Technical and Bibliographic Notes/Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
 Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes gbographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relie avec d'autres documents

Tight binding may cause shadows or distortion alang interior margin/
La reliure serrèe peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans te texte. mais, lorsque cela éait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a èté possible de se procurer. Les détails de cet exemplaire qui sont peu!-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la methode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured. stained or foxed/
Pages déculorées, tachetées ou piquėes

Pages detached/
Pages détachèes

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

\square
Includes supplementary material/ Comprend du ma:ériel supplémentaire

Oniy edition available/ Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues, etc.. have been refilmed to onsure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuiliet d'errata. une pelure. etc.. crit eté fi!mees a nouveau de facon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqued ci-dessous.

TIIE

UPPER (ANADA MEDERA JOURNN.

01

Medical, Surgical and Physical Science.

ORIGINAL OMMUNICATIONS.

 Trumslatal from thr Geiman hay Jossem Lemev, Ese, M. D Mhiludelyluia.

FOURTIF SBCTION.

The blood, which contains all the elements from which the tissues are developed, may organize itself immediately into them. It is not even inecessary that it should biexuded through the walls of the vessels to construct new tissues. Funter asserted the possibility of the immediateconversion of blood into tissue, bat latterly the facet has been almost entirely overlooked, and I believe I was the first to prove this transtomation by mieroscopic observation.
Blood may experience a transformation into tissue as radily within as exterior to the vessels, oecurring; in liac first case, in a very trilling degree in stasis of the blood; in the second, in blood extravasated imo the surromeling parenchyma, when the vessels are tom.
23. Metumarphasis of bluod acilhin artomes, wins, wad the heut.

In the organization of blood corpaseles, within the vascular system, they associate in groups of ten or more, and then become cnveloped with a grey albuminoid matter, soluble in acetic acid, which afterwards condenses, and thas constitutes a cell membrane.
The blood corpusices at first retain their hematine, and热y either preserve their original size or may undergo Wimination. After the cell is formed the red color gradually
 ranules (moleoli), which consist of fat, a proteime subtance or pigmen.
sometimes, belore the cell-wall is yot visible, a large shear spot appears in the centre of the groups, which is the maclens of the fature cell, and oceasionally two such nuclei are formed. This metamorphosis of blood-corpaseles into mflammation globalcs and cells camot always be traced or proved, because frequently when the examination is made, the red color has already disappeared from the mul-berry-fomed globules. Llowever, be it as it may, the existence of these inflammation glubules within a vessel is the only cortain sign that a columm of blood had stagnated during life. The length of time intervening between the commencement of stasis of the blood and the formation of the structures above described, accurding to my observalions, is several days.

The explanation of the process can hardly be given with certainty. To form the globules, it appears as if from ead constitnent blood-corpuscle a portion of albumen and fibrine rexuded, and another portion of these with lat remained.

The mode of transformation of the corpuscles into pigment granules is problematical. At first of a red color, they then become of a rust or yellowish color, and finally blackish, and are also diminished in size. They no longer give up their coloring matter to water or acetic acid, nor are they soluble in these; so that a chemical transiormation has taken place in the proteine as well as in the former substance.

Besides this change in color, and diminution in size of the blood-corpuscles, ${ }^{+}$in which, for the most part, the hematine remains in an altered condition, the formation of masses of pigment granules have bematine, which has exuded from blood-corpuscles without a change in their form, is also observed.

A forther metamorphosis of inflammation-globules, or of the cells, with many nucleoli, I have not observed in blood within the vessels.

In the organization of the fibrine within vessels, it congralates into fibres, which at first branch in an arborescent manner and are smooth, and at a later period become rounded. According to my observations; these libres are never preceded in their origiti by cells. In oher caves, by the separation of fat into globules, inflammation-corpuseles, or cells of the second form, are produced in the fibrine.

[^0]Sometimes the fatter, before metamomphosis of the blowd copuseles has yet commeneed, or is completed, lima. around them sheaths or cemals, whirhame andinheguinhah from the simplest capillaries This fice has bero observed by me only in the heart.
The organzation of fibrine into fibros and er lls is a mat ter of direct observation; from albmen the procesappears never to ocent primitively; so that fibrime apponimates more the fibrons hasues yidding erelatine, than allumen does.
In eancerons degeneration and colloid cells are some limes developed in congulated blood within the blood vessels around pus corpuseles.
The above are the only histological metamorphoses of blood in the large bloodvessels.
Within the capillaries, in a similar manner, in stagnation of the blood, the blood-eorpuseles beeome assoriated, and are converted into inflammation-globules; and if the stasis continues, the walls of the eapillaries dissolve, and the liquor sanguinis, mixed with the inlammation-globules, extravasates into the parenehyma of the orgat. This fact, however, is only inferred, and not directly proved.
A conversion of fibrine into fibres I have never yel ubserved within enpillaries.

Much more numerous and manifold are the translurmations of blood which has escaped into the surrounding parenchyma of lacerated vessels, and has not been resorbed, than occur in that within the vessels.
As in the latter case, blood-corpuseles also lorm red, and then uncolored inllammation corpuseles and cells; besidewhich, they frequently are developed into pig: rent cells, sten filled with black gramule, insoluble in mineral acids. The small corpuscles resulting from the transformation of the blood-corpuscles, however, do not always become enclosed in cells, but frequently remain accumulated in large irregular masses.
In the coagulated fibrine, cells originate by the two characteristic modes, and also fibres, areolar tissue, adipose tissue, and even osscous tissue. It is by the metamorphosis olone of this fibrine, that wounds heal per frimam intentionem, and not by a new exudation.
Melanotic tumors, sarcoma, and osteoid, sometimes owe fieir origin to blood which has escaped from the vessels.

EIFIII SBCHION.

l'ycumia.

Pyomia consists in a commingling of pus with the cir-
culating blood. The pus is cither the result of a mansormation of a portion of the latter, or it obtains entrance into the circulation through veins aecidentally opened.

The consequence of the admixtuxe almost always, though not necessarily, is stasis in the copillaries and the conversion of the bluod of these into pus, with the formation of abseesses; and in this mamer ine lather may originate in greater or lesser number in the liver, spleen, kidneys, lungs, brain, and more rarely in other organs, as bencath the skin, in the mucles, and in the joints.' This transformation of the blood into pus, is most fieguently indaced by the spontaneous conversion of coagulated blood into that material.

The defuition above given of pyamia is not the usual one, but hope the following explanation will justify its adoption.

On cxamining eases which have died after extensive surgical operations, and more especially where suppurating wounds have existed, frequenty abscesses are found in the langs, liver, sometimes in the kiducys, spleen, other or internal or some extemal organ. This fact, long known, since the last century, has been the subjeet of numerous theoreticai and experimental researehes to detemine its character. These investigations, which have always bome the impress of the times, and the id as of the prevailing school, evidently are not only of seientific interest, but are of praetical importance, as apon the exactness of our knowledge of the production of such abscesses, we can alone depend for precautionary measures to diminish the greal mortality which sill follows amputations.

The first idea which obtruded iself as an explanation was that the pus of a suppurating wound became absorbed, and was deposited in the organs above indicated, constituting the so-called metastatic abseesses. This view was supported by the asual dimination of sappuration in the wound, the absence of evident inflammatory symptoms in the orgens which had become the seat of the metastati abscesses in so short a periot, and the presence of pus in the veias and lympaties, frequenty themselves min flamed.

But to this explanation, latterly, the objection has been advanced, that as pus consists of a liquid with solid coipuscles, which cannot be resorbed through capillary wall,

[^1]the pacerpmeseles in the circulation and abscesses could not have been derived from the supparating wound.
Another idea became prevalent, that the abseeseses werthe resuit of lucal inflammations, and the pus within the veins was there formed througi intammation of these resels (Dance). Some authors, but especially Blandin and Cruveilhier, atopted phlebitis as the cause of metastatiabscesses, and the latter even a " pilebite capillaire."
"It has been proved by strictly physical experiments," says Craveilhier* "that pus citculating with the blood stagrates in varions parts of the capillary system, everywhere inducing inlammation of the venous capillarics on circumscribed inflammations, which more or less rapidly run their course to the lormation of abseesses."
Finally, Sédillot very correctly remariked that pyomia is the result of commingling pus-corpuscles with the blood, which stagnating in the vaseular extremities, destroy capil lary circulation, and induce the formation of small foci of inllammation. It is not the consequence of an admixture of a putrid serous liquid with the blood, as supposed by Berard, for this would rather operate in the prefuction of gangreac.
That pus may be introduced through open veins imme riately into the cireulating blood and become intemingled with this, and induce metastatic abseesses, is at present not a subject of doubl. Thie occurrence of those tare cases in which sach abscosses form without phebitis, and the circumstance that asually a coagntum of blood incloses the pus within the veins, is variously explained by authors. 1 The coagulum, by most of the latter, is considered insufisien to prevem the entrance of pusinto the circulation, and almosi all agree that pas is separated from the inner surface of the veins; which jdea, so generally prevalen, is the reason why the whole proces of phlebitis as well an pyemia, has been misunderstood, notwithstanding so many excellent anatomical researches. But in what follows, i hogle to prove that pyamia originates by trensformation of the blowd within the vessels, without necessary particupa tion of their walls, and that this transformation may ocem from jreceding stasis of blood in the veins, even without hu previous existence of abseesses.

[^2]
25. Cumplitions of Pyamin.

1. The irritation of the inner membrane of veins by means of foreign bodics, according to my experinems, neither induce redness in nor deposit upon it, and the same is the case with the lining membrane of the arteries* Daily the veins are cut in bleeding, and nevertheless suppuration dues not occur in them.
2. On the contray, the more vascular external tanic of veins is freçucntly the seat of exudation, and less so of suppuration, as well frome exterior irritants as from the influence of these in their immediate vieinity,-primitive phlobitis. The pus, which is formed under these eircumstances, can penctrate only to the lining membrane of the veins, in which position it can induce secondary stagnation of the blood within the latter, as in the reverse case stagnation of the blood within a vein readily induces inflammation of its cellular tunic, because the venous nutrient vessels which open directly into the vein are impeded by the closure of the latter.
3. This phenomenon does not in itself determine pyomia.
4. The introduction of substances into the veins which cannot pass through the capillaries, as, for instance, when mereury is injected into the jugular vein, induces the formation of minute abscesses in the longs aromd each small globule of the metal, which, however, do not contain pas, as formerly believed, but inflammation-corpuscles. f in a similar mechanical manner pus-corposeles operate in the capillaries, destroying the circulation, and causing the conversion of their blood into pus.
5. Injection of a small quantity of pus into the veins does not defermine the formation of abseesses, but these are always produced when a considerable portion is introduced. Nor does the injection of liquer paris into veins produce metastatic abscesses; but the introduction, in this way, of a large quantity of pus-corpuscles always induces the formation of abscesses starrounded by cechymoses, and accompanied by rapid destruction of the parenchyma.
6. The principal cause of pyomia is coagalation of blood in the veins, which tisen undergoes conversion into pus, and is thus conveyed into the capillarics. \ddagger

[^3]7. This coagulation of the blood is indueed especially muder the following conditions:-
a. Through inflammatory thickening of the extemal unic of veins from contact with fibrinous exudation and pus.
b. Through pressure of tumors upon the veins.
c. Through the ascidental entrance of pus into veins from withoui, as in the suppurating wounds of amputation, and after ulceration of the venous parictes.
d. Through contact of thin-walled vessels withexulation mudergoing decomposition, as in the case of the inner surface of the inflamed uterus after child-birth. Inflamma-tion-corpuscles are found upon the imner surface of the nterus after every delivery, particularly in the position which was occupied by the placenta. If this is not expelled or decomposed, stasis next cecurs in the neight boring vessels, and this is the true source of the pus in the phebitis of lying-in women. How, ohherwise, could so large a quantity of pus in a few days transude into the reins through their thick walls?
e. Stasis of the blood in a large number of capillarins of an organ frequently determine ceagulation in its arteries and veins, as in prenmonia. Other observers, instead of riewing this phenomenon as a natural consequence, have sonsidered it a cause of the inflammation of the langs. In the same manner nephritis may determine coagulation and the formation of pus in the veins of the lower cxtremities. f. Even continued pressure upon a part in which the circulation is less avored, as in the foot, somr-times induces sagnation of the blood in veins of the whole exiremity, metimes giving rise in their vicinity to rapidly destructre abscesses, which appear to proceed from a conversion the blood in the capillaries into pus.
g. The introduction of organic matter in a state of tomposition into the capillary system operates in pro toeng coagulation of the blood in the veins. In this zanner the poisonous material of dead bodies and the vater of glanders give vise to metastatic abseesses, at firsi whe interior part of the body, and subsequently in the arnal organs.
8. This coagulation of the blood, whose most importans shes have now been indicated, likewise in itself dor:s 4 determine pyamia. if veins frel hand and become safal, the case is usually considered as one of phlebotis, but anectly, for a vein may be filled with firm coagula, and * limb be cedematous and painfal withont a trace of
existing inflammatory exudation, as I have observed in phlegmasia alba dolens.
9. If blood is coagulated in the veins, it may again become liquified, and the circulation be thus restored. 'ihis is not a cured phlcbitis, but the coagula of blood have again become fluid, and the production of abscesses through exudation from the capillaries has been prevented.*
10. Or the stagnated blood undergoes transformation. It cither forras inflammation-corpuscles, or its hematine undergoes conversion into pigment granules or cells, which, as before remarked, are the safest signs that coagulation of the blood in the vessels had occurred during life. The fibrine, under such circumstances, adheres firmly to the imer surface of the veins, and becomes converted into an irregular fibrous tissue, from which the vessels, with or without previous inflammation exudation into their external tunies, are tranformed into fibrous cords.
11. Or the coagulum is converted into pos.
12. I have already proved that inflammation-corpuseles and fibres may form in the blood itself; and it only remains to show the possibility of its conversion into pas.
13. It is a fact known to all who have made frequent autopsies, that in case of abscesses and supparation generally, veins with their parictes entirely uninjured occur flled with pus, and that this latter may be found within blood coagula, cven in the heart itself. In such an instance the introduction of pus from a suppurating surface cannot admit of a hought. Cases also occur in which a vein is visibly filled with mingled blood and pus, and yel its walls are unbroken, and an abscess is nowhere to be found. \dagger Such an one I shall hereafter describe.
14. The pas is formed at the expense of the fibrine of the blood, and not directly from blood-corpuscles, which, however, undergoes solation. In the process the filmine becomes soft, grayish in color, and in it appear minute mucleoli, often surrounded by a clearer substanco distincly defined, which are to constitute the future pus-corpuscles
15. The coagulum is rarely transformed into pas without coming into immediate contact with pus introduced into the veins, as alter amputation-wounds, or unless the venors

[^4]parietes are in contar:t with exudation and pus. In the case of arteries, the thickness of their parietes serves as a protection against the conversion of coagula into pus, and probably is the reason why this is so rarely found within them.
16. How pas in this case operates upon the blood is mhnown, but the old maxim "pus produces pus," here finds its full application.
17. Even yet the morbid process of the production of pus may be local, for a portion of coagulum may close it off from the blood above, or below and above. Pyamia may thus not occur, though this is rarely the case. Of this description Cruveilhier* mentions one of phlebitis of a superficial vein of the manmary gland, from which he had emptied the pus, which was reproduced for a fortnight, when it terminated without further consequences, with the closing up or obliteration of the vein.
15. But usually the plug of coagulum is useless, and the pus derived from the transformation of the fibrine passes into the circulation. Sometimes, according to the observations of Blandin, Sedillot and myself, the coagulum is cntircly absent or is imperfect. In hose organs in which foreign substances introduced into the circulation, \dagger are usually depositicd accumulations of pus form, surrounded by ecchymoses, which bear the impressions of a suddenly arrested circulation in the capillaries; in which, as in gangrane, when the latter occurs, the tissues quickly die and become mingled in fragments with the pus; hence the peculiar appearance of these metastatic abscesses, which are decp, of a dirty gray color, and surrounded by dark ecchymoses.
19. These abscesses I do not view merely as the result the transmitted and accummulated pus, for pus-corpusdes can very well pass through certain capillaries; as, for instance, the large capillary vessels of the liver; but under the influence of the transforming fibrine, yet in a flocculent windition, stasis of the blood occurs, and a new formation tpus is the consequence.
20. Pus may directly enter a gaping vein by aspiration, the same manner as air does. 'this is, however, rare; Mcause, in amputations, usually the veins become closed flore the suppuration is considerable. It is not the introGeed pus which forms metastatic abscesses, for there is

[^5]nothing to indicate that the quantity is sufficiently large for such a purpose; but it is the stasis and transformation of the blood induced in the capillaries of the organs reached by the pus, which produce them.
21. The reception of the serum of pus by resorption into the blood-for we have no evidence that pus-corp uscles can pass through the parietes of capillaries without previous liquefaction-does not induce pyomia. This is proved by the frequently observed disappearance of pus from serous cavities after inflammation in the lower animals, or after injections in the same. The undecomposed serum injected in a considerable quantity does not produce pyæmia, as has already been proved by Sedillot.
22. Pyæmia then consists in the transformation of the blood into pus within the capillaries and veins. It is not pus-corpuscles which form metastatic abscesses ; but, with fibrinous floculi, they give rise to stasis and transformation of the blood in the capillaries, and exudations from these, which result in: the abscesses.
23. Analogo to this is the fransformation of lymph into pus, which, in the o-called inflammation of the lymphaties, is certainly not separated from the walls of the latter.

For pyæmia to originate by absorption through lymphatics is not possible, because the pus-corpuscles cannot penetrate their partietes.
24. Suppuration in some position of the body usually precedes pyæmia, but this is not essential.
25. From what has been above stated, it can be understood why every injury of veins, inducing coagulation within, and suppuration in the vicinity of those vessels, is usually so dangerous.
26. The danger oif pyomia does not arise from the influence of any malignant property of normal pus upon the blood; for it is well known large accumulations remaina long time in cavities of the body, but from the mechanical impediments in the capillary circulation, to which it gires rise by inducing stasis, particularly when coagula imperfectly converted into pus are simultaneously carried along with the circulation. The mechanical operation alone of pus, however, is not sufficient in all cases of pyæmia to account for death. Such cases occur, on the contrary, in which the blood has lost its capability of coagulation, apparently the result of contact with pus in the act of decomposition, and no simultaneous production of pus is induced in other parts of the body.

> 26. On the purulent dyscrasia.

All surgeons are acquainted with the fact, that frequently
without evident cause in various external and internal parts of the body, numerous abscesses gradually or simultancously form. The name of purulent dyserasy may be retained for such cases, as nothing indicates that the blood is converted into pus within the vessels'; and we must, therefore, admit a general disposition to the formation of pus through exudation from the blood.
(To be continued.)

Ant. XLIII.-The Hip-joint-Considerations on its injurzes and diseases, deducell from the Anatomy; by S. J. Stratrord, M.R.C.S., Eng., Toronto, continued from $\mathcal{N o} .3$.

INFLAMMATION OR THE LIGAMENTS OF THE IIP-JOLNT.
(Scntinued.)
In a preceding number of the Journal, we pointed out the anatomical nature of articular cartilage, and stemonstrated that a knowledge of its structure and function was necessary to enable us to comprehend the phenomena of inflammation when it attacks this portion of the joint. We indicated that in inflammation of cartilage the destruction of the cell apparatus and the solution of its fibrous element, was that condition which has long been spoken of as ulceration of articular cartilage, and that the absence of nervous filaments sufficiently accounts for the little irritation in this complaint, while the nature and character of its inflammatory action has not been understood for the want of the minute anatomical knowledge necessary to enable is to comprehend it; but now that the microscope has eshibited the true condition of the pait, the solution of this difficult point was readily obtained.
It must be clear, from the foregoing facts, that this disease of the cartilage which we have been describing, may at my moment, when it has amounted to any considerable extent, involve the structure of the synovial membrane from isproximity, the inflammatory action will extend to it, and then inflamed, each and every symptom and result of such lisease will be speedily developed, such as the efficion iserum, or of coagulable lymph into the cavity of the hipint. This inflammatory action however may not be so *ate as to produce any extreme results, while the disease ay continue to extend in the structure of the cartilage, metimes involving the whole cartilaginous coverins of the tnur, and largely implicating that which lines the ci tyloid *ity. This is certainly the history of the progress of the
complaint long since pointed out by Sir B. Brodic as a distinct disease, and deseribed by hm as ulceration of the articular cartilages.

Again: the effiusion of finid blastema, which takes place from the conjested ampulle of the cartilage, may be so extensive, that it may take on the changes to which this substance is liable as a result of inflammatory action, it may soften, and the pus corpuscle may be developed; this is certainly rare in inflammation of the cartilages, but nevertheless it does occur, and would seem most frequently to happen around the vascular apparatus, which connects the cartilage to the synovial membranc. When this morbid product has been softened and the pus corpuscle formed, its effects will commonly extend to the neighbouring tissues, the calcarious salts will be dissolved by the liquor puris, so also may the fibrous element of the cartilage, until by degrees we find a considerable cavity to result, and progressing, this abscess may extend to the cancellated structure of the bone, and by degrees find its way through the periosteum into the areolar tissue surrounding the bone, or burrowing down among the muscles, may obtain an exit through the skin; again, it may destroy the basement membrane of the synovial tissue, and escape into the cavity of the joim. When the disease has commenced on the articulating surface of the cartilage it will commonly induce disease of the several textures of the joint, which will in nowise differ from the changes already detailed, as the ultimate result of inflammation of the synovial membranc. The disease will be submitted to the same chances of recovery, or produce the same ullimate results, always ending either in deformity or death. It is a fact worthy of remark, that although we may with sufficient accuracy diagnose the primary symptoms that indicate inflammation of the separate tissues of the hip-joint, but as soon as matter has been developed in the jointall chances of distinction are finally lost, for all the structures become similarly effected, and all the symptoms are corfounded in a general result.

In acute inflammation of the cartilage the changes progress with such rapidity that it speedily involves all the textures of the juint, and it can seldom be recognized as at distinct diseasc, while the state of chronic inflammation it continually presented to our view, and may be recognized with comparative ease.

The most usual period of the advent of chronic inflam mation of the cartilage is after the age of puberty lis
passed ; it may occur in children, and will occasionally happen in old people. It may sometimes be traced to a blow, or injury, or may be developed by inordinate exercise, while it not unfrequently appears without any known or recognized cause. The disease may be confmed to the lip-joint, or it may simultaneously appear in other joints at the same time. The first symptoms which mark the approach of this insidious disease is a slight degree of pain in the joint increased upon pressing the bones together, and more or less inability in the use of the joint; this may continue for months, and is unattended with any appearance of swelling or effusion within the joint; these are the chief symptomatic indications of chronic inflammation of the cartilage in its earliest stages, and with the absence of any sensible disease in any of the other struetures of the joint, must alone guide our judgment. After a time, however, the pain greatly augments in severity, and motion vastly increases it, while the patient is continually roused from lis sleep by spasmodic starting of the limb, pressure upon the trochanter, or the forcing the thigh-bone into its socket, causes great complaint. We not unfrequently find the lymphatic glands in the groin become iender and swelled; they may inflame and suppurate: this is doubtless dependent upon a low irritative inflammation which has followed the course of lymphatic vessels from the diceased joints, and may be dependent upon the absorption of the dissolved tissues within the joint. From the absolute necessity of perfect rest in the diseased joint, the hip has become less prominent, has considerably lost its usual convexity, while the muscles feel flaccid, hang loose and labby; the same necessity also for the fixed position of the joint, causes a change in the position of the pelvis, and the sigmoid flexure of the spine is not of unasual occurrence. These symptoms having progressed for an indefinite period, the sudden advent of in lammation of the synovial membrane may be added; the acute pain and swelling of the pint, which so decidedly marks the appearance of this disease, may be present itself, and may rapidly go on to th these changes incident to acute disease of this structure -such as the effusion of sermm, or the deposit of fibrine, or of Wastema into the cavity of the joint; should matter now be bred in the joint, the progress and course of events will yar a strict analogy, with all the consequences previously falailed, as resulting from acute inflammation of the Fovial membrane, such as, ulecration of the cartilages, aries of the bones, and destruction of the capsular and
round ligaments, while the disease will eventually end in dislocation of the coxo-femoral articulation, followed by anchylosis or death.

The treatment of this disease should be regulated by the principles indicated in the cure of chronic inflammation of the hip-joint, such as local bleeding and the employment of contra-irritation. The remarkable tardy progress of the malady would indicate in the earlier stages the inapplicability of active means ; seatons, issues, or perpetual blisters will be found far the most useful, and also, from the chronic nature of the disease, will in all probability have to be continued with unremitting perseverance. Another means peculiarly applicable to this disease of the hip-joint is the employment of the splint to the diseased limb, so as to preserve the joint free from all possible inotion, and so toallay the irritation of structure which friction and, pressure must necessarily keep up in the part; it is an indication of nature, and deserves to be strictly and patiently attended to. The employment of alterative medicines, and the strictest attention to general health, should not be overlooked. By sudi means we may occasionally accomplish a cure of the disease ; but should inflammation of the synovial membrane make its appearance and be attended with the formation of matter in the joint, the general principles advocated in the treatment of that discase must be strictly adhered tosuch as a free, and early opening for the exit of matterand the prompt excision of the head of the femur; when destruction of the cartilages, ulceration and carries of the bones is clearly established.

Inflammation of the head and noct of the thigh-bone.
Inflammation of the spongy or cancellated structure of the head and neck of the thigh-bone may occur; as an acute and idiopathic disease, its attack may be comparatively sudden, and its progress extremely rapid. It will be altended with severe deep-seated pain in the region of the hip-joint, that will not be increased by motion of the parls one upon the other. The neck of the thigh-bone may appear tender, upon direct pressure. The constitution will be evidently greatly alarmed, as evinced by the violent inflammatory fever that accompanies its advent, a strong indication that severe mischief is going on in the part, and, with evidence that is afforded upon our examination of the hip-joint, will readily point to the seat of the complaint.
To comprehend the changes which occur in this complaint, the character of the structure requires due consideration, before we can appreciate the various
alterations which occur in it. The head and neck of the thigh bone consists of dense external plates, or lamine of bone, superiorly covered with cartilage; between which numerous cancelli, or small hollows bounded with very thin plates of bone, and lined with an extremely vascular membrane, which communicates with the medullary canal ; thes\% cavities are filled with a peculiar adipose matter. The Haversian canals traverse the hard substance of the bone. These canals run for the most part in the direction of the lamine and carry the blood-vessels which serve to nourish the bone and support the life of the part. The size of these canals vary from $1 \cdot 200$ th to $1 \cdot 2000$ th of an inch. The smaller carry but one capillary vessel, while several may be observed in the larger ones, and to these is added a quantity of adipose matter. Around these canals the bony matter is arranged in concentric circles, and these circles are marked by a series of stellated points, they are cavities or lacune of a particular form, and run in the course of the lamine; they are so placed that one of their sides is turnc 1 towards the Haversian canal, and the other towards its fellow in the circle beyond it. They are of a lenticular or oval form; their long diameter is generally from $1 \cdot 2400$ th to $1 \cdot 1600$ th of an inch, while their thickness is about one sixth of their length. These canaliculi comphetely traverse the substance of the bone and communicate iregularly with one another-in this manner a perfect commumication is kept up between the Haversian canals and the most external concentric lamine of bone. The canaliculi which form this junction are infinitely small, being only from $1 \cdot 1400$ th to $1 \cdot 2000 \mathrm{th}$, on even $1 \cdot 60,000$ part of an inch in diameter. The blood, in the normal state of the pats will penetrate the Haversian canals and cancelli; but il is obviously impossible for the red globules of the blood to penetrate the canaliculi,--consequently only the more fluid parts, containing the salts of the blood in solution, feep up a sort of circulation through the osseous substance. This apparatus prosents a means, whereby the eartly matter of the bones may be deposited on each portion of the tibrous structure, of which the primary element of bone is composed. Here then we find a condition of parts, which permits a free circulation of healthy arterial blood into the cuntre of the most dense structure of bone; a condition of anfition which certainly presents considecrable peculiarity 4 ils character, insomuch that the deposit of the inorganic ataterials of the blood required to give that hardness and drability to the bone has a facility of operation that could not
otherwise be obtained; for by means of this apparatus, the canaliculi carrying but a serous fluid with the carbonate and phosphate of lime and the other salts of the bone in solution, are conveyed to the part; the deposit of earthy matter is accomplished with great ease, and is continually under the influence of this circulatory apparatus. The fibrous element in which this earthy material is deposited is comparaiively of low vitality, requiring but to be muistened to preserve its normal condition; the carthy matter of bone contimally varies in amount, and this is the means by which these materials may be deposited, and enables them to be so constantly changed in healtia and in discase; presenting the ever varying amount of the earthy salts, so evident at different periods of life: thus in Mollities ossium the bony matter is found deficient, so that the bones are soft and casily bent, while in old persons it is superabundant in amount, and the bones have become abnormally britle. From this condition of the part also, and the nature of the nutrative apparatus in bone, we can readily comprehend the peculiarity of its diseases; we can understand that should inflammatory action occur in this structure, that jls unyielding character would in all probability cause if speedily to run into stasis-the collection of blastema in the Haversian canals and the other capillary vessels of bone might give rise to the formation of the pus corpuscles, but that the chief peculiarity would be the rapidity with which this stasis of the circulation is accomplished, and from the unyielding material with which it is surrounded, it rapidly causes the death of the part. This state of things also accounts for the intense pain and great constitutional irritation which is so rapidly developed; so that on the very first advent of acute inflammation of bone, this cordition of stasis is speedily recognized by the intensity in the amount and duration of the cold shivering which is always a most prominent symptom.

The general'ty of long bones derive their capillary or nutrient vessels cither from the periosteum or medallary cavity, but the neck of the thigh-bone is very peculiarly situated with respect to its circulation. This portion of the bone is in the first place surrounded by dense fibrous structure, a reflection of the capsular ligament; and this is again covered with synovial membrane, which embraces if as a glove covers a finger, while it is almost entirely lacking that periosteum which carries the blocuat-vessols of the outer lamina of bone; this complication makes the
whole extent of the neck of the thigh-bone more liable to be implicated in the complaints which originate in the various structures of the joint, or, shonld disease occur in the bone, as a matter of course, it will early implicate the adjacent tissues of the hip-joint, and soon involve all in indiscriminate discase. From the position of the neck of the thigh-bone, we find the rascular periosteum by which the hard lamina of the circumference of the shaft of the bone is nourished is absent, and the blood-vessels are necessarily derived from the nutrient apparatus of the sparsely nourished capsular ligament which surrounds it; hence in cases of death of this part of the bone, the impossibility of any attempt at repair. In the next place, the cancelli of the interior obtain their circulating material from the medullary canal,-this is doubtless greater in amount, and more fully supplied, than the Haversian canals; so also the more yiclding and comparatively lax structure of the cancelli permits a greater amount of uypercmic action, canses a far redder appearance in this part of the bone, and affords a much greater latitude for the deposit of blastema than can be expected to occur in the more dense structure of the shaft of the lone; so that we find thet inflammation is more apt to cause the death of the tone in the latter than in the former structure; so also we find yexperience that necrosis is much more common in the latd shaft of the bone than in the more louse and open exture of the articulating extremities-these however are at entircly exempt from such a result of inflammatory ation, and as a consequence of chronic inflammation it will seasionally be found to cocur. Thirdly, the head of the thightone is supplied with blood-vessels which take their course tong the ligamentum teres; these dip down into the *acture of the bone, and supply a considerable portion of ce cancelli of the superior part of it; doubtless they aoseulate frecly with the other portions of this circulating pharatus, or else the head of the bone would invariably affer whenever dislocation occurs, as this ligamentum tes is always torn across.
The first step in inflammatory action is an increased aply of blood sent to the eireulating apparatus of the ye-the capillary vessels in the Ilaversian canals.-The bequent stages of inflammatory action are followed up; Aincreased amount of serous flud is given out to the thaliculi and lacune, giving rise to solution of the earthy aller and its removal from the fibrous element, which so become swelled and morbidly softened; and this
is followed by the effusion of albumen and fibrinc, and the deposit of blastema into the cancelli, so that this structure is completely filled, and the circulating apparatus compressed and blocked up. This condition occurs far more readily in the unyielding structure of the Haversian canals than in the free and open texture of the cancelli; but even here it readily oecurs, causing a complete stasis of the circulation and producing the death of the bone. As soon as this condition has taken place, the dead bone takes on the character of a foreign body, and produces all the effects of such a substance on the surrounding parts. Should this condition be the result of acute inflammation of the head and neck of the thigh bone, the probability is that it speedily involves the whole bony structure; but if it should be partial and chronic in its action, a portion only of the bone may be destroyed. In the first instance the whele of the lip-joint would without doubt be rapidly involved in one general disease, but in the other variety, the structures of the joint might not be so quickly implicated, taking upits various actions but as a secondary result. The blastema deposited into the cancelli undergoes the same softening it wouid in other positions, and the pas corpuseles are formed in greater or less quantity, according to the amount of the deposit, but from the unyielding nature of the structure this is generally not very o ious; but when the formation of pas does occur in this part, it is always allended with symptoms of extreme constitutional imitation, much greater than mark its occurrence in most other parts of the body. The cold shivering is commonly intense, ant is followed with great inflammatory fever, hence we have a diagnostic symptom of great value in these cases. As I have before said, it seldom happens that acute inflammation of the bone has arrived at this stage, without the various textares of the joint participating in the disease. The circulating apparatus of the cartilage and of the synovial membrane have become implicated, and the successive stages of inflammation may rapidly follow each other, involving the whole joi: t in indiserim: nate disease, suppuration and destruction, followed by ulecration and consequitive dislocation, which alone stop: the progress of the complaint and gives nature a chance to set up a process of repair.

If the amount of dead bone should be but small, the matter formed among the cancelli, may find its way ont by nlecrative absorption into the joint; or being locnted nedy the shaft of the thigh-bone, it may pass down among the
muscles, and arriving at the skin be evacnated through it, learing sinuses behind it. 'The precise protess by which this uleerative absorption is arrived at in the living bone has been previously dwelt upon, it consists in the solution of the salis of the bone in the liquor puris or serun of the blood; the fibrous element itself may, when dead, be softened and dissolved, until it likewise is removed from its connection with the living system; so that by degrees we not only find a new passage formed for the pus, but also that the dead bone is isolated from the living structures; and if a probe is introduced into the sinuses, we may find the bone dead and rough, and perhaps discover that it is separated and moveable in the cavity which it has formed for itself; and, was it not for the peculiar position and connection of the head and neck of the thigh-bone, we might have hoped that the dead sequestrium might eventually be removed from the living structure, and the disease be cured by nature. The fallacy, however, of such a hope must be evident, from the isolated position of the bone, which must clearly show the litule chatuce of a natural cure, and that this chance, if any at all, must entirely depend upon the position of the dead portion; for did the sequestrium approach the head of the bone, it is impossible that the various stages of this discase should progress without influencing the other structures of thas joint and involviag all in one common disease; but was it situated puncipally at the trochanteric extremity, we raight be more likely to find a favorable termination to the wmplant. This condition of the bone, dead from inflammatory action, must not be confounded with the recult of the deposit of tubercular matter in the head and neck of the ligh-bone; to do so, would be to confound two perfectly diferent conditions and possibly to substitute the treatment fone, that can be int partially relieved, for another that may be cured by hature, and vastly assisted by ari.
Should we be able to examine the diseased structure at \$is period of time, we should in all probability find one a more cavities containing portions of dead, perhaps dached bone, surrounded with pus, which may or may 2t have communicated with the cavity of the joint, or pribly with the cxternal surface, by means of a fistulous pening. The cancellated structure of the bone surroundFsthe cavity appears natural, save that it is much redder and fer than nsual ; the cavity itself is lined with red vascular Emulations; and should the pus corpuseles have been toved, and the blastema have been exhausted, a thin Brous abnormal pus, consisting principally of a scddish or
brown-red fluid, will be evacuated. This is for the most part the serum of the blood coloured by hematine, holding in solation dissolved or broken down corpuscles, the various salts of the bone, and the dead fibrons elements of the same. This material is in fact the active agent in the ulecrative process now going on; so that this action, by the great and cxhausting discharge which it produces, even should the disease not spread to the joim, may so debilitate the constitution, and destroy the healih of the patient, as to demand our active interference for the removal of the sequestra.

The question which next presents itself is that when the dead bone is removed by ulceration or dissolution, can the cavity again be filled up, consolidated, and become normal bone? From aualogy we are bound to expect that it may. When we see the long sequestrum of the shaft of the necrosed bone completely replaced, we apprehend that the process by which it will be accomplished is the same. In the regencration of bone the pre-formation of cartilage is undoubted, an amorphose cyto-blastema, which is liquid at first, afterwards soli , is yielded by the neighbouring blood-vessels; in this cartilage cells are formed-the original proteine compound of the cyto-blastema is converted into chondrine-by degrees the cartilage corpuscles are enlarged in size and increased in numbers and collected together, take on a peculiar arrangemont. From thess groups of cells cavities are formed, the future medullary canals, the cancolli and the blood-vessels are developed. The fibrons texture of the intercellular tissue gradually undergots a changa; it becomes ossified by the deposition of the salts of the bone, which constitutes the future usseons lamina, while the organic bases have been converted into common gelatine, haviag lost the chemical characters of cartilage in the ful! development of the bone tissues.

From these facts we leam that the unassisted powes of nature are able to cure these diseases of bote; consequenty, in all our attempts at relief, we mast follow in the footsteps of nature and remove the deal sequestrum as soon as it is loose and completely separated from the living parts. In the first place, however, shond we be able righly to diagnose this disease in its earlies stages, when we find the patient enmplaining of very sereen, pain in the sochanter major and the head of the thightrone. this pain not bein:, increased upon pressing the surficesof ofted joimt together, or on considerable motion, or on retractiond the thigh-bone out of the colyloid cavity, instructing na that neither the synovial membrane, the ligamentowis
structures, nor the cartilage were the seat of the discase; while the great inflammatory fever, which this disease always presents, indicating an intense amount of inflammatory action, which neither the cartilages or the ligaments of the joint commonly rroduce at their first outset. This condition of things clearly indicates the intense sympathetic inlluence with which the constitution views this allection of the bone; and, should we now make pressure behind the trochanter upon the neck of the diseased bone, the patient will in all probability complain of soreness of the part; if so, we may justly conclude that inflammation of the neck of the thigh-bonc has occurred, and $w^{\text {in }}$ demand a most active treatm at to subdue it,-free general and topical bleeding, combined with active purgatives and antimonials, must be employed, -should these means fail and the advent of cold shivering indicate the positive formation of matter and the probable death of a part of the bony structures, we cease to use such acive means; now the use of opiates to allay the painis all that we can expect to accomplish in the present stage of the disase--keeping a sharp look out that the infammatory action dols not extend into the joint ; and if it does, by immediately combatting it with the most approved means, we may hope to restrain its extent and the bainful amoumt of its influence.
Should we be so fortunate as to prevent the compiaint from extending ino the hip-joint and the further stages of the disease be in due time accomplished, the pus may find its gay to the surface, and by means of a prebe perhaps we mav clearly distinguish the sequestrum, and be assured than it is loose. We must now direct our atention to its removal; this may be done by enlarging the cpening in the soft parts either by following the course of the sinuses or making a direct opening into the part, when the dead tone may perhaps be removed with the forceps; or it may te necessary to enlarge the opening in the bone with a sharp chisel before we can get it away; at all events the removal of the dead bone is absolutcly required and may te accomplistied at almost any risks.
Should it have so happened that, notwithstanding all the means we have u.ed, this discasced action has extended inothe join and mater have formed within the capsular thament, our first obyect will be to evacuate the pus, and as son as we shall have become convinced that there is no thance of saving line joint, our best plan will be to aut town and remove the head and neek of the thigh-bonc.

This operation will at once remove the irritation that causes the continuance of the complaint by separating the diseased surfaces of the joint, and it will enable us 10 remove the sequestrum with facility ; after which, by perfeet rest and the application of proper support to the limb, in all probability, we may arcomplish the formation of a false joint without any great amount of shortening or deformity, and at a great saving of time and irritation to the constitu-' tion of our patient.
(To be continucd.)

BOOKS RECEIVED FOR REVIEW.

Tunctional and Sympathetic Affections of the Head.-A Paper read before the Society of Siatistical Medicine of New York.-By Jomi W. Conson, Esq., M.D., late Physician to the Brooklyn City Hospital, and Physician to the New York Dispensary.-Holmes, Gray \& Co., corner of Centre and White Strects, New York, is54.
A well written, and Scientific Paper. We may mention that Dr. Corson was formerly a Student of the Toronto Schook of Medicine, and bids fair to gain considerable reputation in the city of New York.

REVIEW.

PRINCIPLES OF PHYSIOLOGY, GENERAL AND COM-parative.-By Whlan B. Carpenter, M. D., F. R. S., Examiner in Physiology and Compurative Anatomy in the University of London: Professor of Medical Jurrsprudence in University College, fc., sc.
(Continucl from No. 3).
PRIMARE TLSSUES OF ANMMALS, CONTLNEED.
In the last portion of our review of Mr. Carpenter's beauiful and elaborate work, we ventured to disagree with him when he declares that "new cells originate in plastic or formative material without any direct intervention of preexisting cells," and we ventured to affirm, that from the nadei elaborated in the epithelial structures of the lymphatic glands we have an abundant source from whence, not only the cell formations contained within the blood, may have their origin; but we would even now add, that those cells claborated in all the other structures of the animal frame, both in healih and under disease, may proceed from the same source.
In the observations we offered in the previous number, Fe ventured to point out that the albumen prepared in the thimentary canal, and absorbed in the blood, was the pabalum from which the nucleated epithelium of the lymphatic tands obtained their formative material. In the egg of the elich we have a remarkable illustration of the fact, that in tis instance a very large amount of this food is stored up the use of the cell formations, that are speedily to be cilled into operation, in the production of the different oimal structures of which the bird is composed. This saierial having been collected and elaborated in the messes of digestion in the human stomach, is absorbed no the blood, and passing into the current of the circulaon, is by means of it applied to the perfect nourishmemt od development of the varions cell formations, not only onained within the liguor sanguinis, but operating in other Fhls of the body. In the egg, before it enters the circuFing fluid, nay, within the blood itself, and even when
effused through the blood-vessels during disease, this albumen still continues fluid, and only coagulates at a temperature of 155°; not so with fibrine, arrested comparatively but for a moment in any portion of the circulating system, it immediately begins to coagulate; while cffised from the blood-vessels under disease, it rapidly becomes solid, and what is more, can never again enter the circulating system without being re-dissolved: on the contrary, when albumen is poured out into the meshes of the areolar tissuc, it may again be readily taken up by the absort ents, and carried into the circulating system. Here plainly exists a marked difference between these two substances. To quote Mr. Carpenter's own words,* "It. is evident from these facts, that some peculiar agency must exist within the vessels, by which the elaboration of fibrine from aibnmen is effected." This point is a great desideratum in physiology-the kuowledge from whence the fibrine is derived, as well as the source from which the nuclei of the animal cell developements originate, have lately claimed great attention, and in the observations which we presumed to make in our last notice, it will be observed that we cnunciated a fact, which in our humble opinion is perfectly sufficient to explain these points-points which at no distant period we hope to prove by experiments.

It is really curions that a physiologist of Mr. Carpenter's acumen and experience could advocate the possibility of "now cells originating in plastic or formative material without the direct intervention of cell nuclei." In vegetable cell developments the sporule may be easily wafte in the atmosphere, and falling into positions favourable for its re-development, may appear to grow without the visible influence of a nucleus, in such a case these merely escape observation from their minuteness; not so in the animal cell-such a condition could not precede their formation in the mass of the circulating blood, the pre-existence of a nucleus must absolutely exist. It camnot be disputed thata simple cell, exhibiting all the atnibutes of life "to be born, to grow, to arrive at maturity, to die, and to be decomposed into original elements from which it sprang," exists in this position, are abundantly present in the circulating current; and although it canot always be shewn that these positively produce their like, still their growth end destruction amply testify to the existence of that condition we call life. It is clear that many animal cells, after they are produced,
are applied to particular purposes, and by their growth and derelopment fulfil the purpeses for which they were inlended; like the epidemic and epithelial cells, for example, their independent condition must plainly point to a nucleated origin, derived from a parencell; ant, alhhough the uses for which they are individually intehded are different, and the attributes and destinies various, still we maintain that position and local circumstances are sufficient to produce the variations in character and expression, such as we may constanly observe to happen in the wide ranges of animated existence.
It is, moreover, certain that if the attributes of life are possessed by the simple cell, and it is clear from the obserration of these phenomena in their growth and development, that they must difier from the nature of the cell growth, advanced by Archerson, such cells are only artificially profuced by a layer of albumen surrounding a globule of fat; such cells as Gluge has justly said are as diflerent from the living products of "vital agency as a corpse is from a living body * *** such artificial cells are always non-mudeated and undergo no kinds of transformation," and we might add, camot produce their like. We then think it will be readily granted that the various corpuscles formed in the blood must have a nuclens for their orign, and we are infinitely indebted to Mr. Jones for his researches clearly show that the various corpuscles present in the blood are but the several stages of development of the same nucleus, and point to the fact that we are endeavcuning to establish, that from the epithelial cells produced a the lymplatic glands originate the whole series of corprscles that exists in the sanguineous fluid. These absorthan glandule placed either upon the lacteals on the sesentery, or upon lymphaties in other parts of the body, we the same gencral conformation, and are intended for inilar parposes; this purpose has long been hid in inextricHie mystery, but which the powers of the microscope are bely to unravel. The lacteals and lymphatic vessels, *single cylindrical canals; accumulate and become darged when they reach a gland; are here dilated into eger cavities or cells, forming convolutions, while they are alosed in a strong fibrous structure, derived from the Whartissue in their neighbourhood; wiohn this structure, d among the convolutions, are many capillary bloodSsel, but these do not open into the dilated lymphatic chey merely ramify upon their coats and nourish the thelial structure contained within them; as in other glands,
the exosmotic action of the capillary vessel supplies endosmotic meterial to the glandular structure, it is a curions fact that in no instaner can we lind that the circulating system in which the blood is contained has anydirect com. munication with the strnetures it is mended to nourish, farther than by transfusion throngh the coats of the bloodvessels; that in fact the whole circulating system of vessels, to all intents and pruposes constitutes a shut-sac, is lined with a serous membrane, this is endowed with a bascment membrane and epithelial cell formation. The epithelium lining the lymphatic vessel is minute, that and scale-like, forming but a single layer upon the basement membrane, but as soon as it enters into the gland it is composed of many spherical nueleated cells, which are easily detected and may be constantly seen lloating m chyle.* These form the nuclei of the blood-corpuseles; they are first nouristed by the exosmotic matter furnished by the capillary bloodvessel in the gland, but as soon as liberated, their pabulum consists of the albumen absorbed by the lacteals, and appropriated by the endosmetic action of the nucleus, until it becomes developed into the white corpuscle of the blood This act of appropriation is continued until the whole cor. puscle arrives at full maturity-the contents of the cell now consist of a large nucleus and an elaborated product. the fiorine; and when the white corpusele has terminated its full period of growth it opens, and sets free both the fibrine and the nucleus. By degrees the nucleas contimes by endosmotic action to grow, and is developed into the celli-form nucieus, the red corpuscle of the bloodThese red corpuscles of the blood are believed to be the carriers of oxygen from the lungs to the tissues, and of car bonic acid from the tissues to the lings, and that the generation of animal heat is mainly dependent upon the copion: supply of oxygen, which it is their function to supply, w, that, excepting this duty, they have little other dired concern in the fanctions of nutrition.

Having then indicated the normal development of some of the animal cell formations, let us consider the aboomal: the formation of the pus-corpuseles for example-here mi think that a diseased condition of the cells which had pm viously existed in the blood may be seen; we find int varieties of pus-corpuseles described in pus bonam t" laudabile; the one is evidently a metamorphosis of the m

[^6]corpuscle of the blood, as shewn by Gluge-the inflammation corpuscles, con-isting of the red corpuscle which has swelled by cndosmosis, and has within it mony minute globules of olein, while it has lost its homatine by exosmotic action. The true pus-corpuscle would appear to be the white corpuscle of the blood, submitted to a similar operation, gramular matter, or corpuscles of olein, are certainly present and may clearly be seen; and, if we apply acetic acid to the dense cell wall, we shall discover one or more nuclei contained within this pus-corpuscle. The mode in which the blastema is deposited, from which pus is formed, is almost always by rupture of the capillary and eflusion from its coats, or it may exist in the vessels themselves from stasis; at all events, the presence of the blood-corpuscles, both white and red, must clearly be proved. These corpuscles are surrounded by the fibrine and albumen present in the blood-as soltening progresses the pus-corpuscles are developed. That these abnormal cells are produced from the normal formation is evident, insomuch that the development of pus ceases as soon as the blastema has become exhausted, and we would set it down as a fact that the pus cells can be formed only from the bloodcorpuscles, and their nuclei effused from the blood; while it is also elear that the character of the ingredients effused from the capillary vessels with the corpuscles have considerable influence in the complete development of the pus-corpusele. Should it happen that the material effused with the blood-corpusele is not perfectly suitable to the proper growth and development of these cells, then we shall find but degraded and disintegrated cell formations 10 oceur, perhaps mixed with cytoblasts, as in tubercular deposits; and this condition would seem mainly to depend upon a deficiency of fat. So, again, if these materials are 100 rich in fat, an excessive amount of nourishment is supplied to the same effiused blool-corpuseles, so that they main an enormons size, and take on irregular forms; this is dependent upou local circumstances; these same cells contain a very great number of largely developed nuclei; such are cancer cells, and the abundance of oil would in these rases appear to have consilerable influcnce in this abnormal developmen. It bas been said that these cancer cells may reproduce their like, from the nuciei contained within themselves; in the formation of the nucleated puseoppusele, it is certain that reproduction from the nucleus des not take place, nor is it probable that the nuclei of the aneer cell caus produce theirlike. If we are correctin show-
ing that the nuclei were originally intended for a differm purpose, the formation of the red corpuscle of the blood, but having experienced a change of their natural habitat, by an inordinal supply of nourishmem, which has produced their abnormal condition, it is not likely that they should subserve to another parpose, such as the re-generation of the cancer cell.

Still further to follow out this subject, did not time and space forbid, we should endeavour to show that the organs of secretion, in whichare an abundance of animal cell, such as the epithelial and epidermic cell formations, constituting the coverings of the mucous membrane and of the skin, are also derived fromasmilar source-the muclear formationsin the blood. The great peculiarity of all these cells is that they contain nuclei; and when we refleet upon the various offices they perform, in which, as organs of excretion, they absorb within themselves the different materials to be removed from the blood, and by bursting pour out the contents into an exeretory duct, so that it may be removed from the system-thenselves dying and being disintegrated without a chance that the mucleus contained within them shall produce its like-we naturally ask ourselves what is the reason that all these cells contain one or more nuclei? In the epithelial scales these nuclei are most distinet, and are evidently shed with the parent structure, so that it is certain they are not intended for reproduction-whence, then, do these cells obtain their origin, if not by theirown reproduchive powers, it mus! be from the capillary bloodvessels, and that these cells are derived from the nuclear structures of the blood, which being deposited in the substance of basement mombranc, instead of becoming the nucleated cell, the white corpuscles of the blood, in the new location it is developed into the cpithelial or epidermic scale. If we camot at present perfectly substantiate the fact that the epithelial scales are derived from the nucleus developed in the lymphatic glands, we think that we have said enough to prove that these cells are not reproduced from the nuclei devcloped within themselves-nay, their general histological progress forbids sucli a conclusion, but it shall be our duty to reconsider this matter at some futare period.

While considering the history of the cell formations in the blood, we maintained that the fibrine of the blood was generated in the white corpuscle; that it was albumen submitted to the operation of cell life, from which it attained a low degree of vitality. It is clear that in the formation of
false membranes, all that exists is fibrine, vitallized, fibrillated fibrone, in which a certain number of capillary vessels exist to afford the fibrous clement an amount of moisture, which it absorbs through the conts of the blood-vessels; this is all the nourishment, all the change that oceurs in the various fibrous elements of the body during a long period of existence. Thase fibrous structures are comparatively inorganic, the beautiful basement membranes of the mucous and cpidermic structure, form striking examples of their character; while in other instances we find the same material, endowed, apparently, with only physical properties binding together the various structures of the body. The tendons, the ligranents and the strong fibrous membranes, are exumples of it; and the properties these structures exhibit, would appear to be entirely dependent uponthe mode of their conformation-the way in which thesc fibres are woven together; thus we have some tense and unyielding, and others again endowed with considerable elasticity. and this appears to be the principal distinctive character between the white and yellow fibrous tissues.
The white fibrous tissues, under the microscope, present the aspect of flatened bands, with numerous longitudinal markings, these must be regarded as an aggregation of the fibrous element; when we attempt to tear them apart from each other, they have a peculiar iendency to fall into undulations, and are perfeclly inclastic. The yellow fibreus fissues may be seen in the form of long, single clastic branching filaments with a dark decided border, individually much more distinct than the white, having a tendency to curl, and evideutly possessing great elasticity. This stacture is constantly present in all parts, requiring trength and clasticity, such as the ligamentum nuche, and the vocal cords.
The chemical composition of these two fibrous elements appears to present a considerable difference-the one may be eutirely resolved by long boiling, into gelatin or glue, while the other appears to undergo scarcely any change by the same operation. According to Mulder gelatin consists of 13 carbon, 10 hydrogen, 2 nitrogen, and 5 oxygen. The rellow fibrous element is compound, according to Scherer, if 45 carbon, 35 hydrogen, 6 nitrogen, and 16 oxygen. In teliving body these tissues are litile susceptuble of change; sill however they require a certain amount of vascularity opreserve them in a moist condition, and to enable them iperform the functions required of them. If their blood-
vessels are destroyed, the fibrous structure dies, and has to be removed from the living body. In the tendons these vessels are very fow, in the librous membranes and ligaments they are somewhat more numerous; but even bere, they seldom admit, in a state of health, of the entrance of the red corpuscle of the blood.

A variety of the fibrous structure is the areolar tissuc; it pervades most of the animal body; it is continuons with the fibrous membranes, and would appear to be this same structure greatly expanded by the continuous increase of the hody, and afterwards to be distended with the fat cells. It possesses a certain amount of blood-yessels that traverse its structure and permits the escape of a fluid containing the chloride of sodium and albumen into this netwodk of fibres; some are compound of the yellow or elastic kind, but the majority are of the white fibrous tissue. The fluid contained within the meshes of areolar tissuc serves to lubricate and moisten the fibrous clement, permitting freedom of motion in every direction. This fluid is continually collected by the transparent absorbent vessels carried through the lymphatic glands and poured into the veins, again forming part of the circulating system. In the course through the lymphatic glands, it affords pabulum for the further development of the epithelial structure, which, when passed into the blood-vessel, is eventually to constitute jis corpuscular structures. It has been shown that the basement membrane which exists in the slin, in the mucous membranes, in the synovial and all serous membranes, is likewise formed from the fibrous clements; the white and yellow fibrous tissues may be distinguished in then, the latter being peculiarly abundant in the skin and in the lungs, where it is endowed with evident elasticity, while the mucnus membranes yield gelatin abundantly upon boiling. This basement membrane is easily distinguished in some parts, especially in the tubuli uriniferi of the kidney; while in the skin it is with difficulty made out. In the serious and synovial membranes this structure is smowh and even, but in the mucus mernbranes and in the stin, it is vastly extended and uneven, covering the villi and lining the mucous follicles. Immediately under this structure, the basement membrane, we fiml a collection of arcolar tissue; it is of varying thickness in the different tissues; in the shin and mucous membranes, it constitutes the ehief thickness of their structures. The blood-vossels, nerves and lymphatics are largely distributed to the basement membrane, and to arrive at it permeate this variets
of areolar tissue ; in the serous membranes the capillary blood-vessels that traverse this aeolar stracture, give out the material, which, trimsuding hrough their coats, passes the basement membrane to nourish the epithelial cells, and to supply, the lluid, which is given ont into thesecavities, as senum in the one instance, or of synovial fluid in the cavities of the joinis. In the skin and mucous membranes, the distribution of these capillary vessels in immense loops are collected in the villi, or they line the mucons follicles; in both cases they serve to extend the amount of surface and increase the facility of secretion; all these folds of structure are covered with basement membrane, and layers of epithelial cell formations; while they are supplied by the vascular apparatus with the fluids necessary to their growth, and the perfection of their secretions-ilhese secretions being clearly dependent upon the power of selection inherent in the peculiar variety of cells that conduce to its formation. The nerves are also largely distributed in this structure especially to the skin, endowing it with the necessary sensibility, while the absorbents, and especially the lacteals, are particularly numerous in the mucons membrane of the small intestines; a fact worthy of particular notice is, that in the shin both vaseular and tactile palpilla may be foumd -a certain number of them containing vascular loops, while to others are distributed nerve tubules, ending in oval corpusculum tactis.
Another point of great importance, which should not be ovenlooked in the fibrous elements is, that the fibrous tissue has the peculiar power of combining with calcareons matter which appears in be incorporated in its structure ; henee we find it consolidating and forming the shells of the echinodormila, while it is frequently found deposited in the fibrous texture of the periosteum, forming by successive layers additions to the surface of the bone. In the dura mater, and in the heart of man, we often find this structure abnormally calcified, while in the canivora or ruminantia this bony deposit occurs as a natural and necessary formation.
Such also is the case in normal bone; the vessels of the Haversian canals are merely capillaries carrying blood; but the scrons fluid of the camaliculi and lacume transuded from the hood-vessel, carries the calcareous matter of bone, which is deposited in its fibrous element.

editoral depatment.

PROCEDDINGS OF THE CANADIAN INSTITUTE.

On Saturday evening, the 7th of January, the proceedings of the Canadian Institute were marked with a considerable amount of interest to the Medical Profession. After the business of the evening had been disposed of, the President, the Henorable Chief Justice Robinson, delivered the anmual address to a numerous assembly of the members of the Institute, in which he congratulated them on the very large accessions to their numbers during the past year, and also upon the very prosperous condition of the finances; particularly calling their attention to the erection of a building, which should be commensurate with the growing importance of the Institute, and suitable for all the purposes of the improvement in Science and Literature, which it was the especial aim and intention of the Institute to foster and cncourage.

After the President had concluded his very interesting address, Dr. Borell was called upon to read a paper which he had promised to the members of the Canadian Institute, on the Functions of the Kidney. The Doctor showed that the functions of the kidney were of a two-fold character, and that cach function had an apparatus peculiarly adapted to the duty it had to perform; that to the one belonged the secretion and removal of the watery parts of the blood from the system; while to the other was devoted the duty of exereting the effete and useless matter from the blood; that the one carried off the superabandance of the aqueous flujd, while the other purified the blood from the matter, which, if permitted to accumulate, would surely poison the whole system, and perhaps cause the death of the individual. The Doctor made many long cxiracts and quotations from Carpenter, Golding Bird, and many of the first Physiolgists of the day, in which he endeavored to prove that the
opinions entertained by them were erroneons as to the true farction of these diflerent structures in the kidney, which were engaged in the operations above alladed to. To our knowledge, at one time, Dr. Bovell, after Bernard, stated that the circulation of blood in the kidncy was directly the reverse to the received opinion of the present day. He declared that the emalgent vein carried the impure blood to the kidncy, and that the renal artery returned it into the circulation, blood depuriated and freed from the matters imended to be excreted by the kidncy;-but in the present address he appears to have considerably modified his ideas upon the subject. To enable his hearers to understand the circulation of blood in the kidney, subservient to the process of secretion and excretion, the Doctor had to explain the minute structure of the kidney; in doing so, he showed that it was a gland of the most elaborate character, and beautifal construction; that the blood was conveyed to the kidney by the renal artery, a vessel of very considerable size, which passed off from the aorta, almost at an acute angle, and entered the fissure of the kidney, where it livided into very many branches; that these branches were subdivided into smaller twigs, and that they eventually become minute capillaries; that the extremities of these capillaries were contorted, convoluted and folded upon themselves, so as to form a kind of ball of blood-vessels, which in anatomical language were called the Malpeghian lofts. That these vascular tufts were each enclosed in anampulle or pouch-like portion of the tabuli uriniferi; Thether the delicate extremity of this tube was refleeted wer the tuft as a covering, so that the tuft might be said to te without the abbe, at the same ime that it completely arounded it, or whether it actually penetrated the tubuli od was free in its expanded extremity, could not exactly e made out; suffice it to say, that the tuft was completely Frrounded by the tubuli miniferi. In this portion of the thuli mriniferi, and surrounding the luft, was located a iry considerable development of epithelial cells; these Fre round or polygonal, and of considerable amome and Eidness, immediaiely around the tuft; and, where the
neck of the tube became narrowed, a certain amoant of ciliated epithelium were located in this situation, and when the thbuli uriniferi regained its natural si\%e, layers of pavement epithelium covered its internal surface. It had long been maintained by Physiologists that this structure secreted the fluid parts of the blood, bat it was the opinion of Dr. Bovell that they were mistaken, and that this beaut. ful apparatus was intended to excrete the solid matter of the urine, he urea, the creatine, and creatinine, sce; that these matters were selected by the polygonal epithelial cells from the arterial blood contained in the convoluted capillaries of the tufts, and that they had the power of absorbing their matters into these structures from the bloodvessels by endosmotic action; that as soon as each individual cell had done its duty it opened and permiied its contents to flow out, and that those exeretions were prevented from accumulating in the neck of the sac by the beautiful ciliated epithchum, whose constant and independent movement continually directed it down the course of the tube, until it was finally emptied intr the expandel tubuli uriniferi, to be poured ont of the system with the watery parts of the urine. Having shown that there was an afferent vessel going to the tuft, he also explained that there was an cfferent vessel going from it, and that this efferent vessel was to all intents and purposes a capil. lary vein; that it joined the large plexus of veine that surrounded the blind extremities and bodies of the tubuli uriniferi. These portions of the tubuli uriniferi are of cos . siderable size, of infinite temuity, and are covered on the inside with a layer of most delicate pavement epithelium; around this delicate structure and to this part the large plexts of veins is frecly distributed, and pours out the thin and watery parts of the blood by exosmotic action, which passi: rapidly through the coats of the tubuli uriniferi by endo: mosis, and descending the tubular portion of the kidney meets with matter cxereted by the tufts, and with it is pount out into the ureter, to be removed from the system. It ready secretion of the watery parts of the urine is readity aflected by this apparatus, so that when the biood becomet
too fall of water, a stasis or ramora occurs in the emulgent vein. Blood tlows backwards from the vena cava, and distends the venous plexus which surrounds the tubuli uriniferi ; it passes by these means into the tubuli uriniferi, and is often poured with great velocity out of the system. 1)r. Bovell also maintained, that there was a direct ronte from the veins of the mesentery, through the portal system, to the vena eava, which was able to account for the speedy manner in which the urine was often exereted; and that there was a peeuliar arrangement of muscular fibres in the structure of the vena cava, at the point from which the emulgent reins were given off, that faciliated the direction of the Hood into the emulgent vein, and assisted in this peculiar ramora of the blood.
At the termination of Dr. Bovell's learned disquisition, which, for want of time, was scarcely more than epitome of the paper he had industrionsly collated, and which it is impossible for us to do full justice to in so short a space, Dr. Richardson asked Dr. Bovell how be accounted for the mipd excretion in the urine of the chloride of sodium alier thad been injected into the mesenteric vein. As there was sidently not sufficient time left to enter into any argnments upoar the subjeet, from the late hour of the evening, thras resolved to postpoue the discussion of the subject mitil Thursday evening; when it was agreed that the Hedical members of the Institute should meet, the paper sould be again read, and its merits discussed. Such we folieve was the case, but we were unfortunately not able to Hend, and therefore cannot give the particulars of the zeeting.
It was suggested by some of the members of the Institute, tat it would be well to divide the meetings of the Institute the classes, and that one of these classes should constitute Behemical and medical department ; that such individuals at belonged to, or took an interest in these seiences, fond have separate meetings for the diseussion of such dijects as belouged to their department ; that the sittings obld be continued throngh the summer, when the meetfiswould in all probability bring together the Medical
gentlemen of this city, and enable them to know each other; while, perhaps, the intuence of seience might serve to rub down some of those crude asperities of feeling that so mhappily exists among them,-we hail it as a step in the right direction, and should be delighted to see it accomplished.

With respect to Dr. Hovell's paper, we think it an improvement in the Physiological knowledge of the functions of the lidney, and believe that his ideas are correct, for the following reasons:-1st. That the size of the emulgent vein is out of proportion to that of the artery, and much larger than would be required to return the blood of that vessel, especially after a free elemination of water from its coats. 2nd. That the size of the emulgent rein clearly favors the oceasional regurgitation of blood from the vena cava to the plexus in the kidney, which are situated around the tubuli uriniferi, and may rapidly pour the fluid parts of the blood into the tubuli without traversing the renal artery. Brd. From the location of the kidnies, and the passage of the emulgent veins, almost at an acule angle from the vena cava, so that they are nearly horizontal, particularly favoring this ramora of the venous blood in the kidney. dth. That the casts of the tubuli uriniferi that are shed in the urine have, for the most part, the blafl termination of the blind sac of these structures-and that we have never seen a cast of the bulbous extremity of these tubes. 5ih. The pavement epithelium which lines these casts are intended only as a natural organic defence to the basement membrane, and are not designed as secretory organs-which has been assigned to them as a function. 6th. We have often seen abundance of the flat epithelium in the microscopic examinations of the urine, but never have observed the ciliated variety above mentioned ; consequently do not think that they are shed under disease.

A fact that should be remembered is, that the left spermatic vein enters into the left emulgent vein, so also the veius from the capsula renalics, and sometimes even a lumber vein; this would at first sight appear to be an objection to the idea of a ramora of the blood in the emut-
gent veins, and it should be a point of observation, whether the left testicle is particularly subject to disease of the veins, when the lett kidney is labouning mader any tomplaint.

TO TIIE MEDICAL PROFESSION OF CANADA WEST.

The absolute necessity that exists for the incorporation of the Medical Profession of Canada West, has induced us to address a Letter to the Honorable J. Rolph, the President of Her Majesty's Executive Council in Canada, on the subject, in which we have endeavoured to set forth the reasons that should induce him to take this matter in hand,-make a Government question of it;-and endeavour to obtain that justice for the Medical Profession of this section of the Province which has been so long denied it.

A terrible example of the want of confidence of the Hedical l'rofession, in the public generally, came to our knowledge a short time since; we will not mention the names, or the locality where it happened.-A weallhy mechanic, who had lived in the place some eight or ten montlis, had the misfortune to have his wife in a state of great danger, from a miscarriage ; suddenly in the middle of a cold night, he was called upon to seek Medical assistance, he called at the house of six or cight Practitioners, and every one of them refused to go with him, becanse he was not known to them. A nurse had to officiate, and, forinnately, the woman did well. The shameful way in which the Medical Prolession is constantly treated by a very large portion of the public, who omit to remuncrate them for their services is, doubtless, the cause of this want of confidence. Then, again, we continually see the "Quack" Feferred to the regular Practioner; a certain proof of a reciprocal want of comfidence; it must be obvious to all, that this is a slate of things, alike adverse to the good of the public, and detrimental to the interest of the Profession, and it loudly demands a speedy change.
[We shall publish the Letter and the Replly in our next.]

SBLECTED MATHER.

CLINICAL HOCNCRE

 the Disense. Genral principliss of Tratment. Praveticades. The the of
 Cuse of Tinct Farost.
Gaxhmen,-Such of you as have attended in the ont-patients room, ane aware that diseases of the skin are among the most common of those we have there to treat: and of skin diseaser, that thowe affecting the sealp eome, perhaps, the most frecuently under our notice. Ihave observel that students, and even young practitioners, are often extremely puzaled to diagnose these diseases of the scalp. This diffeulty is partly due to the resemblane of some of them to each other, and partly to the fact, that, while some writers have given the same name to different things, others have given difirent names to the same thing.

Several of these scalp affections are popularly called "riugworm;" amd you must have many times observed the anxiety with which the motherasks whetiner her child has the ringwomm. The canse of her anxiely is, that she understands by the term she employs, a very gostinate and a very contapious disease.
'Lo-day 1 propose to consider certain of those disease: of the sealp which bear a highly important pathological, etiological and therapeutieal relation to each other, althongh they difier rery greatly in their readily weognisable physical characters. I shall show you several cases of these diseases, and read you the notes of one case which left the hospital a short time since, and shall speak of their treatment as illustrated ly two of these cases.

Gou are afare, that on the mucous membrane of the mouth, in one forn of the disease termed aphthe, microcopical parasitic phants are developed in enormous quantity: and that, in the stemach, not uncommon vegetable growths are sarcina Goodsirii and tornlo cerevisia.

It has been shown, that parasitic plants are ako sometimes developed on the skin and its appendages: and in several sealp affections to which the popular name of ringworm has been especially applied peeause they are obstimate and contagious diseases, having a temicmey to spread in circles, these parasitic vegetables are found in or around the hairs.

What is popularly meant by ringwom was by some of the ofder writers on skin liseases expressed ly the worl tinea: hat the technical name being found, as our knowledge advanced, to have no definite signification, grodually fell into disuse.
it has beer recently proposed to employ this word tinea again, and to give to it a precise signification. Cinder the generic mame tinea it is proposed to inclade* all diseeases of the hairs proluced, kept up, ar attended, by tive development of parasitic plants.

In the gent-are inchutel the following spectes:
Theat lavora.
’inea tomemans.
'lino deralvans.
Thuea yerss.
It is to this geman tinen, and to there yeriex of that gemus, that I denne forday everially to eall sour attention; am 1 am eontionent that if gou romember the bane of the sureise of timea l have juat repeated, it you leam what 1 am shath to tell som of thene -umema and oberve well the thing, I hall phementy dow you, the remanimg am more common diseaves of the sald will bin masered in a very few hom spent in the out-patientro.m.
I hall now, then, hietly cmumerate the chameterv of each of these four -fecies of the semu tinea.
 suthering on hi- admixsion from tirea farma. Jut call to mind the appearance of that man's scaip, tumk and estremities, and you will the more reatily follow my general deceription, beanse in all points the eruption in biv cace was a top of the disace. This wax molel, from the college

Then favora most commonly affects the hatiry sealp, hut now and then it is frmel en other parts ot the surtuce. It is chameterisel by thick, dry, Gehns cousti, which, if small, ate corcular in wathe amp depresed in the eentue, cher shaped. laseing through the center of each of these crusts is a huir. Crusts of this kinl wer present on the tromk and catremities of the man dacobs; wome of the ertets were extremely omall; the largest had a dimeter of one-thirl of an inch. The harger of the eircular ernets often appear as though made up of concentric ringe, altenately yellow and brown ua cobue. They were so in the case just refered to.
If the crunte are very large, as they were on Jacols' sealp, they hate an irregula shape; but still they indicate their orixin from distinct centres by the semicireuhar outline of the masess which froject irom their margin. These larger, irregharly hapel cents, are pitted on the surface, and from their tatied resmiblance to the cut surfice of a piece of honeycomb, the discase has receivel the name of favias.
The marin of the large cruts xines consideraly ahove the level of the cutis; internally, they seem a though hald buried in the substance of tho cotis. ('atefully detacin the crusts from the cutis, ami a distinct layer of epithelium is foum below them: examine the surface of the smaller crusts, why yon the a layer of epitheliun cover them.
The hair, at an early period of tise diseame, can be puiled out from the centre of each little crust with great facility : sulnequently it falls off from the disensed parts, and permanent hadoess revults. We have an example of this in the girl howis, whom you most have repeatedly seen in the outphient: room.
The crusts, then, of tinca favoca are remarkalife for their thickness, dryness, bitheness, anl hemessed eontre. Jineataon is not a pustular dienee, but it is sain, by those who have geen much of it (it is is a are disease in Lomelont, to he often consecutive to cesema, impetiso, chonic lichen, and berpes circinatus; pustule are sometimes formed subsequently to the tinea frowa. in consequence of the inthamation excited by the crusts, and the ajury intlieted on the sealp by seriteling.
That tinea favesa is contagious, wan placed heyond duabt by Remak. Ife Wund a crust remover from a patient suffering from this disease on to his sinam; after: few days, the crut and handage cane off, and there was $\left.{ }^{2}\right)$ appearance of any effect having lieen produced. But, fourteen days ater, he felt the part iteh, and in a short time, a erost of theat favosa formed on the spot. Hinea favosa is sail to oeche chinfly in the ecrufulous, those tentally weah, and those in had health. Jaenow was certanly weither scroialous nor mentally weak, and his heallh was excellent.
Tinea Tonsurans is often mistahen for herpes circinatus of the scalp. with
which it is now and then conjoined. It is chameterised by pallor, decoloriza. tion and britteness of the hair, and the premence of then white pondery seales aromm the have of the hais, ami יn the sha between them. The diseased bair have heen likenol to "tum." "They are", Mr. Wikm sayz.
 of hemp in cohur aml apprent teature." "Their hittleness is sometime. such, that ever" hair on the affected spot is broken off jact above the surfice of the skin. Thisapparance :s well seen in the girl who is unw going round the rom for you to inspect; while the decomization of the hair is equally well seen in the boy. (linorve, that the diseased patehes are circular in both chidren. It is only when tom by the nails of the patient, so as to be made to bleed, or when, from herglect, or the application of topical irvitants, they inflame, that erusts are formed on the pateles of tinca tonsurans.

In Tinea Jewheans the hair falls unt rapidy from one or more rireular spots leaving a smooth bald surface. There is no eruption of any kimbno eruste, no seales.

This little ginl affords a good illustration of the disease. Observe, here is a small, circular, smooth, bald spot, here a latger one, while here is a very large, irregolady-shaped, bald surface; but note the outline of the latter, and you will see from its scallopen edges, the tenlency of the disease to spread in circles manifested. The rapidity with which the hair comes of the head in this disease is often simgulary preat. The first hadd patch on this ginl's head was observed by her mother about six mondis since; but it is only lacely that the disease has spread much, and now you see nearly half her sealp is uncovered by hair.

Tinct Sycosa is characterised by inflammation of the hair follicles. Sometimes the inflammation leads only to the effusion of serosity. and the cxudation of lymph around and into the eapsule of the hair. At other times, and more commonly, pus is formed, and then, when the pustule breaks, a brownish seab is formed on the surface. The usual seat of tinca sycosa is the chin, upper lip and sides of the cheek. I had a case lately under my care in which the pustules oceupied the inner surface of the mares--that part from which the haiss spring that protect the orince of the nose. Tinea syeosa varely Gecurs on the scalp, and it does not spread circuiarly; so far as I know, the mame of ringwom has never been applied to it. ei mention it to you, although I have no example of it among my paticnts to show you, becapse of its relation to the species of tinea of which we have examples before us.

You will have remarked, then, from the characters of the species of tines 1 have mentioned, that-

Tinea favosa is especially characterised by its crusts.
Tinea tonsurans is especially characterised by decolorization and britteness of the hair.

Tinea decalvans is especially characterised by baldness, not preceded or accompanied by an eruption.

Tinea sycosa is especially characterised by inflammation, tenderness, haxdness, and suppuration of the hair follicies.

I told you that these diseases are arranged together in one genus, because in all a parasitic phant is developed in comexion with the hairs. Sorr, the plant present is different for each species of tinea; and the situation occupied by the parasite is also different in each species of that gemus.
In tinca favosa, the parasite is the achorion Schönleinii. This plat has mycelium, sporule-bearing branches and sporules. The sporules are round or oval, and their diancter varies, according to Gruby, from 0.003 nme to 0.01 mm .

The vegetable growth is first perceptible between the layers of the epithelium, just at the orifice of the hair follicle; from this point it may sjread downwards between the bair and its capsule, and upwards around and in the substance even of the hair.

Such of you as visited Ward 4 during the tine Jacols was in the hospital, had frequent opportunities of seeing the maycelium, the sporule-bearing
branches, and the sporules of the anchorion Nelönlemai. liva will recognise it in these very execllent drawings of Rohin.
In tinea tonsurans, the parasite is the trichophyfon tonsurans. This phant is composed of spores only; the spores, however, are ocea imally somewhat duggated and arranged in a lincar sevies. They are round or oval, and their diameter varies from 0.003 mm . to 0.01 mm .
The primary seat of the trichophyton tonsurans is the root of the hair: gheerpently, it extends up into the suhstance of the har, and oven outwards, acording to bazin, on to the skin between the hairs. I have under the nieroscope some hairs removed from the head of one of these children. Iou will see in one specimen the spores in the hair follicle; and, in another, the tair split up with the spores among the fibres, as figured in this plate by Buin, and in this more highly magnified drawing by lobin.
In tinea decalvans, the parasitic vegetable is the microsporon Audoum. This plant is formed of branched tilamente, on which the spores are developed. The spores are very small-from 0.001 mm . to 0.00 mm . The seat of the prith is the outside of the lair ; it forms a sort of sheath around the hair, from the surface of the skin upwards, from 1 mm . to 3 mm . Gruby first deribed this plant and its relation to tinea decalvans; and Robin says, he tanconfirm the accuracy of Gruby's description.
In tinea sycosa, the parasite is the microsporon mentagrophyter. It is also raposed of filaments and spores; but the spores are larger, and the filancats bidder, than those of microsporon Aulouini.
The seat of the growth is the hair follicle between the hair and the capsule.
lhave told you the names I would have you employ to signify tho diseases lbare described and demonstrated to you; but you ought also to know the tues employed by the writers on skin diseases most popular in this country, osignify the same things.
Tinea favosa, then, is celled porrige farusa by Willan amd Bateman; favus FDr. A. 'I. Thompson, Simon, and many other writers.
Tinea tonsurans is called porriro seutulata by Willam, Bateman, and Dr. A. IThomson; herpes tonsurans, by Cazenave; and trichinesis furfuracea by Mr. Milson.
Tinea, decalvans is called porrigo decalvans by Wilan and Batemaa; vitiligo libe hairy scalp by cazenave.
Tinea sycosa is called mentagra by Willan and Bateman; sycosis by Mr. rilion.
As to the etiological relation of the jarasite to the disease, it appears, that Lspores of the vegetable growth require for their development a peculiar the. I say so, because all persous who mix with children sulfering from ta do not have the diseases. Ibut if a soil highly favourable to their zalle exists, then a spore having found its way on to that soil developes clforms other spores, and so the parasite spreals over the surface of the thidual more or less rapidy, according to the more or less favourable thare of the soil.
lin will observe, however, that the amormity of the secretion necessary the development of these spores is not appreciable by our senses, nor by
tsensations of the patient, for Remak did not know, when he applied the
atserust to his own arm, that his skin was not in all respects healthy;
tras he aware, when he removed the evast, that the secretions of his
follicles differed from those of the most hestley indivilual ; and it was
thilla fortnight after, that he was consciuus that his arm was diseased.
Tis experiment of Remak, then, proves, that a secretion in which these taites can grow may be formed by the hair-follicles, and the patient Gre himself to be in perfect health, not only generally, but even so far voncerns his skin; and that it is only when the pamasite has developed in
cescretion, that what we cull the discase begims; then it is that the moth of the hair is impeded, that it is athered in colour and in intimate stome, that uitimately the hair falls out, and the hair-foming appuratus is far damaged by the foreign body, that it fails to construct even FGifect hairs, and bakuess results.

It would appear, from the fact of a large number of children whose ecalos are supposed to be healthy, suffering from tinca tomsurams, when placed in situations where the spores of microphytom ton-urans are thonting in the atmosphere, that many persons, whose sealp, are comsidered heathy, have in their hair-follicles a secretion suited to be the nidus of this phant.

The patient suffering from tinea comes umber war care for the pereeptide discase, and will be well contenterl if we can cure lim of that: but it routh be better if we could also destroy the susceptilility to the disease,- il me conld bring the hair-follicles into a state in which they no longer sececte a nidus in which the plant can grow.

Strumous and wenkly chidren, especially if dirty in their persons are more frequently than others the sulyects of tinea; therebire it has been iuferred, that strma, debility amb dirt favon, the formation of the secretion in question. In the treatment of tinea, then, we strive to enfuree perspal cleanliness, to strengthen the patient and improve his general health, and: destroy the parasitc. As to the first and secmat objects, they are to becfected by attention to hygienic rules, ablution, air, exercise and diet; tonic mediciss and cod-liver oil especially are in some caves useful. But you may killte parasite in all cases, and in many cases cure the disease, hy topical applistions alone. Agents. the effect of which is to destroy directly the parasis are called "parasiticides." Several agents having such an action have bees brought before the profession. Some physicians use a solution of corrais sublimate. Acetate of copper has been abso employed ; but these agents are not sufficiently powerful parasiticides for the small guantity of them the findsits way into the hair-follicles to kill the growths occupying that situation Therefore Bazin, who is one of the great advocates of their employment, wit the especial object in view of killing the parasite and not modifying the secretion, says, that it is essential for their efficient action that epilation be periormed: that is, that the hairs be forcibly removed from the affected parts. Ife sos, that only two or three hairs should be taken hold of by the pincers at d: same moment; and that, if this rule he ubserved, and diseased hairs alas bo operated on, the patient suffers no piain from what seems on paper a aty terrible operation. From the details of two eases I am about to gire, jul will observe that it is highly probable that if sulphurous acid be emploret as a parasiticide, epilation will be found to be altogether umecessary fot complete action. This agent was first introduced to the notice of the meltai officers of the hospital by Professor Graham, as a pessible remeds fo cholera, at the time that disease was said to have its origin in the presena. of an entophyte in the intestinal canai. It was first employed by myedf 4 check fermentation, and to destroy the torula cereviscie and surcina Gob. sirii.* When lecturing on this subject, some time since, \dagger l expressed msed. thus: "Considerable bencfit may be anticipated from the employment d; sulphurous acid in all disenses attendel with the employment of paraiti plants. I would especially mention porrigo."

The case I am about to read to you, of Iyman Jacobs, prores, thas, is regard of tinca (porrigo) favosa, these anticipations have becn fully realisel while the case of the girl now in the room, and who is still under treatment renders it highly probable that the beneficial effects of this parasiticide nild be as manifest in tinca decalrans as they are in tinea favosa. \ddagger

In some forms of thrush, too, I may mention that it acts most rapidls, ewf application of a solution of sulphite of sodia (a drachm to an ounce of radel) sufficing to remove the disease from the mucous membrane of the modthit

[^7]trenty-four hours. The secretions of the mouth being acid, the salt is decomfoed, and the sulphurous anell is set free; in this, as in all other cases, the apharmas aril is the active agent in the deatruction of the parasite.
Myman Jacolo, agerl 27 ydars, a Jew pediar, a native of Amsterdam, and reident in lombun fitteen month, was udmitted into the hospital on March 01,180).
He was, as mont of yon must remember, a man of cheerful disposition, uard complexion, rather short, muceular, moderately stont; in fact, he lukelgencrally in robust health. Ilis habits vere those of his class; he dipt ih the low common lobging-housea, fared hadle, rarely eating meat, and inging from his appe. rance, was not very cleanly in his person.
lie atirmed, and l helieved him, that he was temperate in regard of the we of alrohuhe liguor. Jtis generat health, he said, hat always been good.
The ecalpallectuon was of une years' duration at the time he came into the hropital. He had been in many hospitals, but hat never derived any mank benefit from treatmen. When Jacolss came under observation, his, epdition was as follows:
Cerebral, circulatory, respiratory and digestive functions healthy in all priculars.
The whale of the sealp, excepting the margin, was covered with the crusts dinea favoca. The largest crusts were of at greyish yellow colour, of the osintence of dried putty or mortar, atud brittle. Their thickness generally risconsiderable. Whero thickes, the surfice of the crust was below the stel of the cutis; so that it looked, at the first glanee, as if the latter had kn partially deatroyed by ulceration. The surface of these crusts was tery irregular; it had a pitted, worm-caten, or eroded appearance. At the efe of the large, irrequarly-shaped crusts, were many small circular crusts, dressed in the contre. A hair passed through the centre of each of these sall crasts. When the crusts were forcibly detached from the scalp by shameal means, the exposed surface of the cutis was very red and raw.
The head itched much; and, thongh scratching gave cousiderable pain, it raserident, from the traces of blood on the surface, that he had been applyas his nails to the part.
The odour of the head was very offensive, something like that emitted by ide, only, as one of you remarked at the time, sweeter and more nanscous. Eittered over the trunk and extremities were a very large number of circular Snes crusts. There were as many as forty on the back alone. The smallest wibese appeared, when seen through a lenc, to be constituted thus: in the Gate was a hair, around and touching that a brownish-yellow crust, and exnol that again a dusky-red halo; the diameter of the whole not excceding Tothirds of a line. On the buek no erust was more tham one-fourth of an shin diameter; oll the leg there was one-third of an inch in diameter. Ese crusts rere circular, raised about a line above the level of the cutis, bald dry, and appeared as though made up of concentric rings of pale, Erish-yellow and hrown colours alternating. The surface of these crusts in redily detached, and then a cap-shapeli carity was exposed, filled with trimstone-yellow powder. The base of the errast being removed, the shee of the cutis, from which it had been detached, was ritw.
Fe saw, you may remember, the mycelium, sporule bearing branches, chyorules of the achorion schöleinii, when portions of the crusts, or of tyellow powder, were phaced under the microsenpe.
Sotratment sas adopted for some time after the men's admission. . On April
Midistate was cxactly the same as when he coterel the hospital. Riags, wet
Bacelution of sulphuraus acid, wecre now or, tal to be kept constantly on the tis; the heal to be covered with an out-silk cap.
thdpril 1sth, large quantities of the crust had separated from the scalp, cilhose remained allachrd had enturely lost thetr yellow huc ; they were of a㠰hourn colour. All itehing of the scalp ceased shortly after the applicaadthe sulphurous aciu. No sulphurous acid had been applied to the
Fon on the trunk and extremities, and they had still the characters they
*aled on the man's admission into the hospital.

A piece of lint, wet with sulphurous acid lotion, was applied to one of the largest crusts on the leg.

On the 22 nd April a mere trace of the favas coust remained on the scalp: but the surface of the cutis was red, and there was an inflamed papula near the vertex. Thinking this condition might be partly due to the acit, whid was a very strong solution, I ordered its use to be discontinued for twentyfour hours. The crust on the leg to which the sulphurous acid was applied on the 19th, had separated; the exposed sumface was red, but mot rar. I'wo faves: \mathbf{C} usts which were stited in the vicinity of that to which the asill tras applied on the 39th, were obstread to be tuminet broun; subsequently (hey droynd alf spontaneobsly. The effect of the sulphurous acil gas on these two patches is of great interest, as illustrating the mode of action of the solution. The crusts on the scalp turned brown shortly after the acid was applied to them and before they separated from the cutis.

On the 20 th April the lotion was discontinued, and aine viniment appled to the scalp.

On May 2 nd the heal was free from crust; but the scalp mas still rel, and several inflamed papule were seated on it.

On May 3th the skin of the scalp was here and there more natural in hee, and one or two pupula had supmerated; the pus was healihy in appearanes and there was no trace of the parasitic phat to be detected by the microsede

On the 18th the heal contianed free from favus; the sealp was much les red; the hair was growing. is the crusts on the trunk and extremitic: were still in the same state 15 on the patient's almission into the hospial be was immersed ahout nine in the cevening, for half an hour, in a full-sizd repid hath, containing sixtecn ounces of saturated solution of sulpharus acid; no friction was employen. During the night all the crusts save tinte fell from the surfice.

On the 20 th he was again immersen in the acid bath, and the next day na frace of a crust was to be found on the trumk or extremities. My notes say: "No fresh crusts on head; a small pu-tute uecasionally appears and drio up in two or three riays, and then disappears entirely; the shin of the heal generally is much jader amp more heaithy in aspect."

31st.-The scaly was stin pher than at the previous report. There wei only two small pustules on the sealp. liy the microseope, no trace of the parasite could be detected. The skin generally appeared healthy; and, os Jme tan, Jicobs left the hopital at his own desire to return to Hollan.

I camot sonchade whout exjuresing my confident helief, that a rofy great advanre was made in phthology when the vegetable nature of the diseases l have today refercel to, as well as of some ofhers, was demorstrated; and my equally confuent helief, that the foumtation for a very great advance in therapeutics was laid when Professor Graham introdacelt notice the power of sulphurons acid to destroy regetable life, and exphat how it could be given internaliy without injury to the patient.

Nove.-The solution of sulphumus acill have used is mate by passing stream of the gas through water till the latier is vaturated. Uf this saturitid solation, two comees may be added to six ounces of water to make tiel di: London Sancet, Jicermber 1853.

Anclytical Ezamination of all the Cases Adinitted, during Sixtein Jars, cti
 l'athology of Smatl-rox, amb the Trotertive Influener of Varcination. By:
 Londun.
During the period comprised within this analysie, small-pox hal bee epidemic four times-in 18iss, 1514, 1848, 1851 ; and rather more than ti:
of the patients admitted into the hospital had been previouly vaccinatedThe analysis referred principally to the following points:-
r. Natural small-pox.

1I. Small-pox after small-pos.
a. After natural small-pox
b. After inoculation.
irs. Small-pox after vaccination.
a. Nimber of cicatrices.
b. Character of cicatrices.
c. Vaccinated, but without cicatrices.
Iv. Febrile cruptive diseases mistaken for small-pox.

A remarkable difference was observed between the vaccinated and mracenated patients, and also between the vaceinated cases themselves; some patients having the small-pox in a mild form, wholly devoid of danger, whilst others had it in great severity, scarcely, if at all, lessened by the presius vaccimation. The author thought that the causes of this remarkaDe difference might be sought for among the antecedents in respect to the raccination of each individual aimitted, with a view to explain the extreme milhness of some cases,-the danger, umitigated course, and even death, of others. Small-pox, in the mprotected. remains as virulent as it ever was. Vaccination, when performed in infimey, affords almost complete security aganst the fatality of small-pox, up to the perion of puberty; and the general experience of the Small-pox Hospitill shons that small-pox did wot usually oceur after vaccination, until several years had clapsed. 'The mast trustworthy evidence of the perfection of vaccination was te he olstamed from the cicatrices.

The analytical series consisted of six tables. Observations on the results accompanied each table; and it appeared that 3,094 patients with small-pox reported themselves to have been vaccinated at some period of their lises 1,307 had one vaccine cicatrix; and of these, four and a quarter per cent died with a good cicatrix, and twelve per cent. with an indifferent cicatrix: wean, seven and a half per cent. and a fraction SSS had cicatrices, two sind a hall per cent. died with good cicatrices. Mean mortality, four par cent. and a fraction. $27-1$ natients had threc cicatrices. Average mortality, one and three quarters. "OS patients had four cicatrices; and there died with good cicatrices muler one per cent.; with indifierent cicatrices, none, the average being only threc-fourths of one per cent. The anthor described a good wacine cicatrix as distinct, foveated, dited, or indented, in some instances radiated, and having a well, or tuleraby well, defined elge: an indifierent cicatrix as indistinct, smooth, without indentation, and with an irregular elge. The author's opportumities of tramining the foreigners admitted with small-pon at the hospital, and congaring them with each other, and with the same class of persons in this romory, had led him to the conclusion that vaccination was performed in tbe best mamer gencrally ly the Dames, Swedes, Nonweqians, and Germans. Than came the Italians; and, from the iew he had seen, the Spaniards; then the Seutch; then the Irish; int, lastly, the Jinglish and French. There must exist sone grave and lamentable evils (more especially affecting the fumber classes) connecteri with the circumstances under whieh vaccination incountry districts was performed. There couhd be no justifiable reason कhatherum inhabitants of England and Wales shoubl be less well wacciabed than the rural inhahitants of Denmark, Sweden, and Prussia. The mothlity, severe as it was between the indiferently and well vaccinated, was not the only evil result of bad vaccination. Proportionate to the mortality thas the severity of the disease; and, to those whe escaped death, there was damaged healhh, disfigurement for life perhaps, and muleserved diseredit Was brought on vaccination. Great judgment and caution shoukd be ereccised in the selcetion of vaccine lymph. Lymph for use was in its best state on the seventh day of the progress of the vesicle, the day week from the saccination.

The author's conclusions were-
1st. That netural small-pox destroyed about one-third of all whom it attacked.

2nd. That small-pox after small-pox was of comparatively zare occurrence; that a second attack of natural small-pox was rare, but not often fatal, and that protection secmed to be the lamr. That after inoculatel small-jux, an attack of small-pox had more frequently led to fatal results; hat there is reason to presume that the virus used for inoculation-like a great deal of the lymph used at the present day for vaccination-was often taken at too adrenced a period of the disease, and thus did not afford the full measure of protection it was capable of affording if taken at a proner time.

3rl. That vaccination performed in infancy afforted atmost complete protection against the fatality of small-pox, to the period of puberty; that a variety of circumstances conspired to make it ahnost imporsihle to ascertain exactly in what proportion to the raccinated eases of small pox subsequently occurred, or might ocear, it a!! persons livent to an advanced age.

4th. That, as a matter of safety, it would be well for all persous who were vaccinated in infancy to be revaccinatel at puberty; this measure heing more especially requisite for those who were cither indiferently of douhtfilly vaccinated in infincy, and still more necessary for thoe who, though vaccinated, had no cicatrix remaining. Finally, as a matter of precaution, it would be desirable that all persons should be re-vaccinated, on small-pex existing in the house where they were residing.

Mr. Strecter would suggest the necessity of attending to the health of the skin before raccination was performed. He beliesed that the exhausted state of the skin in tropical climates was one cause of the imperfect vaceination in them. About thity years ago, in the practice with which he was comected, out of more than it hundred children who had heen vaceinated. not one half returned to show the arm and the effects of the operation. He hat only seen one fatal case of small-pox after vaccination, on the fifth day. He alluded to one source of danger in cases of small pox-mamely, a profuse How of the catamenia, which occasionally occurred in the seemadary fever.

Dr. Webster entirely concurred with the opinion stated, respecting the great fatality of small-pox among youns people compared with thove in more advanced life. For instance, during $18: 17$, when upwards of 4,200 perems died by variola throughout Jngland and Wales, more than threc-fourths were under five years of age-the sexes being equally divided; while vers fow had passen their forty-fifth year: Again, the fact that death very yarely ocenrred in cases where the individual had been properly vaccinated in invee or four phaces at the same time, was likewise most important, and showed, if the system was once properly imbued with true vaceine virus, little danger of the subsequent smali-jox need be apprehended. In lis (In. Webster's opinion, many of the deaths reported from yariola, ater colrpox, occurred where the party never had been correctly vaccinated, especialls throughout rural districts :ad country towns, where numbers reman mprotected, owing to the prejudices prevailing in ignomant minds against vaccination, who obstinately object to the oneration, "as an impious attempt to arrest the will of the Almighty."

Dr. Chowne, baving been a frequent visitor at the Small-pox Mospital, could corroborate many of the statements made in the paper. The fact mentioned in the paper, of the number of persons affected with small-pos after vaccination in the country, was most inmortant. The failure of vaccination in country districts was most lamentable; but it was not tho fant of the practitioncrs-it was the fault of the hoards of Guardians, of the Government, by whom no efficient arrangements for vaccination vere made, and consequently thousands lost their lives.

Mr. Marson said that, much of his paper being tabular, it could not he heard before the Society. He wished, however, just briefly to allude to the number and quality of cieatrices. The diference observed was remarkable.

Thus, amongst the persons who had only been raccinated in one place, and the cicatrix was imperfect, twenty per cent. took the small-pox; whereas, when there were four cicatrices, and these were good, the mumber who took small-pox after vaccimation was only one per cent. The melicai public had relied upon the circmastance of Jenner having at one time vateinated in only one phace: bat he (Mr. Marson) knew that Jemer did not confine himself to one, for he had seen a patient whom Jemer had vateinated in 180f, and the person hail four cicatrices.-Assoc. Mcd. Jour.-N. Y. Journal of Mcdicine, Sovmitr, 1850.

TRANSFUSION OF BL.001.

In this memoir, Dr. Polli collects twenty-three enses in which the operation has heen practised in the ordinary way, that is, with human blood. In five of these, death happened, either beanse the operation was too late, or because death was about to happen from some independent and inevitable cause; in all the rest, life was sawed-in many, from the very jaws of death. In no one case did the operation give rise to any scrious inconvenience.The majority of the cases were thove of parturient females, reduced to death's dow by flouting; the rest, those of persone suffering from other kinds of hemorthage, induced upon the hemorrhagic diathesis.

Dr. l'olli also enumerates some cases in which the lood of animais wats successfully substituted for that of man. Fonr of these are on the authority of M. Denis, who wrote his Lelfres sur Ia I'ranfusion at Paris, in 166i7.Another is taken from an Italian work by Dr. Minfred of Lucea (Di Not e at Inaduta Madies-Chir. Operetione, fre, Rome, 16GS). Another, by MMS. Totrer and King, from the Gaz. Medicale de I'aris, p. 6.), 1818. The particulars of the last two experiments are not given, and we are only tohd that the hood of a lamb was employed in the one, and that of at calf in the other, and that the result was successful. lhe particulars of M. Denis's expriments are as follors:

Exp. 1.-3I. Denis took ten ounces of blood from the arm of a strong and beathy butcher, aged forty-five, and injected through the same opening twenty guces of the arterial blood of a lanb, after which the butcher, without any steration in his maners and feclings, proceeded to kill and dress the animal which dan firnished the blood, and then went to the public honse to dispose of the gratuity which had been given him by the operator. The next day, secording to his own account, le fett in better health than usual, and he underwent the same operation with the same results.
Exp. 2.-Nine oumces of the arterial biood of a lamb wre inject " into the ma of a youth, aged sixtecn, who had suffered during two months from ferer, and who, from this canse, and from hawig been hed wenty times, by in a moribund state, when he immediately calaed and slept, and this allying eventuated in complete recovery.
fip. A.-A madman of eight years' standiug, whose matness showed itself matacks of complete restlessness and waketuluess of cight or ten months' qumaion, was treated witin transiucion ia the furth month of such an attack. Ten ounces of blood were allstracted, and six ounces of the arterial blood of a cali injected in their stead, with much relief to the symptoms. Afterrads a pound of the same blood was injected. The immediate result of the secom tranflusion was romiting, purging, and sweating. These ended in a suad sleep, which hrought abont a favorable crisis, for from this that the patient cantinued to improve until he was quite well.
Exp. 4 -The patient in this experiment was lethargic, convulsed. and amost julseles, in consequence of in violent and protracted attack of vonitof and purging. M. Denis injected cight ounces of blood fof what amimal
is not stated when the convolsions ceased, the pulse arose, and consciousuess returned, the bystanders were recognized and spoken to, and some food was taken. This state continued for twenty-four hours. The transfusion was then repeated, but the vomiting and purging returned, and the patient sunk eleren hours afterwards. Serious intussuception of the small intestines was found after death.

The conclusion to which Dr. Polli arrives is, that the operation of trausfusion is simple, efficacious, and safe. IIe recommends it only in cases of excessive hemorrhage under ordinary circumstances, but in cases where there is \mathfrak{a} strong hemorrhagic diathesis, as likely to produce a beneficial change in the crasis of the blood. Ife recommends it also in cases of extreme inanition, where there is not time to introduce food in the ordinary way, or strength to digest that food. Ife suggests it as a possible means ofinducinga bencficial change in the constitution of the blood in chlorosis, rachitis, and scorfula, and insanity; and he thinks that defibrinized acrated arterial blood might be a powerful means of resuscitation in cases of asphyxia and other kiuds of apparent death.-IKalf-Yearly Abstract, vol. zvii.

We have performed this operation but once, and with only partial success.-Editor, Philadelphia Medical and Surgical Journal, January, 1854.

COMPOUND COMMLNUTED FLACTERE OF IIUMERUS, NEAR SHOULDELR-JOLAT, with wound of brachlal artery; ajputation at shoulder-joist; RECOVERY゙.

Christophur Pricke, at. $3 \overline{5}$, a healthy German, of temperate habits, mad :udmitted on the 1st of July, with a comminuted fracture of the humerus, at its surgical neck, accompanied by severe bruising of the surroundint part, and occasioned, a few hours previous to his admission, by the falling of an building, at which he was employed at work. One of the fragments of the humgrus had been foreed through the integuments on tho inside of the arms near the axilla, lacerating the soft parts oxtensively, and wounding the brachial artery. The limb was much infiltrated with blood; its temperature was much lower than that of the opposite side, and no arterial pulsation could be detected below the scat of the injury. No hemorrhage. On the following day, reaction having talien place, a consultation was called unor to explore the cxtent of the injury, and, if possible, to endeavour to sare the limb. A ligature was accordingly placed bencath the axillary artery, afte the administration of ether: and the incision thas mate was prolonged downwards, over the brachial artery, into the original round. Severa arterial points were secured, but the comminated state of the bone, and the extensive infiltration of the blowl amongst the injured parts, xendered the removal of the Jimb evidently advisable, and this was accordingly effectedl means of anterceposterior flaps. Scrious collapse foilowed, from which th patient rallied in a few hours under stimulants, and subsequently recovered without it serious symptom. Ife was able to leave his bed within tire weeks from the operation, and was discharged, curce, on the 11th August. N. Y. MİCl. Tïncs.

[^0]:
 tire hematine. [have tou often ami distinctly observel the transition forme. Ithat perfetly presurva pale boob-corpuseles are olyerved with hematine plobules in old blook cosprulaiv quito eormet.

[^1]:
 the physidugical condition."-_1ndral.

[^2]: ${ }^{2}$ aling, live. 入i., p. s, jul. i.

 teirer, has not been provet, and in thm notmal supheation ecratuly is nut 20

[^3]: iy Meinet, and ho has arriverd athe same vew as to the cause of pywmia, for un account which. sece itunderhiches Archiv, $1 \$ 1 \$$,

 Tlncutnomia, lialh. Au:t, pto vi.
 FTu the existorice of two forms of phlelitis,-in the first of which the inflamation of the veunas erats is brimary mad the enazulation the result; in the serond, the later is the essential, and the former cernndary;-ationtion was firid airoted by Eohintabsky. Only ia
 from the bioch, do I differ from the escellent Wiaves: untomist

[^4]:

[^5]: Mirr. it. ph. i.
 Wif may here ix remindedinf my expriments, and those of Thiemesse, of noutiahing ths upon oil and injecting this futo de veins; also to tho rasearches of Cravellhier.

[^6]: *Sec Mr. Loodsire Analomical and Pathalogical Researcluce, p. 40 .

[^7]: * Several medical men have lately administered the hyposulphite of soda, ingtead d 4 sulphite; but the latter is the preferable salt, and for this reason, that when the hifore phite is decomposed by the hydrochloric acid of the gistric juice, not only is sulphurous dis gencrated, but sulphur is precipitated,-a substance it is yery undesirable to hare in 4 翟 stomach in some of these cases.
 \dagger Malical Times and Gazetlc, Angusi, 1851.
 f This case of tinea decalvans has continued to progress most favourably. sio bishe fallen out since the ilrst application of the acid, and hair well formed and of good odol. replacing the little down that scantily covered some of the patches; while on other $\mathrm{r}^{\text {th }}$ 旨 which were absolutcly emooth hairs are springing up.

