Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-etre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées

Pages restored and/or laminated /
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/ Pages décolorées, tachetées ou piquees

Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela etait possible, ces pages n'ont pas eté numérisées.

Communications relating to the Editorial Department should be addressed to the Editor, Henrix T. Bovey, 31 McTavish Street, thencreal.
The Edititor does not hold himself responsible for opinions expressed by hise correspondents.
N_{0} notice will be taken of anonymous communications.

NEW BOOKS.

The Materials of Engineering in Three Parts. Part 1II. By Robert H. Thurston, A.M. C.E. (New York: John Wiley \& Sons. Montreal: Dawson Bro's.
Parts I and II. of this valuable and important work have III. the been noticed in the pages of this magazine, and Part atanderelume now before us, does not fall below the high non-farron of merit attained by the firat two parts. It deals with bronerroze metals and alloys such as copper, tin, zinc, brase, wotale and opening with the history and characteristics of the the introductioir alloys, which is more or less a repetition of Chap. II
qualitios, II. deals in detail with the history, distribation, alakel, and their manufacture of copper, zinc, lead, biamuth, anm, mad their respective ores, of aluminum, mercury, plativorala. It conam, arsenic, iridium, manganese, and the rarer the various metales with an article on the market prices of diccuasens metals referred to. In Chapter III. the author the following prosume of the the alloys, and, begins by giving theif charming resume of the results of his investigations as to ${ }^{16}$ shlloracteristics:-
Phyicalla, boing composed of metallic bodies, possess all the -athic lnst chemical characteristics of metals; they have the conous, and are more or leas ductile, malleable, olantic and hoility. In retaining theee propertiee, however, the compound in modin retaining theee properties, however, the compound rumble either of ite constituents, and might consequently be Thin in erpecially motal having characteristics pecculiar to itself,
Tht. It with those which are used in the requity It would almont seem there in no department of the arts
 tond pormeding of motale for which an alloy may not be pre-- Pencriginai metale. The phyrical propertioe of an
alloy are often quite different from those of ite constituent metals. Thus copper and tin mixed in certain proportiona, form a sonorous bell-metal, possessing properties in which both metals are deficient ; in another proportion, they form speculum metal, which is as brittle as glass, while both of the constituent metals are ductile. It is impossible to predict from the oharacter of lead metals what will be the character of an alloy formed from given proportions of each. In most cases, however, it will be found that the hardness, tenacity and fusibility will be greater than the mean of the same proportion as the constituents, and sometimes greater than in either, while the dactilty is usually less, and the specific gravity is sometimes greater and sometimes less. Thi colour is not always dependent apon the colours of the constituent metals, ae is shown by the brilliant white of speculum metal which contain 67% of copper. Chapter IV. treats of the bronzes, chapter VI. of the kalchoids and miscellaneous alloys, and Chapter VII. of the manufacture and working of the alloys. In Chaptars VIII. to XIV. the anthor gives an instructive discussion of the strength and elasticity of the non-ferrous metals aind the alloya, as well as of the conditions affecting the strength and conoludee a clear and well-written work with a chapter on the mechamical treatment of metals and alloge.

The Meteorological System of the Great Pyramid. By F. A. P.

 Barnard, L.L.D., S.T.D. (New York: John Wiloy \& Sons. Montreal : Dawson Bro.)This work, will be noticed in the next number of Magasine. We have aloo recoived from the Yale and Town Mapafioturing Co.; a pamphlet ontitled "a now aystem of waighing Machinery," in which is elaboratoly desoribed the justly celebrated Emery Scales and Testing Machines.

Trere is being built at the Dolamater Iron Worke, an iron stoumboat designed to run under wator. It is 80 feot long, 71 ft . broad and 6 ft . deep. Water ballaat under control of the crow will enable them to aink or flout her, and by the device of two rudders whose planes are at right anglee to emoh other, she can be pointod in any direotion. The usual outfit of olootric onginea, comprossed air and diving maite, with which rasders of Jules Verno are familiar, in included in the design. In war times she may aleo be used an a torpedo boet.

THE POETRY OF ARCHITECTURE,

 ORArchitecture in its relation to the other Fine Arts.
by andrew t. TAYLOR, M.R.J.b.A.
(Continued from puge 163.)
If we turn to Gothic sculpture and carving we find a complete change. It is not so much man as the soul of man that the Gothic carvers tried to represent. It is entirely dominated by a religious or at least an ecclesiastical tone. The figures are now closely draped, and are modelled from the Franci-can monk or the Capuchin friar. The carver was often a shrewd witty fellow and instead of sending his jokes to a "Punch" or a "Grip" he carved them in stone. Did he want a saint? his boon companion in the next cell served for a model. Had the prior or abbot offended him? he immediately gibbetted him high up in some corner as a spouting gargoyle, or put him in the act of being carried off by some imp of Satan. Just as the story goes that Michael Angelo, while painting his great picture of the "Last Judgment," in the Sistine Chapel at Rome, nettled by the impertinence of some empty headed courtier of the pope, who had come to see how he was progressing, copied his features for one of the figures in hell. Very indignant the courtier complained to the pope. He asked where the painter had put him, and on replying that he had put him in the lowest hell, the pope said, " had he put you in Purgatory I might have got you out, but down there I am afraid I can do nothing for you."

The Gothic carvers laid all nature under contribution and lovingly studied the loveliest plants and flowers, that they might bloom perennially twined round some massive pillar, or clasping delicately some panelled surface, or proudly crowning some gable top. The animal wond was also not overlooked, and bird, and beast and fish, now in grave posture and now in grotesque shape and feature took their place in the mighty fabric. Angels were even brought down to earth, bearing messages of peace for mankind, and petrified into abiding permanence.

I heir sculpture was at first very rude but gradually improved, until for versatility, for conception, for marvellous delicacy of execution it would be difficult to match those later Gothic carvers of our Cathedrals. They cut and hewed and carved their thoughts into the stone many centuries ago,-sometimes in idle jest, at other times in deepest earnestness, perchance like Fra Angelico they may have worked on their knees, and we come in lightest mood and lo! there is a lesson in the stone for us instinct with life. Perhaps you will permit me to read a few verses with reference to this, which I came across lately and which I think are very beautiful and have much of truth in them.

[^0]" Some will praise, some blame and soon forgetting, Come and go, nor even pause to gaze ; Only now and then a passing stranger Just may loiter with a word of praise.
" Yet, I think, when years have floated onward And the stone is grey, and dim, and old, And the hand's forgotten that has carved it. And the heart that dreamt it, still and cold,
" There may come some weary soul o'erladen With perplexed struggle in his brain Or, it may be, fretted with life's turmoil Or made sore with some perpetual pain,
" Then, I think, those stony hands will open, And the gentle lilies overfow. With the blessing and the loving token, That you hid there many years ago
" And the tendrils will enroll and teach him How to solve the problem of his pain. And the birds' and angels' wings shake downward On his heart a sweet and tender rain.
" While he marvels at his fancy, Reading meaning in each quaint and ancient scroll, Little guessing that the loving carver Little guessing that the loving cary
Before the art of printing when books were few, and those who could read them fewer, it was a wise thought which prompted the carving of Bible scenes and subjects round the cathedral portals. Thus the unlearned peasant could spell out and teach his children the story of Adam and Eve, the fall, the flood, the warl derings of the Israelites, the history of David, and all down the ages to the life of our Lord and on to the history of the early church. Thus we have a compen dium of Scripture story on the magnificent western portals of the Cathedral, which Mr. Ruskin has been recently describing under the title of the "Bible of Amiens." The front of Milan Cathedral, the portals of Orvietto, St. Antonio, Verona, the Gates of Ghiberti at Florence, and a long list which time would fail me to mention.

It is a curious fact that the Jews, although by $n 0$ means averse to carving on their buildings, do not permit to be carved any representation of the " likene8s of anything which is in heaven above or that is in the earth beneath," translating literally the Second Commandment, and remembering as one must do, the terrible results of idolatry to them as a nation ond hardly wonders at it, more especially as we know that not not the Jews alone, but Christians also worshipped images. The introduction of printing and books, and the ora of the Reformation with its laudable zeal for for purity of their worship, did much to bring aculp ture into disuse for a time ; but,it is again asserting its lawful place, not as a thing to be worshipped either for itself or what it represented, but for the thought, the life aud the additional beauty it gave to the building it adorned.

Much however of the modern carving and sculptare is not worthy of the name, and would be better away. All carving should have some distinct motive, and have a story or a thought to express. It should not be dise tributed all over the building, but should be gathered up into bouquets, as flowers are gathered, or as orn ments are worn, to emphasize the design of the build ing-here adding strength, there giving delicacy, hert producing piquancy, there sinking into rest.

I have a few examples here both of ancient modern carving, and I think you will agree with me that much of the modern work is excellent, notably that designed by the late lamented and very gifted French artist, Viollet le Duc. Sculpture in relation to architecture is an extremely interesting subject, but 1
must not linger longer upon it but pass on now to architecture in its relation to painting.
As we found that sculpture began in the most primi-
tive manner, so painting had a humble origin also.
$J_{\text {ust }}$ as a child will scrawl on a slate, rude forms in-
tonded to be imitative, or traced with a charred stick
on a wall something which may bear a distance resem-
blance to a cow or a horse, so the child of the ages
essays in pictorial art decoration were of the rudest.
Son however rapid progress was made, not only as a
style of decorstion, but also as a medium for the ex-
pression of his thoughts and wishes, and much of
Egyptian decoration is but his language in symbol.
The Assyrians also wrote their history on their
Walls not only by sculpture but by painting, and we
this day examples of this in which the colours are fresh to
valuable, affording in common with their sculpture
In assistance to historical research.
bave the buried cities of Herculanean and Pompei
decoration found many evidences of internal pictorial
order, but not always of an exalted or an ennobling
customs, the thowing much light on the manners and
inhabitants. thought, the morals, and the culture of the
But it is.
laid mat it is in'their architecture that we find painting effects, and ther contribution to heighten archite tural the earliest these are of surpassing interest. Some of very ruest examples we have are in the catacombs,
faith rude but pathetic in the story they tell of heroic persecution alive under most bitter and unrelenting

But when in thcse underground cells and passages.
But when Christianity was not only tolerated but
patronized by the civil powers, as they grew in power and Wealth, their pictorial art expanded into more am-
bitions channel ing on channels and more enduring mediums. Worked glass mosaic the method of mosaic work, they adopttrayed often in ludicrand and in this material they por-
Vigorous form, ludicrous, but always in original and
tian incidents and virtues of the Christian faith, and with these they lined the walls of their charches, so that these wey lined the walls of their
Scripture st Neripture story.
The old town
of the old town of Ravenna, in Italy, contains more
try especially, the dome of which is completely lined
With Secially, the dome of which is completely lined
the custompture subjects relating to Baptism, in mosaic,
Very beau was not only useful but the result was also
Very beautiful. Ln the Baptistry at Florence we have also similarly
chautiful work; and in the famous and well-known church work; and in the famous and well-known
sid. side
mell and in, Marks in Venice, we have mosaics out-
mated incerwed down to a beautiful tone by time and the that needs ages, and giving a soft harmonious result But there be seen to be understood.
Italian slope, was a shepherd boy tending sheep on an ${ }^{81}$ retching slope, who, to wile away the time, took to at that time a sheep on a smooth slaty stone. Cimabue that way a well known painter, happening to pass $d_{\text {dawing noticed the boy and seeing him busy at his }}$ fater on to maked the genius in embryo, which was $\mathrm{f}_{01 d_{8}}$ and make him famous, trook him from the sheep ${ }^{p_{n}}{ }^{\text {aned }}$ and trained him in his own studio. As has hapGiotto inten since, the pupil eclipsed his master and pieces are not inced a new era in painting. His master. $\underbrace{c^{e n s}}$ are not found in any picture galleries, but are
frescoed on the walls of the Arena Chapel at Padua, in Santa Maria Novello at Florence, and elsewhere. There in their magnificent framework, they add charm to the building, and derive beauty from it. These pictures are a series depicting the lives of some of the saints and are most exquisite in their thoughtfulness, their delicacy and yet firmness of touch and their beauty and harmony of color. Then oil painting was unknown, and these are done as fresco work in distemper, and are much more suited to the decoration of a building with their quiet flat tone than oil painting with its glossy, shining surface distorting and reflecting the light.

Others followed in his footsteps and we soon find in quiet chapels and cool cloisters and shady corners, sweet faces and lovely forms looking down on us from these frescoed walls, all over Italy. But I must not forget to mention the saintly Fra Angelico-the angelical painter, who was so devout that it was reported he painted on his knees. He has left behind him in the Convent of San Marco at Florence, so identified with the great lion-hearted Reformer Savonarola,memorials of his piety, his devotion, and of his genius such as any one might envy. On the end wall of the Chapter House, a crucifixion, so tender yet so true, transforms the place into a Holy of Holies, and in the bıother's cells-generally with characteristic humility in some obscure dark corner,-he has painted various scenes from the life of our Lord, or other Scripture subjects which change tine cold, bare, narrow cells into lovely shrines.

A great many of those celebrated pictures which are now in the European piciure galleries, were originally painted for altar pieces, or for special decoration panels in the churches and other buildings but have been transferred sometimes on the destruction of the church or on the dissolution of the monastery or convent, or oftentimes appropriated from existing churches by conquerors and others, and therefore are \mathbf{f} seen by us at a disadvantage.

ENGINEEERING.

Drfective Castings.-It is stated in the English papers that an examination of the broken girders of the fallen railway bridge at Denmark Hill showed that one of them was "honeycombed with air bubbles ;" and it is assumed that, as this girder gave way, the extra weight thus thrown upon the others caused the accident. It'is almost unnecessary to say, according to a correspondent in Iron that the so-called "air bubbles"are really hydrogen cells, and that the only explanation that has been (and probably ever will be) afforded of the source of this hydrogen is that, if not exclusively, it is mainly derived from the moisture of the atmospheric blast, which becomes decomposed on coming in contact with molten iron or steel, its hydrogen being thereupon at sorbed by the metal. This occurs not only in the steel converter, but also in the blast furnace and in the remelting cupola. As a consequence, bath steel and iron castings are unreliable, and a constant source of danger wherever their soundness is essential to safety ; and they are accordingly unfitted for a number of important purposes for which forged metal, at a far higher cost, is considered necessary. I do not propose, adds Mr. Fryer, to refer to any of the various methods and expedients which have been devised, and which are sometimes employed to cure the evil. It will, however, seem remarkable that no atcempt has yet been made to get rid of the defect itself by eliminating the moisture from the blast, and thus removing the cause. One practical trial in that direction would go further to solve the whole question than all the theories that have been advanced, and all the laboratory experiments that have been tried since Dr. Muller's famous discovery of the real nature of the so-called "air bubbles" or "blow. holes."

IMPROVEMENTS IN COAL-WASHING, ELEVATING AND CONVEYING MACHINERY.

BY S. STUTZ, M.E., PITTSBURGH, PA.

Three years ago, at the Philadelphia meeting, in February, 1881, the author had the pleasure of presenting to the Institute a paper on coal-washing machinery. Since that time nany new machines, with important improvemeuts and laborsaving apparatus, have been introduced, the construction and description of which may be of interest to some of the members of the Institute. By referring to the above mentioned paper, and especially to Page IV., representing a vertical section of a coal-washer, it will be noticed that the bottom of the plunger-box B is made level or horizontal, and supports a spring-buffer F for the purpose of limiting the down-stroke of the plunger P and receiving the impacts of the latter. Although the construction of the box, in view of these impacts, received from the start the proper attention (the bottom of the chamber B being made of three thicknesses of 3 -ingh planks, resting on 6 -inch square columus), yet, through caless working of the machinery, without the necessary water in the box, it proved in several instances not strong enough, and had to be changed. To prevent such interruptions in future, it became necessary to devise some means for relieving the machine from the impacts of the plunger altogether. This has beel accomplished by the arrangement shown upon Page 196. of this paper, representing a new washer ; and not only has the difficulty been overcome, but also other advantages have been obtained, as will be seen further on.
The compartments $\mathrm{A}, \mathrm{A}^{\prime}$ of the separator-box have been set upon heavy cast-iron brackets B, leaving sufficient space below the bottom for the buffer F and the sediment-valve K. By means of the planger-rod b passing through the stuffing-box s to the outside, and provided at its lower end with a shoe a, the impacts of the plunger are now transmitted from the buffer F directly to the foundation. At the same time a better guide for the plunger P in its up and down movement has been obtained. The plunger of the former machine had ouly the guide I and the yoke Y, whereas the new machine has an additional guide in the stuffing-box s, thus preventing wear and friction of the plunger against the lining of the box. Furthermore, the mechanism for regulating the stroke of the plunger has been simplified in dispensing with the hand-wheel. The screw-nut e, swiveled to the yoke Y, is provided with a long thread to receive the upper end of the plunger-rod b, and is made of steel, sufficiently strong for all purposes. It is provided with four notches n, into which a piece of iron can be engaged ; and, by turning to the right or left, the yoke Y is raised or lowered as may be required. Thus it is very easy to get the proper stroke for any kind of material, or to set the machine out of operation altogether, if necessary. With the exception of the gate O for the oatiet of the impurities, the other parts of the machine are left the same as before. The bottom of the plunger-box being now inclined towards the sieve-chamber, less power or less weight of the plunger is required to produce the same action of the water as was obtained in the former machine. The operation of the present machine is the same as previously described. Fresh water is taken in through G, and the slack-coal, brought upon the sieve S by means of the chute J, is separated into coal and impurities, while passing from the rear to the front of the machine. The clean coal, delivered over the bridge M into the channel C^{\prime}, goes to the elevator E, which brings it into storage-bins, while the impurities pass through the gate opening O into the chamber W, and thence through the opening O^{\prime} to the trough T, where they are carried away by the action of the waste water. A number of the new machines have been erected during the last two years, and give full satisfaction in every respect. They are considered the best in the market, and offer the following important advantages:

1. The use of a differential cam for the working of the plunger allows to the material, after each stroke, the necessary time to deposit according to gravity. An eccentric or a crank cannot produce such a movement.
2. The use of valves between the plunger-chamber and sieve-chamber prevents the filtration and back suction of the water during the upward stroke of the plunger, and thus saves the very small coal, which otherwise will pass through the meshes of the sieve and go to waste.
3. There is a saving of motive power in the working of the washer. The body of the water in the hox A being divided by
the partition N, the inertia of the small part above the latter has only to be overcome.
4. The current of the water produced by the plunger P not only lifts up the material upon the sieve S to effect the separation, but also moves the sep rrated parts, coal and impurities, towards the delivery-bridge M and gate O respectively. This is especially valuable, since the continuous and regular separation of material containing heavy impurities, such as iron pyrites, fire-clay, etc., is assured.
5. There is great economy of water. In the older machines the separaled coal is floated out of the apparatus at the expense of an enormous volume of water; yet the impurities have to be removed from the sieve by the shovel, thus interrupting the working of the machine and making it intermittent and wasteful.
6. The forming of a special receptacle below the partition N allows the fine particles of pyrites, slate, etc., falling through the meshes of the sieve, to settle. Thus the clean water is not mixed with the slimy sediments, and the latter are not forced back again into the material.
7. This machine has greater capacity per square foot of sieve-surface, with less water, than any other in use. An apparatus of, say, two sieves, 3 feet by 4 feet 9 inches, or $28 \frac{1}{2}$ square feet surface, can wash properly 200 to 250 tons of coal per day of ten hours with from 300 to 500 gallons of water per ton of coal, according to percentage of impurities, or about 7 to 9 tons per square foot of sieve-surface. The cost of washing will be from 2 to 5 cents per ton, according to locality and arrangements.

Elevators.-The hoisting or elevating apparatus is, especially as a labor-saving device, an important part of the washing machinery, and requires close attention. Its object is first to bring the material to be separated to the machinery, and afterwards to deliver the different parts to storage-bins or cars. For handling minerals or heavy substances, the elevators are usually composed of endless chains and buckets, caused to move around polygonal pulleys or sheaves. A sieady movement without jerking or slipping of the chains is very desirable! Chains tormed of common flat iron links, render such a movement difficult and often impossible, no means bring pro vided to prevent slipping. The apparatus shown on Pages 197 and 200 gives great satisfaction, and insures a steady and continuons working. The chains are composed of malleable iron or steel links specially designed for the purpose, and connected by means of rivets or bolts and nuts. Eich link is provided with lateral projections, r, which regularly, at the proper time, are taken up by correspouding teeth, t, of the polygonal sprocket-wheels, P, as shown by Figures 1 and 2 of Page 197. Thus the chain is carried around with the wheels, perfectly secured and maintained, no stopping or jerking being possible, till it arrives at the rear, where it is developed ag in and set free. Rods, h, reaching across from one chain to the other, support the bucket k. They are kept in place by screw nuts and pieces of gas-pipe o inserted between the links and the buckets. According to the dimensions of the latter, links are made of different sizes and length. Figures 3 and 4 represent 8 -inch and 6 -inch links, with either two or four lateral projections r. They are always well-proportioned, and have large wearing-surfaces at their connecting-points. The sprocketwheels P have independent angle-pieces m, with their teeth, t, which are riveted or bolted to the sides. The teeth msy also be cast with the wheel in a single piece, as shown by Page 200. The upper pillow-blocks, supporting the sprocket-wheels and the chains, are fixed movably upon guide-plates, C, and can be lowered aud raised by means of the set-screws s. Elovators may receive an inclined or vertical position, or a comp bination of both together. The inclination of the apparatus on Page 197 is 60 degrees, with half-búshel buckets attached to 8 -inch links. It receives movement by the pulley D, and takes the material from the bin G to the delivery chute F : The ordiaary speed is about 15 revolutions per minute, and the capacity, with seven-sided sprocket-wheels, 7×15
$4=26 \frac{1}{4}$ buckets $=13$ bushels, or about 300 tons per day of ten hours. , With a speed of 20 revolutions per minate such an apparatus can hoist and deliver 400 tons of material pers day of ten hours. An elevator raising its load vertically is illustrated upon Page 200. It has quarter-bushel buckets, attached to 5 -inch links, and is caused to move around twelper sided sprocket-wheels P. The links and buckets are connected in the same way as previously described, and their form and
dimansions only are different. But a special mechanism for delivering the material has been added to the wheels. As the passage passage of the buckets k, the material emptied out of the preceding bould not be delivered, but would fall on the back of the additiong bucket. and down again to the bin G, but for the c are fixed between the sprocket-wheels P in such a parpose the that turning around with the latter, between in such a manner, invariarning around with the latter, between the chains, they precedialy mesh in in front of each ascending bucket, and precede the latter to the delivery side, where they first receive may material, to let it slide afterwards into the receptacle C, as bridge seen from the drawing. Their object, therefore, is to Thise over the space between the receptacle and the buckets. sisting method is far preferable to the one frequently used, concontents in the run of the elevator at high speed, whereby the chute ts of the buckets are drawn over into the receiving since. Of all the systems employed, that certainly is the worst,
A mixed system necessary the frequent renewing of the chains. torily, is shixed system of elevators, which is working very satisfacand inclined at 60 pon Page 204. It is vertical in its lower part of the material 60 degrees on top for the convenient delivery return material. Instead of running both chains inclined, the the receptains only are often bent below the top wheels to bring increases friction near onough, but this requires larger wheels and tors is friction. Most of the power necessary to drive eleva. malse the linked in overcoming friction. It is advisable to practicable, consistently the chains as long as is reasonably peratus. Fonsistently with the buckets or pans of the apchatus. For supporting and guiding the upper or ascending atationary friction-rollers are preferable to loose and movable rollenary friction-rollers are preferable to loose and movable
chain to The latter are expensive to keep up, and make the chain too complicated.
Conveyers.
ling or cayers.-Another great labor-saving apparatus for hand. plaee to another, ts the conveyer, represented upon Page 201 .
It consists, similar of pivotally similarly to the elevators, of endless chains, formed carried by the connected links, pans or plates, secured to and and rollers the links, sprocket-wheels for driving the chains, Wheels. A repupporting and guiding the table between the monnted A represents a framerork of timber on which are shaft has twe shafts a aI journaled in pillow-blocks aII. Each $C_{i} C_{\text {I }}$. The two sprocket-wheels E supporting the endless chains if desired, The pillow-blocks of one of the shafts $a a_{1}$, or of both if desired, are set upon gaide-plates g gi, and made adjustable jecting lugs or in order to tighten or loosen the chains. ProWheels, by or sprockets e are cast on the periphery-sides of the
derence one after the other side. These lugs are latter, by meangag' the links of the chains and prevent the alipping, in whs of corresponding projections, r, Fig. 3. from movg. The whichever direction the table may be caused to and ised for the elerators, withe kind as previously described at the opor the elevators, with an eye at one end and a socket pair of projecte end adapted to receive the adjacent link, and a ceatre of each link near each connecting end. At or near the t_{0} receive each link, a flattered base or attachment p is tormed table. The sheet-metal pans or plates m of the conveying-
the lings of the plates is about equal to the length of or links. They are secured either by means of holts and nuts or rivets. They are secured, either by means of holts and nuts
leading shown by the drawing, Fig. 1, the forward or of thig edge of each plate overlaps the rear or following edge tance precedıng pan. This is necessary and of great imporWacessive plates while turning around the angles of the wheels. aste of plates while turning around the angles of the wheels. As a means for coal or mineral, otc., is thus entirely avoided. riping- Wheelg, friction rollers n reaching across the table are
or ployed for the or ployed for the upper part and its load, while for the return
lower part, small malleable in cesired part, smali malleable iron rolles, n ', Fig. 4, in any by rivets or otherwise to the unitably mounted on metal frames, are fastened
plates plates m. Theserwise to the upper or carrying face of the
conveyer, from stringer, from wheel to wheel, travel or ride upon suitable ferablers or beams $A 2$ secured to the framework A. It is pre-
in conn fasten them immediately over the carrying in connection then immediately over the carrying chains, deaigned to carry heavy minerals, etc., require three or more In ords to prevent bending or sagging of the pans in the centre. Platear to hold the ming or sagging of the pans in the centre.
omplog the be conveyed upon the onployed, as, shown in Figures 1 aud 2 . The brackets are
fixed to the timber of the frame A. Sufficient clearance must be provided between the lower edge of the sides and the unper surface of the conveyer-pans to prevent friction. If desired, however, the ends of the conveyer-plates may be bent upwards at an angle and serve the same purpose as the siles R in preventing the falling over of the mineral, etc., or in many cases guards may be omitted entirely. It is however, preferable, when any provision of this kind is needed, to use the fixed side-boards R, because the pans are not loaded thereby, and they are also free from the liability to become choked or bent, 80 as to interfere with the proper working of the table. Provision for charging the minerals, etc., upon the table, may be made by means of hoppers, or otherwise, as will be shown here-after.

Arrangement and Disposition of Elevators and Conveyers.This part of the paper is intended to illustrate some of the many cases to which this kind of machinery may be profitably applied. Page 204 is a part of the coking-plant at the Long Run mine, New Bethlehem, Pa , and shows the arrangement of two vertical elevators $E E^{\prime}$ in eombination with the conveyer C to bring the slack coal to the washing machinery. On the left hand side is the washer-building with the separator A at the ground floor and a 4 -roll crusher R above it. Two railroad-tracks are in front of the building, one for lump coal or the run of the mine, or the other for nut coal and unwashed slack. The coal intended to be washed, is collected in the hopper H to be fed into the crusher-rolls, by means of the conveyer C. The different apparallis have been designed in view of handling 200 to 250 tons of slack co $1 l$ per day. During the regular or normal run of the works all the slack may be easily taien away by the conveyer, but it often happens that railroad cars have to be loaded in a very short time, and owing to the small capacity of the hopper H, it became necessary to provide for some additional storaye-room. This has been accomplished by means of an auxiliary bin B between the tracks*and the building, holding about 150 tons. Dumping and loading may thus be done at almost any rate of speed, the surplus slack being let into the bin. and does not interfere with the regular working of the machinery. The object of the two short eleva. tors $E E^{n}$ is to hoist this coal up again, when needed, without any extra labor or additional expense. As long as the conveyer is supplied with coal from the topper H the elevators are at rest. They receive motion from tre shaft a by means of a counter-shaft b and cog-wheels $e e^{\prime}$. Both are provided with friction-clutches $f f$, operated by levers $l l^{\prime}$, and may be run independently one from the other. Usually only one of them is at work at the 11 mw . The buckets k drliver the coal upon the inclined chute $c c^{\prime}$, by which it goes to the conveyer, and thence to the separating machiuery. The length of the table is 17 feet 6 inches between the centres of shafts, by 36 inches width. Its speed is only about 40 feet per ininute. No siduboards or guards are used here. Two mun attend to all the machinery, the machinist and his assistant.
Page 205 represents a difforent arrangement from the former, which, however, has the same object in view, namely, the handling of the surplus sla $\cdot k$, produce l at certain hours of the day, without additional expense of labor. It is a part of the coking-plant at the Rochester mines, Dubois, Pa., witu the coal tipples in the centre, a large auxiiiary slack-bin B to the rigitt, aud a part of the coal-washer building to the left-hand side. $E E$ " are two inclined elevators to delivery the slack from below the screens. Their capacity is about 250 tons each per day of ten hours. While dumping coal into railroad cars at the normal speed, the elevator E leading to the washing. machinery is quite sufficient to handle all the slack produced, but the time allowed tor unloading pit cars is very irregular. In the morning between the hours of 7 and 100 'clock, relatively few cars are taken ont of the mine, because this time is required. for the miners to loosen the coal and get ready for the day's work. Most of the coal is loaded between the hours of 10 and 3 P.M., and dumping is usually very lively about noon. A greater amount of slack is then produced than the elevator E can take away. Before the erection of the second elevator $E^{\prime \prime}$, and the auxiliary storage-bin B, the sarplus has been very troublesome, interfering with the regular working of the washer. Two boys and two mules were kept busy to haul a part of the slack to the dump and bring it back again afterwards. That such a system of working could not pay, is easily to be seen. Atter this had been carried on for some time, the writer was consulted, and proposed the arrangement shown by the draw-' ing, viz., an additional elevator E, taking the surplus slack into the storage-bin B, and a conveyer C to bring the same. back again when needed, the mechanism to be arrauged in such-

a manner, that either part may be worked independently, or both apparatus set out of motion. This has been carried out and gives full satisfaction. The elevator is of the kind shown upon Page 197, with half-bushal buckets, and about 56 feet 10 g between the shaft-centres. Provision is made for about 800 tons of slack. At the bottom of the bin B are three gateopenings i to let the slack out again upon the table of the conveyer C. The latter is located on the side of the elevator, and below throngh the middle of the storage-room about 2 feet centre of shafts, It is 54 feet 9 inches long, from contro to contre of shafts, by 24 inches width of table, and the same in conatruction as ahown nuon Page 201. The necessary power main thaft elevator and the conveyer is obtained from the pailleshaft a of the washing-machinery, and, by means of the pralleys p p' and a wire rope, is transmitted to the counter-shaft an inclined sher, by means of two sets of bevel wheels 20 wo, and an inclined shaft, ranning outside and along the elevator-post,
 $\frac{4}{6}$ theond conntor-shaft b, also, receiving motion from the shaft: This is done by the palleys $g g^{\prime}$, givee motion to the converaer.
e rubber belt. The piniona e and w ane by the pulleys $g g^{\prime}$ and a rubber belt. The pinions
alno aletches are connected with the female parts of the frietion-
aro set in. respectively, and reccive only when the olutahee bofore the bus soon as the slack commences to accumalste atarted the buokets of the elevator E, the second elevator E^{\prime} in taken by setting the clatch $f^{\prime \prime}$ tight. The surplus is then taken quised the the win B until its volume has diminished to that reor the by the washer. The clatah f is now drawn out again, Othe elevator allowed to run empty. To start the conveyer clate clutch f is pushed in, and, as the male parts of both out of mate connected together, this will set the elevator \mathbf{E}^{\prime} bin of motion. One of more gates i below the bottom of the and bect then alightly opened, fo let the slack npon the table in beeded again to the foot of the alevator \boldsymbol{E}. No extra labor Mubinded; the work is performed by the engine which rans the ining-nachinery. (1 paper read before the Am . Inet. of

" WOOD PAVEMENT IN THE METROPOLIS," BY GEORGE H. STAYTON, ASSOC. M. INST. C.E.

\triangle Paper road before the institction of ciml engineers.
Tho Author directed attention to the nature and extent of the various Wood Pavements in the Metropolis, and to a comparison of the results obtained. The aggregate length of the streets of London was 1,966 miles, of which, excluding 248 miles in course of formation. 1,718 miles were thus maintained 'by various authorities, namely :-

Macadam					573	miles
Granite					280	"
Wood	.				53	"
Asphalt					$13 \frac{1}{2}$	"
Flints or C	avel				$798 \frac{1}{2}$	

The existing area of Wood Pavement was 980,533 square yards, and its estimated cost $£ 600,000$. Not more than 4.38 per cent, was east of the City or south of the Thames. The method of construction adopted by the uuthor was described and illustrated. His practice was set out the levels of the channels so as to allow a rise to the crown of the road equivalent to 1 in 36 above the mean channel-level. The inclinations of the channels should not exceed 1 in 150 , and numerous street gulleys should be provided. An extra cost of 4 per cent, for gulleys was money well spent. The foundation of the Chelsea pavements consisted of a bed of concrete 6 inches deep, composed of $5 \frac{1}{4}$ parts of Thames ballast to 1 part of Portland cement ; the entire cost for materials and labour when completed was 2 s . $3 \frac{1}{2} \mathrm{~d}$. per square yard. The use of old broken granite as a substitute for Thames ballast, although cheaper, was not recommended. Concrete made from that material was less homogeneous than pure ballast concrete.

The greater part of the Wood Pavement in London was composed of rectangular blocks of yellow deal. Betore adopting Wood Pavements the Author inspected the various kinds of pavement then laid, and came to the conclusion that a plain but substantial system was the best. The blocks were 3 inches by 9 inches by 6 inches, and were speciffed to be cut from close and evenly-grained, well-seasonsed, and thoroughly bright and sound Swedish yellow deals (Gothenburg Thirds). The Author knew of no inore suitable wood in the market, which so satisfactorily stood the wear of traffic and atmospheric changes. Of hard woods, pitch pine took a high place in point of wear, the ascertained annual vertical wear of the section in King's Road during four und a half years being 0,055 inch only. Neither elm nor oak blocks would withstand the atmospheric changes to which street surfaces were exposed; larch would probably take a high position, but the available supply was limited. In many pavements the blocks had been dipped in a cresote mixture; in a few instances they had been creosoted or mineralired, but at least one-third had been laid in their natural condition. The ordinary dipping process was of little value as a preservative, but might be utilized as an external discoloration for infeeior blocks. The Author had tried creosoted blocks, but experience had convinced him that they were not more durable than plain, that their surface was less clean, that the system was 20 per cent, more costly, and that it tended to produced premature internal decay. The Wood Pavement in Chelsa required forty and one-half blocks per square yard ; they were laid upon the concrete in their natural state, with the fibres vertical, and with intervening spaces $\frac{8}{8}$ inches wide. The joints were filled with cement grout composed of 3 parts of Thames sand, to I part of Portland cement ; they were kept parallel by means of three cast-iron studs fixed in each block, which rendered the pavement firm and steady until the grout was thoroughly set. A top-dressing of fine gritty material compl, ted the work. If practicable, traffic should be excluded from a newly laid pavement for at least one week after completion. The result of five years' wear convinced the Author that the plain system comprised all the essentials of a sound pavement; that it provided a quiet and smooth surface for vehicles, and safe foothold for horses ; that the cement joint adhered to the wood, effectually resisted wet, did not unduly wear below the wood surface and thereby allow dirt to accumulate in the joints, neither did it displace the blocks. The net cost was 10s. 6d. per square yard, and but comparatively slight repairs had been found necessary. The blocks were originally 5.87
inches deep, but their present average depth was $5 \cdot 22$ inches in King's Road, and 5.60 inches in Sloane Street, their probable life being saven and eight years respectively.

Peculiars of Wood Pavements in various parts of London were given at considerable length; and in those instances where the approximate weight of the traffic per yard width was known, the details of cost, maintenance, durability, ascertained vertical wear of wood, \&c. were described. The experience of the Improved Wood Pavement Company was probably greater than any other, that system having been laid in King William Street, Leadenhall Street, Bishopsgate Street, Aldersgate Street, Ludgate Hill, Queen Victoria Street, Northumberland Avenue, Parliament Street, Whitehall, Piccadilly,Knightsbridge, Bond Street, Park Lane, Old Brompton Road, and in other places. Henson's system had been tried in Leadenhall Street, Fleet Street, the western part of Oxford Street, Brompton Road, Euston Road, and Uxbridge Boad. The Asphaltic system had been laid in Fleet Street, the Strand, Oxford Street, High Holborn, Regent Street, and Brampton Road. Lloyd's "keyed" pavement in Pall Mall had proved a failure, owing to careless work, and to the mode of jointing and blocking. The same pavement in the upper part of Regent Street also showed considerable wear. Carey's pavement had been laid in Cannon Street for over nine years, but the $A u$ thor did not class it among successful pavements. The Lig-no-Mineral pavement was laid throughout Coleman Street in June, 1875, but in April, 1882, asphalt was substituted. Messrs. Mowlem and Co's., pavement had been laid in the City, St. Gile'ss St. Marylebone, St. Pancras and Kensington. In Princess Street, Cavendish Square, blocks which had been put down in September, 1874; were still in existence. A large area upon the plain system had been paved by Messrs. Nowell and Robson, in Kensington Road, Fulham Road, Uxbridge Road, and High Street, Notting Hill. In order Metropolitan districts besides Chelsea, the Vestries had laid a plain system by means of their own staff. The Vestry of St. Marylebone paved the eastern portion of Oxford Street in October, 1878. The blocks now averaged 3.30 inches deep, but in certain parts the depth was $1 \frac{5}{8}$ inch only. The Paddington Vestry had laid 125,000 square yards in various streets, with satisfactory results.

The essentials of good management consisted in the prompt removal of defective blocks, the constant use of hand-scrapers and brooms in removing horse-droppings and mud, and the judicious application of water and sand. The cost of this service was $4 \frac{1}{2} \mathrm{~d}$. per square yard per annum, as against 11 d . per square yard for macadam previous to the substitution of wood. The Author considered it undesirable to lay blocks of a greater depth than would provide for a life of seven years as very few pavements retained a good surface after about six years' wear. Experience suggested that 5-inch blocks were preferable. Taking the life of the blocks in King's Road at seven years, the first cost, repairs, renewals, and cleansing, spread over twenty years, amounted to 1 s .9 d . per square yard per annum, and over fifteen years to $2 \mathrm{~s} .1 \frac{3}{4} \mathrm{~d}$. The repairs of Sloane Street and King's Road, when macadamised, amounted to 2 s .10 d . per square yard, excluding first cost, but including 11d. for cleansing. In Westminster the annual cost of macadam repairs alone was :-

				s. d.	
In Parliament Street	\ldots	\ldots	2	10	
"Whitehall	\ldots	\ldots	\ldots	2	$10 \frac{1}{2}$
"Victoria Street	\ldots	.	\ldots	2	0

The annual cost of wood relatively to the traffic-weight per yard width was classified in the table on the opposite page:-

It was strongly urged that local authorities should adopt measures for ascertaining the weight of traffic before laying down wood, that greater discretion was necessary in accepting tenders for construction and maintenance, and that no reason able expense should be spared in supervision. On the whole, the Author submitted that Wood Pavement was economical and convenient, that notwithstanding many failures the modern system had achieved a fair amount of success, and that there was no apparent reason why its use should not bo extended.

The Paper included tables and statistics showing the firste cost and annual cost of various Wood Pavements, the com-
parative vertical wear of wood in various streets as reduced to
a traffic standard, together with the ascertained and estimated life of the blocks

JOURNAL FRICTION.

Welliner was read before the Am. Soc. of C. E., by Mr. A. M. new appton, giving the detais and revults of experiments with a These aparatus upon the friction of car journals at low velocities. a series of eriments were undertaken to test the correctness of - by starting tests described in a previous paper, which were nade deducing cars from a state of rest down a known grade and sent experinents restances from the velocity acquired. The preto be tested is pere made by an apparatus in which the axle riety of sped is placed in an ordinary lathe having a great valepers connectse the resistance of the axle being measured by the mitting connected with a yoke encircling the axle and transf_{0} und importansures to a suitable weighing apparatus. It was as, for instance, a platform scale reighing anparatus should be direct, The results of thatarm scale rather than a spring scale. friction at of these experiments as to initial friction were that nearly constant low journal speed is abnormally great and more normal instant thauany other element of friction. This ab. volution. At velocities slightly solely to the velocity of refriction is At velocities slightly greater, but still very low, the regularly still large, the co-efficient failing very slowly and and more effected by differences of lubrication, load and temperature. A effected by differences of lubrication, load and temally be observed sery slight excess of initial friction would genera frictionserved. There is uo such thing in journal friction as thet that friction in distinction from a friction of motion. The rapido jotirnal or rest appears to exist is due solely to the fact rapid motion by anyer solid body can be instantly set into aeng velocities any force however great. At ordinary operseems to be much more imper and eompleteness of lubrication Comp pressure or tempertant than the kind of oil used, or Comparissons or temperature.
and by Mr. Power and made of experiments by Prof. Thurston rolling frictioner and the experiments of the author. The ${ }^{8} \mathrm{minall}_{\text {ind }}$ indeed, not proper in railroad service seems to be very ${ }^{8} \mathrm{sin}_{\mathrm{stan}}$ ce of freight exceeding one pound per ton. As to the repoundset the beginning in starting, it is believed that the repounds per to beginning of motion in each journal is about 20 ten pour must be obtained before the one-half to three miles i_{s} pounds per ton. speeds. ${ }^{\text {p Pop }}$. Tripniperature per ton higher than at usual working friction friction at very per is 10 to fifteen velocities. The velocity of lowest journal Dal prictict lubrication miles per hour. With bath or other With fiction accompan there is a very slight increase of jourvelocitys perfect lubrication, as with pad or syphon, greater latter beis as apt to decrican, as with pad or syphon, greater Vice, being more like the ordinary lubrication in railroad serjonrnal friction is without sensible error that the co-efficient of to 50 milestion is approximately constant for velocities of 15 - miles per hour.

Ship-Repairing Slip on Loch Tay.-Loch Tay, a splendid sheet of fresh water, some fifteen miles in length, in the very heart of the Perthshire Highlands, has, through the enterprise of the Earl of Breadalbane. been provided with four steamers within the past three years, to accommodate tourists and the residents on the sides of the loch. A large slip on which these steamers can be taken for repairs has j 1st been erected from designs by, and under the superintendence of Mr. Thomas Pitcairn, inspector to Mr. Strain, C. E., Glasgow, on the Loch Tay Works and the Killin Railway. The slip is 450 ft . in length, and is supported on piles. On each side of the ways, which are 17 ft . in width, there is a pier 350 ft . long from which vessels can be steadied while being taken out of the water. Mr. Pitcairn began the sinking of the piles from the shore, and put up the two stages, on which he subse \uparrow quently placed the machinery for driving the piles by which the deep end of the ways is supported. There are three lines of rails in the ways, the one in tbe centre being toothed as a ratchet to prevent the carriage or cradle on which the steam. ers are placed for slipping into the loch. The ways are bolted to three rows of piles, of which there are as many as 400 in the structure. When all the supports were in position, Mr. Pitcairn constructed 250 ft . of the ways on shore, fitted on the mountings, and then floated the structure into the place where it was to be sunk, after which all that the diver had to do was to bolt down the ways and saw off the projecting pieces of the timber. The remainder of the work was of a comparatively easy character, and was accomplished from the shore. At the summer level of the loch, the slip, which has an incline of 1 in 20 , will have ten ft . of water above the lower end, and in time of flood the $d+p$ th will, of course, be much greater. The material used in the construction of the repairing slip, as also in the construction of seven steamboat pierse along the shores of the loch, was larchwood, which grows to great perfection on the Breadalbane estates. Already the slip has been found most admirably to serve the purpose for which it was erected. A few weeks ago the Lady of the Lake was placed upon it in order to have a couple of damaged plates removed and to be fitted with a new propeller of greater power than the original one; and the slip then worked so well that although the vessel is of 100 tons burthen, she was easily taken from the water by means of a hand winch. (Engineering.)

The "Delta" Steam Launch.-A steam launch constructed of "delta metal" is being exhibited at the Crystal Palace in the joint names of Mr. Alexander Dick, the manufacturer of the new alloy, and Messrs. Yarrow and Co., the builders of the launch. As it has been proved by repeated experiments that delta metal is equal in strength, ductility, and toughuess to mild steel, the plates and angle pieces of this launch were made of the same thickness as if they had been of steel, namely $\frac{3}{32} \mathrm{in}$. The length of the hoat over all, is 36 $\mathrm{ft} .$, the breadth of beam $5 \mathrm{ft} .6 \mathrm{in} .$, and the depth from gunwale to keel 3 ft ., the capacity being sufficient to provide sitting accommodation for twenty-five persons. The stern, keel, and stern-post are of forged delta metal, and are scar!ed together in the usual way. The angle frames are made of the same material and are placed longitudinally instead of transvrsely, to give greater longitudinal strength. The propeller, cast in delta metal, is four-bladed, 2 ft . 4 in . in diameter, and 3 ft . pitch. The engine is of the usual direct-acting type, and of sufficient power to propel the boat at a speed of eight to nine knots per hour. The advantage of delta metal over steel and iron for shipbuilding, is that it does not rust. It is well known that a thin steel vessel, unless continually painted, will rust through very rapidly. This difficulty has been found to exist to a remarkable extent in the rivers of Central Africa; in these the waters, from some unexplained cause, possesses an extraordinary power of corroding and eating through steel plates. This fact is of special interest at the present moment when the rapid development of the African continent may be looked for. An important advantage possessed by delta metal for the construction of large boats, where its weight must be reckoned by tons, is that it is offered at a moderate price, and consequently the undoubted advantages of non-corrodibility are not eclipsed by a prohibitive cost.

Polishing Wood in the Lathe.-After sand papering a very little preparation is required. Fill up the grain with oil and plaster of Paris, wipe off clean, polish with French polish, and finish off with alcohol.

SCREW PILES.

(For illustrations see page 20S.)
the application of screw piles to foundations.
Screw piles are applicable to every description of ground except rock, provided the diameters of the pile shaft and screw are proportioned to the nature of the soil. Driving or sinking piles not fitted with the screw is an operation of extreme difficulty in sand, and it is sometimes impracticable to force them down. Notwithstanding that many ingenious contrivances have been more or less successfully applied, there is no certainty that a row or group of piles can be sunk (fixed) to an equal depth to bear their load in the same strata. With Screw Piles the groups can be brought to a true level in any strata. (Fig. 1.) Screw Piles have been screwed to a depth of 40 feet through pure compact sea sand with comparative ease, and with the application of manual power only. (Fig. 2.) The screws enter a clay strata more easily than almost any other, and they have been inserted in sand and clay, in many instances, from 20 to 39 feet. The principle of the Screw Pile introduced by Alexander Mitchell about 50 years ago, and the advantages derivable from its use, have enabled engineers to execute works under circumstances of no ordinary difficulty, especially in instances where the soil is unstable and incapable of supporting structures of the ordinary type.

In the execution of work in treacherons localities where the structures are subject to the influence of floods in rivers, or wide estuaries, and all the contingencies arising from shitting sand channels, and strong tide currents and scour, none of the several inventions that have been brought forward to overcome these known difficulties have been so effectual as the Serew Pile. An immense advantage pertaining to the Screw Pile is that, in eases where it is most wanted, i.e., on a shifting or loose sand, it is easily applied. They have been used in the erection of lighthouses (Fig. 3), beacons, breakwaters, piers, jetties, wharves, in-bridge foundations, bridge atructures, viaducts, aqueducts, etc. It is scarcely powsible to enumerate the many instances of their application. In' fact, without them many of the difficulties connected with some of our most important public works would have been almost insurmountable.

THE APPLICATION OF THE GROUND SCREW TO MOORINGS.

The screw mooring can be employed in every description of ground, hard rock alone excepted. The proper area of the screw should in every case be determined by the nature of the ground in which it is to be placed, which should be ascertained by boring. The depth to which these moorings are required to be screwed varies with the character of the ground. Every description of earth is more or less adbesive, and the greater its tenacity the larger must be the portion disturbed before the mooring can be displaced by any direct force. Their holding power is indeed so great that, in several instances, chains made of iron 3 inches diameter have been broken, without bringing up the screw.

Besides their security, the advantages of screw moorings, in other respects over those formerly in use, are very considerable. In most cases all ground chain is dispensed with, the buoy chain going down direct to the screw. This not only saves a very heavy expense, but does away with the inconvenience always arising in uarrow harbours, from anchors getting foul of these chains.

Wherever ground chains are used in connection with screws, they are stretched up and down the stream. The advantages of this system are its simplicity and cheapness of construction, with the powerful resistance, even to a vertical strain, which generally proves fatal to sinker, mushroon, or anchor moorings, depending (as they do) chiefly on their specific gravity. In confined situations the screw moorings are particularly valuable, from the small scope which may be given to the buoy chein on account of the great holding power of the screw. This is often a matter of very great importance.

The usual form of mooring screw is given in the wood cut (Fig. 4). The dimensions as to the diameter of the screw blades, spiudle, shackles, etc., are determined by the nature of the ground into which the moering screw has to be sunk, and the strain to be borne by it.

Besides their ordinary use in mooring vessels, either singly or in tiers, a smaller class of screw is extensively èmployed for warping and marking buoys, and for guys and temporary purposes. Modified forms have also been usefully employed in many ways on shore . and it will be perceived how easily the
principle can be adapted to such purposes as holding down chains for suspension bridges. (Fig. 5.) The guys of standpipes or signal-posts-as a perfectly safe mode of securing light buildings in countries subject to hurricanes (Fig. 6), as a substitute for tent pegs, or as a convenient fastening for rack clothes, etc., etc.

METROPOLETAN SEWAGE DISCHARGE.*

by mr. r. W. Peregrine birch, m. inst. c.e.
In this paper a descrintion was given of a method laid before the "Rnyal Commission on Metropolitan Sewage Discharge"' by the author, to ascertain the rate of progress out to sea of the sewage discharged at Crossness and at Barking. It was now known that this problem could not be dealt with satisfactorily by means of float- experiments; and the author sabmitted that its only true solution lay in the accurate measurement and localization of the sea-water and fresh-water contained in the river, considered together with the records of the upland-flow contributing to the latter. If it were not for the incoming of sea-water, the time occupied by the sewagepolluted Thames water at Barking in travelling to any lower point, say Gravesend, would be exactly the same as the time required by the Thames, with its tributaries and sewage, to fill the channel between Barking and that point. But the saltwater occupied part of the channel, and by diminishing the space available for the fresh-water reduced the time required for the fresh-water to fill that space and pass through it. The author showed that by a complete set of salt-tests made at regular distances apart in the length of the river, and at fixed tidal periods, it could be ascertained wsth great nicety to what extent any section of the river was occupied by sea-water, and consequently what space was left for sewage-polluted riverwater. The time occupied by the journey of the uplandwater would be the time required to fill the latter space. It was shown that in dry weather such as prevailed in Septem. ber, 1882, the sewage discharged at Barking would reach southward in thirty-two or thirty-three days, and in a time of heavy flood, as in November, 1882, in twelve days. The general effect of the calculations was to indicate that, owing to the greater specific gravity of sea-water and its tendency to diffusion, the exchange of river-water and sea.water took place very quickly-much more so than was commonly supposedso that the uplahd-water passed even more rapidly through the estuary at Southend than at Barking, where the crosssectional area was not one-twelfth the size.

Euginexing \{ates.

Torpedo Experiments.-Some recent experiments of Ad. miral Jaurés of the French navy with torpedoes have resulted very satisfactorily to those who claim a high degree of efficiency for this class of naval engines.

When starting on a voyage from Toulon to Lisbon with ${ }^{\text {a }}$ small fleet, the admiral took with him two torpedo, boats, Nos. 63 and 64 . The plan of the test was simple, the torpedo bosts were to do their best to reach the ships, the ships were to avoid and thwart them if possible. Everything favored the latter, the night was calm, the moon full, the ships provided with powerful electric lights, and their officers and lookouts inform. ed of the hour of attack. In spite of all this, torpedo boat No. 64 which appoached the squadron in front, was not discovered until within 1,000 yards of the vessels, and moving at a spete. which would cover that space in a little over one minute. When it is remembered that these boats discharge their torp ${ }^{\circ}{ }^{\circ}$ does with absolute certainty at 300 yards, and with fail chances of success at 400 , it will be seen that pretty quick work would be required of the crew of an iron-clad, even under the favorable conditions of the experiment, to destroy the torpedo boat before having their own vessel sunk under the ${ }^{\text {ma }}$. In rough weather or on a dark night, three or four boats in this description would keep a hostile cruiser well occupied in defending hereself.

The new dynamite gun, so called, is really an air gun. The dynamite is in the bomb discharged. The experimental $g 00$ was of 4 in . bore and 40 ft . in lenyth. An air pressure of 500 lbs. was used, which threw a shell containing 16 lbs . of dyna mite a distance of a mile and a quarter.

* A paper read before the Institution of Civil Engineers.

Automatic Lighting of Beacons.-In America a system of autematic beacon lights has been adopted. Each beacon is farnished with a reservoir of sheet iron, containing gas under a pressure of fifteen atmospheres. The quantity is sufficient to light the beacon for three months; and fresh supplies are periodically delivered by a vessel which conveys the gas from the factory. A clock-work installed in the beacon, turns on, and lights the gas at the hour fixed for this purpose. The experience of several months has served to test this plan and it has proved so far successful. Attendants live on the shore near the beacon, and see if they are working properly.
The Floods of the Ohio.-An interesting note on this Suhject has been communicated to the French Academy of Sciences by MM. Lemoine and Mahan. The Ohio floods, as is well known, produce great havoc at Pittsburg, Cincinnati, and other cities, on the banks of the river. The river rises to a great height, and floods the houses and manufactories on its flooded In February last, more than 1200 huildings were the ded at Pittsburg, and at Cincinnati (275.000 inhabitants) the damage was estimated at the about $200,000 l$. The basiu of a Ohio has an area little less than the whole of France ; and a great many an area little less than the whole of France ; and
flood tribubservations have been made on the river itself, the and Mahan have been neglected in this respect. MM. Lemoine and Mahan propose to organise a methodical system to observaintrod on the river system of the Ohie valley, such as Bellegrand will be in in the basin of the Seine. The important stations Will be in communication with the engineer of navigation at With others by food. Certain stations will send daily reports by letter, sifted by telegraph; and the data thus collected wih, when sifted out, lead to the prediction of floods at different parts of
the basin.

Labtigur's Electric Railway.-M. Lartigue, the wellof the French engineer, has applied electricity to the traction of the panniers or cars of his single-rail tramway. This tramtran is, as we stated some time since, employed in Algeria for cansporting esparto grass from the interior by the traction of and M. It was an easy step from animal to electric traction, Agricultural Ligue has successfully taken it. At the recent anticaltural Exhibition in the Palais de l'Industrie, of Paris, doable cimental line was shown on which five iron panniers, or locomotirs in the form of seats, were drawn by a dynamo-electric weightive at the rate of seven miles an hour. The total tonght of the tive cars and the electric locomotive was about a The and the maximum power required was three horsepower. rator, whimo of the locomotive was a Siemens D°, and the geneSiernens D2 2 stood about 100 yards from the line, was a horsens D2 dynamo capable of developing from 5 to 6 electric engine. The It was driven by a Herman-Lachapelle steam built of The total length of the line was 123 metres. It was carves of forty-une rails, each 3 metres long, and comprised carried of $7 \frac{1}{2}$ metres radius. The locomotive dynamo was driving by a platform car or pannier, and geared with a grooved rail. A wheel 30 centimetres in diameter, which ran upon the and reverse the to to graduate the speed, switches to stop, start, carried by the motor, and a seat for the conductor, were also to the by the locomotive car. The train was properly coupled carrent wasomotive, and ran on small grooved wheels. The tors, one was brought to the dynamo by two insulated conducsmaill contact rolled to the rail, the cther to the dynamo through aritch was rollers in connexion with the commutator, One breaking was employed to start or stop the train by making or $i_{\text {ig }}$ the the circuit; the other to reverse its motion by revers-
the current. The rheostat, by interpolating resistance into ${ }^{\text {the }}$ the circuit, allows The rheostat, by interpolating resistance into the speed of thows the strength of the current to be varied and may beed of the train to be increased or diminished as the case Whare the The work was carried out by Messrs. Siemens, and Working is of course largely dependent on local circumstances.
 bridale the place of wood and iron in the construction of
he
hard England. The iuventor makes blocks of glass which he hardens England. The inventor makes blocks of glass which Dothing to be a special process. In solidity it is said to leave
given surprisingred. The experimenis already made have
ot of surprising results, The experimenis already made have
in oood or is below that of bridges
iron. Morecter in ood or irong results, and the cost is below that of bridges
ineceover the glass cannot be injured by
ike wood, nor rusted like iron.

[^1]made to carry out a tramway from Lincoln to Brigg, for which a Board of Trade order was obtain some time since. It is intended to lay the line (which will be twenty-sven miles in length, including sidings and passing places, the gauge being 3 ft .6 in .), along the waste land at the sides of the fine old Roman road, known as Ermine-street, so as not to interfere with carriage traffic. The Great Northern Railway Company has agreed to afford the freest access to their goods yard at Lincoln, with permission to put in sidings and banks to facilitate the exchange of traffic from and to their ordinary railway wagons; and the Manchester, Sheffield, and Lincolnshire Railway Company has agreed to afford similar facilities in their goods yard at Brigg.

Improved Boiler Tubes.-In order to obtain the greatest possible efficiency in the steam-heating surface of boilers, a new kind of vertical steam boiler has recently been invented by a Mr. Armer. To obtain this efficiency, the boiler tubes have a helical twist given them, which does not interfere with the ease with which they may be cleansed, but which causes greater impingement of the gases against the tube walls, and gives more freedom for expansion than straight tubes.

The Fuel Cost of High Speed.-Some experiments have rscently been made upon the Pennsylvania road, near Philadelphia, to ascertain the difference in the consumption of coal betweeu running a train very rapidly and at a very low speed. The same conditions, same number of cars and similar engines were employed. The trains in each case run the same distance - 119 miles out and back. Some stops were made. The fast train ran on schedule express time. The slow train ran at the funeral pace of twelve miles an hour. The fast train consumed 6,725 lbs. of coal. The slow train consumed 4,420-saving effected, 2,305 lbs.
Glass Bearings.-To what purpose may not glass be put? Bearings made of glass are now being experimented with in the rolling stock of railroads in regard to their frictionless qualities. This material is a hard, clear substance, and must wear down smooth and give a fine bearing surface for an axle to rést upon. It is a non-conductor of electricity, if not of heat, and the fine particles have as good a chance to work down the bearings of the axle to a running fit as in the grinding in of a valve seat for a brass valve, and much power is experted to be saved by converting the wearing of a journal into some other agency, than by converting it into heat.

Fresh Paint.-The current belief among house-holders, the smell of fresh lead paint is noxious, is founded on pretty general experience but is supposed by the opinion eqnally current among chemists, that lead compounds are not volatile. A fact recently brought to the notice of our excellent contemporary, the Lancet, supports the domestic theory. The bawis of the useful and popular luminous paint is koown to be sulphide of calcium. Now, this compouud, when unprotected by varnish, glass, or some other impervious substance, is slowly acted on by the acids of the air, aud sulphureted hydrogen is evolved, which blackens lead paint. This is well kuown, and can easily be avoided by proper protection of the paint. But the curious thing is that unprotected luminons paint is found to be perceptibly blackened by the fumes from fresh lead paint. There seems to be only one possible explanation of this: namely, that a surface freshly covered with lead paint does actually emit some volatile compound of lead. We believe that many physicians could confirm this view from their own observations in regard to newly painted houses.

Curiosities of Magnetism.-If an iron wire be twisted during or soon after the passage of a voltaic current through it, the wire becomes magnetic. When the wire is twisted in the manner of a right bead screw, the point at which the current enters, becomes a suath pole in the opposite case it becomes a north pole. If during the passage of the current, the wire be twisted in different directions, the polarity changes with the direction of the twist.

IT is proposed to have a universal exhibition of railroad material at St. Etienue, in France, next year. St. Etienne is a city of nearly 100,000 inhabitants in Southeastern France, some thirty miles southweast of Lyons. It is proposed to have tracks in the form of an immense figure 8, in which different systems of iron substructure, joints, chairs, rails switches, sig. nals. etc., shall be employed and tested.

Tig. 1.

Screw with Hollow Oast-iron Plies.

Fig. 3.

sorew Pile.-Lighthoune.

Fig. 6.

Holding-down Borew for Tents, Rickelothe, eto.

Fig. 2.

Screw with Solid Wrought-iron Pile, for Piers, Bridges, Lighthousem etc.

Mooring Screw.

Tig. 6.

Mooring for Marking Buoy, Guy, Landtion, and for Temporer purpones.

Fig. 1

Fig. 6

MEASURING EARTHQUAKES. (Nature.)

(For Illustrations seé pages 209, 212, 213, 216.)

I.-Methods.

It is difficult to define the word earthquake in terms.which will not cover cases to which the name is inappropriate. To say that an earthquake is a local disturbance of the earth's crust, propagated by the elasticity of the crust to neighbouring portions, is true, but the definition does not exclude, on the one band, such tremors of the soil as are set up by the rumb ling of a earriage, by the tread of a foot, or even by the chirp of a grasshopper, nor, on the other, those slow elastic yieldings which result from changes of atmospheric pressure, from the rise and fall of the tides, and perhaps from many other causes. One writer, in his definition of the word, limits the name earthquake to disturbances whose causes are unknown-a course open to the obvious objection that if the study of earthquakes ever advanced so far as to make the causes perfectly intelligible we should; by definition, be left with no earthquakes to study. It must be admitted, however, that in the present state of seismology this ohjection has no force, for in assigning an origin to any disturbance likely to be called an earthquake, we have, so far, been able to do little more than guess at possibilities. The more practicable task of determining what, at any one point within the disturbed area, the motions of the ground during an earthquake exactly are has lately received much attention, and in this department of seismology distinct progress has been made.

Apart from its scientific interest, this absolute measurement of earthquake motion is not without its practical use. Through the recent shape earthquake in the Eastern Counties has reminded us that no part of the earth's surface can be pronounced free from liability to occasional shocks, these occur so rarely in this country that English builders are little likely to let the risk of an earthquake affect their practice. If Glasgow or Manchester had been shaken instead of Colchester, the chimneys of the mills would, we suppose, have risen again in a few weeks no less tall than before. The case is different in an " earthquake country," stach, for example, as some parts of Japan, where the present writer had the good fortune to experience, during five years, some three hundred earthquakes. Where the chances are that a structure will have to stand a shock, not once in a few centuries, but half-a-dozen times a month, the value of data which will enable an architect or eugineer to calculate the frequency and amplitude of the vibrations, and the greatest probable rate of acceleration of the earth's surface, does not veed to be pointed out.

To know how the earth's surface moves during the passage of a disturbance we must obtain, as a standard of reference, a "steady-point," or point which will remain (at least approximately) at rest. This is a matter of no small difficulty, for (as will be shown in a second paper) the motions during any single earthquake are not only very numerous but remarkubly various in direction and extent. Most early seismometers were based on the idea that an earthquake consists mainly of a single great jmpulse, easily distinguishable from any minor vibrations which may precede or follow it. The writer's observations of Japanese earthquakes do not bear this out. They show, on the contrary, during the passage of almost every earthquake, scores of successive movements, of which no single one is very prominently greater than the rest. Moreover, the direction in which a particle vibrates is so far from constant that it is usually impossible to specify even roughly any particular direction as that of principal movement. For these reasons attempts are futile to obtafin knowledge of earthquake motions from instruments intended to show only the greatest displacement or "the direction of the shock." The indications of such instruments are, in fact, unintelligible, and it is safe to say that no seismometer is of value which does not exhibit continuously the displacement of a point from its original position during the whole course of the disturbance. The value of the observation is enormously itcreased if, in addition to the amount and direction of the successive displacements being shown, these are recorded in their relation to the time. We can then, besides seeing the frequency of the vibrations, calculate the greatest velocity of the motion of the surface, and also its greatest rate of acceleration-an element of chief importance in determining an earthquake's capacity for mischief, since in a right and rigidly founded structure the shearing force through the base is equal to the product of the acceleration into the mass, and the moment tending to cause
overthrow is that product into the height of the centre 0 gravity. 1

Seismographs used during the last three or four years by the writer and others in Japan give a record of the earth's motion during disturbance by dividing that into three components, along the vertical and two horizontal lines. In the writer's apparatus these three are independently recorded on a revolving sheet of smoked glass, which is either maintained in uniform rotation ready for an earthquake to begin at any moment, or is started into rotation (by help of an electromagnetic arrangement) by the earliest tremors of the earthquake itself. The relative position of the marks on the glass serves to connect the three components with each other, and a knowledge of its speed of rotation connects them with the time. It is sufficient that the "steady-point" for each of the three components should be steady with respect to motion in one direction only. It may move with the earth in either or both of the other two directions, and in fact it is generally most convenient to provide three distinct steady-points, each with no more than one degree of freedom:

In that case each steady point is obtained by pivoting a piece about an axis fixed to the earth, and in nearly neutral equilibrium with respect to displacements about the axis ol support. When the earth's surface shakes in the direction in which the piece is free to move, the support, which is rigid, moves with it, but the centre of percussion of the pivoted piece remains approximstely at rest, and so affords a point of reference with respect to which the earth's movements may be recorded. If we could get rid of friction, and if it wert practicable to have the equilibrium of the pivoted piece absolu tely neutral, the centre of percussion would remain (for smal motions) rigorously at rest even during a prolonged disturbances. But there must be some friction at the axis of support and also at the tracer which records the relative position of a point moving with the earth and the steady-point of the seismograph. And the pivoted mass must have some smal stability, to prevent a tendency to creep away from its norms position duriug a long continued shaking, or in consequencly of changes of the vertical. If, however, the mass be so nearly astatic that its free period of oscillation is much longer than the longest period of the earthquake waves, and if great care be taken to avoid friction, the centre of percussion behares almost exactly as a true steady-point with respect to all the most important motion of even a very insignificant earthquake The effective inertia of the system may be further increased by pivoting a second mass on an axis passing through the centr of percussion of the first piece and parallel to the axis of sup port. An instrument designed on these lines in which pivoted pieces in neutral equilibrium were two light frame supported as horizontal pendulums at right angles to each other, and with a massive bob pivoted at the centre of per cussion of each, gave (in 1880) the earliest complete records the horizontal movement of the ground during an earthquate. A description of it has been given in the Proceedings of the Royal Society, No. 210.

Figs. 1 and 2 show this seismograph, improved in many ${ }^{0}$ its details. The frame shown is one which has done excellen service in a seismological observatory which the writer wh enabled to establish in the University of Tokio, through interest of the Japanese directors. A similar instrument also been supplied to the Government of Manila. Fig. of shows one of the two horizontal pendulums with a portion one of its upright supports removed. The axis of suppor (which slopes very slightly forward to give a small degree stability) is formed by two steel points, b and c, working in ${ }^{2}$ agate V-groove and a conical hole. The frame of the pendu lum is a light steel triangle, a, the effective inertia being givis almost wholly by a second mass pivoted at d on a vertical aco. which passes through the centre of percussion of the framo The tracer, which serves to magnify as well as to record th motion, is a straw, tipped with steel, and attached to the dulum by a horizontal joint at d, which allows it to accomm 0° date itself to any inequalities in the height of the glass plate ${ }^{0}$ which its distant end rests. A portion of its weight is bor by a spring, adjustable by a clamp at e, by which the p of the tracer on the glass plate may be reduced to an a just sufficient to scratch off a thin coating of lamp-black with which the glass is covered. In Fig. 2 the two pendulumg ${ }^{2}$

1. The case is different and much less simple where he struoturth is so flexible as to have a period of free vibration comparalle the periods of the earthquake vibrations.
seen in plan, with their tracing pointers touching the glass plate, g, at different distances from its centre. The plate rigidly pendulums are mounted on a single base, which is very earth secured to the top of a broad post, struck firmly in the Corth and projecting only a few inches above the surface. Continuous rotation is communicated to the plate by a friction to on, k, held in a slot guide and connected by a universal joint Gove of the arbors of a clock, which is wound up once a day. clock is wheel train controd by a fluid-friction governor connected to the balls are four, also by friction gear, as shown in Fig. 3. The earth are four in number to prevent disturbance of them by an two quake. The vanes dip into oil, and are drawn back by Whengs which tie them to the spindle.
sensibly the earth shakes the axis, d, of each bob remains ${ }^{\text {sengibly at rest as regards components of motion perpendicular }}$ this corresponding pendulum, and the tracing point is earthque is four times the motion of the earth. So long as no single circle occurs each po'nter traces over and over again a ingle circle on the plate. The circle frequently tends to widen astatic. This is in part at least due to such changes of the Vertical This is in part at least due to such changes of the H. Das have been observed by d'Abbadie, Plantamour, G. frequent an, and others. The plate consequently requires
starting attention, and where that cannot be given, an electric
hasting arrangement is to be preferred. . When an earthquake
ed by using, the plate is removed, varnished, and photograph-
The using it as a "negative."
to ine bob of each pendulum may of course be rigidly attached center of of pivoted on the pendulum frame. In that case the then be percussion of the frame and bob together (which will b_{0}) will be little farther from the support than the center of the the arran be the steady-point. The writer; however, prefers ness and a ment described above, which gives great compactadvantage of maximum of effective inertia, and which has the
determige position of the steady point at once It etminate.
It would take too much space to describe or even to enumerate the many other devices which have been suggested to learing steady-point by v rious methods of astatic support, 1
borizo one, or in some cases two, degrees of freedom to move borizg one, or in some cases two, degrees of freedom to move onbontally. The horizontal pendulum has been modified by thereby avg a flexible wire and spring for its rigid pivots port. Spoiding all but molecular friction at the axis of supburfaces with and cylinders, free to roll on plane or curved but their with or without a slab above them, have been tried,
motion is excessive. The approximate straight-line motiong friction is excessive. The approximate straight-line service of Watt and of Tchebicheff have been pressed into the
in a heans of suspending a mass with treedom to move old horizontal path. The commod or v trical pendulum, an old favourite with seismologists, has suffered many transforma-
tions in the efforts
00_{8} ${ }^{0} 0_{8} l_{y}$ in the efforts to reduce its stability, which is perposterpend great unless we make the pendulum very long. A 20 foot
Weidum consisting of a
Weight humg consisting of a cast-iron ring weighing half a hundıedork in the by three wires from a rigid tower, has done good thious drawbacks. Fig 4. shows an arrangement, also used by duluriter, and called a "dupler pendulum." A common pen.
 ${ }^{\text {more }}{ }^{B_{2} \text {, by a balli-and-tube joint, which compels the bobs to }}$ thearly astatic as togay be desired by proportioning the masses of peridulus to the lengths of the suspension-rods. The inverted peldulum stands on a joint which gives two freedoms to rotate rod prevents twisting about a vertical axis; an extension of its pointer. Another plan is shown in Fig. 5, which may be described as Papplez delan is shown in Fig. 5, which may be described as
abope by a socket blow a single bob, whose weight is borne poine. Any one of these instruments affords a single steadyHe tith respect to all motions in azimuth. Their principal
is if to give "static" record "'records traced on fixed plates, which show at a glance the chagges in diraced on fixed plates, which show at a glance the
a earth direction of displacement during the occurrence of
In In arthuake.
\$0ake motions, we meet with the difficulty that the weight of
 published a year ago by the University of
the mass whose inertia is to furnish a steady point acts in the direction in which freedom of motion is to be retained. A weight hung by a spiral spring from a support above it is too stable to act as a seismometer, unless the spring be impracticably long. A horizontal bar fixed to a wall by a flexible joint and loaded at its fnd-an old device used by the British Association Committee at Comrie in 1845 -is open to the same ohjection. If the loaded bar is rigid, but pivoted about a fixed horizontal axis, and held up by a spiral spring near the axis of support, we obtain a much slower period of free oscillation thin if the spring were directly loaded with a weight which would stretch it to the same extent. Mr. Gray has rendered this device as nearly astatic as may be desired by adding a small tube containing mercury, whose effect is to increase the load when the bar goes down and to decrease it when the bar goes up. Another and simpler way of attaining the same result is shown in Fig. 6, which represents the vertical seismograph used in Japan by the present writer. There a is a horizontal axis on two points at c, with a hervy bob b, whose weight is borne by a pair of springs, d. But the upward pull of the springs, instead of being applied to the bar in the line joining the axis c. with the centre of gravity, is applied below that line by means of the stirrup e. Consequentlv, if the bar goes down, the pull of the springs, although increased above its normal value, is applied nearer to the axis, and (by properly adjusting the depth of e below the bar) the moment of the pall of the springs may thus be kept as nearly equal to the moment of the weight as may be desired-a condition which of course secures astaticism. The centre of percussion of the loaded bar is the steady point, with respect to which the vertical motious of the ground are recorded by the multiplying lever l on the rim of a revolving glass' plate, 0 , which may be the same plate as that which receives the record of the two horizontal components.

The iustruments which have been briefly described succeed in registering very completely all the movements of the ground at an observing station during the occurrence of an ordinary earthquake, and some of the could be adapted with little difficulty to the registration of violent convulsions. It would be outside the scope of this paper to deal with the appliances by which Rossi and others have investigated those minute and almost incessant tremors of the soil whose very existence no observations less fine and careful would serve to detect.

ANTIQUITY OF LIGHTNING RODS.

Attention has recently been called to the use of iron as a metal for lightning rods. In this country, where the subject has been left in the hands of the manufacturers, lightning rods are made of pure copper, and consequently aro far too expen. sive for general use. In France, America and other countries iron rods are in vogue, and found to answer the purpose very well, besides being inexpensive. In Canada a church was recently protected by a rouud iron rod three-quarters of an inch in diameter, and welded at esch joint. The upper end of the rod was drawn to a point, and a damp ground connection provided for the lower end. The rod was secured to the church by galvanized iron staples. The total cost was under $£ 3$. While upon this subject we may mention that Frankin was probably anticipated in his discovery of lightning conduction. According to M. de Rochas, the ancient Etruscans understood the art of guiding the lightning. Tervius, relates that in ancient times the priests ignited their sacrifices by lightning, and on one occasion Tullus Hostillus was struck dead because he neglected the precautions laid down by Numa.

Frederick Hermann Petsch, the inventor of the freezing method for sinking shalts and foundations in wator-bearing strata, was born in Anhalt, about 1842. He graduated at Freiburg, as a Mining Engineer, and for the first ten years of his active life was engaged as Mining and Smelting Engineer for Auhalt; after that he went into the prussian State Service as Government Mining Surveyor and Superintendent. He was mainly emploped in Saxony, at Ashersleben, and the frequent trouble from quick saud in shaft-sinking in that section early attracted his attention. It was only in February, 1883, however that the method, patented in October, 1883, suggested itself, and it was at once put in practice in the Archibald Mine. Mr. Pootsch is a patient, persevering and hard working engineer, an for some years past has been devoting himself to the solution of this quick sand problem.

MEASURING EARTHQUAKES ${ }^{1}$ II.-Results.

IN this paper a short account will be given of the chief results of two and a half years' observations in the Seismological Observatory of the University of Tokio. The first instruments to be successfully used were the horizontal pendulum, or rather a pair of horizontal pendulums writing a multiplied record of two rectangular horizontal components of the earth's motion on a revolving plate of smoked glass, and also a very long common
pendulum. The duplex pendulum, an astatic verticalmotion seismograph, and other instruments which have been mentioned in the former article, were added later. ${ }^{1}$

The earliest records were those of five small earthquakes in November 1880.2 In the first of these the vibration of the ground lasted continuously for it minutes, and no fewer than 150 complete oscillations could be counted in the record. The shaking began feebly, speedily rose to a maximum, fluctuated irregularly, and died out very gradually. The greatest movement from side to side was less than one-third of a millimetre. Both

in amplitude and in period the successive waves were far from equal. A rough idea of the greatest velocity and greatest acceleration was, however, obtained by treating the greatest movement as a simple harmonic vibration, with a period of three-fifths of a second. This gave 16 mm . per second for the greatest velocity, and 16.4 mm . per second per second for the greatest acceleration, showing that bodies attached rigidly to the earth's surface must have experienced a horizontal force equal to about one-six hundredth of their own weight. In three of the five earth-
quakes recorded in the same month the greatest range d motion was less than one-fifth of a milimetre. In ail in them there were many and unequal vibrations, none was there any single impulse prominently g than the other movements.

Later observations showed that these were fairly

Sentative of a very large proportion of the earthquakes Which occur so frequently in the Plain of Yedo. Earthquakes of this class do no damage to buildings, but they are strong enough to make their presence felt by the shaking and creaking of houses, and even, in the night, to startle residents out of sleep. Lamps and other pendulous bodies are frequently set into considerable Oscillation through the long continuance of the disturbance, the period of some consecutive vibrations of the ground being nearly uniform and equal to the free period of the lamp. The shaking lasts rarely less than one and sometimes as much as ten minutes.
In some cases, however, the amplitude of the earth's motion is considerably greater ; occasionally it rises to 5 and even 7 mm . With such an amplitude as this, and with the ordinary frequency which the earthquake waves have, the shock is more or less destructive-walls are cracked and chimneys are overthrown. The writer's observations do not include any earthquake of first-rate violence, but they show by several examples that in the alluvial soil of Tokio a sufficiently alarming and even damaging earthquake, may occur, in which the range of horizontal motion is less than a single centimetre.
In the Yedo earthquakes the vertical motion is generally much less than the horizontal, and, as a rule, forms an
unimportant part of the disturbance.
Fig. 7 is a copy, reduced to about half size, of the record 1881), trace more considerable earthquakes (on March 8, 1881), traced by a pair of horizontal pendulums on a revolving plate. The inner circle shows the N.S. component, and the outer circle the E.W. component of the displacement. The records begin simultaneously at the points marked a^{\prime} and a respectively, and extend in the direction of the arrow over nearly two complete revolucins of the plate. At the point marked c in the outer circle, when the earthquake oscillations were slowly dying the pay, the writer (who happened to be present) withdrew confusing to prevent the later portions of the record from qualusing the earlier portions. By this time the earth200 vibrad lasted for two minutes and a half, and some ${ }^{200}$ vibrations had been registered. The motion, as rein the diag exaggerated in the ratio of 6 to 1 ; hence nearly diagram as it appears here the displacements are Forly three times the natural size.
Fhis the sake of exhibiting some interesting features of ponents during more clearly, the records of the two components during the first twenty seconds of visible motion in such been reproduced in the centre space of the diagram the same manner that simultaneous parts of both are on time. same radius. The short radial lines mark seconds of Were very minute seen that for three seconds the motions Were very minute ; then the E.W. seismograph became Scarcely visibly disturbed, but the other component was During the until the tenth second from the beginning. During the tenth and elerenth seconds the phases of diverge components agree in the main, but they soon greater ; and in the fifteenth second, when the motion is theater than at any other part of the whole disturbance, that differ by about a quarter of a period. Hence at in a rectiline points on the earth's surface were vibrating not in a rectilineal path but in loops. This is strikingly shown
by Fig. by Fig. 8 , which shows the path (exaggerated in the ratio
of 6 to seconds of a point on the earth's surface, during three $\$$ at 13.7 at this epoch in the disturbance. Starting from kurface particle drom the beginning of the earthquake, a Gruce, and particle described the tortuous path shown in the chang, and reached q three seconds later. Similar rapid disturbances phase-relation occur throughout the rest of the Which the eard in the slowly dying oscillations with one of the earthquake drew to a close the writer noticed wearly the pointers moving vigorously when the other was The evident and vice versa.
the me evidence, first clearly given in this earthquake, of
mon-rectilineal character of the ground's motion, was
confirmed by very many later observations. In fact in every case where the records were sufficiently large and well-defined to admit of a satisfactory comparison of the phases of the two components, the same thing was exhibited. And not only in those cases, but even in very minute earthquakes, instruments having two degrees of horizontal freedom, such as the duplex pendulum, showed in the most direct manner that the earth's movements consisted of a multitude of twists and wriggles of the most fantastic character.

An excellent example of a still sharper earthquake is given in Fig. 9-a record (reduced to half size) given by two horizontal pendulums with a multiplying ratio of four to one on a plate which was turning once in fifty-four seconds. The beginning of motion can be detected on the outer circle at a. At b and the corresponding point b^{\prime} it increases somewhat suddenly, and during the next few seconds we have the principal motions, followed during many minutes by a long trail of lesser irregular oscillations, in which a marked lengthening of period may be detected towards the close. To allow the phase-relation during the principal part of the shock to be examined, lines (numbered 1 to 16) have been drawn by the aid of templates through corresponding points in the two records. An examination will show that the phase-relation changes: in fact when the two components are combined the movements are found to be loops, agreeing very closely with the larger loops of Fig. 10, which is a "static" record of the same earthquake given by the duplex pendulum. In a

part of Fig. 10 the motions are so numerous and so much distributed over all sazimuths, that the film of lamp-black has been completely rubbed away from a portion of the plate which received this record.
It frequently happens in the record of an earthquake that the motions which are first recorded are rapid vibrations, of short period and small amplitude, which are immediately followed by larger and less frequent movements. Sometimes, indeed, the former appear as a ripple of small waves superposed on larger ones. But in all cases where the short-period waves can be detected they die out early, and the later part of the earthquake consists of relatively long-period waves alone. Records of this class are exceedingly suggestive of the arrival of first a series of normal waves (that is, waves of compression and extension), constituting the rapid tremor, and then a series of transverse waves (that is, waves of distortion), forming the principal motions of the earthquake.

In fact it is difficult to explain the rapid changes of phase in the two components, or, in other words, the curved character of the horizontal movement, which most if not all the recorded earthquakes exhibit, otherwise than by supposing that the principal movements are transverse waves occurring in a plane not very much inclined to the horizon, and this conclusion is supported by the smallness of the vertical component.

It is true that the appearances presented by the diagrams could be accounted for by assuming the presence,
together or normal and transverse waves, with a nearly horizontal direction of propagation; but in that case we should expect to find normal waves occurring alone at the beginning of the earthquake with much greater amplitude than they actually have. Other still less probable solutions might be referred to ; but it is safe to say that the evidence furnished by these observations goes far to prove that the earthquakes of the Plain of Yedo consist chiefly of distortions, not compressions, of the ground, and emerge at Tokio in a direction not very far from vertical

In the older seismology it was generally assumed not only that an earthqnake consists mainly of one impulse, but that the motion of the ground has a definite direction, and that that is the same as the direction of propagation of the wave. All three assumptions were false. An old piece of seismic apparatus, based on these ideas, was a group of columns of various heights standing on a plane horizontal base. These were intended to show the direction and "intensity of the shock" by falling over. It is clear enough, however, that no appliance of this kind can give intelligible results from earthquakef of suck complexity as those described above. The very word "shock," accurately as it describes the feeling produced by an earthquake, is a singularly inappropriate name for what an apathetic seismograph records.

As evidence of the accuracy of the apparatus by which the foregoing results were obtained, it should be mentioned that the records given at the same place by different instruments during the same earthquake were found to agree remarkably well. Further, the instruments were tested experimentally by placing them on a shaky table, and obtaining, side by side, two records of table-quakes, one from the so-called "steady-point" of the instrument, and the other from a poinf in a fixed bracket projecting from a neighbouring wall, and known to be truly steady. When the table was shaken in such a way as to give records resembling those of actual earthquakes, the agreement of the two showed conclusively that the steady-point of the instrument did remain very nearly undisturbed, and that the records were in all important particulars substantially correct.

We have then the means of accurately observing the nature of the surface motion at an earthquake observatory. But this of itself tells us nothing of the speed and direction of transit of the disturbance, particulars which are only to be learut by connected observations made at several stations. Any one ealthquake, as a whole, lasts far too long and begins too gradually to admit of the measurement of time-intervals between its arrival at different points, bnt if we can identify any single vibration in the records given at several stations-spredd over a moderate area, and connected telegraphically with each other -the problem admits of a fairly easy solution. A recording seismograph at each station will give a complete record of the earthquake as it appears there, and if, during its progress, time signals be sent from one station and marked on all the revolving plates, it will be possible to determine the differences in time of arrival of the same phase of the same wave at the successive stations in the group. From this, if the stations be sufficiently numerous, the speed and direction of transit, and even the origin of the disturbanee, may be found with more or less precision. But all this depends on our being able to recognize at the various stations some one wave out of the complex records deposited at each, and, especially in view of the curvilinear nature of the motion, it would be hazardous to say without trial whether this can be done. To ascertain whether it can be done. and if so to organize groups of connected stations to carry out the scheme roughly sketched above, should be the next step in observational seismology.
J. A. Ewing.

University College, Dandee.

PETROLEUM AS FUEL IN ROLLING MILLS

Among the many ways in which efforts are being made to economically employ petroleum as a fuel, one lately tried at the Union Rolling Mill at Cleveland, Ohio, is said to have been a pronnunced success. The apparatus is described in an American paper as quite simple, and easily attached to an ordinary puddling furnace. What may be styled shallow pans, or receivers, are set upon the floor of the furnace, and in these pans are heavy, closely-fitting perforated cast iron plates, lying upon shelves but half an inch raised from the bottom; leading to the centres of these receivers, from beneath, are oil pipes connecting without with a tank or barrel sufficiently elevated
to give the oil a good head ; intercepting the oil pipes near the furnace is a small cylinder in which is an automatic valve, which can be set at any position to automatically regulate the flow of oil. Auxiliary, are pipes for carrying exhaust steam fo blast, a bridge wall bick of the receivers to detain the flame, and a waterlined arch to protect the burners.

In operation, the automatic valve being set, the oil is allow ed to flow into the receivers; a handful of cotton waste, ignited starts the fire ; the plates become heated, and the oil, forcing its way up under the plates, is instantly automized, and rusbos up through all the perforations-gases hydrocarbons, and allinto a brilliant flame, leaving no residuum whatever beneath The first fire was lighted about $9.30 \mathrm{a} . \mathrm{m} .$, but the full heat was not let on until about 11. At 12.10 p.m., the furnace was charged, a1d at 1.22 p.m.-exactly one nour and 12 minutesthe first heat was concluded. The nig iron melted.rapidly, the balling was parformed without difficulty, and the ball werl through the squeezer in excellent sbape. Necessarily ther were some drawbacks. The steam used for blast was scarcely dry enough, the pressure being only 70 lb . at most ; there ${ }^{\mathrm{T} 85}$ a slight escape of smoke from the rear of the furnace when the draught was open, and a high wind at the time did not conduce to the most favorable test; nevertheless the results made favorable impression on practical men. who witnessed this trial.

This mode of burning petroleum is the plan of a Cleveland lady, and seems not unlike, in principle, the proposed way of burning petroleum in locomotives contemplated under tho Holland patents.-Mechanical World. (Chicago Journal of Commerce.

Haiscellaneoxs trates.

Asbestos is becoming a valuable and much used mineral It has been lately discovered, in its purest form, in lower Ca nada. and the quantity is said to be practically without limit. The fibres are long, pure white, and as fine as silk, and the district covered comprises two counties near Quebec, to which city the product is brought to be crushed and cleaned, and from which point large shipments are now being made this England and the United-States. The possibilities of this mineral range over a field that is simply marvellous. Fir proof paper, rope, and ink that resists the action of fire, ${ }^{8}$ well as the weaving of textile fabrics, such as table clotio abestos cloth gloves, etc., while in the range of building ming terials, fire-proof paint, packing for sases, floor deadenings roof protection, covering for steam pipes, etc., are among its more common uses. Its cheapness is its chief recommen of tion to many, but its thoroughly incombustible nature is special value because, in spite of the so-called protection trim, ceived from an insurance company's guarantee against fid, there are many combustible things that could not be replaciaso which can be made of abestos and made secure from this de tructive element.

Sanitation in New York.-An interesting experiment is jugt now being made in New York with a view to the utilizat of the street sweepings and house refuse of that city. A larg machine has been erected by a Stock company at the River Wharf of the street cleaning department, which and reduces to its elements all refuse of whatever descriptio $0_{\text {, }}$, which is brought to it. The average amount of stuff whbl but is brought to this wharf is estimated at 40 loads per diem, than it is claimed that the machine could deal with more BJ three times that amount in a working day of 10 hours. an ingenious arrangement all scraps of paper, rag, coal, cin glass, iron, \&c., become separated, these are afterwards with the exception of coal and cinder, which are used fof firing the engine. The projectors estimate that every 10 1,800 pounds of refuse contains about 400 pounds of coal cinder which is more than sufficient for their own purpo The residuum refuse is cremated and the ashes are discharg on into the sea. So far, it is said, the experiment has prove of entire success, and the promoters announce their intentio ${ }^{50}$ having machines at every city wharf to utilize all the relvod of the street cleaning department with profit to themsinded and the city. Should these anticipations prove well foun a solution will be offered of a problem which has long plexed New York. The system of the disposal of refuse
now prevails is most unsatisfactory, the whole of it being carried some little way out to sea in scows and then discharged. Year after year the pilots raise warning cries respecting the enormous injury which is being done to the harbour's mouth by the accumulation of ashe and street dirt there, and a radical change of method has long been sought.

The Present Limit of Microscopic Visibility.-Although there is perhaps much to be desired in the improvement of microscopic objectives, we may still consider our present state quite an advanced one. Although the present theoretical limit of visibility is fixed at 146,$52 ;$ lines to the inch, The need not be deterred from attempting to pass this point. althe limit which was accepted some years ago as the true one, although considerably lower, was quietly ignored as the angular aperture in objectives increased.' It is only a few years ago that the majority of microscopists refused to believe that be pellucida, which has about 100,000 lines to the inch, could suppolved, and now it is the work of beginners to do so. But ${ }^{80}$ pposing 146,528 lines to be the limit, it is evident that a piece ishth or one-tenth objective with a one-half inch eyepiece is of amply sufficient magnifying power to make the lines Fisible to the eye, and there is therefore no need of using more. It is a good rule to follow, under all circumstances, not to use quireater power than is necessary to comfortably do the required work.
tion A model of a novel canal boat has been placed on exhibition by a Cleveland inventor. The boat is to be propelled by a screw, so geared that it can be made to torn by horses or mules traveling in a circle in their stables in the boat. The invencor claims that abundant power can be had in this manriver, and that a large saving can be effected, particularly in be cheaping bills, and by the reduction of help; that it would better cher than the present method of towing, even though no mile an hour can be accomplished.
Palpitation of the Heart.-A French physician says be arrestressing or excessive palpitation of the heart can always the arrested by bending the body double, the head down and the arms hanging, so as to produce a temporary congestion of nerpuper partion of the body. In nearly every instance of the move palpitation the heart resumes its natural function. If the effect is stillmore sure and rapid.. Dr. Guthrie's Experiments.-For several months past Gu-
thri e has bill Whie has been making numerous experiments in the field ly, the he has been working so long and so successfully, nameWhen behaviour of solutions of salts, and a mixtures of salts solution cooled down. One of his results is that as mixture in crystalises cools the salt which. is present in richest quantity histalises out until a certain critical point is reached. In alloys of experiments Dr. Guthrie has shown that certain Which metal, such as the more fusible or, "entectic" alloys mixtures of at low temperatures, behave in the same way as molecular of salts. Moreover, there seems to be no definite 47. ecular proportion obtaining in these alloys. A mixture of of cadmium of bismuth, 19.97 of tin, 19,36 of lead, and 13.29
This 18 at 71 deg . Cent., or in boiling alcohol. This is a still fuses at 71 deg . Cent., or in boiling alcohol. fusible m still lower temperature than the fusing of Rose's
tures of tures of water and tri-ethylamine become turbid at or beted a certain temperatures, and on this basis he has constructquestion. of temperature tubes containing the mixtures in temperature of the placed under the tongue of a patient the their means of the body at that point can be ascertained by mixtures of wans. Tilden, of Edgbaston, has also shown that bid whes of water and butylic or amylic alcohols become turbetween between 20 deg . and 30 deg . Cent. and clear again $H_{0 \text { use } S}$ deg and 70 deg. Cent.
of the ser Sanitation.- One of the most common, andyet one every most frequently neglected causes of trouble with all decription. of plumbing is the imperfect grading of pipes of thereby, and Drain, water and air pipes are equally affected In a drain pipe an insufficient fall or a misplaced elb Will prevent pipe an insufficient fall or a misplaced elbow mit the accumulation flushing with water and tend to perextent. accumulation of organic matter in portions of its
dependent efficiency of a ventilating pipe is also entirely Nendent upon its mechanical disposition as related to the
drain through which it is to induce a constant current of air to pass. Similar defects of arrangement in a house watersystem are revealed only by the severe frosts of winter. If the pipes are not so graded as to secure their complete clearance of all residual water by means of a drainage faucet, whenever the house-supply is cut off, the freezing of the water in, and the probable bnrsting of unprotected or exposed pipes in a cold season will speedily discover he fact. A large proportion of such casualties are brought about solely by this means, at a great cost of money and inconvenience to the owners or employers to these defective systems.

The timely exercise of a little forethought and mechanical ingenuity in the disposition of pipes when they are first laid would wholly obviate these difficulties and secure more perfect drainage and an unembarrassed water service.

Copper for Roofing.-It is thought that the decline in the price of copper makes it probable that it will be used as roofing, among other new purposes. It does not require to be painted, like the tin roof, every two or three years, and it is not subject to rust. Even at present prices, though a copper roof might cost two or three times as much as a tin roof, in the end it would be much less expensive.

Burning of the Dead.--The body burns, whether placed in the earth or fire ; in one case it takes 10 to 20 years, and in the other so many minutes. Cremation is the proper and scientific way to dispose of dead organic matter. When the body is cremated, there is no further fear from disease germs in the body. The only plausible objection which has been offered against cremation is that in case of homicide through the ad. ministration of deadly poisons valuable evidence might be destroyed ; but this is not a serious objection in the face of the many advantages gained. All innovations in sanitary science have had to fight their way inch by inch. Vaccination had a hard struggle, but came out triumphant, and so we predict for cremation a glorious victory, a triumph of good sense and science.

Pipes Made of Steel Plates.-Pipes made of steel plates are coming into use in England for the conveyancc of water under high pressure. The plates are coated with lead on both sides by immersion or otherwise, then rolled to form, rivetted, soldered the whole length, and covered with pitch. Of this method the first cost, it is said, is not much greater that of iron, and the steel pipes possess considerable advantages over those of iron.

A new textile plant, which received the name " kappe," is attracting considerable attention in Furope. It was first publicly exhibited last year at the Amsterdam Exhibition; It is indigenous to Java; and, when its fibres are carefully prepared, they resemble wool, and, when curled, at a moderate cost they can be used for stuffing mattresses. It can also be spun and dyed, but the fibrous appearance it retains shows that a radical improvement in the method of treating it has still to be discovered. All who examined the fibre at Amsterdam were satisfied of its contingent improvement as a textile material.

A Varnish for patterns.-A varnish has been invented in Germany for patterns and machinery. It dries, leaving a smooth surface almost as soon as it is applied. It is thas prepared : Thirty pounds of shellac, ten pounds of Manila copal, and ten pounds of Zanzibar copal are placed in a vessel, which is heated externally by steam, and stirred during from four to six hours, after which 150 parts of the finest potato spirit are addeid, and the whole heated for four hours to 67 degrees. This liquid is dyed by the addition of orange color, and can then be applied as a paint on wood. When used for painting and glazing machinery it consists of 35 pounds of shellac. five pounds of Manila copal and 150 pounds of spirit.

A flower has been discovered in South America which is only visible when the wind is blowing. The shrub belongs to the cactus family, and is about three feethigh, with a crook at the top, giving it the appearance of a black hickory cane. When the wind blows a number of beautiful flowers protrude from little lumps on the stalk.

Dr. Stevenson has. found that, contrary to a general belief, considerable quantities of zinc nay be dissolved by water kept long in contact with it.

THE EVOLUTION OF FLOWERS.

By Grant Allen.

LILIES AND RUSHES.

0^{E}N the dry, sunny hillsides behind Mentone, there grows in early spring a pretty little blue lily, erect and usually solitary on the end of a long, stiff stem, and aingularly rush-like in its mode of growth and general ${ }^{1}$ ppearance. It rejoices in the scientific name of Aphyllanthes Montpeliensis. As a rule, I don't care to go outside our own wild British flora, or the common cultivated Alwers of our gardens, for my main examples, because it is bent as far as possible to deal with well-known cases, where the reader's personal interest and memory count for nomething; and small as our native collection of plants really is, it generally affords quite as good illustrative examples of the ratious levels of evolution as could be got by ransacking the hothouses at Kew for the rarest and most unfamiliar exotic palmis or orchids. This little blue lily of the Riviera, howAror, with a few of its congeners in Australia or the Malay Archipelago, forms such a beautiful specimen of a bridge that I ameting-link between two somewhat distinct families that I am tempted to step aside from my usual practice for of the and interpolate a foreign plant among our illustrations of the evolution of flowers.
Aphyllanthes, as its Greek name imports, has no true leaves'; its foliage has all been transmuted into short dry Glowering scales, which clasp and protect the base of each lowering stem. The work usually performed by the bailt up that of taking carbonic acid from the air to be cell-wap into the living matsrial of the plant as atarch or green, rach rush-like flower-stalks alone. At the top of each or protalk, a few dry, brownish bracts form an involucre this invotective covering for the unopened buds; and within thisely involucre, in due time, a single sky-blue flower (more blosely accompanied by one or two more) opens its bright three to the Italian sun. As in the true lilies, there are bree sepals and three petals, all alike beautifully coloured; the one of the bracts (or very reduced leaves) here serves verted place of a calyx, as the true calyx has been perooroll from its original function to share in that of the the the There are six stamens, as usual, in two whorlsthe pistil outer somewhat shorter than the three inner; and into pistil consists of three cells, welded firmly together are a single ovary. In short, so far as technical characters Who concerned, the Aphyllanthes is a true lily. A botanist toxt-books strictly by the artificial marks set down in the it belooks would have no difficulty at all in deciding that Por the ${ }^{\text {bed to the true lilies, and not to the rushea. }}$ ${ }^{\text {conaiste }}$ distinguishing mark of a rush, in formal botany, not peta in the fact that ite perianth is "dry and scarious, not petaloid;" and as the perianth of Aphyllanthes is if Jond and juicy, of course it is a lily by definition. But if Jou look at the accompanying figure of our common Aphyllanash, you will see that it differs onsentially from - pay and thes in hardly anything except the comparative a a and colour of the perianth. To be sure, the flowers on at wo tom are much more numerous in the rush; but that, the resomble is a very small matter; in all other respects To pusmblance between the two is extremely noticeable. rond to it briefly, Aphyllanthes is a lily far gone on the develoward the ruahes-an arrented stage, no doubt, in the Aphylient of the family; while the rushes are lilies like colocired pes which have given up producing brightlycocomped perianths, and taken to small, dry, brown, - Why icuous little blossoms instead.
oremy is this? Well, the rnshes afford us an excellent thearple of flowern in a retrogressive condition, though in case the degeneration has not gone far, and has pro-
duced no evil effects upon the habits of the specien. All the plants that we have jet considered have been fertilised by insects; the rushes have gone back to the possibly older, but somewhat wasteful, habit of being fertilised by the wind. The pollen is shaken out.from their little, loose,

Fig. 1.-Aphyllanthes Montpeliensis.

Fig. 2-Junotr commanis.
hanging stamens by every puff of the summer breezes, and then floats away till it is caught by the three long, feathery stigmas of some other flower. These two conditions of the stamens and stigmas are very characteristic of all wind fertilised blossoms: the pollen-sacs always hang out in a very mobile fashion, shivering and quivering before the faintest breath, while the stigmas protrude boldly from the centre, and are minutely divided into tiny plume-like points, which catch and retain every grain of the fertilising dust wafted to them by the unconscious breeze.

But how do the rush flowers, then, escape the chance of selffertilisation with its attendant evils? By a very simple but effectual contrivance. The stamens and stigmas of each blossom do not come to maturity together. The pistil is the first to ripen, and it protrudes its three tiny plume-like stigmas through the bud, before the six dry perianth-pieces begin to unfold ; thus, it is pretty sure to catch a grain or two of pollen, carried towards it from some neighbouring head. Meanwhile, the stamens of its own flower are safely huddled up within the tightly-closed perianth. But, by-and-bye, the perianth in turn opens, the stamens unfold themselves upon their long thin footstalks, and the pollen-sacks split down their sides, and shed the pollen lightly to the breeze for the benefit of other surrounding flowers. This is a common device with many wind-fertilised blossoms.

Thus we see that the slight differences between the rushes and Aphyllanthes are solely caused by a single fact in their respective economies; the one is impregnated by the wind, and the other by insects. If the rushes were to take to the habit of insect fertilisation they would doubtless soon acquire brightly-coloured petals like those of the lilies; if Aphyllanthes were to take to the habit of wind-fertilisation it would doubtless soon lose its bright petals, because it would have no further need for them. Nay, they would even become a positive disadvantage to it, inasmuch as they would induce insects (for whose utilisation as carriers it was no longer adapted) to come and plunder it undeterred of its precious pollen. Observe however, that the rush has not entirely lost its petals, now that they are no longer of use to it as coloured advertisements ; it has merely found a new mode of employment for them. By makiug them hard and dry it has turned them into a protective covering for the stamens before they mature, and as they are persistent (that is to say, do not drop off after flowering) they serve once more as a similar covering for the seeds and capsules during the ripening process. Such economy of existing structures meets us every where in Nature as an ordinary accompaniment of evolution.

The flower of the rush is still, however, essentially a lily, with three sepals, three petals, three outer stamens, three inner stamens, and a three-celled ovary, bearing a united style with three separate stigmas. In the common rushes, the seeds are also numerous in each cell, as in the simpler lilies; though in Aphyllanthes and the wood-rushes, they are reduced to one each, for a reason to which I must recur hereafter.

I have left myself hardly any room to notice the most conscipuous external peculiarity of the rushes with which we are usually most familiar. I mean the eylindrical, almost hollow, pithy leaves. But it is easy enough to see the use of these stout, strong, and often prickly tipped organs; they are, of course, admirably adapted for the places in which rushes com. monly grow, in wet, marshy spots, and they serve to protect them against being either trodden down or eaten by cattle. The cylindrical form, however, though frequent among the rushes, is by no means universal : and we can trace every intermediate stage, from the quite flat, grass-like or lilylike foliage of the two flowered rush (Juncus biglumis), throush channelled leaves with a fine cylindrical tip like the chestnut rusb (J. castaneus), to these in which the whole leaf has become cylindrical throughont, like the sharp rush (J. acutus) whose very stiff, prickly points are nasty things to pierce one's hand with on the coast in Devonshire.

Artist's Canvas.-The raw canvas must be stretched on a frame, wetted, and restretch $\rightarrow d$ if loosened by wetting, and coated with a mixture of equal parts of dry whiting and white lead, ground up with raw and boiled linseed oil, and laid on with a trowel like a plasterer's trowel, but longer and tinner in the blade. If the canvas shows through the first coat, a second and a third may be applied, the under coats being rubbe 1 down with pumice stone. A little raw umber may be added if a stonecoloured surface is preferred. The use of the trowel, of course, requires the dexterity acquired by long practice.

NOTES ON ELECTRICITY AND MAGNETISM.

by prof. W. garnett.

(Continued from page 191.)

In 1844 Prince Louis Napoleon, than a prisoner, writing to Arago, described two forms of battery in which only one metal was employed, so that there was nowhere a contact of disimimar metals. The first consisted of a copper plate immersed in dilute nitric acid, (which acts strongly on the copper), contained in a porous cell. The porous cell was placed in a jar containing dilute sulphuric acid in which was immersed a second copper plate. On connecting the plate with a galvanometer, a current flowed through the galvanometer from the plate immersed in the sulphuric acid to that immersed in the nitric acid. With a battery consisting of two of these cells he decomposed potassic iodide and cupric sulphate. The second battery consisted of two zinc plates, one immersed in dilute sulphuric acid contained in a porous pot, and the other in a vessel surrounding the porous pot. This battery produced effects similar to that just described.
Napoleon then altempted to reverse "the usual order of the metals." Hə placed a copper plate in dilute nitric acid contained in a porous jar, while a plate of zinc was placed in pure (?) water surrounding the porous jar. On connecting the metals a current floweil from the zinc to the copper through the wire. These experiments alone seem sufficient to condemn the contact theory, as held by those who maintain that the E. M. F. of the battery is due simply to the contact of dissimilar metals. More recently several other form ${ }^{8}$ of battery have been devised, in which there is no contact of dissimilar metals. Napoleon complained that he was unable to measure the E, M. F. of his bit. teries, as the iron birs of his prison iterfered with his galvanometers.

It was supposed that when einc and sulphuric acid are in contact and in equilibrium the potential of the acid is very much greater than that of the zinc, and similarly in the case of copper and sulphuric acid, the potential of the acid is much greater than that of the copper, but the difference in the case of the copper is leas than in the case of the zinc, while we further sup ${ }^{-}$ pose, as vindicated by the Peltier effect, that there ${ }^{\text {is }}$ no sensible difference of potential between copper and zinc when in contact, we can explain the action of the Voltaic cell.

Suppose a plate of copper and a plate of zinc to be immersed is sulphuric acid, but no contact to be made between the plates. Then the acid must be atathe same potential throughout, or it could not be in electrical equilibruim. Hence, since the difference of the pot ential between the acid and the zinc is greater than that between the acid and the copper, the potential of the zinc plate will be lower' than that of the coppes. and a quadrant electrometer would be capable of mem $^{\operatorname{ma}^{8}}$ suring this difference of potential which will be the electro-motive force of the cell. If the copper and zinc are connected by a wire a current will flow from the copper to the zinc along the wire, lowering the potentiul of the copper and raising that of the zinc, sio that the equilubrium between the metals end the acid becomes disturbed, electricity flows from the zinc to the ac.d and from the acid to the copper, so that the potential of the acid near the zinc is raised above that
of the acid near the copper, and a current therefore flows through the acid from the zinc to the copper thus completing the circuit.

If a plate of copper and a plate of zinc be connected together, and the free end of the copper plate dipped into one vessel of dilute sulphuric acid and the free end of the zinc plate into another vessel of the same liquid, the acid into which the zinc is dipped will be at a higher potential than thit into which the copper is dipped. If now a connection is made between the two vessels of acid by inverting a syphon filled with acid so that one leg is in one vessel and the other in the other, electricity must flow from the acid in the Versel in which the zinc dips to that in the other vessel, the equilibruim will be disturbed and a continuous current will flow through the circuit as before.

In the frictional electric machines, in the Voss and Holtz machines, in the replenisher and electrophorus the electrical energy developed is derived from the Work done by the agent in overcoming the electrical energy developed is derived from the work done by agent tn overcoming the electrical attractions and keeping the machine in motion, or, in the case of the electhophorus, in raising the carrier plate in opposition to the attraction of the electrified ebonite. In the case of a thermo-electric couple the energy of the current is derived from the heat absorbed at the hot junction on account of the Peltier effect, or absorbed as the current llows from hot to cold or cold to hot along the metals on account of the Thomson effect. In the Voltaic circuit the energy of the current is derived from the chemical action which takes place between the metal_{8}, or one of the metals, and the acid (or electrolyte.) That the energy of the current in ordinary batteries is due to the aolution of the zinc in the acid was shewn by Dr. Jonle, who determined the amount of heat deVeloped by a pound of zinc in sulphuric acid. He then immersed a battery in a colorimeter, and determined the whole amount of heat developed for each pound of zinc dissolved when the wire through which the cuirent flowed was wholly contained within the calorimeter. The amount of heat so obtained was tho same as when the zinc was dissolved in the acid withont the production of any current. On causing the current from the battery to pass out of the calorimeter and to flow through a wire immersed in a second calorimetet, the heat developed in the battery for each pound of zine dissolved was less than before, but the defiency was exactly compensated by the heat deVeloped was exactly compensated by the current in the external wire, and com-
maunice ${ }^{\text {mannicated to }}$ the water of the second calorimeter. Firm these experiments it appears that when a battery $^{\text {is }_{6}}$ is employed in sending a current the heat corresponding to the chemical action toking place in the battery is not wholly developed within the battery, but a portion of it is employed in making the current flow through
the carrent cit, and is reconverted into heat wherever the
Farrent does work against resistance.
Faraday seems to have seen the necessity for the onergy of the electric current being derived from the
regarded thion going in the cell, and he consequently
the elect this chemical action as the primary source of of the ectro-motive force, as it certainly is of the energy traction current. Faraday supposed the chemical atelectric "polarization," which state he supposed to be
relieved by electric discharge (current) when chemical action actually takes place.
The supporters of the Voltaic or contact theory have spent much time in endeavouring to determine at which of the three places of contact in the Voltaic cell the chief difference of potential occurs, and many experimentalists have maintained that the elsctro-motive force is due principally or entirely to a difference of potential at the contact of the dissimilar metals, and have supposed that the differences of potential at the contacts of the metals and electrolyte are either zero or comparatively small. Soveral experiments have been cited in support of this view. One of the most recent is due to Sir William Thomson, who shewed that when two equal semicircles, one of copper and the other of zinc, are placed with their diameters in contact and a positively electrified "needle" suspended above them, so that before the platos are made to touch the needle points in the direction of the common diameter, on making contact between the copper and the zinc the needle turns towards the copper. If a quadrant electrometer be constructed with two quadrants of zinc and the other two (alternate quadrunts) of copper, the needle if positively electrified will turn so as to enter the copper quadrants, the difference of potential indicated being nearly equal to the electro-motive force of a cell consisting of copper and zinc immersed in dilute sulphuric acid. It was at first supposed that these experiments proved a difference of potential to exist between the copper and the zinc sufficient to account for the electro-motive force of the Voltaic cell. It will be seen however that the electrified needle does not move within the substance of the copper and zinc, but in the air around the metals, and the experiment therefore orly serves to determine the difference of potential of the air near the copper plate, and of that near the zinc plate.

In 1878 Mr . John Brown, of Belfast, experimenting with copper and iron, shewed that while the positively electrified needle turned towards the copper quadrants in an atmosphere of air the action was reversed in an atmosphere of sulphuretted hydrogen, the needle turning towards the iron, thus indicating that the gas in the neighbourhood of the iron had a lower oettipnal that that in the neighbourhood of the copper. Hence the motion of the needle is not due to a difference of potential between the metals themselves caused by their contact.

The only reliable method at our command for determining the difference of potential between two metals in contact is based upon the Peltier effect. When electricity flows from a metal at a high potential to one at a lower potential work is done by the electric forces, and as there is no other source of energy (in a thermo-electric circuit) this work must be derived from heat absorbed at the junction, the absorption constituting the Peltier effect. Thus, if Q units of electricity pass from one metal to another the difference of potentiel being E, a quantity of heat mechanically equivalent to QE ergs must be absorbed. By measuring the heat absorbed and the quantity of electricity that passes, we can determine E the difference of potential between the two metals.-(To be continued.)

The first shipload of railway plant for Suakim left Woolwich Arsenal recently.

THE MOVEMENTS OF THE EARTH ${ }^{1}$

The Earth's Revolution

I^{T}T will be clear from what has gone before that the daily movement of the stars is an apparent one due to the real movement of the earth in an exactly opposite direction, and that the stars in the heavens appear to rise in the east and set in the west, because the earth rotates from uest to east. And now comes this question: The period of twenty-four hours which is so familiar, and which is divided roughly into day and night, has apparently two perfectly different sides to it; for a certain period the stars are not seen at all in consequence of a body, which we call the sun, flocding the earth's atmosphere with its own tremendous light. Why should this be? In giving an answer to this question it is enough to say that the sun is a star so close to us, and so entirely outshining the other and more distant stars which are seen in the shies, that they seem to be things of a different grder altogether. But they are not things of a different order, they are very much like our sun, and the different appearance is simply the result of the fact that the one is a star very near to us, whilst the others are suns inconceivably remote. In considering this apparent daily o ovement of the stars, and taking the sun into consideration, the fact is soon arrived at that the stars have another apparent mivement differing somewhat from that one with which up to the present time we have alone been engaged. It has been said, and it is so obvious that it might almost have been left uncaid, that as a rule the stars are not seen when the sun is visible, so that the question whether the sun moves or appears to move among the stars must be attacked in a rather indirect manner. An observer on that part of the earth's surface directly under the sun sees it as at midday. Under these conditions the stars are of course not seen by him, but if he waited twelve sidereal hours, until that portion of the earth which he inbatited was opposite the sun's place, the star; would then be vivible, and by noticing whether those seen by him each night were the same, he would be able to determine whether or not the sun moved or appeared to move among them. In one position of the sun it occupies that constellation of stars known as the Bull. These stars cannot then be seen, because the intense brilliancy of the sun puts them out, but with the sun in this position the group of stars known as the Scorpion is seen opposite at midnight. Then at a later period the sun gets intn the constellation called the Crab, and we see at midnight no longer the Scorpion group but the group which is called the Goat. In this way it can be determined that the sun has ap apparent movement among the stars, which is completed in a period which we call a year, at the end of which time the sun occupies the same position that it did a year previously, and the same group of stars is seen again in the south at midnight.

Not only, then, do the stars appear to make a comı lete revoIution once a day, in consequence, as we have seen, of the earth's rotation, but once a year they also gradually change their apparent places, so that at the same hour each night different stars appear due south, thus indicating a movenent of the sun among them.

The same difficulty that was met with before is again encountered here; is this movement of the sun among the stars a real or an apparent one? It is a question, however, which has been long since answered; and it can he very definitely stated, not only that the earth rotates on its axis in a period of twenty-four sidereal hours, but that it moves or revolves round the sun in a period which we call a year, and that it is this real movement which causes the apparent one of the sun among the stars. Let the reader take a top and spinit. Perhaps the top has a movement of progression as well as 2 movement of rolation, and it is in that way quite easy to see that the earth may rotate on its axis and revolve about the sun at one and the same time. And with a top of special construction its axis of rotation might be inclined so that its plane of rotation ceased to coincide with the plane of its motion of progression ; still the two movements would go on, and in whatever position the top might be placed, its axis might be made to remain practically parallel to itself during its movements.

We mey now, then, make the following statements:- The carth revolves round the sun, and throughout the r. volution the axis of rotation remains practically parallel to itself. With regard to the latter part of this statement it may be added that if this were not so-if the axis of the earth were subject to perpotual change of
direction-the declinations of the stars would also be subject to constant chance.

The demonstration of this movement of the earth round the sun depends upon phy: ical considerations in exactly the same way as does the demonstration of the earth's movement of rota tion, and to these considerations attention must now be turned. It will be found that we have now to do with an entirely different branch of physics to that which we drew upon when seeking for a proof of the rotation. The utilisation of its principles for the purpo es of astronomy is due to Dr. Bradley, a foruer Astronomer-Royal. In the year 1729 he made a series of observations of stars, expecting certain results to flow from them. Instead, however, of gettrig the results for which he had looked, his observations gave him some which differed entirely from his predicted ores, and which he failed to understand. For cuch a thing as this to bapren is a piece of goud fortune for the scientific inventiga or; it sets him thinking and working, and frequently leads bim to the discovery of some hitherto unknown physical law. It set Dr. Bradley thinking and working. Curious as it may seem, the observation which led him to ${ }^{2}$ complete understanding of this subject was what ke observed one day when a boat at anchor near the shore at Greeuwich began to get under weigh in a stiffish breeze. The little boat had one of those short rennanti on its mast, and Dr. Bradley noticed that, as s ion as the broat began to move, the direction of the wind, 24 indicated by the movements of this pennant, changed. Before proceeding to consider the bearing which this fact, seemingly remote from astronomy, has upon s:ar work, it may be advisable

Fig. 35.-Model to illustra•e the aberration of light. A square tube, with glass front and a slit along the centre of its upper side to allow the pest sage of a thread, is inclined at 45° and caused to run along a level tracs while a weight suspended from a thread passing round three pulleys 200 attached at the other end to the front of the carriage is allowed descend. In this figure the weight is at the commencement of its fall.
to take one or two simple illustrations which will show what must have pas-ed through Bradley's mind as the explanation of the strange unexpected movemen's of the stars was slowly growing within it. The first illustration is one due to Sir George Airy. Suppose that a versel is passing a fort, and that a shou is fired from the fort at the moving vessel. The shot whe travel in a straight line; but it is evident that since the ship is moving, if that shot really pierces both sides of the vessene then a line jeining the spot where the ball pierced the ond side to the spot where it pierced th: other side will not be square to the direction of the ship's motion. During the short time taken by the shot to pass from one side of the to the other, the vessel has woved through a certain distance, and if the line joining the two shot-holes alone considered, it might be inferred that the shot had from a direction in advance of the true one. That is illustration, the point of it being that the motion of the seems to have given a new direction to the shot. Take anothes illustration, more familiar, and perhaps almost as clear. In thin country frequent opportunities offer themselves of travelling cabs or rallway trains, with the rain falling on their closed windows. Every one must have noticed that at sych times the the is always a very curious slant in the apparent direction of drops whilst the train or the cab is in motion; the rain seems the come from a point in front of us; we always seem to meet rain. The fact is that a body in motion, and especially a bou with the velocity of an express train, does not receive the thion under the same conditions as when it is at rest. The quest of its velocity has to be taken into consideration. An exper ment will show better what is meant.

Imagine a weight supported by a piece of thread; the moment that thread is cut the weight falls in a straight line to the ground. If it be desired, therefore, to receive the falling weight in a tube at rest under the weight, and to so receive it that it shall not touch the sides of the tube as it passes through, the tube must be held in an upright position. Take another step, and suppose now that it is a question of causing the weight to fall through the tabe whilst the tube itself is travelling at a certain rate, say at

Fir. 36. \rightarrow Same apparitus as preceding, but with the weight near the end of the velo of ins
the velncity of the fallirg weight. It is perfectly obvious that Positionnot be done by holding the tube in a ferpendicular position, the tube must be inclined, and the argle of its inclina-
tion will tion will ve rube must be incined, and the argle or the varying relative velocities. of tute and
weit Weight. The more quickly the weight falls the less inclined must the tube be to receive it. This not only supplies the
explanater explanation of the slant of the rain on the windows of the railway carriage, but it explains what is very much more important
from an astronomical point of ${ }^{\text {view. }}$ Consider Fig. 37 for a moment. Here AB represents the path of anything falling, and a CB the angle of the tube destined to receive it. It may be called the angle of slant, but the point is not that we give it any particular name, but that its relation to the velocity of fall is a very fixed and definite one. Accept it as such, and then connect it,

Fic. 37.
not with the falling weight or with the slant of the rain, but with the velocity of the light coming to the earth from any star in the heavens, and the velocity of the carth in its orbit round the son.

It may be said that two assumptions are here made, first that light has a velocity, and secondly that the earth does move round the sun. Consider, then, the first of these, the question of the velocity of light. In our day, with all the experimental methods

Fig. 38.-Fizeau's mode of determining the velocity of light.
niceties which the labours of those who have gone before cane placed at our disposal, this question of the velocity of light ment be answered by uhat may be called a latoratory experisome. The first real attempt to answer the question was made obse years ago by a Frenchman, M. Fizeau. His method of be hation was a beautifully simple one, and has turned out to of hishly satisfactory in its re-ults. All the essential parts was bis apparatus are shown in Fig. 38. Light from a lamp ifocus afe to pass through a system of lenses ard was brought to glacs. Thater refleotion from the front surface of a piece of plain out in The light was then grasped by an object-glass and sent There a parallel beam to a station distant about five miles. There it fell on another object-glass, which again brought it to a focus on a mirror at the end of this second telescope. Then path bgot the light to the second mirror, it was reflected on its path back again. When the reflected light returned, part of it seen allowed to go through the plain glass mirror to the eyepiece the rays the end of the telescope in Fig. 38. At the point where edge of crossed in the first telescope there was interposed the could be cogged wheel, to which a great velocity of rotation could be imparted by clockwork, and through the intervals

betreen | between the ieeth of which the light had to pass. Suppose first |
| :--- |

that the wheel is at rest. The lamp is lighted, and looking through the cogs of the whetl the observer sees the image of the lamp reflected tack to him as a star of light from that distant

Fij. 39.-Fizeau's velocity of light apparatus. Appearance when the toothed wheel is at rest, when it is in sluw motic n and when its rotation is 20 rapid as to cause complete extinction of the light.
mirror by means of the arrangement to which reference has been made.

Assume now that light occupies no time in travelling from the lamp to the first mirror, through the first telescope, across the space between the two telescopes, and back again after its reflection by the second mirror. Assume, in fret, that the velocity of light is infinite, then it is perfectly clear that an observer would keep on seeing that star of light whether the wheel remained at rest or were put in motion. But now assume that light does take a certain very small time to make the journey spoken of, and that the wheel can be turned with just such a velocity that when the light reaches it on its return it will meet, not an opening, but one of the cogs. Then the light would not be visible : it would find itself a cog behind, so that, if light travels very fast indeed and the wheel is made to travel with a great and known velocity and the relation existing between the velocities be known, the velocity of light can be measured in this way. That is the way in which Fizeau measured it, and he gave the veloeity as being 190,000 miles per second.
It may be thought perbaps that this being the first attempt in a matter of this kind it was not very worthy of credit; but the similarity of the results which have been obtained in all such experiments proves that they are all very worthy of credit, and that this velocity must be accepted as established within narrow limits.
We come now to Foucault, the man to whose genius science owes the experimental proof of the earth's rotation, t_{0} which reference has already been made. He also attacked this question of the velocity of light. Going to work in quite a different way from Fizeau, he succeeded in enriching science with a method quite as reliable in its operation and as occurate in its results.
A pencil of light coming from a slitat (see Fig. 40, Page 224) impinges upon the plane mirror R , which is capable of turning round a vertical axis. This mirror reflects the light falling on its surface, and the action of the lens, 1 , causes an image to be formed on the surface of the concave mirror, m, the centre of which coincides with the axis at r . This concave mirror reflects the image backwards on its path to the slit. Foucault's arrangement, as has been said, was to have the mirror, m_{7} made to rotate. If. therefore, a be turned about its axis while the light from the slit, s , is falling upon its surface, for so long as the light falls on the lens so long will the image of, the slit be formed on the surface of the distant mirror Similarly for so long as the reflected image falls upon the lens, so long will the image be reflected back to the slit. Now if the mirror were made to rotate rapidly, and light were infinite in its velocity, then once during each revolution of the mirror at once particular angle the light would be reflected back to the slit ; butassume that light takes some very small fraction of time to travel over the space between the mirrors, it will be observed that the image will not be reflected back to the slit but will suffer a deflectioh in one direction or the other according as the mirror turns from left to right or from right to left, and, the velocity of the rotating mirror being known, the amount of this displacement will enable the velocity of light to be determined.

With two such different methods it might be supposed that the results obtained were very differcnt. Not so, however; the velocity obtained by Fizeau was, as I have said, 190,000 miles per second, that by Foucault $185 ; 000$ per second.
It so happens that both these methods have been gone over quite recently, Fizeau's method by another Frenchman, M. Cornu, and Foucault's by Mr. Michelson, an officer in the American navy.

Mr. Michelson modified Foucault's method somewhat, the fault in which was that the displacement obtained was so extremely small, being but the fraction of a milimetre ; and when it is remembered that the image is always more or less indistinct on account of atmospheric conditions and imperfection in the lenses and mirrors employed, it will be seen that it was difficult for Foucault to attain to any very great accuracy. Mr. Michelson therefore used an apparatus which would give him a greater deflection than that obtained by Foucault. As before, 8 (Fig. 41) was the slit, r the rotating mirror in the principal focus of the lens, but the distant mirror, instead of being concave, was a plane one, and the lens one of great focal length, for a reason that will appear immediately. This lens, in consequence of the smallness of its diameter in comparison with its great focal length, was not entirely convenient. In order that the displacement should
be great, it is necessary that the distance between r and M, the distance from the revolving mirror to the slit, and the speed of rotation should be the greatest possible.
Unfortunately, the second condition clashes with the first, 1 for the distance from the revolving mirror to the slit, or the "radius" is the difference between the distance of principal and conjugate focus for the distant mirror, m , and the greater the distance the smaller the radius. Two methods were employed by Mr. Michelson in overcoming this difficulty : first he had his lens of great focal length, 150 feet, and he placed the revolving mirror, not at the principal focus, but fifteen feet within it. He thus managed to get a distance between the mirrors of 2000 feet with a radius of thirty feet, and his mirror made 256 revolutions per second. He then obtained a deflection of 133 milimetres, that being about 200 times greater than the defleetion obtained by Foucault. This deflection he measured to within three or four hundredths of a milimetre in each observation.
Mr. Michelson's experiments were made along an almost level stretch of sea wall at the Naval Academy.
We are therefore justified in saying, as the results of these experiments of Fizeau and Cornu, Foucault and Michelson that light has a velocity of some 186,000 miles per secand.
If that be so, then, if the statemen ${ }_{7}$ that the earth revolves about the sun be true, this must follow. In Fig. $42 a b c d$ represent the earth in different parts of its orbit around the sun; the contention is that if there be this revolution of the earth round the sun, and if light really travels with anything short of an infinite velocity, then the position of a star must change, for the reason that the telescope of the astronomer must always be pointed in advance of the star to catch its light in the same way that to catch the falling weight we had to incline the tube in the direction of its motion.

When any observation is made on any star in the heavens, the telescope of the astronomer must therefore be pointed in advance of the star to catch its light, and taking, as in the diagram, four different points in the earth's orbit, it is obvious that the telescope at these four different points must be pointed \ln four different directions with regard to the star. For instance, if we take a point at c, where the earth is travelling in the direction of the arrow, and the point at which the star would be seen if the earth were at rest, or the velocity of light were infinite, be indicated by the star in the figure c is the direction in which the star would be seen, and in which the astronomer's telescope must be pointed to catch its light Similarly with the earth at d the telescope must be pointed to d^{\prime}, and so with the earth at a we must have it pointing towards a^{\prime}. It was this strange anomaly which puzzled Dr Bradley in the year 1729 . He noticed that the stars moved in ellipses every year round a mean point. This fact of aber ration, then, is a real thing. It has been said that the angle at which the tube had to be inclined to receive the weight pepended upon their respective velocities, that the faster the tube travelled, the greater must be its inclination, and therefore the greater the angle the greater the earth's velocity with reference to the velocity of light. In the case of the majority of the stars what we get is an ellipse, an in an ellipse we have certain differences which have to be taken inio account, the last difference of all being that an infinitely elongated ellipse is a straight line, and it is found that from one particular point of the heavens where, in consequence of this aberrational motion, the orbits of the stars round their mean places are almost circular, we at last get to a point where the motion is simply an oscillation of the star backwards and forwards to and from its mean place; we are dealing, in fact, with that form of the ellipse when it is in the form of a straight line When we deal with an ellipse we no longer talk of the radius, but of the semi-axis major, which is half the greatest length The angle of aberration of which I have spoken only amount ${ }^{\text {ts }}$ to $20^{\prime \prime} .4451$, but though small, it is quite enough to prove tha the earth does revolve. and that consequently the sun is the centre of the system to which the earth belongs. Now in order to show the importance of physical inquiry in this mat ter, there is another statement which must be made. If wo consider this aberration question fully, we find in it what is perhaps the most perfect way of determining the distance of the sun from the earth, and it will be seen that it is perfectly simple, so simple in fact, that the wonder is that more atten tion has not been given to it in our tex-books. We have first the fact that the inclination of the tube depends upon the
relative velocities of the tube and falling body ; in the case of light it will of course depend upon the relative velocities of the earth in its orbit and light radiating from a star. Knowing this latter to be somewhere about 186,000 miles per second ${ }^{\text {and }}$ the aberration angle to be 20^{\prime} and something, we can get the relation of the earth's motion to the velocity of light, and it comes out to be about 1 to 10,089 .
Now we know that the earth completes a revolution round the sun we know that the earth completes a revolution round
it 365 days. If it travelled with the velocity of light it would complete a revolution in $52 \mathrm{~m} .8 \cdot 5 \mathrm{~s}$.
Again, we may say, and this is only a rough statement, that the radius of a circle is $\frac{6}{6}$ of its circumference, so that if it took the earth fifty-two minutes to go round its circumference, Or, as we call it, it orbit, it would take $\frac{1}{8}$ of that time to go
alo ${ }^{\text {a }}$ long the radius if it travelled with the velocity of light; it Mould therefore take 8 m . 188. But this radius is the distance of the earth from the sun, and having this time 8 m . 18_{8}., we have only to multiply the velocity of light 1 per thecond, by that, and we get $92,628,000$ miles as the distance of the earth from the sun.

> J. Norman Lockyer.

(To be continued.)

A New Standard of Illumination.-Some time ago Mr. W. H. Preece proposed a new standard of illumination for phothe metric purposes, based on the illumination of a surface, not bec intensity of a standard light, such as the sperm candle or bec carcel. This standard is the illumination of space lighted_{8} by one British standard candle at 2.7 in. distance, or what Lis the same thing, by a French standard "bec" at one metre their ce. The plan in vogue of comparing two lights by the effects at different distances on two surfaces, is open to ine objection that the absorbent state of the air is not taken the account, although the distances are different, and that shedowerse colours of the lights are ignored. Rumford's shadow photometer and Bouguer's (Ritchie's and Bunsen's) therto bof comparing equally illuminated surfaces have hiuniform been found the most practical. But for these plans a $V_{\text {arioug }}$ standard of light is essential, and none such exists. French couutries have their own so-called standard, the French have the carcel, the Germans a standard candle, and ${ }^{80}$ on, but these differ from each other and vary in them-
sel 8elves, and the new standard agreed on by the Electrical Coniness is not yet in use. Mr. Preece employs a small Swan

 Which thace he uses a contrivance consisting of a box in over the lamp is fixed. The box is blackened inside, and
With back part is stretched a diaphragm of drawing paper as in Bund grease spot in the centre, the size of a shilling, end Bunsen's photometer. About 12 in . beyond the open shoet or the box, and behind the paper diaphragm, is another phragm freen of drawing paper. No light falls on the diaWhich is illum without, except what comes from the screen bo either illuminated by the light to be measured. 'This may
light received from a Lamp or the diffused daylight of directly received from a Lamp or the diffused daythen varied rom. The current in the incandescence lamp is the baried until its light, shining on the grease spot within
out. out. In this equal to that reflected from the screen from with-
seems to dise the two lights are equal when the spot
B seems th disappeare the two lights are equal when the spot
Bungen's to the well-known principle of ary ben's photometer. The current is supplied by a secondExperiment and modified by a resistance rheostat in circuit. $i_{i g}$ powents made by Mr. Preece showed that the illuminatcurrent. The aper in the ratio of the sixth power of the
fegearatus worked well, but Mr. Preece conferses that The apparatus worked well, but Mr. Preece conthe glass becomes smoky by use, the fibre deteriorates, and the vacinum somestimes fails. These results are, however,
slow, he states siven he states, and it is sufficient to compare either the light court by unit current with that of a standard candle or Har-
cond
is is $_{8}$ morre flame. He believes that the light given by this source Human skin and that young rabbits have been successfully
pplied in small pieces to large healing surfaces in wounds. Dr. Win in small pieces to large healing surfaces in wounds. obtained very mucher, in the Medter results from News, claims to have of the internal 'Membrane of man's better results from the use of the internal
The egg should be fresh and warm.

THE ENTOMOLOGY OF A POND.-(Knowledge.)

by e. A. butler.

(Continued from page 189.)

> II.-The Middle Depths.

Laving now the surface and descending to the depths, we encounter a fauna wholly new, though still belnnging principally to the same two orders, Coleoptera and Hemiptera, accompanied, however, by reinforcements from a thirl, the Diptera, but, so far as species are concerned, the beetles vastly preponderate. Commencing with the Hemipterd, the first insect that claims our attention is the well-known "Waterboatman," Notonecta glauca. Boatmau though he is, his boat is almost always submerged; he often spends a good deal of his tine just beneath the surface, where, resting on his oars, with the stern of his boat peeping j ust above the water, and its prow pointing dowuwards, he forms one of the most conospicuous and familiar objects in a pond. A rapid swimmer and a bloodthirsty and rapacious monster, he is a terror to the more easy-going inhahitants of the pond, whom he seizes with his forelegg and holds in a fatal hug, while he eagerly sucks out their juices. Let us take a glance at the form and general appearance of the insect. Flattened beneath, and strongly conver and slightly keeled above, we see at once some resemblance to an inverted boat. The creature, however, has the remarkable habit of always swimming on its back ; in fact, in the water, it would hardly know itself right side up. This, of course, brings the "boat" into the proper position. The yellowish head carries two great masses of highly-polished eyes, and has an extremely bold appearance. After the thorax follow the various parts distinctive of bugs, as described fn a former ${ }^{\circ}$ paper on "Neglected Insects." There is the large triangular shield-shaped yiece, or seutellum, conspicuously placed in the centre, and the composite wings sloping down from its sides, yellowish, bnt more or less variegated with black. Opening the upper pair we find the others folded up, exquisitely thin and transparent, and with the principal nervures forming a nd of X-mark. The two front pairs of legs are slightly curved, and form efficient organs for the seizure and retention of strug. gling prey; ard any poor creature that once falls into those clutches may think itself fortunate if it can manage to get free before the terrible beak is buried in its tissues, for this once effected there is no hope for the poor victim, which feels itself getting weaker and weaker as it is gradually being drained dry, till the last drop of its life-blood has been drawn out, when its insatiable captor, rejecting the now useless carcase, sets off again in quest of further adventures. The hind legs are very long, and form excellent rowing organs; when the insect is resting at the surface these are spread out at right angles to its sides, and there you have your boat and oars. The terminal joints of these limbs are furnished with long fringes of hair, which greatly increase their efficiency as a rowing apparatas. The larve are similar in shape to the adults, but have the body proportionately shorter ; when out of the water they look most unfinished creatures, being pale in colour and having a sort of parboiled aspect. They have, of courie, no wings, and must therefore spend their time wholly in the water.
Swimming with a similar jerky moeement, but not nearly so rapidly, and right side up instead of on their backs, is a whole family of bugs called the Corixidoe; they are yellowish, barred and variegated with black and not keeled, but flattened on the back; they are often extremely plentiful, going in large troops together, but as they keep well towards the bottom and do not often come near the surface, they easily escape notice. When one first takes to pond entomology, little more than a few hauls ith the net are needed to create a feeling of astonish. ment that there can be so much life so near at hand and apparently so easily within view, and yet so entirely unnoticed by the casual observer; it seems almost as if the very passage of the net through the water had been the means of calling into exi tence the multitudinous creatures that sprawl about on its dripping sides. So scarcely anyone ever notices the Corizidx without dragging the water, but then so numerous do they show themselves to be that the wonder is they could possibly have escaped observation. The genus Corixa ls a very extensive one, though it has flgured in books as larger than Nature ever inteuded, because the species, while possessing a strong family ikeness and general similarity, are extremely variable in the details of their markings, so as to make it diffi. cult to fix on constant characters for their discrimination, aud thus many mere varieties have been erroneously constituted species; at present, however, Euglish entomologists reckon
twenty-eight species as representing our British contribution tewards the genus. Some of these are found only in Scotland, often high up amongst the mountains, and some occur even in brackish water. The genus forms a series gradually diminishing in aize from $\frac{1}{2}$ to 1.16 in ., and the uninitiated woald, no doubt, wish to consider the smaller species as young examples of the larger ones; but it must be remembered that insects do not grow when once they have agsumed the adult form ; their period of growth consists exclusively of their earlier stages, farvahood and puphood. Having once donned their wings, they have no further anziety as to the fit of their chitinous clothing. Their dimensions are finally established. The limit of variability as to size are usually not very wide in any given species, the greatest divergence being found in subh insects as are dependent in their earlier stages upon food that is inter mittent or precarious in supply. The Corixide possess fnllyformed wings, and the hinder pairs are exquisitely delicate, and show rainbow tints. They readily take to flight, and at night are sometimes attractod to a light, 80 that if a window be left open on summer evenings near a pond they may be expected to be amongat the visitors that make headlong for the lamp. Dr. Puton, the French Hemipterist, says that in Mexico Corizæ are so abondant that a kind of bread is made of their eggs, and he further makes the astounding atatement that on one occasion about a twelvemonth ago thousands fell from the air daring a storm in Turkestan, coming down like rain in such enormous numbers as actually to extinguish a fire at a travel. ler's bivonac.

Fig. 1.-Naucoris cimicoides.
Our last representative of the Hemipter of this part of the pond is caHed Naucoris cimicoides (Fig. 1), it is a flattened creature of oval outline, with a very sharp beak which it is not at all slow to use, making its unwary captor drop it in mont startled fashion under the impression that a severe wound heo been inflcted. However, the pain is only temporary, the weapon being merely a piercer and not really a sting.
In all these insects, it appears at first sight as though the antennæ are wanting; this is not, however, really the case, The organs in question are very short, and concealed in dopressions behind the eyes ; hence the name Cryptocerate, hidden-horns, by which this particular section of the waterbags is distinguished.
(To be Continued.)

MOVEMENTS OF THE EARTH.

Fia. 40. Foucault's arrangement for determining the velocity of light.
-

Fig. 4I.-Michelson's variation of Foucault's experiment.

Fic. 42.-Annual chamge of a star's position, due to aberration : a $b c d$, the earth, in different parts of its orbit: $a^{\prime} b^{\prime} c^{\prime} d^{\prime}$, the corresponding aberration places ofithe star, varying from the true place in the direction of the earth's motion atuthe rime.

[^0]: "Trust me, no mere skill of subtle tracery No mere practice of a dexterous hand, Will suffice, without a hidden spirit, That we may, or may not understand.
 " All those quaint old fragments that are left us, Have their power in this ;-the carver brought, Have their power in this ;-the carver broug Worthily to clothe some noble thought.
 "Shut, then, in the petals of the flowers, Round the stems of all the lilies twine, Hide beneath each bird's or angel's pinion, Some wise meaning, or some thought divine.
 " Place in stony hands that play for ever, Tender words of peace, and strive to wind Round the graceful serolls and corbelled niches, Some true foving message to your kind.

[^1]: $L_{\text {urcoln }}$ and, nor rusted like iron.

