

Mich the minter's compliments.

AUG 2 8 1912

r

1

REPRINTED FROM THE JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY OF CANADA, NOVEMBER-DECEMBER, 1911

3 1761 04404 6456

THE ORBIT OF @ URSÆ MAJORIS

БY

T. H. PARKER

THE ORBIT OF . URSÆ MAJORIS

By T. H. PARKER

THE star \bullet Ursæ Majoris, $a = 10^{h} 48^{m}$, $\delta = +43^{\circ} 43^{\circ}$, phot. mag. 4.8, was announced as a spectroscopic binary by Vogel in 1903.* It was included in a list of 528 stars whose spectra were investigated by Vogel and Wilsing at Potsdam. Vogel states that on one plate he found an indication of the doubling of the K line, and the Mg. line λ 4481 doubled on one or two others.

It was first observed here in February 1908, and since then sixty-nine spectrograms have been obtained-fifteen with the old, and the remainder with the new single-prism spectrograph. This star is of the A type, according to the Harvard classification, the principal lines being measured being the M_{g} , λ 4481, the hydrogen series and K. Only three of the plates obtained here show definite double lines. This is probably due to the faintness of the secondary component, whose mass, as will be seen later, is only about one sixth that of the primary, as well as to insufficient dispersion in separating the two spectra. The length of exposure required for a star of this magnitude forbade the use of the three-prism instrument. On this account also "Seed 27" plates were used for the majority of the spectrograms. Six were taken however on "Seed 23," and the finer grain gave a much better spectrum. The average length of exposure required for these was 90 minutes. The blending of the lines of the two spectra made the measurement of the plates rather unsatisfactory. In one plate in which the lines were separated those which showed doubling were the Mg, line λ 4481 and the two iron lines λ 4325 and λ 4308. In another the lines λ 4308 and λ 4101 (*H*s) were found to be doubled, with faint

* Astronomische Nachrichten, Vol. CLXIII., p. 145, 1903.

indications also of a secondary spectrum in the iron lines λ 4549, λ 4325 and λ 4260. In the third plate only λ 4308 was measurable. No trace of a doubling of the K line was found on any of our plates.

The lines measured were as follows :

Elements	Wave-Length	No. of Times Measured
113	4861.527	1.2
Fe	4549'766	46
Mg	4481.400	69
H_Y	4340.034	58
Fe	4325.939	5
Fe	4233.328	7
Si	4128.211	9
118	4101.890	33
$Ca(\mathbf{K})$	3933.825	39

The hydrogen lines with the exception of H_2 are broad and diffuse. The Mg, λ 4481 is the best line in the spectrum and was measured on every plate as will be seen in the table above. Metallic lines other than Mg, λ 4481, Fe λ 4549 and K do not occur frequently. As different lines on the same plate in many cases gave widely differing velocities the determination of the period offered some difficulty. Several such plates were remeasured or checked by other observers, and the resulting means taken. These measures were usually in fair agreemant. From the consideration of the velocities of the Mg, line alone the period was found to be between fifteen and sixteen days. Several trials using the velocities of whole plates gave 15-84 days as the most satisfactory period.

Following is a table of observations with data of each plate :

The Orbit of w Ursa Majoris

Plate	Julian Date	Fhase from Final T	Velocity	No. of Lines	Weight	0 - C
1340	2417993-801	2.701	12.1		5	+ 51
1380	8010.713	31772	- 24.1	4	6	+ 04
1489	047.005	9.074	43.5	4	4	- 121
1499	049.605	10.020	- 0.0	i	2	+ 18-
1537	080.001	10.300	- 10.5	1	2	+ 8 0
1579	098-056	12:515	27.5	6	3	- 13.2
1037	119°621	1.700	- 22'3	2	2	- 14
2021	285'041	0'720	- 38.3	2	2	- 85
2037	202.038	0.877	- 2.7	4	4	4.3
2063	297.934	5 873	- 20.3	6	6	+ 31
2099	313 807	5.000	- 20.0	5	5	+ 5%
2232	341.807	2.220	- 12.7	6	27	0.0
2259	346.705	7'214	- 22.9	2	2	
2200	300.757	5130	- 26.0	6		
2321	309.750	14:320	+ 0.7		4	+ 50
2340	374 741	3'479		5	-4	- 0.4
2354	378-681	7'420	- 31.7		2	8
2300	379.604	8-433	34.3	4	4	0.5
2411	388-600	1.208	30.4	-4	0	+ 214
2431	380.710		13.8	2	4	- 8.2
2447	307 071	2.018	- 0.4	3	3	+ 91
106	308 786	10.570	- 17.5	2	5	+ 87
1480		11.085	- 21.2	2	-4	1.0
194	405.025	2.079	- 20.7	5	0	- 3.0
194	413:033	10.092	- 32.4	2	2	0.8
508	416.510	13 509	+ 2.3	2	-4	+ 78
520	420-443	1.005	- 0.4	3	3	0.0
	423-685	4'901	- 34.1	4	0	3.0
525	425.021	6.840	- 48.5	2	2	- 14'3
535	430'577	11.200	- 0'9	2	3	+ 12.8
549	451.040	1.129	+ 0.5	3	0	+ 1'0
551	453.088	3 227	5.1	2	2	+ 16.0
552	418458 602	8.231	= 37.9	3	1	5.8
557	460.508	10.132	- 39.3	3	2	11.3
571	473.007	7:300	41.7	2	1	8.0
583	482.037	0.496	0*0	2	5	- 4.0
878	588 906	11.725	- 20.0	3	4	+ 0.1
959	626.899	2.198	12.5	0	6	+ 03
112	080.822	14 601	0.0	3	6	3.3
144	697.833	9'772	- 28.2	0	7	1 12
161	703.715	15.054	+ 130	- 4	6	1 515
198	721.687	1.940	- 18.2	2		8.0
205	724 702	4.901	- 34.2	4	6	3.8
212	720.723	6.982	- 42.0	2	2	- 83
248	731.087	11.040	26.3	4	4	- 80
256	733.688	13'047	0.4		2	- 7.2
282	734.807	15'006	4.5	5	3	- 10'0
321	742.636	7'055	- 25.7	5	4	+ 8.0
340	749.566	13:085	- 53	4	5	- 3'3
353	747.097	12.101	12.5	4		1. S.
357	754.074	3.253	25.0		5	+ 4.7
364	759.680	8.250	- 27.0	3	3	
375	768.639	1.379	+ 8.4		5	4.9
377	770-666	3:400	- 20'0	5	4	+ 1112
388	774-817			5	0	+ 2.0
100		7.550	33.1	5	5	

T. H. Parker

Plate	Jalian Date	Phase from Final T	Velocity	No. of Lines	Welgh	¢) - C	
3395	2418776-646	9.385	20.6	6	5		0.0	
3397	782.666	15:405	+ 9.0	6	6	+	2.5	
3406	787.625	4.524	- 29'3	5	6		0.5	
3407	789.627	6.526	- 31.5	6	4	+	2.0	
3416	790.594	7.493	- 40.8	5	6		7.1	
3422	797.549	14.448	+ 2.8)*	5	6	$^+$	0.2	
3441	803-639	4.698	- 32.7	3	5		2.0	
3454	811.653	12.712	- 13.0	5	4		0.0	
3866	9018-905	14.104	+ 5.2	6	2	+	6.0	
3893	027.880	7.179	+ 114.6 * $- 34.0$ *	3	4		0.5	
4094	106.826	6.925	+ 83.7 *	4	3		3.1	
4182	137.786	6.205	- 31.1	5	5		2.0	
4231	148.700	1.5270	- 8·1	6	4		6.1	
4207	153.771	6:350	- 32.3	5	3	+	0.0	

* Double spectrum.

The phases are computed from the final value of T, and the residuals are scaled from the corrected curve. The plates were grouped into seventeen normal places, according to phase, and each weighted as in table below.

NORMAL PLACES 1ST SOLUTION

No.	Julian Date	Phase	Velocity	Weight	Residuals O-0
1	2418303130	1.210	+ 1.20	1.0	+ 4'53
2	742'924	1.733	1.75	2*0	- 4'49
3	743'191	2.793	+ 11.44	1.0	+ 1.68
	419'003	4.224	2.87	2.0	- 3.00
4 5 6	448.513	5.262	- 13.22	2.5	+ 1.86
6	754'423	0.102	21'02	1.0	- 1.74
7	020.066	0.122	- 19.54	1.2	+ 1.30
ŝ	770-127	7.831	32.05	2'0	- 2.10
0	349.629	8.623	- 29.49	2.0	+ 2.68
10	771:435	10.203	34'45	2.0	- 0'45
11	301.880	10.847	33.95	1.2	- 0.13
12	7461138	12.140	- 30.20	2.0	+ 1.52
13	058.684	12.000	- 35'40	-5	- 4.17
14	301.700	13:459	- 27:05	1.0	+ 0.68
15	079.036	15.040	- 18.90	15	+ 2.82
10	476.201	14.834	- 16.02	1.0	+ 4.75
17	762.449	15:349	- 16.00	1.5	+ 2'23

A velocity curve was drawn through the normal places by the graphical method of Dr. King, giving the following preliminary elements :

The Orbit of w Ursa Majoris

$$P = 15.84 \text{ days,}$$

$$c = .30,$$

$$\omega = 10^{\circ},$$

$$K = 22 \text{ km},$$

$$\gamma = -18.50 \text{ km},$$

$$T = 2417991.168 \text{ L}, D$$

A least squares solution with these elements gave the following corrections:

δ	P	+	00008 days,
δ	γ	+	0.17 km.,
δ	K		2.03 km.,
δ	\mathcal{C}		·060,
ô	ω	+	4° 13,
δ	T	+	0.018 days.

e

The value of $\Sigma \beta vv$ was reduced from 193 to 137. On substitution in the observation equations it was found that the computed and ephemeris residuals did not agree closely. A second solution was accordingly made. The velocities of six additional plates were included which had been obtained after the first solution was made. The number of normal places was reduced to ten and the period taken as fixed at 15°8401 days. The normal places for the second solution follow. In the last column will be found the residuals from the final curve.

	Julian Date	Phase	Velocity	Weight	Residual
1	2418682.660	1.541	0.44	1	- 1/0
2	743'191	2.201	+ 11.42	1	+ 3'9
3	568-528	4.280	- 2'76	3	1.8
4	379'090	5.464	- 14'50	3	- 0.8
5	450.800	6.010	- 24'00	2	- 0'2
6	537.740	8.269	- 30.62	4	+ 0.4
7	740.258	10.118	- 34'32	4.5	0.2
8	574.889	12.015	32.45	3	0.0
9	343 848	13'460	- 26.01	i i	+ 0'5
0	536.101	15:092	17:25	3	+ 11

The solution of these gave as further corrections :

T. H. Parker

$$\begin{split} \delta \gamma &= + \cdot 51 \text{ km.}, \\ \delta K &= + \cdot 39 \text{ km.}, \\ \delta c &= + \cdot 024, \\ \delta \omega &= -2^{\circ} \cdot 177, \\ \delta T &= - \cdot 085 \text{ days.} \end{split}$$

-Night

The definitive elements of the orbit now were :

$$\begin{split} \mathcal{P} &= 15^{\circ}8401 \text{ days}, \\ e &= 264, \\ \omega &= 11^{\circ}.95, \\ K^{\circ} &= 20^{\circ}64 \text{ km.}, \\ \gamma &= -18^{\circ}45, \\ T &= 2417991^{\circ}101 \text{ J. D.}. \end{split}$$

The value of $\Sigma \beta vv$ was reduced from 43 to 33, and the agreement between the computed and ephemeris residuals was now satisfactory, the greatest difference being '08 km. The table below gives a summary of the values of the elements after each solution.

E'ement	Preliminary Values	First Corrected Values	Final Values
$P = e \\ \omega \\ K \\ \gamma \\ T \\ \sigma \sin i$	15.84 days 30 10° 22 km, 18.50 km, 2417991.168 J. D.	$\begin{array}{c} 15^{\circ}8401\\ ^{\circ}24\\ 14^{\circ}^{\circ}13\\ 20^{\circ}25\\ -18^{\circ}56\\ ,\ldots,991^{\circ}186\ J.\ D, \end{array}$	$\begin{array}{c} 15.8401 \ days \\ 204 \pm .024 \\ 11^{0.05} \pm 5^{0.57} \\ 20.64 \pm 0.40 \\18.45 \pm 0.32 \\ 901.101 \ J. D. \pm .208 \\ 4.336.000 \ km. \end{array}$

In the column of final values is also given the probable error for each element. The probable error of a normal place of unit weight was ± 1.7 km., and that of a plate of average weight was computed from the residuals scaled from the final curve and found to be ± 4.1 km.

Although there are only three measures of the secondary component an approximation to the value of K was arrived at by substitution in the equation :

 $\frac{dz}{dt} = \gamma + K \left\{ \cos u + c \cos \omega \right\}$

The Orbit of w Ursa Majoris

giving the velocity at any point in the orbit. The values of e, ω and γ being known, that of u was determined in the usual way from the mean anomalies at the observed velocities. Successive trials of the value of K in the above equation gave 120 km, as the most satisfactory. Hence a comparison of the masses of the system may be had from the relation :

 M_1 : $M_2 = K_2$: $K_1 = 120$: 20.6 = 5.8 : 1.

It is interesting to note that if further measures of the secondary substantiate this value of K this proportion of the

masses is one of the highest yet obtained. It is probably due to the resulting faintness of the companion that more plates showing the double spectrum were not obtained.

In conclusion I wish to acknowledge with thanks the kindly interest shown by the Director throughout this work.

Dominion Observatory, Ottawa, Canada.

December, 1911