CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

The Institute has attempted to obtein the best originel copy availoble for filming. Feetures of this copy which mey be bibliogrephically unique, which may elter eny of the images in the reproduction, or which may significantly chenge the usuel mathod of filming, ere checked below.

Coloured covers/
Couverture de couleur

Covers demaged/
Couver ture endommagte

Covers restored end/or leminated/
Couverture restaurde et/ou pellicule

Covar title missing/
Le titre de couverture manque

Coloured meps/
Certes ghogrephiques an couleur
Coloured ink (i.e. other then blue or black)/
Encre de coulaur (i.e. eutre que bleue ou noire)

Coloured pletes end/or illustretions/
Plenches et/ou illustrations en couleur

Bound with other meterial/
Relié avac d'eutras documants

Tight binding mey ceuse shadows or distortion along interior mergin/
Le reliure serrée peut ceuser de l'ombra ou de la distorsion la long de le marge intérieure

Blenk leeves added during restoretion may appeer within the text. Whenaver possible, these have been omitted from filming/
II sa peut qua cartainas pages blenches ajoutées lors d'une restauretion eppereissant dens le texte, mais, lorsqua cele ettat possible. ces pages n'ont pas éte filmées.

L'Institut e microfilmé le meilleur exampleira qu'il lui a été possible de se procurer. Les déteils de cet exempleire qui sont peut-ftre uniques du point de vua bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dens la méthode normele de filmage sont indiqués ci-dessous.Coloured pages/
Peges de couleurPoges demaged/
Peges endommagees

Pages restored end/or leminater!
Pages restauries et/ou paliiculk.'

Peges discoloured, stained or foxed!
Peges decolorées, tachetées ou piqui...Pages detached/
Pages détachées

Showthrough/
TrensparenceQuality of print varies/
Qualité inégale de l'impression

Continuous paginetion/
Pagination continueIncludes index (es)/
Comprend un (des) indax

Title on header teken from: / Le titre de l'an-tite proviant:

Titla page of issue/
Page da titra de la livraison

Caption of issue/
Titra de dépert da Ia livreison
\square Masthead/
Gentrique (périodiques) de le livraison

Additionel cumments:/
Commentares supplomenteires:

This itam is filmed et the raduction ratio checked below/
Ce document est filme au taur de reduction indiqué ci-dessous.

The copy filmed here has been reproduced thenks to the generosity of:

```
University of Toronto, Science \& Medicine Library
```

The images eppearing here are the best quaily possibie considering the condition end legibility of the original copy and in keeping with the filming contrect specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the iast page with a printed or lilustrated impression, or the back cover when appropriate. All other original copios are flimed beginning on the first osage with a printed or illustreted impression, and ending on the last page with a printed or iliustrated impression.

The last recorded frsme on each microfiche shall contain the symboi \rightarrow Imeaning "CONTINUED"), or the symboi ∇ (meaning "END"). whichever applies.

Maps, piates, charts, atc., may be flimed at different reduction ratios. Those too large to be entirely inciuded in one exposure are filmed beginning in the upper ioft hand corner, ieft to right and top to bottom, as many fremes as required. The foliowing diagrams iliustrate the mothod:

L'exempiaire fiimd fut reproduit grâce ad ia gendrositd de:

University of Toronto, Science ε Medicine Library

Les imeges suiventes ont dtó reproduites avec le plus grand soin, compte tenu de la condition et de ie netteth de l'exempleire fiims, ot en conformitó evec las conditions du contrat de flimege.

Lee exempiaires origineux dont is couverture en pepier est imprimie sont fiimds on commencant par ie premier piat et en terminant soit par ia dernibre page qui comporte une empreinte d'impression ou d'iliustretion, soit par ie second pint, seion io cas. Tous ies autres exemploires originaux sont filmis on commençant per is premiöre page qui comporte une empreinte d'impression ou d'iliustration ot en terminent per ia deriiĺre page qui comporte une talie empreinte.

Un des symboies suivants appareitre sur ie derniltre image de chaque microfiche, seion ie cas: io symboie \rightarrow signifie "A SUIVRE". is symboie ∇ signific "FIN".

Les cartcs, pianches, tabieaux, otc., peuvent Altre flimbes tas taux de reduction diffórants. Lorsque ie document est trop grand pour étre reproduit on un seul ciichs, il est filmé a partir de l'sngie supdrieur geuche. de gauche droite. et de haut on bas, en prenant is nombre d'images nicessaire. Les diagrammes suivants ilifustront is mothode.

MICROCOPY RESOUUTION TEST CHAIIT

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Ine
1653 "ast Main Street
Roche ter, Now Yerk
14609
USA
(716) 4E2-0300-Phome
(715) $288-5989-F 0 x$

Truth che oriteís
comptionext
Reprinted from the Journal Or
The Royal astronomical Society Of Canada, January - February, 19 it

THE ORBIT OF v ORIONIS 5

W. E. HARPER 11

THF: ORBIT OF \boldsymbol{v} ORIONIS

By W. V. Haxpk
THE spectroscopic binary v Orionis ($a=6^{\text {h }} 0 \underline{2}{ }^{2} \mathrm{~m}, \boldsymbol{\delta}=+14^{\circ}$ 47^{\prime}, photographic magnitude about $4 \cdots \underline{)}$) was discovered* byFrost and Acams in 190\%. The range in velocity of their three plates is approximately 70 km ., which is in fact abcut the total range for the star. . Their first observaticn was made at a fortunate time, it falling on the crest of the velocity curve which rises rapidly to a high positive value and falls again as rapidly. On this account this observation has been of material assistance in getting a more accurate value of the period than conld be obtained from our own observations.

Work was commenced on the star here November 11, 1907. and from that time to December 30,1910 , one humdred and nineteen plates were secured. The first season's work gave the general form of the curve, and during the three succeeding seasons efforts were made to obtain a full series of observations around periastron where the curve, as previonsly mentioned. changes so rapidly. In this we have been only partially successful, as clondy weather at each return to periastron prevented our obtaining all the observations desired. Nevertheless quite a number of reliable plates have been secured for this part of the curve and the determination of the orbit has accordingly been proceeded with.

The spectrmm is of type B_{d} and has mumerons lines suitable for measurement. The hydrogen lines $H_{i}^{\prime}, H_{y}, H_{s}$ and H_{e} appear in the range of spectrum measured, but the latter was scarcely.

- A. J., vol. xwiii., p. 386, tgoz.

Velocity Curve of y Orionis
ever measired owing to the close proximity of the // line of calcinm and consequent overlapping. The helinm series $\lambda \lambda 4713$, $4471,4388,4143,4121,4026$ and 4009 are all measurable and these, exc-pting the first and last. were anong the most frequently used. The magnesinm $\lambda 4481$ and the calcium $K^{\prime} \lambda 393 ;$ are not so intense as either the helium or hycrogen series and do not appear in many of the spectra.

In view of the fact that a mumber of binaries have recently been discovered in which the calcinn lines H and k give different velocities to the other lines it may le noted liene that this is not the case with v Orionis; the velocites of the K line agree with those of the other lines. Another good line is the carbon $\lambda+267$. These were the lines most frequently measured but a ${ }^{\circ}$ 'tional lines in a number of cases have been seen, and where these nave been measured the resulting velocities were always in agreement with the lines most commonly used. Among these additional lines may be mentioned : $\lambda \lambda 4572,4563$, $4549,4528,4452,4383$, $4325,4308,4233,4131$ and 4128 . There are also indications of the second series of hydiogen.

On the first one hindred plates all the lines that were at all measurable were used. When the results were ploted with the the provisional period of $131 \cdot 4$ days there were many little irregnlarities in the curve; its appearance was that of a wav. line. As no indications of a second spectrmm had been detected, even thongh a fine-graned plate had been nsed at the time of maximu:m positive velocity, it was difficult to accommt ior this. It was thonght that a possible canse might exist in the selection of lines varying from one plate to another. To decide this point and incidentally see if the wave-lengths used needed any anhitrary correction a table was constructed of the residnals for each line from the mean of the plate. The resnit is contained in the accompanying table. Besides the twelve lines here listed there were varions others which did not occur frequently enonght to make mention of. The lines are arranged in order of frequency of measurement, the total number of plates being 100 .

Ifines Measured in v Orionis

$\boldsymbol{\lambda}$	Number oi Times Measured	Avera Resudu		Corresponding Correction to Wave-length	
$4340 \cdot 634$	97	-1.39		+ 020	1. m .
$4388 \cdot 100$	94	. 0.43	-•	+ $\quad 007$	
4471.676	94	+1.51	"	'022	\cdots
+143.938	86	-0.03	*	.000	*
$4026 \cdot 352$	75	+1.67	" ${ }^{6}$	-022 +.035	"
$4267 \cdot 301$	68	-2.45	"	+ 035	*
$4121 \cdot 016$	63	-0.11	*	+ 0002	"
4431.400	62	$+1.95$	*	-029	"
$4101 \cdot 890$	56	$+0.49$	*	-.014	
4713.308	20	-1.48			
$4861 \cdot 527$	19	$+370$			
;933.825	13	+1140			

No corrections to wave-length are given for the last three as the observations were deemed too few in number, and, furthermore, the ends of the spectrum may not always have been in focus, thereby causing these residuals to be abnormal. The residuals in the above table are, in general, small relative to the probable error of a plate, and while somewhat better accordance among the different lines on a plate would be secured by adopting an arbitrary set of wave-lengths based on the corrections, yet none of the reiduals are so abnormal as to warrant such a procedure and accordingly the norme! valnes have been retained. In subsequen t easuring the first nine lines of the table were the only ones used, and the other hundred plates were recomputed, using these lines alone so that the results ought, at least from a consideration of wave-length, to be consistent.

Plates from 1140 to 2257 were made with the single-prism spectrograph IL, as first constructed, the dispersion at H_{γ} being $30 \cdot 2$ tenth-metres per millimetre. The balance were made with the new single-prism instrument, designated I, whose dispersion is 33.4 tenth-metres per millimetre at the same region. Plates 3369, 3847, :386:5 and 3890 were made on Seed 23 plates, the remainder on Seed 27 emulsion. The four Seed 23 plate:, were made at times of high positive velocity to see if any trace of the second spectrum could be detected. No indications of snch were seen.

Two plates lave been omitted in the discussion, one, 203 s , which gives a residual of 25 km . where the curve is well-defined in the flat part. This is probably owing to some instrumental error. The other case is that of plate 1315 which was taien immediately following plate 1314 under almost identical conditions and yet gives a decidedly greater positive velocity. The plate is somewhat miderexposed, but there would seem to be some additional canse for the great difference in velocity, and as these observatir is ocenr around periastron, this was one reason why a contintious series of plates at this phase was much wished for. The intention is to make more plates next season at this critical place in the carve. The remaining 117 plates form the basis of this discussion and the data regarding them is contained in the toble following. The phases are reckoned from the periastron finally accepted, Julian Date $2,417,975 \cdot 16$, and the residuals are scaled to abont $\pm 0.2 \mathrm{~km}$. from the curve representing the final elements.

Measures of arionis

Plate	Juliun Date	Phase	Velocity	Weight	Observer	$\mathrm{O} . \mathrm{C}$
1140	2,417,891.93	48.03	$+5 \%$	4	11	
1160	903.78	59.88	+ +120	4	I'	-4.4 $+\quad 3.4$
1184	914.92	71.02	+ 45	5	1	+3.4 -4.3
1185	914.95	71.05	4. $+\quad 39$	5	I	-43 -40
1197 1198	$938 \cdot 73$	$94 \cdot 85$	+12.6	6	1	-4% $-\quad 03$
1198 1217	$938 \cdot 75$	19.45	$+15.2$	4	I'	$+\quad 23$
1217 1223	944.73 954.81	$100 \cdot 83$ 110.91	+18.1	6	"	+ 27
1224	$954 \cdot 84$	111094	+23.8	5	!	+ 111
1229	$955 \cdot 84$	III.94	+38	5	I'	$+79$
1235	957.54	$113 \cdot 64$	+22.5	3	II	+ $3 \cdot 3$
1250	$961 \cdot 71$	11781	+22.5 +37.6	4	11	- 1.5
1251	$961 \cdot 73$	117.83	+36.5	3	11	+ 48
1261	$963 \cdot 78$	119.88	+ +374	5	1	37 $+\quad 00$
1273	965.59	12169	+314 +414	6	$\stackrel{p}{ }$	00 -1.3
1282	968.58	12.488	+526	4	$\stackrel{p}{\mu}$	1.3 -116
1302	970.65	126.75	+510	7	11	-116
1303	$970 \cdot 67$	126.77	+60.4	6	11	115 -115 $-\quad 2.1$
1314	975.62	0.46	+73.5	4	11	- 211 $-\quad 2.7$
1320	$980 \cdot 70$	$5 \cdot 54$	+56.1	7	1	-2.7 $+\quad 1$
1325	989.65	14.49	+59.5	6	11	+1. +0.7
1326	$984 \cdot 66$	14.50	$+14 \%$ +14	3	11	+0.7 +15.5
1335	$992 \cdot 57$	17.41	+225 +2.5	5	1	155 $-\quad 211$
1337	993.69	$18 \cdot 53$	$+30.5$	7	1'	+ 76

The Orbit of v Orionis
ne, 203 s. ll-defined trumental vas la:ell ical conty. The mi to be y, and as te reason 1 wished II at this form the ontained the jeriresiduals ting the
$\begin{array}{r}15.5 \\ 5.1 \\ \hline\end{array}$
$-\quad 7 \%$
+

Plate	Juian Date	Phas	Velocity	Weight	Oberver	O-C
$13+8$	2,417,994 72		$+28.5$	6	'	6.2
1352	${ }^{976 \cdot 62}$	-. 46	+26.7	6	I	+64
1377	$8,005 \cdot 68$	30.52	+21.4	4	II	+7.0 +0.1
1385	0106	$35 \cdot{ }^{2}$	+12.2	6	P	- 0.1
1346	$017 \cdot 53$	42.37	+14.3	6	P	+ 3.8
$14{ }^{\text {N5 }}$	047.50	72:40	+16.9	2	II	+8.1 +1.1
1497	0.99 .53	74.37	$+10 \cdot 3$	6	$\stackrel{P}{ }$	+ 14
1503	054.55	79.39	${ }^{0} 3$	2	!	9.6
1910	217.94	$1115{ }^{2}$	+20.	3.5	C	- 3.4 $-\quad 75$
1943	234.95	128.54	$+63^{\circ}$	$1 \cdot 5$	11	- 7.5
2019	$2 \times 3 \times 5$	46.17	+ 711	5	II	- 2.8 $-\quad .7$
2010	233.87	$46 \cdot 19$	+2.	$1 \cdot 5$	II	-77 $-\quad 77$
2014	2.55 .87	$48 \cdot 19$	+ 3^{16}	3.	C	- 57
2020	285%	+8.22	+ 03	$2 \cdot 5$	C	- 90
2025	286.67	48.93	- 30		${ }^{\prime \prime}$	12.2
2034	29 : 82	55.14		5	$\stackrel{ }{ }$	0.0
2035	$292 \cdot 6$	55.17	$2 \cdot$	4		117 -6.0
2061	29785	60.17 $\times 0.11$	+ 2.6 +10.3	$5 \cdot$		
2133 2147	320.79 32208 3	83.11 8.10	+10.3 +6.2	${ }_{2}{ }^{7}$	1	+ 0.4 $+\quad 4$.
2230	34170	10402	+118		11	- 0.2
2257	$346 \cdot 72$	109.04	+20.7	,		0
2359 2380	37470	5.76 12.75 18	+517 +55 $+5 \%$			- 3.0
2380 2410	3×1.69 388 387	1275 1973		$\stackrel{5}{4}$	\%	
2428	3×9.66	20.72	- 309	6	c	+ 9\%
2446	397×62	28.68	+24.2	7	1	+ 90
2524	425.55	56.61	+12.6	7	11.	+3.8 +3.3
2781	557×3	57.69	+14.0	7	p.	+ ${ }^{\text {a }}$ + $+\quad 0.2$
2 SOO	$570 \cdot 88$	$70 \cdot 68$	+ 90	4	$\stackrel{C}{\mathrm{C}}$	$\begin{array}{r} \\ +\quad 0.2 \\ \hline 1.7\end{array}$
2801 2831	570.91 $578 \% 90$	70.71 78×69	+7.1 +8.8	8	$\stackrel{C}{C}$	17 $-\quad 0.4$
2832		78.72	+ $+10 \cdot 1$	7	c	+ 0.8 +0.8
2514	$584 \cdot 31$	84.61	+ 5.6	6	11	46
2.178	588.84	88.64	+ 3.9 +8.9	5	${ }^{1}$	-6.0
2577	$588 \cdot 87$	88.67	+ 0.1	4	$\stackrel{1}{ }{ }^{\prime \prime}$	- 108
2898	599.95	99'75	+19.6	5	C	+47 +5.7
2007 2008	Sot	$100 \% 64$ 10070	+9.5 +20.4	${ }_{8}^{6}$	$\stackrel{C}{C}$	5.7 $+\quad 5 \%$
2908	6009\%	$100 \cdot 70$ 10966	+20.4 +16.0	8	1'	$\begin{array}{r} \\ +5 \% \\ \hline\end{array}$
${ }_{292}{ }^{\text {a }}$	609.90	199%	+20.9	-	P^{\prime}	- 03
2933	619.95 620.88	11975 120.65 1285	+38.4	8	I	
2,42 2948 298	$620 \cdot 88$ 623.77	120.65 123.57	$+477^{\circ}$ +54.5		c	+ 7. $+\quad 5 \%$
2949	623.81	123.61	+49\%	8	P'	+ 0.5
2957	${ }_{6}^{626 \cdot 82}$	126.62	+ 64.5	7	p,	$\begin{array}{r} \\ +\quad 2.0 \\ \hline\end{array}$
2958	${ }_{6,34 \cdot 8}^{626}$	126.65 3.32	+60.3 +73.1	7		
2,46 2970	6,3478 63482 6328	$3 \cdot 32$ $3 \cdot 36$	+73.1 +72.5	8	1	$+\quad 6.1$ $+\quad 5.5$
2977	63766	3.20	+60.2	6	H	$+\quad 37$ $+\quad 3$
2978	${ }^{637}$ 399	6.23	+59.8	7	$!$	+ 3.3 +10.8
2986	641.87	10.41			c	+ 8.6
2398 239	${ }_{\substack{642.68 \\ 542}}$	11.22 11.24 51	$+27^{\circ}$ $+3{ }^{\circ}$,	$\stackrel{7}{3}$	r	P $-\quad 50$
3094	$6.82 \cdot 64$	$51 \cdot 18$	+13	5	II	

W. E. Hurper

Plate	Julian Date	Phase	Velocity	Weight	Obeerver	O-C
3099	2,418,684 60	53.14	$+100$	2	P	
3100	$685 \cdot 67$	54.21	$+10.5$	3	1	+10 $+\quad 16$
3101	68571	$54 \cdot 25$	+ 26	6	1	- $6 \cdot 2$
3:43	697.79	$66 \cdot 33$	$+44$	5	P	
3159 3160	703.63	$72 \cdot 17$	+120	4	C	$\begin{array}{r}\text { a } \\ \hline\end{array}$
3160	703.67	72.21	+ $5 \cdot 8$	3	C	1 $+\quad 30$
3203	$724 \cdot 62$	$93 \cdot 16$	+164	8	C	30 $+\quad 40$
3319	742.57	111.11	$+254$	9	II	+ $+\quad 23$
3320	742.60	III'14	$+177$	7	II	a $+\quad 23$ $-\quad 24$
3351 3352	$747 \cdot 60$	116.14		7	${ }^{\prime \prime}$	2.2
3352 3356	74764	116.18	+24.5	8	11	$5 \cdot 3$
3356	$754 \cdot 63$	123.17	+ 377	3	P^{\prime}	- 67
3361 3362	759.59	128.13	+65.3	7	C	- $-\quad 37$ $-\quad 37$
3362 3369	759.62	128.16	+758	6	C	$\begin{array}{r}7 \\ +\quad 68 \\ \hline\end{array}$
3369 3370	763.55	$0 \cdot 83$	+81.6	5	11	+ 60
3370 3373	764.52	1.80	$+66 \cdot 7$	S	P	6.0
3373	765.52	2.80	$+67^{\circ}$	7	II	- 20
3374	765.55	2.83	+649	9	11	$4 \cdot 1$
3390	775.57	12.85	$+29.1$	7	1'	$3{ }^{\circ} \mathrm{O}$
3401	784.55	2183	+153	5	11	4%
3404	787.56	$24 \cdot 8.4$	$+218$	1	C	+ 3\%
3653	929.92	$35 \cdot 94$	$+179$	3	C	a $+\quad 56$
3670 3671	93187	$37 \cdot 89$	$+17.2$		$\mathrm{P}^{\prime \prime}$	$+\quad 54$
3671 3688	93191	37.93	$+76$	4	$\mathrm{p}^{\prime \prime}$	54 +4.2
3703	936.91 943.88	42.93	$+17.2$	4	C	+69
3704	943.91	49.90	+167	2	C	+ $7 \cdot 5$
3822	9.01187	11178	+64 +32.1	3	C	$2 \cdot 8$
3823	ollgo	117.92	+32.4 $+34^{\circ}$	4	II	0.6
3828	01289	118.91	+340 $+35^{\circ}$	4	11	10 $+\quad 0.4$
3837	01471	$120 \cdot 7.3$	+43.3	6	11	+ $+\quad 04$ $+\quad 3.3$
3847	015.82	12184	+ 480	8	$1^{\prime \prime}$	+ 30 $+\quad 50$
3865	018.89	12491	$+54.2$	4	II	$+\quad 0.2$
3878 3879	02269	$128 \cdot 71$	$+77 \cdot 5$	7	H	+ 58
3879 3800	02273	$12 \mathrm{~S} \cdot 75$	$+82 \%$	5	11	+ 103 $+\quad 18$
3890 3908	02775 $036 \cdot 70$	2.51	+727	6	F	$+\quad 103$
3909	$036 \cdot 70$ $036 \cdot 79$	11.52 11.55	+336 +316	5	11	144
3909	-36	1155	$+31 \cdot 6$	6	II	- 34

For convenience of reference the early measures of Frost and Adams are appended :

\erkes Meastres of v Orionis

Date	Julian Dale	Phase	Velocity	Renidual from Ottawa Curve
1903 lan. 22	2.416 .13785	0.33	+81	+4.8
(Oct. 31	419.94	19.90	+21	-0.8
Nov.14	433.90	33.86	+12	-0.8

The first plate was stated to hive such broad and fuzze lines owing to the dispersion of three prisms nsed that the result was
fonrteen observation equations were formed comecting the residuals with the elements γ, K, e, ω and T. The period was considered determined as closely as could be.

The following corrections resnited:

$$
\begin{aligned}
\delta \gamma & =+.57 \mathrm{~km} \\
\delta K^{\prime} & =+1.09 \cdot " \\
\delta e & =+.024 \\
\delta(\omega & =+1^{\circ} \cdot 5 \delta \\
\delta T^{\prime} & =+47 \mathrm{~d} .
\end{aligned}
$$

giving as the corrected elements, with their probable errors,

$$
\begin{aligned}
P & =131 \cdot 26 \text { days } \\
e & =599 \pm 014 \\
\omega & =1^{\circ} \cdot 58 \pm 2^{c} \cdot 12 \\
\gamma & =+22 \cdot 10 \mathrm{~km} . \pm .47 \mathrm{~km} . \\
K^{\prime} & =34 \cdot 09 \mathrm{~km} . \pm \cdot 75 \mathrm{~km} . \\
T & =J . D .2,417,975 \cdot 16 \pm .38 \text { days } \\
A & =54 \cdot 50 \mathrm{~km} . \\
B & =13.68 \quad " \\
a \sin i & =49,270,000 \mathrm{~km} .
\end{aligned}
$$

The sum of the squares for the normal place- lowered from $298 \cdot 5$ to $205 \cdot 9$, abont 31 per cent. The residuals given in the table of normal places are those from the final element.s. The agreement between equation and ephemeris residuals was satisfactory, so that no further solntion was necessary.

The probable error of a single observation obtained from columns 5^{5} and 7 of the Measures is $\pm 3.47 \mathrm{kitr}$. per second. For this type of spectrum one wonld expect that this valne shonld be somewhat lower, but remeasurentent of many of the plates giving large residnals failed to make any sensible difference in the results. In a few cases, as may be noted in the measures, plates made consecntively on the same night differ fromeach other by 10 to 12 km . per sec. so that the above value was not unex pected.

Quite recently Mr. Jordan*, of the Allegheny Observatory, in discussing the orbit of π Audromedre, calls attention to the

[^0]
e resid-

large gap between the short and long periods for the heliun stars. The star under discussion here furnishes auther illustration of the marked increase of eccentricity with period, the value of e being ' 60 for an orbital period of 131 ' days.

The curve shown represents the corrected values of the elements:

The interest shown and the encouragement given by the Director in this work is hereby gratefully acknowledged.

Dominion Observatory,
Ottawa, Canada,
January, 1911.

[^0]: -I'thhisatious of the Allegheuy' Obsermatory. Viol. 11., No. 8.

