The Institute has attempted to obtain the best original copy available for filming. Featuros of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurde et/ou pelliculíe


Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de coulsur (i.e. autre que bleue ou noire)
$\square$
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relid avec d'autres documentsTight binding may cause shadows or distortion along interior margin/ La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutces lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilieur exemplaire qu'il lui a óté possible de se procurer. Les détails de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.


$\square$
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées


Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées


Showthrough/
Transparence


Quality of print varies/
Qualité inégale de l'impression
Continuous pagination/Includes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tete provient:


Title page of issue/
Page de titre de la livraison


Caption of issue/
Titre de départ de la livraison


Masthead/
Gánérique (périodiques) de la livraison

Additional comments:/
Commentaires supplementaires: There are some creases in the middle of pages.
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.



## BLIGHTS OF TIIE WHEAT.

## CHAPTER VI.

Before any description is given of wheat blights due to the agency of more perfect parasitic insects than the infusorial one last noticed, it will be expedient to point out the peculiarities of a most extraordinary abortion of the grain, which has been attributed to various causes. The diagrams will convey a correct idea of its appearance in rye and wheat. It is called ergot, which is French fur cock spur, from its resemblance to the spur of the male domestic fowl. The ergotted grain is



Erget of Rye.
changed both in form and properties, and is one of the most wonderful monstrosities to be met with in nature. The altered grains elongate, turn black, and protrude in the manner shown in the figures, both of which are drawings of actual specimens. Ergot has been the subject of numerous speculations, and it has, by a singular mistake, been actually classed amongst the fungi, to which it bears no true resemblance whatever. A very superficial examination, in the present state of science, is enough to show that this is a great error. Some persons have imagined that it is caused by the puncture of an insect made for the purpose of laying its egg, such as is well known to be the case in certain remarkable excrescences on plants, of which oak apples, and nut-galls are common examples. By such punctures, morbid action is induced, and the results are the excrescences alluded to, some of which are articles of comHercial importance and of great use to man. A certain fungugin variably accompanies ergot, and therefore it has been concluded by certain observers that it produces the disease. It is however quite as probable that the fungus is accidental ta the ergot, as that the ergot is caused by the presence of the fungus. "Be the cause of its production," says professor Henslow, "what it may, the ergot is a monstrous state of the seed in which the embryo, and particularly one part of it, is preternaturally enlarged, protrudes beyond the chaff, and often assumes a curved form somewhat resembling a cock's spur, fiom whence the name "ergot," which is of French extraction It is black superficially, and of a spongy texture internally, containing much oily matter, so that it will burn like an whond when lighted at a candle." Daniell, in his table of *ugars and their congeners, says that a certain saccharine Wherter, which he calls "mushroom sugar," is derived from

hydrogen, and thirteen of oxygen. Another chemist announced that he had discovered in it a non-azotised vegetable substance, which he denominated ergotine. It is obtained in the state of a brown powder, of a pungent and bitter taste, and he looks upon it as the active principle. He says that it is narcotic and poisonous, but the composition and properties do not yet seem to be ascertained; and most probably, if it could be duly examined, it would turn out to be a mixture. Unquestionably ergot contains oily matter and a saccharine principle, and when. taken into the system, its effects are extremely violent. Thy use of ergot of rye as a medicine, in peculiar cases, has lon been well known torethe faculty, and recently ergot of $u$ heal has been found to be even more potent than the other. A nigh temperature, as'is the case with most vegetable poisons, destroys its injurious properties, and the rapidity with which such substances become volatile, presents a serious obstacle to its being accurately examined in the laboratory of the chemist.

In certain placea, ergot is extremely common in rye, and it is more so than has been suspected in wheat. It occurs in rnany grasses. In 1844 and 1845, it was abundait in the following grasses-lolium perenne, lnlium arvense, féstuca pratensis, phileum pratense, dactylis glomerata. In the lolium it was extremely abundant, so that the author can say, he scarcely èkamined a field either in the east or west of England, for he riêd many in both, without speedily finding specimens. There are localities in which the ergot has not been seen at all in wheat, and we find botanists accordingly who state that they never met with it. But the same individuals would, perhaps, in other places, discover more than they wish to find. Prefessor Henslow desired his miller to search for him in two bushels of revet wheat, and he quickly produced three dozen specimens, and said there was as many more left in the sample. The author in 1844 suspected the existence of ergot in certain low lands in a village near Great Yarmouth, and requested the miller of the place to look into the corn when sent to be ground from one particular farmer, on a very small occupation near the marshes. The miller sson received from this place four bushels of wheat, and on searching found directly forty-eight specimens, which he brought to the author. The following season the author searched in a wheat field on the same little farm, and could not find any ergot in it ; but gathered a large quantity in the grasses growing in the same district, in places where the drainage was bad.

The medicinal cffects of ergot, in small doses, have already been noticed as being extremely powerful, but if taken to any extent, its resulis on the animal frame are truly awful. This has been proved by numerous experiments, of which professor Henslow gives a most striking account in his valuable notice of this disease; to which he adds a proper caution sgainst their repetition now the question is settled. Animals which refused ergot mixed with their food have been compelled to swallow it, and it reduced them to a wretched condition. It was tried upon pigs, and also upon poultry, and the consequences were sickness, gangrene, and inflammatory action so intense, that the flesh actually sloughed away. In some cases, the limbs rotted off, and no description of animal suffering has ever ex. ceeded the direful ills thus inflicted. These experiments were made with a view to determine whether the ergot of rye, constantly ground up with the flour in some parts of France, might not be the cause of the gangrenous diseases so prevalent amongst the poor in certain districts. The symptoms of these epidemic diseases are dreadful, and there seems to be very little doubt that the suspicions as to their originating from
ergotted flour of rye are correct. Tessier, who has paid great attention to the subject, mentions a case which came under his own obscrvation. A family were in a stato of great destitution, and the father begged of a neighbouring farmer a quantity of ergotted rye to supply the urgent calls of his distressed family for food. The farmer gave it him, but added that he was afraid it was not wholesome. Still the calls of hunger prevailed; and in the face of this caution it was eaten. The result was the death of the father, mother, and five of the children out of seven. Two survived, but one of them became subsequently deaf and dumb, and, besides, lost a limb which actually rotted off, precisely in the same way as the limbs of the animals which were compelled to swallow the experimental ergot. Professor Henslow has published a series of remarkable extracts from the parish register of Wattisham, in Suffolk, in the year 1762. It records the sufferings of several persons from an unusual species of morification in the limbs, the symptoms of which were very similar to those of the people under the influence of ergotted rye in France. Indecd there seems a great probability that their maladies were due to the same cause, except that, in the Suffolk cases, the ergot was that of wheat instead of rye. Wherever it is perceived in samples of wheat it ought to be carefully picked out, and might be sold to medical men, since in judicious hands it may be applied medicinally with great success. But it should never be made use of, except when prescribed by those who are, from profes. sion and practice, well aware of its properties, and skilled to apply them when required.

The whole range uf our physiological kiowledge does not afford a more wonderfui instance of a natural chemical trans. mutation, under certain circumstances, than the present. By the agency of some unknown cause the nutritious corn is changed into an altered unsightly form, and endued with properties perfectly the reverse of its original wholesomeness.
It is more than probable that many disorders have been prozduced by this cusious abortion, the origin of which has hitherto remained unsuspected. Let scarch be made for it in localities where gangrenous diseases of the limbs abound, with a view to prevention. Moreover, it is well worthy of the farmer's attontion, inasmuch as his cattle may have suffered much from the same cause, when he has never even dreamed of its existence. The author knows, al this moment, of certain low meadows, where all the catle that were turned into them at one time, were sure to be taken ill. They have been since judi. ciously drained, and in 1845) were searched in vain for ergot in the grasses. But in places adjacent the author gathered large quantities. These meadows now afford excellent food for the catle, and no complaint appears as heretofore, when the occupant was actually afraid to turn any animal into them. Although this fact may not be perfectly decisive, it affords a strong presumption in favour of the idea that ergot did greally tend to promote the evils complained of. A careful examination of the grasses growing near many hedge-rows, will enable an inquirer in the autumn to discover more ergot than be may imagine. In 18.41 and 1845, there was a great deal to be found in such places; and it is notorious to numbers that pigs running about the lanes became diseased.

These inquiries are undoubiedly of great importance, and their value is further enhanced by the fact, that there is reason to believe that in some localities in France, where pains have been taken to prevent ergot being sent to the mill with the good rye, the opidemics formerly so prevalent have diminished. Indeed, it is said, that they have been nearly removed by this judicious care. It is to be hoped that this matter will receive more attention in parts of our own country, where morbid and unaccountable disorders prevail amnngst the poor. Ergot is not unlikely to be the unsuspected source of much sutiering hitherto bafting inquiry.

The specimens of ergot of rye drawn for this section, were gathered by the author in September, 1845, in a sort of peaty soil, with a stiff cold subsoil. The rye was late, and pretty nearly every other ear was more or less ergotted. In the pre. siqua Snptember. he found exactly the same thing in the next field:. Tlie general opinion seems to.be, that any wet hard
land is suitable to its development. But the singular thing is, that so few prople notice it. Threshers in barns will declare they never saw it, till it is pointed out to them. A farmer of great activity, eighty years of age, assured the author he had never seen it. He soon gathered a piece of ergotted rye-grays and showed it to the old man, who said, "Well, in all my life, I never saw such a thing before!" Indeed, by the men who work in our barns, it is probably often mistaken, when on the floor, for the dung of rats and mice, which it not a little resembles.

The prevalence of ergot in those fields where the drainage is imperfect, and its disappearance from such as have been thoroughly well drained, seems to point to this as its chief preventive. After searching in vain over a large well-farmed parish for ergot in wheat, during the autumn of 1844, the author requested a small farmer to look over some that was grown on a wet clayey spot close to a ditch adjoining a marsh. He was soon presented with three or four specimens from the suspected place, one or two of which had the chaff scales still adhering to them. This seems to confirm the supposition as to its favourite localities, and at once to suggest the best method of getting rid of it. Professor Henslow appears to be of the same opinion, and hints that when ergot is wanted for medicinal objects, it might probably be always obtained if grown where such conditions of soil present themselves.

The fungus, before said to accompany the disease, and to which it has been attributed, is called ergotetia. The mere fact, however, of coincidence, does not prove cause and effect. It has a nasty smutty appearance, and the author has seen the cladosporium herbarum, previously noticed, growing with it on the chaff scales of the ergotted ears of rye. Such a transmu. tation of nutritious bread-corn into a violent poison, cannot fail to remind the reflecting reader, that the scriptural statement of the word of truth-the seed of eternal life, becoming a "savour of death unto death," instead of "a savour of life unto life,"一has a striking analogy in this extraordinary natural phenomenon.

## THE CULTCRE OF THE TURNIP.

BY MR. A. S. MOFFAT.
The third head leads us to consider the inorganic constitution of the turnip, ard some of the manures generally em. ployed, as regards their capability of contributing to the wants of the plant, and maintaining the permasent fertility of the soil. The following table is so arranged as to exhibit side by side, the quantity of inorganic constituents required by 24 tons of entire turnips, roots, and shaws, calculated from the average of the most recent investigations of Professor Way, of Ciren. cester. I have assumed 20 tons of roots per acre, and the quantity of shaws upon the 20 tons to be 4 tons, which is rather within than beyond an average crop-the quantity of each substance, that an acre of the soil, whose composition I stated at the besinning of this paper, can furnish without manure, assuming that the depth from which the fibres of the turnip derive their chief support is usually seven inches, which depth over an acre of land will weigh somewhere about 700 tons. The average quantity of mineral matters contained in 15 tons of fully rotten farm-yard dung is also given, along with those furnished by 4 cwt . of ordinary guano, which is rather anex. tra dose.

|  | $\begin{gathered} \text { Tansol } \\ \text { Turnips. } \end{gathered}$ | $\begin{gathered} \text { Anacre of } \\ \text { Soil. } \end{gathered}$ | $\left.\begin{aligned} & 1.5 \text { Tuns } \\ & \text { farm dug. } \end{aligned} \right\rvert\,$ | lewt. or Guano. |
| :---: | :---: | :---: | :---: | :---: |
|  | Ihe. |  | 1 ls |  |
| Silica | 13.2 | 5.50. 10ns. | 2.473 .4 | 7.02 : |
| Phosphoric acid | 47.6 | 439. lbs. | 108.19 | $67.14{ }^{\circ}$ |
| Sulphuric acid. | 60.24 | Trace. | 58.1 | 16.38 |
| i,me... | 9024 | 52 tmne | 214.6 | 53.87 |
| Magnrera. | 14.6 | 560. Ibs. | 17.36 | 3.6 |
| Peroxide of iro | 4.32 | 32.9 tonk | 29.76 |  |
| Potash | 1.57 .41 | Trace. | 1133.11 | 20.15 |
| Sada. | 59.87 | Trace. | 48.8 | 025 |
| Cliorine | 35.53 | Trace. | 22.63 | 7.8\% |
| Toial | 470.57 | .... | 3.075.14 | 176.24 |

Now it will be observed from this table, that the turnip is $\%$ plant which draws a large amount of mineral matters from the
soil or manure-that the soil, whose composition I have here stated again, for the sake of illustration, is essentially deficient in regard to four very important agents, viz., potash, soda, sul. phuric acid, and chlorine, but containing a super abundance of all the other ingredients required by 24 tons of turnips; that 15 tons of well.prepared farm-yard dung, can furnish a considerable excess of all these constituents, with the exception of 2 lbs . of sulphuric acid, 44 lbs . of potash, 11 lbs of soda, and 13 lbs. of chlorine; and that consequently in suflicient quantity, it is eminently qualified not only to comply with all the wants of the crop, and the deficiencies of the soil, but to contribute so largely towards it from its own resources, as to leave the soil comparatively unscathed, and replete with all the materials of future crops, with but the trifing exceptions above coumerated. But not so the guano: in it, we notice a large deficiency of all those consituents, which constitute the perfection of farm.yard dung as a manure for turnips, amounting to $6 \frac{1}{2} \mathrm{lbs}$ of silica, 44 lbs . sulphuric acid, $36 \frac{1}{2} \mathrm{lbs}$. of lime, $10 \frac{1}{2} \mathrm{lbs}$. of magnesia, 1274 l lbs. of potash, $59 \frac{1}{2} \mathrm{lbs}$. of soda, and $27 \frac{1}{2} \mathrm{lbs}$. of chlorine, less than what is required by a moderate crop of turnips, and denoting it a vastly inferior application to farm-yard dung, as regards the permanent fertility of the soil. It will be seen by referring to the above table, that the soil, whose composition is there given, contains an almost inappreciable quantity of potash, soda, chlorine and sulphuric acid, and that 24 tons of turnips require 303 lbs . of these bodies, while 3 cwt. of guano, which is a large dose, can only furnish little more than $44 \frac{1}{2} \mathrm{lbs}$. To what an inconsiderable extent, then, guano is capable of counteracting the poverty of such a soil, will be sufficiently apparent, as the very constituents of which the soil is most in want, exist also in least abundance in guano. And in the event of that soil being called upon to produce a crop of turnips, having guano applied to it as a manure, how is this deficiency in both to act upon the crop? And there are many soils in the turnip districts, upon the sandstone formation, not better supplied with these ingredients than the one in question. Certain it is, that the rains may convey a very small portion of the alkaline salts to the soil; even snowwater is rendered a little turbid by the addition of a few drops of the nitrate of silver to it, which indicates the presence of a chloride. The supply derived from this source, together with that obtained from the gradual disintegration of the undecomposed parts of the soil, will certainly assist the quantity furnished by the guano, but still a large deficiency must exist; ! and so soon as the whole available supply of these matters is appropriated by the turnip, the farther formation of these prox1, imate principles which require their presence, will be immediately arrested; and either a plant of an unhealthy and inferior quality be produced, or the growth of the plant must entirely cease; although other constituents may be present in quantity sufficient to produce double the weight of the crop. In support of this opinion, I beg to refer to the table exhibiiing the difference of constitution between turnips produced from farm-yard dung, and guano; those produced from the latter, contain eight per cent. of water more than the former, and oth. erwise are of considerably less value, as regards their adaptation for the food of animals, even supposing that their bulk per acre is equal to that of the former. The oil, gum, sugar, and albazmen, amounting to above seven per cent. in those produced from dung, while they only amount to two-and-a-half per cent. from guano. Now the reason is obvious why the produce raised from it should be inferior to that produced from farmyard manure, as it will be seen by a reference to the table shortly givert, that it is capable of furnishing a much less quantity of those mineral constituents upon which the healthy development of the nutritive principles depend. But this inferiprity in quality, I conceive, will exist tis a greater extent where the guano has been applied to poor soils naturally deficient in such bodies as potash, soda, sce., than in the case of richer lands, fertile with such constituents. In regard to the influence of guano on the permanent fertility of the soil, the large quantity of ammonia which guano is abble to afford constitutes Dis chief value as a manure, to which the rapid and luxuriant
season, is to be ascribed, and on this account it is betieved by many experienced Agriculturists, to be the best manure that can be applied; and it caunot be denied, but that we have frequently seen as abundant crops raised from it, as from any other application. But the fact is generally forgotten, that its efficacy depends almost entirely upon the stimulating action of its ammonia; and, as before explained, the larger the supply of this ingredient, the greater will be the quantity of mineral constituents appropriated by the turnips; and as the guano can only furnish a triffing amoumt of them, it is obvious that the exhaustion of the soil of these ingredients will only be the more extensive, i: proportion to the large quantity of ammonia furnished. And it is my opinion, that if successive crops of turnips be raised from guano or bones alone, upon poor lands, and be drawn off the soil to be consumed elsewhere, such soils will become so exhausted of the alkalies and others, that they will eventually refuse to produce any crop at all. But the case is to a considerable extent altered when they are consumed on the land by sheep, as then the greater part of the saline matters obtained from the soil by the crop is returned again to it, with the exception of part of the phosphates, winich are retained by young stock, in order to buld up the structure of their bones. As an evidence of the tendency of such manures as guano, bone dust, \&c., to exhaust the soil of the alkalies, and other constituents not furnished by them in sufficient abundance, I beg to refer to the soil whose chemical constitution is detailed in this paper, and which we observed to exhibit a marked deficiency of these bodies. Now this will not appear so strange, when I state, that three or four successive crops of turnips have been produced from it, at intervals of four years, with bone dust alone as a manure; and that fully one-half of the produce was, in each case, drawn off the land, to be consumed by catle; which we see, in this case at least, to have had precisel; such an effect in exhausting the soil as might have been anticipated. It is also a fact worthy of recored in this age of guano, that it is ascertained to have been used by the natives of South America, long previous to its ever being thought of by the Farmers of Eugland, and that the lands of a monastery belonging to the Spaniards, had been manured with it for a number of years in succession. At first they obtained large crops, but eventually they were obscrved to become less luxuriant year after year, until at last they were too insignificant to repay the expenses of cultivation, when the lands were left untilled, and may even be so at this day. Now the gradual, and ultimately complete, deterioration of these lands, can be ascribed to no other cause than the tendency of guano to rob the soil of its alkalies; and other inorganic corstituents, as I have before explained. It might be considered a matter ea. sily accomplisted, to add such artificial preparations to guano or bone dust, as would render them at once replete with all the materials required by a crop of turnips. For instance, were we to add to the usual quanity of guano or bones 1 cwt . of pearl ash, 4 stones of Epsom salts, and 3 cwt . of common salt, we would supply in abundance most of the ingredients required ; and, in a dry season, this addition might be attended with manifest advantage; but owing to their ready solubility in those forms, the first beavy rain that fell would wash the greater part of them into the rivers, so as to be totally lost. And this opinion of the fleeting action of manures in too soluble a form, is strongly corroborated by what I have mentioned, as having been the effects of the continued rains on the turnip crops of 1845, in a former part of this paper. Therefore, the grand point to be attained in the application of all substances as manures, is to apply them in such a form as to be gradually rendered soluble, and as they can be appropriated by planis, so as to guard against their being washed out of the soil on the one hand, or being rendered useless by their insolubility on the other. And such a medium 1 conceive to be eminently attained in fully rotten farm-yard dung; for by the gradual decomposition of the fibrous part of the straw in the soil, ihe inorganic matters which chiefly reside there are siff free; just in such quantity as is required for the present use of the crop; while any waste is effectually obviated by the complete insolu. bility of such parts of the fibre as are not yet entirely decom.
posed. I need scarcely remark on the utility of so preparing the dung, previous to its application, as to be in such an ad. vanced stage of decomposition, as to give of the whole of its constituents in sufficient time to meet the wants of the turnip during the short period of its growth. So well aware of the utility of this are most of the Farmers in the Lothians of Scotland, and many in Northumberland, that they apply the dung to their land in the autumn previous to sowing the turnips, in order that it may have sufficient time to become entirely decomposed in the soil, and ready to impart its constituents to the turnips, when required. But to this method 1 object, on the ground that during the winter almost the whole of the ammo. nia formed. as well as part of the most soluble mineral constituents, will be washed away by the rains, and consequently lost to the crops, unless it is applied almost in the state of straw, in which case it is so bulky, that a sufficient quantity, equai in a proper dose of rolten manure, cannot without difficulty be buried in the soil by the plough. I have enlargul, 1 fear, upon this part of the subject ti such an extent as to be considered tiresome. But the subject is an important one, and the possession of such information as will enablo us to apply such in a lures to the turnip, as will not only contribute to all the wants of the plant so as to produce an abundant crop, but also in such a manner as to leave the soll comparatively unexhausted for the production of succeeding crops, is one of the most important matters connected wish its culture ; and it must also te taken inte consideration, that in most cases, from the manures applied to the turnip crop, the soil is expected to be. come replenished with all the materinls required by the rutation following; therefore, on the proper culture of this crop, in that respect, the success of the whole succeeding crops depend.
I will now take leave of this part of the subject, by recom. mending farm-yard manure as in every respect the best appli. cation that can bo used for the turnip, in order to comply with the various requirements of the crop and the soil : that where, as is often the case, a sufficiency connot be obta:ned to exteud over the whole breadh of land sown, one-half the usual quantity, or about twelve cart-loads per acre, be applied along with 2 ewt. of guano; and that in this case, at least one-half the produce be consumed on the land with sheep, by which a very considerable portion of the mineral matters will be again returned to the soil, in a form well calculated to be of immediate use to the succeeding crop. Bones, either simple or prepared, may be substituted for guano, but 1 do not think with advan. tage to the soil. Those dissolved in sulphuric acid are decidedly a cheaper application than simple bones, as by the ready solubility of the superphosphate of lime, a much less quantity will produce as large a crop: but it must not be expected that they will leave in the soil so large a portion of phosphates for the succeeding crops.
Having now glanced over facts councted with the scientific part of this subject, I will just allude to one or two important particulars connected with the practical part of the subject. In the first place, I would beg to direct your attention to the umportance of exposing the soil intended for turnips, as much as possible to the winter's frost, in order that the eggs and larra of insects, and the seeds of nosious weeds, may be destroyed. Besides, frost is one of the niost powerful agents in nature in etfecting the disintergration of the larger particles of soils, and rendering their constituents free to contribute to the wants of verectation; and, in my upimion, a full expmsition of the soil to the atmosphere in winter is of much greatet benefit to it in this respect, than all the summer working we bestow. This the best Farmers in our district effect, by ploughing the land as soon afier the conclusion of harvest as convenient, and then set at up in deep and narrow drills; and these they frequently split down again towards the spring, when the weather will permit, so as to expose a fresh surface to the atmosphere.This system I deem excellent, where the soil is sufficiently dry to admit of it; but upon wet or tenaccous lands, it cannot be pursued with adnantuge. The next thing is the use of lime, in restraining thite ravages of that greatest pest to the light-land Farmer, the tuinip grub. Into the nature or causes of this disease in the plant, it is urt my imention at present to enter;
and whether it is produced by operations of insects, or by the presence of some noxious matters in the soil, is not to my knowledge yet satisfactorily settled,--for my own part, I am inclined to the latter opinion; but be the cause what it may, I am convinced, not only by my own experience, but from the experience of others, that lime properly applied and in sufficient quantity, is the only sufficient remedy. I have this season seen a very remarkable instance of the kind, in a large field of turnips which was limed in the autumn-with the ex. ception of about two acres in the centre, not a single diseased plant could be detected upon the limed parts; while on the two acres unlimed, nearly every turnip was in a state of decomposition from the grub. I might multiply instances of a similar nature, but I consider my time will be betler occupied in offering a few remarks on the best manner of applying the lime in order to effect this object, and as an illustration of what is meant, I will detail my own practice on this point. As soon after the conclusion of harvest as is convenient, I cause such fields as are intended to be limed, to be as deeply ploughed with three-horse ploughs as the staple of the soil will permit. On the surface of the ploughed land, the lime is applied from a large heap, in an eminently caustic and impalpable powder, and completely incorporated with the soil by the use of the harrow: the land is then set up in deep and narrow drills, in a direction generally contrary to that in which it was ploughed, to lay over the winter, if dry enough to admit of it; but if the soil is of a wet or tenacious quality, it is again lightly ploughed up in fifteen-feet ridges to remsin during winter. By the above method I think the full action of the lime and frost combincd, are insured as far as practicable. It is the practice of many to apply the lime to the surfuce of the oat stubble previous to its being ploughed, but I do not esteem this a good practice, as the lime is laid by the plough in almost vertical and isolated stratas in the soil, and in place of being generally intermixed with it, a comparatively small portion of the shil ever comes in contact with the lime until the succeeding summer's working, when it will be found to have completely lost its causticity, and consequently, be of litte further use as a corrective to the soil. As an experiment, a year or two ago, two fields in my own farm were very much addicted to grubs, and the same quantity of lime was applied to both in the autumn. On the one, the lime was applied in the manner recommended, and not a single diseased turnip could be found in the field; while on the other, it was applied to the surface of the stubble, which was merely afterwards ploughed in fifteen.feet ridges to lay over winter; and in this case, I could not discover that the ravages of the grub were in any considerable degree mitigated: thus speaking volumes in favour of the former plan. Many other considerations connected with this almost inexhaustible subject suggest theniselves to me, but time forbids my mentioning them. Merely to enumerate the names of the host of artificial fertilisers for the turnips, with which the columns of the newspapers weekly teem, would be the work of a considerable time, without at all entering into a review of their merits. In conclusion: I am well aware that a diversity of opinion will exist upon several matters stated in this paper; more especially in regard to that part of it which treats of the tendency of the artificial applications, guano, bones, \&c., to exhaust the soil of its inorganic constituents; as itwill doubtless be contended by many, and perhaps justly, that they have succ eeded in raising as large crops of turnips from these manures as from farm-yard dung or any other. But 1 would tell $t$, se individuals, that there are other two matters to be considered in estimating the value of any manure swhatever, of equal importance to the bulk of the crop produced from them, viz., is quality, and the tendency of the manure to contribute towards the exhaustion, or the permanent fertility of the soil. And if it is considered that, by fair reasoning, founded upon ascertained facts, I have proved the tendency of some applications to be towards the production of plants of an infe. rior quality, as well as the permanemt exhaustiors of the soil, as regards certain inorganic constituents essential to vegeia. tion. I think the correctness of riy assertions on this point must be edmitted.

## DISCUSSION ON DRAINING.

At a Meeting of the Union Agricultural Socioty at Cold-stream-
Mr. Mrlne said it so happened that during the additional half hour they had obtained, a parcel had made its appear. ance: and in connection with it he would now beg leave to propose as a toast, "deep draisung." Thete wete many gentlemen who, he believed, had grent doubls on that subject; and it occurred to him that such meetings as these might be advantageously occupied in discussing such topics. In the amall club to which allusion had already been made, they beld discussions of this kind; the last, for instance, was on subsoll ploughing, and the next would be on draining. These were topics that brought 50 or 60 persuns together, and afforded ruom not merely for complimentary speechea, but for deriving solid information. During the course of the day he had rocoived a tetter from Edinburgh, intimating that thes apparatus they now saw was to come here. It had been noticed already in the newspapers, without his being aware of it, he having mentioned it to Mr. Donaldson Selby in the course of a con. versation on the quantity of water likely to be discharged by deep or shallow drains. This was an instrument not exactly according to the plan he gave, but of a smpler character, and not quite so accurate. By their leave he would show them the principle upon which it was framed. Mr. Milne then proceeded to describe the apparalus, which consisted of a wooden box, to be placed at the mouth of the drain, the water from which, entering the box by a funnel at the top, passed into one of the two compartments of a tin or metal receiver. The receiver was so constructed and fixed upon an axle, that when one of its compartments became filled, it fell down with the weight of the water and emptied itself, at the same time lift. ing up the other compartment to take its place under the funnel; and this again becoming filled, fell, emptied itself, and lifted up its neighbour; and thus the process went on. Con. nected with this movement was a cos-wheel and rack, which moved one tooth with every discharge of the receiver, and by this means an index was obtained; the apparatus could thus be left at the mouth of the drain for wecks or months, and on opening it, the quantity of water discharged from the drain during that time would be found duly registered on the index. Mr. Milne then proceeded to descrive some arrangements of dians for applying this apparatus, in order to ascertain the quantity of water discharged from shallow as compared with dee; drains. He had a twenty acre field dramed in two sets -one part 3 feet deep, 15 feet apart; and the other part $3 \frac{1}{2}$ feet deep, 30 feet apart. Each set of drains discharged into one mouth, and at each mouth he should placu an instrenent of this description. Hitherto this matter had been altogether conjecture. They had nothing but opinion upon it, and no facts. He wrote to Parker and Smith, and some other agri. cultural engineers, and they informed him that there was no such instrument for testing the point; and accordingly he had been occupying himself for the last six months to find out some such instrument. He had his own opinion on the sub. ject, as they would understand by his proposing "deep drain. ing" as a toast; and he merely proposed to them a simple in. strument by which that point could be ascertained. (Applause.) It had always appeared to him that the only test by which they could come to a certain knowledge as to what was the proper depih of drains, was the depth to which plants would throw down their roots in the soil-the depth of soil from which plants will, by their nature, seek nourishment. If it be found that a particular crop never by possibility goes lower than $2 \frac{1}{2}$ feet, one did not well see the necessity of making the ground dry to a lower depth; but if by draining to a lower depth, common crops will throw down their roots deeper, that would afford greater nourishment and greater power of growth. That was one important element which should be attended to in draining. Let botanists tell us to what depth these roots will go; and if to three or four feet, then they ought to make their land capable of giving nourishment to that depth by means of draining. That was an clemont which went far to settle this question. For example,
flax was well known to go down thirty inches, the roots of turnips went sometimes even decper, and even the roots of whent to a very considerable depth. An experimont he had tried, which confirmed his view of deep draining. He drained three parts of a field in three different ways. Mr. Milne mentioned the depths and distances of the threo kinds of drains. Tha result was that the field of onts produced one.fourth more on the deep drained, than on the shallow drained part. He might be right, or he might be wrong; but he mentioned the cirm cumstance as having operated on his mund. The Chairman agreed with him as to the advantage of deep drains; and he would perhaps give them his views on the point.

The Cunirman said they would all agree how much they were indebted to Mr. Miine for the introduction of this impors tant subject. He entirely agreed with him that if such dis. cussions were usual in meetings of this kind, it would give a much greater importance and interest to them than hitherto, because, although it was extremely pleasant to meet with friends at the festive boards, complimentary speeches were not half so valuable as discussions like this. It happened that, like Mr. Milne, he had the honour of being President of a Farmers' Club-the "Tyneside." Nearly a ycar ngo he was requested by the members of that Club to address them upon this subject; and after the delivery of his own senti. ments a discussion took place, in which the question of the depth to which plants will penetrate the soil when not pre. vented by water or the coldness of the soil was consicered. That address was afterwards published; and if he had a copy he would be extremely happy to send it to Mr. Milne, because it would bear bim oat in the estimate ho had formed as to deep and shallow draining. No doubt many advantages had arisen from two fect drains, but they had not been compared with the advantages arising from drains of a greater depth. Here was a test of comparison produced by Mr. Milne. But they hada seen comparisons of other kinds. He had seen them in ways sufficiently s.stisfactory to himself, to make him deem it more safe to drain at four than at two feet depth, and brought him to this conclusion, that he would pay for no drains which were less than three feet deep. They were not draining for two or three years, but for a permanent benefit, and therefore they should talse the safe course. Mr. Mine bad adverted to the depth to which the roots of plants would penetr te. The late Bishop of Durham, Dr. Barrington, who was curious in sucla matters, made an observation on this point of considernble interest. It was found that the roots of some whent at Bamburgh Castle penetrated to the depth of six or seven feet below the surface of the soil. He did not say that it was necessury they should go that deep with the drains; yet if the roots had power to go so decp, they could not do better than afford them the opportunity of getting their nourishment from as great a depth as possible; and to whatever depth they withdiew the vater, to that depth they were affording the roots of plants the opportunity of obtaining nourishment, and affording also to that depth access to the atmospheric air, the constituents of which contributed greatly to the fertility of the soil. There were cases in which draining might not be required to be so deep, but ho remembered an instance of a field having been drained with two feet drains without effecting the benefit expected from it. It was then determined to cut four feet drains at intervals between each two of the two feet ones, and this was done. He was staying with the proprietor. It had been raining heavily the whole night, and it being suggested in the morning that this would be a good opportunity to exrmine the drains, they accordingly went, when they found the four feet drains venting all the water, and quite clear, while the shallow drains were throwing off a very small quan. tity, perfectly turbid. The first direction which agricultural improvement must now take, generally speaking, in this country, was draining. No benefit could be derived from wet land, until they had first carried off the surplus water, which not only prevented the roots from penetrating, but kept the land cold. Evaporation was always going on on wet lands; the greatest cold was produced by evaporation, and that cold was pernicious to the crops.

From tho Allany Cultirator.
"RUNNING OU'I OF VARIETIES."
Undor this hend wo published a communication in our March number from I. A. Pansons, Esq. Withuut istending to enter at this tumo into a detaled discussion of the subject, wo think it proper to state a fow of the rcazons why we dissent from some of Mr. P.'s conclusions.

He is mistaken in supposing wo had expressed the opinion that plants, under any circumstances, "do not degenerate." This is not our position; but we hold that plants have no na. tural tendency to degencration. Mr. P. on the other hand, if wo understand him, belineses that all plants have an inherent iendency of this kind-that degenerncy results from an originul, or constatutional principlo. He thinks "the science of botany and vegetable physiolngy," prove that any plant continued from "the same aced on the same soll," will "degene. r.te till it becomes extinct."

That degennacy may fullow from growing a plant "from the same seed on the same soil," is not improbable; but does this consequence ensue frum the natural decline of the species or variety to which the phant belongs, or from the exhaition of the sorl and unfavorrable external influences? This is the question.

Let it be remembered that every piant requires its specific food; and that ench successtve crop, or gencration of the same kind of plant, inkes something from the soil. Hence it necessarily follows that this loss must br stipplied, or exbanstion will follow; and as the foot required by the plant is lessened, it is evident tiat the amount of produce will be lessened in a corresponding ratio. But is it proper to say that a decline of this kind, is the result of any law of : botany or vege, table physiulngy?" But though Mr. Parsons has told us that such $n$ law oxists, he has mot told rehat it is, or where it may be found, as expressed or unc rstood by those who believe in its validity.

It will be observed that the theory advocated by Mr. Parsuns applies to "any plant," including not only those which are propagated by buds, buths, or tubers, but all others, whatever may be their mode of reprodaction. But without any reference to the persons who have given credence to this theory, let us nsk, is it sustnined by fucts? Is there anything within ans knowledge connected with the cultivation or growih of grains, fruits or vegetables, which can constitute a basis for such a theary? Take wheat, for example. Some of the varieties hed in highest estimation, are lenown to have bern cullivated in the district where they are now found, for several centuries; and a variety cullivated in Egypt, (the Triticun compositum) has been grown on the banks of the Nile for more than three thousand yenrs.. There are several facts that establish this conclusion; but the following may be saken as a drenomstration; The ancient people of that country, somotimes placed small quantities of wheat in the enbalmed bodies of their dad. In several instances wheat has been taken from mummies, which, from hierglyphicnl records connected with them, were known to have been interred for the long period mentioned; and this wheat on being sown has vegetatet!, and been found to be identically the same kind as that grown in Egypt at the present day? How long a time is required for this kind of plant, "grown from the same seed on the same solt," to "become extinct?"

But Mr. Knight believed that srome old kinds of pears and apples had become unprofitable on account of their constitutional deciine. Weec he now alive, he would have sufficient evilence that his theory would not apply to the kinds mentioned by him. The Autumn Bergamot is said to be the oldest variety of pear fnown, heving been cultivated by the Romans two thousand yrars ago. Mr. Knight thought it was about to breome extiact. In France and other parts of Europe it now dors well, and in this country, acco.ding to Douning, it grows vignrously, and bears gnod crops. The Brown Bearre. St. Tromain, Chnumonetelle, and White Doyenne, (Virgafiew or St. Michael, ar all old kinds-some of then have beor known for two hunderd years-yet all produce well, in good soils, in this coustry, and aro said to produce better
in France than they did sevcral years ago. The white Doyenne, which from having failed around Boston, was taken by some as an evidence in support of Mr. Knight's theory, is considered in the Genesee valley (according to a statement of J. J. Thomas, in the Mureh number of the Horticulturist.) one of the most productive, hardy and healthy varietics there known.

Of apples, the Golden Pippin and Nonpareil are very old sorts, and were supposed by Knight to have "run out." The former has been cultivated for nearly two hundred years. It is well known that these kinds flourish well on proper soils in this country. We lave secn the fruit of both varieties in the highest perfection; and even in Eingland the failuro in Mr. Knight's time was only partial, and by improved cultivation the former productiveness of the kinds has there been restored.

Take an example of another kind:-The common variety of red current has been propagated by buds or scions from a time the memory of man goeth not beyond; and the same is true of several kinds of grapes, and also of roses. Have they any less constitutional vigor now, than at the earliest period of which we have any necount of them? Where they are put on proper soil and reccive proper training, they flourish well. How much longer must this system of propagation be continued, before the varteties will "become extmet?"

Mr. Parsons refers to the potato. He thinks the natural tendency of varieties to wear out, has already exterminated many, and that others are fast failing from the same cause. The non-production of balls be regards as an evidence of decline in constitutional vigor. Our observation would unt justify this conclusion. Some of the strongest-growing and most productive kinds have never been much inclined to produce balls, (or seed.) This fact is well known, and the idea has been taken from it, that it is an advantage to pinch off the blossoms froin those kinds which produce them, in order to prevent the energies of the plant from being exhausted by the production of seed, and throw more force into the production of tubers. This course has been considerably practiced in England. The Merino or Long-Red, an old variety introdu. ced from S.uth America about fifty years ago, has never produced but few balls, dits vigor and productiveness is remarkable; whercas the Mercer or Neshannook, a kind originated in Pennsylvania at a comparatively late period, and generally spokecu of as particularly susceptible to disense, pros duces plenty of balls. A person in this vicinity has raised putatues from the balls of this kind fur two years in succession, and they have all been diseased. Prof. Norton informs us that in Scotland the "cups," and those "kinds olhich bear no apples; are $n$ general least affected" with the disease.

The decrease of the potato crop from 1843 to 1846, is supposed by Mr. Parsons to result from "a general degeneracy of the varicties now in use." Everybody knows the deficiency in this crop is chicfly caused by the "potato disease;" and the unavoidable inference, therefore, from Mr. P.'s language, is that the disease is the result of constitational degeneracy, and that on this account the old kinds should be replaced by new ones, raised from seed. But does his own reasoning bear out the proposition? He cites the practice of farmers in Nova Scotia, "where," says he, "the finest potatoes were formerly grown." "They [the farmers of Nova Scotia] place little reliance on the introduction of tubers from abroad; their experience tells them that a reproduction from the seed-balls is the most sure and profitable. And in no part of the vorll, probably, has reproluction been resorted to oftener ihan therc." We have italicised the words composing the last sentence, because we wish that they shonld be particu. larly observed in cunnection with the fact, (which we derive fre.n a comparison of various accounts given.) that in no part of this country has the potato suffered more from disease than in Nova Scotia! This is a sufficient comment on this point.

Agnin, if the discase was the result of constitutional weak. ness shouid we not see evidence of such weakness in a feeb:c growth of the plant from the start? But instead of this it is certain that potatocs were dever known to grow
more vigorously, or present generally a finer appoarance in thetr earlier stages, than in the season in which the disease has prevalled. The flourishing condition of the crop last seasun, up to the time when the blight of the tops first appear. ed, was the subject of general romark; and the growth of tubers was in most rases more than commonly great; but, with the exception of a few varreties, which from their hardi. ness were in a mensure exempted from attack, those which the uisease found in an umripened state, perished. Accurding to Prof. Norton it has been so in Scothand. In general, he snys, " the best crops on the best sotl, have suffered most."

In examining the question as to the decline of varieties, we have compaired many accounts from every part of this country where the disoase is known, ns well as those of the most authentic character from Europe ; and it is certain that the evidence does not justify the conclusion that old varieties are most affected, or that any exemption in favour of new ones is exhibited.

The Highland Snciety of Scotland, and the Agricultural Chemistry Association, have very thoroughly investignted this matter, and have collected a great amount of information, in the form of answers to questions which bave been addressed to persons in various parts of Britain. Prof. Norton, in his essays on the potato disease, published in the 'Iransactions of the New. York State Agricultural Society for 1845, has given the principal facts which the Highland Socrety had then collected on this point; all of which tended to show that varieties lately produced from seed, were as badly affected by the disease as any others. One man mentions that he had sixty varieties, only two to three years from seed, raised on his own farm, and they were all attacked with as much, and "in many cases more virulence than the older varietics."The information collected by the Chemistry Association is of a similar character. T'wenty-five reports for 104.5, state that potatocs recently raised from seed, were as much, and in many cases more affected by the disease than the old kinds; and only 100 indiviluals give it as them opmion that the new kinds have shown any exemption. The reforts of the same Association for 1846, shows still stronger ogainst the assumption that seedlings have any superiority in resisting the disease.

We would not, however, discournge the raising of new varielies of fuits and vegetables. The greater the number of varictics, the better the chance of ubtaining good ones by selection. But there is no value in new varieties merely because they are ncw, and we would not reject old ones, till we were confident they could be replaced by those which are better.

## From the Dublin Farner's Gazette. <br> SYSTEMATIC FARMING.

In the immediately preceding numbers of the Gazette, we have brought the subject of green cropping in a prominent manner before our readers, and beside, giving such practical directions regarding the cultivation of certain of these crops, as we considered necessary, we endeavoured also to enforce the importance of the subject by our introductory remarks. We do not offer any apology for pursuing this subject still further, for we again repeat that it is all-important, and upon its adoption as a regular part of the system, according to which agricultural practice is conducted, our welfare es agri. culturists wholly depends, and it is at the present season when all must decide on its adoption or rejection, at least for one year. We therefore, earnesily entreat the notice of our read ers to this subject, and we hope that those to whom it is new may give it a trial, and that those who have already partly adopted it, will extend it still further.

It is only by systematic agriculture that we can ever hope to derive all the adrantages we might reasonably expect from the cultivation of the soil, and it is to the abence of sys. tem that we attibute the backward state of agriculture in this country, and consequently the miserable condtion in which, we are sorry to say, we find the great majority of farmers. Green cropping is the basis of systematic agriculture, because a primary principle is that ${ }^{\cdot}$ no two corn crops tipening their
seeds shall succeed eachother, without the intervention of a green crop or fallow." We have how ever, disearded fallowing fiom the list of agricultual operations, except in some very extraurdinary cases, because we can effect even or the heaviest suils, if thurough drained and limed, all the results aris. ing from fallowing, and hase at the same time a valuablo crop. Green crops or fallow crops as they are sometimes termed, are therefore doubly, nay trebly important. They are so from their own intrinsic value; they are so because they form the fundamental principle of good farming, and they are so, because even when a systematic style of agriculture is being followed, they enable us to effect all the purposes of pulverizing and cleaning the land without losing a crop.

But it may be asked what advantages result from fullow. ing a systematic course in conducting the management of a farm? and with the view of illustrating this subject still far. ther, we shall briefly notice these adrantages. In doing so, we, too, must be allowed to a-k a question, and it is this, wha: is the great end of agriculture? Is it not the producion of human food, whether in the shape of grain, or beef, mutton, Sic.? and any means which will canse an increased produce are iherefore of the utmost importance in all classes of the conmunity. If it can be proved that a systematic manner of conducting operations, formded on right principles, will ac. complish this end, it will be granted that we do not attach too much importance to it "hen we affirm that not only does our prospects as agiculturists depend on it, but that it affects directly the welfare of every one in the kingdom.

The great suarce from whence all erroneous practices in farming are derived, is to be found in the fact, that by too many the real nature of the soil is not understood. We do not mean 10 say lat they cannot distinguish butween a clayey or sandy soil, but we mean that the specific functions or natural properties of the soll are not properly attended to. The soil is a store-house of certain substances, designed by the Great Creator of all thirgs for growing or being converted into other subs:ances fit for the use of man or beast. Some soils contain a greater abundance of this converted matter than others, and are therefore richer than the se in which the matter is less abundant. When however, we grow a succession of crops of the same nature on the same spot for a number of years, and annually carry away those crops to be consumed at a distance from where they were grown; it is evident that we are annually lestenin: the amount of convertable matter originally contained in the soil, because, such matter has been changed into corn or other articles. The gradual diminution of the substance forming the soil may nut be evident to us if we merely look at it, for, to all appearance it is the same as wo have ever seen it; yet, if invisible to our sight, it is plainly evident in another way, when we find the produce of that soil becoming every year diminished in quantity, and detorted in quality. Hence it has been found necessary to supply, from time to time, a certain quantity of decomposed animal, vegetable, or mineral matter, by which means the tear and wear of the convertable matter of the soil is repaired to a certain extent, and we are again enabled to go on cropping, as we have been accustomed to do, until the exhaustion of this sup. plied matter proclaims to us, in terms not to be misunderstood, that another supply is necessary. Now, the efficacy of this manure arises from the fact, that it contains the substances. or a great proportion of them at least, which have been originally extracted from the soil, and converted into grain and other forms of matter, and which, after being used for the purposes for which they were intended, have undergone another change, by which they are again fitted for becoming part of a new succession of vegetables, fit for being used as animal food. It is only recently that scientific research has proved that different species of plants require different kinds of matier to promote their growth; hence showing, that al. though the particular substances required by one variety of planis, may have, by continued cropping, becotne exhausted, there still may exist a sufficient supply of plants of another species; and although this important discovery did not canse ary alteration in practice, at least in that of the lest agricul-
turists, it served to confine the sysiematio principles which had previously governed their pracice, and which hat beoome known to them by the resul!s of long-continued and careful. ly.considered experience. It has however, furnished an ad. diticnal argument to the advocstes of systematic farming, and it is for that reason that we now bring it forward, as illustra. tive of the sound basis upon which our practical instructions are founded.

A very important end gained by systematic farming is the eradication of weeds. At short intervals during the rotation, the land is subjected to a thoroughly cleaning process, by which all those useless and unxious weeds which infest our soils are completely enaticated. If we were to judge by ordinary practice, we would be led to imagine that this was not so important a matter as it really is, for we too ofien withess not only fields, but whole farms and districts covered by vegetation, from whence no profit is derived, and which prevents the growth of these plants which are useful. Year after year these are permittedio grow on ummelested, ripening their seeds, and becoming every season more abundam. Now, if a regular system of farming is pursund as it ought to be, such intruders are never allowed to remain; they are checked in every slage of thrir grow, until finally the well kept farm looks like a garden. By fillowing ain irregular mode of farming this never can be effected, because the succession of culivatid erops is such as to encourage rather than to retard the growith of weeds.

## CULTURE OF SPRING CORN.

## From tho Farmer's Herahl.

Having hitherto noticed [Vide Mark Lane Express, Oct. 4th and 25 th , and Nov. $8 \mathrm{th}, 1847$,] the different methods of suwing, and the utilities of some of the iniplements in the cul. ture of wheat, probably a few remarks (nore especially appli. cable at the present titne) upon spring corn may be acceptable, and found worthy the attention of some of the ngriculturists in your country, bri ig the results of lengthened experience, and given impartially with adrsire of improving the inexperi. enced, and of stimulating the more learned and scientific to increased exertion in the further development of the most profitable system of agriculture.

In referance to the choice of seed, much care is not only 1-quisite in having it perfectly clean and free from all inferior grains, but also much judgment is required in the selection of the particular variety best suted to the soll; and althongh the idea may be ridiculed by some, they are not obtainable in the first instance but by a careful selection whilst growing, as the commonest ohserver will easily discover many varieties. even in that which is recommended as a true stock, more particularly in wheat, after repeated sowing; and that as all kinds of grain deteriornte, on fresh vatieties appear which have hitherto been much neglected (oats in particular). and only require that care and attention which will be amply com. pensated not only by an improved quality but by an extraordinary produce.

If no new variety is to be oblained, improve that which you bave (but I would also warn those against disappoint. ment who place too much faith in change of soil only). and do not be satisfied with your seed as fit for market, reduce it one. fifth, and make it considerable better, as much less seed is required; the refuse will be profit: and although I am not prepared to admit that two pecks of barley or oats are stfficiont (under any circumstance) for one acre of land, as has been stated by an Essex cultivator, but would rather recommend two bushels and-a-half of barley, and three bushels of oats, as amply sufficient for any soil, and which may be reduced in fertile districts in good cultivâion.

The drill I recommend more especially to all corn that is deposited in loose soil and although the practice of broadeast sowing has been long and extensively practised upen the Essex marls, yet the drill is gradually superseding that system, as it admits the free use of the hoe, which is in most soils es. sentially requisite in eradicating the numberless and numerous varioties of weeds more or lese provalent in the different dis.
tricts; and the practice of hoeing all the spring crops, even where intended for clover, has been remunerative.

The dibble is more adapted for heans in atiff tenacious soils; and allhough the drill is often substituted, the other system has boen found the most productive, probably from the opera. tion of the manual labour consoldating the land, which an occasional path.way across a field discovers is most favourable for the growth of wheat or beans; and therelure, after drill. ing where practicable, lose not an opportunity of applying the roller either before or after the appearance of the crop, which to beans and whent will be found highly beneficial.

If the rotation of cropping is altered some attention must be paid to the system of sowing, where the hoes is to be usad insterd of a fallow; and although much skill and ingeunity has been displayed in bringing Garret's horse hoe to its pre. sent state, whereby much manual fabour may be saved, yet it requires every land or stetch not only to be exactly of the same width, but also that the rows of corn should be somewhat further apart, and drilled to the greatest nicety; therefore, for the benefit of those under any of those circumstances or otherwise, who prefer the band-hoe, I beg to offer a few remarks upon that simple implement, which is far prefernble to the horse-hoe, and its work will present the same appearance of one continued groove left untrodden throughout between every ridge, which, in spring corn, where clover or other sceds are intended, tender it the most desirable, and is much more easily performed by the labourer stepping backwards instead of forwards, which enables him to draw the hoe two or three feet each time, thereby not only cutting the land effectunlly but expeditiously, as an active labourer can complele three roods of spring corn in one day under this system; whereas, in going forwards, he can neither boe so much nor so effectual. ly in the same time.

## From the Farmer's Gazette. <br> EXPERIMENTS WITH POTATOES.

Sir,-Having read, in last week's Gazftte, a statement regarding the efficacy of conl tar as a preventive of the disease in the potato plant, I beg to state the result of experiments tried by me, inst season, with different manures, to test their merits or effects on the potato pani-

No. 1.-Potatoes planted whole, being previously dipped in coal tar.-Result : never germinated, but memained sound a considerable time.

No. 2.-Potatoes whole, one yard of drill, manured with one quart of coal tar mixed in the snil.- Plants grew very weakly, no visible symptoms of disease, crop very poor.

No. 3.-Putatoes cut in sets, and, when haeled dipped in conl tar.-Did not germinate, rotted much sooner than the whole potatoes so treated.

No. 4.-l'otntoes planted whole, manured with salt, 1 lb . to a yard of drill, incorporated in the soil before planting. Plants diseased, tubers not so, crop small.

No. 5.-Potatoes planted whole, manured with 1 lb . of flour of sulphur, applied as the salt, to one yard of drill.Same result as No. 4.

No. G.-Potatoes planted whole, manured as before, with one quart of sout. - Plants diseased, tubers not so, crop good.

No. 7.- Potatoes planted whole, manured with farm-yard manure, at the rate of 40 tons per acre (soil, poor; subsoil, limestone gravel,) manure put under the potatoes.- Plants diseased, tuhers slightly so, crop large.

No. 8.-Potatnes planted whole, no manure of any description. Plants disensed, tubers not so, crop poor.
N. B.-The portion of crop in No. 8 was but very slightly affected by disease.

By this statement it will be perceived that the coal tar had the effect of preventing the disease, or of arresting its progress; but I consider that great care is necessary in its application. That part of the crop manured with farm.yard manure was most affected hy disease, which, I consider, is accounted for by the plants being most luxuriant of any, consem quently containing a larger amount of sap, which subjected them the more to external injury.
-The seed was stored over winter, in the manner before di. rected by me. The planting was done in the middle of April; and here I bog to remark, that I perfectly agree with you as to the time of planting the general arop of potatocs, had we not such an enemy to guard against as the late disense, and it was in order to evade its blighting influence that I advised early planting. Yours \&c., J. J. Gobgingan, Thonastown, April 18, 1848.

## From the Furner's Gazelto.

## NEW MODE OF PREPARING BONES FOR MANURE.

Sin-Under this heading, in the last English Agricultural Society's Jotrnal, there is a most important article, from Ph. Pusey, Esq., M. P. Having suffered considerable loss, last year, by the bursting of a carboy of sulphuric acid, on its way to my moidel farm, twenty one miles from this, I am exceed. ingly g'ad to find, as the result of experiments performed by the above named gentleman, and by two farmers of his neigh. bourhood, that uetted bones, mixed with an equal quantity of damp sand or carth, or ashes of turf or coal, will heat so violently as to be too hot in the middle to be borne by the nakied hand and, after a few days, will yield a material of two.thirds the orginal bulk, cheaper in its cost than the bones dissolved with sulphuric acid, and only half the expense of bone.dust in its ordinary state; 17 bushels of bone dust, 44 bushels of sulphated bones, and $\delta \frac{1}{2}$ bushels of heated bones and sand, producing nearly an equal weight of turnips from one Eng. lishacre, an 116 bus, of bone dust, 2 bus. of sulphated bones, 4 bus. of heated bones, giving an equal return from another.

Mr. Puey considers that there should be about 80 bushels of bone-dust in each mixture, and the heap should be covered with earth. He ascribes the effect "to putrification taking place in the gelatinous substance of the bone," and says, "that no disgusting smell is produced, mernly a strong odour of ammonia when the heap is opened. Most of this ammonia is probably drilled into the land, an advantage over the process of dissolving bones in acid, which seems to drive the am. monia a wav."

I intent, this week to mix a heap of bone-lust and town dung under a shed her., to send out to my farm by return carts, to be ready when wanted for the turnip sowing, and I hope to be able, at some future time, to send you an account of the ex. pense and produce.

I write this to give your readers the opportunity of trying an experiment so easily performed, and so important if generally proved to the agriculture of the country.-Yours \&c., Chas. Beamish, Buckingham-place, April, 17, 1841.

Farmers in the Olden Time.- Harrison, who wrote in 1577, thus speaks of the habits and condition of the farmers of old times:-"So common," he says," were all sorts of treene (woolen) stuffe $m$ old times, that a man should hardlie find foure piecus of pewter (of which one, peradventure, was a salte) in a good farmer's bouse; and yet for all this frugalitie (if so it may be justly called) they were scarce able to live and paie their rents, at their daies, without selling of a cow, or an horsso, or mare, although they paid but foure pounds at the uttermost by the yeare. Such was also their povertic, that if some one od farmer, or husbandman, had been at the ale-house, (a thong greatie used in their daies.) amongst six or seven of his neignbours, and there, in a bra. verie, to show what store he had, cast ddwne has pursse, and therein a noble or six shillings in silver, unto them, it was nerie lakelie that all the rest could not laie downe so much against it. Whereas in my tume, olthough, peradventure, the foure pounds of old rent be improved to fortie, or fiftie, or an hundred pounds, yet will the farmer, as another paline, or date tree, thi:k his gaines uerie small towards the ends of his time, if he had not six or seven yearse rent licing beside him, therevith to purchase a new lease; beside a faire garnish of pewter on his cupbord, with so muche mare in od uessell going about the house; three or four feather heds, so manie coverlids and carpets of tapestrie, a silver salte, a bowle for wine, (if not a whole neast,) and a dozen of spoons
to furnishe up the sute.' Yot so difficult is it lo content mankind, that the snine Chroncler records the dissatisfaction at this incrense of huxury of the old peoplo of his time, who especially deplored three thons, that were marvolonslieal. tered (for the worst) in Englande whin ther sound remem. brance'- the muhuade of chimneys lately ereeted, and tho great increase of lodgengs, with the exchange of thene plat. ters anto pewter, nad wooden spoons into tin and siher. They also complamed bitterly of the ase of onk in bilihings; 'fur when our $h$.lses,' sadd liey, 'were of willowe, then had we onken men; bat now that our honses are come to be mado of oaks, our men are not onhe become willowe, but a greate manie oltogether of strawe, wheh is a sure alteration."Maidstone Gazelle.

Love of the Ababs for their Mabes.-" Cam yon tell me how the Arabs treat ther mares, whel are suid to be remarkably docile. Inournas."- The following particulars respecting the treatment of Arab mares, and the estimation in which they are held by thetr owners, will interest many of our readers; -" 'The mare usuaily has but ont or two inents in twenty-four hours. During the day she is tied to the door of the tent, ready for the Bedouin to spring, at a moment's warning, illo the saddle; or she is turned out before the tent ready saddled, the bridie merely taken off, and so trained that she gallops up ummediately at her master's call. At night she receives a little water; und with her scanty provender of five or six pomands of barley or beans, and sometimes a hitle straw, she hes down content, in the midst of her masier's family. She can, however, endure great fatigue; the will travel fifty miles withoat stopping ; she has been pushed, on emergency, one hundred and (wenty miles, and occasionally, neither she nor her nder has tusted fond for three whole days." Malcomb says, in his" Sketehes of Persia," "An Arab sheick or cheef, who hed within filty males of Bussorah, had a favourte breed of hurses. He lost one of his best mares, and could not for a lung while discover whether she was stolen or had strayed. Some time after, a young man of a different tribe, whe had lone wished to mar. ry his daughter, but had always been rejected by the sheick, obtained the lady's consent and eloped with her. The sheick and his followers pursued, but the lover and his mistress, mounted on one horse, made a wondertul march, and esca, ped. The uld chief swore that the fellow was either monnted upon the devil, or the favourite mare he had lost. After his return, he found the latter was the case; that the lover was the thicf of his mare as well as his daughter; and that ho stole the one to carry off the other. The ciraf was qute gratified to think he had not been beamen by a mare of another breed; and was easily reconciled to the young man, in order tiant he might recover the mare, which appenred an object about which he was more sulhcitous than about his daughter."-lh.

The Oxygen whicu Surionts Life. -" What becomes of he exygen which st taken in by man in breathing? G. K."-It is mostly exbited combined with carbon, he comb. nation keeping up the anmal heat. Liebng says:-"In the animal hody the tool is the lisel; with a proper supply of oxygen we obian the heat given ont during its oxidation or combustion. In winter, whon we take exercise on a cold atmosphere, and when consequentiy the amount if inspired oxygen mareases, the necersity for food containing carbon and hydrogen increases in the same ratio; and by gratifying the appetate thus eacited, wo obtain the most effrient protection against the prercing cold. A starv. ing man is soon frozen to death. The nmmals of prey in the arctic regions, as every one knows, far exceeds in veracity those of the torrid zone. In cold and temperate climates, the air, which incessantly tries to consume the body, urges man to laborious efforts in order to furaish the menns of resistance to its action, while, in hot climates, the neces. sity of labour to supply food is far less urgent. Our clohb. ing is merely an equivalent for a certainamount of fond. The more warmly we are clothed the less urgent becone the appetito for food, because the loss of heat by cooling,
and consequently tho amount of heat to be supplied by the food, is diminished. If we were to go maked, like certain savage tribes, or if in humturg or fisthing we were ex. posed to tho same degree of cold as the Sumovedrs, we should bo able with case to consume lollos. of insilh, and perhaps a dozen of tallow candles into the bargain, daily, as warmly clad travellers have related with astonishment, of these poople. We should then also be able to take the same quantity of brandy or train oil without bad effect, because the carbon and hydrogen of these substances would only suffice to keep up the equ:librium between the external temperature and that of our bodics."--Ib.

## From the Farmer's Gazetle.

## AGRICULTURAL CHEMLSTKY: THE TURNIPCROP.

Under the above title, is published, in vol. viii., part 2 of the Reyal Englash Agricultural Society's Journal, an elabo. rate and valuable article by Mr. La wes, on the chemical com. pasition of the turnip, and on the effect produced by the ap. plication of a great variety of mazures to its cultuvationThe author treats his subject under the heads-field and laboratory experiments. In order to determune, if poss.hle, what conslitutes the essential fuod of the turnip, five successive crops of that root were sown on land whech had borne. in the preceding year, wheat after clover. The object in these experiments was not to produce the largest amount of crops, but to determine the effect of given quantities of various manures, so much so, indeed, that auriculturists, not taking this into account, voruld feel disposed to ridente the average produce of $\mathbf{1 0}$ or 11 tons of bulbs per statute acre; but it is also shown that where a tolcrable a mount of the best kind of ma. nure was applied, 2 crop of 20 tons of bulbs per acre was produced.
Results of experiments to grow turnips, without the application of manure, are quoted eurly in the essay, and these tend to call in question the generally admitted power of the turnip, in conmon, as it was supposed, with all large-leaved plants, to extract nourishnent from the aur; for, as it will be observed, the produce $d$ windles from 41 tons in the first, to 131 cwt . in the third, and in the fourth year we are told the bulbs only averaged the size of radishes. On the other hand, by the application of 12 tons of farm-yard manure per acre, in each of these three years, the produce in bulls was raised from $9 \frac{1}{2}$ tons the first, io 103 in the second, and to 17 tons in the third ycar.

No manure being applied, the result was:-

"Common usage," observes Mr. Lawes, "seems to attribute to the turnip and green crops generally a power of collection from the nimosphere, which is not recognised in our grainyielding plants; and it may at first stght appear incousistent with this view that the growth of the turnip, in ngricultural quantity, should be so essentially dependent on artificial supply as our results would show to be the case. There can be no doubt that there is some trubh in this current supposition; but there is hitle doubt that the power of collection from the atmosphere very materially depends upon the quan:ity and qualty of the supply to the soll by manures; in fact, that upun the judtcious and hiberal provision of certain constituents, by nrl, we must rest our hopes for atmospheric accumulation."

Manures abounding in nitrogen, such as guano, for instance, Mr. Lawes ronsders as promoters of leaf, rather than of hulb, in the turnip crep: and his experments lead to the conclusion, that of carbon be supplied, and that the land he well pul. verized. so that the fibres of the turnip root enn pass readty through it, no deficinney of nitrngen will be experienced.
"For the growih of turnip ball,", he says, "a sont is required in surin a mechameal condition as shall render it easily permeable to the atmospleere, and to the fibrous roots of the phants: that healthy actiou and a tendency to development very ex.
tended under.ground collective apparatus shonid be induced by the use of the so-called 'mineral manure,' these never being in an alkyine state, and always containing a considerable quantity of phosphoric acid, easily available to the plant; that atter the early stages of the plant are passed, its rapidity of growth depends upon an abuadant provision in the soll of constituents for organic formation, espectially of carbon; that nitrugen must be by cultivation, though seldom by special ma. nures; and lastly, that all these requisites being provided by the farmer, the degree in which his efforts will be availing depeads essentially upon certain climatic conditions, comprising a considerable continuity and amount of rain, as a means of taking up the stures of the soil, keeping up a vigorous circulation in the plant, and supplying the dissolved gases of the atmosphere."

The result of this article, which occupies 70 pages of the Journal-and the experiments upon which it is founded, must have occupied a vast annount of time and attention during five yrars-is, that the turnip is not, as was supposed, capable of abstracting much of the food neecessary for the enlargement of the bulh from the air; that farm-yard manure, assisted by bone earth dissolved in sulphuric acid, is the inost economical application; that of the three or four thousnand pounds of dry matter contained in a crop of turnips, one.half is lost, being retuined by, or expended in, the respiration of the cattle by which it is consumed; and that, thrrefore, in order to keep land in the maximum degree of fertility, extraneous manue, in addition to that produced by feeding cattle on the produce of the farm, must be provided, hut that this need not be nitrogeneous; and finally, in the words of our author-
"It must not be forgoten that the tillage of the soil constitutes a most essential element in turnip culture; and that he who sows his seed upon a badly cultivated soil is only throwing away his time and money. The naturally light and porous nature of a turuip soll, points out what are the requirements of these plants; and when the necessary degree of tilth has been obtained, and the seed sown, the introduction of nir bencath the surface of the soil by means of the horse and hand-hoe cannot be too frcquent; for it is useless to place a large amount of dung in the suil to be converted into the sub. stance of the turnip, unless the free action of the air is provided for at the same time, by which alone the decomposition of the dung can be effected."

## THE AGRICULTURIST.

Illn placet tellus, in quà res parva beatum
Me facit, et fennes luxuriantur opes. Pascitur hic; ibi pascıt ager.

Mart Lib. x., Epig. xcvi.
That farm be mine, where stock, though small, can bless, Whence pover:y keeps far away ;
Whese industry affords me food and dress,
And means my reat and tax to pay. J. T.D.
Sir-The above, I think, is the wish of every well-meaning agriculturist-that is, of every man who is content to support himself according to the mandate given of old, "to live by the sweat of his brow." Those to whose lot it happens to obtain "res non parta laborc sed relicta"-wealth not earned by them but descending from their ancestors,-may smile at the lowly state and "destiny obscure" of the farmer; but if they reflected, amid all their pomps and vanities, they would see that the happiness of the bumblest peasant is often greater far than theirs. He enjoys what few of them can bonst,"Nox cum sommo, sine lite dies"-" Repose all night and quiet all the day;" no wonder, then, at the wish expressed in Se neca, "Plebeius moriar sencx"( Thyest, Act ii., chor.) ; that is, An old farmer lei me die. This, alsn, was the second wish of the great Roman poet Virgit, his first being to be a good philosopher ; and, like Solomon, his prayers being just, were granted. "Tobe a husbandman," as Mr. A. Cowley remarks, "is but a retreat from the city; to be a ph:lnsopher from the world, or rather a retreat from the world, as it is man's, into the world, as it is Gid's." But as few men have capaci?y, means, or lrisure sufficient to become philosophers, the best mixture of human affirs that we can make are the employ,
ments of a rural life. It is, as Columella says, "Res sine dubitatione proxima et quasi consanguinea sapientice (lib. i. chap. 1)-"The nearest nenghour, or rather the next in kindred to philosophy."

There is no art or science comprehends more parts of phi. losophy in it than agriculture. Ennius sums up the elements of all nature as the sun, or fire, air, water, and earth; and surely, as Varro remarks, these are the principles of husband. ry. Cicero also maintains that the life of the farmer ap. proaches very nigh that of the phlosopher: "Miki ad sapientis vilam proxime videntur accedere."-Cic. de Senect. And so it does, from its antiquity, uthlty, and dignity; but although all acknowledge its antiquity and utility, yet still its dignity is not so generally allowed as it ought to be. We read how L. Q. Cincinratus, the Roman, was twice called from the plough, and made dictator. In his first campaign he nobly repulsed the Volci nad Equi, and even in his eightieth year conquered Præneste-B.C. 460, Fid. Liv. 3, c. 20, Flor. 1, c. 11, Cic. de Finib. 4, I'lin. 18, c. 3.

But few men in the British empire are called from the spade to the sceptre, o: from the plough to the parliament; and this adverse fetling to agriculture sprinits from an evil custom now grown strong as a law among us, because, as Cowley remarks, no halls are opened in our universities for its inculcations, no honorary degrees bestowed on its adepts. If two or three thousand scions of our nobility were $\mathrm{r} \in$ gularly taught fir seven or eight years in 'Trinity, Oxford, \&ic., its principles and prac. tice, and come out baccalaurie Arati non artium, bachelors of the plough, and not of arts, and then have lands and capital bestowed on them by their parents, by which they could ex. ercise their acquirements, you would see many of our gentry make their fortunes in the most innocent, peaccable, and honest way; besides, their improved modes would be followed by their neighbouring tenantry. The aristocracy would not have to regret so many untimely deaths as usually occur to those who wear the sword, and by it die in lands remote. It is a pity so many fine young noblemen quit Ceres and follow Bellona for their bread.

Man lives without every other art but agriculture; it is like speech, without which society cannot be preserved. No life is more innocent or more secure a nd healthy. A blast of wind may completely ruin the merchant, and his bankruptey ruin hundreds. The varying modes of fashion and the fluc. tuations of trade, have reduced thousands to beggary. Not only houses but whole cities, have severely suffered by the shifting fights of commerce. What have the greatest hernes done but made widows and orphans, enslaved their country, or brought on their own heads the maledictions of their race? But who ever cursed a farmer for his plenteous crops? Is nut his toil blessed by every passer by? What are the scenes of cities, the joys of theatres, or all their galaxies of benuty, in comparison to rural landscapes, the melody of groves, and the flowery gems that deck the fields and gardens:-
"Who that has reason and his smell
Would not among toses and jasmine dwell ?"
A garden was the gift bestowed upon Adam by the Almighty, even before he gave hom a wife. It was "in a bush that Moses saw the radiant Deity"-we might see him even in the humblest daisy of the field :-Epicurus and his friend Metro. dorus, Dioclesinn and Charles V., \&c., loved gardens and spent their happiest hours in them.
" God the first garden nade, and the first city Cain."
I need not speak of the antiquity of agriculture here; suffice it to say, that the three first men in the world were a gardener, a ploughman, and grazier. These were the origin from which all our great nohilty sprung, who now are not only too proud to till the ground, but even disdain to trad upon it. Ecrle. siasticus forbids us to hate husiondry, because (says he) the Most High has created it"-(chap. vii. 15). "We may talk as we please about liites and linns rampant, and spread eagles in fields d'or, or d'argent; but if heraldry were guided by rea. son, a plough in a sield arable, would be the most noble and ancient arms."

Where is the nobleman, gentieman, or eren petty trader
who does not employ a dancing-master fur bus chaldren, to teach them the measured mevements of fully-the ceremonial mummery and madness that was offered to heathen idols?But wheh of your grandees employ an agricalturist to instruct bis sons in the useful movements of husbandry? No collego or unversity should bo without four professors of this noblo and truly ovefulart; viz., one of aration, another of pasturage, a third of hoiticulture, a fourth of rural cconomy. Lectures from such men would be far more protitable to society than those usually given on logic, metaphysics, \&c., which are often as useless and difficult to be understood as the square root of a mathematical idea. But I am too hemble to ductate on this subject, - what I have advanced I have borrowed from the immortal Cowley, who thourished 200 years ago. In this let. ter 1 am but the mere echo of his sentuments, vox et jreterea nihil. The wisdom and spirit of the present age I hope will not overlock his remarks. Tho failure of the potato crop of late years has taught a lesson that will not soon be forgoten.

What further i have to say of an agricultural life I shall borrow from the ancient puets; the cradlu of poetry was rocked by shepherds.

> "The Muses still love their own native place,

It has sectet charms which nought can delice."
-Ovid's Epist. lib. i. iii. 35, Pont.
The first, at least the second, poct whose works remain, not only praised but taught us ngriculture, that is Hesiod. Homer tells us Laertes was a gardener, and calls Eumenes, who kept the hogs, "a divine swincherd." What greater epithet could ho bestow on Agamemnon or Achilles? Theocritus (Idyl. xxv.) styles the husbandman "divinc." Virgil represents King Evander receiving Eneas in his rural but, around which catile thronged-

> "There oxen stalk'd, where palaces nre rais'd,
> And be!lowing heris in the proud Furum graz'd:
> loo! ead the gond old king, this poor abode
> Received grent Hercules, the victor god !
> 'Thou, too, as nobly raise thy soul above
> All pomps, and emulate the seed of Jove.".
-Encid. VIII., 360.
It was certainly a pleasing contemplation to the Romans to look back to their original, and compare their magnificence to the rural state of things that once appeared on the very spot where their palaces were buit.-(See Tibull. Ef. 5, 1 ii. 25 ; and Proper., lib. iv. 4) But if they rightly considered the subject, they would see that "state and form disguise man, and wealth and luxury disguise nature."-(Sce Enquiry into the Life and Writings of Homer, p. $2 \overline{5}$. .)

Horace preferred living on his Sabin or Tiburtin manor, to all the honours and pleasures of the court of Augustus; bay, be refused being secretary of state to that great emperor of the world, who requested him, " wt nos in çistolis scribendis adjurct." Only I would not wish to respass too much on your invaluable space, I would translate a few passanes from the writings of Horace, descriptive of the joys and happiness of rural life, but the intolligent reader can see them hy turning to the book itself. The passages I allatic to are "Epod. Ode ii., lib. ii., Sat. vi.," atom the Country Monse ; the "10th Epist., lib. i.," to Fucus Arstius. Equally applicable to my subject would be "Virg. Geor. lib. ii., 4.78," where the bliss of the agriculturist is portrayed in its truest colours; and alsn a part of "Cowley's fourth Bonis of Plants." Suveral parts of "Martial," \&c. "Claudan's Old Man of Verona," l havo long admired. I will give two lines of it as e sample:-
"Felix, qui patriis a's am transegil in ngris,
Ipsa domus puerum quem videt ipsa seacm."
Happy the mun win spent his time
In thling what big tather gave:
Who trom the home of chatdhod's prime, In age was carned to tise grave.
T.E. D.

But I have cccupied too much, Mr. Editor, of your presious time. I love a country life. and would fain make others do so too; but I will conclude, addressing to you the words of Cow. ley to Squire Evelyn:-"I know nobody that possesses more private happiness than you do in your own grounds; and yet no man who makes his happiness more public, by a frec communication of the aet and knowledge of it to others. All that

I myself am able yet to do, is only to recommend to mankind the search of that felscity which you instruct them how to find and to enjoy."-J. 'I. D., Correspondent of Furnser's Gazelle.

## From Bcll's Weckly Mcssonger. WIREWORM AND SODA ASII.

W'estmill, near Ware, May 5.
Sin,-I had four acres of light loamy land dibbled with iwo pecks of wheat per acre last autumn, after iares), and although so small a quantuty of seed was sown, there was as good a plant as was desirable. A week or two after the wheat had appeared I perceived that at least one.fifih of the plants had died. I examined the roots, and found wireworm al almost all the dead or dying plants. I brought some home, and put some of them, and some mould, into two basins, and tried to destroy them by mixing carbonate of lume with the one, and salt and solutions of salt with the othe:; yet neither of these reputed destioyers of the wireworm I ad any effect. I then obtained some sodaash, and sowed it by hand just before rain, at the rate of $1 \ddagger$ cwt. per acre. and am sure it either destroyed them or caused a departure from near the surface into the deep recesses of the subsoil, as I could not find (although I examined minutely) one afterwards, nor has a single plant been injured since. The man who sows the soda ash should have on a stout pair of gloves, or his hands will be excoriated. It may also be neces. sary to sta'e, as the cost of soda ash might deter many from using it, and induce some to endea vour to kill the pests by less cosily and useless means, that soda ash will not only destroy the wireworm, but it also acts as a potent manure. This is demonstrated by the luxuriant growth and healthy appearance of the field of wheat in question, which is not excelled by any about this part; indeed a neighbouring friend and large farmer asked me the other day, what magical stuff I had put upon it The soda ash was obtained of Mr. Fothergill, Upper Thames. street. I may state, in addition, that slthough so small a quantity of seed was used in the field in question, and so many plants were destroyed, there is no doubt it will be the best piere of wheat on the farm. Some of the other fields, drilled with six pecks per acre, are much too thick. A field on the farm; dibbled with nearly a bushel per acre in the autumn of 1846, produced 49 bushels peracre; and, I belirve, had there been lezs seed used, there would have been a greater produce. My father had a piece of antumnensown wheat a few years ago, which was so thin in the following spring that he was advised by his neighbours: o plough it up, and had resolved so to do, when, fortunately, an experienced friend induced him to let it remain; and to his joy, he beheld at harvest tinee a splendid crop, which surprised his neighbours and himself by producing more than 40 bushels per acre.-T'. Evennett.

## AGRICULTURAL MPROVEMENT.

Much has been done by the cultivation of the soil to improve our country ; but there is still much land to possess, and must be subdued by the sidful application of the spade and the plough.

Dr. Dalton has calculated the quantity of water which falls from the air in tain and dew in ne year in England and Wales only at 115,000 millions of tons; of this immense amount, about one-third is carried of by the rwers and subterrancous cavitics. The same philosopher infers that 75,000 millions of tons are yenrly evaporated into the atmosphere from the surface of Engiand and Wales only. This quar:ity surprise us by its ainount; but Dr. Thomson in his outline of heat and edectricty, nearly double the amount. Farmers and others have much in their power to prevent such an eva. poration from taking place on the sulfaere of the soil, and they have also much in their power to improve the climste of our country by merns of draining the ?.and properly. It is now protty well konwn that where laad is wet, a great amount of masture must he taken from it before the land is in a proper state for working; and where this is done by means of evaporation. the temperature of the soll and nir will be much lower than if the water had been remosed by means of drains. In n climate like ours, few degrees of heat is of great importance
to the farmers; and the following extract may be worth read. ing by all who have land to cultivato.

The salubrity of a district is greatly promoted by cultiva. tion. Eugland was not always the sume healthy country as it now is-once periodical disease, agues, and low fevers were prevalent throughout the island; they are now compa. ratively but little known, except in the yet uncultivated tens of Lancolnshire and a few other similar spots. Under the blessing of Providence, the labours of tusbandry have chnsed away discase and famine familiar to our forefathers, and largely contributed to our present degree of national health and wenlth.

Indulonce is the mother of mischief, both morally and naturally. While the flowing river produces wholesome food for man, and sweetens the air he breathes, the stagnont lako or pond engenders noxious reptiles and exhales uniwholesome vapours destructive to healih. Throughout all nature tho cessation of motton seems to be the signal for the work of corruption, and corruption is dificsive. The heavens are in constant motion and declare the upholding power of the Crea. tor, and his unwearied interest in the works of his hands.The sea is in constant motion, else it would soon become putrid and destructive to the life of all animate creation. The earth is kept in motion by the immediate agency of God in those things which are beyond the reach of man, as its annual and diurnal revolutious, waters and winds, \&e; but with regard to its mission, it is "given to the children of men," and they are invited by the example of nature, and the instructive motions in themsclves, buth to be in action and to keep in action their little domain. From unheahhy surface of motionless water and low uncultivated land arises many of the infectious diseases which affict mankind. These effects have sometimes aroused men to exertion in the remuval of their causes; and whenever draining, ploughing, and other branches of agriculture have been diligently pursued, the result has uniformly been a gradual improvement in climate, and freedom from local discase. Soils of a cold retentive clayey uature, being in a degree impervious, derive comparatively little advantage from states of the atmosphere which purify and renew lighter solls. They generate chilly un. wholesome damps, and are ill adapted to produce vigour and healthy vegetation. Land of this kind, if it has a good body, will be materially improved by a thorough draining; this, at the same time, manures at, and pulverisation renders it susceptuble of the salutary influence of frost in the wister, and opens it for free absorption and evaporation in the summer. Stagnations cause impurities: agriculture, by preventing these stagnations, tends to produce a hcalthy climate.-Farmer's Herald.

Effects of Temperature on the Covering of Ani-mats.-"I observe that animals always get a new covering on the approach of winter, and also of summer, which is prob. ably attributable to the change of temperature, as Nature al. ways adaps herself to the circumstance in which the animal is placed. Can you tell me whether this influence of climate prevaile throughout the earth?-G. M."-The influence of temperature on the covering of animals appears to be greater in extreme climates, whether hot or cold, than in moderate ones. The following remarks will serve to illustrate thas fact :-" Many quadrupeds, inhabiting the colder regions, appear in their natural colors during summer, but become white in winter. The same change takes place in the plumage of several land birds; but is not observable in insects, or the other invertebrate groups. Temperature has likewise a great influence on the size and color of animals. The Sphinx corsvolvuli of Europe are found also in India, but of a much smaller size and more distinctly colored : this is usually the effect of heat upon animals whose chiof range is in temperate latitudes. On those which may be considered inter-tropizal, a greater degree of heat not only increases the brilliancy of their colors, but adds to their size. There are many birds and insects common both to Central Brazil and Cayenne; but from the greater heat of the latier country, the specimens
are always larger and the specimens more beautiful. Temperature likewise affects the clothing of anmals in respect both to quality and quantity. This is more particularly observed in such domesticated nnimals as have been transplant. ed from their natural climate. The covering of swine in warm countries consists of bristles of the same form and texture, thinly dispersed: whle the same amimals in colder climates have an additional conting of fine frizzted wool next the skin, over which the long bristly hars project. The difference is very remarkable in the swime of northern Europe and those of tropical America, the latter appearing almost naked; it may be observed in a less degree in those of the south of England and the north of Scotland. Similar appearance present themselves among thu sheep of warm and cold countries: the Heece of those of England consists entirely of wool, while the sheep of Shetland and Iceland possess a fleece, containing, besides the wool, a number of long hairs, which give it an appearance of being very coarse."-Maidstone Gazelte.

## ON NITRE.

"Nitre" or Saltpetre: (Nitrum, Lat. salpeitre, of saltpetre) is a genus of the salime minerais of the earth. with holes like a sponge, found in all the four quarters of the globe, sometimes covering other rocks, as limestone, chalk, and calctuff, and also in thin crusts on the surface of the suil: and in many countries it is regularly produced from accumulated heaps of earth, exposed at certain stasons to the atmosphere. The colour is light ruddy, or snow-white, yollowishwhite, or greyish-white; nceurs in flakes, crusts and crystals : dull, glimmering, or shining, with a vitreous lustre; alternates from translucent and transparent; brittle and easily fragible; deflugrates when thrown on hot conls.
Saltpetre from molfetta contains:-

$$
\text { Nitrate of potass . . . . . . . . . } 4255
$$

Sulpiate of lime ........... 25.45
Carbonate of lime . . . . . . . . . . 30.40
Muriate of potass . . . . . . . . . . 0.20
Loss ............ 1.40
100.00

Or,
Acid $\ldots . . . . . .44 .0$ and 31
Potash......... 51.8 and 61
Water ........ 4.2 and 8
$100.0 \quad 100$
1000 parts, from the Cave of Pulo, near Naples, give -
Nitre . . . . . . . . . . . . . . . . . . 407.5
Muriates . . . . . . .............. 26.7
Sulphates soluble in water .. 20.8
Sulphate of hime . .......... $96 \cdot 7$
Carbonate of lime ........... 410.0
Loss . . . . . .... 33.3
1000.0

The taste is sharp, bitterish, and conoling; di-solves in seven parts of cold water, and in less than ats own weight of bohling water ; slightly deliquescent; more soluble in hot than in cold, and resists putrefacton, and is supposed to hold water equal to its own weyght; detonates most violently when made red hot, and when charcenal is thrown upon it, and with combustable bodies, and with phosphorus; hence the extensive use of nitre in the composition of gunpowder, which is usually compnsed of 76 parts of nitre, 15 of charcoan, and 9 of sulphur. It is also used in medicine, and many of the arts. Specific gravity 1.920 and 1.9369. The ancients confounded nitre with soda or natron, and leave us in doubt if they knew natre; but it was known to Roger Bacon in the 13th century.
Nare, in chymistry, is the natrate of potass, or the fixed vagetable alkah in combination with the nitric acid, one of the most powerful acids that is known, and constituted of nitrogen and oxygen in a peculiar proportion to each otherabout 70.5 of oxygen and 29.5 of nitrogen. Nitro is formed
wherever animal mutters are decomposed, and exposed to substances with which it can combine; grounds where excrements are dropped, walls of houses, drains and slaughter houses, where putrid vapours nbound, all afford nitro by long exposure to the air. Old mortar or loose calcarenus earth, is supplied to the artificial beds for the acid to combine with, during the putrefaction of the animal and vegetable substan. ces. After many months of constant attention, nitre will be found in the mass, not unfrequently combined with calcareous earth. It is also formed without animals or vegetables, by means of lime and hent in the open air, and also from the surface soil. in many countries, by various methods of preparation, by digging pits till the water imbibes the salt, and then drawn off; and by exiracting it from the carth by be i'ing in vats filled with water, and by sweeping it in some places from the surface of the ground, and washing and lixivating with wood ashes. It consists of 6.70 of acid 6 potash. Potash is got by lixivating the ashes of plants, and $i$ in $w$ asceltained to be the oxide of poiassium, one of the newly discovered kali. genous metals, and consists of -

$$
\begin{aligned}
& \text { Potassium . . . . . . . } 86 \text { or } 83.371 \\
& \text { Oxygen . . . . . . } 14 \text { or } 16.629 \\
& \hline 100 \quad \begin{array}{l}
100.000
\end{array}
\end{aligned}
$$

The colour is white, and it smells like quick lime being slaked; the substance is very brittle; taste very acrid and highly corrosive, destroying the texture of animals and vegetable bodies: specific gravity 1.7085 ; melts whth heat, and at a strong heat elaposates in a white acrid smoke; contains one-fourth of its weight in water after a red heat, and exposed, it quickly absorb moisture, and runs into a fliquid and combines with carbonic acid. Water dissolves twice its weight of potash and the solution resembles oil, being clear and colourless.

Of late years nitre has attracted some notice as a manure, having been applied as a inp-dressing on various crops, and with very fair success. On wheat it has exceeded in valce both rock-salt and soot, but in one case, it did not yield so much corn, and soot seemed preferable; and on a gravelly soil dressed with nitre, the produce in straw was great, but much mildewed. On hay grounds nitre increased the quantity of produce by one.third, and it was cut much earlier. On chalky lands the effects are generally good. The conclusions are in favour of sowing it in moist weather at the rate of 1 to 17 cwt . per acre, and to be bruised io powder to pass through a sieve. Un dry soils, and in dry seasons, some persons assert that nitre does harm, while others think it answers best in these circumstances; on clays and cool loans the results have been generally favourable, but extend no benefit to the succeeding crops. It hills slugs and insects, and is applicable to any young crops, and may be mixed with ashes or any similar substances. The application is of the same nature as that of salt, which nitre much resembles; for suraip crops it should be mixed previously in the soil or with the manure, for such substances will injure the young plants, if they be in immediate contact. The quality is very various; the price is about $£ 15 \mathrm{~s}$, per cwt. If the use became exten. sive, the suppiy would soon become scanty; the price varies with the angle at which light is refracted tirough it ; an anglo of $5^{\circ}$ is called "par," and a refraction above that number diminishes the value by about 1s. per cwt. from 4 to $\$ 0$ per cent of refraction.

Salt having been found in grain, and more largely in wheat, such substances as nitre and salt were recommended to assist these vegetables, but no similar result has followed; the quanlity of straw has been much increased, but the grain has not beenimproved in quantity or quality; plants may only require a quantity proportionate to their bulk; and salts being a minor quantity in their constitution, the general bulk may not be much increased loy a larger quantity being afforded, even if the fact were satisfactorily ascertained that plants imbibe as food the substance found is their construction, when they are artificially supplied.

The chemistry of nnture and of art are so different, that a
latoonship can hardly bo snid to exist between them; and in the processes of combination and decomposition, nature holds in scorn our nttempts to follow her steps, by our ntmo-t investigations, infen the operations of the grand latoratory of the universo.

## Improved Durham Calves-Thorough-bred. 5830030

fret

THE Subecriber not intending to rear his BULL CALVES of this season, will be alle occasionally to supply Breeders ist on few Calves of 1 ll erd- Book Pedigrec, at $\{i$ is euch, diree monthe old. Early application is recommended.

ADAM FERGUSSON, Woodiill.
$W_{\text {nterdown P. O., C. W. }}$
Notr. - The Caives will have teen got ty Althurpe hy Symmetry, dam Non P'areit; or by Ea. Laf Durhum by Dutke of Wellington, dam N'on P'a-reil.-Ske Hemb Buoz.

For gnle, the roan Bull ALTHORPE, two years old, who gained the first Premum at the Provincial Show in October last.

## Newcastle

## farmer.

 COBOURG, CANADA WEST', JULY 1, 18.18.

The Hay making from herbage plants, Clover, dec, is now, or ought to be, in full operation, as being so totally distinct from the natural grasses from their greater breadth of leaf, size of stem, and great succulence, they require cutting before their most valuable qualities are lost, and the leaf and stem, their main bulk, is dried and withered by a supply given to the ripening seed; for aithough some portion of weight may be lost by early cutting, still the value of the provender is increased in a greater ratio than any loss sustained by a weightier crop. This, of course, merely applies where the clover, \&ic., is nearly pure and but a small admixture of timothy or other grasses.

It is our opinion that clover is best sown alone where a permanence of pasture is not required, which can scarcely be ob. tained on land really suitable to clover, requiring as it does a soil of a light warm mature, to be most productive, and on which timothy is not sown to advantage, that grass requiring a much moister soil, where clover would in all probability be killed out the first severe winter; and we belicve clover culture to be most profitable; not more than two cuntings should be allowed, and to be fed down the second year, or immediately broken up for a spring crop, as it is obsious that where the plant fails, its place is taken by weeds or wild grasses of the worst description for the farmer, which cost more to eradicate than the loss sustained by a meagre scanty crop. We have often regretted to see fine fecids left untouched until the leaves have assumed a russelt a!pearaner, the flowers have faded and dropped from the stem, from the withered and dried state of the plant; and then the evil is consmmated by an unnecessary exposure of the crop upon the field, the leaves are deposited on the land merely to form a manuro for the succeeding erop, and the stalks, as withered and stringy as flax stems, are carried in the barn, when they are as useless as bad pea straw, and as innutritious as pine shavings.

It has often been a matter of surprize to us that there should be a difficulty of substituting another variety of the trofolium, and that the cow clover, or cow grass, is not more generally used, which comes into nower a fortnight later than the red o!over, and is consequentiy better adapted to sow with our! moss valuable grass, " the timothy." We find 'American

Cow Grass Seed' sold in the British markets, and is in general demand in most of the English counties, even where the highly prized rye grass is in grod repute; but as we cannot substitute any grass for the timothy, if we must mix the herbage, our only chance secms to be the cow grass; we believe it is not so prolific although very similar to the red clover, and the seed is less abundant and more difficult to thrash out, but the machines will obviate the last difficulty.

We have always doubted the necessity or propriety of sow. ing any mixture with the timothy, as, if sown in good season in the fall, with either Wheat or Rye, a good crop may be an. ticipated.

An excellent article "on running out of varieties," from The Albany Cullinator, which so entirely coincides with our view of the subject, will be found in our present number. We believe it will tend to correct some erronpous ideas on the sub. ject, and prevent some unnecessary trouble.

It must be sufficiently evident that no radical change can take place in any plant not grown from seed, as the potato, artichoke and cluster onion, \&c., since a cross or hybridism of a mixture of two or more of any description can only be produced by the impregnation of the flower, and so long as the propogation is not continued from the sced, the character of the bulb or tuber itself must remain the same.

We would not be understood to say there can be no change in the quality of the esculent; we believe the contrary, a potato which would be dry and mealy on a particula and suitable soil, may, by continued growth on soil of another description, become close or watery, and perhaps in particular locations, be almost unfit for human food; but this may be remedied by a return to a soil suited to is peculiar character. We have reason to believe that a larger quantity than usual has been planted this spring, which has been the cause of the scarcity of seed ; and that the rot in the cellar from the prevailing disease of the last two years has not been so general as heretofore.

We must confess we have a fear that the use of a large proportion of manure applied immediately to the seed in the drill, inducing a luxurient and succulent vegetation, will tend to perpetuate, or at least to favour the disease, supposing, as we do, the cause to be atmospheric, and that luxuriance rendering it peculiarly liable to suffer more readily. No doubt a larger crop is generally the result of such an application of manure, but if the produce be unsound, the practice is bad folicy.

The hoe crop generally, will now need the most vigilant attention on the part of the Farmer-' no stirring of the land, no crop.' The cultivator, hoe and plough, must be pet into operation, or vile wecds will blast the hopes of the grower. A treble loss is sustained by neglect, weeds will take the nutriment from the cultivated crop, they will seed and lay the foundation for a future annoyance and loss, while if cut over and buried up they serve as a nourishing manure.

We have thought that lotatoes, when earthed up so close as that an apex or sharp ridge is formed, that much benefit is lost in a dry season, by the rains passing off too rapidly thro' the deep furrow without communicating the requisite amount of nourishmont to the crop; we always prefer leaving the ridge fartislly flat!ened.

The Quarterly Committee Meeting of the Northumberland Agricultural Society, was held at Colborne, on Wednesday the 13 h June, when, as the funds of the Society were voted to be applied to the approaching Exhibition of the I'rovincial Association, and no appropriation had to be made for local purposes, little interest was taken in the mecting, and consequently there was a very short attendance; in fact there was no representative from Hamilton, and but few from Ilaldimand and Cramahe. The gentemen from Murray mustered in great strength, some from a misconception that they were Directors of the Society, being mislaid by a representation, that, as Directors of their Township Society, they stood in the same relation to the County Society, and some two or three on a calculation of carrying measures beneficial only to thernselves, but they missed a figure.

At the General Meetings in Jannary of each year, all the officers are chosen, and at no other, and this on the just and liberal principal of allowing all members a voice in the choice of the officers.

At the meeting last January, the delegates from Murray, after much reluctance, gave in a list of subscribers in that Township whom they were desirous should be Directors of the County Society, at the same time expressing a wish that they, the Murray 'Township Society, should, in their own conclave, nominate and appoint whom they chose to that office without reference to the voice of the General Meeting. This could not be conceded, because at variance with the constitution of the Society; their own list was therefore adopted without a dis sentient voice; but lo! some weeks afterwards a new list of iames was furnished and published in the 'Star' and ' Farmer,' purporting to be a list of the Directors of the Murray 'Township Society ; so far so good. The Murray 'Township, as a Society, votes its own officers, but these are not necessarily officers of the County Society, although several of the names occur in each. But the small gentleman from Murray-not having the honour of his personal acquaintance his naine escapes us-is in error in supposing that the Town. ship has of itself the right todo for the County, what the County never attempts to do for the Township Societies, to name their respective officers.

Every Society of any description is composed of members, who are such, on certain conditions. Now the condition of membership in "The Northumberland Agricultural Society" is "the payment of five shillings per annum to its funds." Out of such Menters a Committee, or Roard of Directions is formed, for directing the affairs of the Society, and appropriating, as shall to them seem best (at a meeting duly called for the purpose) the funds of the Society.

The Saceicty have ever been too lax in their discipline in voting Directors who have not paid their subseriptions, who consequently are not even members of the Society, still, altho' the rule has been suspended, it is not it cannot $b c$, abrogated; and persons so nominated are in precisely the same condition as gentlemen Gazetted to the Commission of the Peace, who, if they fail to qualify, are incompetent to act or vote in any pullic or private business connected with the commission. Indeed with respect to Agricultural or any Society were it otherwise, the greatest opening imagimable would be made for iraud; for, suppose a party in a certain locality, find that a measure especially beneficial to thenselves might be carried by an avowal merely of being members and withholding their subscriptions, they may be appointed Discctors-come
in force-carry their measures high-handed-oppose other measures in which they have no interest, and appropriate funds to which they have never contributed one shilling. This is so glaring an injustice and so complete an anomaly at variance with all ideas of good regulations, that it never could be allowed.
Now, some of the Murray gents (we can never believe the Township is fairly represented by them) seemed bent on sub. verting all government unless ve-fed in themselves, they shewed their teethat their very first appearance at a County Meeting. They are desirous of being comected with the Society, but wish at the same time to be wholly independent. They have no objection-having a laudable desire to be seen in good company-to take a cast in the county state carriage; but that is not enough for them, they must have their Rosinante in the carriage too, and retain their seat in an independen: saddle, while they hold the lines and guide the carriage at the same time-this incredible feat they believe themselves quite competent to perform. We sincerely hope our small friend will not attempt it.

These gentlemen seem to hold to the principle, of "What is yours is mine, and what is mine is iny own," for their very modest proposition is, that they wili countenance the County Society by the payment of five shillings per member, per annum; provided said Society will return them three shillings and four pence in hard cash, pay over to them the whole of the Government appropriation, and give them a monthly publication costing two shillings and six pence per annum into the bargain; and moreover, they expect said five shilling payments to make them members of the Provincial Ássociation!!! Very nodest truly; where would the County Society be? its noble would soon be brought to nine pence and its nine pence to nothing. And supposing the Society to consist of $\mathbf{4 0 0}$ members, an annual loss would be sustained of just so many ten pences, and from whence are they to come, and how are the intentions of the Legislature to be carried out? how are improved breeds of stock to be brought into the country, seeds and other things to be imported, besides an expenditure in Annual Exhibitions, \&c. \&c.?

We do hope our Murray friends will at once perceive what a farcical affair it would be if such measures were adopted; they will see how absolutely necessary it is that they should cease to desire to be so ubiquitous, and make their election at once, either of the saddle or the spring seat, "fast and loose" is not always a safe game to play, or if safe it is too frequently dishonourable.

Really the creed of some persons seems to be, that union is weakness, that strength consists in the minutest division of parts, in the disintegration of masses, and the absence of cohesion. That no wisdom arises out of united counsel, and that it is folly to be advised; that a minimum is preferable to a maxiumit, if good; and that exertions to be most beneficial must be subdivided infinitesmally.

If such ideas be really correct, then, button up your pockets to a man, let each be and constitute himself a Society, bo his own Subscriber, President, Treasurer and Secretary; call a meeting of the whole; carry his measures nem, con.; carry his five shilling (with a full report) to the District Treasurer, and double his proceeds; he may then proceed to invest his capital in stock, and as his purchases must necessarily be on rallier a limited scale, we would advise his importing a yoke of the Industrious Fleas, the freight for which would be trift. ing-the duty less-as they might be conveycd in a pill box, and the exhibition might take place on the very smallest deno. mination of silver coin, a pemy.

## fitistellancous.

## GO FORWARD :

Go forward :-'tis folly behind to be gloreing, We cannot recover the days that ure past: The fusure our joys will, perchance, be euhancing, 'Tho' dark clouds of care o'er the present are cast.
There is never a nigh: but there comes n to-morrow, There is nover a cloud but n sunbeam succeeds;
We should feel not the binlin, if we knew not the sorrowGo furward:-ilie rioht path to happinegs leads.

Go) forward :-the future must yield to the power That justice, and gooduess, and truth enn convey ; The base and the fulse may succeed for the hour, But reason, at last, will but honour obey !
True cournge consisls but in facing a danger : Ne'er harhour injustice by word or ill deed;
As you'd be to a friend, be the same to a strangerGo forward und hopz,-一you'll be sure to succeed !

## A SLEEPY FARMER.

A worthy Northumberland farmer left home the other Sa. turday for Newcasile market, on the day of the rent dinner; and Peggy the maid, who was also coming, received strict orders from her mistress to seu him in the train at night. Peggy was true to her trust; she saw her master into a second. class carriage, and then got into a third-class carriage herself. On her arrival at the station she alighted, and proceeded on foot to the farm. "Well, Peggy, where's your manter?" asked the dame; "did you sen hminto the train?" "Yes, Ma'am," replied Peggy. "Then where is he ?" continued her mistress; "did you see hien get out?" "No, Ma'am," rejoined the literal maid; "you didn't tell me to do that." "Stupid!" exclaimed the farmer's wife; he'll have gone on with the train." And so he had! He went forward to the next station, and would have gone on to the very terminus of the line, but the guard, popping his lantern into the carriage, saw him snoozing in a corner, and rousing him up, cried,"Hollo! Mr. -? where are you going to ?" "To ——", said the farmer. "To -!" echoed the guard; "why, you'ye got to _!" Our hero started at the announcement; and his friend of the lantern, assisting him to descend, transferred him to the mail train, which just then came up from the opposite direction. Manful was the struggle which he made to keep awake until the train arrived at -; but his potent enemy, sleep, came off conqueror. He awoke no more until a voice resounded in his ear, "Hollo! Mr. ——, what's brought you back to Newcastle?" He thought it was a dream; it must be the reverberation of the cry which awoke him at , But no! it was a waking reality. He had got back to Newcastie again, and the news of his return reached his brother temants before they had broken up from the rent dinner! He made no further trial that night of the rail, but came to the resolution that he would not go home till morning.-Gates. head Observer.

Kilhivg a Buffalo.-No ammal requires so much killing as a buffalo. Unless shot through the lungs or spine, it inva. riably escapes; and, even when thus mortally wounded, or even strack through the very heart, it will frequently run a considerable distance before falling to the ground, particularly if it sees the hunter after the wound is given. If, however, he keeps himself concealed after firing, the animal will remain still, if it does not immediately fall. It is a most painful sight to witness the dying struggles of the huge beast. The buffalo invariaty evinces the greatest rapugnance to lie down when mortally wounded, apparently conscinus that, when onee touching mother earth, there is no hope left him. A bull, shot through the heart or lungs, with blond streaming from his mouth, and protruding tongue, his ryes rolling, blondshot, and glazed with death, braces himself on his legs, swaying from side to side, stamps impatiently at his growing weakness, or lifts his rugged and matted head, and helplessly beliows out his conscious impotonce. To the last, howerer, he en. deavours to stand upright, and plants his limbs farther apart, but in no.purpose. Ax the body rolls like a ship at sea. his head slowily turns from side to side, looking about as it were,
for the unseen and treacherous enemy who has brought him, the lord of the plains, to such a pass. Gouts of purple blood spurt from bis mouth and nostrils, and gradually the failing limbs refuse longer to support the ponderous carcase: more heavily rolls the body, from side to side, until suddenly, for a brief instant, it becomes rigid and still; a convulsive tremor seizes it, and with a low, sobbing gasp, the huge animal falls over on his side, the limbs extended stark and stiff, and the mountain of flesh without life or motion.-Adventurcs in the Rocky Mountains.

Fuvai in Silk.-A manufacturer of silks, having received from his dyer a large quantity of goods in a spotty condition, threntened him with an action, unless he was compensated for the loss he was likely to sustain, owing, as it appenred, to the dyer's carelessnpss. This being resisted, chemists were employed to detect the cause of the accident; but they were at fault, until at length one gentleman to whom the damaged silk had be en committed for analysis, thought of submitting it to a microscopic examination, which was undertaken by an eminent naturalist, who at once discovered that the spots were owing to a peculiar fungus, having all the characters of that variety which was detected in the potato disease. The result was, the discovery that all the damage had been effected by the manufacturer and not the dyer, he having employed in the process of manufacture a starch size which had been prepared from diseased potatoes. - Art Union Journal.

A Young Goose.- A market girl sold a gentleman a fine fat goose, warranting it to be young. It turned out to be unmanageably tough. 'Ihe next day the gentleman said to the market girl, "That goose which you sold me for a young one was very old." "Certainly not," said the girl; don't you call me young? "Yes." "Well, I am but nineteen, and I have heard mother say often that the goose was six weeks younger than me."-Boston paper.

Fatal Encounter with a Rattle Snake.-The N. Y. Herald records the death of Dr. A. F. Wainowright, of 41, Crosby-street, of that city, occasioned by the bite of a rattle. snake. The snake was sent him by a friend in Mobile, Ala. bama. It was a large animal, about five feet in length, having 12 rattles; it was contained in a box with spars over the top. The doctor was on his way home from the ship with the prew sent, but stoppel at the Broadway-house to show the curiosity. The company present seemed to enjoy the sight of teasing and irritating the snake, while the reptile kept whizzing its rattle at a furious rate. The box was opened, and now there being a fair field the reptile kept coiling and rearing itself in fierce defiance to its enemies; this display lasted for some time, when Dr. Wainewright touched it a few inches below the head, expecting that it could not hend its body sufficiently to bite. In a moment it snapped, and inflicted a wound on the first joint of the middle finger of the right hand. This occurred at half-past six o'clock P. M. on Thursday. Dr. Sinith made a superficial incision of the part, and also canterized it with nitrate of sulphur. IIe also applied a ligature immediately above the wrist. The hand commenced to swell immedintely after the occurrence of the accident. An application of turpentine to the wound was then ordered, as also the internal administration of diffusible stımulants. Although the disease progressed rapidly in its course to the forcarm and arm, no constitutional symptoms secm to have made their appearance until it reached the "axilla," or armpit, when im. medintely the pulse began to flag, and notwithstanding the continued application of stimulants by the mouth, and also in other forms, the pulse never rallied until about 12 oclock p.m., when death put a period to his existence. Dr. Wainewright was a physician of eminent standing, of high professional reputation in medical, literarv, and scientific acquirements; he was once a captain in the 50th Regi. of Foot, British service.

When the oak puts forth its leaf before the ash, a dry sum. mer may be exnected; but when the ash precedes the oak, then a wet one.-Old Proverb.
Published by H. JONES RUTTAN, at the Office of "Tax Conotras Star \& Newcestle Distinct Gazettr," on the lat of every moath.
Txrns.-2s. 6d. per annum.

