BULLETINS

OF THE

Asrial Expretment Assuriatinn

Bulletin No. XxX
Issued YONDAY, TEB. 1, 1908

$$
111
$$

1. 24ttoxial Hotan and Corrantast-

Arrival of the miliver-barte................................5-5
selfridge..
Medala for the wright Brothera..........................866
2. Merk of the AoB.at-

Letters fron Menbers.. $7-10$
Jan. ${ }^{\text {P }}$ Curtias to MeCurdy about ahipe
nent of the milver-Darto........................
Jan. 15 Curtias to Bell about detaila of engine.. $8-8$

Jan. 15 Curtias to HeCurdy about naterlals for Baddeck.................................... 909

Jan. 18 Curtias to 3011 about angine
and tranamiasion.................................... $10-10$
Bxparinentas: Heported by the Baitor.....................2l-19
Prelininaxy axperinente relating to ape paratua to test lift and drift of Drome He. 5 on ice
$.21-12$
Drone Wo. 6. Joperiments with Oionos
kite..
Finter opout eauged by rotating propelier:
By J.A.D. Heturdy...20-20
Proposed ice-boat for mesauring afficionciea
 4. Hisoolinnouns Coryunicationa:-

Report conoorning the ahipment of the agilver Bartiby the Seoretary of the) A.foA...................... 2t-so
(Table continued on next page)

5. The Outlonk on Axiation: by the Asst. Bditor............skese

Wright atearing deviee, Cortlandt Fiold Biehop, Franoh Aaronnutio Congress, Lenidon Aeronautic Congreas, The Hudsonmithiton Celetaration, Orvilie iright, Aviation at Anmapolia, The Aore CNub of St: Jouis, Aeroplane race At Monte Cario, an Aero club at Wamington, F . P. Iteneman, inventor, The Jrench Salon, Vandman, inventor, Bleriot'a new biplane.

1. The Winite Oionoa rite ahowing point of attschment of fiying cord (upper picture)......... 18
2. Fhite 0ionos Ki te mhowing the upper aurface (lower pieture)13

7efurdy*

Jan. 27, 1909:-Attention is ealled to the interesting waterapout phonomonon coacrabed in this Julletin by Mtr. MeCurdy. It demonstratea the presenee of a partial vacuare underneath a rotating propeller. It suggests the reanibility of inoreasing the lift of a flying machine by piaeing a aurface izupermanble to air belew our propeller at places where it is known that a partial vacuum exizts.

This recalla to my mind experiments mado in Beim Bhreagh Laboratory some years ago in teating the lift of aeroplanes aet at different anglea upon a wirling-frame. The wirling-frane was auapended from one aris of a bean and balanced by weights carried by seale pan on the other arm. The rotation of the miriing-riame was saused by small oo leetrie fan-propellers wich were aet upon the wirling-frave, the electric eurrent being led to than from a dynome through a frietional contact at the rotary point of suspension.

When the whirling-frome, pisted with aeroplanee, tilted up at a speciric angie, wha enused to rotate by the aetion of the ranmpropellers, it went up and weights had to be racnoved from the seale pan at the other end of the bean in order to reatore the balance. The asscunt of veight thus reneved was taken as a messure of the lift of the meroplanes when traveling through the air at the observed apeed. Hundreds and even thoumands of experimente were made with this whirling-irase and the ramita are proserved wnong the labbre atery reaords. Though nade many years ago they have never been pubdiahed and I think it would be of value to the members
of the $A_{0} \mathrm{~F}_{0} \mathrm{~A}$. to have adene detailed aceount of them in the Bulletins. The reeorda are ao voluminous, howevor, that it alll take conaiderable tive to prepare a reaune of then for the Association.

In making these experiments it whe iepertant that ne part of the lift acoredited to the aeroplanea ahould have been eaused by the propellers themelvas, for if the propellars wore not arranged to puah horizontally their thrust would yield a 119 t nlug if puahing upwards, minus if puahing dovminarda. It was tharefore ny cuatos, before attaching the aeroplanes to the whirling-frane, to atart the motors at an to be aure that the oporation of the notora themselves did aot disturb the balance when the frave rotated without aeroplanea.

I then made the diseovery that, when the motore were puahing perfectiy horizontally, the presence of a horizontal strip of tin undorneath the propelier produced a ilft.

I attributed thia, at the time, to the action of the propelier in ahovelling off the air froze the upper asce of the tin aurfaes, loaving atzoopheric preasure practioaliy undisturbed below.

I found the lifting affeet much improved by bending the atrip of tin inte a soni-cirele aurrounding the lower half of the propeller.

I made many axporimente to ancortain the most officiont form of surface to be placed beneath the propellari and theme resulted in a model which has been preserved in the Laboratory Huseun, and mich ahould be hunted upe

The recorts of the experiments alme ahould be examined to ascortain the quantitative offectes produced.

The propeliera enployed were the ordinary brase fans used for oooling reons. It is obvious thet vith sueh propellers an we ume in enr avrodrane experimente very much nore powerful offocts should be produced. Mecurdy's observation that the mater under the propelier of the "Loon" roee to a height of fron 12 to 28 inchea above the general surface, when the edge of the progelier was at a distanee of 3 reet frors the vater lavel, indicates a very poverful action.

Stuppese the vacuas causod by the rotation of the propeller to be mufficient to sumtain a colvm of water one foot high, this would indiente that a surface intorneable to atr. plaeed twe or three feat belaw the loweat edge of the propelier, would experience an umbalanced upward pressure of about $1 / 2$ 1b. per square inch, or 72 2ba. per aquare foot.

Thia is a very cenalderable preasure; and if it could be utizized in the aupport of the machine, it would save an on mous extent of supporting aurface.

A atrip of netal or wood, bent into an are of a etrele, and fitted underneath the propeller, would not only serve as a esuara to the propeller, but would probably yield a very considerable lift.

Suppose its surface to be resolved into an equivae lent horinontal surface equal to 6 aquare feet (65t. long 1 rt. wide) thia would yiald a lift of 452 lbs. upon the sasuaption of $2 / 2$ ib. per squaro inch.

I would aucgeat loking into thia matter experiruntrily; for, ahould it turn out to be the cage chat we are neglectm ing to utilize a conaiderable lift by not placing a murface underneath our propeller, a nev and umerul invontion will remalt of a diatinotiy patentable kind, that mould neceamarily be expleyed in overy future nlyingmach ine having it rotatory propel2er. A.G.3.

Iane 23, 1009:- Seven casea containing pertions of the wail-ver-Darte are now at Beinn Bhreach Laboratory; and two other eases have arrived at Iona where they are hold awriting the settiement of a charge for $\$ \mathbf{4 2 5 . 0 0}$ for the special car in which thay oase. See report relating to the ahipmont of the -gilver-Dart in thia Builatin by the seeretary. The ongine for the "Silvar-Dart" is now on ite why from Hasmondeport but has not reached here yet. A.a.B.

SKNTMDGS.

Jan. 20, 2009:- The corat tioe of the Aere Clut of Asorica having in charge the arection of a monuenent to selfridge, finding that a monument would not be pernitied at the apot where the diasaster happoned as it would interfere with the novenente of the troops on the parade ground, have been correaponding with 4 ur. BeA. 3elfridge concorning the orection of a monument at the grave.
ur. Selfridge desires that the sonuenent there whould be orocted excluasvoly by the faciliy; but auggeate that a bronae tablet night be placed by the Aero club on the monunent he is ereoting. It is probable that this proposition will be acted upon ravorably by the cormittee.
itr. Chanute has returned the manuacript of hieut. Selfridge's paper concerning Progreas in the Art of Aviation Which forms the aubjeet of our Bulletin Ho.iI. Ho expressea high appreciation of the paper. He thirike it well worthy of
putlicatient and beliovea that it will reflect honor upon Lieut. aelrildge. He very kindly orfors to ald us in obtalning photograyha to illustrate the proposed nemorial volume to selfriage.

The Inerntary has received biographical notes concerning Liaut. Selfridge Irom hia father lor. HoA. EnLfidge; and Maj. Sepuer has rromised biographieal moterial relnting to Selfridgeta life in the Arry. The Secretary will now get the Fork ready for publiaation. A.a. ${ }^{\text {F. }}$

Yedals for the grefht Bras.

Jan. 28. 1909gminen the Wright Bros. return from Zurope they will find Averies pregared to to them honor for the great work they have accorplished in prometing the art of Aviation.

Tho medal of the Aero Club of Anoriea will be presentsed to then by the Prosident of the Unitod States.

The stat theonian Institution will award them a modal.
Senator Yoraker has introduced a reaolution in Conerean authorizing the secretary of 值位 to give gold medals to eaah of the wrights. The resolution has beg adop,ted by the Sonate of the United statea without debsto; sind the newse papers have announeed that
*Gold medala are to be arrarded to Orville and Wilibur Iright by Cangrass in recognition of their aervicas in the advanement of serial navigation, if the House of Reprasentatives appraves a rasolution by the senate tomday,

To J.A.D. Wthurdy.
 Buddecis, Ha_{8}

 In Bath by being too big for the expresa oar. It was forvarded On to Hiagnas Faila by freight, and will ge from there hy exproas if it will go in the tar, othervise, irelgit. We are getting roady to woxk out the 8 cyilnder and will give it a brake test betore thipping.
since you loft I had a wire from hro Bell to cone at once, but we mat have our Directors* meeting mo as to mase a report to the zitate before the $\mathbf{2 5 t h}$ and, therefore, world have to be back by the $14 \mathrm{th}^{2}$, and wred that I could come if neceasary but would have to cone back by that tine. Sinee reading the last Bualetin, I am aure $i t$ would be wise to make a brake teat of the engine berore ohipping it.

(signod) 0. H_{L} curtiga.

\&

50 A.EF BeIn, Baddeck, 解

 have rired as followes
olfosange rocosved. An necuring tranuentasion and gotesing engize romdy to eoric without dolay.
I hawe a lettor irom liochurdy, probably weitten before
 mianion for 1 Ho. 5. I an getting overything rendy to forwara by axpruan, and I ahail come as soon an the ongine in teated. We hnve put nev jackets on to replace the ones which had burst in freentige alao made new oonnections for the wher pipes to avoid further trouble. Fhe bruce eest will be made in a day or two, and I ahnil then bo free to oone to Badtook, the ongina rozioning at onoe by axprese.

I appraciate the exportonce of tho patent mattere, but I an aure it is alae ingortant to get the power pleant or tetrwhearad aorodrone $\mathrm{He}_{0} 5$ realy to ship so that there will not be any Gilus wion we are reedy to tave her out on the see.

Our atocichoidecire moeting aras poatponed umtil tomerw row (3ెaturety) when we ahnal elect directurs to 5112 the vacancion, and this mattar will be orr our hands.
I oncloas a picture of a rour hele tranmendaion frow France which has a striking roscablance to ours.

Vo axe buslaing the aprocketa and chaina to bo used on the Ho. 5.

Gurtian to Hetundy.

To J.AsD. $\mathrm{Htantay}_{\text {。 }}$ Badiock. 算.
 to get your Lattar of the 22th. It ia the first word I have had, exeept Baldirin'a meaaago, in regara to mat in manted
 In saicing the trimamiasion. Baldornts nesacge onlla for: 20 rt. of ecunternhaft, hellow preforred. 2 Abs. roliler bearing. $1 / 2$ dos. thrust bearinga.

I think we had botter hify a longth of $13 / 0-11$ galvanized tubint with sone Heasmirights to ilt. Fheas are conbined radial and thutht bearinge. The largeat bearing we make in Por 1 inok ghatt onzy.***

In regrasd to the trangensasion wil2 way that the chain we ordered has eove; it veighs $\mathbf{2} 1 / 2 \mathrm{Lbs}$, to the reot. It will sacke a vary heavy orransmiagion, but it will hold.

I juat masied aplotvire of a four selt transaiasion from abroad. It is near anoxeh lixo ours to be a twin. Ve have put new jacketa on the engine with new atyle coupling, and are vorking night had diny to get it rosdy to teet and map. We huve also Iftsed a flange on both onds of the shaft us per Maldwin's mesaige; I don't know what this for, however.
(Bigned) 0.It. Curtias.

Cuxtian to Bexi.

Te A. B. BeL2. Madateak: \%.

 Háamondaport. Pinfer Tana 23, 1909z- Our long delavod atockholdras' meeting has been'held and all matters texanding attention aettied. The big eight oyiinder is being met up to teat. As I vrote you, we fitted now jackets in place or the ones which had burat by Preeaing. On the new ones wo have sule an inquroved ritting for the mintereonnection wich took a little time; wine had some collay causec by a bad caating for the pony brake outrit which in being made watercooled to withutand the heat of long contimued toets.In regara to the test, I pleased to roport that our tr. Pritamer has aecurea from Germany a manograph wieh Fill bo used on the motor to doternine the mean effective preasure and actson with and without the portie, and various other dath of value in construction of onginos for flying machines. I sola there are but two or trivec inetrumonta of this kind in Anerien. The records are raede by tha une of a senaltive falm and a reflected 11 ght. Charts mill be aent with our repert.

We have made evory arrasgenent to leave as moon as we are through trying the engine, laaving that to cone on by express. Hra. Curtise will casie with me rar a mort stay.

Just had a letter from Baldwin in regard to uharting, tranarisation ote. I thins we will huve acovanlated overything needod for thia work by the tine the engine axrives. I expeet we will be on the rome by the time this letter reachea you. Fo are thinking of going via Hontreal. (5ignod) G.H. Curtiss

Prolininary Froperinente relakini to the arparatus to togt thie 1ift and Arift of Droge No. 5 on the ice.
'Jan. Ge 1909:- Zaperinents were made tomay in a very high wisd with a quarter aised model of Brone He. 5 to teat Whether a kite could be Rhown by two or nore very uhort cords onky about one or two moters long as proposed for seaanring lift and drift and angie of incidence on the ice. The experiments were made in the kite rield. Vind-velocityz-minimur over 26 , maximen over 28 niles per hour.

The kite flew very woll by short lines and even whon held hy hand without any lines at all. When hold by hand and the angle of incidence gradualiy changed gradationa of 1ift were perfectly manifest to the sense of tomoh.

As a general reault we casze to conclusion that it is practicable to obtain meaeurenents of $119 t$ and drift and angle of ineidence upon the ice with the kite attached to a meveable eradle monething like the arme of the vugly Duckling* whout R2ying the kite at all, so that there would be ne danger to the kite of thraahing about in the wind. It can be attached rimily to the suovenble cradie, and the pull in variosse directions menaured by mpring bnlances. A.d.B.

prome no. 6

Jan. 16. 2009:- A copy of the Oionaa Kite ahom in Builetin XX, pp. $33-34$ hes been made orudely of atickw or alats having a crosemection of about 10 man by macked together at th junctions and tied. Mo special oare had beon taken, as in the case of kite ahom in Bulletin $X X \mathrm{p} .38$ to reduce the hosd resistance arcepting that the aticks were onclosed in the cloth covering, wieh mas coeposed of ordinary ootton sheeting. The kite was tried this afternoon and a series of observations were made to deternine the lift, driftand efPioioncy.

Dinonsionss- Length fron fore to aft 1 neter (rop piano): width from alde to side 7 suetere (top plane); depth (obliquo) 1 meter. Body 415 on long. Triangular in crogesection; oblique saction at the middie point form an equilateral triangle of 50 cm alde body tapors to a point at either ond. The body sial puched through the 2 ower conter cell of the kite aa far as it would ge and then fautened in place. It projected further behind than in front. the longth fron the middie of to kite to the extrene rear was 252 cm and the head was 163 mm in front of the ridde of the site.

Upon the body at the rear was fitted a flat tail inclined upvards at the rear ao as to make an angle of 10° with the horizontal plames of the kise. The front edge of this tail was 147 ca behind the contor of the kite. The roar edge of the tivil was vidar than the front adge; front 102 ans rear 126 em oblique side edges 76.5 en ; diatance froen front to rear of tail meaburod along a line vertical to both edges was 75 cm.

As body protruded further at the rear than at the front and carried a tail, a welcht of lead was attiched to the bow to restore the balance of the kite and to make it alightiy hoad-heavy.

Deight:- The head load of lend woichod 2986 (ris. The tothl weight of kite (inoluding lead) tas 372 bs , or 16798 p7a.

Surfacg:- The horizontal surfaces swounted 5010.2500 sq. m, and the oblique surfacea to 12.9075 sq. 3.

This refara to the wing pioce alone and doas not include the ourfnce of the tail or body. The gurface of the tail may be ignored as not constituting any portion of the supporting surface of the kite; for, on account of its being inclined upparda at the rear, the air-presaure ans ilvays upon ita upper aurface.

Fe should however include in the supporting aurfuce the V shaped bottom of the body. Thiz is eatizeted at about 2 aq . m oblique.

It is difileult to estinate the total amount of aurface as some of the uurfacea were horizontal and othors oblique, and it becacses necesanty to reduce sil to their horizontal equivalenta or all to their oblique equivalonts so as to fet the total in one or the other kind of surface.

In ruking the calculation I have eatinated the area of the horizontal projection of the oblique surfaces and tacen this ss the horisontal equivalont of the oblique aurfaces.

In a similar manner I have consdaered the horisontal surfaces as the horiaontal projection of a oortain mount of oblique surface and considered this ap the oblique oquivalent of the horisontial aurface. The folloaing forras the bsasis of the calculation.

1 aq. a oblique $=.5774 \mathrm{gq}$. a hor.
1 sq. m horiaontal $=1.7320 \mathrm{sq}$. a obl.
Fith thia aa a basia I find the total surfrace as in the rolloaing table:-

Borizontal	Oblique
sq. ma	sq.

Horimontal surfaces.............10.2500 actual 17.7530 estimated
Oblique aurfadea..................6.8750 estinatodll.9075 actual
Botten of Body..........................1548 estimbated 2.0000 aetual


```
Mving %oight:- Feight 16%98 gras. SurPace
3.6005 3q. Ei oblique. Ratio 530 gza. per
sq. % oblique. volcht 16798 gns. Surface
18.2798 3q. m horizontal. Natio 918 %at.
per aq. za horizontes.
```

There was quite a heavy wind this norning (Jan. 26) froen the northeast; in fact a atorn wind which died down conaidm ersbly in tio afternoon whon the experfrnenta werv mude. The Oiones Kita was Plown by meant of a quarter inch Manilla roge
 Pront of the conter of the kite. Pive serion of observationa of Ind velocity, altitude, aud pull were then made with tho following reaultsto

alt. Pul

	40	20
	38	10
	33	25
	32	30
	30	40
	31	10
	32	20
	33	70
	41	10
	36	20
10 Oba.	$3 / 5$	245
Aver.	$34^{\circ} .5$	25.5

Egn. 3 \#ind 21.20 mph .

	Alt.	PuL
	27	50
	26	20
	25	30
	27	20
	35	30
	40	50
	33	55
	30	30
	30	30
	30	35
10 Oba	293	320
Aver.	$29^{\circ} \cdot 3$	32.0

\&

Fan. 2 Vind 12.40 mph.
ALt. PuLl

32	10	
35	40	
35	20	
32	30	
38	50	
29	40	
30	35	
30	50	
30	40	
	28	20
10 Obs. 315	335	
Aver. $31^{\circ} .9$	33.5	$1 \mathrm{bs}$.

[^0]

	Surxasy				
	Obs	Alt	Pull	Oba	Find
Expe 1	10	345	255	2	12.25
109. 2	10	319	335	1	12.40
Exp.	10	293	320	1	12.20
Bup. 4	10	230	123	1	10.50
Txpe. 5	10	251	195	1	9.08
	50	1458	1228	5	54.45
		$28^{\circ} .76$	24.56		10.886 my

Remarkat- The kite rlew very atoadily in aiste of conaiderable fluetustions in the foree of the wind am indicasted by the rluctuations in the puil. During experizent 4 Then the wind dirinished the kite began to turn on one side coming slowny down but recovered itaelf. On one occasion the wing piece soersed to actually touch the ground at one end. the other end being alnost vertically in the air. The kite recovered itaelf however without any dnuaç and the five seriea of observations were mucceasfully concluded.

EPficiency: -the average angle of altitude was $26^{\circ} .0^{\circ}$ wifich I have taken as $28^{\circ} 45^{\circ}$. The follouing are the sine and cosinc of this angle:-

The avorage pull was 24.6 lbs at the above angle from mich I caleulate.

> Vert. pull $=12.8326$ 2bs, may 21.6 2bs. Hor. pul 22.5742 bs, $\operatorname{lng} 2.6$ 2bs.

The lirt is equivalent to the lond musteined in the air plus the vertical pull. The drift is equivalont te the horisentel pull.

tift.

Dreft

Weight of kite 37 2bs Feight of rope 10 2bs Horizontal pul2 22.6 lba Vertical puli 11.8 Ibs

$$
\text { Eericiency } \frac{\text { mift }}{\mathrm{Erit}}=\frac{\text { Sach }}{2.6} 2.7
$$

At the conclusion of Bry. 5 the kite what taken cown and the f2yingoline attached to a poimt 50 cm in advance of the cetner of the kite. The following experimont was then made:-

Exse 6 Tind 9.00 mph .
Alt Pall

36°	70	1 bs
45°	50	1 bs
$60^{\circ}+$	10	1 bs
$60^{\circ}+$	30	1 bs

Henaryase Arter the last observation noted the front part of the kite caved in while plying and the kite gradually turned over sidemays and landed upaide dovm. This was due to the way in which the riying-line had been attached. It was not fastened around the body but to a oord running from the niddle or the kite at the bottom to the nose and supported whare the strain eane by gwy fires to the front

$$
-6=
$$

edge of the top aaroplene. Ruis brought the cell sticice of the front of the kite under compressional strain and thene not being retnforeed by beading gave thay. The kite at the time mas Rying at a great aititude quite above the linit of seasuropsent of the inclinerveter exyloged wich could not rogiater a eroater angle than 60*. A.G.B.

By J.A.B. Moturdy.

Jana 16. 2909: During one of the experinents with the "Loon" at Heamendaport a curious phencmenon manifosted itself while tuntigg up the ongine at the head of Fake Kenka. The "Eoon" had been placed in the water betweon the dock sne hold there by Pour men while the propeller was roteted ram pidiy by the angine; the idea being to have the engine in the beat posaibla ruming order before letting the mLeon" go. Ho sooner had the propeller begrm to rotate when it was noticed by thome present including tir. Curtine and migsels that a manl vatermapout man foryed substnatially directly unter the plane of rotakion of the propeller. It may have been a little bit bohind this plane and wy fryression is that such was the omse, although I could not say so derinitew 2y. This watermapeut in the shmpe of a pyranid rose to a height varying between 10 and 28 inches, riaing and falling betweon thate linite aceording an the apeed of the ongino was aceelerated or retarded. J.A.D. MoC.

PROPOSND LCB-BOAZ FOR MBASURITG HFYICTMECIES OF PLOPTLRETS: Hy J.A.D. NeCurdy.

Jan. 16. 1909:- There have been many experkmenta made to teat the efficieneies of propellera by thoae interested in the aubjact, but in almoat all cases these teata have been perforised under conditions wish differ fran those in the case of the fiyingmachine, or in other words wen the prow peller is free to advance along the line of 1 ta thruat. Maxim performed a sariea of teata with propellers moving along the line of their thruat by their reaction on the air taking advantege of hit mall reiluray over bich hia flyingmachine was rut in ita preliminary triala. He announced to the world that the puah of his propelier was aubstantial1y the awae when advancing aa when reatricted to rotate in ita original plane. These roauls however are not accepted abaolutely by the Aeronautical world. It took ua about two wecka to arrive, in an experimental way, at the proper deaign of proyellers to be used on the "June Bug" and we alae apent conaidorable time in trying to arrive at the prom par form of propeller to be usod in the "3ilver-Darte, a machine of ereater flying weight and with a more powerful ongine.

If we deterisine the value of the two elements neco easary for a propeller to drive a certain machine namely, puah and theoretical pitch mpeed, we would know at once the diastoter of propelier required and the pitch angle and the combination of theae elements would deternine for us the most economical H.P. with which to drive thia propelier, hence we would immediately know the ongine required.

It aema as though a very good way to obtain these data would be to mount ongine and propeller on an leo-boat. The counter-ahaft for propeller could be arranged to come in contact with a apiral apring so that the thrust of the prom poller would cocpreas the apring and being proportional to the anount of eoepreasion the thrust for different apeeds of rotation or for difforent dianoters of propoliers could be readily observed by a pointer so arranged as to road directly in pounds on a graduated acale.

A propelier test mould be cone hrough in this zoanner. The engine having already been aubjected to a brake tast, the horae-power of the engine would be deterained abaolutely for apeede of rotation varging by 50 revolutions from any 400 to 1200 revolutiona par aninute. The iee-boat first being held at as not to be allowed to advance, the propeller would be revolved at any the lowest mumber of revolutions conalatent with the brake horse-power readings of the ongine. In auch a case we would have a hundred per cont alip. The thrugt would be read directiy off the graduated acale and the revolutiona being known we would know the following:- Hass of air displaced by propeller and the velocity with mich the unit mass (anount diaplaced at each rotation) would be alsplaced, or in other words the iv of alr displaced by the propeller. We would also know the horsepower of engine neceasary to produce this \mathbb{W} of the air. Readinga mould be taken varying the upeed by 50 rotations. The ice-boak would now be let go and in virtue of the push of propelier would advance over the ice along the line of
thruat of propediar. As before the rotatione of the propellor would be talson and the paah obeerved for these rotate ions and the apeed of advance of the ice-bont relatively to the air deternained. In this ease we would have eonditions sinilat to thave of a riyingmachine. From thesetata we oan determine exactiy wat our propeller can be relied won te do in a flyingmachine. It is a question whether the puah will be the anne, greater or less as recorded in the ense with aimilet apeed of rotation whon the ice-bont way pree vonted from advancing. We orus use here propellers in ohich the variable points are diameter and piteh and the best combination of thase two elerents conaistont with the horsem power they would require can be aeternined to aust the aase of a flyingwachine of certain masa and head reaistance to be driven at a certain speed.

It asosab as. though suith a series of experiments would be invaluable to those interested in Aeronauticel work and would aave conalderable work and exponte in that the gut and tyy mothod mould be alnost oliminated.
J.A.D. MeC.
 A.D. Mocurdy, Boeretary of the A. Ro A_{0}

Hoimn Mropth Jithe ase 1909to On Jan. 35, 2000 the folloving bill was reoesived from A.S. MteeDonala, Secretary of the Victoria stemandp Co. Ith.

1tr. ${ }^{2}, \mathrm{~A}_{\mathrm{o}} \mathrm{D}_{0}$ Itethurdy,
Treatio Aarisi Auseciation.
4 bouks and crates (in bond).....698. 45

The foslowing latter was alme enclomeds-

Duar sixe

Tou will please find enclosed fraight and expreas chargen on easeas from the U.S. xCindiy send ne a cheque for the amount an the station Mrater vants the funda.

Youra truly,
(Bignod) A.s. Thomonnla, Sec ${ }^{2} y_{\text {, }}$ Fie. S.S. The.

The inhtpenent we recaivea at Beadock consiated of aeven pieces which wore irnsidiateay taken over to Beinn Bhremgh Tabboratexy.

It seopsed as thoug the exate containing the wings Was atellad senewhere aither at the border, or at Montreal and 30 on January $\mathbf{2 6}$ the rolzowing telograen Ens sent to Mr. Cuxterame

Hechaxdy to Gustisith

 cuiver-parte aterised asther st porder os at Hfontronl. Zeante on route. pont forget flywheel.

- Atogovgoryin guyseos zopuyxto की

-spatyeoes Aydea oth es Surfaotreg otg

-

- maxalioreq Iugnet

 TMnsm

 07 (3) 0 潩

 Helluy who zeoeswed it from hare pankep; the rationen whe in taxn zeoniver it fron hobonnla at Iona.

Crantion myrese bo.
Zons stathen Jan. 29 , 2 hoo.
Prot. A. G_{5} Bnix.

 Colonital Zaclutes.

On Jeatady 20_{0} I wont ofor to fovis for the purpose af telephonting Hablosmid Irou Mfilcy's atore. I munted to find out what he hat coan in tha moteer and in fret how thing

 sand that he hat eent thie telogrom to ne by the afore mentm
 paet Itr. Drankep in J.? Holeodta mtare and he handed me the Tolloning talagrange

I. Prion to Ament. Font

 pry cooount ppoelal gar numet nat the way through, boscon beling toe lexge Sor regulat car. what oharges will he pay on aceornt and take delive exy and wo wixl mithent question ac charges to Radimay Comissiton, Be22 to sgree to pay what

Auretias to. Mr. Purity.
Homandanoxt, Ho foe Jane 25, 1909:- Large box
 direct to destination as merchandise. Regular rate. Charges added your end. Investigate there at once before Agents report. Mra. Curtis and 1 leaving sontag.
(signed) 6. H . Curtis.
On Jan. 27 the following letter and bill were received-
Mink se toftuxdy.
Batdeote Comer Jon 27 1909z- I enclose you
 the ear at Ions today and the orate on the wings is broken. They will have to be taken out one by one as the orate ia of no use now. When you gets ready to move then, and you want me to do it. would like to have you ge over yourself.
(signed) D. Dunlap.
(B121 enclosed - a postal card notice).

MacDonald to Bell.

To Dr. Alexander Graham $\mathbf{3 n L 2}$.
\#addeck, Hz .

> Iona, M.S.,
> Jan. $15,1909$. sir:

I have this day received per express to your sadness 4 box - ${ }^{-5}$ crates which remain entirely at the rial of the omar and will be delivered on payment of the following charges-

Charges advaneed.......................6.77
Krpreas fret eight............................ 30.14
Cath paid customs duty...........7vime
Warehouse..................................
Broker ${ }^{2}$ g omission for entry.
Colleetion.e.....................................
Totel......................886.92
(signed) M.A.J. MacDonald AgE. Forwarded to Buddook per 3.3. Blue Hill.

- 2 orates to follow. Could not get into car at Guapension Bridge. Zoo Large for ordinary car.

Enount they decide as right. Answer anickay. (signod) J. Priee.
H. lisabonnid had aucseated that we not only write him what we decided to do in the matter, but telograph our anamer airnet to itr. Price. Aceordingly, an aoon an I returned to Boinn Mrromgh and conorutad with lir. Bell, the following telogran was sentte

mond to Pxios.

 that while we are prepared to peny reguitar rate on conmigment of goode we will not pay for apecial oar which was unanthorised enil we will not refer matter to Inilimy Comidision.
(3igned) Alemander Gration Boll Chatrman Aorial lixperiment Araceintion.

The Iollouring letter was siso forwardea to Mr. MivoBonald
at Ionase
Mofuxty to Mhopensat.

 conauxtintion with tro Bell and other niembera of the Aurial Experinent Asooelations, wixi any that we wil2 pey the raguale rate on consigh nont of goods (ryying mehtine materiak) from Harmondoport, 置, f. to Zens, Frese and will not under eny edindition pay churge of apeoial cat which was wauthorised. We wil2 not otubnts the natter berore Failitay Consiasion as auggested in the telegran.

I hope thnt the vinolo buakness will be aotthea antiataetorily to all partios in as ahort a fine ag poanthio.
(signed) J.A.D. HeCurdy 3ec. Aprial the. Asace.

Fatter in the alay the following telegrom was recoivedt-

01 this oorrespondomet eeneerning the shipront of
 I reapeetruky mabeats.

5ee of dwrini ling. dasociation.

 report it wan aecided thie arterneon at the regular taidy Conforence of the Asseciation held st Foadquarters, to make out a chequa, payable to the Cunulisn fopreas Co. for the anount of regular expreas chargee for the 4 boxese and 5 erates as per their bili recoried in the mbove roport unier the tate of Jun. $\mathbf{~ 1 5}$. Tor 386.92.

Thil theque was snade out and formurted to Tr. A. I_{6} HacDonald, Mrpreas Agent at Ions, with tho following latter. Tha request was suade that he aign the reeefpt ancloaed and roturn to wa. The form of the rocelipt alao followste Jun. 23, 2909.
Hr. Ae3. MheDonala.
Agt. Cannatian Jicp. Co. Tonn, \%ess.

Dear Mr. MmoDornidse
I an enclosing ehegue ror eightymaix aol-
Iars and ninotywone cents, being anount due the Cannditun zoprois Co. for exprosenge on consign tumt of flying machine material, as por your bi11 of eharges af Jan. 15, 1905. Phenat aign eno closed rocetipt and return seese to me here,

Jan. 28, 2909.
906.0n

Beenived fran the Aariak Aperinent Assocififion the guen of oightywils dolinars and ninetye one oonte boling amount in fual due the Connalian Boprease Contpony for conilgursent of marehnadiae conalating of fous poxas and rive orates oontaining matcerini reiating to fiying maphine, in which Dr. Alestanter Grahom Bell is nomed as conalgnee.

Signedemmemenwewememee
Agent for the Canntian Stepress Co.

We are now awaiting to see whet the express agent will do in the matter.

> (aigned) J.A.D. HoCuardy,
> gec. A. B. $_{*} A_{0}$

The Wright Brothera have a nev steoring device. The patent papera ceaeribing the patent sayso - In a mochanim of the charmeter deseribed, the eombination, with a plurality of aupporta, and a rudder eoryrising ryper and lower planes pivotaliy mounted on said supperts, of a bracket carriod by each of audd aupporte, a shaft journalied in asid bracketa, a plurality of levers rigialy meoured to anid mhat: extending tranoversely of maid planes. Link oonnecting the adjaeent ends of said lovers to the front and rear edges. respectively, of said upper and lover planes, and means for eatuating said shart.

Fs a rudder hoving foruard and rearwiard portiona nornaily in a single plane, of means for positively meving both the front and reas portions of said rudder at different angular velocities with referonee te the pivotal oenter of aeid rudder, to preaent the rear portion at a groater angle of incidence thin the forward portion.

Fith a rudder having les front and rees edges nomuclIy in subatantially the stere plane with the body portion thoreor, of moans for poaitively aetuating both the front and rear edges of said rudier to adjuat the rudier at an angle to ita nommal pesition and to mex anid ruddere.

Corthandt Piela Bishop, Preaident of the Aero chub of Amerieng has presented 32000 to the Club which will oonstitute a frund te be divided into rour primes of a suin of fase oach to be eniled ethe President's Aviation Fund". Thiog are
to be awurfed in 1909 to the pileta of the firat four sorom planea which will acoorglish for the firet time contimuous flight ar 1 kilamoter or nore without towching the earth. In addition to the eath prine the minmer will receive a medth froer the Aere caub of Anerica.

An Aeronautics Congreas was suusposed aone tine ago by the Freneh Goverumant and aill moet soon again in Paria. There has aldo been held an International conference in Loncon diseussing questions bearing upon the future of the art, acience, and busineas of flying. Lawis for governing richt-of-any for acrial machinea aro roally a sorious conaldaration. In a few years they $w 22$ be a peaitive neoasaity.

Vertain Irench experts in International Law have auggeated that a mone of iselation be eatablished, sbowe which tracfic ahall be free, fhile below the zone, air oraft shall oungly with rixed rules and aignala for right of way, place of denount, and so on, and public orart thall obtain the diplonstic eonsent of the local state.

Forty delegatea reprosenting all the important countries of the worle met in London, January 21 , making the firat International Aerial Congress. The purpose of thie Congrase was to eatenplith rules for navigating the air.

Considerable progress has been made in the plans of the cormittee in oharge or the Hudaon-7hlton celebration wich is to be held next septenber and the Aere club and the Aeronautic Soeiety have appeinted eormittees which are working with the celebration cormittee. Asaurances have come from Brigadier General Allen that the Covernment will exhibit the
-3.
resulte of 1 th aerial experiments, at this exitibition. It Le expected that appropriationa will be made by Congresa so thit the Signal Corpa of the Anyy will be able to build sirshipa which may mencouvre in aonjunotion aith the Atlantic yeet. The celebration wlll be held to oommerorate Robert Fulton'a rovolution in atean navigation, and will be augnented by demonstrations of Aneriean progress in Aerial lavigation. Orvilie wright aads- whe report that we are form ing a ayndiante in this eountry ia not true. Bille we have had several propositions we have not anriouvly considered any of thers.

It has been suggested that a Congress Aviation be incorporated at Annapolis.

The Aerv Club of $5 t$. Louia is sarranging to hold an International Indoor Aaronautic rathibition probibly the last week in May. Aeronuuts from all over the world will be invited to axhibit. Prises are to be offored and contests for flying modele are being planned.

Monte Carle has fixed a race for aoroplanes that is to takeplace in about three nonths time. In this race competitora will Ry from Monce carle round a baoy and back to Monte Carlo for a prize of 200,000 francs.

An Aere club ia being formed in thahington. The objects of the club are as rollowa:-

- Po fonter intereat in the principlea and developments of Aeronautics.

To arrange for lectures and denonatram \&ions.

Te extend honora and hoapitalities to minent aeronsutg.

To eneourage and arrange for national and international coppetitions, conventiona, congresses and exthibitions.

Fe comardinate the intereata, arferta and achievements of the various governnental and civilian investigntors in the rield of aersiantics in the eify of IThahington.

To raiae funds for the encouragenent of aeronauties and to be the eustodian thereof.

To orfor such sedals, trophice and prizea as may be froa time to fine deoned expedient.

To arrange Por trial grounds for denonstrations and experiments.

To oncournge the independent foundation of a laboratory of aerostaties and serodynmmica in the eity of flazhington.

Te make collectiona and reep records".
P.I. Fewnan, of Ben Antonio, Fexne, has offered te build for the foverment an aeroplane te ve coapleted in 60 days. If the machine oomes up to the requixerents the Geverment 1a to pay all expensea and a bonua of $\$ 25,000$.

On Tuesday. December 24, the President of the French Republic opened the second half of the anmual automobile anicn at the Grand Palaoe, and incidentally inaugurated the firat raal exhitition of practical piying-avesines that has ever beon held in any oountry. Among othar sachines oxhibited mas the Breguet helicapter aeroplane. The aupporting aurfacea of this machine are inclined at a ereat angie, 15 or 20° or perhapa ereater. The propellerw which are four-bladed, two in number, are alse thited up at an angle wich gives both form ward thrust and lirt. Singlemaurface meehines seem to have had a diatinet armariority in mumhera ohor the double triole

	Puthitor	Detaila			
mandue	matibitor	spread	aurt	velght	ongine
3Tpalpas.					
Fight (Modal)	Ge. Yavigation Aerienne	${ }_{\mathbf{1 2 . 5}}^{\mathrm{mg}}$	$\begin{aligned} & \text { se. } \\ & \text { ne } \end{aligned}$	$\begin{aligned} & \text { kge. } \\ & 450 \end{aligned}$	$\begin{gathered} \mathrm{hope}_{0} \\ 22 \begin{array}{c} \text { 4-cyl. } \\ \text { B. } \end{array} \text {. } \end{gathered}$
$\begin{aligned} & \text { Parman } \\ & (\text { Fe.1) } \end{aligned}$	Voisin Hreres	10.2	52	500	50 socyl. Antoinette
$\begin{gathered} \text { Delagrange } \\ (10.3) \end{gathered}$	500. 4^{3} nncourag ment	$\mathbf{- 1 0 . 5}$	40	450	50 g -ay2. Antolnette
$\begin{aligned} & \text { suariot } \\ & (\text { Mo. } 20) \\ & \text { aeater). } \end{aligned}$	Bleriot	13	65	480	50 emey2. Antoinette
Lejune (HO.2)	Lejune	6.5	23	150	$\begin{aligned} & 12 \text { 3-eyl. } \\ & \text { Buehet } \end{aligned}$
giveratis					
Breguet he2ieoptermanem plane.	Hregraet	14	60	530	$\begin{aligned} & 50 \text { emegh. } \\ & \text { Antoinette } \end{aligned}$

A Fronchman by the anove of Vantiman has conatructed a triplemarfice machine with mich he has nade, at least, one auceotatul riight. The vertieal horizontal rudders are in front, the noveable wingutips at the ond, and a good sised stabiliaing tail at the rear.
sharict*s new biplsne meons to have attracted much attention at the amion. Bleriot is uaing a triple arrface vertical mudder in front. His horimontal rudders are affixed at the apax of twe erianguiar vartical aurfaces, one to port and one se starboard. The function of these triangular surw facan is to keop the maehine frem aliding in the act of turning. Judging fron the aize of the radiator aryloyed, Bleriot eor-

[^0]: Alt.
 PUTLS
 10
 28
 23
 28
 20
 27
 10
 5
 20
 10
 22
 10
 20
 10 Obs: $\frac{23}{23^{\circ}} \frac{10}{123}$

