IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restauree et/ou pelliculée
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajuuîes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé ie meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagées
Peges restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discolour ad, stained or foxed;
Pages décolorées, tachetées ou piquéesPrges detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression'Includes supplementary material/
Comprend du matériel supplémentaire

Only edition available/
Seule éditinn disponible

Pages wholly or partially obscured by errata slips, tissues, etc., heve been refilmed to ensure the best possible image/
Les pages totelement ou partiellement obscurcies par un feuillet d'orrata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué cl-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library,
Geological Survay of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely incluted in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmá fut reproduit grâce à la générosité de:

Bibliothèque, Commission Géologique du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformit́́ avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illuritration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une émpreinte d'impression ou d'illustration ot en terminant par la dernière page qui comporte une telle empreinte.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole $\boldsymbol{\nabla}$ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé è partir de l'angle supérieur gauche, de gauche à droite. et de haut en bas, en prenant le nombre d'images nécessairo. Les diagrammes suivants illustrent la méthode.

Abstract

44. On the Suprificlal Geoloay of the Central Region of Nortif Amprica. By Geozge M. Dawson, Esi., Assoc.R.S.M., Geologist H.M. North-American Boundary Commission. (Read June 23, 1875.)

(Communicated by Dr. Bigsby, F.R.S., F.G.S.)
[Plate XXXII.]

Physical Geography of the Region.

Where: the great region of plain and prairie which occupies the whole central part of Mexico and of tho United States crosses the forty-ninth parallel of latitude, which constitutes the political boundary between the last-named country and British North America, it is included in longitude between the 96 th and 114 th meridians. It narrows pretty rapidly northwards, chiefly by the eneroachment on it of its castern border, but continues as a great physical feature even to the shore of the Aretic ocean, where it appears to have a breadth of between 300 and 400 miles. North of the North Saskatchewan river, however, it loses to a great extent its pratrie character, and, with the increasing moisture of the climate, becomes thickly covered with eoniferous forest.

The eastern boundary of this interior continental plateau, north of latitude forty-nine, is formed by the western slope of that old erystalline nucleus of the continent, which extends north of the St. Lawrence and the great Lakes from Labrador to the Lake of the Woods, with a general cast and west course, and then, turning suddenly at an angle of about 60° to its former general direction, runs with a north-north-west courso to the Aretic sea. This boundary, though formed, wherever it has been carefully studied, in part of less-metamorphosed rocks generally attributed to the Huronian, may be called the Laurentian axis (see map, Pl. XXXII.) In this part of its course it is not of the nature of a mountain-range. It probably does not attain a height of over 1500 to 2000 feet, and has an average breauth of about 250 miles. It may rather be considered a great rocky plateau; and though it forms the division between the streams running direetly into Hudson's Bay and these flowing westward and southward, the actual line of watershed has no determinate direction on it, but follows a devious eurve, which in one place (to the east of the region now under consideration) approaches within twenty miles of Lake Superior. Neither is it always a continuous barrier; for near the north end of Lake Winnipeg it is broken through by the Nelson and Churchill rivers, the former of whieh carries across into Hudson's Bay a great part of the drainage of the plains.

To the west the plateau is bounded by the Rocky Mountains, which rise abruptly from the elevated plain at. their base, presenting often to the cast almost perpendicular walls of rock. They are
composed, not of a single upheaved ridge, hut of a number of more or less nearly parallel ranges, which have a general direction a little west of north, and a breadth of over (i) miles, extending from the margin of the great plains to the valleys of the Kootanienad Columbin rivers. In the ricinity of the forty-ninth parallel, the geologieal continuity of the comutry is as shurply broken by the line of their eastern base as its physieal character, and we pass suddenly from the little-altered or disturbed strata of Cretaceons and Tertiary age to searped mountain-sides of palaozoic rocks, metnmorphosed and erumpleal. The higher peaks of the monntains north of the boundary do not seem often to surpass 10,000 feet. The plains may therefore be ensidered broadly as a trough intervening between the two great longitudinal watersheds of the northern part of the continent. The lowest portion of this trough, however, is several hundred feet above the sea-level: and much of its western part is actually: higher than its eastern Laurentian rim (see Section. PI. XXXII. fig. 2).

Besides the main longitudinal watersheds, there are also two very important transverse ones (see map), which are not marked by any grand physical features, but appear to be merely cansed by low gente rolls in the strata. Of these, one in a general way follows the political boundary of the forty-ninth parallel. It separates the waters of the Red, the Assineboin and Saskatchewan rivers (which find their way through Winnipeg lake to Hudson's Bay) from those of the Mississippi and Missouri and their varions tributaries. Beginning in that region of swamp and luke in Northern Minnesota which feeds the variously destined head-waters of the Winnipeg, St. Lawrence, Mis. sissipii, and Red rivers, it dips southward between the tributaries of the latter two streams, and passes between Lake Traverse and BigStone lake, with an altitude of only 970 feet, ph 2 ont 200 miles southof the boundary-line. Thence it pursues a general north-westerly course along the high lands formed by the southern extensions of Pembina Esearpment and the Missouri Coteau, and, becoming identified with the latter, crosses the boundary-line near the 104 th meridian, 300 miles west of Red liver. Then falling south of the drift ridge of the Missomri Cotenn, it follows the smmmit of the platean of the Lignite Tertiary for about 300 miles to the Cypres Hills, where it is only 40 miles north of the line, in longitude $110^{\circ} 30^{\prime}$. Thence it trends southward and crosses the forty-ninth parallel for the last time about 30 miles east of the base of the Rocky Monntains. The average altitude of this watesshed region cast of the Red River is 1400 feet. In Northern Dakota it may be estimated at 2000 feet; and from this it rises till near the momitains it has attained an elevation of about 4000 fect.

The second transverse watershed crosses from the Rocky Mountains to the laurentian region, near the fifty-fourth parallel; and not much is known about it. It separates the rivers which reach the Arctic Sea directly, from those of the Saskatchewan system, which How into Hudeon's Bay. Where crossed by the canoe-ronte to Mackenzie River at Methay Portage, near its eastern extremity,
height, according to Sir J. Richardson, is 1566 feet. Near its western extremity it would appear (according to Dr. Hector's observations) to be about 2400 feet. It is probablo that this watershed is lower than either of these measurements in the intervening region.

Between the two transverse watersheds thus detined, the three prairie steppes or plateaus of different elevation now to be described are embraced.

The whole of the regrion slopes gradually eastward from the most elerated plains at the base of the Rocky Mountains to the lowest, at the foot of the Laurention plateau to the cast. The inclination becomes more abrupten approaching the momutains, but not so much as to attract special attention ; but along two lives which are in a general way parallel and hold a north-west and south-east course across the plains, a very marked step-like rise occurs. These escarpments form the eastern boundaries of the two higher prairic phateaus. The lowest and most eastern prairie-level is that which includes the valley of the Red River in its southern portion, and northwards embraces Lake Winnipeg and associated lakes and the tlat land surrounding them. Its averago altitude may be estimated at about 800 feet; its area at 55,600 square miles, of which the great system of lakes in its northern part occupies 13,900 miles ; its average width is over 100 miles; iss eastern boundary is in pari conterminous with the shore of Lake Winnipeg and the Laurentian axis, in part formed by the great drift platean south of the Lake of the Woods. Its western limit is

found at the foot of the lowest of the great escarpments already mentioned, which in the vicinity of the boundary-line is known as Pembina Momitain (fig. 1), and, thonch broken through by the Assineboin river, is continued northward in the liding, Duck, and Poreupine Mountains.

Rising to the summit of the second prairie-steppe, we find ourselves on the margin of the " (ireat Plains," properly so called. This platean has an average elevation of ahont latol feet, and is bounded to the west by the Missouri Cotenn and foot of the third prairie-steppe. On the forty-ninth parallel it has a width of 230 miles, on the fifty-fourth of about 200 miles, though it camot there be so strictly defired. To the south the boundaries of this region appear to become more indefinite, and in the southern part of Dakota the three primary levels of the comntry, so well marked north of the line, are promably sarcely distinguishable. The elevated region lying south and west of the lake of the Woods, and forming in one place the eastern boundary of the lowest prairie, also assumes the form of a plateau: and though having an elevation of from 1000 to 1600 feet only, it corresponds with the height which the second platean above described might be expected to have, had it continued thas far eastward. It is covered to a great depth with drift materials, and may be called the drift plateau of Northern Minnesota.

The third or highest prairie-steppe has an altitude of about 2500 feet where it is tirst met with; its surface, however, is much less uniform and more weathered than that of the lower plains; and toward the base of the mountains it sises on the boundary-line to a height of 4200 feet, and in the latitude of the North Saskatchewan to abont 3000 fect. Southwarl, as is well known, the plains along the base of the mountains continse to increase in elevation, the level of the passes through the range being equally affected.

The eastern escarpment of this highest steppe (fig. - ${ }^{\text {) }}$) crosses the boundary-line about longitnde $103^{\circ} 30^{\prime}$, and runs thence with a general west-north-west course to the elbow of the Sonth Saskatehewan in longitude 105°. Here it bends abruptly, and, passing due north, crosses the North Saskatchewan river.

Disregarding the two escarpments (which in reality account for but a small part of the westward increase of elevation) and drawing a line in the direction of the greatest general slope of the prairiesurface, from the intersection of the eastern base of the Rocky Mountains and the forty-ninth parallel to a point on the first prairielevel near the northern end of Lake Wimipe. we find that it erosses the esearpments nearly at right angles, and has an average fall of 5.33 feet per mile. A second line starting, at the same point, and terminating eastward in the lowest part of the Red-River ralley, on the forty-ninth parallel, shows an inclination of $4 \cdot 48$ feet.

In the foregoing bricf summary of the physical features of the region, I have been guided not only by the facts obtained by the Boundary-Commission Survers, hut by the observations of previous explorers, among whom Dr. Hector deserves special mention. To this geologist (who accompanied Cupt. Palliser's expedition) is due
the first clear definition of the three steppes into which the interior region of British North Amorica is naturally divided.

The region which has come under my own observation is for the most part pretty closely confined to the forty-ninth parallel, and forms a line about 900 miles in length, extending completely across the interior plateau of the continent.

Glacial Phenomena of the Laurentian Axis.

Beginning, then, with the glacial phenomena of the Laurentian axis, I shall describe the appearances presented in the neighbourhood of the Lake of the Woods only, where this axis is intersected by the forty-ninth parallel; but, from the similarity of the traces of glacial action even in very distant parts of the Laurentian region, this will serve in some sense as a representation of its general features.

The Lake of the Woods, as a whole, occupies a depression in the south-western slope of the Laurentian region (see Map, Pl. XXXII.). It is over 70 miles in extrene length, and has a coast-line of between 300 and 400 miles. Its northern part is comparatively deop, reaching in some places a depth of over 80 feet. Its general form has been determined by that of an area of less highly altered rocks, which are probably Huronian; and the details of its outline eren follow very elosely the changing character of the rock, spreading out over the schistose and thinly cleavable rarieties, and becoming narrow and tortuous where compact dioritie roeks, greenstone conglomerate, and gneiss prevail. Its shores are almost invariably composed of solid rock with the rounded forms characteristic of ice-action, and dip rapidly below the surfaco of the water, forming a bold coast, sandy or gravelly beaches being comparatively rare. It is studded with innumerable islands, few of which are laid down on the imperfect maps yet made of the region, but which vary from those several miles in length to mere water-wasted rocks. The islands, like the mainland, are seen, where not covered with luxuriant vegetation, to be composed of round-backed rocks. Only where the rocks are of a specially soft or schistose character has the action of the waters of the lake had sufficient effect on them to form cliffs. The southern part of the lake is very different: there are few islands; the water is not deep; and the whole southern shore is formed by low-lying deposits of sand and detrital matter, Whero rock-surfaces appear, howover, thoy are like those of the northern part of the lako, heavily glaciated.

All the harder rocks of the region still show with the utmost perfection tho scratching and grooving of the glacial period; and some of the moro compact granites and intrusive diorites retain a surface still perfectly bright and polished. On a small scalo even the hardest and most homogencous of the rocks show a tendency in the longer axis of their elevations to parallelism with the glacial markings. Though tho gencral direction of the northern part of the lake Q.J. G. S. No. 124.
nlso follows that of the ice-action, it is at the same time that of the belt of Huronian roeks already mentioned. The course of the glacial strie is extremely mifinm, and, from a great number of obsenvations in different parts of the lake, is found to viry through a fiw points only, lying between morth-north-east and south-southwest and north-east and south-west. Slight deflexions, sometimes ohserved, are generally tataeable to deviation of the ice by massos of resistent rock running athwart its course, the strie always showing a tendency to bend towards the more level regions, and away from the more elevated and rugged parts.

At a few places in the sonthern part of the lake, glaciation in the ordinary direction which gives form to the rock masses, was ohserved to be superinseribed with coarser seratches marly east and west in direction. Some of these may be due to the paeking of the iee of the lake itself in the spring : but instances oceur which camnot be accointed for in this way. Some rock-surfaces on a low promontory in the southern part of the lake afford interesting examples. Tho most important direction nod that with which the forms of the surface coincide is here $\mathrm{S} .13^{\circ} \mathrm{W}$., superimposed on which at one place are scrutehes S. $45^{\circ} \mathrm{W}$. or N. $45^{\circ} \mathrm{L}$. Near this a direction of S. $50^{\circ} \mathrm{W}$. or $\mathrm{N} .50^{\circ} \mathrm{F}$. oceurs, on which is superin.posed striation S. 15° W., a direction closely agreeing with the gencral one, and probably indicating a brief resumption, se orghinal force after a short interval.

Many interesting special cases showing th, character and effect of the glacial action, came under observation ; but with these I do not wish to burden this paper. The nature of the present outfall of the lake, however, deserves mention. There are two channels now in use, and evidence of at least one other now disused. They cross : narrow ridge which separates the waters of the lake from those of the basin-like head of the Winnipeg River, and are comprised within a distance of abont two miles. The hard ridge marks the junction by fault of the Laurentian and Huronian rocks, the line nearly following its crest. The gaps through which the water flows do not depend on any evident pecoliarity of geologieal struc. ture, but probably owe their origin to smaller transverse fanlts or joints, as a fissure filled with a large greenstone dyke was ohserved not many miles distant with a direction parallel to theirs. The gorge-like gap throngh which the northern stream flows is the most interesting, and was most careially examined. It is oceupied by a very picturesque eascade, the first leap of the Winnipeg River. It is certainly preglacial in date, and has probably arisen from subacrial weathering along some line of weakness. The glacial strix cross over it obliquely at an angle of abont 30° with its direction; and the ice has had wonderfully little effeet on its shape, having only succeeded in rounding off somewhat the exposed angles of the eliffs. Since the glacial period the river has done little, as the rocks retain their rounded aspects and show ice-striation ulmost everywhere.

Drift Ilateau of Northern Minmesota and Eastern Manitola.

The great plateau of Northern Minuesota, which stretches southward from the lake of the Woods, shows only drift materials, and is composed of them to a great depth (see Map and Section Pl. XXXII., a). lts general surface is remarkably nuiform, and its slopes almost imperceptibly slight. It is, however, diversified on a smanll scale, being thickly strewn with shallow hollows, which are filled by little lakes or the almost impassable "muskegs" of the region. There are also low that-topped ridges of sand and gravel of the nature of kanes or eskers, and in many localities traces of larger lakes than those now existing, which have been drained by the gradual wearing down of the beds of their outfall streams.

The drift-deposits of this region rest on the gently sloping foot of the Laurentian axis, and are, where I have seen then, composed to a depth of 60 feet or more of fine sands and arenaceons clays, with accasional beds of gravel and small boulders. The finer deposits are senerally very evidently false-bedded, and sometimes quite hard. The gravelly layers, as a rule, wre found resting on the finer material leetween it and its surface-soil, and sometimes lie on the denuded edges of the curved sand-beds below. In one place only did I find any trace of organic remains. On the Rosean liver, about 30 feet from the top of the bank, a piece of wood protruded from a cliff of hard sandy clay, and, on microscopic examination, appeared to be a fragment of the common cedar (Thuja occielentelis). I have no doubt that these distinctly-bedded deposits of the plateau repose throughout on boulder-clay. I have observed them to do so in the southem part of the Lake of the Woods; and, on the liosean liver, also, indications of the underlying boulder-clay are foumd. In general, however, the few sections which exist do not penetrate sufficiently deep to show this deposit.

An interesting confirmatien of the general direction already stated for the glacial action, is found in the composition of the materials of this platcan. Its eastern side, fronting on Lake Suporior, is very abrupt, and seems to be held up by a ridge of hard old rocks, which here and there appears from beneath it. Ascending to the plateaulevel from the extreme western point of Lake Superior by the Northern Pacific Railway, the drift is seen to have a reddish-purple colour, which continues, though gradually becoming less marked, for some distance after attaining the summit. The colour then changes to the pale yellowish grey which is generally characteristic of the drift of this plateau. The red drift is derived from the red rocks of the border of the lake, and is found along its whole southern side. It is here bounded by a line lying a short distance back from the north-western shore and nearly parallel to it. This western edge of the rod drift has been already noticed by Whittlescy in his paper in the Smithsonian Contributions. The surfaco of the plateau is very generally strewn with erraties; and some of them aro of great size. They a se chiefly derived from the Laurentian and Huronian to the north: but there are also many of white limestone. Dr. Bigsby
has given an account of the geology of the Lake of the Woods and of the distribution and origin of the erratics there, in former volumes of the Journal of this Society (Quart. Journ. Geol. Soc. 1851 and 1852.) Its shores and islands are covered with boulders, most of which can be traced to outerops of similar rocks not far to the north.enst ; but here too a considerable quantity of limestone is found. It is not generally in such large fragments as the metamorphir rocks, and is often seen in small pebbles only, but occurs in som places in great profusion. The limestone drift is entirely confined to the southern and western shores of the lake ; and its origin is a question of some difficulty. No similar rock is known to exist to the north-east, unless the limestones of the shores of Hudson's Bay are of this character. Limestone is known to occur on the western side of the Laurentian axis 50 miles further north-west, and beyond that point in great abundance. The limestone there found, however, is of Lower Silurian and Devonian age, while the fossils in some, at least, of the erraties prove them to be Upper Silurian. A sonth-enstern drif of floating ice may account for some of the specimens ; but I am inclined to believe, with Dr. Bigsby, that an outerop of Upper Silurian is concenled by the drift-deposits along the base of the Laurentian in the Lake-of-the-Wools region.

Lowest Prairic-Level and Valley of the Red River.

Descending the western side of the drift platean of Northern Minnesota, we enter the valley of the Red River (ll. XXXII., b) ; by which term I mean to express not the whole drainage-area of the stream in a strict geographical sense, but the well-defined and comparatively narrow trough holding the main stream, and here constituting the first praire-level, which is bounded westward by the front of the second prairie-steppe. This trough runs nearly due north and sonth, and, from the sonth shore of Lake Winnipeg to the source of the Red River in Lake 'fraverse, is 315 miles in length. It does not end here, however, but passes by a continuous gap, never more than 690 feet above the sea-level, to the source of the Minnesota River, a tributary of the Mississippi. On the boundary-line the valley is 46 miles wide, and it narrows very gradually southwards. The floor of the valley, though it slopes upwards towards the sides, does so at so small an angle as to be quite imperceptible to the eye. It presents an appearance of perfect horizontality, and is perhaps the most absolutely level prairie-region of America. Looking down, towards evening, through one of the breaches in the edge of the western escarpment, it requires littlo imagination to suppose that the bluish level expanse is that of the sea; and, indeed, the whole of this valley must, at a time geologically modern, have been occupied by a great lake, the fine silty deposits of which now form its level floor. On examining these deposits they are found to be arranged in thin horizontal beds, which together constitute a great thickness, and rest upon till or boulder-clay. Some of the layers immediately overlying the till may correspond with those already described in the
same relative position on the drift plateau; but I beliere that nearly the who.e thickness of the horizontal deposit belongs to the great lake of a later period. Stones of any kind are very seldom found on this prairie ; they are so rare, indeed, that those which I have seen during all my excursions over it probably do not exceed twenty in number. They have no doubt been brought to their present position by the shore-ice of the lake itself, and are similar to those associated with the drift-deposits of its bounding esearpments.

Ascending the front of the western escarpment, it is found, as might almost have been foreseen, to be terraced; and on leaving the alluvial flat, boulders are again found abundantly, both strewing the terraces and the summit of the "mountain" or second prairiesteppe. The terraces not only occur on the front of this escarp.$،^{\cdots \prime \prime}$. but extend westward along the banks of the great valley of l'emoma River, which at the time of their formation must have been an inlot of the Jake, and is therefore probably of preglacial ago.

Second Prairie-Pluteau.

The surfuce of the second plateau or steppe of the plain(Pl. XXXII., c) appears to be almost everywhere very thickly covered with drift deposits; and the undulations and slight irregularities of its contour seem in the main duc to the arrangement of these surface-materials, which, though no doubt somewhat modified by subsequent denudation, do not seem to have suffered much. Over large areas no systems of "coulées" or stream-valleys are to be found; and the generally undulated surface must be due to original inequality of deposition, though a certuin quantity of material has no doubt been removed from the rounded hillocks into the intervening basin-like swamps and hollows. Such an arrangement not only implies the porous cature of the subsoil, but is in accordance with the comparatively very small rainfall of the region, and would tend to show that at no time since its emergence has the precipitation been great. It was observed that in many places boulders and gravel are equally abundant on the crests of the gentle ridges and hillocks and in the hollows, while they are comparatively seldom seen on the intervening slopes. A similar observation has been mado by Prof. Bell in a part of the second steppe considerably further north, and would tend to show slight erosion of the surface by marine currents subsequent to the deposition of the heavier materials.

The drift material is found generally to consist in great part of local débris derived from the immediately underlying soft formations; but this is always mixed with a considerable quantity of far-transported material, which is generally most abundant in the upper layers. Large orratics are in some localities very plentifully strewn over the plains, but they seem to be almost always superficial. They are generally of Laurentian roeks; but whitish and yellowish limestene, derived from the Silurian flanking the western base of the Jaurentian region, is abundant. A bank in Long-River Valley shows in an interesting section, about 30 feet of drift, resting on

Cretaceons elay or shale. Of the drift the lower portion is composed of stratified sands and gravels, which are evidently false-bedded. The pebbles are chietly of the underlying roek, which, though soon splitting up under subaerial intluences, has been hard enough to bear rounding under water. There are also a few sumples of roeks of foreign origin, and the whole arranged in a manner implying a very strong flow of eurrents in different directions. Abont II feet from the top of the bank the false-bedded layers end abruptly, being eut ofl by a well-marked horizontal plane. Above this the bedding is neas horizontal, and the drift inchodes many travelled boulders of Laurentian and white limestone, some of them large, together with much small Cretaceons stuff. Large boulders are ulso abmedant, protruding from the surface of the prairie above.

In other places similar hard yellowish sumdy clays are met with, but with little sign of stratification, holding many well glaciated stones, and thus resembling true till or boulder-ehay. I do not think that the boulder-elay and more perfeetly stratified materials are here essentially distinct ; but. as they were never seen in the same section, I cannot speak positively on this point. In order to ascertain as far as possible the origin of the foreign material of the drift and the relative proportions of the different eonstituents, 1 adopted the following method:-An average collection of pebbles taken at random from the gravel of any locality was made, stones above or below a certain size being rejected tor convenience, and care being taken, where pussible, to combine gatherings from two or three spots for cach locality, and to make the collection a large onc. The prebbes so obtaind were then carefully chumerated and divided lithologically into groups, which were referred as far as possible to their formations. From the numbers thas obtained percentage ratios have been caleulated. The comparative simplicity of the geologieal fentures of the interior of the continent, the similarity of the litholagieal characters of the formations over great areas, and the absence of harder metamorphic rocks in the strata of the plains are specially farourable to such an investigation: und the results serve to show the general course of the drift in a region where rock-surfaces capable of preserving glacial strixe are entirely absent. It was at first intended to enumerate the boulders and larger erraties in this way: but the criterion of smaller pebbles was found more frequently mplicable ; and wherever comparison was possihle, the result obtained from them appeared to agree closely with the proportional importance of the larger masses. I shall present here only the general average deduced from the seeond prairie-steppe as a whole, which is as follows :-

Laurentiau	$2 \mathrm{c} \cdot 49$
Huronian	971
Limestone	54.01
Quartaite])rift	$1 \cdot 14$

The Lanrentian material, consisting of granites and gneisses, is casily distinguishable. Those classed ns Huronian are chiefly hard,
greenish, epidetie, and hornblendic altered rocks. It is interesting to observe that tho proportional importance of the Laurentian and Huronian, thus ascertained for the drift, is nearly that of their areas where they have been mapper. The proportions in the drift are respectively three to one. Prof. Bell, of the Geological Survey, has stuted the proportion by area of Laurentian and Huroniun in the region morth-west of lake Superior as two to one, leaving a slight prepoulderance of the former over the latter in the drift, as compared with the areas in the metamorphie axis, which arises no donbt from the greater prominence of the harder laurentian rocks. The limestone is that of the flanks of the Lanrentian axis; and its great abundmec is an interesting feature, and one tending to prove that this rock most in prep;iacial times have lapped far up on the Lamentian. These three classes are derived from the north-cast or east. Tho fourth or Quertzite Irift is a general name which I have applied to that coming from the Rocky Mountains, which, although not entirely compessed of grartzite, is characterized by the great abundance of that material, and has a peculiar and distinctive appearance. This drift was met with abundantly in many phaces further west; but it was only in August last that I was able to trace it to its origin in the mountains. It occurs, as will bo noticed, very sparingly on this second prairic-level, and is not fonnd over its whole area. The first clearly recoguzable fragments were met with near the lolst meridian, 5810 miles from the Rocky Momtains, and over 2no from the nearest part of the Laurentian region.

On the surfice of this prairio-lovel there oceur some remarkable clevated regions, which seem to be entirely composed of accumulated drift materials (see Mhp, I'l. XXXII.). The most prominent of these aro included under che names of T'urtlo Mountain, Moose Mountain, and the 'louchwoot Ilills. Though quite uncomneeted, these elevations follow in a general way a contour-lino of the surface, and form a range roughly parallel to the Cotenu, to which in their appearance and material they also bear the closest likeness. Of these elevations the only one which I have personally examined is that known as Turtle Mountain, which is bisected by the forty-ninth parallel and forms the most southern of the serics. It is a region of broken hilly ground, which may be about 20 miles square, and is for the most part thickly wooded-a cireumstance which renders it a specially promineat feature when viewed across the prairic. Its extreme height is not more than 500 feet above the prairie at its base ; and its genema elevation is a little more than 2000 feet above tho sea, or nearly the same as that of the surface of the Coteau. On approaching it from the east the already gently-swelling plain becomes more markedly undulating, small basin-liko swamps and ponds are more frequent, and its junction with the region of the "Mountaiu" would be undefinable but for the limiting border of the woods. The western end of the mountuin is more abrupt towards the plain, and is much diversified with ridges, between which lie swamps and lakes, which show a general tendency to arrangement in north-andsouth lines. 'lowards the castern end there are somewhat extensive
arens of gently undulating land, though always characterized by the abundance of pools and swamps. Notwithstanding the apparent abundance of water, there are few brooks or drainuge-valleys, and the streams which do oceur are quite small. The surface seems very nearly that of the drift as origimully deposited, though sutficient tine material has been washed from the ridges to render the intervening hollows flat-bottomed.

Eilye of the Third Prairie-Plateau.

One hundred and twenty miles west of Turtle Mountain the second prairie-platean comes to un end against the foot of the great belt of drift deposits known as the Missouri Cotenu. Beyond this point three diverse zones of country cross the forty-ninth parallel obliguely with a west-north-west course, in the orler subjoined :-

1. Tumultuously hilly country hased on a great thickness of drift, and forming the Cotenu de Missouri properly so called.
\because. Fhat-topped rotershed plateat, formed of rocks of the Lignite Tertiary, and constituting a part of the first transverse watershed already described.
2. Lower, broken-down region, south of the platean, partly based on the Lignite Tertiary, and characterized ly gorges and large valleys draining towards the Missouri.

The second region can perhaps hardly be said to cross the line, but appears immediately north of it. On the line and southward the streams tlowing to the Missouri rise near the sonthern edge of the first division, the grenter part of the phateau having succumbed to demoding ageneies.

The Missouri Coteau (fig. 2, and Map and section I'l. XXX11., z) is one of the most important features of the western plains, and is certainly the most remarkable monument of the (ilacial period now existing there. I have had the opportunity of examining more or less carefully that portion of it which crosses the forty-ninth parallel, north-westward for a length of about 100 miles. On the parallel, the breadth of the Coteau, measured at right angles to its general course, is about 30 miles; and it widens somewhat northward.

On npproaching its base, whieh is alwnys well defined at a distance, a gradual ascent is made, mmounting in a distance of 25 miles to over 150 feet. The surface at the same time becomes more markedly undulating, as on nearing Turtle Mountain from the east, till, almost before one is aware of the change, the trail is winding among a confusion of abruptly rounded and tumultuous hills. 'They consist entirely of drift materinl; and many' of them seem to be formed almost altogether of boulders and gravel, the finer matter having been to a great extent washed down into the hollows and basin-like valleys without outlets with which this district abounds. The ridges and valleys have in general no very determined direction; buta slight tendency to arrangement in north-and-south lines was observable in some places.

The boulders and gravel of the Coteau are chiefly of Laturentian
origin, with, however, a good deal of the usual white limestone and a slight admixture of the quartaite drift. The whole of the Coteau-belt is characterized by the absence of drainage-valleys; and in consequene its pools and lakes are often charged with salts, of which sulphates of soda and magnesia are the most abundant. The saline lakes frequently dry up completely towards the ind of the summer, and present wide expanses of white eftlorescent crystals, which contrast in colour with the crimson Salicomiu with which they are often fringed.
'I'aking the difference of level between the last 'Tertiary rocks seen near the castern base of the Cotean, and those first found on its western side, a distance of about 70 miles, we find a rise of 600 fect. I'he slope of the surface of the underlying roeks is therefore, assuming it to be miform, a little less than 100 feet per mile. On and against this gently inclined phano the immense drift deposits of the Coteau hills ure piled.

The average elevation of the Cotean above the sea, near the forty-ninth parallel, is abont 2000 feet; and few of the hills rise more than 100 feet above the general level.

Between the south-western side of the Cotenu belt und the Tertiary plateau is a very interesting region with characters of its own. Wide und deep valleys with systems of tributary couleces have been eut in the soft rocks of the northern foot of the plateau, some of which have small streams still flowing in them fed by its drainage ; but for the most part they aro dry, or oceupied by chains of small saline lakes which dry up early in the summer. Some large and deep salino lakes also exist which do not disappear even late in the autumn. They have a winding, riverlike form, and fill steep-sided valleys. Theso great old valleys have now no outlet; they are evidently of preglacial age, and have formed a part of the former sculpture of the country. The heaping of the great mass of debris of the Coteau against the

foot of the Tertiary platean has blocked them up and prevented the waters finding their way northward as before : and since gheial times the rainfall of the district has never been sufficiently great in proportion to the evaporation to enable the streams to cut through the barrier thus formed. The existence of these old valleyn, and the arrangement of the drift-deposits with regard to them, throw important light on the former history of the plains.

Northward, the Cotean ceases to be identitied with the Tertiary phatem, and rests on a slope of Cretaceons rocks. It can be followrd by Palliser's and Hector's dessriptions of the country to the elbow of the South Saskatchewan, and thence in a line nearly due north through the Eagle and Thickwood Hills; beyond the North saskatchewan, howerer, it appears to hecome more broken and less dethite. In Dr. Hector's description of eertaingreat valleys without outlet in this northern region, I believe I can recognize there tow the existence of old blocked-up river-comses similar to those just described.

Sonth of the forty-ninth parallel the contination of the belt of drift material can also bas traced. It rums sonth-tastward, characeterizing the high gromud between the tributaries of the Missouri and the Red liver, which has alremly been noticed in comexion with the watershed of the continent : but wanting the backing of the Lignite-Tertiary platan, it appars to become more diffise, and spread more widely over the conntry. 'That the driftedeposits do not form the high ground of the watershed, hut are merely piled upon it, is evident, as Cretaceous rocks are fropuently seen in its neighbourhood at no great depth. From what 1 can learn of tho region it would appear that the so-ealled Cotean des I'rairies and Cotean de Missonri, between which a distinction is made on the maps, are parts of the same great feature. Their elevation is similar, and nearly the same as that of the Cotean on the line; nud they are equally characterized by the immense profusion of erraties with which they are strewn, and by basin-like swamps and lakes. 'The Cotean des Prairies, however, stretehes furthest, and dies away only in the south-western corner of Dinuesota.

In the Cotean, then, we have a natural feature of the first mangi-tude-a mass of glacial debris and travelled berks with an average breadth of perhaps 30 to 40 miles, and extending diagonally aeross the central region of the continent for a distance of abont 800 miles.

Third or Mighest Irairic-Phetcelt.

Passing the Cotean and ascending the platem of the Tertiary (Pl. XXXII., d), we notice at once a change in the chatacter of the drift deposits. Tlacy are much thimer, and, area for aren, perhaps do not equal one twenticth of those on the sccom prairic-steppe. They are also now largely composed of yuertzite doift from the Rocky Monntains, of the mature of shingle, and seldom showing much trace of glaciation. With this western drift, however, a smaller proportion of that from
the east or north-east is mingled. South of the watershel-plateau the third region (that sloping to the Missouri, where it is well sheltered to the north) shows the quatzite drift in even greater purity. Where, however, gaps or lower places in the watershedplateau occur, incursions of Laurentian rocks and of eastern limestones are ulso found to a greater or less extent.

The general claracter of the travelled drift of the third steppe may be seen from its percentage composition, derived in the same way as already shown for the second steppe.

Laurentian	05
Huronian	碞
Limestone	$5 \cdot 84$
Quartzite Drift	$52 \cdot 10$

Though the percentage of Laurentian material appears nearly the samens before, the much smaller total quantity of drift on this level must be remembered. A mark of interrogation is put after Huronian, to indicate that a few specimens of this formation may be present, but, if so, are undistinguishable from some varieties of the Quertzite elrift. The great decrease in limestone is at once seen ; and even the percentage here given includes some specimens of Rocky-Mountain limestone which has travelled eastward with the Quertzite drift. The limestones of the tlanks of the Laurentian wero probably completely submerged ere the water reaehed the level of the third steppe. Quartzite and similar rocks now form over half of the entire travelled portion of the drift deposit.

Some of the lower parts of this steppe show thick deposits of true till or boulder-clay, which holds in a hard yellowish sandy matrix well glaciated stones, both from the mountains and from the east, and also a great quantity of débris from the softer underlying beds, among which are fragments of lignite from the Tertiary. These deposits of till, though generally massive and weathering into rudely colunmar forms in perpendicular banks, often show traces of bedding and urrangement in water : and false-bedded sandy masses are found abruptly cut off above the confused bouldery clay. The shingle deposits of the higher levels may perhaps be formed partly from the rearrangement of this material; they are at least superior to it.

The width of the third steppe, on the line, is about 450 miles; but it narrows rapidly northward. Its surfaco is more diversified and worn than that of cither of the other prairie-levels; and the occurrence and features of the drift are less constant. Following it westward, and in the main slowly rising, Laurentian and Eastern limestone boulders continue to occur to within about 25 miles of the base of the Rocky Mountains, at a height of nbout 4200 fect. The distance of these travelled blocks from the nearest part of the Laurentian region is over 700 miles. Beyond this point eastern and northern rocks were not found: but that tho depression of the continent reased here camot be argued from this fact; for by this time the whole of the Laurentian highlands would be submerged.

On the higher prairic, sloping up towards the momatains, the
drift is entirely composed of material derived from them, and consists of quartzite, with softer shaly and slaty rocks, and limestone, which is generally distinguishable from that of eastern origin. No granitic or gneissic rocks oceur in the vicinity of the forty-ninth parallel, or northwards in hritish America, in the eastern ranges, so fir as is known. Southwards, in Montana, granites and gneisses are found underlying all the other formations, but they do not appear to be very extensively exposed.

The Rock! Mountuins.

The brook issuing eastward from the month of the Sonth Kootanie l'ass has cut through a great thickness of cleangravel drift, composed of large and mitorm well-rounded pebbles. Above the brook, on the thanks of the mountains on the south side, are several well-preserved terrace-levels composed of similar material. The highest of of these, though its altitude was not actually measured, was estimated from the known altitude of the l'ass to be about 4400 feet abore the sea. From the position of these terraces, in the open eastern throat of the pass, from which the whole surface of the country falls rapidiy away, they can hardly be other than old seamarks. The topography of the region would not allow me to explain them on any hypothesis of a former moraine blocking up the valley.

Dr. Hector has measured similar terraces at several points along the Roeky Mountains north of the region now more especially ander consideration, and states that they may be said to range from 3500 to 4500 feet above the sea. He also states that in the region examined by him the ordinary laurentia. : rratics were not observed above 3000 feet, but mentions a very remarkable line of boulders of red granite deprosited on the plains at a height of 3700 feet, which, knowing what we now do of the country, can hardly be supposed to have other origin than the Lamrentian axis. It will be observed that my measurements tally closely with Dr. Hector's for the more northern part of the region.

Among the Rocky Mountains themselves traces of the former action of glaciers are everywhere abundant, though in the part of the range near the forty-ninth parallel ghaciers do not at present exist. The evidence here met with so closely resembles that found in many other mountain-regions as to render it unnecessary that it should be gone over in detail. Nearly all the vallevs hold remnants of morainss, some of them still very perfect. The harder rocks show the usual rounded forms; but striation was only observed in a single locality, and there coincided exaetly with the main direction of the valley.

The valleys radiating from the summits of greatest elevation hold long lakes, many of which appear to be deep, and are filled with the most pellucid water. Whether they are in all cases dammed in by moraine matter I was unable to determine. These longer valloys very generally terminate in cirques, or amphitheatres, with almost perpendicular back and sides, which ovorlook small but doep - rminal lakedets, held is by moraine-matter and shattered rock.

In these sheltered hollows, and on the shady sides of the higher peaks, are masses of perennial snow, which have no doubt kept up the direct succession from the time when great névés filled the heads of the valleys and the mountains around them wero completely snow-clad, and are only waiting some change in the climatio conditions, to advance again down the old valleys and occupy tho places they formerly filled.

State of the Interior Region of the Continent previous to the Glacial Period.

Having briefly stated the main phenomena of the Glacial period in the central region of North America, it may be well to recapitulate and to give some of the conelusions to which I have been led by their study.

Before the onset of glacial conditions we find the continent standing at least at its present elevation, with its complete system of drainage from the larger river-valleys to many of their less important tributaries already outlined. Subacrial action must beforo this time havo been in operation for a rast period, all the great features of the western plains having been already marked out, and the removal of a truly enormous mass of the soft and nearly horizontal Tertiary and Cretaceous rocks effected. That some very considerable changes in the direction of the drainage of the country in preglacial and in modern times took place, however, is probable. An examination of the Lake-of-the-Woods region and a comparison of levels render it almost certain that the waters of the area now drained by its tributary streams then found their outlet southward and westward, towards the present valley of the Red River, and that only after the blocking up of the southern region with the deposits of the drift did the waters flow over the preexisting breach in the northern rim of the lake, and deseend over the surface of the Laurentian to Lake Winnipeg. The Winnipeg River does not show any of the characters of a true river-valley, but consists of eroded and glaciated rock-hollows, from one to another of which the stream falls. There is also some evidence to show that the Red River itself, agreeing with the general structure of the country, flowed southwards; and if so, the Saskatchewan, too, would probably with it join the former representative of the Mississippi.

This subject, however, requires a more detailed discussion than can be granted it in this place.

Mode of Glaciation and Formation of the Drift Deposits.

To the precise manner in which the Glacial poriod was initiated, the area now in question gives no clue; but I have not found, cither in the Laurentian region, or over the area of the plains, or in the Rocky Mountains, any evidence necessitating the supposition of a great northern ice-cap or its southward progress.

The rreat drift ridge of the Missouri Coteau at first sight resem-
hes a gigantic glacier-moraine : nad, marking its conse in the map, it might be argued that the nealy parallel line of devations, of which Turtle Mombtain forms one, are remmants of a second line of moraine produced as a feebler citort by the retiring ice-sheet.

Such a glacier must either have been the southern extension of a polar ice-cap, or derived from the elevated Lanrentian region to the east and north: but I think, in view of the physical fentures of the comery, neither of thes theories can be sustained.

To reach the comatry in the vicinity of the forty-ninth parallel a northern ice-sheet would have to move up the long slope from the Aretie 1 ecean and eross the second transwerse watershed, then, after deseending to the level of the Saskatchewan valley, again to ascend the s!ope (amomeng, as has been shown, to over 4 fret per mile) to the first transverse watershed and platean of the lignite 'Tertary. Such an iec-sheet, moving thronghout on broal plans of soft, unconsolidated Cretaceous and Tertiary rocks, wosld he expected :.) mark the surface with broad thatigs paralled to its direction, and to obliterate the tramsurse watersheds and vallers.

If it be supposed that a huge ghacier resting on the Lamrentian axis spreal westward across the phans, the physical difficulties are even more serious. The ice moving southward, after having deseonded into the lied-Riser trough, would have had to ascend the eastem escarpment of soft Cretaceons rocks torming its western side. which in ote place rises over 900 feet above it. Having gaind the seeond prabice-steppe, it would have had to pass westward up its sloping surface, surmonut the soft edge of the third steppe withont much altering its form, and fually terminate over 700 miles from its sonree, and at a height exceeding the present elevation of the Lamentian axis hy over 2 ono feet. The distribution of the drift equally negatives either of these theories, which would suppose the passage of an immense glacier across the plans.

In attributing the glacial phenomena of the great plain to the action of thating ice, I tind myself in accord with Dr. Hector, who has studied a great part of the basin of the saskatchewan-and also, so far as I can judige from his reports, with Dr. Hayden, who, more than any other geologist, has had the opportmity of becoming familiar with all parts of the Western States.

The glaciating ayent of the Laurentian platen in the Lake-of-the-Woods region, however, cannot have heen other than glacier-ice. The rounding, striation, and polishing of the rocks there, are glacierwork; and icebergs thoating, with however steady a current, camnot be supposed to have passed over the higher region of the watershed to the north, and then, following the direction of the strie and gaining ever deeper water, to have borne down on the subjacent rocks. The slope of the axis, however, is too small to account for the spontaneous descent of ordinary glaciers. In a distance of about. 30 miles, in the vicinity of the lake of the Woods, the fall of the general surface of the country is only about 32 fect to the mile. The height of the watershed-region north-mast of the lake has not been actually measured: but near Lac Soul, which closely corresponds
with the direction required by glaciation, aceording to Mr. Selwyn's measurements it camot be cere 1400 fect. The height of land in other parts of the Lamrentian rewion is very miformly between abont 1600 and $1: 00$ feet. Allowing, then, 1 f00 teet as a maximmo for the region north-east of the Lake of the Wools, and taking into account the height of that lake and the distance, the general slope is not greater than about 3 feet per mile-an estimate agreeing elosely with the last, which is for a smaller area and obtained in a different way. This slope cannot be considered sufficient to impel a glacier over a rooky surface which Sir William Logan has well characterined as " manillated," unless the glacier be a contluent one pressed outwards mainly by its own weight and mass.

Such a ghacier, I conecive, must have occupied the Laurentian highands; and from its wall-like front were detached the icebrgs which strewed the debris over the then submerged plains, and gave rise to the varions monmments of its action now found there.

The sea, or a body of water in commmication with it, which may have bect during the first stages of the depression partly or almost entirely fresh, crept slowly upward and spread westward across the plains, earrying with it icehergs from the cast and north. During its progress most of the features of the glacial deposits were inpressed. In the section described at Long liver we find evidence of shallow current-deposited banks i^{2} local material, afterwards, with deepening water, planed off by heary ice depositing travelled boulders.

The sea reaching the edge of the slope constituting the front of the highest prairie-level, the deposition of the Cotean began, and must have kept pace with the incrasing depth of the water and prevented the action of heary ice on the front of the Tertialy phateau. The water maty also have been too moch enembered with ice to allow the formation of heavy waves.

The isolated drift highlands of the second platean, including the Tonchwood Hills, Moose Monntain and Turtle Momentan, mast also at this time have been formed. With regard to the two former, I do not know whether there is any preglacial nueleus rome which drittbearing ieebergs may have gathered. There is no reason to suppose that Turtle Mountain had any such predisposing cause ; but it would appear that a shoal once formed, by currents or otherwise, must have been perpetuated and built up in an increasing ratio by the grounding of the floating ice.

The Roeky Monntains were probably also at this time corered with deseending glaciers; but these would uppear to have been smaller than those on the Laurentian axis, as might, indeed, be presupposed from their position and comparatively smull gatheringsurface. The sea, when it reached their base, received from them smaller icehergs; and by these and the shore-ice the quartzite-drift deposits appear to have been spread. That this materind should have travelled in an opposite direction to the greater mass of the drift is not strange ; for while the larger eastern and northern icebergs may have mored with the deeper currents, the smaller western ice may
havo taken directions caused by surface-currents from the south and west, or even been impelled by the prevailing winds. Some of the Iaurentian debris, as we have seen, reached almost to the mountains, while some of the quartzite drift can be distinguished far out towards the Iaurentian axis.

The occurrence of Laurentian fragments at a stage in the subsidence when, making every allowance for subsequent degradation, the Laurentian nxis must have been far below water, would tend to show that the weight and mass of the ice-cap was such as to enable it to remain as a glacier till submergence was very deep.

The emergence of the land would seem to have been more rapid; or at least 1 do not find any phenomena requiring long action at this period. The water in retreat must have rearranged to some extent a part of the surface-materials. The quartzite drift of the third steppe was probably more uniformly spread at this time, and a part of the surface-sculpture of the drift-deposits of the second plateau may have been produced. It seems certain, however, that the Rocky Mountains still held comparatively small glaciers, and that the Iaurentian region on its emergence was again elad to some extent with ice, for at least a short time. The closing episode of the Glacial period in this region was the formation of the great freshwater lake of the Red-River valley, or first prairie-level (which was only gradually drained), and the reexcavation of the rivercourses.

It must not be concealed that there are difficulties yet unacoounted for by the theory of the glaciation and deposit of drift on the plains by icebergs; and chief among these is the absence, wherever I have examined the deposits and elsewhere over the West, of the remains of marine Mollusca or other forms of marine life. With a submergence as great as that necessitated by the facts it is impossible to explain the exclusion of the sea; for, besides the evidence of the higher western plains and Rocky Mountains, there are terraces between the Lake of the Woods and Lake Superior nearly to the summit of the Laurentian axis, and corresponding beach-marks on the face of the northern part of the second prairie escarpment.

Mr. Belt, in an interesting paper(Quart.Journ.Geol.Soc. Nov.1874), deals with similar difficulties in explaining the glaciation of Siberia. The northern part of Asia appears in many ways to resemble that of America; surrounded by mountain-chains on all sides save the north, it is a sort of interior continental basin covered with " vast level sheets of sand and loam." As in the interior regions of America, marine shells are absent, or are only found along the low ground of the northern coast. To account for these facts, Mr. Belt resorts to a theory first suggested by him cight years ago, by which he supposes the existence of a polar ice-sheet capable of blocking up the entire northern front of the country, and damming back its waters to form an immense freshwater lake. The outfall of this lake, during its highest stage, he supposes to have been through the depression between the southern termination of the Ourals and the western end of the Altai to the Aral and Caspian Sens.

Prof. N. II. Winchell, in an article in the d'opular Science Monthy" for Jume Is: 3 , antitled "The Drift Deposits ol the NorthWest," broadly accomes for the glacial phenomem on the supposition of a polar shacier. Ilis illustrations are chicely borrowed from "arefal study of the region sonth of the Citeat lakes of the St. Lamrenee: hint as he inchudes the Valley of the Red River and the entive. North-west in his dediudions, a brief note may not be inappropriate. 'The most surgestive purtion of the papier is that in which, like Mr. Bedt. the traces the necessary prodnction of a great inland lake or sea of fresh water while the foot of such an ice-sheet as that suppsed gradually retreats fowards the north, down the gentle inclined phane of the surfice of the comitry. In this manner the finer stratified deposits of certain regions sonth of the (ireat Lakes are aceomed for, and also those of the great valley sonth of Lake Wimnipug.

Ingemions as this hypothesis of a great glacial lake mondontedy is, its inapplieability to the phomomena and phesien features presented by the reqion mider consideration is at once apparent. In addition to what has already bem said, I need perhaps mention bat one additional circmastance which appears diseordant with it.

From the phesicul meoraphy of the region it will be evident that the entire dramage of the supposed immonse lake must have passed sonthward hy the Red-liser valley. There is here no range of momutains to be crossed : and no reason can be assigned why a chanmil onee formed shond not have been cut down throngh the gentle swell of the watershed and remained the permanent, as it appears to have been the primitive, exit of the dmanage of the country.

The whole question is a very interesting one; and it would seem probable that the solntion oner ariwal at will be found to apply equally to Nothern America and Northem Asia.

R:NiPaNATION OF PLATE NNMi.

Fig. 1. Map of garl of the inturior region of North Amerien, showing the watersheds and three primary levels of the phans, the general character of the drift, and the Jissomi ('otent. a. The Drift platean of Northern Minnesota, with drift chiedy of norhern and north-enstern origin. b. Lowest pratio-level and valley of the Red River. c. Sceond prairieplatean, drift deried chitily from the east and morth-east. d. Third or bighest prairie-phatem, 'ritt chiefly composed of quartzite from the Rocky Momnains, x. z. Misemmi Cotean.
2. General section along the thth parallel from the Rocky Mountains to the Lamorntian axis. Vertimal sale much exaggerated. $a, b, c, d x$, aud z as in fig. I. y. Turtle Mountain.

