CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtaln the best original copy available for filming. Features of thls copy which may be bibliographically urilque, which may alter any of the Images In the reproduction, or which may slgnificantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée etou pelliculée

Cover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleurBound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été porsible de se procurer. Les détails de cet exemplaire qui sont peut-être unlques du point de vue bibliographique, qui peuvent modifier une Image reproduite, ou qul peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item ia filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction Indiqut ci-dessous.

The copy filmed here hee been reproduced thenks to the generosity of:

National Library of Canada

The imeges eppeering here ore the best quelity possible considering the condition end legibility of the orlginal copy end in keoplng with the fliming contrect specificetions.

Original copies in printed peper covers ere fllmed beginning with the front cover and ending on the lest pege with e printed of llluotroted impression. or the beck cover when eppropriote. All other originel copies are filmed beginning on the first pege with e printed or lllustroted impreesion. end ending on the leet pege with e printed or illustreted impression.

The lest recorded freme on eech microfiche chell contain the symbol \rightarrow Imeening "CON. TINUED"), or the symbol ∇ (meening "END"). whichever epplies.

Meps, pletes, cherts, otc.. may be filmed ot different reduction retios. Those too lerge to be entirely included in one exposure ere filmed beginning in the upper left hend corner. lett to right and top to bottom. es meny fremes es required. The following diegrems illustrete the method:

L'oxempleire filmd fut reproduit gráce do géndrositéde:

Bibliothèque nationale du Canada

Les imeges suiventes ont drd reproduites avec le plus grend soin, compte tenu de le condition ot de le netrote de l'exempleire filmd, ot on conformith evec loe conditions du controt de fllmege.

Les exemplelres origineux dont le couverture en pepier eat imprimde sont flimbs en commencent par le premior plet et en terminent soit par le dernidre pege qul comporte une empreinte d'Impression ou d'llustrotion, soit per le second plet, selon le ces. Toue les eutres exompleires originoux sont filmbs en commencent per ie premidre pege qui comporto une empreinte d'impression ou d'lluetretion ot en terminant per le dernidre pege qui comporte une telle empreinte.

Un des symboles suivents appersitra sur la dernidre imege de cheque microfiche. sclon le ces: lo symbole signifio "A SUIVRE". It symbole ∇ signifie "FIN".

Les cortes, plonches, tableoux, otc., pouvent itre filmos toe taux de reduction differants. Lorsque le document est trop grend pour itre raproduit en un seul clichd. il est filme al partir de l'ongle suptrieur gouche. de geuche droite. ot de hout en bes, on prenent io nombre d'imeges ndcesseire. Les diegremmes suivents illuetrant to methode.

APPLIED IMAGE Inc

```
1653 East Man Street
Rochester, New York 14609 USA
(716) 482-0300-Phome
(7:6) \(288-5989-\) Fam
```


DEPARTMENT OF MINES
hon. Martin Burrill, Minister; R. G. McConnell, Deputy Minister.

GEOLOGICAL SURVEY

William McInnes, Directing Geologist.

MEMOIR 114

No. 95, Geological Series

Road Material Surveys in the City and District of Montreal, Quebec

BY
Henri Gauthier

Phate 1.

CANADA
DEPARTMENT OF MINES
Hov, Martin Burell, Minister; R. G. McConnell, Deplty Minister.

GEOLOGICAL SURVEY

William Mcinnes, Directing Geologist.

MEMOIR 114

No. 95, Geological Series

Road Material Surveys in the City and District of Montreal, Quebec

BY
Henrl Gauthier

OTTAWA
J. or L.ABHOQCEHIE TACHE

PRINTER TO "HE KIS:G'S MOST ENCEI.LENT MAJESTY 1919

No. 1755

CONTENTS.

'HAYTFIR I.
Pastr:1
Intrinluetiont I
Henpe of the work 1
A.knowleqkmonts \because
Conditions afferting romd eonstruction $!$
(ivology
cll.irTEII II.
Roal matr riala 41
Braltow $+$
Poterlan samistonn 4
Beckmantowis dolomite. 4
Clazy limenton'
Hlack River limextonie J
Trenton limentome 6
Igneous rorks 7
Boulder Impusites or findil stome. 7
Comproxition of aggregates. 8
-haructer of bouhlers 8
sund and gravel 0
Hesults of hamoratory tests. 4
Lxplanation of tosts. 12
liellook (diagram) 15
Field stone. 17Tulle I. Results of tests upen beilrock.
APPENDIX A.21
Deposits of hedroek.
APPENDIS 13. 13.40Deprosits of fiell stome
40Index

Ilustrations.

Map 1747. Stone available for roal onstruct, in in the cisy and district of Nont real,
 Montral
11. Last wall in the Fircproof Crushed Stone Company's quarry, south
111. A. J. Rogers' quarty. Northeastern part of exavatioי.............. 46
13. Shent of fourchitc, 15 fort thick, cast of Site. Dorchec. 41
IV. A. North shore of rivière des I'rairies $1 \frac{1}{2}$ miles above St. Vincent de
Paul. Bed of camptonite which has resisted erosion. .
13. Felix labelle quarry, St. Francois de Sallex........................
Figure 1. Relative toughness and percentag
rock in and near alontreal.
60986-2

Road Material Surveys in the City and District of Montreal, Quebec.

CHAPTER I.

INTRODUCTION.

An investigation of road materials was made in and near the city of Montreal during the field season of 1917. As Montreal is the largest eity in Canada, with a great and growing seaport and industrial eentre, the traffic is heavy and high grade street pavements are necessary in certain parts. In other parts and in the suburbs pavements have to be constructed and, maintained on steep grades. Moreover, the geographical situation of the city forees the largest part of the outside vehicular traffic into a few main country lighways.

A proper sclection of road materials is of great importance in a district like that of Montreal where the roads are put to such severe tests, sinee the cost of the materials in place is the largest item in the cost of eonstruetion of a roadbed, and the quality of the materials largely determines the ensuing annual expenditure for maintenance. The demand for more information on the relative road-making qualities of the numerous deposits of stome lying in and near the city, is eonsequently greater here than in other loealities in Canada, and it was in the hope of mecting this demand that the survey was undertaken.

SCOPE OF THE WORK.

The area covered includes the island of Montreal, isle Jesus, isle Bizard. and isle Perrot, that is, not only the area contributing daily suburban traffie but nearly all of the district from which market wagons drive into the eity two or three times a week.

The work eonsisted in mapping and examining all oecurrences of bedrork, field stone, and gravel, and in sampling the more important deposits, for laboratory tests. The value of the different types of material under service conditions was arrivel at by the inspection of pavements and country roads on which they had been used.

ACKNOWLEDGMFNTS.

Mr. John Stansfield of the geological department of MeGill university, made mieroseopic examinations of a number of the igneous roeks of the distriet, from samples collected by the writer. The writer is indobted to him for the names of the igneous roeks used in this report. Thanks are due also to the eity engineers of Montreal, Westmount, Outremont, Maisonneuve, Lachine, and to the numerous quarry owners and operators for a great deal of information and courtesy.

$$
60986-2 \frac{1}{2}
$$

CONDITIONS AFFECTING ROAD CONSTRUCTION.

The country is of a gently rolling character with the exception of mount Royal which rises to 700 feet beside St. Lawrence river. The highest land is generally near the middle of the islands and in very few places does the elevation exceed 100 feet above the shore. The natural grades of the country roads, therefore, are not very steep, but the numerous streets on the slopes of mount Royal have in many cases very high grades.

The islands orer which this survey extends lie betwen the distributaries of Ottawa river and St. Lawrence river, where those two streams join. The main Ottawa and St. Lawrence rivers lie to the southwest, south, and east of the district, and rivière des Prairies and des Milles isles eut aeross it and bound it on the north. The two latter streams are not navigable, but are crossed by bridges and ferries from 3 to 10 miles apart. The broad St. Lawrence river south of the island of Montreal, with only a few wagon ferries and one bridge, is an obstacle to w:agon traffic from the south. Due to this fact truck farming for the Montreal market is not extensively earried on south of the river and the market traffic is confined to the distriet to the north and west, that is, the area surveyed.

This district, espeeially the part on isle Jesus, is thickly settled. Summer resorts are numerous along the river banks north of Montreal and on the shores of lake St. Louis and Two Mountains. Roads leading from Montreal to these resorts during the summer months earry a heavy stream of automobiles besides the market wagons. The road from Montreal East to Bout-del'l'sle along St. Lawrenee river leads to the Charlemagne bridge, the only one cast of Montreal. This road can also be considered as part of the Provincial Montreal-Quebee highway.

Roads in this part of the country are covered with snow during the winter so that the road surfaee is not sulbjected to wear for from four to five months, but heavy frosts and successive thaws are often responsible for damage to the roadbed.

GEOLOGY.

The plain surrounding mount Royal is underlain by roeks of Palæozois age which eonsist of sandstones of the Potsdam formation, magnesian limestones and dolomites of the Beekmantown formation, and limestones and shales of the Chazy, Black River, and Trenten formations. Over these lies a mantle of unconsolidated boulder elay and narine elay and sand, laid down in the Gilacial period.

There are many outcrops of Palipozoie sediments, but they are generally of small extent. In the western part of the district surveyed, Potsdam sandstone appears on the north side of isle Perrot, and small outerops of dolomites and magnesian limestones of the Beekmantown oeeur at Ste. Anne-de-Bellevue and on the west side of isle Bizard. Several outerops of Chazy limestone are found in the middle part of isle Bizard, south of Ste. Geneviève, and at Pointe Claire on St. Lawrence river. On isle Jesus th.s formation forms important ridges, especially near St. Martin Jumetion where it has been quarried on a large seale. It also oceurs at Cartierville and at Borlmoux northwest of Montreal.

Scattered onterops of Black River limestone are found on the island of Montreal and isle Jesus. About 50 feet of the limestone is exposed in an esearpment between the railway and the village at Pointe Claire.

The Trenton formation, consisting of interbedded limestones and shales, is distributed over a wide area on the island of Montreal and on the northeast end of isle Jesus. It is especially well developed about the rity of Montreal and at St. Francois de Salles on iske Jesus, and has been extensively quarried for huilding material and crushed stone under the trade names of " bathe noir " and " bance gris."

Mount Roval eonsists of a core of massive crystalline igneous rocks flanked by beds of sediments mainly of the Trenton formation. The central core consists largely of two kinds of fairly coarse-graned rocks known as essexite and nepheline syenite. The former is coarse in grain, of a dark colour, and varies in texture from place to place; the latter, which is found in smaller amount, is much lighter, of mediun grain, and more uniform in texture.

Many dykes and sheets are found cutting through these rocks and the surrounding limestones. They are amposed of various fine-grained crystalline rocks, geologieally and mineralogically related to the main mass of mount Royal. Among these are sheets of tinguaite outeropping in the northeast part of the city," and quarried for road metal. This stone, locally known as "bane rouge," is a massive, fine to medium-grained, greenish grey rock of a somewhat porphyritic texture. On the slopes of mount Royal in Outremont, on isle Bizard, and near Ste. Dorothée on isle Jesus there are outreops of breccias composed of fragments of Palieozoic sediments and Pre-Cambrian rocks enclosed in an igncous paste of a greenish grey colour.

The greater part of the surface of the area surveyed is composed of boulder clay, but there are a few extensive deposits of stoneless stratified marine elay, capped in places by layers of sand and gravel. In the boulder clay a large pereentage of the boulders are of Trenton limestones, except in the western part of the district where boulders of Beekmantown dolomites are predominant. In addition, many boulders of Pre-Cambrian age have been brought by glaciers from the north and northeast. These are gneisser. granites, anorthosites, ete. The marine or Leda clay forms the cliff which runs from Maisonncuve, through the eity to mount Royal. It is in places eovered by Saxicava sand and fine gravel. A strip of Leda ela. varying to about one mile at its greatest width stretches, north of lake St. Louis, from Beaconsfield to Montreal West, and from St. Charles road along the Ste. Marie road to the west end of the island of Senneville. There, as well as near Beaconsfield, the clay is overlain in places ly patehes of Saxicava sand consisting of yellow, iron-stained sand or of coarser yellow or brown sand with larger, rounded pebbles. These sands and gravels oreur also on the flank of mount Royal and at Côtedes-Neiges. On isle Jesus, patehes of sand are met with at intervals but only over a short distance. Boulder clay is the more frequently encountered drift.

CHAPTER II.

ROAD MATERIALS.

Stone from bedroek is used extensively for roal purposes and is the main elass of road stone available in the Montreal district. Field boulders oecur, but, except for foundation work, they are not used to a large extent. Sand and gravel are to be found in places but only in very small amount.

BEDROCK.

Road stone from the same geological formation in this area has proved to be of nearly uniform quality even where quarried at widely separated localities. For this reason the supplies of road stone of the district have been classified according to the geologieal formations from whici they are derived.

Potsdam Sandstone.

Outcrops of the Potsdam formation oecur only on the north side of isle Perrot. They consist of interbedded fine and coarse-grained, yellowish brown to white sandstones. The fine variety, which is made up almost entirely of quartz, is tough, but the coarse type, which approaches a conglomerate, is soft and a poor road material. The amount of available sandstone is large but the present condition of water-bound macadam roads recently built of this material, on isle Perrot, proves that these sandstones do not cement in the roadbed and do not give satisfactory service even under conditions of light traffic.

Beckmantown Dolomite.

Scattered outcrops of de -se and fine-grained, bluish-grey dolomites and magnesian limestones of the Beekmantown formation are found from Ste. Anne-de-Bellevue to 4 miles east of that place, and on the west part of isle Bizard and isle Jesus. This stone hes given satisfactory results when used in water-bound macadam under ordinary eountry traffic. It is mueh tougher and wears less than the limestones. The deposits are small, however, and are only of local importanee.

Chazy Limestone.

In the western part of the area surveyed, outerops of Chazy limestones occur within a narrow belt across the island of Montreal and on isle Bizard. On isle Jesus outcrops are seen over much greater areas. This formation is in most places made up of massive beds of granular grey limestones and some of the layers consist almost entirely of fossil shells. At cap St. Martin and near the village of St. Martin the beds are exposed over a thickness of 25 feet and vary in character from a coarse-grained,
grey, fossiliferous limestone to a darker, fine-grained roek eontaining irregular, wavy streaks along which the stone has a tendeney to split. Among the more important outerops of this type of limestone are those of Cap St. Martin, St. Martin village, Cartierville, Bordeanx, St. Vineent de Pau!, and Côte St. Mirhel. Quarrying operations for building stone have been carried on for many years in all these places and more reecently some of them have produed large quantities of erushed stone. Within the city limits the only place where Chazy limestone ean be obtained, is from the Villeray quarries. This stone has heen used to a large extent in the construction of water-bound and lituminous macadan roads on isle Jesus and outside of Montreal district. It has made good roads under light trafic conditions, but under heary automobile tratfie the roads wear fast even where a bituminous binder is used.

Black Riter Limestone.

The Black River formation consists of rather thin-bedded, dark, finegrained to compact, splintery limestones with interbedded shaly partings. These limestones ean be obtained at Pointe Claire and on St. Charles road, 1! miles north of Beaconsficld station, where they form ridges standing from 20 to 35 feet above the general level of the country A large quantity of this material has been used for railway construction and more recently some of it was used in tarvia roads in the village of Pointe Claire. Apparently this stone is mueh harder than the eoarse-grained type of Chazy limestone.

Trenton. Limestone.

The limestones of the Trenton formation heve been the ehief source of road material in Montreal and in its neighbourhood to the north and northeast as they are available more than any other rock. In the eity and near it the limestone is of two types, with a third intermediate variety. These are commonly called "bane noir", "banc gris", and "pierre batarde". "Bane noir" is a black, dense to fine-grained, thinbedded limestone with bituminous and shaly partings; "bane gris" is a medium to coarse-grained, fossiliferous, grey limestone oceuring in more massive beds. In the "pierre batarde" the limestone varies irregularly from a eoarse, light grey to a dark, fine-grained stone, the two c eurring together within the same beds. The beds are thin and eontain many bituminous and shaly partings. The more important quarries producing erushed stone from this formation, in the northeast part of the city, are: the Morrison quarries operated by O. Nartineau and Fils (sec Plate I, Frontispiece), the Maisonneuve, De Lorimier, Rogers, and Gravel quarrics.

On isle Jesus the most important occurrence of Trenton limestone is that of St. François de Salles. There the limestone is dark grey and rather fine-grained. It oecurs in very thiek massive beds in which dark, wavy streaks, from $\frac{3}{4}$ inch to 1 ineh apart, are strongly developed and well shown in the weathered rock. The outcrops extend over an area of about 300 acres and form ridges which facilitate the quarrying. This deposit was especially worked for dimension stone (Plate IVB), and large quantities
lave beell obtained. At the present time three companies are producing crushed stone for road purposes and eoncrete. They are: the lennedy Construction Company, the Montreal Concrete Works Company, and J. O. Labelle and Company.

The best road-making stone in the Trenton formation is probably that in which a minimum of the black shales and of the clayey partings exists. The so-ealled "pierre batarde" gives a rather uneven product and is better used as rubble, and the dark grey, fine-grained limestone of St. Fiançois de Salles has less resistance to wear than the "bane noir" and "bane gris" occurring in Montreal.

Igneous Rocks.

Outside of the city of Montreal, practically none of the igneous rocks has ever been quarried for road work. There are, however, on the island of Montreal and on isle Jesus a certain number of dykes and sheets of dark, basie, igneous rock which should make excellent road material. The anount available in certain cases is quite large. The best two doposits located during this survey lie immediately east of the village of Ste. Dorothée (Plate III B) and $1 \frac{1}{2}$ miles northeast of St. Vineent de Paul on the west side of Terrebonne road. In both eases the rock is massive, dark coloured, fine-grained, and extremely tough.

Practically all the igneous rock quarried and crushed for eonerete or paving purposes in the eity of Montreal is obtained from outcrops of th.ruaive lying between Côte de la Visitation and Maisonneuve. These outerops occur in lens-shaped sheets and reach in places a thickness of 35 feet (Plates II and III A). The timguaite generally overlies Trenton limestone, but is quarried sparately. The stone is known under the trade name of "hane rouge". It is a massive, medium-grained holocrystalline and porphyritic greenish grey rock of rather uniform texture, with a few feet of dark greenish, glassy, and somewhat porphyritic rock near the contact with the linestone. In certain places, however, the rock is altered to a whitish colour and is of inferior toughness.

A great deal of this stone has been crushed and sold to the eity for strect paving during the last ten years, and the amount available is now limited. The outerops s:outh of Masson street, with tho. of Iberville street, are the main oecurrences and the only deposits that can be quarried in the future. The Morrison Quarry Company, Jas. Rogers, and Antoine David :tre the only firms quarrying bine rouge at present.

Formerly large quantities of nepheline syenite were obtained from the Corporation quarry at Outremont on the northwest flank of mount Royal, but this quarry has not been worked for several years. This and other first-class deposits of stone are no longer available because of the growth of the eity around them.

Many thousand eubie yards of igneous rock have also been quarried for road work from a massive dyke of fine-grained, greenish-grey rock, probably nepheline syenite, eutting through a ridge of marmorized limestone and breerias on the west side of Roekland avenue, Outremont. This roek is extremely tough, but the amount available is comparatively small, and
the irregular nature of the dyke makes quarrying very difficult. Many outcrops of nepheline-syenite nad essexite oceur on monnt Roynl, but they are eithor in Monnt Royal park or in the Côte-des-Neiges cemeteries where quarrying will probably never be allowed for commercial purposes.

BOULDEIZ DFIPOSITS OIZ FIELD STONE.

Field stone piled in feness or heaps is not uniformly distributed over the area surveyed, but is found in large quantities in the western part of the island of Montrenl, on isle Bizard, and in many seattered areas on isle Jesus. On the island of Montreal the field stone is conerntrated in a belt stretching along the north side of the island from a few miles northeast of Ste. Anne-de-Bellevie to Cartierville. It is especially plentiful near Ste. Geneviève and Saraguayville atong rivière des lrairies. Near the city of Montreal and in the eastern part of the island, field stone is very scarce, expept in one arca north of Côt• St. Michel road, 2 miles from the city. On isle Bizard there are large quantities over its entire arca. The main boulder deposits on iste Jesus are found near Abord-i-Plouffe, ste. Dorothée, and St. Vincent de Paul.

The amount of piled field stone was measured fence by fence and the fenees grouped into mapped ureas. The total amount measured was 575,752 cubic yurds, distributchl as follows: istand of Montreal 282,673 cubie yards; isle Jesus 153,135 cubic yards; and isle Bizard 139,944 cuhic yards. Of this, 459,578 cubic yards were estimated to be under 1 foot in diamoter, that is to say about 80 per cent of the fied stone examined is of surh size as to permit handling in a small crusher without preliminary breaking.

Composition of the Aggregates.

The composition of the field stone varies greatly from one deposit to another. It is expressed here in percentages of limestone, dolomite, sandstone, and igneous rock. These four classes of stonc are the chicf groups muder which the ficld stone can be more easily elassified. The average composition of the stone in each acica was calculated by ineans of estimates made in the field on cach pile. In every case estimates of the composition were mate both on the stone under one foot and that owe ne fra. . As a rule the percentage of igncous rock is greater in the bot. rs ose one foot. It is genernly truc, also, that the composition is ir ted to the underlying bedrock. Thns, the percentage of limestone. dolomite. or sandstenc is high in fences lying chese to mintrops of one of these rocks or where the bedrork is to be found close to the surface. For instance the field stone on isle Perrot consists mainly of the underlying Potsdam sandstone, but it is searee elsewhere. Dohmites and magnesian limestones are fond in proportions ranging from 40 to 90 per cent in the composition of deposits lying in the western part of the island of Montreal near Ste. Anne-de-Bellevue, Baic d’'rfé, and Beaurepaire, and on isle Jesus west of Ste. Rose, where outerops of bedrock of the Beekmantown formation are to be found. Neither of these two classes of stone is to be found cast of the healitios above mentioned.

60986-3

Limestones and igneous rocks are more unifornly distributed; they are found in nearly every deposit in proportions varying from 10 to 90 per cent. The percentage of limestone is very high especially in deposits lying close to outcrops of that rock, such as those near Ste. Genevieve, Beaconsfiedd, Pointe Claire, and (artierville on the island of Montreal, and near Abord-à-Plouffe, St. Martin, and St. Vincent de Panl on isle Jesus. On the island of Montreal the deposits at Saraguayville mud C'Ote St. Nichel carry over 50 per cent of igncous rocks. The niore important deposits of similar composition of isle Jesus are those lying near Ste. Dorothée, Laval des Rapides, Pont Viau, and between St. Martin and Ste. Rose.

Charucter of the Boulders.

The character of the field stone boulders resmbles that of the hedrock from which they are derived. The Potsdam sandstone boulders are white to reddish brown and from fine to very coarse-grained. The finer-grained variety is fresh, whereas the coarse sandstone, which is almost a conglomerate, is much weathered. The dolomites and magnesian limestones of the Beekmantown formation are more uniform and although weathered on the surface to yellowish brown they are generally fresh inside. They are finegrained and of a steel to bluish-grey colour.

Very coarse-grained Chazy limestone, weathering to reddish-grey, forms over 75 per cent of the aggregates near Ste. Geneviève, Cartierville, Abord-à-Plouffe, and St. Martin, where outcrops of Chazy limestone occur. Dense, dark blue Black River limestone is found in large proportions to the north of Beaconsfield and Pointe Claire. Elsewhere, the Trenton limestone varies from fine to coarse-grained and is generally weathered on the surface to a dark colour.

Igneous boulders consist chicfly of greyish and reddish granitegneisses, of hornblende and garnet-gneisses, more or less foliated and from fine to coarse-grained in texture. They also oceasionally included light coloured anorthosites. All of these rocks are of Pre-Cambrian age. They are gencrally well rounded boulders and fairly fresh. A certain amount of fine-grained, often porphyritic, dark basic dyke rocks are also found in many deposits. These rocks, as a rule, resemble the various dykes which rut through the limestone fomation of the particular locality where they are encountered. They are angular and of a rusty appearance.

SAND AND GHAVEL.

Small patches of sand and gravel are found in places in the district of Montreal, but they are too small for any but local use. There are no gravel roads and nearly all of the sand and gravel used in the city pavements is imported. A large proportion of the sand used in concrete or sheet asphalt in Montreal and its suburbs comes from Ste. Emelie Junction, Joliette. A large number of firms in Montreal import their sand and gravel from the counties of L'Assomption, Terrebonre, and Two Mountains.

RESULTS OF LABORATORY TESTS.

FXPIANATION OH THNTM

Laboratory tests have beon devised to furnish a rapiol meams of judging of the value of a rock as a road metal. In these tests am at tempt is mate to approximate the condition which will obtan in a roadhed imder traffie. The more important tests are for the resistance to abrasion (perecntage of wear) and for the resistance to impact (toughess). Trests are also made for harduess, spercifie gravity, and ahsorption.

The metionds for the determination of the physical properties of road materiats are described in Bulletin No. 347 of the C.S. Department of Agriculture, ly F. II. Juckson, jun., and in Memoir 85, Geolowiral Survey of Canadm, by La licinecke.

Alrasion.

In the abrasion test fifty partickes of the rock, of uniform size, bet ween 2 and $2 \frac{1}{2}$ inches in diameter and weighing in the aggregate within 10 grammes of 5 kilograns, are revolved in a cast iron cylinder set at an angle of 30 degrees to the axis of the machine. After 10,000 revohtions in the abrasion machine, the 5 kilogram charge is washed on a 16 -mesh sieve, and after drying the loss in weight is determined. This loss ealculated to per cent is used to express the wearing quality of the rock and is called t'ie per eent of wear.

An abitrary factor, the "French eocfficient of wear" is ako used. This is equivalent to 40 divided by the per sent of wear. This coefficient was devised to give an increasing seale of numbers to represent an increasing ability to resist wear.

Toughness.

The toughness test is made on a rock cylinder 25 millimetres in dimueter and 25 millimetres high, carefully ent and ground true from a diamond drill core drilled from a solid block of the rork. This eytinder is placed on the platform of the impact machine where it is subjected to blows from a 2 kilogram hanmer transmitted to it through a plunger with a spherical end resting on its upper surface. The height of the drop of the hammer is inereased by increments of 1 centimetre until the point of faihre of the test piece is reached. The height in centimetres of the fall of the hammer causing the failure of the test cylinder is recorded as the toughness.

Hadness.

The hardness test is performed on a diamond drill core, $\mathbf{2 5}$ millimetres in diameter. This core is held freely in a vertical position and under a weight of 1,250 granmes against a disk revolving in a horizontal plane and carrying an artificial quartz sand (30- to 40 -mesh). The hardness is expressed by an arbitrary number derived from the equation: harchess= $20-\frac{1}{3} \mathrm{~W}$, where W is equal to the weight in grammes lost through 1,000 revolutions of the disk.

60986-3 3

Specific Gravity.

Specific gravity is the weight of the material compared with that of $2 a n$ egnal volmme of whter. and is obtained by dividing the weight in nir of a rock fraguent he the differonce betwern its weight in nir and in water. The weight of a culbic foot of rock is found ly multiplying the sperific gravity by $62 \cdot 37$ pounds, the weight of a culie font of water.

Absorption.

The absorption test determines the monom of water which the roek will ahsorb. Vahurs for absorption are expressel as pounds of water absorbed per cubic foot of rock. This value is easily computed from the known specific gravity of the rock and from the weight of water ohserved to be ubsorbed by a sample during 48 hours immersion.

Recommended Valucs for Per Cent of Wear and Toughness.

The abrasion test is supposed to simulate the abrasion of the rork fragments in the roadhed moler traffic. The impart of the hammer in the tougheses test represents the blows of horses' hoofs and of wagons passing over irregularities on the road, and the harchess test is ant attempt to duplieate the grimbing action of the steel tires of vehieles.

As a result of comparisons anade by engineres between laboratory tests and the wear of the stome in practice, cortain limits have been set mpon the values for the toughess and percentage of wear of stone that is to lon used in macadam comstraction. The Ameriean sorioty of Civil Engi ers reommended, in 1917, that stone nsed in water-bound maradan roads shall have a pererntage of wear of not more than 5 , and a toughess vahe of not hess than 6. The specifications, adopted by the Ameriean E-rctety of Mmicipal Improvement in 1914, require that stone used in the wearing course of bituminons matcadam or lituminous conerete roads shall have a per cent of wear of not more than 3.7, and a toughness of not less thar 13. The Cnited States Office of Public lRoads sets the minimum limits of tomghess for stone used on roads suljected to traffic of less than 100 vohiedes a day at from is to !, exerpt in the ease of hituminous concrete where the lower limit is 7 . On roads suljeerted to from 100 to 250 wehicles a day the minimm toughess is 10 for water-bomed unacadam and bituminoti, macadam, and 13 for hituminots concrote. For roads carrying over 2.00 vehicles the minimum tonghness is 19 for water-hound macarlan, 10 for macalam with hituminous mat and hituminous maradam, and 13 for bituminus comerete.

The sperifications used liy the eity of Montreal repuire that erushed stone shall be elassed into three grades, aceording to gualities which shall be determined by teste enodurted in a properly equippel laburatory. The properties detern and absorption. M: shal! be French coeffociont of wear, toughness, with respeet to eoefficent meeting the requirements of any of the grades requirement with respeet to absorption, mans, on consideration of the engineer, be classed with the higher gratle. Grade "A" a rock which
Gencral Limiting Values for Brokien Stome.

	Tratir.'	1,imuting calurs.			
Type of emarituction.		Per cont	Ir.aneticwni	Toushomes.	Hariamer
"Water-bound macadam. plain or with dunt palliative treat nıent.	1.asht.	5.0 to 3.0	5 to.	5 tu	10 to 18
	Momeri:	5.0162 .5	91415	10 tor	14 or owvo
	Heary	2 aram	16 ire coter.	19 or ontr.	17 er aver
Hacadam with bituminous carpet.	1.1slit to monderate.	S.t ion hame.		3 unover	-
situminous macadam with went cont.	Monlerate to bravy	c. 3 ir hmo	\% es over.	10 or ours	
Bituminous concrete.	linhet to muderate.	55^{3} ur hers.	\% ex wer	ios over	
	Woxlerate to heavs.	4.16 out hav.		13 catome	
Hinder course for sheet asphalt or Topeka type	Any	53.5 .0 kmo		nour ure	16 or mer
1 'ortland cement concrete.	Moxidrate to hatars	13 ar hom		- 0 oner	
Stone paving bleck ${ }^{2}$	Any		3 or 10m	9 ar oner.	- 16 ar everer
Jlroken atone foundationn Cement concrete foundations.	Any			3 30\% over	

[^0]has a toughness of not less than rightern (18), in French coefficient of wear of not lews than fourteen (14), bud an absorption of not more thma six-tenthe (0.6) prount per cubic fout. (irucle " B " is a rock which has a toughness of not lews than ten (10), a French coeffielent of wear of not less than seven (7), mal min ahsorption of not more thme one (1) pound per cubic foot. Cirule " ("" is a rook which has a toughenews of not less thnu seven (7), it Frourh coefficient of wear of not less thin five (5), and an absoprtion of not more than one und fivetenthe ($1 \cdot 5$) pound per cubie foot.

\# HDROCK

The results of laboratory tests mule upon bedrock are given in Thble I, puge 17. The figures nre, in eaeh ense, the nverage values for tests male on chpliente samples of the rock. For quarries, where some notiennble variation in the charneter of the stone was observel in the same formation, samples were collected from anch phase of the rook. The figures, thercfore, ure in many enses, and especially for the more important quarries, the uverage values for results of tests made on several samples taken in different parts of the yuarry. Such results can be comsidered ins representatives of the value of a croshed product produed from the deposit.

An examination of the results of the tests givell in Table I shows that the values oltained for the per cent of wear and the toughomss of samples collected from the same rock formation, though quite widely separated throughout the Montreal distriet, are uniform. A fairly narrow range of variation can be set for the per cent of wear and the toughness for bach rock formation which will include by far the majority of the results of teste obtained for the samples of rook colle ecteri front cach formation. This ramge of variation is conveniently expressed by the average ber ent of wear or tonghess for the rock formation and tho average deviation from such average value shown by the results of tests.

The rolatives pereentages of wear and toughoess of the various elasses of rock are indicated graphically in لigure I, page 13, and are compared with limiting values for water-bound maradan and bituminous macadan. It will he serel from the diagram that the inost durable stone in the district of Montreal is of igmons origin. 'The average values for errtain dykes or sheets of ignous rock for instane are 2 - 4 for wear and 22 for toughness, as shown in the diagram. The pereentage of wear of all exeept one of right samples that were tested, ranges betwern 2 and $2 \cdot 4$, and the toughnoss varies from 18 to 30 . Vufortunately only a small quantity of this elass of roek is available. It oecurs in narrow dykes or thin sheets thongh the limestone formations and camot be readily quarridel separately. However, the amome available ir doposits near Ste. Dorothec (Nap 1747, No. 97, Plate 1II13) and St. Vincent ie Paul (Map 1747, No. 128) is quite large. Their respertive values for wear are 2 and $2 \cdot 2$ and for toughness 20 and 29.

Next in the order of durnlility in the timguaite or "lmane rouge". Six mamples of this type of rock gave very miform resulta, the prerentage of wear is 2 and the touphnems variex from 19 to 29 with an average value of 22. This is the hest rombemaking ntone that is nvailabhe nar Montreal and it has given gool service in varions typen of pavements in the city of Montreal, Outremont, Westmonit, and Maisombelise.

Figure 1. Relative toughness and percentage of wear of various kinds of bedrork, in and near Montreal.

Nepheline-syenite proved also to be a first class road material. it does not wear any more than the tinguaite and its average toughness, althongh lower than that of the latter, is still high. One sample of this class of rock taken from Stinson Reeb quarry in Outremont has given the best results of all the rocks tested. The per eent of wear is as low as 1.8 and the toughness is 30. Where the nepheline-syenite is coarsegrained or where it holds inclusions of essexite, as is the case in the Corporation quarry, the per cent of wear is slightly higher and the tonglmess lower.

Coarse-grained essexite from mount Royal, although showing little wear, is a much weaker rock. Its toughess valne is 10 , that is, below the minimmen set for bituminous macadam. This may be due to weathering.

The results of test 3 upon the dolomites and magnesian limestones of the Beekmantown formation indieate that they ean be safely used in bituminous macadam and in water-bomnd macadam roads under traffic conditions 1p to 250 vehiches a day. The average per cent of woar for five samples which were collected is 3.1 with an average deviation of $\pm 0 \cdot 5$ from this value, and the average toughess is 16 with an average deviation of ± 7. This class of rock, however, does not eement well in water-bound macadan roads subjected to light traffie.

Potsdam sandstone with a per cent of wear of 3 and a toughness of 13 conld be economically used with a bituminous binder, but its poor cementing vahe will prevent its use in water-bound macadan.

The values for the various elasses of limestones are not very far apart. Figure 1 shows that of the Chaze, Black IZiver, and Trenton limestones, the best material is the Black River limestone. This finegrained, dark rock is crual in durability (per cent of wear 3.1) to the dolomite, but it is more brittle and its average tonghness is 8 with an average deviation of ± 1.5 from this value.

Chazy and Trenton limestones gave fairly uniform results under the tests. The figures shown in Figure 1 are the average of more than twenty samples each, that is a much larger mumber of samples were tested than for any other type of rock. It will be seen that the Chazy limestone from isle Jesus is softer than that oceurring on the island of Montreal, and the per cent of wear and toughness of this class of roek from certain deposits are in some rases below the minimun values recommended for water-bound macadam. The average per eent of wear for Chazy limestone from the island of Montreal is $\mathbf{3 . 9}$ with an average deviation of ± 0.1 from this value, and the average toughess is 7 ± 1. The values of Chazy limestone from isle Jesis are: per cent of wear $4 \cdot 6$, deviation $\pm 0 \cdot 5$, toughness 6 , deviation $\pm 1 \cdot 5$.

Tests have shown some varieties of the Trenton limestones to be better than the Chazy limestone, but as a elass they are of about the same quality. The average per eent of wear for Trenton limestone from both the island of Montreal and isle Jesus is $4 \cdot 1$ with an average deviation of ± 0.6 and the toughness is 7 with an average deviation of ± 1.5 of this value. The average values for each one of the different types of

Trenton limestone, such as deseribed muler the heading of bedrock in this report, are given below.:

-	Avorage prer retit weitr.	Avorage toughness.
Banc noir (dense, Matk)	$3 \cdot 1$	8
Bane gris (modinm to coarse, grey).	$3 \cdot 3$	7
Pierre batarde (nneven with shaly parimgsi..	$4 \cdot 7$	

FlHiLD sTONH.
Field stome forms a cheap and often valuable sourer of raded stone. In the production of crushed stome from boulders the crusher can be located next the proposed highway, the boulders hauled there in winter and put in the erusher with little or no prelininary breaking. There are no quarrying expenses and the owners are generally willing to dispose of what has to them heen a souree of labour without profit. Field stones in large quantities oceur in parts of Montreal district.

The disadyantages of using this form of material for road surfacing arise fron its heterogencons character, which may cause one section of a road to wear more rapidly than another or may give rise to uneven wear in the same section of road.

The boulder deposits are agregates of many varieties of stone, each of which may vary in roal-building character, and the quality of the agregate must vary according to the variation in the quality and proportions of its component boulders.

It was found by sampling separately each of the man classes of stome found in the aggregates that the quality of any one variety was fairly constant over the area surveyed.

The results of abrasion tests upon samples of ficld stone are given below:

| Rock species. | |
| :--- | :--- | :--- | :--- |

60986-4

The igneous gneisses, dolomites, and fine-grained limestoncs are probably the best classes of field stone for road work. The igneous rocks :and flolonites, however, do not cement as well as the limestone. Although the sandstone wears less than all other types, it can not make by itsolf a suceessful water-bound macadmen because of its extremely poor cementing power. Howerer, mixtures of igneous rock, sandstone, and dolonite have given fairly good results in water-bound macadam construction in other parts of the eountry. Broken stone roads south and southeast of Stc. Dorothe, built of mixtures of igneous rock, dolomit?, and limestone, were in good condition after two years of service. The top sereenings had herol washed out and shallow ruts had formed, but the roads apparently wear hess than other roads in the same locality, built contirely of quarried limestour.

Composition estimates of each boulder deposit in the distriet surveyed :are to be found in Ap! modix B. Kinowing the composition of the ageregates, their durability or resistane to abrasion can be arrived at. Experiments comlured by K. A. Clark established the fact that the prerent of wear of any combination of rock species could be caleulated from the per cent of wear of each species and their relative proportions in the bination. If the per cents of wear of the various species are expa ed by $W_{1}, W_{2}, \ldots \ldots W_{n}$ and the percentage proportions in which they oceur in the misture $\mathrm{C}_{1}, \mathrm{C}_{n}, \ldots . \mathrm{C}_{\mathrm{n}}$, the per cent wear of the mixture W_{m} is given by the formula $W_{m}=\frac{\Sigma C W}{100}$. For instance, the per cent of wear of the aggregate under 1 foot, in the boulder deposit east of Senneville (Map 1747, No. 1) can be caleulated thus:

$$
W_{m}=\frac{3 \cdot 2 \times 10+2.2 \times 15+3.3 \times 75}{100}=3 \cdot 12 \%
$$

Mines Branch, Dept. of Mines, Sum. Rept. 1917, p. 126.
Table I.-Results of Tests made upon Bedrock. ${ }^{1}$

Table I.-Results of Tests made upon Bedrock-Contimued.

	Locality and owners.	Rock species.	Age or Iormation.	1haysical propertien.						
$\begin{aligned} & \mathbf{M a p}^{2} \\ & \text { No. } \end{aligned}$				(Per $\begin{gathered}\text { Per } \\ \text { cent } \\ \text { wear }\end{gathered}$	French roel. of wear.	Tough ness.	Har.Iness.	Spec. grav.		$\begin{aligned} & \text { orp. } \\ & \text { be. } \mathrm{ft} . \end{aligned}$
47	Quinlan and Robertson quarry, Crite st. Michel.	Leland of Montreal-concluded.Limeatone		$3 \cdot 5$	11.4	6	14.7	2.70	0.1	
		Fourchite	labeozoic	2.4	16.7	15	$17 \cdot 3$	2.75	$0 \cdot 6$	
52	Fast ol Decellex st.. Cote-des-Nieigex.	1 Fsexite	Palzozoic	$2 \cdot 5$	16.4	10	18.3	3.24	0.2	
$5: 1$	Corporation quarry. Outremont	Nepheline syenite	"	$2 \cdot 4$	16.7	17	18.2	2-68	0.7	
		Pyroxenite	.	$2 \cdot 2$	15:	12	18.2	$3 \cdot 10$	0.4	
		Netantorphimed linuestone	*	3.5	11.4	S	13.8	2.77	0.1	
54	Stinson Reeb quarry, Outr :ont.	apheline syeloite	*	1.8	22	30	$1 \mathrm{~N} \cdot 4$	$2 \cdot 94$	$0 \cdot 3$	
5	Rockland A ve. cut, Outremont.	Camptenite	*	$2 \cdot 0$	20.0	24	$1 \mathrm{~N} \cdot 1$	2.90	$0 \cdot 2$	
. 5		Metamorphowed lime stone und breccias	*	$3 \cdot 6$	13.3	17	1 A .1	2.80	$0 \cdot 1$	
56		Limuetone	Trunton	- ${ }^{2 \cdot 7}$	14.8	6	$14 \cdot 9$	2.72	0.2	
57	Jos. Gravel quarry, de. Fheurimont and Chamburd sta., Montreal.	- -	**	- 4.0	$10 \cdot 0$	9	16.7	2.70	0.3	
		Sandy Iolomite	1alatozoic	$4 \cdot 6$	$10 \cdot 0$	14	15.8	2.73	1.0	
38	Stinson Reeb quarry, Bellechusse and Chambord sta.. Montreal.	I.imestone	Trenton	$3 \cdot 6$	11.1	8	16.2	2.71	$0 \cdot 0$	
39	O. Martineau and Fils quarry. Carriare and Maryuette sts., Montreal.	. ${ }^{\circ}$	*	4.2	93	5	14.3	2.71	0.1	
60	De Lorimier quarry. Iberville and Maswon sts., Montreal.	"	*	$3 \cdot 4$	11.8	5	$15 \cdot 6$	$2 \cdot 71$	$0 \cdot 2$	
		Impure sanisatone	Palanzoic	$2 \cdot 1$	$20 \cdot 0$	30	18.9	$2 \cdot 97$	$0 \cdot 1$	
61	Jas. Rogers' quarry, Tberville and Masson sts., Montreal.	Limestone	Trenton	$4 \cdot 3$	$9 \cdot 3$	7	15.7	2.71	0.2	
132	Jas. Rogers' quarry, south ol Masson st.. Montreal.	"		$3 \cdot 7$	$10 \cdot 8$	9	17.2	2.70	$0 \cdot 3$	
		Tinguaite	Halmeroic	$2 \cdot 0$	20.0	19	18.6	2.58	0.2	
		Fourchite	"	2.8	$14 \cdot 3$	1 -	-	-	-	

Table I.-Rersults of Tests made upou Betrock-Concluded.

$\xrightarrow[\substack { \text { Mapr } \\ \begin{subarray}{c}{\text { as }{ \text { Mapr } \\ \begin{subarray} { c } { \text { as } } }\end{subarray}]{ }$	Lexality andounerx.	Roek sprvic\%.	Age or foruation	Phracia phomertien.					
				$\begin{gathered} \text { Per } \\ \text { Hent } \\ \text { Hen } \end{gathered}$	$\begin{array}{\|c} \text { French } \\ \text { of wifler } \end{array}$	$\left\lvert\, \begin{gathered} \mathbf{T}_{\substack{\text { rough }}}^{\text {nem }} \mid \end{gathered}\right.$	Mard- now.	$\underset{\substack{\text { Spres } \\ \text { Rrave }}}{ }$	
114			Chancluyled.	42	9.5	7	14.3	2.69	0.5
116		..	Trenton	3.9	110.3	;	15.3	2-70	0.1
11.		C:Muntunit-	Pralarazoic	24	$16 .:$	1	17.2	2×9	$0 \cdot 8$
		1.inustome	Trentom	41	9.	6	14.	2.70	$0 \cdot 2$
120		"		$5 \cdot$	-0,	-	-	2.76	$0 \cdot 2$
92		.	chazs	12	9.	6	$1+3$	$2 \cdot 1$	$0 \cdot 2$
123		"	-	43	9.3	e	112	2.io	$0 \cdot 2$
127		*	Trenten	3.5	11.1	5	H.9	$2-70$	$0 \cdot 2$
128		Tinguait"	$1{ }^{\text {rulurazosie }}$	$\because 2$	1×2	9	19.5	29	$0 \cdot 4$
132	Felix Latulle duaxry, si Franeoin in sillte	tinuestone	Trenton	+4	9.1	6	14-6	2-:30	0.4
133		-..-	..-	3.6	$\underline{11}$	\%	14.7	2.72	0.5
134	Kennelly Conat rution Co quarry, is Prancrio da sallex	*	-	3.9	10.3	8	14.*	2.71	0.4
120		"	*	3.5	11.	:	14.5	2.72	0.8

Appendix A.

DEFOSITS OF BEDROCK.

Island of Montreal.

No. I. North side of isle Perrot, I'otsidim formation. Outerops of fine to coarsegrained, vellowish brown to redhish samdstones are exponed along the sit. Lawrenee river from the village of Isle Perrot Nord to the east end of Sherringtom park. Nternate berls of fine-grained, quartzitie, and coarse-grained samdstone enclosing binds with pebbles up to inch, are exposed to a depth of 5 warde in a patry meamuring 125 yurds by 100 yurds. The fine-grained material, which would make a fairly durable roadstone, amonites to about one-thitd of the whole faee. The coarse-grained suidstone has proved to be unsat isfactory where issed in water-bound matedam construction.

The beds vary in thickues from 6 inches to 2 feet. Approsimate strike of beds is horth io degrees east with a dip at low angle to sonthest. Main jointes strike northwest, dip (6) degrees, and are crossed by another set at right angles.
stome was formerly quarried for eamal constmetion by the (ienoral Constructiont Company. The quarry is now idle. The present owners are (Dontreal. Qamry floor is dry for qreater part of sunather and unar enough to river shore to make transportation of produet by water feasilde. The mount avalable is great. stample tested, see Table I.

No. 2. One mile east of therrington park, isle Perrot. Potsibum formation. Whterops of thin-bedded, medium to coarse-grained, white to vellowish brown salndstome. The leposit extends on cither side of the road and is mostly covered with light hash. The stone is fresher and more ceven than in No. 1. About in 0 o cubic yards were used in ome seretion of a water-bound maceadan roat on isle Perrot, where the traflic is very light. The ro:d wats exammed ufter one year of service. Thought the roadbed has kept its nhape, the top stone sereenings did not seem to have bouded. Simple tested, see Table 1 .

No. 3. Ste. Anne-de-Bellevue. Berkmantown formation. Flat onterops of dolonito and magnesian limestone ore exposed east of the senneville road on a suburban subdivision owned hy. A. Haher. The stone is fine-gained, steel blaish grey, with irregular streaks of dark, fine material and caleite crystals. Five feet of it are exposed in a quarry solatas hy 40 yards in extent. Owerburden ti inehes to $1 \frac{1}{2}$ feet of s:muly day. The beds dip to northwest with vertical joints ruming north 10 dererees to 30 degrees west and north so degrees east. The anome of stone available is linited. Lamed vahes are high and the promal-water level lies close umber the apper surfare of the stome so that garrying would Ge expensive. some of this stone was used in the ronstruetion of a seetion of the semmeville road (hituminons naradam) a few years ano, and more recently in the emstruction of a coment conevete road about ono-hats mile long passing throngh the outerop areat. In hoth rases the stone prowed to be fairly durable. The results of laboritory tests upur this material ure given in Table I.

Vos 4 and 5 . Small outerops of stone resembling that in No. 3 orcur north of the village of Ste. Ame, on the Mebonald Igrieultural College and Ner Closh farms. In both plares there is an old opening from whid stome has bero obtained for buiding purpores. The amont avalable is apparently small and the chances for fuarying are por.
 14 feet of impmere, matnesian limestane and dolonite are expowed in a pharry forated on the east flank of at rige ruming lenethwise on Itemy Morgan's stock farm. Ther averate character of the stome is fine-grathed, bluish gres, weathering yellowish brown, with calcite reystals and thin streaks of dark material. Fonme of the byers alse rontain poekets of black derty material. The upper 1' $^{\text {feet consist of fine-gratued, white mand- }}$ stone overlain by 1 to 2 feet of boulder elay. The beds lie nearly flat and vary from i imehes to $1 \frac{1}{2}$ feet in thiekness. The stone is much jointed, partly fresh, partly weathered Abont 14,000 enbic yards have been exeavated, ath used largely in the eonstruetion of ond sotion of the semeville road (bitmmons maradan) and of private roads wh the strolk farm. simple texted.

Sow 7 to 10. Betwern Baie d'Urfó and Beaurepaire stations. Berkmantown formation. A series of small onterops of fine-graimed. bluivh grey magnesian limestone and dolomite, weathered to redilish grey on the surface. The more important lies on lot δ, town of Bearonsfielh, and covers an arem of 150 yards by 150 gards. There is very litthe elinmer for guirrying.

No. 11. Cote Ste. Maris, lot No. 179, Bureknantown formation. Stone simitar to
 of Stc. Maric roind.

So. 12. Ste (imuviè pariwh, lot No. 229. Chazy formation. Alwat one-tuarter mito wouth of Dise i l'orme, sunall outcrop of fine to medinm-grained limestone. The ambuit avaitalbir is small.

 The extcont of drposit in both eares is sumall.

Xo. 15. Town of Braconsfield, lot No. 170. Brekinantown formation. About onfo quarter mile south of tite. Marie road, \bar{z} foet of fine-grained, bhish grev dolonite are exposed in a small opening along the erge of a bush. The stone is thin-hedded, weathering to yellowinh brown, and contains crystals of calcite. It lips nearly flat. I wath quantity of it was used hy farmers to repair cartle roals.

No. 16. Town of bearonsfield, lot 19. Abont one mile west of the station road, on the north side of the new highway: Owner: llon. J. L. Perrou, Montreal. Beekmantown formation. Dense, light bluish-grey dolomite breaking into sbarp angular fragurents. Bedes varying from 8 to 16 inchess in thickuess and separaterl low thin layers of dank whales are expesed to a depth of x feet in an irregular-ulaped gu:ury: The stone is fresh except in the upper 3 feet where it is multh weathered. The overliurden eonsists of 1 to 2 fret of dark elay. The berls strike north 65 degrees east with slight dip to southeast. The main sets of joints run north 75 degrees east and soutio 6.5 degrees east. About 3,000 cubic yards of stone has been quarried and used in the construction of bituminous masadam roids in the town of Beaconsfied sinee 1914. More stone can be easily obtainet. The deposit forms a slight elevation exteuding a few hundred feet westward and nort loward. Sumples were eollected separatrly from the north and the sonth wall of the cunrry; the results of laboratory tests indicate that this stone has a remarkable resistance to both abrasion and impact. It is a very durable road stone aud can be considered of better quality than any of the other sedimentary rocks eneomenterel in the district.

Co. 17. Town of Beaconsfich, lot 18. Chazy formation. South of the railway an are: measuring 100 yards by 30 yards where outerops of limestone are scen. Sitone weathered on the surface.

No. 18. North of the railway, lot 21. Another outerop area of Chazy limestone, 180 yards by $2 x$ yards in cxtent. Fory eoarse-grained limestone weathering dark preyThe inposit located in a light bush forms a rilge which reaches about 15 feet in height.

No. 19. Town of Bearonsfich, lot 25. On the Allan farm. Chazy formation. In an old quarry 36 yards hy 20 yards, about 11 feet of thin-bedded stone exposed. Coursegrained, bluish grey limestome with shaly partings. The beds dip slighty 10 sontheast, with vertieal joints ruming morth 15 degrees east and north 75 degrees west, not very far apart. The deposit, 300 yards ly 200 yards in extent, lies along the edge of a bush one-half mile from the ralway. The overburden is light. Some of this stone was used for rough building stone. Raither soft road material.

No. 20. Pointe Claire parish, lot 162. Immediately south of Ste. Marie road. Chazy limestone outerops along the edge of a ridge rising to abont 2.5 feet. The stone resconbles that in NOs. 18 and 19 . Six feet of it is exposed in places. The overburden is thick.

No. 21. Village of Pointe Claire. 13lack River formation. Owner: Grand Trunk Railway Company. An extensive deposit of limestone occurs onequarter mile south of the railway and threc-quarters of a mile north of lake St. Louis. The limestone forms a ridge standing about 35 feet above the general level of the country and extending in an east-west direction over a distance of three-quarters of a mile. The width of the ridge ranges from 100 to 300 yaris.

The central part of the ridge for a distance of 600 yards has been entirely removed and on both sidery of the roat leading from the village to the station, the stone exposed in a straight cut wall, $3 \overline{5}$ feet high, consists of 10 feet of dense to fine-grained, light-coloured
limestone eontuining ealeite erystals, overlain ly $2 . \operatorname{feet}$ of very fine-grained, dark, yplatury limestone with shaty partings. In the npper part of the wall the layren nere not wollalefined, but the lower beds are massive. Two umin wete of wertieal jointa wtrike northeast and southerast.

At different intervals of tinue extensive gharying oprations have herit earrien on
 for the construction of brilge piers. A few yars aki ernshed mone was promberd by the Meleod Construction Company of Montreat, for a filtration plant at Pomes Sh. Charlew. The quarry is at present inlle. The western part of the ridge is now oreppiod by andif
 level thom of the old quarry would favour :a remewal of oprations. Situple texted.

 east. Quarry draius liy itarlf.

 in oferations in the summer of 1916 .

The deponit is contimous to the ohl (irand Trunk Lailway furry to the northwest, and large gutatities of stone are available be working it in that diretion. Tu the rast the ritge flattens and no outerop is seen. This matrorial has a sumaller per cent of woar than the awrage for limestone, but it is brittle. Tarvia romes built with it in 1014 anm maintaned were in fair condition in 1917. Fimple tested, see Tathe I.

No. 23. 1'ointe Claire parish, lot 32. Blank River limestone. Simall muterop, 300 yards morth of railway and 200 yards cast of sit. Charles road. The stone resembles that in Nos. 21 and 22 . No aldvantigeous fertures for fature devilopment.

No. 24. Pointe Claire parish, lot 143. Gwners: Géáon Meloche, farmer. Blark Liver formation. Limestone ridge stamling bearly 2.5 feet above the weneral lowel of the surroumlings and extending casterly from St. Charles road for a distaner of tok) yaris amb over a width of from $\mathbf{5 0}$ to 7 i yarris. The rop beds have beren duarried to a smadl extent nour the owners' house. They viry from $\left(\frac{1}{}\right.$ inches to $2 \mid$ feet in thirknese. The stome is fine-grained to dense, dark eoloured, with veinlets and reystals of ealdite. Below this, altemate beds of dense, dark, and conarse, lighter coloured fowsiliferous limestone nere partly exposed over a thickness of about 1 b feet. Approximate strike of herls: north 10 degreces east, dip a few degreer southeast, direetion of vertical joints north 20 dexrees east and cast $4 \overline{5}$ degrees south. Not less than $\mathbf{0}, 000$ enbic yurls of stone can be obtained with facilitios for quarrying. Samples of both the dense and the coarse limestone wele tested.

Sos. 25 and 26. Pointe Claire parish. Blatk Kiver limestone oecurs on lot 126 in a small outerop 2.5 yards by 10 yards, about one-latf mile west of st. dean ro:al. On lot 119 it forms at small elevition, 200 yards by 50 yards in extent, lying one-aturter mile cast of the road. In both places the ledelie flat, and the stone is weithered on the surfare.

No. 27. Ste. Geneviève parish, lot 187. Owner: Alénai St. Denis. Chazy formation. Immediately west of Sit. Charles romb, 10 fert of medinun to coarsi-grained, gery, fossiliferous limestone is exposed in an old duarry nusururing 45 yards ly 35 yards. The beds are nearly horizontal and from f inches to 2 fert thick. Two sets of joints trend respertively-east-west and routheast. Outcrops are seen over an area of 300 yards by 200 yards., the amomet an:ilable without trouble with drainage is mpat. This is part of im important deposit which lies on the crest of a ridge running east-west and rising to about 125 foet above riviére des l'rairies, three-quarters of $:$ ile to the north. Sianple tested.

No. 28. Ste. Geneviève, lots 183 and 1st. Owners: J. Lavigne and O. Lafrimboise. Chazy formation. Outcrops in a woo.160\% yarls east of St. Charles road and three-quarters of anile south of the village. Grey, gramalar, medium-grained limestone with fossil remmants. The beds lie neaily flat anil are moderately jointed. The top heds have been worhed in sewaral macea to a depth of 6 feet for rough building stonr. The depowit lies
on top of the ridge demeribed in No. 27 and onterops are wen over un urcu of shive varda
 brokren-ip outeropes. The monant of stone avnilable is great, but guarrying wouht probably be expensive. Aome of thin stome has loren used in the construetion, of a bitumous
 cemalition. Simuple (extert.

 oni the sloge of a ringe ente-turiter mite semith of the vilhge. The rharueter of the stone in the difteront layers varios from medina to very coarse-grained, highty fossiliferoms, dark grey lhowetome, weathering reldish grey. The upper wtome is thin-bediled, but the lower beide ure tumsive. These beds are bearly horizotal, with joints running north

 S:ample teandel.

No, 30. Ste. Geneviave, lot 179. Ilatf a mile woth of village on the fam of Adreral

 northwest of this, on hot iso ure other onterops of same stome hat with hess rhances for futhre development.

 are small, bat ower an area of buif yarls by 100 gards the belrock is apparchaly close to the surfate.
 theropes of very finc-gratined, dark litheatome rewmbling that of No. 24, are wern in an
 dip slighty to cost. The top of the entropes is ubout 10 fert ubowe the general level of the eonntry, the owrometen is light.
 fith by $\mathbf{2 0 0}$ yards, but chancer for duatrinis are poor.

 (rystals and veinhets. The outcrope vary in size from 30 by 30 to 1.50 by 1:0) yarde and

 1she Bizaris. These are that-lying onterops.

 amd of a dark colour. It is partly weathered in the upper layers and contams many

 in in igneons paste. 'This material is not sutable for roal halding.

No, 3!). Cartierville, lot 7is. Inmediately sonth of the village on both sidas of the highway hading to st. Lament, Chazy limestones have been quarted for many yars. The quarry on the west sile of the highway the property of II . Comsinean and is now wnted to Dhe Camadian National Ratway Company. The stone has been sumessively worked hy doseph Latusinte, Demers and Laframboise, and R. T. Suith and Company for drosid buidiag some, curbe, and errished sone.

 flat misl are mere jointert in the upper gert of the whll than in the liwer part. The main jointas rinn west es) legreis north.

Wher-fomme marman romala huile with this matorial in [9/t, wore in por

 straks. Small upening from whith stome was oltained for the surfacing at Dankland

 of these two typer of rock which hipperned to he gharried together is well fluwn lag tho umeven wraring Nurfare of the rtaml.

Hordeaux. Chazy formation. Nevoral small quarrios have bren workial for builinge

 an ${ }^{\prime}$ rorth this drgrees eant.

 in the operations. sample textent.

 mile northest of Xio. $4: 3$, similar stome oreurs on the property of Mr. Lamberesix fret of it is exposed in a small opronge with stamding watcr.

No. 4t. Lathine. At the moth emf of Nimmorlea avenur. Owner: Aphomere Latome

 shales. It has been sucewsively gharrim! for roal metal by tlenderson and Lathurour,

 of "hates noir" 'fu:arrien in Mintreal.

 mad of a gremixh moner.

 tons per day. The output for have year was 30,0100 tons. Situple testeml.

Nu, thi. North of Cotest. Miehel real ant weat of Montions. Mieliel, on the farme of 1. Limoken and M. Lapiorre. Chatzy formation. In an irregularle whapal quarry, (10) the mile of a slight rise from the genernl fovel of the eountry, limextone is werked for whlar and

 cuarsigrained, bluish grey, fonviliferons limewtome. The bede vary from 10 inches to if feet in thiokness anl have a promonemd bambent rieture. 'The tutul volume of stone taken out
 tesical.

No. 47. Cote Sit. Mirhel. Qumpry horated east of Montion St. Michet ore the farm of 7. ['asibt, opratial ly (quinlath and Jobortan Company of Montrabl. Tremton format-
 berls of methimekrainet, grey limmene with dark shaty partings ant of thin-betheal, dense, dark bhuc limestune, very brittle ant of an ir regular strueture. The stone as a rate is frewh. The beds are marly horizontal with vertical jointinge in north-south and dant-west direvtions. Interbeddel with the limestone at abont 3 fert from the surface is a Nuret 3 foret thick of felsparide fourchite. The rock is fine-graneml, dark krey, athl massive. Quarry openell in 1914 for the eonstruetion of l'ie IX boutevard (bituminotas macad:un). Samples of both limestone and igmons ropk tested.

No. 48. Onmpurter mile north of Cote Sit. Michel roal, west of Pie IX Imolevard. Trentom formation. In an ohl quarry, 30 yarda hy 15 yarde, nearly fillet up with water, metinm-gratuet, grey limestone is exposed with in interbetided layer, 14 inches thick, of fim-krained ignevus rock similar to that describet in No. 47 but more weatherevl.

Nu. 49. Half a mile north of Côte St. Michel roal anl onerpuarter mile east of Pie 1. boulevard. Trenton formation. Outerops of inelium to coarse-grainet limestone are sern over an area 170 yards by 225 yards.

No. ro. One-quarter mile east of No. 49. Flat-lying outerops of rather fine-grained, dark-roloured, lyke rock. Extent of depusit 300 yards by 6 ty yarts.

 partiliges.

 the (iolf links to Mount leoyat heidhes.

 perite It is extremely tough athl breaks whth sharp angular alges. The athunut of

 of the varions types of rock wore textell. The wetamorphased limestome, whether it contained igneots fragmenta or not when (estoml wis nurh tougher thim the arilimury limentone.

No. St. Northeast flank of mome Moyal, Gutromont. Trebtom formatim, (liffs
 nand cut by numerous dykes of ignemis rock. It is not possilite to quarry this stone for commercial purposes. Small quatities, however, are obtaincel from strerit cuts and used in roul work hy the eity of Gitremont. One sumple taken from rut on sprink Grove avenue was texterl.

No. 57. Jos. Ciravel's quarry, $15 \mathrm{a} /$ Chamboril street, Montreal. Trenton formation. The guarry lies cast of Chamboril strert and north of Flourmont street. It in $2(0)$ yarils in lengif by 75 yards in width and is from 25 to 45 fert in depth. In the derepest part of the

28

 ant. 'The totil ontpat of the gutary is ramisel stome. At the time of visitimg liftern

 hath am! grey limestone with manerons wave shaly partinge. Interheddel with these

 from which stome is now ohtained. The ghitry flome in the denpest part of the quitry

 ahamboned the thin-hedided, uper stome of the formation which here rembere warly

 grainel, blark atul grey limestome rontaining mumeroms shaly partings, the lowers to 10
 -parated low way bark partimgs (Phate 1). The stone is fresh amd rather miform in tevture. 'These bels dip) abont to degrees enst, they are withe two series of joints, the

 romk (mienatite) mult weathered to at rasty robur.
 :Wrll-rinipped mill where meventy stoncerntery millmen were formerly empluyed.

 -re Tiblor 1.
 Trenton furmation. Quarry on west side of lberville stredt, a few hmelred yards north of

 limmone of irregular structure surd strongly laminated (hastard limestone) similar to

 lane. It is plament, however, to gmary at a lower level. The stome here dipis slightly

 West, are slown on morth and emst walls. A bed of impure sumbstome is rearled in the

 urystals.

 (6) em:

 in lextme exerpt mear the cout:ut with the limestone where it in of al arker collour amb

 30) per erent of surh miteriat.

 to or arross the hataing in varions hirections. The mase of the igment row wheh ath

 Table 1.

 Pabmane tormation This quarry is opened on the sombern whe of an exteneive bell

 sarromeling fere, and lying in a mortheas direetion. The exeatation in the form of a

 and the amomit avaibable on the lamd heised by the company is at hast za,thol ribie sards, and probably as moth as that can be hail from the next propery to ble wext. From here to about 310 yards in a morthenst direction the sheet dips dewnwarl and is
 (04 nad (65).

The equipment includes two large steel bomm derricks and eranes, bucket elevators, one No. \& Austin crusher operated by one 7.5 horse-power motor, and five No. 5 (Champion (rushers operated by 25 horse-power motors. The plant has a capacity of 1,300 tons per day.

The igneons shert is underlain by denae, thin-bedded, back limestone, called " bane noir." The limestone heds are much disturhed pud folded; they contain matu shaly partings. All of the bance rouge is duarrical for crushed stone, but some of the limestone
 size. 'The quarry has rail connexions with the ('anachian l'acific raile \because and the Montread
 tested, sice Table 1.
 zoir formation. The quarry lias immediately sontla of Masson street. It is roughly 70 yards by 40 yards by I0 yards $=2$, (0) 0 cubic yards in size. The total thickness of the thert of timgate overlying the bhark Trenton limestome and des ribed in No. fi3, is wedl exposed in astraght eut wall (1date 11). The rock, execpt in the lower 2 feet where it is dark :and ulasy and son what porphyritic, is miform in texture for the whole thinkness

 The buderlying limestone is ildatimal with that in No. 83 . It forms the quarry foor and about is fret of it is exposed beneath the hane ronge at the northenst amgle. The :ament of bame roige to be land from here is mot las that ano, oke cubic yards. A good sted derrick of 5 tons capachy and two jaw crushers having at caparity of 300 tons a day are datalled. Quarry operations were su-pended a few years ago. The stone wats trisiod and results are given in Table I.

 sonth and west. Nbout 30,000 cudic yards solid rock have been exeavated for the produring of crushed stone, and probobly severad tines as ruch is available. The roek is the same as in 6t, and the underlying limestome whidh lore also forns the quarry floor, is the hard, dense blar limestone sern in Nos. ti2, bis3, and 6t. The plant is equipped with a No. 3 Anstin ermeher ofetrically-operated and of a capacity of 100 tons per day. A pandine well drill is usiol for drilling. Fifteremen are rugaged. Crushed stone is sold at s.j eruts in SI.2.j per ton afeording to sizes. The results of tests on samphers from here ure given in Table I.

No. 6if. Matisomeuve. Kast of Die IX boult:varl, alont opposite Masson street. Owners: The Order of the Christian Brothers. 1'aleozoic formation. A few vars igh bane rouge was quaried hare by the corporation of Natisonneuve and large supplies of paving matrerial obtaincd. In an excabation 100 yards square ahout 10 feet of bane ronge is exposed, but, on account of standing water, it was not possible to sere if the underlyng linefone hat been reached. The rock is not is fresh as in the preceding numbers. It is much abont 135) yards eastward whate it was quarricd. At that point it forms a small ridge which ends abruptly. The outerops have an average width of mo yards. This is likely the southrast end of the tinguate sheet which onderops at intervals to the west. 'lo the morth the overburden is apparently thick. However, the rock eontes up again to the surface over a small area near Rosemont boulevard.

No. 67. Maisonnenve Quarry Company Limited. Jos. Rhéaume, operator, 2855 Resemont boulevarl, Montreal. Trenton formation. The property is situatel in Côte Visitation north of Rosemont boulevard and east of 1 ie 1 X boulevard. The quarry is about 200 yards by 150 yards by 8 yards $=240,(000$ eubic yurds. Banc rouge, which overlaid the limestone to a deph of 40 feet when the quarry was opened, has been entirely cleared over the area of the present openings. It appears as a 2 to 3 -foot layer intruled between the limestone beals in the upper part of the north and west walls. To the south 5 to 10 feet of it is exposel overlying the limestone. The limestone is typieal of the variciy called "pierre batarde." It oceurs in irregular and fractured thin layers separated by mumerous wavy and contorted dark shaly partings. It varies in texture and eolour from dense blank to medium-grainel grey, and is highly fossiliferons. The beds strike north 35 degrees east with a slight dip to the south. The quarry is worked essentially for erushed stonc and is providerl with an extensive plant consisting of one No. $7 \frac{1}{2}$ Austin crusher niprated by one 100 horsmower motor, one No. 5 Austin crusher, and one No. 10 Dice crusher operated by two 50 horse-power motors, one compressor (delivering 427 cubic
feet par minute at 100 pounds pressure) artuated by one 100 horsepower motor, me
 is useyl for boring. 'Iracks are laid in a radiatimg maner from the ermbing phat to the working f:ores, The ears are lifted by an eleetric heist and disedarge antonnalically betwren the two larger ernshers. A siling comeets the property with the eity eleetric railways.
 have been used in the comstruction of the Nentreal-(Gudere highway and in daisommen street pavements. Ruhble is valued at (if) equte per tom in the quarry, monsed wome at \&

No. tix. The Win. doseph Pompre Compmy fit Nieolet atreet, Momered. Trenton

 remover over at much greater afrathan that of the present quarry Bemeath the batue

 Thin-budderl, brittle, dense hatck limestone was quarad matil three veare ago north of

 will have to be done.

- therem. Dip 20 degrees cant.

 closely fractured horizontally and vertionlly. The amome avalable is problematic and deperids on the thickuess of the sheret. This eould be determined loy at fert pit. Fhe rock is tough and we .al probally matke a goond rowl material.

No. 72. Montreal liast: Quarre mwed by the momicipulty of Montrenl Fist and uperateal by the Durecher (onstruetion Company, Limitel. Trenton formation. Rabhle and ernshed stone are prowhed from the thin lasers of the dense hark linestonce in a fuarry 90 yards by 75 yarls by 6 yarls $=40$, 500 cubie yards in size, situatel east of Pointe anx Tremhles erossroad. The stone is miform throughout the total height of the equarr! wall. F in the upper 4 feet it is fresh, somewhat shaly, and breaks into sharpanghlar fragnoseov with conchoidal fractures. The berls dip, slightly to rast.. ('leme vertiral joints approximately 15 and 50 feet apart run morth 25 dagrers east and (ast 25 degrees south. Two 3-foot dykes, 30 feet apart, eross the formation here in a northwest direetion. The flyke rock is fine-grainet, dark grey with olive green, glassy minerals. It is wry tough. A small erusher is at work and the product is used in municipal works by the municipatity of Montreal East. Electric railway connexions. Samples of both limestone and dyke rucks were taken and tested; see results of tests in Table I.

No. 73. Town of Pointe aux Trembles. Cyrille Durocher's quarry. Trenton formation. Thin-bedded, dense black limestone resembling that in No. 27 is quarriol along the edge of the ridge, one mile north of the river-road. About 10 feet of it is exposet in a quarry measuring 50 yards square.

Nis. 74-7i-7ti. Parish of Pointe amx Tromblan. Trontonformition. Small outerop arcas of thin-bedted, dense, dark limestone.

No. 77. Riviare des Irairics. Immediately went of crossroad and one-quarter mile sonth of river-rgad. Trenton formation. Sicveral small outcrops of fincegraincul, dark thae limestone on the slope of a ridge. The overburden, as a rule, is thiek.
 eolomed, igncons rock weenre on the river shore at a puint opposite Livicer des Prairises (rossroad. Outcrops are sex nover an area of $1: 0$) yards by in yards, but the rock lies at a level which will not permit expavation.

Ni. 79. Riviire des Prairies. J. Desjarlins' quarry. Trenton formation. Quarry lorateal threcormarters of a mile east of the village and one-hatf mile south of the river. Size of pit: 81 yarta by 30 yards by 4 yards $=9$, fi0f cubir yards. C'nceven to fine-grained, dark, thin-bedded, somewhat shaly linestone with bands of medinm-grained, grey, fossiliferons limestone. Resembles stome in Nos. t0) and 61. This material was med in the construction of water-bound macadam roads in the parish of Livicre des Prairiss. It las given satisfactory results umder moderate tratie condition after two years of servife. Resilts of testes are given in Tuble 1.

Nos. so and s1. Rivière dew Prairies. Neighbmrhond of the Reparation chapel. Trenton formation. Sinveral smath outerops of thin-betded, dea se to fine-gramed, dark limestone. In a few instameres from 6 to 12 foct of it is exposed in ols: openings of small extent. The linestone contuins many shaly partings, the upper part is much weathered. More stome eath be obtainma.

Isle lizard.

No. S2. Isle lizard. Near sonthwest end of islo Bizard, lot 150. Oecurrence of Palleozoie brecria. This oreurrence forms a hillock albout in feat high with an area of in) yards by eis yarls. The rock is composed of an igneons paste chelosing mumerous fragmet. andstone, limestome, biotite granite, ote., all of which are more or less alterel. The matrix is of a greenish grey colour weathering to rusty lirown. This rock is soft and not suitable for road metal.

No. A3. Isle Bizard. At the northwest end of inle Bizard on the farm of Mr. Noel Wikon, and along the shore of the island, Beekmantown dolomites outerop in a few oremrreners. The stone apparently hes flat and is weat hered on the surface to yellowish brown. Chances for quarrying are poor.

No, St. Isfe Bizard. Isle Bizard, lot 145. Owners: M. MI. Wibson and Ladomecur. Chazy formation. Outcrops of fine-grained, thick-bedded, dark grey linestonce. surfaed exposinece are seen owr an area of aboat 50 yards by 40 yards, and the deposit ower ammity greater area is covered with only a light overburden. Some of this stone has beren used by farmers to make line.

No. sit. Isle Bizard. Northwest side of isle Bizard, lot 131. Another oreurrenee of Paleozoul brecria which forms a hillow 141 yards by 50 yards rining to 5.) fert. The rock resmbles that in No. 82. Not suitable for road purposes.

No. s6. On lot No. 125, onehalf mile east of north-sonth road. (hazy formation Coarse-grained, dark grey limestone outcrops at intervals on the slope of a ridge 250 ? \quad :ards south of road on the farm of Janvier Clement. In an old ruarry bia yards hy 10 yards by 2 yards $=1,300$, the following succession of berls is exposed:
Coare-grainet, d:ark grey limestone containing shells in rather massive beds....
Finer-grained, bhish grey limestone somewhat weathered with iron oxide present in thin hayers with irregular bedding planes
The beds are nearly horizontal with many vertieal jointings muning north 45 degrees west and at right angles to that. The quarry has been abandoned for many years and the walls are weathered to dark brownish-grey. Shells and fossils are well shown in the weatheriug. Some of this stone was used ${ }^{\circ}$ the eonstruction of the Carillon ranal. More stone can be obtained without mueh trouble, for lueal use. It resembles that of No. 47 and shoult be of the same quality.

No. st. Isle Bizard. On the south shore of take of Two Aommams, hot No. 12 t Chazy formation. Owner: Mr. Romssin. Buds of Clazy limetone nre exposert along the shore for a dinaner of a few humdred feet and in one imstance form a clift showing the following variation:

Medimm-graineal, hark grey limestone of a gramular texture, with winhets of caleite; rewembles the limentone south of ste. (Bmevirve.
Thin-bedled, eoarse, dark grey limestone, highly fossiliferous and somewhat weatherirl, like No. 47.

> Fiet.
$16:$
Very eoarse, light-nolourcyl himstone mostly made up of fossil fragments changed into pink calcite.
Blocks were also obtained from these lexte for the Carillon canal. As road material, it is a soft stome.

No. 8s. That end of iste lbizard. Trenton formation. Very fine-grninerl to dense, dark blue limestone ormurs at internale at the east end of the insund. The depesits form several humps on the roal, but the bedrow is thickly eovered on botn sides. A better developet expmise is to be seen on lots 95 and 96 , on the farm of Mr. Dimase Boikma. The deposit forms a small ridge laf yards by lio yards with apparently light overhurdorn. Bare outerops are soen in a depression morth of the ridge. The stone is fresh and britthe
 east. The amount avaibable is dobiltful, but it conthl be usel advantageonsly for manadamizing the roads in this part of the ishand. The hanling distane to road is three-quarters of a mik.
 grey limestone onterops upon the erest of a ridge about threwtuarters of a mile north of

 850 eubie yads. In ascending seetion made on the south wall is as follows:

Coarse-grainet, dark grey himestone contaming large shefle ath pink ralcite "ryatak, somowhat weathered in plares to retdinh grey w1 e iron oxidn prombets pr *e:\%

Fom.

Medimm-grained, more uniform, dark grey limestone with tembener to berome reddinh grey due te the iron oxide preatent, it rather mawive hef
Coarsegranal, lightor cohoural limestome rompmat of caleitr crystals. Murh whatherch in plares and soft
Overburden of boulder chaty.
The beak dip slightly to northeenst and there are many vertad jointe with direttion

 yards in width, over whieh onterops are seen at intervals. The worrhmeth. howerer, in Fome instances is thick. More stone "an be ohtamed ensity from the ohl quarry by the road. The stone has been tented, see page 1!9.

1.te Jesus.

 quarter mile, opposite Dutchuan ripisls. 'Fhere is no oppertumity for quarrying.

No. 91. Nte. Doroth'e. T, (iauthers quarry, Oprator, Ditie Dubrey Brekmantown formation. About 2 miles northwe of vilhage of ste. Dorothore, magre . 1 limestones weathering to brownish are obtained in a quarry 40 yards by e9 yards by a sards $=$ 3,200 yards. Lower 4 fert, uneven, fine to medimm-grained, grey limestone owrotan by dense, somewhat shaly, impure limestone, thin-hwhed ind much frietured, the upper liseris being mueh weatherel to brownish. Jight men were employed in duarrying and ap pratala jaw crusher oprated in eonnexion with witer-lound macidam roid construction in sto. Dorothée parish. One sample taken ard tested.

Nos. 92 and 93. Ste. Dorothice parish. Beckmantown formation. liat-hying outerops of fine-grained, rey dolomites or magnesian limestone weathered on the surface to yellowish brown. There is sume opportumity fur quarrsing in No. 9 :

No. 94. Ste. Dorothée. Alphonse Comvrete's farm. Bhack River formation. One
 cubic yards of stone have been taken ont for romd metal. Limemone is exposed to a depth
 The upper stone is thin-beydeal, dark, dense, shaly dimestome sonu-what weathereal to brownish with interbedded shaly partings. Onterops are seen over an area of 100 yards hy -5 wards. The bela are nearly horizontal. Vertical jointe troul north 75 degreey west
 of dense blue, brittle limestome are expased on the surfare. More sone is to be had from here. The gharry is hard to get at and hating has to be done in winter. One sumple wits rollected and has been tested, we pable 1 .
 village. Ibatazoin formation. Hillows of brmerias of similar eharateter to those on inle Bizary, Now. $8: 2$ and sit. The rock is not sutable for romb building.

 of eohminar strmeture, and forms at seet extending on cither side of the rome and cowering an area of 10% yarls by 100 giards. On the north side of the outcrop the rock lase beren gharried to at suall extent for road motal. The thickness of the wheot at that goint is
 wall 2 on fere lourg. It presents hardly any variation. The igneons shere is muderlan by murh weatherel, shaly limentone. There is a pood opportunity for guarying hers. Ghe mile of rond haite of this material after twoy years servier is still firm. The rock apparenty does not wear enickly and cemment well. Finilities for transuentation to the ruad whieli lies close to the present working fare, the :ubeenere of stripping, and the ligh virlue of the rock as rual material, recommend its use. "lle rock resembles "bine ronge" somewhat. It tesierl similarly, ser Tahle I.

One-quarter mile north of thix depmit are other flat-lying outerops of similar stone but of a porphyritic testure. ('hance for gharrying are poor.
 formation. live fere of finc-gratimal. bhish grey limestome is cxpowed in at smath opening from which stome was obtainel for the eonstruetion of witer-bond materdan romd. More Fone is obteinable lat the overburlen sam wets thick.

No. !a. Abord-i-l'lonffe. On the farm of Yin). (lernamt. (latay formation. Comrse-gramed, bluish gres, fossilif rous limestone is exposed in a puarry so yards by
 in thin layers in the upher ${ }^{5}$ fent. Below it is more massive. This sone was used in the
 holes have formed in the road-hed. Considerable repairing wise done durime last summer. More stone can be ohtaimel from the quarry, but not withont 3 to 4 feet of stripping. The bot tom of the quarry lies anos below the gromind-water level and there was 3 to 6 feret of standing water when visited. The resultis of laboratory tests mon this stone are given in Table 1.

No. 100. Laval rapils. Gedeon Clermont's quarry, Chazy formation. The stone lure is finer-grained than in No. a9 and of at more irregular texture. It also contains many fossil shells. The exposure is small and is soon thickly covered with many feet of overburden. Enough stone was quarried here for the eonstruction of one mile of water-hound nasulam roal from Laval Rapids station west ward along the river. The roal built in 1913 was in good condition when visited (1917). Laboratory tests have shown that this stone is tougher than that in No. 99. See Table 1.

Nos. 101, 102, and 103. One mile east of village of St. Martin. Group of guarries owned hy Elie Bigras, Alma Gauthier, and Damien Bigras. Chazy formation. Medium to eoarse-grained, buish grey limestone. 'The hels are from $1 \frac{1}{2}$ to $\overline{5}$ feet thiek with wellspared jointing. These beds have been worked to a depth of 6 to 8 feet over several large areas. The prineipal product has been eurh stone for the eity of Montreal.

A few years ago Plouffe, Lagace, \& Company operated a quarry for erushed stone on the property of Alma Gauthier. The pit is 100 yards by 60 yards ly 4 yards $=24,000$ cuhie yards in size, the stone exposed in the upper half of the wall being sinilar to that dearriherl ahove, and that in the lower half being thinly-hedded, very fine-grained limestone. The beds lie nearly horizontal, vertical joints running north 15 degrees east and east

1t dekrees somth. The stome was anal in the comatrietion of aboat 10 milom of waterhomad masadam roads in si. Martin parish. The resulte of hamentory thats have ahown

 The road huilt with this stone shows that it wears fist hat evenly and cemente well.

Large quantitios of stome are availaho from wither on of these properties. 'Tho rowults of tents are given in Table I.
 (iodfroi lomavalier. Chaze formation. suall puarry where rowd matal was ohtained.
 roads huilt of it show that it has a high rementing power. Dore atome cat be had hat the

 (xtembing over an atrat of 1 so sards by 13t) yards. The roek is in phares porphytite and कhow: large ceystak of hornblende. It is rasty weathering. This stome, known under the mame of mondigute, would makn a darahber roal materiah. It is very tough and ram be
 able.
 of metian to costricgrataed (hazy limestone.

No. 10̄̈. I'ont Vian. I'robably Tronton fomation. Scattered, small outcrops of fine-grained, grey, fosiliferons limestone. Not nuth "pportunity fur quarrying.

No. bos. Village Bablanger. Chaze farmation. Immediately eant of the village on

 vembets of colcite, but it is frese from shaly partinge. large putantitios are avialable with fair opportmity for quarrying. The stome has been towet. It is evidently soft, sea T:uble 1.
 A numbr of small outerop areas of coarme (haze limestone. 'The deposits lie flat, and the chanese of development are pore on aceoment of location.

No. 110. C'ap Si. Martin. The St. I.murent Quarry Company, Limited. Chazy formation. A short distance cast of sit. Martin Junction and extending for almont a mite in that direction is an extensive rigen of timestome ending abruptly w the worth. The

 sive gatery at the neme heast ent of the bhaf east of the ste. Ruse eonerete highwiy. The prosint working face of the pusury is 12.5 yards hong and 10 yards high. Not lese that

 to dark grey abl mediun to very consee in texture. 'The hat range up to 3 feet in thick-

The wome exposid in the lower part of the face is thin-hatherd, very fine-grained, gremish gue limestone of a shary texture. Alternate masive and hin buds of medimm
 the watl. Dhot of the stone hows distinet wasy banding in dark hines. Nome of the

 is diverty loaded into rars on a siding from the (anadian l'arifer ralway, from so
 were employal.
 was used in the eonstruction 0_{1} a large part of the Montrenl-Qubbe highway betwen Montreal and Three Rivers, in Sault-au-leecollat and Site. Rose concrete roads, atud in bitulithie pavement in Lachine. The stune wis terted, vee Table 1 .

No. 111. Immediately south of the St. Inurent quarry deseribed ufove, there are mome five or six small quarriex which formerly prochuced curb und drascal buidding stone. The company owns at strip of land here from which of certain anomnt of dehris is heuled to the ermeher across the roiul. The upper berfs of the formation, whidh have berin worked
 grained, dark grey. One sample was takerit and tested.

No. 112. ('ap St. Martin. Isaie Dhormman' quarry. Chazy formation. This quarry hies to the somthwest of the st. Lamrent quarry. In a I 2 -font wall ure exposed alternate masive herls, of very coarse-grained, light grey, highly fossiliferous and dark erey, fine-grainet limestome. lïne reut stone was formerly made, but all workinge have beril suspended. Stome tested, sere Table I.

So. 113. On the weot sidne of the main highway. Owher: 1. Dewormeams. (Quarry has heen abomdoned fur many vears. The ohl workime face rextends along the north side of the ridge over a distamer of g:0 yarls, :and is 20 fert high. The limestone variou from wery fine-grained, brownish grey to wery enarse, datk grey. It is highly fosiliferous and ocrars genorally in thick berls showing astrongly developed lanination. The anount of stone to be had from here is great. Ntome tested.

No. 114. Cap St. Martin. L. Papuetors quarry. Chazy formation. 'This quarry lies to the wost of the above. It ix opened in the same stone that has already bern des-
 for bulding stohe to achepth of 10 foet over an area of 50 yards by yarl-. Brhow this are masive beds of harder limestone ramging from modimn to very comern-graine Nearly all of these befls eontain momorons atreaks of fine, dark material, but it is move charable material than the upper wome. 'This difference in durability is shown by the resultes of tests upon samples that were tuhen, sece liable I.

No. In. Ni. Figar de Laval. Chazy formation. Soreral outerop areay of small extent. Fine to medium-gratial, grey limestone weathered on the surface to redhish grey.

No. 11f. S. Vincent de Paml. Ulric Suluriols quarry. Trenton formation. Quarry opened in the face of the bluff overlowing the river 2 mikes west of the village. The b) hat is alout 100 fret ligh at, that point. The uper wene is func-gramed, shaly, thinbeldecl, dark lmuestome eontaining many fossil rommats. Dhout ! feet of it have been
 wan, lumbinm-grancol, dark grey limestone exposed on the working fare to at dipth of i2 fert. Below this to the lewo of the water are thin layers os wathe, denoe, dark blue linocione. The totel ontpat was nate into fine eut stone. Nore stone can be obtained, but the quarrying womld probahly be expencive. I sumbll jaw ernsher is installed in view of produeing, crushed thone from the dobris for the resurfacing of water-lound mateadan robuls along the river. Results of tests upon samples taken here are given in Table I.

No, 117. South of the Canadian Pacific Railxay line 2 miles west of St. Vineent de P'anl. Tronton limestone has been extensively equarriel for buidime stone and erushed stone. Besides several amall openings mate by individual operators, there are the absandoned quarries of the Standard (quarry Company, Limited, and ef Niap. Brunet, Montreal. The stone varies from fine to medium-grained with argillareous layers disposed irregularly in the beds. In the upper balf of a 25 -foot exposire the limestone is rather thin-bedded. The lower stone ocenrs in masive beds up to + feet thick. Large quant ines of stone are available from the deposit. Its valne as road metal ean be compared with that of No. 119.

No. 118. St. Vincent do Pitul. Palarozoic. North shore of rivière des Prairies. One and :1 (luarter miles upstre:un from the ferry in the lower part of a elift about 100 feet ingh, four immous beds (eampto ite) are intermbitel in the linestone, just at the contaet of the Black liver and Trenton. The thickest of these beds is 32 inches and is expored in the form of a platform covoring an ares of 60 yards by 75 yards just below the highwater mark (Plate IV A). The roek is massive, fine to medium-grained, and dark-eoloured, weat hering rusty. Beacuse of its location the rock could not be quarried exept during low water, and would have to be loaded direetly into scows. Laboratory iests have showli that it would make a durable road metal.

Nom. 110 and 120. Si. Vinereut de l'aul. Fi, Solicenr's quarry. 'Trenton formation. Immediately northwest of the village of St. Vincent do Pbul are two old openimes aljuining
 limestone overlain by if feet of thin-bentaed, whaty, very unever, dark limestane. In the

 south. Lirtieal jointing is not eontinuous through the layers and wot well detined. The uperer stone is much fractured. More stone ran be obtained without difliendy from both excavations. sidmples of beth varietios wore taken und theted. The thin-bideded shaty limestone (120) proved to be of inferior quality. Sere Tials. 1 .
 of St. Viment de Pabl station. Lamrin and Lateh, Engmering and Contracting Company,

 The company helds two farms. The overburden is light ame at frepuent intervalsouterpps are sern. The "renten limestone here rescmbles that deseribed in Nos. 117, $11: 1$, and 120.

 rontims a good inal of dark lamination. The owerburden rames from totifert of rlay. The stone is uned for private purpores in und about the pebitentiary. Whe sample takeen and tested.

 by Roger brenede. It now belongs to Mrs. II. Arehambants. The stome is indotical with that in So. I2.2. It was largely used in the ronstruetion of water-boumd masoulam

 condition at thi comb of last summer. This stone testal very miformly with that of Vo. 12:. Fie table I.
 grey limestme extencting ower harge areas.

So. 12.7. On cither side of Monte Audair, north of St. Kamar road, are several oremr-
 to :1 :nall wivit on the property of lamis durlair for road purposes. farther morth near Cote de: Perron roid, outerops of dense, dark bhe, probshly lientom limentone.
 meditumaraineal, dark groy and dense dark blus limestone. There is an ole opeoming by the road :bout one milo west of Montier Andiar, whids eomld be quarriod for fowl road monstruction without difliculty. The value of this material can be compared with that of No .127 .

 upper stome is medimiturainat, dark grey, somewhat weatheref and soff. If is underlain by donse to line-grainoul, dark blan britile limestone, a few feet of which is exporel in a sinall upering a few fut bolow the top of the ontcrops imtheliately senth. The huts
 simple of the frowh, blue limestone was taken and textel.

No. 12s. An important onterop of tingnate lies in the form on a will on the morthern elpe of onterop Lo. 127. The rock is exposed over an area of 350 yards wy 75 yards and furms:a ridge rising from the ruad to about 35 feet west of it. The ridge ends abriptly to the north and a total thickness of 10 feet is exposed. At the foot of the esearpment the underlying limestone is exposed. The rock is fine-grained, dark-colyured, with occasional phenucrysto of light-coloured, glassy mineral. Very little variation is noticeable.

It is maxive and extrenely toagh. It has appareutly the wame dip north tio degreas

 Vineent te loul.
 arens of 'lrenton litacstome rewelabling that in So. 127.
 ohl gitirries now iatle. The mont sonthern guarry on the eist wide of the resul is that of O. Lapicrere. A short diwane mortheast of the, to the north of the roatl, is that of Clatr-
 fince to meshum-graimel, lark grey Trenton limentone with irregular, elayey partinges wenthering to yellowish. The lorls range from 1 to 2 fer in thirkness. Large phatition of stome ure nvilable without trouble. The oaternps have been broken over a large nera
 prolnahbe value of this stome as roall metal is comparalle with that of No. 132.

 grey limestone are men were large areas. Combloe easily gharried. Many latulred thousamels muhir suris availuble.

 limesia. expespal in two benehes, the apper being asort distance in alyance of the howe. If stone varios somewhat in doaracter, but the alerage ath of the quarry is medtimen to fimegraincel, dark grey limestome with nameroms fine, blacto wavy, argillaceous lines from mae-tatarter to one inch apart. The stome is thick-bedital and partivenarly maptable for hava eonstraction (Plate IV B). It liew nearly flat with reetangular widely spareel jointing rummink northowouth and cost-west. Blocks 4 to 5 fert thiok atal almost

 remowe large qumtitios of crashed stome are availahle. The resalts of laboratory tost:

 limiter, and The Kemedy Construction Compans, limital, of Montreal. Trentoin

 the wearpment over a dist:ane of 250 varts. The herls ate exposel here 10 ath average the 'h of 25 fert. The stone dhes not diffor from that of $\mathcal{N o}$. 132 with the exepption that it is a little finer-grainet and eontans lase chay lamination. Both companaw are equipperd to prochae ernshed stone and fan sapply from 3.20 to 400 tons a day. A siding comuets the plants with the Canadian Ihatic: Ralway Montreal-(Qublece brach. Fery large
 Tho amome to be had is still great. Sampers taken from both fuarries have tested very simikrly, seי" Table 1.

So. 13\%. Sit. Frammis de Salles. J. O. Jabelle unt Company. Operations were

 by 7it yards. The stone is thick-behted, fine to medinm-grainel, hlush grey with streaks of lark fite material. It is fresh, of a closer texture, and more jointel than the stone in No. 132. The plant consists of one Austin erusher o. 5 and aecessories. The total output is reasheal stone. It is solld it $\mathbf{6 . 5}$ eents per ton f.o.b. Canalian Pacific Railvay siding.

 motal I nile wext of the 'lierrelsomere roml.

No, 137. ('aughawaga. ('hatay formation. Fob the manherst of the village, thick-

 atruction Company, of Montrial. The erushing plant was instalbet in the wharf near

 quarriow are busw idte

10

Appendix B.

('haracter of Deposits of Fich stone

Character of Deposits of Field Stone-Concluded.

Isle Bizari-Concladed													
$\begin{array}{ll} M: 3 \\ x \end{array}$	L.octurn	Material ower 1 fort Pire cent of				Average of whole ilepont.							Remarks
						Material under 1 foot Per rent of				(culhic yards of atone. dianneter			
			$\left\lvert\, \begin{gathered} \text { sand } \\ \text { stine } \end{gathered}\right.$	$11 \text { ther }$ mite	$\begin{aligned} & \text { lime } \\ & \text { rton } \end{aligned}$	$\underset{\substack{\text { lyne- } \\ \text { nux }}}{ }$	$\begin{aligned} & \text { Nian l- }-2 \\ & \text { atione } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { 1slo } \\ \text { mite } \end{gathered}\right.$	$\begin{aligned} & \text { Lime. } \\ & \text { stone } \end{aligned}$	$\begin{gathered} \text { Over } \\ 1 \mathrm{ff} \end{gathered}$	$\begin{gathered} \text { Incler } \\ 1 \mathrm{ft} . \end{gathered}$	Total	
33	Northweat of village. latm 0-39. 124 150	10	0	8	5	23	0	10	63	13.54	75.242		
$\begin{aligned} & \dot{+1} \\ & \text { s.1.1 } \\ & +1 \end{aligned}$	Fare of villag.	51	0	1	30	30	1	0	80	3.753	16.551	20.314	Limertone is fine to coarm-grained Igneous rocks are gneinses.
$\begin{aligned} & 42 \\ & \text { an, } \\ & 4.1 \end{aligned}$	Northern pars of intand	30	0	0	70	25	11	0	35	2.375	12, 115	14.92	Coarse-grained limestone. Ieneous breceliss are found in No. 44
43	Sortheat end of thand	616	0	0	34	31	0	7	42	190	2.14	2.340	
										22.545	117.349	130.444	Total sartage in inse Bizard.

Isle Jesus.													
4.5	Stsuthwest enil in ixland.	39	0	45	13	30	0	52	18	415	3.302	3.720	Much of tlie limestone and dolomite is weathered.
46	Two milon northweat of site. Dorothée.	*	0	89	3	$*$	0	89	3	186	663	\$49	Dolomite is fresh.
47.48	Weat end of itland. north shore	30	0	30	411	23	0	30	45	462	1.194	$\underline{2374}$	1 inc-grainct, light eoloured. fresh dolomite. The limestone
49.51	2 to 4 milex west of Ste. 1 Sowe.	10	0	$8{ }^{3}$	3	10	0	85	5	1.07s	4.462	5. 540	weathered.
32	South of No 4 ?	$4:$	0	13	40	33	0	23	4	2tion	1.133	1. $40+$	
53.54	North and south of village of ste Doruthfe.	${ }^{93}$	0			is			18	1.066	3.153	4,219	Igneous rocks nre foliated gneisses and some fine-grained basic dyke rocks of dark colour.

55	Southeast of ste. Doruthée.	${ }^{60}$	0	10	30	35	0	20	45	6.076	30.068	33.144	$\begin{aligned} & \text { Limestone includes both fine and } \\ & \text { coarse-grained types. } \end{aligned}$
$\begin{gathered} 56 \\ \text { and } \\ 58 \end{gathered}$	Abord-i-Plourie.	25	0	0	7	20	0	0	80	9,376	20.0\%2	29.448	Limestone is coarse-grained and murh weathered in places.
57	Abord-l-Plouffe-Wert, south of roald.	7	0	2	24	56	0	3	41	4.:29	13, 172	17.861	
.39-61	1 to $1 /$ miles cast of St. Martin.	15	0	0	85	10	0	0	90	929	3.761	4.6.1	
62-63	South of Coite St. Elzear road.	4.5	0	0	55	40	0	0	60	499	3,469	3,968	Coarsegrainel limeetone, granite,
B4-66	North of Cote st. Elzear roal.	9.5	0	0	5	85	0	0	15	320	719	1.039	granite-gneikes, and anorthosites.
67	Two miles muth of ste. lione.	:0	0	5	2.5	60	0	5	35	1.362	2.5*s	4.450	Igneous, includes a large proportion of lark volcanic rocks. Limestone is rather tine-grained.
18:-69	St. Fizfar le laval	519	10	0	30	50	0	0	50	952	2.46	3.439	Medium-gruined, bluish grey lime-
\% 0	East of st. Martin sta.	32	0	0	$6 \times$	23	0	0	π	380	2.493	2.973	stone, partly fresn, partly weathered. Igneous rocks aris com-
71	Laval rapilt	6.5	0	0	35	60	0	0	40	534	2.128	2.662	posed of granite, hornblenile, and garnet-gneistses nafe or lens
72	Pont Viaus	35	0	0	4.5	45	0	0	55	22?	1.85	2.076	weatherel.
73	Southwest of st Vincrent de Pitul	35	0	0	6.)	30	0	0	70	3.6.33	11.129	14.661	
$: 4$	${ }^{24}$ milat northwest of sit. Vincent de	6	1	0	33	30	0	0	70	2.973	S.658	11.631	
										35. 153	117.43	153.135	Total yardagr in inle derus.

l'late II

East wall in the Fireproof Crushmi Stone Company quarry, south of Masson st-eet, Montreal. Nitraight cut wall showing thicknest of the tinguate sheet overlying Trenton limestone (Map 1747, No. 64). (Page 6.)

A. J. Rogerse quarry. Northenstorn part of exeavation. Bane ronge can be seen owerlying limestome. In other parts of the excavation the bate ronge is 30 feet thick (Map 1747, No. (i2). (Page 6.)

13. Sheet of fourchite, 15 feet thick, cast of Ste. Dorothere. The underlying limestone (an: be seen in the foreground (Map 1747, No. 97). (Page 6.)

A. Nor' F of rivicre den Prairiem, $1 \frac{1}{2}$ mike abowent. Yinernt de Patul. Beal of camptonite,

B. Feliv Labelle quarry, St. Francois de Salles. Shows thick-hethed Trenton limestone quarrich for dimension stone (Map 1747, No. 132). (Page 5 .)

INDEX.

A.

Abord-i-Plouffe, fieid stone near PAOF:
limestone near. 7
Abrasion test 8
9
tests, field stone
15
15
Absorption test 10
Acknowledgments 1
American Society of Civil Engineers
10
10
" " Municipal Improvement 10
B.
Raie d'l'rfé, dolomites and magnesian linestones near
7
7
Bane gris.
Bane gris. 3, 5
" ronge 3, 5
Beaconsfield, lime, tone near. 3, 6, $1: 3$
Beaurepaire, dolomites and magnesian limestones near 8
7
Bedrock
4, 12
4, 12
" deposits of
21
21
" lalooratory tests 12
Beekmantown dolomite 17
" formation 4
Bizurd, isle. 2, 7, 8, 14
" Heekmantown dolomite on 2
" " (lhazy limestone on. 4
" " rleposits of bedrock on. 32 7
Black River formation
Black River formation 3
" limestone
" limestone
Bordeaux. 5, 8, 14 5, 8, 14
Boukder deposits $\frac{2}{5}$ 7
C.
Cap St. Martin, Clazy limestone at 4
2
Cartierville
" Chazy limi 'one at 5
limestone n. .r.
8
8
Charlenagne bridge. 2
Chazy formation. $\stackrel{2}{2}$
Clark, K. A $4,8,14$
Cote de la Visitation 16
Côte-des-Neiges. 6
Côte St. Miche ecmeteriss, nepheline-syenite and essexite at 7
Cote St. Michel road, field stone near 7
D.
David, Antoine
De Iorimier quarry 6
Des Milles isles, river 5
Des Prairies, rivière 2
Dolomites. $7,8,14$

E.

Fiswexite 7, 14
F.
Field stone 7, 15
rasion tests 15
Fiehl ntones, componition of aggregates. 7
Freneh coeflicient of wear 9
G.
Gerolugy 2
Glacial period 8
" 4 ..try 5
11.
Harducss tent 9
I.
Igneous rocks 6
J.
Jackson, F. II 9
Jesus, isle 2
4
" deposits of bedrock on 33
igneous rocks on 6
K.
Kennedy Construction Company 6

L.
Labelle, J. O., and C'ompany 6
Laboratory tests, bedrock 12
results of 9
L'Assomption county, and and gravel from 8
Laval des Rapides, igneous rocks near 8
leda clay. 3
Limestones 14

M.
Macadam, bituminous.
12
12
" roals, water-bound 4
water-bound
$7,8,11$
Magnexian limestones.
Maisonneuve. 5
Martincau, O., and Fils. 5
Montreal 1
" Concrete Works Company 6
district, road stone available 4
21". inland, bedrock deposits on.4". " Chazy limestone on........................
ficld stone on.
Montreal islaud, igneous rocks on PALE:
Morrison quarrion B
Quarry Company 5
Mount Royal. 6
ensexite from 3
" park, nepheline-yenite and cesexite at. 14
N.
Nephelinesyenite 7, 14
O.
 6, 14
P.
Palsozoic rochs.
ler cent of wear $:$
lerrot, isle 16
Pierre hatarde 2, 4
pointe (laire. 5
Pointe (laire, llack River linewtone at $\stackrel{3}{2}$
Bunt Viau, limeustone near 8
Potsdam fommation 8
" samelstone $\stackrel{3}{4}$
Pre-('imitrian age
14
I'rovincial Dontreat-(Quebec highway 2
O.
QuarricsQuarrying21
R.
Reinerke, 1
Road construction, conditions affecting 0
Road inaterials. 2
Rogers, Jas 4
quarry5
S.
Ni. Charles road, llack River linestone at
Sit. Martin, Chazy limestone at. 5
" ipneous rocke near. 4 4
linnestone near
8
8
st. Vincent, Chazy limestone at 8
". de Paul, amount of igncous rock available. 5
"" " firld stone near 12
". iqnemis rocks near 7

* ". limestone near
6
Ste. Annade-13ellevue 8
2,4
dolomites and magnesian limestones near 7
Ste. Dorothie, amount of igneous rock available
12
12
" fiell stone near.
" fiell stone near.
7
ste. Emelie Junction, sand from 6, 8
Str. Geneviève
Str. Geneviève 8
" field stone near
2
2
* limestone near 7
Nte. Rose dolomites and magnesian limestones near 8
igncous rocks near 7
Sand.
Patif:
Mandstone x
Saraguayville, fiehd ntone near 7
Specific gravity tewt 10
Stansfield, John 1
Stinsort Reeb quarry 14
Stone, broken, deneral limiting values 11
T.
Table of resultis of tests made upon heylrock 17
Terrebonne county, sand and gr. wel from. 8
Tenta, abrasion 0
" abrasion, fichd stone 15
- abarpitios 10)
" harineas. I)
" nperific Rravity 1)
" table of resultis nade upon beatroxk 17
" toughnew.
9
9
Tinguaite $3,4,13$
Toughneas test 0
Trebiton forniation 2
" linteston" 5, 8, 14
limentone, average values of different types 1.5
Two Mountains county, sand and gravel from 8
\mathbf{U}.
United States Office of Public Roads. 10
V.
Ville̊ray quarries 5

(fanaita Tipatturnt of slines

GEOLOGICAL SURVEY

villiam moinnes directing Gfologist

Issued 1919

Camalal

nipartmont of finues

GEOLOGICAL SURVEY

In *u*d 19 !

OUTLINE MAP

FOR ROAD CONSTRUCTION
RICT OF MONTREAL, QUEBEC.
cale of Hims

[^0]:
 YCrushing st rengt od 20 . ine prunds. or greater per square inch, is frecturnelv reituired.

