The Institute has attempted to obtain the best original copy ava lable for filming. Features of this copy which may be bibliographically unique, which may alter any of the imagos in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pellisulée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié aves d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure sersée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omirted from filming/
Ii se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texie. mais. lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire cua'il lui a âté possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de fitmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
\square
Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-téte provient:

\square
Title page of issue/
Page de titre de la livraison

\square
Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

High-speed Engine, Dunamo, Rolling-Mill, Steamıhin, Raliroad, Saw-Mill, Cotton-Mill, Paper-Mill, Woolen-Mill, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill, Flour-Mill and all Machinery Bearings.
MA ANOIIA MEETAICO.

JOHN LANGTON \& CO.

Canada Life Building, Toronto

ELEGTRIGFL - ENGINEERS - AND - GONTRAGTORS

Complete Plants installed.
Plants requiring special combiations of E:lectrical Machinery a Specialty. COKRESPONHEN(Y: SOIICTTEI.
"DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERATORS AND MOTORS. Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.

We beg to draw attention to the merits of our
Solid Core Rubber Covered Wire
for Interior Wiring and use in damp locations
This wire has the purest and most homogeneous insulation of any rubber covered wire in the market.
W'e do not aim to produce a cheap) and consequently an inferior insulation. but we have spared no expense towards the production of a high grade of wire at a low price. Whe use no "recovered" rubber or other refuse stock, but only pure rubber compound.

Send sample order and ens the involation. Price lower than for any like grade.

THE GANADIAN CENERAL ELEGTRIC CO., Limited.
 CAPITAL
 51,500,000.

Head Office Gis to 31 Front Street West, TORONTO, ONT.

124 Holls Sirect, HAl.IFAN: \therefore
1802 Notre llame Street. MOSTRE:M. Gue.
ijo Man Sirect, WINillyFC: M.s.
Giranville Sirect, VANCOL'VKK. B.

Montreal lisullated Whe Works.

J. ROSS, SON \& CO.

manúactixyek or

INSULATED ELECTRIC WIRES

And bires for Annumiators, Ofleces, Mfupnets anil I)

FACloty. fly llitims St.
MONTREAL.
Order sohoned and earefully evecuted. P. O. Bins. Jf0n
E. Oarl Bretthupt CoNslel.r.i.
Electrical Engineer Gradunte in Electricat I ngimernig at Johm Hogkm ('nucersi). Bathmore.

. diddrens , hellifiA. ont.

Ganada Lumberman

A. G. MOERIMIER

Cannda lafe Amurance bids. TORONTO, ONT Instivifition st.co fer vrar in acinsmis.

. WANTS

[F you waint agaticular los of lumber, or have one timits. dispuw have a mill for wale or want to buy one. if you have a yuece of second hand mant to buy one. poue of, ur mant one if you want a sisuation: if you *ent an enaplogre for any purpose: an inexpenive
adoentisement uinder the heading of "Wanted or adoertisement uinder the hesding of wanted of -lish what you noch.
Aasadresticement in the Casiaba l.a muxamaxt is the cheapest axd ber ulewnan you can employy: it is nox only aiwa)t on the road, buit on all the roxds at once.

JOHH A. BURNS, B.A.Sc.
Mechanical Engnees and Manufacturers Agent. PGWER HAGN-SNM-Cats of any sure nt inctive 7 this st the most pracisal tamathine ever offered to the trade. No ikill reguusd to run it. Whea the har is cut eff the mactine autornatic ally lifts the saw from the worl and atcon Winte for photostaph and putce.

MdTORS Sole Ageat fox the Kay Electic Works.

 Sy sersmese shetys of sirkw oncines.
686 Craig St. - MONTREAL
 \section*{\title{
Bidoknef. P'Hillity, Presidem.
 \section*{\title{
Bidoknef. P'Hillity, Presidem.

 Joms Cammol. Sec. and Treas

 Joms Cammol. Sec. and Treas Eugene F. Phillips Electical Woris} Eugene F. Phillips Electical Woris}

(IIMMITID)
mint'ractickishsof

ELECTRIC LICHT WIRE,

Magnet Wire, Office and Annunciator Wire, Rubber Covered Wire, Lead Encased Wire.

TELEPHONE AND INCANDESCENT CORDS.
FARADAY GABLES.
RAILWAY FEEDER AND TROLLEY WIRE.
OFFICE AND FACTORY:
New York Uffice: 10 Cort/andt Street.
Providonce, R. l.: American Electrical Works. Montleal, Ganada.

Do you Want

A 30 OR 40 CENT LAMP?

If so, we camot supply you; but should you prefer a higher priced article, cheaper in the end, and guaranteed for an average life of Soo hours, call upon or address the

Pagkaro Lamp Co., Ltd.
 9f to 100 King Street,

 MONTTREAI
G.C.ROBB ChiefEngineer
A.fRASER Sec.Tres

STEAMUSERS
spairling the acreices of COMPETENT EN:GINFEERS of any riana, man obtain sober. intNlipent and rellable mes, by appizing to

camadian association

STATIONARY ENCINEERS.
Givo. Hic:st. Presudent. 625 Dorchester Street Montreal.
J. J. York. Secretary Montrenl Eranch. Boand of Trade Maliding. Moniteal.
head Office TORONTO

Use Something Good PEERLESS OILS

TAKE NO OTHER.
hade suectally for your lise. ThE PEERLESS MRAND is SECURED iY l.ETTR.Ks thes Oil in the snakkt. Does better work and more of it. Saves the Machinery and laus looger. Try it 12 GOLD MEDALS IN 6 YEARS.
SAMUELE Mantacterexs: deO. 30 Front Street East. Tokonto, Unt.
 manuractuakes of
TOPPINE， SIDE－BLOCKE

AM GROES－円RMS．
WHITE：FOK FAKTICU．AAK．

THE Morse Valve Reseating Machine will reface inpost－ tion any．valve from＇sin．to 14 in．that or taper seat．
 loxile．with the names of $1,0 \times 0$ users．

Please mention the Fi．t．ctril al Nitws when cormesponding whth ilverthers．

Hydraulio and Mochanleal Englneers．
 The＂Now American＂Turbino
（huzh eveltald anil horisomfal） Whech is the wit luat kimel of Water Whevg for＂tromgs elentt． mathonet lw whet prose．
 atratigement $\mathbf{. 1 6 4}$ mishleston of Suphter（icats ht．aternh．At．for

Fruen＇s
Wator Whool
Govornor

S：－皆 d^{0}
of all kinds

INSTRUMENTS REPAIRED

STEAM BOILER IMSPECTIOH And Insurance department

Steam Boiler \＆Plate Glass

Insurance Company

JAMES LAUT，Manager．
 ．．．．．OF CANADA

－DIRECTORS＊

E．JONES PARK，Q．C．
Pressident．
F．A．FITZCERALD，ESQ．，Iresident Imperial oit Co．．Vice－prosident． HON．DAVID MILLS．（．C．，M．P．，Ex－Minister of the Interior． JOHN MORRISON，ESQ．，Ex．－Gov．British America Assurance Co．，Toronto． T．H．PURDOM，ESQ．，Barrister，London．
J．H．KILLEY，Consulting Engineer．
JOHN FAIRGRIEVE，Chief Engineer．

When were your Boilers last inspected by a competent engineer？
Do you know what pressure your Boilers can safely stand？ Is your Steam Gauge registering the correct pressure？
Are your Water Gauges free and in good working order？ Is your Safety lialve working properly？
Do not irast to luck：the unexpected generally bappens．Avoid the calamity of an erplosion．Protect life and propery by taking out one of ous Inspoction and Insurance Policics．

HEAD OFFICE：

㒸
 full covernment oepasit

Kay Electric Works

No. 263 James Street N., Hamilton, Ont.

manufacturehs of .

DYNAMOS

For Arc and Incandescent lightiog.

MOTORS

From is H. P. $1050 \mathrm{H} . \mathrm{IP}$. Electro Pating Machmes and General Electrical Appliances. Specialattention to Mill and Factors Lugheng. $\ldots . .$.

WRITE FOR C/RCULAKS.

HIGH CLASS PUMPING ENGINES
 FOR HIGH DUTY, SUITABLE FOR TOWN AND CITY WATEEWORKS.

... . OUR SPECIALTY....

We also manufacture Horse and Trail Cars of every description.

PATTERSON \& GORBIN. ST. CATHAHINES, ONT.

CANADIAN

AND

STEAM ENGINEERING JOURNAL.

Vol. 111.
DECEMRER, 1893
No. 12.

ON LIGHT AND OTHEK HIGH FREQUENCY PiEENOMENA.

By Nikola Tresia.

(continuNu.)
In the branch 3^{b} a similar disposition as in $1 b$ is illustrated, with the difference that the currents discharging through the gap d d are used to induce curients in the secondary S of a trinsiormer T. In such case the secondary should be provided with an adjustable condenser for the purpose of tuning it to the primary:

Fis $2 b$ illustrates a plan of alternate current high fiequency conversion, which is mert frequently used, and which is found to be most convenient. This plan has been dwelt upon in detal on presious occasions, and need not be described here.

Some of these results were obtained by the use of a high frequency alternator. A description of such machine will be found in my original paper before the Ainerican Institute of Electrical
of eghtit or ten inches, atursent of furious spaiks breaks forth from the end of the secondary wire, which passes through the rubber column. The spark ceases when the medal in my hand tourhes the wire. My arm is now hatersed by a powerfal electric curient, bibrating at thout the rate of one mallion times a second. Alf around me the electrostatic force makes itself felt, and the dir molecules and partu les, of dust thong about are acted upon and hammermg swobemly akianst my borly. So great is this agitation of the particles, that when the lights are turned out you midy see streams of leeble light appear on some parts of my body. When such a streamer breakiout on any part of the body it produces a sensation like the pricking o a needle. Were the poteninis sumiciently high and the frequency of the vibration rather lon, r ther lou, the skin would probably be ruptured under the tremendous strain, and the blood would rush out with great force in the form of fine spray or jet so thin

Engincers, and in periodicals of that period, notably in the Elcctrical Engineer of March s8, 1891.
I will now proceed with the experiments.
ON FHENOMENA PRODUCED BY ELECTROSTaTIC fORCI
The first class of effects I ititend to show you are effects produced by electrostatic force. It is the force which governs the motion of the atoms which causes them to collide and develup the life-sustaining energy of heat :nd light, and which causes them to, ageregate in an irfinite varicty of ways, necording to Nature's fanciful designs, and to form all these wondrous structures we perceive around us; it is, in fact, if our present views be true, the most important force for us to consider in Nature. As the term electrostatic might implya steady electric condition, it should be remarked that in these experiments the force is not constant, but varies at a rate which may be considered moderate, about one miltion times a second, or thereabouts. This enables me', produce many effects which are not producible with an anvarving force.

When two conducting bodies are insulated and electrified, we say that an electrostatic force is acting between them. This force manifests itself in attractions, repulsions and stresses in the bodies and space or medium without. So great may be the strain exerted in the air, or whatever separates the two conducting bodies, that it may break down, and we observe sparks or bundles of light or streamers. as they are called. These streamers form abundantly when the force through the air is rapidly varying. I will illustrate this action of electrostatic force in a novel expenment in which I will employ the induction, coil before referred to. The coil is contained in a trough filled with oil, and placed under the table. The two ends of the secondary wire pass through the two thick columns of hard rubber, which protrude to some herght above the table. It is necessary to insulate the ends or terminals of the secondary heavily with hard rubber, because even dry wood is by far 100 poor an insulator for these currents of enormous potential differences. On one of the terminals of the coil I have placed a large spliere of sheet brass, which is connected to a langer insulated brass plate in order to enable me to perform the experiments under conditions which, as you will sec, are more suitable for this experiment. I now set the coil to work and approach the free terminal with a metallic object held in my hand, this simply to avoid burns. As I approach the metallic object to a distance
as to be invisibie, just as oll will when placed on the positive terminal of a Holiz machine. This breaking through of the skin though it may seem impossible at first, would perhaps occur by reason of the tissues under the skin being incomparatily better conducting. This, at least, appear plausible, judging from some observations.

I can make these str... ms of light visible to all, by touching with the metallic object une of the terminals as lefore, and approachils: my free I and to the brass sphere, whach is connected to the second teminal of the coil. As the hand is approached the air between it and the sphere, or in the immediate neighborhood, is more violently agitated anil you see streans of light now break forth from my fingel tips and from the whole hand (Fig. 5). Were I to approach the hand closer, powerful sparks would ju'up fiom the brass sphere to my hand, which might be injurious. The streamers offer no particular inconvenience, except that in the ends of the finger tips a burning sensation is felt. They should not be confounded with thase preduced by an influence machine, because in many respects they beliave dif. ferently. I have attached the brass sphere and plate to one of the terminals in order to prevent the formation of visible streamers on that terminal, also in order to prevent sparks from jump. ing at a considerable distance. Bestdes the attachment is favorable for the working of the coll.

The streams of light which you have observed issuing from my hand are due to a potential of about 200,000 volts, alternating in irregular intervals, something like a million tumes a second. A vibration of the same amplatude, but four times is fast, to maintain which over $3,000,00$ volts would be required, would be more than sufficient to envelop my body in a complete sheet of flame. But this flame would not burn me up, guste centrarily, the probability is that I would not be injured in the least. fet a hundredth part of that energy, otherwise directed, would be amply su cisient to kill a person.
The amount ef energy which may thus be passed into the body of a person depends on the frequency and potential of the currents, and by making both of these very great, a vast amount of energy may be passed into the body without causing any discomfori, except, perhaps, in the arm, which 's traversed by a true conduction current. The reason why no pain in the body is f. 't, and no injurious effect noted, is that everywhere, if a curcat be imagined to flow through the borig, the direction of its
flow will be at ripht angles to the surface, bence the boily of the experimentes offers and enormous section to the current, and the density is very small, with the exception of the ann, perhaps, where the density may be considerable. But if only a smail fraction of that energy would be applied in such a way that a current would traverse the body in the same manner as a low frequency current, a shock would be received which might be fatal. A direct or low fiequericy alternating curient is fital, I think, primepally because its distribution through the body is not uniform, as it must divide itself in mintite streamlets of great density, whereby some oggans are vitally injured. That such a process occurs / hive not the least doub:, though no evidence might apparently exist or be found upon examination. The surest way (o) injure and destroy life is a contanuous current, but the most panful is an alternating current of very low frequency. The expression of these views wheh are the result of long-conmoued experment and observation, hoth with steally and varying currents, is elicited by the interest which is at present taken in this subject, and by the manifest!: erroncous ideas which are dauly propounded in journals on this subject.
I may illustrate atn effect of an electrostatic force by another striking experiment, but before I must call your attention to one or two facts. I have said before, that when the nedium between two oppositely clectrificd bodies is strained beyond a certain limit it gives wav and, stated in popular language, the opposite clectric charges unite and neutralize each other. This breaking down of the medium occurs principally when the force acting belween the bodies is steady, or waries at a moderale rate. Were the variation sufficiently rapid such a destructive break would not occur, no matter how great the force, for all the energy would be spent in radiation, convection and mechanical and chemical action. Thus the spark length, or greatest distance through which a spark will jump between the electrofied bodies, is the smatler the greater the variation or time rate of change. llut this rule may be taken to be true only in a general way, when comparing rates which are widely different.

I will show you by an experiment the difference in the effect produced by a rapidly varying and a steady or moderately vary. ing force. I have here two large ircular brass plates p p (Fig. 6a and (b), suppotied on movable insulating stands on the table, connected to the endis of the secondary of a similar coil as the one used before. I place the plates to or 12 inches apart, and set the coil to work. You see tho whole space between the plates, neally two cubic feet, filled with uniform loght Fig. 6a. This light is due to the streamers you have seen in the first experiment, which are now much more mitense I have already pointed out the buportance of these streamets in commercial apparatus and their still greater importance in some purely scientific investigations. Often they are too weak to be visible, but they always exist, consuming energy and modifying the action of the apparatus. When intense, as they are at present. they produce oznne in great quantuty, and also as Prof. Crooks has pointod aut, nitrous acid. So quick is the chemical action that if a coll such as thas one is worked for a very long time, it will make the atmosphere of a small room unbearable, for the eyes and throat are attacked. But when moderatcly produced the streamers iefresli the atmosphere wonderfilly, lixe a thunderstorm, and evercise unquestionably a beneficial effect.

In this experiment the force acting between the plates changes in intensity and direction at a very mpid rate. I will now make the rate of change per unit tume much snaller. This 1 effect by renderng the dischares through the primary of the induction coil less frequent, and also by diminishing the rapidity of the vibration it the secondary. The former resule is conveniently secured by lowering the E. M. F. over the air gap in the primary circuit, the latter, by approarling the tuo brass plates to a dis. tance of about three or four inches. When the coil is set to work you see no sticamers or light between the plates, yet the mediun between them is under a tremendous stman. I still further aupment the strain by raising the E. M. F. in the primary circuit, and soon you st. the air give way and the hall is llluminated by a shower of brilliant and noisy sparks, Fig. 6b. These sparks could be produced also with unvarying force ; they have been for many years a familiar phenomenon, though they were usially obtained from entirely different apparatus. In describing these two plienomena so radically different in appearance, !have advisedly spoken of a "force" acting between the fintes. It would be in accordance with accepted views t., sat that there was an "altemating E. M. F." actiag between the plates. This tern is quite proper and applicable in all cases where there is evidence of at least a possibility of an essential interdependence of the electric state of the plates, or electric action in their neighborhood. But if the plates were removed to an infinite distance, or if at a finite disiance, there is no probabilit) or necessity whatever for such deprendence I prefer to us the term "electmstatic force," and to say that such at force is acting areund each plate or electrified insulated body in . eneral. There is an inconvenience in using this expression, as the terin incidentally means a - teady electric condition; but a proper nomenchature will eventually settle this difficult:-

I now relurn to the experiment to which 1 have already alluded, and with which 1 desire to illustrate a striking efrect produced by a rapidly baning electrostatic force I atiach to the end of the wire ((Fig. 7), which is in connection with one of the terminals of the secondiry of the induction coil, an exhausted
bulb b. This bulb contains a thin carbon filament f, which is fastened to a platinum wire w, sealed in the glass and leading outside of the bulb where it connects to the wire l. The bull may be exhausted to any degree attamable with ordinary apparatus. Just a moment before you have witnessed the breaking down of the air between the charged brass plates. You know that a plate of glass or any other insulating material, would break down in like manner. Had I, therefore, a metallic coating at. tached to the outside of the bulb, or placed near the same, and were this cuating connected to the other terminal of the coil, you would be prepared to see the glass give way if the strain were sufficiently increased. Even were the coating not connect ed to the oller terminal, but to an insulated plate, still, if you have followed recent developnents, you would naturally expect a rupture of the glass.

But it will certainly surpise you to note that under the action of the varying electrostatic force the glass gives way when all other bodies are removed from the bulb. In fact, all the surrounding bodies we perceive might be removed to an infinite distance without affecting the result in the slightest. When the coil is set to work the glass is invariably broken through at the seal, or other natrow channel, and the vicuam is quickly mpaired. Such a damaging break would net ocrur with a steady force, even if the same were many times greater. The break is due to the agitation of the molecules of the gas within the bulb, and outside of the sance. This agitation, which is generally most violent in the narrow pointed channel near the seal causes a heating and rupture of the glass. This rupture, woyld, however, not occur, not even with a varying force, if the medium filling the inside of the bulb and that surrounding it were perfectly homogeneous. The break occurs much quicker if the top of the bulb is drawn out into a fine fibre. In bulbs used with these coils such narrow, pointed channeis must therefore be avoided.
When a conducting body is immersed in air, or similar insulating medium, consisting of, or containing, small freely movable particles capable of being electrified, and when the electrification of the body is made to undergo a very rapid change-which is equivalent to saying that the electrostatic force acting around the body is varymg in intensity-the small particies are attracted and repelled, and their violent impacts against the body may cause a mechanical motion of the latter. I'henomena of this kind are noteworthy, inasmuch as they have not been observed before with apparatus such as has been commonly in use. If a very light conducting sphere be suspended on an exceedingly fine wire, and clarged to a steady potential, however high the sphere will remain at est. Even if the potential would be rapidly varying, provided that the st particles of matter, molecules or atoms, are evenly distribl: -1 , no motion of the sphere should result. But if one side of the conducting sphere is covered with a thick insulating layer, the impacts of the particles will cause the sphere to move about, generally in irregular curves, Fig. 8n. In like manner, as 1 have shown on a previous occasion, a fan of metai shett, Fig. 8b, covered partially with insulating material as indicated, and placed upon the terminal of the coil so as to turn freely in it, is spun around.
All these phenomena you have witnessed, and others, whicis will be shown later, are due to the presence of a medium like air, and would not occur in a continuous medium. The action of the air may be illustrated still better by the following experiment: I take a glass tube t, Fig. 9 , of about an inch in diameter, which has a platinum wire wealed in the lower end, and to which is attached a thin lamp filament f. I connect the wire with the terminal of the coil and set the coil to work. The platinum wire is now clectrified positively and negative'y in mpid succession, and the wire and air inside of the tube are rapidly heated by the impacts of the particles, which may be so violent as to render the filament incandescent. But if 1 pour oil in the tube, just as soon as the wire is covered with the oil, all action apparently ceases and there is no marked evidence of heating. The reason of this is that the oil is a practically continuous medicm. The displacements in such a continuous medium are, with these frequencies, to all appearance incomparably smaller, thans in air, hence the work performed in such a medium is insignificant. But oil would behave very differently with trequencies many times as gieat, for even though the displacements be small, if the frequency were much greater, considerable work might be performed in the oil.
The electrestatic attractions and repulsions between bodies of measurable dimensions are, of all the manifestations of this force, the first so-called electrical phenomena noted. But though they have been known to us for many centuries, the precise nature of the mechat..:m concerned in these actions is still unknown to us, and has not been even quite satisfactorily explained. What kind of mechanism must that be? We cannot help wondering when we observe two magnets attracting and redeling earh other with a force of hundreds of pounds with apparently nothing between them. We have in our commercial dynamos magnets capable of sustaining in mid-arr tons of weight. But what are even these forces acting between magnets when compared with the tremendous attractions and repulsions produced by electrostatic force, to which there is appareritly no limit as to intensity. In lightning discharges bodies are often charged to so high a potential that they are thrown awas with inconceivable foree and rom asunder or shattered into fragments. Still even
such effects cannot compare with the attractions and repulsions which exists between charged molecules or atoms, ind which are sufficient in project them with speeds of many kilometres a second, so that under their violent mpact bodies are reudered highly incaudescent and are volablized. It is of spectal interest for the thinker who ingures into the nature of these forces to note, that whereas the actions between individual molecules or noms occur secmungly under any condition, the antractions and repulsions of bodies of me:isurable danensions imply a medinn possessing insulating properties. So, if arr, citler by being rarefied or lieated, is rendered a more or less conductish, these actions between two electrified bodies practically cease, white the actions between the individual atoms contunue to manifest themselves.

An experiment may serve as ath illustration and as a means of bringing out other features of interest. Some tme aro I shoned that a lamp filament or wire mounted in a bulb and connected to one of the terminals of a high tension seconday coil is se spinning, the top of the filituent generatly describme a curcle. Thas vibration was very energetic when the air in the bulb was

Single Wike Conthrsion and Distrihution, with Simblek Meanis fok Reguliating the fiffects.
at ordinary pressure, and becatue less energetic when the air in bulb was strongly compressed. It ceased altogether when the air was exhausted, so as to become comparatively good conducting. Ifound at that time that no vibration tonk place when the bulb was vely highly exhausted. But I conjectured that the vibration which lascribed to the electrostatic action berween the walls of the bulb and the filament should take place also in a highl; exhausted bulb. To test this under conditions which were more favorable, a bulb like the one in Fig, 10 was constructed. It comprised a globe b, in the neck of which was sealed a platinum wire w carrying a thin lamp filament f. In the lower part of the globe a tube t was sealed so as to surround the filament. The exhaustion was carried as fir as it was practicable with the apparatus employed.

This bulb verified my expectation, for the filament was set spinning when the current was turned on, atad became incandescent. It also showed another interesting feature, beating upon the preceding remarks, namely, when the filament had been kept incandescent some time, the narrow tube and the space inside were brought to an elevated iemperature, and as the pas in the tube then became conducting the electrostatic attraction between the glass and the filament became very weak or ceased, and the filament came to rest. When it came to rest it would glow far more intensely. This was probably due to its assuming the position in the centre of the tube where the molecular bombardment was most intense, and also partly to the fact that the individual impacts were more violent and that no part of the suppued energy was converted into mechanical movement. Since, in accordance wath accepted views, in this experiment the incandescence must be attributed to the impacts of the particles, molecules or atoms in the heated space, these particles must, therefore, in order to explain such action, be assumed to behave as independent carriers of elecuric charges immersed in an insulating medium ; yet there is no attractive force between the glass tube and the filament because the space in the tube is, as a whole, conducting.
It is of some interest to observe in this connection that whereas the attraction oetween two electrified bodies may cease owing to the impairing of the insulating power of the medinm in which they are immersed, the repulsion between the bodics may still be ubserved. This may be explained in a plausible way. When the bodies are placed at some distance in a poorly conducting medium, such as slightly warmed or rarefied air, and are sudden ly electrified, opposite electric charges being imparted to them, these charges equalize more or less by leakage through the air. But if the bodies are similarly electrified, there is less opportunity afforded for such dissipation, hence the repulsion observed in such case is greater than the attraction. Repulsive actions in a gaseous medium, are, however, as Prof Crookes has shoun, en hanced by molecular bombardment
on Curkent or mynamic eiecthicity phe:somena.
So far, 1 have considered principally effects produced by a varying electrostatic force in an insulting medium, such as air. When such a force is arting upon a conducting borly of measur able dimensions, it causes within the same, or on its surface, displacenients of the electricity and gives rise to electric currents, and these produce another kint of phenomena, some which I shall presently endeavor to illustrate. In presenting this second class of electric effects, 1 will avail myself princıpally of such as are producible without any return cirruit, hoping to interest you the more by presenting these phenomend in a more or less novel aspect.
It has been for a long time customary, owing to the limited experience with vibratory currents, to consider an electric cur-
rent as somethong corculatiog in a closed conductug path. It was astomshing at first to tealize that a current maty tow through the conducing patheven ifthe latter be anterrapted, and il wis stilf more surprising to learn that sometnoles it maty be even eabser to mike a current flow under such combitions thim through a closed paith. Hut that old idea is gradually dmappearimpeicen among practical men, and will soon berentirelv forgotten.

If 1 connect in msulated metal plate P. Fige. 11 , to one of the termunals flo of matuction conl by means of a wire, though this plate be very well msulated, a current passes through the wre when the conl is set to work. First I wish to give you ew. dence that there is a current passing through the conaceting ware. An obveous wity of demonstrating this is to menet between the terminals of the coll and the msulated plate a very than plati. mam or German silver wire w and bang the latter to meandescence of fuston by the current. lhis repures a rather latge plate or else current impulses of a ers high potentaial and fiequency. Another way is to lake a conl C. Fig. 11 , contanmog many lurns of than msiblaed wire, and to mert the same in the path of the current to the plate. When I connect one of the ends of the coil to the wire leading to another insulated phate I' and its other end to the terminal tre of the mduction comb, and set the latter to work, a current passes through the mserted coll C and the eastence of the curient may be made manifest miartous ways. For instance, I insert an tron core 1 whthen the cont. The current being one of wery high frequencs, if it be of some strength will soon bring the tron core to a nonceably heher temperature, as the bysteresis and current losses are great with such high frequencies. One might take a core of some suze, lammated or not, it would matter little. but ordanary iron wire $1 \cdot 16$ ot 1.8 of an inch thick is sulable for the purpose. While the mdition coil is working, a current traterses the inserted conl, and only a few moinents are sufficient 10 bring the iron wire ito ath elevated temperature sufficient to soften the sealing-wav s, and cause a paper washer p, fastened by it to the oron wire to fall off leat with the apparatus such as 1 have here, other, much more interesting, demonstrations of this kind cath be made. I have a secondary S, Fig. 12, of coarse wite, wound upon a conl similar to the first. In the preceding experment the curent through a the coil C. Fig. 11 , was very smith, but there being many turns strons heating effect was, nevertheless, produced in the aron wire. Had 1 passed that current through a conductor in order to show the beating of the latter, the current mghthtwe been ton smatl to produce the effect desired. But with this coll provided with a secondary winding: I can now transform the feeble current of high tension which passes through the primary I' into a strong secondiry current of low tension, and this current will qute certanly do what 1 expect. In a small glasa tube (1, Fig. 12) ! have inclosed a coil platumm wire, w, this merely in order to protect the wire. On each end of the chitss tube is sealed a ter minal of stout ware to which one of the ends of the platinum ware, 3 , is connected. 1 join the terminals of the secondary coil to these termenals and insert the promary p, between the insulated plate P_{s} and the termmals T : of the induction coll as before The latter being set to work, mstantly the platinum wire w is rendered incandescent, and can be fused even if th be very thick.

Instead of the platinum wire I now take an ordinary jo-volt 16.c. p. lamp. When I set the induction coll in operation the lamp filament is brought to hish incandescence. It is, howevel, not necessary to use the insulated plate, for the lamp, (I, Fis, 13) is rendered incandescent even of the plate P ' be disconnected. The secondary may also be connected to the promary as

Oferaring a Motor hy Diskuitise Discharces.
indicated by the doted line in $\mathrm{F}_{12}, 13$ to do away more or less with the electrostatic induction of to moditiy the action otherwise.

I may here call attention to a number of meterestug obsenations with the lamp. Frist, I discunnect one of the terminals of the lamp from the secondary S. When the induction conl plavs, a glo. is noted which fills the whule bulb. This gion is due to electrostatic induction. It increases when the bulb is grasped with the hond, and the copacity of the exjerimenter's body thus added to the secondary circuit. The secondars, in effect, is equisalent to a metallic coating, wheh woull be placed near the primary. If the secondary, or its equanalent, the costing, were placed symmetrically to ihe promary, the electosstatic induction would be nil under ordinary conditions, that is, when a primary return circuit is used, as both halses would neut ralize each other. The secondary is, in fact, plated symmetrically to the primary, but the action of both halies of the latter, when only one of its ends is connected to the indaction coil, is not exacti) equal, hence electrostatic induction takes place, and hence the flow in the bulb. I can neally equatize the action of both halves of the primury by connecting the other free end of the same to the insulated plate, as in the preceding experments.

When the plate is connected, the glow disappears. With a smaller plate it would not entirely disappear, and then it would contribute to the brightness of the filament when the secondary is closed, by warming the nir in the butb.

To demonstrate another interesting feature, I have adjusted the coils used in a ectain way. I first connect both the ferminals of the lamp to the secondary, one end of the pnniary being connected to the terminal Ti of the induction coil, and the other so the insulated plate l^{\prime} ' as before. Whes the current is turned on, the hamp plows brightly, as shown in Fig. 14b, in which C is a line whe coll and S a coarse wire secendary wound upon it. If the insulated plate P_{z} is disconnected, leaving one of the ends a of the primary insulated, the filament becomes dark or generally diminisl.es in brightness (Fig. 14a). Connecting, again the phate I' and raising the frequency of the current, l make the filament quite dark or bately red, fig. I 5 b. Once more 1 will disconnect the plate. One will, of course, infer that when the plate is disconnected, the current through the pimary will be weakened, that therefore the E. M. F. will fall in the secondary S_{1} and that the brightness of the lamp will diminish. This might be the case, and the result can be secured by an easy adjustment of the coils; also by varying the frequency and potential of the currents. But it is perhaps of greater interest to note that the hanpincreases in brightness when the plate is disconnected (VFig. 15a): In this case all the energy the primary recenes is now sunk into it, like the charge of a battery into an ocean cable, but most of that energy is recovered through the secondary and used to light the lamp. The current traversing the primary is strongest at the end b, which is connected to the terminal T of the induction coil, and diminishes in strength towards the remote end a. But the dynamic inductive effect exerted upon the secondary S is now greater than before when the suspended plate was connected to the primary. These results might have been produced by a number of causes. For instance, the plate 1' being connected, the reaction from the coil C may be such as to diminish the potential at the terminal Ti of the induction coil, and therefore weaken the curren through the primary of the coil C. Or the disconnecting of the plate may diminish the capacity effect with relation to the primary of the latter coil to such an extent that the current through it is diminished, though the potential at the tenninal Ti of the induction coil way be the same or even higher. Or the result might have been produced by the change of ghase of the primary and sccondaiy currents and consequent reaction. But the chief determining factor is the the relation of the self-induction and capacity of coil C and plate P_{2}, and the frequency of the currents. Zhe greater briphtness of the filament in Fig. $15 a$ is in part due to the heating of the rarefied gas in the lamp by electrostatic induction, which, as before remarked, is greater when the suspended plate is disconnected.

Sill another feature of some interest I may here bring to your attention. When the itssulated plate is disconnected and the sciondary of the coil opened by approaching a small object to the secondary, but very small sparks can be drawn from it, showing that the electrostatic induction is small in this case. But upon the secondary being closed upon itself or through the lamp, the filament glowing brightly, strong sparks are obtained from the secondary. The electrostatic induction is now much greater, because the closed secondary determines a greater flow of current through the primary, and principally through that half of it which is connected to the induction coil. If now the bulb be grasped with the hand, the capacity of the secondary with reference to the primary is ausmented by the experimenter's body and the luminosity of the filament is increased, the incandescence now being duc partly to the flow of the current through the filament and partIy to the molecular bombardment of the rarefied gas in the bulb.

The preceding experiments will have prepared one for the next following results of interest, obtained in the course of these imvestigations. Since 1 can pass a current through an insulated wire merely by connecting one of tis ends to the source of electrical energy, since I can induce by it another current, magnetize an tron core, and, in short, perform all operations, as though a return circuit were used, clearly I can also drive a motor by the aid of only one wire. On a former occasion I have described a sumple form of motor, comprising a single exciting coll, ain iton and disc. fig. 16 illusirates a modified way of operatag suith an allemate current motor by currents induced in a transformet connected to one lead, and several other arrangements for circuits for operating a certain class of alternate motors founded on the action of cuntents of differing phase. In view of the present state of the att it is thoughi sufficient to describe thesearrangements in a few words only. In the diagram, Fig. 16 11. shows a primary coll P, connected with one of its ends to the line 1 . leading from a high tension tiansformer terminal T_{2}. In inductive relation to this primary P is a secondary S of coarse wire in the circuit of which is :t coil c. The currents induced in the secondary enerxize the iron core 1 , which is pret. crably, buat not necessarily, subelivided, and set the metal dise d in roation. Such a motor Mz is diagrammatically shown in Fig. 16 Il ., has been called a "magnelic lag motor," but this expression may be objected to those by who atribute the rotation of the dise to eddy currents carculating in minute paths when the core t is finally subdiwiled. In order to operate such a motor effectively on the plan indicated the frequencies should not be $t 00$ high, not more than four or five thousand, though the rota. tion is produced even with ten thousand per second, or mere.

In Fig. 16 I. a motor M_{2}, having two enegizing circuits, A and B , is diagrammatically indicated. The circuit A is connected to the line I_{n} and in series with it is a pranary P, which nay have its free end connected to an insulated plate ${ }_{3}$, such connection being indicated by the dotted lines. The other motor circuit B is connected to the secondary S, which is in inductive relation to the primary p. When the transformer terminal Ti is alternately clectrified, currents traverse the open line L and aiso circuit A and primary 3 . The curtents through the latter induce second. ary currents in the circuit S, which pass through the energizing coil 13 of the motor. The currents through the secendary \mathbf{S} and those through the primary P differ in phase 90 degrecs, or nearly so, and are capable of rotating an armature placed in inductive relation to the circuits \mathbf{A} and B .

In Fig. 16 111. a similar motor M_{3} with iwo energizing circuits A' andll, is illustrated. A primary P. connected with one of its ends to the line $L_{\text {, }}$ has a secondary S, which is preferably wound for a tolerably high E. M. F., and to which the two energizing

circuits of the motor are connected, one directly to the ends of the secondary, and the other through a condenser C, by the action of which the currents traversing the circuit A_{1} and B_{1} are made to differ in phase.
In Fig. 16 IV . still another arrangement is shown. In this case two primaries P_{1} and ${ }^{2}$, are connected to the line $I_{\text {, one }}$ through at condenser C of small capacity, and the other disectlv. The primaries are provided with secondaries S_{3} and S_{2}, which are in series with the energizing circuits A_{2} and B_{2}, and a motor M_{3} the condenser C again serving to produce the reyuisite dif ference in the phase of the currents traversing the motur circuits. As such phase motors with two or more circuits are now well known in the art, they are here illustrated diagrammatically. No difficulty whatever is found in operating a motor in the manner indicated, or in similar ways, and alttough such experiments up so this day present only scientific interest, they may at a period not far distant be carried out with practical objects in view.

It is thought useful to devote here a few remarks to the subject of operating devices of all kinds by means of only one leading wire. It is quite obvious that when high-frequency currents are made use of, ground connections are-at least when the E. M. F. of the currents is great-better than a return wire. Such

ground connections are objectionable with steady or low frequency currents, on account of destructive chemical actions of the former, and disturbing influences exerted by both on the neighboring circuits; but with high frequencies these actions practically do not exist Still, even ground connections become superfluous when the E. M. F. is very high, for soon a condition is reached when the current may be passed more cconomically through open than through closed conductors. Remote as might
seen an industrial applicant of such single wire transmission of energy to one not experienced in such lines of experiment, it will not seem so to any one who for some time has carried on investigations of such nature. Indeed I cannot see why such a plan could not be practicable. Nor should it be thought that for rarrying at such a plan currents of very high frequency are implicitly reguired, for just as soon as potentials of, saty, 30,000 volts are used the single wire transmission may be effec:ed with low frequencies, and experiments have been made by me from which these inferences are made.

When the frequencies are very high it has been found in
cestan elementary rules 1 have also found it practiewible to ofers ate ordmary series or shumt direet current motors whith such dis ruptive discharges, and thas can be done with or wilhont it return wire.
Among the vartous current phenomena observed pertiaps the most interesting are those of impedance presented by conduc:ors to currents varying at a rapid rate. In my first paper be fore the dinerican Irstitute of Electrical Engmeers \mathbb{I} have de scribed ofew strikim; observations of this kind. Thiss I showed that when such currents or sudden discharges are passed throuph a thick metal bar there may be pomts at the bar only a few

fig. id)

Enkrgy Transmission to iny Distance without Wikhe.
laboratory practice quite casy to repulate the effects in the manner shown in diagram lif 17 . Here two primaries P^{\prime} and I'are shown, each connected with one of its ends to the line L, and with the other end to the condenser plates $C_{\text {and }} C_{1}$, respectively. Near these are placed other condenser plates C_{1} and C_{1}, the former being connected to the line $L_{\text {a }}$ and the latter to an insulated larger plate l's. On the primaties are wound secondaries S and S^{1} of coarse wite, connected to the devices \mathfrak{n} and d respectively. By vaiying the distances of the condenser plates C and C_{1}, and C_{3} and $C_{i_{1}}$, the currents through the secondaries S and S^{\prime} are varied in intensity. The curious feature is the great sensitiveness, the slightest change in the distance of the plates producing considerable variations in the intensity er strengtis of the currents. The sensitiveness may be rendered extreme by making the frequency such that the primary itself without any plate attached to its free end satisfies, in conjunction with the closed secondary, the condition of resonance. In such rondition an extrensely smatl change in the capacity of the free terminal produces great variations. For instance, I have been able to adjust the conditions so that the mere approach of a person to the coil produces a considerable change in the brightness of the lamps attached to the secondary. Such obscrvations and experiments possess of course at present chiefly scientific interest, but they may soon become of practical importance.
Very high frequencies are of course not practicable with motors on account of the necessity of employing iron cores. But one may use sudden discharges of low frequency and thus obtain certain advantages of high frequency currents without rendering the iron core enturely incapable of following the changes and without entailing a very great expenditure of energy in the core. I have found it quite practicable to operate, with such low frequency disruptive discharges of condensers, alternating current motors. A certain class of such motors which 1 advanced a few years ago, which contained closel secondary crrcuits, will rotate quite vigorously when the discharges are directed through the exciting coils. One reason that such a motor operates so well with these discharges is that the difference of phase between the primary and secondary currents is 90 degrees, which is generally not the case with harmoncally rising and falling currents of low frequency. It might not be without interest to show an experiment with a a siniple motor of this kind, inasmuch as it is commonly thought that dismptive discharges are unsuitable for such purposes. The motor is illustrated in Fig. 18. It comptises a rather large iron core i with slots on the top into which are imbedded thick copper washers c.c. In proximity to the core is a treely movable metal disc I). The cere is provided with a primary exciting coil C, the ends a and b of which are connected to the terminals of the secondary S of an ordinary transformer, the pimary l' of the latter being connected to an alternating distribution circuit or generator G of low or moderate frequency. The terminals of the secondary

Showing the Effect of the Prigknce of a Gaseous Mediual.
S are altached to a condenser C which discharges through an open air rap d d, which may be placed in series or shunt to the coil C. When the conditions are properly chosen the dise D rotates with considerable effort, and the iron core i does not set very perceptibly hot. With currents from a high frequency alternator, on the contrary, the core gets rapidly hot and the dise rotates with a much smaller effort. To perform the experiment properly it should be first ascertained that the disc D is not set in rotation when the discharge is not occuring at $d \mathrm{~d}$. It is preferable to use a darge iton core and a condenser of large capacity so as to bring the superimposed quicker oscillation to a very low pitch or to do away with it entirely. By observing
inches apart wheh have a sufficient potential difference between them to maintain at briglit incandescence at ordinay filament lamp. I have also described the curious hehavior af rarefied gas surrounding a conductor to such sudelen rushes of current. These phenomena have been sunce more carefully studied, and one or two novel experiments of this kind are decmed of sufficient interest to be described here.
With reference to Fip. 19, 13 and: 13 , are very stout copper bars, connected at their lower ends to plates C. ind $C \in$, espec. tively, of a condenset, the opposite plates of the latier being connected to the terminals of the secondary S of a high-tenston transformet, the primaty ${ }^{\prime}$ of which is supplied with alternating currents from an ordinary low-fregenency dynamo $(i$, or distribu. tion circuit. The condenser discharges through an adpustable gapd das usual. By establishing a rapid vibration it was found guite easy to pertorm the following curious experiment: The

bars 13 and $13:$ were joined at the top by a low-voltage lamp l_{3}; a little lower was placed, by means of clamp c c, a $j 0$ volt lamp 12 and still lower another 100 -vole lamp l_{2} and finally at a certam distance below the latter lamp an exhtusted tube T. By carefully determining the positions of these devices it was found practicable to maintain them all at their proper illaminating power. Yet they were all connected in multiple are to the two stout coppet bars and required widely different pressures. This experiment requires, of course, some time fot adjustinent, but is quite easily performed.

In Figs. igh and 19c, two other experiments are illustrated which, unlike the previous experiment, do not requite very careful adjustments. In Fig. 20b, two lanips is and i_{2}, the fommer a 100 -volt and the latter a 50 -volt, are placed in certain pasithons as indicated, the 100 -volt lamp being below the 50 -volt lamp. When the are is playing at d d, and the sudden discharges passed through the bars 13 i3 the 50 -volt lamp will, as a rule, burn brightly, or, at least, this result is casily secured, while the 100 volt lamp will burn very low or remain quite dark, Fig. 19b. Now the bars 13 B may be joined at the top b) a thick cross bar 13z, and it is quite easy to matintain the 100 -volt lamp at full candic power while the 50 volt lamp remans dark, Fig. 1gc. These results as 1 have pointed out previously. should not be considered to be due exactly $t 0$ frequency, but rather to the time rate of change which may be great even with low frequencies. A great many other results of the same kind equally interesting, especially to tho:- who are only used to manipulate steady currenis, may be obtamed, and they afford precious clucs in investigating the niture of electne. currents.

In the preceding experiments 1 have already had occasion to
show some light phenomena, and it would be now proper to study those in particular, but to make this investigation more complete, I think it necessary to first make a few remarks on
the subject of eleitrical resonance, which has to be always observed in carrying out these experiments.
fTo de Corfinunt. 1

POWER CURVES.
 E. Cari. Breitiaupt.

The accompanying power curves were presented before the last mecting of the Canadian Electrical Association in connection with a paper on Street Kailways, and were intended esperially to show the extreme tariations in the duty required of a street railway motor. The readings were taken on a icgular run of one of the cars of the Toronto Sirect Kailuay Co, drawing an open trailer on the Queen St. line.
The curces show the results obtaintd on the retum irip, up Queer Sirect, from Lansdowne are to longe stree:, thence down longe to King street, a distance of about three miles. The total time was 19 minutes jo seconds, thus showing an average speed of about nine miles per hour, including stops.
The trolley is No. oo hard drawn copper uire, fed at Spadina Ave. and at the Subway by No 0000 feeders. The roadbed is practically level with the exception of two short but sharp grades at the Subway: The number of passengers carried varied from is to 30 averaging about 30 , and the readings at she motor terminals indicated a very quick and wide mariation in the amount of power supplied to the motor, twice reaching a maximum of 45 Killowatts; this was on starting al Spadina Ave, when there were fifty passengers on board, and again on starting near Yoris sireet. In both cases the readings were only momentary: At the Subuay the number of passengers was fiftee: and the maximum read. ing or the up grade was only 27 Killowates
The volimeter readings did not 1at. math. The maximum can be taken at 475 volis and the m.nimam at $i=5$ olts, though $f=0$ voles was twice indicated, the total variation was therefore only 11 per cent. of the mean vnltage, which, consideriag the fact that the feeders are orer one and onc-half miles apart, must be considered verg satisfactory.

The power house is equipped with four Armington \& Sims high speed, compound condensing engines, each rated at 600 h_{1}. at one quarter stroke and cach belted direcally to two Edison 200 K.W. generniors. The tolal load as indicated at the station was very steady, showing a fluctuation of not over 5 per cent. during several hours. This goes to prove an asscrtion which was made in the paper above referred to, viz, that on a road where a large nuniber of cars are operated, the fluctuations observed oll the separate cars, tend to equalize each other and the consequent variation of the total load from minute to minute is therefore only a sinall one. The total load will of course be greater or less during certain hours of the day when traffic is exceptionally heavy or light.

Curves of this kind are always instructice, and they should be taken at regular intervals in every electric plant, especially where losses may occur which are not easily detectable ; they show a full analysis of what is going on, where and how the the power generated at the central station is being expended.
Berlin, Nov. ב2nd, 1893 .

PEBSONAL.

Mr. H. P. Dwight, manager of the Great Westen Telegraph Company. is 0 a a visit to the North.West.
3: Mr. A. E. Edkins, Prov.-Depaty of the C. A. S. E., will sail from Ner York for England on the 6th inst, having obtaned sux weeks leave of absence for the perpose of spending the holidar seasoa with relaures in the old land. We wish him hon soyege.
Mr. J. B Griffth, manager of the Hamilton Street Ratluay, bas just returned from an extended visit to Calliforniza and reports himself greatly improred in health.
Mr. 1 H. Killey. thr well known eagineer, of Hamilton, Ont., has been appointed conxulting enginers at Loadon. Ont. 10 the Steam Boiler and Plate Glass Insurance Company of that city.
Mr. Arendt Angarom lately resigned his posituon of archutect and con.
$\operatorname{Esc} 3$

siroang engraec to the Clereland Saip Baiddrag Company. to accept tbe position of general mamager of the Berram Engipe Works Company. Toranta

An electinc radway beiween Weland and Foanhill. so be used for the carrige of freit and parcengers, is talked of

MONTREAL ELECTRIC CLUB.

Noi. 6 th. Besides uther business, the fullowing officers were elected to fill watancies for the balafie of the yeat . vice-prestdent, H. W. Woodimin treasurer, L. M. Pinolet ; committee of management, H. Ritchic, R. W. Herring and jas. Douglas. Mr. R W. Herring then read his paper on "Steamboat Light ing by Electricity:" Some interesting remarks by Mr. J. C Gough on the importance to the electrical engineer of a knowledge of stean enginecring, brought the meeting to a close votes of thanks being given to Mr. Herring for his paper and to Mr. Gough for his talk.

Nor. 2oth.- After the transaction of business, Mr. . C. Gough read a paper on "The Philosophy, Application, Construction and Improvement of the Steam Engine," which was listened to with much attention and led to considerible discussion. A vote of thanks was given Mr. Gough for his interesting paper.

Mr. W. 13. Shaw, President of the Montreal Electric Club, whose portrait is herewith presented, was born at Saltcoats, Ayrshire, Scotland. He came to Canada about fifteen years ayo, since which time he has resided in Montreal, having completed his school days at the High School in that city: After eaving school Mr. Shaw entered the employ of Mr. Minks as book-keeper, and while thus engaged, occupied his leisure hours with the study of electricity. His first experience at practical work was gained with Mr. H. T. Hibbard, after whose anfortunate failure he took a position as electrician with Mr. T. W. Ness, which he held for three years, resigning to go as assistan: to Mr. Start, general agent of the Royal Electric Co. On the first of May last, in company with his brother, Mr. John Shaw, and Mr. Walter F. Taylor, the Montreal Electric Company was organized, and he entered into business on his ou: account.

THE BELL TELEPHONE COM-

 PANY'S FACTORY, MONTREAL.A representative of the Electrical News was recently afford ed the opportunity of making an inspection of the large manufactory of the Bell Telephone Company on Aqueduct Street, Montreal, in which is manufactured most of the apparatus and supplies requised in the Company's business, and offered to purchasers through its Sales Deparment. The factory comprises two buildings, each 150×50 feet in size, and being connected onlv by an iron passagemay. The front building is three stories in hetght and the rear building twe stories. The buildings have a fromage of 1 jo feet on Aqueduct street. They are constracted of brick on a foundation of masonry, and are designed in such a way as to offer but little inflammable material as food forfire In addision evers precausion has been exercised for their protection should a fire occur. A fire pump, situated in the boiler room, is connected with a $=5,000$ gallon tank as well is with a hydrant on a pipe connected with the city mains, so that if by chance the pressure from the city mains should fail, the tank would afford the requisite pressure. The fire pump has a capacity of 500 gallons per minute, for which a pressure of $q 0$ pounds per square inch is maintained on the boilers at night.

The first floor of the front building is occupied by the offices of the Superntendent, Mir. C. W. Brown, clerks and drayithtsmen, machine shop and tool manufactory. The machine tools are of the lighter order, and are mostly employed on brass-work. Several of the machines here seen have no counterpart in Canada, as for example one which is fitted with 24 didils and can bores 24 holes at one operation.

On the next floor is the assembling room, where the parts composing the various kinds of apparatus are pat in their proper positions. Here is being put together the new switchboard for the Toronto Exchange which it is expected will be completed early in the new year. Any attempt at a description of this board is deferred until a later date, but it may be stated that without having examined the nature of its construction is would be difficult if not impossible to concerve of the infinitude of its parts and the immense amount of skila, care and labor involved in it. The manufacture of inus board has been proceeded with deliberately with the object of embodying in at the very latest improvements, and this determination has necessatated a number of changes since the undertaking began.

From the rire covering department is tumed out about 1000 lbs. of covered wire per month, most which of is consumed in the

w. E SHAN

President Montreal Electric Club.
the Company's business. This is easy to understand when it is remembered that every set of telephone mstruments contams half a mile of wire. Some of the wire seen on the covering machines measured only 5-1000ths of an inch in thickness. On this floor there is also the Inspection Deparment, whete every instument is tested before leaving the factors:

In the basement are the Storage and Shipping Departments, the manufictured articles being lowered from the various floors by a hoist. Here are quantities of materials of almost cvery description, for use in the manufactory and in the varions branches of the company's business throughout the country; for all of which this is the headquarters of supply. Scores of boxes of magneto beils, and miles of cable and wire are here stored; also julcanized fibre, the product of the Vulcanized Fibre Company's factory at Wilmington, Del., for insulation in dry places, and sheets of hard rubler to be similarly employed in damp positions. Enquiry as to the life of iron wire brought the reply that in cities where it is subjected to an atmosphere impregnated with gases of various kinds, its duration is only about three yeats, and in sea-side towns, such as Halfax, the infurence of the salt-air is such as to destroy iron wire in about six months. For this reason, it has been found more profitable in such a location to use phosphor bronze wire, the greater first cost being more than repaid by its enduring quality.

The rear building contains a department in which ate manu factured all the batteries used in the Bell instruments through out Canada. There is one thing connected with these batteries which it is a matter of regret to learn has not been procurable in Canada thus far, naniely, the porous carthenware cups, of which 10,000 per year are imported from the Northwestern States. The manufacture of these cups is being experimented upon, and it is hoped that shorly thei: successful production will be achieved. This building contains also a lumber store-room and dry kiln, and a wood-working shop where all the cabinet work connected with the instruments, switchboards, etc. is made, as well as the cable boxes and cross arms. Of the latter there will be turned out 50.00 this ycar. There is also a nickel. plating department, buffing room, brass foundry, and engine mom The latter contains a $1=5 \mathrm{~h} . \mathrm{p}$ Corlass engine, manufactured bv Laune Btos., operated by two 100 h. p. tubular boilers located in a detached building near by. The engineer in charge gives it the best of attention.

The factory throughout is sys tematically mranged with a view to economy and efficiency of operation. Cleanliness and order atre everjwhere apparent. The num ber of regular employees is about 200. The Company find that their manufacturing capacity must shonly be increased. and contem plate increasing the height of the: factory in order io provide the additional 100 m required.

Mr. Brown, who exercises such efficient oversight of this department of the business, has grown up from a boy with the Company's business, baving been em ployed in the factory in Boston, where the experimental work tits done on the first liell telephones.

The anoual report of ths Electric Laght Department of the City of New Weaminster. R. C. shows that at the beginning of the jear thete was a deficiz of 58.000 . but during the tasa there moniths. the departinent not oaly mane their charges. but earned at small margin of profi. The exten sion of the system, however, has necessiated conssderabic expenditure. and this with the defiet on hand at the commencement of the jear. Leaves the department at the close of the jear with an overdrawn accou:at of si=. 000 Additional expenditure will be necessary for the farther exiensoan of the works to meat the demands for incandecent light. For this porpose these focer plans are proposed:-1. To remore the present office. parchase as anditional cagine and anoiber 3.500 light dynamo and. pertaps. a half-arc machine at an eximated cost of 53.000 . $=$ To bur a portion of the tot on the north side, extead the presert bcildiag in that disection and increase the lighing caparity to 3.650 at 2 cost of from 515.00080520 .000 . 3- To purctare the lot oa the somh side and erect a boitting 33 feet made and n crease the capacity to 5.000 at a cost of from 50.00010525 .000 + To
 crease the capactif to $\mathbf{8 2 , 0 0 0} 21$ an esumated cost of $\$ 35.000$ to $\$ 30,000$. 11 proper additions are made to the plant it is esimated that the ancome can be increased by $\$ 1.000$ per moath. Mr. P. lbowict is the Citi 9 electrician.

FUЯHISHEL) ON THE FJMST OF EVKKY NONTH BY

CHAS. H. MORTIMER,

Officy Conffderation life Bullidnco, Corner Yoage and Kichmond Strrest.

TORONTIO,
Tēephone $236 \underset{\text { gre }}{ }$
OAINADA.

64 Teaple Dulginng.
Bell Tejephone $229 g$.

ABFRHTISEMRNTA.

Adverisias rates sent promptly oo application. Orders for adverising ahould

 or the adveriver, requess for change atould reach she afice at catly as the 3 rod day
of the month.

sDRSCRIPTIONS

The Elxctricat Nens will be mailed to sutsacribers in the Domision or the
 of sultacription may be resainted ty carrencr, in regissered letter, or by postal order pajable to C H alortimer. Please do no kend cheques oo bocal banks unless $=5$ cents is added for cons of discount Monry sent in unrecisered leszers must be at
 Unica. Si. So per annum. Sutacriptioas are payable in advance. The parert will be where no such undersispding exivts, will be cootigoed until inctructions to dish consionve are received and all atreiraces priid. Subucribers may t-re the maitips, addres changed as ofien as decired. Whem

The Publisher ahould te notifed of the failare of subscribers to receive their papers promply and segulailt.

EDITOR'S ANSORNCFEHENTK
Corresponderce is iavited upon all sopics coconts leginimately within the scops of this iocmpal.
tile " CaNAhian electrical nkws" has heqn aprointed the official pafer of the canaiman electuichl association.

CANADIAN ELECTRICAL ASSOCIATION. OFFICERS:
 Huesionst:

J J. Whight. Manager Toronto Elotne l-agh Company. 257 Vice-Paesidest:
K. 1. DU'NSTAN. Loml Manager Bell Teifione Company. Torona 2nu Vice-Pxzinest:
JOHN CARROLI. See-Treas, Eagerce I'tillips Elearica! Works, Montreal. Secretart-Treasurer :
C. If MORTIMER, Publishe Electricha Nent, Taronia Exechtise Connitter.
D. THOMSON. Hamilton. Ont

1) A. StaRR Royal Electric Company, Montreal.

3i. O. FISK. Electrician Elecric Ligh Compray, Petethori, Ont. GEO. BLaCK, G. N. W. Telegraph Ca. Fiamiltor
A. A. SMITH. Inspertor Canadan Beard Fire Linderwtites. Toronta
L. R. McFaRLaNE. Bell Telepbone Company, Montral.

T R KOSEIRLGH, Ifater in Elestnaty. School of Pracical Science. Toronta
E C. ukEITHALTRT, Berlin. Onl.
JOHN VIIIE, Manager Guelph Gas and Electic Light Company. Guelph, On:
MiOS AMEARN, of Abman \mathbb{A} Soper. Otrawa, OnL

MONTREAL ELECTRIC CLUH.

orncrss

Prendeat. W. R Susw. ofricris
Fice-Presidea. H: Woodmas,
Secretary. Jands hurNett.

.ontreal Eleatc Ca Montral Stretry Raimar Cr. 9 Sheter Sireet 8jos Dorchester Street.

CANADIAN ASSOCIATION OF STATIONARY EVGINEERS President. G. zient. execzetate monk
 Scercelaty. J. Yosk.
 Treascosctior. T. Kinle.

Boind of Trade Ditio. OnL
rss.
Mantral. Qoe
Toronio. OnL

Doce Keemer. F. Ruszits.

Toronio. Ont
Dreder $0 \pi 2$ Dreder. Ont Ortaxa, Ons.

Tozonto bravas Na 8 .-Meets =ad and ith Freday cach manth to
 Secreary. ig llayter strice

 Secrivery.
Brantroin hranci Ma i-Mcets and and ith Friday each monith

Lonidon Brancli No. \&-Meets in Sherwood Hall first Thursday in ench month. F. Mitchell. President: Geo. Taylor, Secretary Treasurer. 356 liceadrly Streel.
Montreal Dranch No. 1 - Meets ist and zrd Thursday each month. in Enpineers Hiall, Craik street. Prolaent. Jos Robinson: first vicein Engineers liall, Crilig street. Proiaent. Jos Robinson: first vicepresident. Ir. Nultall, second vice-presudent hos Badger
St. I.aurent Hkancit No. - Merts ist and 3rd Tuesdiy each month.
 lient. Alfred Latout, Secretary, zuo Dehsle street, St. Cunegonde.
Mkathon Mian. Bxancit No. B. Meets ast and zrd Friday each month. in City llall. A. R. Criwford, President : Arthur Fleming, Secrelary.

Guelsil likancil No. G-Mets 15 an and 3rd Wednerday each month at 7.30. p.m. C. Jorden, President. H. T. Flewelling. Secretary. Box No 8.

Otrawa brancl: No. 7. - Merts and and qth Tuesday, each month. corner Bonk and Sparks sureets: J. II. Ihompson. Iresident: W'm. O'Irien. Sectetary.
Dresden Bkancil No. 8. - Mets every and week in each month. Thos. 3serrill. Sectetary.
barlin branci No. q-Meets and and qu Saturday each month at 8 p. m. W. J. Rhodes. President; G. Stenmetz, Secretary, Berlin Unt.
Kingston Branch No. sa-Meets th.ce each month ovet Na. i Fire Station. J. Derlan, I'resident: A. Strong, Secretary.

ONTARIO ASSOCIATION OF STATIONARY ENGINLERS

BOARD OF EXASINERS

President. A. E. Epoins. - 139 Rorden st. . Torunto.

 Registrar. A A Wirkisis.
Solichor. J. A. Mcandrens.
Solictor. J. A. McAndrews. . Torato.
Tozonto-A. E Edkinc. A. M. Wickens. E. J. Phulhps, F. Donaldsen. Haniliton-P. Stoth, R. Mackie, K. Dickioson.
Petenhuro- - Polter, care General Electric Co.
BRANTYORD-A. Amos, care patictson ssins.
Kiscsro:-J. Devlin (Chief Engineer Penctentiary). J. Campbell.
Ioston-F. Aticeell.
Information regarding examunations will be furnoshed on application to any tnernber of the Board.

Wf, wish to state to readers of the News that our columns are open for questions of general interest on Electrical and Engineering topics, and would request all our readers to make use of them for this object, when we will do our best to furnish sunable replies.
TuE life of the English patent on the Edison incandescent lamp expired on the roth of November. The Canadian patent will expire on the $19 t h$ of November next year, at which time is is believed the term of the American patent will likewise end, but on this point there seems to exist some uncertainty.

Water is in the wrong place when it gets inside the steam cylinder. If boiler primes, water will be sure to come along with the steam, but it may be separated by having steam pipe carried past the cylinder, and a branch as right angles to convey the sticam. The stcam will ium the corner, and the water pass straight on.

Somp. Toronto friends we hear are thinking of getting together for social and educational purposes an Electric Club, similar to that in vogue in Montreal. We unders:and that the Montreal Club have at one of their late meetings adopted 2 new set of by-laws and constitution, which we presume will be forwarded 10 any inquirer by any of the Club's officers.

Withis the past formight a successful test has been made on the Erie canal of the adaptability of the trolley system for the propulsion of canal boats. It is expected that the substitution of electricity for animal power for this purpose will be the means of reducirg by one-half the cost of propulsion. Another effect will be to restore to a considerable extent competition between water and rail freight iransportation.

A Strange fact has been brounht to light by Prof. Cahart while experimenting in are lighting, viz, that with constam watts in an are we may obrain very different candle powers by varying the current and pressure inversely, still keeping the watts, however, constant. With 450 ratts and using i curreat of 8.4 amperes he procures $900 \mathrm{c} . \mathrm{p}$. On raising the current to 10 amperes at 45 volts he only gets 450 C p. A 500 uatt arc, therefore, gwes mure light (i. c, $950 \mathrm{C}, \mathrm{p}$. with 9 amperes at 55 voltsh, while with 45 volts 11 amperes only 500 c . . is produced. This is an item which has veen discussed by vaious Canadian electrical men before this, and Prof. Cahar's researches will in all probability settle some of the disputed points.

Some time ago the utilization of the power of the Lachine Rapids at Montreal was spoken of. L'pon finding the numerous difficulties which would be involsed in such an undertaking, not to speak of the fact that the water runs up hill there during a flood at Montreal, the scheme was dropped. Appurently also is the project of the Rojal Electric Co., of Montreal, to Uning power from the Chambly Rapids on the Richelieu River. The Hurontario Canal which is to supply power for electrical purposes, will probably end up in like manner. This in some measure bears out the statements made by many intelligent electrical engineers that a geod economical and well made steam engine, where coal is at a fair price, is more on be depended on and in the long run is probably as cheap as water power.

Sincr: the regrettable accident to the Rev. Mir. Botterell in Montreal, the Montreal Street Railway Co. have been running their cars at a decidedly slower rate in response to the clamor of the general public. The accident was certainly one to be regretted, but there is no reason for the clamor to have the car service run at such a speed that it is impossible for business men in Cote St. Antoine having: but one hour for dinner to go home there and get it. We venture to state that the old horse car system produced more accidents to the week than the electric system has done per month since its inauguration. When the horse car system was in use, the cry was "rapid transit"; when rapid transit was given, the cry was " 200 quick," but it is ever thus.

A pump is satd to lift water. Thas phrase often leads to a misconception of the true working of a pump. There are pumps which lift water, but they are not usually found in connection with steam boilers. The ordinary plunger pump "lifts water" by producing a vacuum in the chamber of the pump, and the pressure of the a:mosphere then forces water into this space. The man who gets a clear idea of this operation, will know that if the pump is not getting water, he must look out for one or other of four defects: 1st. He will see that the packing of the pump sland is right, so that the plunger may form the vacuum. 2nd. He will see that the valves are in place and free to open and shut. 3 rd. He will look out for any air leaks or obstructions in suction pipe. 4 th. He will make sure that there is water to lift within lifting distance from the pump.

It seems strange to us that wth the many really good constant potential are lamps on the market, even tor $5=$ volt alternating current, that there are not more of them ised in place of .incandescent lights. Taking a current of 10 amperes we only get (on 52 volt altemating circurt) 160 c . p. in all. For the same current expended through an are and its accompanying rheostat we get about $1=00 \mathrm{c}$ p. This at 3 cent . rate would cost us $7: 2$ cents per hour to burn. On the other hand to obtain the same candle power from incandescent lights we should require to burn about eighty 16 c . p. lights, which would cost 60 cen!s per hour. Stations which are heavily loaded and have no soom at present for extension, would do well to advocate these lamps, as they would be certain to give satisfaction in many places.

Is the Electrical. News for November there appeared a fetter from Mir. D. W. Robb, of Amherst. Nova Scolia, on the relative merits of high versus slow speed engines for clectrical purposes. The writer argued the case on behalf of the high speed engine with ability and fairness. A rejoinder to Mr. Robi appears in tine present issuc from the pen of Mr. W. T. Brown of Galt. The subject is an interesting one, and mixht profitably be further discuised, and for this object our columns are at the disposal of readers who may desire to give their experience or express their views. Another subject which is engaging considerable attention at present is the relative advantages of horizontal and vertical compound engines. The Toronto Electric Light Company and the Royal Electric Company have recentiy installed large new engines of the vertical type, and express the opinion that they are the engine of the future, while on the other hand in the new power station of the Modireal Sirect Railuay Company, hotizontal engines are to be cmployed, and a well-known engincering cxpert of that city in conversation with the writer gave at as his opinion that the weight of advantage was on the side of the horizontal engine. What do our readers think about it?

At the annmal meeting of the Montreal Street Ralway Company, it was announced that the franchises for the cunstruction of electric ralways in the suburbs of St. Cuneronde and St. Henri, had been purchased by the Boand of Drectors for the sum of \$50,000. This is an illustration of the means by whith a number of speculators in Muntreal will achere weath without the expenditure of effurt whith is usually necess.ars for that purpose. For several years past these speculators have been at work with the object of securing francuises from suburban muncipalities for the constructoon of malways, the supply of water, power, elc. There never was any intention on the part of these men to construct the works, but they fotesatw that in a very short time these municipalities would be annexed to the roty and then they would be in it position to sell thear franchises to the city or city corpmrations, at handsome prices. The purchase by the Montreal Street Railway Company is the first of the hareest which these speculators will sooner or later teap. The statement was made by one of the directors of the Compang, that had the matter been brought before the legislature, these franchises would have been annulled. There is a lesson here for the City of Tornnto in dealing with the the Georgian Bay Canal scheme. It has been clearly shown that the object of the promotors ot this scheme is to secure this valuable franchise and sell it to the highest bidder. We have the word of certan parties that they would be willing, in the event of thas franchuse being secured, to pay $\$ 100,000$ in cash for $1 t$.

The annual mecting of the Montreal Street Kailway Company was held at the Company's uffices in Montreal, on the Sth of November. The president, in his adiliess to the stockholders, gave some information regarding the operation of the road, which will doubtless be of interest to railway managers. The reccipis of last year show an increase of 30.02 per cent over 1 S92, and 52.63 per cent over 1 S91. The number of passengers carried in 1893 was $17,177,95=$, as compared with $11,631,356$, in the previous year, and $9,837,257$ in 1S91. After paying into the city treasury $\&$ per cent of the net earnings, amounting to $5=8,365.96$, the company netted a profit of 5116 .032.86 , as against $\$ 93.9 \mathrm{So} .21$, in 1 S92. The expenses amounted to $1 ;$ cents per car mile. and the management was subjected to critıcism on this point. It was, however, poined out by the president that the high rate of expense this year was due to the disadvantageous conditions under which the system was operated, owing to the changing of the system and improvement of the roadbed and pavements, necessitating the use of both torses and electricity, as well as to the fact that the company, pending the completion of their new purer station, were compelled to rent the necessary power at a price considerably higher than it is expected it can be produced by their own plant now being installed. It is estimated that when the conversion of tre rand is completed and the power station in operation, the expense per mile will be reduced from 17 io 12 cemis. Fauk was found by some of the shareholders with the action of the managent in giving to Messrs. Ross and Mackencic. Wuhour competition, the contract for the construction work at $\$ 30,000$ per mile It was however, pointed out by the president that the work was given in this manner owing to the fact that the company were oblized to have a certain number of miles of road built within 60 days. It was aiso pomied out that the pree at which the work was being done compares favorably with the cost of similar work in other ciltes, Cleveland and Toronto, our example, where the cost wiss $\$ 35,000$ per mile. Mr. Ross, one of the contractors, stated that he had offered to relinquish his contract at any time that the company might desire. These explanations appeared to be satisfactorv io those who had nbjected to this feature of the company's management, and the old board of directors was re-elected. The company was also authorazed to make application to the Legislature for amendments to its charter and for power to increase the capital stock io \$5,000,000. Mr. H. A. Everett, managing director of the road, has tendered his resignation, on the ground that his connection with the strect ralways of Cieveland and Toronto demands all his atecnion. Ms. (. C. Cunnongham has been appointed as his successor.

The proposition made to the citr Couscil of Bellecille, by the Canadian
General Eletric Company. for the Constroction of ar. electic st:cet railazy Gencral Electric Company. for the constroction ct ar. electric stiver railway in that city, is merting xith faroabile consikeration.

NOTES FOR ENGINEERS.

What makes an engine pound? If the question were put the other way-what will prevent an engine from pounding? it would to some be more reasonable. Pounding however, asserts itself, and speaks out so that a man who is no engineer will know something is wrong, and will be realy to ask what makes that pounding?

Sometimes the rause is in the steam cylinder. Anything loose abour the piston or ats connection to the piston rod will cuse a knock. A latte wear of the eylinder when the counter bore has not been made deep enough, and a little ndge forms, upon which the piston strikes ats at comes to the end of the eyfinder. Sometmes the counter bore is too deep, and the piston rings spring ou: as they reach it, where the piston is made with narrow rimps

Any of these causes are comparatively easy of discovery by an experienced man. The pounding may all be in the crank shatt beanng. If at is not exactly true and level or square to engine, there will be pounding as it revolves. The crank pin will certainlv be affected in that case, and will give trouble from heating or cutting The crosshead connection and slides are ometimes the cause because of not being quite true and fatr with the cylinder aud motion of the piston. In other cases every bearing may be perfectly true and faur, and yet engine will thump and pound as if trying to break itself up.

If the engineer finds all as true and farr as should be, and yet the pounding continues, he should get engine indicated and have diagrams studied hy someone accustomed to the problem of valve scting.

It is necessay for successful running of an engine, that all the bearing suifaces be suffictently slack to allow oil to flow in between them. When piston is moting fotward, the slack is on the opposite side of the beann: fiom what at is when the dead cenirc is passed and piston is moving in the opposite ditection. If the weygta of the moving parts and the counter balances be adjusted to the speed if engine and pressure of steam, there should be no pounding, but in many cases it is necessary to set valie so as to cushion a latile either wath exhaust steam or with live steam, so as to take up the slack before the dead centre is passed. Each engine has to be studied and valve set so as to give the required amount and no more.

QUESTIONS AND ANSWERS.

M. 1. 1). Toronto, asks: Can you give me the name of a Canadian firm who manufacture glass insulators?

Axs. We are unable to give the desited information, and would feel obliged if some of our reaters would do so.
"w. N.". Hamilton, Ont., writes:
(1) Will you explain in jour next number, the way to put a dynamo ripht when it has changed its current, that is when the curnent is reversed? also (2) she best and nearest place to net books treating on electricity and electrical machinery?
Ans. - If the dynamo is an are machine, and it is necessary to change the current in a hurry owing to the lower carbons in lamps being in danger of burning out ton soon, the trouble can be temporanly overconse by reversing the plugs on the switchboard, i. e. if it is a T. \& H. plant; tum each plug upside down on switchboard, so that the current enters the line from machine where is ordinarily returns. To make the poianity of machine. right, take off brushes from commutatot, or you will convert dynamo anto a motor, and take a positive and nepative wire from another dynamo in operation, and attach the live positive wire to the negative binding post of machine to be changed, and attach the negative live wise to the positive binding post, and allow curnent to pass through a few reoments. Themachine will then be found to be right polarity. (2) You may obiain through the Electrical. Nf:Ws any clectrical books, by stating what books you require.
"Induction" asks: 1. Would you kindly inform me through your valuable paper wherc, and at what price I can obizin a book that will give me practical information on transformer construction and winding? 2. What metal would make a good core for a iransformer, and where can it be obtamed? 3- Is there any duty on bumed out incandescent lamps, coing into the United States + Have you ever noticed that the customs charges on ist and and quality carbons, are the sume, viz $\$ 2-50$ per m.? This is not as it should be, as it means jo per cent. on the znd.

ANS-1. "Transformers" by Caryl D. Haskins, published by the liubier Publeshing Co. of Lynn, Mass, Sold by -lectrical supply houses in Montreal at Si.ij. 2 The metal must be tron. If a small transformer, annealed iron urte will do, flasge enough to aartant it, discs cut or punched out of soft sheet ron with piece of tissue paper pasted on one side. Any hardwaremerchant can procure you the above If the ron or sen ware be too hard it can be softened by heating to a bright red and laying is cm bedded in ashes afternards to cool slonly. 3. There is no duty on goods sent bach to the Cinited Slates marked "For Repars". The case, however, must be examined by the appraise: at the Examanag Warehouse before export, so that it can be identified when retumed. \& Customs Tarifi, Depriment No. 54jist No. 307 C, reads. "Electic are light carbons or carbon points not ex-
ceeding 120 long, $\$ 2,50$ per 1,000, and in proportion for greater or less length." We should judge by this that the duty is the same for both qualities.

Jos. Ogle, Brantford, writes: Enclosed you will find a rough sketch of a heating system of our factory, supposed to be heated by exhaust steam from a Wheelock engine $16^{\circ} \times 38^{\circ}$, developing 8i h.p., cutting off at $\neq 4$ stroke, having a $6^{\prime \prime}$ exhaust pipe. After exbausting through heater there is at $4^{\prime \prime}$ mann ruming through engine room wall, wheh acts as a header, from which five is * pipes are run all itroind the factory, returnung to starting place, with 4 feet of a fall, and having a 2^{-1} drip pipe at end. The sjstem is overhead and 12 feet from the floor. I find we cannot do justice to the factory in heating it without having too much bask pressure on engine (which I consider very expensive heating) also an abundance of ste:im escaping through back pressure valve to the open air. Would you recommend any change?

Ans. - In first place his 6^{4} exhaust frum engine has an area of $28: 27 \mathrm{sq}$. in. and is reduced to 4^{*} beyond heater which has an area of less than one half the 6 in . pipe; a reduction then takes place again to six ${ }^{4}$ " radiating plpes wath a combinedarea of 70362 s.q.in, and to make matters worsea ${ }^{\prime \prime}$ drip is placed atend of pipes. The back pressure on engine is due to youi rot having area sufficient in your heating pipes. Then again your exhatust steam has to travel about 440 feet after it leaves the exhaust main, and supposing it has a temperature of 212° when leaving the engine (it should not be higher) if is very fikely that it is condensed about the time it gets half way round. To overcome the diff. culty, we would suggest that you tut the pipes running round factory in about the center and put in two headers each laving a $2^{\text {© }}$ retum drip, which you can run to your tank or whereever you like. Theis run a 4^{4} pipe from above your present 4^{4} man and attach it to what is now the return end of your coll, thus making two separate coils. Of course it will be necessary to five the pipes the necessary fall to the return end. If an exhaust healing system is properly constructed and has sufficient area there should be no back pressuic on engine at all ; in fact there should be partial a vacuum.

MOONLIGET SCHEDULE FOR DECEMBER.

Day of . lonth.	Light.	Extinguish.	No. of Hours.
	H.M.	H. 31.	H.M.
	P. M. 50.0	ภ..4. 2.30	9.30
	1) 5.00	" 3-30	10.30
3.	115.00	11 4.50	11.30
4......	" 5.00	" 5.j0	12.50
5......	" 5.00	" 6.10	13.10
	" 5.00	" 6.10	13.10
	115.00	" 6.10	13.10
8	" 5.00	" 6.10	13.10
9.	115.00	" 6.10	13.10
10.	" 5.20	" 6.10	12.50
11.	11600	" 6.20	12.00
12.	117.20	" 6.30	11.00
13.	" 8.50	" 6220	9.50
14....	" 9.30	" 6.20	8.50
55......	110.40	" 6.こ0	7.40
16......	111.00	116.20	7.20
17.	1111.40		
18.		116	f6.40
19.	A.31. 12.50	" 6: $=0$	5.30
$=0$	" 2.10	$\cdots 6.20$	4.10
21.	$\because 3.20$	$\because 6.20$	3.00
22......	No light.	So light.
23......	No light.	No light.	-
24......	No light.	No light.	.
25	P. N. 5.10	P. M. 8.50	$3-40$
=6.	115.10	" 1000	450
27.	" 5.10	.11.10	6.00
2 S	5.10	A. 11. 1220	7.10
29......	115.10	11.20	8.10
30.	" 5.10	$\because 20$	9.10
31	- 5.10	11 .320	10.10
		Total,	247.50
	-	Total,	155.50

The Canadian General Electic Company pat in sucoesful operation a few days ago itrer new inenadescent lifht sysiem at London. Oni
The Canarian Locomotive and Ergme Co., of Kiarson hare recertly manufactured for the School of Practieal Scrence. Townto, a solud fy wheri t felt in diameter asd weikhing 2650 lbs This whoel bas been placed on t dynamo coonterbafi which males $\$ 50$ retrolurions per miacte. Thus, a dynamo coonterbars which mates 950 revolutions per miante Thas, the wheel nas in penphery relocity of 5.900 rwolutions Owing io ithe urteguLar wuktark or the gas engine osed to operate the taboxatory onactiners. The 3peed ar the comitethantito whach thas wheed has been attacted wict forthe eleatreal recording inasrements by the students smpossable By the use

 est doctaxation in specd an
sudrienly inan formerly.

STEAMBOAT LIGHTING BY ELECTRICITY.

By R. W. Herrinc.

The lighting of steamboats by ciectricty is now a very comaion and ordinary thing, but the time wae, and not very long since, when the first steamship fitted with an electric lipht glant was a great marvel. This was about thirteen years ago, when the steamship Columbia, of the OreRon Railway \& Navigation Co., was so liphted. It appears that in 1879 the president of the comproy. Henry Wellard, conceived the ldea of lighting every rooin on bourd the steaner Columbia by electricity. By his orders and under suggestions from Mir Edison himself, Mir. J. C. Henderson, then advising engineer of the Oregon Company, wired the new Steamship, using No. it for mains and No. 32 wire for branches, the wire used being Underwitters double cotton covered, garaffined und painted all over.
The plant consisted of four dynamos, one of which was run as an exciter for the others, All of these machumes were diven from a colntershaft at a very high angle in order to economise space.
The tirst lamps used were of the poper carbon variety, and were found to ive very irregular ta their duration of life and so liable to breakage by heavy shocks that is was found best in suspend them directly from the wires above and do away with sockets entirely. The lamps being surrounded by a ground glass globe the attachment was hidden entirely, the lights being suspended from the ceilugg. Later on these lamps were replaced by of the experiences on baind the Columbia that led to the introduction of of the experne
safety valies.
This plant is described in one of the old Edison bulletins as be.ng the first plant ever put in operation in the hands of strangers.
The only plant that could compete in the att was that buit for the unfor. The only plant that could compete in the alt was that built for the untor-
tunate exploring steamer Jennette, now lyag at the bottom of the Arctic tunate
Ocenn.
Since the plant was thus put on the S. S. Columbia, hundreds, and 1 might siy thousands, of boats have been equipped with the eleciric ligbt. The great advantages to be gained by the electric light are. first, that of economy, inaspuch as it does not require the services of an altendant to trim and light the lamps. There is also much less expense for breakage: besides it is much cheaper than oil. I might here say that the quantity of oil used for lighting purposes only on some of the largest steamers. will average nearly two barrels per week. The next very important peint is that of safety from fire, as no matches are required, and all danger of explosion from conl oil lamps is overcone, and there is no necessity to keep the doors and windows closed is keep the lamps from smoking the chimneys or from being blown out. The electic light is also perfectly clean and does not give of any unpleasant odor as is the case wi:h lamps or candies. This alone is a great advantage, especially in rooms where passengers are sea sick. All this is true, but the incandescent light bas so thoroughly gaired the day that argument has no longer to be made on ibese lines; in fact there is no need to make any argument at all for a frst class passenger steamer not equipped with clectricity is something to be considered far behind the times.
Now, as 1 nm directly interested in this particular branch of eleciric lighting through my connection with the Richelien and Ontario Navigation Company. I will endeavur to give you a brief description of a few of the different plants under my charge.
First. I will mention that of the steamer Carolina, which was purchased by the company and brought on herefrom Baltimore last spring. This plant was installed. I should say, aboutt five or six years ago. It consists of a 25° light Edison dymamo of the type usually built at that time. beited directly to a $70 h$. p. Armiogton \& Sims High Speed Engine The mains which consisted of a pair vio. a Okonite wires runaing direct from the machiae to the ceiling and ithere soldered into two pair of No. 4 wire, one pair running forward and one aft shrough a bank of bsanch cut-outs: from shese cut-outs branches wcre rup in moulding to all the different parts of the boat, the dynamo room being situated almost midship, it was a vers good poid: of distribution.
There was no switchboard or instrunments of any description excepting the Rheost2t. The main siloon is lighted by oaceiclegant sinteen light electrolier uhich is nicely fitted with six ol lamps for use in case of emerrency: there are also one four a done six lipht fixture besides numerous side brackets are hiso one tour a d one six light nxture besides numerous side braciets
which give a very fine efiect. The saloon forward is also very nicely lighted after the same style. The dining saloon is lighted by a very neat two light combination fixture over cach table. The ladics cabin is also weil lighted. There is also a light in each sateroom. In all passages. Washrooms, lavatories, ctic. The wires manning to these singie lights are soldered on to the mains in the moulding and coming out one side passing througd a single pole fuse block and then down to a ramp switch and up to the light wheb The wire used for these small branches was No. 18 fiabershaw. and was stapled in groores cat in the woodrork. which when painted made a very stapled in grooves cat in the woodwcrk. Which when painled madly in accordance with our wising rules of to-day. Each socket was attached to the ceiting with a small spiral brass spring. which socket was attacher to the ceiling with a small spiral bratieved the lamp from the vibration of the bont. They also used grealy relieved the lamp from the vibration of the boat. They also used
electricity for the mast head and side lights. These uere fed by a able electricity for the mast thead and side lights. These uere fed ay a cabic passing through a rubber tubs, the witc heing attachsd to a pig which the different lanterns and wirat for two lamps. one lamp being wired in the different lanterns and wirad for two lamps. one lamp reing wired in
series with a relay which. when the current was on opened the circuit con. series with 2 relay which. Whea the current was on opened the circuit con.
necting lamp $=$, $\%$ ihat in case No. I should bum out she circuit would be necting lamp a, w ihat in case No. I should burn out the circuit woald be
brolien and Ne. a be immediately closed. thus doubly insuring 2 constant broken and Ne. 2 be immediately ctosed, thus dombly insunit
light: these lighis are governed by a switch in the pilot house. light: these lighis are govemed by a switch in the pilot house I will also give you a lew pariculars of the plant on board the steames
Quebec, which is one of the largest and best equippod passenger boats in Quebec, which is one of the lartest and best equippod passenger boans in
Canada, and is fit:ed especially for night sevice. The electric light plant Canada, 2nd is fited especially for nught sevice The ciectic tist the koyal
 It is selled direct io a Robb-Armstrong high speed engine tarning 235 revo-
Ivtions per minvte. The sieam is supplied by a boiler put in espeetally for lutions jer minvte. The steam is supplied by a boiter put in espectally for this parpose.
The mains, which are of Na o wire, nun direct from the inactine to the ceiling and shen to the bosbass on the switchboard. Which is made of black walnut and fitted with four single pole knife switches, mounted on siate bases: it is also arranged with a voltmeter and theostal. The branches are taker of the busbars, which extend arross the lower portion of the switch baxrd, the branches passing upuards into a bank of cut-outs imnediately abore the switchboard. one side of each set passing ibrough a swited : from the cut-oats the branches rus in mosiding to the different parts of the boat The main saloon which is aboet two hundred and fify fect long is lighted by four nine light and swo fous linht eiectroliers.. besides a number of side lights on brackets. there is also a lisht in cach stateroom, of wheh there are about one hundred and fifts, The washrooms, lavalorics, passages and promenade check ate also well fighted. The diniag room is nicely arranged pith lights directly ore each table. and is also equipped with remolring clectric fans, which have Ω sroy pleasant effect. Ihe main deck, engine

[^0]roum. mess.rooms and forecostle are lighted by lamps pinced in recepiacles atached sirectly to the crilling The circulis and swithes are arranged so that only part of the lights on the main deck and saloon can be tumed of or on as desired. In all there are about 300 lights on this bait. 1 might siny here in regard to the engine and dynamo which were put on board last spring, that we have not had the least trouble with them in any way, and that they have given perfect satisfaction.
1 will also give youn few particulars of our new steamer Columbian which was built two yeary ago especially for this compiny by the Deleware Kiver was Syip Building Company, of Chester. I'a.
She is fitred up with all modern improverments. She is a iwin serew steamer, being diven by two triple expansion engines of the latest type working with a steala pressure of 120 lbs to the square inch.
The electrse light plant conbists of $a=150$ light Edison dynamo of the latest type, belted directly to a Case automatic hinh speed engthe running at 620 rev. per minute, with 220 liss stenm pressure. Itie switch-board Which is made of black walnul, is fitted with two 50 amp . D. P. switches and four 25 amp. O. P. switches, also a Weston volt meter and ammeter, a ground detector and two so amp. branch cut-outs and sheostat. The mains run from ibe machune into the two co nimp. cut-outs, one leg passing through the ammeter. From one of these cut-outs two bminches are inken to supply the main deck, one running forward and one aft. From the other cut-out a set of mains is run up to the saloon deck midshipt into a tank of four cut-outs, from which run four branches. two for each side of the saloon, one running forward and the other alh. Just velow each cut-out there is a suritch on each branch. so that the light can be turned on or off in any part ol dic -hicun as required. The cut-outs nre nicely arranged in a nea
key.
The wire used in the installation of this plant is the Grimshaw white core. and is run in a very neat moulding fastened with brass scruws and very neatly put up. The saloon is nicely lighted with center eiectroliers and side brackets. There is a light in each stateroom. each light being controlled by a switch and protected by a sniall porcelain fuse block set neally in the moulding with a mica cover and containing i amp. fuse link. The
fixtures are of very tasteful design and are made of brass with black trim. mings.
We inse several other steamers lighted by electricity, but the few details 1 bave given you 1 think will be sufticient to give you some iden of the construction and working of an electric light plant on baird ship. 1 might bere say that you will scarcely ever find two steımers equipped just alike as there are a great many things to be taken into consideration before in stalling an eler ric light plant on bourd a steam boas, such as sumable location for pient, steam pressure of main boilers; if it is necessary to put in an extra boler: :o find a suitable place to pus t. \&c. Then in regard to wirng ard switches, some boats running only at night require to be lighted all throngh from dark till daylight; in others running day and nignt thete are parts which require to be ligeted in the daytime as well as the night therefore the wiring and switches must be put in, 10 fill, as far as possible, these requirements. There is no doubt that in the future all these and many other necegsary items will be taken into constieration when new boats are bailt, and thus do akny with the many disadrantages we havr is con tend with in wiring and fitting up boats after they have been completed. Some steamers also carry search lights, but so far these are mostly used on war vessels for signalling purposes and for locating objects at a distance. On river steamers they are not considered to be of any great advantage and are looked upon more as an expensive luxury than a necessity as it is found that in order to operate a search light properly it is necessary to have a practical man for that purpose. Which is quite an extra eיpense, as the
plant is nearly aluays looked after hy one of the engineers and does not replant is nearly alway
quire an extra man. mostly vessels made almost entirely of iron or steel. such as war vessels. We have what is called the two wire system and the three wite system, but the system I allude to should. I think. be called the one wire system, in asmuch as only one wire is used. the iron hull of the vessel being used for the negaile or return, one pole of the dynamo being grounded on the ironwork or the ressel and one wire run to each light. the opposite side this style of wiring I would not secommend it, and you must be your own judges of the practimitility of the scheme.
1 might say in conclusion concerning the wonderivl advances and improvements which has taken place within the last few years in all branches of the electncal buisiness, that I believe the time is not far distant when the business will be divided up so that a man in orde to be successful will have to give all bis time and atemtion to one paricuiar branch. and will not be expected as he now is, if he calls himselt an eiectrican, to iackle anything and I believe ihat steainboat lighting will be one of the important branches of the eleetrical business.

SPARKS.

The town of Knowiton, Que.. is to be lighted by electricity.
The contract for the electrical machinery required by the Catarnct Construction Company, at Niagara, hus lately been awarded to the Westing: house Company, who will employ the Tesla muluphase system. There wil be employed 3 gererators of 5.000 h. p. each. with corresponding motors
and accessories. These machines will genetate 2,000 to 2,400 volts. The E. Ai. F. will be increased or lowered by imasformers.

The Rujal Electric Company of Montreal. hare just completed and successfoll, iesied a 5,000 light machine, for the Standard Electric Company of Ottawa. This is said to be the hargest machine set manufactured in Canada. The company have commenced work an the foundation of a new
boilet and cngine horse adjoining their present station. The sipe of the boikt and engine boouse adjoining theit present station. The sixe of the
boiler house will be 6 feet squate, and of the engine house. 53 by 96 fect.

The new power bouse of the Otiawa Electric Street Railway is being roofed in. There have been placed in position by Messrs. Wm. Kennedy \& Suns, Owen Sound, iro water theels, each ito inches in diameter. and capabie of generatugg $300 \mathrm{~h} . \boldsymbol{p}$ These whacls will be used 10 operale iwo s00 ha dyammos. Iwo additional wheels will be installed at a later cate Froin 900 to 2.000 h . p. will be employed in the operation of the street railwas sysiem during the winter.

At St. Anne da Sauls, a few days ago, a boilet expioded in a shingle mill, causing the death of three men and injurna several others, beades causing serious damage 80 property. This boilct had previotsly been causing senous damage ao properiy. This boiler had previousty been hambeen in the estabishmeat of a second-iand machinery dealer, and sold and poit into use, and after haring been in use only five days, it ex. sold and potinto use, and after haring been in use only five days, it ex-
ploded writh the result stated. If machineny dealers will sell boicts of ploded with the result stated. If machidery dealers will sell boilets of
such character, it is time that ibe Government should itsist upon proper sach character, is is ime the

Note-Secretarioe of the various Associations ate requested to forward us mattes for publication fu this Department not tater than the sectis of each month.

ANNUAL DINNER OF TORONTO NO. I

The seventh annual dinner of Toronto No. 1 took place at the Avondale Hotel, Totonto, on the evening of Nov. 23rd. The attendance was cousiderably larger than on any previous occasion. Unfortunately the accommodation prorided was not adequate, so that it was found impossible to seat at once all the guests. This contingency will no doubt be provided for in the fut ure.

Amond those present were noticed the following :
Toronto-Prof. Galbraith, Principal School of Practical Science; Mr. Cassidy, Editor Canadion Mfanufacturer; Ino. Galt, C. E., M1.E. ; J. Inglis ; A. E. Edkins, Prov. Dep. for Ontario; A. M. Wickens, Dist. Dep ; Wm. Sutton, Vice-Pres. Executive; W. G. Blackgrove Treas. Executive ; W. Philip, Pres. Toronto No. 1; W. Butler, Vire-Pres. Toronto No. 1; Ed. Philip, Gco. Gilchrist, John Fox, H. E. Terry, Samucl Thompson, Ceo. Fowler, Geo. Mooring, Fin. Sec'y Toronto No. 1 ; C. M?osley; W. L. Oathwaites; J. Barber ; Wm. P. Sution; Huggett; Ed. Appleton; Alex. Fruser, Secy-Treas. Boiler Inspection and Insurance Co. ; Juhn Perkins ; Gen. Grant; A.S. Wilson ; J. Sanrioll; James Wadge; F. Tushingham; Mr. Crosby, Chief Engincer T. Street Ry. Plant ; S. Mathews, Asst. Eng. T. S. Ky. Jlant ; F. Forster ; David MicCullochs Ed. Ash; R. Waterson; F. Smuh, Sec'y Marine Engineer's Association; Geo. Go.c ; Geo. Haworth; Walter Lewis; J. Johnson ; John Day; Fred. Day; George Thompson.
Hamilton No. 1,-Robert Mackic, Dist. Deputy; Duncan Robertson ; J. Langdon ; R. Chillman.

Kingston No. Io.-Jas. Devlin, President.
Galt-IV. T. Brown.
Brantford No. 4.-Arthur Ames.
After ample justice had been done at the festive board, the toast list was proceeded with.

Mr. Wilson Phillips, President of Tosonto No. 1, occupied the chair, and made some brief remarks expressive of his pleasure at seeing so large a number present. The toast of the "Qucen" having been duly honored, the Chairman proposed the toast of "Canada, Our Home", and coupled therewith the names of Mr. Cassidy; of the Canadian Mansufacturer, and Mr. Burton.
In reply Mr. Cass:dy said that only a short time ago Canada was an unknown country, but to-day it was one of the foremost countries of the earth. The cause of the rapid development which had been made was chiefly the enterprise and ability of such men as were here to-night, men who were interesed in the industries of the land. The Government had very wisely provided that marine engineers must be licensed, but it was not so in the case of stationary engineers. He thought it would be in the interest of all engineers if the Government would compel the licensing of engineers, in order that only compeient men would be allowed to operate steam plants. It should be and no doubt wis the desire of steam users to improve the standard of engineers, and they should lend a ready hand withthat end in view.

Sir. Burton was shen called upon, but did not respond.
"Toronto, the Queen City of the West" brought a response from Ald. Bell who referred to the benefit derived by citizens from the formation of the C. A. S. E. They had taken a stand to bencfit the public as well as themselves. In 1868 the speaker and two or three others tried to start an association but were unsuccessful. Horever, since the formation of the present organization great strides had been made, and its influence was being felt all over the land. He fully agreed with Mr. Cassidy's remarks regarding the licensing of engineers, and would like to see every stationary engineer a member of this association.

The soast next in order was "Our Educational Interest," which was acknowledged by Prof. Galbraith, of the School of Practical Science, and Mr. John Galt, C. E.

Prof. Galbraith congtatulated the members that during the presert depression there appeared so few signs of hard times among the engineers. One great cause of trouble in the present age was strikes on the part of cmployees. The C. A. S. E was promoted $t o$ raise the standard of engineers, and this was the fair way to get their proportion of the profits. The trade unions should not try to force employers to put all employes on equal pay. For wage earners the true principle was for every employee to do his best, not to try to estimate his own wages, for he would be left behind in time of depression. The ambitious man is the man who endeavors to do his best for his employer; the other man has no ambition who measures his services by his pay: Engineers should educate themselves to take a broad tiew. With regard to educational work he could only siny that they had exceeded all expectations both in the School of Science and Toronto Technical School. The speaker also zeferred to the advancement of electrical engineering, concluding hus :-marks by inviting all the members to a 2est of a steam: plant to to be held at the School of Science on Friday cvenume, the 15t of December, from 71011 o'clock.

Mr. Galt could remember well the formation of the C.A. S. E it had been formed on educational lines, and education was an important and valuable feature of the association. The engineer of the past would be brushed aside if he did not keep
pace with the developments in electrical and steam engincering The effects of the C. A. S. E. were being felt all over the Do minion. There was no question that a certificate of this association was a guarantec of a good honest and suceessful engineer. With regard to a Government license, he thought the stationary engineers' association was fast becoming as imporiant or more so :hat the Canadian Society of Civil Engineets, of which he was a member. This society was in a similar position regarding a license law but had no fear of the future, and when the time came he thought there would be no difficulty in obtaining it Regarding steam engines, for a time nothing was talked of but high speed engines, but there seemed to be a growing tendency at present towards the old style of slow speed engines. It wis with a view to meet this demand that multipolar dynamos were being constructed. We will now have ordinary slow speed en gines running dynamos and generators. Mr. Galt thought that it was only a question of time when the Canadian Asscciation of Stationary Engineers would be recognized as the only body.of mechanical engineers of importance in the land.
Mr. WV. T. Brown was then called upon to respond to the toast, "Our Manufacturing Interests." In a few well chosen remarks, Mr. Brown urged upon those present the advantage to be derived from self education. The best engineers were those who studied all the details, and took an interest in themselves their employers and their plant. He was glad to see that in small towns where there was no branch of the C. A. S. E, engineers were endeavoring to secure all the infonaation they could, and no doubt the society would soon spread to the smaller towns also.

Mr O. P. St. John, also made a brief reply, contrasting the position of the engineer of to-day with that of the engineer in the past. At one time all that was necessary for an engine to do was to start and to stop the engine, and to keep the plant running as long as possible, but times have changed, and there now exists among engineers a friendly spirit to excel, to obtain information, and to handle their plant with economy and efficien. cy. Mr. St John also referred to the fact that steam users were gradually coming back to slow speed engines and he was certain there was greater economy with the long stroke engine.

Mr. Perkins, jr., also made some remarks in reply to this toast.
The "Execulive Council C. A. S. E." was responded to by Bro. A. E. Edkins, who thanked those present for the hearty manner in which the toast had been received. He regretted that their Executive President, Bro. George Hunt, was unable to be present in his official capacity, as he certainly would have received a very hearty welcome. He th:ought the outlook for the coming year was bright for the association. Since their meeting in Montreal an association had been started in Kingston, with a membership of 30 . He found it difficult to organize new associations in small towns, which was no doubt due to a great exten: to indifference, but some improvement was taking place Papers on steam engineering had been read and published, and these papers were being iead and studied by the engineers throughout the country, and as a consequence more interest was being taken in the C. A. S. E. The demand for engineers for clectricity was increasing, and he urged the engineers to study along this line. Wzen we take into consideration the large number of compound and even triple expansion engines which are now being sent out of the shops for stationary purposes, compared with a few years ago, we can more readily see the necessity for such an organization as the C. A.S. E. An organization in which men can exchange views on matters affecting their every-day duties was certainly a great benefit, and was deserving of public support, but more especially of the support of steam users. ihe association had nothing to be ashamed of, but a great deal to be proud of, as they were not working against emplojers, but to benefit them.
Mr. Edkins thought that all steam users should be honorary members of the association; they would be gladly welcome as such. It was only a matter of time when shere would be a branch of the associntion in every town where ten or fifteen engineers were employed.

Mr. Grant was then called upon to respond to the toast of the "Amalgamated Engineers." He remarked that this society was different from the C. A. S. E, inasmuch as it was a trades organization, but nevertheless they did not rush into strikes on every occasion. They thoroughly understood the law of supply and demand. In 885 there were a number of sectional societies in England, but being so scattered they found they lad no power to improve their condition. Some of the leading men proposed amalgamation which was consummated in that year, allhough it met with great opposition by employers, who did their uimost to destroy it. The speaker produced some figures showing the extent to which the socicty had grown, and referred to the improved position of the steam engineer of to-day.

After the toast of "Old Toronto No. IThad been drunk with enthusiasm, Mr. A. MI. Wickens was asked to say a few words in reply: He referred to the formation of the association, which was conmenced by eleven members, and the success which had attended their efforts, notwithstanding the opposition which had been met with. Some steam users seemed to have the idea that any person could operate a steam plant, and incompetent men were engaged who would undernake the work, the result being they got inio trouble. With regard to a license law, Mr. Wickens snid that after three years of persistent work, the Legislature
had granted a permissive law, under which a Board of Examiners had been appointed. This Board liad granted hundreds of cerificates. Totonto No. I had spent $\$ 850$ for education andlegislation. The co-operation of all employers was solicited. Not long ago the speaker was called upon to examine a boiler. the botton of which had been burnt out, and he found that the man in charge had been firmg away for seven hours wothout any water in the boiler. Some figures were then given showing the number of explosions per year and the results thercof.
There was no representative present to respond to the toas:, "The Marine and Locomothe Engineers."
"Hamilton Association" was responded to by Messrs. R. Mackic and Jas. Langdon.

When Mr. Devlir: rose in respond to "Kingston No. 10," he was grected with loud applause, this association being the last one to cast in its lot wita the C. A. S. E. Mr. Devlin hoped the time would soon conse when an engineer would be compelled to hold a certificate in order to operate a stean plant.

After the health of the various branches of the association and of the "Press" had been drunk, the most successful annual dinner of the C. A. S. E. since organization, was brought to a close by the singing of "God Save the Queen."

The Committee who had charge of the dinner, and to whom great praise is due for its success, was composed of Messrs. Samuel Thomson, Chairman; H. E. Terry. Sec-Treasurer; A. E. Edkins, W. G. Blackgrove, J. Harper and George Fowler.

The musical part of the evening's entertainment conststed of songs by Messrs. Grant, Anderson and Blackgrove, and a banjo ductt by Messrs. Tuppen and MicHenry. The duties of accompanyist were performed in an admimble manner by Mr. A. E. Harding.

TORONTO NO. I.
AT a mecting of the above Association held on the roth Noverriber, Bro. Charles Heal presented to the association a fram. ed photograph of the delegates to the recent convention in Montreal. The meeting was an open one, the main feature of the programme being a paper by Bro. A. M. Wickens on the "Expansion of Stcam." The paper was an able and interesting one, and evoked considerable discussion, and also a vote of thanks to the author. Bro. G. C. Mooring is preparing a paper on "Combustion" to be read at the next open meeting.

OTTAWA NO. 7

A member of the above Association under the nom de plume of "Corn Cracker" writes as follows:-Very seldom you get matter for publication in your columns from Ottava No. 7. It may appear to other Associations that we are frozen stiff in this "Saw Dust" City, while others would be under impression that our officers are kept too busy attending gencial business. Anyway there is no reason why we should appear to be fading out of existence for the want of notice in your publication. I have no intention of going too far back in the history of our proceedings, but will say a few words regarding the last regularmeeting on Nos. 14th, with the Vice-President, Bro. F. Merrill, in the chair.

One application was received and aeferred to the proper committec This makes the fourth member coming in since the last convention, and one of them is a well known Toronto gentleman in the person of Bro. Donaldson, which gives proof that the good work and material in Ottawa No. 7, attracts engineers from all over the country.

Under "Good of the Order" the first question was the piston speed at different points of the stroke. The ball was set rolling by Bro. Thomas Vensley, who gave a minute explanation, accompanied with diagrams, showing the crank at different angles and the position of the piston at each of these points, demonstrating the irregularities in the travel of the piston and crank in one revolution. Several other members took part and it brought out theories, opinions and experiences sufficient to make it very interesting for all present.

The next question of importance was the capacity of pumps when some one asked why a pump would not lift hot water ; this brought out once more plenty of opinions to show on what principles a pump lifts water.

As far as I can judge Ottawa No. 7 is progressing very favorably although I will admit that it has been retarded, but we expect soon to be on a level with time. Already some of the engineers have promised something interesting on engineering for the next mecting, and it is my intention to keep "the boys" posted on the ingenuity of our inventors.

KINGSTON NO. 10.

Editor Elaftrical Nawx ano Staam Engingrxing Joursal:
I was in Kingston from Oct. 21st to 24th inclusive, and, having a few hours time to spare, took advantage of it io visit the steam plants and engineers and in conversation with some of them, regarding the C.A.S.E., I suggested the advisability of the Kingston Enpineers' Association being made a branch of the C.A.S.E. The jesult was, that after due consideration, an advertisement was inserted in the two papers calling on all engineers to meet at $7.30 \mathrm{p} . \mathrm{m}$. at No. I Firc Hall (on Tuesday, Oct. 24th) to consider the advisability of organizing a branch of the C.A.S.E in Kingston. I was informed that the Kingston Engineers' Association was composed of thirteen members, and
to my surprise and delight, when 1 arnived at the place of mecting on ruesday night 1 found between 25 and 30 engincers in the hall. The president, Mr. J. Campbell, being absent, the secretary appointed Mr. J. Devlin, Chicf Engineer of the K. l'enctentiary, to take the chair, which he did, and atter calling the meeting to order, requested that I should address the meeting on the principles, aitns, and objects of the C.A.S.E. and the benefits to be derived from membership.
After some discussion it was icsolved, That the Kingston Association of Stationary Engineers be abandoned and that a branch of the C.A.S.E. be formed, and application for a Charter acrompanied by the usual fee be handed to Bro. Edkins at once. After some 25 engineers had given in their names for membership, the election of officers was proceeded with, which resulted as follows:-1'resident, James Devlin, Chief Engineer K. Penetentury; VicerPresident, 11. Qaudden, Chief Engineer Fire Department : Treasurer, 11. Hopkins; Recording and Financial Secretary, Anthony Strong, Chief Engineer Dominion Cotton Mill (residence, comer of Bagott and Charles St.) ; Con. ductor, J. Langhrane; Door Kecper, J. Giascoiguc.
After the initiatory ceremonics were concluded, it was resolved, That a vote of thanks be irndered to Prov. Deputy Bro. A. E. Edkins, for the interest he had taken and work he had performed in the organization of Association No. 10 . It was also resolved, That the thanks of this Association be tendered to Bro. H. Gilmour for his services as secretary of the late Kingston Association of which he was a most devoted member.
This brought Bro. Gilmour to his feet, and in the course of a neat speech, he said that as they were now attached to the C.A. S.E. he was determined to do everything in his power to further the interests of the Association and he trusted that every menber would make up his mind to attend regularly and not only learn all he couid from others, but be ready to give his experience for the benefit of his Bro. Engineers. Froin what he knew of the C.A.S.E. and its principles he felt that it was working in the right direction both in the steam user's interest and in the interest of engineers, and from the enthusiasm which had been shown by the members, he predicted a fine healthy and in every sense of the word useful branch in Kingston.

President, Bro. Jas. Dewlin, then addressed the meeting asking the officers and members to give hmo their support in carrying out the work of the Association.

It was decided that the Association should meet every and and 4th Tuesday at 8 p.m. in Engincers' Hall, over No. 1 Fire Hall.

Regret was expressed by several members that Bro. R. King could not be pursuaded to take office, as he as known as a worker and an encrgetic engineer. Bro. King is Chief Engincer for the Kingston Light, Heat and Power Co, and told the Association that his duties in that capacty would often necessitate his absence from the meetings, and for that reason he could not take office.

Meeting adjourned at 10.30 , when light refreshments were served and a pleasant half hour spent in geperal conversation.

These "Limestone City" Engineers are alive and are determined to make No. to outshine everything.

Yours, etc.,
A. E. Edkins,

Prov. Deputy.
TThe above was recelved too late for insertion in our November issue-Editor News.]

TRADE NOTES

The Peterboro' Electre Railway Co. has pheed an order with Ahearn \& Soper. Oltawa. for one vestibule car and one rotary snow-sweeper. both Soder. Otawa, for one vestibule car
The old-established busincess of Messrs. F. E. Dixon \& Co.. leather belting manufacturers. of Toronto, has recently been converted snio a joint stock company. Irr. F. E. Dixon will continue in the management of the business.
We call altention to the frrst appearance in this issue of the advertisement of the Steam Boller and Plate Glass Insurance Company, of London, Ont. The company will assist in educating the ouncrs of steam boiters in the necessity for regular and competent inspection of stcam plants.
Messrs. Wm. Kennedy \& Sons, manufarturers of waler whecis, elc. of il Owen Sound, bave recently added to their works a Rear dressing maclane if capable of dressing the rron or wooden teeth of spur or bevel gears up 10 capable of dressing the inon of wooden teeth of spur or bevel gears upt 10
2ol inches face. The machine works automatically. and will dress teeth of any shape. There are said to be only four machines of this kind on the conunent.
The Reliance Electric Mifg. Ca. of Waterford, have made the following sales: Prescott Flectric Lipht Co., 900 light alternating current incan descent plant: The Onlario Government. for Central Prison. Toronto, 35 light dynamo, 35 arc lamps, 200 light direct current incandescent plant ; The Parkhill Electric Ligh Ca. 30 light are dynamo. The Neu Hamburg Electric Light Co. 85 light are dynamo: The Canadian Oiled Clothing Co., Port Hope, 50 light incandescent plant. Wiarton Electric Itght Co. 60 light are dynamo. Watford Electine Light Co.. so light are dynamo: The Sution Elecric Light Co. Simeoc. Oni. 750 hight altermatung current incan descent plant: The Slingsby Mff. Co., Gsaniford. Ont, 200 light direct current ineandescent plant. In addition to the above the Company have recenily sold a large number of stationary moturs.

The Otlawa Stret Railway Company propose to double track their Rocklific. Elgin and Catherine strects lines.
The Nanaimo. B. C. Telephone Company lias jusz pand a dinodend of ro per cent. The retising directors, Messrs. W. F. Salsbury. Pimberry Norris, and Pracger were all re-dected.

ELEGTFIG RAILWAY DEPARTMENT.

THE TORONTO RALLWAY COMPANY.

The following particulars of the power plant and equipment of the I oronto Sirect Rillitiy is abstracted from a iecent number of the Street Riaficidy Journal from which also the accompanying illustrations are reproduced.

The power station (F gig 1) is $137 \times 122 \mathrm{fl}$., and was originally a stable, as may be inferied from the many windows. It is located at the junction of Frederick and Front Streets, and is of red brick and stone trimmons. Gco. F. Hanmmond, of Cleveland, was the architect, and the iron work was provided by the Dominion Bridge Company;

The boiler room has a trussed roof, leaving it free from posts or pillars of any kind. The roof, which is fifty-iwo feerfrom the Roor, has in it two large ventilators, giving plenty of fresh air. Dnors, which are raised with weights, are situated along the front of the building, permitting the removal of ashes and cinders with the least possible amount of handling. The steam cquipment consists of twelve $72 \mathrm{in} . \times 18 \mathrm{ft}$. boilers, made by the Polson Iron Works, of Toronto, and containing seventy-two four inch tubes each. The smoke breeching for the boilers is of one-quarter inch plate steel, and is connected to each boiler and to the stack at its center. Each boiler has a seven inch steam branch to the fifteen inch steam header, the hatter being made of fifteen inch, lap welded tubing, wath steel flanges at the ends and steel nozzles along the shell, these all being riveted and caulked. Feed water is taken from the hot well at the condensers to each of the three feed pumps, and from there to elther of the two Norse heaters, and from the heaters to cither of the two feed mains. One feed, which is operated by hand, delivers into the bottom of the boilet through the blow:off. The upper feed discharges, through Hartford style of piping, in the upper pertion of the boiler, and is controlled by an automatic feed regulator. The pumps are five in number, three being of the Davidson type, and two automatic. and are also controlled by a pressure regulator. The feed water is lieat. ed by steam that passes through the pumps, the pumps being run with sufficient back pressure to supply the heater whth the required steam. In case the stean from the pumps is not sufficient for the heaters, regulating valves will admit of enough more to bring up the pressure. The pumps are so arranged that they can exhaust into the atmosphere, if desired, the steam for the heaters, in that case, coming directly from the steam anaın. The steam header pump suctions and dischargers are all so arranged as to divide the station into two distunct halves, permitting either half to be run indepenjently of the other. At each header there is an automatic pump which delivers all the condensation from the heaters ind header back to the boilers. Schaffer \& Budenburg gauges are used.
The engine room has a trussed root, with ceiling fourty-four feet high. The flooring is of 6 inch hemlock scantling laid on edge on stecl joists, and this is covered with one and a quarter inch hard wood toonng. The room presents a h.indsome appearince, as the engines and belts are protected with inon railings fitted whth polished buass trmmings, and the building is ligh:ed with meandescent and are lamps run from the railway circuit. A lange traveling ciane, with a capacity of twenty tons, stretches en:irely across the room.
The power equipment consists of five Armington $\&$ Sims 600 h. p. engines. Four of these were specially manufactured for this plant, and have each two driving wheels, 25 ins. $\times 9 \mathrm{ft}$, placed between the high and the low pressure cylinders, each half engine being on a separate base, with a crossover stean, pipe below the floor. All the engines have Corliss valves for the low pressure cylinder, with a new design of valie motion, so arranged as so give a quick cut off, and make a card simular to a Corliss. Each engine is connected to independent Davidson condensers; there are also branches to the automatic relief valves, and thence through the roof. The engines are so piped that thev can be run non-condensing, and while in this condition with she load on, can be connected with the condensers without stopping or throwing off any load. Should the condensers drop their vacuum the relief valves will open instantly and permit the engines to run non-condensing till the vacuum is restored. The
condensers the witer throukh a 30 inch steel pipe from the lake, a distance of 6 zo fect., being under the water line for the entire distance. Each condenser discharges through a ten inch pipe into a discharge main which empties into a 30 inch brick sewer. The condensers are pliced below the floor in fromt of the engines, and are easily accessible by a flight of stairs.

These engines are connected directly with ten 200 k . w. Edison standard generators. All cabling and wiring is taken down through the floor, and carried separately to the station boart. The latte: is 27 feet in ledgth, and has an ornamental front. The frame is of wought-iron, and the facing of enamelled slate slabs finished in polisned cherry. The amperemeters are of the Edison type, and the volt-meters and circuit breakers of the Westinghouse type. Fach feeder has an ampere circuit breaker, and a two way switch used for high and low pressure in cases o emergency. Belors the switch-board in the basement, is a Wurts tank lightning arrester. Each of the eleven feeders at the point of entrance to the building is :llso protected with a Wason four-fuse lightning arie_ier.

The beas employed were all made from hemiock tanned leather, and "ore supplied by the Howarth Belting Company of Toronto.

The generators are protected from overheating by a forced draft of air taken from outside the building and transmitted in pipes under the floor by electric power, and entering the engine room through two vents under each armature, enabling the machines to he largely overloaded in cases of necessity without danger of burning out. No flese wires whateser are attached to the switch-board, the circuit breakers beinf depended upon exclusively. The generators are placed upon very heavy cast iren arches supported on brick walls beneath the floor of the power house, and are insulated by eight inches of hard and soft wood flooring. An open space is thereby created directly under each gen erator, affordin: the greatest convenience for inspection

The basement is fitted with wash rooms, sleeping apartments, store room, etc.
The company's new motor house which is of red brick and stone, is nearly complete, and meas ures $140 \times 105 \mathrm{ft}$. It is situated on the northeast corner of Frederirk and Es. planade Strects, and extends back to the powier house lot. There are large entrances at either end, permitting cars to loop round. Six tracks run through and are fitted with the necessary pits, etc., their entire length. Two of these are used exclusively for the inspection of cars, while the other four pits are fited with hydraulic lifts, etc.. necessary for motor equipments and repairs. One stde of the building is arranged for the receiving and storage of equipments and spare parts.
All the buildings are filted up with incandescent lamps run in series of five from the railway circuit.
The company has four large car barns. One is situated on King Strect East, near the River Don, and is of red brick and stone. This building is $194 \times 164 \mathrm{ft}$. and will hold 136 cars on the ground floor. It was used as a stable before the adoption of of the electric system and has recently been remodeled to adapt it for the purposes for which it is now used. Another new handsome car barn, built last season, is situated on Yorkville Avenue and extends through to Scollard Street. This is of brick and stone, and is 242 ft . long by 100 ft . in width. Thrce large entrances are at either end, with tracks extending entirely through the building, permitting the cars to lonp round. The entrances are far enough apart :o allow of turnouts at either side of the main tracks, thus making nine tracks the entre length of the barn. The main tracks running thrcugh are fitted with the necessary pits for inspection of cars. All cars from the Pinor, Yonge and belt line routes are stored in this barn.

Two other barns are located on the junction of Front and Frederick streets, one being on the noribwest and the other on the south east corner. The latter is shown in Fig. 1 , at the left of the power house. Both of these buildings are of brick and stone, and are three storics in height. The Queen, Brocton, Dovercourt, Church, Bathurst, Winchester and Parliament line of cars are stored here.

The building on the southeast comer measures $137 \times 60 \mathrm{ft}$. The first floor is used as a machine shop, and contains lathes,
saws, drills, hammers, presses, etc., necessary in the building and repair of cars. Another portion of this flowr serves as a temporary motor shop pending the completion of the company's new motor house, described above. The second floor is used as ath armature room, where the company dees all its own repairs, such ats rewinding of armatures and fields. Several new motors of the company's own make, which have given excellent bitisfiction, have been turned out here.

The car house on the northnest corner is $140 \times 80 \mathrm{ft}$. On the first floor are located the car building shops, while the second floor is used by the extensive paint department of the company.

Wilton, with the company's monogram woven in the backs. Coll springs of the latest mpproved type are used. The cars are lighted with a series of five incandescent lamps. The hotse cars are liglited with an oil hamp at either cud.

Thirty-seven motors were supplied by the Weatinghouse Electric \& Manufacturing Company, and are of the thirty horse puwer, single reduction type. All the others ate of the Edison type, with the exception of five Thomson-Houston and three Sptagise motors. Six Mc Guire, one Brill and one Taylor trucks are used. The remander were built by the company, and are of wood. The truck springs are elliptic in the case of the motor cars, and straight in that of the trail cars, and Jones and liemis gears are used. Electric heaters have been adopted for the motor cars, and Royal stoves for the trail cars. Some of the heaters were manufactured by the company, others are of the Dewey type. Lappin brake shoes and the old type of "coffee pot" fare receivers are employed, though the latter are to be retired for later appliances.

The company owns onc electric and ten Walkaway snow plows.

The longest line in the city is the King strect line, which is over seventeen and a half miles for the sound trip. This line connects the extreme west and east ends of the city, and is very popular duning the summer months in conveying people from High lark to lictoria Park, one at either end of the route.
The number of passengers per car mile run during the last fiscal year was 3.9. The average watts per car, when only motor cars are used, is 10,640 ; when motor and trailers are used, per car, 7,980.
The authorized capital stock is $\$ 6,000,000$.
Eig. 2-Sivitchioard in Poner House, Toronto Railway Company.
All the car barns are fitted up with wash rooms, waiting rooms, offices, elevators, rnd all conveniences for the cmployes.
The company also owns a large, three story, brick and stone building at the corner of George and Front streets, known as the George street stables. All the horses, numbering about 650, now in use on the system, are concentrated at this point. On the second fioor of this building is the stores department with all the necessary receiving rooms, etc., for the storage of supplies. On the ground floor is the harness room where all the harness used is made and repaired.
The new track is laid with seventy-three pound siooved girder rails, laid directly on cedar ties. The switches are of steel, and, with the crossings, curves and special track, were provided by the Canada Switch Company, of Montreal. The bonds are thirty-six inches long, of No. o copper wire, connected to rails by seven-sixteenths of an inch special rivets. Cross connections are made every 250 ft . with No. 1 wire, and the rails are also connected at intervals with the water mains by means of No. 1 insulated wires. The maximum grade is 5 per cent. extending for a distance of So feet, and all curves are of forty-five and fifty feet radius, the maximum allowed by the city engineer. The rails were supplied by Dick, Kerr \& Co., of London, England.
The compans owns 95 motor cars, 193 box cars and 83 open cars. All the cars of the company were manufactured a: its own shops at the corner of Front and Firderick Sirects. They are unlike any other make, and were built from designs supplieci by the company's shop foreman, Mir. Powers. They are all of a standard size of eighteen fect in length, with extended platorms, making the cartwenty-eught feet ove- all by ieven feet ten inches in width. They are quite high and light inside, and have six large windows on either side. with a corresponding number of ventilators in the roof. All the cars have, front and back, large. plain lights which have pairted in black apon them the name of

RECENT PATENTS.

canadian.
43.759- Hugh Wetster Williams, Victoria, B. C., explosive engine. $+3,8=4$-George H. Waring. St. john, N. B. steam engine.
+3.895-The Bell Telephone Company of Canada. Boston. Mass, telephone.
ajempician:
John D. MicEachren, Galt, Ont., steam boiler cleaner, No. 507,030. Herman H. Brown, Montreal, Que., insulated wire. No. 507,257. Cyrus S. Dean, Fort Erre. Ont., boller tue cleaner. No. 507.421.

PUBLICATIONS.

- Standard Tables for Electric Wiremen, with instructions for Wiremen and Linemen. 'Uuderwirters' Rules and useful Formulae and Data, by Chas. M. Davis, fourth edition. thoroughly revised and edised by W. D. Weaver.

Fig. 3-Interior of Engine Rgom, Toronto Railifay Company.
the route. These lights are easily removable and can be replaced by others when the car is changed from one route to another. The doors anc of quartered white oak, with drop sash and cherry panels. The inside of the cars is finished in quartered vak and cherry panels, and has two large, bevel, English plate mirrors, one at either end. One standard color is in use, the top pancls being Harrison's new Tuscan red, while the bottom panels are of Broadway cadmium. The inside of all the cars is finished in oil, with a very little, delicate, ornamental beading along the borders. The seats are beautifully upholstered in
contains the latest revisions of the Insumace Ruies of the Undentriters International Electric Association. now almost excluswely used in the United States In addition to the above rules there has been added to this edition an important section on the calculaton of alternating curren: wiring, which for the first time brings thus subject within the reach of practical men. The W. F. Johnston Co.. New York, are the publushers.
The November Arene closes the eighth volume of this popular Review. which, by the conspicuous ability of its contributors. its unequalled, fearless, and healthy teformution impulses, has become a power in the land.

ELECTRIC MOTORS.*

SOME men are born great, some acquire greatness, and some bave greatness thmust upon them. As one of the latier I must be counted, and if ness thmust upon thern. As one of the hatier inh them to be, please remem. her that the honor you have conferred upon me was ns unsolicited as it was undeservel by me.
The subject I lave chosen, * Electne Motors," may appear about as approprate to deliver trefore a society of engineers, ns if I were to go fo the Club prate to dellver before a society of engineers ns if were to go to the Club
Canadienne and allempt to advoente cernain pecular advantares which the German lunguage bas over the French; but I know I am talking to a body German lunguage has over the fiened; but i know inm talking to a body
of intelligent, thinking men, whose promerpal tools musi necessarily be "brains, and dio not fear a verdict such as was Riven in Scolland years ago when a lecturet, who ventured in remark that landid-loons would be
auperseded by machinery. was sold by the operatives that "the sooncr his Buperseded by machinery. was sold by the operatives that " the sooncr his
friends looked after him the better ": but, just as the nords of the man who Friends looked after hims the better ": hut, just as the uords of the man who
was then looked upon as insane tave come llierally true, there are significant vas then looked upon as insane have come "licrally true, there are significant
signs that the mighty monarch "Steim," who has so long teeld absolute swny, must sooner or later give place in many instances to its rival " Elece tricily."
Numerous hydraulic, compressed air and similar deviees bave been in the inarket for supplying power, but. I think it is safe to say, have not come naywhere as near to supplying the yeneral demand for small powers as the electric motor, which is steadily gnining ground and is appasently "come so stay."
Do not for a monent imagine that I claim the extirction of the steam engine: but what I do claint is that fewer will be used, and those which iemain will be larger units. Waterfalts are being harnessed rapidly and con. verted into electicic power to be conveyed in an easy manner considerable distances, windmills is conjunction with accumulators have been adrocated, and in a small way have had fair success. but what is earnestly sought for and is being experimented on by nany is the production of electricity from heat direct. This, as can readily be seen, would cause quite a revolution in electric power production.

The economical limit of the electric motor must be judged primarily on cost of power, and secondarily, by circumstances, such as space, fire insurance risk, capital, cic., so no fixed rule will apply, as bolh factors vary in dinierent ploces.

Lat us sce the advantage to be gained by the electric motor:-We save space, attendance, coal, water, beat, etc, the latter an important item in a Cunadian summer. The cost of the electric power, of course, balances some of these ttems. You may say that you are at the mercy of a wire. which nuas be broken or cut through many causes. This is very irue, especially with the primitive ovethead consiruction system at present in vogue by many companies : but will be lessened to a great extent where vogue by many companies: but wis systems are used, as for instance, in New Yotk, Toronto, etc.; anderground sysiems are used, as anding the risk, it is no greater than being at the mercy of your and even adminting the risk, ti is no greater than being as the mercy of your
own engine, boiler, or enginer. Repairs, in any case, should be more promplly done to the electric motor, as it is easter knocked down for promplly

Central stations supplying the power have generally reserve engines and generators on hand. which an be switched on in an instant when any break. Renerators on
down occurs.

One of the faults, if not the greatest. lies with the customer in wanting to purchase 100 small a motor to perform the work: and, in the majorty of cases, the very cheapest motor on the market is what is most in demand.
Electricty is not alone in this: steam engine manufacturers have unfortu. nately to comtat this serious difficulty also, but what is in favor of the steant plant is that senerally it is rated low, and an engine of a gated horse-power will do a certain per cent. more than that work if called upon to do so. I any case, if I understand steam pnociples anight, an excessive overlaid will simply stall the engine. Not so with the electric motor. however: the socalled "safriy" cut out with its fusible plug has shown itself time and again to be unreliable, and burnt out armatures are of common occurrence. A better protection would be an "electro magnetic" cut-out, which would open the hae as soon as more current attempted to pass than it was set for, but these ate not yet in common use.

A few words as to the measurement of electric power may be of use 10 menbers of the society who wish to test a motor at any ume.
"Voltage" is the term used in dencie electrical pressure, and is synonymous with " pounds per square inch" as used by engineers.
"Amperes" is a term to denote the quantity of electricity, and may be likened to " cubic feet of stmm."
A. Voltme:cr" for measuring the pressure of the current is bndged across (or placed " in shunt " as it is termed) the feed wires which run to the motor. One of the wires is cut and an "Ampere Meter" letin-placed in "senes" as $1 t$ is termed.
The motor ts now started up and the readings of bath meters are taken.:
When volts are multiplied by amperes the protuct is termed "Watts." 746 of said watis leing the electrical equivalent of 1 thorse power.
746 Now we will suppose our voltmeter shows 250 volts and the ampere meter 3 anmperes. the product we see is 750 witts, or just about ithorse power. 3 amperes. the product we see is 750 walts, or just about it horse power.
which our motor is developing. This is not absolutely correct, as the effici. ency of the motor itself is not taken into account, but is the way that such ency of the thotor itseif
A few words may not be out of place explaining why an electres notor runs at all. A magnct. as you know, has luo poles, north and south. now, If the opposite poles of two magnets are brought together. they will attract each other, but if stmilar poles are braught topether a repelling action takes place Steel tholds this ragnetic effect; soft iron, however, is only magnetuc when surrounded with convolutions of wise bearing an electric current. These hater magnets are called "electro magnets" and are the proncrpal factors in toith motors and dynamos.
Now as we know electricty has two poles also, it follows thus that we may make the poles of our electro-magnet either north or south at will. according to which direction we allow the curtent to flow through the wire. This changing of direction of she current is accomplished by the devices known as cominutator and brushes. We thus see that it is simply it matter of attraction and repulsion of two nagnets, one termed the "" Geld." which is as a rible stationaly, and the other termot "armature," which revolves.

The uses of the motors are many, and probabiy most of them well known to the members here, so we will only touch on such uses as may be novel and interesting.
The Crocker iVheeler Co. has made direct applications of their motors. without the aid of any shating or belting, to operating the Gating gun, clorh-cutung machunes for closhing factornes, engine lathes with motor concealel in bead-stock, screwing machines. pipe cutters. punch presses, etc. as belting ard shafting are done awny with and each machine is under individual control.
A thirty-ion locomotive for handling freight at the rate of thirty miles per the test berng coupled back to back with its steam competitor.

- Paper read by W. B. Shaw before the Canadian Alsociation Statuocary Engineers.

I had intended going a little into nccumulator work to show how reserve power might be had at will for stationary motors, not, bark me for street milway work, in which case I can cite many reasons why the accumulator ear would not be a suceess either financially or otherwise here: but this would take some time, I fear, and I have occupied too much niready, so will therefore thake way for those who ure to follow with other pipers on subjects more in your line and more nbly handled. If, however, niy mabl. ing remarks have awnkened an interest in: a sublect whicli has such fascina. tion for the. I shall feel rejaid for any little time spent on what has been a latror of pleasure.

ENGINES FOR ELECTRIC WORK.

Galt, Ont., Nov. $15,1893$.
Editor Canadian Electaical Nerus.
Deak S1R,-I have read with considerable interest an article on the style of engine best suited for electric power stations, in the July number of the Electrical News, also a letter in the Noveinber number from a correspondent in reply to the article mentioned. Before saying anything concerning the letterd might just state that my experience has been such as to lead me to the same conclusions as the writer of the above named anticle, for every conclusion arrived at by him is contect so far as I am able to judge; at the same time it must be admitted that the letter in reply is an able production from the writer's side of the question, but are all the conclusions at which he arrives correct in every point? I think not. It is true that the high speed engine has more opportunitics to correct the difference of speed caused by variation of load, and it needs them all on account of the lightness of its parts. The writer of the reply will find if he makes proper inquiries that there are slow speed engines which have very sensitive governor atiachments, repulating very closely, in spite of what he may say to the contrary. He is of the opinion that the difference in economy between the two styles of engines has never been accurately determined, but admits that under favourable conditions the long stroke slow speed engine will develop a horse power with less steam than the short stroke high speed working under the same conditions. By taking a trip through the principal cities of the United States, he will find that in a great many cases the high speed engines have been removed to make room for the low speed ones; it is not uncommon to find electric light and power stations where they removed two and eren three high speed engines to put in one slow speed, and by doing so have saved nearly one-half of their boiler capacity; there is, therefore, but one conclusion to come to as to why they made the change- it was that they would have better economy and fewer repairs. It an engineer will consider the question with an unbiassed mind, he will soon realize that it is impossible for a high speed engine to give as good cconomical results as the slow speed. It is a well established fact that the clearance is the cause of considerable loss and might be termed a necessary evil even when reduced io all that it possibly can be, consistent with a proper and sufficient port area. We shall suppose the clearance space as small as possible in an engine 16° dia. $\times 48^{\circ}$ stroke, and the space the same in an engine 16° dia. $\times 16^{\circ}$ stroke; while this space might in the 48° stroke only be equal to 3 or 4 per cent.-say 4 per cent.- in the $16^{\prime \prime}$ stro?e it would amount to 12 per rent. Then in most of the high speed engines this loss is stil! increased from the fict of using a single valve, which necessitates ports with larger area, and besides, in nearly every case it is nece sary to have an excessive amount of compression in insure a quiet running engine. For the foregoing reasons, the high speed engine has never given as good economical results as the slow speed, and it is safe to say that it is impossible for it to do so in the future.

When using the term high speed and low speed in connection with the engine, it is not meant that there is any difference in speed of piston-this maty be the same in both make of engines -but in order that the short stroke engine make the same piston speed, it is necessary that the speed of the reciprocating parts be greatly increased over what is necessary in the case of the longer stroke engine.

Regirding the repairs on the high speed engine, the fast motion of the reciprocating parts must of necessity cause much more wear than there is on the same parts of the slow speer, and for this reason the shutting down for repairs would be more frequent with the one than the other. It might be well to quote from a paper lately written by Chas. T. Porter, the father of the high speed engine, in which be says: "I would ask builders in their own interests to resist the temptation to get the utmost out of a given engine and set their faces like flint against the demand for short stroked engines which will occupy but little room." As this is quoted from a paper read by Mr. Porter at the Enpineers' Convention lately held at Chicago, it must of necessity be considered a matured opinion of one of the ablest consulting enginecrs of the present day; as it was given after a great many years of experience, besides being himself a builder of engines, he must have had good and sufficient reasons for placing the foregoing remalk on record. These are points which ate so well understood by the majority of engineers that it is not necessary on this occasion to occupy any more space.
W. T. Brown.

A by law hes recoived its first reading in the Lendon City Council to rise $\$ 55.00$ for the purchase of an electric light plant. The proposal of
the Street Car Company to introduce electric power will also be considesed at the next meeting of Council.

... THED

Canadian General Electric Company

LIMEINED.
FACTORIES:

65 to 71 Front Street West.
TORONTO, ONT.

CAPITAL, $\$ 1,500,000$.

Thomson-Houston Street Railway Generators and Motors
 (Same as built by us for Niagara Falls Park \& River Railway.)

Thomson-Houston Systems of Alternating Current Apparatus for Incandescent Lighting.
 Edison-Systems of Low-Tension Direct Current Apparatus for Incandescent Lighting.

Electric Arc Lighting Apparatus. Electric Mining Apparatus. Apparatus for Long Distance Transmission of Power.

We Manufacture in Camad Eyery Description of Elegtrical Machimery and Electrical Supples.
$x \quad x \quad x$

INSULATED

WIRES

FOR ELECTRICAL USES

Our wire factory is one of the best equipped on the continent.
We manufacture every description of insulated wires and cables, and our large production enables us to offer special values.
We desire at this season to call attention to our
Standard Weatherproof Wires, White Weatherproof Wires,
Rubber Covered Wires,
Magnet Wires,
Omee and Annunciator Wires.
Flexible Incandescent Light Cords.
Our solid core Rubber Covered Wire has the best insulation resistance, best quality of rubber, and gives the most general satisfaction to users.

TRANSFORMERS

To no other class of apparatus can the axiom that "the best is the cheapest" be more truly applied than to electrical machinery and appliances. To transformers does this especially apply. It will pay you to buy the best in the market, and we now offer you the very best at such a reduced price that the essentials of quality and efficiency are combined with extremely low prices, which is rendered possible only by the introduction of improved laborsaving machinery, added to a large increase in our output.
The Transformer we offer is the improved type F. Thomson-Houston design, ceiebrated for its high efficiency and perfect regulation.

The following points in a Transformer are all essential: (1) Perfect safely; (2) high efficiency ; (3) good regulation; (4) small core loss; (5) convenience in installation.
These are attained in the New Type F. Oil Insulated Transformers (which we are now manufacturing at our works at Peterborough, ?nt.), in a greater degree than any other upon the market.

Hrite to neareat office for prices
aud alscoumta,

We have, during the past two months made such changes and improvements in our methods of manufacture, and in the general appearance of our lamps, that we offer you, with confidence, a lamp that we are assured is now superior to any other in the market.

We have adopted an entirely new method of treating and handling our carbons, and have so improved our methods of inspecting and testing throughout each department and process that all inherent defects are eliminated before the lamps are passed for shipment.

OUR LAMP SOCKETS ARE THE BEST AND CHEAPEST IN THE MARKET.

THE PENBERTHY INJECTOR.

We illustate herewith one of the most popular boiler.fecters that hans ever been introduced to the steam uoing public. The lenberthy automatic injector was first placed on the market in the spring of 1887. At that time there were no thoroughly successful automatic injectors manufactured, almost the only tholler feeder in use, nsile from the steam pump, being

injectors of what is known as the positive elass, which require constant attention and considerable maniputation of valves in order too restart them if the current of water to the boiler is broken for any reason. Thas injector, therefore, hat great opposition to encounter and great incredulity to overcome before is could nake for itself a successful place with ilie trade. Fromi
cole
that rime to the present it ing been the constant ainl of the manufacturers of this injector to make such improvementr and changes us should increase its working qualities, In this they have succeeded ndmimbly, having today a machine which is recognized throughom the country as the standard minong zutomatic injectors.
It workent from 20 to 25 pounds low steam. according to size of the injector, and from this point up to ${ }^{5} 45$ or 150 lbs., Its best working point being, of course, about midway of its range. or at 65 to 80 lhs. On these pressures it will lift water from 22 to 24 feet, and it is claimed to be the only injector manufinetured which will work equally well through hot or cold anction pipe. This is a yery great advantage, as frequently the stean valve will not close perfectly tight, rnd when an lnjector is shut off, the steam leaking through the valve will heat the body of the injector and also the suction pipe. so that with other machines except the "Penberthy" it is necessary to cool this pipe before the water can ve lifted.
During the six and a half years that this injector has been in the market, zearly 75.000 of thent have been sold nad almost without exception they while they received calls rom the start. The manufacturers whe us tha Columbin Expositions their exhibit in Machnery Hall it the wond United Sintes and Candin anearly all theme extensive trade throughour the used and are using their and from many thousants of engineers who have uned and are asing their goods. they only received he complaints from explanation and instruction set the mivier a a whe that arew words or
 injector, the inside parts being sectional cut will show the simplictity of this injector, the inside parts being very ensy to get at for purpose of eleaning or examination. The steatin jet " R. can be removed by simply loosening the nut on the top of the mjector, While the delivery jet " $\mathrm{Y}^{\text {" }}$ which is the one most liable to stoppage by dirt, can be taken out without disturbing the connections to the borler, by smply unserewing the plug " O " in which this jet rests.
This popular injector is manufactured by the Penberthy Injector Co.. of Detroit, Mich., rho will be pleased to send fheir catalogue to an;; steam user who desires it, on application. They issue monthly an 8 page mper, called the "Penberthy Bulletin." which they will send to any engineer who
will send them his address.

PULLEYS:
 MACHINE
 MOULDED
 8TEEL RIM
 and GRIP
 Steul Rim Pulloye aro practicnlly unbreakable, are lighter and easier on chaft, and cost anms an caet pulloye. SHAFTING
 TURNED IN ANY LENGTH8 UP TO 28 FEET. SAVING COUPLINGS. STEEL OR IRON. PERFEOTLY TRUE AND POLASHED. KEY SEALED WHEN DESIRED.

GODFREY ST. V. MORGAN Barilister, SOLCCTOR, ETC.

 27 Wolllinston St. East. Toronto
S.MITH'S

JOURNAL BEARING
.-...- LUBRICATORS
Protected by Canadian Patent No. 38.011.
For sale by the manufacturens
E. C. MOUNT \& CO.

766 Crals Strest, - MONTREAL.

F. E. Dixon \& Co.

LEATHER BELTING

70 KING STREET EAST, TORONTO.

Contracting Electrical Engineers

※ 世 世

AHEARN \& SOPER

OTMAWA, ONT.
 camadian representatives of the

 Westinghouse Eleetric \& Mig' Co.

 Westinghouse Eleetric \& Mig' Co.}\qquad
Slow Speed
Single and Multiphase

Alternators

- -nis

Slow Speed
Direct Current
Dynamos
and Motors
x

Electric Railway Equipments Complete. Transformers.
Celebrated Shallenberger Electricity Meters.
Sawyer-Man Stopper Lamps.
Ahearn Electric Heaters for Direct or Alternating Circuits. Long Distance Power Transmission a Specialty.

notres.The Westinghouse Alternator is the only Alternato of its type in which the Armature Coils are removable and may be kept in stock. Coils are lathe wound, thereby securing the highest insulation. All armatures are iron clad.

SPARKS.

1
Thic construction of an electric railway at Eidmonton, N. W. T., is under consideration.
The formation of assoctitions of stationary engineers at Shertrooke and Three Rivers. Quelece, is in contemphation.

The captal stock of the Curens Light and Power Company, of Oltawa has tren increased from \$100.000 to $\mathbf{5 2 0 0 0 . 0 0 0}$.

The proposed electric railway to connect the Caty of Brantford with Selkirk on lake Eine, is estlunated to cost \$200.000.
A 125 h. p Holth-Armationg engine tav been ordered for the Intercolontal Kuluar's electre light station, at Moncton, N. B.
A new 3.000 light dynamo and also a new engine have lately tieen pur. chased by the St. Jotns. Que. Elec:ne Light Company:

- Mr. Elison, father of the celebrated inventor. is still living. He is sand to have been born in Nova Scotia, on the $7^{t h}$ of August, 1803.
A long distance telephone line, conneeting Fredericton. St. John, Mixlifax and intermedate porms, is being constructed by the Moncton. N. B. Tele. phone Compnny.

The contracts for ties, trolley poles. feneing and the erection of a power house for the Fianilton. Grmsty and Beamsville Electrac Railway Company will shortly be awarded.
The town at Watetloo. Que.. is to be lighted by electricity. There will be employed for this purpose forty 32 c . p. incandescent lamps: the cost will be sioo per year.
An ofier is satd to have been made to the toun of Rechmond. (ruebee. by the Ruchmond County Electros Company, to light the town for 99 years for the sum of s 53.000 cash.
The fly wheeis for the engines in connection with the Montreal Street Railua) Company's neu power station each weigh ;otons, are 28 feet in diameter, and will run at a speed of 68 ievolutions per minute.
The Montreal board of Trade are snstalling an incandeseent lighting plant. Two engines of so h. p. each. of the Rosb-Amstrong Company's manufacture, will furnish the power for 2.200 incandescent lights.
The Thoueand Island Railway Company, of Gananoque, are consideting a proposition submited by the Kingston Electric Light Company. for the conversion of the road, which is now operated by steam, to the trolley system.
The new power stanon of the Selkirk Electic I.ight Company is about io so trio operation. It is said that the company will have suffcient surplus power to be able to furnish part of the power necessary for the electric railway between Selkirk and Winniper.

Mr. Bremmer, one of the electrical engineers of the Montreal street railway, his invented an electne brake which it is reported bas been successfully tested. A car furnished with one of these brakes was brought to a stop within the space of four car lengths, while running at a speed of 20 mites an hour.
An electric malway is projected to man from Cote des Netges across the summit of the mountain at Montreal. M:- David Yuile ts the promotor of the enterprise, for which a charter has been obtained. The leagth of the rond will be alrout a $\$$ miles. and it is expected to be in uperation by the first of the new year.
The Ciny Council of Halfax base accepted the tender of the Halifax Illuminasing and Motor Company for street lighting for a tern of three years as follows $\mathbf{t} 50=000 \mathrm{c}$. p. are lights at $588.75: 501.200 \mathrm{c}$. p. incanrescent at $\$ 23.87: 50 \mathbf{3 2 c}$. p. incandescent at $\$ 27.52$, the ctity reserving the right to increase the aumber of are or incandescent lights as they may desire at the contract price per light.
The Toronto and Richmond Hill Street Railway Company are being sued for $\$=0000$ damages by Thomas Armstrong. real estate agent, on the ground of damages to his property by the use by the company of the Forest Hill raid. The plaintiff also asks for an injunction to restrain the company from further using the road, and for the disallowance of the township by-law granting the company a bonus of 500,000 .
Mfr. R. R. Dobell. president of the Canadian Atlantic Cable Company. has received an offer for laying the company's cable from a point at the Stratt of Belle Isle 10 a point on the west coast of Iteland. A meeting of the Canatian directors is to be beld shortly to consider the offer, and the Dominion Parliantent will be asked to sulstidici a direct cable connection between Canada and Great Britain. It is believed that the British Government will also assist the project.
Application has been naade to the courts by the creditors to bave the Consoldated Electric Ca. of Fredencton. N. B. putinto hquidation. The solucitor for the company applies to have the application set aside on the ground that the court had not jurisdiction to make the order for the wind. tog up of the company under the Winding L'p Act, by reason of its beng a sailuay company and exempt from the operation of the statute. The matter has been sent up for argument.
Incorporatio:i is being asked for by the Preston and Beelin Street Rail. way Company. Lld. to operate a line from Fresion to Betlin, and connecting at Ireston with the Galt and Preston road, and at Berlin with the Berlin and Watetloo Strect Railway. The proposed capital stock is $\$ 100,000$. The prorisional directors are: Thomas Todd, Daniel Spiers, Wm. H. Surs. of Galt: R. Gregory Cox. St. Catharines : T. M. Bart. Waterloo: Fred. Clare, Breston: John Fenncil. Berhn, and R. G. Dickson, Niagara

Reliance . . . DY
 Automatic
 Alternating Current

PERFECTLY AUTOMATIC,
 FROM ONE LIGHT TO FULL LOAD.

WATHREORD, ONT.

Write for prices and investigate before purchasing

BRANCH OFETCES:
出
106 King St. West, TORONTO, ONT. 749 Craig Street, MONTREAL, QUE.

SPARKS.

The Camadian Pacific Telegraph Comphny annume the opering of a ielegraph line from Halifax to Sydeny, C. B.
The Fredericton Gas and Electric Light Co. have contracted to hight the streets of the city for ten years at $\$ 55$ per light per year.

The largest electine power generator in Canada is now being placed in the power housp of the Oltawa Electric Siteet Rallwiy Company. It is at $700 \mathrm{~h} . \mathrm{p}$. Westinghouse multipolar machine and weighs 37 tons.
The Vancouver Nicos announces the arrival in that caty of Mr. II. Pim. of Toronto. to succed AIr. E. Maxwell as manager of the General Electro Co.'s business. Mr. Marwell has gone to Poriland. Orrgon.
The Westminster and Burratel Inlet Telephone Comphny propose to extend ther line to the American boundary, and thus atford wire connection with Seatte, Tacoma, Spokane, Portand and Sin Francisco.
Bell Teiephone stock is reported to be very strong. and litile or none is obtanabie in Montreal under ${ }^{5} 50$. This stock which pays a per cent. quarterly, is said to be gradually passing into the hands of sumall investors.

It is stated by the manager that the Niagam Falls Park and River Ratioad carried without accident last season. 354,000 - passengers. The work of double tracking the line was commencedin September and is treing rapidly pushed forward.
The Western Union Telegraph Company has been granted permission by the Canadian Customs Department to land, free of duty. at Canso. a part of cabie to be used in reparing the Anglo-American cable, nine miles from Nowa Scotia shore.
Mr. D. H Keeley. Acting Superintendent Gr entment Telegraphs, has just returned from the Gulf of St_{t} Lawrence, having seen to the repur of the cables to the Miagdulen Istand and St. Paul's Ishand. as well as the laying of a new short line to Anticosti.

A 500 light pham has hare) teen mstalled by the (anodhon (ienetal tilectric Company at leithmotge, N. W. T.
It is reported that an American Company is prospecturg with a stew 10 estabhshong an electrac raluay in Charlotetown. P. E. . .
The Itamiton City Council have adopted a by diaw granang a bonus and nght of way to the Hamiton, (inmsty and lkeansville lilectuc R.alway. The promoters of the ramay have secured the necessary right of way over almost the enure route. and have started men to work on the gradug of the lines.
On the Montreal lark and Ishand Ralway Companys haes, whithare atout completed, Mr. Koy, the Company's engineer. has caused to be used broken sione for the roatl beds. Cars of dmertent patiern, 23 fees in length are to be used on this line. The followimg gentemen were hately eleced as the officers of the Company. Hon. Loms Beaubinen. prestidem: Hon. J. K. Thibaudeau, vire-president . Robt. I.. G. I, treasurer , Maurise Perrault, sectetary and assistant tretsuret. Dand Murncr. Henry Hogan and M. S. Lonergan, difectors.
The City Councl of Otama refused to allow the North Amencan Telegraph and Trelephone Company to bring tis wites into the cary except by means of contuts, and then only on condition that the (ompeny would pay to the caty 6 pe: cent. of its gross receipts. The Company did not fall in wath this proposition, but it is alleged, secured an enirance to the city by uthizing the poles of the Bell Telephone Company, the Standard Electrae Company, and fire alarm poles. The City Engineer was instructed to at once rentove the polec and wires athactad to Corporation propert). atd that official carned out his instructions by cutting the Company's wites The City Solacitor of Otana has given it as his opinon that the ikell Telephone Company have the nght to allew other companies to string uires upon ther pols and that the action of the North Amerran Telegraph and Telephone Company in thus straging ther wires was legal.

THE HAWORTH BELTING $C O$.

MANUFACTURERS

OFFICE AND FACTORY: 9 AND I JORDAN STREET,

TORONTO

SPARKS.

The Wimmpax Elertic Ralway Company has recently reduced the wages of lis ecuplosers by 20 per cent.

The Lexill and Commercial Exchange reports the assignment of Messra. Quintard \& l'ackard. fenters in electracal supplies at Victorna, B. C.
The Toronto Railway Company have purchased an aso h. p. Roble-Arm. strong high speed engine. tole used as an auxilary. durng the winter, to their prasemt jower station.
An all meht service has been maugurated by the Ixell Telephone i:o. at Owen Sound, and megotations are proceeding with the object of furtishing the town whth an electuc fire atatm si stem.
Pathament will be asked to giant incorporation to the Nhagara Falls Electric Ralway Bratge Company, to buld a bringe aeross the Niagara Ruce leetween the Fills and the Wharlpool sapids.
A $\ddagger+\mathrm{l}$. p condensing angine and steel boiler, have been purchased by the t'enetangushene and Midand laght and Youer Company, of Penetanguistiene, for ther power station, now in course of erection.
The first electic plant of the Whaldell-Enix Company's manulacture has Ixen mstalled in the liazffe Buidang as Montrenl, by the Company's Canadan agents, Messrs. Join Langton \mathbb{A} Company. of Toronto. The plant comprises a jo kilowatt ineandescent dynamo of the slow sperd type, and a shate switch-board proaded with volt meter and ammeter.
The London West Eleetne Railway went into operation on the tith of November. The event was ceichrated as a public holday. The raad is owned by the company which operates the horse car system in the city proper. There has been oppostion on the jant of some of the caizens and their representatives in the aty counct, to the grantiag of a franchase to the company for the city and the conversion of the city lines to electricity. It is espected that the new electinc raad in London West wall setve to show the cuizens the superonty of electricty, and and the company in secunarg the city franchuse.
When jermasson uas granted the Merchants Telephone Company, of Montical. to erect poles on the streets ot that city. 12 was supposed by the counct that the resolution granumg the provicge called for the work to be done under the superesson and control of the city engineer. It has turned out trowever that the wording of the resolution does not cover this point, and the teiephone company ate erecting poles in a manner to please themselves. and in some cases inuch to the disatistaction of the citiens. This privitere granted to the Merctants Compery, will incidentally worls to the adtantage of the tee! I elephose Conipuny also, as so long as one company is alloned to run its wires overhead, the otber cempang will abse escape the expense uheb would be entailed is purung ther: wires underground.
We learn from the annual report of Mt. Grenville C. Cunningham, chief enginer of the Montreal Strect Kallway, that the total mileage of th: road then compieted will be about 85 mites 50% miles of nex track bave alteaty been land. and it is expected that when uinter sets in the whole system will lave teen had wath rails $\$ 3$ miles of ovehead trolley have been constucted. and some ;oo poles pat ugh There ase in use at present 71 mosor cars. each car teing fited whth two 25 h. f. motors fly the time the winter sets in thr ejupment will have tren incteased to 200 inotors and
 supitied by the koyal Fiec ric Compuns. 1.000 h . p. by a temparary powes statsun efretrd ty the company, and $=00$ h. p. Fron the Montreal Exposition Company ${ }^{\text {engines }}$ The new powe stamon which the sompany are efect. ing on Willams sireet will afford a total of 3.300 h . p . lt is expected that poxt from inco engines from th:s stanorn will tre araitable before the end of the trat. The rngtac bouse in connection w.th this seck station is 235 feet long by sif fres wide, and will contain sux engincs, each having a capacity of too hig. and drung two kilowats Edison fenctatora. Suficien space will ix allowed in the tuisting for iwo more engites. Water for condersiag purgoses will lx ofxatiod from the canal. A chumecy 186 foes high by 9 feet :nerior dumeter bas lxen certed.

The Bell Telephone Co's OF CANADA, L D.

MONMNREAE

wancractueks and lias for saze zuger desceiftion of

TELEPHONIC ond $\begin{gathered}\text { and } \\ \text { ELECTRICAL APPABATUS }\end{gathered}$

LME MATERIAL AMD SUPPLIES.

Will furnish tenders for supplying Warehouses. Public Buldings, Hotels, and Dwellings with

PRIVATE AND LOCAL TELEPHONE SYSTEMS.
HURGLAR ALARMS, HOTEL. ELEVATOR AND
OTHER ANNUNCIATORS, HOTEL ROOM AND
FIRE CALL BELLS, ELECTRIC BELIS. PUSH butrons, ETC
Will also fumish ienders so Cities. Towns and Yillages for Fire Alares and Police Patiol Systems.

Cafalognos uxill to furnisted on afplication.

Sales,'Departiment:

MONTREAL:
-Bell Telephone Baildian - 367 Aqueduct Sureet.

TORONTO:
Bell Telephone Bairding.
37 Temperance Street
HAMILTON:
Bell Telephone Building, Hughson Street.

OTTAWA:
Bell Telephone Building. Queen Streel
QUEBEC:
Bell Telephose Building, St. Jobn and Palace Streets.

WINNIPEG:
Forrest Block, Main Strees.

TORONTO ELECTRIC MOTORCO. naxt jactereks Dynamos and Motors
AER LAMES FOR NIANIISSCENT CUEEENT. 107 Adelaide St. W. - Toronto, Ont.

Special P Pulleys
Split or Solid
BELT PULLEYS IN ALL SIZES
From 3 inch diam. io 15 fect diam.
With iron centres and wrod rim.
Guanaleed for any poxer required.
also soix mandofactirers
DODGE PATENT WOOD SPLIT PELLEES
fall sires alurays in stock:
WEITE FOR OATATOGUE.

The Canadian 0fice \& School Paraiture Co.

ROBB-ARMSTRONG AUTOMATIC ENGINES
SLMPLE and COMIPOUND.
These Engines have the most simple and nost - peffect fly wheel governor in use.
robb emaineering coi, Lto.
Amherst, - Nova Scotia.

If your want to
SELL ANYTHING
to the wholesale and retail hardware merchants and manuiacturers

ANYWHERE

in Canada, you can reach them through the
gamadin Hardware Merchant
J. H. Miclean CO., Ltd. so Front St. Fenlishiss Tozonso.

Hill Patent Priction Pulleys

AND CUT OFF COUPLINGS

For Electric Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,

(Successora to Mitter Hros. © Mitchell)
Toronto Office: 74 York Street.
MONTREAL, QUE.
established 1s69.

THE CANADIAN LOCOMOTIVE \& ENGINE CO., Ltd. FINGSTON, Locomotive, Marine and Stationary Engines
 NOMNEED.
The Canadian Locomotire \& EngiaeCo., Limited. of Kingson. Ontaro, have the exeluswe license for baikding our Improred Patent High Speed Engise for the Dominioa of. Canada, and are farnished by us with drawings of our latess improvements. Providence. R.i.. Nov. 88 th, 888.
(Sikred) AkMiNGTON \& SIMS.

THE
hazletor
BOILER.
$=$
The
Handiest,
Safost,
and
Most
Benomical
Boller.
"GYCLE" AAS ENGINE
IMPULSE EVERV REVOI.UTION mitheet
Descriptive Catalofees of the above on application.

C. W. HENDERSON mandature no doinato ELECTRIGAL SUPPLIES

 ESTMMATES FLRNLSHEH FOR . .
Wiring and Installing Complete Electric Plants

LH:HT MACHEREY ANB COMMTrATORS.

 Abrakates ind Mmbinikl.

44 Bleury Street.
Eifectikic ann (ias lixicor.s.

LONDON MACHINE TOOL CO.,
 YONDON,

THE PETERBOROUGH GARBON AND PORCELAN CO.

... can furnish them equal to any in the world, as they are... sinicfactureks of

THE J. C. MCLAREN BELTIME CO. MOUTREAL

VULCANZED FIBRE CO. HARD VULCANZZED FBBRE

 In Sheets, Tubes, Rods, Stieks and special shapes to order. Colory, Red, Black and Grey. SEND FOR CATAIOGCE AN!) PRICES.the standard electrical insulating material of the world.
Facouru: Wimington, Del.
Offige: 14 Dey St.. New York.
I'leac mention the Enfictuicas. Nrws when corresponding with advertisers.

[^0]: - Paper read befrose the Moctreal Electric Clab.

