
 REPRINTED FROM THE JOURNAL OF The Royal Astronomical Socirty Of Canada, November-December, 1911

THE ORBIT OF ω URSA MAJORIS

THE ORBIT OF क URSE MAJORIS

By T. 11. PukK:k
 mag. 4.s, was announced as a spectroscopic binary by Vogel in 1903.* It was included in a list of $52-5$ stars whose spectra were investigated by Vogel and Wibing at Potsdam. Vogel states that on one plate he found an indication of the doubling of the K line, and the $1 / g$. line λ Hist doubled on one or two others.

It was first observed here in Febrnary 1:90- and since then sixty-nine spectrograms have been obtaned-fifteen with the old, and the remainder with the new single-priam -pectrograph This star is of the A type, according to the Harvard classification, the principal lines being measured being the $1 / \mathrm{s}, \mathrm{A} 4 \mathrm{f}=1$, the hydrogen series and K. Only three of the plates obtained here show definite double lines. This is probably due to the faintuess of the secondary component, whose mass, as will be seen later, is only abont one sixth that of the primary, as well as to insufficient dispersion in separating the two spectra. The length of exposure required for a star of this magnitude forbade the the of the three-prism instrument. On this account ako " Seed 27 " plates were used for the majority of the -pectrograms. Six were taken however on " Seed 23," and the finer grain gave a much better spectrum. The average length of exposure required for these was 90 minntes. The blending of the lines of the two spectra made the measurement of the plates rather unsatisfactory. In one plate in which the lines were separated those which showed doubling were the $1 / g$. lime A ff and the two iron lines $\lambda 4325$ and $\lambda 4308$. In another the lines $\lambda 430$ and $\lambda+101(/ f)$ were found to be doublel, with faint

[^0]T. II. Parker
indications also of a secondary spectrum in the iron lines $\lambda 4549$, $\lambda 4325$ and $\lambda 4260$. In the third plate only $\lambda 4308$ was measurable. No trace of a doubling of the K line was found on any of our plates.

The lines measured were as follows

Elements	Wave-Length	No. of Times Measured
119	4861.527	12
1	4549766	$4{ }^{6}$
M	4451400	6.
/1)	4340634	5
$1 \cdot$	4325939	5
F	$4233 \cdot 325$	7
si	4128.211	9
17.5	4101890	33
Cat (K)	$3933 \cdot 825$	39

The hydrogen lines with the exception of $/ /$: are broad and diffuse. The $M_{g}, ~ \lambda 4481$ is the best line in the spectrum and was measured on every plate as will be seen in the table above. Metallic lines other than $\mathrm{N} / \mathrm{g}, \lambda 4481$, Fi $\lambda 4549$ and K do not occur frequently. As different lines on the same plate in many cases gave widely differing velocities the determination of the period offered some difficulty. Several such plates were remeasured or checked by other observers, and the resulting means taken. These measures were usually in fair agreemont. From the consideration of the velocities of the $1 / g_{s}$. line alone the period was found to be between fifteen and sixteen days. Several trialusing the velocities of whole plates gave $15: 84$ days as the most satisfactory period.

Following is a table of observations with data of each plate :

Talian Date

2479093804
Soror7;
Solo'713
047605
040605
a80.061
048 0. 06
1 19021
255*941
202933
$207-934$
31; 847
311807
340705
3001757
309750
$37+741$
375681
374694

397671
308750
405025
$4136 ;$
$416 \cdot 51$
$+20 \cdot: 1$
42; 6x
42,021
43057
15174
+51049
453658
$\mathrm{S}_{4}: 8 \mathrm{Cm}$
$400 \cdot 568$
473607
402037
$588 \cdot 1006$
$526 \cdot 8 \mathrm{man}$
$680 \cdot 822$
$647.8 ; ~$
703715
721687
724702
7201723
731 6s 7
733658
$734 \cdot 507$
74263
$7+9.56$
$747^{6} 607$
754674
750 060
765639
770606
774×17

Velecity No. of Weistr O.

$=$
5
6
1 $5 \cdot 1$
0.1
$12!$

Plate	Jalian Date	Phase from Final T	Veocity	No, of Lines	Weigh	$\mathrm{O} \cdot \mathrm{C}$
3395	2418776.646	9.385	296	6	5	$0 \cdot 9$
3397	782.606	15405	$+\quad 99$	6	6	+ 23
3406	787.625	4524	- 29.3	5	6	0%
3407	$789 \cdot 627$	6.526	- 31.5	6	4	+ 2\%
3416	790.594	$7 \cdot 493$	- 40.8	5	6	$7 \cdot 1$
3422	797549	14.448	$\left.\begin{array}{r} 28 \\ -1451 \end{array}\right\}$	5	6	+ 0.7
	So3.639	4.6988	- 327	;	5	- 29
3454	811.653	12712	13\%	5	4	00
3×60	0018.905	14.104	+ 5\%	6	,	+ 60
3 Sog	027.880	7179	$\begin{array}{r} 11467^{\circ} \\ -\quad 3401^{2} \end{array}$	3	4	$0 \cdot 2$
4094	106. 826	6.925	$\begin{array}{r} 837{ }^{*} \\ +\quad 36.51^{\circ} \end{array}$	4	3	31
4182	1:37786	$6 \cdot 205$	- 31.1	5	5	+ 20
4231	$148 \cdot 700$	1279	- 81	6	4	6.1
4207	$153 \cdot 771$	6.350	- $32 \cdots 3$	5	;	$\begin{array}{r} \\ \hline\end{array}$

* 11 uble spectrum.

The phases are computed from the final value of T, and the residuals are scaled from the corrected curse. The plates were grouped into seventeen normal places, according to phase, and each weighted as in table below.

Normal. Places 1st Solltion
vis

Julian Date

1	$2418303^{1} 30$
2	742 924
3	$74 j^{101}$
4	419003
5	$44^{\text {人 }} 513$
0	754.423
7	$020 \cdot 966$
8	$770 \cdot 127$
${ }^{1}$	349629
10	771435
11	301880
12	$746 \cdot 138$
13	$058 \cdot 684$
14	391700
15	079.036
16	$476 \cdot 591$
17	$762 \cdot 4.49$

Phase

Velocity Weight Residuals O-C

1.50	10	4.53
1.75	2.0	4.49
11.44	10	1.68
2.87	2.0	3.96
13.22	2.5	186
21.02	1.0	1.74
19.24	1.5	1.30
32.05	2.0	2.19
29.49	2.0	2.68
34.45	2.0	0.45
33.95	1.5	0.13
30.70	2.0	1.52
35.40	75	4.17
27.95	1.0	0.68
18.90	75	2.82
16.97	1.0	4.75
16.90	1.5	2.23

A velocity cutve was drawn through the normal places by the graphical method of Dr. King, giving the following preliminary elements

$$
\begin{aligned}
& P=15 \cdot 4 \text { days } \\
& c=30, \\
& \omega=10^{\circ} \\
& K=22 \mathrm{~km}, \\
& \gamma=-18.50 \mathrm{~km}, \\
& T=2417991.16 \mathrm{~s} . \mathrm{J}
\end{aligned}
$$

A least squares solution with these elenent gave the follow ing corrections

$$
\begin{aligned}
\delta P= & +0000 \mathrm{~s} \text { days. } \\
\delta \gamma & +0 \cdot 17 \mathrm{~km} . \\
\delta \mu= & -0.03 \mathrm{~km} . \\
\delta c= & -060 \\
\delta \omega= & +4^{\circ} 13 \\
\delta T & +0.01 \mathrm{~s} \text { days. }
\end{aligned}
$$

The value of $\mathbf{\Sigma}_{3} \mathbf{B}^{2}$ was reduced from 193 to 137 . On sub stitution in the observation equations it was found that the com puted and ephemeris residnals did not agree closely. A second solution was accordingly made. The velocities of six additional plates were included which had been obtained after the first solution was made. The number of normal places was reduced to tell and the period taken as fixed at 15.8401 days. The normal places for the second solution follow. In the last column will be found the residuals from the final curse.

	Julian Date	Phase	Velocity	Weight	Residual
I	2418682600	1.541	$0 \cdot+4$	3	10
2	743191	2.791	$+1145$	1	+ 30
3	$56 \mathrm{~S} \cdot 52 \mathrm{~S}$	4.2\%O	- 2\%6	;	1.
4	$379^{\circ} \mathrm{OgO}$	5.464	14.50	3	O^{18}
5	$450 \cdot 809$	6.616	, $24^{\circ} 09$	2	$0 \cdot 2$
6	$53774{ }^{\circ}$	$8 \cdot 269$	3) 62	4	+ $0 \cdot 4$
7	$740 \cdot 258$	10.118	- 3432	$4 \cdot 5$	O'5
8	$574 \cdot 889$	12.012	;2'45	3	0%
9	$34 ; 848$	13460	26.91	1	or_{5}
10	$530 \cdot 191$	15092	$17 \cdot 25$;	+ 1'1

The solution of these gave as further corrections

382

> T. II. Parker
> $\delta \gamma=+31 \mathrm{km.}$.
> $\delta k=+39 \mathrm{~km}$.
> $\delta c=+024$,
> $\delta \omega=-2.17$.
> $\delta T=-085$ days.

The definitive elements of the orbit now were

$$
\begin{array}{ll}
P= & 15 \cdot 8401 \text { days, } \\
\ell & 264, \\
\omega= & 11 \cdot 95, \\
\mu & 20.64 \mathrm{~km} . \\
\gamma & 18.45, \\
T & 2417991 \cdot 101 \mathrm{~J} . \mathrm{D})
\end{array}
$$

The value of 5 was reduced from 43 to 33 , and the agree ment between the computed and ephemen is residuals was now satisfactory, the greatest difference being os km. The table below gives a stmmary of the values of the elenents after each solution

E'ement	Preliminary Values	First Corrected Values	Final Valacs
$!$	15'84 day.	$15 \cdot 8401$	$15 \cdot 8.801$ days.
\therefore	10^{39}	${ }^{2} 24$	204 11.024
	10°	14.13	$11 \times 05-5^{\prime \prime} 5$
1	22 km .	$20 \cdot 25$	$20.64=0.40$
7	15.50 km.	$15 \cdot 60$	$18 \cdot 45+0 \cdot 32$
$a \sin i$	S	991. 180	$4.336,000 \mathrm{~km} .$

In the column of final values in also given the probable error for each element. The probable error of a normal place of unit weight was $\pm 1.7 \mathrm{~km}$., and that of a plate of average weight was computed from the residuals scaled from the final curve and found to be +1 km .

Althongh there are only three measures of the secondars component an approximation to the value of K was arrived at by substitution in the equation

$$
\left.\frac{d z}{d t}=\gamma+\kappa, \cos u+c \cos \omega\right)
$$

giving the velocity at any point in the orbit. The values of c, (i) and γ being known, that of u was determined in the usual way from the mean anomalies at the observed velocities. Successive trials of the value of K in the above equation gave 120 km . as the most satisfactory. Hence a comparison of the masses of the system may be had from the relation

$$
M: M=K: K=120: 206=5 \cdot: 1
$$

It is interesting to note that if further measutes of the secondary substantiate this value of $ん$ 人 this proportion of the

masses is one of the highest yet obtained. It is probably due to the resulting faintness of the companion that more plates show ing the double spectrum were not obtained

In conclusion I wish to acknowledge with thanks the kindly interest shown by the Director throughont this work.

Dominion Observatory,
Ottawa, Canada.
December, 1911

[^0]:

