CIHM Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

The Institute has attempted to obtain the best original copy avalable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

\square
Coloured covers/
Couverture de couleur
Covers damaged/
Couver ture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée
Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omirred from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais. lorsque cela était possible. ces pages n 'ont pas èté filmées.

Additional comments:/
Coinmentaires supplèmentarres:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de rèduction indiqué ci-dessous.

The copy filmad here has been reproduced thanks to the generosity of:

$$
\begin{aligned}
& \text { Fisheries and Oceans Canada } \\
& \text { Ottawa }
\end{aligned}
$$

The imagas appearing here are the best quellyy possible considering the condition and legibility of the original copy and in keeplng with the filming contract specifications.

Origlnal coples in printed paper covers are fllmed beginning with the front cover and ending on the last page with a printed or lllustrated impression. or the back cover when appropriate. All other original copies are filmed beginning on the flrst page with a printed or lllustrated Impression, and ending on the lest pege with eprinted or illustrated impression.

The last recorded frame on each microflche shall contain the symbol \longrightarrow (meaning "CON. TINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, eic., may be filmed at different reduction resios. Those too lerge to be entraly included in one exposure ere filmed beginning in the upper left hand corner, left to right and sop to bottom, as meny frames as required. The following diagrams lllustrate the method:

L'examplaire filmd fut reproduit grace da gentrosité de:

$$
\begin{aligned}
& \text { Pēches et océans Canada } \\
& \text { Ottawa }
\end{aligned}
$$

Les images suiventes ont díd raproduites avec le plus grend soin. compre tenu de le condition of de le nettert de l'axempleire filmb. et en conformite evec les conditions du contrat de filmage.

Les exemplalres origineux dont le couvarture en pepier est Imprimde sont filmes en commencent per le premier plat et en serminent soit per le derniere page qui comporte una empreinte d'Imprassion ou d'illustration, soit per le second plat, selon le cas. Tous les eutres exemplaires originaux sont filmés an commencent per la premidere page qui comporte une empreinte d'impression ou d'illustration ot en terminent per la dernidre pege qui comporte une telle emprainte.

Un des symboles suivents apparaitra sur la dernidre image de chaque microfiche. selon le cas: le symbole signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les cartes, planches. zableeux. etc.. peuvent ötre filmes dos toux de reduction différents. Lorsque le document est trop grand pour ètre reproduit en un seul clicht. il ast filmo d partir de l'angle suptrieur gauche. de gauche a droite. er de haut en bas, en prenant lo nombre d'images nécesseire. Les diegrammes suivants illustrent la mothode.

THE TIDES

TIDAL STREAMS

with Illustrative Examples from

CANADIAN WATERS

W. Bell Dawson, M.A., D.Sc., M. Insi.C.E. F.R.S.C., Superintendent of Todel Survevs.

Published by the Department of the Naval Service, Ottawa, Canada

UTTAWA
J. de Labroquerin tache
fRINTER TO THE KING'S MOST EXCELLENT MAJEATY

Permassion is freely granted to newspaper and other writers to use the information contained in this publication or to reprint it in text books. provided the source is acknowledged.

THE TIDES

AND

TIDAL STREAMS,

WITH ILLUSTRATIVE EXAMPLES FROM CANADIAN WATERS.

I. TROMLCTURソ.

In dealing with the tids, we must approneh the smbject with considerable caution, because there are several standpoints from which they mas he rumerded. There is first of all the main distinetion which must be made in mury such snljert. between the descriptive side which explimes what the tides are and how the hehave; and the theoretical side which undertakes to explain the eauses and forers that prodnee them. In much that has been written abont the tides, loth there sides of the subject are inademather dealt with: fur in doscribing their lefhatiour, some features of the tide
 were the whole stury. Sinds a deseription gives a very unsiti-fartory account of the matter. It is equally powible on the theoretial sid, to cmphaize one point of riew; as for example, to sive the imprestion that the tide is entirely an ast remieal phomomeno and quita to ignore on the terectrial athe the hadraulic questions regardine the momathm of water in motion, frietional rexistemee, and such physical intlueners.

These partial and one-sided descriptions and explatatime are the more unfore tunate, lecause they throw decredit on the sulject, and -t:mul in the waly of progress. For the matigator in vosaging from one ocem to :mbllar. may find that the deseriptimn he was given thes not apply, and the cxplamation me horer explains; and he may lo. tempted to diseard it all at crronems. There is at the other extreme, the theorizer, whe for want of sufficiont linowledge of the fart-. hasin- hy imarining how the tides onght to behave. and proceds to invent an cntirely mew theory to explain them.

It is rery evident therefore, that a sati-factory amome of the tide can only be given by deseribing all type or chases of tides, howerer limefly, so that the aecount may at leat be complete. We do not promon to take up tidal thenry beyond the least amont hecesary to make the sulbere chan, and thasiot the memory in following the facta. We will alon entemone to make the phinest distanetion between the behaviour of the tide as it is arctally olserred, aml the rearime or eanses for this belariour. When once the facts are elearly stated, the realer is :llway at liberty to ask: Why is this so, and not otherwise? The eandid anower may be that there are points which we are only ahle to explain partially, or in a wery enencral way; and it is inded by this admission only, that progress in knowleder ean le made.

The examples and illistrations of the tide here given, will be taken from the shores of Camada. With which the writer is fimiliar from Inng experience with them. It is not too much to say that we have on the Canadian eoasts, examples of every kind of tile that is found anywher in the world. On the Atlantic and Parific eonsts, in varions regions in the linul-locked waters of the Gulf of St. Lawrenee, in the Bay
of Fimaly mad the immence eathary of the St. Lawrence, !n IIman Struit, and Inden Bay whid is un uren larger than the North Sen, tha three leading nstronomiral tripe of tide ure atrongly in windere and almest all momitiontions of these lead-

 strenme which tand rulatem in their musement- to the rior and fall of the tide, proment the same wile variats in their helasimur: fir all combitime umber which tidal then

 little of importane is likely to be werlakiel if Camman tides and currents are taken nas exumplas.

 the level riwe and falls. It will gradually rise till it reardme it - highent paint whinh is termed 1 lish W:ater. and it then falla and reredes on the shore till it reaches the lownt pint which is tormed Law Water, when it turns and rises agin. The difference of lesel is callent the hambe of the tille. This flumation oerors twice in the eourse of "1 complete day; so that thare nere two high watere and two low waters in the period of a day mud night. Alsu, where there is a long lay ar a river month on the coast. the water when high will flow inland into it; nnd when low. it will thow ont again. The intlow during the rise of the tide, is known us the Flood, med the whtlow during the fall of the tide is the Ehb. In ordinary langase, all these movements of the water are inclmbed moler the permeral word, tide. lint it is well to note that in reality there are two distinet movemente; a vertieal rise and fall in the level of the water which in the 'lide proper. und a hurizontul flow in the two direetions alternately. which is distinguished hy the term Tidal streams.

On looking into these movements more rlosely, and eomparing the behaviour of the tide in different regions aml different occans, there nre eertain genernl features which come to light. The mome of the rise and fall is not the same everywhere, as it varies from almost nothing to a ramere of over fifty feet in some lucalities. On the other land, the time of high water is not always at the same home of the day; but on the average it is about an hour later from one day to the next. This is fuund to be the case in every part of the world; as in a period of fourtem or tifteen dinys it comes aromen to the same hour again. At every locality in every ocean, there is also fomd to be a well-marked ruriation in the range of the tide. which usually recurs: twice in the course of each month; or in some regions, once a month. This variation may be very different in its eharacter; in one region it may be a change in the range of the tide, from a large difference in level to a small differenve: in another region, the two tides of the day are sometimes exactly equal in their range, and at another time, one of the two is muel greater than the other, alternately. But whatever the character of the variation may be, the change always reeurs in a period of about a fortnight or about a month in every oeean.

It is thus evident that there must be some general eause for these changes; and we soon find that they are related to the movements of the moon. Indeed, the further we go into the detnils of these variations, the more closely we find that all the leading changes in the tide eorrespond with the position or the distance or some other movement of the moon. The sun has also an influence whieh is very similar, but its effeet is less marked. It is interesting to find that the comneetion between the moon and the tide was noticed as far baek as the Roman times. When Julius Caesar first eame upon tidal waters, in the English Chanuel, he noted that the tide rose higher when the moon was full or new than at other times. This is the leading variation in that region during the course of the month. Those who depend on the tide for a living, are also naturally observant of its movements. On parts of the const of Franee, the

 ame it is moty about the time when the mom is full or new that thare is Live-water

 that our reckoming of time is ly the sum, which we taturalls, time the mest connemient

 is ma hur later each day, the time of high water is also an lume later from ome diay in the mext. Fur tidal purpmese, it is really the lmar day that wo should eonat by. mather than the urdinary selar dias: and as there are twe thes in the consen of the

 This is the aberage interval hethe of this unit, whent is terment the "Tide-intersal."
 from heing the calse, as we shall see later ond of time hetwern tham; as this is far With remard to the variati in then. month, these will be more radily und the whelh creme dariag the eourse of the produes them, whirh we will reach nfter the ondul romaretion with the enuses that first try to make clear how it is that there are and motions arre explained. We must withont entering upen highly mathematical two tides in the diay. which is not masy give is in aceord with these, and is the we wrofs. The cxplanation that we here The diagram represents the earthe bue which is gemerally aroeptent. fice of the paper thus representing the pang down uphen the Nurth Pole; the sur--ide at M ; and we suppose the earth to be eutirelye equator. The moon is on one attraction of the moon deerenses rapidly with the dity surromuled with water. As tha. as the square of the distance) its attraction for thanere (deremsiug inded inversely the earth itself; for the attraction on the earth as water at is is preater than for tance MP to the earth's centre. Againe, the wis a whole eorresponds with the disthan on the water at the farther side of the nttraetion on the earth itself is greater tions, eath greater than the other: under the monn, and left behind on the opesult is that the water is drawn forward two protuberances of water are formed on the pite side of the carth; and consequently, on an island at Λ will therefore find as the apmeite sides of the world. An olserver falls twiee in the course of the day. If this explamation is difficult. the earth as fixed, with the moon to grasp, it is beamse we are so apt to think of "pually free in space, and in reality they reving around it. The earth and moon are around their common eentre of gravity. If the aroud each other; or more properls, it is just as reasonabie for the earth as a whis is thmght out, it will be seen that and lave it to stand ligher, as for the water ate to move away from the water at T

Although this explanation is correct in at S to be raised under the moon. ceptions to guard against. It might be suppoge fal way, there are some misennof the moon's attraction would be to draw thesed, for instance, that the chief effeet H, II. An objection is also made to the evpe water along horizontally at the points tion that the direct lifting power of the manation, beeause it is found on investigaare worked out mathematically, it is found is stight. When the attractive forces midway between H and S on the one side, and mever, that the greatest effect oceurs The water is thus drawn tngether from the two midway between II and T on the other. i2324-2?
 must be lehow the mean level at II and II. Hence, the trine or mean level of the sen is midnay hetwern the here of high mat low water ; or in other words, the tide fall-

If we "umider the atraction of the sun, it can be shown the the effere is pro-

 the sim is so mulh later a helly than the mon, its divance is immenaly greater: and when the relitive thereriding pewers of the sum and men are worked wit mathe

H
FIG. 1.
matically, on the hasis of their relative masses and distances, it is found that the amoment of the solar tide is only 41 per cent of the hanar tide. This is the thenetical proportion; but as a mater of fact, the propertion of the solar tide to the lunar is not the same in different oceans. This is one of the things that cannot le fully: explained.

We have been supposing the eurth to be entirely surmumded hy water, whereats the water is divided inte, reems by the continents. Yet the charneteristics of the tide correspond elosely with the explanations we have givell. First, the tide in the varions oceans progreses through them as an mandation. This can be proved by observations along their shores, or on istands in them. For examphe, the tide runs up the Atlantie occan as an madnation from its south end between Sonth America and Africa, to its north end between Canda and Europe. The range of these oremice tides is not usmally more than 4 or 5 feet. Again, in afl the orems. there are two tides in the course of the day; which aceords with the acepted explanation. It is true that there are some localities where at eertain times in the month the tide becomes diumal; that is, there is only one high water ann ome hw water huring the day. But a reason for this exception can readily he given, whirla docs met condint with these gencral priuciples. Thimbly: the tide is found to rise und fall equally above and below the mean lewel of the sea.

There is one important respect in whieh the actual tides differ from the explanation given. The summit of the modulation is not fonnd to be directly under the monn; or in other words, it is not hifh water at each locality when the moon is on the local meridian. The summit lara, often by many hours, behind the position of the moon. The reason of this was explained very early in the history of tidal investigation; and it was pointed out that for high water to remain always directly under the moon, the orean would not only require to cover the whole earth, but woald also have to be exceedingly deep; probably many miles in depth. The lag is therefore due to the eircuitous path which the tidal undulation is often obliged to take in traversing

 friction.

 pradiond problem for the navikator.

Vertionl Morement of Tidal IVatars.

linn!e.-I'he differemo of herel between high and linw wator, or lectween low and high watrer. on any indivilual tide
 revation of the smmmit of the molulation above the tronfh. Its amount is indepenNent of mat datum or tixed plane of referemee frosin when heishts are mensured. In momparing the relative momat of tide at different loralitios, the romparison can best In lased therefore, npon the runge or amplitude.

Rise. The movement of the surface of the water wrtically upward, from the low level of the tide to the high level. The amomat of the rize is the netual difference of level. measured vortically from the low-water datum to lifle water, at any tide.
(The monomt of the rise under varion* whlitions maty le distinguished; ns the "Spring rise" meaning the greatest rise at the spring tides, or the "Neap rise" meaning the lenst rise during the neap tides. Similar expressions, sueh as "Solsticial rise" or "Equinoxial rise" are equally allowable.)

Fall.-The movement of the surfare of the whter vertirally downward, from the high level of the tide to the low level.

IIgh Water.-The hinhest point reached log the tide, when the rise ends and the fall begins.

Low Water:-The lewent point reathed by the tide. whe: the fall ends and the rise begins.

The time at which the elange oreurs, and the leight of the tide when it turns, are the elementi of most importance for marine purposes. It is therefore the time
 :a thewe hefine mat adernatedy the wertinal movernent of the water.

Low-water dafum, - d blane of eforemere establivhed nour the lewel to which the lowest low waters usmally fall, and from which the heipht of the tide con be meanarel cortially upwat, and the depth of the water veroteally downward.

This is the dhtmu nhmest misersally lised for tide fuldes, frour which to mensur, the hoizht of the tide. The hoisht at hish water, as well ns at low water, cmon hoth he kiven above the datum. The same datmo is used for marine charts, to show the least depth of wnter which murimers com commt nemen when the tide is low.

A suitable level for hae liw-water dutum, which is comsintent with its level int
 tide. It shombl he sul low that few tidew will fall betow it umber any ordinary conditions; hut if it is fon how, the chart will shew hos deph of water than the marimer will usially find. Any extrome tides that fill leflow datmen are nlwas indicated in tide tahles ly a megntive sign or somare other sperial mark. On such tides, the deph will be smewhat hoa than the chart shows, und the sign or mark surves as a wamiug to that cffert.

> Horisomlal Morement of Tidal IVaters.

Set.-The set of a current is the direction thwarda which the movement earrice a) resel. The direetion is thas indinted in the opposite way to wind direetion. For cexmmple, if the air is moving from weat tol cast, it is termed at West wind; but if the water is moving from west to cast, it is termed mn Eustward set.

Flood stream. - The lemizntal menement of the water, or flaw, cased by the rian if the tide. The term is prolsaloly derived from the fare that on flat shares the tide is it rises appears to thond the land. IBut the expression lifoed tide should be woided, : it confuses vertienl and horizonta! n rement.

E:b stream.-The horizomal mesement of the water cansed ly the fall of the tide: usually in the mposite direction to the Fhoel stream, or nearly so.

The flood mad ehb stroms are defined ly their direction nond wolocits: They are most noticenble nuld definite in extuaries and straits. In more open waters, the dirertion of the set may veer completely aromen the eompass daring the rise and fall of the tide.

Slack water. When the flood stremm ends and the edh, strean begins (or viee versa) there is a moment or a short interval of time when the water is motionless. This is termed Slack water: and ns it occurs twiee in the course of a complete tidal period, the two turns nre distingnished at Migh-s. Iter slack at the end of the flood. and Low-water slack at the end of the ebb.

Slack whter is thus the time at which the horizontal snotion is revarsed, just as High water and low water ure the times at wheh the vertieal motion is reversed. It must nut be supposed that these coincide in time. however; ns praetically speaking, they never du. There are some conditinns, indeed, whe eh make Slack water oceur at half tide, or midway in time between high water and low wath...

There are struits and pissinges in which the tidal streams are so rapid that mavigation through them is only possible near the time of slack water. This may beeome therefore the item of paramount importance amongst all tidal data, in aid of water transportation, especially when carried on by towing.

OBNELINATGXS OF THE TIDE AND TIDAL CURVES.

In wherving the tide at any locality, the chief pmints to note are the ther at whieh high and low water oecur, and the height to which they rise and fall. These results may be obtained by memns of a vertical tide seale marked with feet or other

Thnt statioss and The: TBits.

In countrice which publish tidal information, the Lelleral $y=\frac{t}{2}$ m adopted is to
 of the tide throushout the year, us a basis fur the ralculation of primary tide tables; and to bring other localitios int, relation with these primepipl itations, so that tho time and hoight of the tide may be known at all harbonrs of any importance. In the primary tide tables, the time and height of high water and low water are given day by day; and fur other luealitios there are "Thilal Wiffermuse", th apply to these tables by addition or subtraction and thas to find the time of the tide. The rise of the tido at these loralities is atso indiented; or it con the fomd more correctly by applying a difference or a percentage to the rise at the primeipal station at piven in the tide tables.

When tidal investigations were legun in Camalla in 1494, there was a clear fiedd on hoth the Athantic mad Pacilie coasts. in recyarl to the choice of prineipal stations; as the onty tide tables were a crude attempt for ()netice. The steplstaken in devising a system which would cover an extent of eight darneres of latitude on the two consts, ns wefl as IHudson bay, would afford a mont interesting example of general procedure. The main olject in viow was to have at few primipal stations as possible, by placing then at strategie positions, where ench would dmanate an extensive region. It was ahan found that an importment harbour might be quite masuitable as a reference station for its region, wherens some isohted lighthonse or solitary ishand might prove by its situation, a reference station of the first importance. For example, the only localitics that can be referred to Vanenuere harbour are on the arms of linres: ' inlet in which it is situated; whereas a liphthouse at Sands Heals. . 1 l a a gromp of juiles off the mouth of the Fraser river, has proved an excellent reference station for all the harbours throughout the Struit of Cicorgia. A* another example, the tide gauge built in the cliffs of St. Paul island, in the main entrance to the Gulf of St. Lawrence, where there
are no marine works exeept a boat landing, serves by its situation as the reference station fur the greater part of the constline throughout the gulf.

The principal stations are maintained in continuous operation, in winter as well as in summer; and sufficient data for the secondary stations which are referred to them, ean be obtained by a short series of observations during a few months in the summer season. As the observations are thus simultameous, the time-differenees and proportionate ranges can be correctly determined, as well as a eorresponding lowwater datum from which to measure the rise of the tide. Also, the limits of the rerion that can best be referred to each of the pris ipal stations. are eventually aseertained.

These stations serve also for reference in reward to the movements of the tidal streams and the time at which they turn: as all such movements must be correlated with the time of the dide to afford the data neeessary to the mariner.

The contimous record of the tide, obtained at the principal stations, is mado the basis for the ealeulation of the primary tide tables by nethods of reduction and analysis which rould be too terhnical to enter into. The general procedure is to bring all the feateres and variations of the tide into relation with the various morements of the noon and the sun: and when these relitions are established, the tides of a future year can be predicted by reversing the process, and deducing them from the positions of the moon and sun throughout that vear as calculated in advance by astronomers.

It may give a suffieient grasp of the subject to describe the leading movements of the nroon and the sun with their influenore on the tide; and to group the tides broadly into elasses or types. in areorminee with the movement of the moon which may ehiefly influence their behaviour in any region.

heference lines for bositions of the sux and moon

In describing the morements of the sun and moon, we have to take a somewhat different view-point from the astrononier; as we are dealing with terrestrial phenomena in relation to the heavenly bodies. It is necessary therefore to refer everything to the poles and the equator. The poles are points on the heavens which are directly over the north and south poles of the earth, in a line with its axis; and the equator is a line around the hearens inidray between the two pules. We may consider these as fixed, on the face of the sky; as their actual motion is so slow that it is seareely appreciable from one eentury to another. We must endearour to think of the equator as a real line, as though it were ruled on the face of the heavens; and so also with other reference lines on the sky, such as the meridian. These lines are often ealled imaginary, especially in sehool books; but this is absolutely incorrect. They are no doubt invisible; but so is the air and the wind, yet this does not make these imaginary. Our own eyes are invisible as we look through then. To understand what imaginary lines and points really are, would require an advaneed knowledge of algebra and anclytical geometry, and we cannot enter into an explanation regarding them. We must do our utmost, however, to realize or visualize these actual lines on the sly from which all our measurements for position, as well as for time, have to be made.

There are other lines and points that we use for reference and measurement, which are related to our standpoint on the world. Wherever we may be, the surface of the ocean always appears to be level or horizontal. But we must be careful to define the horizon correctly. It is a line around the sky which is exactly on a level with the eye. This simple definition of the true horizon is strictly eorrect. In using accurate instruments, to measure angles upward from the horizon, we measure from a plane set by a spirit level. It is no doubt possible to define the horizon geometrieally, as a plane tangent to the surface of the earth; but such a definition requires considerable explanation to be comprehensive. But it is true at any height, even on top of a mountain, that the true horizon is at the level of the eye.

The visible horizon is quite another matter. A laud horizon can never be quite correct: but even at sea, or on the shore, the risible horizon where the sea meets the sky line is alwave a little below the true horizon, by an amount which inereases with the height of the eve above sen level. The difference, measure? as a small amgle between the true horizon and the visible horizon, is lanom as the dip of the horizon. It is convenicut at sea to measure angles from the visible horizon; but the dip must then be allowed for. This affords a good example of a visille line being ouly an apparent one, and not the true line that measuremonts must be reduced to.

Again, from any standpoint on the world, the mint directly overhead is the zenith. It is given truly by the dircetion of a phamb line. The meridian ean next be defined as a line from the pole through the zenith to the horizon at each side. It is necessary to think of the meridian as a complete cirele aromed the sky in a vertieal position, which passes under the earth as well as overhend. It is called the meridian, because it is indieated by the position of the sun at middar; ;and it thes stands midway between the points of sumrise and sunset. This is reurhly correct; but the meridian is fixed precisely in position with reference to any standpoint on the carth, by the pole and the zenith through which it passes.

Let us now take the circle in this diagran to represent the vertiele circle of the meridian from any standpoint A , on the barth, and the line HI^{\prime} 't be the direetion

FIG. 2.
of the horizon. This meridian passes through P the pole, and Z the zenith; and it intersects the circle of the equator at E. P A E is thus a right angle. We may now give the following definitions of terms required in explaining our subject:-

Allitude. This is the angle measured vertically upward from the horizon to any point or heavenly body. Thus the angle $\mathrm{P} \boldsymbol{\mathrm { A }} \mathrm{H}^{\prime}$ is the altitude of the pole; whieh it is easy to show, is the same as the latitude of the point A on the earth. The zenith may be defined as the point which has an altitude of 90° from thie true horizon.

Meridian allitude.-As the eircle represents the meridian, the angle S A H is the altitude of any heavenly body S , when on the meridian; or its meridian altitude.

Upper and lover transits.-These are the two crossings of the meridian which every heavenly body must make in the course of the day. In a general way it may be said that the upmer transit is the crossing of the upper or visible part of the meridiat, when the buly is at S : and that when it revolves aroum the pole to S^{\prime} the lower transit occurs when it erosses the meridian where it is below the horizon. 72324-3

It is evident, however, that in the ease of stars near the pole, their upper transit is across the part of the meridian south of the pole and their lower transit, aeross the part north of the pole; and in northern latitudes, both transits may be visible.

As it is often essential in explaining the tides to distinguish the two transita of the sun or the moon, we must make the matter quite elear in their ease. The upper transit of the sun aeross the meridian is visible everywhere in the world at all seasons between the limits of the Aretic and Antaretic eireles; and its hower transit is across the part of the meridian helow the horizon, and is therefore invisible everywhere and always between the same limits. The same statement is approximately true for the moon also; although for it, the limiting latitudes are by no means so definite. In rcgard to the visibility of the transits, therefore, it will be the same for the moon as for the sun in all the eentral parts of the world, exeept the polar regions.

Declination.-The declimation is the :mgular distane of a body morth or south of the celestial equator. Taking this circle as a seetion of the earth through the poles PP, it is the angle SCE. It is thus evident that declination has the same

meaning as latitude on the earth, and it can be remembered by this. The term latitude eannot be used for it however, as astronomers use this word to designate an entirely different thing. To counect declination with latitude on the earth, we may note that when the sun or moon is at any given deelination, it passes through the zenith of er ey place around the world which has the same latitude as its own deelination at the time, whether north or south of the equator.

As viewed from a point A on the earth's surface (sce Fig. 2) the angle S A F from the equator to a heavenly body at S , is very nearly the same as its declination. It only differs from the true declination, S C E in Figure 3, as measured at the centre of the carth, by a small amount known as parallax. In the ease of the moon however, because of its being so near the carth, it is possible for the parallax to amount to a whole degree.

vovements of the sux and moon.

It may be well to state. to begin with, that every movement of the sun and moon has its influence upon the tide. This becomes more and more evident the further we go into the subject, and the more clusely and carcfully we investigate matters. The trouble with the usual text book on the tide is that it places the whole emphasis on one aspect of the question, as though this explained everything; which has stood in
the way of a correct understanding of the subjeet. The lest way therefore to make the matter clear, is to begin by describing in the simplest way possible, all the leading movements of the sun and moon; as the tides themselves can best be grouped into chases, in accordance with the charucteristies they present in relation to these movements. We will also endenvour to go no further into astronomy than is necessary for an understanding of the tides.

The path of the sun on the face of the heavens is a line, inclined to the equator, which is called the Ecliptic. The sum, as it travels along this line during the course of the year. crosses the equator in Mareh, and goes gralually further north, until it reaches 23° north deelination in June, then begins to go south, erossing the equator arain in September; and on rearhing 23° sonth decelination in Decenber, it turns morthward once more. The points at which it erosees the ernator are the Equinoxes, and the turning points where it reaches its maximum declination, north and south, are termed the Summer and Winter Solstices, respectively. It may he well to recall these well-known movements of the sum. because the monn moves shmost exaetly in the same way. In a period somewhat less than the ordinary month, the moon crosses the equator going north, and agrain going south, just as the sun does in the eourse of the year. These changes in declination have a marked inflnence on the tide.

It is elear that this change in the position of the sung gives it a higher meridian altitude in smmer and a lower altitude in winter, which is rery noticeable. The meridian altitude of the moon raries also in the same way during the course of the month; but this is less noticed than it should be, becanse the moon is not always full; and the period of this change does not correspond with its phases. To know whether a heavenly body is north or south of the equator, we may refer to Figure 2. It is ovident that as the angle P A E is a right angle, the angle E A II must be the difference between a right angle and the latitude $\mathrm{P} \Lambda \mathrm{H}^{\prime}$; that is. $\mathrm{F} \boldsymbol{\mathrm { A }} \mathrm{II}$ is the complement of the latitude, or the co-latitude. We can therefore make the following statement: If the sun is on the equator (at E) its meridian altitude is equal to the co-latitude of the place; if its meridian altitude is greater than the collatitude, it is north of the equator, and if less, it is south of the equator. This statement may be taken as eorreet for the moon also, as viewed from a point on the surface of the earth, if we overlook the displacement due to parallas.

The rariation in the sun's distanee has also a calculable effect on the tide. The earth's orbit around the sun being an ellipse and not perfectly circular, the distance is less at one season of the year and greater at the opposite season. The variation is not large; but the attraction of the sun on the earth paries as the square of the distance; and not only so, but when everything is taken into account, it is found that the "Tide-generating force" as it is called, varies as the enbe of the distance. Hence a comparatively small variation in actual distance may occasion a change in the tide which is quite appreciable. For the moon, this force is 18 per cent greater when nearest and 15 per cent less when farthest. than at its mean distance.

As the moon revolves around the earth. it is new when it passes the sun, and full when it is opposite the sun; and its quarters ofcur when it is at right angles to the direction of the sun. These phases of the moou are due to its position relatively to the sum, and its illumination by sunlight ; and thes have nothing to do with its actual position in its orbit. Yet this revolution of the moon has an important relatiou to the tide; as it brings the attraction of the moon on the waters of the ocean into line with the autraction of the sun at new and full moon; and the attraction becomes transverse at its quarters.

The period from new mon to new moon is the Synodic month. It is longer than the true period in which the moon traverses its own orbit, because in the course of the month the sum has moved $1-12$ th of the distance around the heavens, or onnut 30°. and the monn has this extra distance to go before it is again iu conjunction with the sun. The length of the Synodic month is thus 292 days; which is almost exaetly two days longer than the true period of the moon's revolution in its orhit.
$72324-3 \ddagger$

The mom's orbit is properly speaking an ellipse; but the ancient Greeks deserilned it as a circle with the earth a little out of the middle. If the orbit were drawn to scale. this would deseribe its appearance remarkably well; but to discuss the matter. we may exaggerate the cllipticity, as in Figures 4 and 5. The earth is at E; and the line P A is the axis of the ellipse which represente the mon's orbit. The point l' where the moon is nearest the carth, is l'erince; and the mint A, where it is farthest, is Apogee. The perind of rotation from prerige to perigee is called the

The motion of the moon in its orbit is not mifnim, however; but it travels faster through perigec and more slowly when near apyree. For, the law of elliptieal motion requires that the areas passed over hy the line from the mom to the parth. shall be equal in equal tines. Hence, in Figure t. if the area E B P C E is equal tu the urea $\mathrm{EC} \Lambda \mathrm{B} \mathrm{E}$, the time of trasel from B through P to C , is equal to the time from C through Λ to B. The points B and " . . se orbit are thus midway in time between perigee and apogee.

We must now consider the moons orbit as it revolves around the sun in compaus with the earth, during the course of the vear. For the relation of the moon's phases to the orbit itself, concerns the tilles elosely. In Figure $\boldsymbol{j}^{2}, \mathrm{P}$ A is again the axis of the orbit, and D E F a line at right angles to the axis through the earth at E. Wra must not suppose that the long end of the limar orbit peints always towards the sun, because of its attraction, as it might be natural to think. On the contrary, as the rarth gocs round the sun, the axis of the lunar orbit maintains the same directions in space, with little variation. The axis of the orbit does rotate, it is true, in a period of years; but in any one year we may consider the axis as maintaining a fixed direc. tion, or as remaining parallel to itself. It therefore follows that with relation to the line from the earth to the sun, which we view as the sun's direction, the orbit assumes all possible positions during the course of the year. This will become clear as w. follow the details.

When the axis points to the sun, with the sim in the direction E P, the noon will be new when at the point P and it will be full when at A, if we overlook the slight ehange in position relatively to the sun in the half month. Six months later, the axis will again point to the sun; and the moon will be new when at Λ and full when at P. We can therefore make these statements: (1) The new moon and the full moon may, occur at cither priger or anoge (2) If the moon is new at periger. the following full moon will be nearly at apogee; and vice versa. (3) In either ease. the lengths of time from new to full moon and from full to new moon. will be equal. Or we may say, the two "halses" of the smodic month will be equal. The ex:at half of the average synodic month is 14 days 18 hours 2.2 minutes.

Ahout three months after the line E P pminted twwards the sun, the axis of the monn's orlit will he transverse to the direction of the sm: and the line F D) will point towards it. The moon will then be new when at Dand full when at E. These mints are nearls at the mean distance of the moon, although not exactly so. Becamse of these eonditions, we ean make the following statements: (1) The quarters of the mon may oecur at either perigee or apogee. (2) If whe ot the quarters is at perigee, the following quarter will be nearly at apugee. (3) When this is tie ease, the two "halves" of the Synodic month, from new to full monn aml from full to new, will be quite unequal. For when the moon is new and fu'l at the pmints D and F, it is
 motion is slower near A and faster near P. The actual intervals of time between new and full monn or full and new mon may thus be $1: 3$ days :2 lomes 32 minutes, and 15 lases 1 thours 12 minutes; which shows how very unequal it is masible for them to beeome.

THE THREE LEADING TYPES OF TIDE:

Although every movement of the sun and moon has its effert on the tide, wet nue ut the most singular farts is that in different regions of the world some one mowment of the monn has a dominating effect, and the others beeome of secondary importane. This is seldom pointed out as it should be in works on the suljert; and we may also state quite frankly that we do not know the reason for it, although some partial explanations may be given. The same mar be said as to the relative influcnce of the monn and sun being different in different parts of the world. These variations have the advantage howerer, of enabling all tides to be grouped in threc leading elasses or typer, according to the dominant feature which they presment.

The three types which we thus find are: (1) The synodic, in which the lending variation in the range of the tide takes place twice a month; the rampe being zureater at new and full moon, and less at the moon's quarters. (2) The nnomalistie, in which the greatest variation in the range accords with the moon's distance, and takes place unce a month. (3) The declinational, in which the changes due to the moon's declination (which makes the two tides of the day unequal in range.) are sn large and olvious that all other features of the tide are obseured. This declinational type of tide, we will take up later, after we deseribe more fully the noon's own behaviour in regard to declination.

It is to be understood, however, that though one of these variations is dominant. the others are never entirely absent. Also, although these variations may be stated broadly to take place in the course of the month, their actual periods are not the same, but they have the following values expressed as tide-intervals, or half lunar days, which is quite the best way to measure them for our purpose: (1) The synodic, in the month of the moon's phases, from new moon to new moon; period 57.06 tideintervals. (2) The anomalistic, in the month of the moon's distance, from perigee to perigee; period 53.24 tide-intervals. (3) The deelinational, or the interval between the times at which the moon erosses the equator in the same direction, say, going northward: period 5e. 79 tide-intersals. The declination month is the same in its period as the average length of the Tropieal month of the astronomers. The eonvenience of these measures is that they represent the number of high waters (or of low waters) in the course of each of these periods. Thus the number of high waters from new moon to new moon is 57 ; from perigee, the number of tides will be 53 to the next perigee, with the addition of one number every fourth month; or if the numbering begins from the moon on the equator, there will be 52 tides to count, with an extra number in three months out of four. By such numbering, the position of each tide with relation to the moon's position ean readily be fixed, in the month

These three periods are all ealled " months" berase each is measured by one of the movements of the moon. But as their periods are all different, it is evident that the eorresponding variations in the tide will over-run each other; so that they may or may not coincide in time. This may seem to make the matter complex; but we are again helped by the classification, which enables us to consider one type at a time. It may also help in distinguishing them to mention regions where these types are found. The symodic type is predominunt in the North Atlantic, on most of the coasts of Europe and North America. Noteworthy examples of the anomalistie type occur in the Bay of Fundy and IIudson strait, where with a range of tide exceeding 30 fert, the greatest variation is with the moon's distance. The declinational type is predominant in most parts of the Pacific ocean: and there are also regions in the Gulf of St. Lawrence where it is very lighly developed. It is interesting to note that the solar influenef, relatively to the junar, seems to be greater in these declinational regions. With these general explanations. we may proceed to consider these types scparately.

TIIE SYNONIC TYPE.

When the moon is either new or full, the line of its atiraction coincides with the sun's attraction; and the lumar and solar tides are added to each other by being super-

FIG. 6.

posed. It is immaterial whether the moon is new or full, because the tides on the opposite sides of the earth are practically equal. Again, at the moon's quarters, the solar tide stands in the hollow of the lunar tide, at each side of the earth; and the resulting range of the tide is only the difference between the two. These relations will lee seen in Figure 6. In theory, the solar tide is 46 per cent of the lunar.

The higher tides, at new and full moon, are ealled Spring tides; a name connected with springing up, or greater activity; and in no way related to the spring of the year. The tides of less range, at the moon's quarters, are called Neap tides; which is again a Sason word meaning decreased or inactive. This is the only variation of the tide for which names are available, and for other variations we have to use astronomical terms. The reason of this undoubtedly is that this change happens to be the leading variation on the coasts of Europe, where the tides were first studied. This circumstance las stood seriously in the way of a correct understanding of the tides in general; since in most text books, it is assumed to be the only noteworthy rariation that there is.

The average interval between the Spring tides. is the half synorlic month. We have already seen how very unequal the two "halves" of the synodie month may be; but as the Spring tides depend upon the moon being in line with the sun, on one side
of the earth or the other, they will have the same time-relation to the full moon as to the new moon, however far out of the middle of the synolic month the full moon mey happen to be. We will see the inportance of this in a moment, with regard to other tidal factors.

The interval from the moment of the new or full moon to the lighest Spring tide, is ahout 36 hours (or three tidr-intervals) on either side of the North Atlantic; and this interval is the same from full mom as from new moru. As the tide travels up the Athartic from its sonthern end, this long interval has given rise to the view that the ocean most imnediately influenced ly the monn, is the Antarctic, where there is a belt of water completely around the world; and from this the tide proceeds northward, reaehing the consts of l:urope and eastern Canada :3 hours later. This may indicute the way in which the anount of lag may become so large; if the data are suffieient to make the explanation aeceptable in this instanec.

The synodic tide is found to be a wide-spread type. As examples in Canada, we may cite the Λ tlantic coast of Nova Seotia, on the south-eastern side of that province; and also the whole of the St. Lawrence estuary, having an extent of 335 miles from Point des Monts opposite the Gaspe coast, to the head of tide water in the river at Lake St. Peter. The tides of Hudson Bay, an area larger than the North Sea, appear also to be of this type so far as they have been investigated. There are regions on the Paeifie const, some hundreds of miles in extent, where the tides are sueh that Springs and Neaps can be distinguished, although this may not be their really dominating eharaeteristic. (See Plate III.)

The Establishment, and Luni-tidal interval.-In regions where the tides are of this type, there is a very convenient way to find the time of high water by a difference of time known as the Establishment, which we may first explain broadly. When the moon is new or full, it is with the sun or opposite to the sun; and it then erosses the meridian at the same time, that is, at either noon or midnight. Now, it is found at any locality, that the interval of time between the moon's tra-sit and the high water fullowing, is always the same at new or full moon. Hence the Spring tides are always at the same hour in any given harbour, if the hours are counted from noon as well as midnight as we usually do. The hour of the day or night at whieh high water occurs at the Spring tides, is known as the "Establishment" for that harbour.

This is a general explanation, but by being more precise, we can give a better detinition of the Establishment, and extend its use. The interval of time between the moon's transit and the first high water that occurs after it, is called the "Lunitidal interval." The influence of the sun, which eauses the range at the Springs to be greater than at the Neaps, also causes the Spring tides to be closer to each other iu time, and the Neap tides to he more widely separated. Cousequently, the Luni-tidal interval is not quite the same during the course of the month. The Establishment is therefore defined as the luni-tidal intersal from the moon's transit at noon or midnight.

As it is seldom that the moon does eross the meridian at the exact moment of moon or midnight, it is best to find the aetual time of the moon's transit on the date, from the Nautical Amanac. It is then merely neeessary to add the Establishment in hours and minutes, to obtain the time of high water when the moon is new or full. This is a great convenience where no tide table are available. At other dates in the lunar month, the Establishuent may also give a fair approximation to the time of high water, which may be a useful indication for want of anything better.
(Those familiar with astronomy will note that the moon is not necessarily new or full at the moment wheu its transit is at mean noon or mean midnight; for the moon is new when in conjunction with the sun, and on the day that conjunction oceurs, the sun itself maty be as much as 16 minutes from the meridian at noon, by the equation of time. This represents almost a third of a lunar day, in the moon's motion in right aseension. It is thus best to define the Estahlishment as an hour
angle from the moon' own transit on the loent meridian, to make its value ns constant as prosilile in different months.)

It is to he noted that the Eistublishment nfords a meins of finding the time of high water which will "nly work ont correctly where the tide is purely of the synodic tyife, and not afferted to any wrat extent hy other motions of the moon. To attempt to determine the Eistablishment for all the harbours of the world is therefore illusory.

TIH: ANOMANASTIC TYJE.

The leading variation in this tupe of tide aecord; with the moon's distance; and if this foature were so chominant that all others conld lo worlooked, the tide wonld always have its greatest ramge at perimer and it: heant ramge at apogere; and the period of this variation wouh he the anomalistie month of $2: 3$ t tide-intervals, which is shorter than the synotic month by nearly two lmar days. Alsu, as the motion of the monn is so much faster near periser than ehawhere in it orbit, the range increases quite rapidly near peripee and falls off atin equally rapilly: wherens when the moon is on the apogee side of its orhit, the ehange is much slower.

Athough there do mot appear to be any tides which are as purely of the anomalistie type us those of the syodic type, wet there are recrions where this variation with the noon's distano is distinctly qreater than the variation from Springs to Neaps. This is the ease in the Baty of Funcle, as will he sern in the fothowing talbe, showing the variations at St. John at the middle of the kength of the bare; as wedl as at Burnteoat lead in the Cobequid arm, where the rance attains its maximum um, unt. When the range is so large, all the variations are amplified alsu.
descriphion of The

Average range during the monh
sit. Juhn, N.I\%.

1: finte: (1) leel.	$\begin{aligned} & \text { biffer- } \\ & \text { ebre. } \end{aligned}$	Ranige In feet.	ilfference.
26.60		5050	
19.92		40.15	1032
2326	5. 22	45.34)	636
14,11		35.78 j	
206.5		i2: 416	

As the anomati-tie month is so much shorter, its point of begiming falls gradually baek through the syodie month; and perigee may the fall suceessively at any phase of the moon. If we follow these changes carefully. keeping in mind that the corresponding tidal variations in the Bay of Fundy are not far from being equal in amount, the curious outcome will become apparent. When prige falls at new moon, the full moon in the same month will be near apogee, and the two Spring tides of the month will be extremely unequal. In such a month. the moon's quarters will oeeur at about mean distaner, and the Neaps will have their true average value. But the apogee Springs, becnuse of the relative amounts of the variations as explained, are practically equal to the Neaps. Herice, the height of the tide remains almost the same for threequarters of the month, and renches an extreme height at one point in the month only. This helps to explain the great rise of the tide in the Bay of Fundy, whinh thus reaehes its extreme only oceasionally under these enditions. (See Plate III.)

In the other kind of month, when perigee falls at one of the moon's quarters, it is the Neap tides that will be so very unequa?; and the twa Spring tides will oceur near the moon's mean distance, which will make them practieally equal and give them their true average value.
 movement, which merita explanation. It is that prigee dur mit fall back evenly around the synodic month, but it appears to "hang " or remain quite near the new moon for three or fonermuthe: it then mowe rapilly phet nhe of the quarters, and

 the isthmus of Chigneto, trom Comberland hanin at the hrme of the bay, to Northnamberland trait in the Gult of st. Latwrenere. There lanl-were taken in 1880 and

 above it, alternately; which is in acemd with the wheal primeiples of moluhator: movenents, as we have already pointed out.
 bused upm nll intormation avaitable, an "Thites at the Had wt the Bay of Fundy;" published by the Tida! and Corrent Nurey of C'mandie. For the fatures of the tides
 mical Society of Cunada; Vil. vin, page 98: 191 It .

Combined fides-The two tyme of tide that we have dereribed are often mure or less combined with carch other. Even when the tide is dminated by the moon's distanee, the variation from Springs to Ne:npsay me quitio wident. On the other hand, when the type is smodic, there i- not mu-bally an in malistie in "nence which affects the range nppeciably. It the Nop, vary firm this ablue it is not of mueh ronsequence, but any change in the rampe of Spring tides is important in affecting the highest and lowest levels that call verur. When perigee falls at either new or full moon, the difference in range letween the two Spring tide of the month is known as "Semi-monthly inequalite." In regions where thin it at all large, relatively to the average range of the tide, it must be taken inturen-ideration: apecially in determining the level of average low water at spring tillew, whinh i- much wed as the reference lerel to which chart somadings are rodured. It is alow powh the cither of these typea Plate III.

rill: 'H:Chis ıTmin. The:

In regions where the tides are duminated by the momis dedination, the variations which resint are greater than from any uther movement of the monn, considered separately. As we have pointed nut, there are no ordinary words in Eure ean langnages to designate these rhange; and we are therefon olliged io indiente them astronomically or to ure terhimeal term- for them.
 When the moon i- on the cquator, the raised tile-water is cymmetrical between the poles; and an coberver at A an he mosere around his paralled of latitude to Λ^{\prime} with the rotation of the earth, will find the two tides of the day to be equal in height. This will be the ease at every locality in the world, as Figure i hows.

To be quite correct, in a matter of so much importance, we must take the influenee of the sun into account also; and say that the two tides of the day will be exaetly equal in height when the 1110 ns well az the monn is on the equator. Other-

2:2?24-4
wise, to have them exactly equal, the moon requires to be sumewht south of the equator in summer, when the sun is north; and somewhat berth of the enpator in winter, when the sun is south; to bulane the solar intluence. The moon when rross.

FIG. 7.

FIG. 8.
ing the equator, is moving so rapidly north or solth. that it may gain enourh declination in a day or two to give this balance.
(To obtain this bulance, the resultant attraction of tho sun and menn must coincide with the phane of the cruator. The solar tidn-generating furco is 0.458 of the lunar; being in direct proportion to their masses and inversely as the cube of their distanees. Hence when the sm is at its extreme declination of 233° the moon requires to have nearly 11° of dectination on the opposite sido of the "quatur to balance; and with the sun at a menn declination of 111° the moon remuires to have 53° of opposite dechation. Reduced to time, the moon after crosing the equator, takes $2 \frac{1}{2}$ days or one day respectively, to attinin these declinations. Tho astronomical conditions are then such as exactly bahance out the dimmal inequality).

Whatever the range of the tide may be at any date, becauso of its other variations, the two tides of the day will be equal under the conditions here described. This equality of eccuatorial tides, in their range and their time-intervals, is a universal feature for all types of tide and in all prarts of the world. It is one of the few defnite statements that can be made regarding the tide, without any exception or qualification.

If the tide is of the type whieh we are now considering, when the noon is at a high angle of declination, as in Figure 8, the height of the two tides of the day at \mathbf{A} and Λ^{\prime} will be quite unequal. This change in the height of the tide is termed "Diurnal

inequality"; and when it occurs, there :a alan a promeneal incquality in the interval of time between suceessive high waters. The form of the tide curre will become as here shown, when the moon is at maximum declination. In the 25 hours of the lunar
das, there will lo n "large tids" und a "Hali tide" alo mately ; and the time intervak hetween sumenaive high waters will atan herome wry uncymal. The tidal stremus are affectert in the same way, and there will be a "forig run" or a "Short run" in correspondenere with the amount of rise or fall. When the menn retmens to the equator, the tides becomen perfeetly ranal ngain, in lheir lecight and their time intervats. These changes are so revidnt in this teje of tide, tholl in os series of tide curves fur a month, the dates at which the mbors erossica the muator con be pieked out at a
 IV.)

There are lacalities where the inemality in the tide luenmes son extreme when the mone is in high declimation, that there is un fall from D :" E. This part of the "mree becunes hewe, representing a "stand" in the till : "r it may even slope unward. leaving onls a scoondare slumbler on the eurve at 11 . There is then, presticully spenking, unly one high water and one low water it the day, as the ot bure effucet. The tide is then sad to herome diurnal. Surlh a tide neeurs at a ria at
 lamifie ocean. It is alan fomul on the nerth shore of Prime Edward i-land, and *ome other localitifa in the Gulf of St. Lnwrener. The tide curve only nesumes this form, however, (eausing the Half tides to he wanting in the Tile Talles) for 11 fow days at a time, nemr the monn's maximmen delination. It other times there are two tides in the day: and with the monen on the equater, those hereme equal as they dut everywhere.

Where the tide is of the derlinational tybe. the "hange in the declination of the smin during the course of the sear. has also a marked offewt. Tha solar inequality is precisely similar to the lunar; as it is greatest at the solstimes and fulls to nothing: at the equinoxes when the sun it on the equater. In enmserfuence, the extrene tider of the year veenr when these effects are combined; that id. at the clate of the numbs maximum declination, which falle neareat to the selstiore. The extremes thus oreur alout June and Deember.

There are regions in which the amount of dimmal inequality ut high water nud at low water are equarl to each other, as slown in the typical example in Figuren. This is the ease in the Bay of Fundr, although it is not a dominant feature of the tide there. But it is a curinus feature of these deelination tides, that the inequality mas. affect high water almost entirely, or else low water almost eutirels. In the Strait of Georgia, lying inside of Tanconver island, the high waters remain nearly at the same level, and practically the whole inequality is in lue water. At Clarlottetown, in the middle of Northunberland strait, which lies south of Prinee Edward island, the inezuality is also chiefly in the low water level. There are other places in the Gulf of St. Lawrence whero the reverse is the rasc. For example, at Richibucto, and at Caraquet in Chalcurs hay, the low waters remain nearly at the same level, and hy far the greater part of the inequality is in high water. (Ser Plate IV.)

It is quite possible from a plysimal view-point, that the diurnal inequality and its special effert upon high or low water, may be due to some extent to the interference of two tidal undulations from different directions. When ronditiona are carefirly studied in perts of the Gulf of St. Lawrenee, it is more than likely that such interference occurs. This may afford a sceondary explanation; but it is importmut to print out that all such secondary influeners ean he overlooked, as the movements of the tide cen always he dircetly correlated with the positions of the sun and nom. The primary explanation, as shown in Figures 7 and 8 , therefore holds good.

This direct reference to the moon's morements remaina applicable under the most complex conditions. No better example of this could be given than the Gut of Canso, between Cape Breton island and Nova Scotia; a narrow strait only 15 miles in length. At the north end of the strait, the tide is of the declinational type which me are describing. while at the snuth end it is the synodic tide of the Atlantic. There
is thus a large diurnal inequality in runge at one end, and the change irom Springs to Neaps at the other end, these rariations being entirely out of necord, as they recur in months of different lengthe. The run of the current through the struit undoubtedy depends on differemes of level due th the guite diserordant therthations of these
 out in detail. Yet notwithatading these proximate "ansow, it has heen thund pasible to reduee the behaviour of the current on law whinh are correlated direetly with the moon's change in deelimatim. (sere explamatinn of this. in "Pide Table fur the Eastern consta of Cmada," mider (int of ('miso.)

Combined tides.-Athomph the tide mas lue predmainanth in the deelination type, it must not he supposed that the "flet if spring und Neape is cutirely absent. or that no varintion with the mom's distaner enn lan detected. For the tide to bo properly classed under this tepe, there inust bu a greater difference in rmage letween the two tides of the thy than there is from may anser during the murse of the month: and when the tupe is highly develomed, these other varintions ne ohseured. Thes
 inequality then disappears. The nout neident of the other varintinn oneurs when new and full moon are looth ilnae to the eflutor at they may be in the sume month. The equatorial tides will then show at the opposite wide of the mumth. wll the differenes in range between Springs mul Nemps that there is in the region.

Inequalities in time. Th thles of the declination teppe, there is ment only the inequality in rampe betwern tho swo tide of the das, lint the following inequalities in time oreur when thee moon is in high tertination: (1) The intervals of time between sitecessive high waters herome meyual, as well ha hetwen suceessivo low waters. I © inermality may herome as areat as and and lif lowre alternately, as in the Strait of (iewrgin; the two furether making up the thtal 2 th hours of the hanar day. This appears to the the linit of ineyuality in mus harmur throughont the Pacifiocean; for if it tends to be any sreater, the tide becomes diurmal. 12) The intervals of time between successise shack waters when the tidal strenmsturn, heeome sinilarly unequal; in correspondence with the long and shont runs of the eurrent wheh oceur alternately. (3) The luni-tidnl intervals, from the monn's trumsit to the time of high water, show a large alternation for suceessive tidna. The differenee between the conseeutive values muy be as mueh as 3 or 4 hours. It is thms evident that if the moon happens to be at its maximum declination when new or full. the use of an Establiwh. ment, even though it may be a good theoretical averake, will give quite erroneouresults. When the moon is crossing the equatur, all these incmualities disappear for the moment, at the same time that the ranges heeome efual.

The following table gives an example of the ulternation in the time values that may occur when a tide of the declination typras at Pirtou, is eompared with a synodic type, at Halifax. It illustrates the variation that can uriwe from dectinational inequality:-

It is clear that mariners -1 , uld concern themselves with deelination much mori than they do. It is also quite unfortunate that there are no names to designate thr points at which the mom crosees the equator. as they camot properly be called node:
nor is there any namo for the maximum derlination of the munn, fis correapond with Solstice in the case of the sun. This wate of lames makes the explanation mond much morn cumbrous than it should.
 fully explained, because much additional help could bo wiven to mariners, in Tifle Tables and other Nantical worka, if it vere mulerituod. For it ables tho similar
 clear.

Tlee circle in the middle of Figure 111 is a section of the earth through the point A. and the little eircles represent positions of the moon. When the moon is in North declination at G , it will appear to eircle around the parallel of declination $\mathrm{G} \mathbf{H}$. As seen from A, its upper transit aeross the meridian wall secur at (i and it, lower transit at H. which will he below the horizon at A. The North dechitation of the moon will then decrease, till it erosses the Equator and goes into South deelination; and after half a month it will appear to cirele around the parallel of declination K L . Its upper transit aeross the meridinn will then occur nt K and its. 'ower transit at I .

When the moon is in Noth derlinatim, the tide will cirele around under it from the full oral to the dotted oral; and when it is in South declination, it mill circle around from the dotted ornl to the full owal. $A=$ observed at A, we ean therefore clasis the tides in paire; as it is ovident that the conditions are the sane when the nuen is at cither G or L , and they are also the same wheli it is at rither H or K . These may be given names for distinction; and the tides may be deseribed as following the mon, as there is always some amount of lag. The names are these:-
"Similar" tides are those which folluw the Epper tran-it of the monn in Sorth declination, or the Lower trausit in South declination.
"Opposite" tides are those which follow the Trumer transit of the moon in South derlination, or the Lower transit of the mon in North declination.

In many tidal calculations these distinctions munt be camfully observed; but this may be left to tidal experts, although it may interet the mariner to know how le arrives at his results. There are two general wass in which thi c concerns the mariner. more directly: (1) In knowing which of the tides of the diys will ln^{2} the higher of the two, in crosing hars. When the time of the tide noly is arailable, as when it is found hy means of a tidal differenee applied to a Tide Table or otherwise computed, the higher tide of the day may thus he designated. (2) In finding the time at which a tidal strem turns, with relation to the time of the tide. For in remions where this trpe is developed, when the moon is in high declination, the turn of the current is alternately earlier and later than the average, in relation to the time of high and low water; and the streugth of one flood and one ebb in the das is moch greater than the strength of the other two.

Explanarons of this charaeter are given in the Canarian Tide Tables, regarding the height of the tide in Miramichi hay, and the turn of the current in Northumherland strait. (See "Currents in the Gulf of St. Lawrence," page 33; published by the Tidal and Current Surrey.) On the Pacific enast of Canada, where there ure many passes and narrow: in which narigation is only nossible at slack water, the turn of the tidal streams is calculated on these principles and published in the form of Slack Water tables. (Sce cxplanation as given for Seymour Narrows. in "Tide Wahles for the Pacific enast of Canada.")

'OTIONS OF TIE MOON'S ORBIT.

While the moon rotates around the earth in its orbit, the orbit itself is affected hy two morements. One of these movements we can pass over in a few words, but the other requires explanation as it has an important hearing on the tides.

Revolution of the Axis of the orbit.- Whe have explained that in any one year, as the moon's orbit revolves round the sun in cumpany with the earth, the axis of the orbit remains nearly parallel to itself. But the axis has in reality a slow movement of rotation, and it makes a complete recolution in ahout eight years. We may leave this to the astronmers, however, as it nerely alters the position of perigec, which they allow for in their calculations. Those acquainted with astronomy will reengniz. that this is the reason that the anomalistic month which we have to deal with, differin length from the sidereal month.

Revolution of the I'lane of the orbit.-This oceasions a change in the range of the mon's declinatinu; or the limits which it can reach. north and south of the equator, in ang given vear. If we begin with its most restricted movement in declination, which in even dererees is from 18° north to 16° sonth, this limit keeps increasing for nine or ten years until it reaches a maximum rar ee of 28° north and 28° south, When it again decreases gradually, and eventually completes the eycle in 19 veare. These variations are quite noticeable to aty onc who ubserves the moon; for there is not very much ehange in one year, and consequently there are years in which all the full moons are within a limit of 86° in their meridian altitude, and other years
when they extend to the wide range of $5 b^{\circ}$ on the meridim. The north and south limits will be best seen in different montha, howerer; because for three months in succession the moon is within two or three dilys of being full when at its maximum north; and again at the opposite season of the yenr, for three other months in sueeession, when at its masimum south. These things ean thus be elemply sem by any me whe rombines observation with memory. We will now emsider the cause of this, and its effect on the tide.

These changes enull mot be fully explained without a larger amomit of astronomical phrasenluge than we wish to enter upon; but we will mbleathur to make clear the reason fur the two extrenes in the range of the mon't derlination, as it is found to occur in different years. The phane of the earth"s whit is the most fixel plane of reference that there is; hut the mon's orbit wes ant hir in this phane; it is inclined to it at an angle of alout π°. While this inctination remains the same, the pusition dues nut remain fixed, us the orbit is continually grating. This motion, ats an eminent astronomer has deseribed it, may be eompared in its rolation to the enrth's orbit, to the gyrating motion of a dinuer plate on a table just lutiore it comes to rest, after being originally spmon its edge to start it. A rolling hoop, falling over sideways on a pavement, will illustrate the same thing. The list of the wobling motion, when nearly Hat, represents this movement of the moun's orbit. The period, homever, is long; as it takes 19 sears for the orbit to make ont wration of this character.

As seen on the face of the hearens, the earth's orbit gives the line of the ectiptie; which is inclined to the equator at an anglo of 23°. In eonsequenere of this gyration of the mon's orbit relatively to the ecliptie, a year will arrive in which its orbit will lie between the ecliptie and the equator, and its inclination to the equator will be $5{ }^{\prime}$ less than 23°, or 15°. This is the lin it of north or south derlination which the moon can reath in such a year, in travelhng around its orthit during the month. At its opposite position in the cyele, there will be a vear when the indination of the mon's orbit to the "ruator will he 5° greater than the inclination of the eeliptice. In such a vear, the limits of declination which the mon cim rean ate extended to 25° north and south of the equator. As these changes depend (1n \quad ․ low an anqle of inclination as 5°, the limiting values of the maximumand minimm, flow rery little variation in the eourse of a single year. These perionds of fremet and hast range in declination, are separated by an interval of $9 \frac{1}{2}$ years from cath wher:
(In astronomical language, the ehange is due to the revolution of the moon's nodes; and the direction of the revolution is retrograde. I'he extrmes oreur when the aseending node coincides with one or other of the equineses; aml thus when the longitude of the node is 0° the range in the mown's declination is from $25^{\circ} \mathrm{N}$. to $=5^{\circ} \mathrm{S}$., and when the longitude is 180° the range is from $10^{3} \mathrm{~N}^{\circ}$. to $15^{3} \mathrm{~S}$. The mean range in the deelination occurs when the phase of the eyele is in anadrature with
 Nautical Atmanace which gives the longitude of the mon': asernthing node, will thus show at a glance where nuy sear stands in the progerse of the $19-\mathrm{ye}$ ar eyele.)

There is pobably nothing in comertion with the varions motions of the moon that gives so much trouble as this does, in tidal calculations. For it is evident that there are years in which the moon reaches the zenith over parallels of north and south latitude that are half as far acain from the equator as the parallels it is able to reach at the other extreme of the cyele. The effect of such a change on the diurnal inequality in the tide is pronounced, especially if this inceuality is already large. In the world as a whole, the tidal variation due to declination is the greatest that occurs from any one cause. It is not therefore surprising, that this large change in the nmount of the mon's declinational motion is found to eatuse re:rintion in a number of values or factora, used in the calculation of the tides, which would otherwise remain ronstant.

PRACTICAI ISES OF TIPES OF TIDI.

Although we eamot explain at all adequately why it is that one type or another is found in any particular region. yet their development can be traced in some degree. It appears that a wide ocean like the Pacifie is required to develop the declinational type, umless it is due to tidal interferenee. Also, an exhaustive analysis, by whieh the various lunar and solar elements in the tide can be distinguished, may show that one influence of the moon remains constant while another develons as the tide progresses. For cxample, in British Columbia whil. the tide progresses about two hundred milrs, the effeet if the moon's distance reanains as small as in the open veean, while the great inerease in range which takes place loeally is due almost entirely to development of diurnal inequality. In the Bay of Fundy, where this inequality is not conspicuous, there is no great inerease in its aetual anount from the mouth of the hay to the head, while the general range of the tide is more than doubled beeanse of the inerease of other elements. Such examples point to lines of investigation which might throw light on the matter, though they are far from explaining why these changes take place as they do.

The practical side is more encournging, however; for it is evident as a general principle, that the method to follow in dealing with the tides of the world is to ealeulate primary Tide Tables from the position of the sun and moon for each of the three types of tide, and for some of their more usunl combinations. The time and height of the tide in all the harbours of the world could then be found from these primary tide tables, by means of differeneen of time and proportionate heights; as the eharacter of their variations would always be similar, becanse of the type being the same.

The first systematic and thorough investigation of the tides, astronomically and mathematieally, was earried out by Laplace; and the French seem to have assumed that the influences of the sun and moon. heing general, would be the same everywhere; and that aecordingly any one harbour would answer as a "port of reference" for all tides. In their early tide tables, the whole world was therefore referred to Brest. But it was soon found that a constant difference of time from Brest, gave entirely erroneous results in many regions. On the other hand, the general procedure in tidal development has been to ealculate primary tide tables (that is, direct from the sun and moon) for harbours that were suffeiently important to justify the labour of doing so, without any consideration of what type of tide was being dealt with.

In our Canadian work, we lave heen able to show that it is often possible to produce satisfactory tide tables by means of a constant differenee of time from a pror in a distant oeean, prorided the type of the tide is the same. For example, the timar of high water at Nelson (whieh will be the railway terminal on Hudson Bay) ean be computed from a port in the North Sea. The tide in Miramichi bay is of the same type as in the Strait of Georgia on the Paeifie, exeept that the tide eurve is inverted; and aceordingly low water in Miramichi bay shows a constant differenee with high water in the Strait of Georgia, although these plaees are on the opposite sides of Forth America. As the tide in Hudson strait is of the anomalistie type just as in the Bay of Fundy, both high and low water there can be eomputed from the tide tables for St. John, New Brunswiek, which is 1,200 miles to the south.

These correlations result from investigations earried out to save the expense of arecting permanently equipped tidel stations at remote localities; sine by the methods refered to. adequate data can be obtained from a restrieted series of observations in the summer season. But they corroborate the riew that a proper classifieation of the tides should enable a limited number of typical ones to be found which would repwo. sent the tides of the whole world adequately. This question is diseussed in a paper by the writer entitled "Veriation in the lending Features of the Tide in different Regions," in the Journal, Ropal Astronomieal Society of Canada, Vol. I, page 213. 1907.

EXTAFMF THLE: ANJ NTORMS.

The oreurrence of extreme tides is a guretion of impertane from sereral pointof view. Excentionally high water may eallee serima dimater to froons stored near the water-front in harbours; and also by the overtlowiner of dykes and floodine of rechamed luds, or dyked marshes, along the sea coat. Exeentimally low water mas be dangerous to navigation ly giving lese depth than is enunted npon ordinarily. There is an cxtreme range whicla is of a normal charanter dhe to astronomical conditions, and so an exceptional raising or lowering of the tidn Chering storms.

In general. the normal extremes are calued by comblineal conditions. In any type of tide, the other astronomical influences besides the dminant one not altowether absent: and when the er roincide, extremes will be monlured. Where the surings and Neaps are the doninant feature of the tide. the inthence next in importance will be either the moon's distance or its declination; and aceordingly extrene tides will own either at perigee spring or when the mom i* at iに 17 mun declination at the Springs. Similarly combined conditions will carry th. other types uf tide to their extreme ranges.
 further eoineidence of a storm with the maximum astronomiail tide. Sum extrenes are therefore rare, beeause it is not often that a storm hampens to conineme with the highest astronomieal tide, and at other times a maisol tide will mot likely be high enough to give trouble. These storm tides are also diftionlt to menliot ; beatuee the dircetion of the wind is reversed, aefording as the sturm contro ploses to the right ir to the left of the locality in question. For example, as resaris tine bay of Fundy. if the eentre of a storm which is known to be emming up the Ditantic const should swerve northward and pass over southern New Brunswifk, there will be a heavy wind up the bay; but if it passes on the other sidn of the bay the wind will be outward, and will not raise the tide. The best that these inturestell ean do, is to note the dates of the highest tides in the Tide Tables for their remion, and to take preeautions in ease a storm should oeeur at such dates.

The greatest recorded disturlanee of the tide in the bay of Fimdy, is known as the Sasly tide, which broke over the dyked lands and thomed the eountry on Oetober 5, 1469, during a severe gale. This gale occurred on in las when the moon was new and also in perigee, so that its effeet was added tw a very high tide. The level of the water in Cumberland basin was raised $6 \cdot 20$ feet above the normal height at perigee Springs; and in Cobequid bay, in the other arm of the Bay of Fundy, it was raised nearly 5 fect. These values were obtained by instrumental levelling and comparison with the normal tides as observed in other months.

At Quebee, the following examples slow the amount he which the tide may be raised by storms: from a comparison of the aetual level with the calculated height in the Tide Tables: On Mareh $26,1909,4 \cdot 2$ feet; on Nownher 25, 1912, $4 \cdot 6$ feet: and on Norember 20, 1914, $5 \cdot 4$ feet.

The extreme low level at low water is more diffeult to obtain; as it leaves no mark and eannot afterwards be determined by instrumental leselling. It ean seldom be obtained, therefore, without a recording tide gauge. It is of importance to navigation, however, and with relation to the low-water datum.

THE TIDE IN ESTLARIES, STRAITS AND W゙LETS.
In dealing with the tides, there are two leading aspeets of the matter in general, whiel may be distinguished as. firstly, the eanses which produce the original tidat undulation in the oeeans; and next, the eharaeter of the transmission or mode of travel in passages bordering the ocean. These two aspeets must not be separated too arbitrarily, beeause even in the large nceans, there are not only the astronomieal
eauses of the tide to eonsider, but also its transmission as an undulation whieh impinges upon the shores. Yet when the tide leaves the open and enters straits, inlets and estuaries. it undergoes further change which is much more closely related to the laws of hydraulics and wave motion, than to its astronomical aspeets which we have been cliefly emsidering so far.

The most nsmal arm or inlet which opens off the occan. is the estuary at the nouth of a river. The eonsideration of estuaries is also very important, because so many large harbours are sitnated in them. The tide has also a useful relation to these, beeause it enables oeean traff? to be carried further inland than it otherwise conld be.

When the tide of the ocean reacher the mouth of an estuary, two noticeable effeets are produced; the tidal undulation enters the estuary and makes its way in, eausing high water and low water at snecessive points along it; and also the rise and fall of the ocean at the mouth of the estuary eauses an inflow and outflow of the water, which we will consider later on, when dealing with tidal streams.

The Tidal Undulation.-Throughout the ocean, the tide is almost always a symmetrical undulation, having the same form as the long swell of the ocean; the summit of the undulation occasioning high water and the trough low water. But when it enters an estuary its form undergoes the same kind of modifieation as waves do in the shallowing water near the shore; and it is even possible in extreme cases, for the tidal undulation to break, like a wave on the be.eh.

The modifieations of the undulation in passing up an estuary, are chiefly these: (1) It beeones steeper on the advaneing side, and aecordingly as it passes any given point, the rise of the tide is more rapid and the fall longer. The interval of time fron low water to high water beeomes less, and from high to low greater; although the two together still make up the total tide-interval of 12d honrs. (2) The range of the tide inereases; and it generally attains its maximum range about the point where the wide mouth of the estuary narrows to the width of the river emptying into it. This may be eonsidered the true head of the estuary and the beginning of the river. It is in this vicinity that harbours in estuaries are usually situated. (3) From this point, the tide decreases in range as it proceeds up the river proper. The river slope. up which the undulation has to travel, together with bottom and side frietion, combine to reduce the amount of the undulation until it is eventually effaced.

These conditions characterize the usual estuary, where a river widens towards its mouth and is not extremely deep. We will see how very different the conditions are in the ease of inlets of great depth. The same conditions obtain in long bays, and possibly in some straits, especially those which natrew rapidly towards one end.

The steepening of the tidal undulation on its advaneing front, is chiefly due to the higher rate of progress of the crest of high water when the estuary is flooded and deepened, and the slower progress of the trough of low water. For at low water, it is not only shallower, but the channel is more restricted, and shoals or bars may appear. The greater speed of high water under these conditions, and the retardation of low water, is in accord with the hydraulic laws governing undulations; and low water is thus overtaken by the following high water. This would be the ease to some extent even in a long narrow bay; and it must not therefore be attributed entirely to the flow of the river against the incoming tide, although it no doubt becomes aceentuated in the tidal part of the river above the trie head of the estuary. It is even possible for the tidal undu ation to break and form a "Bore," as it does in the Petiteodiac river in one arm of the Bay of Fundy; where a foaming wall of water which may attain a height of over five feet, advanees against the opposing current of the river. (See description with diagrams. in Report of Progress, Tidal Survey, December, 1898.)

There may also be a marked difference in the form of the tide curve from Springs to Neaps. This is very evident in the St. Lawrenee estuary. At the Spring tides. the estnary eonditions due to change of depth, are much aeeentuated, and at any point of observation the rise of the tide is ranid and the fall more gradual, and at low
water the turn is sharp．But at the Neap tides，the tide curve is more nearly sym－ metrical，as the proportionate depths at high and low water are not so extreme；and the bottom frietion，retarding low water，is much less than at Spring tides．

Rate of Progress of the Undulation．－It is important to aseertain what this is，to enable－dal differenees to be given for the various pmints along the estuary with relation to a reference station in it．The progress of the tidn in the middle part of the estuary of the St．Lawrence．from Father Point to Queber is given as an example． The values are based on simultancous obervations，taken day and nizht to climinate diurnal inequality；and all the differences are in absolute time．The larger time－ intervals in the case of low water are noticeable．

St．Lawrence Retuary	Fッ！ 1111		F＇ur L．W．	
Father Point to Orignaux loint．Distance 103 miles．Aレ世＂な Spring rande for the two places， 16 fect．．．．．．．．．．．．．．．．．．．．．．		2．） 11	1 h	48 m
Orignaux Point to Queber．Listance it miles．Sprimg rathe 18 feet．		4．）in	$\therefore \mathrm{h}$	4．m

Tidal Differences in Estuaries and straits．－Aecording to the theory of wave motion，the rate of progress of the tidal undulation in an estuary or strait，will wary with tie amplitude ard also with the depth of the water．The amplitude or range varis from Springs to Neaps，or in relation to other movements of the moon；and the depth remaining below the trough of the undulation，is lese at $S_{\text {prings }}$ that at Neaps．There are two methods therefore，by which the variation in the difference in the time of the tide between two localities ean be reduced to law：（1）With relation to the period of the moon＇s plases，or sone other lunar period in which the greatest
rariation in amplitude oceurs. (2) With relation to the absolute height of any tide as oberved on a scale at one of the localities, or the height as given :n tide table for a refercuere station in the reqion. 'These methols are discussed. with examples, in a paper entitled "Progress of the 'lide in deep lulets and ordinary Estuaries" by the writer. (Trans. Koyal Society of Camala, Third Series, Vol. r, 1911.)

Fro:n the practical standmint, if the variation from the average difference of time is tun large to he overlonkel. the extuary or strait maty he divided into two sections. and two roference stations ratablishod in it. If this is not practicable in the circumstances, there are three other plans that may be taken: (1) The differenee of time at Spring and Neap tdes may be distimpuishem; and separate tidal differenes at eaph, may be given for lugh water and for low water. (2) The difference in time may be given with refereme to the actual luight of the tide at the reference station. It is tor low water that this relation is most required: for it arrives later as the height at low tide bemones less, as it is then more retarded. (3) A series of variable differenees betwern a locenlity and the reference station must be determined, and uied to computh. sperial tide tables for the loeality.

The chone between these plans may be intluenced by the effect of the freshen in the river. at one season of the sear. If the lealing variation in the difference of time betwren localities aloner the estuary is due to freshet eonditions, it may be necesary to give two sets of values, one for the freshet seasm, and the other for ordinary months. Such values have been worked out for the tidal portion of the St. Lawrence river above Qucber, and for a serica of localities along the Fraser river in British Columbia.

The division of an estuary intu two scetions was adopted for the st. Lawrenee, after every effort was made to deal with the estuary as a whole by means of some systen of variable differenees. The outer section of 175 miles in the wider part of the estunry is referred to Father Point; and a seetion of 160 miles further up, extending to the head of tide water, is referred to Qucber. In each ease, the referenee station is about the middle of its section; and the tidnl differenees thus beeome eonstant in each half seetion, for all praetical purposes; with the exeeption of the freshet seas n in the upper half-section above Quebee, whieh can be specially allowed for, as already explained.

As examples of the three plans referred to, the first is adopted for the Skena river, and the seeond for New Westminster on the Fraser river; as will be seen in the Tide Tables for the Pacific coast. The third plan is adopted in Northumberland strait, where the tide tables for Pietou are celculated from Chalotetown by memn of two series of variable differenees in the reriod of the symodie montl. The series for high water varies from 26 m . to 49 m . and for low water from 38 m . to 60 m . In this way. Pictou is made a secondary reference station for the greater part of Northumberland strait; and as it is eentrally situated in the seetion whieh is referred to it, the tidal differenees on Pietou are quite constant; sinee the main variations are already allowed for in the ealeulation of Pietou from Charlottetown.

All these plans ean thus be exemplified from the inethods used for Canadian tides. It should also be noted that when onee these methods are devised, they make the applieation of the resulting tidal differenees extremely simple for the mariner; for the object in view is to reduce variation and to obtain differenees on the reference station that are practieally coustant. It is also evident that as a general rule, it is best for the reference statiou to be eentrally situated in the estuary or bay, rather than at the mouth or head. As a further example of this, St. John, N.B., halfway up the Bay of Fundy, proves an exeellent referenee station for all loealities both in the outer and inner parts of the bay.

Deep Estuaries and Inlets.-These nfford a eomplete eontrast to ordinary estuaries; for when the depth is great, there is no progress of the tidal undulation in the ordinary sense. Even on the Lower St. Lawrence towards the mouth of the
estuary, this is axemplified. From Cupe Chat to Father Point, where the depth is $1: 24$ to 1×9 fathoms in the offing, the time-interval on a distance of 90 miles is only sin. at high water and 10 m . at luw whter. Also in the Striat of (iwormia, the tide is very nearly simultaneous from the tidal station at Sand Heads to Comox, a distance of st miles. From Sand Heads to Lund nt the northern end of the stratit, a distmace of 10 s mikes, the time-interval is only 14 m . nt high water and 16 m . at low water.
 fathoms. The sigumay has a depth of 90 to 140 fathems from Thdoussabe it the mouth to Bagutville in 11a- H_{a} hay at the head of the salt water inket and in that fitance of tio miles, the difiennce in the time of the tide is only $1: 2$ minutes. For a similar lemeth on the sit. Lawrenee, where the width is about the same, it would be over two hours.

The long intets on the comst of British Colunbia which are similar to the Fjords "i Sorway, ufford a still more unticeable example. Theor are often 50 or f_{i} miles tong and very deep; ahthough, unfortunately, their actual depth is not known. In making the eoast elarts, althongh the height of the mountains was measured, these inlots were not somuded to the hottom. Judring ly the best infientions, the depth is morbally not less than 100 fathoms.

In these inlets the time of high and low water at the hemd is very little later than at the mouth. This has been asertained ham simultamme reeords from registerinis tide gauges, operated day and night continumaly for a perian of several months: the time being kent aceurately at the mouth and head liv the mee of chronometers. The result: for there inlets are here given:-

Distance, is nhise. From compirianh of observations in twot difierent seasons with the sathe relerence stition.. 3 m . l:iter

9 m .1 later.
From Nimu to Hella liula. hy Brarlie chantill and Jentinck apm Distance, 69 miles. From 1 it simultaneous observations

From Hortley bay in Wright sound to Kitimat, ly Iouglas (bannel. Jistance, f\% miles. From 2゙:- simutianotis ohserv:itions.
$\because \mathrm{m}$. later.
7 m . later.
fm. later.

The range of the tide at the head of these inlets is only from 2 to 12 per eent greater than at their mouth. It thus appears that the whole uriace of the inlet rises and falls cimultanenusly, in correspondence with the impulse at its mouth given by the rise and fall of the tide in the open. It is also wherved that there is little current execpt in the mouth of the inlet, where the pulsation takes place.

This action of the tide may lest be exemplitied by suppsing a long and deep trough in whied the water is retained by a movable end. If the end, consisting of a sliding partition or dam, is pushed in and drawn baek slowly, the whole surface of the water will rise and fall simultaneonsly; and there will be no appreciable current, relatively to the sides, except near the movable end itself. The action of the tidn of the otiteide oce:n at the mouth of these deep inlets must be very similar to this. The rising tide creates an impulse at the mouth which pushes the water in at the end only. The volume required to raise the level 15 feet in height over the area of an inlet for miles long, half a mile wide, and 100 iathoms deep. corresponds with in inthrust of only $2 \frac{1}{2}$ miles in length at the mouth. This inthrust and reeession on so few miles of length everv six hours, gives rise to a eomparatively slight current Which is found ucar the mouth only; as is verified by observation.

As regards the ratio of the amplitule to the depth, it may be said in the rases aitel that the average range is from 1 tith to $1 / 60$ th of the total depth, as nearly as this ean be estimated.

TIDAL STREAMS.

The horizontal movement of the water as a current or tidal stream, may be quite as important to the mariner as the restical movement of rise and fall. In foggy weather especially, he may be more concerned as to the direction in which his vessel is set by the enrrent, than as to the exnct level of the water surface in relation to the stage of the tide.

When the investigations of the Tidal Surves were first commenced, the currents were the question of primary importance, as mans wrecks were nttributed to unknown currents. The tidal stations established, were thereforo quite as much required to determine the time of high and low water with which to correlate the turn of the tidal strearns, as to determine the amount of rise and fall. For it is only by mems of these time relations, that the direction of the flow at any given hour, can be known in adrance, with reference to a tide table.

We thus find two distinct sub-divisions of the whole tidal problem from the nractical standpoint: (1) The height of the tide in relation to time, which is completely shown at any locality by in tide curve. (2) The movement or flow, as to its relon: y and the reversal of its dire sion, in relation to time. It is also interestine note that it is possible to treat these two aspects of the tide quite independr \quad; which shows the clear distinction that can be made between the vertical and "azontal tidal movements.

Tidal Streams on Open coasts. - We have little or no definite knowledge regarding forward and backward llow in mid-ocean, in relation to the passage of the general oceanic undulation of the tile. We can feel sure however, that such a movement must take place; and equally sure that it must be very slight, when the rise and fall of the tide itself camot be very great in mid-ocean. Wo do not here refer to the wellknown ocean currents, which move ennstantly in some one direction, and may havo considerable strength: as we are here dealing with tidal effects only.

On approaching the coast, the tidal streams begin to manifest themselves. At an offing of 20 or 30 miles, which is as far out as they have been investigated by the Tidal Survey, in the offing of Newfoundland and off the outer eoast of Nova Scotia. these streams have a coustantly veering direction. They set towards every point of the compass successively, and thus veer completely arourd in the tidal period. This is well illustrated in the Plates appended to "Curreuts off the coasts of Newfoundland," published by the Tidal Survec.

Nearer the shore on open coasts, say at an offing of fiye to wht miles, the tidal streams are obliged to reduee their veering, and to set more nearly up and down the shore, parallel with its direction Also, any constant eurrents which follow the direction of the shore, such as the Latirador current off the east coast of Newfoundland. or the Gaspe eurrent in the Gulf of St. Lawrence, always show a distinet fluctuation in velocity in correspondence with the tide.

The behaviour of such streams and currents will be found descrihed and illustrated for the coasts of Canada, in existing publications. This brief reference may therefore suffice, as it may be said in general that the strength of the tidal streams off eoasts which are open to the ocean, away from the vicinity of bays and strnits, seldom exceeds one knot per hour, and is usually less than this.

It is in estuaries, straits and passages, opening off the ocean, that tidal streams become accentuated: and the strength of the currents that result, depends ehiefly upon the greater or less rise of the tide that produces them. In most estuaries and straits, the tidal streams are sufficiently moderate to permit of navigation at all stages of the tide; but under other conditions, the rise and fall of the tide may create rapids; or eveln torreuts, which render narigation impossible except when there is slack water, about the time when the direction turns. To follow the subject clearly, we must first elassify the various kinds of arms of the ser and other passages, that are found to exist.

Tilal Streams in Estuaries, Straits and Intets.-We offer the following classification of these as eomprehensive, in their relation to the tidn:-

Class A.-Arms of the sea emneeted with the orean at ome mul. la this casce the tide entering the urm ean only be of whe type, and all the mowementa are related to the time of rise and fall at the menth of the arm. From a tidal standpuint, there are three possible kinds of such arms.
(1) The orthary estuary, more or lese fumel-shaped as a rule, and of modernte depth. This type is so eommon, and it forms the entrance or passa, e way to so many important harbours, that its tidal streams will rempire a more extended ennsideration later on.
(2) The deep inlet. This is the tepe that we have already deacribed, in which the rise is practically simultaneous wer its whole area, and there is little eurrent eseept in the mouth. It is interesting to note that in nature there is seldom any gradation between these two types. They are sharply distinguished as either shallow or deep, with fury to be found that are intermenliate between the two. This appeare to depent upen their mode of formation, in geolorical time.
(3) Lares basins or expanded inlets, ronuected with the ncean by narrow entrames: their area being so large that there is not time for them to fill up during the tidal period. This type of inlet is moro common than might be supposed, and wo may give two examples of it.

The Bras d'Or lakes, in the middle of Cape Breton ishand are connerted with the ocean by two passares which communieate with the first expanse; and this again communieates through Grand Narrows with a second and larger expanse. The rise of the tide in the open is 4 to 6 feet. but the lakes have not time to fill up in the tital period, and their variation in level is only about six inches. As their level is so marly constant, the time at whieh the current turns in the passages conneeting them with the ocean. is not far from the moment of half tide, rising or falling; because the level of the lakes naturally eorresponds with the level of half tide in the open. 'This has been ascortained by gaugings in the lake, and instrumental levels neross the narrow neck, where the St. Peters canal enters the inner expanse. The tidal streams in the passinges are moderate, however, as the range of the tide is not great

Sermour inlet on the Pacific coast, runs into the mainlan, opposite the northern end of Vancouver island. There is one narrow entrance into the inlet at the end of Slingsby chminel; and it is 35 miles long, tugether with five other inlets and sounds, which open off it. The total aren of these is solarge that the rise of the tide within them is inconsiderable, while in the open the rise is from 12 to 15 fret. Sueh a difference of level causes the tide to pour through the one narrow entrance in a torrent, as it rises and falls. The district around this group of inlets is am important lumbering region; and the need for some method of determining the time of slack water is very evident; as my attempt to tow lumber out at any other stiage of the tide necessarily results in wrechage.

Class B.-Straits or passages connected at both encls with the s.a. From our present viewpoint, these may be divided into two categorics: (1) Passages where the tide is of the same type at the two ends. (2) Passages where the tide at the two ends is of different types.

In the first instance, it is possible that there mas low morrent through the passage. For we may suppose an island with a strint behind it. on a coast which the tide meets squarely; making the time of high water simultaneous at the two ends of the strait, and causing no through eurrent in the strait. But in general, this is not the ease; and tidal streams throurh a passage oceur because of a difference in the time of the tide at the two ends, or difierence in the range. The strehgh of the streams will depend upon the amount of these differenees.

The passes between a chain of islands mi the west side of the Strait of Georgia might be eited as examples of tidal streams caused in this way: but the most note-
 and the mainland, near its nurthern mal. A mery large tratlie pawe throurh these narrown: not only the Canalian coasting steamers, but also the United States trade to Alaska. The swiftues of the current makes mugightin impranticolhe when the
 comditions are facourable. This rapid current in Sevmur Nurrows mast be due to the differeme in the time of the tide to the morth and to the sumbth. The differemere is five homers, or prationally the tidel intervol: aml consequently, hish water at the northern end of the atriats leading to these narrows is simultaneous with low water to
 the two directions equml to the whold range of the tide, which in these regions is 13 h fort on the merage. This may woll areount for the swiftess of the current.

 tide is of two distinet tomes, athomen the rampe is marly the same: being 4 and 4 t foet at its two ends renpertinels. . It the mowhern end dinmal inemality is highly
 At the southern emot, the tide is of the symodie type usinal in the Atlantic, and the inequality is searely apparent. Alsw, as the time of high water is not simmentens at the two cula of the iant, the tidal atrome are the more complex. Afer earefinl inventigation, havever, it was fomb that their behaviour enuld he explained with relation th the derlination of the monn.

The classifiention here piven womld appear to include all the varieties of arms or pastages connerted with the seat that are prsibhe, in rehation to tidal behamour; and it is interesting to mote that they can all he ilhastrated bes Comalime examphes. There are no doubt moditientions, with relation to tides of different ranges and trpes, which might be detailed farther; but the prosent ontine will serve to indieate all the leading conditions that there are.

Tidnl Strams in Eshuries.-These deserve full consideration, hecause so many estuaries form the avenue of apporbh to important harmurs: and the characteristies of the tide in them briag out principles which apply to the behavionr of the tide in general.

Where the estuary of a river opens into the ocean, the rise and full of the tide canses tidal streams to develop, which run in charing the thot, and ran out for a longer time during the ohb; esperially so, if the river running into the estunry is of large volume. 'These tidnl streans become more and more unequal in the two direetions, up to a point where they rin no louger reverse the river eurrent. Above this mint, althongh the thow is always mo why, it is stronger during the period of the ebb. The tidal mudnlation, which is manifested ly a rise and fall in level, may atill be appreciable as far up the riorr as this inequality in tlow is noticeable.

These conditions characterize the mian estuars, where a river wideus near its mouth and is not extremely deep. The emditions are very different in the ease of inlets of great depth, as we have seem. But in estuaries, they are due to some extent to the gnamtities of samb and gravel, bromelht out bey the river in the eomrse of conturies, mind formine binks or bars with chamela hetween them.

If we first examine the laws which growern the flow of water, we will be better able to follow the lehaviour of the tidal stremas in mestury or strati. It is ber mo means a simple matter: beeause when on hadraties give attention chictly to continums fow in one direction. throngh channels or pipes; and we have here to deal with flow which not only changes its direction, but which runs in a channel of constantly varsing
 resulte to a simple form, for the purposes of mavigation. We will here endencour to give the laws of frietion and momentum as they anply to flowing water, in as brief outline as possible to enable tidal streams to be understod.

Friction.-It is well known that the friction of water on itali is lower than the frietion between water and ang wolid sulntanee. This is wident from the the of watur in pipes for the enectirient of friction is the same whaterer the material of the pipe

 th the surfare of the pine, ind that the water really flow- arninet thit water film There is thas fese frietion on in whet surfare than on a dre rime. The womblation is that witer prefere th dip on iteolf, one layer on another, rather than th move hodily ower a solid surfuce.

 and also from the middle towards the sides. This is tram in the spharelsont chamed of n canul or muadnet, and is much arerntuated in an ordinary river which beromen shallower towneds the sides.
 the fall of the tide, when the then herins to rise apian it will wet immediately stap.
 necustomed to think of momentun in commention with sold matter. lat na -n!pmon

 water hegins to rint, then blocke will not stup at onme: they will go forward neant it and may even slide up the rising surface fur some distane lufore they come to ret. and berin to move inward arain with the rising tide. Now, these solid thome are no heavier than the sume bink of water: inded not quite so hears. A block of water a
 enormons momentum of the ebb strem in an extuary. even when moving emparatively slowle: and the great forer from the rising of the tide that is required to and its movement and pash it back landwards. It is this momentum of the water that explains the continued thow of a tidal strem for some com-idurable tinse after the turn of the tide at high or low wuter.

When the eld stream is flowing nut of an estury. Which usually widens towards the sea, let us consider what will hapmen when the tide hagins to rise. in wifw of these laws of motion. The rising water of the ocean may art in one of two ways to commenee with: (1) It may berin ta flow up the middle of the estury as a tongue of water, white the ebl stream still continues to rmat the sides. It dore this beemen the water in the middle is deepest, and the first inward thow has thus the advantare oi keeping as far us posible from botom and side frietion. It c:amnt oppose the elh stream squarely, and stop it, unless the whmel is quite restricted in width and the rise of the tide rapid. But in most estuarics, it is hest alle to make its way, in the first plaee, up the middle. This rentral tongue of inthwing water gradually widens, till it oceupies the whole width from shore to ahore.

Navigaturs are $w^{\circ} \cdot 1$ aware of these (atuary conditions. . and eoasting vessels take advantage of them 1 . seeping to the middle of the estuary, or making out along the sides, aefording as they are inward or outward bound, as the tide may favour them.
(2) In some estuaries, especially where the river discharge is large, the river water may be warmer, as well as iresher even in the estuary, than the incoming seal water. The rising tide has then a more difficult task, as it ean only make its way in along the bottom, beeause it is heavier owing both to its coldness and its greater saltness. The sea water is thus obliged to make in with bottom friction below it and the frietion of the outfowing fresh water above it. It is thes grently retarded: and the surfaee water eontinues to flow outward for a long time after the tide begins to rise. For, this upper flow has the double adrantage of its momentum and of the very luw friftional resistence over a water surface below it. At length, however, the rising tide will gain the mastery and reverse the flow to the inward direetion.

This nution of wea water in muder-ruming the river ontlow during the rise of the tide, cona he made quite evident liy invertigation with adequate applaneed. It appea indond to he nisual in some stretches of any ordimery cothary, provided that the of tide is monsiderahle. In the wider part of the estuary, it is more likely that the firse of the flowd will make in wt the midde of the width; but further up, where the eathars marrows to a width not mull greater than the width of the riwer itself, this undorrumiug will prohality be fomul. It also necurs commonly in chamel-wuys which extud smward thronrh the shallow waters luyond a river mumth: as for example off the Franer river in British Columbin, where these chanmede extemd betwern sand batas

Ther resistaner whidh sent water has to overeme in thowing inward mader fre-h water, neal unt he examerated. Bufore low water, the ontlow is wift and it extends to the lotenn: as there is mot only the river volume to be discharged lont mush adhitional water which hat arcmmulated while the tide wat hibh. But after bew water. as the anrfaro level rises and the depth inmereses, there combe a time when a thickures of a fow feet at the surface afforda safficient area for the whole diwelarge of the river. below thit, therefores, there is little to prewent the inthen of the coblher and heavior sea whter except bottom friotion, which it must averome if it is to that in at all; for the friction letween the two layers of water wheh mowe in opme io. directinus is extremely slight, as we have already printed out.

These comditions of thow may mot be so disadratagernas to an ineomme wesel as they might appear, und a weosel of ang considerable dramght may have the body of the thow in its favour in spite of surface appurames. The reverse direetions of the upper and under water may thus be mode curionsly evident. For example, at the mouth of the Fraser river. a depedrught wesel which was being towed in, at a certain stage of the tide, was carried forward liy the underemorent faster thm the tur with half the druught could make against the swift-ruming surface water. The tug had thas diflieulty to avoid boing over-rim by the vessen it was towing.

The turn of Tidal streams in relation to the Time of the Tide.-Tlis relation is evidently of importunce to navigation. In new regions or in the early days before there were tide tables, the turn of the tidal streams eould be atertained with reforence to the time of high or low water on the shore. This information is usually obtained during chart surveys; and although it may he only a local rolation at the thme, it becomes more valuable when it serves later to bring the turn of the current into relation with tide tubles when they are published.

Because of the momentum of water and other conditions as already deseribed. it would evidently be incorrect to suppore that the turn will oceur at the moment of high or low water. It is even too much to ussume that there is always a constant difference in time betwen high or low water und slack water when the stream turns. There are considerable regions, however, in whith this differenee proves to be constant; and the time of slack water, or the reversal of the direction, can then be found from high or low water as given in the tide tahbes for the referenee station, by adding or subtracting a constant differone of time. The entrance to the Bay of Fundy may be given as a noteworthy example of this. In the region extending outward froun the middle of the bay to Cape Sable, 150 miles in extent, the turn of the strong tidal streams has a constant time-relation to high and low water at St. John, N.B.

In estuaries, the elaracter of slack water when the tide is high and when it is low, may be quite dissimilar, und thus require chusideration. At the shack which oceurs about the time of high wator, when the estuary is thandend, the atanding water usually extends over a large area simultanemaly; but natr low water, when the flood stream begins in the middle and the ebb may still be ruming along the shores, there is no still water anywhe when the curront is turning. Thr moment whifh is taken as low-water slack nust fither be the time when the extent of the opmosite currents
 reatricted ship chmmel, it should be the time when the turn ewernes in the ehamer way.

These conditions are fomid in the st. Lawreme cestary; and the time of whek

 know what is tukimg mace in the midde as well un at the sides. (sur llate. V.)
 betwell high or how water mad slack water is manal in ordinary wathand and heop bays which resembe them: an they are in the chase of ams oi the seat conmented with the wean at one end; son that the tike in them is neetwarity of one tyse and dan to win system of rise and fall. Bint in the ante of harge axpansed remberted with the
 with the ocem at both ends, it is quite usal for the timediffereners berwern high in fow witer mad the correspmoting slack waters, th be variable. Alw, with reapeot th the sepe of the tide, the variation it mant likely tu be strumply aremonand when the tide is of the dechmotion tame with a hare dinrmal imemality.

When the differenef in tisue butwen slack "atere and high or low watter in the boulity is thus found to be variable or irrogular, there are there presible ways in which an endeavour can the made to whtuin a constant rehation with the tide, and which hove proved successinl in Conutian waters: (1) In a strait behind an iwhond. whre shack wher is out of aceord with the hocal tide, (which may really la there realt of the two tiders entering at the opposite ende of the strat) the time of slack water may correspond with the tide of the omen ocem, on the outside of the islinth. The first step tuken to rednee the complexities in Seymour Narrows, was in meord with this. (2) Instend of correhting the time of slack wnter with the ticke, it may be pussible to whain a constunt difference of time between the moment ui maximman strength on the tluod and ebb, and high and low water. This muy sucered where the variation is due to diurnal inequnlity in the tide; and it is alnost manally survictable to the mariner to know the time of mamum strength in enel diredtin, ats to kimw the tines of slack water; provided the strait or pasaige is navizable at all stages of the tide. This method is the basis of sutisfactory data for Northumberland strait. It is necessary, however, to have continuous observations with a enrrent meter, from which the moment of maximum ean be correctly determitued, in order to apply it. The current velocity, had uut as ucl. ve, is shown in Plate V. (ii) When the time of slack water is out of aceord with the tide, the mil-time between one slack wat and the next, muy give a constant difference of time with high and low wather. This method has the advantage of minking observations with a current meter unmedestiry, to tetermine the time of masimum velocity. The result, from the mariner's viewpoint, is practically the same as in the previous case; ns it serves to show whether flood or ebb is ruming at any given time, and when they will be strongest. This method is used for the entrance to the Bras d'Or lakes and Grand Narrows. The menverse relation, between the time of half tide rising of falling, and the time of Wack water, did not prove suceessful in redueing variation.

In applying the above methods, it may be found that a constant difference of time results for one of the two slack waters, but not for the other. For example, the difference of time between high water and the slank nearest to it may be constant,
 is best to take another reference station in the opposite direction, and to try a correlation of the low-water slack with it. This procedure has often provel suceessful, in affording time-differences for both high-water and low-water slack which are constant with relation to two different reference stations; as for example, in the case of the tidal
streams of Miramichi bay. It has also given eomstant relations for the maximum strength, or the mid-time on the flood and ebb, when combined with the methods above explained.

It is sucuially to be noted that all the results obtained by these methods, are extrencer simple in their application. It may require much investigation and research ts arrive at the lest methol to adopt, especially in legiming without any elue for Th. dance. But when a sohtion has bed achieved. it is only necessary for the mariner :- opply a time-difference, by addition or subtraction, to the tide table that is indicated, to , beain the result he requires. Many examples of this, including those already refered to, will be found in the Tide Tables for the Eastern eoasts of Canada, ind for the Pacifie const.

Fariable Differences.-It may be that no method ean be discorered, such at thanindicated, which will afford differences of time betwen tide and eurrent that are reasonahly constant in relation to any reference stations. The resouree afforded ly these methots is also much restricted when dealing with pasages or narrows in whim the tidal streams are so rapid or violent that navigation is only possible near slack water: hecame for them, it is the tine of slack water alone that is of any service. It may the become nedessary to adopt variable differences. The variations are alwayin acend with one of the moon's periods; but they may form two distinet series with relation to high water and low water respectively, which are dissimilar in character.

These differences when determined. are need to caleulate special tables of slack water, in which the times are given for cach day, as in a tide table. For calculation purposes, a serms of variable differences may give quite as acourate results as a comstant difierence does in other caves; as any whintion will always recur in some astronomical period. and the variahle series represents its reduction to law.

It would involve highly technical explanations to follow out this subjeet of variable differences, either in their detemination or their application. The resnlting Slack Water talkes will be found in the tide tables published for Canadian waters. There is one primeple, liowever, that has greatly reduced the ealculation of suela tables. by limiting the number rauired: which deserves to be mentioned.

It has becn arertained by comprative observations, that the variations between slack water and the time of the tid. are con ordant in passes which are similarly situated in any region. The difference in the time of slack water between two corresponding masses may thins prove to be chowely constant, as the rariations with the time of the tide are the same for both, and therefore disappear in the comparison of the passes with each other. Because of this, Slack Water tables ean be ealculated for one of the leading passes in a region, and the time of slack water in several other passes can be found bs applying a difference of time to these tables. This is quite similar to the usual plan of finding the time of high water at a locality, by means of . dal difference applied to a tide table.

In the network of ehamels between the northern end of Vaneouver islan'? and the mainland, there are a number of passes and narrows which well illustrate thimethod. The primary or referenee pass for which Slack Water tables are ealculated, is Seymour Narruws; and by differenees of time applied to these tables, the time of slack water can be found correctly in eight other passes; namely, Chatham channel. Whirlpool rapids, Green Point rapids, Mayne passage, Hole-in-the-Wall, Gkisollo, Surge Narrows and the Fueulta.

In all of these, the time of slack water is of the first importanee to the lumber industry; as they are extensively used in towing booms of logs, and by loeal steamers which supply the lumber eamps. Similar examples might be given from the 1 asses between the Gulf Islands on the routes from Vancouver to Vietoria and Nanaimo; which are not unly used for general havigation but for water transport by towing, in the coal trade.

In diseussing the question of the indernep of the wind on tides and currents, it i- first necessary to make a elear distinetion thetween the offe of of the wind on the rin and fall of the tide. and its effert in inereasing or retardine the lorizontal motion if the water and disturbing the normal movement which would otherwiee prevail

The intluence of the wind and larometer in modifying the heisht of the tide has berol carefully stadied, especially in Holland where it is of the first importanere, as well at in England. With regard to the influence of the wind on the horizontal movement of the water, there appears to be little information avaliahle. The esencral oceanic rimeulation is wery ofter aseribed to wind influenee; but whether this is the dominatinge cause relatively to other influencer, is probably still nucu to diwension. It is alen difticult to ohtain satisfactory information from resels, as during -tnrmis they camont unally distinguish between their leeway and the drift which is due to the mosement of the water itself.

Our fullest kiowh dye thut relater to the disturbance in the height of the tide. It is crroneons to suppose that an abnormally high tide is followed hy an murinally low tide. The insestigations on the coast of Holland indicate that the effect ne gales "un the tille is to raise both the low and high water level. This i abmudiatly conrohorated by our Canadian tide curves from recording gatures. Nit muly so, hot the time of high and low water often remain maffected. although the whole tide curve may he two or three feet abowe or lodow its mormal position. but in very sever -turns, both the time and the height maye become irregnlar and ind finite.

There is thus little if any support for the as-amption that if the tide is ratoch or luwered by the wind, there will be a correponding incrense in the -trenth of the tidn' -irems. For the range of the tide remains practically unafferent, as in reality it is the mean level of the sea which is temporarily disturbed. The rise atad fall of the tide apmears to be caused by a deep pulsation which extend themphout the whate denth of the water in straits and chands, lowever great that dipth mas be. There is strong corrolorative evidence for this view from several anures. it is alon fairly. rertain that difference of barmetrie pressure canses a flaw whin extends throushont the whole depth of the water. In eontrant with this, wind di-turbance neenembly hereins on the surface as a wind drift, and only when lone continued will its intucne - Ninsud to any great depth.

Amount of the Disturbance. When the investigation- of the Tidal surver were first begun, the general impression derived from books wat that the eurreat womb always be found to set in the same direction as the wind. But the louger the inveat
 Tw its true cause, the less residum there remained to ascribe to the wind, as otherwise unarromed for.

There appar to be several reasons whin may largely acomit for this impreseion that the current groes with the wind: (1) I fanlty method of abervation. by which the drift of small thoating objeets was taker to represent the set of the current. It is woll known that the wind will set a film or skin of smonth water in motion in a fen minutes; but to aceept this as the direction of the current is misleading in navigation. freanse the surface eurrent should mean its mowement a dopth of at least half the drament of an ordinary vesel a the the at athis depth represents it average effect on it ve.sel. (2) The difficulty of distinginining leeway from current drift, especially in the old sailing-ship days. Posibly even yet there are few masters of ressels when have ascertained acemrately the exact leway made by their vessels for cach given force of the wind. (3) Where the tidal streams present great complexity, owing to tidal rombitions which can now be explaned, it was assumed withont due consideration that their behaviour was the to the iniluence of the wind. (f) It is meteworthy that in chitaining information from fishermen, only the least observant men speak in a vague

Way of the current ruming with the wind. The more intelligent men attribute lesto the direst action of the wind, and distinguish the varions effeets more earefully.

The inder-current.-The investigation of the under-current is of primary importance in relation to wind disturbanec; as the wind neecssarily influences the surface of the water first, whereas the under-eurrent will eontinue to run in areordanee with the tidal streams or the general set, or whatever may be the normal eomditions of the loeality. It will also cone up to the surface as soon as the disturbing influences, which have been aeting on the surface of the water, ecase to operate. It does not appear that wind disturbanee ean extend to a greater depth than sor 10 fathoms at the most, under the influence of any gales that oecur in the summer season. A comparison of the surfaee eurrent with the under-eurent thus lolds the first place als a method of detecting wind disturbance. Otherwise, a comparison must be math with the normal conditions, or tidal periods, dedneed from observations in fine weather.

Where the current is as strong down to a depth of :0 fathoms as it is on the nurface, and when it turns in direction on the surface and below at practically the sane time, this has an important bearing upon wind disturbance, as it shows that the eurrent will soon regain its normal direction and strength after a storm moderates.

Wind Effects in Belle Isle strait.-This strait affords an exceptionally good opportunity to investigate wind effeets, because of its situation and the usual regularity of the strong tidal flow in the two directions. In the line of the etrait to the westrard there is a elear streteh of 470 miles of water across the Gulf of St. Lawrenee to the New Brunswiek shore; and to the eastward it opens into the Atlantic with 110 other shelter than what the small island of Belle Isle affords. During the two seasons in which the eurrent: in this strait were investigated, a careful wateh was kept while at anelor in it, to detect any influence of the wind upon the movement of the water. Continuous meteorological observations, taken on board, afforded eomplete weather data for comparison; and the relation of the surface curren ${ }^{+}$to the under-current was investigated. It may be stated in general that the effeet of the loeal winds in preducing a drift in their own direction is remarkably slight, considering the situattion of this strait. On the other hand, the effect of the wind in raising a sea quickls in this strait, is very noteworthy.

The current in Belle Isle strait is primarily tidal in its character. While under the control of the tide a ${ }^{\text {one, }}$, it will turn regularly and run with equal strength in each direction; the flood setting westward and the ebb eastward. But in addition to this tidal tluctuation, the water has almost always a tendency to make through the strait in one direction more than in the other. While the tidal fluctuation goes on uninterruptedly, the water is thus gradually making a gain to the westward, or to the eastward, as the ease may be.

The best indication of the effeet of the wind upon the movement of the water is afforded by a differenee between the surface current and the under-eurrent, in direction or in the time at which they turn; as it ean be stated definitely that the water at a depth of 20 or 25 fathoms, at which the under-eurrent was here observed. is unaffeeted by any storm, at least in the summer scason. A departure from the general relations between the surface and under-eurrent as establislied by these observations, will thus reveal any disturbance oecasioned by wind.

It was frequently observed, especially in unsettled weather, that if there is a change, it will oceur at slack water. For example, when the baroneter is low, and a change is to be expected, east wind will eome up with the flood. Also, a westerly wind will seem to be held baek by the flood and will be light and variable till slack water, when it will eome out strongly with the ebl. These changes with the tide. in unsettled weather, are exaetly similar to those which are so familiar on the Lower St. Lawrenee. It would thus appear to be quite as neeessary to point out that the
turn of the tide may influenee the wind, as that the wind mar eause the tidal stream to run longer in its own direetion.

The harge nileage of wind required to produce a true wind drift is further shown loy the behaviour of the tidal strams with relation to the wind. While anchored in mid-strait, it was often found during a strong steady wind, cither east or west, that the eurrent in its ordinary change from flow to ebl) would sot directly inte the wind for the usual tidal period. A strong wind has thus little apreciable effect, during a tidal period of five to seven houra, in cheeking the current on t.ee surface. It appears to require a large mileage of wind to produce any moticeable effect by it= direct action on the water.

The actual influence of the wind unon the movement of the water, may be smmmarized as follows. from the observations oltained in this strait:-
(1) It is anything but true that the current always sets with the wind which is blowing locally in the strait; since the ordinary tidal streams as they turn, will set directly against the wind, even when it is fairly heavy. On the other hand, in unsettled weather, the wind often comes up with the turn of the tide; and it thus appears to be held baek until slack water by the tidal stream setting against it.
(2) There was no evidence, after any of the gales, that the wind was ai reverse the direction of the tidal streams, or that it was able to elieck to any m. able extent, the dominant flow which prevailed at the time.
(3) From dircet comparisons of the velocities of the surface and muder-current. it appears that when a period of several days is considered as a whole, the current which sets against the wind prevailing at the time, is somewhat retarded on '..e surface. This is inferred from the velocitr it otherwise would have had. as indicated by the under-current.
(4) The only other effects of the wind upon the movement of the water which can be detected, are these:-There may be a slight change in the time of weering at the turn of the eurrent when it is weak: and the period of flood or chb which is in the direction of the wind may become slightly longer on the surface than in the undercurrent.

Some of these results are based upon observations taken as som as the weather moderated after a gale. If the effects are greater while the gale lasts, the current must recover its usual behaviour almost at onee, when the wind falls.

Modification of the Current before the Wind begins.-So much evidence for this has been obtained, and in such different regions, that the matter deserves special mention. The current is found to run more strongly before a heary wind comes on, and this ehange is so noticeable, that fishermen when anchorel in their bats, take it as an indication of the approach of heary weather. This is found to occur on the coasts of Newfoundland, and also in the Gulf of St. Lawrence on the north shore and in the bays and straits on its south-west side. There is also some erilence of its occurrence in the Bay of Fundy.

According to this wide-spread testimony, a change in the bebaviour of the current is noticeable for about twelve hours before a storm comes on. In most localities. the current sets more strongly towards the direction from which the wind is about to come; although there are other localities where the reverse of this hehaviour may occur. Where the currents are weak and variable, the set may become continuous for 12 or 18 hours before the wind begins. Where the currents are tidal with definite ebb and flood directions, the flow towards the coming wind will be much stronger than usual, and also longer than the ordinary tidal period; and in the opposite direction it will be checked or retarded. These effects are much more marked before northeast or south-east gales than before heavy winds from a westerly direction, as this is the usual direction of the prevailing winds.

These statements of the fishermen are confirmed by observations obtained by tho Tidal Survey, and their main feature is the fact of the current setting "into the
weather" as they express it; and for this it is difficult to give a satisfactory explanation withont more extended investigation. But the set of the current towards tho point from which a wind is about to eome, is in accord with the universal testimony of the fishermen throughout these regions. Of all signs of bad weather, it is the one which they appear to find the most trustworthy.

These effects seem to be due to the action of the wind in first holding back the water and then releasing it; and the influence of the low pressure area of the storm as it pasees along, also inereases the result.

In a paper by the writer entitled "Effeet of the Wind on Currents and Tidal Streams," the subject is discmsed with examples from chaservations during many seasons. These show the effect of the wind on currents, which are grouped in three flasses; mamely, tidal stremms whieh are weak and veering. constant currents, and strong tidal streams. The inthence of the wind was investigated with relation to tho under-current, as well as immediately after storms. (See Trams. Royal Sopiety of Canada, Third series, Vol. III., 1910.)

A noticeable effect of the direct action of the wind upon the water, in ehanging the snrface temperature, is also explained in this mblieation. This may occur after a long period of quiet weather when the water has become warm for a few fathoms at the surface, resulting in a rapid fail of temperature with the depth. Λ heavy wind. espeeially when off shore, may then drive the surface water out to the offing, and allow the cold under-water to come up to the surfece. A fair estimate can even be made, hy farcful comparison, of the depth to which the wind disturbance extends.

HE: IN REL.ATION TO THE CLRRINT.
To infer the behaviour of a current from the drift of ice with any certainty, the indications given by that ice and by icehergs must be carefully distinguished. The flat or pan ice runs with the surface current, and is much intluenced by the wind; whereas the icebergs indicate the average movement of the body of the water as a whole, and the wind has moppreciable effect upon them. This distinetion is well known to sealers, and they habitually take adrantage of it. When working against a gale of wind, they will moor their vessel to an iceberg, and lie in its lee white the small ice goes past with the drive of the wind; because, as they express it, the wind takes no lold on an iceberg at all. They thas save a long drift to leeward.

The berg ice, from its great denth in the water, will evidently move with the under-current; and it will not be appreciably affected by the wind. These bergs do not neeessarily indicate the direction of the curent as affecting shipping, exeept when the surface current has also the same direction. They show in reality the areage direction the current has, between the surface and the depth of their draught. They are thus of much value as an indication of the gencral movement or cireulation of the water.

The relation of the flat ice to the wind and current requires some little consideration. It is, of course, just as truc of this ice as of the berg ice, that the greater part is under water; but, as it is almost aiways in broken pieces, more or less piled and with upturned edges, the wind has a much greater hold upon it in proportion to its total weight, than on the berg ice. Even when this is allowed for, its depth in the water still gives the current a greater hold mon it than the wind has. For example, if such ice is drifting with a current in a given direction, and the wind is blowing across that dirc tion at right angles, the ice will seldom be set more than two points, or three at the zost, off the true direction of the current. When the ice becomes soggy or water-soaked and loses ita elges, as it docs later in the spring, it will set still more enrectly with the current.

When the surface current itwelf is moving in the direction of loresontinued or prevailing winds, the flat ice maturally follows the same direction too. Also, in regrinns
where the current is tidal, and the ice in calm weather would drift as far in the one dircction with the flood stream as in the other direction with the ebb, the direction in which it makes on the whole will depend upon the wind. It is probably for these reasons that it is so often said that the ice drifts with the wind; although this merely expresses the result, without distiaguishing between the relative influence of the wind and the current upon it.

There is also a dircet effect which the ice has upon the strength of the current in regions where the direction of the surface drift is under tho influence of the wind. The broken and. ut,turned edges of the ice give tho wind a much greater hold upon the water than it otherwise would have. Hence during long-continued winds, the speed of the current is appreciably greater than if the ice wcre not present. This is undoubtedly the explanation of the common belief which is expressed by saving that "the ice makes its own current." It mas be well to recall that the wcight of the ice itself is the same as the water which it displaces; and therefore, the wind has no greater mass to set in motion in producing a surface current than if tho ico were to melt and refill the hollow which it makes in the water; while the presence of the ice gives the wind a better hold than it would have upon the surface of open water. free from ice.

There is onc condition of the ice which may prevent it from showing correctly the drift of the water. When it is set against an island or headland and packel toget ${ }^{2}$ คr for a long distance out, with open water beyond, it may circle around as ou a pivot. The outer edge of the pack may thus make a long sweep very different in its path from the true set of the current; and its movements also become irregular.

EXPLANATION

of the Signs and Letters in the Platee.
Moon's Phases.-Denoted by the usual signs for New and Full moon, and the moon's quarters.
P.-Moon at Perigee, nearcst the earth.
A. - Moon at Apogee, farthest from the earth.
E.-Moon on the Equator.
N.-Moon at maximum declination North of the equator.
S.-Mon at maximum declination South of the equator.

The ThDe-Recorbivg INsticcaent,
The instrument by which the the curves are recorded, athl the firht matue big whilh the

 .11 tlo.

 observations in isolated hocalithes.

Tidal Survey of Canada.

Plate l.

Tidal Survey of Canada.

(20,

Plateil.

O20
(

Tidal Survey Plate III.

Tidal Survey of Canada.

Point in St Lawrence estuary.

Moon $14 \cdot \mathrm{~N}$

E - St John, in Bay of Fundy.

1916
$\sqrt{221.23 .}$

At Charlottetown in Northumberland Strait.

| May 8 | 9 | 10 | 11 | 11 | 12 | 13 | 1 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

At Sand Heads. St, Moon and Sun at maximum declination North.
$\left.\begin{array}{l}13 \\ 12 \\ 11 \\ 10 \\ 9 \\ 8 \\ 8 \\ 7 \\ 6 \\ 5 \\ 5 \\ 4 \\ 3 \\ 3 \\ 2 \\ 1 \\ 1 \\ 0\end{array}\right]$

IDES.
Inequality in High Water.
At Caraquet
in Choleur Bay.

July $1 \quad 15 \quad 1 \quad 18 \quad 1 \quad 17 \quad 1 \quad 18 \quad 1 \quad 19 \quad 1 \quad 20 \quad 1 \quad 21$| 1913. |
| :--- | :--- | :--- | :--- | :--- |

s. Strait of Georgia

Moon and Sun on Equator.

Sept. \qquad

72324

Tidal Survey of Canada.
TIDAL STREAMS. - NORTHUMBERL

RLAND STRAIT.

NOTE. - Curves of speed are from current-mefer measurement.

IE. - beLLE ISLE STRAIT.

