B and C of

* We suppose further that, when three events A, B a.nA C
take place in different places in such a manner that, if /I is
s.multaneous with 5, and B is simultaneous with C (simultaneous
in the sense of the above definition), then the criterion for the
simultaneity of the pair of events A. C is also satisfied. This
assumption is a physical hypothesis about the law of propagation
of hght

;
it must certainly be fulfilled if we are to maiLtain the

la^v of the constancy of the velocity of light in vacuo.
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the railway line (co-ordinate system), and that they
are set m such a manner that the positions of their
IK)inters are simultaneously (in the above sense) the

f. * .r'f^'^
^^^^ conditions we understand by the

time of an event the reading (position of the hands)
of that one of these clocks which is in the immediate
vicimty (m space) of the event. In this manner a
time-value is associated with every event which is
essentially capable of observation.
This stipulation contains a further physical hypothesis

he vahdity of which vnU hardly be doubted'^without

tr,^r^'",'' ?° *^' '°"*'"^^y- It ^^ ^^^^ assumed
that aU these clocks go at t}^ same rate if they are of
Identical construction. Stated more exactly: Whentwo clocks arranged at rest in different places of a
reference-body are set in such a manner that a particular
position of the pointers of the one clock is simuUaf^eous
(m the above sense) with the same position of th^
pointers of the other clock, then identical "

settings
''

are a ways simultaneous (in the sense of the above



IX

THE RELATIVITY OF SIMULTANEITY

UP to now our considerations have been referred
to a particular body of reference, which we
have styled a "railway embankment." We

suppose a very long train travelling along the rails
with the constant velocity »; and in the direction in-
dicated m Fig. I. People travelling in this train will
with advantage use the train as a rigid reference-
body (co-ordinate system); they regard aU events in

M«

M
4

V ^ / 7r*»n

Fig. I.

B Embankment

reference to the train. Then every event which takes
l>lace along the line also takes place at a particular
point of the train. Also the definition of simultaneity
can be given relative to the train in exactly the sameway as with respect to the embankment. As a natural
consequence, however, the foUowing question arises •

Are two events {e.p. the two strokes of lightning A
and B) which are simultaneous with reference to the
railway embankment also simultaneous reloHvely to the
ttatn ? We shaU show direclly that the answer must
be in the negative.

WTien we say that the lightning strokes A and B are
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^multaneous with respect to the embankment, we

fi. where the lightmng occurs, meet each other at the^d-pomt Mot the length A-^Boi the embankment

fnH « *?'/ '"'^ ^ ^° correspond to positions Aand B on the tram. Ut M' be the mid-point r^i the
distance ^ --> B on the traveUing train. Just whenthe flashes i of hghtning occur, this point M' naturaUy
comcides with the point M. but it moves towards thenght m the diagram with the velocity v of the train Ifan observer sitting in the position M' in the train did
not possess this velocity, then he would remain per-
manently at M. and the light rays emitted by The
flashes of hghtnmg A and B would reach him simul-
taneously. -e. they would meet just where he is situated.Nowm reality (considered with reference to the raUway
embankment) he is hastening towards the beam of light
coming from B. whilst he is riding on ahead of the beam
of light coming from A. Hence the observer will see
the beam of light emitted from B earlier than he will
see that emitted from A. Observer ,vho take the rail-way tram as their reference-body raust therefore come
to the conclusion that the lightning flash B took place
earlier than the lightning flash A. We thus arrive at
the important result

:

Events which are simultaneous with reference to theembankment are not simultaneous with respect to the
train, and vice versa (relativity of simultaneity). Every
reference-body (co-ordinate system) has its own particul^
time

;
unless we are told the reference-body to which

the statement of time refers, there is no meaning in a
statement of the time of an event.

' As judged from the embankment.
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Now before the advent of the theory of relativity
It had always tacitly been assumed in physics that the
statement of time had an absolute significance, i.e.
that it ip independent of the state of motion of the body
of reference. But we have just seen that this assump-
tion IS incompatible with the most natural definition
of simultaneity

; if we discard this assumption, then
the conflict between the law of the propagation of
light in vacuo and the principle of relativity (developed
in Section VII) disappears.

We were led to that conflict by the considerations
of Section VI, which are now no longer tenable. In
that section we concluded that the man in the carriage,
who traverses the distance w per second relative to the
carriage, traverses the same distance also with respect to
the embankment in each second of time. But, according
to the foregoing considerations, the time required by a
particular occurrence with respect to the carriage must
not be considered equal to the duration of the same
occurrence as judged from the embankment (as refer-
ence-body). Hence it cannot be contended that the
man in walking travels the distance w relative to the
railway line in a time which is equal to one second as
judged from the embankment.

Moreover, the considerations of Section VI are based
on yet a second assumption, which, in the light of a
strict consideration, appears to be arbitrary, although
It was always tacitly made even before the introduction
of the theory of relativity.

r

Mi m^



ON THE RELATIVITY OF THE CONCEPTION
OF DISTANCE

LET us consider two particular points on the train

»

travelling along the embankment with the
velocity V. and inquire as to their distance apart.We t ady know that it is necessary to have a body of

retcr'
^^

for the measurement of a distance, with respect
to which body the distance can be measured up. It is
the simplest plan to use the train itself as reference-
body (co-ordinate system). An observer in the train
measures the interval by marking off his measuring-rodm a straight line (e.g. along the floor of the carriage)
as many times as is necessary to take him from the one
marked point to the other. Then the number which
teUs us how often the rod has to be laid down is the
required distance.

It is a different matter when the distance has to be
judged from the railway line. Here the foUowing
method suggests itself. If we call A' and B' the two
points on the train whose distance apart is required,
then both of these points are moving with the velocity v
along the embankment. In the first place we require to
determine the points A and B of the embankment which
are Just being passed by the two points A' and B' at a

» e.g. the middle of the first and of the hundredth carriage.
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particular time ^-judged from the embankment.
These points A and B of the embankment can be deter-

r^d fll i ^^' ^'**""' ^*^^^" *h^ points Aand fl IS then measured by repeated application of themeasunng-rod along the embankment.
A prtori it is by no means certain that this lastmeasurement wiU supply us with the same reslitt

tLn ^u' ?^' ^'"«*^ °^ '^^ *^^'" « "easure^from the embankment may be diffeient from that
obtained by measming in the train itself. This
c^cumstance leads us to a second objection wluch must

t^nJTi ^^^Jfx
*^' apparently obvious considera-

lon of Section VI. Namely, if the man in the carriage

the tram,-.then this distance-as measured from the
embankment-if^ not necessarily also equal to w.

.^,,,.i^
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THEILORENTZ TRANSFORMATION

THE results of the last three sections show
that the apparent incompatibility of the law
of propagation of light with the principle of

relativity (Section VII) has been derived by means of
a consideration which borrowed two unjustifiable
hypotheses from classical mechanics; these are as
follows

:

(1) The time-interval (time) between two events is
mdependent of the condition of motion of the
body of reference.

(2) The space-interval (distance) between two points
of a rigid body is independent of the condition
of motion of the body of reference.

If we drop these hypotheses, then the dilemma of
Section VII disappears, because the theorem of the addi-
tion of velocities derived in Section VI becomes invalid
The possibUity presents itself that the law of the pro-
pagation of light in vacuo may be compatible with the
principle o^ -elativity, and the question arises : How
have we t.. modify the considerations of Section VI
in order to remove the apparent disagreement between
these two fundamental results of experience? This
question leads to a general one. In the discussion of
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^ithTn^i''*
*^'' '^.^^^ ^'^ ^^'' *"^ ''^"^^^ relativeboth to the train and to the embankment. How arcwe to find the place and time of an event in relation to

!1 ;k
" ""' ^"^^ '^' P'*^^ ^"^ ti"»^ ol the

the" , T^"' *° *^' ""^"^^y embankment ? Is

nature thir^^r '"T' *° '^' ^"^^^'^^ °' «"<^h -nature that the law of transmission of light in vacuodoes not contradict the principle of relativity ? Tno her words
: Can we conceive of a relation between

place and;.me of the individual events relative to both

the velocity of transmission c reu. to the embank-

nl^dVt*"^*° ^''^ *^^'"
^ Thisquestlon iTadsto

tram.format.on law for the space-time magnitudes of

to Sen ''"'"' °'" ^°" °"^ ^°^y '^ -^-"-
Before we deal with this, we shaU introduce thefollowing mcidenial consideration. Up to the presentwe have only considered events takingVce l^g theembankment, which had mathematicaS/to assise the

ni Section II we can imagine this reference-body supple-mented laterally and in a vertical direction by means of

anZr "u""?'-
'' '^"* ^ ^^^"* ^^-h t-kes place

ITiL ^! i^'^"^
*'''^"*' "° "^^tter how far off itmay be. could also be localised with respect to the

^°
ond

wo. ks ^vou.ci ^ontmuaiiy mlerfere with each other, owug
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to the impenetrability of solid bodies. In every such
framework we imagine three surfaces perpendicular to
each other marked out, and designated as " co-ordmate
planes" ("co-ordinate system"). A co-ordinate
system K then corresponds to the embankment, and a
co-ordinate system K' to the train. An event, wherever
It may have taken place, would be fixed in space with
respect to K by the three perpendiculars x, y, z on the
co-ordinate planes, and with regard to time by a time-

value /. Relative to K', the

same event would be fixed

in respect of space and time
by corresponding values x',

y', *'. t', which of coiu-se are

not identical with x, y, z,

t. It has already been set

forth in detail how these

magnitudes are to be re-
garded as results of physical measurements.

Obviously our problem can be exactly formulated in
the following manner. What are the values x,' y', z', <',

of an event with respect to K', when the magnitudes
», y, ', t, of the same event with respect toK are given ?

The relations must be so chosen that the law of the
transmission of light in vacuo is satisfied for one anduhe
same ray of light (and of course for every ray) with
respect to K and K'. For the relative orientation in
space of the co-ordinate systems indicated in the dia-
gram (Fig. 2), this problem is solved by means of the
equations

:

Fig. 2.

X'— x-vt
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y'ry

/'=

4 V

c*

I-
c-

This system of equations is known as the " Lorentz
transformation."!

^-wicm*

If in place of the law of transmission of light we hadtaken as our basis the tacit assumptions of the older

iTn^ri^' *° *^' ^^^^'^^^ '^^'^'^'' of times and
lengths then instead of the above we should have
obtained the following equations :

x'=x—vt

y'r^y
x'=z
t'=t.

This system of equations is often termed the "
Galilei

transfonnation." The Galflei transformation can be
obtained from the Lorentz transformation by sub-S -^ ^ r^^'^y ^"«^ ^^'^^ fo^ *h« velocity ofhght c m the latter transformation
Aided by the following iUustration. we can readily

TJtt' ^ ^'^T*^?"*^
^th the Lorentz transfonna-

tion the law of the transmission of light in vacuo
IS satisfied both for the reference-body ^and for^
reference-body K'. A light-signal is'^sent alo^ the
positive x-^s and this light-stimulus advan^ i„
accordance with the equation

x=ct,

in ApA^ix l"'"'*''"
"^ *"* "^"^"^ transaction I, given

3

'S.is^9f<m immm
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?.•

I

i'

i.e. with the velocity c. According to the equations of

the Lorentz transformation, this simple relation between

X and t involves a relation between x' and f. In point

of fact, if we substitute for x the value ct in the first

and fourth equations of the Lorentz transformation,

we obtain

:

^,^ {c-v)t

/'= (-P'

from which, by division, the expression

immediately follows. If referred to the system K', the
propagation of Ught takes place according to this

equation. Wc thus see that the velocity of transmission

relative to the reference-body K' is also equal to c. The
same result is obtair ' for x^y% of Ught advancing in

any other direction atsoever. Of course this is not
surprising, since the equations of the Lorentz trans-

formation were derived conformably to this point of

view.

2



XII

THE BEHAVIOUR OF MEASURING-RODS AND
CLOCKS IN MOTION

I
PLACE a metre-rod in the «'-axis of K' in such a
manner that one end (the beginning) coincides with
the point «'=o, whilst the other end (the end of the

rod) coincides with the point «'=i. Wh^^ is the length

of the metre-rod relatively to the system Kl In order

to leam this, we need only ask where the beginning of the

rod and the end of the rod lie with respect to if at a
particular time / of the system K. By means of the first

equation of the Lorentz transformation the values of

these two points at the time <=o can be shown to be

"^(beginning of rod)

'

*(end of rod)

oVxJ

the distance betwetw the points being y i-'^. But

the metre-rod is movii^g with the velocity v relative to
K, It therefore follows tliat the length of a rigid metre-
rod moving in the direction of its length with a velocity

V is N^i-»«/c« of a metre. The rigid rod is thus
shorter when in motion than when at rest, and the
more quickly it is moving, the shorter is the rod. For
the velocity w=ic we should have Vi-»«/c"=o, and
for still greater velodti^ the square-root becomes
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imaginary. From this we conclude that in the theory
of relativity the velocity c plays the part of a limiting

velocity, which can neither be reached nor exceeded
by any real body.

Of course this feature of the velocity c as a limiting

velocity also clearly follows from the equations of the
Lorentz transformation, for these become meaningless
if we choose values of v greater than c.

If, on the contrary, we had considered a metre-rod
at rest in the at-axis with respect to K, then we should
have found that the length of the rod as judged from
K' would have been Ji—t^/c* ; this is quite in accord-
ance with the principle of relativity which forms the
basis of our considerations.

A priori it is quite dear that we must be able to
learn something about the ph}^ical behaviour of measur-
ing-rods and clocks from the equations of transforma-
tion, for the magnitudes x, y, z, t, are nothing more nor
less than the results of measurements obtainable by
means of measuring-rods and clocks. If we had based
our considerations on the Galilei transformation we
should not have obtained a contraction of the rod as a
consequence of its motion.

Let us now consider a seconds-clock which is per-
manently situated at the origin (x'«o) of K'. f=o
and f=i are two successive ticks of this clock. The
first and fourth equations of the Lorentz transformation
give for these two ticks

:

/-o
and

m

I !

V I-
c-
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As Judged from K, the dock is moving with the
velocity v ; as judged from this reference-body, the
time which elapses between two strokes of the clock

I

is not one second, but / « seconds, i.e. a some-

what larger time. As a consequence of its motion
the clock goes more slowly than when at rest. Here
also the velocity c plays the part of an unattainable
limiting velocity.

mami^ji^M
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XIII

THEOREM OF THE ADDITION OF VELOCITIES.
THE EXPERIMENT OF FIZEAU

NOW in practice we can move clocks and
measuring-rods only with velocities that are

small compared with the velocity of light ; hence
we shall hardly be able to compare the results of the
previous section directly with the reality. But, on the
other hand, these results must strike you as being very
singular, and for that reason I shall now draw another
conclusion from the theory, one which can easily be
derived from the foregoing considerations, and which
has been most elegantly confirmed by experiment.

In Section VI we derived the theorem of the addition
of velocities in one direction in the form which also

results from the h3rpotheses of classical mechanics. This
theorem can also be deduced readily from the Galilei

transformation (Section XI). In place of the man
walking inside the carriage, we introduce a point moving
relatively to the co-ordinate system K' in accordance
with the equation

x'=u>t'.

By means of the first and fourth equations of the Galilei

transformation we can express x' and t' in terms of *
and t, and we then obtain

x—{v+w)t.

i^
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This equation expresses nothing else than the law of

motion of the point with reference to the system K
(of the man with reference to the embankment). We
denote this velocity by the symbol W, and we then

obtain, as in Section VI,

W~v-\-w . . . (A).

But we can carry out this consideration just as well

on the basis of the theory of relativity. In the equation

we must then express x' and t' in terms of x and t, making

use of the first and fourth equations of t>*«^ LorenU

transformatioH. Instead of the equation (A) we then

obtain the equation

W=^_ . . . (B).

1+vw

which corresponds to the theorem of addition for

velocities in one direction according to the theory of

relativity. The question now arises as to which of these

two theorems is the better in accord with experience. On
this point we are enlightened by a most important experi-

ment which the brUliant physicist Fizeau performed more

than half a centiiry ago, and which has been repeated

since then by some of the best experimental physicists,

so that there can be no doubt about its result. The

experiment is concerned with the following question.

Light travels in a motionless Uquid with a particular

velocity w. How quickly does it travel in the direction

of the arrow in the tubeT (see the accompanying diagram.

Fig. 3) when the liquid above mentioned is flowing

through the tube with a velocity v ?
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In accordance with the principle of relativity we shaU
certainly have to take for granted that the propagation
of light always takes place with the same velocity w
with respect to the liquid, whether the latter is in motion
with reference to other bodies or not. The velocity
of Ught relative to the hquid and the velocit of the
latter relative to the tube are thus known, nd we
require the velocity of light relative to the tube.

It is clear that we have the problem of Section VI
again before us. The tube plays the part of the raUway
embankment or of the co-ordinate system K, the liquid
plays the part of the carriage or of the co-ordinate
system K', and finally, the Ught plays the part of the

Fig. 3.

man walking along the carriage, or of the moving point
in the present section. If we denote the velocity of the
llight relative to the tube by W, then this is given
by the equation (A) or (B), according as he Galilei
transformation or the Lorentz transformation corre-
sponds to the facts. Experiment » decides in favour
of equation (B) cierived from the theory of relativity, and
the agreement is, indeed, very exact. According to

> Fizeao found W-nr+w^i - Ijj, where w=^ is the index of

refraction of the Uquid. On the other hand, owing to the smaU-

ness of —, as compared with i, we can replace (B) in the first

place by h^=(b/+i/)^i -^^. or to the same order of approxima-

tion by w +v{^ 1 -
^j,j, which agrees with Fizeaa's result.

^-Jgl?^^-
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recent and most excellent measurements by Zeeman, the

influence of the velocity of flow v on the propagation of

light is represented by formula (B) to within one per

cent.

Nevertheless we must now draw attention to the fact

that a theory of this phenomenon was given by H. A.

Lorentz long before the statement of the theory of

relativity. This theory was of a purely electrody-

namical nature, and was obtained by the use of particular

hypotheses as to the electromagnetic structure of matter.

This circumstance, however, does not in the least

diminish the conclusiveness of the experiment as a

crucial test in favour of the theory of relativity, for the

electrodynamics of Maxwell-Lorentz, on which the

original theory was based, in no way opposes the theory

of relativity. Rather has the latter been developed

from electrodynamics as an astoundingly simple com-

bination and generalisation of the hypotheses, formerly

independent of each other, on which electrodynamics

was built.
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XIV

THE HEURISTIC VALUE OF THE THEORY OF
RELATIVITY

OUR train of thought in the foregoing pages can be
epitomised in the following manner. Experience
has led to the conviction that, on the one hand,

the principle of relativity holds true, and that on the
other hand the velocity of transmission of Ught in vacuo
has to be considered equal to a constant c. By uniting
these two postulates we obtained the law of transforma
tion for the rectangular co-ordinates x. y, x and the time
t of the events which constitute the processes of nature.
In this connection we did not obtain the Galilei trans-
formation, but. differing from classical mechanics,
the LormU transformation.

The law of transmission of light, the acceptance of
which is justified by our actual knowledge, played an
important port in this process of thought. Once in
possession of the Lorentz transformation, however,
we can combine this with the principle of relativity,
and sum up the theory thus :

Every general law of nature must be so constituted
that it is transformed into a law of exactly the same
form when, instead of the space-time variables x, y, z, t

of the original co-ordinate system K, we introduce new
space-time variables x', y', «', t' of a co-ordinate system
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K'. In this connection the relation between the

ordinary and the accented magnitudes is given by the

Lorentz transformation. Or, in brief : General laws

of nature are co-variant with respect to Lorentz trans-

formations.

This is a definite mathematical condition that the

theory of relativity demands of a natural law, and in

virtue of this, the theory becomes a valuable heuristic aid

in the search for general laws of nature. If a general

law of nature were to be found which did not satisfy

this condition, then at least one of the two fundamental

assumptions of the theory would have been disproved.

Let us now examine what general results the latter

theory has hitherto evinced.

I
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XV

GLNEr vL REb'^LTS OF THE 1 iEORY

IT
is ;lear from our previous considerauons ti at the

(special) theory ' rela* ivity has grown nut of electro-
dynamics and optics. In these fields it has not

appreciably altered t>H predictions of theory, but it
has considerably siii.,.Ufied die tli oretical structure.
i.e. the derivation of laws, and—what is incomparably
more important—it has considerably reduce- the
numb< r of independent hypothescb 'urming the bai,is of
theory. The special th ory of relativity has rendered
the Maxwell-Lorentz theor so plausible, that the latter
would have been generally ace ^ted by physiciste
even if experiment had lecided less unequivocaUy in its
favour.

Classical mechanics cqnired to be modified !

could come into line witL the demands of the
theory of relativity. For the main part, h-
this modification affects only the laws for rapid m
in which the velocities of matte- v are not very
compared with the velocity of ight. We havt xperi-
ence of such rapid motions only in the case of elt trons
and ions

;
for other motions the variations from th aws

of classical mechanics are too sTiall to ma e thenu ves
evident in practice. We shali lot c 4de. the motion
of stars untU we come to spea> 4 tb^ general theory oi
relativity. lu accordance wit he theory of -el* t it

v

44
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dons,

aall as



GENERA' RESULTS OF THEORY 45

the kin( tc eni :^ vi a material point of mass m is no
longer gi -en by the well-known e> oression

but V the ress '>

tn

mc~

'sT
9»

1

Th -; t xpression a^.[

nproai es th

thi refor alwo

be ' nerp

we ve p
ft THi of . set s

of tht

aiit} the velocity

locit .it c. velocity must
mp ess than c, ht vever great may

used tu produce the acceleration If

xpression for the kinetic energy in the

e obtain

»»«c'+wj+8>«^+ ....

sm 11 compared with unity, the

terms b ways small in comparison with
•^econc, uch la-t is alone considered in classical

mechanics. The first term nu^ does not contain
velo- y, and requires no consideration if we are only

aling with the question as to how the energy of a
point-mas? depends on the ve'o ity. We shall speak
of i' essential significance later.

1 XV.
'^'•* important restilt of a genti-al character to

whii .e special theory of relativity nas led is concerned
with tut conception of mass. Before the advent of
relativity, physics recognised two conservation laws of
fundamental importance, namely, the law of the con-
servation of energy and the law of the conservation o'
mass

; these two fundamental laws appeared to be quite

M i
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46 SPECIAL THEORY OF RELATIVITY

independent of each other. By means of the theory of

relativity they have been united into one law. We shall

now briefly considar how this unification came about,

and what meaning is to be attached to it.

The principle of relativity requires that the law of the

conservation of energy should hold not only with re-

ference to a co-ordinate system K, but also with respect

to every co-ordinate S3rstem K' which is in a state of

uniform motion of translation relative to K, or, briefly,

relative to every " Galileian " system of co-ordinates.

In contrast to classical mechanics, the Lorentz trans-

formation is the deciding factor in the transition from
one such system to another.

By means of comparatively simple considerations

we are led to draw the following conclusion from
these premises, in conjunction with the fundamental
equations of the electrodynamics of Maxwell : A body
moving with the velocity v, which absorbs ^ an amount
of energy E^ in the form of radiation without sufiering

an alteration in velocity in the process, has, as a conse>

quence, its energy increased by an amount

yI--,

In consideration of the expression given above for the
kinetic energy of the body, the required energy of the
body comes out to be

V^-?
> E, i» the energy taken np, as judged from a co-ordinate

system moving with the body.
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Thus the body has t.e same enei^gy as a body of mass

(****^) ™ovi°g with the velocity v. Hence we can

say
: If a body takes up an amount of energy E^, then

E
its inertial mass increases by an amount =§ ; the

inertial mass of a body is not a constant, but varies
according to the change in the energy of the body.
The inertial mass of a system of bodies can even be
regarded as a measure of its energy. The law of the
conservation of the mass of a system becomes identical

with the la'v of the conservation of energy, and is only
valid provided that the system neither takes up norsen^
out energy. Writing thj expression for the energy in
the form

y
we see that the term mc«, which has hitherto attracted
our attention, is nothing else than the energy possessed
by the body i before it absorbed the energy E^.

A direct comparison of this relation with experiment
is not possible at the present time, owing to the fact ihat
the changes in energy E^ to which we can subject a
system are not large enough to make then^ves
perceptible as a change in the inertial mass of the

system. -^ is too small in comparison with the mass

m, which was present br fore the alteration of the energy.
It is owing to this circumstance that classical mechanics
was able to estabUsh successfully the conservation of
mass as a law of independent validity.

' As judged from a co-ordinate system moving with tbe body.

-<

-•^-™~' iJMiiilMitfrii ^aSd
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Let me add a final remark of a fundamental nature.

The success of the Faraday-Maxwell interpretation of

electromagnetic action at a distance resulted in physicists

becoming convinced that there are no srcb things as

instantaneous actions at a distance (not involving an

intermediary medium) of the type of Newton's law of

gravitation. According to the theory of relativity,

action at a distance with the velocity of light always

takes the place of instantaneous action at a distance or

of action at a distance with an infinite velocity of trans-

mission. This is connected with the fact that the

velocity c plays a fundamental r61e in this theory. In

Part II we shall see in what Mray this result becomes

modified in the general theory of relativity.

appi^f^



XVI

EXPERIENCE AND THE SPECIAL THEORY OF
RELATIVITY

TO what extent is the special theory of relativity

supported by experience ? This question is not

easily answered for the reason already mentioned

in connectionwith the fundamental experiment of Fizeau.

The special theory of relativity has crystallised out

from the Maxwell-Lorentz theory of electromagnetic

phenomena. Thus all facts of experience which support

the electromagnetic theory also support the theory of

relativity. As being of particular importance, I mention

here the fact that the theory of relativity enables us to

predict the effects produced on the light reaching us

from the fixed stars. These results are obtained in an

exceedingly simple manner, and the effects indicated,

which are due to the relative motion of the earth with

reference to those fixed stars, are found to be in acord

V -^th experience. We refer to the yearly movement of

apparent position of the fixed stars resulting from the

iion of the earth round the sun (aberration), and to the

influence of the radial components of the relative

motions of the fixed stars with respect to the earth on

the colour of the light reaching us from them. The

4

t
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latter eiSect manifests itself in a slight displacement

of the spectral lines of the light transmitted to us from

a fixed star, as compared with the position of the same
spectral Unes when they are produced by a terrestrial

source of light (Doppler principle). The experimental

arguments in favour of the Maxwell-Lorentz theory,

which are at the same time argimients in favour of the

theory of relativity, are too nimierous to be set forth

here. In reaUty they limit the theoretical possibilities

to such an extent, that no other theory than that of

Maxwell ai/j Lorentz has been able to hold its own when
tested by experience.

But there are two classes of experimental facts

hitherto obtained which can be represented in the

Maxwell-Lorentz theory only by the introduction of an
auxihary hypothesis, which in itself

—

i.e. without

making use of the theory of relativity—appears ex-

traneous.

It is known that cathode rays and the so-called

/3-rays emitted by radioactive substances consist of

negatively electrified particles (electrons) of very small

inertia and large velocity. By examining the deflection

of these rays under the influence of electric and magnetic

fields, we can study the law of motion of these particles

very exactly.

In the theoretical treatment of these electrons, we are

faced with the dif&culty that electrodynamic theory of

itself is unable to give an account of their nature. For
since electrical masses of one sign repel each other, the

negative electrical masses constituting the electron would
necessarily be scattered under the influence of their

mutual repulsions, unless there are forces <A another

kind operating between them, the nature of which has
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hitherto remained obscure to us.^ If we now assume

that the relative distances between the electrical masses

constituting the electron remain unchanged during the

motion of the electron (rigid connection in the sense of

classical mechanics), we arrive at a law of motion of the

electron which does not agree with experience. Guided

by purely formal, points of view, H. A. Lorentz was the

first to introduce the hypothesis that the particles

constituting the electron experience a contraction

in the direction of motion in consequence of that motion,

the amount of this contraction being proportional to

/ v'
the expression -y/i— ^. This hypothesis, which is

not justifiable by any electrodynamical facts, supplies us

then with that particular law of motion which has

been confirmed with great precision in recent years.

The theory of relativity leads to the same 1 ' of

motion, without requiring any special hypothesis what-
soever as to the structure and the behaviour of the

electron. We arrived at a similar conclusion in Section

XIII in connection with the experiment of Fizeau, the

result of which is foretold by the theory of relativity

without the necessity of drawing on hypotheses as to

the physical nature of the liquid.

The second class of facts to which we have alluded

has reference to the question whether or not the motion
of the earth in space can be made perceptible in terrestrial

experiments. We have already remarked in Section V
that all attempts oi this nature led to a negative result.

Before the theory of relativity vraf put forward, it was

* The general theory of relativity renders it likely that the
electrical masses oi an electron are held together by gravita-
tiofial farces.
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difficult to become reconciled to this negative result,

for reasons now to be discussed. The inherited

prejudices about time and space did not allow any
doubt to arise as to the prime importance of the

Galilei transformation for changing over from one

body of reference to another. Now assuming that the

Maxwell-Lorentz equations hold for a reference-body K,
we then find that they do not hold for a reference-

body K' moving uniformly with respect to K, if we
assume that the relations of the Galileian transforma-

tion exist between the co-ordinates of K and K'. It

thus appears that of all Galileian co-ordinate systems

one {K) corresponding to a particular state of motion

is physically unique. This result was interpreted

physically by regarding K as at rest with respect to a

hypothetical aether of space. On the other hand,

all co-ordinate systems K' moving relatively to K were

to be regarded as in motion with respect to the aether.

To this motion of K' against the aether (" aether-drift
"

relative to K') were assigned the more complicated

laws which were supposed to hold relative to K'.

Strictly speaking, such an aether-drift ought also to be

assumed relative to the earth, and for a long time the

efforts of physicists were devoted to attempts to detect

the existence of an aether-drift at the earth's surface.

In one of the most notable of these attempts Michelson

devised a method which appears as though it must be

decisive. Imagine two mirrors so arranged on a rigid

body that +he reflecting surfaces face each other. A
ray of light requires a perfectly definite time T to pass

from one mirror to the other and back again, if the whole

system be at rest with respect to the aether. It is found

by caiculatiun, however, that a slightly difierent time

^1
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V is required for this process, if the body, together witb

the mirrors, be moving relatively to the aether,

yet anoth * point: it is shown by calculation thai .,

a given velocity v with reference to the aether, thio

time T' is difierent when the body is moving perpen-

dicularly to the planes of the mirrors from that resulting

when the motion is parallel to these planes. Although
the estimated difference between these two times is

exceedingly small, Michelson and Morley performed an
experiment involving interference in which this difference

should have been clearly detectable. But the experi-

ment gave a negative result—a fact very perplexing

to physicists. Lorentz and FitzGerald rescued the

theory from this difficulty by assuming that the motion
of the body relative to the aether produces a contraction

of the body in the direction of motion, the amount of con-

traction being just sufficient to compensate for the differ-

ence in time mentioned above. Comparison with the

discussion in Section XII shows that from the standpoint

also of the theory of relativity this solution of the

difficulty was the right one. But on the basis of the

theory of relativity the method of interpretation is

incomparably more satisfactory. According to this

theory there is no such thing as a " specially favoured
"

(unique) co-ordinate sjrstem to occasion the introduction

of the aether-idea, and hence there can be no aether-drift,

nor any experiment with which to demonstrate it.

Here the contraction of moving bodies follows from
the two fundamental principles of the theory without
the introduction of particular hypotheses ; and as the
prime factor involved in this contraction we find, not
the motion in itself, to which we cannot attach any
meaning, but the motion with respect to the body of

«
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reference chosen in the particular case in point. Thus
for a co-ordinate system moving with the earth the

mirror system of Michelson and Morley is not shortened,

but it is shortened for a co-ordinate S3^tem which is at

rest relatively to the sun.

• 'fc'tWw * ""-wy-'-^fewqgj^iic..- ^ilgjggygSjfj^^^^^



XVII

MINKOWSKI'S FOUR-DIMENSIONAL SPACE

THE non-mathematician is seized by a ms^terious

shuddering when he hears of " four-dimensional

"

things, by a feeling not unlike that awakened by

thoughts of the occult. And yet there is no more

conunon-place statement than that the world in which

we live is a four-dimensional space-time continuiun.

Space is a three-dimensional continuum. By this

we mean that it is possible to describe the position of a

point (at rest) by means of three numbers (co-ordinates)

X, y, X, and that there is an indefinite number of points

in the neighbourhood of this one, the position of which

can be described by co-ordinates such as %, y^, x^, which

may be as near as we choose to the respective values of

the co-ordinates x, y, x of the first point. In virtue of the

latter property we speak of a " continuum," and owing

to the fact that there are three co-ordinates we speak of

it as being " three-dimensionaL"

Similarly, the world of physical phenomena which was

briefly called " world " by Minkowski is naturally

four-dimensional in the space-time sense. For it is

composed of individual events, each of which is de-

scribed by four numbers, namely, three space

co-ordinates x, y, x and a time co-ordinate, the time-

value t. The " world " is in this sense also a continuum

;

for to every event there are as many " neighbouring
"

u

^A



I *

ii

50 SPECUL THEORY OP RELATIVITY

events (realised or at least thinkable) as we care to
choose, the co-ordinates Xj, y„ «„ /, of which differ

by an indefinitely small amount from those of the
event x. y, x, t originally considered. That we have not
been accustomed to regard the world in this sense as a
four-dimensional continuum is due to the fact that in
physics, before the advent of the theory of relativity,

time played a different and more independent rdle, as
compared with the space co-ordinates. It is for this
reason that we have been in the habit of treating time
as an independent continuum. As a matter of fact,

according to classical mechanics, time is absolute,
i.e. it is independent of the position and the condition
of motion of the system of co-ordinates. We see this
expressed in the last equation of the Galileian trans-
formation (<*=/).

The four-dimensional mode of consideration of the
" world " is natural on the theory of relativity, since
according to this theory time is robbed of its independ-
ence. This is shown by the fourth equation of the
Lorentz transformation

:

t'=

t-\x
c*

Moreover, according to this equation the time difference
A<' of two events with respect to K' does not in general
vanish, even when the time difference At of the same
events with reference to K vanishes. Pure "space-
distance " of two events with respect to K results in
" time-distance " of the same events with respect to K'.
But the discovery of Minkowski, which was of import-

• UmA I
-
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ance for the formal development of the theory of re-

lativity, does not he here. It is to be found rather in

the fact of his recognition that the four-dimensional

space-time continuum of the theory of relativity, in its

most essential formal properties, shows a pronounced

relationship to the three-dimensional continuum of

EucUdean geometrical space.* In order to give due

prominence to this relationship, however, we must

replace the usual time co-ordinate t by an imaginary

magnitude -J^.ct proportional to it. Under these

conditions, the natursd laws satisfying the demands of

the (special) theory of relativity assume mathematical

forms, in which the time co-ordinate plays exactly the

same r61e as the three space co-ordinates. Formally,

these four co-ordinates correspond exactly to the three

space co-ordinates in Euclidean geometry. It must be

clear even to the non-mathematician that, as a conse-

quence of this purely formal addition to oxu: kno>dedge,

the theory perforce gained clearness in no mean

measure.

These inadequate remarks can give the reader only a

vague notion cf tlie important idea contributed by Min-

kowski. Without it the general theory of relativity, of

which the fundamental ideas are developed in the follow-

ing pages, would perhaps have got no farther than its

long clothes. Minkowski's work is doubtless difficult of

access to anyone inexperienced in mathematics, but

since it is not necessary to have a very exact grasp of

this work in order to understand the fundamental ideas

of either the special or the general theory of relativity,

I shall at present leave it here, and shall revert to it

only towards the end of Part II.

^ Cf . the •omewh»t more detailed discuaaioa in Appendix II.
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PART II

THE GENERAL THEORY OF RELATIVITY

XVIII

SPECIAL AND GENERAL PRINCIPLE OF
RELATIVITY

THE i.<a8al priiiwiple, which was the pivot of all

our previo' consfderationit, was the specisU

principle r • *'.'hy, i.e. the principle of the

phy^iCaJ relativity '- iJJ u^.'form motion. Let ul> once

more anal3rse its me. <i^, v';.refiilly.

It was at all times c >u^ that, from the poiM of view

of the idea it conveys to us, every motioi. ou ' only

be considered as a relative motion. Returning to the

illustraticm we have frequently used of tue embankment

and the railway carriage, "*
s caii txpteu che f£.^^t :A the

motion here taking plac.. In the following two forms,

both of which arc equally justifiable :

(a) The carnage is in motion relative to the embank-

ment.

{b) The embankment is in Si'^tr'^ relative to the

carriage.

In (a) the embankment, in (6>/ the carriage, serves as

th~ body cf reference in our f^atesient of the motion

taking place If it is simply a question of detecting
5f
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60 GENERAL THEORY OF RELATIVITY

or of describing the motion involved, it is in principle
immaterial to what reference-body we refer the motion.
As ah-eady mentioned, this is self-evident, but it must
not be confused with the much more comprehensive
statement called " the principle of relativity," which
we have taken as the basis of our investigations.
The principle we have made use of not only maintains

that we may equally weU choose the carriage or the
embankment as our reference-body for the description
of any event (for this, too, is self-evident). Our principle
rather asFerts what follows : If tve formulat*- *hc general
laws of nature as they are obtained fror experience,
by making use of

(a) the embankment as reference-body,
(A) the railway carriage as reference-body,

then these general laws of nature {e.g. the laws of
mechanics or the law of the propagation of jght in vacuo)
have exactly the same form in both cases. This can
also be expressed as foUows : For the physical descrip-
tion of natural processes, neither of the reference-
bodies K, K' is unique (lit. " spec- !ly marked out ") as
compared with the other. Unlike the first, this latter
statement need not of necessity hold a priori ; it >
not contained in the conceptions of "motion" and
" reference-body " and derivable from them; only
experience can decide as to its correctness or incor-
rectness.

Up to the present, however, we have by no means
maintained the equivalence of all bodies of reference K
in connection with the formulation of natural laws.
Our course was more on the foUowinj hnes. In the
first place, we started out from the assumption that
there exists a reference-body K, whose condition of

iHHHiiai
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motion is such that the Galileian law holds with respect

to it : A particle left to itself and sufficiently far removed
from all other particles moves uniformly in a straight

line. With reference to K (Galileian reference-body) the

laws of nature were to be as simple as possible. But
in addition to K, all bodies of reference K' should be
given preference in this sense, and they should be exactly

equivalent to K for the formulation of natural laws,

provided that they are in a state of uniform rectilinear

and non-rotary motion with respect to K ; all these

bodies of reference are to be regarded as Galileian

reference-bodies. The validity of the principle of

relativity was assumed only for these reference-bodies,

but not for others {e.g. those possessing motion of a
different kind). In this sense we speak of the special

principle of relativity, or special theory of relativity.

In contrast to this we wish to understand by the
" general principle of relativity " the following state-

ment : All bodies of reference K, K', etc., are equivalent

for the description of natural phenomena (formulation of

the general laws of nature), whatever may be their

state of motion. But before proceeding farther, it

ought to be pointed out that this formulation must be
replaced later by a more abstract one, for reasons which
will become evident at a later stage.

Since the introduction of the special principle of

relativity has been justified, every intellect which
strives after generalisation must feel the temptation
to venture the step towards the general principle of

relativity. But a simple and apparently quite reliable

consideration seems to suggest that, for the present

at any rate, there is Uttle hope of success in such an
attempt. Let us imagine ourselves transferred to our
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62 GENERAL THEORY OF RELATIVITY

old friend the railway carriage, which is travelling at a

uniform rate. As long as it is moving aniformly, the

occupant of the carriage is not sensible of its motion,

and it is for this loason that he can unreluctantly inter-

pret the facts of the case as indicating that the carriage

is at rest, but the embankment in motion. Moreover,

according to the special principle of relativity, this

interpretation is quite justified also from a physical

point of view.

If the motion of the carriage is now changed into a

non-uniform motion, as for instance by a powerful

application of the brakes, then the occupant of the

carriage experiences a correspondingly powerful jerk

forwards. The retarded motion is manifested in the

mechanical behaviour of bodies relative to the person

in th? railway carriage. The mechanical behaviour is

ditterent from that of the case previously considered,

and for this reason it would appear to be impossible

that the same mechanical laws hold relatively to the non-

uniformly moving carriage, as hold with reference to the

carriage when at rest or in uniform motion. At all

events it is clear that the Gahleian law does not hold

with respect to the non-uniformly moving carriage.

Because of this, we feel compelled at the present juncture

to grant a kind of abscdute physical reality to non-

uniform motion, in opposition to the general principle

of relativity. But in what follows we shall soon see

that this conclusion cannot be maintained.

fl
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XIX

THE GRAVITATIONAL FIELD

IF
we pick up a stone and then let it go, why does it

fall to the ground ? " The usual answer to this

question is :
" Because it is attracted by the earth."

Modern phybics formulates the answer rather differently

for the following reason. As a result of the more careful

study of electromagnetic phenomena, we have come
to regard action at a distance as a process impossible

without the intervention of son'- intermediary medium.
If, for instance, a magnet attracts a piece of iron, we
caimot be content to regard this as meaning that the
magnet acts directly on the iron through the inter-

mediate empty space, but we are constrained to im-
agine—after the manner of Faraday—that the magnet
always calls into being something physically real in
the space around it, that something being what we call a
" magnetic field." In its turn this magnetic field

operates on the piece of iron, so that the latter strives
to move towards the magnet. We shall not discuss
here the justification for this incidental conception,
which is indeed a somewhat arbitrary one. We shall
only mention that with its aid electromagnetic pheno-
mena caa be theoretically represented much more
satisfactorily than without it, and this applies partic-
ularly to the transmission of electromagnetic waves.
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64 GENERAL THEORY OF RELATIVITY

The effects of gravitation also are regarded iu an ana-
logous manner.

The action of the earth on the stone takes place in-

directly. The earth produces in its surroundings a
gravitational field, which acts on the stone and produces
its motion of fall. As we know from experience, the

intensity of the action on a body diminishes according

to a quite definite law, as we proceed farther and farther

away from the earth. From our point of view this

means : The law governing the properties of the gravita-

tional field in space must be a perfectly definite one, in

order correctly to represent the diminution of gravita-

tional action with the distance from operative bodies.

It is something like this : The body {e.g. the earth) pro-

duces a field in its immediate neighbourhood directly ;

the intensity and direction of the field at points farther

removed from the body are thence determined by
the law which governs the properties in space of the

gravitational fields themselves.

In contrast to electric and magnetic fields, the gravita-

tional field exhibits a most remarkable property, which
is of fundamental importance for what follows. Bodies
which are moving under the sole influence of a gravita-

tional field receive an acceleration, which does not in the

least depend either on the material or on the physiofl

state of the body. For instance, a piece of lead and
a piece of wood fall in exactly the same manner in a
gravitational field {in vacuo), when they start off from
rest or with the same initial velocity. This law, which
holds most accurately, can be expressed in a different

form in the light of the following consideration.

According to Newton's law of motion, we have

(Force) =(inertial mass) x (acceleration),

mtm wtm ,2i
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where the " inertial mass " is a characteristic constant
of the accelerated body. If now gravitation is the
cause of the acceleration, we then have

(Force) =(gravitational mass) x (intensity of the

gravitational field),

where the " gravitational mass " is likewise a character-
istic constant for the body. From these two relations

follows

:

(acceleratM^'F^S^"^) x (intensity o. the

gravitational field).

If now, as we find from experience, the acceleration is

to be independent of the nature and the condition of the
body and always the same for a given gravitational

field, then the ratio of the gravitational to the inertial

laass must likewise be the same for all bodies. By a
suitable choice of units we can thus make this ratio

equal to unity. We then have the following law:
The gravitational mass of a body is equal to its inertial

mass.

It is true that this important law had hitherto been
recorded in mechanics, but it had not been interpreted.

A satisfactory interpretation can be obtained only if we
recognise the following fact : The sa$He quality of a
body manifests itself according to circumstances as
" inertia " or as " weight " (lit. " heaviness "). In the
following section we shall show to yrb&t extent this is

actually the case, and how this question is connected
with the general postulate of relativity.

m(^



XX

THE EQUALITY OF INERTIAL AND GRAVITA-
TIONAL MASS AS AN ARGUMENT FOR THE
GENERAL POSTULATE OF RELATIVITY

WE imagine a large portion of empty space, so far
removed from stars and other appreciable
masses, that we have before us approximately

the conditions required by the fundamental law of Galilei.
It is then possible to choose a Galileian reference-body for
this part of space (world), relative to which points at
rest remain at rest and points in motion continue per-
manently in uniform rectiUnear motion. As reference-
bcdy let us imagine a spacious chest resembling a room
T^ >i an observer inside who is equipped with apparatus.
Gravitation naturaUy does not exist for this observer.
He must fasten himself with strings to the floor!
otherwise the slightest impact against the floor will
cause him to rise slowly towards the ceihng of the
room.

To the middle of the Ud of the chest ia fixed extemaUy
a hook with rope attached, and now a " being " (what
kind of a being is immaterial to us) begins puUing at
this with a constant force. The chest together with the
observer then begin to move " upwards " with a
uniformly accelerated motion. In course of time their
velocity will reach unheard-of values—provided that

66
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INERTIAL AND GRAVITATIONAL MASS 67

we are liewing aU this from another reference-body
which is not being pulled with a rope.
But how does the man in the chest regard the process ?

The acceleration of the chest will be transmitted to him
by the reaction of the floor of the chest. He must
therefore take up this pressure by means of his legs if
he does not wish to be laid out full length on the floor.
He is then standing in the chest in exactly the same way
as anyor^e stands in a room of a house on our earth.
If he release a body which he previously had in his
hand, the acceleration of the chest will no longer be
transmitted to this body, and for this reason the body
will approach the floor of the chest with an accelerated
relative motion. The observer will further convince
himself thai the acceleration of the body towards the floor
of the chest is always of the same magnitude, whatever
kind of body he may happen to usefor the experiment.

Relying on his knowledge of the gravitational field
(as It was discussed in the preceding section), the manm the chest will thus come to the conclusion that he
and the chest are in a gravitational field which is constant
with regard to time. Of course he wiU be puzzled for
a moment as to why the chest does not faU in this
gravitational field. Just then, howevei, he discovers
the hook in the middle of the Ud of the chest and the
rope which is attached to it, and he consequently comes
to the conclusion that the chest is suspended at rest in
the gravitational field.

Ought we to smUe at the man and say that he errem his conclusion ? I do not beUeve we ought if we wish
to remain consistent ; we must rather admit that his
mode of grasping the situation violates neither reason
nor known mechanical Uws. Even though it is being
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68 GENERAL THEORY OF RELATIVITY

accelerated with respect to the " Galileian space
"

first considered, we can nevertheless regard the chest

as being at rest. We have thus good grounds for

extending the principle of relativity to include bodies

of reference which are accelerated with respect to each

other, and as a result we have gained a powerful argument

for a generalised postulate of relativity.

We must note carefully that the possibility of this

mode of interpretation rests on the fundamental

property of the gravitational field of giving all bodies

the same acceleration, or, what comes to the same thing,

on the law of the equality of inertial and gravitational

mass. If this natural law did not exist, the man in

the accelerated chest would not be able to interpret

the behaviour of the bodies around him on the supposi-

tion of a gravitational field, and he would not be Justified

on the grounds of experience in supposing his refer'iice-

body to be " at rest."

Suppose that the man in the chest fixes a rope to the

inner side of the lid, and that he attaches k body to the

free end of the rope. The result of this will be to stretch

the rope so that it will hang " vertically " downwards.

If we ask for an opinion of the cause of tension in the

rope, the man in the chest \.ill say :
" The suspended

body experiences a downward force in the gravitational

field, and this is neutralised by the tension of the rope ;

what determines the magnitude of the tension of the

rope is the gravitational muss of the suspended body."

On the other hand, an observer who is poised freely in

space will interpret the condition of things thus :
" The

rope must perforce take part in the accelerated motion

of the chest, and it transmits this motion to the body
attached to it. The trnsion of the rope is Just large

3S!Z "'iiMnI 11 I IN.II I
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enough to effect the acceleration of the body. That
which determines the magnitude of the tension of the

rope is the inertial mass of the body." Guided by
this example, we see that our extension of the principle

of relativity implies the necessUy of the law of the

equality of inertial and gravitational mass. Thus we
have obtained a physical interpretation of this law.

From our consideration of the accelerated chest we
see that a general theory of relativity must yield im-
portant results on the laws of gravitation. In point of

fact, the systematic pursuit of the general idea of re-

lativity has supplied the laws satisfied by the gravita-

tional field. Before proceeding farther, however, I

must warn the reader against a misconception suggested

by these considerations. A gravitational field exists

for the man in the chest, despite the fact that there was
no such field for the co-ordinate system first chosen.

Now we might easily suppose that the existence of a
gravitational field is always only an apparent one. We
might also think that, regardless of the kind of gravita-

tional field which may be present, we could always
choose another reference-body such that no gravitational

field exists with reference to it. This is by no means
true for all gravitational fields, but only for those of

quite special form. It is, for instance, impossible to
choose a body of reference such that, as judged from it,

the gravitational field of the earth (in its entirety)

vanishes.

We can now appreciate why that argument is not
convincing, which we brought forward against the
general principle of relativityat the end of Section XVIII.
It is certainly true that the observer in the railway
carriage experiences a jerk forwards as a result of the



ill

TO GENERAL THEORY OF RELATIVITY

application of the brake, and that he recognises in this the
non-uniformity of motiOn (retardation) of the carriage.
But he is compelled by nobody to refer this jerk to a
" real " acceleration (retardation) of the carriage. He
might also interpret his experience thus : "My body of
reference (the carriage) remains permanently at rest.
With reference to it, however, there exists (during the
period of application of the brakes) a gravitational
field which is directed forwards and which is variable
with respect to time. Under the influence of this field,

the embankment together with the earth moves non-
uniformly in such a manner that their original velocity
in the backwards direction is continuously reduced."

lil
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XXI

IN WHAT RESPECTS ARE THE FOUNDATIONS
OF CLASSICAL MECHANICS AND OF THE
SPECIAL THEORY OF RELATIVITY UN-
SATISFACTORY ?

WE have already stated several times that

classical mechanics starts out from the follow-

ing law: Material particles sufficiently far

removed from other material particles continue to
move uniformly in a straight line or continue in a
state of rest. We have also repeatedly emphasised
that this fundamental law can only be valid for

bodies of reference K which possess certain unique
states of motion, and which are in uniform translational

motion relative to each other. Relative to other refer-

ence-bodies K the law is not valid. Both in classical

mechanics and in the special theory of relativity we
therefore differentiate between reference-bodies K
relative to which the recognised " laws of nature " can
be said to hold, and reference-bodiesK relative to which
these laws do not hold.

But no person whose mode of thought is logical can
rest satisfied with this condition of things. He asks

:

" How does it come that certain reference-bodies (or

their states of motion) are given priority over other

reference-bodies (or their sUtes of motion) ? What is
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72 GENERAL THEORY OF RELATrVITY

the reason for this preference ? In order to show clearly

what I mean by this question, I shall make use of a
comparison.

I am standing in front of a gas range. Standing
alongside of each other on the range are two pans so
much alike that one may be mistake for the other.

Both are half full of water. I notice that steam is being
emitted continuously from the one pan, but not from the
other. I am surprised at this, even if I have never seen
either a gas range or a pan before. But if I now notice
a luminous something of bluish colour under the first

pan but not under the other, I cease to be astonished,
even if I have never before seen a gas flame. For I

can only say that thb bluish something will cause the
emission of the steam, or at least possibly it may do so.

If, however, I notice the bluish something in neither
case, and if I observe that the one continuously emits
steam whilst the other does not, then I shall remain
astonished and dissatisfied until I have discovered
some circumstance to which I can attribute the different

behaviour of the two pans.

Analogously, I seek in vain for a real something in
classical mechanics (or in the special theory of rela-
tivity) to which I can attribute the different behaviour
of bodies considered with respect to the reference-
systems K and K'.^ Newton saw thb objection and
attempted to invaUdite it, but without success. But
E. Mach recognised it most clearly of all, and because
of this objection he claimed that mechanics must be

1 The objection is of importance man especially when the state
ci motion of the reference-body is of snch a natoie that it does
not require any external agency for its maintenance, e.g. in
the case when the leference-body is rotating oniformly.

ill
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placed OB a new basis. It can only be got rid of by
means of a physics which is conformable to the general

principle of relativity, since the equations of such a

theory hold for every body of reference, whatevw
may be its state of motion.
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XXII

A FEW INFERENCES FROM THE GENERAL
THEORY OF RELATIVITY

THE considerations of Section XX show that the
general theory of relativity puts us in a position
to derive properties of the gravitational field in a

purely theoretical manner. Let us suppose, for instance,
that we know the space-time " course " for any natural
process whatsoever, as regards the manner in which it
takes place in the Galileian domain relative to a
Galileian body of reference K. By means of purely
theoretical operations {i.e. simply by calculation) we are
then able to find how this known natural process
appears, as seen from a reference-body K' which is
accelerated relatively to K. But since a gravitational
field exists with respect to this new body of referenceA

.
our consideration also teaches us how the gravita-

tional field influences the process studied.
For example, we learn that a body which is in a state

of umform rectilinear motion with respect to K (in
accordance with the law of Gahlei) is executing an
accelerated and in general curvUinear motion with
respect to the accelerated reference-body K' (chest)
This acceleration or curvature corresponds to the in-
fluence on the moving body of the gravitational field
prevailing relatively to K'. It is known that a gravita-
tional field influences the movement of bodies in this

74
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way, so that our consideration supplies us with nothing

essentially new.

However, we obtain a new result of fundamental

importance when we carry out the analogous considera-

tion for a ray of light. With respect to the Galileian

reference-body K, such a ray of light is transmitted

rectilinearly with the velocity c. It can easily be shown

that the path of the same ray of light is no longer a

straight line when we consider it with reference to the

accelerated chest (reference-body K'). From this we
conclude, that, in general, rays of light are propagated

curvilinearly in gravitational fields. In two respects

this result is of great importance.

In the first place, it can be compared with the reaUty.

Although a detailed examination of the question shows

that the curvature of light rays required by the general

theory of relativity is only exceedingly small for the

gravitational fields at our disposal in practice, its esti-

mated magnitude for light rays passing the sun at

grazing incidence is nevertheless 17 seconds of arc.

This ought to manifest itself in the following way.

As seen from the earth, certain fixed stars appear to be

in the neighbourhood of the sun, and are thus capable

of observation during a total eclipse of the sun. At such

times, these stars ought to appear to be displaced

outwards from the sun by an amount indicated above,

as compared with their apparent position in the sky
when the sun is situated at another part of the heavens.

The examination of the correctness or otherwise of this

deduction is a problem of the greatest importance, the

early solution of which is to be expected of astronomers.^

< By means of the star photographs of two expeditions equipped
by a Joint Committee of the Royal and Royal Astroaomical
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76 GENERAL THEORY OF RELATIVITY

In the second place our result shows that, according
to the general theory of relativity, tl - law oi the con-
stancy of the velocity of light in vacuo, which consti-
tutes one of the two fundamental assumptions in the
special theory of relativity and to which we have
already frequently referred, cannot claim any unlimited
validity. A curvature of rays of light can only take
place when the velocity of proi agation of light varies
with position. Now we might think that as a conse-
quence of this, the special theory of relativity and with
it the whole theory of relativity would be laid in the
dust. But in reality this is not the case. We can only
conclude that the special theory of relativity cannot
claim an unlimited domain of validity; iis results
hold only so long as we are able to disregard the in-
fluences of gravitational fields on the phenomena
{e.g. of Ught).

Since it has often been contended by opponents of
the theory of relativity that the special theory of
relativity is overthrown by the general theory of rela-
tivity, it is perhaps advisable to make the facts of the
case clearer by means of an appropriate comparison.
Before the development of electrodynamics the laws of
electrostatics and the laws of electricity were regarded
indiscriminately. At the present time we know that
electric fields can be derived correctly from electro-
static considerations only for the case, which is never
strictly realised, in which thi electrical masses are quite
at rest relatively to each other, and to the co-ordinate
system. Should we be justified in saying that for this

Societies, fhe existence of the deflection of Ught demanded by
theory was confirmed during the solar edipse of 20th Ifav. 1010
(a. Appendix III.)

/• y y
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reason electrostatics is overthrown by the field-equa-

tions of Maxwell in electrodynamics ? Not in the least.

Electrostatics is contained in electrodynamics as a

limiting case ; the laws of the latter lead directly to

those of the former for the case in which the fields are

invariable with regard to time. No fairer destiny

could be allotted to any physical theory, than that it

should of itself point out the way to the introduction

of a more comprehensive theory, in which it lives on

as a limiting case.

In the example of the transmission of light just dealt

with, we have seen that the general theory of relativity

enables us to derive theoretically the influence of a

gravitational field on the course of natural processes,

the laws of which are already known when a gravita-

tional field is absent. But the most attractive problem,

to the solution of wluch the general theory of relativity

supplies the key, concerns the investigation of the laws

satisfied by the gravitational field itself. Let us consider

this for a moment.

We are acquainted with space-time domains which

behave (approximately) in a " Galileian " fashion under

suitable choice of reference-body, i.e. domains in which

gravitational fields are absent. If we now refer such

a domain to a reference-body K' possessing any kind

of motion, then relative to K' there exists a gravita-

tional iield which is variable with respect to space and

time.* The character of this field will of course depend

on the motion chosen for K*. According to the general

theory of relativity, the general law oi the gravitational

field must be satisfied for all gravitational fields obtain-

* This follows from a generalisation of the discussion in Section

XX.
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able in this way. Even though by no means all gravita-
tional fields can be produced in this way, yet we may
entertain the hope that the general law of gravitation
will be derivable from such gravitational fields of a
special kind. This hope has been reaUsf n the most
beautiful manner. But between the x vision of
this goal and its actual realisation it was necessary to
surmount a serious difficulty, and as this lies deep at
the root of things, I dare not withhold it from the reader.
We require to extend our ideas of the space-time con-
tinuum :>till farther.
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XXIII

BEHAVIOUR OF CLOCKS AND MEASURING-RODS
ON A ROTATING BODY OF REFERENCE

HITHERTO I have purposely refrained from
speaking about the physical interpretation of

space- and time-data in the case of the general

theory of relativity. As a consequence, I am guilty of a
certain slovenliness of treatment, which, as we know
from the special theory of relativity, is far from being
unimportant and pardonable. It is now high time that

we remedr' >his defect; but I would mention at the
outset, t> : natter lays no small claims on the
patience de power of abstraction of the reader.

We stai-t ou again from quite special cases, which we
have frequently used before. Let us consider a space-
time domain in which no gravitational field exists

relative to a reference-body K whose state of motion
has been suitably chosen. K is then a Galileian refer-

ence-body as regards the donudn considered, and the
results of the special theory of relativity hold relative

to K. Let us suppose the same domain referred to a
second body of reference K', which is rotating uniformly
with respect to K. In order to fix our ideas, we shall

imagine K' to be in the form of a plane circular disc,

which rotates uniformly in its own plane about its

centre. An observer who is sitting eccentrically on the
n
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disc K' is sensible of a force which acts outwards in a

radial direction, and which would be interpreted as an

effect of inertia (centrifugal force) by an observer who
was at rest with respect to the original reference-body K.

But the observer on the disc may regard his disc as a

reference-body which is " at rest "
; on the basis of the

general principle of relativity he is Justified in doing this.

The force acting on himself, and in fact on all other

bodies which are at rest relative to the disc, he regards

as the effect of a gravitational field. Nevertheless,

the space-distribution of this gravitational field is of a

kind that would not be possible on Newton's theory of

gravitation.^ But since the observer believes in the

general theory of relativity, this does not disturb him

;

he is quite in the right when he beUeves that a general

law of gravitation can be formulated—a law which not

only explains the motion of the stars correctly, but

also the field of force experienced by himself.

The observer performs experiments on his circular

disc with clocks and measuring- rods. In doing so, it

is his intention to arrive at exact definitions for the

signification of time- and space-data with reference

to the circular disc K', these definitions being based on

his observations. What will be hb experience in this

enterprise ?

To start with, he places one of two identically con-

structed clocks at the centre of the circular disc, and the

other on the edge of the disc, so that they are at rest

relative to it. We now ask ourselves whether both

clocks go at the same rate from the standpoint of the

> The field disappears at the centre of tba disc and incruawii

proportionally to the distance from be centre as we proceed

ontwarda.
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non-rotating Galileian reference-body K. As judged
from this body, the dock at the centre of the disc has

no velocity, whereas the clock at the edge of the disc

is in motion relative to K in consequence of the rotation.

According to a result obtained in Section XII, it follows

that the latter clock goes at a rate permanently slower

than that of the clock at the centre of the circular disc,

i.e. as observed from K. It is obvious that the same effect

would be noted by an observer whom we will imagine
sitting alongside his clock at the centre of the circular

disc. Thus on our circular disc, or, to make the case

more general, in every gravitational field, a clock will

go more quickly or less quickly, according to the position

in vhich the clock is situated (at rest). For this reason

it is not possible to obtain a reasonable definition of time
with the aid of clocks which are arranged at rest with

respect to the body of reference. A similar difficulty

presents itself when we attempt to apply our earlier

definition of simultaneity in such a case, but I do not

wibh to go any farther into this question.

Moreover, at this stage the definition of the space
co-ordinates also {resents insurmountable difficulties.

If the observer applies his standard measuring-rod
(a rod which is short as compared with the radius of

the disc) tangentially to the edge of the disc, then, as

judged from the Galileian system, the length of this rod
will be less than i, since, accr-ding to Section XII, moving
bodies suffer a shortening in the direction of the motion.
On the other hand, the measuring-rod will not experience
a shortening in length, as judged from K, if it is applied
to the disc in the directioii of the radius. If, then, the
observer first measures the circumference of the disc

with his measuring-rod and then the diameter of the
6
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disc, on dividing the one by the other, he will not obtain

as quotient the familiar number iri>3'Z4 .... but

a larger number,^ whereas of course, for a disc which is

at rest with respect to K, this operation would yield »

exactly. This proves that the propositions of Euclidean

geometry cannot hold exactly on the rotating disc, nor

in general in a gravitational field, at least if we attribute

the length z to the rod in all positions and in every

orientation. Hence the idea of a straight line also loses

its meaning. We are theiefore not in a position to

define exactly the co-ordinates x, y, x relative to the

disc by means of the method used in discussing the

special theory, and as long as the co-ordinates and times

of events have not been defined, we cannot assign an

exact meaning to the natural laws in which these occur.

Thus all our previous conclusions based on general

relativity would appear to be called in question. In

reality we must make a subtle detour in order to be

able to apply the postulate of general relativity ex-

actly. I shall prepare the reader for this in the

following paragraphs.

* Throughout this consideration we have to use the Galileian

(non-rotating) system K as reference-body, since we may only

assume the validity of the results of the special theory ci rela-

tivity i«Utiv« to K (relative to K' a gravitational field prtvails).

'.^Vi „



XXIV

EUCLIDEAN AND NON-EUCLIDEAN CONTINUUM

THE surface of a marble table is spread out in front

of me. I can get from any one point on this

table to any other point by passing continuously
from one point to a " neighbouring " one, and repeating

this process a (large) number of times, or, in other words,
by going from point to point without executing " jumps."
I am sure the reader will appreciate with sufficient

clearness what I mean here by " neighbouring " and by
" Jumps " (if he is not too pedantic). We express this

property of the surface by describing the latter as a
continuum.

Let us now imagine that a large number of litt' rods
of equal length have been made, the.. ?ngth5 rnng
small compared with the dimensions oi the marble
slab. When I say they are of equal length. I mean that
one can be laid on any other without the ends over-
lapping. We next lay four of these little rods on the
marble slab so that they constitute a quadrilateral

figure (a square), the diagonals of which are equally
long. To ensure the equality of the diagonals, we make
use of a little testing-rod. To this square we add
similar ones, each of which has one rod in common
with the first. We proceed in like manner with each of
these squares until finally the whole marble dab is
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laid out with squares. The arrangement is such, that

each side of a square belongs to two squares and each
corner to four squares.

It is a veritable wonder that we can carry out this

business without getting into the greatest difficulties.

We only need to think of the following. If at any
moment three squares meet at a comer, then two sides

of the fourth square are already laid, and, as a conse-

quence, the arrangv.ment of the remaining two sides of

the square is already completely determined. But I

am now no longer able to adjust the quadrilateral so

that its diagonals may be equal. If they are equal
of their own accord, then this is an especial favour
of the marble slab and of the little rods, about which I

can only be thankfully surprised. We must needs
experience many such surprises if the construction is to

be successful.

If everything has really gone smoothly, then I say
that the points of the marble slab constitute a Euclidean
continuum with respect to the little rod, which has been
used as a " distance " (line-interval). By choosing
one comer of a square as " origin," I can characterise

every other comer of a square with reference to this

origin by means of two numbers. I only need state

how many rods I must pass over when, starting from the

origin, I proceed towards the " right " and then " up-

wards," in order to arrive at the comer of the square

under consideration. These two numbers are then the
" Cartesian co-ordinates " of this comer with reference

to the " Cartesian co-ordinate system" which is deter-

mined by the arrangement of little rods.

By making use of the following modification of this

abstract experiment, we recognise that there must also
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be cases in which the experiment would be unsuccessful.

We shall suppose that the rods " expand " by an amount
proportional to the increase of temperature. We heat
the central part of the marble slab, but not the peri-

phery, in which case two of our little rods can still be
brought into coincidence at every position on the table.

But our construction of squares must necessarily come
into disorder during the heating, because the Uttle rods
on the central region of the table expand, whereas
those on the outer part do not.

With reference to our Uttle rods—defined as unit

lengths—the marble slab is no longer a Euclidean con-
tinuum, and we are also no longer in the position of de-

fining Cartesian co-ordinates directly with their aid,

since the above construction can no longer be carried

out. But since there are other things which are not
influenced in a similar manner to the little rods (or

perhaps not at all) by the temperature of the table, it is

possible quite naturally to maintain the point of view
that the marble slab is a "Euclidean continuum."
This can be done in a satisfactory manner by making a
more subtle stipulation about the measurement or the
comparison of lengths.

But if rods of every kind {i.e. of every material) were
to behave in the same way as regards the influence of

temperature when they are on the variably heated
marble slab, and if we had no other means of detecting
the effect of temperature than the geometrical be-
haviour of our rods in experiments analogous to the one
described above, then oar b^t plan woidd be to assign
the distance one to two points on the slab, provided that
the ends of one of our rods could be made to coincide
with these two points ; for how else should we define

timim i
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the dist.uice without our proceeding being in the highest

measure grossly arbitrary ? The method of Cartesian

co-ordinates must then be discarded, and replaced by
another which does not assume the validity of Euclidean
geometry for rigid bodies.* The reader will notice that

the situation depicted here corresponds to the one
brought about by the general postulate of relativity

(Section XXIII).

^ Mathematicians have been confronted with oar problem in tlw
following form. If we are given a surface {e.g. an ellipsoid) in
Eaclidean three-dimensional space, then there exists for this
surface a two-dimensional geometry, just as much as for a plane
surface. Gauss undertook the task of treating this two-dimen-
sional geometry from first pdnciples, without making use of the
fact that the surface belongs to a Euclidean continuum of
three dimensions. If we imagine constructions to be made with
rigid rods in the surface (similar to that above with the marble
slab), we should find that different laws hold for these from those
resulting on the basis of Euclidean plane geometry. The surface
is not a Euclidean continuum with respect to the rods, and we
cannot define Cartesian co-ordinates in the surface. Gauss
indicated the principles according to which we can treat the
geometrical relationships in the suriace. and thus pointed out
the way to the method of Riemann of treating multi-dimen-
sional, non-Euclidean continua. Thus it is that mathematicians
long ago solved the formal problems to which we are led by the
general postulate of relativity.

m

mm m



XXV

GAUSSIAN CO-ORDINATES

ACCORDING to Gauss, this combined analytical

and geometrical mode of handling the problem

can be arrived at in the following way. We
imagine a system of arbitrary curves (see Fig. 4)

drawn on the surface of the table. These we desig-

nate as K-curves, and we indicate each of them by

means of a number. The curves «s=i, u=2 and

«=3 are drawn in the diagram. Between the curves

u=i and «=2 we must imagine an infinitely large

number to be drawn, all of which correspond to real

numbers lying between i and 2. We have then

a sjrstem of «-curves, and

this " infinitely dense " sys-

tem covers the whole sur-

face of the table. These

M-curves must not intersect

each other, and through each

point of the surface one and

only one curve must pass.

Thus a perfectly definite

value of u belongs to every point on the surface of the

marble slab. In hke manner we imagine a system of

v-curves drawn on the surface. These satisfy the same

conditions as the K-curves, they are provided with num-
87
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bers in a corresponding manner, and they may likewise
be of arbitrary shape. It follows that a value of u and
a value of v belong to every point on the surface of the
table. We call these two numbers the co-ordinates
of the surface of the table (Gaussian co-ordinates).
For example, the pointP in the diagram has the Gaussian
co-ordinates «=3, v=i. Two neighbouring points P
and P' on the surface then correspond to the co-o iinates

P: u, V

P' '• u+du, v+dv,

where du and dv signify very small numbers. In a
similar manner we may indicate the distance (line-
interval) between P and P', as measured with a Uttle
rod, by means of the ery smaU number ds. Then
according to Gauss we have

ds''=gndu*-i-2g^^dudv+g„ dv^

where gj^, g^^, g^^, are magnitudes which depend in a
perfectly definite way on u and v. The magnitudes g,„
gj2 and g^ detemiine the behaviour of the rods relative
to the t<-curves and v-curves, and thus also relative
to the surface of the table. For the case in which the
points of the surface considered form a EucUdean con-
tinuum with reference to the measuring-rods, but
only in this case, it is possible to draw the «-curves
and u-curves and to attach numbers to them, in such a
manner, that we simply have :

ds^=du*+di^.

Under these conditions, the ^-curves and »-curves are
straight lines in the sense of EucUdean geometry, and
they are perpendicular to each other. Here the Gaussian
co-ordinates are simply Cartesian ones. It is clear
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that Gauss co-ordinates are nothing more than en

association of two sets of numbers with the points of

the surface considered, of such a nature that numerical

values differing very slightly from each other are

associated vdth neighbouring points " in space."

So far, these considerations hold for a continuum

of two dimensions. But the Gavissian method can be

applied also to a continuum of three, four or more

dimensions. If, for instance, a continuum of four

dimensions be supposed available, we may represent

it in the following way. With every point of the

continuum we associate arbitrarily four numbers, x^, x,,

Xg, «4, which are known as " co-ordinates." Adjacent

points correspond to adjacent values of the co-ordinates.

If a distance ds is associated with the adjacent points

P and P', this distance being measurable and well-

defined from a physical point of view, then the following

formula holds

:

ds*=giidXi*-\r2giidXidXi .... •'rgndXt*,

where the magnitudes g^i, etc.. have values which vary

with the position in the continuum. Only when the

continuum is a Euclidean one is it possible to associcte

the co-ordinates x^ . . x^ with the points of the

continuum so that we have simply

In this case relations hold in the four-dimensional

continuum which are analogous to those holding in our

three-dimensional measurements.

However, the Gauss treatment for d^ which we have

given above is not always possible. It is only possible

when sufficiently small regions of the continuum under

consideration may be regarded as Euclidean continua.



!;

1'

^1.

vh

\^} >
il

90 GENERAL THEORY OF RELATIVITY

For example, this obviously holds in the case of the
marble slab of the table and local variation of temperature.
The temperature is practically constant for a small
part of the slab, and thus the geometrical behaviour of
the rods is almost as it ought to be according to the
rules of Euclidean geometry. Hence the imperfections
of the construction of squares in the previous section
do not show themselves clearly untU this construction
is extended over a considerable portion of the surface
of the table.

We can sum this up as follows : Gauss invented a
method for the mathematical treatment of continua in
general, in which " size-relations " (" distances " between
neighbouring points) are defined. To every point of a
continuum are assigned as many numbers (Gaussian co-
ordinates) as the continuum has dimensions. This is

done in such a way, that onlyone meaning can be attached
to the assignment, and that numbers (Gaussian co-
ordinates) which differ by an indefinitely small amount
are assigned to adjacent points. The Gaussian co-
ordinate system is a logical generalisation of the Cartesian
co-ordinate system. It is also applicable to non-Eudidean
continua, but only when, with respect to the defined
" size " or " distance," smaU parts of the continuum
under consideration behave more nearly like a Euclidean
system, the smaUer the part of the continuum under
our notice.



XXVI

THE SPACE-TIME CONTINUUM OF THE SPECIAL

THEORY OF RELATIVITY CONSIDERED AS

A EUCLIDEAN CONTINUUM

WE are now in a position to fonnulate more

exactly the idea of Minkowski, which was

only vaguely indicated in Section XVII.

In accordance with the special theory of relativity,

certain co-ordinate system-, are given preference

for the description of the four-dimensional, space-tiro*^

continuum. We called these " Galileian co-ordinate

systems." For these systems, the four co-ordinates

X, y, z, t, which determine an event or—^in other

words—a point of the four-dimensional continuum, are

defined physically in a simple manner, as set fonh in

detail in the first part of this book. For the tra.Tsition

from one Galileian system to another, which is moving

uniformly with reference to the first, the equations of

the Lorentz transformation are valid. These last

form the basis for the derivation of deductions from the

special theory of relativity, and in themselves they are

nothing more than the expression of the universal

validity of the law of transmission of light for all Galileian

systems of reference.

Minkowski found that the Lorentz transformations

satisfy the following simple conditioiB. Let us consider
9»
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two neighbouring events, the relative position of which
in the four-dimensional continuum is given with respect
to a Galileian reference-body K by the space co-ordir»ate
differences dx, dy, dz and the time-difference *. With
reference to a second Galileian system we shall suppose
that the corresponding differences for these two events
are d)^, dy', dz', dt'. Then these magnitudes always
fulfil the condition

»

dx*-\-dy*+dz*-c*di^=dx'^+dy'*-{-dz'*-c*dt'\

The validity of the Lorentz transformation follows
from this condition. We can express this as follows

:

The magnitude

ds*=dx'^-\-dy*-\-dz'^-c*dfi,

which belongs to two adjacent points of the four-
dimensional space-time continuum, has the same value
for all selected (Galileian) reference-bodies. If we re-

place X. y, z, N^Ti ct, by %,, «„ x^, «„ we also obtain the
result that

ds*==dx^*-^dx*+dx^*-\-dx*

is independent of the choice of the body of reference.
We call the magnitude ds the " distance " apart of the
two events or four-dimensional points.

Thus, if we choose as time-variable the imaginary
variable J-zct instead of the real quantity /, we can
regard the space-time continuum—in accordance with
the special theory of relativity—as a "Euclidean"
four-dimensional continuum, a result which follows
from the considerations of the preceding section.

» a. Appendices I and II. The relations which are derived
there for the co-ordinates themselves are vaUd also for co-
ordinate differences, and thus also for co-ordinate differentials
(indefinitely small differences).



XXVII

THE SPACE -TIME CONTINUUM OF THE
GENERAL THEORY OF RELATIVITY IS

NOT A EUCLIDEAN CONTINUUM

IN
the first part of this book we were able to make use

of space-time co-ordinates which allowed of a simple

and direct physical interpretation .. and which, accord-

ing to Section XXVI,can be regarded as four-dimensional

Cartesian co-ordinates. This was possible on the basis

of the law of the constancy of the velocity of light. But

according to Section XXI, the general theory of relativity

cannot retain this law. On the contrary, we arrived at

the result that according to this latter theory the

velocity of light must always depend on the co-ordinates

when a gravitational field is present. In connection

with a specific illustration in Section XXIII, we found

that the presence of a gravitational field in\'aUdates the

definition of the co-ordinates and the time, which led us

to our objective in the special theory of relativity.

In view of the results of these considerations we are

led to the conviction that, according to the general

principle of relativity, the space-time continuum cannot

be regarded as a Euclidean one, but that here we have

the general case, corresponding to the marble slab with

local variations of temperature, and with which we

made acquaintance as an example of a two-dimensional
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continuum. Just as it was there impossible to construe
a Cartesian co-ordinate system from equal rods, s<

here it is impossible to build up a system (reference
body) from rigid bodies and clocks, which shall be o;

such a nature that measuring-rods and clocks, arrangec
rigidly with respect to one another, shall indicate posi
tion and time directly. Such was the essence of th<
difficulty with which we were confronted in Sectior

But the considerations of Sections XXV and XXVI
show us the way to surmount this difficulty. We refer the
four-dimensional space-time continuum in an arbitrary
manner to Gauss co-ordinates. We assign to every
point of the continuum (event) four numbers, *„ x^,
Xy x^ (co-ordinates), which have not the least direct
physical significance, but only serve the purpose of
numbering the points of the continuum in a definite
but arbitrary manner. This arrangement does not even
need to be of such a kind that v» . must regard «„ «„ x, as
" spa.ce " co-ordinates and «< as a " time " co-ordinate.
The reader may think that such a description of the

world would be quite inadequate. What does it meano assign to an event the particular co-ordinates x^.

*i> «j. «4, if in themselves these co-ordinates have no
significance ? More careful consideration shows, how-
ever, that this anxiety is unfounded. Let us consider,
for instance, a material point with any kind of motion.
If this point had only a momentary existence without
duration, then it would be described in space-time by a
single system of values x^, x^, «„ x^. Thus its permanent
existence must be characterised by an infinitely large
number of such systems of values, the co-ordinate values
of which are so dose together as to give continuity

;

M>
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corresponding to the material point, we thus have a

(uni-dimensional) line inthe four-dimensional continuum.

In the same way, any such lines in our continuum

correspond to many points in motion. The only state-

ments having regard to these points which can claim

a physical existence are in reality the statements about

their encounters. In our mathematical treatment,

such an encounter is expressed in the fact that the two

lines which represent the motions of the points in

question have a particular system of co-ordinate values,

«i. Xf, «8« *4« i" common. After mature consideration

the reader will doubtless admit that in reality such

encounters constitute the only actual evidence of a

time-space nature with which we meet in physical

statements.

When we were describing the motion of a material

point relative to a body of reference, we stated

nothing more than the encounters of this point with

particular points of the reference-body. We can also

determine the corresponding values of the time by the

observation of encounters of the body with clocks, in

conjunction with the observation of the encounter of the

hands of clocks with particular points on the diak.

It is just the same in the case of space-measurements by

means of measuring-rods, as a little consideration will

show.

The following statements hold generally: Every

physical description resolves itself into a number of

statements, each of which refers to the space-time

coincidence of two events A and B. In terms of

Gaussian co-ordinates, every such statement is expressed

by the agreement of their four co-ordinates X|, x,, x„

x^. Thus in reality, the description of the time-space
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continuum by means of Gauss co-ordinates completely

replaces the description with the aid of a body of re-

ference, without suffering from the defects of the latter

mode of description ; it is not tied down to the Euclidean

character of the continuum which has to be represented.

I

Ml



XXVIII

EXACT FORMULATION OF THE GENERAL
PRINCIPLE OF RELATIVITY

WE are now in a position to replace the pro-

visional formulation of the general principle

of relativity given in Section XVIII by

an exact formulation. The form there used. "All

bodies of reference K, K', etc., are equivalent for

the description of natural phenomena (formulation of

the general laws of nature), whatever may be their

state of motion," cannot be maintained, because the

use of rigid reference-bodies, in the sense of the method

followed in the special theory of relativity, is in general

not possible in space-time description. The Gauss

co-ordinate system has to take the place of the body of

reference. The following statement corresponds to the

fundamental idea of the general principle of relativity

:

" AU Gaussian co-ordinaie systems are essentially equi-

valent for the formulation of the general laws of nature."

We can state this general principle of relativity in still

another form, which renders it yet more clearly in-

teUigible than it is when in the form of the natural

extension of the special principle of relativity. Accord-

ing to the special theory of relativity, the equations

which express the general laws of nature pass over into

equations of the same form when, by making use of the

the space-ti.'

e

Lorentz traraformation, jplace
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variables x, y. z, t, of a (Galileian) reference-body K
by the space-time variables x', y', z', f, of a new re-

ference-body K'. According to the general theory

of relativity, on the other hand, by application of

arbitrary substitutions of the Gauss variables Xi, *j, x^, x^,

the equations must pass over into equations of the same

form ; for every transformation (not only the Lorentz

transformation) corresponds to the transition of one

Gauss co-ordinate system into another.

If we desire to adhere to our "old-time" three-

dimensional view of things, then we can characterise

the development which is being undergone by the

fundamental idea of the general theory of relativity

as follows : The special theory of relativity has reference

to Galileian domains, i.e. to those in which no gravita-

tional field exists. In this connection a GaUleian re-

ference-body serves as body of reference, i.e. a rigid

body the state of motion of which is so chosen that the

Galileian law of the uniform rectiUnear motion of

" isolated " material points holds relatively to it.

Certain considerations suggest that we should refer

the same Galileian domains to non-Galileian reference-

bodies also. A gravitational field of a special kind is

then present with respect to these bodies (cf . SectionsXX
and XXIII).

In gravitational fields there are no such things as rigid

bodies with EucUdean properties ; thus the fictitious rigid

body of reference is of no avail in the general theory of

relativity. The motion of clocks is also influenced by

gravitational fields, and in such a way that a physical

definition of time which is made directly with the aid of

clocks has by no means the same degree of plausibihty

as in the special theory of relativity.

MRHMMi m
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For this reason non-rigid reference-bodies are used,

which are as a whole not only moving in any way

whatsoever, but which also suffer alterations in form

ad lib. during their motion. Clocks, for which the law of

motion is of any kind, however irregular, serve for the

definition of time. We have to imagine each of these

clocks fixed at a point on the non-rigid reference-body.

These clocks satisfy only the one condition, that the

"readings" which are observed simultaneously on

adjacent clocks (in space) differ from each other by an

indefinitely small amount. This non-rigid reference-

body, which might appropriately be termed a " reference-

mollusk,"is in the main equivalent to a Gaussian four-

dimensional co-ordinate system chosen arbitrarily.

That which gives the "moUusk" a certain compre-

hensibleness as compared with the Gauss co-ordinate

system is the (really unqualified) formal retention of

the separate existence of the space co-ordinates as

opposed to the time co-ordinate. Every point on the

moUusk is treated as a space-point, and every material

point which is at rest relatively to it as at rest, so long as

the moUusk is considered as reference-body. The

general principle of relativity requires that all these

mollusks can be used as reference-bodies with equal

right and equal success in the formulation of the general

laws of nature; the laws themselves must be quite

independent of the choice of moUusk.

The great power possessed by the general principle

of relativity lies in the comprehensive limitation which

is imposed on the laws of nature in consequence of what

we have seen above.
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XXIX

THE SOLUTION OF THE PROBLEM OF GRAVI-

TATION ON THE BASIS OF THE GENERAL
PRINCIPLE OF RELATIVITY

IF
the reader has followed all our previous con-

siderations, he will have no further difficulty in

understanding the methods leading to the solution

of the problem of gravitation.

We start off from a consideration of a Galileian

domain, i.e. a domain in which there is no gravitational

field relative to the Galileian reference-body K. The

behaviour of measuring-rods and clocks with reference

to K is known from the spttcial theory of relativity,

likewise the behaviour of " isolated " material points

;

the latter move uniformly and in straight lines.

Now let us refer this domain to a random Gauss co-

ordinate system or to a " mollusk " as reference-body

K'. Then with respect to K' there is a gravitational

field G (of a particular kind). We learr* the behaviour

of measuring-rods and clocks and also of freely-moving

material points with reference to K' simply by mathe-

matical transformation. We inteipret this behaviour

as the behaviour of measuring-rods, clocks and material

points under the influence of the gravitational field G.

Hereupon we introduce a hypothesis : that the in-

fluence of the gravitational field on measuring-rods,
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clocks and freely-moving material points continues to

take place according to the same laws, even in the case

when the prevaiUng gravitational field is not derivable

from the Galileian special case, simply by means of a

transformation of co-ordinates.

The next step is to investigate the space-time

behaviour of the gravitational field G, which was derived

from the GaLieian special case simply by transformation

of the co-ordinates. This behaviour is formulated

in a law, which is always vaUd, no matter how the

reference-body (mollusk) used in the description may

be chosen.

This law is not yet the general law of the gravitational

field, smce the gravitational field under consideration is

of a special kind. In order to find out the general

law-of-field of gravitation we still require to obtain a

generalisation of the law as found above. This can be

obtained without caprice, however, by taking into

consideration the following demands

:

(a) The required generalisation must likewise satisfy

the general postulate of relativity.

(6) If there is any matter in the domain under con-

sideration, only its inertial mass, and thus

according to Section XV only its energy is of

importance for its effect in exciting a field.

(c) Gravitational field and matter together must

satisfy the law of the conservation of energy

(and of impulse).

Finally, the general principle of relativity permits

us to determine the influence of the gravitational field

on the course of all those processes which take place

according to known laws when a gravitational field is

i
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absent, i.e. which have already been fitted into the

frame of the special theory of relativity. In this con-

nection we proceed in principle according to the method

which has already been explained for measuring-rods,

clocks and freely-moving material points.

The theory of gravitation derived in this way from

the general postulate of relativity excels not only in

its beauty ; nor in removing the defect attaching to

classical mechanics which was brought to light in Section

XXI ; nor in interpreting the empirical law of the equality

of inertial and gravitational mass; but it has also

already explained a result of observation in astronomy,

against which classical mechanics is powerless.

If we confine the application of the theory to the

case where the gravitational fields can be regarded as

being weak, and in which all masses move with respect

to the co-ordinate S5rstem with velocities which are

small compared with the velocity of Ught, we then obtain

as a first approximation the Newtonian theory. Thus

the latter theory is obtained here without any particular

assumption, whereas Newton had to introduce the

hypothesis that the force of attraction between mutually

attracting material points is inversely proportional to

the square of the distance between them. If we in-

crease the accuracy of the calculation, deviations from

the theory of Newton make their appearance, practi-

cally all of which must nevertheless escape the test of

observation owing to their smallness.

We must draw attention here to one of these devia-

tions. According to Newton's theory, a planet moves

round the sun in an eUipse, whi-h would permanently

maintain its position with respect to the fixed stars,

if we could disregard the motion of the fixed stars
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themselves and the action of the other planets under

consideration. Thus, if we correct the observed motion

of the planets for these two influences, and if Newton s

tueory be strictly correct, we ought to obtain for the

orbit of the planet an eUipse, which is fixed with re-

ference to the fixed stars. This deduction, which can

be tested with great accuracy, has been confirmed

for all the planets save one, with the precision that is

capable of being obtained by the deUcacy of observation

attainable at the present time. The sole exception

is Mercury, the planet which lies nearest the sun. Since

the tune of Leverrier, it has been known that the eUipse

corresponding to the orbit of Mercury, after it has been

corrected for the influences mentioned above, is not

stationary with respect to the fixed stars, J>ut that it

rotates exceedingly slowly in the plane of the orbit

and in the sense of the orbital motion. The value

obtained for this rotary movement of the orbital elhpse

was 43 seconds of arc per century, an amount ensured

to be correct to within a few seconds of arc. This

effect can be explained by means of classical mechanics

only on the assumption of hypotheses which have

little probabiUty, and which were devised solely for

this purpose.
, ^- •- •

On the basis of the general theory of relativity, it

is found that the eUipse of every planet round the sun

must necessarily rotate in the manner indicated above ;

that for all the planets, with the exception of Merc y.

this rotation is too small to be detected with the ddiracy

of observation possible at the present tune ;
but that in

the case of Mer-ury it must amount to 43 seconds of

arc per century, a result which is strictly in agreement
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Apart from this one, it has hitherto been possible to

make only two deductions from the theory which admit

of being tested by observation, to wit, the curvature

of light rays by the gravitational field of the sun,*

and a displacement of the spectral lines of light reaching

'.:s from large stars, as compared with the corresponding

lines for light produced in an analogous manner terres-

trially {i.e. by the same kind of molecule). I do not

doubt that these deductions from the theory will be
confirmed also.

» Observed by Eddington and others in 1919. (Cf. Appendix
III.)

' -I- p
I



PART III

CONSIDERATIONS ON THE UNIVERSE AS
A WHOLE

XXX

COSMOLOGICAL DIFFICULTIES OF NEWTON'S
THEORY

APART from the difficulty discussed in Section

XXI, there is a second fundamental difficulty

attending classical celestial mechanics, which,

to the best of my knowledge, was first discussed in

detail by the astronomer Seeliger. If we ponder over

the question as to how the universe, considered as a

whole, is to be regarded, the first answer that suggests

itself to us is surely this : As regards space (and time)

the universe is infinite. There are stars everywhere,

so that the density of matter, although very vaiiable

in detail, is nevertheless on the average everywhere the

same. In other words : However far we might travel

through space, we should find everywhere an attenuated

swarm of fixed stars of approximately the same kind

and density.

This view is not in harmony with the theory of

Newton. The latter theory rather requires that the

universe should have a kind of centre in which the
x«S



i'N

106 CONSIDERATIONS ON THE UNIVERSE

density of the stars is a maximum, and that as we

proceed outwards from this centre the group-density

of the stars should diminish, until finally, at great

distances, it is succeeded by an infimte region of empti-

ness. The stellar universe ought to be a finite island in

the infinite ocean of space.*

This conception is in itself not very satisfactory.

It is still less satisfactory because it leads to the result

that the light emitted by the stars and also individual

stars of the stellar system are perpetually passing out

into infinite space, never to return, and without ever

again coming into interaction with other objects of

nature. Such a finite material universe would be

destined to become gradually but systematically im-

poverished.

In order to escape this dilemma, Seeliger suggested a

modification of Newton's law, iii which he assumes that

for great distances the force of attraction between two

masses diminishes more rapidly than would result from

the inverse square law. In this way it is possible for the

mean density of matter to be constant everywhere,

even to infinity, without infinitely large gravitational

fields being produced. We thus free ourselves from the

» Proof—According to the theory of Newton, th.e number of

" lines of force " which come from infinity and terminate in a

mass m is proportional to the mass m. If, on the average, the

moss-density pg is constant throughout the universe, tiien a

sphere c! volume V will enclose the average mass p^V. Thus

the number of lines of force passing through the surface F at the

sphere into its interior is proportional to p^V. For unit area

of the surface of the sphere the number of lines of force which

enters the sphere is thus proportional to p^p or p^. Hence

the intensity of the field at the surface would ultimately become

infinite with increasing radius i? of the sphere, which is impossible.

H
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distasteful conception that the material universe ought

to possess something of the nature of a centre. Of

course we purchase our emancipation from the funda-

mental difficulties mentioned, at the cost of a modifica-

tion and complication of Newton's law which has

neither empirical nor theoretical foundation. We can

imagine innumerable laws which would serve the same

purpose, without our being able to state a reason why

one of them is to be preferred to the others ;
for any

one of these laws would be founded just as little on

more general theoretical principles as is the law of

Newton.

r



XXXI

THE POSSIBILITY OF A "FINITE" AND YET
"UNBOUNDED" UNIVERSE

BUT speculations on f ve structure of the universe

also move in quite another direction. Hie

development of non-Euclidean geometry led to

the recognition of the fact, that we can cast doubt on the

infiniUness of our space without coming into conflict

with the laws of thought or with experience (Riemann,

Helmholtz). These questions have sdready been treated

in detail and with unsurpassable lucidity by Helm-
holtz and Poincar^, whereas I can only touch on them
briefly here.

In the first place, we imagine an existence in two-

dimensional space. Flat beings with flat implements,

and in particular flat rigid measuring-rods, are free to

move in a plane. For them nothing exists outside of

this plane: that which they observe to happen to

themselves and to their flat " things " is the all-inclusive

rr. 'ity of their plane. In particular, the constructions

of plane Euclidean geometry can be carried out by
means of the rods, e.g. the lattice construction, considered

in Section XXIV. In contrast to ours, the universe of

these beings is two-dimensional ; but, like ours, it extends

to infinity. In their universe there is room for an
infinite number of identical squares made up of rods,

108
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i.e. its vclume (surface) is infinite. If these beings say

their uni verse is " plane," there is sense in the state-

ment, because they mean that they can perform the con-

structions of plane Euclidean geometry with their rods.

In this connection the individual rods alwajrs represent

the same distance, independently of their position.

Let us consider now a second two-dimensional exist-

ence, but this time on a spherical surface instead of on

a plane. The flat beings with their measuring-rods

and other objects fit exactly on this surface and they

are unable to leave it. Their whole universe of observa-

tion extends exclusively over the surface of the sphere.

Are these beings able to regard the geometry of their

universe as being plane geometiy and their rods withal

as the realisation of "distance"? They cannot do

this. For if they attempt to realise a straight line, they

will obtain a curve, which we "three-dimensional

beings " designate as a great circle, i.e. a self-contained

line of definite finite length, which can be measured

up by means of a measuring-rod. Similarly, this

universe has a finite area that can be compared with the

area of a square constructed with rods. The great

charm resulting from this consideration lies in the

recognition of the fact that the universe of these beings is

finite and yet has no limits.

But the spherical-surface beings do not need to go

on a world-tour in order to perceive that they are not

living in a Euclidean universe. They can convince

themselves of this on every part of their "world,"

proviacd they do not use too small a piece of it. Starting

from a point, they draw " straight lines " (arcs of circles

as judged in three-dimensional space) of equal length

in all direct! i. They will call the line joining the
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free ends of these lines a " circle." For a plane surface,

the ratio of the circumference of a circle to its diameter,

both lengths being measured with the same rod, is,

according to Euclidean geomv-try of the plane, equal to

a constant value ir, which is independent of the diameter

of the circle. On their spherical surface our flat beings

would find for this ratio the value

w »

(*)

i.e. a smaller value than », the difference being the

more considerable, the greater is the radius of the

circle in comparison with the radius R of the " world-

sphere." By means of this relation the spherical beinp

can determine the radius of their universe (" world "),

even when only a relatively small part of their world-

sphere is available for their measurements. But if this

part is very small indeed, they will no longer be able to

demonstrate th': they are on a spherical " world " and

not on a Euclidean plane, for a small part of a spherical

surface differs only slightly from a piece of a plane of

the same size.

Thus if the spherical-surface beings are living on a

planet ofwhich the solar system occupies onlya negligibly

small part of the spherical universe, ihey have no means

of determining whether they are living in a finite or in

an infinite universe, because the " piece of universe
"

to which they have access is in both cases practically

plane, or EucUdean. It follows directly from this

discussion, that for our sphere-beings the circumference

of a circle first increases with the radius until thv " cir-
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cumference of the universe " is reached, and that it

thenceforward graduaUy decreases to zero for still

further increasing values of the radius. During this

process the area of the circle continues to increase

more and more, until finally it becomes equal to the

total area of the whole " world-sphere."

Perhaps the reader will wonder why we l.-.c placed

our " beings " on a sphere rather than on another cl^d

surface. But this choice has its justification in the fact

that, of aU closed surfaces, the sphere is unique in possess-

ing the property that all points on it are equivalent. I

admit that the r-tio of the circumference c of a circle

to its radius r depends on r, but for a given value of r

it is the same for all points of the " world-sphere "
;

in other words, the " world-sphere " is a " surface of

constant curvature."

To this two-dimensional sphere-universe there is a

three-dimensional analogy, namely, the three-dimensional

spherical space which was discovered by Riemann. Its

points are likewise all equivalent. It possesses a finite

volume, which is detemJned by its "radius" (2ir»i?»).

Is it possible to imagine a spherical space ? To imagine

a space means nothing else than that we imagine an

epitome of our " space " experience, i.e. of experience

that we can have in the movement of " rigid " bodies.

In this sense we can imagine a spherical space.

Suppose we draw lines or stretch strings in all direc-

tions from a point, and mark off from each of these

the distance r with a measuring-rod. All the free end-

points of these lengths lie on a spherical surface. We
'

can specially measure up the area (F) of this surface

by means of a square made up of measuring-rods. If

the universe is EucUdean. then F=4irr« ; if it is spherical.
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then F is always less than 4»r". With increasing

values of r, F increases from zero up to a maximum

value which is determined by the " world-radius," but

for still further increasing values of r. the area gradually

diminishes to zero. At first, the straight lines which

radiate from the starting point diverge farther and

farther from one another, but later they approach

each other, and finaUy they run' together again at a

" counter-point " to the starting point. Under such

conditions they have traversed the whole spherical

space. It is easily seen that the three-dimensional

spherical space is quite analogous to the two-dimensional

spherical surface. It is finite {i.e. of finite volume), and

has no bounds.

It may be mentioned that there is yet another kind

of curved space :
" eUiptical space." It can be regarded

as a curved space in which the two " counter-points
"

are identical (indistinguishable from each other). An

elliptical universe can thus be considered to some

extent as a curved universe possessing central symmetry.

It follows from what has been said, that closed spaces

without limits are conceivable. From amongst these,

the spherical space (and the elliptical) excels in its

simplicity, since all points on it are equivalent. As a

result of this discussion, a most interesting question

arises for astronomers and physicists, and that is

whether the universe in which we live is infinite, or

whether it is finite in the manner of the spherical uni-

verse. Our experience is far from being sufficient to

enable us to answer this question. But the general

theory of relativity permits of our answering it with a

moderate degree of certainty, and in this connection the

difficulty mentioned in Section XXX finds its solution.
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THE STRUCTURE OF SPACE ACCORDING TO
THE GENERAL THEORY OF RELATIVITY

ACCORDING to the general theory of relativity,

the geometrical properties of space are not in-

dependent, but they are determined by matter.

Thus we can draw conclusions about the geometrical

structure of the universe only if we base our considera-

tions on the state of the matter as being something

that is known. We know from experience that, for a

suitably chosen co-ordinate system, the velocities of

the stars are small as compared with the velocity of

transmission of light. We can thus as a rough ap-

proximation arrive at a conclusion as to the nature of

the universe as a whole, if we treat the matter as being

at rest.

We already know from our previous discussion that the

behaviour of measuring-rods and clocks is influenced by

gravitational fields, i.e. by the distribution of matt<>r.

This in itself is sufficient to exclude the possibility of

the exact validity of Euclidean geometry in our uni-

verse. But it is conceivable that our universe difiers

only sUghtly from a Euclidean one, and this notion

seems all the more probable, since calculations show

that the metrics of surrounding space is influenced only

to an exceedingly small extent by masses even of the

8
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magnitude of our sun. We might imagine that, as

regards geometry, our universe behaves analogously

to a surface which is irregularly curved in its indi^adual

parts, but which nowhere departs appreciably from a

plane: something Uke the rippled surface of a lake.

Such a universe might fittingly be caUed a quasi-

Euclidean universe. As regards its space it would be

infinite. But calculation shows that in a quasi-

EucUdean universe the average density of matter

wc ^M necessarily be nil. Thus such a universe could

not be inhabited by matter everywhere: it would

present to us that unsatisfactory picture which we

portrayed in Section XXX.
If we are to have in the unive- ie an average density

of matter which differs from zero, however small may

be that difference, then the universe cannot be quasi-

EucUdean. On the contrary, the results of calculation

indicate that if matter be distributed uniformly, the

universe would necessarily be spherical (or eUiptical).

Since in reality the detaUed distribution of matter is

not uniform, the real universe will deviate in individual

parts from the spherical, i.e. the universe will be quasi-

spherical. But it wUl be necessarily finite. In fact, the

theory supplies us with a simple connection » between

the space-expanse of the universe and the average

density of matter in it.

» For the " radius " R of the universe we obtain the equation

i?»=
Kp

The use trf the C.G.S. system in this equation gives - = i-o8
.
lo";

p is the average density of the matter.

r-^Vtft. l'>.iiM.'qEF»^l
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SIMPLE DERIVATION OF THE LORENTZ
TRANSFORMATION [Supplementary to Sec-

tion XI]

FOR the relative orientation of the co-ordinate

systems indicated in Fig. 2, the «-axes of both

systems permanently coincide. In the present

case we can divide the problem into parts by considering

first only events which are localised on the «-axis. Any

such event is represented with respect to the co-ordinate

system K by the abscissa x and the time t, and with

respect to the system K' by the abscissa x' and the

time t'. We require to find x' and t' when « and < are

given.

A light-signal, which is proceeding along the positive

axis of X, is transmitted according to the equation

x=ct

x—ct=o . . • W-

Since the same light-signal has to be transmitted relative

to K' with the velocity c, the propagation relative to

the system K' will be represented by the analogous

formula
x'^ct'=o . . • (2)-

Those space-time points (events) which satisfy (i) must
115



116 APPENDIX I

m

1

1

Hi

5 I'

'

^

1
• .^:i

!
=1

\ t

i

m

1

also satisfy (2). Obviously this will be the case when

the relation , .

{x'-ct')=X{x-ct) . . (3)-

is fulfilled in general, where X indicates a constant ;
for,

according to (3), the disappearance of {x—ct) involves

the disappearance of (x'—cf).

If we apply quite similar considerations to light rays

which are being transmitted along the negative «-axis,

we obtain the condition

{x'+ct')=fi{x+c{) . . . (4)-

By adding (or subtracting) equations (3) and (4), and

introducing for convenience the constants a and b in

place of the constants X and /u., where

X+/*
a =

and

6 =
X-,

we obtain the equations

x' = ax- bct\

cH = act - bx)
(5).

We should thus have the solution of our problem,

if the constants a and b were known. These result

from the following discussion.

For the origin of K' we have permanently x'=o, and

hence according to the first of the equations {5)

be
x~-t.

If we call V the velocity with which the origin of K' is

moving relative to K, we then have

t;=
be

a
(6).

am
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IS

).

The same value v can be obtained from equation (5),

if we calculate the velocity of another point of K'

relative to K, or the velocity (directed towards the

negative x-axis) of a point of K with respect to K'. In

short, we can designate v as the relative velocity of the

two systems.

Furthermore, the principle of relativity tea.ches us

that, as judged from K, the length of a unit measuring-

rod which is at rest with reference to K' must be exactly

the same as the length, as judged from K', of a unit

measuring-rod which is at rest relative to K. In order

to see how the points of the «'-axis appear as viewed

from K, we only require to take a "snapshot " of K'

from K ; this means that we have to insert a particular

value of t (time of K), e.g. /=o. For this value of /

we then obtain from the first of the equations (5)

x'=ax.

Two points of the x'-axis which are separated by the

distance x'=i when measured in the K' system are

thus separated in our instantaneous photograph by the

distance

. . . (7)-- = ^

But if the snapshot be taken from K'{t'=o), and if

we eliminate t from the equations (5), taking into

account the expression (6), we obtain

«' = «(i--8)*.

From this we conclude that two points on the x-axis

and separated by the distance i (relative to K) will

be represented on our snapshot by the distance

A.' = a(i--,) (7fl).
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But from what has been said, the two snapshots

must be identical ; hence At in (7) must be equal to

Aa/ in (7<i), so that we obtain

I

»a
. . . {7b).

I- -,

a2„

The equations (6) and (76) determine the constants a

and b. By inserting the values of these constants in (5),

we obtain the first and the fourth of the equations

given in Section XI.
x-vt

xf =

I-

t- ,.T

V-l

(8).

Thus we have obtained the Lorcntz transformation

for events on the «-axis. It satisfies the condition

3C'«-C«/'2=;e2_c2<2 . . (8fl).

The extension of this result, to include events which

take place outside the fl?-axis, is obtained by retaining

equations (8) and supplementing them by the relations

t-Zt) • • • (9)-

In this way we satisfy the postulate of the constancy of

the velocity of light in vacuo for rays of light of arbitrary

direction, both for the system K and for the system K'.

This may be shown in t'- following manner.

We suppose a light-si^, al sent out from the origin

of K at the time t=o. It will be propagated according

to the equation

riMI
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or. if we square this equation, according to the equation

jjt^.y4.a« - c«<»=o . Uo)-

It is required by the law of propagation of light, in

conjunction with the postulate of relativity, that the

transmission of the signal in question should take place

-as Judged from K'-in accordance with the corre-

sponding formula

r'^cr.

or

In order that equation (loa) may be a consequence of

equation (lo), we must have

Since equation (8fl) must hold for points on the

r^-axis. we thus have <r= i. It is easUy seen that the

Lorentz transformation really satisfies equation (ii)

for <r=i; for (II) is a consequence of (8fl) and (9),

and hence also of (8) and (9). We have thus derived

the Lorontc transformation.
^ . ,qx a

The Lorentz transformation represented by (8) and

(9) stiU requires to be generalised. Obviously it is

immaterial whether the axes of K' be chosen so that

they are spatially parallel to those of K. It is dso not

essential that the velocity of translation of K with

respect to K should be in the direction of the *-axis.

A simple consideration shows that we are able to

construct the Lorentz transformation in this general

sense from two kinds of transformations, viz. from

Lorentz transformations in the special sense and from

purely ^^atial transformations, which corresponds to

the replacement of the rectangular co-ordinate system
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by a new system with its axes pointing in other

directions.

Mathematically, we can characterise the generalised

Lorentz transformation thus

:

It expresses x',y', z', t', in terms of linear homogeneous
functions of x, y, z, t, of such a kind that the relation

«'*+/"+«'•-cV»=««+3^«+«*-cV. . (iia).

is satisfied identically. That is to say : If we sub-

stitute their expressions in x, y, x, t, in place of x', y',

z', t', on the left-hand side, then the left-hand side of

(iia) agrees with the right-hand side.
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MINKOWSKI'S FOUR - DIMENSIONAL SPACE

("WORLD") [Supplementary to Section XVII]

WE can characterise the Lorentz transformation

still more simply if we introduce the imaginary

J^ . ct in place of t, as time-variable. If, in

accordance with this, we insert

and similarly for the accented system K', then the

condition which is identically satisfied by the trans-

formation can be expressed thus :

That is, by the afore-mentioned choice of "co-

ordinates," (iia) is transformed into this equation.

We see from (12) that the imaginary time co-ordinate

x^ enters into the condition of transformation in exactly

the same way as the space co-ordinates Xi, «j, Xy It

is due to this fact that, according to the theory of

s^feaa
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relativity, the " time " x^ enters into natural laws in the

same form as the space co-ordinates x^, x^, x^.

A four-dimensional continuum described by the

" co-ordinates " x^, x^. «„ «4. was called " world " by

Minkowski, who also termed a point-event a " world-

point." From a "happening" in three-dimensional

space, physics becomes, as it were, an " existence " in

the four-dimensional " world."

This four-dimensional " world " bears a close similarity

to the three-dimensional "space" of (EucUdean)

analytical geomet If we introduce into the latter a

new Cartesian cc -dinate system (x\, x\, x'^ with

the same origin, then x\, x\, x\, are linear homogeneous

functions of x^, x^, x^, which identically satisfy the

equation

The analogy with (12) is a complete one. We can

regard Minkowski's " world " in a formal manner as a

four-dimensional Euclidean space (with imagmary

time co-ordinate) ; the Lorentz transformation corre-

sponds to a " rotation " of the co-ordinate system in the

four-dimensional " world."
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THE EXPERIMENTAL CONFIRMATION OF THE

GENERAL THEORY OF RELATIVITY

FROM a systematic theoretical point of view, we

may imagine the process of evolution of an em-

pirical science to be a continuous process of m-

duction. Theories are evolved, and are ex^essed in

short compass as statements of a large number of m-

dividual observations in the form of cmpincal laws,

from which the general laws can be ascertained by com-

parison. Regarded in this way, the development of a

science bears some resemblance to the compilation of a

classified catalogue. It is, as it were, a purely empmcal

enterprise.
x»- u i

But this point of view by no means embraces the whole

of the actual process ; for it slurs over the important

part played by intuition and deductive thought in the

development of an exact science. As soon as a sraence

has emerged from its initial stages, theoretical advances

are no longer achieved merely by a process of arrange-

ment. Guided by empirical data the investigator

rather develops a system of thought which, m general,

is buUt up logically from a small number of fundamental

assumptions, the so-caUed axioms. We call such a

system of thought a theoiy. The theory finds the
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justification for its existence in the fact that it correlates

a large number of single observations, and it is Just here

that the " truth " of the theory lies.

Corresponding to the same complex of empirical data,

there may be several theories, which differ from one

another to a considerable extent. But as regards the

deductions from the theories which are capable of

being tested, the agreement between the theories may
be so complete, that it becomes difficult to find such

deductions in which the two theories differ from each

other. As an example, a case of general interest is

available in the province of biology, in the Darwinian

theory of the development of species by selection in

the struggle for existence, and in the theory of develop-

ment which is based on the hypothesis of the hereditary

transmission of acquired characters.

We have another instance of far-reaching agreement

between the deductions from two theories in Newtonian

mechanics on the one hand, and the general theory of

relativity on the other. This agreement goes so far,

that up to the present we have been able to find only

a few deductions from the general theory of relativity

which are capable of investigation, and to which the

physics of pre-relativity days does not also lead, and

this despite the profound difference in the fundamental

assumptions of the two ories. In what follows, we

shall again consider these important deductions, and we

shall abo discuss the empirical evidence appertaining to

them which has hitherto been obtained.

(a) Motion of the Perihelion of Mercury

According to Newtonian mechanics and Newton's

law of gravitation, a planet which is revolving round the

-•—'^"' •"
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sun would describe an eUii.>se round the latter, or, more

correctly, round the common centre of gravity of the

sun and the planet. In such a system, the sun, or the

common centre of gravity, lies in one of the foci of the

orbital ellipse in such a manner that, in the course of a

planet-year, the distance sun-planet grows from a

minimum to a maximum, and then decreases again to

a minimum. If instead of Newton's law we insert a

somewhat different law oi • .traction into the calcula-

tion, we find that, according to this new law, the
.

•= ^

would still take place in such a manner that the disi«u :

sun-planet exhibits periodic variations; but in this

case the angle described by the Une joining sun and

planet during such a period (from perihelion—closest

proximity to the sun—to perihelion) would differ from

360". The Une of the orbit would not then be a closed

one, but in the course of time it would fill up an annular

part of the orbital plane, viz. between the circle of

least and the circle of greatest distance of the planet from

the sun.
. ,

According also to the general theory of relaUvity,

which differs of course from the theory of Newton, a

small variation from the Newton-Kepler motion of a

planet in its orbit should take place, and in such away,

that the angle described by the radius sun-planet

between one perihelion and the next should exceed that

corresponding to one complete revolution by an amount

given by
24ff»a'

{N.B.—One complete revolution corresponds to the

angle «» in the absolute angular measure customary in

physics, and the above expression gives the amount by
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which the radius sun-planet exceeds this angle during

the interval between one perihelion and the next.)

In this expression a represents the major semi-axis of

the ellipse, e its eccentricity, c the velocity of light, and

T the period of revolution of the planet. Our result

may also be stated as follows : According to the general

theory of relativity, the major axis of the ellipse rotates

round the sun in the same sense as the orbital motion

of the planet. Theory requires that this rotation should

amount to 43 seconds of arc per century for the planet

Mercury, but for the other planets of our solar system its

magnitude should be so small that it would necessarily

escape detection.^

In point of fact, astronomers have found that the

theory of Newton does not sufl&ce to calculate the

observed motion of Mercury with an exactness cor-

responding to that of the delicacy of observation attain-

able at the present time. After taking account of all

the disturbing influences exerted on Mercury by the

remaining planets, it was found (Leverrier—1859—

and Newcomb—1895) that an unexplained perihelial

movement of the orbit of Mercury remained over, the

amount of which does not differ sensibly from the above-

mentioned -f43 seconds of arc per century. The un-

certainty of the empirical result amounts to a few

seconds only.

(6) Deflection of Light by a Gravitational

Field

In Section XXII it has been already mentioned that,

1 Especially since the next planet Venus has an orbit that is

almost an exact circle, which makes it more difficult to locate

the perihelion with precision.
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according to the general theory of relativity, a ray of

light will experience a curvature of its path when passing

through a gravitational field, this mvature being simUar

to that experienced by the path of a body which is

projected through a gravitational field. As a result of

this theory, we should expect that a ray of light which

is passing close to a heavenly body would be deviated

towards the latter. For a ray of light which passes the

sun at a distance of A sun-radii from its centre, the

angle of deflection (a) should amount to

a=
17 seconds of arc

A

sQ^'

It may be added that, according to the theory, half of

this deflection is produced by the

Newtonian field of attraction of the

sun. and the other half by the geo-

metrical modification ("curvature")

of space caused by the sun.

This result admits of an experi-

mental test by means of the photo-

graphic registration of stars during

a total eclipse of the sun. The only

reason why we must wait for a total

eclipse is because at every other

time the atmosphere is so strongly

illuminated by the light from the

sun that the stars situated near the

sun's disc are invisible. The predicted effect can be

seen clearly from the accompanying diagram. If the

sun (S) were not present, a star which is practically

infinitely distant would be seen in the direction Di, as

observed from the earth. But as a consequence of the

If

Fig. s.
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deflection of light from the star by the sun. the star

wiU be seen in the direction Dj, i.e. at a somewhat

greater distance from the centre of the sun than cor-

responds to its real position.

In practice, the question is tested in the following

way. The stars in the neighbourhood of the sun are

photographed during a solar eclipse. In addition, a

second photograph of the same stars is taken when the

sun is situated at another position in the sky, i.e. a few

months earUer or later. As compared with the standard

photograph, the positions of the stars on the ecUpse-

photograph ought to appear displaced radially out-

wards (away from the centre of the sun) by an amount

corresponding to the angle a.

We are indebted to the Royal Society and to the

Royal Astronomical Society for the investigation of

this important deduction. Undaunted by the war and

by difficulties of both a material and a psychological

nature aroused by the war, the' societies equipped

two expeditions—to Sobral (Brazi and to the island of

Principe (West Africa)—and sent several of Britain's

most celebrated astronomers (Fddington, Cottingham,

CrommeUn, Davidson), in order to obtain photographs

of the solar eclipse of 29th May, 1919. The relative

discrepancies to be expected between the stellar photo-

graphs obtained during the ecUpse and the comparison

photographs amounted to a few hundredths of a milli-

metre only. Thus great accuracy was necessary in

making the adjustments required for the taking of the

photographs, and in their subsequent measurement.

The results of the measurements confirmed the theory

in a thoroughly satisfactory manner. The rectangular

components of the observed and of the calculated

MMfl
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deviations of the stars (in seconds of arc) are set forth

in the following table of results

:

First Co-ordinate. Second Co-ordinate.

Number of the
Star.

II

S

4
3

6
10

3

Observed. Calculated. Observed

-0"I9 -0*22

+0-29 +0-3I

+0'II +OIO
+0'20 -|-0'12

-|-o*io +0'04

-oo8 -t-009

+0-9S -J.O-8S

(c) Displacement of Spectral Lines towards

THE Red

In Section XXIII it has been shown that in a system K'

vhich is in rotation with regard to a Galileian system K,

clocks of identical construction, and which are con-

sidered at rest with respect to the rotating reference-

body, go at rates which are dependent on the positions

of t^ ocks. We shall now examine this dependence

qi .- .vely. A clock, which is situated at a distance

r 1 V. 'le centre of the disc, h^s a velocity relative to

Kvui.uisgivenby

where « reprnsents the velocity of rotation of the disc

K' with respect to K. If v^ represents the number of

ticks of the clock per unit time (" rate " of the clock)

relative to K when the clock is at rest, then the " rate
"

of the dock (v) when it is moving relative to K with

a velocity v, but at rest with respect to the disc, will,

in accordance with Ssction XII, be given by
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or with sufficient accuracy by

This expression may also be stated in the following

form

:

If we represent the difference of potential of the centri-

fugal force between the position of the clock and the

centre of the disc by ^, i.e. the work, considered nega-

tively, which must be performed on the unit of mass

against the centrifugal force in order to transport it

from the position of the clock on the rotating disc to

the centre of the disc, then we have

^=-
2«r3w'r

From this it follows that

v= v,('-!>

In the first place, we see from this exprf'ssion that two

clocks of identical construction will go at different rates

when situated at different distances from the centre of

the disc. This result is also valid from the standpoint

of an observer who is rotating with the disc.

Now, as judged from the disc, the latter is in a gravi-

tational field of potential «^, hence the result we have

obtained will hold quite generally for gravitational

fields. Furthermore, we can regard an atom which is

emitting spectral lines as a clock, so ^ at ipe following

statement will hold

:

An atom absorbs or emits light of a frequency which is

ign ii
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dependent on the potential oj the gravitational field in

which it is situated.

The frequency of an atom situated on the surface of a

heavenly body will be somewhat less than the frequency

of an atom of the same element which is situated in free

space (or on the surface of a smaller celestial body).

Now <l>=
- 1^, where K is Newton's constant of

gravitation, and M is the mass of the heavenly body.

Thus a displacement towards the red ought to take place

for spectral lines produced at the surface of stars as

compared with the spectral lines of the same element

produced at the surface of the earth, the amount of this

displacement being

^^^ = tl
KM
C2 f

'

For the sun, the displacement towards the red pre-

dicted by theory amounts to about two nrilUonths of

the wave-length. A trustworthy calculation is not

possible in the case of the stars, because in general

neither the massM nor the radius r is knoMin.

It is an open question whether or not this effect

exists, and at the present time astronomers are working

with great zeal towards the solution. Owing to the

smallness of the effect in the case of the sun, it is diffi-

cult to form an opinion as to its existence. Whereas

Grebe and Bachem (Bonn), as a result of their own

measurements and those of Evershed and Scuwarzschild

on the cyanogen bands, have placeu the existence of

the effect almost beyond doubt, other investigators,

particularly St. John, have been led to the opposite

opinion in consequence of their measurements.

m
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Mean displacements of lines towards the less re-

frangible end of the spectrum are certainly revealed by

statistical investigations of the fixed stars; but up

to the present the examination of the available data

does not allow of any definite decision being arrived at,

as to whether or not these displacements are to be

referred in reality to the effect of gravitation. The

results of observation have been collected together,

and discussed in detail from the standpoint of the

question which has been engaging our attention here,

in a paper by E. Freundlich entitled " Zur Priifung der

allgemeinen Relativitats-Theorie " {Die Naturwissen-

schaften, 1919, No. 35, p. 520 : Julius Springer, Berlin).

At all events, a definite decision will be reached during

the next few years. If the displacement of spectral

lines towards the red by the gravitational potential

does rot exist, then the general theory of relativity

will be untenable. On the other hand, if the cause of

the displacement of spectral lines be definitely traced

to the gravitational potential, then the study of this

displacement will furnish us with important informa-

tion as to the mass of the heavenly bodies.

J i

i|
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mt. Wins, Watbe, AMD Song. Fca^.»o».
u.6d ntt.

OlattM-BMCk (JL). THOUGHTS ON
THE WAR. m
WHAT ISTHE KINGDOMOF HEAVENT
Ftmrth Bdititn. Fen^. 8vt it. mt

ESSAYS ON ART. Stetnd Edititm. Ftt^.
Uft. St, mt.

tMa(a.0.fl.). SOCIAL THEORY. Cr.
Sew. it. mt.

COBM* i'OMph). THE MIRROR OF
THE SEA: Memories and Impressions.
Pmtrth Bditien. Fca^. ive. 6t, net.

Vinth Edition. Femf. Sew.

iBitoln (A.). RELATIVITY : THE
SPECIAL AND THE GENERAL
THEORY. Translated by Robert W.
Lawson. Cr, Sbo. it. mt.

ryiamui (Iom.). fairies AND chim-
neys. Fen^, Svo. Sixth Edition.

tSk fairy green. TUrd Edition.
Fcap. Sm. 3J. 6d. ntt.

QtbblM (H. ilk B.). INDUSTRY IN
ENGLAND: HISTORICAL OUT-
LINES. With Maps and Plans. Ttntk
Edition. Dtmy Sew. lar. 6d. ntt.

THE INDUSTRIAL HISTORY OF
ENGLAND. With s Maps and a PUn.
Twtnty-itptnik Edition. Cr. Svo. it.

QtbbOB (Bdwrnrd). THE DECLINE AND
FALL OF THE ROMAN EMPIRE.
Edited, with Notes, Appendices, and Maps,
byj. B.BURV. Illnstrated. Stvtm yoiumts.
Dtmy 8m. i ustrated. Emck la/. id. mt.
Also in Stvtn Volumts. Cr, Smi. Btuk
IS, 6d. ntt.

Olover (T. lA THE CONFLICT OF
RELIGIONSIN the early ROMAN
EMPIRE. EtiatA Edition. Dtmty »vo.
lor. 6d. ntt.

POETSAND PURITANS. St€*md Bdilion.
Dtmy tet, lox. 6d. ntt.

FROM PERICLES TO PHILIP. TUrd
Edition. Dtmy 8m. ioi. td. mt.

VIRGIL. Fourth Edition. Dtn^ 8m.
xoir. 6d. ntt,

THE CHRISTIAN TRADITION AND
ITS VERIFICATION. (Tha AngnsLec-
tnte for igis.) Stcond Eaitiom, Cr, Sm.
it,mt,

anhMM (EiUMth), THE WIND IN
THE WILLOWS. Tinth Edition. Cr.
8m. 7«. id. ntt,

HMI(H.BO. THE ANCIENT HISTORY
or THE NEAR EAST FROM THE
EARLIEST TIMES TO THE BATTLE
OF SALAMIS. lUiuttated. Fourth Edi-
Hon, ' Domy 8m. i6t, mt,

BobMB (J. A.). INTERNATIONAL
TRADE : An ArrucATioN or Economic
Theory. Cr, 8m. it. ntt.

PROBLEM? or POVERTY: An Inquiry
into the industrial Condition or the
Poor. Eighth Edition. Cr. Se*. u. ml.THE PROBLEM OF THE UN-
EMPLOYED: An Inquiry and an
Economic Policy. Sixth Edition. Cr. tvo.
St. mt.

''jritf ^tmirnim mn^m
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(j,j , rRICES AND WAGES : With an
Examination or the Quantity Thbobt.
Ste«nd Ediiian. Cr. 800. u. tut.

TAXATION IN THE KEW STATE.
Cr, SfW. 6f. Mtt.

Holdi«orth (W. %.), A HISTORY OF
ENGLISH LAW. Vel. /., //., ///.,

BmA Stcend Editint. Dimy ivo. Each
151. net.

IlufaCW. R.). CHRISTIAN MYSTICISM.
(The Bampton Lectures of 1899.) Fourth
KdiiioM, Cr. 80*. it. 6d. Mtt.

Janka (B.). AN OUTLINE OF ENG-
LISH LOCAL GOVERNMENT. Fourth
Edition. Reviled by R. C K. Ensos. Cr.

%vo. u. ntt,

A SHORT HISTORY OF ENGLISH
LAW: Fkom tub Earliest Timiu to
THE End op the Year igii. Stcond
Edition, rtvittd. Dtmy Srt). lu. 6d. ntt.

JiiUan aJiAyi of Honrieh. REVELA-
TIONS OF DIVINE LOVE. Edited by
Grace Warkack. Sevtnth Edition. Cr.

too. ss. net.

Kaatt (Johll). POEMS. Edited, with Intro-

duction and Notei^ by E. de Sblincourt.
With a Frontispiece in Photogravure.
Third Edition. Demy %oo. lor. 6?. ntt.

KipUag (BadyurdX BARRACK-ROOM
BALLADS. S05/A Thousand. Cr. tioo.

Buckram, jt. 6d. ntt. AUo Fcaf. Sew.

Cloth, 6i. met; Itaihtr, is. 6d. no*
.\]so a Service Edition. TVcw rohimts,
Smumrtfca*. 8t>0. Each 31. ntt.

THE SEVEN SEAS, \yind Thousand.
Cr. %oo. Buckram, is. id. ntt. Also Fcm^.
80*. Cloth, 6s. ntt; Uathtr,js. 6d. ntt.

Also a Service Edition. Two Vobtmts,
Souart/cai. 800. Each y. ntt.

THE FIVE NATIONS. laUh Thousand.
Cr. too. Buckram, js. 6d. ntt. Also Fcap.
So*. Cloth, ts. ntt; Itathtr, is. 6d. not.

Also a Service Edition. Two Volumts,
Square/cap. 800. Bach y. ntt.

DEPARl'MBNTAL DITTIES. 94/A Thou-
sand. Cr. 8fw. Buckram, ft. 6d. ntt.

Alto Fcap. ivo. Cloth, t». mot; Umihtr,
IS. dd. ntt.

Also a Service Edition. 7W Volumts.
Saumrtfiap. 8tw. Sachxs. ntt.

THE YEARS BETWEEN. Cr. 8m.
Buehrmm, is. 6d. ntt. Alto on tUitpaptr.
Fcap. Soo. Blut cloth, £r. mtt; Limp
lamishtutis. dd. ntt.

Also a Service Edition. 7Vw Vohsmis.
Soueut/cap. 8tw. Bach w. ntt.

HYMN BEFORE ACTION. Illuminated.
Fcap. Ato. xs. td. ntt.

RECESSIONAL. Illuminated. Fcmp. ^io.

If. 6d. ntt.

TWENTY POEMS FROM RUDYARD
KIPLING. 360/A Theusamd. Fcap. Soo.

IS. net.

Lamb (OhariM ud Mary). THE COM-
PLETE WORKS. Edited by E. V. LocAS.
A NewandKevised Edition in Six yolumts.
With Frontispieces, Fcap. Srw. Each 6s. ntt.

The volumes are :

—

I. MiscBiXANEOUS Prose. II. Elia ani>
the L%st Euav or Elia. hi. Books
roR CHI1.0REH. IV. Plays and Poems.
v. and Yk Letters.

lABkMtar (Sir Ray). SCIENCE FROM
AN EASY CHAIR. Illustrated. Thirteenth
Edition. Cr. too. is, td. net.

SCIENCE FROM AN EASY CHAIR.
Illustrated. Stcond Strits. Third Edition.
Cr. Svo. IS. 6d. ntt.

DIVERSIONS OF A NATURALIST.
Illustrated. Third Edition. Cr. tvo.
7t, 6d. ntt.

SECRETS OF EARTH AND SEA. Cr.
8tw. is. td net.

Iiodga OUr Ollvar). MAN AND THE
UNIVERSE: A Study or THP Infiuenck
or THE Advance in Scientific Know-
LEOCB upon our UNDERSTANDING Ol'

Chriitianitv. Ninth Edition. Crown Brv.

T&'e survival of man : A ^tudy in
Unrbcogniseu Human Faculty. Seventh
Edition. Cr. Boo. is. 6d. net.

MODERN PROBLEMS. Cr. Boo. fs. 6d.
ntt.

RAYMOND : or LirB and Death. Illus-
trated. Tivelfth BditioH. Demy 8tw. 151.
ntt.

THE WAR AND AFTER : Short Chap-
ters ON Subjects op Serious Practical
Import »or the Average Citizen in a.d.

191 S Onwards. Eighth Edition. Fcap
800. u. ntt.

Lueaa (B. Y.X
The Life op Charles Lamb, a vols., ais.
ntt, A Wanderer in Holland, iof.6dilM«/.
A Wanderer in London, ioi. bd. net.
London Revisited, io>. 6d. ntt. A Wan-
derer in Paris, iot. 6d. net and 6s, net. A
Wanderer in Florence, los. 6d. ntt.
A Wanderer in Venice, lor. 6d. net. Thk
Open Road : A Little Book for Wayfarers,
6s. 6d. not and is. 6d. net. The Friendly
Town : A Little Book for the Urbane, 6s.

net. FiRBSiDB and Sunshine, 6s. ntt.
CHARACrmt AND CoMEOV, 6s, net, Thk
Gbntlbst Art: A Choice of Letters by
Entertaioine Hands, 6x. 6d, net. The
Second Post, bs, ntt. Her Infinite
Variety : A Feminine Portrait Gallery, 61.

ntt. Good Company : A Rally of Men, 6s.

ntt. One Day and Another, 6s, ntt.
Old Lamps for New, 6s. ntt. Loiterer's
Harvest, 6s, ntt. Cloud and Silvex, 6s,

ntt. Listener's Lure : An Oblique Na;--
ration, 6s. net. Over Bbmerton's: An
Easy-Going Chronicle, 6s, net, Mr. InrLE-

. SIDE, 6s, ntt, London Lavender, 6s, >at.
Landmarks, 6s, net, A Boswell of
Baghdad, and other E^avs, 6s. net,
'Twixt Eagle and Dove, 6s, ntt. The
Phantom Journal, ANDOTHER Essays AND
Diversions, 6s. ntt. The British School :

An Anecdotal Guide to the British Painters
and Paintings in the National Gallery, 6s, net.
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HeDou|ftll (WiUiMB). AN INTRODUC-
TION TO SOCIAL i-SYCHOLOOY.
FturttiHtk Edilien, Bnlargtd. Cr. hoo.
It. 6d. mt.

BODY AND MIND : A Histokv and a
DBrsNCB OP Animism. Fourth Editi»n.
Dtmy ivo. iix. fid. net.

HMtorlinok (ManrlM)-
Thb Blvic Bird : A Fairy Play in Six Actt,
&t. tut. M Rv Magoalehb; A Play in
Three AcU, sx. lut. Dbath, 3/. 6d. tut.
Our Eteknitv, &r. ntt. Thb Unknown
GuBST, tt. net. Poems, s*- »»'• The
Wrack op the Storm, tt. ntl. Thb
Miracle op St. Anthony : A Play in On«
Act, ys. dd. ntt. The Buecomastbb op
Sth.emonde: a Play in Three Actt, «.
net. Thb Betrothal ; or. The Blue Bird
Chooses, 61. mt. Mountain Paths, &».
ntt.

MilDa (A. A.). Thb Day's Play. The
HoLinAV Round. Once a Week. All
Cr. Zvo. 7*. ntt. Not that it Matters.
Fcap. Sew 6». ntt.

Oxenham (John)—
Bees in Amber : A Little Book of Thought-
ful Verse. All's Well: A Collection of
WarPoemi. T»'; King's High Wav. The
Vision Sflenuio. The Kieky Cross.
High Altars: The Record of a Visit to
the Battlefields of France and Flanders.
Hearts Couraurous. All Clear!
Winds op the Dawn. All Small Pott
tvo. Paftr, It. -vx. ntt ; cloth boards, tt.
ntt. Gentlemen— J me Kinc, u. ntt.

Patrle (W. . FilndenX A HISTORY
OF EGYPT. Illustrated. Six Volumtt.
Cr. 8bi0. EacA 9r. ntt.

Vol. I. From the 1st to the XVIth
Dynasty. JN'inth Edition. \o$. 6d. ntt.

Vou II. The XVIIth and XVIIIth
Dynasties. Sixth Edition.

Vol. III. XIXth to XXXth Dynasties.
Second Edition.

Vol, IV. Egypt under the Ptolemaic
Dynasty. J. P. Mahappy. SecondEdition.

Vol. V. Egypt under Roman Rolb. J. G.
Milne. Second Edition.

Vol. VI. Egypt in the Middlb Acbs.
Stanley Lane Poole. Second Edition.

SYRIA AND EGYP'T, FROM THE TELL
EL AMARNA LETTERS. Cr. 800.
St. ntt.

EGYPTIAN TALES. Translated from th«
Papyri. First Series, lYth to xiith Dynasty.
Illustrated. Third P-lititn. Cr. ivo.

EGYPTIAN TALI slated from Um
Papyri. Second £ iith to XIXTH
Dynasty. lUustrai second Edition.
Cr. 8vo. it. net.

PoUard (A. F.). A SHORT HISTORY
OF THE GREAT WAR. With 19 Maps.
Second Edition. Cr. %ao. loi. id. net.

Mm (L. bV A SHORT HISTORY OF
POLITICALECONOMY IN ENGLAND
FROM ADAM SMITH TO ARNOLD
TOYMBEE. IfbUh Editim. Cr. hoo.
it. ntt.

BtM (0. ANhdaUX THE LAWS OF
HEREDITY. Second Edition. Dtmytno.
£t IX. ntt.

BobwrtMB (0. Qnuit> SELECT STAT-
UTES, CASES, AND DOCUMENTS.
iSte-iiaa. Third Edition. Demy too-
ijf. ntt.

Maw (Bdaoiid). TOMMY SMITH'S
ANIMALS. Illustimtcd. Bightetnth Sdi-

_ti0n. Fcaf.ivo. 31.6d.net.
TOMMY SMITH'S OTHER ANIMALS.

Illustrated. Eleventh Edition. Fen*, hvo.
y. 6d. net.

TOMMY SMITH AT THE ZOO. Illus-
trated. Fourth Edition. Fcmf. Sew.

ToiraV SMITH AGAIN AT THE ZOO.
Illustrated. Feat. Bvo. xt. gd.

JACK'S INSECTS. lUustratedT Cr. 81W. Cs.
net.

JACK'S INSECTS. Popular Edition. Vol.
r. Cr. 8vo. 3t. 6d.

BhelUy (Ptrey ByMha). POEMS. With
an Introduction by A. Clutton-Brock and
Notes by C. D. LococK. Ttvo yolnmet.
Demy tvo. £1 u. net.

Smith (Ad»m> THE WEALTH OF
NATIONS. Edited by Edwin Cannan.
Two yolumet. Second Edition. Demy
81W. £i it. net.

lUvaBMB (S. L.). THE LETTERS OF
ROBERT LOUIS STEVENSON. Edited
by Sir Sidney Colvin. A Utw Re-
arremgtd Edition in/our volumes. Fourth
Edition. Fea^, Ovo. Emch 6t. net

SnrteM (. •.V-r' haNDLEY CROSS.
Illustrated. Mtmth Edition. Fcti*. Bvo.
7«. 6d. net.

^
MR. SPONGE'S SPORTING TOUR.

lUustratad. Ff/ih Edition. FetU. 800.
It. 6d. net.

ASK MAMMA: or. THE RICHEST
COMMONER IN ENGLAND. Illus-
trated. Seeomd Editioii. Fetip. 8p». is. 6d.
net.

JORROCKS'S JAUNTS AND JOLLI-
'TIES. lUustrmted. Seventh E^tion.
Fcaf. %vo. 6s. net.

MR. FACEY ROMFORD'S HOUNDS.
Illustrated. Third Edition. Fern*. 8ro.
It. 6d. net.

HA\/BUCK GRANGE ; ob, THE SPORT-
ING ADVENTURES OF THOMAS
SCOTT, Esq. Illustrated. Fern*. Sew.
6s, net.

PLAIN OR RINGLETSf lUustrated.
Fca^. Svo. is. 6d. net.

HILLINGDON HALL. With la Coloured
Plates by Wildrakb, Heath, and Jblu-
cob. Fca^. tvo. ji. td. net.

"i^i- ^
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TIlMtOB (Mary V .). DAILY STRENGTH
FOR DAII/, NJ:i:1)S. Tnitntyuxtk
KiiitioH. ffe/'i. m \6)na. 31. 6rf. Mtt.

Underhlll (Kyelyn^ MYSTICISM. A
Study in ll,« Nature and Development of
Man's Spiruual Cunsciuusness. Eigktli
lidifioH. Dtuty 8vo. 15*. net.

VnrdoD (Hury). HOW TO PLAY GOLF.
Illustrated. ThirUtHth Editiem. Cr. ioo.
;{. net.

Watarhouu (EltxftteUi). A LITTIE
nOOK OF LIFE AND DEATH.
Twentieth Edition. Small Pott Bw.
ClolA, as. 6d. net.

V/elU (J.). A SHORT HISTORY OF
ROME. Seventeenth Edititn. With 3
Maps. Cr. iivo. 61.

'.Vllde (Owar). THE WORKS OF OSCAR
WILUE. Fcap.ivo. Eachfts.td.net.

1. Lord Arthur Savilk's Crime and
iHE Portrait of Mr. W. H. 11. Thb
Duchess of Paoua. iii. Poems, iv.
LAi>y Windermekk's Fan. v. A Woman
OF No iMroicTANcE. VI. Am Ideal Hvs-

BAND. VII. The Importance of Being
Earnest, viii. A House of Pome-
granates. IX. Intentions, x. De Pro-
FUNDis AM> Prison Letters, xi. Essavs.
XII. SalomA, A Flokbntinb Traubuy,
and La Saintx Courtisane. xiii. A
Critic in Palu Mall. xiv. Selected
Pross or Oscar Wilde, xv. Art and
Decoration.

A HOUSE OF POMEGRANATES. Ulus-
tr.ited. Cr. ^o. aix. •*-/.

Wood (Llaut. W. B.) and BdmoBdi (Ool.
J. .). A HISTORY OF THE CIVIL
WAR IN THK UNITED STATES
(1861-65X With an Introduction by Spenser
Wilkinson. With 14 Maps and Plans.
Third Edition. Demyivo. ifs. net.

Wordnrorth (W.). POEMS. With an
Introduction and Notes by Nowell C.
Smith. Three yoiumes. Demy 8tw. i8j.
net.

TMta (W. B.). A BOOK OF IRISH
VERSE. Fourth Edition. Cr. 8vo.
is. net.

Part II.—A Selection of Series

Anoient Cities

General Editor, SiR B. C. A. WINDLE
Cr. 8w. 6s. net each volume

Wiih Illustrations by E. H. New, and other Artists

litiisToi- Cantkkburv. Chester. Dub-
|
Edinburgh. Lincoln. Shrewsbury.

i-'N-
I Wells and Clastonburv.

The Antiquary's Books
General Editor, J. CHARLES COX
Demy 8vo. 10s. 6d, tut each volume

With Numerous IIlu.strations

Ancient Paintf.d Glass in England.
Ak(UROLOGY ANu False Antiquities.
'I'm: I'Ki.LS liF Kngi.anii. Tiik Mrasses
"I- I'^NCi.ANi). Tiirc Cam IE . ANU Wai,i.ed
I'OWI.S OF JCNIilANIl. CkI.TIC ART IN
I'a(;an and Ciiki iian Times. Church-
WAUDKNS' AlCi)UNT>. ThE DomESDAY
Ikquest. English Chukih Furniture.
I'Wglish Costume. English Monastic
l.iiE. English Sisals. Folk-Lore as
AN HiSiOKICAL Stll.NCE. The GiLDS AND
t'oMl'ANlES OF l.uNDON. ThB HeRMITS
ANU Anchorites op England. The

Manor and Manorial Records. The
MEDI.CVAL HoSflTALS OF ENGLAND.
Old Engi.isf! Instruments of Music.
Old English Libraries. Old Service
Books of the English Church. Parish
Life in Mbdiaival England. The
Parish Reuistbks of England. Re-
mains OF the Prehistoric Ace in Eng-
land. The Roman Era in Britain.
Romano- British Buildings and Earth-
works. 1'he Royal Forests of Eng-
LANa The Schools of Medieval Ens-
LAND. Shrinks of British Saints.

^^lAHMHii tfita
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The Arden Shakespeare

Genenl Editor, R. H. CASE
D*mf 8tw. 6x. tui tack volumt

An edition of Shakespeare in Single Tlays ; each edited with a full Introdoction,

Textual Notes, and a Commentary at the foot of the page.

GlaiBios of Art

Edited by Dr. J. H. W. LAING
IVith numerous lUustratiotu. Wide Roytd 8tw

I'hb Akt op thb Greeks, is*, net. Tmb
Art or thb Romans, i6f. net. Chabdin,
151. tut. DONATBLLO, i6f. ntt. Gborcb
ROMNBV, \V- »tt, GhIBLAMDAIO, XV' <m/.

Lawrbhcb, as/, net. MiCNBUUiaBLO, is«.

net. Rapnabl, 15/. net. Rbmbbandi'!!
Etchings, Two Vols., aj». net. Tintor-
etto, 16/. «<:<. Titian, i6t. M«/. Turner's
Sketches and Drawings, ij/. "'/.

Vblazqubz, i5«. net.

The 'Complete' Series

Fully Illustrated. Demy Sew

The CoMrurra Amatrvb Boxbb. im. &/.

net. Thb Complete Association Foot-
baller, io(. ftd. net. Thb Complbtb
Athletic Trainer, lot. id. net. Thb
Complete Billiard Playbr, lax. td.

net. Thb Complete Cook, im. f>d. net.

The Complete Ckickbtbr, km. (>d. net.

The Complbtb Foxhunter, if». net.

The Complete Golfer, xtt. td. net.

The Complbtb Hockbt-Platbr, joi.6d.

net. The Complbtb Horseman, it, 6d.

net. The Complete Jiiiitsvam, 51. net.

The CoMPLsrE Lawn Tennis Plavek,
lu. 6tf. net. The Comfijcte Motorist,
lof. M. net. The Complete Mountain-
eer, 16s. net. The Complete Oaksman,
lis. net. The Complete Photographer,
i5>. net. Thb Complete Kur.sv Foot-
baller, on the New Zealand System,
lat. 6J. net. Thf Complete Shot, i&t.

net. Thb Complete Swimmer, lot. 6tl.

net. The Complete Yachtsman, i6f. net.

WKV.

Thb
AND.
USIC.

IVICE

RISH
The
Re-
Bng-
'AIN.

UTH-
Eng*
£ng.

The Connoisseur's Library

Witk numerous Illustrations. Wide Royal &». 255. ntt each volume

English Coloured Books. Enclism Fob*
niture. Etchings. Eubopban Enambls.
Fine Books. Gt.ASS. Goldsmiths' and
Silversmiths' Wobk. Illominatbo

Manuscripts. Ivories. Jkwbllbrv.
Mezzotints. Miniatures. Fobcblain.
Seals. Wood Sculftukb.

Handbooks of Theolo^
Dtmy 8w

The DocniiNB or thb Ihcabnatiom, 15/.

net. A History op Early Christian
Doctrine, i6(. net. Introduction to
THE History op Religion, laf. 6d. net.

Am Imtrodpction to the History op

THBCbxbds, imr. 6a'. net. The Philosophy
OP Religion in England and America,
tt.6d.net. Thb XXXIX Articles op
the Church op England, iji. net.

Health Series

Feap. &V0. 2s. 6d, net

The Baby. The Cabb op the Body. The
Care op the Teeth. The Eves op our
Children. Health for the Middlb-
A<iEO. The Health op a Woman. The
Health of thb Skin. How to Liyb

Long. The Prevention of the Common
Cold. Staving the ' .ague. Throat
and Ear Troubles. Iubercuuosis. Thb
Health op the Child, %i. net.

.^^a JtiHutM
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Leaden of Religion
Edited by H. C. BEECHING. fVi/k Portrnti

Crtmm 8t«. 3/. ntt each vohtmt

The Library of DoTotion
Handy EditioM of the great DevoUonal Books, well edited.

With Introductions and (where necessary) Notes
Small Pott 8w>, cUtk, jj. net and y. 6d. met

Little Books on Art
IVitk many Illustratums. Demy itmo. js. net eack volume

Each volume consist, of about 200 pages, and contain, from 30 to 40 IUu,tniUons.
includmg a Frontispiece in PhotogrsTure

Ai BnacMT Dt»«M. Thk Aits or Japam.
Bookplates. Botticelli. Bubnb-Jonbs.
Cellini. Christian Svmb<5Lis»i. Chuist
\H Art. Clauds. Constable. Corot.Early English Water-Colour. Ena-
mels. Frederic Leichton. Gborue
ROMNKv. Gebek A«t. Greuzb and

Tlie Little Oaides
With many Illustrations by E. H. New and other artists, and from photogntpfo

Small Poll 8tv. 4j. ntt md &. ntt
Guldo tt (he English .„d Wd.h Counts, and ^^ wdl-kno.n dislricl.

The LitUe Quarto Shakespeare
Edited by W. J. CRAIG. With Introductiros and Notes

Put i6me. 40 Volumes. Leather, price is. ^d. net tack volume
Cloth, IS. 6d.

BpDCMBR. Holbein. IlluminatedMano^ipti. Jewellery. John Hopp-
HER. S»l- Joshua Reynolds. Millet.
Miniaturss. OhrLadyimArt. Raphael.
Rodin. Tubhee. Vaudvck. VatAiQuS

Nine
Fcap. $vo.

AcRon THE Border. Baoiah Marie Dix.
Cr. 81W.

Honbvmoon.Thk. a Comedy in TInee Acts.
Arnold Bennett. Third Edition.

Great Adventure, The. A Play of Fancy in
hour Acts. Arnold Bennett. Fijth Editim*.

Milestones. Arnold Bennett and Edward
Knoblock. T/tHik Edition.

'""A^HusBAND, Am. Oscbi Wilde. Acting

Plays

IS. 6d. net

Kismet. Edward Knoblock. Foirtk Edi-

Typhoon A Play in Four Acts. Melcl.ior
Lengyel. English Version by Uurence
Irving. StcoiJEdition.

Ware Cass, The. George Pleydell.

^'2'?."*''^°»T. J.£.HarakITary. Stcoml
Sdttton.

mmmm
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Sports Series

Ilhutrattd. Feaf, 8tw. is. lut ami y. nit

All About Flvinc, 31. mtt. Golp Do'i
AND Dont's. The Golpinc Swing. How
TO Swim. Lawn Tknhm, v* »**• Skat-

IKG, 31. Hit. Cross'Coumtny Skmmo, it.
mt. WKESTLING, M. tut QuiCK CuTl
TO Good Golp, w. tJ. lut

The Wettminiter Commentariee
General B> or, WALTER LOCK

Dtmy 8tw

The Acts op tmb Aromn, iCr. m*t.
Amos, tt, 6d. nti, I. Corimtmians, tt.
(xi. utt. Exoous, 154. Hrt. Ezbkibl,
la^i 6d. tut. Genesis, i&i. mt. Hebrews,
8x, U. nti. Isaiah, i6r. ntt. Jbrbmiah,

lit. ntt. Job, it. 6J. ntt. The Pastoral
EristLES, ai. td. tut. Thk PiiiLirpiANs,
8*. td. ntt. St. Jakes, 81. W. ntt. St
Matthbw. 15*. ntt.

Methuen's Two-Shilling Library
Cheap Editions of many Popular Books
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Part III.—A Selection of Works of Fiction

Benaatt (AnoUl)-
Clavhangrr, 8f. ntt. Hilda Lbsswavs,
8^. id. ntt. These Twain. The Card.
The Regent: a Five Towns Story of
Adventure in London. The Price op
Love. Buried Alive. A Man prom the
North. The Matador op thk Five
Towns. Whom God hath Joined. A
Great Man : A Frolic. AU jt. id. mtt.

BinBlBgbam (0««rtf« A.)-
Spanish Gold. The Search Party.
Lalagb's Lovers. The Bad Times. Up.
the Rebels. AU ji. 6d. ntt.

BarNigha (Ugiu »«•)-
Tarxan op the Apes, «r. nti. Th»
R«TjiRN op Tarzan, 6t. ntt. The Beasts
OP Tarzan, 61. ntt. The Son op Tarzan.
6t. ngf. Jungle Tales op Tarzan, 6t.
ntt. Tarzan and the Jewels op Opar,
&r. iM^. Tarzan the Untamed, jt. 6d. ntt.A Princess op Maes, fir. ntt. The Gods
OP Mars, 61. ntt. Trs Wablobd op
Mars, 6t. nti.

OM|»*(JOBa»h). A SET OF SIX. Fturt*
adttton, Cr. tot. jt. 6d. ntt.

^^£12"^= AN Island Tale. Sixth
aditton. Cr. 8w. gt. ntt.

A Romance op Two Worlds, m. U. nti

yo'^™""?*- 1'' ^« Story Jf'one For",
gotten, tt. ntt. Thbi.ma : A Norwegian

n,.^^^ ^'' L'- ^ "*'• The Soul oJLiLiTH. y, u. ntt. VfonMwoD : A Drama

tb* World sTiag^y, St. iwf. The Sorrows•P Satan, 7/. id. ntt. The Master-
Christian. it.ed. ntt. Temporal Power :AStudv m Supremacy, dr. ntt. God'sGood Man: A Simple Love Story, ar. &/.

fff:
H.o«-Y Orders: The TragSy of a

QuNit Lif^ et.6d. ntt. The Migh i v Atom^

kS^ The Life Kveelastiko.

°^1?/!''it''?Jf")- ROUNDTHE REDlAMP. Tutiytk Bdititn. Cr. Sw. y^W
HfelMMffabaft)-
TOWGUES OP CONSdENCE, Jt. id. nttFelix : Three Years in a Life, tj. id. nti.The Woman with the Fan. It. 6d. 2SBVEWAVS jt.td. ntt. The 6ardenTp
Ailah, 8r. M. ntt. The Call op thb
Bloou, 8f. M. «/. B\RBARV Shekp, 6r.
ntt. Thk Dwellers on the Threshold,
I'j ^\ **/• ^''" ^** O" Ambition, tj
6d. ntt. In the Wilderness, 7/. td. iut

'

ih,L tttimuttt^im



8 Messrs. Methuen'S Publications

T^?"^""* °' ***• A Man or Mabk.
sl«» V?°'""='-"^'"'

CooMT Antonio.

A Young Man'i Ybai. BbaumarovHon. from TH8 Wars. AUjiTM.ntt!
iMofea (W. W.)-

A Mastbr or CRArr, v. mtt. Light
FRKioHTg, jx. •,/ T.IB Skipper', Wo..-
'NO. V- ntt. At Sunwich Port, «. ntt.
DiAi-STONK Lane, j,. net. Quo Craft
5«. ««•/. The Ladv or thk HAB(iE. «. net.
Sai.thav..:n. «. ^/. Sailors" Knots, v«<*^. Short Cut isES, 5j. Ktf/.

'^

bOittom. Cr. 8e». 7X. 6*/, ««/.

«•• (BtepkMI)-
SoNiA : Between Two Worlds 8*. nttNiNETvSix Hours' Leave. 7, 6rf. ij/
ThJJ^Sixth Sense, fa. «/, Miua. & Son!

aUt (Liwu)—
The History op Sir Richard Calmadv :A Romance. The Wages op Sin. TheCarissima. The Gateless BarrierDbadham Hard. AUj.Tu. m^

orf. ntt. ' '

«zmU(W. B.)-
ViviEw. The Goardes Flame. Odd
ijWWTitt. HiclRmb. Th« Rem Core.All ft. 6a. ntt.

OuakMi aohD>~

t«"b1I^°'^!?* P«oprr and Loss.im :>ONG OP Hvacinth, and Other

T^l^„ Laoristons. The Coil of Carnb.

A^S,«^ "n""* ^"o'^"'" *^«»*- Mary
all-Alone. Bkoksn Shacklbs. "W1«."/1« 7*. &/. ntt.

HriMrfOUkMrt}-
PWBEIf and Hit PWPLE. MrS. FaLCNIONThe Translation or a Savage Whm
. l^Tn".x:;^°a1:7"^ =^ s^-s
N^T'H^'C^„fAd^°;'j:;;2'y.«!
iT^l.

T-« Sbats or the Mfo^rV. TheUATTLB op the STanM/i< An
Of Two KinRdSJns. Th^p,*.'*°"^"=«
f *»•»..--. "tS^ *"'• "<JMr OP THE
l^tiTn^- "•"""• Lights. AU

MoiJ'SS' T„7"i? """vSoNsor the
pR^«i« T."" '*"";'••. The Americant-RISONER. DbmETEH's DAUtiHIKR ThiHuman Boy AND THE War. AUj'td^^r

Rid<t(W.P«tt>-
A Son op the State, 7*. erf. ntt ThrRemington Sentenc'e. 7^ &i. )^?
^ w"!Lf"c'^ '*• ^•«"- Tor SpkTo
«; -JtTn

Sfeciai. Performances. 6j«/. xHE Bustling Hours, jj. 6rf. «/.

BobnMr (tax)—

&"oUr*;?/7°'.5"::;;- ^-^ ^""~

?i!w'^/''/'-^ ^"?^S AND houses.I hird Editton. Cr. Boa. m A./ «^<

WUllMUOB (0. M. and JL M.)-
Thb Lightnimg Conductor : The Stnn»

r^!^ 1
" W*"«- Scarlet Runner.

TSiou^S?J;t'S "'"^ov""* Ameri?"

m E^^^J'H"*''"^'"- 'THArPENEo
Tuw. iJT: /^ SOLDIE- or THE Lbt.ION.

Mathnen'B Tvo-ShilUng Norelt
Cheap Editions ot many of tl.. mort Popular Noveb of the day

Fcaf. Sot



ft J




