TEA JOURNAL

OF Trit

FOR UPPER CANADA.

ATGUST, 186G.

PROVINCIAL EXHIBITJON.

The Toronto Enildings and Grounds.

The Local Committee fur the City of Toronto, appointed to provide buildings and other requisites for the ensuing Proviacial Exhibition, have adopted plans and entered into contracts for the necessary works, which, if carried out to completion, will afford accommodation superior to atis heretofore provided.
'The present building, erected eight years since, and known as the Crystal Palace, is 256 feet in length, 64 feet in width of nave and 128 feet extreme width at transepts. The framo of thin building is iron, put up in squares of 16 feet, of which there are 84 squares on the main fluor-or 21,504 square feet of floor space. The galleries contain 44 squares, or 11,264 square feet of floor space-in all 32,768 square feet.

On the north side of the Crystal Palace, 60 feet distant therefrom and parallel with it, is an open building 256 feet long $\times 40$ feet wide, heretufore used as Ω carriage and machine shed. This building, erected four years agn, is nue to be enclosed, lighted and floored, and fitted up as a IIill for Horticultural and Agricultaral products, the carriages and light machinery to take the place heretofore occupied by the last mentioned articles in the main building.

At previous Extibitionas, the Ladies' and Fine Arts Departments have jointly occupied the borth gallery, resulting in that portion of the buibling being all the time overcrowded and uncomfortable, and the articles but poorly seen. To wbiate this difilitulty, and to du justice to the Fine Arts eshibitors, who are every jear becoming more numerous, and worthy of additional attention ; a junction building, to be khown as the fine arts aallery, is to be erected between the Cryatal Palace and the Horticultural Hall. This building rill in its dimensions be 64 feet $\times 60$ feet, lighted by a lantern ruof; and by erecting a sereen up the centre, north and south, it will furnish upwards of 4000 feet of good wall space for pictures, lighted altugether frum above; and totally distinct from although opening into the two main Exlaibition Buildinge.

This range of buildings, whon completed, will give 1,352 running feet of exterior walls, and 46,848 square feet of floor space.

Ruoning the entire length of the north side of the Horticultural LIall, will be the Poultry Shed; and a short distance therefrom a shed will be erected in length 200 feet, width 24 feet, for Threshing Machines and Mowers and Reapers.

In the centre of the main Horse Ring, a very bandsome and commodious atand will be erected fur the Judges and Directors. 400 Sheep Pens and 100 Pig Pens, of a permanent character, are also to be provided. Admirable ranges of Horse Stables and Cattle Sheds of a permanent character, were erected for the last exhibition held in this city, four years since; all of which are in good order.

On the south side of the Exhibition grounds, which is bounded by the track of the Northern Railwaty, that Company proposes to construct arrival and departure platforms, and to run trains to and from the City Hall Passenger Station, during the Exhibition; to complete this arrangement, the Cummittee are preparing the necessary gates and ticket office, and a plank sidewalk from thence to the main entrauce of the Crystal Palace. This, in addition to the Yonge and Queen Street Railways, will afford admirable modes of conveyance from the city to the Extibition grounds, and will no duubt be thoruaghly appreciated by those who may have the opportunity of taking adrantage thereof.

Provision has been made for proper offices for Secrotaries and Treasurer ; Feed Barns for cattle; and water pipes and other outside conveniences.
The interior of the Palace and Fine Arts gallery are to be properly coluured, and the Fountain put in working order.

The contractor for the carpenter and joiner work is Mr. Wm. Moulds, of 'Ioronto, who appears to be pushing the work with energy. The other contractors are: painting and glazing. Joseph McCausland ; plumber's work, George FIarding ; tinsmith's work, George Ringham; colouring, Messre. Mack \& Hoult.
The estimated cost of the works here contem. plated, corering all contingencies, is $\$ 6,5.00$. A fow hundred dollars additional might be spent, with advantage on the grounds, but as the whole expense has been guaranteed by the Corporation of this city, the Committce has kept down the expenditure to the lowest amount possible, compatible with necessary accommodations for the Exhibition.

It is to be regretted that an arrangement was not come to between the sity and neighboring municipalities, 'ere the pledge was given by the city to
furnish the necessary means. Had such a proposition been made in time, we cannot duabt but their proper share of the funds would have been cheerfully contributed, as, of the $\$ 12,000$ awarded in prizes at each Annual Estribition, a very large proportion is distributed amongst the farmere, and their wires and daughters, in the counties immediately surrounding the place of exhibition. We trust that tho Counties of York and Peel will yet feel it to be their duty, as well as a privilege, to contribute to this fund; and may we have every accommodation necessary, and in every other respect a successful exbibition.

tile inabit of profane swearing.

Profane swearing is an cril habit, degrading to the person who indulges in it, and injuring the public moral tone. Men who practice it cannot but feel bumilinted, whenover circumstances may lead them to reflect upon their conduct. If individuals will use profane language, it shonld be at such times and places, that none but their Maker will hear-and thus avoid publicly perpetrating so great a moral crime against society.

We often tremble for the man who, in presence of others, and it may be within hearing of youth, or, worse still, in communication with his family, uses language that shocks the moral sense, and lead others, perhaps imperceptibly, to become as oblivious as himself to the proprieties of respectable society, and the duties he owes to bis fellows.

The practice is often indulged in because it is considered manly to do so. No greater mistake can be made. The triter is now considerably past middle age, and does not renember ever but once having used a profane oath, and that was in boyhood, and in imitation of others; and that once is still paiafully impressed on the mentory; and he cannot now hear any man use profane language without loosing all repect for that person-and this is no doubt the feeling prevailing in the minds of almost all respectable members of Society. Swearing and lying are both mean practices, which intelligent minds should avoid.

A profane oath by the party using it is often considered as giving furce to argoments used-it does not do so. A man's word should always be doubted, so soon as he endenvours to establish it by a profane oath; for if be will thus dare his Maker, he will not hesitate to lie to his fellow-man.

Our Volunteers! Our noble Volunteers! brave men for their country! how unseemly has it appeared to hear them indulging in oaths and oursing when going forth to mest their enemies-for aught they knew their great eneniy, death. How sad that
intelligent minds should be so obscured by this disreputable practice.

Our object in writing, however, is, more especially, to draw attention to this evil practice ns it exists in our workshops, amongst our artizansthe bone and sidew of our town populations. Having spent at least twenty-five years at the bench, we feel and write as one of them; and, is asked as a father what we most fear for our sons, who intend learning some mechanical business, we answer-the contamination of profanity in the workshop. Why should this be so? We have filled the various positions from the apprentice to the employer, and we unhesitatingly answer, it is an evil that need not exist if employers would but uaderstand and atterd to their duty,
If any person takes into bis service youths, especially bound apprentices, who are to spend in such service their brightest days just preceding manhood, it is that persoz's duty, as far as in his power, to prevent them from being corrapted by evil commenications during the hours of labour. We know whereof we speak. Where employees are under judicious diseipline-a discipline that tends to make them respectable and respect them-belves-they will respect their employers and render them cheerful and profitable service. The employee should know that the rules of his workshop do not allow of the use of profane swearing or filthy conversation ; and that if he indulges in it, it is at the risk of loss of his position. These rules we have known to be strictly enforced, and with the most satisfactory results; but to be in a position to enforce such rules, the employer must lreep his own skirts clean. We would retain no men in our employ for a day that would not submit to so wholesome a discipline, although his dismissal should cause us any ansount of pecuniary loss or inconvenience.

Employers, as well as parents, have immense responsibilities resting upon them with regard to our youth, who are to be the men and womenaye the rulers-of the nest generation. Let all soe to it that they do not, for ease or hucre, shirk these responsibilities. Upon the good moral character of these youthe does the future progress and wellbeing of our country depend.

TIIE STREETSVILLE FLAX WORKS.

We had intended paying a visit to these works, with the view of furnishing our readers a description thereof: the following article, copied from our excellent cotemporary, the Canada Farmer, obviates the necescity of doing so. The description in the Farmer, as will bo observed, is illus ${ }^{\circ}$
traied by a good wood-cut engraving-a luxury which we can seldom afford to indulge in.
The Scutch Mill referred to has since been destroyed by fire, with a large quantity of flax it contained. It will, no doubt, be soon rebuilt and in active operation again, as everything the members of this firm ongage in is prosecuted with energy:-
" Everything connected with the progress of the flax industry in this country, will be regarded with interest by all who can lay just claim to the possession of patrictic feeling, and we are sure that all such will gaze with pride and pleasure at the engraving which accompanies this article, It is a faitlful picture drawn by our own artist on the spot, of the Linen Mill recentily put into operation by the Streetsville Linen Manufacturing Conspany. This Company was formed by the junction of two enterprising and well-known firms, Messrs. Gooderham \& Worts of Toronto, and W. D. Perine, Brothers of Doon, and other places wostward. Though the building which furms the chief object in our engraving presents a most imposing appearance, the priacipal outlay of oapital has been for what is out of sight, viz.: the elaborate and custly machinery, with which the interior of the Mill is fitted up. Some idea of the magnitude and inportance of this enterprise will be formed when we state that already no less than $\$ 100,000$ hare been invested in it. The Flaz Works consist of a Scutch Mill, on the opposite side of the river from the building which figures so conspicuously in our engraving; connested with which are out-door vats with capacity for retting 25 tons of flax at ouce ; the Linen Mill, consistiog of a main building 50×75 feet, and a wing 40×60 feet, both being five stories high; a separate brick building fur generating the steam with which the establishmont is heated in winter; a rope walk and some manaller offices. From 70 to 100 hands are ordinarily em. ployed ahout the works, but in spreading time a much larger number is required. All the process of flax dressing are carried on from the retting of the straw to the preparation of the finest description of fibre. Certain articles of linen manufacture are also produced. About 900 tons of flax were obtained last winter in the immediate ricinity of the mill. Must of this was bought with the seed on, at $\$ 14$ per ton. The crop last season was not a very even one as to amount of yield, varying from $1 \frac{1}{2}$ to $3 \frac{1}{\frac{1}{2}}$ tons per acre. In the farming county round Elora, Maryborough, and Peel, the usual average is about 3 tons per acre. Scutching was cominenced at these works in November last, and the linen manufacture in March. The quantity of flas obtained in the neighbourhood is only about one-fourth of what is required to carry on the mill. There is, therefore, pretty wide scope yet for increasing the acreage of flas in the adjacent county. The additional material required at the mill bas thus far been obtained from Perine Brothers in the shape of "long.live fibre," as it is called.

A brief account of the operation carried on at these works will doubtless interest our readers. First there is the retting process, which in favourable weather takes from tire to eight days. Neat the retted fibre is spread out to dry. This takes
from three to ten daps, according to the seabon and state of the weather. The dried fibre is then broken and scutched. For breaking, "Randall's Flaz Break" is used, a simple machine in which the ordinary roller breaks are so adjusted as to do the work without risk of catehing the hands of the attendants. Revolving scutch-Enives are used, and moveable perpendicular boards, against which the bunches of flix are held while in contact with the knives. Next to the scutching comes the back-ling,-a sort of combing process which separates all the refuse material and inferior fibre, leaving on an average about 50 or 60 per cent. of long fibre. One hackler is constantly busy preparing " long-line fiax." After it leaves his hands, it gees to the aprending machine, then it is subjected to the first and second draving, next it passes through the roving.frame, then the spinning.frame, when its preparation as warp is completely finished. Tow of various grades is left after hackling. The best quality is first dusted in a kind of cylinder; then sorted; next it gaes to the picker, and from him to the lapper who laps it on to lape for the cards; next it goes through the carding-machine from which it passes to the draw-ing-frame which puts it into webs or belts; then it is passed to the speeder which lays it up and puts it on bobbins; next it goes to the spinningframe and from that to the quiller which puts it on to a number of quills, each of which in turn goes into a shurtie, is put into a loom and wove. At prosent the mill is engaged in weaving the double-welshed linen out of which seamless bags are made. Each of these is $1 \frac{1}{2}$ of a yard in length. The bags are cut off by machinery and hemmed with a sewing-machine, after which they are pressed and balied, 100 being put in a bale. Three bales per day are turned out, or from 1800 to 2000 per week. Their wholesale price in the market varies from $\$ 10$ to $\$ 15$ per bale. Counter-twine is also manufictured. This passes through all the stages that have been mentioned except wenving. Instead of being woren, it is formed into balls by a very ingenious piece of machinery invented for the purpose. Curdage is also made. This requires a grod quality of tow. The poorer grades are mado into rope of various thicknesses. After passing through the processes already described, it is put through the epinning.jenny, the strandformer, and the laying macline. Afterwards it is dressed on the rope-walk and coiled ready for the market. At present only about 300 lbs . of rope per day is being turned out, hut the mill has capacity for making from 600 to 700 lbs . The cordage manufacture is not yot fully under way. When eversthing is in complete operation, all the material yielded by the flax fibre will be worked up on the premises, except the refuse tow which is sold to the paper makers, and uned by them in the manufacture of certain kind of paper."

If hydrogen gae be breathed for a fow moments it has the curious effect of changing the voice, The effect very soon disappears.

At Amiano, in Italy, petroloum has been estracted for two huadred years. The supplies from this source were used for lighting the cities of Purma and Genva,-Mechanics' Mayazine.

BOARD OF ARTS AND MANUFACTURES. Free Library of Referenee.
We call the attention of the industrial classes to this valuable library, which is accossible to all, vithout charge, from $10 \mathrm{a} . \mathrm{m}$. to 4 v'clock p. m. each day; and, for the benefit of those who cannot attend during the day, it is also opened every Tuesday and Friday evening, from 7 till 10 o'cluck. The romens are comfortably furnished and lighted, and every facility is afforded for study or copying, or taking tracings of the various derigus.

Although containing but a few hundred volumes of booke, it is one of the most valuable libraries of reference on the continent, of a pure!y practical character. It comprises works on Decoration and Ornament; Architecture and Building: Engineering and Mechanics; Trades and Manufactures; English, Americab, and Canadian Patents; Parliamentary Statutes and Publications; Encyclopoedias and Dictiunaries; British and American Mechanical and Scientific Journals; and many works on general science.

This library, though moderately well used, ought to be much more so. It is true that it is not generally available for non-residente of loronto, but still much advantage may be derived from it through agents or correspondents, or through the Secretary of the Board, who is at all times ready to furnish information within his reach.

We propose shortly to publish a repised catalogue in the Jutrnal.

TO OUR SUBSCRIBERS.

We must ask the indulgence of our readers in regard to the delay in issuing the past two or three numbers of the Juurnal. Our publishers keep in their employ a staff of loyal men ; and when the Fenian raid occurred, the ory wan "To the frunt!" and to the "front" many of them went, leaving a large amount of work-amongst which was this journal-to fall somewhat "behind." We trust to be up to time by the next number; and also, as two-thirds of the present volume is now iesued, we hope to realize that our renders will be up to time in the payment of their subscriptions for the year. Postage on remittances may be deducted from the annual subscription of 75 cents.

TO CORRESPONDENTS.

Mr. J. C. Simms, of Montreal, will please accept our thanks for his communication. Mr. Simme fays: "In looking over the last number of your vi luable journal, I was much pleased with the admirable treatise on Chemistry; but in the article
on Chlorine discovered an error ;" and then gies on to explain that the action of sulphuric acid on ohloride of sodium will produce chlorhydric (or hydrocbloric) acid, some times called muriatic acid, and not chlorine; and also very fully gives the formula of the changes that take place, and processes for obtaining chlorine ; but as the article referred to -No. 14 of the series, "Chemiatry by the Fireside," from the Maine Farmer-was evidently given in mistake, we have had the article in great part re-written, and publish it in another page of this No. of the Journal.

We shall be glad to hear from Mr. Simms at any time he may favour us with a communication.

FOR UPPER CANADA.

TRADE MARKS.
Trade Marks registered in the Office of the Buard of Registration snd Statistics, and open for inspection at the Library of this Board.
(Gminuted from page 177.)
Hugh Miller, Toronto: Trade Mark-Two sheep standing near each other, on a little rising ground, with "Miller's Tick Destroyer" printed above and on each aide. Vul. A, fulio 129, No. 330. Dated June 22nd, 1866.

BOOKS WANTED.
For Books wanted for Free Library of Reference, see first page of cuver of this number of the Juuknal.

MEATING OF SUB.COMMITIEE.

Bijard Rooms, July 6th, 1866.

The sub-committee met at one o'clock p. m. Present: the President, Vice-President, and Mesare. Sbier, Marston, Sheppard, Carty, Langley and Sheldrick.
Minutes of previous meeting were read and approved as correct.

The Secretary reported communications from the Bureau of Agriculture; the Board of Arts and Manufactures for L. C.; the Smithsonian Institution, the Natural History Society of Montreal; Professor Bell, of Queen's University; W. Armstrong, E*q, of Toronto; Secretary of Kincardine Mechanics' Institute; D. Fuwler, Esq., Amherst; \&c., \&c.; and the answers thereto or manner in which such communications had been disposed of, which were severally approved of.

The Treasurer's Rough Bulance Sheet was submitted, showing total receipts for six months end-
ing 30th June, ultimo, $\$ 178.32$; total expenditure, $\$ 939.35$; balance in hand, $\$ 238.97$. Outstanding liabilities about $\$ 65$, which are more than balanced by assets due on the Journal of the Board.
Professor Buckland suggested the desirability of the Buard endeavouring to secure rooms in the Hall of the Board of Agriculture, should suitable accommodation be afforded; and that the Board might thus act jointly with the Board of Agricul. ture in establishing an Agricultural and Indostrial Museum in the large rooms provided fore that purpose. After full discussion it was

Resolved,--That Messrs. Langley, Sheppard and Carty be appointed a committee to confer with any committee the Board of Agriculture may appoint to consider such a joint occupation.

The President reported that be had receired no communication from the LIon. the Minister of Agricultare, as had been contemplated, relative to the Paris Exhibition. It was

Resolved,- That the several members of the sub. committee, residicg in Toronto, do constitute a special committee to act upon any communication that may be received from the Government in relation to such Exhibition.

The Committee on Examinations reported that but two candidates had applied for examination this session; and that, as their papers of application bad not been sent until some days subsequent to the dute named in the programme for receiving such returos, the committee had not procceded to appoint examiners.

It was suggested that if the several Mechanies' Institutes based their awards of prizes, in the respective classes, upon the examination papers submitted to the Board, instead of upon local examinations held, more success would attend the efforts of the Board, and with advantage to the Institutes and their classes.

The meeting adjourned.
W. Edwards, Secretary.

Trausactions of Socicties.

Whitby mechanics' instird're.

The annual meeting of this Institute, was held on 6 th of July. The officers of last year were reelected, with one or two exceptions; to all of whom a vote of thanks was given for the very efficient manner in which they conducted the business of the Institute. The following is a list of the officebearers for the ensuing year:-

[^0] Smith, Recording Secrelary; Thomas Kirkland, Cor-
responding Secretary ; J. Bain, Treasurer; H. Fraser, Librarian.
"Managing Comnitlee.-M. Thwaite, George Conmack, Major Harper, John Ferguson, Joinn Shier, R. J. Wilson, James Byrne, George Blake, J. H. Greenwood, D. J. Hickie.

From the annual report we learn that " an enlargemeut of the hall has been accomplished by the erection of a wing on the south 20×33 feet, two stories high, at a cost of $\$ 671,00$. The public ball is now the whole size of the main building, the library room, enlarged and otberwise improved, and suitable apartments provided for a reading room, and necessary committee rooms for the Institute. The building is now conveniene and commodious for the purposes for which it was origiually erected. To meet the extra cost of the addition, special subseriptions amounting to $\$ 143$, have been obtained, of which amount your secretary, (M. Thwaite, Esquire,) contributed the handsome sum of $\$ 100$, and $\$ 500$ has been raised on mortgnge on the property, repayable in five years.
"The memberships for the year ending lst April, number 114, showing a decrease from the year previous The cost of membership is $\$ 1$ per year. For a town of 3000 inhnbitants, with a wealthy surrounding country, the membership is certainly small.
"The usual course of lectures for the winter senson were delivered, by gentlemen well qualified to perform that thaty, and to whom jour committee, on bebalf of the Institute, desire to return their warmest thanls. The attendance at the lectures was but small, and during the year not a single lecture ticket was sold. The reccipts at the door for lectures were $\$ 2.40$. It will be a question for your committee's successors to determine whether the lectures shall be continued, or some other means for public instruction and amusement be devised for the coming winter.
"The rents received for the gear, amounted to $\$ 219.32$, of which amount there was received for casial rents $\$ 147.32$.
"The library coutains abont 1100 volumes. During the year 20 new volumes have been added. The number of readers 104, and number of volumes taken out 1470 The library is sadly in want of new works, and at the least 200 additional volumes should be obtained the coming nutumn.
"But one re-union has been beld, yielding to the funds $\$ 9.10$. Your commitlee suggest, that early and efficient steps be taken, for a courso of re-unions affording amusement and instruction to the publie and securing a revenue to the Institute.
"The requisite accommodation for a reading room, has now been provided, but whether it is advisable at this time, for the Institute to incur the decessary outlay to place a reading room on a successful footing, is a matter of scrious consideration : while the expense of maintaining a good rending room is large the receipts at lenst are very precarious and fluctuating, and not unfrequently small in comparison with the oullay.
"During the month of August, your committee, in conjunction with the Oshawa Institute, organized an excursion to the Niagara Falls. The recelpts were $\$ 772.55$, and expenses $\$ 78887$, leaving a deficiency of $\$ 16.32$.
"Your property is now estimated at the following value:-

Building and real estate............... $\$ 1,80000$
Furniture, \&c....................... ... 40000
Works in Library 70090
$\$ 2,30000$

And against which is the Mortgage before mentioned of $\$ 500$. The lnstitute was originally built in 1854, since which tine no direct appeal to the public for material assistance has been made. The property is one that every ratepayer in town mny justly feel prond of, and although the volumes in the Library are not so numerous so we could wish, nevertheless it is one of. if not the very best country Library in Upper Canado. Since the estublishment of the Institute, now some 17 years ago, the managing committee bave given their yearly services free of charge, and every persoo on the payment of the small annual fee, has equally the same privileges of the use of the Library, and the same right in the property, as the oldest inembers in the Institute. Surely where all are equally interested, and feel the same just pride in having in our midst an Institute of this description, an appeal to the public for assistance, ought not to be in vain. When so little is required, and so much given in return, no difficu!ty should be experienced in raising the necessary funds to pay off our small debt. Fifty subscribers of $\$ 10^{\prime}$ ench, or one huadred of $\$ 5$ ench, your committee belicve can readily be found in a town of the wealth, population, ivtelligence and public spirit of Whitly, to accomplish that object.
*Abstract of the Receipts and Expenditures for the year :
Balance of Cash from last year.
$\$ 6174$
Rev. Mr. l'omroy ace't do.
350
Episcopal Church rent..........................
7200
Sundries casual rents.
14732
Membership Tickets.
11400
Receipts at Lectures
240
Re-union.
910
Subscriptions for extending and repairing
Institute
14300
Mortgage on Mechanics' Institute..............

EXPENDITURFS.
Paid note at Bank from last year.......
$\$ 105306$
$\$ 10000$
"Geo. Yule's account.....................
3429
" Fire Insurance and Carpenter's Risk
5090
1000
" Books and Reviews..
" Librarina's Salary.
2390
" Cleaning Hall........
.5200
" Wood and Cutting Benc...............
4000
" Enlurging and Repniring Buidi....
6473
67100
" Balance of Cash to uext year's acc't
621
$\$ 105306$

"Statement of Assets and Liabilities: Agsets.

Cash in hands of Trensurer................ . $\$ 621$
Assemblies from 1864 \& 1864-65............ 950
C. B. Rohinson, for 1864-65

200
Scholars at Eveniug Schools, do
1100
Funds in New York to buy Books
92 :
ares Institute Building and Yo.....
Booka in Librnry
Books in Library
180000
Furniture and Scientific Apparatus
70000
40000

LIABILITIEs.

Gea: Yule
$\$ 293793$
Reviews..
$\$ 4215$

W. H. Higgins

Major IIarper.
1000

Wm. Bryan .
650
1530
Mortgngo
1900

Balance, shewing exocss of Asests over

 Liabilities.234498

$\mathfrak{C a r e s p} p \mathrm{indemse}$.

To the Editor of the Journal of the Board of Arts and Manufactures.

Dear Sir,-Annexed is a rude sketch of a very simple machine for easily separating the grounds in preparing Coffee. I am not acquainted with Mr. II. Boyle, of Napanee, C. W., the inventor, but bave triod the machine and find it to answer the purpose perfectly, and send you this short notice as I find it has not been introduced into Toronto as jet. After the Coffee begins to boil, in any common coffee-pot, the machine is introduced into the pot, where it is to remain until the Coffee is sufficiently boiled. The "Settler," as Mr. Buyle calls it, is then taken out, when it will be found that it contains all the grounds, without leaving any grounds of complaint against the ingevious inventor of this clever "dodge."

Now, as to the philosophy of Mr. Buyle's Setticr. Has the reader ever obsersed, in travelling along the mirgin of a stream runving through a flat country, how, by a provision of nature, the banks on either sides are raised higher than the adjacent lands, and thus the country is protected from the effects of future inundarions. While the stream is confined to its usual channel, the mud and sand are carried alung. But as soon ns it overflows its banks the current is decreased by diffusion, and thus the mud is deposited, and a natural barrier is formed. In the case of the "Magic Seltler," the liquid in builing is impeded in its motion by the outside of the Settler, when instantly the current ceases, and the Cuffee grounds are deposited in the inside.

I remain, dsar Sir, yours respectfully, J. W. Dunbar Moodie.

Belleville, C. W., July 6th, 1866.
P. S.-Perhaps Mr. Boyle, of Napanee, might seud you one of his machiues, on application. At all events, he ought to do so, in order to bring it into notice through your excellent journal, which should bave a rery large circulation through its merits.
J. W. D. M.
[We will with pleasure publish a wrood cut illustrution and description of Mr. Buyle's "Settler," if forwarded to us by that geatleman.-Ed. Juer.]

The Earth moves upwards of 68,000 miles per hour, whilst Mercury travels 108,000 miles per hour.

13,392 tons of water are every duy converted into steam and discharged into the air from locomotire engines alone, in Great Britain.

Silected axticles.

POPULAR BOTANY,

AN ILLUSTRATION OF SOME OF THE MUST INTERFGTING PHENOMENA CONNECTED WITA VEGETABLE JIFE.

BY H. A. GRAEF,
Cunirman of the Section on Botany in the Long Ibland Historical Society,
The study of Natural Fistory opens for us so many sources for moral reflections and pure enjoyments, and rewards us at the same time with so many valuable developments useful to practical life that it can hardly be sufficiently appreciated. Whoever has an opportunity should regard it as a duty, to aid and to sustain every branch of this science to the best of his ability. And as it was my fate to pass more than thirty years of my life ameng plants, where the most favourable opportunities were offered to observe and study their life and habite, it affords me great pleasure to communicate to those who take interest enough in this branch of natural history some of my own observations and reflections in connection with other facts more generally known. The main olject of this essay will tend to sum up and explain some of the manifold and interesting phenomena connested with regetable life; to show some of the important functions which vegetables have to fulfil in the natural economy, and also the great wisdom and care which have necessarily been bestowed apon them, with regard to their creation, preserration, propagation, and diffusion over the surface of our globe. It would be to me a great gratification should these remarks make a lasting impression on the noral feelings of those who perruse them, and lead to a greater interest in the study of Natural History in general,
In order to be more perfeetly understood I will try to avoid as much as possible all scientific terms, and wish, therefore, to have this paper regarded as an essay on popalar botany.

The English word Botany is derived from the Greek, and signifies that branch in Natural IIistory which comprehends all that relates to the vegetable kingdom.

With regard to its purpose, botnny is divided into tero branches, namely:-The theoretical, Which has for its object the iovestigation of scientific matters; and practicnl, which aims to take advantage of this science for pecuniary profit. In the last named are included agriculture, fluriculture, pomology; \&c.

The origin of plants dates, without doubt, as far bnck as the period when the surface of our globe wat sufficiently prepared for their reception and lasting nutrition; at all events, the creation of vegetables must have been long before that of the quadrupeds, for these being for their subsistence almost exclusively dependent on vegetables, either directly or indirectly, and as one eingle animal frequently devours more vegetable matter in one day than many thousand plants will produce during a whole year, an abundant number of the latter were needed for the contiouation of animal life.

There is good reason to suppose that plante at first were constructed on much more simple forms. than wo are accustomed to nuegt, and that in the
course of time and through the might of influences, they have gradually become more various and perfect.

This change in the forms of plants. however, passes on so very elowly, that a man's life is not sufficient to observe them. The evidence for the supposition already mentioned must, therefore, be derived from other facts, namely, by excavations.

A great many pell preserved antediluvial plants have been thus discovered, which are recognized as plants of our daye, but more simply constructed.
The indispensability of vegetables in natural economy cannot be better illastrated than by the fact of their existence everywhere. Plants are found on our globe as far north and south as it has been explored; their region extends from the deepest cave up to the boundary of snow on the highest mountains; far beyond that of the spheres of animal life.
They grow in almost every kind of snil; in sand, in gravel, clay, chalk; in swamps, in water, on stone and rocks; on living aud mouldering wood, and even on living animals. It is obvious that according to their location and the different functions they have to fulfil, they must be differently constructed.

Vegetables are not only created for their own existence, but also as an indispensable means of maintaining animnl life. Should it happen, for instance, that all the vegetables of our glove were destroyed, hardly any animal would be found alive in Ω ehort time thereafter. With regard to this great function, plants have been particularly favoured by nature, especially in regard to their independence, propagation, vitality and reproduction. While animale have been gifted with free will and voluntary motion, plants are chained to the ground; but vegetables, in return, hiave been endowed with other advantages, which will counterbalance them to a certain degree. Sin, for instance, most of the plants are hermaphrudite, combining the conditions of propagation in one individual. When most of the land animals produce, as a general rule, from one to two young ones per annum, and rarely more than twenty. a single plact usually produces during the same time many thousands; nay, forns, lichens and musses even several millions of seeds-each containing the germ of a new vegetable life.
Besides by seeds, the propagation of plants takes place in a natural way, by pnot-shoots, anckers, runners, layers; by bulbs, by bending over of branches, by dropping of twigs and leaves-without regard to the many different artificial manipulations, whose success is really astonishing.

In regard to vitality and reproduction I refer to the fact that animals usually die when deprived of integral parts of their body; plants retain their ritality when totally deprived of their-leaves, brancbes, and even stems; as the grass on menduws, where cattle graze, is eaten of and reproduced sometimes onse in twenty-four hours. As further evidence for my statement, I will mention that plants produce, with the assistance of light, air, and water, nourishment enough of themselves for the sustenance of their life and growth, independent of any other succour.

As soon, for instance, as the frost has interrupted the circulption of sap in vegetables, the leaves of
most of the trees and sbrubs, or the whole growth of annual and perrennial plants drop to the ground, and not only serve as a natural protection for the rocts or seeds against the cold, but more warmth is also produced by the chemicnl process of decomposition, for the same end. From the dropped and decaying leaves, brushwood, and other matter, a quantity of humus or leaf-mould is produced, of which the rain water will dissolve the suluble parts and penetrate, with them, the bottom; from which latter the roots will absorb then again, in order to use them for the further growth of the plants.

Besides the nourishment from the humus, the roote also absorb some different liquid earth-8alts out of the soil ; while the leares absorb and decompuse on their surface n part of the carbonic acid gas of the atmosphere. By this reasou the foliage produced in this way weighs always more than both the absorbed humus and salt tugether would amount t. This fitct has given rise to the introduction of a peculiar mode of manuring. In countries, for instance, where manure is scarce, poor fields are sown with the seeds of ensy and vigourously growing planta, such as peis, vetcher, lupins, \&c., and as soon as they reach their maturity, they are plowed under. Now, by the decomposition of these vegetables, the ground will gain more manture or humus than the previous crop had ahsurised from the poor soil, and in this way the fields are very much improved.

The constituent parts of the plants are, in general, roots, stem, leares, calys, corolla, germ, pistil, filaments, fruit, and seed. Besides these, many plants are found to have other erganic parta which, however, would be too numerias to mention in this place. Every one of these organs hat ita certain function to fulfil. The root, for instance, serves simultaneously as an anchor to fasten the plant to the ground, and. at the smme time, to absorb nourishment therafrom. In the tender stage the plant must depend on the root only for its support. Roots and stem always grow in their due proportion : the former, bowerer, must alirays be a little in advance, in order to fulfil its functions as the anchor, as well as supporter. The stein serves as the medium of communication botween the root and the other parts of the plant. The leares absorb and decompose a portion of the carbonic acid gas from the atmosphere. The calyx affords protection for the developing blossom. The corolla envelopes the delicate germ, pisil and filaments. The germ is the nuclecis of the future fruit ; the fruit contains the seed, which latter, fur the most part, furnishes the common means for future propagation.

It would become too tedions here to describe all the functions of the parts above enumerated; I will therefore confine myself, on this occasion, to a few hinfe on the different ways and ineans of which Nature makes use for the distribution of plants orer the surface of our globe. Although plants are not endowed by Nature with voluntary motion, still they will travel by degrees over the whole enrth. One of the most common means for this effect is the wind. The seeds of many familics of plants, as for instance, ferns, misses and lichens, are so exceedingly dust-lise that they are taken up by the wind in large quantities and transported to a distance of hundreds, nay, thousands of miles.

At certain seasons the atmusphere is filled with these invisible atoms by the million, and they are kept afloat until they come in contact with some object to which they adhere, and under favourable conditione they germinate and grow. This fact is easily observable on the shady side of brown-stone houses. Where there is sufficient moisture to germinate the plante, there we find a green substance nccumulating particularly about the steps, which is nothing else than the young plants of mosses, lichens or ferns.

The seeds of many other plants are covered at the apex with a hair-like tuft-pappus-for instance, the thistle, dandelion, aster, \&o. This renders such seeds also bouyant and susceptible of being easily floated through the air, yet not to so great a distance as in the former case. In other cases the seeds are enveloped in a woolly substance, as the cotton, willow, poplar, asclepins, de., and they are conveyed away in the same manner ne the former. Some seeds are prorided with membranaceous and wing-like appendages, as the maple, ash, elm, pine, \&c. These are also carried aray by the same agency of the wind, to a shorter diatance.

Another rery important agent for the distribution of soeds is water. By heavy sinowers of rain, producing inundation-a great number of different seede will be taken up and transported from rivulets to rivers, and by these to the sea, and thus be wafted to distant shores, where under favourable circumstances they may germinate and find an asylum.

Another agency fur this distribution we find in birds. These are in the habit of using berries for nourishment; they swallow them frequently without crushing the kernel. And as the diyestive power of their stomach is not sufficient to destroy the vitality of the cerm, and they sometimes fy to great distances befure these undigested seeds are discharged through the natural channel; these seeds are frequently found to germinate and thrive in parts far away from the place where the berries were swallowed. A mateur gardeners in Sicily are in the babit of shooting migratiog lirds which return early in spring from Arabia, and to sow the contenta of their stomachs, with the purpuse of raising in this very manner new Arabian llowers for their gardens.

The a ame case will sometimes, though more seldom, occur with quadrupeds. But animals contri bute to the distribution of seeds in other ways. Some seeds, such ns the burdock, agrimony, Bidens, \&c., are provided with barba. When animals come in contact with those seeds, they become fastened to the hair or wool, and thus they are carried often for a length of time, and frequeatly are not deposited before the hair or wool drops off. Sometimes such animals, covered with seeds, are killed, and their hair, wool, or hides exported to foreign countries. In cleaning these products, the seeds are often cast into the rubbish of the atreet, and thence they find their way into the fields, where under favourable conditions, they successfully germinate nad occupy a new home. In this way many Asiatic plants were imported in camel hiir; many South American ones in tho the hides of oxen and the wool of the alpaca, \&o., and many Russian plants in Northern furs.

Plants are furthermore distributed by the elasticity of their seed-capsules. In approaching matarity, or when the capsules have attained a certain degree of hardoess, the cohesion of parts will be broken, as that part immediately containing the seeds rolls itself up with great rapidity and a sort of spiral contraction, by which process the seeds are scattored about for a distance of sometimes ten ynrde, and even more. To this clase belongs our common lidy's slipper, Fraxinella, sweet peas, \&c.

Another and peculiar process by which seeds are scattered abroad occurs with the Monardica Elaterium, a platat used in the old school of medicine, and which is one of the cucumber tribe. On approaching maturity the juice of this cucumber undergoes fermentation to such a degree that the contents of the same, pulps, seeds, fluids and gases are thrown off through the aperture of the fruit stalk with such force as to reach sometimes a distnnce of fifteen yards. This will happen, also, if the ripe fruit is pressed by a too careless handling, so that the uninatructed may be served a severe practical joke, and find themselves much surprised and annoyed on having the contents of this repulsive fruit thrown in their face.

Finally, one of the most extensive distributiona of seeds is effected by the commercinl oxchange of prains. Through this channel we find not only the desirable supply of breadstuffe and the useful products of different climes exchanging localities, liut also the undesirable varieties of dozious weeds, and foul plants, surprising and nonoying the gardener and farmer, who only bargained for a new variety of wheat or some other grain. The greater part of these so-called weeds, and many other plants growing in the vicinity of cultivated grounds, have been introduced in this way. It is, therefore, now difficult to determine which of these plants are of American or foreign origin. I shall never forget my surprise on finding, in the year 1818, in the vicinity of Culogne, such a variety of strange plants. The weather in the year 1816 and 1817 was so exceedingly wet that no grain of any kind could come to maturity, on which account the government thought it prudent to import the necessary seed.grain from Russia, at government expense, in order to prevent fomine, and with these grains a number of Russian plants were introduced to) the vicinity of the Rhine.

It is very interesting to observe with how much effirt phats endeavour to prodnce seed, or to proparate themselves in other ways; for instance, in the case of plants whose fowering senson in a ratural state is only of Ω short duration; if wo pluck their flowers before they have matured their seed, the plants will persevere to flower again and again, as if never satisficd ehort of the full maturing of their seed, for succession. In accordance with this principle, amateur gardeners keep most "f tie:r favourites almost constantly in bloom.

As before mentioned, planta propagate themselves in many other ways than by the production of seed; for instance, the weeping willow, the wild cotton tree, the weeping ash, \&c. When their long pendant twige roach down to the ground and are suppirted by the wet weather they take root, and ly reaction the little twig becomes the trunk of a new tree. This tree, in its turn, elaborates the same process, until somectimes, in wild uncultivated
countries, a space of even several miles in extent is thus spontaneously produced from one original standard tree.

The same occurs with some perennial planta, driving out runners; for instance, our strawberries, ranunculus, Putentilla, \&ce. These plants send forth slender feelers, so far from the mother stock as not to interfere with each other, and then take root, and become independent plants. As soon as these young plants have atrained a certain size, they also throw out their own feelers, and in this way we find often a considerable surface covered from a singlo plant. One of the miost interesting of this kind of plants is the Saxifraga stolonifera, a plant most commonly used for hanging pote. This plant which grows, as far as I can recollect, at the porthern sides of the Italian Alps, will certainly not reach the lower regions with the rapidity of the wild goat, but it will reach them just as woll and surely with much less trouble nod danger. Some other plants resemble those just described, but throw out their runners under ground instead of over the surface; for instance, -ur quackgrass, thistle, convolvulus, and others. Ticse plants embrace some of the most troublesome reeds; as the smallest piece of root will become a new plant, if notcarefully taken up after digging or ploughing.

The power of reproduction in many plants is so strong that small twigs or even dropped leaves, if placed in the least favourable position will take root and form a new individual.
Of many perennial plants the old root will decay every season, but not until it has produced a num. ber of young roots, each of which will becomen new plant at the neat succeeding seazon.

The so-called bulbous roots, for instance:hyacinths, tulips, crocus, and others, yield a brood of small bulbs every year. Some others, as Lilium bulbiferum and Dentaria bulbifera, bear besides those of the root, small bulbs between the lenf axil; and others again, as Allium vitiparum tho 80-called grape onion, bear, ontirely developed, small onions instead of fowerd, and each of these little onions also often drive out another stem, each of which is crowded with still nnother crop of onions.
For their full derelopment plants in general need a full thare of light; without this they will pale, droop and die. The effect of this is nowhere more forcibly manifested than in very dense forests. As the light in such places can fall only from above, every tree endeavours to receive as much of light as can possibly be obtained, and for this end a strife as for life and death will ensue. Ascordingly, tho trees grow with an alnuat incredible rapidity to an enormons beight; such are generally quite straight, but often not thicker at the bottom of the trunk than at the top. And should any one of them fail to keep up the contest he is lost! His neighbour trees will overgrow and then spread their branches over such a weary one; shut out from the necessary light the tree will suffer death, while the remains of his decomposition will serve as food for the more successful rivals.

Planta are generally organised in a way to live in soil of very different composition; the quality of the latter, however, bears still a great influence upon their liabits. So, for ingtance, may a plant
in poor barren soil grow to the height of ten inches which would reach the size of twelve feet in rich or more convenient soil. For this renson it is often rery difficult to recognize these two so unequal individuals as sisters.

Many other plante, however, are so dependent on a certain admixture of suil, that their appearance can serve ne a true hint to geologists for the discovery of certain strata of earth. As, for instance, we can surely depend on fiuding a layer of zinc, where Viola calaminaris, Slatice Ameria and Spergula muscosa grow naturally on the surfree.

While these three plants indicate the presence of zinc, other kinds in return point to the layers of lead, copper, iron, coal, lime, chalk, gypsum, marl, \&c.

A very interesting demonstration in regard to the abilities of plants to accommodate themselves to conditions of locality, presents itself to the naturalist in swamps which are occasionally inundated, particularly if the water on sonie places is bept running for some time. For instance, plants grown in swamps, and constructed to live in the open air, would certainly be drowned, when set under water for a long time, if they were not provided with the means to rescue themselves from such a dilemma. Under this difficulty, full grown plants begin once more to grow, not soldom to a great extent until they have reached the surface of the water, where the leaves lay down; while the stem takes up agnin its ordinary functions. On places, however, where the water is running, the plants or their parts will appear in entirely difforent furms; namely, by the cuntinual side pressure of the water the now growth will be unnaturally extended, or, ha if it were, pulled into the shape of long slender threads, and the foliage will undergo a similar change, whoue flat forma were altered into long thin splite. In case such an extended stem should reach a place where the water stands atill, the leaves will appear again in their original large shape. When the water on such inundated places rune off or is evaporated, the plants becone so tender that they cannot live in the open air any more. The whole growth, therefore, must decay, na deep as to the roots, and the new plants which shall spring up from them appear aloo in their original form again.

These and other similar changes in the forms of plants bring young botanists often into great confusion, and have also gived rise to many diacumsions and different opinions among the experienced.
(To be continued.)

GHEMISTRY BY TIIE FIRESIDE.

(Continued from Page 180)
No. 15. Carbon.
We come now to one of the nost interesting of the elementa. Carbon exists in sume form in all the kingdoms of nature. It is in one form among the cheapest of substances, and in another the most cosily. Your oharconl, your mineral coal, your black lead, and the diamond are only differeat forms of carbon. If you knew how to crystalize charconl, you could make diamonds for your own use. A rast number of experiments have boen
made to obtain diamonds by artificial means, but like perpetual motion, it is probably one of those things beyond our reach.
I wish to introduce a new term oalled allotropism. It has been found that the element sometimes exists in different forms, and possesses entirely different properties. This is strikingly the case with reference to carbon, for it exists in three distinct forms, charcoal, plumbago, or blacklead, and the diamond. They call this condition allotropism. The diamond has been seen by mineralogists in its native rock. There is a mystery still hanging over the minds of naturaliste with reference to its native rock. It is usually found in the loose sands of rivers, and generally where gold and platinum abound. The diamond is well known as the hardest substance in nature. It can be ground and scratched only by its own dust.Ifence its great value in jewelry and for cutting glass. The planes of these crystals are curved, and when they come to a point they are set in a handle and are used for cutting glase. The diamond is so much harder than the glase that it actually cuts into the glass as clear a cut as a sharp knife cuts into a piece of pasteboard. It is not a scratch then, but a cut that causes a piece of glass to separate. If you burn the diamond, it will produce the same result as when you burn charconl. This is proof positive that it is pure carbon.
Carbon exists in regetable matter. When you burn wood for charcoal you drive off a large portion of the other elements, and have left nearly pure carbon.- This is really an experiment in chemical analysis. This form of carbon is indestructible like any other element. Bury it in the ground, and it will remain there for thousands of years unchanged. Fresh charcual will absorls large quantities of air and other gases. Hence it is found to be a good disinfectant. Take some charconl just burned, powder it up, and bury n piece of tainted meat in it, and it will be materialIy improved. It combines readily with ozygen in combustion, throwing out a great deal of heat.
Mineral coal is another form of carbon. Go to a blacksmith shop when it is used, and you will find the variety known as bituminous coal. It smuts the fingers. It burns with a good deal of smoke, Anthracite coal is not smutty. It has a shining, metallic lustre, burns almost free from smoke, and makes an extiemely hot fire.
Plumbago, graphite, blacklead, are all the same thing. This is another form of carbon. It is found in the rocise in"beds, and contains a small per cent. of iron in combination, though the latter only appears as an necidental substance. You are familiar with this substance in your lead pencila. It withstands a high degree of heat. ConsequentIy the chemist has his crucibles made of plumbago. Thus you see that carbon is an abundant element in nature. In our next number we shall notice more of the compounds of carbon, when wo shall learn that it is still more abundannt.

No. 16. Carhonic Acid.

We tuld you last week that charconl, - mineral coal, and the diamond, were the same thing under different forms, and that we give them all the name of carbon. Suppose now we burn a picce of char.
coal; during the process of burning, the oxygen of the air combines with the carbon and it passes off in the form of a gas, to which we give the name of carbonic acid. If we burn a diamond in oxygen gas the result is the same. This is the proof positive that the diamond is pure carbon. It was first discovered by Dr. Black in 1757, and called by him fixed air, because it was found by him to exist in a fixed or solid state in limestones.

You can easily prepare carbonic acid. Put some chals, which is composed of carbonic acid and lime, into a glass jar, and pour on some diluted sulphuric acid. Effervescence immediately takes place by the escape of the carbonic acid from the chals in form of a gas. As the gas is ouce and n half times heavier than common air, it remains in the jar. It is invisible, but has a puegent odor, such as you can smell after burning charcoal. Under an immense pressure it is condensed into a liquid, and when the pressure is removed it will evaporate so rapidly that it freezes its own vapor so as to produce a white substance looking like the purest snow. Owing to its weight you call pour it from one vessel into another like water, though you cannot see it. Take a tumbler and set a slourt bit of lighted candle in the bottom, and pour some of the gas from the jar, and it will put out the light as suddenly as if it had been water. A test for earbonic acid is lime rater, which on agitation, produces a milky looking substance. Lime then has a great affinity for carbonic acid, and forms a carbonate of lime. This is the composition of all our limestones and marble. It is fuund in all catural waters. If you boil water you drive off the carbonic acid and the water tastes flat and insipid. Your soda water, sparkling cider, beer and wines owe their character chiefly to carbonic acid.

Carbonic acid is a deadly poison when breathed. If you should put a kettle of burning charcoal in your tight sleeping apartment when you go to bed you would be found dead in your bed in the marning. Sometimes it exists in the bottom of wells that have not been used, especially in limestone countries. A care of this kind occurred a few years since in the town of Alexandria in this State, when a man descended a well and fell dead. Another descended to rescue him and te too fell dead. A third was with difficulty saved. A few buckots of water thrown into a well will prevent any such catastrophe. Every time you throw out a quantity of 'air from your lunge, you throw out with it a quantity of carbonic racid. Just make some fresh lime water, and blow into it through a tabe or tobacco pipe, and it will berome white from the car. onic acid which gou have thrown into it.

Plants breathe carbonic acid instead of oxygenDeprive a plant of carbonic acid and it would sicken and die. Over the surface of leaves are countless numbers of pores or open mouths which take in the carbonic acid. Thus the leaves of plants aro like the lungs of animals. It escapes whenever fermentation takes place and whenever bodies are decomposed. Such are some of the properties of carbonic acid-a sulstance deadly poisonous when brenthed, yot absolutely necessary fur our very existence.

No. 17 -Compounds of Carbon and Hydrogen.

Among the substances useful to man, are the various coinpounds of carbon and hydrogen. Whenever vegetable matter is undergoing decomposition, a portion of the carbon unites with the hydrogen and forms an ioflammable gas, called carburetted hydrogen. If you would go to some stagngnt pool, where vegetable matter is decomposing at the bnttom, and atir up the sediment, immense bubbles of gas would rise to the surface. This will catch fire, and burn on the surface of the water with a Jlue flame. It is a pretty experiment to perform on a dark summer evening. We remember reading an account in a scientific journal a few years ago, of a teacher in a boy's school in Peninsylvania, who promised the boys that if they would behave well, he would set the river on fire. The appointed day arrived when he ordered the boys to strip off their ciothes, go into the water and stir up the sediment from the bottom. As soon as they had done this, the gas legan to rise, when the master tnuched a fiame to the gas and it burned all over the surface of the water, and scorched the boy's skins so that they were glad to hurry on shore, perfectly satistiod with their tencher's experiment. It is this gas that cullects in coal mines, which sometimes explodes with terrible violence, killing the workmen in the mines. This gis receives different names, such as fire damp, marsh gas, and light carburetted hydrugen.

Ancther compound of hydrogen and carbon is called the heavy carburetted hydrogen. This is obtained by a sort of distillation. It is the gas light of our cities. You can make some in a very cheap way. Talse an old iron teakettle and fill it with white birch bark or pitch pine wood, put on the cover and late it duwn with clay, and then put a cork into the nozzle with a tobacco pipe-stem run through it. Now set it over a fire in a fire-place and pretty soon a dark sunoke will issue from the stem, which is this gas. Set it on fire and it will continue to burn treo or three hours, if the heat of the fire is not too great. Turn up the wick of a kerosene lamp and the smoke will be this gas. This gns is purified for illuminating purposes by passing it thriugh cold water so as to condense various impuritics, and then through dry lime, and afterwards a solution of copperas. It explodes with osygen with terrible effect, furming as a prodact water and carbonic acid.
One of the most familiar objects to us is the flame of a lamp, and we may now understand how it is formed. On the application of heat to the wick the temperament is raised so as to disengage a portion of carburetted hydrogen in the form of a gas. When this is iuflaned the hydrogen of the gat combines with the oxygen of the air, and forming an intense beat, buros the millions of particles of carbon to a white heat. It is the carbon then that is illuminated. It is only that portion of the gas in cuntact with the nir which is illuminated. The ioner portion of the flame is still a gas. You ean prove this by holding a piece of glass orer a candle, pressing it down on the flame, when you will see a dark spot on the centre of the flame.
Thus you see that hy the study of the simplest principles of chemistry yon can understand a thousand thinge that come befure you every hour of your life. It is always more plensant to be able
to give a renson for what you see before jou, than to be compelled to say that you do not know, or what is worse, expose your ignorance by attempting to give an explanation utterly at variance with the truth.

No. 18.msiticon.

Thus far we have examined the principal elements oxygen, nitrogen, hydrogen and carbon, which abound in all vegetable nnd animinal matter as well as in the mineral kingdom. We propose now to examine those elements which go towards making up our soils, and see how far we can build up a soil from the different elemente.
Silicon is the most abuadant element in nature. About one sixth of the globe is composed of it. Pure silicon does not exiet in nature, but combined with about equal parts of oxygen it forms the substance known under the names of quartz, sand and flint. Pure white sand is composed of silicon and oxygen. We shall make use of the word silex as the most convenient term. When silex is erystalized it forms a six-sided prism terminated by sixsided pyramide. In this form it is called quariz. Suppose now you pulverize in a mortar one of these cryetals, you will have a pure white sand, the base of your soils. You may pulverize it as long as you pleaso, and it will be harsh to the fingers and gritty between your teeth. It can bo dissolved only by one acid, the fluoric, at common temperatures. If you mix it with potash, lime or soda, it will melt in a powerful furnace, and form glase. This is your common window glass. In the language of chemistry your glase may be called silicate of potash. The different kinds of glass depenil upon the purity of the materials, and che use of oxides of the metals for the purpose of giving them different colors.
The most interesting point for you to remember about silex is the fact that siles enters into the composition of your wheat, corn and other vegetables. But silex must first be in a state of solution before it can become food for plants; and bow can if be accomplished, for pure water will not dissolve it, as you already know. But let us take a round about way for reaching the truth in this case. Suppose we take a trip to Arkansas. We shall find there some springs that have silex in eolution in the water. This is brought about by the potash in the water, which in a state of aolution nittacks the silex and dissolves a portion of it. When this comes in contact with muss on the banks of these springs, it covers it with a coating of this silex 8o that it is actually perritied. You have seen an agate used in jewelry. It is composed of stripes of different colors. Suppose now a pebble ahould receive a coating of this silex; this would furm one stripe; nuw suppose another layer of silex of a different color should surround the pebble, you woul, have another stripe, and so on, till the pelitile might be as large as your hand. If now this pebble were sawed through and polished you wouid hare a fortification agate. Chaleedony, jasper, opal, bloodstone and cornelian, are easentialy the same thing. They are generally harder than glass, and will serateh it, which artificial jewelry will not do. They are also colder to the tongue than the artificial gems, as they are better conductors of heat. They are therefuro called siliceous minerals.

Now it is in this way that silex is rendered soluble as fuod for plants. The plant has no power to effect this, but the potash and waters in the soils can dissolve enough for the use of plants. The ratan, bamboo, and sugar-cane have a complete crust of this element. The scouring rush, stalks of Indian corn, rye and whert, must have it so as to support the plant. The moss and litchens on the rocks are composed largely of this element and potash.
Suppose now you had a soil of pure white sand, do you think you could raise anything on it? If you can find a plant of pure silex, it might do so, provided the silex may be in a state of solution. But it would be like the desert of Sahara-an ocean of sand. Silex forms about 60 per cent. of our granite soils. Barren sand hills contains sonmething as high as 90 per cent. of sand, while clay land contains much less than 50 per cent. In our next we will see if we can add anything to our soil by which to make it productive.

CHLORINE.*

This element was discovered by Scheele in 1774 If you should take a saucer and put into it a little common salt, some black oxide of manganeee, and then pour on sulphuric acid, slightly diluted with water, a gas would pass off which you would ascertnin to be very difficult to breathe. This is chlorine. Common salt is composed of chlorine and sodium, the metallic base of soda; the latter being the uxide of sodium. By adding together the ingredieate mentioned, the following exchange of elements occurs:

Chloride of $\}$ Chlorine........Chlorive.	
Sidium. S Sodium. ...	
Sulpharic acid.........	Sulpbate of Soda.
Bixoxide of \{ Pxygen	
Miangnnese. $\left\{\begin{array}{l}\text { Protoxide of } \\ \text { Manganese }\end{array}\right\}$	Sulphate of
Sulphuric acid.............	Manganese.

The sulphates of soda and manganese remain in the ressel, while the chlorine, left free, eseapes in the furm of a gas. You may then infer where it existy in nature, as it is one of the elements of common salt. It is a remarkable element in several respects. Cold water absorbs large quantities of this gas, while warm wator does not. It is exextremoly suffocating when breathed, and it is poisunous. Unlite the other gases which we have denwribed, it can be seen of a greenish-yellow color. It can also be condensed by pressure inio a liquid, and on exposure to cold it forme crystals of a yellow color. A test for chlorine is made by dipping a feather in ammonia, and if chlorine bo present, it will form a white cloud of chloride of ammoniam.

A most remarkable property of chlorine is its powor of bleaching substances where moisture is present. A half century ago the good housewife heacled her cloth in the sun; now it is done by chlorine. It would cost you much more than it dues, if the chemist had not discovered oblorine.

[^1]Chlorine has a powerful affinity for hydrogen. If you puta rag saturated with turpentine into a jar of chlorine it will immediately catch fire. It is also a powerful disinfeotant. If you put salt and black manganese in a vessel and pour on sulphurio acid, and set it in a room, it will nentralize nosious gases by combining with them and forming other oompounds.
In consequence of its poisonous qualities, it is sometimes nsed to destroy rats on board of ships. When this gas is mised with hydrogen gas in a vessel, and exposed to the sunlight, they will unite suddenly and make a violent explosion. Chlorine does not unite directly with oxygen, there are various compounds of these elements formed by certain processes which we cannot now explain. Hy-dro-chloric acid, which was formerly called muriatic acid, is composed of hydrogen and chlorine. This acid is much used in the arta. Common salt is Ω well knowu and important constituent of our fuod, and is valuable as a manure. The presence of common salt in the watere of the ocean serve, no doubt, to prevent them from becoming unhealthy by the generating of noxious gases. Thus we see that all the elements, so far as we have examined them, play an important part in all that serves to maintain our existence here.

TIIE FENIAN INVASION.
(Continued from page 176.)
Culonel Lowry's Report.
Fort Frie, C. W., 6 p.m , 4th June, 1866.
Sir,-In accordance with your orders, I left Toronto, per train, at 2 p.rn., on the 2 nd instant, with four field guns, \&e., under command of Captain Crowe, R.A., and accompanied by Col. Wolseley, A.Q.M.G., by Licut. Turner, R.E., by Lieut. Dent, 47 th, and by Lient. Col. Cumberland, P.A.D.C., to the Governor General and Manager Director of the Northern Railway, who had kindly placed his services at my disposal. There were also two gentlemon, Mr. Clarke and Mr, Kingsmill, possessing considerable knowledg' of the country of which we were to pass, attached to me by order of the Major General, and Mr. IIunter, T'elegraphic Operator. On arrival at Oakville, I was joined by its Company of Rifle Volunteera, 52 rank and file, under Captain Chisholm. On arrival at Hamilton, I, requiring information, telegraphed to the officer commanding at Purt Colborne, asking to know the state of affiars there, and requesting answer to St. Catharines. At the Hamilton station, I learned that the detachment of the 60th Royal Rifles and 16th Regiment, which had been at first ordered to join me there, had already proceeded by railway to reinforce Col. Pencocke who, the Superintendant of the Great Western Railmay said, had twice telegraphed for reinforcements. Under these circumstances, and finding at St. Catharines no answer from Port Colborve, and that difficulty and delay would be occasioned in getting the train from the Great Western Ruilway to the line of the Welland Kailroad, I determines to proceed to Clifton and thence to the support of Col. Peacocke, en route to Furt

Erie. I arrived at Clifton about 8 p.m., and was there, a few hours after, joined by Colonel Stephens, with a volunteer force to the number of 350, which had been despatched by stoamer from Toronto to Purt Dalhousie, to meet me at St. Catharines.-At Clifton I received pressing telegrams urging me to proceed to assume command at Purt Colborne, whence I also received an urgent request for rations and ammunition, reported exhausted: Believing an early arrival at Fort Erie to be most important, I despatched all the rations and ammunition I could epare to Port Colborne. I telegraphed to Col. Peacocke to send Lieut. Colonel Villiers, if possible, across the country to Port Colborne to command the volunteers at that place; but sona finding that impossille, telegraphed to Capt. Akers, R. E., to nssume that duty, adding that I did not anticipate pressure at that point. Having waited for the Erie Railway line to be cleared of other trains, I proceoded at $340 \mathrm{a} . \mathrm{m}$., on the 3 rd instant, to Black Creek, at which place I bad telegraphed to the officers commanding detachments of the 60th Rifles and 16th Regiment, if not in communication with Col. Peacocke, to meet me at dagbrenk. After some delay, I was joined by 200 rank and file of the 60 th, under Captain Travers, and by 140 rank and file of the 16th, under Captain IIoggo. As the railway line had not been previously open for transport, I amaited its examination by Lieut-Col., the IIon. J. II. Cameron, who had joined me at midnight, at Clifton, from some point in advance, and who proceeded with a locomotive engine for that purpose. On Lieut.-Col. Cameron's report that the road was passable, I proceeded to a point about three miles north of Fort Eirie, called Frenchman's Creek, said to be the nearest point to where the Fenians were reported skirmishing, and fast escaping across the river. Here, unloading the force from the rail wry ears, I advanced with some volunt.eer companies, the detachments of the 16th Regiment and the 60th R. R. towards the Niagara river, throwing out an advance guard and a few skirmishers in the woods on either flank. As soon as two field-guns could be got out, they were pressed to the front; but on reaching the river, Col. Wolseley, fuund we were too late, and that Fenian prisoners, to the number, apparently, of some five or seven bundred, were in a large barge made fast astern of the United States war steamor, Michigan, lying in the centre of the stream. I reached Fort Eirie at about 8.15 , a.m., and found that the whole village had been abandoned. Soon afterwards, I was joined by the force mider Col. Peacocke, who had come up through the woods to the right, bringing in some prisoners. The whole force was now burriedly placed in position on the rising ground at the rear of the village of Erie. Shortly afterwards, a small steamer baving been sent from the United States ship Michigan with the proposal that I should communicate with its Commander and IIer Britannic Majenty's Consul, thon with him, accompanied by Col. Wulseley, Captain Crowe, R.A., and Lieut. Turner, R. E., I proceeded on board and had an interview with Capt. Bryson, U. S. N.; M. Dint. U. S. District Attorney, Mr. II. W. IIemans, IL. M. Consul at Buffalo, and subsequently with Gencral Barry, commanding the Uuited States troops in the Erie and Ontario dis-
tricts of the State of New York. These officers, in expressing their reprehension of the infraction of international law, said that nothing in their power had been or would be neglected to arrest such infraction, that such were their orders, and that they had prevented many reinforeements from getting across to the British territory on the two previous nights. In the course of the afternoon, Eaptain Alsers, R. E., with a volunteer furce of about 1,000 men, arrived from Port Colborne, making the number under my command about 3,060 of all nems. In enmpliance with telegraphic ordere, I derpatehed to Kingston, at $7 \mathrm{p} . \mathrm{m}$., the troops as per marginCapt. Crowe's field batery, four gins, and 200 men of the 47 th Regiment, under Major Loddersending 22 Fenian prisoners by the same train under escort of the 47th Regiment. Further telegraphic orders directed me to send furward to London without delay the detachnent of the 60th Royal Rifles, the London compnnies of the 16 th Regiment, and the London Volunteers. In consequence of the difficulty of procuring the neesessary railway transport, that order could not be carried out till 1030 to day, when about 800 were forwarded by the Great Western Railvoad, via Cliftun to Hamilton. Any delaya in the transport of troops, so far as relates to the serrice of the Great Western Railway bave arisen cliefly from the fact that, on the Erie and Ontario R. R., there being but a sivgle line of track and with sidings still incomplete, there were no means of shanting or of passing trains, whilst that part of the line approaching Fort Erie is still in a very unfinished and unserviceable state. Lt was impussible, therefore, even with the most prompt assistance aftiorded by Mr. Swinyard the manager, and all the subordinate otficials, of the G. W. R, to secure the desired rapidity of movement. The weather during the last few days has been uninterruptedly fine. The force at present encamped here is a little over two thousand mon, and considering the nature of the emergency and of the nature of the place itself, the troops are pretty well supplied. I telegraphed to Lieut. Col. Denison, with 450 men, to halt at Suspension Bridge. One company of volunteers is at Chippewa, aud more than 250 men are at Port Colborne, under Major Skinner. In concluding my report of the last 48 hours-a report which should, but for the nature of the duties and the pressure of telegraphic communication, have been submitted before-I have the honour to state the following :-That I have received greater benefit than I can well express, from Col. Wolseley's indefatigable energy, judgment and promplitide of resource; that Lieut. Turner, R. E., has proved of the greatest assistance to me, night and day working with a thorourth opirit and most wise furethought; that Lieut.-Col. Cumberland, A. D. C.. has spared no trouble or exerions to give me in. formation add to render valuable assistance in overy way-in matters oonneoted with railway transit, his knowledge has proved specially useful; the untiring nature of the excrtions made by the Hon. J. Hillyard Cameron, M. P. P., alsu deserves cordial acknowledgment; Ofïcers and men. whether of the regular or volunteer service, did all in their power to reach and re-occupy Furt Erie at the earliest moment, and to arrest the flight which had been almost completed before uur arrival. All
appenrs quiet at present on this frontier. I ind I have forgotten to state that General Barry, U. S. A., offered to furnish me with the earliest notice of any intended movements of importance which might come to his knowrledge among the Fenians in the States. Capt. Bryson, commander of the United States war steamer Michigan, appraised me that he had telegraphed to Washington for instruetions as to the disposal of his 700 prisoners. I replied that this was a matter for settlement by our respective Governments.
(Signed)
R. W. Lowry.

Col. Commanding
Field Force on Niagnra Frontier.
Tlire Brigace Major.

Col. Deumis' Report.

Erie, 4th June, 1866

Col. Lowory, Commanding the Niagara Frontier:

Sir,-Availing myself of the earliest moment, I have the honor to report, for the information of His Excellency, the Commander-in-Chief, the fotlowing narrative of events connected weth the late Fenian invaion at this place, in which I was directly concerned. Subsequently to my leaving Toronto on the morning of Friday Jast, my orders were on that occasion to proceed with the 2nd or Queen's Own, 400 stroug, to Port Colborne, occuny it, and if necessary entrench a position there, and wait for reinforcements and further orders before any attack was made on the enemy, who, it was represented, numbered 1,500 men, and was advaneing on that point. Although finding great excitement at the different statiuns along the Welland Lailway on the way up, at Port Colborne, where I arrived about aoon, things were quiet-no definite news having reached there, in consequence of the Fenians having cut the wires at Fort Erie, of which place they had driven away the officials at ; a. m. that morning. Report, bowever, said that they had, some two hours subsequently, sent a parts up the track and burned a bridge crossing \& small stream known as Sauerwine's Creek, six miles from Fort Erie on the railway to Port Colbowne. No news of any other approach having been brought in by any of the numergas scouts sent out by the villagers during the forenoon, I proceeded to billet the mea in order to get them dinner; and then before determining to commence the construction of any defences, I despatched a messenger across to Buck's Tavern at Stevensville, between Erie and the town of Welland, to ascertain and report any movement of the enemy in that direction, which I thought probable, as sufficient time had elapsed to enable him to rench Port Colborne, had that been his intention. Having, through the bindness of Mr. Larmour, the Superinterdent of the line, obtained a locomotive, I starred down the railway upon a reconnoissance, getring down to within six miles of Fort Erie-the burining of the bridge mentioned prerenting my claser approach. I then learned that the bridgo had been destroyed by a party of some seven men, who had come up about $7 \mathrm{a} . \mathrm{m}$.; who, in addition, stule a number of horses from the farmers in the vicinity, and then went back towards the main body, which, from testimony I received, it appeared bad gone duwn the river about a mile beluw the lowes
ferry and camped close to the river road, on one Newbigging's farm. Their number was variously estimated at from 450 to 1,200 men. This testimony was corrobnrated by the statement of the mounted scouts from Buck's Tarern, and Stevensville, who returned in the evening, and went to show that with the exception of the parties out horse-stenling, there bad been no Penians seen in that direction, and was rendered certain by the arrival from Fort Erie of one who bad been in their camp at six o'clock that evening. Shortly before this time, however, Lt. Col. Boolser, of Hamilton, had arrived with the 13th battalion of volunteers, and, being senior officer, took command, and continued the communication by telegraph which had been going on between Col. Peacocke and myself respecting the position and the strength of the enemy, and the best method of attacking him. Col. Peacocke, then at Clifton, having, about 5 p. m., telegraphed to me that he had ordered the International steamer up to Port Colborne, for me to put upon her a gun, or detachment, in order to patrol the river from Fort Erie to Chippewa. She not baving arrived at $10.30 \mathrm{p} . \mathrm{m}$. , I ordered the Rnbb , a powerful tug-boat, owned by Captain McCallum, down from Dunville, for that purpose, intending to place upon her the Welland Battery, without guns-the men armed with Enfield rifles -and received a reply that she would be down at 3 a. m. the following morning. This was the position of affairs when Capt. Akers, R. E., arrived from Chippera, sent over by Col. Peacocke to consultiand to explain Col. Peacocke's views as to the best mode of attack. After due consideration between Captain Akers, Lieut. Col. Booker, and myself, a certain course was decided, arranging for an attack in concert on that morning, and Col. Peacocke was telegraphed accordingly. In aecordance with this plan, Capt. Akers and myself embarked in the tug, which did nut arrive, (Memo-randum-Our object in this was to ascertain definitely the position of the enemy's camp, ns preliminary to the attack), however, till about $4 \mathrm{a} . \mathrm{m}$., haring been delayed in consequence of Mr. McCallum wishing to bring with him his naval company from Dunnville, and procecded down to reconnoitre the river and the Fenian camp, arranging to meet the Port Colborne force back at the railway depot, three miles above the enemy's camp, at seven or at the lntest half-past seven o'clock. On our way past the rillage of Furt Erie, we were brought to by the armed patrol the boat from the United States steamer Mfichigan, who, on finding out who we were, informed us that the Fenian camp on the Newbigering farm had been broken up at 3 a. m. that morning, the enemy haring marched down the river road. We proceeded down the river to the mouth of the Black Creek, eight miles above Chippewa, when we learned that they had turned off the river to the west, directly in rear of a place called New Germany. A messenger was at once sent off to Col. Peacocke, we presumed then under previously concerted arrangement to be there moving up, and we returned with the tug in accordance with that arrangement to meet Col. Booker and the upper furce at the R. R. depot at Fort Erie. On our arrian there we could see or hear nothing of them. This was accounted for subsequently by
the fact that Lieut. Col. Looker had received, after we left, an order from Col. Peacocke directing him off the R. R. at Ridgeway, some eight miles above Fort Erie, and cross the country in order to meet and attack in cuncert. This being the case, presuming a combined attack would be made in the course of the day, of the result of which we could have no doubt, I considered, as I could not then join my proper force, that important service could be rendered by patrolling the river to intercept and capture fugitives, and to prevent by every possible means the escape across the river of any large body of the enemy. This having been determined on, Capt. Akers and myself were engag ed all day in patrolling the shore and scouring the wood along the river as far down as Black Creek, arresting in all, including six prisonere made about nine o'clock in the morning at Fort Erie, some 23 men. During the course of the afternoon, we learned through some of the prisoners that nn engagement had taken place at some point in the interior, in which the Fenians had been utterly dispersed. This I was quite prepared to believe, as I had from the steamer observed Col. Peacocke with a strong force on his way up from Chippewa turaing in from the river road towards New Germany, and I knew that Licut. Col. Booker's force was coming down upon him from the south. Concluding that the action which was known to have come off had resulted in the capture of the enemy. I returned to Furt Erie nbout half-past five o'clook p. m., proposing to get what information I could about the position of our troops, and to telegraph for instructions as to what should be done with the prisoners who had amounted now, including those taken in the village and neighbourhood during the day, to some 60 or 65 men . The number I can't give precisely, as I had only got as far as those names given in the margin, making out a memorandun of each case. Having, in the meantime, made up my mind to send the prisoners by tug. to Welland gaol, I had them brought down and embarked there in charge of the reeve, when the alarm was given that the Fenians were entering the town in force. In fact, the first messenger had hardly delivered the newe when a second came in to say that they were within a quarter of a mile coming down the street along the river. I went over from the pier to satisfy myself, and saw them in nurnbers as I judged about 150, advancing upion the street indicated. Supposing them to be of the material and of the same miserable character, physically, as the prisoners we had been taking all day, I thought the detachment I had with the boat, eren if we had to resort to the bayonet, suffcient for them, and concluded that my daty lay in making a stand against them. This detachment consisted, as bofore mentioned, of the Welland field battery, 54 men and three officers, and of a portion, zome eighteen men and one officer. Exclusive of the guard over the prisoners on the boat of the Dunnville Naval Company. I first took the precaution to put the prisoners under hatchee, and then advanaing to meet the enemy about 150 yards, drew up my little command across the street. As they came within about 200 yards they opened fire on us, when my detachment, by order, fired a volley from each of the companies, upon which a sescre flank fire was opened on us from the weat,
and on looking in that direction, I observed for the first time two considerable bodies of the enemy running in a northerly parallel with the river, evidently with the intention of cutting us off, and getting possession both of us and of the steamer at the same time. Under the circumstances, as I considered if we tried to escape by the tug, the enemy might be there as soon as we, and so achieve his double object, I therefore concluded that my duty lay in eaving the prisoners we had on board, and preventing the enemy from getting possession of the vessel which I knew, and he probably knew also, was his only means of escape, and I therefore ordered the captain to cast off and get out in the stream, and ordered my men to retreat and do the best they cauld to get away, each man for himself. During this time a heavy fire was kept up on us both in front and in flank, and I had the grief of seeing several of my men fall. We retreated down the front street under a very heary though comparatively inaffective fire. Several of the men, contrary to my advice, took shelter in a house, the door of which stood open as they passed-there being little or no cessation of the fire upon us. I directed them not to remain under it longer than was necessary, and I turned into the premises of a friend in the lower part of the village where I lay concealed. Although the premises were searched twice, the ruffians stated their intention to come a third time, threatened if I were not given up, as they had seen me enter the gate, that they would destroy the property. Two of my men, one of them wounded, had previous! y taken shelter in the house. They were captured. Fearing another search, I dressed in disguise furnished by my friends, and then came out and remained in the village till night-fall, when I got through the lines, and struck across the country in search of Col. Peacocke-finding his camp about five miles back of Fort Erie, arriving there at 3 o'clock a.m. I then accompanied his force back to this place during its operations later in the day; all of which, as also of the escape of the enemy during the night, that officer's report will doubtless inform you. On my return, I was able to learn, for the first time, something of the casualities in the affair of the previous evening. I feel rejoiced not to have to report any loss of life in my detachment, although I was given to understand that there were some five wounded in the Welland Battery, two of them so severely as to result, in each case, in the loss of a leg. These cases, I regret to say, were Capt. King, of the Welland Battery, and one man of the Dunnville Naval Company. None of the officers, excepting Capt. King, were wounded. A return of the casualities is appended hereto. The enemy suffered more severely. Three of bis number were killed outright, and four were mortally wounded, two of whom died yesterday morning. The other two had been allowed, under the circumetances, by the reeve, Dr. Kempson, with the permission, as I understood, of Col. Lowry, to be taken to the Buffialo Hospitnl. Mr. Scholfeld, the Lieutenant of the Welland Battery, had gone to Welland to get his men together agnin, some of them having escaped across the country to their homes, during the night, is ordered without delay, when in a position to do eo, to prepare an accurate list of casualities in the battory. I have detained
this report somewhat in order to get his return. Should there prove to have been any casualities not as yet reported, I will lose no time in sending forward a list of the same. I append the report of Capt. MoCallum, commanding the Dunnville Naval Company, and owner of the steam tug rev ferred to-to whom particularly, as also to his lieutenant, Mr. Robb, the sailing-master of the steamer, I have to express my obligations for their zealous and efficient assistance during the operations of Saturday. I have also the gratifioation of saying that the other officers and the men forming my little command, behaved most nobly in the affair during the afternoon at Fort Erie. I firmly believe that had I not ordered them to retreat they would hare remained steady and fought until shot down in the ranks.

> (Siyned,) J. S. Dennis, Lieut. Col. commanding detachment on Saturday, June 2nd.

Captain Akers Report.

- Montreal, 7th June, 1866.

Sir,-In accordance with the orders of Major General Napier, C.B., I reported myself to Col. Peacocke at Hamilton; on Friday, lat June, and proceeded with him to Chippera. The samo night about midnight, I was directed by Lieut. Cul. Peacocke to proceed to Port Colborne, to arrange with Lieut. Col. Dennis for making a combined attack on the enemy supposed to be ontrenched on Black Creek, about three miles down the river from Erie, seven miles from Chippewa, and two from Stevensville. Col. Peacocke was to move on Stevensville, so as to arrive there about 9.30 a.m.; Lieut Col. Dannis to move along the railway to Ridgway, as far as the state of the railway would permit, and march from thence to meet Col. Peacocke at Stevensville, at the above hour; and from thenco the combined forces were to march :on the supposed position. Arriving at Port Colborne at about 2 a.m., I found the whole force under arms and in the cars. Lieut. Col. Booker being senior to Lieut. Col. Dennis, had taken the command. They had obtained from a custom-house officer, arrived from Erie, exact information as to the position of the Fenian camp. This was on Frenchman's Creek about half way between Black Creek and Fort Erie. The officer who had been in the camp at six o'clock, considered there were not more than 700 men. They had been drinking whiskey hard during the day, and might fall an easy prey to Ω sudden attack. Lieutenant Colonel Dennis was anzious to move off at once to the attack, and Lieut. Col. Booker was prepared to carry out the proposal, if properly authorized. Knowing Cul. Peacocke's ansiety to combine his force with the volunteers in attacking the enemy, I could not in his name authorize the movenent, nor did I think it prudent; as, from the accounts we had received, it appenred that the enemy's force would be doubled during the night. Having ascertnined, however, that the railway bridge at Ridgway, partially burnt in the morning, had been repaired, and that the line to Erie was open, I arranged a somewhat different plan of attack, subject of course, to Col. Peacocke's approval. The plan was as follows:Lieut. Col. Buoker, to proceed by rail to Erie, with
the greater part of his force, to arrive at Fort Erie at 8 a.m., Lieut. Col. Dennis and myself to go round the const in a steam tug, taking a company of volunteer artillery to reconnoitre the shore between Fort Erie and Black Creek, and to return to Fort Erie in time to meet Lieut. Col. Booker at 8 -should Col. Peacocke approve of this he would march by the river road from Chippera and make a combined attack with Lieut. Col. Booker at some point between Fort Erie and Black Creek, cutting off the enemy's retroat by the river; the tug employed cruising up and down the river, cutting off any boats that might attempt to escape and communicating between the forces advancing from Chippowa and from Frie. I communicated this proposed change to Col. Peacocke ; both by letter and telegraph, omitting howerer, I think, to mention the use proposed to be made of the tug. The plan was merely a modification of that proposed by Lieut. Col. Dennis, who wished to move at once with the volunteers without arranging a junction with Colonel Peacocke. Before receiving any answer from Col. Peacocke, I went off in the tug with Lieut. Col. Dennis and the company of artillery, leaving word with Lieut. Col. Booker to take care and obtain Col. Peacocke's approval to the proposed change before acting on it, and explaining the plan previously determined on in case Col. Peacocke should desire him to adhere to it. We arrived at Fort Erie about 5 a.m., steamed along there, and past Frenchman's Creek, where we bnw the enemy's camp apparently deserted. After carefully examining the shore from Erie to Black Creek, and seeing no signs of any armed force, we went ashore at Black Creek, and were infurmed that the enemy had broken up their camp during the night. A party was seen by the inhabitants moving along the river in the direction of Chippewa, and the remainder to have turned inland at Black Creek. As far as I could make out from the size and appearance of their camp, and from the reports of the people, their combined force could not have exceeded 700 or 800 men . I then returned with Lieut. Col. Dennis, by water, to Fort Erie, as appointed with Lieut. Col. Buoker. That officer not having arrived, I became aware that Col. Peacocke had acted on his original plan; but from the information I had gained whs of opinion that he would not have more than 400 or 500 men to contend with. Lieut. Col. Dennis then landed the company of artillery, and I proceeded with it patrolling the road and heights between Fort Erie and Black Creek. Between 30 and 40 prisoners were taken by the company or banded over by civilians and put oa board the cug at Black Creek. Seeing nothing more to be dono at Fort Erie, I drove up to the railway etition, on the line to Colborne, to ascertnin whether telegraphic communication had been opened, and obtained what information I could. This station is about half a mile from Fort Erie and to the westward of the high zoad from Culburne. I had hardly entered the station when I heard a cry that troops were coming down the hill between ingself and the town. I jumped into my conveyance and turned towards Erie to give the alarm to the company of volunteers'left there. Finding the approach to Erie cut off and the enemy's skirmishers stenling round to surround me, I turned round and drove
to the sbore in the direction of Colborne. Near Ridgway, I turned up towards the high road, and paseing the railway bridge found it on fire. I stopped and got some buckets from a neighbouring farm, and, with the assistance of the driver, managed to put out the fire. I then went on to the garrison road, when I heard an account of the engagementrwith, Col. Booker's force and of its retreat to Colborne. I found two wounded men at a rond-side house; one of them I took into Colborne: the other was too badly hurt to move. I arrived at Colborne between 6 and 7 in the evening. The force had been increased since the previous day, and now consisted of the seven P. A. O., with 4 Companies of the 22nd Oxford and the Drumbo Company attached, 2 Companies of Home Guard, the Caledonia and the Queen's Own and 13 th-in all about 1,400 men. The garrison was in the greatest state of confusion, and the troops that had been engaged in the morning considerably exhausted from want of rest and food. I ordered what assistance I could to Col. Booker who appeared quite overcome hy fatigue and anziety. Ife begged me to undertake all necessary arrangements, and later in the evening requested me to take the command out of his -hands. Finding this was the wish of other volunteer officers of superior rank to myself, I telegraphed for instructians, and was desired by Col. Lowry to take the command. I posted a line of out-lying pickets, at a radius of one mile from the town, extending fiom the shore to the Welland Canal, with strong supports in rear, and ordered the remainder of the troops to lie down and get what rest they could. I telegraphed in various directions for food and ammunition, and by 2 a.m. on Sunday 3rd had an ample supply of both. About 1 o'clock, the alarm was sounded, and officers and civilians rashed up informing me that the enemy was marching on us in force and within 500 yards west of the town, where I had placed no pickets. The alarm was entirely without foundation, but had the effect of depriving the troops of the fow hours rest they might have had. All through the night, reports were coming in of large force日 being landed on the shore between Colborne and Erie, also without fuundation. I sent the tug boat, however, still lsept at our service by its owner, Mr. McCollum, to watch the shore between Colborne and Erie, and called on some of the civilians to act as scouts, and keep me informed of any movements in the neighbourhood. Reveille was sounded at three, and I immediately made what arrangements I could for serving out rations and ammunition. At five o^{\prime} clock, sending a pilot engine in front, I moved by rail towards Erie, taking the whole of the troops except the 13 th, whom I teft to guard Port Colborne. Hearing the enemy were posted near Ridgeway, and finding a farourable position for forming up the troops, at B. in Sketeh, on a road known as Skirk's crossing, I disembarked the men, threw out a line of skirmishers, with four supports from the 7 tb P. A. O., with orders for the flank supports to wheel outwards and extend at once in case of any sign of a flank attack. In this order, and with a strong rear-guard, I advanced from " B " to the garrison road, and from thence towards Fort Erie. On coming to the scene of the previous day's engagement, at "C," I ascertained
that the onemy had attempted to crose the river daring the night, and that Erie was in possession of our troops. After halting the men for about no hour at this spot, I marched them quietly in to Erie, where I reported myself to Col. Lowry. On the following morning I was relieved from my command.

$$
\begin{gathered}
\text { (Signed, have, \&c., } \\
\text { CHas. S. S. Akers, } \\
\underset{\text { Capt. R. E. }}{\text { R. }}
\end{gathered}
$$

Capt. MreCallum; Reporto

To Lieut. Col. Dennis, Fort Erie:

Str,-At your request, I have the hosour to make the following report:-On Saturday last, 2nd June, between the bours of 3 and 4 p. m., after your departure, I retreated down the river under a galling fire, a distance of about three miles, with two men of the Naval Bragade and 13 men of the Welland Canal Field Battery-the rest having been cut off, and consequently taken prisoners, including the following officers, viz: 2nd Lieutenant Macdonald, of the Naval Brigade; Lieutenant Scholfield and Ensign Nimmo, of the Field Battery, wnunded, and one man of the Naval Brigade. Lieut. Robb, with the steamer Robb, came in boats and took us on board. I then held a consultation with Lieut. Robb as to future proceedings. We then determined, on account of being encumbered with so many prisoners on board, 57 in number, and so very few men left to guard them, to run to Port Colborne, and send the prisoners to a place of safety. In passing Fort Erie up the river, we, for a distance of a mile's run, were under a heavy fire of musketry from the Cana ian shore. We passed without any casualicies worth mentioning, and arrived safely at Port Colborne at half-past 6 p. m. of the same day, and delivered the prisoners over to Lieut. Col. MeGiverin, with committment and names inserted, all of which is respectfully submitted.
(Signed,) L. McCailum, Capt. N. B. Duanville.

CARBOLIC ACID AS AN ANTISEPTIC.

The American Artizan says:-Mr. Wm. Crookes, F.R.S., has made a "Report to Her Majesty's Commissioners on the Application of Disinfectants in arresting the spread of the Cattle Plague," from which we extract the following relative to carbolio acid:

Pure carbolic acid is a white crystalline solid, melting at $34^{\circ} \mathrm{C}$., and distilling at $180^{\circ} \mathrm{C}$.; a trace of.water or oily impurity renders it liquid, and for disinfecting purposes it is always supplied in this form, to avoid the extra expense and trouble needed for the separation of the last traces of impurity; eresylic acid is liquid, it boils at $203^{\circ} \mathrm{C}$., and closeIy resembles carbolic acid in odor and other properties. Before the commencement of these inquiries it was thought to be of little or no value ne a disinfectant, but Dr. Angus Smith has lately shown that it rivals, if it does not surpase, carbolic ncid in antiseptic properties. For the present purpuse of eattle plague disinfection it is imonaterial which acid is used, and to avoid unnecessary repotition I slaall use the term carbolic acid to express
either acid, or the commercial mixture of the two acids.

From time immemorial carbolic acid, creosote, or bodies containing them, have been used as antiseptics. Passages in Pliny, read by the light of chemical scionce, show that the Egyptians used for embalming their mummies, a compound made from pitch, which must have contained large quantities of creosote. Carbolic acid is the active agent in tar, which, either in its ordinary state or burnt as a fumigator, has always held high rank amongst disinfectants. Pitch and tar were the most popular medicines in use against the cattle plague when it visited this island in the last century; the animale being preaerved against contagion by having their noses and jaws rubbed with tar, whilst the cow-houses were disinfocted by burning pitch and tar in them (in which process a certain quantity of the vapors of carbolic acid would esenpe combustion). The almost universal custom of burning gum resins and odoriferous woods in connection with religious ceremonies may have originally arisen from the disinfecting powers of the creosote in the smoke: The well known efficacy of smoke in preserving meat is entirely due to the presence in it of this agent.

Pitch oil, oil of tar, and similar producte, owe their value entirely to carbolic acid (22). This body may in fact be called the active principle of tar, just as quinine is the active principle of bark, or morphia of opium, and it has the advantage of being easily prepared in any country where coal or wood can be obtained.

Sulphurous acid probably owes some of its antiseptic value to its affinity for oxygen, whereby the oxydation of the matter under treatment is retarded. It has been suggested that the value of carbolic acid is due to a similar property, and that it acts merely by preventing oxydation. It being important to a thorough understanding of its action that this point should be settled, the following experiments were made:

1. Lumps of metallic sodium were cut with a sharp knife; the progress of the oxydation could be readily followed by the change of color of the surface. The experiment was tried several times in an atmosphere strongly charged with the vapor of pure carbolic acid and cresslic acid; comparative experiments being made at the same time in pure air. No difference in the rate or amount of oxydation could be detected.
2. A colorlese solution of subchloride of copper in ammonia was prepared and divided into two parts; one being mixed with a little carbolic acid. On pouring them through the air into flat white disbes no differeuce of the progross of the oxydation could be detected.
3. A mixture of pyrogallic acid and solution of potash was shaken up in a large stoppered bottle. It was then opened under water, and the amcunt of absorption of the atmospheric ozygon noted. The sause experiment was repentod alter the addition of carbolic acid to the potash solution. The same quantitien were used and the agitation was continued for the same time. On again opening the buttle under water the absorption was found to be the same as befure.
4. The last experiment was repeated, substituting crystals of sulphate of irou for pyrognallic acid.

The result showed equally that the presence of carbollic acid exerted no retarding influence on the oxydation.
5. Iron filings were shaken up with the water with the same result.
6. A "philosophical lamp" was made by arranging a platinum spiral over the wick of a lamp containing alcohol mized with a fittle ether; on lighting, and then blowing it out, the platinum continued to glow brightly. Pieces of solid carbolic acid were then carefully placed in the cup of the brass wick-holder, surrounding, but not in contact with, the wick. The heat soon melted the acid and raised its vapor round the platinum spiral, but without occasioning any alteration in the brightness of its glow.
7. Lead pyrophorus was poured into two long and narrow jars of nir, one of which had its interior moistened with liquid carbolic acid. Not the slightest appreciable difference could be detected between the rapidity of oxydation in the two jars.
8. Paper moistoned with sulphate of manganese solution, and dried, was dipped into caustic ammonia, both with and without carbolic acid. No difference whatever could be detected in the rate of its darkening.

These experiments prove conclusively that the tar acids have no special power of retarding oxydation.

Other experiments were then instituted in the endeavor to understand more clearly the mode of action of carbolic acid.
9. Some meat was hung up in the air till the odor of putrefaction was strong. It was then divided into two pieces; one was sonked for half an hour in chloride of lime solution, aud was then washed nad hung up again; the offensive smell had entirely gone. The other piece of meat was soaked in a solution of carbolic acid containing 1 per cent. of the acid; it was then dried and huog up acain. The surface of the meat was whitened, its offensive odor was not removed, though it was masked by the carbolic acid. In two days' time the bad odor bad quite gone, and was replaced by a pure but faint smell of carbolic acid. In a few weeks' time the pieces of meat were examined again. The one which had been deodorized with chloride of lime now smelt as offensively as it did at first, whilst the piece treated with carbolic acid had simply dried up, and had no offensive odor whatever. It was then hung up for another month and examined; no change had taken place.
10. A piece of fresh meat was soaked in a 1 per. cent. aqueous solution of carbolic acid for one hour; it was then wrapped in paper and hung up in a sitting room in which there was a fire almost daily; at the end of ten weeks it was examined. It lad dried up to about one-fourth its original size, but looked and smelt perfectly good and fresh, a very faint odor of carbolic acid being all that was perceptible. It was sonked for twentyfour hours in water, and then stewed with appropriate condiments and eaten. It was perfectly sweet, and scarcely distinguishable from fresh meat, except by pissessing a very faint flavor of carbolis acid, not strong enough to be unplensant.
11. Animal membranes in the forms of gut, akin and bladder, were perfectly preserved if immereed direct in aqueous solution containing 1
per cont. of carbolio neid; but if previously moistened with water, and then immersed in dilute carbolic acid, the preservation of the skins was not so complete.
12. Animal size and glue mixed in the furm of solution, with small quantities of carbolic acid, were perfectly preserved from change even in hot weather.
These are important experiments. They point out in a striking manner the difference betweon mere deodorizers and antiseptics. Hitherto attention has been almost entirely confined to the deodorization of gases arising from putrescence. The effect has been combated, whilst the removal of the cause has received scarcely any attention. Chloride of lime, one of the strongest of the class of deodorizers, acts, as bas been shown, only on the gaees of existing putrefaction, but it has no influence over the future. Carbolic acid, on the other hand, has scarcely any action on fetid gases. but it attacks the cause which produces them, sad at the same time puts the organic matter in. such a state that it never re-acquires its tendency to putrefy.

CIIOLERA A POISON.

Two monthe have elapsed since cholera first made its appearance in New York, and yet up to Saturday last only 34 deaths bad occurred in that city. It is now believed to be a poison, and is treated as such, Dr. Harris in his report to the Sanitary Committee of the Board of Healch, New Yurk, says:

Wo must speak of and treat cholera as a poison. It attacks the vital functions as a poison. It arrests the circulation, interrupts the rospiratory processes: dams up all excretions by the great emunctories of the liver and kidneys, decomposes the blood, and kille as virulent poison kills.
That cholera is an infectious poison every one of your medical officers ought to believe. That this infection may be controlled and deatroyed by our agency, if means are well chosen and promptly applied, I believe so fully that I would as soon see the torch applied to a thousand mansions in our city as to besitate to assume what we know. The rice water of albuminous fluids of cholera patients have the property of creating very soon after being roided and exposed to the atmosphere. In every instance, I rejoice to say, you, the Superintendent and the President of the Board have promptly indorsed this view of the danger and the duty, and in every instance I believe, every precaution has been used that science, experience, and exact knowledge could auggest. That there are other and widely different diffused factors of an epidemic of cholera to be feared, we very well know, but with profound reverence we can fearlessly assert that all such factors will be harmless if tho few factors of cholera which human agency can control are actually controlled by the Board of Health and the inhabitants of the city. In denling with these uncontrollable poisons that make up the epidenic causes of cholera there is greater demand for vigilance than in the management and control of nytro-glycerine or the most subtile chemicals. Instant cleansing and absolute disinfeotion nust be conferred wherever the germe of cholera
seek a foothold, or we may re-enact the solemn farce that was witnessed in Paris last Autumn, when the French Governinent withheld from the public the information and the warning that were required to save the 8,000 lives which were sacrificed to the epidemic in 91 days.-Well did the cbief medical officer of registration in England say, in a note to me at that time "They (the Parisians) do not see, as we do, that an accurate knowledge of facte, far from terrifying reassures and braces up the nerves of our paople.". Let the inhabitants of New York know what exista, what is needed, what are sources of danger, and what are the best means of sanitary protection, and there will be no pestilecce. This statement is due to ourselves when ignorant men and theorists may brand us as alarmists, or may exclaim we fight against Providence. That the cholern poison is in this city we know, and that it has thus far struck down its vietims in accordance with the principle that removable, causes have localized it or excited it into fatal activity we have seen proof in 12 cases that have occurred. Could we read a more important lesson?

New Process for Ladigo Dyelnge

Before it can be used for dyeing, indigo must be rendered soluble in alkaline and caustic solutions by being treated by a reducing body; by this reaction indigo loses its color, but after being fixed on stufir and exposed to the nir, it absorbs fresh oxygen and returns to its original color. This process, theoretically an simple, is practically complicated by serious difficulties, and requires, on the part of the dyor, much practice and great dexterity. Thus, for instance, with indigo reduced by fermentation with vegetable matters, in a caustic aolution, the varions acids produced during the fermentation combine with the alkati, the liquid soon ceases to he caustic, and loses the property of dissolving the reduced indigo. To remedy this a fresh quantity of nlkali (soda potash, or lime) must be added from time to time; but should an insufficient quantity be added, a portion of the reduced indigo remains undissolved, and soon decomposes under the fermenting matter. If, on the contrary, an excess of alkali be added, a certain quantity of white indigo is lost by its combining with potash, and forming an insoluble product.

According to M. Leuchs, of Nuremberg, all these olijections are obviated by effecting the chnnge from blue to white indigo by pectine. Pestine exists in considerable quantities in turnips of different specier, in pumpkins, melons, etc., it mar be extracted from these fruits, or they may even be directly used to reduce indigo. The most simple process consists in heating 45 or 50 kilogrammes of the caustic 15 e to 75° C., ndding half a kilogramme of well pulverized indign, then suspending in the vat a kind of basket of irnn wire, containing from 8 to 10 kilogrammes of freah turnips, cut into small pieces. Then hent gradually to boiliog point; the indigo soon loses its color, and the solution decanted into special vats and diluted
with water freed from air, will be ready for dyeing purposes. Contact with air must of course be as far as possible aroided.

When the dye bath is exhausted it myy serve for a fresh operation by adding indigo, a little caustic soda, and boiling it as above with a certain quantity of turnips.
On the iron wire trellis there will remain hardly five or six per oent. of the original quantity of turnips. This residue may be used in paper making.
The simplicity of this new process may easily be proved hy introducing into a closed tube a small quantity of indigo mixed with a few drops of soda or caustic potash, adding a small piece of turnip, and boiling; the indigo will rapidly lose its color, and re-dissclve and return to its original color by exposure to the air.

As turnips are not everywhere cultivated, and during certain seasons are not to be procured fresh, the author has found that the active priaciples may be extracted by boiling the turnips with water, under a pressure of two or three atmospheres. C. Leuchs \& Co., of Nuremberg, now manufacture on a considerable scale an extract of turnips, 1 kilogramme of which will dissolve cold 4 kilogrammes of ivdigo.-Annalen Chem. and Pharm.

Strengih of Punched and Drilled Plates.

Experiments hare recently been made by the British Admiralty on Bessemer steel of the best quality. A piece of steel 4 feet long and 12 inches brond was cut from a half-inch plate, of which the proof strength was 33 tons per square inch. This piece was reduced to 5 inches in width at the middle, was supported at the ends by square plates rivetted to it, and was carefully centered. The plate should have broken at $82 \frac{1}{2}$ tons, and through the arrow part. It actually broke at $95 \frac{1}{4}$ tons; and then, strnuge to say, broke through the wide part of the plate. tearing away through the rivetholes. Thus while the materina in the middle of the plate withstood a strain of 38 tons per square inch, it actually broke through the holes at 16.38 tons per square inch, or less than one half the strain. In a precisely similar plate, differing from the other only in the fact that the rivets connecting the end pieces were 14 inches from the edge instend of $2 \frac{1}{2}$ inches, the plate broke in a similar manner at 73 tons, which is only 15 tons per square inch of the section of ateel broken. The holes in both these cases had been punched. In order to nscertain whether these curious results were due to the injury supposed to result from punching, an exactly similar arrangement of plates was agnin tried, in which the holes were, as in the first, $2 \frac{1}{2}$ inches from the edge, but were drilled instend of being punched. The plate then broke through the narrow part at 10675 tone, or 47.53 tins per square inch of the steel broken.-London Artizan.

Gluss Brick Monkel.

A new mould for bricks is in use in Baltimore which is said to turn out most elegant specimens of pressed brick. The mould of wood is lined with plate glass, which forms a perfectly smonth surface and naturally givee escellent results. The cost of
the mould is but little, if any, more than the ordinary wooden mould, and it can be easily applied to brick machines already in uee. The brick comes out smooth, with perfect sides and edges, the mould being raised from the palette or plate on which the brictse are made. It has, we understand, given perfect satisfaction wherever used. Righte can be obtained of P. Murguiondo, Baltimore, Md., who is the patentee's agent for the United States.Scientific American.

Procesa of Haviening Copper.

A correspondent at Upper Sandusky, Ohio, says the American Artizan, states that a Mr Disman, of that place, has discovered the process of bardening copper, and has secured a patent for it. The art is supposed to have been lost since the days of King Solomon. The material is properly called silicated copper, and can be worked without friction. All neceesity for oiling machinery made from it is obviated. The writer says the Cleareland, Columbus, and Cincinnati Railroad is now testing the prepared metal, and in case of its success are prepared to give the inventor $\$ 10,000$ for its use on the road. There is much excitement and interest in Upper Sandusky over the subject.

Calorio Engine.

Another caloric engine has been patented in the United States, by a Mr. T. McDonough, of Newburgh, N. Y., which is thus deseribed in a communication to the Scientific American: -
"This machine consists of a cylinder, open at the top and closed at the bottom. The furnace is at the lower end of this; a plunger moves in it above the fire, and also a piston at the upper or open end. The air to feed the fire is drawn into the cylinder through holes in its periphery, which are uncorered when the piston is at the upper end of its stroke. The planger moves the air through a side pipe nod under the fire. It expands.and does its work by forcing the piston upward, after which the plunger expels it through an exhaust valre near the top of the side pipe.

By this arrangement only cold air reaches the piston, and ns the parts affected by heat are covered with fire clay, it forms a durable machine. The engine has furnished a power of more than six pounds per inch to a fifteen-inch piston, of eight inches strolse, 150 revolutions per minute-the power only acting one way-and consuming fourteen pounds of coal in four hours. The heat is utilized at more than 600 degs., probably, and escapes at 100 degs., being a step toward the development of a machine superior to the steam engine in economy of fuel."

Bright Amiented Wire.

The process is to pack the coils in cylindrical cast-iron pots, with double lide, the onter one resting on a projection or rim half an inch below the top of the pot, leaving room between the outside of the inner lid and the inside of the outer, for dry sand to exclude the atmospbere. The pots should not be cpened until quite cool after the heating process, otherwise the atmosphere will so far oxidize the surface as to turn the color to a blue or black.

Bessemer Steel Rifte.

An Enfield rife barrel made of Bessemer steel withstood the Government test, $8 \frac{1}{2}$ drachns of powder and a bullet, although it weighed one pound only. It was then turned down till it weighed but eight ounces, and yet still sustained the charge !

A New Mechnnical Aid to Surgery.

The American Artizan saye an hospital has just been fitted up in Prussia, in preparation for the coming war, in which all modern improvements are intended to be used. A circular saw, driven by steam, for use in amputation, is one of the improvements; the quickness of its working being the obvious advantage of it. The old "eaw-bones" surgoons may be astonished by it. With a saw that runs at 3,000 revolutions per minute, and under the influence of laughing gas, an unlucky soldier may have a leg or nrm taken off very pleasantly.

Steel Tubes.

Engineering says:-"The cold drawn steel tubes, made by the Hydraulic Tubedrawing Company, will probably soon come into use for locomotive boilers. They cost but half as much as brass, are much thinner, and are proved to $1,000 \mathrm{lbs}$. pressure. No corrosion is anticipated; and it is not apprehended that there will be any difficulty in setting them so as to make tight joints." We should like to be informed whether these tubes can be drawn with thick ends, to insure strong joints; and how much the additional cost would be.

Cleaning Horses by Mrachinery.

" At the establishment of the Manchester Carriage Company, at Pendleton, there is now in practical operation a novel system of cleaning horses by a steam brusining machine, invented by Mr. Haworth. The idea is derived from the revolving brush which many hair-dressers have had in use. In the lower stableyard at Pendleton there is a large shed, where a dozen horses can be cleaned at one time. Along the centre of the roof is a long shaft, from which hang soveral endless straps. Each strap gives motion to a horizontal pole, at one end of which is a conical brush that rotates rapidly. On n horse being brought into the stable, after his three hours' work, he is taken to this shed, and a man applies to bim the machine brush. In about halfan hour the animal is thoroughly cleaned, and only the head requires finishing by hand. The cleaning effected by the machine is much more searching and effectual than the most diligent band-currying can possibly be, and to the majority of animals the greater cleanliness of their skins, as well as the improved circulation of the blood which is produced by the machine brush, appear to be acceptable. Most horses undergo the operation quietly and patiently, but in some animals timidity is produced by the rattle of the machinery. In n large establishment the most important result of the adoption of this invention is the economy of labor which results from it. Under the old system, a man was thought to have done a fair day's work if he cleaned ten or a dozen horses, but by the machine he can clean thirty in the same time, and
with cunsiderable less bodily labor. When it is remembered that from Pendleton several bundred horses are daily sent out to work, it will be seen an important saving in money is effected by the employment of this new process.-Manchester (England) Examiner.

The 64 Indioscope. 99

A new instrument has been invented, by the aid of which an individual is able to see all that is going on in his own eye. It is simply an opaque shell to cover the eye, pierced in the center with a very small hole. On looking through steadfastly at the sky, or at any diffused light, the observer may watch the teare streaming over the globe, and note the dilation and contraction of the iris, and even see the aqueous bumour poured in when the eye is fatigued by a long observation. It is needless to say that with the aid of this instrument a man can easily find out whether he has a cataract or not. If he has, he will only see a sort of vail covering the laminous disk, which is seen by a bealthy eye. The instrument is certainly simple and curious, and will no doubt excite attention in those who are anxious to know more of themselves. An "iridoscone" may be readily extemporized by making u hole with a fine needle in the bottom of a pill box.-Medical Reporter.

alstal garcipits.

To Prevent Chafing.

The editor of the Scientific American seems to be a person of "full habit," and accustomed to "walk much;" for in a late number of his journal he says:-During the "hot term" persons of a full habit, who walk much, are inclined to chafe. This can be cured or prevented by the use, once or twice a day-at retiring and rising-of a solution of common alum in water. The alum may be dissolved in warm or cold water, but should be used cold, applied with a soft linen or cotton cloth to the parts affected. The proportions are a lump of alum large as a walnut to half a pint of water. If too strong, where the flesh is excoriated, weaken with cold water. We know by personal trial this simple remedy is effectual.

Cure ror Hydropholla.

The Leeds (England) Times says that the nitrate of silver rubbed into the wound made by the teeth of a mad dog will certainly cure hydrophobia, or prevent all injurious consequences of the wound. It should be applied as soon after the accident as may be. In six weeks the virus is disseminated through the eystem and then hope is gone. Yourtt aays he has been bitten eight or ten times and ulways cured himself by this means.

Gumpowder Marks.

Dr: Davies, in the Loodon Lancet, states that he has found the following treatment most succeseful: Smear the scorched surface with glycerin, by means of a feither. then apply cotton wadding ; lastly, cover with oil silk. In one cense the discoloration was very great, the patient looking more like a
mummy than a living boing. It entirely subsided in a month by the above treatment.

Artificial Stone.

Dolomite, or magnesian limestone, calcined at a lowered heat and powdered, and then made into a paste, forms under water a stode of extraordinary hardneas.

To Clean Vinegar Casks.

In the first place they should be well rinsed out with hot water, then for every twenty gallons contents, dissolve a pound of ordinary soda crystals in three pints of boiling water, and when the soda is thoroughly dissolved pour the solution into the cask. The latter must then be well closed and rolled about vigorously several times during twentyfour hours. A few quarts of hot water will readily cleanse out the cask when rolled about. It is well to repeat the latter operation twice, leaving the hot water some hours in the cask each time, and then, finally, to rinse out with cold liquor. If the casks are not to be used immediately let them drain and dry; burn a sulphur match in them and bung them up tightly.-Grocer.

Indestructible Ink.

The following is said to be an indestructible iok, very useful for some purposes, which may bo made thus:-Dissolve thirty grains of sugar in thirty grains of water, to which add a few drops of concentrated sulphuric acid. Upon heating this mixture the sugar becomes carbonized by the acid, and wheu applied to the paper it leaves a coating of carbon which cannot be washed off. This stain is rendered more perfect by the decomposing action of the ink itself upon the paper, and thus it resiste the action of chemical agents.

Gequatical 觬lemorauba.

Componition of Alloys.

Lend.	Componltion of Alloys.			$\begin{gathered} \text { Point } \\ \text { of } \\ \text { Solidification. } \end{gathered}$
	Tin.	Bismuth.	Point	
120 parts.	140 parts.	120 parts.	$130^{\circ} \mathrm{C}$	- $112^{\circ} \mathrm{C}$
145 \%	145.	100 *	140	129
150 "	150 ،	75 "	150	135
150 "	150 ،	50 "	160	150
170 "	180 "	35 "	170	153
210 "	1 y0 "	30 "	180	165
140 "	155 "	30 "	190	180
200 *	185 "	30 "	200	180
200 "	180 "	30 "	210	180
240 "	150 "	30 "	220	180
207 "	194 "	30 ،	180	180

It is generally to be remarked that the fusion point of an alloy is not in relation to the proportions of the metals which enter into its composition. The alloy of 150 parts of lead, 150 parts of tin, and 50 parts of bismuth (proportions evidently corresponding to 6 atoms of lead, 12 atome of tin, and 1 atom of bismuth), is one of those which solidify most regularly-that is to say, that no one of the metals entering into ite composition crystallizes separately on cooling, and that the alliny remains perfectly homageneous.

It may be observed that the point of solidification of the last tive alloys on this table is constant at 180°. When those alloys are melted and then allowed to cool, small crystals form at $220^{\circ}, 210^{\circ}$, 200°, or 190°, according to their composition, and when the temperature has descended to 180°, the whole mass solidifies. It is noticeable that during the whole time of solidification the temperature remains at 180°, and that the mercury of the thermometer again begins to descend only when every part of the alloy has become solid.

Another alloy remaining very homogeneous, and unvarying in temperature during solidification, is that composed of 207 parts of lead and 294 parts of tin (2 equivalent lead to 5 equivalents tin). This alloy melts at 180°, and solidifies at precisely the same temperature.

In these two alloys, which have the most useful properties, the different metals are united in atomic proportions, which seems to prove that, to obtain a good alloy, it is necessary to take into consideration the atomic weight of the metals composing it. It is beyond a doubt that such alloys, remaining so homogeneous during solidification, are possessed of valuable properties not belonging to other and less homogeneous alluys. This question is certainly of great interest in the manufacture of printing type, and for similar purposes; and deserves to be thoroughly studied.-Bulletin de la Societe Chimique and Chemical Ncws.
[It will be observed that the temperatures are given in the centigrade scale. To reduce them to Fahrenheit degrees, multiply by 9 , divide by 5 , and add 32. In the centigrade thermometer, the interval between the freezing and the boiling point of water, is divided into 100 degrees, and the freezing point is made the zero. Fahrenheit divided the interval into 180 degrees, and made his zero 32 degrees below the freezing point. The proportion of 180 to 100 is the same as that of 9 to 5 .--Eds. $]$ -Scientific American.

Horse Power.

A pull of 250 lbs is the maximum effort which a good horse can exert for a mile.

Effect of Gris on Silise and Metals.

Mr. Howell, of Regent Street, states that during the winter monthe, when much gas is burnerl, the color of silk dyed of delicate colore is taken out. With regard to metal goods, the gas deposito a thin film on the metal, and unless it is removed every diay it eats into the metals, so that the articles must always be regilded. This necessitates the use of air-tight cases for such goods. French goods are much mure affected than English. The former are attacked in a day or two; the latter may not show the film for n week or two.-London Engineer.

Thpure Water:

The presence of peisonous organic matter in mater irequently is impreeptible to taste and eight. The pump in Broid street, Golden square, London, yielded water perferily clear, yet ita waters killed 500 perople in the first three nights of September, 1854. A drain from a reighboring cess-poul had broken into the well.-lbid.

Adulteration of Flour.

The presence of a mineral adulteration of flour or meal may be readily detected. A small quantity of the suspected flour is sbaken up in a glass tube with chloroform. All mineral adulterations will collect at the bottom, while the flour will float on the liquid. In this country, where the comparative cheapness of flour makes adulteration unprofitable, this test may not be valualile; yet the fact may not be without interest.-Scient. American.

What is Saleratuas?

Wood is burnt to ashes, these are lixivated. and lye is the result. Lye is evaporated by builing. black salt is the residuum. The sult undergoes purification by fire, and the potath of commerce is obtained. By another process we change potash into pearlash. Now put these into sacks and place them over a distillery mash tub, where the fermentation evolves carbonic acid gas, and the pearlash absorbs it and is rendered solid; the product being heavier, whiter, and drier than the pearlash. It is now saleratus. How much such salts of lye and carbonic acid gas one can bear and remain healthy, is a question fir a saleratus eater. $-1 b i d$.

Mimeral Oils.

The illuminating power of one gallon of mineral oil is equal to that of 18 lbs . of paraffine candles, 22 lbs . of sperm, 26 lbs . of wax, 27 lbs . of stearine, 29 lbs. of composite, or 39 lbs. of ordinary tal. low candles.

Doptic of Milk for Creamof

A correspondent of the Buston chlivator says that the form of the vessel containing milk, from which it is intended to collect the feream, does not affect the quantity of crean raised. He says: "desiring to test this matter, I took glass cream jars, in which were graduated scales, and set milk at different depths, from 2 to 18 inches. The depth of cream was always in proportion to the quantity of milk."

Waters of tho St. Lawrence.

It is said the St. Lawrence river carries by Montreal $50,000,000$ cubic feet of water per minute; and in the course of one year bears $143,000,000$ tons of solid material, held in solution, to the sea.

Gasepus Bodles in Wrotor.

Mr. Grove staren that it is almost impossible to free water from fiseous bodies, and that to esteam liherated from this liquid, when boiled under oil, alw:ys leaves a small bubble of permanent gas; when curndensegd this gas is found to consist, of nitrugen.

Surveyors Tablos.

In England survegors tables for laying out curves are now printed on a pack of cards. In use the proper card is placed on the theodulite and it alluws the surveyor the use of both bands.

The States of the Union.

The following is a list of the States constituting the Union, with the dates of their admission. Colorado and Nebraska had authority, but refused to form State constitutions. The thirty-six stars in our (U. S.) national flag are therefore designated as follows:-

[^2]
Consumption of Cast-Iron.

The consumption of cast-iron in England in the year 1863, with a population of $26,800,000$ souls, is set down at $4,357,000$ tons, or about 230 lbs. a head: while France, with a population of 37,500 ,000 , consume only 70 lbs ., or one third of the consumption in England. The consumption in France is now rapidly increasing, in consequence of the number of new buildings in progress. Ten years ago almost all the railway bridges were built of stone, ln consequence of the high price of iron. At present similar works may be constructed at a less cost in iron than in stone.-Lond. Engineer.

Consumption or Alcoliohic Beveragen, Corm, \&c.

The alcoholic beverages, exclusive of cider, British wines, and home-brewed beer, on which we paid duty during 1862 amounted to $373,000,000$ gallons, or sufficient to fill a canal 3 feet deep, 6 feet wide, and 640 miles long; that is, 40 miles in ex"ess of the distance from Land's End to John 0^{\prime} Groats. In the year 1862 we imported 128,000 ,000 bushels of corn, or sufficient to build a wall 13 inches thick, 20 feet high and 1,400 miles long; that is, the peremiter of the triangle of which the Land's End, the North Foreland, and Dunnet Head are the angular points. The flour and meal impcrts were 360,000 tons.-1bid.

Ameriean Fishing Vessels.

The following is a statement of the number of American vessels engaged in the fisheries, their tonnage, and value of fish taken for 12 years:

				Tralue of
$\begin{aligned} & \text { Year. } \\ & 1852 . \end{aligned}$	$\begin{aligned} & \text { Number. } \\ & \cdots .2000 \end{aligned}$	$\begin{aligned} & \text { Tonnago. } \\ & 18,200 \end{aligned}$	$\begin{gathered} \text { Crew. } \end{gathered}$ $3,400$	Fish taken.
1853.	220	15,4C0	3,000	276,000
1854.	. 234	16,380	3,220	280,000
1855.	.. 334	23,380	3,580	632,400
1856	. 476	36,320	6,600	1,265.700
1857.	. 452	31,640	6,240	1,053,000
1858	. 453	31,710	6,170	634,500
1859.	. 380	26.600	5,100	528,000
1860	.. 370	25,900	4,980	459,000
1861	... 354	24,920	4,840	4.16,400
1862.	.. 274	19,180	3,740	267,009
1803.	. 235	16,450	3,230	249,750

With the termination of the treaty of 1854 these privileges to a great degree are surrendered. The herring and mackerel fisheries become the cole property of the Provinces. We go back to the time of the treaty of 1818-a system more calculated to embroil the citizens of the respective countrics than any that could be devised. How this can be obviated is not easy to foreseo. We must have negotiation, and yet it is not likely that the British fovernment will be willing to make a new treaty which does not embrace the entire subject of commercial intercourse between this country and the Provinces.-Amer. Paper.

Field of Petrolcum.-U. S.

The Scientific American says the yield of petroleum in the United States during the last five years has been as follows:-1861, $24,000,000$ gallons; $1862,40,000,000: 1863,70,000,000 ; 1864,87,000$,$000: 1865,91,160,000$. The product is now 14,000 barrele a day.

The Northern Overiand Telegraph.

This telegraph line will be a gigantic one, extending through British America, 1,200 miles; through Russian America, 900 miles ; acroes Bobring's Straite, 184 miles; across the Gulf of Anadyr, 210 miles; and thence overland to the mouth of the Amoor River, 1,800 miles,-or a total of 4,294 miles. At the Amoor it is to be continued by a Russian line connecting it with Irkoutsk, through Western Siberia, communicating with Nijni Norgorod and Moseow, and thence to St. Petersburg. The capital involved amounts to $\$ 10,000,000$.

Mititellaneanz.

Earth as a Deodorizer.

A correspondent of the haine Farmer says:The paragraph in your last paper entitled "Dry earth as a Deodorizer," may naturally lead some persons to suppose that it is only dry earth which has this valuable effect as a disinfectant, and hence, us it would be a matter of some trouble to get the earth prepared and properly dried, its use is likely to be neglected. But damp or moist earth is exactly as good for all practical purposes. ${ }^{\text {- Dig }}$ up the common soil anywhere, pulverize it tolerably well with the spade or hoe, mix it with or throw it upon any offensive substance, and the deodorizing effect is produced completely at once. Common sense teaches this, and practice also.

The Rev. II. Moule, England, in his work on National Heallh and Weallh, says :-
"The power and efficacy of this agent, will, however, be best understood and believed if I give a simple narrative of what, during the last six months, it has done for my own family, averaging during that period fifteen persons daily. Eight months previous to this period, under a strong impression of the evils either occasioned or likely to be occasioned by the vault or cesa-pool on my premises, and feeling it to be a nuisance to my next neighbor as well as tor myself, I filled it up with earth, and ever since I bave liad everything that would otherwise have gone into it received and removed in buckets. And even this mode of removal, though offensive in idea, has proved far loss so, in reality, than even a very small portion of the evils it is intended to remedy. At first, the contents of these buckets were buried in trenches about n fout deep in my garden; but on the accidental discovery that in three or four weeks after being thus deposited not a trace of this matter could be discovered. I had a shed erected, the earth beneath it sifted, and with a portion of this the contents of the buekets every morning mixed, as a man would roughly mix mortar. The whole operation of removing and mising does not occupy a boy more than a quarter of an hour; and withiis ten minutes after it empletion neither the eve nor nose can perceive anything offensive. This was the first observation I made. The next wis this: that when all the earth, which did not exceed three cartloads, had been thus employed, that which had been first used was sufficiently dried to be used for the same purpose again ; and it absorbed and deodorized the offensire mutter as readily as
at the first time. And so singularly does this capability continue, that a portion of it is now being used for the fifth time for the same purpose; and thus all that offensive matter which otherwise would have been wasted in the vault, a nuisance to my house and the neighborhood, and a source, it may le, of sickness and divease, is now a mass of valuable manure, perfectly inuffensive to the eye and nose. I have taken fifty or sixty persons to see it without first nequainting them with its nature, and not one has guessed it. All bave declared it to be wholly without offence. Two have handled and smelt that in the afternoon which had been mixed in the morning, without being able to discover its nature. And more than this, I bave the same day submitted some to strung fire-beat; and that which, unmixed with earth, would, under such heat bave been intolerable, in this mised state emitted no offensive smell whatever. Again: a supply of manure for the gatden is thus readily provided. A farmer and several labnrers to whom I mentioned the following simple plan at once entered into it: the present vault is to be discontinued, and in the place of it there is to be under the seat a small enclosure of brick or stone, six or nine inches deep. To preserve the full value of the manure for the garden, this enclosure should be pased, or hare a flat stone for its bottom. It would, of course, be closed with a door. On one side would be a small, rough shed, capable of covering and kecping dry a cart-load of earth for the purpose of mising. and on the otber side a similar shed ints, which the soil so mised would day by day be thrown, fir the purpose of drying. When dry, this would be used again,* and the uses of the two sheds be reversed. By thus repeatedly using it, and shifting it backwards and forwards frum one shed to the other, one load of earth will be found sufficient for five persons certainly for six months, and, I believe, for twelve. This is the simplest, but by no means the lenst offensive mode of applying this remarkable agent."

The winds and the Treese

Philozophers tell us that the winde gain velocity by unobstructed travel; and the fact is verified by the dreadful hurricane on the ocean, the raging tempest on lake, and sea, the awful simoon on the Africian desert, and the furious tornado on the American prairies-all which strew their patlis with degolation, because there are no trees to check the violence of the winds. Even our sudden gnsts in summer, when the air becomes too much rarifled by heat, are often destructive to life and buildirgs.

All these besums of destruction would be greatIs morlitied cuuld trees be planted in their pathe. The trees getting the first strukos, and being flexible, would beni befure the blast, breaking its force and making it pass harmlessiy over buildings or wher stani mary oljects, The electric fluid, to desiruasive uf life and property, also is auracted by trees, and conducted into the ground; and, in fact, trees are the beat protectors agninst all the

[^3]natural destructive agenoies with which man has to contend.

Another consideration as to the value of growing trees is the fact that a park of any size is warmer when belted and grouped with trees, in winter, and cooler in summer, which has been demonstrated by practical experience for centuries. Many fruiting and ornamental plants flourish when so protected, that would not live if exposed to bleak winds. Domestic animals, too, grow faster, thrive better, and give better returns if sheltered and protected by trees. Much better is it also to rest under their broad branches on a hot summer's day or to be enlivened by their cheering green when all else is dull and cheerless.
A feeling of admiration and awe comes over me when I think of the wonderful wisdom shown in the forms or natures of trees to suit our various wants. If we plant trees with maked stems and branchy heads to shut out unsightly views, the work is oniy balf done, as we can see through and under the branches; but when we plaot evergreens, whose largest branches are near the ground, they fill up the gap and the work is complete With fruit trees the same beneficence is manifest. We have to climb up trees to pick the large truits, which when green are unfit for eating; while it would be tedious to pick the thorny gooseberry and blackberry, did they grow upon trees.

We say, therefore, plant trees for shelter and shade, for embellishments to your grounds and adornu ent to the landecape; they are grand and ennobling to look upon, and their fruits and timber in a few years growth will be as valuable as gold.-Gardener's Monthly.

Numerals of Different Sizes.

As the decimal aystem of notation is supposed not to be universally understood, it may be well to consider whether we can render it clearer by introducing into pumerals distinctions in size and shape analogous to the distictions between capital and small letters. If in printing sums of money wo used common figures for the dollars, and figures of smaller size for the cents (as is often done on coupons), it would be more easily understood by persons who are not familiar with decimal notation; and even experts might sometimes be saved from errors of sight; so if decimal fractions were generally, or always, printed in smaller type, it would contribute to clearness, and to prevent mistakes; and it would avoid a difficulty which, without suffi. cient reason, is thrust upon us in many recent nathematical or partly mathematical works in which the decimal point has been changed from a period to a comma-the period being wanted for another use. And in the printing of the timetables of railways it might also be nn improvement to print the minutes in emall type; for example, 12_{30} instead of $12: 30$, to express half-past twelve; and, $\$ 25_{10}$ instead of $\$ 25 \cdot 16$, or $\$ 25$ and 10 cents. In decimals generally it would be easier and surer for the eye to distinguish them if they were print. ed thus $452_{\text {sisal }}$, instead of 452.87347 . We suggest this for the consideration of editors, and others concerped; boping that if the iden be deemed sound, there may be an espression of opinion upno it. Of course it would be improper to attempt the
introduction of such a change without previous discussion, and a conventional agreement upon it. -American Artisan.

Alkall.

This term is constantly used by farmers in speaking of manures. It is well to understand its derivation and precise meaning. It is of Arabic origin. Dr. Dana says that Kali is the Arabic word for bitter, and al is like our word super; we say fine and superfine; so kali is bitter; alkali, superlatively bitter, or, truly, alkali means the "dregs of bitterness."

Alcali is a general term which includes all those substances that have an action like the ley of wood ashes. It this ley is boiled down, it forms potash. What is chiefly understood by the term allalies, means potash, soda, and ammonia. Potash is the alkali of land plants; soda is the alkali of sea plants; aud ammonia is the alkali of animal substances.

Potash and soda are fixed; that is, not easily raised in vapor by fire. Ammonia always exists as vapor unless fixed by something else.

Lime, fresh slacked, has the alkaline properties of potash, butweaker, -so has calcined magnesia, but in less degree than lime. Here are two substances, earthy in their look, having alkaline properties. They are called, therefore, alkaline earths. When the tongue is touched with a bit of quicklime, it has a hot, burning, bitter taste. These are called alkaline properties. Besides these, they have the power of combining with and taking the sour out of all sour liquids and acids; that is, the acid and the alkali nenutralize each other. Were it not fur this, there would probably be no such thing as vegetable growth. N. Fig. Furmer.

Transportation of NitroaClycerine.

The United States Congress has passed in bill prohibiting the transportation of nitro-glycerine on any vessel or carriage conveying passengers, under penalty of a fine of not more than $\$ 5,000$; in case of death frum a violation of this law, the parties transgressing are to be indictable for murder. Nitro-glycerine is not to be transported unless packed in a metallic vessel separate from nll other substances, and labeled " Nitro-glycerive-dangerous." Violations of this clause are to be punished by a fine not exceeding $\$ 3,000$. - American Artisan.

Colors, as Applied to Dress.

Few people give themselves the trouble to understand the rules of color. They consider them as belonging to an obtruse science. The principles, which are supposed to be too much wrapped in mystery to be worth the treuble of aequiring by any but professional persons, aro those comprebended in the laws of contrast of color and contrast of tone.

First, as regards contrast of color. There are three primary colors-red, blue, and jellow. From these every other color is formed, and each has its perfect harmony in its contrasting or complementary color. The complementary of each simple color is furmed by the union of the other two (and is therefore called also the secondary), that is, green beiag the misture of blue and
yellow is complementary to red; violet, being formed of red and blue, is complementary to yellow ; and orange, a compound of red and yellow, to blue.
Each of these colors, when placed near its complementary intensifies its effect. Green causes red to appear redder, blue adds a brighter tint to orange; and yellow enhances the color of violet. In other words, every color looks its purest and best when it is beside its complementary.
By means of this simple law of contrast therefore, we have the power of imparting any tint we choose to the complexion, and of rendering our costume agreeable to the eye by the harmony produced by properly contrasted colors; and we may lenrn to avoid increasing the undesirable tints of a sallow complexion by the juxtaposition of blue or violet, or readering a florid complexion still more bighcolored by contrasting it with green. On the other hand, ladies with golden hair and clear complexions will see that they should wear blue in preference to any other color, harmonizing agreeably, as it does, with the former, without exercising any ill effect on the latter; while those upon whom nature has bestowed dark hair and a rosy complexion sbould consider green as their especial color.

Very datk people may wear extremely light brown, gray or slate color with impunity, but those who have light brown hair should only venture upon pure white and the light tones of the three primaries, bearing in mind that, where-ever there is agreeable contrasts there is agreeable har-mony.-The Boudior.

The Mronlsey and the Drumkard.

Mr. Pollard states that in his drinking days he was the companion of a man in Arundel county, Maryland, who had a monkey that he had ralued at a thonsand dullare.

We alvays took him out on chesnut parties, and when he could not shake them off, he would go to the very end of the limbs and knock them off with his fist. One day we stopped at a tavern and drank freely. About half a glass was left, nod Jacko drank it up. Sion he was merry, hopped and danced, and set us in a roar of laughter. Jacko was druok. We all agreed, six of us, that we would onme to the tavern next day, and get Jack drunk again, and have sport all day. I called at my friend's house next morning, and we went out for Jack. Instead of being, as usual, on the box, he tris not to be seen. We looked inside, and there he war, crouched up in a heap.
"Come out bere !" said his master.
Jack came out on three legs; his fore-pary was on his head. Jack had the headache. I knew What was the matter with bim; he felt just as I did unany a moruing. Jack was sick and couldn't go. So we waited three days. We then went, and While drinking, a glass was provided for Jack. But where was he! Skulking behind the chairs.
"Come here Jick, and drink," said his mastor, holding out the glass to him.

Jack retreated, and as the door was opened, slipped out, and in a moment was at the top of the house. His master went out to call him down, but he would not come. He got a large whip and shook it at him. Jack sat on the ridge-pole and
refused to obey. His master got a gun and pointed it at him. A monkey is much afraid of a gud. Jack slipped over the back side of the house when he saw his predicament, at once whipped upon the chimney, and got down in one of the flues, hulding on by his fore-paws. The master was beaten. The man kept the monkey twelve years, but could never persuade him to touch another drop of liquor. The beast had more sense than the man who has an immortal soul, and thinks himself the first and best of God's creatures on earth.

Sulphurotteal Hyirogen.

This gas, which for experimental purposes is usually obtainod by means of sulphuret of iron, may be procured more conveniently, and in a state of great purity, by the use of sulphuret of calcium. The latter is formed very easily by mixing uncalcined powdered gypsum with one-fourth of its weight of calcined gypsum, and powdered pit-coal equal to one third of the whole of the gypsum used, and working up the mizture to a stiff dough with water ; nest forming it into pieces four inches long, two wide, and one and a-half thick, sprinkling them with powdered coal, and drying them, then placing them with coke in a wind furnace, and keeping them at a very high temperature for two hours. When cold they will be found externally to consist of oxysulphuret of calcium ; but internally of pure peach-colored sulphurate of calcium, which may be broken in pieces the size of nute, and preserved in well-stoppered glass bottles. If water is added to these, and then sulphuric acid in small quantities at a time, sulphuretted hydrogen is given off with great uniformity. Scientific Review.

Now Test for acide and allalles.

Owing to its property of being reddened by acids and turned blae by alkalies, prepared litmus is perhaps the most generally useful of all the chemical tests which hare hitherto been known. A test of a similar nature, but very much more sensitive than litmus, bas recently been found by Schönbein to be furnisbed by the artificial blue coloring matter obtained by acting on chinoline with iodide of amyl, and known as "cyanin." This body is so readily acted upon by acids and bases, and its tinctorial power is so enormous, that its delicacy as a test for either acids or bases is quite marvelous. It will detect the presence in water of onewillionth of either sulphuric acid or caustic potash, and of quantities of carbonic acid which cannot bo detected by means either of lime or of barytes. Pure distilled water colored with it so ns to be quite blue while preserved from contact with the atmosphere has its color instantly destroyed by being blown into from the lungs, by reason of the carbonic acid in the expired breath. Magnesia is incaprble of diseolving in water to a sufficient extent to enable the solution to react upon litmus, but pure water in which magnesia has been sbaken up gires a most distinct alkaline reaction with cyanin. So does distilled water which has had oxyd of lead shaken up in it, albeit sulphureted hydrogen, which will detect one part of lead in 350,000 of water, is incapable of ahowing that any oxyd of lead has been dissolved.-Mechanics' Mag.

Perising's Portablo Stomm Ovene

On Monday last a trial was made at the works of Mr. A. M. Perkins, Seaford street, Regent square, in the presence of some of the principal offoers of the Commissariat department, of a new portable steam oven, constructed by Mr. Perkins, for military purposes. The oven consists of a casing of an 0 -form, 10 feet 7 inches lone outside, 9 feet of this length being occupied by the oven proper, and the remainder by the furnace and the division wall between it and the oven. The casing is made double, being formed of two shells of 1-16ch inch wrought-iron plates placed 2 inches apurt, and the space botween the shelle is filled in with vegetable black to prevent radiation, which it does most effectually. The oven is heated by twenty-four water tubes, 10 feet 3 inches long, 15 -16th inches diameter outside, and $\frac{7}{8}$ inch bore; twelve of the tubes are placed under a false bottom, and turelve along the top of the oven. 'Tho tubes are inclined downward. towards tho furnace, into which one of them projects 9 inches, the twelve lower tubes forming the fire grate; they are filled with water for 3 feet of their length, and then have their end welded up so that no evaporation can take place. Similiu tubes have been long successfully employed by Mr. Perkins for heating purposes, and some which had been in use for upwards of nine jears bave been recently opened, and found to contain the same quantity of water as was originally placed in them. When hent is applied to these tubes steam of a high pressure is, of course, found within them, and the tubes thus become of an equal temperature throughout their length. In the case "f the oven furming the subject of the presont notice, the heat tramsmiated to it by tho tubes is found to be uniform in all parts. Above tho furuace, and surrounding the short chimney leading from tie tup of is, is placed a copper boiler; this absorbs sume of the waste heat from the furaace, and gives a food supply of hot water. The oven is fitted at the end farthest from the furnace, with a pyrometer for indicatiog the temperature, and glazed sighcholes for watching the process of baking, and the whole apparatus is carried upon four whecls, and is intended to be drawn by two horses. The oven tested on Monday is capable of baking at ono time eighty "three-ration" loaves, each weighing 33^{3} ths, the time required for beating the oven for baking being only one hour, and the time occupied in baking each charge being two hours. About 60 lbs. of coke are used per day for working the oren, and the bread baked in it is found to be elightily heavier, fur the amo weight of duggh, than that baked in an ordinary uven, a result araribed to the uniform temper:ature of the oven not destroging the saccharine matter of the bread. The weiglit of the whole appaaratus complete is a littlo under 38 uwt. Anuther wen, made hy Mir. Perkine on the aime plan, is onw in use at Alldershott, and is working verg earisfacturily. In that tried on Munday, however several improvements have been made, and the weight has been materialy reduced. This portable oren appears to be a very great improve. ment upon that now used, and there seems to be no reason why it should not be extensivaly employed for military and naval purposes, as well as in a muditied furm in other situations.-Engineering.

Now Photographic Printing Process.

We have received from the inventors, Messrs. G. E. Desbarats and W. A. Leggo, of Quebec, C.E., some specimens of prints-done upon a common hand priuting press-of their newly-patented process for making printidg plates by means of the photograph.

The object of the patentees is to produce electrotype plates of pictures, ready for common printing like ordinary type printing, without engraving or other hand work.

The process is briefly as follows:-Upon the varnished aide of an ordianry negative, pour a solution of gelatin containing bichromate of potash. Dry, and expose the uncoated surface uppermost to light, which fixes that portion of the bichromate upun which the rays fall. Dissolve off the unfixed purtion by dipping in 5 arm water; drain, and we have a film upon the glass more or less raisel, according to the strength of the lights in the picture. Take an impressiou of this film in plaster. Dip the impressed plaster in hot wax, and place the waxed surface upon a glass plate also covered with hot was. The wax upon the plate unites with the wax upon the plaster, and the latter may then be removed, learing upon the plate a fac simile in wax of the original photographic gelatio film.

The fito simile being now dusted with plumbago and electrotyped in the usual manner, a printing block in copper is produced, capable of use with printer's iuk upon any press.

The specimens we have received are for the most part copies of eteel plate engravings, and the pictures are ommparatively well done. There is, however, room for improsement.-Scientific American.
'The diminution of the magnetic dip has been going on in London for the last half century with great regularity at the rate of about three minutes annually.

Management of Stram-Borlers, Pocket Guide то: W. C. Chewett, \& Co., Toronto. Price 25 cents.
This is a short but valuable treatise on the subject of which it trents, written by W. Gill, Esq., of this city, and first published in the June number of this Juurnal. It is done up in a neat form, suitable fur the pocket, and should be in the hands of every person either owning or having charge of a stoim-boiler. The writer is a gentleman of long experience, and for several jears past chief engincer of the Toronto Rolling Mills, where eight large bnilers have been in use day and night, almust continually, for the last six yenre; and althourh the wnter used is usually extremely muddy, these boilers by careful attention and regular inspection have been kept in the most perfect working order. Secure a copy of this little work, which we suppose will be for sale by various booksellers.

[^0]: "J. If. Perry, President; G. H. Dartnell, 1 st ViccPresident; M. O. Donovan, 2nd Vice-President; G. Y.

[^1]: * The former article on Chlorine, pago 180 (aelactad), gare a process fir monking Hyarochlorle ecitl gis in miztako, su fo huye liad tho artlcie ro-written.

[^2]: * Imperiul.

[^3]: [* We aes no necessity for usint it over mgrin. and dn unt think it advisable to do кo. This ajitem of using dry +arih for deodorim. ing nigbt-suil is n.w practised by some of our citizens, with ducided ouctess.-Ed. Jour.]

