The Institute has attempted to obtain the best originai copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

\square
Coloured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Biank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) inc'ex

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

THE NEW GHAND OPERA HOUSE, TORONTO.

THE NEW GRAND OPERA HOUSE, TORONTO.
The new and elegant Opera House now being erected by the Toronto Opera House Company for Mirs. Charlotte Miorrison, under the direction of the celebrated Architect of the New York Academy of Music, Thomas R. Jackson, Esq., is situated on Adelaide Street, West of Yonge Street, the most central and desirable location in the city It has a front on ddelaide Strect of nincts-one feet, and a depth of two hundred and cight feet, and is perfectly iroiated from surrounding buildings by a street on the west and a lane on the east side. The principal entrance to the Opera House is on a level with the strect, through a spacious corridor fifteen feet wide, fifty feet long, and fourteen feet high, to the main vestibule, twenty-four fert by sixty-five feet, and eighteen feet high, in which are the Box and Ticket Offices, stairs to Family Circle, etc. Beyond the vestibule is the inner lobby, from which access is had either to the Parquet or Balcony or by wide and easy stairs to the Dress Circle. The Auditorium is arranged with Perquet, containing 324 Orchestra stall chairs; Parquet Balcony, containing chairs; Dress Circle, containing 324 scats; Family Circle 270, and eight Privato Boxes, with four chairs in each, making a seating capacity of 1,323, and campstool knd standing room for 500 more, every one having a perfect view of the stage. The chairs in the Parquet and Balcony will be the latest improved folding-seat Opera chairs, upholstered with leather. The sofa seats in the Dress Circle will be upholstered with reps. There are also ladies' an't gentlemen's cloak and hat rooms, crush-ronm, dressing rooms, ctc. The Proscenium and Arch, of chaste and ornate design, will contain eight private boxes. The orchestra will be depressed below the floor, 50 as not to obstruct the view. The Stage, 53 by 65 feet, will be fitted up with all the latest improvements and cquipped with a full stcek of Scenery, Curtains, Propurties and Appointments. For the necessary accompaniments of the Opera House and the accommodation of its attachés, there is a two-story building adjoining, in which are a spacious scenc-room, property-room, green-room, dressingrooms, Manager's and Treasurcr's offices, etc., all above ground, with windows and entrances opening on a street, and fitted up in the most comfortable manner. The facilities for egress in case of fire have been fully provided by a fire escape, and four wide door-ways openiog out of the side street and lane, and of such capacity that a full house with all its attendants can be emptied in two minutes. The entire building will be heated by steam at a low pressure from a safety boiler in a fire-proof cellar, outside of the main building; and ample provision will bo made to guard against fire by placing on the stage two tireplugs with hose ready for instant use, and fre extinguishers distributed through the bailding. The Auditorium will be brilliantly illuminated by a centre sun-light in the dome, chandeliers under gall-ries, and brackets on the walls, and lighted by electricity. The construction of the building is of the most substancial characturi, and the decorations and furnishing will be in the most artistic taste and style; and, taken as a whole it will be one of the finest Opera Houses on this continent.

WIRE-ROPE TOWING ON GANALS.
Towings on canals by the application of a submerged wirerope and clip-drum has to contend with difticulties which are not, or at leant to a much smaller degree, expericaced on rivers of considerable depth, where the system, as on the Rhine, is in most successful operation, and has been for soveral years. The shallow draught, the crooked line of the watercourse, the rant of current, and the slow speed admissible on canals, affect the worbing of ordinary wite-rope tug8 mainly in two ways-they seduce the steering power of the vessel to a minimum, and increase to an extreme degree the difficulties caused by the irregular tightness of the wire-sope, which in river towing can be sufficiently controlled by the stcering power of the tugs. To make these points clearer we have skortly to recapitulate somo of the main features of the present method of wire-rope towing.
The general arrangement of existing wire-rope tugs is the following:--The clip-drum, worked by the steam cngine and suitable gear on voard the vessel, is placed cither horizontally on deck, or vertically on the side of the boat. In both cases the wire-sope is led slong the same side by saitable guide-
pulleys, and after taking half a turn round the periphery ot the clip-drum is permitted to slak back again to the bottom of the river. This lateral disposition of the rope has invariably beon adopted, althuugh it offers very serious drawbar' for two reasons: It overcomes to a certain extent diffic ties caused by slack rope, and it diminishes other dificulties referring to the steering of tho vessel when the rope is too tight When nearing a curve the rope, which lay originally in the centre-line of the watercourse, is pulled by the tug towardthe inside bank of the bend. A considerablo amount of slack rope thus obtained has at such moments to pass rapidly through the machinery, and is doposited bchind the tug in the bed of the river. Whilst passing over the fug this slack ropo is liable to "kink," or otherwise to entanglo itself, and it is only by guiding it perfectly in closed chanuels of a short length, and letting it sink down again into the water as soon as possible after it leaves the clip.drum, that constant and serious accidents can be avoided. For this reason alone it is highly desirable to get rid of the rope behind the clip-drum at ob ee, which can bo done conveniently by the lateral disposition above referred to, whilst it would be impossible if the rope were led over the deck along the centre-line.

But the question becomes of stili greater importance with regard to the steering power of the beat. The steering of a wire-rope tus is evidently an entirely different thitg from the steering of a paddle or screw steamer, quite independently of the fact that the wire-ropetug, between certain limits, is absolutely fixed to the line indicated by the position of the rop. In an ordinary steamer the propelling power acts always in the direction of the keel. In the wire-ropo tug it is independent of the direction given to the keel, and acts in the directir a of the wire-rope. If a screw steamer is turning at any angle to its original course, it readily and without difficulty proceeds in the now direction given to the centre-line of the vessel A wire-rope tug will always show a tendency to follow the direction of the wire rope by which it is pulled. It will, to a cortain extent, move broadside on, instead of straight in the direction of its keel.

The steering arrangements of a wire-rope tug must therefore contend with two distinct elements. They must give to the tug sufficient "turning power"-i.e., the power of turning the vessel readily, so as to place its centre line at any reasonablo angle to the direction of the pulling rope; at the same time the tug must also possess a suthcient degreo of "staying power " -i.e, the power of maintaining the course indicated by ti.e direction given to the keel, without proceeding broadside on, or, as sailors would say, making lee-way.

Now there are two points which evidently influence the turning power of the tug most materially, viz., the original tightness of the rope, or, more correctly, the tightness of the back rope, and the length of rope to which the tug is rigidly bound-a length which is measured by the distance, in the casection of the keel-line, from the firstrto the last guide pulley. If this line could be reduced to a ; jint, it is clear that even with an absolutely rigid rope the tug could be turned readily at anyangle to it. Practically the turaing power of the boat will be in proportion greater, the slacker the back rope and the shorter this line is. This, then, was the second reason for guiding the rope aloug the side of the vessel. If led over the centre of the deck, the hane from the first to the last guide pulley becomes very long, whilst laterally disposed it can be reduced to a minimum, thus materially reducing the resistance against turning and steering the versel. On the other side titere are very serious inconveniences only partially removed by this arrangement and others directly aggravated, by it, which we can only mention hero. The lateral disposition of the clip-drum and guide pulleys necess tates very considerable weights to be carried on the side and even overhanging the side of the vessel. The machinery thus projecting is in frequent danger of being knocked to pieces by passing boat. and requires powerfuland heavy guards. All this mado it practically impossib!e to build tugs of less than about 3 ft. draught -a draught which on really shallow, though navigable rivers and canals, cannot frequently be obtained. Further, the tugs cannot and do not steer equally well towards both sides of the ropo, having a tendence to turn less readily to the side on which the rope is attached than to tho opposite one. The staying power remains as much as ever impaired as soon as the hind rope becomes tight, whilst when it is sleck there remains the danger of kinks forming even at the bottom of the watercourse after it leaves the bost.

On deep rivers with 1 onsiderablo currents these difficulties bave been found to be of no practical importance. In beuds the current greatly assists the steering power of the tur, throwing the vessel powerfully towards tho outside of the curve, and thus counteracting the tendency of the rope to pull it towards the inside. This not only helps to keop the boat in its proper water-course, but nssists also the action of ruplacing the ropo in its correct position. With regard to kinks, tho considerablo dopth through which the back ropo has to sink down from the last guide pulley to the bottom of the river regulates up to a certain point tho delivery of slack rope. I'ho graster speed admissible on deep rivers fiually increases the stecring and staying power of the tog $4 \|$ this is different on shallow rivers and canals, with their sharp and frequent bends, vant of current, and slow admissible speed. Hers the difficulties of kinks in the slack rope, the want of stcering power, the consequent impossibility of replacing the rope in its original position when displaced by the direct pull of the tug, and therefore the incapability of the tur to round sharp curies readily, after a fuw working trips, have proved, up to lately, fatal to the introduction of wire-rope towing. What appeared to be required was greatly increased stcering power, the tug being more or less independent from the tightness of the wirc-rope, and the maintenance of a nniform state of tightness in the rope, which on the one side would entirely avoid blaks in slack rope, whilst on the other it would not unduly interfere with the movement of the vessel in curves.

The princıpl. embodied in Messrs. Greig and Eyth's patent offers the most simple solution of this problem. The rope, after passing the clip-drum, instead of sinking back into the water, is led over one or more " moving sheaves" of an apparatus which, altogether, is called the "slack g:ar." The motion of this moving sheave away or towar.ls the clip-dram alogg a pair of horizontal rails of sufficient length causes a greater or smaller amount of wire rope to be stretched between clip-drum and sliding pulley, and this rope is constantly kept at a certain uniform tightness by the pressure of the piston of a steam cylinder being brought to bear on the moving sheave. 'Ihus it becomes evident that instead of any slack rope leaving the tug, it is retained on board stretched out between the clip-drum aud moving sheares, the rope, leaving the tug under all circumstances with a moderato and nniform strain on it, avoiding overy chance of kinking. On the other side, whenever the wire rope has a tendency to become too tight, the sliding pulleys recedo towards the clip-dram, paying out some of the stored up ropo, and restoring the orisinal moderate tension in the back rope. It is evident how far this arrangement influences the stcering and staying powers of the tug As long as the slack gear has any rope to epare the tag is not beld by the back rope, and can move laterally with perfect freedom. If, combined with this, the distance from the first to the last guide pulley is of moderate length, the tug will be with regard to its steering power almost independent of the rope. There being vo kinks possible and no loose ropes to contend with, the cable can now without danger be led over the centre of the vessel. The rope itself will be asped not only from kinking, but also from any undue stra. os which formerly wire put on it whilst steering round curves, and which frequently made the towing round sharg oends a_{i}, impossibility.

We now describe in detail the special canal tug illustrated on page 136 On most canals it is highly lesirable that the tug should be able to run back and forward along the rope without turning, and to reverse its course with as little tronble and loss of time as possible. This malses the general arrangement of tugs for canal navigation proper, somewhat more complicated than that of river tuge, the latter be ag required to run forward only when at work, and to turn round at the end of thur journey. Bow and stern of tho vessel are therefore of exactly the same shape, each end being provided with a long and powet ful rudder worked independently from tho deck near the centre of the boat by a separate rihcel. Thu front rudder is generally fixed in its central position, thus forming a prolon ation of the keel and increasing the staying power of the - Ssel to a very considerable degree. The middle portion of the boat is occupied by the enginc-room, and therefore provided with a deck of sufficient elevation. Towards both ends the deck is considerably lower, sloping down topards the rudder-posts, where it is only a few inchos abovo the wator line. This lower portion of the deck is made absolutely vater-tight, and the space bolow it is specially occupied by
portions of the slack gear. Above the rudders, for the sake of protecting them and of proventing the wire rope interfering with their movements, there is a sort of raft actually floating c. 2 the water, and thus in no way increasing the draught of tho vessel, but at the same time firmly bo'ted to its sides. These raftsincrease the steadiness of the boat, and protect it efficiently in case of collisions. In the centro of the ongino-room, placed crossways, is a tubular boilor carrying a double-cylinder engine of about 8 to 10 -horso power. The engine is fixed on the sido of the fire-box and boller barrol, so that tho crank shaft is in a rortical position, near tho smoke-box end. The smoke box is a accessiblo through a corresponding opening, protected by a water-tight cover in the side of the bost. The starting and reversing handle of the engine aro on deck, in easy reach of the helmsman, whilst the stoker fires the boiler from tho sido. The erank shaft at its upper end carries a small fly-wheel, at its lower and a pinion, working the clipdrum. which turas horizontally on a shaft underneath the bolter, and is otherwise is such a position that the centro line of the clips touches th centre lino of the boat. Below and above the clip-drum thon are-moosely turning on the same shaft-two ordioary rope sherves, which we shall call the top and the bottom cuntre shesve respectively.

On each sidu of the boiler is a "moving sheave," i.e., a ropupulley, turning horizontally on a vertical stud, sthich is bolted to a strong fat iron carried on rollers, and thus capable of moving along a rail from the clip-drum towards the rudderpost, through very nuar the whole length of the vessel Attached to each end of the wagon on which the sheave rests thers is a chain, which by suitablo pulleys is led along the rail, and then towards the chain drums, to which the ends are fixed.

Chain-drams and slack-gear cylinders are shown on an onlarged scale. The slack gear cylinder is simply a tubu, the ends being closed by two pistons. Butweon the pistons is an opening provided with a three-way cock, by which the interior of the cylinder can be p aced in direct communication with the boiler or with the atmonphere Whea tha slack gear is in action the boiler pressure is directly an 1 constantly acti is on the tivo pistons. I'here are toothed piston-ro is to these pistons, acting like a ray an 1 working a pi ion. Thu pinion is keyed to a short shaft wh ch also carrics a chain drum. Eich cbain drum acts on one of the moving shedves abive describ. ed, the tive chains comin a from opposito ends of th, wis son, being wound 0 : th , drum from opposite sides, 80 that the tura itg of the drum winils one chain on whilst unwindiog the other, and ther by moves the sheaves wagon bask or forward. The stcam press ire in the black gear cylin lur cons ancly pressing the two fi-tons nutwards, produces evidently a tendency to turn the drums, or, by uncaus of the chains, to push the shoaven frum the cli, drum away towards the bjat ends. The opposite motion would be accomplished uy pressiug the sheaves tovards the clip-Urum with a power sufficiently great to overcome thu ateam pressure in the cylinder and to push the pistons back into it. A catch and a ratchet-the latter being cast to the rop flange of esch chain drum-are used for stoppiug the motion of the drums, whenever it is desirable to stop the action of the slick gear and work with a fixed or rigid system of pulleys. The two catches are connected by a link, and the handie by which they are thrown in or ont of gear, as well as the bandle by which steam is admitted to the slack gear, are both in reash of the helmsman. We have finally to mention a pair of vertical guide pulleys, leading the rope i i, to tho clip-drum, and two swinging pulleys the latter being the first and the last palley over which the rope runs in its passage thtough the boat. They are suspended by a univeroil juint, which permits them to assume any angle indicated by the direction of the rope, and their position near the centre of the boat, and very little above tho water-line, offers great ad vantages as to the handling and steering of the boat in curves. Tho rope is prevented from surging over the slanting decke by the straio which is constantly pat on it, in front by the actual work performed, bohind by the action of the slack gear

Following now tho rope in its passages over the tug, we see it passing over the first swinging pulley, down towards and slightly round the vertical gaide pulley, half round the clip drum, towards and half ronnd the moving sheave A-back again, passing underneath the boilor towards and half runnd the mofing sheave B; once more back and half round the top centro sheave, and from thence underneath the second galde pulley over the sacond swinging pulley back into the watos.

Now the action of the whole apparatus will bo clear When the engine begins to pull, or when the tug approaches a bend, it will bring in slack rope; but as soon as the slackness is fult behind the clip-drum the piston of the slack gear cylinder will be able and will begin to tusn the chain drums, pushing thereby the moving rheaves further out and maintainink practically the original tightness of the back ropo, but causing a greater quantity of it to be carried between the moving sheaves. If on the other side the back rope becomes tighter it will at onco cause the moving shenves to slide towards the clip-drum, pushing the pistons in tho slack gear cylinder back against the steam pressure. This will cause some additional rope to be paid out, by which again the normal tightness of the rope is maintained. Whether both, or only one, and which of the two sheaves acts, is immaterial. Two are required, partly to get as much a length as possible, for storing up slack rope, partly for eccuring the possibility of working the tug back wards as well as forwaid without turning as will be seen prosently. If the engine would be reversed the pul ing stiain exerted by the clip-drum would be brought to bear on the moving sheaves, and would make them slide back towar is the clip. drum, whilst an immense amount of slack would appear behind it whilh would be sure to produce a rerious accident The slack gear therefore has always to bo stopped bifore reverring the engite, and this is doue by the catch falling int., the teeth of the chain drum as al ove described. To avoid all possibility of accidents the reversing lever itselt i, connected with the catches, 80 that the motion of the chain drums, and therebv of the moving shetaves, is certain to bu stop ed when reversing the engine. Whe tug then acts like any other tus without a revereing sear, which of course is perfectly admissible for short oc. asional movements tjackwards.

When, however, the tug has to start on its regular return j,urney, the porition of the rop e is altered in the following way: The half-coil ronud the ciap drum is t ken out and slipped into the empity bottom centre sheave just below it, the half coil in the top centre sheave is taken out and slipped into the groove of the chp-drum. Nothing more is wanted. In following now the rupe from the other end of tho beat in its pa-rage through the pulto y_{0}, it w.ll be suen that it aggin first paescs clip.drum, aud that the slack gear sheqves follow ufterwards. The tug, therefure, returi, 8 with the sluck gear in full and correct op ration. With a nomber of tugs of this description the traffic of a canal should be worked aloug one rope in the following m nater:-Each tug iuns backwards and forwards belsecen certain stations, or travels on 60 long till it meets another tug. Buth tugs then turn about after eschanging the trains of canal boats they were bringing along, and again pruceed till they meet their neighbours. This is uadoubtedly the mgst couvenient and economical method of vorking the wire-rope system on canals. On rivers towing is generally only of importance for boats going up stream. Here wire-ıope tuge will best ran the whole journey, returning generally empty as they do on the Rhine, and used to do on tho Mtuse, and leaving the rope altogether for the back juurney. For auch boats only one moving sheave is required, and the whole arrangement becomes cons.derably timpler. At the same time, the incidental and various advantages of the slack gear, offering the possibility of constructing bosts of very shal.ow draught, giving to the boat almost perfect liberty to stuer, and avoiding kinks and similar difficulties with the rope, are of the greatest importance for shallow river navigation, and will donbtless extend the application of wire-rope towing under circumstances where, up to now, it frequently has been considered unsuitable.

Rosx-colored Stalnfor Wond.-Monnier recommends steeping the wood for several hours in a bath of 1,200 grains iodide of potassium to the quart of water, and then immersing it in a bath of 375 grains corrosive sublimate, when it will assume a beautiful rose-red color by chemical precipitation It should subsequently be covered with a glossy varnigh. The baths will not need renewal for a loug time.

Exparikents with a single-track elcyated railway have been made 10 Philadelphia, and pronounced saccessful by a number uf railroad officials preasent.

HAYWARD TYLER AND COS IMPROVED UNIVERSAL PUMP.

At the oxhibition held recently at Bedford, Eng., the new patent valvo gear fited to this pump attracted considerable attention. An illustration of this moditication will be found in another page. It will be remarked that the improvement relates to n method of working the piston at cach end of the stroke, so that if from any cause the pump should fail to take its water no accident can happon. The cushioning arrangement consists of a modification of the exhaust passage in the steam plston, it being made double, as shown in woodicut, one portwa ofit being almost clozed just before the termination of the stroke Thus the plston shuts in a small amount of steam sufticiont to check the momentim of the piston before the reverssl of th. slide. When the slide has moved the piston is cushioned, as is usual with live steam The amount of cushion by exhaunt steam is so regalsted that when the pump is doing ordinary work there is no back pressure, but as soon as the work is taken off with sterm full on, the great amount of steam sui. de ly relieved of wuik cannot be discharged, and tho engine chokes itself.

I saw one engine exhibited tested myself, with the following results:-Steam in borler, 40 lb ; pressure on pump, 60 lb. , pump running at about 64 double strokes; $8 \frac{1}{2}$ in. steam c5linder; bin. piston. The suction hose being then suddenly lifted out of the water, the pump went off at a slightly increased speed, the beat being of a different aature, being a series of long choking sighs. When, however, the euction p pe was again put into the water the engine recovered letrself aud the beat was as cluru a cutooff as, could be desired, not; a trace of throwing could be heard. The woodcut represents the original and the improved steam pis ton Also a 12 ia . cylinder and 22in. pump. The impr. cance of this invention is not in its application for general pumping purposes in factories, \&c., where the work is regesur and constant, but for situatious where the work may suddenly vary owing to the source of supply being pumped dry, or some accident happening to the rising main. D'iaing engıneers will well understand what we mean, but there are many situations besides coal mines where the tank, pamp, or caisson, as the case may be, is apt to be suddenly extiausted, and an ordinary steam pump or a stean engine without an efficient governor will ran away. In the ordinary steam engine this is prevented by the governor, but in this invention the object is gained Fithout increasing the number of working parts of the steam pump.-Engineering.

TORPEDO EXPERIMENTS.

THE FIRAT "OBERON" EXPERYERST

At Stokes Bay, on Thursday, dug. 6th, took place, under the direction of the special committee of which sir W. Jervois is president, the first of a series of experiments whose importance as bearing on the question of the defence of our harbouris zin roadsteads can hardly be over-estimated. The Oberon, as most of our readers are awner, has been long in preparation for a course of attack by submarine mines, to be carried on until it terminates in her destruction, the object being to test the effect of such mines under various circumstances on the bottoms of our men-of-war as at present constructed, and so to learu exactis how to place our charges to the best advantuge, as woll as to ascertann whut constitutes a bar which ships cannot cross without being destroyed.
To carry this out the Oberon has been provided with sides and bottom corresponding exactly to those of H.il.S. Hercules, and also with a condenser taken from her Majesty's ship Octavia. The system on which she is attacked, we need hardly sar, is to begin with comparatively distant charges, and gradianly to apprcach nearer to the vessel, carefully investigaing the effect in each case, so as to obtain the maximumamount of information that can be afforded by so costly an axperiment. It has buen decided by the Torpedo and Obstruction Committee to adopt tuc charge of 500 lb . of compressed pon-cotton, as what we may call the normal ono for the conditıons most commonly occurring. It happens that the deple best suited to give full effect to this charge is about 8 fathoms of water, and this is about the depth most commor. 15 found in the paso asges to be defended. Five hunired puunds of gun-cotivn, it is to be borne in mind, correspond to two thousand pounds of powder.

On the 5th of August this charge was with considerable difficulty, owing to the rough weather, placed at about 100 ft . from the vesscl's side on the bo.tom at ed depth of 8 fathoms of water, its place being marked by a broy--itde Fig. 2. Tho Oberon's circumstances were as follows :-The inlet and outlot valves of her condensers were left open. The Kingston valvo of her feed-pipe was closed. The water-lino was 2in. higher than the top of her condenser. The original weight of her hull before fiting her with special bottom was 590 tons-as now fitted it is 020 tons. Her cables and condensers may be takin as about 30 tons. Her starboard side has forty-four crusher gauges-a a a, Fig. 2-fitted to it. Each crusher platon is $\frac{n}{3}$ squaro incis in area, and behind it is a lead pellet hardoned with antimony $\frac{1}{2}$ in. long and 1-12in. in sectional arca. Over each side of the vessel were suspended by zin. ropes 12 ft . long six 18 -pounder shot, each fitted with a crusher gauge$6 b$, in Fig 2-having a piston of smaller welght than thoso of the Oberon crusher gauges, but in other respects similar.
The 600 lb . charge of gun-cotion in the mine was saturnted with iresh water in a service water-tight iron case. Ignition was effected by means of two Abel detonating fuzes, and placed with two dry 9 oz . discs of colton in a waterproof bag. We believe we are correct in saying that the circuit used in previous experiments was employed in this case albo; that is, a circuit was provided for testing, being constantly open, passing from the test battery through the fuzes in the mine, and out through a copper earth-plato into the water. This circuit has a point of great resistance at the fuze, and cannot act strongly pnough on the electro-magnet to being the powerful firing battery into action. This latter is brought into play, howover, in a service mine, either by a circuit-closer being tilted, which opens a circuit momentarily where there is very littlo resistance, and whicb, thorefore, has strength onough to magnetise tie electro-magnet, or by the act of an operntor on shore. It was the iattar arrangement only that was applied on this occasion.

The firing took place insm Fort Monkton, being directed by Captain Abnes, R.E., who generally performed this duty, so as to be able to arrange to tako an instantaneous photograph of the column of water thrown up. In this occasion, wo believe, two were got at successive instants with great success.
Fig. 1 shows a view of the column oi water thrown up by the explosion of the mine taken from a boat cn the same side of the vessel, that is the starbonid sid., which was towards Fort Muncktun. Except the fact that tho charge is a formidable one, the test was not a very severe onc. The e'eneral form of the column of water is itself an indication of tie way in which a submarine charge acts. Water is easily displaced, but it is incompressible ; hence any lateral explosion is rigidly resisted, and a column of water driven upwards with very great vio. lence, as shown in Fig. 1. Thus it is easy to sec that a vessel's safety is more affected by the horizontal that the vertical dis. tance from tho charge. It is also obvious thro tho water above a. charge requires to be a certain depth in ecder to develope the iall explosive power-this depth beino as we had said, about 8 fathume fo: 50 lb . of cotton.
Fig. 2 shows the horizontal u^{\prime} stinese of the nharge and the position of the vessel, as well ar. a striug of half shells conmining Noble's crusher gauges c o c, at 23ft. distance Lorizontally on the side of the charge semote from the Uberon, these teiug used in continusiion of a course of investigation of pressures commenced $4 y$ the Torpedo Committee in 1873. The general form vi the iton plate bottom of the Oberon is also scen, as well as the condenser-d in Fig. 2-with which wo have to do presently. At the moment of explosion the vessel would have to sustain a violent lateral pressure commencing in the direction of the arrow in Fig. 2, but as the gas became formed in largo volume, in a nearly horizontal direction there would be comparatively little tendency to move her, but she would have to play the part of and transmit the shock falling on the water she displaced. Failing in any way to do this, she would suffer crushing or injury in some form. It has long been suggested that a weak spot in a vessel so placed was found in her valves and condenser, for any form of pipe containing water would be a means by which a blow would bo rigidly transmitted to the extremity of such pipe. On this account the condenser and valves were provided, and formed a prominent featare in the arrangements. 'I'he result of the experiment showed how well grounded was such a supposition. T'he vessel scarcely seemed to vibrate under the shock of explosion, though the enormous column of water rose 80 close to her, the solid wood formingathe
cascs and other solid matter boing thrown into the sir to ndistance of sbout 180 feet, judging from the time at which they fell -6. 6 secs, after explosion. On boarding and exnmining the vessel she was found to be leaking slightly from somo injury inflicted on tho condenser. In no other respect had sho suffered seriously. Tho bull's-eyo on tho deck had been dislodged upwards and the effects of a shock wero manifest throughout; but littlo Injury appeared to bo done genorally, and the live stock, cousistiog of sheop, fowle nad rabbits, wero fourlshing.

Further examination being impossiblo in the present condition of the ship, sho was ordered to be towed into dock where she will no doubt have to be dctained for a considerable time in order to enable a thorough investiantion to be made. The result, then, of this first experiment, on the face of it, must be held to bo more satisfactory to the engineer officers than the napal officers concerned, for the explosion at the maximum distauce proposed has found a weak place in tho vessel; and although such slight leaking to the casual observer did not nppear to bo a very sovere penalty to pay for appraaching so near to a large mine, yet a moment's thought will show that the injury might be serious in the highest degree in a vessel really under steam. It is, in fact, impossiblo to say whether such a shock or a very similar one falling on a vessej, might not disable her engino.

Wo must not, howover, go too fast ; some plan may be dovised of saving the condensers from the blow. Condensers themsolves are sn old subject of grief. We are not aware of the peculiar features of the one in question, but trouble has been caused by the desire to save money on condensers, and castings have often been made in one that should have been soparate and very carefully performed. We are now speaking of merchant vessels; if this be fault with them, how much more with the Royal Navy? It would, indeed, be sad if our condensers, like tho heul of Achilles, rendered our supposed invulnerability in other respects of no avail.-The Engineer.

GLASS WOOL EOR FILTERING.

Our readers have no doubt heard of this new product of the glass industry Till now it has been possible only to draw out glass in threads of appreciablo thickness; but now, by altering the composition of the glass mass, it has been found possible to spin it as fine as silk, and afterwards beat it together like felt. From this substance all sorts of ladies' knicknacks are made, such as lace, feathers, and oven hats, and chemists also employ it for useful purposes. To put into paper filters, for instance, especially when casustic and corrosive liquids are under manipulation, it is of great value, for it prevents these substances coming into contact with the paper and destroying them.

To the photographer, in this connection, this glass wool would also be valuable; for how frequently is a glass bath ruined from the fact that tho filter paper which he has employed is not altogether chemically pure! Ag n, no ir onsiderable quantity of silver solution is lost f.omi buag absorbed by filter paper after repeated operations.
tle glass wool pressed together, and stuffed into the
 silver baths; and when at last the wool becomes dirty from the accu fultion of reduced silver and other impurities, then ε little strong nitric acid is pcured throrgh it, and this at once dissolves and removes all solid maivter. Washing out Fith distilled water will then render the filter as useful as over.

For the filtrations of other liquids the glass wool is equally suitable, such as sulphuric acid, caustic potasin, chromic acid; indeed, in these cases it is without a rival. Its cost is rather heavy, being as much as six shillings an ounce; but it must be remembered that it is as light as feathers, and conseq uently a quartersof an onnce will last a very long time.

A Substinute for Grodin Geass.-To half an ounco of white, hard varnish add two onnces of methylated spirit. Shake well up, and allow it to settlo for an hour or two. Clean very carefully the plate of glass, and caat with the varnish. When dry, a semi-opaque film of exquisite fineness will beleft on the glass, which anspers wall.

fic. 2

TORPEDO EXPPRRIMENTS.-(See page 70.)

PRINCIPLES OF SHOP MANIPULATION FOR EN-

 GINEERING APPRENTICES.By Jome Ricuards, M.E.
(Continued from page 50, vol 2.)

hotive macinent.

In this class belong steam engines, caloric or air edgines, water wheels or water engines, and wind wheels or pneumatic, engines. These four types comprehend the motive power, as it is termed, of the present day.

In considering these engines for motive power in a way to best comprehend their nature, the firet vies to be taken is that they are all directed to the same end, and all deal with the same kind of power, and, if possible, to avoid the impression of their being different kinds of power, as the terms usually employed seem to imply. For instance, we speak of steam power, water power, or wind power; but power is the same from whatever source derived, and these di-tinctions merely indicate the different natural sources from which power is derived

Primarily, pown is the product of heat, and wherever furce and motion ex'st, they can be traced to heat as the generating element, whether the medium through which the power is ob. tained be by the expansion of water or gases, the gravity of water, or the force of wind, heat will always be found as the prime source.
As steam engines constitute a great share of machinery that is commonly met with, and as a class of machinery naturally engrosses attention in proportion to its importance, the study of mechanics geacrally begins with steam machinery. The sub,ect of steam power, aside from its mechanical consideration, is one that may afford many useful lessons, by tracing its bistory and its intuence, not only upou mechanical industry, but upon human interests generally. The subject is often hinted at, and its importance conceded, but no one has from statistical and other sources, so far as I know, ventured to cetimate in a methodical way the changes that can be traced direct!y and indirectly to steam power.

The seeam engine is the most important, and in England and America the best known among motive agents. The impertance of steam contrasted with other sources of motive power is not due to the clecapness of cost at which power is in this way obtained, but for the reasons that the amount of power produced can be controlled and adapted to the requirements of each case, while it can bo produced without reference to local conditions, and in any place; the machinery can with its fuel and water, the elements of its power, even be moved from place to place, as in the case of machincry for transporting puaposes, the locomotive not only supplying power for its own transit, but carrying besides vast loads of merchandise. For manufucturing processes the main advantage of steam power rests in the fact that the power can be taken to the matcrial, and beside c. $:$ advantayes gained therely, is tho difference in weight and cost between transporting the manufactured product and the raw material. In the caso of iron manufacture, for examplr, it wouid cost many times as much to transport the ore and the fuel used in smelting, as it does to trassport the manufactured iron; steam power saves this difference, atd without steam power our present iron trade would be impossible. In many kinds of manufactures the exhausted steam, or steam drawn from the boilers, is applied to reducing, cleansing, and softening materials, so that even when other then steam power is employed, steam boilers and furnaces are neccssary.

Economical reasons for the extended and geneml use of steam as a porrer, beeides those alrcady named, are to be found in the fact thst no other available element or substance can be expanded to a given degrec, at so small a cost as water, and in tho fact that its temperature will not rise to a point that will destroy the machinery for generating and using steam, and further, in the very importsnt property that steam possesses of protecting be its lubricating propertics the frictional surfuces of pistons a valves, which it is impossiblo to keep thoroughly oiled becanse of there inaccessibility and the high temperaure.

[^0]The steam engine, in the sense in which the term is hero cmployed, means not only steam asing machinery, but steamgencrating machinery or plant; it includes the engine proper, With the boiler, mecinanisw for feeding water to the boiler, also for governing speed, with indicators and other details.
The apprentice must guard against the too common impression that the engine cylinder, piston, valves, and so on, are the main parts of steam machinery, and that the boiler and furnace are only auxiliarics. The boiler is the soul of the whole, the part where the power is generated, the eqgiue being merely an agent for transmitting power trom the boilet to the work that is to be performed. This conclusion would, of course, be reached by any ono it reasoniny about the matter, and following it to a conclusion, but the fact should, as a pimary conception, be fixed in the mind as a principle of ateam pover.

When we look at a steam engine there are certain impres. sions conveyed to the mind, and by these impressions wo are governed in a train of reflection that follows. We may conceive of the cylidder and its details as a complete machine with independent functions, or wo can conceivo of it as a mechanical device for transmitting force from the boiler, and these conceptions may be independent of, or "ven coritrary to, specific knowledge that we at the samu time possess; hence the mportance of starting with a correct idea of the boiler being, as we may say, the base of steam machinery.

As reading books of fiction sometimes expauds the mind, and enables it to grasp great practical truths, so may a sudy of theoretical principles enable us to comprehead the simple st forms of mechanism. Even Humboldt and Ag issiz resorted, it is said, to imaginative speculntions as a means of expandeng the mind.

In no other branch of machinery has so much research, and experiment been made during eighty years past as in steam machinery, and, strange to say, the greater part of this research has been directed to the details of engines, and yet there has been no improvemrnt made during the tume that has effected any considerable saving of heat or expense. The steam eugines of fifty years ago, considered as steam-using machines, utilised nearly the same proportion of the energy or power developed by the boiler as the most improved cugines of modern construction-a fact that in itself indicates that the engine is not the vital part of steam machinery There is not the least doubt that if the efforts to improve the steam engine had been mainly directed to economising heat andincreasing the evaporative power of boilers, much more would bave been accomplished. This remark. however, docs not apply to the present day, when the principles of steam power are well un lerstood, and when heat is recognised as the proper clement to deal with in attempts to economise in the cost of power.

There are, of course, various degrees of economy in steamusing es well as in steam.generating machinery, but so long as the best stesm machinery only utilises one-tenth or onetwelfth of the beat that is represented in the fuel burnch, it is desirable to point out whero improvements in such machirery should begin.

With these remarks as to steam power in general, I will proceed to consider, in a very brief way, the principles upon which steamengines operate. A cubse inch of water, by taking up a given amount of heat, is expanded to more than inn cuvic inches of steam at a pressure of 45 lb . to the square inch. This entraordinary expansion, if performed in a clove vessel, would exert a power 500 times as great as would be required to force the same quantity of water into the vessel against this expansive pressure; in other words, the volume of the water when put into the vessel would be but one fivehundredth part of its volume when it is allowed to esc:pe, nad this expansion, when confined in a steam boiler, exerts the force that wo term steam power. This expansive force or power is through the means of the engine communicated and applied to different kinds of work where force and moveuent are required. The water, like the engine and the boiler, is merely an agent though which the energy or power of heat is applicd.

This bringe nsagain to the original proposition that power is heat, and heat is fowcr, the two being convertible, and according to modern scienco, indestructibio; so that tho power, when used, must give ofl its mechanical cquivalent of heat, or heat waen applied, duvelop its equivalent in power. Li the whole amount of beat represented in the fuel used for a
steam engine could be utilised, the effect would be, as before stated, from ten to fifteen times as great as it is in actual practice, from which it must bo inferred that a steam engino after all is a very imperfect machine for utilising heat. This loss arises from the fact that the beat cannot be directly nor fully communicated to the water.

To store up and retain the water after it is expanded into steam, a strong vessel, which wo term a boiler, is required, and all the heat that is imparted to the water has to pass throush the plates of this boiler, which stand like a wall betwen the heat and its work.
To summarise, we have the following propositions relating to stiam machinery.

1. The steam engine is an agent for utilasing the power of heat ardapplying it to useful purposes.
2. The power of the heat is obtained by expanding waterin a confining vessel, and employing the force exerted by the pressure thus obtained.
3. The power obtained is as the difference of volume between the feed water when forced into the boiler, and the volume of the steam that is drawn from the boiler, or as the amount of heat taken up by the water.
4. The heat that may be utilised is what will pass through the plates of the boiler, and is rarely more than two-thirds of that which the fuel produces.
5. The boller is the main part, where the power is generat. ed, and the engine is but an agent for tiansmitting this power to the work to be performed.
6. Au engine even when well consfructed, utilises but a small proportion of the power due to the heat ransmitted from the boiler, while the best constructed builer, as said, can utilise a little over two-thirds of the heat represented in the fuel.
7. The losses of power in a steam engine arise from the heat carried off by the exhanst steam, from loss of heat by radiation, and the friction of the moving parts.

8 By condensing the steam before it leaves the engine, so that it is returned to the air as water, and of the same volume as when it entered the boiler, a gain is effected varying according to the perfection of the arrangements employed.

These propositions elating to steam engine, if rementered and studied by apprentices in connexiou with steam machinery will lead to a reasoning about the principles, as well as of the mecnamsm, and render the nature of steam power more casily understood. Engines operating by means of hot air, called caloric engines, aud engines operated by gas, or explosive substances, all operate substantially upon the samo general principles as the steam engine; the greatest distinction being between those engines wherein gencration of heat is by the combustion of fuel rud those wherein heat and expansion are produced by cheminslaction.

With the exception of caloric or air engines, h, wever, there is but a linited use of any but steam engines for mo ive power, and it may le safely assumed that the learner who bas mastered the gencral principles of the steam engine will find no great dificulty in analysing and understanding any similar machinery acting from crpansion due to heat, whether air, gas, or explosive agents be emploged. This uethod of treating the subject of motive engines will no duabt be presenting it in anew way, but it is mercly beginning at an unusual place, nothing more. And the learner who commences with first principles, instcad of pistons, valves, connexions, and bearings, will find in the end that he has not only adopted the true flan, but the shortest one to understanding steam a, d other expansive engines.

> (To be continued.)

Chloral hydrato is mado by passing chlorino gas into alcohot of about 96 deg. for about twelve to fourteen days, untilit attains 4 gravity of 41 deg. B. The product is then purified by misture wilh an equal volume of sulphuric acid and disilling, a large anount of hydrochloric acid being thus diven off. The chloral is then itself distilled off, the product is again rectified by distillation, water is auded to the distillate, and it is set assde to crystallise. As products. ethyleue and ethylidine chloides are produced, which aro purified by fractional distillation, and also used as anesthetics.

KESTERTON'S BOILER.

We illustrate, on page 72, a novel and very simplo form of steam boiler, designel and patented by Mr. H. Kesterton, and now being manufuctured by Messrs. Thomas Piggott and Co., of Birmingham. As will bir seen from our engravings, this boiler consists only of a number of plain cylindrical barrels, 2 ft . 4 in . in diameter insido and 24 ft . long, these barrels being usually mado with wetded longitudinal seams, althouris of course they may be made with a rivetted seam if preferred. These barrols are arranged, as shown, in groups of two each, the two tubes or barrels forming each group being placed one above the other, and being connected at six points in the manner shown by the enlarged section Fig. 4. From this view and Fig. 1 it will be seen that each tube has six holes cut in it, and that it is bulged or set outwards at each hole in such a manaer as to form a flat flanged surface capable of being united to the corresponding surface of the adjoining tube by an internal sivetted joint. The llanying, or rather bulging, of the tubes at the potats of junction is effeceed by hydraulic michinery, which enables the work to be pe inrmed readily and accurately; while the diameter of the tab $\quad i \mathrm{~s}$, as will be seen, sufficiently great to give perfect access f, performing the rivetting. The connection between the thbes is altogether very substantial, and as simple as could be desired.
The groups or pairs of tubes connected as wo have described, are placed side by side to form the boiler, our engravings showing a boiler composed of three such units. The firegrates are placed under the boiler at the front end, and the products of combustion pass along under the boiler, then returning to the front end between the upper and lower tubes, and fincily traversing the upper surface of the upper tubes on their way to the chimnoy.
As will be seen from lig. l, the nnits are set with an inclination downwards toward the back end, and at that end of eack of the lower tubes a mud collector is provided, these mud collectors-which also serve as supports for the boilerbeing connected by pipes furnished with a b.ow-off cock. The feed water is delivered into the boi'er at the froat end of the upper tubes as shown in Fig. 1. The steam is taken off at the highest point, at the front end of the upper tubes, the threo groups being there connected to a cast-iron cross pipe which forms the steam dome, and which carries the safety valve and stop valve as shown in Figs. 1 and 2. As shown by theso vieve, also, the setting is closed at the front end by cast-iron doors, on opening which access is at once obtained to the manholes provided at the front end of the tubes.

As we have already said, Mr. Kesterton's boiler is of very simple construction, while the nature of its parts gives great facifities for transport and subsequent erection. Its setting is also very simple, an 1 altogether we regard the arrangement as a very prominiog une, the performance of which in practice we shall watch with some interest.

The Eises of tak Scnglower.-Some careful experiments have been made at Baugalore, says the Gardener's Chroncle, during the past two years, in testing the value of the Sunflower, Helanithus annuus, as a cultivated plant. Colonel Boddem who has made these experiments, reports that the seed used has been imported Giant Russian seeds, which are double the size of ordidary conatry seed. Six pounds of these were sown in drills one yard apart, on August 29, 1873, and tho plants were harvested from December 20, 1873, to January 1, 1874. They were 7 to 8ft, in heisht, each beariog one large head; the largest of rix taken from a plot of average growth was 35 in. in circumference, weighed 31b. and contained 1875 secds. The others ranged from 29 to 25 in . in circumference, averaging about 1 lb . in weight, and varying from 1000 to 1400 seeds. The leaves were sun-dried and pounded, and realised about 500 lb . of dry fodder, which, when used mixed with meal, liran, \&ec., is very good food for milch cows; it will, moteoner, keep goud for a long time. The seed, after being husked, was converted into coarse m-al, which was pressed for the oil-50 seers (about 10016. avoir.) of the meal yiclding three gallons of oil and 351b. of oil-cake. Colonel Boddam, says that the ompty seed heads and stalks make fine fucl, which subsequently yields 10 cwi of ashes very rich in potash, excellent manare for coffee and tobacco.

'vigs nvoigat man ghil

Mechanics' Magazine.

MONTREAI, JUNE, 1874.

Ihidutrations :
The new Grand Opera Honse, Toronto......... 0
Wire-rope tug for Canal Navlgation............... 6
Improved UnIvorsal
Pump 68
Festerton's steam boller 72
Torpelo Experiments... 72
proposed court Houso ${ }^{\circ}$ and Clty Hall, Chicago 78
The new African Sea.... 77
French instruments for observing the trausit of vepus. \qquad 80
Statuo of Jacques Cartier..................... 81
Bernard's thermo. motor............... 84 Drill.grind!ng Machine.. 84 Horizontal eagine with Raduger's yalve gear 88 Horizontal engine with Radinger's valve gear 89 Twenty-feet loom for weaving fell............... 02
Twenty.feet loom for weaving felt.............. 93
Automatlo steam treextingulsuer.............. 96

Contents:
The new Grand Opera House, Toronto......... 60
Wire.rope tow ling on Canals

Improved Unlversal
Pump.......................... 70
Torpedo experiments............... 70 Glass wool for nltering..... 71 Principles of abop manputation for enginecring
approntices...................
Kesterton's boller............. 75
The use of the smintower.. 75
The new Arrican sea........ 78 Spontaneous combustion 78 The Engllsh Cbannel
Tunnel........................
French iestruments for observing the trausit of Venus.
The thee-lock.................. 79
Statue or Jacques-Cartier. 81
Proposed Cliy Hall, Chit.
cago.
81
A new motor 81
Dril-grindlug macline....... 82 Phosphor - brouzo axte. bearlags 82
On Mortar
Sclentide News.......... Horlzoutal engine with
Radinger's valve gear .. 88
Gluo 90
Dominion \qquad
Rallway mattors............ 01 Trenty-feet 100 m for weaving felt................ 02 Automatic steam are-oxtiogulsber 93 Miscellanea.

THE NEW AFRICAN SEA.

The active mind of the French people seems to require continually sometbing grand orimmense, on which to expend its superabundant force. This holds good, seemingly, in mechinical matters as well as in certain other respects. No sooner is the Sucz canal an accomplished fact than other almost equally great projects are mooted and engaged in with avidity. The last of these projects is that of the formation of a vast inland sea in the northern part of Afiica. To the south of Tunis and Algeria there are in the desert great lagoons or chotts, as they are called, the beds of which are onc hundred fect and more below the surface of the Mediterranean. A glance at the French map wo reproduce on page 77 will show the extent and position of these basins. It will be seen that they extend eastwards to within 12 miles of the coast of T'unis, at the Gulf of Gabes. At this point it is proposed to admit the waters of the Mediterranean, which would flow in and form an inland sea of a depth of about 150 feet in its deepest parts. There seems to be little question of the practicalility of this echeme, in the carrying out of which the experience in the Suez canal operations will be of great service. The cost of the whole work, including cepal, dykes picre, harlours and the expropriation of certain sases is estimated at aboat four million dollars. The money for the preliminary surveys has aiready been gra:ted and operations will begin at once. The adrantages to be derived from the creation of the sea will mainly cos :ist, at first, of moro uninterrupted intercourse with the fruitful parts of the interior,
and the introduction of civilization and commerce into the heart of Africa. In the second plaze it is expected that the phenomenon which foltowed the opening of the Suez canal-the formation of clouds and a rainfall hitherto unxnown-will also be experionced in this case, and that thus the extent of cultivable land in Tonis and Algeria will be continually ex. tended and the climate improved in a corresponding degree. Such are some of the results anticipated. On the other hand there are not wanting those who predict failure and all kinds of curious results. It has been predicted, among other mischiefs, that such an inland sea, would putan end to the hot winds from Africa by which the Swiss glaciers are melted, and hence that Switzerland would return to the Arctic condition of the great ice age. Then, too, it has been said, with more show of reason, that this sea will expose a vast surface of evaporation to the sun's rays; and that as the loss of water can only be replaced by the sea through the canal, the ond of the whole operation will be the formation of a thick crust of salt at the bottom, whereby all navigation will be stopped in a short time, and millions will have been spent to create a gigantic salt pit, and nothing more. It iq, however extremely likely that the project will be at once carried into operation; and if as may fairly be expected, rain and vegetation follow, streams of iresh water will flow in from a fruitful country around and thus remove the most cogent argament against the success of the scheme.

SPONTANEOUS COMBUSTION.

Every summer during the hottest periods there occur a number of conflagrations the origin of which is involved in mystery, but which is generally connected in some way or other in our minds with the atmospheric heat. A writer in a recent number of an Englivh scientific paper ascribes the occurrence of many of these fires to spontancous combustion. That this is really the cause is rendered more probable by the fact that these conflagrations occur for the most part in mills aud in such places as contain quantities of matter containing a certain amount of grease, as in the case of steamboats carrying bales of wool, of dirty rags, \&c.

In the Report of the British Association meeting of 1873 is a paper, which was read by Mir. Galletly, detailing a series of experiments which he had carried out for the purpose of ascertaining the heating action of various oils when present in cotton waste. According to his results, spontancous combustion took place in cotton waste, soaked with olive oil, when submitted to a temperature of about 120 deg. to 130 deg . Fahr., in the course of a six bours' experiment. The Government inspector, Major Majendie, remarked recently on these experiments that "these facts illustrate the grave and urgent character of the risk which exists when oiled cotton waste is deposited, even in very small quantities, and for a very short time, in moderately elevated temperatures-such temperatures as exist in the majority of factories, in the neighbourhood of a steam pipe, or under exposure to the sun's rays."
The subject, however, does not seem to be very thoroughly understood as yet, cases existing of the continual transport of hundreds of tons of oil saaked cotton during the past 30 years without the slightest symptom of heating, except in the case of their becoming damped by rain, in which case the cotton has frequently to be unpacked end exposed to the air to cool down. Constant ventilation by frequent turning seems to be the only reliable remedy where substances of this nature are concerned.

A singular cause of fire may be traced to the glass of which the windows of warehouses is made. In the old-fashioned kind the "punty" mark is found. This forms a couble convex lens, which, concentrating the rays of the sun, constitutes a burning glass. 'That fire should occur from such causes can be no matter of surprise. Water bottles exposed to the sun's rays have sometimes similarly caused fires in private houses by concentrating the heat rays on dressing-table covers, \&c.

THE ENGLISH CHANNEL TUNNEL.

I'bis great undertaking which has, for so many years, been looked upon alternately as chimerical and as about to be accomplished, again shows symptoms of vitality. The moving spirit, on the present occasion, is M. Lavalley, an engineer intimately connected with the success of the Suez Canal. Supporting bim are such men as Messrs. Michel Chevalier, Leon Say, Rothschild and others. The interested parties are ready to undertake the work on their own responsibility; they will be content with a concession of thirty years instead of the customary ninety-nine and are prepared to expend a large sum on preliminary investigations. The work will bea tunnel proper the cost of which is estimated at le 8 than $£ 10,000,000$ by the French engineers and at almost double that by the English. It is suggested that the work should be done partly by France and partly by England, and that to induce the two countries to press on this undertaking energetically there should be a bonus for the one which worls the fastest. The $4,000,000$ francs forming the preliminary capital are nearly all, it is said, sub. scribed. The Fresch Railway du Nord will advance $1,000,000$ francs, and Baron Rothschild 500,000 francs. It is hoped that Baron Lionel de Rothschild will subscribe the sambsum. Mr. Ferdinand Duval offers 50,000 francs for the City of Paris; MM. Leon Say, Chevalier, and Lavalley are each engaged to supply 25,000 francs.
The im nense and constantly increasing trade and passenger traffic between England and the continent bas long demanded improved facilities. These are now about to be afforded to some extent by the now channel steamers of Bessemer and Dicey, but even these will hardly satisfy the present age and there seems but little doubt but that the channel will be ac. tually bound with rails of iron in the present decade.
One of the most ingenious plans ever suggested for carrying a railway from England to France was that brought forward some ten years ago by Mr. Chalmers, a citizen of Montreal. He proposed to construct a huge circular tabe of iron somewhat analogous to the tabes of the Vietoria Bridge. The tube was to be built in sections and these floated out to their destinations as completed, sunk and joined together under water. The whole tube was to bo carefully braced chroughout and would afford a double track. The main difficulty, in a practical point of view, w s the ventilation. To effect this it was proposed to build three towers is the channel, one from the centre of tho tube and two others at equal distances from the centre to either shoro. The towers were to act es Ve iting shafts, constant fircs bcing kept op at the base of cach. Mir. Chalmers went to England and France and personally and energetically advocated his scleme; but the amount of capital demanded, some £ $40,000,000$ deterred capitalists from risking the enterprise. The probable expense and risk, hovever, grow less, now, year by year as experience is gained in other great engineering works. The profits too, in case of success would be so very great that the temptation to embark in this enterprize is by no means small. A carefal estimate made, at the time of the

Chalmers schemes, on the then oxisting rate of trafic showed that 12 per cent might safoly be expected on the enormous capital demanded. The trafic has since greatly increased and if the work can bo doue now for $£ 20,000,000$ there seems to be no resson why it should not be sut about at once.

The Freach arrangements for observing the rapidly ap. proaching transit are stated to bo of a very perfect nature. The instruments furnished are at least equal, in power, accuracy, and case of manipulation to those of the best equipped contestants in this scientific struggle and the French press expresses its unbounded confidence in theability of their practical astronomers. The pavilion and instruments represented on page 80 are those intended for Yokohama. Similar apparatus will be sent to the other five stations occupied by the French observers.

THE TIME LOCK.

This is a new double chronometer bank lock attachment, comprising two independent clock movements These clock movements control a bolt in such a manner that it is released at any particular time, ranging from one to forty-eight hours, previons to which the safo cannot be opened. Tho two movements are employed in order that one should prove effective in case the other should stop, it being very improbable that two movements of this character should both stop during the interval from the locking of the safe to the time desired for opening it, and to which the movements have been set upon leaving the safe. When the time has arrived for opening the safe the bolt is released. The safe may then be opened at any time until the movements are again set. The attachment is not designed to be used by itself, but in connection with other locks. It is placed on the inside of any vault or safe door already in use, without making a hole through the sime, or disturbing the other locks or bolt work, a vacant space of 10 inches wide by 6 inches, and $1 \frac{1}{2}$ inches in height being all that is required for its attachments.

It is evident that this attachment is proof against picklocks, as, even if the lock should be picked, punched, or blown off by explosive compounds, the attachment, which is distinct and independent of the lock, still remains aud keeps the bolls of the door secere until the hour for openiog arrives. Thero have, of late, been several cases recorded where the cashier or custodian of funds has been seized by masked burglars, and compelled, through icar of his life, to relinquish the kry, or reveal the combination upon which the safe has been previously locked. By this means some extensive robberies have been perpetrated. With such an attachment as this in use, such robberies would be absolutely impossible, as the knowledge of the combination would not arail to open the safe, the cashier himself being unable to upen it until the proper time. Robbeties have been perpetrated also by surreptitiously obtaining combinations, several cases of this kind having occurred of late. It would seem, therefore, that this lock is an absolute guarantee of the impossibility of opening a safe either by inside or outside partics, except at the proper time and under the proper surroundinge.

The manufacturer, Messrs. Sargent and Greenleaf, of Rochester, New York State, claim that it affords a perfect and thoroughly reliable protection sgainst burglary of any description, when it is attached to an otherwise barglar-pro if safe or vanit. A catch controls the combination. Two wheels actuate it at the proper time, being numbered from zero up to 48 in two-hour divisiong. Inderes at the top of these whecls guide the setting, which consists simply in placing them so that the number of hours which shall clapse from the time of closing the safe to its opening shall be indicated by the figures under the pointers. In one of the arms of each of these wheels is fixed a pin, which, at the proper time, engages a tappel arm whicis nrojects horizontally froni the pivoted catch.

The practical character and the efficiency of this device, says an American contemporary, secm so apparent as to excite wonder that it has not sooner been applied and generally adopted.

french instruments for observing the transit of venus.

STATUE OF JACQUES-OARTIBE.

This handsome statue has been offered by the sculptor, M. pochet, of Paris, to the Corporation of 3iontreal, on the condition that the city should pay the cost of casting and the artist's travelling expenses-in all about $\$ 5,000$. The offer is not under consideration by the Road Committec. The statue is to be of bronzo, and will measuro twelve feet in height. Soven years ago M Rochet, who is, we understand, a descendent of Jacques Cartier, mado the same offer to the corporation, but it was declined.

PROPOSED CITY HALL, CHICAGO.

Another destructive fire has brought Chicago again under notice, but if they burn down there they also build up. Tho amount of building that has been done there within tho last two years is almost past belief, and new buildings are still everja here in progres. In 1873 designs for a new court-house and city hall were submitted in competition, and we were led to illustrate one oi them as the most approved design which in reality was not so. The design actually selected for execu. tion we illustrate in our present number. It was designed by Mr. Thomas Tilley, architect.

Mr Tilley designates the form presented by his plan as that of a "Compound Greek Cross " The whole square, bounded by Randolph-street on the north, Washington-street on the south, La Salle-strect on the west, and Clark strict on the eart, will be occapied, the winga belog at tight anglos frum each arm of the figare. In the elevation two urders of architecture are presented from basement to second story, th.c Ruman-Duric, and above the Cumposite Tue columas in eatitase aie two stories in height, will firting curbsers.
 apon the corners. The entraicies are fuar in namier, bituated
 ting in a portico sustained 'y sisteen columas of the compusito order. A hall-way leads directly to the great rotuuda which is a featore in the plan. The crown of the dome will te 275 ft from the ground, and an anbroken view can be bad from the rotunds. In the dome will be an illominated clock, and crowning the dome will be the watch-tower and fire-bell, in a position to be usefal in the whole city. Opon each wing will be placed a smaller dome of iron, to relicve the sameness whin wuald otherwise be noticeable. The public hall will be in the third atory and 64 ft . by 150 ft . in size, surmounted with a wade gallery. The shape and size of the building yreclude th- possibility of a courtyard, and light is given to the various offices, halls, corridor, and rooms by the diagonal forin of the ballding The vaults are ranged around the rotunda, and are easily accessille. The details of the building are carefully claboratel. The architect recommends the use of limestune, sandstone, irun, and such other materials as are fireproof.

A NEW MOTOR.

According to the laws of the mechanical theory of heat, any difference of heat may be employed for production of mecbanical work. If a cold body, then, be situated in air that is hotter, the passage of heat to it should be capable of giving mechanical work. The soiution of this problem (eays the English Mechanic) M. Enrico Bernardi, an Italian physicist, has recently sought to realise in the following way

Two similar giass balls are connected wignther by a thin glass tube, the ends of the tube passing intu the balls buiLg bent at a right angle. Ono ball contains a small tube, by Fhich ether can be poared into the apparatus, the ethor is broight to boilizs, and, when all air has bernexpelled, this small tube is closed by fusias. The quantity of ether inclosed in the system should be such as to fill about three fourths of one ball At the middle of the connecting tube is fixed a plece through which passes a metallic axis, round which the system can turn. When the ether is equally divided between the two balls, the apparatus is io unstable equilibrium. The bearings for the sxis are supported on the cover of a rectangolar case, and in thid cover io a slit throukh which the turning systom passes. The case is filled with water, into which the balls dip alternately on their being turned round the axis. Each ball is covered with a very fine veil. It is easy to seo that this apparatus will take a see-saw setion.

Owing to the unsialife "quilibrinm of the system, one of the balls, Δ, siake, and all the ether flows into it, while the rest of the space id tilled with tho vapor. The ball, $\Lambda_{\text {, }}$ is then in water, the ball, B, in air. Heruupon the molsture on the sarfare of B begius tu cvaporate, aud the ball to 80 cooled that the vaper within condenses, frum the ball, A, wore ether is ovapirrated, and it is cundensui in B, till at length B contains more ather than A, aud sinke, whilu A rises; and the sane prorers is repeated. 'Thlo seu-san motion lasts as long as there is water in the case to mulston the surface of the under ball

It would bo rather troublesome to utilize this thermo-motor see-saw mechanically; and Br. Bernardi has, therefore, preferred to alter the apparatus in the following way: The two balls of tho abuve desuribed system aro connected by a tubn, the onds of which aro bent round (at right angles) to oppinsite sides Thricu buch aystems are formed into a sort of wheel, the midulo points of the wix balls and the tube being in onr planu. This wheol 18 supported at its axis, on the cover of a rutangular case, in such a way that, in its rolation, it is always half within the case and half in the air The bails are cur ored as buforo, and so much water is poured into the case that, in turning the wheel, one ball is alvays immersed. By giving the wheel a turn, it can be set in continuous rotation, and, with a sultable arrangement of pulleys, it can be mado to ralse a weigh, or do othor work.

Such a thermo-motor wheol has, for two monthe, been working a clock in Mr. Buraardis loboratory. The balls have a diameter of 078 inch, the distance of the middle points of two oppnsite linlly is 3.1 laches, and the quantity of ether in each system fills thrue fruithe of a ball. The clock maintained in motion by this wheel consumes, in 24 hours, 02 of a foot pound. The water iovel is, by a special arrangement, kept constant. Mr. Bernardi has had his see-saw working for three months without its becoming necessary to renew the water or clean the balls. He has calculated the quantity of heat which is removed by this apparatus from the surroundings. There was an average of 60 sec-saw motions in 24 hours This was found to be equal to 0.12 of a foot pound, or about half the wurk consumed in the eame time by the clock.

DRILL.GRINDING MACHINE.

Wo illustrato on pages $84 \& 85$, from Engmeering, a very handy little marhine designed and constructed by Messes. Wiliam Sellers and Co, of Philadolphia, and which deserves to be widely known and used. The machine in question is one for grinding drills, and to obtain the best results from it, should be placed in the charge of a man whose duty it should be to grind the drills for all the drilling machines in the establishment, the men in charge of these machines returning the drills to the grinder whon worn, and receiving sharpened ones in exchange. The machine is so simple that but a very brief description of it will be necessary.

It consists, as will be seen, of a bed or frame carrying a spindle provided with fast and loose pulleys and driven at a speed of atout 500 revolutions per minute, there also being on this spindle a larger pulley from which a gut driving band passes to a groved pulley on a smaller spindio, carrying an emery wheel, as shown in Figs. 1 and 2. This last-mentioned spindle is capable of beiug moved longitudinally by means of the small handlo shown and when thus shifted the emery wheel passes over the edge of the drill to be ground. The spindle on which the emery wheel is mounted is, as will be seen, carried by an arm which is hinged on the main spindle, and which can be raised or lowored by means of a screw, so as to feed the emery whed up to its work as wear of the wheel tatses place.
As will bo seen from Figs. 1 and 3, drill to be ground is held at its shank end by a chuck similar to that in which it Would be hold in the drilling maohino, while its cutting end is secured between jaws which are brought together by a right and left-handed screw, and which support it close to the edges operated on by the emery wheol. It will bo seen from Fig. 3 that the drill is hold in such a position as to insare the cutting edges or lips being cut to a uniform and proper angle. In our engravings a twist drill is shown as being ground, but the machine can griad fly drills equally well. Altogether the tool is very neatly dosigned, and is, as we have said, a very useful one, and daserves to be widoly used.

PHOSPHOR-BRONZE AXLE BEABINGS.

When two bodles are rubbed against each othor (under equal pressure, and at equal veloolty), the harder they are, the greator is the amount of hoat genorated, or on the other hand, the greater the differonce of hardness botween tho two bodies rubbed against each othor, tho less is the heat produced. In the latter case the harder body is more heated than the softer. If of equal size If, for instanco, glass is rubbed againest cuik, the heating is as 7 to 1 (the copper being heated soven times hotter than the corls); if copper is rubbed against cork, as 4 to 1.

The ideal of a bearing which would wear little would ve one made of tho same material as the aslo revoiving in it, if there lad not to be taken into consideration the wearing of the axle itsolf and the heating Δ bearing made of the softest matertal, in which an aylo of the hardest material revolves, would be the ideal of a bearing which does not heat, and does not cat the axle, if the wear of the bearing, and deformation by pres. sure, ote., had not to be taken into cousideration.

In practice the best medium must bo found which

1. Does not cut the axle.
2. Wears (in itself) as littlo as possible, and consequontly requires a minimum of lubrication.
3. Does rot heat, even in caso lubrication should be neglected.
4. Is capable of resisting any possible shock withoutchanging its form, or breaking.
Some railway companies desire to use few bearinge, at the expense of many axles and much lubricant-(the consump. tion of lubricant is always in proportion to tho wear of tho axle on the bearing-and therofore use bearings containing from 17 to 20 per cent of tin and 93 to 80 per cent of copper, which alloy, undoubtedly, is too hard, and must attack the axle, as has been shown on many railways. Other ralway companies use alloys of lead with more or less antimony, which certainly do not attack the axles, but require much lubricant, and wear out vony fast. A great number of railway compan. ies in Germany take refuge in the so-called white metal, which, if of proper composition, appears cheap, but in the long run certainly is the most eypeusivo. The alloys of copper, antimony, and tin, or so-called white metal, are bad makeshifts, as woll as the so-called load composition bearings of lead and antimony; for it is impossible to give these alloys a hardness approaching that of the revolving aslo without rendering them brittle If an alloy is used sufficiently hard to avoid great wear, these bearings will heat much and are very brittle.

On most of the English, Belgian, German, French, and particularly on American railroads, white metal, and especially lead composition, bearings are little used, and this with good reason ; for what would become, for instance, of a white metal bearing on an American railroad, where the bearings are subjected not only to heavy loads, but where they have to travel thousands of miles on mils belonging to other companies, and therefore are not much looked after.
Gun metal bearings, alloys of tin and copper, are not often homogencous, with exception of the alloy of 17 to 18 per cent of copper, which is the most trustworthy alloy of tin and copper. In alloys containing a lower percontage of tin, the latter segregates in the form of un spots, when the alloy oools slowly All other compositions in use for bearings, such as 12 to 17 per cent of tin and 88 to 83 per cent of copper, do not make bomogencous beatings, unless they are cast in chall molds, which in practice is impossible. This heterogeneity of gun metal bearings is dangerous, as it produces gripping, and thereby a rapid wear This specific quality of gua metal bearings (to grip) is theoretically easily explained: In coolng, the softer metal (composed of from 7 to 10 per cent of tin and 93 to 90 per cent of copper), being the less fusible, sets first, forming the skeleton of the bearing, later, the very hard and brittle alloy, containing 17 to 18 , per cent of $t_{1 n}$ and 83 to 82 per cent of copper, sets and fills the pores of the softer skeleton. The particles of the harder alloy are casily torn away by the axle if the berring is not sufficiently lubricated, and these tear the skeleton composed of the softer alloy; this I have frequently observed at rolling mills where the beanngs were not sufficiently lubricated, and where particles in the form of small flakes peel off.

A good bearing which answers all purposes must not bo homogencous, but must consist of a strong sad tough skeleton, the hardness of which nearly equals that of the axle, in order
to resist shocks without deformation, and the pores of this skeleten must be filled with the soft metal or alloy.
The a arer the hardness of the skeluton approaches the hardness of the axle, the better the bearing will resigt the peecsure of sho hos, and the sufter the metal slling the pures, the better the bearing is in very respect. Suuh bearinge are now made by melting two o more allogs of different hardness and fusilility twethur, in such propurtivind that ne eessarily a seyaration into two alloys of definite composition takes place in cooling.
Phosphor-bronze bearinge consist of a uniform skeleton ot very 'Jugh fhys, hur-broner, the hardness of which may be
ceasily regulated to tqual the hardness of tho axle, while the casily regulated to equal the hardness of tho axle, while the wni: are filled with a soft alloy of lead and tin.
Su li a phosp,hur-bronzu bearing may therefure be considered as having its wouring surface compused of a great number of small berrings of gory suft metal encased in the tough a, id strung metal which equals the hardness of the uxle, on the planed bearing surface this mulecular diepusition cannot be detectul by the naked cye, but, if examined with a magnifying glass, tho truth of the above will at once be seen. Another practical proof can be given by exposing such bearings to a dull red heat, when the soft alloy will sweat out, and the hard, spongy, skeleton-like mass remains.
In this consist the great advantages of phosphor-bronze bearichs, which is proved wherever tested, fur while the axle partly runs on a very soft metal and thus obviates heating, tven if not sufficiently lubriated, the barder part of the bearilut, its akeleton, does not allow of wear taking place, and as thi hardness is arranged to equal the hardness of the axlo, wear is rednced to its very minimum.

on mortar.-

By Mr. Gragan Smita.

In buildings and structures murtar is employed as the agent for causing the stones, bricke, and other materials used in construction to adhere together, also to fill any crevices and irregularities in bedding them. Its use for these purposes is of the remotest antiquity, we read of slime being used in building the Tower of Babel, and asphate in the construction of the walls of Babylon, and it is found from an analysis of mortar taken from the pyramids of Cheops that the Exy ptians emploged lime and sand almost in exsctly the same proportions that ne now do, and even the careful directions given by Vitruvius in the fifteenth century were carried out until the more modern researches of Vicat.
The remarks in this paper will be confined to the treatment of mortar formed by the admixture of lime with sand and other ingredients, and as it is the author's opinion that a few facts obtainnd from actual practice are of much more value than any number of individual opinions which be might offer, he will, by the kind permission of Mr. George Fosbery Lynter memher of the In titution, and Eugineer-in-Chief to the Merseg Docks and Harbour Board -endeavour to base this paper on data nbtained whilst studying the methud carred out by that gentleman at Liverpool.
The limestone, wLich has been here employed for the past forty years in carrying out the most extensive hydraulic works, is obtained From quarries situate in the Galkin Mountaius, Flint-hire, and is that ordinarily used in Lancas ire, Cheshire, the West of Eugland, and Wales.
It is fruund by an analysis by Dr. Musprat of Liverpool to be romposed of 75 pr. cent. ofvesubstances solutle in nitric and hydrochloric acids, and 25 per cent. of thove insoluble. The soluble sub tances are :-Carbonate of lime. 720 per cent., carbonate of magnesia, 13 per cent., proto-carbonate of iron, 3 n per cent, sulphide of iron, 10 per cent., alkalies, ${ }^{2} 7$ per
rant
Those inscluble are :mina 3.5 per cent.; sesquioxide of iron, \&c., 11 per cent. , water and carbonaceous matter, 04 per cent.
The limestone, in order to expel carlonic acid, is calcined
 the fircbars, which dimensions give a capacity of 3,400 cubic fert The intrrior is lined with firebri ks, and the usual dome top is here dispensed with; three su'. Kilns are built into one rectanyular c. nstruction of rubble work, each of which is pro-
vided with vided with a hoist for the purpose of lifting the limestone and

[^1]fuel to the summit of the structure when filling the kiln. The charging is done in the followids manner.-A few shavings are placed on the fire-bars, uyun which is spread a lager of coke about 6 in. in thickues, limest , ne is then thrown in unth a thickness of 1 ft . iuin. or 2 ft . Is attuined. This is followed by another layer of coke, and so on alternate layers of coke and stone until the top of the kiln is reac.ied, the lagers of atono gradually increasiog in thickness to 2t. 6in. at the top, with the exception of the uppermost, which, oving to its being exposed to the atmugphere, is made only 9il or 12as. When completely charged, the shaviugs are lighted and tho whole allowed to burn fur six or asven days, as uxperience asay dreect, after which time not a trace of the coke is perceptibie. Tise fire-bars are then withdrawn and the burnt lime raked out of the aperture thus formed un to the floor of an aidjuining shed, where it is slaked with water, and produces a hme of moderate whitences, after which, owing to the irregular sixo of the stones ,ut into the kiln, it is occusionally found that some of the stones are not sutticiently burnt. When this happens they are picked out and reburat, but by care in haviag the stones reduced to about the same size in the first instance this is of seldom occurrence.
In burning lime care must always be taken not̂to reach too high a temperature, as, ovirg to tho fluxing properties of the lime, the silica and alumina would combine and form a spenies of glass. The stone, should also bo broken to a cumparatively small size, in order that the heat may more readlly penetrate to their interior, and thus effect a saving in fuel. The amount of limestone gut intw the kiln is 113 tons of 1930 busbells.and the requisits amuunt of coke is $14 \frac{1}{2}$ tons. This produces 75 tons or 1170 bushels of burnt lime, which, with $16 \frac{1}{2}$ tons of water necessary to elake this quantity, yields 98 tons of slaked lime or 3411 bushels. From these quantities it will be seen that the slaked lime has nearly three times the volume of the burnt lime which produced it, and that its weight is nearly 9 per cent. more than that of the burnt lime and water together. Limestoaes, when calcined, produce rich hames, hydraulic limes, and cements. liach hrmes are produced fiom stones consisting almost wholly of carbonate of lime, such as chalk. They slake freely, and during this prociss augment from two and a balf to three and a half times in volume. These harden sl. whly in air and not at all in watir, and the mortar furmed frum them is liable to be affected by changes in the atausphrfo. Hydranlic hme is oltalued from stunes contanngy 15 yer celt to 30 per cent. of silicates and simetimes magne. 1a These do not slake frecly, kive off hittle heat, and will harden slowly uader water. Son.e stunes, contaniug 40 per cent to 60 per cent. of silicates, produce cements which do not slake, but which, when ground and mixed with water, will set 12 alis or water in a few minutes. Thu ogesecy to which mortars owe tha 15 power of setting is not generally understood, but it is commonly considered that this action in rich hames is due to the evaporation of water and the gradual absorption of carbonic acıd from the atmosphere, thus torming a cryetallised carbonate of lime. In hydraulic limes it is believed that the setting takes place from a chemical uniun of the lime with the silica and alamaa, thus forming an inooluble crystallised double silicate, without which mortars, placed in positions where air cannot penetrate, would never harden. The author therefore considers that the quantity of carbusic acid gas in the atmosphere being limited will to tom. extent account for the slow setting of rich limes, and as the atmosphere cannot pen trate to a great extent into thick walls and masses of concrete, it would be unadvisable to use fur these purpuses augthing bit hydraulic limes or cement, tor the hardening of which the influence of the atmosphere is comparatively un.mportant Frum the analysis of the Halkin limestoue, it will be seen that the components producing s -tting and indurating under water exist to the extent of 25 per cent, and being evealy distributed through its entire mazs, produce a mortar most favourable to the formation of an insoluble crystallised dooble silicate. To cbtain good mortar, as much depends on the character of the ingredients and the manner of mixing them as on the goudness of the lime itself. It does not necescarily follow tbat because a lime is good that the yua ity of the mortar will be good also. The best lime tver burat would be spoilt by the custom common among some builders-to mix with it alluvial soil and rabbish taken from the foundation pits ot intended buildings. The card should be hard, eharp, gritty, and, for engineering paryoses, not too fine; It should be perfectly free from all organic matter, and with no particular smell. Good sand for mortar may be rubled

between the hands without soiling them. Tho water should also be free from all orgnnic matter, and on this accouni should nov.r be taken from stagnaut ponds. The presence of salt in sand and water is not found to impair the ultimate strengin of mnst martars, nevertheless it cnuses the work to "nitrate," or, as it is commonly termed, "salpetre," which consists of white frothy blotches appearing on the fuce of the structure It also renders the mortar linble to mosture, and for these reasons should never be present in mortar intonded for architectural purposes, altbough fir dork walls and sea works it may generally be used with advantage and ecunomy.

Sand is used to iucrease the resistanes of mortar 'o crushing, to lessen the amount of shrinking, and to reduce the bulk of the more costly material, lime Water is the agent by which a combination is effected, and, as sand dnes not increase in volume by moisture, it necessarily follows that no more of the aqueous element should be employed than ia absolutely neceesary to fill the interitices between the sand, and render the whole into a paste convenient for use, and the greater strictness with which this is adhered to the more compact and durable will be the mortar The moltar made from the Hal. kin lime is mostly employed on the Mersey Dock Ertate in the construction of duck a, d river walls, for which purposes it is always mixed with salt and water and reasand. Tho limp within one to four days after being slaked, is taken to the mc tar mills, which are cast inon circular pans 7 ft . in diameter caused to revolve by suitable spur gearing at the rate of twenty revolutions a minute. In each pan aro placed two rolling stones 4ft cin. in diamter. There are fourteen such mills to ea. h set of three kilns, which are driven by an engine of 60 indicated Lorse-fower, and it is generally calculnt d that one mill requites $3 \frac{1}{2}$-iorse power to work ft , as the mills are selthem all working at the ame time. The engine before mentioned is fuand adequate to drive the m lls, lift the stone and fuel 10 the top of th. kilas, end to pump from an adjacent to k the required quantity of water for mixing the mortar. The pans of the mills ar. provided with false bottoms, in order that they may be ruplaced when worn out, the average hfe of these being abnut three moutbs. In mixing the mortar the lime is first ground in the mills in a dry state for three minutes, and the sand is then added, and after five mautes from the commrncement the water is turned on, and as the necessary quantity is gauzed by the tap, it is allowed to run the whole time, which, for the ordinary mortar, is about thirty minutes; the quantity made at each mill in this time is a quarter of a cubic vard. In some cascs the amotut is actually masmed in order to asceriain if the men are making their full quanity. One mau has to carry from an adjoining shed sufficient lime, sand, and ashes to make five cubic pards of mortar in g day, for which he is paid 3s. 6d. The ordinary mortar used in the construction of rubble masonry for dock walls is mixed by volume in the following proportions :-One part slaked lime, two parts sand, and one third of a part smithy ashes. And the proportions for that used in brickwork are: One alaked lime, une sand, and one arithy ashes. For the sake of convenience, in laying before you the experimental results obtained by these compositions, the author will term them respectively " masons murtar "and bricklayers' mortar" in practice the ingredients are not measured, as it is found that three average spades of lime, sand, or ashes are equivalent to one bushcl. The mode of testing pursued was as follows. Bricks, the quality of which will be described in each individual case, were accurately cut to $4 \frac{1}{2} \mathrm{in}$. in width; these were in all cases thorougbly wetted, and bedded crossways, with a mortar joint 5-16in. thack and 4 itin. by 471 n , giving a testing area of 18 square inches. On the same arriving for testing, which, unless otherwise mention rd, was in every instance 168 days, or six lunar months, stirrups were passed round the ends of the bricke, two of these were attached to a beam, and on the remaining two was hung a bucket, into which perfectly dry sand was allowed to run from a hopper, the door of uhich was immediately closed when the joint parted; the buckel and sand were then welghed, and this was taken to be the breaking weight of the spectmen. In order to ascertain the difference which would exisin practice from the employment of bricks of various texture, two qualities wrere experimented upon, namely, common bricks, similar although slightIy harder than those known about London as "ordinary stockr," and fire-bricks, very hard and much the same as Stafffurdshire llue brichs. The "masons' mottar," with common
brickg, broke with 4961b, with fire-bricks 4331b. The " brick. lagers' mortar," with common bricke, 640 lb ., with fire-bricka, 516 lb . These aro the average results of three experiments in each instance, from which it would appear that soft pornis bricks are preferable for work sulyected in any way to a tensile strain. It boing the author's itnpresion that mortar when used in a structure would bear a greater test, owing to the compression caused by the weight of the superincumbent mass, some resulte were obtained by aubjorting the samples, twentyfour bours after being bedded, to a pr"gsure of 56 lb , and fullowing this up with an additional belb every day until 4 cwt . was placed upon each The "mnsnng' mertar" under these conditions, with common bricks, honke witl, 9831 b ., with firebricks, 40316. Th" " brinklayera' mnrtar," with common bricks, 3721 b , ; with firebricks, 4231 b There are not average result, ono experiment only having been made with each. The first instance is the only case in which the nuthor's theory holds good, the remaining three cases boing considerably below the respective averages of $433,6101 \mathrm{~b}$ before mentioned This may be accounted for, as the author fears that in placing on the weights the m retar was disturbed after having partially set, in which case it will never biad together a second time In the case of mortar remixed with water six day> after the firnt nix. ing, it was found that with common bricks the "masons' mor. tar' broke with 4321b, against 4901b. obtained with the same mortar when first mixed; the "bricklayers' mortar" broke with 440lb. against 6101 b ., the advantage is thus shown of using mortar when first mixed
The importance of the admixture of ashes with mortar to be atmospherically dried will be shown by tho following re-sults:-The bricklayers' mortar with common bricks after a lapse of 84 days broke with 570 lb ; where sand was substituted in the place of asbes, that is, when the proportions were one slaked lime, two sand, and no ashes, it only required 257 lb to tear asunder the bricks. These are the averages of three experiments. This is, no doubt, attributable to the ashes being porous; they thus allow greater facilities for the absorption of carbonic acid from the atmosphero. By testang wath a machell's lever cement trsting machine, one of which is now before you, brickettes having a testing section of $1 \frac{1}{2}$ by $11=225$ square inches, the average result of three experiments was found to be 2481b, which will compare rery favourably with the results obtained by Mr Grant with Portland cement mixed in the proportion of three of sand to one of cement, which broke with an average of 2701 l . From the foregoing it will be seen that nothing like these high results can be depended upon in actual practice, as the maximum breaking weight with bracks and mortar was 7801b, or 4331 b . to tho equare inch against 1101b. obtained by breaking brickettes. Although no experimental tests have be n made with this mortar of any great age, still, from the pulling down of old work it may with con. fidence be asserted that it fully complies with the old Scotch rhyme-

When a hundred years are past and gane,
 Then good mortar grows into stane."

On the Mersey Dock estate every stone and brick is properly bedded, jointe 1 , and covered with mortar and " grout," which is simply the mortar reduced by water to a proper consistency It is poured over the work, and penetrates into tho body of the masonry, thus filling all cavitins and assisting to keep the work moist during its progress, thereby producing an even settlement. It may be well to mention that this work is nut done by contract, in whech case the nuthor considers so free a use of " grout " would not be advisable, as probably it would be made to perform imperfectly what nught to be done thoroughly with mortar. When using bricks they are in all cases muist. ened, as, if set dry or wa:m, the mortar wnuld be roblied by absorption of the necessary moisture for its proper hardening. From practice it is found that a cubic yard of rubble work contains one.taird and brickwork one-fourth of a cubic yard of mortar. The paper was concluded by a few remarks un the selenitic patent process of mixing mortar, the practical man. ager of the company being present to explain the methol, which, owing to his absonce this evening, the authur has thought it well to omit.

Tus whole production of the precious metals throughout the world during 1873 is estimated to have been worth nearly 220,000,0 0 dollars.

SOIENTIFIC NETWS.

M. Labords states, in Lee Mondes, that the disagreeable rasping tone peculiar to some violins may be avoided by placing a small strip of wax on tho upper portion of the bridge. The, notes are immediately rendered oweot and soft, and can be suited to the ear by regulating the size of the plece of wax.
A Fresch journal connected with the metal trado gives the folluwing curious estimate or the value of a piece of iron costlog in its rough atate 1 f , after being employed for different nanufactures BIade intoa horseshoo it is wurth 3f., into ayricultural implements, 4 f ., forge 1 into or,aments, 45 f . , convertdid into needles, 75f., into steel buttons, 900 f ., employed as polished stecl for decorative purposes, 2000f., and made into thirt studs, 0000 f.
Tas Bulletin Therapeutique says that in order to use old and worn out pieces of india-rubber scraps left from factorien, manutacturers having casy consciences, wash the material first in a solution of subcarbonate of soda ol vriash, and then, when dry, pulverise between cylinders. T'his powder, placed layer by layer between sheots of new rubber and heated to a certain defree, $f \cdots$ ms a homogencous mass, in which tho fraud cannot be detected The mixture is, however, weak in tenacity and elasticity, and is unfit for surgical uso, while dangerous for belting or other industrial employments.
Q. T. Eberts, in the Pharmacist, says that the methods and suggestions for powdering camphor and retaining this refractory bods its powdered state, have not alone been numerous but curious.
Glycerine is the simplest and most efficient substance to keep camphor in a finely divided state. Tako camphor 5 ounces, a.cohol 5 fl. drachm. Glycerine, 1 fl. drachm. Mix the glycerino with the alcohol and triturate it with the camphor until reduced to a fino powder.
Profprssur Bacar, in his coast survey reports, meations that the tinues of the lnited States are divisible suto threo distinct classes. Those on the Atlantic coast are of the ordinary type ebling and flowing twice in twenty-four hours, and having but muderate difference in height between two successive high or low waters, one occurring beforcand the other after noon. Those on the Pacific coast also ebb and flow twice in twenty-four hours, but the morning and the evening tides vary consideraLly in huight. The intervals also between successive high and lon waters may be very unequal. The irregularitics re due to the moon's declination, as, when the moon travels to the north of the equator, the vertex of the tide wave follows her, giving the highest point of one tide in the northern, and the highest pont of the opposite tide in the southern, hemisphere. Hence, when the moon is in northern declination, the tide at any place in the northern hemisphere caused by her upper transit will be higher than that caused by her lower transit. This varintion in the heights is called the diurnal irregularity, and has a period of one lunar day.
Mer dyes must neither colour soap and water nor lime water. nor must they themselves become ycllow or brown after boiling This test shows the presence or absence of Brazil wood, arihil, eaflower, sandal wood, and the aniline colours. Yellow dyes must stand being boiled with alcohol, water, and time water. The most stable yellow is madder yellow; the least stable are anatto and turmeric frustic is rather better. Blue dyes m"st not colour alcohol reddish, nor must they decompose on boiling with hydrochloric acid. Tho best purple colours are composed of indigo and cochineal, or purpurine. The former test applies also to them. Orange dyes must colour neither water nor alcohol on boiling, green, neither alcohol nor hydrochloric tid. Brown dyes must not lose their colour on standing with alcohol, or on boiling with water. If black colours have a basis of indige they turn greenish or blue on boiting with sodium carbonate, if the dye be pure gall nuts, it turns brown. If the material changes to red on boiling with hydrochluric acid, the colouring matter is logwood without a basis of indigo, and is not durable. If it changes to blue, andigo is present.
The Scientific American calls attention to a curious problem which some one has found in a work published many years afo, and which is as follows:-"A man at the centre of a circle 600 yards in diameter starts in pursuit of a horse run-
ing round its circumferenco at the rute of ono milo in two minutes; the man goes at the rate of one mile in six minutes, and ruas directly towards the hurso la whatover urrection he map be. Required the distanco eath will run before tho man catches tho horse, and what figute the man whil describe." Perhaps some of ous realers may attempt a sulution.

Alloys of Tis.-The number of alloys into which tin entors is legiun. Thu alone is not adapted to maning castungs, but, added in small quantities to other metais, give them hardness. A few of its most important alloys ate given belew, together with tho usual proportions, -Britanaia metais average nine parts tin and ono part antimony, pewter, sis parts tin and one part antimony, with various other metais, as hisinuili, copper, lead, zinc, soft soldor, equal parts of lead and tin, two parts tin, and ono of lend, or one part tin and two of lead. Tho less tend it contains the lower its metting point will be. Bronze consists of copper and tin, or copper, tin, and zine; the chief varieties are bell metal, gun metal, and statuary metal. Ordinary boli metal consists of sevonty-elght parts copper and twenty-eight of tin; gun metal of ninety parts of copper and nine of tin; the statuary bronze used in the statue of Lours XIV., at Paris, mado in 1690, consiats of copper, $91 \cdot 40$; zinc, $5 \cdot 63$; tin, $1 \cdot 70$; lead, $1 \cdot 37$. An alloy of tin and merclyy has long been in use for mirrors.
It may interest somo of our readers who reside near the seacoast to learn that there is considerable commercial value in the common sea-weeds which are thrown up so abundantly on the shoro. In addition to cheir uses as a manure and for packing, quantitiod are now converted into artificial ebony. The process consists in first treating the plants for two hours with dilute sulphuric acid, then drying and grinding them up To sixty parts of this product, five parts of liquid glue, hve parts of guttapercha, and two and a 18 I f parts of indiarubber are to be added, the latter two being first dissolved in naphitha. Afterwards ten parts of coal-tar, five parts of pulverised sulphu, azd five parts of pulverised resin are added, and the whole heated to about 300 deg . Falar. When cuuld, a mass is obtained which in colour, hardiess, and capacity for receiving a polish, resembles ebony, and is much cheaper. Tus material is now actually made on a large scalo, and used fur nearly all the purposes io which ebony can bo applied.

Crystallised Glass.--Some curious apecimens of crystallised

 glass were iately sont to M. Peligot by M. Vicheau, director of a glass factory at Blanzy, which were taken from a furnace which had been for some time out of use. Thwse crystals differed completely, both in aspect and in mode of formation, from all the specimens of devitrified glass heretoforv szamined by M. Peligot. They were well developed prisms, twenty to thurty millimuters in length, and recalled in appearance crystals of sulphur and of bismuth crystallised hom fusion. Their analysis threw some light upon the obscure question of devitrification. While certain chemists maintain that this result is nothing but the separation in crystals of a definite silicate in the midst of the $\begin{gathered}\text { itreous mass-a true segregation-others }\end{gathered}$ affirm that devitrification is a simple molecular change, in which the eucice mass of the glass ciystallises, a phenumenon analugous to the change by which arseaious oxide becomes opaque. Puligot's analysis of these Blanzy crystals supportod the furmer hypothesis, by shuwiog that the crystallised portions differed in composition frum the original glass. They contaiaed no sodium, but had an excess of magnesium, curtesponding to the pyrosene group. The crystals were atered by exposure to the air. They fused at a much hagher temperatuthan the normal glass out of which they came. II. Peligot called the attention of the Academy to the large amount of magnesium present, suggesting its agency in the transformetion.M. Du Moncel has recently been experinenting on electrical transmission thrcugh wood. His results are given in Compt: 3 Rendus, of 6th inst. Prisms of various kinds of wood were inserted between two platinum plates, which prere in a circuit, and could be pressed towarls each uther. The effect of heating and drying the wood was also studied. M. Du Moncel considers that the relative conductivity of wood is due, in great part, if not wholly, to moisture absorbed through its pores. The effect of pressure was greatly to increase the conductivity, the two surfaces superposed being then brought into closer contact.

HORIZONTAL ENGINE WITH BADINGEB'S VALVE GRAR.

HORIZONTAL ENGINE.

We illuatrate, on theso two pages, a small horizontal engine constructed by the Maschinen and Waggonbsufabriks Actien Gesellechaft, in Simmering, late H. D. Schmidt, and which is nitted with valves and valve gear arranged epon a sjatem inventid by Professor Radinger, of Vienna.

About the engine itself we need not say much. The bedflate is carrice along noderneath the piston and connecting rois; the gui ic plate and the plummer block are cast with it. The cylinder is not overiuu،g, but is supported by a substantial foot, which is made separate, we presume, on account of the complexity of the cylinder casting.

The valres are three in numb. r, and are arranged on three parallel vertical spindles, the whole of them deriviag a continuous revolving motion from a horizontal shaft driven from the crankehaft by spur gearing, the proportions of which are so arranged that all tie valves have the same angular velocity as the crankshaft, that is, that they rotate revolution for revolution with the engine. The centre calve is double, consisting of tro cones rovolving one witbin the other an oppnsze directions. The outer cone governs the stcam adnission, and may thercfore be called the induction valve, the uner cone governs the cut-off, and may be called the expansion ralve. The (referred to passich; these slots are placed spirally howe hover it governor is so arranged, as will shortly be secn, that tho mo. 18 small angle to the vertical. The expansion valvo is driven tion of the lalls alters the relative positions of these two | by the pressure of the cross piece against the sides of these

HORIZONTAL ENGINE WITH RADINGERIS VAIVE GEAR.
slots, and therefore its rotation corresponds exactly with that and x ansi n valves cya bu adjosted verticaliy relatively to of the governor spindle. Wheo, hovever, the governor balls, cah uther, and relatively to the seat in which the former move out or in, the cross picce ts raisid or lowered, and in, worhs, in thas wiy it is intended that the wear should be consequence of the oblique sluts just meationed, the expausion valve receives a small angular motion relatively to the goveroor spindle. We know that the angular motion of the induction valve is equal and opposite to that of the spiodic, and therefore it is obvious that as loug as the expansion valve moves exactly with the spindle, the cut off must always take place at the same time. But by the artion of the governor just described the relative positions of the expansion valve and the spi dle can be altered, and consequently the precise point in the revolutlon of the induction valvo at which the cige of its opening pass a the edge of the expansion valvo, to other words, the precise point at which the cut-off takes place, 18 altered also, thus leaving the cot-off entirely uader the control of the governor Tho governor itself is of the ordinary type; it is counected with au index (Figs. I and A), Which shows at any monaent the degree of expsnsion at which the engine is worktag. The two exhaust valves are driven by spar fearing from a wheel fixed upon the bush of the induction valve. Upon tho top coper of tho centre valve chest, which is made in halves, is cast a bracket, which supports an elaberately constructed nut, by means of which tho induction takea up. Th. lower cud of the governor spindle is carried in an abjustable sucket beariog, so that whonever tho wear on the valves renders it n.cessary to bring thom down a little, the governor spiadle may bo lowered too, otherwise the action of the governor would be rendered less perfect.

Prufessor Radinger's system of valyes and valve gear is certaialy ingenious, it is quite correct in theory, and has been viry carefully worked out. By meaus of it the engine will have a cunstant lead, an expansion accarately controlled by the governor, a very quick cut-off, and points of release and compression entirely independent of lead or cat-off-all of them matters of considerable importance. It cannot bo denied, homover, that the apparatus by which these sdvantages are gained is complicnted and oxpensive, will require careful attention, and is arkirard to take to pieces. Un these accoants Fe are afraid it will not como into gencral use. certainly not for ongines so small as the presert, whero evon if a large percentage of saring in fuel is possible, tho money ralce of this zaving is still insignificant.

The cogine is well made and beantifully finishod, thoagh without saperfluous polishing. The cylinder is 265 millimetres
(1043 in) diameter, and 630 millimetres (24.8 in.) The ordinury cut-of is -33 of the stroke, variable from 1 to 6 by the gevernor. 'Tho working stenm pressure is intended to be 60 Ib. per square inch, and the revolutions 65 per minute.-Engincerirg.

G1 DE.

Glue is a highly uscful and important substance, and its manufacture is carried on upon a large scale, as followsThe parings of hider, and pelts from the tanners and furciers, and the clippings of hides, hoof, horne, feet or calves, cows, sheep, pigs, and various membranes, are the substances from which it is extracted in Britan. These are first placed in a lime-pit, and when suficiently steeped, they are carried in baskets to a stream of water and washed, nfer which they are placed on hurdles to drt Whatever lime remains adhering to them is couverted into chalk by the action of the air ; and though lime would be injurious to the after processes, yet the presence ut a small portion of chalk is immat rial.
'lice pieces having been thus cleaned, the next process is the extraction of the gelatine from them by boiling. For this purpose, they are placed in a wide-mouthed bag or net, made of rope, and spread open within a large iron cauldron A light framivg of iron within the cauldron prevents the bag from stiching to its sides. Water is then added, and graduilly brought to tho boiling point ; as the animal substances sink, frech quantities are added, the whole being occasionally stirred up and pressed down with poles. The state of the substances is tested by occasionally taling out a portien, and setting it aside to cool; if a clear mass of jelly be prociuced, the boilmg has been sufficient. The mouth of the bag is then closed by means of corde, and the bag is slowly hoisted by anachinery until it rests against, or partly coilsaround, a bean immediately over the cauldron, which helps to press out tho liquid. In this state, it is left to drain. Meanwhile tho contents of the cauldron, if not strong enough for glue, can be further evaporated ly continuing to apply heat. The contents of the bag are boiled a sccond and a third time for making size, and when the colutions are too weak for either glue or size, th. y are ceonumbally used instead of water. The last remaining refuse is sold for manure. Thue, every portion of animal substance js turned to profitable use.

The glue in the cauldron, when thick enough, is drawn off into a vessel called a settling-back, and maintaincd at a temperature which will keep it liquid. This gives time for the deposition of solid impurities, and for further clarification by the addition of such fintig substances as the manufacturer may phefer. The glue is then run off into wooden coolers about six feet luns, one foot brond, and two feet deep. Ifere it becomes a firm jelly, which is cut out by a spede into square cakes, each cake being deposited in a sort of wooden box, open in eeveral slits or divisious to the back. The glue is cat into slides liy prasing a brass wite, attached to a kind of bow, along the slits. These sljees are placed uoon nets (the marks of which are seen on the dry glur), and stretched on wooden frames, and are thus removed to the glue-maker's field, where they are placed in piles, with proper intervals for the admission of ar, cach pale beng ruofed in as a protect on from the weather. The glue is turned two or three times a day, mad fur tias purpose the root is lifted off the pile, and the uppermont frame placed on the ground. Tho cakes are turned one by one, and then the sccond frame is lifted off and placed on the first. 1 he operation is thus repeated until a new pilo is formed near the spot where the old ono stood, when the roof is replaced.

During the drying, the glue is more likely to receive injury than at auy other persod. In very warm weather, the cakes are liable to become so soft as to lose all shape and unite with the frames or they may even melt entirely, and flow away. A thunderstorm sometimes prevents a wh lo tield of glue from hardening, whle a thick fog may make it all mouldy. A bribk drying wind may barden it 50 suddenly as to render it unsightly and unfit for the market. A hard frost, by freczing the water in the glue, may cause it to crack in all directions, rendering remelting necessary. Thus the manu. facture has many vicissitudes to suffer, and can only bo profitably and conveniently carried on in temperato and cquable weather. Tho drying, however, is not entirely finished in tho
open air. When the glue is about three parts dry, it is removed to lofte, where, in the couric of some woeks or montha, the hardening is completed. But as the surfices of the cakia become mouldy and soiled, it is at length necessary to scour them with a scrubbing-brush and hot water, and set them up to drain. They are then finally dried off in a stove-room at an elevated temperature, which, whon thoy are once solid, only serves to harden and improve them.
Afterstove-d,ying, the glue is fit for the market, where it is judged of by its atrong dark colour, and froedom from clouds or black spots when beld to the light. The better sorts of glue are transpirent, especially the thin cakes of the salisbury glae, which are of a clenr amber colour. The best glue sweits without melting when immersed in cold water, and renews ats former size on dryiay. The method of softenmg it for use 13 to break it into smail pieces, soak twenty-four hours in cold water, and then melt slowly over a firo with frequent stirriue. When prepared in this way it cools down into a stiff jrllp, which requires unly a little warming to fit it for use. Glue must not be used in a freczing temperature.

A strong compound of glue is made by infusing common glae in small picces with esinglass in sprits of wine, just suff. cient to cover the mixture. Heat is then cautiously applid, and when melted, nowdered chalk is added, making the whole of an opaque white. A strong glue, which will resist water, is also obtitined by adding half a poun:l of common is laglass to two quarts of skimmed milk, and evaporating the mixture to a proper consistency If gelatine, which has ben swelled in cold water, be immersed in linseed-oil and heated, it dissolves and forms a glue of remarkable tenacity, which when onco dry, perfectly resists damp. Ordinary gluy my thus be dissolved, and a small quantity of red lead, in powder, added.

It appears from the ohservations of Mr . Shatteumann, a glue-maker, that fresh glue dries much more readily than glue that has been once or twice melted; and that dry glue steeped in cold water absorbs different quantities of water according to the quality of the glue; and the proportion of water so absnrbed may be used as test of the quality of the glue.

It appears that fresh glue containg water of composition, or water more intimately united with the glue than water mixed with it in the process of meiting, which adruts of bens readily di-engaged by evaporation. Tho cumbint water ot dry glue disappears in the courso of successive meltings and solicifications to which glue is subjected. Glue in thin plate's is usually of better quality than thack ones, even when made with the same kind of gelatine, because the thin plates admit of a moro complete drying than the thick. In applying il. Schattenmann's test, dry glue is ummersed for twenty-four hours in water at the te nperature of about 60° Fahr. A jelly will thus bu formed, the qualities of which will fardy represent those of the glue. For example. the finest ordanary glue, or that made from white bones, absorbe twelve tumes its weight of water in twenty-four hours, so that n phate weighing three grammes produces thirty-nine of fine clastac jelly. Glue from dark bones absorbs nine times its weight of water, and produces not quite so fine a jelly. The ordinary gluo of Alsaco or of Germany, made from nuimal refuse, absords five times its weight of water, producing a soft brorra j••lly, without elasticity and consistence, and faling to pleces when handled. Tho common glue of Boulogne absorbs luree and a half times its weight of water.

Well-dried glue is much less hygrometric than badly made gluas, or those monte of inferior materials. I he latter are lidble to putrefaction. The mater of composition seems to te ivjurious to the strungth of glue, which mercases in proportion to its dryncss.

Glue or gelatine ha, Iately been applied, with great suecess, to the formation of moulds for castings. Tho dificultics attending the use of sand, clay, plaster of laris, wax, \&c. in forming moulds for casting, are very great where the objects to bo repeated are complicated in form. sbout the beginning of the present century the liermans antroduced the use of glue for making moulds, which was not employed in thes country until about the jear 1826, when Mir. Houglas For used it totaxc casts from his anatomical preparatione, calcareous concretions, vegetable proparations, se., and in order to glvo greater clasticity to tho moulds so obtained, and to keep them in a fit state for uso during along period, homixed treaclo with tho give; this, horever, was found to diszolour
the surface of all whito bodies, and its application being limited by this objection, the plan was abandoned.
About the year 1844, attention was again called to the sub. ject by the production in France oi a serics of casts in imitation of ivory; and about 1846 the Society of Arta, London, offered a prize which was awaided to Mr. Franchi for his specimens of casting in plaster composition in imitation of ivory. At the timo the award was made the nature of the material used by him was not known; but it has since proved to be pure gelatine, and owing to the skilful use of his material some exquisite electrotype casts deposited in the heological Musoum were obtained from objects greatly under cost Mr. Francbi has since found that he can obtain from a gelatine mould a cast in gelatine in relief without losing any of the sharpness of the original. Thie has emabled him toapply objectr nodelled on flat surfaces to cylindrical bodies, thus saving the labour and expense of modelling. One great advantage of gelatino moulds is, that casts without Grams can be taken from them.

Diamond Cement, or white fish-gluo, is made of isinglass dissolved in dilute spirits of wine or common gin. The two are mused in a bottle loosely corked, and gently simmered in a vessel containing boiling water; in about an hour the isinglass will be dissolved, and ready for use. When cold, it should be an opaque, milk-white hard jelly; it is remelted by immersion in warm water, but the cork should be at the same time loosened. After a time a little sp.rit should be added to replace that lost by evaporation.- The Boston Cabrret Naker.

DOMINION.

Turre are now in Nova Scotia 47 establishments for canning lobsters.
Tne Lousburg, C. B., telegraph line will be open for business in a few days.

Ma. Tnetcu's party of surveyors left Victoria on the 14th August, to survey a line from Hope to Burrard Inlet.
A ranti from Toronto has recently been at Uevils Crech looking for minemals. They took back suveral specimens of iron ure, and also some very tine speciaens of marble.
The total shipping of Prince Edward Island on 31st December, 1873, comprised 280 vessels, registering 38,914 tons. Since the 181 of April, 1874, there have bern built in the I-land and registered at Charlottetown 23 vessels of 4,217 tons, and re-registered 18 vessels cf 935 tons.
Tue Sack villo I'ost says:-The Marino and Fishcries department is active in improving the shores of Albert County. bungs are being anchored at Fivo Fathom Hole aud at other places along the shore for the protection of mariners. The steam whistle on Capo Enrage will be in operation in a few days. The buildiag and machinery cost about $\$ 5,000$.
Tue Sackville Post speaks in favoumble terms of the result of Mr. Hickman's explorations and discoveries at East Springhill. It eays.-"The seams are apparently regular, without fault or breakage, and, although small at lirst, have increased in size to such an extent as to lead to the behef that kast Syringhill will develope into one of the most prowuctive di tricto in the country. Frofessor Selwyn, Chicf of the Geologial Survey of Canada, who has lately bech visitng the coal, areas of Cumber, gives a flattering opinion as to the value of Mr. Hickman's di;coveries. We trust that the fullest expectations of those interested in it will be realized, because an. char Springhill means more wcalth, more population and more prosperity for this portion of Canada.

Joist for Pirss.-The following is said to be a Gcrman plan- lostead of the usual projecting ond, the pipes have channels around them When placed in contact end to eud, a strip of soft lead is bound nbout them, and presecd tightly againt the piges by a wrought-iron riug. The alvantuges clamneld aro chat tho pipes are lighter and more easi'y cast, less lead is required to make the joint tight, no heat is requirel for applying it; it is quickly donu; and especially th the joint is somewhat clastic, and will last longer in solt bround, or when heavily loaded.

RAILWAY MATIERS.

An Ohio lady, Mrs J. R. Carson, is superintendent of the Toledo, Wabash and Western Railroad.

Pulbian Cars in Italy.-A fifteen years contract has been defintely closed at Milan, Italy, for putting Pullman palace cars on all trains and lives in Upper Italy. This covers tho great routes of pleasure travel via the northern lakes.

Tus British steaner Tagus is now taking on board, at the Jersey City wharf, opposite New York, ten large locomotives, built at the Grant locomotive works, Paterson, N.J. They are for a Russian railvay and are to be delavered at Taganrog, on the Sea of Azof They are sad to be splendid examples of American mechanism.
Frf chathar Cars. - Some of the double deck cars which are quite common upon French roads, exhibit a most extraordin:: ia, 'nall proportion of deal weight. One on exhibition at Vienna, . I a capacity of 90 persons, wenghed unly 11. 75 tons Frtight cars weighing but 10,000 lus. carry 20, veu or even as much as 30,000 pounds.

Thr alandonment by the Russian Government of M. de Lesseps' railway project, for the connection of llussia with India by a lino through Turkestan, is annouoced. The Government now favours a line cummunicating with Chata through Central Asia.

A proposal has been made to construct a tunnel through Mout Blanc. It comes from MI. Ernest Stamm, an Alsatian engineer, and is intended to make a connection between France and Italy independent of Swiss territory. It is said not to be attended by greater dificulties than was the Mont Cenis tumnel.

Tus completion of the iron bridge over the Sacn river at Bidd-ford, Maine, affords, says the American Manufacturer, an admirable example of the American system of building iron bridges-that of interchangeable parts and pin connectionsas runtranted with the bystem of cuanecion with rivets. I ho bridge was built by the Phonixville Bradge Company, and completed ready fur traffic withitu furty days from the date of the order, at which time the iron lay in the form of puddle bar The bridge has three spans of 133 ft . each, and tro spans of 100ft. each, costing about 40,000 dols.

The first locomotive that mn on a railroad in America was imported from England by the Delaware and Hudson Canal Company; was ordered in England by Horatıo Allen, assistant engineer; was shipped from Liverpoul, April 3, 1829, on board the packet ship Joln Jay; arrived in New York $17 \mathrm{H}_{\mathrm{h}}$ of May, 1829 ; was sent up the river to Rondout, and arrived the 4th of July 1829 ; from theuce was transported by canal and arrivedat Honnesidale, July 23, 1929 ; on the 8 ch of August made the trial trip. This locomotive was built at Stourbridge, and the boiler is now in use at Carbondale, Pendeylvania.

Tue Detroit Free I'ress of recent date says. "Three or four nizhts agn, after a freight train on the Detruit and Mhlifaukce Road had left the junction, a stranger was fuund on the top of the traiu and when questioned by the brakeman he satd that he was an old brakemanout of mones, and wanted to go to Grand lapids He was apparently deserving, offered to do what he could to conpensate for the ride; and was nut put off. The brakeman did not think to tell him about the several bridges on the rcute, not expecting him to do much, and this fart nearly rost the stringer his life, causing him one of the closest , scapes on record. About midnight the engineer discovered cattle on the track and whistled for brakes. The stranger was first up from the caboosc, and in running over the cars he detected the dark form of a bridge close above him. There was no time to think or act, but instinct caused him to jump. He wias not a second too soon, the bridge being almost over him as he leaped. He struck tho side of po cenbankmend, fell down and then rolled to the track Une of the wheels caught his boot hecl, cru-hed it off close to the sole, and the man was whirled around by the shock until he lay beside the rail, and before be could move his heal a piece of the brim of his hat was sheared off. When the train stopped he was at hand to climb into the caboose, not being harmed in the least.

TWENTY FEET LOOM FOR WEAVING FELT.
Our illustration on thes two pages represents the lar seat loom in the world. This loom 18 at work at BUry, Eng, and produces a fabric 20 ft. wide, known as woollen "felt' for paper machinery. The shuttle is a sled shuttle without whecls, and the loom makes thirty-five picks per minut. There is worm and wheel taking-up motion and $12 i n$. dameter lagged cloth roller; the sarn beam is 15 in . diameter Tuere are four shaft tappets, four to the round. A 3 hin. diameter wrought shaft goes rught through the loom, with tappets for working the slay. The tappet shaft is $2 \frac{1}{2} \mathrm{in}$. diameter, drive n by comnound gearing, and to drive the loom a 16 in . diame tor pulley vith only a $2 \frac{2}{2} \mathrm{in} . \operatorname{strap}$ is used. There are threc headles, thourh but two are shown in our engraving. The loom is providel with apparatus far winding on the warp without taking the warp beam out of the frame. The weight of the whole is 6 tons 16 cwt 1 qu . and 5 lb .

AUTOMATIC STEAM FIRE-EXTINGOISHER.

It is not necessary to quote dry statistics in order to show what amount of valuable property there is yearly destroyed by fire. Evcry one who reads newspapers must be quite inpmessed with the frequency with which his eye meets accounts of the destruction of property more or jess extensive, nor does it need statistics to prove that by far the greatest proportion consits of manufacturing premises. Firc-proof construction 25 still a matter of controversy; no engineer or architect has as yet, so far as we are awarc, succeeded in constructing his buildings so as to resist destruction by fire, and the design that will do so has yet to be brought to the practical test, $2 f$, andeed, it is in existence. Tho occasionrl perfect helplesoness of structures under firc appears strange sometimes, usually, however, a litthe closer inquiry explains all. This is strange when we consider the very great strides that hare of lato years been made in perfectiog the means of extinguishing fires. Not only are our firc-engines very much superior to what they were, but we have well-traiaed and effective fire-brigades which are only waiting for the moment to act. This does not, of course, apply to conntry places; but there is scarcely a village Fhich has not its organisation provided for such emergencies. In spite of all that, enormous losses, not only individual but national, occur again and again, each and sll representing so mach capital of which the nation is deprived. If, then, our
means hitherto available to check this destructive agent, have been brought to such a state of perfection that the ordinary observer is altogether hopeless of seeing any further improve. ment, it is but natural that we should inquire for a remedy of a character diferent to that ued hitherto, either as a total or partial substitute for that in present use. It seems at first sight almost discouraging to find nothing better than waterthe medium at present almost exclusively employed-diecouraging, when we consider how efficiently it masters combustion in nearly every instance when it is experimentally applied, we say nearly, because there are substances the combustion ui which water cannot possibly prevent ; we advisedly also use the word "experimentally" hecause, when we come into actual practice, we find affairs subject to very different conditions. Thus, while there is nothing more certaia than the extinction of all combustion on any piece of wood for instance, if suff. coent watcr is applied, in practice there are the difficulties of obtaining sufficient water, to bave at hand the necessary appar. atus to apply it at all, and lastly, to apply it at the right place. And theseare not the only difficulties; the namberin. creases with the variation of the material to be operated upon, so as not to destroy it with the medium applied to extinguish the combustion It is a fact that very much more damage is often done by water than by the fire, if the latter is not very extensive; and if it is, the amount of property destroyed by water alone is sometimes quite sppalling.

Undoubtedly the great point is to detect the fire imnerd. ately after its outbreak, and before it has reached any considerable dimensions, because the less in quantity there is to deal with the casier will the dealing be. This suggests at once, that if fro could be made to signal its appearance, and still better if it could be made to actually start an apparatus operating against it, that this must be the acme of perfection. To do this, when water is the only substance at our dispossal for quenching the fire, is practically impossible; and this must bo so apparent that it is nnnecessary to waste any space upon it. It requires for the purpose a material much more elastic, one that will distributo itsolf, and not one that cannot get beyond the spot on which it drops.

Such a medium we have in steam. That is the mediom which Messrs Sanderson and Proctor make use of with their self-acting apparstus. Before describing the latter, however, it will bo necessary to say a few words aboat steam as regards its efficiency when applied to putting out a fire, though its uso for that parpose is by no means new, aithoogh it is very litilo,

In fact scarcely at all, known In that capacity; and thero is much in the circamstance, no doubt. that steam has been known for such a long time, and is only now seriously proposed as a means to extinguish fires, that the people whom it should benefit shako their heads and look sceptically. It does not, however, require intricate argaments to prove steam an efficient fre-extinguisher in theory, and not only that, but that it is much superior to water. Nor does theory stand alone and unsupported. In a former impression we cited a case, in which steam had proved the only savionr, and there are many more instances of steam being even practically and crucially tested with success

We must state in a fow words why steam should in theory be a more efficient fire-extinguisher than water. There are only threo fundamental principles upon which combustion can be stayed, viz., by preventing the access of air, intercepting the sapply of combustibles, or lowering the temperature. The action of water depends solely upon the latter, its cooling property, and acts simply by absorbing the heat which would otherwise be expended in raising the temperature of: the combustible to the temperature of combustion for its evaporation. Combnstibles covered wholly or partially with or containing water cannot ignite, becauve nono have a temperature of ignition so low as that at which water can exist Steam acts similarly; on issuing from the pipe it expands, gives off its heat, and is converted into water, but held finely divided in the form of mist or spray; in that state it is distributed over the whole of tho surface exposed, and then acts the part of water-i.e., it absorbs heat by being re-evaporated. The quantity of heat which steam already contains is so small, compared with the quantity and intensity required for the ignition of combustibles that it may be practically neglected and the objection which is sometimes urged that steam, is account of its heat, rather assists .han ckecks combustion can only come from individuals who do not comprehend the natures of steam and of combustion. The superiority of steam in this respect consists in its aptness to be easily applied, it can be stored in a pipes ready for immediate action, spreads all aver the surfares in the space where it is discharged, and does not strik, them with such destructive violence as water. The even distribntion i, a point of considerable importance, which will be understood by suppesing a combustible, say a piece of wood, burning all over, and water. although meant for the whole, is only applicd to one half of the surface, when the other must of course continue to burn unchecked, gradually ovaporatiny the water on the other half and re-igniting if it there is not a continued supply. With steam tho supply is continuous; its action is less suldden, butit is enduring and continuou:.
'The action of steam as an interceptor of the sir supply, is howoser, of much moro importance than its cooling power, and as such water rarely ovar, in ordinary cases never, acts. 'This is easily and forcibly eaplained Suppose n fire in a room; steam is turned on, and in two or three minutes the whole spar e is filled with steam of atmospheric presbure, the supply, howeves, continues, and if the pressure in the room is not to augment, it must issue through some opening or cruvicer, and if this is the case it will bo obvious that no air can have ingress unles: forced in as by a blast-pipe. This is, however, an extreme case, for it is known that even before a room is completely filled with steam of the same pressure as the atmosphere, the arr becomes so pregnant with moisture that it ceases to support combustion. There would be no danger of the steam-pressure becoming excessive in the room of a building, becanse builuings are alwaye of such a nature as to allow of suffici nt escape for its equalisation, or of keeping it at a moderate pressure ; and the idea that walls would be blown in and roofs lifted ofl, is perfectly ridiculous. Nor is the dang. r of converting a room into a blast-pipe of any consequence, because it will be seen that the steam wuuld have to blow out of one or more opel ings, while there was one or more opposite, nt which eir would enter through the impulse created by the steam flowing in a body and in ono direction A comparatively small quantity of moisture would, therefore, suffiee to prevent access of air, when we consider that one part of wate: occupies 1,600 times its original space if converted into team of a pressure equal to that of the atho-phere. It is "ell known also that fires only attain their full power when the buildjings or particular roams are entered through doors which give increased facilities for the admission of air. This danger is entirely svoided with steam, because no one has occasion to enter a compartment in which there is a fire, if it has been provided with steampipes. From the same fact, the danger associated with carrying water, either in vessel or hose and jets, to burning apartments is entirely avoided. One important fact must not be omitted. I hose acquainted with conflagrationsare well aware of the very destructive and dangerous action which water has upon cast iron, which now enters so largely in the construction of buildings. Sometimes a beavy ceilng or roof is solely dependent on one or more cast-iron columns, which are only too liable to becone very hot in a fire, and if highlyheated cast-iron is struck by a jet of water, either accidentally or intentionally, it is well known that it flics like glass, the more so if under a strain. No such consequences woud result from the use of steam, on account of its gradual action. Steam also has the advantage of operating upon all kinds of combustibles; water, it is well known, has no power on hydro-carbons, especially fiuids, such as oll, and the only remedy against these is the interception of the air supply. This steam will accomplish In a paper published in the Bratesh Archisect, and subsequently discussed by the Scientific and Mrechancal Society, Manchester, the advantages of steam over water are thus summarised by Mr. A. Isldebrandt: 1. Steam affords the opportunity of all arrangements for its applicati, a being made beforehand, and thus ready to operate without a moment's delay 2. Its use dues not give increased facilitues for the access of air, as is the ease with water when it has to be carried in vessels or hose and get to the apartment where the fire is, thus necessitating opening doors and other air iulets. 3. Its action is certain and unfalling in all cases wherever it is possible to apply it, siuce it operates upon any kind of combustible w theffect. 4. It does not in its successful application destroy property contiguous to the fire. 5. It entailin no dauger to life and limb of the of erator as when applying water. 6 . It does not require pumps or other apphances and machinery to convey it where it is required. 7. If proper provision fur its use has once been made it does not require any further human Iabour.

As regards tho condition of the stcam to be used, theory points to high-pressure steam as the most efficient, although it contains rather more heat in the same weinht of water than steam of lower pressure, for which reason it has been adyocated to reduce it by means of a reducing valve We, however, should deprecale the use of such an appliance if the object was to make steam suitable for the purpose under consideration, becausc steam so treated becomes slightly superheated. We should, however, not object to reduced steam being used if it was ncarest at hund in the case of fire. The efficiency of steam as a fire-extinguisher proved, an apparaius which in cuse of fire should, without human intervention, admit the same into
tho apartment where it occurred, must unquestionably bo an immense boon both to proprintors and insurance oflices ; and this Mr. Sanderson has succeeded in supplying in his self-at. ing apparatus which wo il'ustinte in fig. 1. It will be geen it B glance that its action depends on the expansion of bodies by heat and on electricity. Fig. 1 is an apparatus shown complete in itself for the sake of illustration. Tho wire Cl , of au electric circuit is inserted into tho bulb of a thermometer 'I', fixed on the ceiling $\left(\mathcal{C}\right.$, of a room, and the other end, C_{11}, of the same into the top of the th rmomoter tube, projecting far ebough to correspond to a certain temperature to which it is desired to adjust the same, and which should be one that ts not renched under ordinary circumstances, but quickly pro. duced by of fire. If the mercury rises to touch the wire, 'if, the circuit is complete, the galvanic battery $B_{\text {, }}$ supplies power to the electro-magnet to attract its armature, A, which is one arm of a lever holding at its other extremity the pin of a faller weight, F, which is thus liberated, and fulls upon the lover, L, causing the other end of the same to rise, a pin on the rim, R, of the valve-wheel, which is being held by the lever, L, escapes from its hold, and revolves in the direction in which it is drawn by a weight, W, thus opening the valve V, in the pipe P, branching of in each room from the main pipr, M, and thas admits stean into the room until the valve is closed again, which may be done at pleasure if desired.

It is obvious that the number of the mometers in the same circuit can be multiplied ad labitum, care being taken that cach may form a carcuit independent of any other. It will be seen therefore, that one battery is suficient for any number of thermometers in one room, and for any numbor of rooms.

In figi. 2 and 3 we show plan and longitudinal section of a mill-room., to which the apparatus is applied. The thermometers, T, are fixed from 10 to 15 inches apart, the aperture, O, of tho branch-pipe, for the issuo of the steam being in the contre, and near the top of the room, with a deflecting-plate, D, below, to avuid a direct rush of stcam on any one standing under the opening at the time of diecharge. It is obvious, however, that no general rule can be laid down for these particulars, but that the number of thermometers, the position of the opening, 0 , se, will vary with circumstances ; the later should always be central, between any possible opuangs or escapes for bir or steam. Our arrangement shows an extra valve, V, between th. boiler and the main stean-pipe, worked by the same circuit, but it has its own apparatus, snd is so connected as to be actuated every time in additio , to the valve in the room in which contact has been made, in order to admit steam to the brauch valves A boiler is shown dotted, sumply to remiad the resder of the necessity of one beiug in or near the premi. ses. The rain steam-pipe is shown, 6 -inch hose, the branchpipe 4-inch. A steam-whistle is fitted to the former, in any convenient place, so as to give an alarm which is especially useful at night and other times when the hand, are away from mills, and to tell the watchman to mako more firo, but under the boiler, so as to geuerate more steam

The idea of the apparatus is at once simple and beantiful and as for its lability to get out of order we do not think it is more so, if as much, asan ordinary fire-engine. Should contact be made acudentally, for iustance, through lighturgg, the valve can at once bu closed by hand if it should happun during the time that the placo were attended; but ceen if this were not the case, not much damage could te done, the damping of the place and the goods it contained could not possibly be a serious thing.

The only thing which obstructs the adoption of this apparatus in cotton-mills and other concerns is, we imagine, the scepticinm of millowners io the cificiency of steam for the purpose of extinguishong fires, but the experiments which led the inventor to pateut the apparstus have so satisfied himand the firm in which he is a partuer, that they are now anxiously waiting for the off r of mill-rocms to be placed at their disposal to try both steam and the apparatus, at their cost and risk, aud to prove its utility practically, and on a large scale. We trust this opportuniey for trying an appliance which promases to be so very uscful, and likely to save a large amount of valuable property, will not long bu wanting. We commend it warmly to the attention of insurance offices as likely to prove of considersble value to them. We shall watch the trials with interest, although instances of success with steam are, as we havi suid, not wanting, while that there aroother people besides the uventor and makers of this apparal us, who have great fath in sterm, is shown by the fact that there are instances where
the owners of mills would not permit firemen to onter the burning bulding after the steam pipes, which happened to bo in thoburning part, had been forcibly broken. We know of instances where mills havo been saved by stenm from destruction by fire on three occasions, which surely is moro than theoretical proof.-lron.

MISCELLANEA.

Tuede pest boring that has over been made for coal wa ${ }^{8}$ mad in 1853-7, at Mouille-longo, where the drills reached a depth of $1000 \frac{1}{2}$ yards, when the tools broke at the bottom of the hole, and the work had to be abandoned.
The exhibition building at the Centennial at Pbiladelphia in 1876 will be built almost entirely of iron, and already the contract for completing t'eu work has been given out. A combination, consisting of Clarke, Reeves, and Co, the Phoenix Iron Company, the K.ystone Bridge Company, and the Union Irou Mills, Carnegie, Kloman, and Co., gave in a tender for $1,397,000$ dols., butas a Mr. J K. Dobbins quoted $922,595 \mathrm{~d} \cdot 1 \mathrm{l}$., ho secured thr order. He will g this iron fiom New Jersey.
Ma. William hosenbaum, Cheyenne, Wyoming Territory, has patented a device for detaching borses at any moment from carriagof, buggies, waggons, reapers, mowers, or other velhles, so that not unly the individuale, but also the vehicles, are ${ }^{2}$ rotected against injury from runaway or vicious animals. The invention consists of a lever attachment to the pole or tongue of the velicict, which may be operated from the seat so as to detach a clevis with wedge-shaped end to which the double tree is applied. In case of any accident or danger, the horses may be instantly detached by pulling the hand lever bach which forces the sliding bar beyoud its guide recess and gives sufficient play to the wedge clevis to slide out. The horses carry then the double tree along with them, leaving the vehicle behind.
Promes for the Best Circelar Sali-The Board of Commissioners of the Fifth (1874) Cincinnati Ivdustrial Exposithon ofter a special premitum of $\$ 1 \mu 0$ in gold for the best circular saw. The competition is to be determined under conditions as follows. All saws competi g shall be of uniform diam ter, namely, 56 inches. They may have either solid or inserted teeth. The gature to be at the option of the exhibitor. The cye of the saw to be 2 inches diameter; the pin holes, $\frac{8}{5}$ inch, and 3 inches from centre to centre. Each sam is to be submitted to a thorough practical test, upon a left hand mill provided for the purpose. Diagram cards are to bo taken from the engine durinu the trial of each saw, by a disinterested expert, st leted by the juors. The test is to bo made during the wete be ginning September 21, 1874 Uther details of the examanation are to be deteranaed by the jurors.-Sctentsfic Anerican
Water Pronfing Linen.-Professor Kuhr gives the fol ${ }^{-}$ lowiug directions for this purpose. Pass the linen firs through a bath of one part of sulphate of alumina in ten parts of water, then through a coap bath, of which the soap is prepared by boiling one part of light colored rosin and one of crystallized carbonate of soda with ten parts of water until the rosin is dissolved. The rosin soap thus formed is to be separated by the addition of one-third of common salt with one part of sada soap, by boiling it in 30 parts of water. From this bath pass the articles finally trough water, then dry, and calender. Made-u, articles maybe brushed with the colutions in succession and be rinsed in the rain. Wooden vessels may be employed.
Reaping Magine Competition in Fravoe.-Two great international trials of reapers have just come off in France, the latter terminating on Saturday night. The first took place at Soisson-, the othert at St. Dizier, in the Department of Uuper Jarne The leading English, French, and American masers competed, but the real contest was between the English and Americans. At cach trial, however, the Americans came off only secund best-the Howarde, of Bedford, gaining the first prize at both contests with their "International" The second prize was taken at Soissons by Osborne, America, and at St. Dizier by Johnstone, America. Samuelson, of Bambury, came in third at Soissons, and W. Δ. Wood, America, third at St. Lizer. The drivers were brought over from America as well as England, so great was the interest in the contests.

Says the Morrisburgh Courier.-Mr Morton, of Molson's Bank, showed a specimen of paper pulp manufnctured from poplar wood at the Waddington paper mills. This pulp seems to be a good article, and from whil a first-clacs quality of urinting paper can bo made. The bank of the canal here bas beon lined with poplar wood, which was brought in by our farmers during the glejghing season. It is the property of Mr. James, proprietor of the mills at Vaddington. Poplar is rather a ecarce article in this locality, but we are informed that it abounds in large quantities in the vicinity of LOTighal. Since it is likely to become so useful in the manufacture of paper, we opine that when the Coteau and Ottawa Railway is opened there will be quite a large traflic in the shape of poplar wood.

The Whatariang of (oal - That coal lose considerably in value by exposure to the weather is well known, but few, prob. ably, are aware of the extent of the danage Dr Varrentrass has ascertained a loss of more than one-third in the weight of a sample of coal exposed for some time to the air, and he states that the quality of the coal had undergone a still greater de. terioration. The loss is duc to a slow combustion of the volatile elements of the coal, which gradually diministi in amount, whilst the proportion of carbon, ash, and sulphur are increased. In some experiments made the gas furnished diminished 45 per cent, and the heating power 47 per cent. in a coal which had been exposed, and the same conl under shelter lost only 25 per cent. as a gas g. nerator, and 10 per cent. as a heat producer. Anthracite, as m ght be expected, suffers least from exposure to the atmosphers, and the bituminous coals are those which lose most.-Globe.

How to Inon Lines.-A Mearth and Home correspondent gays linen that is placed immediately after being ironed near the stove or in the hot sun, is stiffer when dry than if it is permitted to dry slowly. It is a good plan to lay collars and emall articles on a waiter, and set them on a kettle or other suppoit on the stove, till they arr quite dry Sometimes the iron will stick in a manner perfectly unaccountable; if it is rubbed on a board on which fine salt has been sprinkled, and then passed over a brown paper with wax in its fulds, the sticking propensities will be checked. A bowl of clear water and a clean old linen cloth, is uscful to remove any spec ks the linen may acquire before or while being ironed.

A Net Nebdle -A lady in San Francisco, the Chronicle of that city says, has invented a new veedle, the improvement consisting in making a needle of any size without an eye fror the thread, but with, instead, a hole bored longatudinally into the head, or larger end thereof, to the depth of a quarter of an inch or thereabouts, which hole is arrange d with a screw thread. The needle, it is claimed, will carry any kind of thread, and can be used for every purpose. It is thought that it will be valuable also, as a surgical needle, as it will require but one threal, the advantage of which will be that a smaller hole will be made in passing the needle through any $5 \cdot$ bstance than would bave to be made by the partially donbled thread of the ordinary_cyed needle.

Lake Titicaca.-Lake Titicaca, on the crest of the Andes, is the bighest large body of fresh water, and the lake never freczes over. Two little steamers of 100 tons each do a trifling business. Steam is gencrated by llama dung, the only fuel of the country for there are no trees within 150 miles. The steamers actually cost their weight in silver, for their transportation (in pieces) from the coast cost as much as the original price A steamboat company has asked from Bolivis the exclusive right of navigating Titicaca and the Roo Dezaguadero to Lago Pampa, with guarantee of six per cent. on the capital, and a share of all new mines discovered. Professor Orton, the latest traveller in the region, calls attention to the fact that Lake Titicaca is not so high as usually given in geographical works by about 300 feet. Its tive altitude is 12,493 fect, and in the dry scason it is 4 feet less. This fact has been revealed by the consecutive levellings made in building the Arequipa railway just finished, which reaches from the Pacific to Lake Titicaca. Lake Titicaca is about the size of Ontario, ghallow on the west and north, deep towards the east and soath.

[^0]: - Tinis, and tho succcoding srticies undor the samo titlo, ware pub-
 delpha andin Eiginooring.

[^1]: - Road before tho Edinburgh and Loith Iretitution of EngInoers.

