IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadian de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/

Couverture de couleur

Covers damaged/
Couverture endommagée
[1
Sovers restored and/or laminated/
Couverture restaurde et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other materlal/
Relić avec d'autres documents
Tight binding may cause shadows or distortion along Interior margin/
La reliure serrée peut causer de l'ombre ou de le distortion le long de la marge Intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from iliming/
Il se peut que certaines pages blanches ajoutdes lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pes fite filmés.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exampleire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dens le móthode normale de filmage sont indiqués cl-dessous.Colourud pages/
Pages de couleurPages demaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/ Qualité inégale de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule edition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have bsen refilmed to ensure the best possible image/ Les pages totalement cu partiellement obscurcies par un feulllet d'errata, une pelure. etc., ont été filmées do nouveru de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmd eu taux de reduction indique ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Metropolitan Toronto Library Social Sciences Department

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed papar covers are filmed beginning with the front covar and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated Imprassion, and ending on the last page with a printed or illustratad impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, atc., may be filmed at different reduction ratios. Those too large to be entirely included ifr one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as requirad. The following diagrems illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Metropoliten Toronto Library Social Sciences Department

Les images suivantes ont étó reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier ast imprimbé sont filmás en commençant par le premier plat et en terminant soit par la dernidre page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires orlginaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle amprainte.

Un des symboles suivants apparaítra sur la derniàre image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent tetre filmés à des taux de réduction différents. Lorsque le document est trop grand pour âtre reproduit en un seul cliche, il est filmé à partir de l'angle supérieur gauche, de gauche de droite. at de haut en bas, en prenant le nombre d'Images nécessaire. Les diagrammes suivants illustrent le méthode.

H35959

CHAPTER XXXIV.

THE GROWTH OF TORONTO CHILDREN.

By Franz Boas.

INTRODUCTION.

In 1891, when active preparations for the Worid's Columbian Exposition were being made, Prof. F. W. Putnam, curator of the Peabody Museum of American Archeology and Ethnography, and chief of the Department of Anthropology of the Exposition, placed me in charge of the section of Physical Anthropology. At an early time during the preparation of the exhibits we arreed upon a plan to represent as fully as possible the growth and the development of American children. Valuable material was available, but it seemed desirable to extend the investigations over regions in which heretofore no observations had been collected. I submitted our plans to Mr. James Hughes, suporintendent of public schools in Toronto, Ontario, and to Prof. Earl Barnes, of Leland Stanfurd Junior University. Through the interest taken by these gentlemen I have been enabled to obtain series of measurements of the school children of Toronto and of Oakland, Cal. The former series was taken under the supervision of Dr. Alexander F. Chanberlain, the latter under the direction of Prof. Earl Barnes. In both of these series the same plan, excepting details, was followed.
In the following pages 1 intend to present some of the results of our investigations upon the children of Toronto, together with a few general statements which the treatment of the material and a study of the questions involved suggest.
Since in previous investigations the influence of sex, of occupation of pareuts, and of descent had been studied, it seemed desirable to investigate the influence of other canses. I selected for this purpose the influence of the order of birth, i. e., the question whether first-born children have adevelopment different from that of later-born children.
The blank on which the observations were recorded was drawn up so as to cover not only this point, but also the influence of nationality and occupation of the parents-facts which it was necessary to note in order to determine their influence on the guestions to be investigated. Blue blanks were used for females, white blanks for males. Here is a copy of both sides of the blank:
[Front.]
FEMALE.
Rocord all linear measurements at nearest contimeter; all weights at nearest pound.

No, (name in full).
Observer (namo in fill).
Place of observation. Sehool.
Date of observation.
Age: years, months.
Prace of birth.
Nationality of finther's father.
Nationality of fither's mother.
Nationality of mother s father.
Nationality of mother's mother.
Place of birth of father.
(Clty and State or country.)
Place of birth of mother.
(City and Stato or country.)
Occupation of father:
At thine of child's blrih;
At time of observation.
Resitionce.
Number and ages of living brothers.
Number and ages of living sisters.
Number of decensed brothers.
Number of docensed sisters.
Born child of mother
(Siato whether first, second, third
child, otc.)

Stature without ahoes.
Finger-1each.
Helght, sitting.
Wolght: poneds.
Hatr: Black, brown, red, golden, fair, gray.
(If gray, record also the original color, if possible.)
Eyos: Black, brown.
Hazel, gray, blue.
Abllity:
The following measurements to bo taken by spocial observers only.
Longth of head.
Breadth of head.
Breadth of faco.
Helght of face A
Helght of face B
Breadth of hand
[Back.]

EXPLANATION OF MEASUREMENTS.

1. Height standing.-Let the person stand elose to the wall in front of the mensuring rod. His heels minst be close together, touching tho wall, and ho must stand perfectly straight, looking straight ahead without raising or dropping tho chin, the head touching the wall. Read off tho height of the crown of the head by means of the triangle, pressing one side against the rod, the other against the crown of the head.
$\stackrel{y y}{*}$ Height sitting.- Put Ω low, level sent (for instance, Ω small wooden lox) in front of the measuring rod. Let the person sit on it so that his knees are about 5 inches higher than the seat, which is accomplished by making the seat sufficientiy low, or by using a footstool. Let the person sit far lack, elose to the wall, keeping his hack erect against the wall. lle must look straight ahead without raising or dropping the chin, the head tonehing the wall. Give the heights of the seat and of the crown of tho head.
2. Finger-rcach.-Let the person touch a vortical post or wall with the second finger of one hand, and stretch along the measuring rod as far as he can reach. The rod must bo held horizontally at right angles to tho wall, in front of the body, along the median line of the arms. Lot the person make the greatest possible efforts in strotching out his arms before you read off the figures.
3. The welght is to be taken in ordinary indoor costume
! The instrument used was a rod divided into 210 centimeters. ${ }^{1}$ The index arm was a separate piece, consisting of a wooden angle, the sides of which were long evongh to insure perfect contact with the measuring rod and with the crown of the heal of the person being measured. The head measurements were taken by carefully trained observers; the others by the teachers. The personal data were given by the parents of the children. Owing to the peculiar social conditions prevailing in Toronto, certain groups of the population are represented by very fow individuals. This is true particularly in regard to the French population, the greater part of whose children seem to attend the parochial schools. There are also very few children of the professional classes included in our material.

The success of the collection of measurements is largely due to the assistance exten ded by Mr. James Hughes, and to the lively interest on the part of the teachers who undertook the arduons task of obtaining the necessary information from the parents, and who took many of the measurements. To nli of them my thanks are due. I have also to thank Dr. Alexander F. Chamberlain for the efficient management of the whole undertaking.

THE METHODS OF TREATING STATISTICS OF GROWTH.

The trentment of anthropometrical observations, particularly of growing children, offers peculiar difficulties. During the past years a vast number of observations referring to the growth of children have been accumulated. The method of treating the results of such observations has largely been a comparison of ayerages nnd of the frequency of occurrence of measurements between certain limits; for instance, frequency of occurrence of statures from inch to inch or of weights from pound to pound. It is generally assumed that these figures express immediately the physiological facts relating to growth.

In almost all cases the observations have been taken only once, and on a great number of individuals, not repeatedly through a long number of years on the same individuals. For this reason the series, when arranged according to years, will not be homogeneous. The younger groups contain many individuals who will not reach the adult stage, while the older classes contain only fow individuals who will die before becoming adults. When we assume the whole series to be homogeneous, we imply that the value of the measurement under consideration has no relation to the liability to die at a certain age, which assumption seems to be very doubtful. Without considering details, it would seem very likely that individuals far remote from the average, who show either too small or too large measurements, approach the limits between pathological and physiological variation, and are thereforo more likely to die. This would imply a greater variability of the mensurements of deceased individuals of a certain age than of living individuals of the same age. The series of living individunls of all nges can be equally constituted only when the measurements of the living and of the decersed show the same values. This fact has already been pointed out by H. Westergaard. ${ }^{2}$

There are n few series of obsorvations which seem to make the identity of the series of measurements of the living and of the deceased individuals of the same age very improbable. The most important among these is the peculiar decrease in the brain weight in males after the twentieth year. This can hardly be explained in nny other way than by assuming an increased death-rate among mon with very largo brains at an age of about 20 years.

[^0]Bowditch and Roberts have shown that, on the average, children of well-to-do parents aro taller and henvier than those of poorer parents. Carlier has shown the same phenomenon by proving that a number of children of a certain class, when bronght under more favorable conditions-in his case into a military training school-grow more rapidly than the rest, who were left in their former conditions. The mortality of children is greater among the poorer classes than among the well-to do classes. Thercfore among the young children a greater percentage of the individuals measured belongs to the poorer classes, whose children are at the same time shorter of stature than among the older children. This fact afiects undoubtedly the arcrages of measurements collected in our public schools.

It does not seem unlikely that the correlation between measurements and mortality is more strongly emphasized at certain periods than at others. If, for instance, many individuals of retarded growth should dio during the period of adolescence, this might give the real explanation of the curious overlapping of the curves of growth of boys and girls. the girls between about the twolfth and fourteentin years being heavier and taller than boys of the sane age. I am strengthened in this opinion by the observation, made by Dr. G. M. West, that the extent of this period and the amount of overlapping are the smaller the more favorable the conditions under which the individuals live. It would be interesting in this connection to study the curves of growth of a people which has a very high death-rate amons young children. ${ }^{1}$
Social causes are apt to introduce other complications which restrict the comprabibility of the resultr. The poorer classes do not send their children to school as long and as reqularly as the well-to-do; consequently their proportionate numberamong the school children decreases steadily, and this changing composition of tho series must aftect the results of tho measurements.
The state of health of the children also affects the series, particularly during the first and last years. Weak children will be sent to school later than strong children, and the teachers will be inclined not to promote them as rapidly as strons children, so that the oldest sehool children will include an undue proportion, not only of those who are dull, but also of those who have been of weak health during a portion of their life.

For all these reasons, investigations based on single observations of children of varions ages do not give us results which can be considered to indicate with the highest accuracy attainable the processes of human growth. The series for the various years differ in composition, an.. the physiological constants are therefore modified to a greater or less extent by a variety of disturbing factors. In order to obtain the physiological results with the greatest accuracy, the material upon which we base our studies must be made homogeneous. This can be accomplished in two ways. A very large number of children may be measured once; and year after year those who die and those who on account of social reasons are removed from the field of observation must be eliminated from the list. When all have become adults, the remaining individnals and those who dropped out for various reasons must be treated separately. But the best way wond be to take measurements of a large series of children at stated intervals, as in this manner the fullest information on the manner of growth will be given, and as these repeated measurements furnish all the necessary material for subdividing the series so that each division will be homogeneous.

These limitations must be borne in mind in interpreting results of a single set of observations on children of varions ages, or, to use Herters term, in interpreting results obtained by the generalizing method.
Besides this, certain corrections must leo made which heretofore have not received sufficient attention. The number of children of various ages who have been measured is not equal. All the series begin with comparatively few children. The number increases from year to year until, beginning with the tenth or eleventh year, it decreases again. Tho change of numbers is not equal in the two sexes. It follows, from this fact, that among 0-year-old children, for instance, there are in the moasured series moro of the age of 0 yearsand 11 months than of 0 years exactly; and that, on the cther hand, among the 15 -year-old childrea there are more of the age of 15 years exactly than of 15 years and 11 months. In treating the various series of observations, all children between 6 and 7 years, 7 and 8 years, etc., or all the children between $6 \frac{1}{2}$ and $7 \frac{1}{2}$ years, etc., inave been gronped together and the series is assumed to represent the sizes for the averaga ages, $i_{i} 0 ., 6.5$ years, 7.5 years, etc., or, in the other case, $6,7,8$ years. On account of tho varying frequency of the seyeral months this is not quite correct. Among the young children the average will be

[^1]a little more than 6.5, 7.5 years, etc., while among those noar the upper limit of age it will be a little less than $14.5,15.5$ years, etc. I have tabulated the frequencies of various months for the children of Toronto and obtain the following results:

BOYS.
[Average age expressed in years and months.]

GIRLS.

Months.	Age in years.											
	5	6	7	8	9	10	11	12	13	14	15	16
$0 .$.		24	25	30	37	37	38	43	33	20	15	13
		4	57	79	79	${ }^{65}$	88	75	44	47	28	18
2...........		44	52	77	76	78	69	75	74	47	14	11
3..........		28	65	74	65	64	80	72	63	38	19	11
		51	67	81	79	94	89	79	68	52	31	15
5..........		49	54	52	88	71	63	79	52	40	22	7
$6 . . .$.	45	81	72	80								
7...........	30	52	73	76	72	71	60	61	63	28	28	9
8.	40	55	81	8	09	88	83	77	69	40	22	11
9...........	33	63	77	70								
10............	35	51	59	62	73	73	65	55	48	34	15	8
11.	49	58	77	71	77	76	85	75	53	2		8
$\begin{gathered} \text { Average } \\ \text { age } . . . \end{gathered}$		68.1	76.1	85.7	95.7	105.8	115.7	$1 \sim 5.5$	135.5	14.5	155.2	104.8

Similar deviations from the assumed average of period would be found in all the existing series if the material were arranged according to months instead of being grouped for the whole year. The error resulting from this source may be very easily corrected by adding to the average a correction proportional to the deviation of period. The following consideration will show this method to be correct. The material may be divided into periods so short that we may assume no growth worth considering to take place from beginning to end of each period, say, for instance, according to weeks. Then we may obtain the correct average for the whole year by taking the average of each period and adding to it a correction corresponding to the time that has to elapse or has elapsed between the middle of the year and the period. Let these averages for the periods $1,2,3 \ldots$ be $a_{1}, a_{2}, a_{3} \ldots$, the annual growth be d, the distance in time from the periods $1,2,3, \ldots$ to the middle of the year be $t_{1}, t_{2}, t_{3}, \ldots$, then the averages corrected for time will be

$$
\begin{aligned}
& a_{1}+d t_{1} \\
& a_{9}+d t_{2} \\
& \text { etc. }
\end{aligned}
$$

15	16
15	13
26	18
14	11
19	11
31	15
22	7
31	
28	9
22	11
18	
15	8
8	8
155.2	104.8

ound in all s instead of rce may be onal to the ethod to be nay assume ach period, ect average it a correcen the mid3 be the periods verages cor-

In combining these, we must give each the weight corresponding to the number of cases, $n_{1}, n_{2}, n_{2} \ldots$, from which it is derived. Let n be the total number of cases. Then we have the average for the whole year.

$$
\begin{aligned}
a & =\frac{n_{1}\left(a_{1}+d t_{1}\right)+n_{2}\left(a_{2}+d t_{2}\right)+\ldots}{n} \\
& =\frac{\left(n_{1} a_{1}+n_{2} a_{2}+\ldots \ldots\right)+d\left(n_{1} t_{1}+n_{2} t_{2}+\ldots \ldots\right)}{n} .
\end{aligned}
$$

As a_{1} is the average of all the values of the period 1 , we have $a_{1}=\frac{s_{1}}{n_{1}}$, where s_{1} is the sum of all the values of the period 1 . Therefore

$$
a=\frac{\left(s_{1}+s_{2}+s_{2}+\cdots\right)+d\left(n_{1} t_{1}+n_{2} t_{2}+\ldots\right)}{n} .
$$

The sum of all the s is evidently equal to the sum total of all the observations during the year, which we will call s.

$$
a=\frac{S}{n}+d \underline{n_{1} t_{1}+n_{2} t_{2}+\ldots} \frac{\cdots}{n} .
$$

The last quotient in the equation is the average of all the periods, which is multiplied by the annual increment d. We have thereforo the average value for the year equal to the average of all the observations, plus a correction which is equal to the annual increment multiplied by the difference between the average period for all the observations and the full or half year, as the case may be.
While the average may be corrected in this manner without much difficulty, the variability of the series for the whole year is affected in a much more complex manner. We will suppose that the variability did not change much in the course of one year, which at certain periods of life is, however, not the case. Since the values of the average increase from month to month, it is clear that the range of variation for the early periods must begin at a lower point than for the later periods, so that the variation for the total year covers a wider range than the variations at a given moment do.
As an example I will give here the distribution of observations of 8 -year-old girls, first in periods of three months, then for the whole year, with their averages and the means of the squares of deviations.

Distribution of observations of the height of s-year-old girls.

Distribution of observations of the height of S-ycar-old girls-Continued.

Height in centimeters.	Number of girls measured, age 8 years and-				
	0 to 2 months.	3 to 5 months.	6 to 8 months.	$0 \text { to } 11$ months.	0 to 11 months.
1301.	2	3	5	8	18
131......	1	:	1	1	
133...			$\stackrel{3}{2}$		
134.	1	1	2	1	
133.				1	
136.			1	1	
137.			1	
134.				1	
140.....				1	1
Whole number of cases.	186		238	:03	834
Avernge height ..	118.9	119.7	121.3	12.4	120.63
Variability	± 5.23	± 5.60	± 5.08	± 5.46	± 5.50

The average of the variability of the four quarters is ± 5.34, while that for the total year is ± 5.50. n very considerable difference, which will be the greater, the more rapid the growth or the more rapid the change of variability during the year.

Previous investigations have shown that varinbility decreases very rapidly in the period of adolescence. During this time it is imperative to divide the series according to intervals shorter than years in order to obtain results that bring out the physiological relations clearly.
We will call the variability at any given period t of a certain year μ_{t}; the average value of the measurement for the same period, A_{t}. The sum of the squares of all the deviations for this period, divided by the number of observations n_{t} for this period, will then be

$$
\frac{\Sigma\left(A_{t}-x\right)^{2}}{n_{t}}=\mu_{\mathrm{t}}^{2} .
$$

The variability for the whole year is computed according to the formula

$$
\frac{\Sigma(A-x)^{2}}{n}=\mu^{2},
$$

where A is the general average, and n the total number of cases. For this we can substitute

$$
\begin{gathered}
\mu^{2}=\frac{1}{n} \Sigma n_{t} \frac{(A-x)^{2}}{n_{t}}=\frac{1}{n} \Sigma_{n_{t}}\left(A-A_{t}+A_{t}-x\right)^{2} \\
n_{t} \\
=\frac{1}{n} \Sigma n_{t} \frac{\left(A-A_{t}\right)^{2}}{n_{t}}+\frac{1}{n} \Sigma n_{t} \frac{\left(A_{t}-x\right)^{v}}{n_{t}}+\frac{2}{n} \Sigma n_{t}\left(A-A_{t}\right)^{-A_{t}-x} n_{t}
\end{gathered}
$$

A_{t} leing the average of all the values of the measurement at the period t, then

$$
\Sigma\left(A_{t}-x\right)=0 .
$$

and the last member of the sum disappears.
We will call

$$
A-A_{\mathrm{t}}=l_{\mathrm{t}} .
$$

As stated above

$$
\Sigma \frac{\left(A_{t}-x\right)^{2}}{n_{t}}=\mu_{t^{2}} .
$$

Therefore

$$
\mu^{2}=\frac{1}{n} \Sigma \mu_{t}\left(d_{t}^{2}+\mu_{t^{2}}\right)
$$

We will assume that n_{t} can be represented by tho formula
also
and

$$
\begin{gathered}
n_{\mathrm{t}}^{2}=n_{0}\left(C+a t+b t^{2}\right), \\
\mu_{\mathrm{t}}^{2}=\mu_{0}^{2}\left(1+a_{1} t+b_{1} t^{2}\right), \\
d_{\mathrm{t}}^{2}=a_{2} t+b_{2} t^{2} .
\end{gathered}
$$

hat for the he greater, during the
rapidly in e the series t bring out
; the averhe squares tions n_{t} for
this we can

If we assume t as continuous, and carry out the addition between the limits,

$$
+0.5>t>-0.5
$$

thus covering the whole year, we find

$$
\begin{gathered}
\mu^{2}=\int_{-0.5}^{+0.5} \frac{\left(C+a t+b t^{2}\right)\left[\mu_{n}{ }^{2}\left(1+a_{1} t+b_{1} t^{2}\right)+a_{2} t+b_{2} t^{2}\right]}{n} d t . \\
\mu^{2}=\mu_{0}^{2}\left[C+\frac{1}{12}\left(b+b_{1} C+a a_{1}\right)+\frac{1}{80} b b_{1}\right]+\frac{1}{12}\left(C b_{2}+a a_{2}\right)+\frac{1}{30} b b_{2} .
\end{gathered}
$$

When $a, b ; a_{1}, b_{1} ; a_{i}, b_{2} ;$ are computed from the values of the year under consideration, and the preceding and following years, which may be designated by the marks $-1,0,+1$, we find

$$
\begin{gathered}
C=1-{ }_{12}^{1} b, \\
a=\frac{n_{+1}-n_{-1}}{2}, \\
b=\frac{n_{+1}+n_{-1}-2 n_{0}}{2}, \\
a_{1}==\frac{\mu^{2}-\mu_{-1}^{2}}{20_{0}^{2}} \\
b_{1}=\frac{\mu_{+1}^{2}+\mu_{-1}^{2}-2 \mu_{0}^{2}}{2 \mu_{0}^{2}}, \\
\alpha_{2}=\frac{d_{+1}^{2}-d_{-1}^{2}}{2}, \\
b_{2}=\frac{d_{+1}^{2}+d_{-1}^{2}}{2}
\end{gathered}
$$

From these data the final corrected values of average statures and of their variabilities have been computed (see also pp. 15.5., 1556.)

Average staturcs and variabilities. ${ }^{1}$

It might seem that this correction could be better made by adding the proportionate amount of growth to the measurement of each individual, i. e., for those of 6 years 0 months, for instance, the amount of 6 months' growth if the measurements are to be reduced to the period of 0 years 6 months. This, however, must not be done, as small children grow differently from tall children, and therefore the amount of growth to be added differs for the various values of the measurement. That this is the case has been proved by Dr. Henry G. Beyer. ${ }^{2}$ I collected some statistics on this subject in Worcester, Mass., the results of which are briefly given here. I am indebted to Dr. G. M. West for many of the measurements, while others were taken by myself. The first series was taken in May, 1801. The second series was repeated in May, 1802. I give first the scries of annual increases which were obtained in Worcester.

[^2]Increase in stature of boys.

Increase	Number of hoys whose increase in stature was observed between the ages of-										
centimeters.	5 and 6.	6 and 7.	7 and 8.	8 and 9.	$\begin{aligned} & 9 \text { and } \\ & 10 . \end{aligned}$	$\begin{aligned} & 10 \text { and } \\ & 11 . \end{aligned}$	$\begin{gathered} 11 \text { and } \\ 12 . \end{gathered}$	$\begin{aligned} & \text { 12 and } \\ & 13 . \end{aligned}$	$\underset{\substack{13 \text { and } \\ 14 .}}{ }$	$\begin{gathered} 14 \text { and } \\ 15 . \end{gathered}$	$15 \text { and }$
0.0-0.4.											
0.5-0.9.											i
1.0-1.4.				1							
3.5-1.9..				i			1	1		${ }_{1}^{2}$	i
2.5-2.9...				2	$\stackrel{2}{2}$		3			2	3
8.0-3.4...			$\stackrel{2}{1}$		${ }_{6}^{2}$	${ }_{6}^{2}$	$\stackrel{2}{7}$	3 2 2	2	1	$\frac{1}{2}$
4.0- 4.4...			5	12	11	14	14	8	I	1	
4.5-4.9...		1	13	15	14	15	13	14		4	
5.0-5.4.		f	11	11	17	12	13	${ }^{9}$	6	1	3
5.5-5.9...		11	15 11	14	119	112	4	${ }_{10}^{3}$		1	
6.0-6.4...	$\stackrel{2}{1}$	15	11 3	5 2	11	12	7 4	3 6	$\stackrel{2}{3}$	$\frac{1}{3}$	1
7.0-7.4...	1			1	1			4	8	2	2
7.5-7.9..			2				1	2	5		
8.0-8.8.4...	-........					1	4 4	8	2	
8 8.0- 8.4.								$\stackrel{4}{3}$	5	${ }_{1}^{2}$	
9.5-9.9...							1	1	1		1
10.0-10.4.								1		3	
11.5-10.9...	1							2	1
11.0-11.4...									3	1	
12.0-12.4...								1	1	1	
12.5-12.9.											
13.0-13.4..											
13.5-13.9..											
14.0-14.4...											
14.5-14.9...											
15.0-15.4.											
15.5-15.9..											
16.0-16.4.									1		I
Average increase.											
Varlability	(± 1.57)	± 0.68	± 0.86	± 0.96	± 1.03	± 0.88	+1.20	± 1.86	± 2.39	± 2.91	5. ± 3.46
Cases	8				${ }^{79}$	± 73	${ }^{72}$	${ }^{ \pm} 7$	± 20	± 2	$\begin{array}{r} \pm 3 \\ \hline 18\end{array}$

Increase in stature of girls.

$\begin{gathered} \text { Increase } \\ \text { in } \\ \text { centi- } \\ \text { meters. } \end{gathered}$	Number of girls whose increase in stature was observed between the ages of-										
	5 and 6.	6 and 7.	7 and 8.	8 and 9.	$\begin{aligned} & 9 \text { and } \\ & 10 . \end{aligned}$	$\begin{aligned} & 10 \text { and } \\ & 11 . \end{aligned}$	$\begin{gathered} 11 \text { and } \\ 12 . \end{gathered}$	$\begin{aligned} & 12 \text { and } \\ & 13 . \end{aligned}$	$\begin{gathered} 13 \text { and } \\ 14 . \end{gathered}$	14 and 15.	$\begin{gathered} 15 \text { and } \\ 16 . \end{gathered}$
-0.5- -0.9.										1	
$-0.0-0.4$.										1	.-
$0.0-0.4$.								1	1	1	
$0.5-10.9$									1	4	7
$\begin{array}{ll} 1.0 & 1.4 \\ 1.5- & 1.4 \end{array}$	--.......				. .-.....			2	1	4	1
$\begin{array}{ll} 1.5- & 1.9 \\ 2.0 & 2.4 \end{array}$						2	1	1	1	2	2
2.5- 2.9.					1			1	6	6	1
$3.0-3.4$.									3	1	1
$3.5-3.9$			5		${ }_{2}$	2	3	2	2	1	1
$4.0-4.4$.	$\underset{\sim}{2}$		4	3	$\underset{7}{2}$	${ }^{6}$	4	4		2	-...-
4.5- 4.9.	2	4	5	14	7	5	3	1	5	1	--...
5.0- 5.4.		6	3	8	9	12	6	3	4	2	
5.5- 5.9.	5	5	10	12	6	8	5	7	$\stackrel{2}{2}$	1	
$6.0-6.4-$	5	7	12	8	11	${ }^{6}$	10	8	2	1	---.-..-
6.5- 6.9.	2	10	8	4	8	10	7	8	4	2	-
$7.0-7.4$	1		4	3	2	6	11	8	2	3	-
$7.5-7.3$.		$\stackrel{2}{1}$	2	2	3	2	14	7	\%	2	--.....-
8.0- 8.4.		1			1	4	5	7	3	-.......-	-----.-
$8.5-8.9$				2	2	2	3	4 4	1		
9.5- 9.9.						1	3		3		
10.0-10.4.					1	1		2			
10.5-10.9.						1	1				
$11.0-11.4$.						1					
11.5-11.9.											
$12.0-12.4$							$20.7-1$	18.1-1	19.0-1		
Average increase.	5. 75	5.90	5. 70	5.50	6.97	6.17	6.98	6.71	5. 44	3.34	
Variablity.	± 0.88	+0.98	± 1.10	± 0.97	± 1.23	± 1.85	± 1.89	± 2.06	± 2.89	± 2.71	
Cases........	17	38	53	56	5	75	84	71	47	36	15

I next divided the series into two equal parts, the first embracing the short, the second the tall, individuals. The following amounts of growth were found for these two groups :

Average annual increase $(d+\Delta)$ in stature of short and tall children between the following years:

BOYS.

Class of children and differences.	Years.									
	6 and 7.	7 and 8.	8 and 9.	9 and 10.	${ }^{10} 11 .$	$\begin{aligned} & 11 \text { and } \\ & 19.2 .0 . \end{aligned}$	$\begin{gathered} 12 \text { and } \\ 13 . \end{gathered}$	$\begin{gathered} 13 \mathrm{and} \\ 14 . \end{gathered}$	$\begin{aligned} & 14 \text { and } \\ & 15 . \end{aligned}$	$\begin{aligned} & 15 \text { and } \\ & 16 \text {. } \end{aligned}$
Short	5.51 5.88	5.18 5.65	4.81 4.98	4. 77 5.39	4.77 5.28	4. 79 5.20	5. 25 8.56	7.28 8.41	7.47 4.99	6. 4. 44
Difference (2Δ) -	+0.37	$+0.37$	$+0.17$	+0.6:	$+0.51$	+0.41	+1.31	+1.19	-2.48	-2.39

GIRLS.

short	5.75	5.49	5.34	5. 52	5.81	7.01	7.38	6. 55	4.45	
Tall.	0.06	5.90	5.67	0.41	6.58	6.95	6.03	4.38	2.23	
Difforence (2) ${ }^{(2)}$	+0.31	+0.41	+0.33	+0.89	$+0.71$	-0.06	-1.35	-2.17	-2.22	

That there must be on interdependence between the rate of growth and the actual size attained at a certain period can be shown to be a theoretical necessity; If the variability of a series at the age t is μ, and it the variability of the annual increment d is m, then, according to the theory of probabilities, the variability at the age $t+1$ must be $\sqrt{\mu^{2}+m^{2}}$ if the amount of annual growth does not depend upon the size attained at the period t. Observations show that m is small as compared to μ. Olservations also show that μ first increases quite rapidly from year to year, and that at the period of adolescence it suddenly decreases very rapidly. It is clear that these phenomena do not agree with the assmuption made. We must conclude, therefore, that the amount of ammal growth dejends upon the size attained at a certain period.

It is possible to give an approximate value of this relation. If the average of all measurements for the period t is A, that for the period t is $A+d$, where d is the average amount of growth for the period $t_{1}-t$. We will consider in what manner a value $A+d+v$ in the series of the period t_{1} develops from the series of the period t.

We will suppose that the relation between the actual size of an individual and the average amonnt of his annual growth is expressed by the simple relation

$$
d_{x}=d+a x, \text { where } a \text { is a constant. }
$$

Furthermore, we will assume that the variability of $d_{i c}$ is the same for all values of x. The annual growth of a single individual of the size $A+x$ will be, according to these assumptions, $d+a x+y$, where y expresses the accidental vaviation of the annual increment. The size of the individual at the period t_{1} will therefore be

$$
\begin{aligned}
A+x+d+a x+y & =A+d+\tau \\
y & =v-x(1+a) .
\end{aligned}
$$

The probability of finding the variation r is

$$
P_{x}=\frac{1}{\mu \sqrt{2} \pi} e^{-\frac{x^{2}}{2 \mu^{2}}} d x
$$

The 1 robability of finding y is

$$
P_{y}=\frac{1}{m \sqrt{2} \pi} e^{-\frac{y^{2}}{m^{2}}} d y=\frac{1}{m \sqrt{2} \pi} e^{-\frac{[\cdots-x \sqrt{1+\alpha}]^{2}}{2 m^{2}}} d v=\frac{1}{m \sqrt{2} \pi} e^{\frac{-\left(\frac{v}{1+a}-x\right)^{2}}{2\left(\frac{m}{1+a}\right)^{2}}} d v .
$$

The probability of finding v and y combined is

$$
P_{z} P_{v}=\frac{1}{\mu m 2 \pi^{e}} \quad \frac{-\frac{x^{2}}{2 \mu^{2}}-\frac{\left(\frac{v}{1+a}-x\right)^{2}}{2\left(\frac{m}{1+a}\right)^{2}}}{e^{2}} d x_{0} d v .
$$

v will be obtained for all the values of a. Therefore

$$
P_{v}=d v \int_{-\infty}^{+\infty} \frac{1}{\mu m \pi^{2}} e^{-\frac{x^{2}}{2 \mu^{2}}-\frac{\left(\frac{v}{1+a}-x\right)^{2}}{2\left(\frac{m}{1+a}\right)^{2}}} d x
$$

This value of this integral is

$$
I_{v}=\sqrt{\frac{1}{\mu^{2}(1+a)^{2} m^{2} V^{2} \pi}} e^{-\frac{v^{2}}{2\left[m^{2} 1+a^{2}+m^{2}\right]}} d v
$$ necessity, he annual iability at ot depend ill as comfrom year y rapidly. lade. Wo upon the

rage of all re d l is the what man. ries of the
vidual and lation
all values be, accord1 variation will there-

By observation we find the variability at the period t_{1}-that is, that of r-equals μ_{1}. Therefore

$$
\begin{aligned}
& \mu_{1}^{\theta}=\mu^{2}(1+a)^{2}+m^{2} \\
& a= \pm \sqrt{\frac{\mu_{1}^{2}-m^{2}}{\mu^{2}}}-1 .
\end{aligned}
$$

As a mist be a small value, the positive root only is available, and we have

$$
a=\sqrt{\frac{\mu_{1}^{2}-m^{2}}{\mu^{2}}}-1 .
$$

It follors from this equation that as long as μ_{1} is considerably larger than μ, a is positive; when μ_{1} is smaller than μ, it is always negativo. As during the early years $/ t$ increases with age, among young children the small ones are in a period of retarded growth, while the tall ones aro in a period of accelerated growth, while among older children when /" begins to decrease again the tall ones cease growing, while the smaller ones grow rapidly.

The values given on page 1519 for the amount of growth of short and tall children may be considered as equaling

$$
\Delta=2 \int_{-\infty}^{0}\left(1+\left(a, x^{2}\right) \frac{1}{\mu \sqrt{2} \pi} e^{-\frac{x^{2}}{2 \mu^{2}}} d x=d-a \mu \sqrt{\frac{2}{\pi}}\right.
$$

It is therefore possible to calculate a from the data contained in the table on page 1.54. The two series of values show a fairly close agreement, cousidering the small number of repeated moasmrements.

Tulues of a.

Ages.	For boys by the formuln-		For girls by the formula-	
	$a=\frac{\sqrt{\mu_{1}^{2}-m^{2}}}{\mu^{2}}-1$	$a=\frac{\Delta}{\mu} \sqrt{\frac{\pi}{2}}$	$a=\frac{\sqrt{\mu^{2}-m^{2}}}{\mu^{2}}-1$	$a=\frac{\Delta}{\mu} \sqrt{\frac{\pi}{2}}$
6.	0.05	0.05	0.02	0.04
	0.0.	0.00	0.05 0.01	${ }_{0}^{0.05}$
9	0.03	0.07	0.03	0.00
10.	0.00	0.00	0.00	0.07
11:...	0.103 0.10	${ }_{0}^{0.12}$		${ }^{-0.01}$
13.	0.08	0.09	- ${ }_{-0.17}^{-0.17}$	-0.18
14.	$\xrightarrow{-0.03}$	-018	-0.17	-0. 20

It must also be borne in mind that the formula

$$
\text { Annual amount of growth }=d+a x
$$

is a very rough approximation to actual conditions, and that, partic"larly during the period preceding puberty, the distribution of annual increase win differ considerably from this law.

Dr. H. P. Bowditc'. in a paper published in the Twenty-second Annual Report of the State Board of iealth of Massachusetts, assumes that the growth of children is such that they always remain in the same percentile grade-that is to say. if the variability at the period t is μ, and at the period t_{1} is μ_{1}, then the average child which has at the period t the measurement $\Lambda+x=A+\frac{x}{\mu} \mu$ will have at the period t_{1} the mensurement $A_{1}+\frac{x}{\mu} \mu_{1}$. Its growth during the intervening period will therefore be

$$
A_{1}+\frac{x}{\mu} \mu_{1}-A-\frac{x}{\mu} \mu=A_{1}-A+\frac{\mu_{1}-\mu}{\mu} x .
$$

The assumption is therefore narrower than the one made above, as a, which we tried to determine by means of the various data, is here given the arbitrary value $\frac{\mu_{1}-\mu}{\mu}$. It will be noticed that for

$$
m=0
$$

a will assume the value $\frac{\mu_{1}-\mu}{\mu}$. The datagiven on pages 1546 and 1547 show that m is so large that it can not be neglected. Therefore the assumption $a=\frac{\mu_{1}-\mu}{\mu}$ can not be true, and we conclude that the average percentile grade of growing individuals is constantly changing.
The average individual of the measurement $A+x$ at the period t will be at the period t_{1}

$$
\begin{align*}
A+x+d+a x & =A+d+x(1+a) \\
& =A+d+\frac{x}{\mu} \sqrt{\mu_{1}^{2}-m^{2}} \\
& =A+d+x \frac{\sqrt{1-\frac{m^{2}}{\mu_{1}^{2}}} \mu_{1} .}{\mu} \tag{1}
\end{align*}
$$

If the individual remained on the same percentile grade, his measurement would be

$$
\begin{equation*}
A+d+\frac{x}{\mu} \mu_{1} . \tag{2}
\end{equation*}
$$

It will be seen that the deviation (1) is smaller than (2). It follows, therefore, that the average of all growing individuals who in one year have a certain percentile grade will be nearer the general average the following year. This agrees with the results found by Dr. Henry G. Beyer. ${ }^{1}$

These facts and considerations have an inmportant bearing upon the theory of the statistics of growth." When we consider children of a certain age, we find that they are not all in the same stage of development. Some have reached a point just corresponding to their age, while others are a little belind, and still others a little in advance, of their age. Consequently the values of their measurements will not exactly correspond to those of their age. We may assume that the difference between their stage of development and that belonging to their exact age is due to accidental causes, so that the number less developed than the average of a particular age will be the same as the number of those more developed; or there will be as many children in a stage of development corresponding to that of their age plus a certain length of time as in a stige corresponding to that of their age minus a certain length of time.

The number of children who have a certain amount of deviation may be assumed to be arranged according to the laws of probability, so that the average of all the chiddren will be exactly in the stage of development belonging to their age.

Observations have shown that growth during childhood is quite regular, and that it decreases rapidiy during the period of adolescence. At this period, when the rate of growth is decreasing, those children whose growth is retarded will be more remote from the value belonging to their age than those whose growth is accelerated. As the mumbers above and below the average are equal, those with retarded growth will have a greater influence upon the average than those whose growth is nccelerated; theretore the average of all values of the measurement of all the children of a certain age will be too low when the rate of growth is decreasing and too high when it is increasing.

These considerations may be expressed in mathematical form as follows:
In the adalt the relative freauency of the variation a from the average value of the measurement s will generally be expressed by the formula

$$
\begin{equation*}
P_{s}+x=\frac{1}{\mu_{1} \sqrt{ } V_{\pi}} e^{-\frac{x^{2}}{2 \mu_{1}^{2}}}(l x \tag{1}
\end{equation*}
$$

where μ_{1} is the mensure of the variability of the series.

[^3]3 , which we bitrary value

547 show that
on $a=\frac{\mu_{1}-\mu}{\mu}$ le of growing will be at the
ws, therefore, a certain per-
This agrees
the theory of 1 age, we find ave reached a hind, and still their measurey assume that iging to their oped than the se more develcorresponding responding to
ay be assumed rage of all the reir age.
9 regular, and period, when tarded will be ose growth is al, those with n those whose easurement of w th is decreas-
'ollows: erage value of
e, Vol. XXI, No. 6, p. 250; May 20,

The value of the measurement belonging to the average of all those individuals who will finally reach the value s is, at any given period, a function of that period, and may be called s. The value of the measurement at the period t of all those individuals who will finally reach the stature $s+x$ is a function of s_{l} and x, and may be expressed by $f(s ; r)$.
The individuals constituting the adult series will not develop quite regularly, but some will be in advance of others. We assume that at any given time these variations in period will be distributed according to the law of probabilities. The relative frequency of the variation y from the period under consideration, t, will be

$$
\begin{equation*}
P_{t+y}=\frac{1}{\mu_{2} \sqrt{ } 2 \pi} e^{-\frac{y^{2}}{2 \mu_{2}^{2}}} d y \tag{2}
\end{equation*}
$$

The probability, therefore, of finding an individual who will finally bave the stature $s+a$, standing at the period of development $t+y$, and whose measurement is therefore $f\left(s_{t+y} ; x\right)$ is equal to $P_{s+x}, P_{t+y} ; 0^{\prime}$,

$$
\begin{equation*}
P_{f}(s t+y ; x)=\frac{1}{\mu_{1} \mu_{2} 2 \pi} e^{-\frac{x^{2}}{2 \mu_{1}^{2}}-\frac{y^{2}}{2 \mu_{2}^{2}}} d x . d y \tag{3}
\end{equation*}
$$

The individuats who will finally have the measurement $s+x_{1}$ will have at a period $t+y$, the same measurement that other individuals who will finally be $s+r_{a}$ have at the period $t+y_{2}$. Consequently there will be an infinitely large number of combinations of x and y, which will result in the same value $s+v$. This will be the case whenever

$$
\begin{gathered}
\dot{f}\left(s_{l}+y ; x\right)=s_{l}+v \\
y=\varphi\left(s_{t}+v ; x\right)
\end{gathered}
$$

By substituting this value of y in (3), and taking the integral for all valuos of a,

$$
P v=\int_{-\infty}^{+\infty} \frac{d v}{\mu_{1} \mu_{2}} c^{-\frac{x_{1}^{2}}{2 \mu_{1}^{2}}-\frac{\phi\left(s_{l}+v, x\right)^{2}}{2 \mu_{2}{ }^{2}}} d x
$$

As an approximation, we may assume

$$
\varphi\left(s_{t}+v ; x\right)=s_{t}+v+a v+b v^{2}
$$

The distribution of probabilities about the type will then be asymmetrical. It is possible to compute from these data the typical values for each year, and at the place quoted above I have given a method of approximation. The latter is, however, not sufficient. I have disregarded values of the order $a b$ and b^{2} in arriving at the results given. This is, however, not sufficient. By including terms of higher order it is possible to compute the series more accurately, but the calculation is so exceedingly long and entails so much labor that 1 have given it up, particularly as it must be verified by actual observation. It seems more economical to wait until a satisfactory sories of measurements, taken at annual intervals, is available.

Dr. H. P. Bowditch ' has called attention to tho asymmetry of the curves, which he expressed by the difference between the probable and average values. His. observations were corroborated by the study of material collected in St. Louis, Mo., by Dr. W. T. Porter, ${ }^{2}$ who followed the method latd down by Dr. Bowditch.

In order to gain a better insight into the character of the annual curves I have combined all the available American materinl. This computation was carried out for me by Dr. G. M. West, according to my instructions. The com, atations were made under his immediate supervision, and he is responsible for the preliminary interpolation, while I made the final combination myself.

[^4]The method of procedure was the following. Observations are available from the following six cities: Boston, Milwaukee, St. Louis, Worcester, Toronto, Oakland. These represent a variety of conditions. We may assume that the variations represented by various cities are due to accidental causes, that is to say, that when the children in all the towns and cities of the country are measured we expect to find the results to vary around a certain average, according to the laws of prob. ability. The type of the total population would embrace statistics of all the individuals of various ages. These are not available, and we must consider the cities in which the measurements were taken as representatives of the total population. In order to unite the material properly we onght to know how large a portion of the population is represented by each city. Wo cau not obtain any satisfactory information on this point, and the only practicable way of uniting the material seems to be to add all the measured individuals, without regard to the varying numbers that were measured in each city. This has been done. It was necessary to reduce the observations that were recorded in inches to centimeters. Similar reductions were necessary in the tables of weights. This required a lengthy interpolation. The St. Louis measurements required an additional interpolation, as the age of the measured children was recorded at the nearest birthday, whilo all the other observers counted age from the last birthday. The results of this calculation are given on pages 1050 and 10.56 .

It will be noticed that the distribution is rather unexpectedly irregnlar. I presume this is due to the fact that observers developed a tendency to round their observations. so that full inches and the centimeters ending with 0 or 5 (110, 115), 120 , etc.) were given undue preference. It is likely that if this fact had been considered, the resulting curves would have been smoother.
vailable from Toronto，Oak－ hat the varia－ ；is to say，that ured we expect 3 laws of prob－ of all the indi－ ler the cities in opulation．In portion of the isfactory infor－ material seems rying numbers ssary to reduce ilar reductions interpolation． ，as the age of io all the other calculation are
egular．I pre－ to round their 0 or 5 （110，115， thad been con－

Frequencies of statures of American boys，in percentages．

lleight in centl－ meters．	Ages，in years．													
	5． 5×8	0.536	7．511	8.514	9.490	10．49	$11.40{ }^{\prime}$	$1 \geqslant 480$	13.481	14．46\％	15． 4.4	10.415	12.453	13．1：3
91－02．09	0.4													
03－ 94.848	0.6													
05－ 16.18.	1． 2	0.1												
97－118．59	3.5	0.1												
99－100．69．．．	6． 7	1.7												
101-103.08.	10．	$\underset{\sim}{2} . \stackrel{\square}{\boldsymbol{O}}$	0.2	0.1	0.1									
103-104.94!.	J：． 3	4.9	0． 1.8	0.1	0.1									
10．5－114．9！）．	16.9	9.0	2.0	0.4	0.1									
107－1124．93）	13.7	$1 \stackrel{3}{\square}$	3.3	0.5	0.1									
109－110．94．	13.3	15.5	6.2	1.3	0.1	0.1	0.1							
111－119．98．．－	9.1	15．8	11.1	2.5	0.3		0.1							
$113-114.48$	4.3	13.5	13.6	4.6	0.8	0.1	0.1							
$11:-116.09$	3.3	10． 09	11.8	7.7	1.1	0.4	0.1							
117－118．9 ${ }^{\text {c }}$	0.9	6.9	11．7	11.3	4.1	0.7	0.8							
119－120．69	0.5	4.1	13.5	14.3	6.9	1.8	0．2	0.1	0.1					
121－120 mi．	0.8	？．	4.1	15.0	10.3	3．${ }^{\text {a }}$	0．	0.2	0.1	0.1				
123－124．96		0.9	5． 4	13.5	13.9	6． 0	1.8	0.5	0.2	0.1	0.1			
102－1：0．99）		0.3	3.1	10．5	13.8	8.8	3.1	0.8	$0 . \underset{\sim}{2}$	0.1				
$12 \%-198.94$		0.3	1.8	$\stackrel{1}{6}$	18.4	11.1	6.0	1.8	0.7	O．${ }_{0}^{2}$				
130－130，96．		0.1	0.7	4.8	12.0	12.8	8.5	3.5	1.0	0.2				
181－132．99．．．			1.3	\％	9.2	12.7	9.6	5.3	1.6	0.4				
133－131．96．．．			0.2	1． 2	8.3	12.3	120	7.7	2.8	0.8	1.1			
135－130， 139.10				0.7	3.5	10．5	1：3．5	10.5	4.8	1.2	0.3			
13\％－134．49． 139				0.4	2.0	\％．6	11.9	10.8	4． 1	2.5	0.6	0.1	$0 . \%$	
$139-140.19 . .$				0.1	1.0	\％． 0	10.1	12.5	8.8	3.6	1.5	0.4		
1＋1－14．．99				0.1	0.4	3.1	8.6	11.3	10.1	5.9	2.8	0.4		
143－14．99．					0,3	1.8	5.3	1.1 .9	10.8	5.6	8	0.7		
14．）－1．16．99．					0.1	（1． 7	3．$\stackrel{2}{1}$	7.7	10.5	8.0	3.8	0.7	0.3	
147－148．96．					0.1		9.1	5.9	9.3		4.9	0.8	0.33	
149－150．99．						0.3	1．3	4.3	8.6	10.0	6.1	23.3	0.3	0.4
131－1：90．99．						0.1	0.1	2.7	6.3	8.2	7.3	2.8	0.7	0.4
$103-154.99$							0.3	1.8	5.3	8.8	\％ 7.6	9.7	1.4	0.9
$155-151.916$							0.1	1.2	4.8	8.3	\％．8	4.0	1.10	2．2
15\％－150．90．．．							0.1	0.0	3.1	6．$\underset{\sim}{2}$	8.4	5． 8	3.0	1.8
159－160．99．．							0.1	0.5	1.7	5.7	8.6	8.0	5.4	2.0
101－163．09．						－．．．．．	．．．．．．．	$0 . \%$	1.1	4．\sim	8.1	8.4	3， 8.8	3.0
$163-164.96$						－．．．．．	｜－．．．．	0.1	0.7	3.2	6.0	10．5	8.9	！1．$\%$
$1(5.5-180.90 .$								．．．．．	0.4	$2 . t$	1.9	10.1	11.4	9.3
$167-168.99 .$								．．．．．	O．	1.5	0.0	11． 2	10.3	10.5
160－170．93．．．									0.3	1.4	4.6	10.5	10.5	10.9
111－10．99．									0.1	0.9	21.3	8.6	9.0	13.5
$173-17409$.										0.5	2.0	4.5	9.3	9.6
175－103．96．．．										0．3	1.1	3．1）	\％．3	8.3
$177-178.99$										$0 .: 3$	1）． 0	\％．	5． 1	5.8
$109-180.09 .$										0.1	0.4	1．2	$4 . \%$	4.8
181－18809．											0.1	0．5	2.3	0.1
183－184．90）												0.1	0.5	
												0.1	0.5	
$18 i-188.969$											0.1	0.1	0.5	（1． 4
189－190． 62.											0.1		0.3	
C＇ases．．．．．．．	1，5i3	3， 050	5， 350	5， $5^{3} 3$	5， 531	－5， 151	4， 750	4， 205	3， $5 \sim 3$	2，618	1，481	753	$4: 9$	230
Averago height．．．	103．41													
Avernge variation	10．H1											164．65		
Menn vari－ ation	14.81	$\pm 1,0: ?$	1 in : in !	（5， 3 ］		$\left\{\begin{array}{l} \pm+18 \\ \pm .5 .90 \end{array}\right.$		1． 70		± 6.85 ± 8.65	$\begin{aligned} & \pm 0.31 \\ & 18.09 \end{aligned}$	上 $\%$ \％$\%$	20． 4 4.85	13． 70
Corrected average for hale										10				
$\begin{aligned} & \text { Menn vari- } \\ & \text { ation cor- } \\ & \text { rected } \end{aligned}$	103.16 14．80	11．68	111． 83 上5：（2）		1：00．01	131．78	136.20 10.32			± 8.06	109．8！ 8	16.90 $\pm .7 .30$	16\％．01	
Mean varl． atlon at	（10）			）	－	－		－ 0	－6．		－A．8．	17		
lant year	$\pm(4.10)$	± 4.161	上5． 0 \％	5.34	± 5.48	45． 14	180．90）	13，0\％	± 7.54	$\pm 8 \cdot 40$	$\mid \pm 8.01$	\pm 7． 2 m	± 1.15	

Frequencies of statures of American girls, in percentages.

Height in centimeters.	Ages, in years.												
	5.611	6.545	7.513	8.501	9.497	10.495	11.494	12.490	13.479	14.471	15.468	16.473	17.468
$8{ }^{1}-88.99$	0.1												
89-90.09		0.1											
91- 98.99	0.1	0.1											
93- 94.99	0.9	0.1											
05- 06.99		0.1											
$91-93.99$ $90-100.99$	$\xrightarrow{4.6}$	0.6 1.5		0.1									
				0.1									
101-102. 93	12.3	3.2	0.3	0.1	0.1								
103-104.99	17.1 16.8	-0.7	1.3	0.1 0.3	0.1								
107-105.09	13.9	-13.9	4.3	0.8	0.3	$0.1{ }^{-1}$							
109-110.09	11.1	17.1	8.3	$\stackrel{2}{2} .0$	0.1	0.1							
111-112.99	0.0	14.8	11.4	3.8	0.4	0.1							
113-114. 49	2.9	11.3	13.0	6.0	1.2	9.2	0.1	0.1					
115-116.99	1.9	9.1	115.4	9.3	2.8	0.5	0.2	0.1					
111-118-99.90.	0.4 0.1	${ }_{2}^{6.0}$	${ }_{12} 13.3$	11.8 14.4	4.7 7.9	1.1	0.2	0.1	0.1				
		1.3	12.0 9.0	14.4		2.4	0.4						
1 $1 \times 3-1 \% 4.4$	0.2	1.3	9.0 4.5	14.2	11.0	4.3 6.3	1.2	0.3 0.4	0.1				
125-126.99		0.2	2.8	9.9	14.2	0.5	3.2	0.7	0.1	0.1			
127-188.99		0.1	1.1	6.9	14.6	11.2	5.4	1.4	0.2	0.1			
120-130.09.		0.1	0.5	4.2	11.1	13.2	7.9	2.6	0.4	0.1			
131-18: 99			0.2	2.1	7.9	13.0	10.1	3.9	0.8	0.2			
133-134. 11.			0.1	0.9	4.7	11.7	11.7	5.6	1.3	0.4			
135-136. 99.				0.4	3.0	9.2	11.7	7.5	2.6	0.6			
137-138.99				0.3	1. 1.	0.7	10.4	9.1	4.4	0.9	0.2		
139-14). 99				0.1	1.0	4.4	10.4	10.4	5.6	1. 7	0.7	0.2	
141-142.09.					0.3	2.8	8.3	11.4	0.5	2.6	0.7	0.2	0.
143-144. 99.					0.1	1.7	6.0	10.3	7.8	3.5	1.5	0.8	0.
14i2-14i. 89					0.1	0.7	4.2	9.0	10.8	5.6	2.0	2.0	1.
147-148. 99						0.7	$\stackrel{2}{2}$	7.2	1.3	7.0	3.8	2.6	
149-150.						0.2	2.1	6.2	11.2	10.2	7.8	5.4	
151-152.99.						0.1	1.0	4.8	10.5	12.4	10.2	8.2	6.7
153-154. 99							0.4	3.4	8.4	12.8	12.1	11.0	8.4
155-153.99						0.1	0.3	2.4	7.6	${ }^{13.4}$	15.3	${ }_{12}^{12.7}$. 8
159-160.09.							0.1	0.8	3.4	7.4	11.2	13.8	13.
101-162.09								0.3	2.0	5.1	8.9	11.3	13.8
163-104.93)									1.0	3.0	5.9	7.3	7.1
160-166.99								0.1	0.4	1.9	3.5	5.8	7.1
$\begin{aligned} & 16 \hat{1}-168.99 \\ & 169-160.99 . \end{aligned}$								0.1	0.2	0.8 0.5	2.2 0.7	2.9 1.4	3.5
171-172.99									0.1	0.2	0.5	1.2	
173-174.99.										0.2	0.2	0.2	0.5
$\begin{aligned} & 175-170.99 . \\ & 177-188.99 . \end{aligned}$											0.2	0.1	0.8
170-180.09..													
Cases	1, 20	3,018	4,013	5,280	5, 13:	4,82\%	4,507	4,187	3, 411	2,537	1,656	1,171	790
Average height...	105. 45	110.32	110.10	$1: 1.21$	123.13	131.21	133.54	149.48	148.58	153.4	150.45	158.00	159.11
Average variation.	± 3.74	± 3.98	± 4.8	± 4.45	± 4.51	± 4.91	± 5.45	+5.98	± 5.88	± 5.18	± 4.68	± 4.64	± 4.43
Menn variation.... Corrected average	± 4.69 104			1251. 51	125. 714		± 6.83 130.68					士5.79	± 5.75
Mean varlation corrected													
Mean variation at half year													

From the preceding facts and considerations we conclude that the averages and variabilities of growing children must not be considored more than indices of the typical conditions characteristic of a certain age. In order to determine these accurate'y, the asymmetry of the distributions must be taken into account. This, however, can not be done, except by the expenditure of a vast amount of labor, until a sufficient series of observations, taken according to the individualizing method, is available.

GROWTH AS DETERMINED BY THE TOTAL SELRES OF TORONTO CLILLDREN.
I give first of all a table of statures grouped in periods of quarter years. In this tabulation all those individuals who did not expressly dtate that their age was so
and so many years and no months were omitted, because there is a considerable probability that in many cases of this sort the number of months was not recorded. For this reason the number of children corresponding to the full years and no months is too small. It might have been better to group the material as follows: 11, 0,1 months; 2, 3, 4 months; $5,6,7$ months; $8,9,10$ months: but 1 did not do so, in order to preserve the comparability with other series which extend over the whole year. The records of ages show that in order to obtain accurate results the question ought not to be sinply for years and months, but we should ask for the age at the last birthday, age at tho coming birthday, and the date of the birthday. When we simply ask for years and months, the person answering the question will often first give the age at the nearest birthday, particularly when the approaching birthday is not far distant, and then add the number of months passed since the last birthday, thus introducing an error of a whole year. This was noticed to occur in the Worcester measurements that were repeated after the lapse of a year, Accuracy can be attained only by the three questions civen before.

The following are the tables of statures:
Statures of Toronto boys, grouped in quarter-year periods.

Height in centimeters.	Number of boys of the following ages.											
	5 years and-				6 years and-				T years and-			
	0 to 2 mos.	3 to 5 mos.	$6 \text { to } 8$ mos.	0 to 11 mos.	$\begin{aligned} & 0 \text { to } 2 \\ & \text { mos. } \end{aligned}$	3 to 5 mos.	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 111 \\ & \text { mos. } \end{aligned}$	$0 \text { to } 2$ mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	6 to 8 mos.	$\left\lvert\, \begin{gathered} \theta \text { to } 11 \\ \text { mos. } \end{gathered}\right.$
91.		1										
92		1										
$95 . . .1 . . .$.					i^{-}							
	2							1				
97 08 09	$\stackrel{9}{9}$	$\begin{aligned} & \frac{1}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{1}{2}$		${ }^{1}$							
	2	2 3	3	$\tilde{\sim}$	1	$\stackrel{\rightharpoonup}{2}$		1				
101	$\stackrel{4}{1}$	6	3	2		1		1				
102.	$\stackrel{2}{2}$	6	6	5		3	$\stackrel{2}{2}$					
103.	5	6 8 8	$\stackrel{5}{8}$	$\stackrel{5}{7}$	5 3 3	5 6	$\stackrel{4}{2}$		1	-		1
$1{ }^{1}$	5	6	$\underset{\sim}{7}$	8		8	${ }_{9}^{2}$	5	1	3	1	
106	4	8	4	12	3	6	0	4		3	2	i
10%...	3	5	5	6	7	5	9	5	6	3	4	
108.	1	${ }_{3}^{3}$	11	11	13	9	11	8	3	4	2	2
$109 .$.	2	11	5	10	11	13	12	8	4	7	5	1
110		1		14	9		17	19				
111	4	1 1	${ }^{9}$	8 8	8	19	14 15 15	9 12	16	${ }_{4}^{12}$	$\begin{array}{r}8 \\ 12 \\ \hline\end{array}$	8
113	i	2	$\underline{4}$	${ }_{3}$	8 0 8	11	15	10	17	12	12	${ }_{11}^{5}$
114			1	3	5	8	19	1.5	16	18	17	17
115		1		4	3	12	16	17	12	咢	13	10
116			3	4	4	5	8	14	23	20	14	11
118			i'	$\stackrel{1}{2}$	5	$\stackrel{3}{2}$	$\stackrel{4}{5}$	10	14 14	14 10	$\stackrel{20}{20}$	15
					1	${ }_{3}^{2}$	1	9	10	12	21	13
120				1	1		$\stackrel{2}{2}$	b	10	0	25	
${ }_{122}^{121} \ldots . .$.							$\stackrel{2}{2}$	6 1	5	9 10	12	16
123 12.								1	${ }_{3}$	15	12	16 7
124									5	3	11	7
125				1				$\stackrel{2}{1}$	1	3	6	5
127.				.						2	$\stackrel{4}{2}$	4
128.			$1{ }^{-}$							1	4	7
129											4	2
										1	1	2
131.											1	
13%.												
133											2	i
134												
135												
133												
137												1
Cases	42	82	102	121	103	155	173	182	191	295	242	188
Average leight	103.0	104.5	107.3	108.1	100.7	110.3	111.1	113. 1	114.0	115. 5	117.7	118.3
Menn varia. tion.	± 4.44	± 4.70	± 5.07	± 4.60	± 4.50	± 4.48	± 4.29	± 5.25	± 4.17	± 4.07	± 4.84	± 5.40

Statures of Toronto boys, grouped in quarter-year perioas-Continued.

Height in centimeters.	Number of loys of the following ages.											
	8 year's and-				9 years and-				10 years and-			
	$\begin{aligned} & 0 \text { to }: \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { anos. } \end{aligned}$	0 to: mos.	$\left\|\begin{array}{l} 3 \text { to } 5 \\ \text { mos. } \end{array}\right\|$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	0 to: mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$
103.		1	1									
103	1	1				1						
107		$\stackrel{2}{1}$								1		
108	2	1				1	1					
110	$\ddot{3}$	3	$\stackrel{1}{2}$									
	3		1									
112	4	3	4			1		1	1			
113.	8	8	3	3		1						
114.	5	8	5	2		2	1			1	
115	16	8	10	a	1		,		1	2	1	1
${ }_{117}^{116}$	15 8 8	17	$\stackrel{4}{4}$	11	3 4		$\stackrel{1}{6}$		1		1	1
118	17	21	14	11	11		\%		1	1	1	1
119	16	13	12	14	5	9	4	3	3	4		i
120	19	23	30	16	\%	\%	9	8	4	3	2	3
121	18	10	20	16	19	11	9	13		1	5	2
123	13 9	17	$\underline{5}$	29	8	17	8	${ }^{9} 9$	6	8	3	1
$1: 4$	12	14	23	1.4	19	18	14	13	5	11	6	7
125.	6	13	21	16	18	18	20		9	11	3	9
123	8	8	12	12	16	16	11	30	11	7	8	6
12 T	4	11	11	11	11	21	20	11	8	17	8	6
128.	3	11	9	18	11	19	20	12	19	14	9	11
129.	2	4	5	10	7	8	15	13	14	14	13	10
1313	,	8	4	$\stackrel{2}{5}$	12	10	21	16	9	21	16	18
131	${ }^{1}$	5	$\stackrel{2}{3}$	5	10	12	13	13	13	17	18	11
$\begin{aligned} & 132 . \\ & 1: 33 . \end{aligned}$	- 1	3 3 2 3	? 3	7	[8180	12 9	11	16 13	10 9		$\stackrel{18}{20}$	16 16
	1	3	3	1	5	7	9	6	7	11	9	14
135		2	1	1	2		3	10	10	13	20	
133		1	2	1	3	5	4	4	9	${ }_{8}^{8}$	12	13
137		1			1		4	4	4		7	9
139.		1	1		1		$\underline{1}$	4	$\stackrel{3}{2}$	4	19	8
140.								$:$	1	6	7	
141.								2	\%	4	4	13
1 ± 2.	1							1	1	4	4	${ }_{3}^{2}$
144			1						1		2	3
145				1								
143							1		1	1	$\stackrel{9}{1}$	1
147.									1		1	
$\begin{aligned} & 148 \\ & 149 . \end{aligned}$								1				1
150								1				2
	19	9										
Avorage		ns						2-8	107	:	2m	2
height	110.7	121.3	1:32.:	$\pm \pm 3.5$	103. 1	125.6	1:2\%.0	$1: 7.9$	1:9.9	130.2	18.2.2	133.9
tion..........	\pm 5. 08	± 6.01	± 5.31	± 5.13	± 4.4 \%	± 5.43	± 5.51		± 6.00	± 5.97	± 6.01	± 6.09

tinued.
Statures of Toronto boys, grouped in quarter-year periods-Continued.

Height in centimetors.	Number of boys of the following ages.											
	11 years and-				12 years and-				13 years and-			
	$\begin{aligned} & 0 \text { to } 2 \\ & \text { mos. } \end{aligned}$	3 to 5 mos.	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$9 \text { to } 11$	$\begin{aligned} & 0 \text { to } 2 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 3 \text { 2o } \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 8 \\ & \text { mus. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	0 to: mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 8 \\ & \text { mos. } \end{aligned}$	9 to 11 mios.
117.			1									
118.		i										
						1						
$\begin{aligned} & 1200 \\ & 120 \end{aligned}$	1			1								
12				i^{-}		1						
1		$\stackrel{3}{3}$	\%	2	$\stackrel{1}{1}$		1		1			
10.4	1	$\ddot{2}$	4		:			1				
129..	3 4 5	8 3 4	5 4 4	$\stackrel{1}{2}$				2		1		
1\%n	5 9	4 4 5	${ }^{3}$	$\underset{4}{4}$	$\stackrel{\text { 2 }}{2}$	3 3 2	$\frac{1}{6}$	1	2	1	1	
129	6	11	9	5	3	2	1	5				
130	13	14	19	8	0	3	$\stackrel{4}{4}$	5	1	1	3	
131	$\stackrel{10}{2}$	10 10	12	$\stackrel{3}{5}$	3	4	\%	$\underset{\sim}{2}$	3	1	3	
133	8	11	$\underset{7}{7}$	6	5	$\underset{\sim}{7}$	${ }_{3}^{4}$	6	İ	3	2	3
	15	14	24	11	8	0	6	4	2	3	2	$\stackrel{7}{2}$
${ }^{135}$	10	11	2	13	9		8	,	4	2	5	3
${ }_{136} 13$.	16	$1: 3$	15	13	13	\%	18	5	8	,	6	4
	13	$1: 3$	11	14	11 16	15	8	11	10	3 4	$\stackrel{6}{2}$	5
139	10	14	15	6	12	0	12	9	4	4	$\underset{3}{3}$	4
140	!	12	18	10	9	7	13	19	4	14	3	7
141	ก	4	$1 \stackrel{10}{7}$	110	10	6	8	14	\%	$\underset{\sim}{7}$	12	4
14\%............	11	10	\%		7		12	14	10	8	10	4
143.	\pm	5	10	8	6 8	10 10	$\stackrel{8}{8}$	18	${ }_{8}^{7}$	8	5 3	5
144	2	2	4	5	8						3	5
145............								11		14	10	13
143............	$\ddot{7}$	3	$\stackrel{\square}{5}$	3	3	6	5	8 7	3	10	4	8
148.	1	1	\%	5	8	$\stackrel{5}{5}$	8	6	$\stackrel{2}{5}$	5	16	15
149			1	\%	3	2	3	4	3	13	5	1
150		1	3	1	1	4	$\underset{\sim}{7}$	9	3	11	5	9
151	1				1	1	$\stackrel{2}{2}$	$\stackrel{3}{2}$	3	4	9 3	$\stackrel{2}{5}$
10is.		i	i	1		1	I	$\underset{1}{2}$	4	6	5	${ }_{3}^{5}$
154.				1		1	1	1	1		2	B
155					1	2	1	3	5			
			1			1		$\stackrel{\text { a }}{\text { a }}$		3	$\stackrel{3}{3}$	5
158					1			$\stackrel{.}{ }$		$\frac{1}{3}$	3	${ }_{2}^{3}$
159							${ }^{-}$	i-			1	1
160).					1	1			1	1	2	2
161										1	2	1
162								1		1	
164										1		2
163												1
160												
167.										\because		
168.												
169												
170.											1	i
Canes'.........	188	215	\#30	175	1\%\%	187	189	214	$1: 3$	170	119	147
Averago	133.3	134.9	130.5	137.1	138.6	139.4	110.1	141.6	14.. 8	14.3	145.5	14\%.1
$\begin{aligned} & \text { Mean varia- } \\ & \text { tifon......... } \end{aligned}$	± 5.60	± 6.00	± 6.28	± 6.39	± 6.03	± 0.53	± 0.33	± 0.910	\pm \%. 39	ェ\%. 31	± 8.30	\pm \%. 54

Statures of Toronto boys, grouped in quarter-year periods-Concluded.

Height in centimeters.	Number of boys of the following ages.					
	14 years and-				15 years and-	
	$0 \text { to } 2$ mos.	3 to 5 mos.	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 5 \\ & \text { mos. } \end{aligned}$	6 to 11 mos.
122.		1				
123.......		${ }^{-}$			1	
$\begin{aligned} & 124 \\ & 124 \end{aligned}$	1	1	${ }^{-1}$		1
1210						
127.		1				
1:99......		1	-		-.........	
130.		1				
131...						
132...	1	.	-			
$\begin{aligned} & 1304 \\ & 133 \end{aligned}$	2	-			
$\begin{aligned} & 134 \ldots \ldots . . \\ & 1: 54 \end{aligned}$	1		- ${ }^{-1.10}$			-........
130	1	\cdots	2	$\cdots{ }^{-\cdots}$		
137 138 18.		1 3			\cdots
139.	1			1	i	-...
140.		1				1
141.	4	4	$\stackrel{1}{2}$	3	$\stackrel{2}{2}$	1
142....	3 6		1	1	1	
$14+$--	5	1	2		i^{-}	
145.						
146	7	2	3	3	4	3
147 ...	1	8	${ }^{6}$	1		1
$148 \ldots$	$\stackrel{5}{2}$	$\stackrel{9}{2}$	$\stackrel{11}{2}$	$\stackrel{\sim}{4}$	3 4 4	2
150		9				3
151	5		5	$\stackrel{2}{4}$	3	
15:	8		4	4	3	
153.	3 9	$\stackrel{6}{7}$	5	$\stackrel{2}{3}$	${ }_{6}^{6}$	${ }_{9}^{4}$
150	2	3	5	${ }_{6}$	5	4
150	3	4	2	$\stackrel{2}{5}$	3	$\stackrel{2}{3}$
158			7	$\stackrel{5}{1}$	$\stackrel{2}{0}$	
159.	${ }_{3}$	2	2	5	6	2
160	3	1	5	1	7	
161	3	4	3		5	2
${ }_{162}^{162}$	3 1	\cdots		${ }_{1}^{2}$	$\stackrel{4}{2}$	1
164.	2	2	1	2	$\stackrel{2}{2}$	
165.	1		$\stackrel{2}{2}$	1	1	3
168	1		${ }_{1}^{2}$		4	
168.		2			$\stackrel{2}{2}$	
169.		2	1	i^{-}	3	
170.			2			2
171.						
173		1	i^{-}		2	3
174..				1		i
175.....					
176....		1			1
177.....						
1\%9.......						
180.						1
181...						
182...						
183...						
184...						
185.						
186.						
187.....					1	
Cases..	105	103	108	71	103	
Average height....	149.4	150.5	157.4	156.9	156.1	158.2
Average variation.	± 7.94	± 9.20	± 8.21	± 7.65	± 9.07	± 8.75

luded.
wing ages.
15 years and-

| 0 to 5 | 6 to 11 |
| :--- | :--- | mos. mios.

$\underset{\ldots \ldots . .}{\ldots}$

Statures of Toronto girls, grouped in quarter-year periods.

Height in centimeters.	Nuwher of girls of the following ages.											
	5 years and-				6 years and-				7 years and-			
	$\begin{aligned} & 0 \text { to } 2 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { inos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 2 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	0 to: mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$
$85 .$.												
86 80 80												
86...............												
88.												
91.												
92...............												
93.												
	1					1						
	1.	1	5	i^{-}								
9í...............								1				
988............	$\stackrel{6}{2}$	$\stackrel{1}{3}$	3 3	1	i	3 1						
	3	7	10	4								
101-...........						$\stackrel{2}{2}$						
102	3	10	7	8		$\stackrel{2}{2}$	5	4			\because	
103-............	3	9	8	10	5	3	1	4				$\ddot{9}$
104.............	5	12	12	8	2	5	8	9	1	1	3	2
105............	2	5	12	13	,	8	9	5		3		
${ }_{107}^{106} \ldots . .$.	2	${ }_{7}^{6}$	8	18	9	8	9	5		1	$\stackrel{2}{4}$	
107.	$\stackrel{\underset{2}{2}}{ }$	$\stackrel{7}{2}$	6 5	9 6	13	11	12	8	4	4	$\stackrel{4}{9}$	
109	1	5	8	${ }_{7}^{6}$	7	10	13	10	3	${ }_{6}$	4	
110.	2	3	7	9		11	21	1π		13	9	
111.	2	3	${ }_{4}^{4}$	3	9	7	13	14	9	13	5	12
112.	$\stackrel{1}{2}$	1	$\stackrel{2}{1}$	$\stackrel{4}{9}$	10 9	$1 \underset{\sim}{7}$	16 15	13 11	12 9	8 10	16	10
i14...............		1	1	,	6	4	13	11	8	13	13	12
115			1		1	\%	7	16		1~		
1116			2	2		3	8	9	8	19	20	16
						3	9	12	6	17		13
118				2		1	${ }_{8}^{6}$	6	10	12	17	14
119						1	$\stackrel{2}{3}$			8		10
1:20...							3	?	\%	11	16	16
1012			1			2				116	8	19
123									3	1	8	
124.............						1	1	2	2	4	4	
						1				1		
120									1	4	3	
1278							- ...		1	3	$\stackrel{2}{1}$	
129									1			
130.												
131.										1		
13:												
133												
134..............												
Cases	47	84	115	117	110	128	188	111	134	186	2 m	21
height......	103.6	104.2	104.9	106.8	108.9	109.4	110.6	111.6	14.9	115. ${ }^{\text {\% }}$	115.9	11\%.1
tion	± 4.82	± 4.01	± 4.69	± 4.97	± 4.13	± 5.50	± 4.61	± 4.93	± 5.00	± 4.94	± 5.16	± 5.74

Statures of Toronto girls, grouped in quarter-year periods-Continued.

Height in centimeters.	Number of girls of the following ages.											
	5 years and -				9 years and-				10 years and-			
	$\begin{aligned} & 0 \text { to } \\ & \text { mos. } \end{aligned}$	3 to 5 mos.	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$9 \text { to } 11$ mos.	o to: mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$6 \text { to } 8$ mos.	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	$0 \text { to } 2$ mos.	3 to 5	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	9 to 11 mos.
$101 .$.												
103 E.				1								
104..............												
105..............	1	1	-.....				1					
107												
$\begin{aligned} & 108 \\ & 109 . ~ \end{aligned}$	$\stackrel{1}{3}$	$\stackrel{2}{4}$	$\ddot{2}$	i	1			1			1	
110............	4	2		3			1			1		
111................	4	4										
	6 9	7	8 1		1		1	1				
114................	9	9	3	${ }_{6}$	1	$\underline{1}$	$\stackrel{1}{2}$			1		\cdots
115	11	13	10	5	4	3	3		1			
116..............	13	15	15	8	3	8	1	3		1	1	i
${ }_{118} 11$.	10	12	10	4	12	$\stackrel{2}{2}$	4				1	
$119 . . .$.	15	9	10	13	12	15	${ }_{6}$	7	3	3		
120	17	24	22	15	16	10	9	8		3		
121................	11	13	$\stackrel{2}{2}$	14	14	9	14	6	5	4	3	$\stackrel{2}{2}$
122	12	10	21	18	12	19	${ }^{7}$	16	9	${ }^{6}$	6	4
123	6	10	15	17	$1{ }^{1}$	11	$1{ }^{16}$	13	4	5	${ }_{6}^{6}$	3
124.............	118	13	18	12	13	18	16 3	17	${ }_{1}^{6}$	18	${ }_{1}^{8}$	${ }_{19}^{7}$
120...............	6	11	9	12	12	18	16	14	8	11	5	8
127.	4	5	12	14	13	18	9	21	7	13	8	9
128.............	5	5	8	$\stackrel{3}{3}$	${ }^{6}$	\%	11	18	16	8		9
129................	1	6	2	3	7	8	16			11	13	11
130............	2	,	5	8	10	10	13	19	13	19	16	14
131		$\stackrel{\sim}{0}$	1	1	\%	8	18		15	8	14	30
${ }_{133}$	1	2	3	5	8	${ }_{6}^{6}$	7	6	18	8	11	17
134	${ }^{-}$	1	$\underset{3}{2}$	-	${ }^{-}$	$\stackrel{3}{3}$	3	6	9	15	15	18
				1		1	4	7	9	14	15	11
136			1	1	1	4	3	4	4	5	11	7
137				1		2	1	7	4	9	16	9
138 139.				1			1	3	$\stackrel{2}{3}$	6 3	10	8
				1			1					6
141									\%	3	1	
14.								1			3	
143.									1	1	$\stackrel{3}{3}$	4
145										1	$\underset{2}{2}$	2
146									1			2
147										1	2	1
												2
150											1	1
151												
												1
Cases.........	186	207	\%38	203	192	± 30	231	2 m	180	199	$\stackrel{9}{9} 9$	212
Avorago	118.9	110.7	121.3	130.4	123.55	124.98	125.72	120.47	120.11	129. 75	131.81	132.17
Mean variation.	± 5.83	± 5.60	± 5.08	± 5.40	± 4.95	± 4.97	± 5.23	± 5.50	± 5.59	4.5. $\% 0$	± 6.15	± 6.13

tinued.
Slatures of Toronto girls, gronpel in quarter-year periods-Continued.

Height in centimeters.	Number of girls of the following ages.											
	11 years and-				12 years and-				1is years and-			
	0 to: mos.	3 to :) mos.	6 to 8 mos.	$\left\lvert\, \begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}\right.$	$0 \text { to } 2$ mos.	3 to 5 mos.	6 to S mos.	$\begin{gathered} !\text { to } 11 \\ \text { mos. } \end{gathered}$	0 to: mos.	3 to 5 mos.	6 to 8 mos.	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$
115...	$:$											
1115..............		1										
117.............												
118.............												
	2											
1012,	$\underset{1}{2}$		9									
$120.10 . .$.	$\stackrel{1}{2}$			1		1	3					
124..............	4		$\stackrel{2}{2}$									
1205.............	5 8 8	3	$\stackrel{3}{4}$	$\stackrel{8}{3}$	1		1					
120. ${ }_{12}^{12}$	8 4	3	4	$\stackrel{3}{3}$		$\stackrel{3}{2}$		2		i		
128.............	9	8	$\stackrel{6}{\sim}$	7		5	1					
120.............	13	9	\%	3	4	2	3		1	1		
130	9	1 1	11	10	\%	4						
	${ }^{8} 18$	11	11	$\stackrel{9}{9}$			13	$\begin{aligned} & 4 \\ & 3 \end{aligned}$		$\stackrel{3}{3}$		
133	10	14	5	$1: 3$	3	5	4			2		
134	16	11	11	13	8	9	12	3		3	4	
135	10	15	14	12	T	8	$1{ }^{19}$	$\stackrel{2}{2}$	2	4	2	
${ }_{137}^{136} \ldots$	10	1.5	16	10	14	5	11	$\stackrel{3}{1}$		5	3	
137	$1:$	$\stackrel{80}{8}$	17 14	18 14	11	14	$\stackrel{9}{11}$	10	$\stackrel{4}{9}$	6 10	5	
139..............	11	17	13	16	9	17	\sim	\sim	,	2	2	
	10	17	13	10 18 18	16	13	14	10	3	10	4	
141.	4	\%	9	\%	12	12	18	6	3	6	9	
143	4	3	19	7	13	14	15	11	10	10	5	
144-............	4	$\stackrel{2}{7}$	5	8	9	9	12	13	$1: 3$	9	5	
145............		7	5	11	12	14	5	11	13	$1 ;$	12	
146	${ }_{3}^{3}$	$\stackrel{\%}{2}$	6	4	i	8	${ }_{6}^{6}$	8	119	8	14	
147	3	3	5	${ }_{3}^{3}$	7	10	9	19	i	11	${ }^{6}$	11
	\because	2	\because	7	3	9	2	9	10	5	4	0
	1	4	4	6	${ }^{6}$				3	11	18	
151,...........	1		1		1	$\ddot{\sim}$	4	5	6	9	10	11
			1	1		3	$\ddot{7}$		4	T	9	
183............		1			$\stackrel{\sim}{\sim}$	3	$\frac{1}{6}$	$\underset{\sim}{4}$	3 3 3	$\underset{\sim}{1}$	5	
155						3	2	4	4	3	4	
151					i	9	4	6	3	3	1	
157						3			6	2	6	
158 159.					i			1	2	$\stackrel{?}{3}$	T	
159.				1			1		$\ddot{\sim}$	3	4	
							1	1	1	3	2	
161.							1	$\stackrel{3}{1}$	1		$\stackrel{2}{1}$	
163.								1	1	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	${ }_{2}^{2}$	
184								1	3	1		
165											1	
169..............												
171............											1	
Cases	195	\%3:	221	298	103	230	211	190	151	181	181	14
Avorage height......	133.98	135.50	i33.49	137. 2 c	140.2	141.2	141.0	14.0	16.7	145.6	148.5	170.
Mean varin- tiou..........	± 6.50	± 6.0 \%	± 6.50	± 6.45	± 0.48	$\pm \%$ \%	$\pm \pi .10$	\pm \%.00	± 6.57	\pm \%.33	± 6.90	$\pm 6 . \% \%$

Statures of Toronto girls, grouped in quarter-year periods-Concluded.

Height in centimeters.	Number of girls of the following ages.									
	14 years and-				15 years and-				16 years and-	
	0 to: $:$ mos.	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	9 to 11 mos.	$\begin{aligned} & 0 \text { to }{ }^{2} \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 3 \text { to } 5 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 6 \text { to } 8 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 9 \text { to } 11 \\ & \text { mos. } \end{aligned}$	$\begin{aligned} & 0 \text { to } 5 \\ & \text { mos. } \end{aligned}$	6 to 11 mos.
127		1								
128.										
130.										
$151 .$.										
132.		1								
1334.										
134.....	1		1							
1330.			1							
	1	2			-					
	3	2	1	1	1					
140.-......................						1			i
		1	1	1			2			
144. 14.		$\stackrel{3}{3}$	1	2	1		2			i
144.....................	4		5	1	2	9			1	
145.			3			1	1			1
146..................	3 4 4	$\stackrel{3}{3}$	1			1		…	$\stackrel{2}{1}$	
	${ }_{6}$	${ }^{9}$		$\stackrel{1}{2}$	${ }^{-1}$	3				
149.....................	$\stackrel{2}{2}$	7	5			1				2
150	8	12	10	8 5	$\stackrel{4}{3}$	$\stackrel{2}{4}$	$\stackrel{\tilde{2}}{5}$	3	$\stackrel{2}{3}$	1
152.........................	5	$\underset{\sim}{7}$	${ }_{6}$	5	$\stackrel{3}{7}$	4		1	$\stackrel{3}{2}$	2
$153 ~$	3	14	$\stackrel{4}{8}$	7	3	3	5		3 8 8	$\stackrel{2}{3}$
154..................	10	7	${ }^{9}$	5			4	2		3
15.5	11	13	5	7	5	7	8		4	
${ }_{157}^{156} \ldots . .$.	5	$\stackrel{4}{6}$	$\stackrel{12}{2}$	8 0 0	$\stackrel{2}{1}$	4	$\stackrel{4}{2}$	8	${ }^{6}$	
158	10	6	7	6	2	1	\%	5	4	2
159	3	$\stackrel{3}{2}$	3	4	4	4	4	1	0	
161	4		5	10	3	6	${ }_{7}$	1	12	$\underset{\sim}{~}$
161.	1	$\frac{1}{3}$	$\stackrel{4}{4}$	$\stackrel{4}{3}$	$\stackrel{2}{1}$	$\stackrel{\widetilde{3}}{3}$	$\begin{aligned} & 7 \\ & 6 \end{aligned}$	i^{-1}	4	3
163......................	1	3	$\stackrel{\sim}{1}$	3 1 1	$\stackrel{1}{4}$	3 1 1	$\begin{aligned} & 6 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 3 3	5
164......................			1	2	3	3	1	1	3	
165			$\stackrel{2}{1}$	1	1	1	1	2	1	8
166-................	1					4		4		1
168..................	2						1			
			2							
17\%.................										
							79		75	
Averago height...	$15 \% .4$	151.3	153.9	154.9	154.5	155. 4	156.5	156.7	150.19	150.90
Dean variation...	± 6.44	± 6.21	± 6.44	± 5.44	± 6.2	± 6.17	± 5.11	± 5.40	± 4.90	± 6.37

Statures of Toronto boys, grouped in one-year periods.

Height in centimeters.	Number of boys measured of the age of-											
	years	$\begin{gathered} \mathbf{5} \\ \text { years. } \end{gathered}$	$\begin{gathered} 6 \\ \text { years. } \end{gathered}$	7 years.	$\begin{gathered} 8 \\ \text { years. } \end{gathered}$	$\begin{gathered} 9 \\ \text { yeara. } \end{gathered}$	years.	years	years.	$\begin{gathered} 13 \\ \text { years. } \end{gathered}$	$\begin{gathered} 14 \\ \text { years. } \end{gathered}$	$\underset{\text { years. }}{15}$
90	1											
91		1										
92	-. ...	1										
93												
94	4	1									
95	5		1									
98.	3		1									
97 -...............	3	$\stackrel{2}{8}$	2								
98.	5	8	1	-......								
99-.-......	5	9	3									
100	8	15	1									
101	12	$1{ }_{10}$	4									
102 -..............	13	19	${ }^{6}$									
103...............	$\stackrel{1}{6}$	21	16	2								
104	9	27	17	1								
105	6	$2 i$	26	4	\%							
106...............	4	28	公)	7	$\underset{2}{2}$	1		-				
107	7	19	26	13	2		1					
108	1	26	39	11	3	2						
109.	1	28	44	17	4							
110		24	62	30	7	1						
111..............	4	2.2	51	44	5	2						
$119 . .$.	1	19	49	54	12	3	1					
113...............		10	336	4.5	18	3	I.					- -.....
114...............	1	4	47	68	20	3	1					
115		5	48	60	38	2	5					
116		$\underset{1}{ }$	31	71	43	9						
117		1	23	63	46	17	4	1				
118.		3	18	66	63	27	3	1				
110.			14	56	55	21	8		1		
120		1	8	07	90	31	19	2				
121			8	33	64	5	8	3				
124		$\stackrel{3}{3}$	40	7%	43	18	3			1	
1283...............		2	29	56	10	$\stackrel{20}{20}$	${ }_{6}^{6}$	$\stackrel{2}{3}$	1		
104...............				24	(t3	64	29	7	3		1	
125		1	2	1%	59	6π	89		4		2	
${ }^{\circ} 9$			1	7	40	03	3%	13	$\stackrel{5}{\sim}$			
127.			1	7	37	038	39	16	$\underset{1}{ }$	1		
128		1		12	41	$6: 3$	44	27	10	3	1	
				3	21	43	51	31	11			
130					17	6.)	64	53	18	5	1	
131...............				1	13	41	63	33	16	7		
13\%					14	48	55	36	23	5		
183...............				3	10	$3{ }^{35}$	58	38	21	9	2	
134..............					8	27	41	14	87	0		
185					4	19	5	43	31)	14	3	
130					4	16	4	\%	43	24	4	
187	-......		1	1	5	31	41	34	91	5	
138..............				1	!	$\stackrel{98}{98}$	53	54	19	${ }^{6}$	
189..............	1	\%	24	45	$4: 3$	19	3	
140..............						$\underset{\sim}{9}$	23	49	48	98	6	
141................						9	24	39	38	管5	13	
142..............					1	1	11	35	45	3\%	${ }_{10}^{6}$	
144................						1	5	\%	31	98	10	
144..............					1		0	13	43	23	9	
148..............					1		1	17	28	48	20	
146...............						1	5	10	23	25	15	
147...............							$\stackrel{2}{2}$	10	31	27	13	
148..............						1	2	9	9	81	27	
149..............	-						3	3	13	9	13	
150						1		4	21	98	96	
151...............								2	8	14	12	
151 -..............								$\stackrel{3}{2}$	6	40	\%	
153..............								3	3	18	16	10
154.								I	3	0	25	

Stutures of Toronto boys, grouped in one-year periods-Concluded.

Statures of Toronto girls, grouped in one-year periods.

Height in centimeters.	Number of girls measured of the age of -												
										$\begin{aligned} & \dot{n} \\ & \text { in } \\ & \dot{H} \\ & \underset{\sim}{n} \end{aligned}$			
		1.											
88.													
91.	1												
	5	1											
94.	$\stackrel{2}{2}$,											
	8		1										
\%	$\stackrel{4}{4}$	$\underset{\sim}{2}$			
97..	8	$\stackrel{1}{11}$	$\stackrel{3}{3}$...							
99.	2	10	:		.								
100.	13	24	,										
		21											
	8 3 3	288	15 13	-383	1								
101.......	9	37	21	$\stackrel{7}{7}$									
105.	3		2i)	12	\%	1							
${ }_{1010}^{10 \% ~}$	3	92	31	10	1					
	1	$\stackrel{34}{35}$	4	9 16	1	1							
109.......................	2	$: 1$	40	18	9	1	1					
110.		91	50	40	10	1	1.						
111...................		14		39	12				.		.		
11:.................	1	8 13	81	40	:19	\%							
114.		13 4 4	34	44	19 97	5 4	1						
115.		4	37	57	39	13	1	2					
116		4	24	(6)	51	15	3	1				
$11 \sim$: 3	58	313	18	5						
118.		2	13		54	20			...		-		
119.			7	t2	47	40	3	1	...				
123).			8	48	78	43	10	3					
		1	2	43	60	43	14	5	1	-....	-	.	
1			3	${ }^{31}$	${ }_{48}^{61}$	54	3	3	5	.-.		
121			4	17	51	68	边	7	9	.			
12\%.			1	10	4π	\% 0	60	$1: 2$	3				
18.				$1: 3$:38	80	32	$\stackrel{18}{18}$	$\stackrel{2}{5}$				
127.			.	7	3.7	\%	${ }^{37}$	17	5		1
12x.				2	12	39	13	31	9	2		-....	
130.				3	18	59	6.1	47	11	1			
131.				2	4	41	57	39	7	3			
113%					11	?	51	40	$\stackrel{11}{14}$	3	1		
			.		5	13	虽	51	3:	$\underset{7}{7}$	1		
185.					1	13	49	51	9%	8	1		
138.					2	10	\%	51	43	${ }_{8}^{8}$	1		
137.					1	10	38	67		12	3		
188.					1	${ }_{4}^{4}$	28	45	47	10			
$130 .$.						2	10	57	40	10	7	1	-....
$140 .$.					1	1	9	50	53	19	2	1	1
141						i	6 7	[38	47 48	\%	4		
143.							8	${ }_{0}$	88	(9)	4	1	
144...							4	19	43	31	12	4	1
							5	93	4.	48			
146							3 4 4	15	37 38	4	8 7	5 4	$\stackrel{2}{1}$
147						${ }_{4}^{4}$	14	98	9	211	13	1
117.								13	43	(9)	14	4	0

Statures of Toronto girls, grouped in one-year periods-Concluded.

Height in centimeters.	Number of girls measured of tho age of-												
	$\begin{aligned} & \dot{A} \\ & \stackrel{\oplus}{4} \\ & \stackrel{\leftrightarrow}{4} \\ & + \end{aligned}$												
150							2	15	27	43	32	11	
151..................								2	12	36	31	12	
							1	2	11	88	23	16	4
153								1	10	17	28	12	5
154.								1	16	29	31	14	11
125.									8	15	313	24	10
156									14	12	33	17	8
1.15									3 3	18		${ }^{9}$	5
15								1	3 1	17 13	208120	10 13	${ }^{6}$
100.										11	28		14
161.									$\tilde{3}$	4	10	11	7
$16{ }^{2}$									1	7	9	11	6
163.										4	3	8	4
164.									1	8	3	8	4
										1			
16in....................											3 3	5 6	1
											3 2	${ }_{1}^{6}$	1
169.													
											2		
										1			
													1
173													
												
Cases.	88	303	597	759	834	875	8:3		884	665		$24 \hat{4}$	123
Arerage age			6.518	7.508					12.458			15.433	
Average height.... ISean variation...	100.4 +4.20	$\begin{aligned} & 1012 \\ & \pm 4.80 \end{aligned}$	110.4 +4.80	116.0	120.6 +5.53				141.7	${ }_{ \pm}^{147.1}$	153.0	155.8	156.5 ± 5.35
Correctedaverago.			110.4	118.0	1:0. $\%$	125.3	130.9	130.1	141.6	148.	153,3	156.0	150.7

The following table exhibits the statures of Toronto children as compared with American children in general:
statures of boys, in centimeters.

	Ago in years.											
	5.5.	6.5.	7.5.	8.5.	9.6.	10.5.	11.5.	12:5.	13.5.	14.5.	15.5.	16.5.
Toronto	106. 2	111.1	110.8	121.8	126.7	131.5	135.9	140.1	145.4	151.5	15\%.0	
American ...	103. 9	111.0	110.8	12:. 0	120.9	131.8	133.2	140.7	146.0	15.4	150.7

statures of girls, in centimeters.

Americain....	$104 . \tilde{9}$	110.1	110.1	1212	120.1	131.3	138.0	142.5	$148 . \hat{1}$	153.5	150.5	158.0

VARIABILITY OF BOYS' STATURES.

variability of girlis' statures.

Toronto	± 4.80	± 4.80	± 5.30	± 5.53	± 5.32	± 0.20	± 0.52	± 6.80	± 7.17	± 6.35	± 5.80	± 5.85
American	± 4.64	± 5.07	± 5.20	± 5.68	+6.73	± 0.18	± 6.83	± 7.57	± 7.37	± 6.69	± 5.96	\pm 5. 70

It appears from these tables that on the whole the Toronto children are not as favorably developed as are American children, their statures being slightly shorter. The variability of the Toronto series does not differ so much from the general series as might be expected. The causes that modify the growth of children in a single city appear to be so great that the decrease in general variability is very slight indeed.

The variabilities given in the preceding tables are those for the whole year. When the variabilities for each year are calculated from the averages of the trimontnly periods given on pages 1558-1564, a considerable reduction in the values takes place.

BOYs.

$\begin{aligned} & \text { Variability } \\ & \text { for- } \end{aligned}$	Age in years.											
	5.5.	'6.5.	7.5.	8.5.	9.5.	10.5 .	11.5.	12.5.	13.5.	14.5.	15.5.	16.5.
The whole year \qquad	+5.12	± 4.82	± 5.08	± 5.58	± 5.59	\pm 6. ${ }^{\text {\% }}$ \%	± 6.15	± 6.80	± 7.79	± 8.55	± 9.00	
$\begin{aligned} & \text { Quarterly } \\ & \text { periods. } \end{aligned}$	+4.\%)	± 4.65	$\pm 4.7 \%$	± 5.38	± 5.35	± 6.02	± 6.08	± 6.61	± 7.63	± 8.22	$a \pm 8.91$	

girls.

The whole year \qquad	± 4.80	± 4.80	± 5.30	± 5.53	± 5.32	± 6.20	$\pm 6.5 \%$	± 6.96	± 7.17	士6. 35	± 5.86	± 5.35
Quarterly periods...	± 4.62	± 4.73	± 5.21	± 5.34	± 5.18	\pm 5. 89	± 6.38	± 0.90	$\pm 6.8{ }^{\text {\% }}$	\pm 4. 13	± 5.73	± 5.63

a Six-monthly period.

tiIE arowth of first-born children.

I have shown (Science, 1895, April 12) that the first-born children in Oakland, Cal., exceed in height later-born children. The data which were then available gave the following results. The columns headed "Differences" contain the amount to be added to the average statures and weights in order to obtain the measurements of first-born and later-born children. The figures in parentheses desigi te the number of individuals measured.

STATURES OF OAKLAND BOYS, IN MILLIMETERS.

Age in years.	Average stature.		Differences between arerage stature and stature of-									
			First-born children.		Secondborn children.		Third-born chilitren.		Fourthborn children.		Le er-born children.	
6.5		(145)			$+7$							
7.5		(197)	+11		-4	(42)	+13				-10	
8.5		(34)			-7					(\%)		
9.5	1283	(${ }_{\text {(20) }}$	+2		-2		+ 5		+5	(23)	+1	
10.5	1334	(243)	± 0		+33			(41)		(3i)		
11.5		(208)										
12.5		(184)	+20)	(64)		(47)	- 4	(38)	-5i			
13.5			+16 +11		+10	(43)	+11 +4	$\left(\begin{array}{l}\text { (28) } \\ (27) \\ \hline 18\end{array}\right.$	-31 ± 0		+8\%	
15.5		(118)								(15)		
10.5	1064	(116)	-19		+17		+21	(18)	-20)	(13)		(25)
ences			+4.6		+4.0		+1.9		-7.9		-6.9	

STATURES OF OAKLAND GIRLS，IN MILLIMETERS．

Age in years．	Average stature．		Differences between average stature and stature of－					
			First－born children．		Sccond－ born chil－ dren．	Third－horn children．	Fourth－ born ehil－ dren．	Later－born ehildren．
0.5	112	（113）	＋11	（32）	± 0（23）	－9（15）	－16（10）	－1（38）
7.5		（193）			－11（40）	＋3（4）	－${ }^{4}$（24）	－11 ${ }^{(42)}$
9.5	1：ニั่	（20：2）	± 4		－18（97）	＋17（4\％）	± 17（21）	－ 5 （50）
10.5		（204）			－2（46）	＋15（	－ 0 （36）	－11（59）
11.5		（\％3）		（52）	+10 （41）	－ 3 （32）	＋ 3 （34）	-14 （61）
12.5		（203）	+3 +3		＋14（56） $+80(48)$	－1 -19 -83$)$ (3)	$\begin{array}{r}\text { a } \\ +6 \\ +6 \\ +690 \\ \hline\end{array}$	
14.5	1566	（－41）	＋9		± 0（68）	－8（38）	-17	－ 1 （49）
15.5	$15 \mathrm{Ti7}$	（120）			＋11（30）	－ 6 （32）		－5（41）
16.5	1：99\％	（12\％）		（30）	－38（\％8）	－ 3 （（23）	－ 1 （14）	-18 （32）
17.5	159\％	（99）			－21（19）	－8（19）	± 0（15）	＋14（16）
18 and older	1602	（82）	＋12		－5（20）	－25（10）	－10（9）	－ 1 （16）
A verage di ences			$+\pi$		－2．8	－4．5	－3．3	－2．3

WEIGHTS OF OAKLAND BOYS，1N POUNDS．

Age in years．	Average weight．	Differences between average weight and weights of－				
		First－born ehildren．	Second－ born chil dren．	Thitd－born ehildren．	Fourth－ born ehil－ dren．	Later－born chitdren．
6.5	47． 7 （147）	－0．3（28）	+0.7 （38）	+0.1 （\％3）	－0．1（18）	－0．5（35）
5.6	51． 7 （191）	＋1．1（48）	－0．6（42）	＋0．1（23）	－1．0（21）	± 0.0（4）
		－0．3（58）	$\begin{array}{r}+0.2(6) \\ +0.1 \\ \hline \text {（5）}\end{array}$	＋0．5（32）		－0．6（57）
10.5	69.0 （235）	－1．6（64）	+5.4 （47）	－2．1（38）	－1．4（3i）	－0．1（44）
11.5	74． 8 （206）	+1.0 （is）	－10．9（38）	＋1．2（33）	-0.9 （2T）	－0．3（41）
12.5	81.6 （3）4）	＋2．1（64）	＋1．2（46）	-0.4 （37）	－i． 13 （34）	-1.8 （11）
14.5	105.1 （160）	＋1．6（4\％）	－0．7（38）	${ }_{-0.2}^{+0.1}$（26）	－1．4（3）	＋0．5（25）
15.5	119．5（114）	＋3．0（33）	－1．7（27）	+0.1 （21）	＋0．8（15）	＋1．8（17）
Average dif ences		＋0．80	$+0.60$	＋0．32	－1．i8	－0．44

WEIGIITS OF OAKLAND GIRLS，IN POUNDS．

	45． 7 （123）	± 0.0（31）	＋0．9（30）	－1．0（15）	－1．2（10）	＋0．4（32）
	49.6 （186）	－1． 1 （45）	+0.6 （37）	－0．1（42）	－0．5（ 2 （2）	+0.1 （39）
	63． 7 （317）	f－0．6（50）	＋0．3（45）	－1．1（42）	＋0．8（21）	± 0.0（59）
	10.0 （ $3+5$	－1．5（64）	＋0．3（57）	＋2． 1 （48）	－3．1（\％	＋1．0（46）
10.5	63.8 （001）	＋0．4（5\％）	－0．8（45）	－1．8（28）	＋2．5（25）	-1.0 （60）
11.5	74.3 （事：	＋2．1（50）	－1．2（41）	+0.4 （31）	＋10． 7 （ 38	-1.2 （68）
	8．1．：（230）	＋1．2（6ĩ）	＋2．6（56）	－3．2（54）	－1． 2 （30）	－0．2（64）
13.5	94．${ }^{2}$（候）	－0．0（68）	＋3．11（47）	－2．43（37）	＋0．3（20）	－1．2（45）
	105.8 （唯）	＋0．4（60）	＋1．3（64）	－4．2（35）	－1．4（i5）	＋1．7（49）
15.5	110.7 （18\％）	＋2．1（41）	＋0．1（32）	－3．5（33）	＋2． 1 （19）	＋1．2（40）
10．：	116.5 （124）	＋ 7.9 （ 290	-1.5 （27）	－3．0（飾）	－7．5（14）	－0．1（32）
17．5．	117.4 （98）	＋1．9（80）	－0．5（18）	－3．2（19）	＋4．1（15）	－1．2（16）
18 and	118.3 （82）	＋2．4（\％）	＋0．4（30）	－0．1（10）	－6．0（9）	－1．1（16）
ences．		＋1．19	＋0．48	－1． 11	－0．	－0．1：

The following tables contain the detailed results of the measurements obtained in T'oronto:

Statures of Toronto boys. Age, \& years.

Stature in centimeters.	Order of lipth.									
	1st.	$\stackrel{\text { d }}{ }$ d.	3d.	tth.	5th.	6th.	\%'th.	8th.	9th.	14th.
				1						
90						1				
91.										
$93 \ldots .$				1						
	1	1	2							
95				1				1		
96.		1	1	1			1			
		2	\%		1	1	1	1	-....	.
99.		$\underline{2}$	3				1			
100.	2						1			
101....................	1 1	4	$\stackrel{\stackrel{2}{2}}{2}$	1 3 3 3	1	3	1	1	1	1
103-......................		1	1	1						
104	3	2			1					
	1	$\stackrel{1}{2}$			1	2				
	1	$\frac{1}{2}$	$\stackrel{2}{2}$	1	1					
108....................	1									
109....................	1									
111-......................	3			1	1					
1112.....................				1						
	1									
Cases	17	22	26	15	7	7	5	3	1	1
Average nge (months over 4 years) \qquad	7. 0			B. 2						
Avorago stature..	104.8	101.4	100.5	101.2						

Statures of Toronto boys. Age, $\overline{\text { s }}$ years.

Stature in centimeters.	Order of birth.													
	1st.	2 d	3d.	4th.	5th.	6th.	7th.	8th.	9th.	$10^{+} \mathrm{h}$	11th.	12th.	13th.	14 th.
90														
91				1		.-								
92														
93														
	1												
96.			1	1				-....-		1				-----
97	1				1	-.....	1	-......						
98		$\begin{aligned} & 7 \\ & 2 \\ & 2 \end{aligned}$	$\stackrel{1}{2}$	1	$\stackrel{-}{2}$	2 1	1	-....	1	1				
100		5 5	3	2	1	2	1	1	1					
101		3 5 5	3	1	1	-	2	1	1			1		1
102 -.................................	4 5	5 6	7 4	1	$\stackrel{1}{2}$	(1	1	1				1		
104	6	${ }^{6}$	4	5	$\stackrel{2}{2}$	1	3	1		i^{-}		1		
105	5	9	8	$\underset{7}{2}$	1		2	$\stackrel{3}{0}$						
106	3	6 8	8	7	3	2		2						
107 -.....................	3	8	3	$\underset{\sim}{\mathbf{2}}$	1	1		1			1			
108-......................	2	5	7	5	3	2	1	1	2					,
109	6	6	4	4	5	1	-.....	1				1
110	8	4	5	1		3	2							
111	5	4	5	4										
112 -..................	4	3	6	5	1				1					
114.	3 2	3	1	2		1	1		1					
115		1	1		1			2						
116	1	3	-.....	1	2									
117				1										
118		2					1	-.....						
119.				-		-								
				1										
121.					1									-
122.														
123.														
124.						-								
			1											
128														
127														
128		1												
129														
Cases	59	86	it	49	33	90	17	14	8	3	1	2	1	1
Average age (months over 5 years)			6.9	6.8		6.4	6.0	6.5						
Average stature..	107.4	106.5	104.3	107.2	100.7	104.8	104.8	105.1						
Corrected average at 5 years 6 months	103.8	108. 2	105.9	108.8	108.4	104.6	104.8	104.9						
	10.8	100.	10.0	10.8	100.4	104.0	104.8	104.3						\cdots

Statures of Toronto boys. Age, 6 years.

Stature in centimeters.	Order of birth.													
	1st.	2 d .	. 3.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.	13th.	14th.
95				1										
93		1						1						
97.				1			1							
99		2					1							
100	1	1												
101.					1		i	1	i					
102.				3		$\stackrel{2}{3}$		1						
104	3		$\stackrel{3}{2}$	1	$\underset{2}{2}$		2	$1{ }^{*}$	2					
105	4	9	7	3	4			2		1				
$106 . . .$.	4	5						2	1					
107	4	${ }_{7}^{10}$	${ }^{7}$	3 4 4	3 1		$\stackrel{2}{5}$	1			1			
$109 . .$.	14	11	7	3	5	2	3	1	2		i		1	
	10	14	14	13	6	8			1					
111	${ }_{11}^{12}$	11	11	${ }^{6}$	5	4		$\stackrel{2}{2}$			1	1		
113 --..................	5	${ }_{6}$	8	${ }_{8}$	3	4	$\stackrel{\sim}{3}$		1		3		1	
114	9	12	5	6	3	1	4	3	1		1			
115	12	15	5	4	7	1			4	1				
116	6	8	6	4	3	2	1	i	1					
118.	4	6 4	$\stackrel{4}{3}$	${ }_{2}^{6}$	$\stackrel{3}{2}$		1	i-	1	1		1		1
119.	4	4	2	2	1	1		1		1				
	1	1	1	1			2							
				2				1						
${ }_{123}^{122}$.........................	2				1	1								
124														
	1	1												
126,			1											
127.	1													
129														
Cases	128	147	108	85	67	36	31	23	18	9	7	2	3	
Averageage (months over 6 years	6.5	6.9	6.2	5.9	5.7	6.0	6.0	6.2						
Average stature.	112.0	110.9	110.8	111.3	111.1	110.7	109.8	109.6	111.2					
Corrected aver-														
age at 6 years 0 months	111.8	110.8	110.7	111.3	111.2	110.7	109.8	109.5	110.7					

Statures of Toronto boys. Age, $\begin{array}{r}\text { r years. }\end{array}$

Stature in centimeters.	Order of birth.													
	1st.	2 d.	3 d.	4th.	3th.	6th.	7 th.	8th.	9th.	10th.	11th.	1:4th	13th.	14th.
103...			1			1								
104.				1					1		1			
1063		1	$1{ }^{-1}$			i	1		1					
107.	4	1	2	1	3			1					1
109.	1	1	2		1		1	2	2					
109	4	5	4	1	1					1				
110	9	3	$\stackrel{5}{5}$	4	3		4	1			1			
111	8	11	\%	4	${ }^{3}$			2				1		1
112	13	10	5	7	6	7	3	2	1					
113	5	10	12	3	4	4	2	1	1		1			1
114.	23	12	6	6	2	3	3	$\stackrel{2}{2}$	3		1			
115 -...........	14	14	8	${ }^{6}$		$\stackrel{5}{5}$	1	$\stackrel{1}{3}$	$\stackrel{2}{1}$	1				
116............	16	10	6 7	110	9 2	$\stackrel{2}{4}$	5 2	3	1	3		1		
118.	18	13	6	9	4	4	3	2	1	3				
119	10	10	13	j	4	4	1	2	3				i
120	13	12	6	6	6	6	3					1		
121	6		5	5	1.	3	1	2						
	10	7	5	6	3	4	3							
123.	6	7	4	1		1	1	1					1	
124...........	4	4	1	$\stackrel{8}{2}$		3	1	1						
${ }_{120}^{125}$-...........	$\stackrel{5}{2}$	${ }_{2}^{2}$	1	1	$\stackrel{2}{1}$	1			2				
107		2	2	1	1		1							
	8		1	1		1	1							
$129 . . .-$--....	8													1
$130 . . .$.		1		-.....				1						
132.............			--...									
133	2	1												
133														
136.														
137			1											
Cases	201	160	119	94	64	5	37	28	17	9	4	3	3	3
A verage age (months														
over yenrs)	5.9	5.6		5.4		6.0	5.1	5.3	5.4	6	3.5			5.7
Averagestat													3	5.7
Corrected	117.1	116.8	116.6	116.5	115.9	117.0	116.5	115.9	115.2	116.1	110.5	116.0	118.3	117.7
average at														
months.	117.1	117.0	116.8	116.8	116.3	11\%.0	116.9	116.2	115.5	116.3				

Statures of Toronto boys. Age, s years.

Stature in centimeters.	Order of birth.													
	1st.	$\stackrel{2}{2}$ d.	3d.	4th.	5th.	Cth.	7th.	8th.	9th.	10th.	11th.			14 th
91............				1										
104-...........				1								
101.			1											
105.			1						1					
106.-.	1						1							
107		1												
$\begin{aligned} & 108 \\ & 109 \end{aligned}$		1	1		1		1	1						
		1		2	1	1	1	1						
111, -......................	3		1			1	1							
112..................	3 1 1	\%	3 8 8	1	\cdots	1			1	i-				
114.....................	8	${ }_{6}$	${ }_{3}^{8}$	1	4	1	1	1	1			1		
115	8	7	6	5	0		0			$\stackrel{\sim}{2}$				
116....................	9 10	7	6 8	5	8 3 3	$\stackrel{2}{2}$	3		1	1	1			
		11	10	11	5	$\stackrel{2}{9}$	1							
119	16	15	8	7	4	$\stackrel{2}{2}$	$\stackrel{1}{2}$,	1	1				
120..................	31	18	14	8	7		${ }_{6}^{6}$	4			1	1		
1:121..................	14 14	15 11 11	9 14	8 8	5 9	3	8	$\frac{1}{2}$	$\stackrel{1}{2}$	1	2	\cdots		
123	1.4	15	10	8	1	4	1					1		
	8	14	11	10	5	10	3			1				
125.	$1 \stackrel{10}{8}$	17	8	9	1		I			4				
126	8	10	\%	$\stackrel{3}{3}$	4	3	4	1		1				
128	19	3	9	9	\%	2	\%		I					
1:3	4	1	3	3	1	1	3	1						
130.	8	1	5	1	1	2								
131			$\stackrel{3}{3}$	-....	3	\because		1		1		1		
133	$\stackrel{2}{2}$	$\stackrel{3}{2}$	\%				2							
		4	$\stackrel{\sim}{\sim}$	1						1	1			
		1	2	\because										
	1	3												
1336			1											
		1			1									
14.3	1			-	1									
144	1													
	1													
Cases..............	216	188	159	111	79	61	61	35	21	19	5	6	1	
Average afo (months over 8														
Average stature..	121.8													
Corrected average at 8 years 6 months.	120.0	122.2	121.6	121.8	120.8	121.8	121.0	121.						

Statures of Toronto boys. $\dot{A}!9,9$ years.

Stature in centl. meters.	Order of birich.												
	1st.	2 d.	3d.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.	13th.
								1					
95.		1											
1164.			1										
$1118 . . .$.	1												
		1											
111													
$112 .$	1										1		
114.		1	1					1					
115.		1			1	1							
118.........................	$\stackrel{2}{5}$	1	1	$\stackrel{-}{2}$	2					1	……	-
117.................................	5 4	11	$\stackrel{2}{3}$		$\stackrel{3}{2}$	3 3		1					
119........................	5	3	2	2	7		2	1	1				
120	6	6	4	6				3	2		1		1
121.......................		9	9		5			1	3				
122.........................	${ }_{11}^{6}$	9 11	5	7 9	6 3 3	4 6 6	5 4 4			1			1
124.-..-.-.-..............	19	12	12	7	5	7	$\stackrel{4}{3}$	1	$\stackrel{-2}{2}$	1			
125.	13	10	14	13	4	10	3	4		1			
120...................	15	15	10	5	${ }_{6}^{6}$	6	5	2		1		${ }^{-}$	
	$\stackrel{22}{19}$	13 16	6 6	${ }_{6}^{6}$	$\stackrel{2}{6}$	4	3 2	$\stackrel{2}{1}$	$\stackrel{4}{2}$	3		1	
129.......................	10	1	10	7	5	1	2			$\ddot{2}$	1	1	.
130.	21	11	8	4	7	3	2	6	1		1		
	10 13	8 9 9	6 4 4	7 4	2 6 6	5	$\stackrel{2}{2}$	4 2 2	$\underline{1}$	2			...
133.......................	- 8	9	11	5	${ }_{3}^{6}$	4 4	1	1		2			
134.	8	8	2	3	4	2	1						
135.		5	1		2	1	1						
1366.	5	4	3	$\stackrel{2}{2}$			1		1				
137....................	3	i-	$\frac{1}{3}$	1	1								
130.......................	1							1					
		1											
1+1......................			1										
142....................	1										
143...................			1	\ldots	…..						-.....		
145.													
146	1											
147													
149.		1		-....								
150							1					
Cases...............	240	180	137	112	87	71	48	38	25	15	6	2	2
Averageage													
(months over 9	5.8			5.7	6.1	5.6	6.0	5.3	6.4	5. 5			
Average stature...	127.0	123.1	128.5	123.6	125.4	125.4	125.7	123.7	125.6	125.4			
Corrocted average													
months	127.1	128.0	123.7	123.7	123. 4	125.6	125.7	127.0	12\%) 4	125.0			

Statures of Toronto boys. Age, 10 years.

Stature in centimeters.	Order of birth.													
	1st.	2 d.	3 d .	4th.	sth.	6th.	7th.	8th.	Oth.	10th.	11 th .	12th.	13th.	15th.
107						1								
$114 .$.	1													
$115 .$.	2			1	1				1					
${ }_{117}^{116 ~}$														
		1	1		1	.	1	1						
119.	1	1	1	4		2	i^{-}							
120.	2	1	2	1	2	2		1		1				
${ }_{122}^{121}$	3		$\stackrel{2}{7}$	$\stackrel{2}{3}$	2			1						
123	7	2	1	$\stackrel{3}{2}$	1	i^{-}	2	3	3					
124	6	6	5	3	2	6	$\ddot{2}$	3	1		i			
125.	10	5	4	9	3	3	3			1				1
126	8 11	11	6 2 8	5	1	${ }_{2}^{2}$	$\stackrel{3}{\sim}$			1				
128	8	10	8	$\stackrel{5}{7}$	3	2	İ	2	1	a		${ }^{-1}$		
129.	13	9	12	4	4	3		2	1					
130.	19	11	7	10	8	6	3	$\stackrel{2}{2}$	1		2	1		
131	10	9	7	4	12	${ }^{7}$	3	3		1			2	
133.	12	8	12	12	1	7	$\stackrel{2}{2}$	1	1	1				1
134-....	7	8	14	1	4	2	\%	2			i^{-}	1		
135.	14	9		7				2			2			
$136 .$.	15	3	7	4	3	5	4			1				
${ }_{1387}^{137 . ~}$	${ }^{6}$	6	${ }_{7}^{5}$	6	$\stackrel{2}{2}$	3 1	3 3					-..-		
139.......................	2	\sim	${ }_{5}$	5	1	2			2					
	6	5	1	5				1						
141..................	5	${ }^{6}$	3	$\stackrel{2}{3}$	3	3	1	1			1			
142....................	5	1	1			3								
144......................	4		2	1										
	1													
146	1	3												
		1				1								
148		1	1											
	1	1				1								
Cases	213	145	14)	112	8.2	75	44	34	19	10	7	3	2	2
Avorage age (months over 10 years) \qquad														
Average stature...	131.2	131.9	131.3	130.8	130.7	131.8	130.7			129.7				
Correctedaverage for 10 years, 6 months	131.2	1:2.0	131.4	130.9	130.7	131.9	130.8	129.8	8181.0	129.4				

Statures of Toronto boys. Age, 11 years.

Stature in centsmeters.	Order of birth.														
	1st.	2 al .	cd.	4th.	3th.	6th.	7th.	8th.	9th.	10th. 1	11th.	12th.	13th.	14th.	17 th.
115.										1					
116.															
11%	1														
118.	1														
119.															
120).	1				1										
1:121-....................	$\underset{\sim}{2}$			1											
122-.......-.............	1	1	1			1		1	1						
133	1	$\stackrel{3}{9}$	8	$\underset{7}{9}$		1									
		$\stackrel{3}{2}$	2	1		1	1							$1{ }^{-1}$	
123.	5	1	3	2	4	2			1				1		
123....................	2	4	3	$\underset{\sim}{2}$				2	1						
127....................	4			5	1	1									
128.-....................	4	5	6	4	5	3	1	1		1					
1:9....................	7	6	6	5	2	5	3			1					
130	15	8	8	8	7	6	2	1							
131	15 3 7	10	6	$\stackrel{8}{2}$	1	3	1	2		1					
13 120	7	6	5	3	6	${ }_{6}$	1	1	2						1
133.	8	$\stackrel{3}{3}$	${ }^{7}$	5	6	$\stackrel{2}{3}$	4	$\stackrel{2}{3}$	1			1			
134..	10	12	11	9	5	3	5	3	1	;					
135.	11	10	9	$\underset{ }{7}$	3	\therefore	a					1			
1313	8	$\stackrel{8}{8}$	4	$1 \stackrel{1}{0}$	10	3				\cdots	1		1		---
137.	13	${ }^{6}$	4	$\underset{\sim}{2}$	3	3	3	3	1	1					
138-....................	11	10	11	5	5	4		4	$\%$						
139......................-	8	5	5	4	5	7	3	$\stackrel{2}{2}$	1	1					
140-...................	8	12	τ	8	3	$\underset{\sim}{2}$	3	1	$\stackrel{2}{2}$				1	
141.....................	7	9	4	6	$\underset{\sim}{2}$	5	3			1				
14%	6	8	4	3	5	3	2	1	1		1				
143.	7	4	3	6	5	1		1		1					
144..	1	$\stackrel{\sim}{2}$	\%	1	2	3	2			1					
145.	3	5	2	3	3							1			
146.	8	3	3				2					1			-
147	5	$\stackrel{\%}{1}$	1		1									
148.......................	$\stackrel{\%}{3}$	1	3		1	2					1				
149.....................	3														
150....................	2	1		1											
151.....................	1	1													
152	1	1													
$15\}$			2					1							
154...						1									
15%															
1515....................		1													
15in-.....-...............															
158......................		1													
164.....................			1												
Cases	17%	156	12\%	109	86	71	39	\%8	10		6	4	3	1	1
Avoragongo (monthis over 11 yoars) \qquad	6. 6				5.6		4.8		5.	4.4					
Averagestaturo...	13\%. 6	133. 1	12\%. 5		133. 5					135.19					
Corrected average for 11 jears, os															
	$13 \% .8$	186.:	13i. i		133. 7	135. 1	133.5		134.	4133.0					

Statures of Toronto boys. Age, $1: 2$ years.

Statures of Toronto boys. Age, 13 years.

Statures of Toronto boys. Age, 14 years.

Statures of Toronto boys. Age, 15 years.

Staturo in centimeters.	Order of birth.											
	1st.	Pd.	3 d.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.
124	1											
137			1									
130			1									
140.	3			1								
141	1	: 2		1								
1+2,	1	1		1								
144................................			1	1								
145			1		1						1	
118. $1+\ldots .$.	1		1	2	1	1		1			\ldots
	1		1	1				1	1			
140			2					1			1
		1	3	1	1							
151	3				1							
	$\stackrel{2}{3}$		1		2			1				
154	3	2		3			1					
15i5.	9	1		2	1	2	1					
1,50	3		1					1				
	1	3	1	$\frac{1}{3}$	3		2	1	1		1	
159 -...............................	$\stackrel{2}{2}$	1	2	:	1				1			
100	3	1	2		3			1				
1161.............................	3	2				1	1		……		
16.3		$\stackrel{1}{1}$	2		1							
184	2				1							1
163.	2		1	1								
1610	3				3	1						
16ĩ	1	1										
1188............................	1	1.		1					1	
169.........................	1		-	2			1					-.....
170.				1				1				
${ }_{171}^{17}$	3	1		1						1		
173.	3	1		1						1		
174....			i									
						1						
${ }_{17 \%}^{17}$												
$\begin{aligned} & 178 . \\ & 179 . \end{aligned}$												
	1											
		1										
Cases.....................	52	:3	94	28	20	6	9	7	3	2	3	1
Averago uge (months over 15 yenrs)...........					万. 8							
Average stature..........	157.1	150.8	154.0	150.4	157.7							
Corrected average for 15 years of months.	$15 \% .5$	15\%.5	101.4	1513.8	1 15i. 8							
	18.)	15.8							

Statures of Toronto boys. Age, 16 years.

Stature in centimeters.	Order of birth.										
	1st.	2 d.	3 d.	4th.	5th.	6th.	7th.	8th.	10th.	11th.	13th.
							1				
131.				1							
141.		1									
150.					1						
151.											
159	1	1					1				
158.		1									
]交.......	\%										
1:10........			2				1				
157-...	2					1					
158-7...		1									
$\begin{aligned} & 159 . \\ & 160 . \end{aligned}$		2				1					
				1							
16:3,-.....		1	1								
16i3.-..................................			1								
164	1	1					1		1	
							\cdots				
167%		i						1			
16.6.											
169.		1	-								
								1			
			1		1				1		
173											
171.											
175.											
173.-.											
17.			1								
				1							
	8	10	8	3	2	2	4	3	1	1	
Average age (months over 16 years)											
Average atature...................	157.5	158.5									
Corrected a verage for 16 years 6 months.	157.7	158.8									

Statures of Toronto girls. Age, , yearis.

Stature in centlmeters.	Order of birth.								
	1st.	2d.	3 a.	4th.	5th.	6 th.	7th.	$8 t h$.	9th.
91.			1	-.--..				-	
113	1	3	1				1	1	
		2			-•				
9in (1)			$\stackrel{1}{1}$		$\stackrel{9}{8}$	1		i
		3	1	(1		- 1	$1{ }^{\circ}$		1
!18.	$:$		3		$\%$		1	1	$\cdots \cdots$
100..	\%	6	3					8	
101.	3	9		1	1	\%		1	-...--
10,	3	..		2	1				
103.-..... -	1	-	- 1	1	1			1
104................................	3	3	1		1	1	1	1	-
10.).		2	1						
$104 .$	8		1						*
$107^{\circ} .$	1					1			.
104.			1						.
100...	1			1					
110									-
111	1								-
119.	1								
1114.							
	-			-					
Cuses.......	溳	10	10	0	13	5	7	0	2

Statures of Toronto girls. Age, 5 years.

Statures of Toronto girls. Age, 6 years.

Stature, in centimeters.	Order of birth.											
	1st.	2d.	3d.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.
95.			1									
					1		1			
98 ….......................................			1		1		1		1			
		2									
100..........................	1				1							
	1		3	1			2	1				
102	1		5	4			2					
	3	$\stackrel{2}{6}$	2 3		1	1		2	1	1		
	6			5	1			2	1	1		
105...........................	$\stackrel{2}{9}$					1	1	1				
108	9 8	$\begin{aligned} & 6 \\ & 8 \end{aligned}$	$\left.\begin{array}{r} 3 \\ 3 \\ 3 \end{array} \right\rvert\,$	$\begin{aligned} & 2 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{2} \\ & 5 \end{aligned}$	$\frac{1}{5}$	1 3	i		1		
108 -...............................	9	4	12	4	6	$\stackrel{2}{2}$	2		2			
109...........................	12	5	4	3	3	2	2	1	1			
110	11	13	6	6	7	6	3	3				
111.................................	8	5	8	4	8	2	4	1		1		
112	11	$\stackrel{9}{9}$	7	7	8		$\frac{1}{2}$		1		1	
114	7	9	5	4	2	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	2	1		1		
115.........................	8	12	2	2	2	2	2	1	1	1		
1117.	${ }_{7}$	5 3	$\stackrel{2}{2}$	$\stackrel{2}{3}$	1	$\stackrel{2}{3}$	1			1		
117.	7	3 5 5	$\stackrel{2}{2}$	3 4	1							
110	1	2	1		1			1				
120	1	2	2									
121	……			i-	1	1					
123			1									
124	4											
125.				1								
Cases	125	120	87	67	53	31	31	17	12	10	3	
Average age (montbs over © years							5.6	6.0	6.7	6.6	4.7	
Average stature............	110.9	111.2	109.7	110.1	110.1	110.6	108.9	110.5	108.7	110.2	110.3	
Corrected average for 6 years 6 months.	110.7	111.1	109.8	110.1	109.9	110.5	109.1	110.5	108.4	109.9	110.9	

Statures of Toronto girls. Age, 7 years.

Stature, in centi. meters.	Order of birth.														
	1st.	2 d	3d.	4 th	5th.	6th.	7th.	8th.	9th.					14th.	.10th
101															
102	1		i												
103.					3										
104.		3		1	1			1							
105.	1	4	3	2	-....	1	1								
106.	1	1	1								1				
	1		2			1									
108.	3 1	1	$\stackrel{4}{7}$	1	2		3	1		1					
	8	9	2	7	4										
111	15	6	6	2			2	1						${ }^{-}$	
	7	12	7	5	5				2	1					
113	15	7	4	5	3	5	4	1		1					
114	9	11	5	7	2	2	4	1	1	1					
	15	14	7		10	3		2							
116	13	12	${ }_{9}^{14}$	7	10		$\frac{1}{8}$		1	1		1	1		
	16	17 9	12	4		4 3	8 3	1							
119..........................	7	10	5	10	3		1	1	1	1					
	12	9	8	4	3		3			1					
121	14	3	5	7	4	!	1	3	1						
123	5	3 2 2	1	$\stackrel{4}{2}$	$\stackrel{4}{3}$	$\stackrel{2}{1}$	1 3	:							
124.............................	4	5	3	3	1		1								
125.	1	2	1	1		1	1	1	1						
126	3	3	2	2	1	1									
		2	2	1	1	1								
$\begin{aligned} & 128 . \\ & 1: 9 . \end{aligned}$	1	1		1		1		1							
130.				1											
	1		1												
133															
133.	-	1	...												
Cases.	169	156	117	95	59	38	39	21	10		9	2	1	1	
$\underset{\text { Average }}{\text { (months }}{ }_{\text {over }}{ }_{7}$ years) \qquad															
Averagestature......	116.3	115. 7	115.9	116.5	115.7	115.9	116.2	116. 4			111.7		116.0	111.0	118.0
Corrected average for 7 years 6 months															
	110.0	\% 1	\| 1	10.0	15.5		15.7								

[^5]Statures of Toronto girls. Age, \mathcal{S} years.

Stature in centi. meters.	Order of birth.													
	1st.	2d.	3d.	4th.	5th.	6th.	ith.	8th.	9th.	10th.	11th.	12th.	43th.	14th.
102......			1											
103														
104.......														
105.		1					1							
106									1					
107........................					1									
108........................	1	1	$\begin{gathered} 1 \\ \underset{2}{2} \end{gathered}$	1	1	1	1			1	1			
	1	3	T		1									
111.	3								1	1	\cdot			
1112	3	5	$\begin{aligned} & \stackrel{3}{3} \\ & \stackrel{2}{0} \end{aligned}$	$\stackrel{-9}{3}$	$\begin{aligned} & 0 \\ & \frac{1}{5} \\ & 0 \end{aligned}$	$\stackrel{1}{2}$		$\stackrel{3}{1}$			-....	--...		
114.	8	2	$\underset{3}{3}$	5	3		2		1				i^{-1}	-
	5	6	8	6				2	2		1			
1116	5	13	10	6 4	7 3	1	$\begin{aligned} & \tilde{3} \\ & 4 \end{aligned}$		1	1	2			
117.	5	8 8 8	$\frac{1}{5}$	4 8 8	3 4	4	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	4	$\stackrel{1}{2}$					1
	10	8	9	7	5					1		1		
120	22	16	8	10	3	3	3		3	$\stackrel{2}{4}$	1			
	11	${ }_{15}^{9}$	$\stackrel{18}{8}$	9 8 8	${ }^{6}$	-	5							
123	13	$\underset{\sim}{2}$	4 7	6	5	$\stackrel{3}{3}$	1	3	4	1				
124	15	\cdots	7	4	4	4	4	2	2					
125	10	$\widetilde{7}$	6	4	5	2	7	2	1	1				
${ }_{127}^{126 ~}$	15 6	4	9	4 6	4		$\stackrel{1}{3}$			-				
128 12.	7	$\stackrel{3}{2}$	4	4	3	1				1				
120	2	1	4			2		1	1					
130	7	1	3	2	1			1						
131	$\stackrel{3}{4}$	$\stackrel{1}{2}$	1				1							
133	4					$1{ }^{-}$								
134.......................	1		1	1			1			1				
$136 ~$	1	1												
137		1											
139														
140	1													
Cases.	177	141	11\%	101	77	40	47	22	:	17	5	1	1	1
Average age (months over 8														
Average stature..	129. 1	120.2	1\%0.8	120.5	119. ${ }^{\text {8 }}$	119.8	120.7				4115.2		114.	0117.0
Correctedaverage for 8 years 6 months \qquad	123. 1	120.2	120.8	130.5	120.1	130.4	121.0			8120.3				

Statures of Toronto girls. Age, 9 years.

Stature in centimeters.	Order of hirth.												
	1st.	2d.	3 d.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.	13th.
95.....							1						
105.		1											
103.													
108.......................													
109........................		1											
110.					1								
				1									
112.......................	1	1					1						
114.........................			1	1	1						1		-......
115	6	$\stackrel{2}{2}$	2		1		1						1
111......................	1	3								1		
111.......................	$\stackrel{2}{2}$	3 3 3	3 1 1	4 2 2	3 2	1	1		1				-......
119.........................	3	5	9	5	5	2	2	4	1	3			
120.	13	3	4	7	4	5	2	2			1		
121	10	8	4	4	5	4	3		1	1		
123..	13	12	11	9	$\stackrel{4}{5}$	$\stackrel{2}{2}$	4	1	4	1	1	1.	-.....
124.	16	12	7	5	6	7	4	3	4				
	22	13	6	7	9	4	3	2	3			1	-
120..................	16	15	${ }^{4}$	10	4	6	3	2			1		.
128.......................	18	5	11	8	11	$\stackrel{6}{2}$	3	$\stackrel{4}{1}$	$\stackrel{5}{3}$		2	2	
129.	18	10	3	3		2	3	1					
130.	16	8	8	4	5	4	4	1		1			
131.	10	3 3 3	10	5	$\stackrel{2}{2}$	$\stackrel{2}{2}$	4	1	1				
	9	$\stackrel{3}{2}$	4	3 1	$\stackrel{2}{2}$	$\stackrel{2}{2}$				1	1	1	
134.	4	4	1	3			1						
135.	6	3	1		1			1					-
${ }_{137}^{136 . ~}$	2 3 3	4	\cdots	$\frac{1}{2}$	1 1		1			1		-.....
138.-.....................	1	1	$\stackrel{4}{2}$										
139.......................	1	1										
		1											
142...................		1											
Cases.	222	147	118	98	82	58	48	27	25	9	9	5	2
Average age													
years)	6.8	5.8	6.1	5.1	5.7		5.1	6.5	5.3	4.8	5.8	6.2	9.5
Average stature...	125.9	125.6	125.6	124.9	124.7	124.5	123.2	124.5	124.8	124.2	125.3		
Correctedaverage months	126.0	125.7	125.6	125.3	124.8	124.6	123.6	124.3	125.1				
	12.0			12.3	124.8		12.6	124.3	120.1				

Stat

Stutures of Toronto girls. Age, 10 years.

Stature in centi. meters.	Order of birth.												
	1st.	2 d .	3d.	4th.	5th.	6th.	7th.	8th.	0th.	10th.	11th.	12th.	13th.
109.				1									
110..........	1								
114.....							1						
115.													
116.			1		1			1					
117...		1	1	1		1	1	1		1			
119...	1		2										
120	3	1	I			2	1			1		
121	2	3	1		2		1	1	1				
122..........	5	3 3	8 1		2	5	2				1		
124.......................	6	7	2	$\stackrel{\square}{2}$	2	1	1			1		
125.	17	7	7			4				2	1	1	1
126.	${ }_{9}^{5}$	7 4 4	5	$\begin{aligned} & 7 \\ & 3 \end{aligned}$	$\stackrel{2}{2}$		$\stackrel{2}{3}$	$\stackrel{2}{2}$		2	2	1	
128.	10	8	8	7	2	3	1				1		
129.	5	0	8	6	1	4		4		1	1	-.....	
130.	15	14	13	5		5	2		1	$\frac{1}{2}$		1	-......
	18 10	11 8	7 9	8	$\stackrel{3}{9}$	$\stackrel{2}{1}$	1	…-	2	2		1	
133.	12	11	5	9	6	4			3		1	2	
134.	10	5	4	8	4	1	5	1	1				
135.	12	9	9	7	6	2	1	1					
1367...................	${ }_{6}^{5}$	${ }^{4}$	8 3	$\frac{1}{5}$	$\stackrel{4}{2}$		2	1	1	1	-......		
187..............................	6 4 4	${ }^{10}$	3 7	1 2 2	[${ }^{2}$	$\begin{aligned} & 7 \\ & 5 \end{aligned}$		2	1	\cdots			
139.....................	4	4	2	1	${ }^{2}$	1	1		1				
140.	4	3	5	2	1	2		1	1		1		
141...................	${ }_{2}^{2}$	1	3							1			
142........................	$\stackrel{2}{4}$	1	1		. 1		1		$1{ }^{-}$	1			
144.......................	1			1		1	1						
145...................	2	1		1	1								
146....................						$\stackrel{2}{1}$							
147......................	1		1			1	1						
149.........................													
150...................				1									
151...................													
152...................								1					
Cases	185	141	130	97	60	58	36	25	15	15	10	7	1
Average age													
(mears)..........							5.3	5.0	7.2	7.0	5.5	5.4	2.0
Average stature...	131.0	130.8	130.6	130.8	131.8	131.8	130.2	129.8	133.0	129.4	128.6	130.1	125.0
Corrected average for 10 years 6													
months	131.0	130.8	130.6	131.2		131.8			132.5	128.9			

Statures of Toronto girls. Age, 11 ycars.

Stature in centimeters.	Order of 1 irth .										
	1st.	2 d .	3 ll .	4th.	5th.	6th.	ith.	sth.	9th.	10th.	11th.
115.	1	1									
116.		1									
111.........											
118........											
120.	$\underset{\sim}{2}$				1						
	1		1		1		1		1		
123..	1			$\frac{1}{3}$			1		1		
124.	$\stackrel{2}{2}$	1	1	3	1						
125.	1	3	3	1			1		1		
120	3	4	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\stackrel{2}{2}$	$\begin{aligned} & \tilde{5} \\ & 2 \end{aligned}$	1		1			
127	3 3 3	4 3 3	$\begin{gathered} 6 \\ 10 \end{gathered}$	$\stackrel{\tilde{3}}{\tilde{i}}$	$\stackrel{2}{1}$				2		
120	${ }_{6}$	3	$\stackrel{3}{3}$	4	5	4	,			1	-...
130.	8	9	6	8		,	5			1	1
131	$\frac{7}{19}$	5	8	6	5	2		$\stackrel{2}{1}$	1	1	1
133	10	7	10		$\stackrel{4}{9}$	3	3	3	$\stackrel{2}{2}$		
134	17	6	10	7	3	,	:		2	1	.
135.	10	5	9	11	5	3	3	$\ddot{3}$		2	2
136.	15	8	$\stackrel{8}{8}$	8	6		3	1	1		
137.	19	14	7	8	5	4	3		1		
139.	16	13	5	8	3		\%	3	2	\%	i
140.	15	9	6	3	6	1	3	:	1		
141	5	9	2	5	6	5	3	1	3	2	
142	$\stackrel{3}{\sim}$		9		3	2	1	1	1		
143	$\stackrel{7}{4}$	$\stackrel{2}{4}$	范	$\begin{gathered} \dddot{4} \\ 3 \end{gathered}$	13	1 3	1		.		
145.	3	4						1			
146...	4	4		1	1	1		1	i^{-}	1	
147..	3		4	3	1						
148	3	2	\mathfrak{i}	$\ddot{7}$	$\underset{\sim}{1}$		2	1		-	
150	5	2	2	1	1				1		
${ }_{10}^{151 . ~}$		1		1		1		
1:53,	1	-.....								
15t...	1										
153.											
157.											
$1: 8$.											
159.	1										
Cases	2013	158	135	114	91	12	49	23	24	15	6
Average age (months over ii years)	5.4				5.1				4.5	6.	
Average staturo......................	138.4	138.0	134.8	135.3	138.1	136.2	130.2	138.9	135.9	136.6	133.0
Corrected average for 11 years 6 months						136.3					
							130.3		138.	133.6	

Sta

Statures of Toronto girls. Age, 12 years.

Stature in centimeters.	Order of birth.														
	1st.	$\ddot{\sim} \mathrm{d}$ d.	Bxl	4th.	5th.	6th.	7th.	sth.		10th.	11th.	12th	13th.	1.th.	15th.
1:12.				1											
12.		1	2		1	1						
$\begin{aligned} & 123 \\ & 121 \end{aligned}$	1	i-	1												
	1	1	1												
125						1									
130.....................															
$\begin{aligned} & 1: 8 . \end{aligned}$		-3	1		1			1	1						
129.......................	2	2	1	-		1	\cdots								
130	3	1	3	2		2	1	1			1	1			
			2												
	${ }_{3}^{4}$	4	3	3	2		$\stackrel{\sim}{3}$	2						
134.	7	4	5	4	3	\cdots	1		2		1				
135	1	4	5	,		1	1	5	1						
13136	5	8 9 8	5	3 7	$\stackrel{5}{9}$	\%	1	1			2			${ }^{-1}$	
138	14	3	8	4	\%	4	13	4	4					1	
139.	4	8	3	8	9	1	3	*							
140.	7	8	$\stackrel{1}{ }$	10	6	4	3	5	1						
141	7	10	11	3	3	6	1		4						
142	13	11	5	${ }^{6}$	5	$\stackrel{2}{2}$	1		\%			1			
143	$1{ }_{6}^{12}$	8	${ }^{4}$	6 9	:	4	5					1			
145.	10	11			2			$\ddot{\sim}$					1		
146	${ }^{3}$	4	${ }^{7}$	$\ddot{4}$	3			1	1						
147	${ }_{11}{ }^{6}$	8	14	4	3	1	:	1							
	4	4	$\stackrel{4}{8}$	4	;	1	$\stackrel{1}{2}$	1	3		2				
150.	5	6	-		1	4	1	1	1						
151		,		3	1	$\stackrel{2}{2}$	1								
150..........................		3	$\stackrel{3}{2}$:		1			1						
153.-...................		4		1											
151......................	3	3	2	,	1		3	1			1	1			
155.....................	3	$\stackrel{2}{2}$		$\stackrel{3}{2}$			2								
156......................	1	2	4	2		2		1	1						
158	1	…..		1	2										
160.	1		1												
161......................	2	1													
102		1													
163................................		1												
		,		位	.										
Cases................	157	160	143	107	73	51						4	1	1	
Averageage (months over 12 years).......															
Average stature.....	142.1										141.5				
Corrected average for 12 years															

Statures of Toronto girls. Age, 13 years.

Stature in centimeters.	Order of birth.													
	1st.	2 d .	3d.	4th.	5th.	6th.	7 th.	8th.	9th.	10th.	.11th.	12th.	13th.!	1 th.
125.														
12:6..................														
11:78................				1										
\qquad														
											1			
131					1									
$\begin{aligned} & 122^{-} \\ & 133 \end{aligned}$	1	1		\ddot{z}		1							
$\begin{aligned} & 133 \\ & 134 \end{aligned}$	1	$\frac{1}{3}$	3											
133	2	1	1	1	1									
133	$\stackrel{2}{2}$	1	4	1	1									
137.	3 2 2	1	2		1	$\frac{1}{2}$	$\underline{2}$		i	1	….			i
139.	$\stackrel{3}{3}$	2		2	4	1								.
140	2	5	4	$\stackrel{4}{4}$	4			1						
	4 4 9	6 2	$\stackrel{2}{2}$	2 3 3	3 2	$\cdots{ }^{-}$	1			1		1		
$1+3$	5	${ }_{6}$	$\underset{4}{4}$	3	4			-						
14	4	7	4	4	4	1	3			1	2	-....		
145	8	14	7	6	1	7				1				
118	9 3	5	8	$\stackrel{4}{5}$	${ }_{6}^{6}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$		1						
147.	3 8 8	${ }_{7}^{5}$	$\stackrel{4}{5}$	5	6 5	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{aligned} & \tilde{2} \\ & 1 \end{aligned}$		$\stackrel{2}{2}$	1	i	i^{-}		
149	6	8	5	7	3	1	1	3					1	
150	10	7	5	3	6	2		1	1					
151	9	7	${ }_{6}^{6}$	${ }_{8}^{6}$	3	1	2	2		1				
	9 4	6	6 3	$\stackrel{4}{3}$	4	13		1	1		1	1		
154.	4	6	4	5	3	3	$\stackrel{\square}{2}$	1	1	2				
15.	5				1			1	2	$\stackrel{2}{1}$	1			
150	3 4 4	$\stackrel{2}{2}$	$\stackrel{2}{2}$	3 3	5	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	\cdots	1		1	1	-....	
158.	${ }_{6}$	4	$\stackrel{2}{2}$	4	1									
159......................	4	4	2	2		${ }^{-}$			1					
160.	2	...	2	5	1	1		1						
161			1			1		1	-					
163	${ }_{1}^{4}$			1	1						1			
$164 . .$.		-	1	1	1	2			1					
105	1													
168.														
108														
169.														
		1												
Cases	130	130	09	88	78	45	29	22	10	16	7	4	1	1
Average age (months over 13														
years)..........	5. 1	5.7	147.6	14.0	14. 5	14. 6				4.9				
Average stature..	148.5	147.2	147.8	148.7	147.3	148.6	147.9			149.1				
Correctedaverage for 13 years 6 months \qquad	148.0	147.3	148.0	148.7	147.5	148.8	148.1	148.8	149.8	149.5				

Statures of Toronto girls. Age, 14 years.

Stature in centimeters.	Order of birth.												
	1st.	2 d.	3d.	4th.	5th.	6th.	7th.	8th.	9th.	10th.	11th.	12th.	13th.
118.			1										
130													
132					1								
133													
$134 .$	1												
135.		1											
		${ }^{-}$			i				……				
138.	1		1		1						
139.		1		1	i^{-}	1			2				
140.		1					1						
		1	1	1	1	2	1						
13	3		2										
14...........	1	5	4		2		1						
145	2	2	1		2	,	1	1					
		$\stackrel{2}{4}$	1.		2	1			2				
	7	3	2	3	$\ddot{2}$	2	1						
149		4	1				1				1		
150.													
151.	3	8	7	4	2	2	3				2		
	0	6 8 8	4 6	$\stackrel{1}{2}$	3 4 4	1	1						i
154.	6	8	10	3	3		,		i			1	
155.	7	5	6	3	3	3	3	3		1	$\cdots{ }^{-1}$		1
	4	5	2	$\stackrel{3}{2}$	1	1	$\stackrel{4}{3}$		2		1		
158.	8	7	4	1	8	1	1	1	1	i			
159.	4	3	2	2	2	1							
160.		4	5	2		4		2	1				
161.	2	1	1	$\stackrel{3}{1}$	3	1		2					
103.		2	3	1							
184......		1	1				1	1					
				1								1	
										1			
167.....................		1			1						
169......................													
170.	2												
Cases...............	04	03	82	40	49	35	38	12	14	4	4	2	2
Average age (months over 14													
Avearage stature....	153.5	$15^{5.8} 8$	$15 \% .8$	154.0	151.6	151.9	153.6	156.5	152. 1				
Correctodaverage for 14 years 6 months	153.7	152.4	153.0	154.1	151.8	152.1	153.8	150.5 154.5	152.1				

Statures of Toronto girls. Age, 15 years.

Stature in centimeters.	Order of birth.													
	1st.	2 d .	3d.	4th.	5th.	6th.	\%th.	8 th .	9th.	10th.	11th.	12th.	13th.	13th.
135)														
1146														
137						1								
138														
139	1						1						
140	1													
$141 .$								1						
142	1													
143			1											
144....		1			1		1	-.....					
145				1	1	1						1		
146	1		3	1	-
$147 \ldots$		$\ddot{\sim}$			1	-	1							
148.......................	3	$\underset{\mathbf{2}}{\boldsymbol{\sim}}$		1										
149	1	$\tilde{1}$	1	1										
150	3	2		4		2								
151-....................	4	1	1	4				1		1				
15%	4	6			- -3-3	1	1	3						
153-.......................	3	4		4			1	-....				
154...................	\%	\ddot{z}	5	1	2	1							
15	10	4	3	4	1	$\underset{\sim}{7}$					1		1	1
150	4	2	3	3	1			1				
157	1	1	1	1	4	1	2	-.....					
158.	5	4	$\underset{\sim}{2}$	1	1	1			.				
159.	3	3	2											
160	3					1						1		
161.......................	$\stackrel{3}{8}$	1	1	3	1	\cdots	\cdots	-	1	-....				
160....................	5		1	$\stackrel{2}{3}$	1		-.....			1				
163...................	1	1	3	2			1							
164.	3	1	1				1		1					
165	1		$\stackrel{2}{2}$	1	1									
164			2					1						
167		3		1	3				1					
108														
109.														
Cases...............	08	45	34	39	18	10	11	0	5	3	1	2	1	1
Averagoago (montlis over 15 years)														
Averago stature..	150.1	155.5	103.4	150.8	150.8	153.0	156.5							
Corrocted average for 15 years 6 months	155.2	155. 6	150.5	15i. 9	150.9 150	153.0	150.6							

Statures of Toronto girls. Age, 16 years.

In summarizing these tables I have corrected the statures so that they correspond exactly to the half-year period. In this manner the error due to the difference of period is eliminated.

Statures of Toronto boys, in millimeters. a

$\begin{gathered} \text { Ago } \\ \text { in } \\ \text { years. } \end{gathered}$	Avernge statures.	Differenco betwoen average statures and statures of-								
		Firstborn.	Socondborn.	Thirdborn.	Fourthborn.	Fifthborn.	$\begin{aligned} & \text { Sixth- } \\ & \text { born. } \end{aligned}$	Sorentb born.	Fighthborn.	Ninth. born.
	1,062 (347)	+6 (59)	± 0 (86)	- 3 (74)	+ +10	-2 (38)	-16 (20)	-14 (17)	-13 (14)	
	1,111 (613)	$+7(128)$	$-3(147)$	- 4 (108)	+2 (85	+ 1 (67)	-4 (30)	-13 (31)	-10 (23)	4 (18)
7.8	1,168 (848)	+ 3 (2011	+2(10)	$\pm 0(11 i)$	± 0 (04)	-5 5 (64)	$+2$	$+1837)$	-6 (28)	-13 (17)
8.5	1,218 (834)	+2 216	+ $4(188)$	$-2(109)$	± 0 (111)	-10 (70)	± 0 (64)	$-8(84)$	-6 (35)	-19 (21)
0.5	1,207 (005)	+4 220	$-7(180)$	$\pm 0(137)$	± 0 (112)	-13 87)	-11	-10 (48)	+ 3 (36)	13 (10)
10.5	1,315 (839)	-8 (213)	+ 5 (145)	- 11140$)$	-6 (112)	-8 (89)	+66 76	-5 (4t)	-15 (31)	+6 (19)
11.0	1,359 (817)	$-1 \quad 177\}$	$+3(166)$	$-\%(125)$	-8 (100)	-8 883	-8	+6 (18)	- 5 (\%8)	-1518
$12 .$	$1,401 \text { (740 }$	$-2(17 i)$	$\left(\begin{array}{l} 1 \\ +1 \end{array}(141)\right.$	$+{ }_{9}\left(10_{0}\right)$	-1880	+ 3 (48)	- 4 (64)	-11 (54)	-16 (3i)	- ${ }^{2}(19)$
18.6	$1,454$	$\begin{aligned} & 7(158) \\ & +7 \end{aligned}$	$+11(120)$	$-18(84)$	$-1 \quad(80)$	+ $2(45)$	-14 (49)	-31 (25)	-18 (13)	0 (1\%)
14.5	1, 515 (347)	+5 (88)	-1. 1 (0)	+ 5 (70$)$	$+2$	-14 (58)	-12 (28)	-15 (18)	-5 (13)	
15.6	1,576 (170)	-1 (52)	- 1 (呺)	-30 (34)	$-8 \text { (29) }$	+2(20)				

\boldsymbol{W} The figures in parentheses are the number of casos.

Difjerences（in millimeters）between average statures of boys and statures of boys of various orders of birth，and their mean errors（as deduced from the Toronto observations）．

Age in years．	First－ born．	Second－ born．	Third－ born．	Fourth－ born．	Fifth－ born．	Sixth－ born．	Seventh－ bor＇n．	Eighth－ born．	Ninth． born．
		土： 6.1	－ 3 上 6.6	＋	$9 .$				
6.5	＋7 ± 4.7	－3＋4．4	－ 4 ± 5.0	＋2土 5.6	＋1 1 ± 6.2	$-4+8.3$	-13 ± 8.9	-16 ± 10.2	4 ± 11.5
78.5	$+3 \pm 4.0$ $+2 \pm 4.2$	$+2 \leq 4.4$ +4.5	$\pm$$\pm$ $2 \pm$ $2 \pm .0$ 4.8	$\pm 0 \pm 5.5$ $\pm 0 \pm 5.6$	5 ± 6.6 -10 ± 6.6	＋ 2 ± 6.9 $\pm 0 \pm 7.2$	＋ 1 ± 8.5	-6 ± 9.8	－13 19 ± 12.4
	＋4 4.1	－7 ± 4.6	$\pm 0 \pm 5.1$	$\pm 0 \pm 5.6$	-13 ± 6.3	-11 ± 6.0	－10土 8.3		13 ± 11.3
10.5	-3 ± 4.7	$+5 \pm 5.5$	－ 1 ± 5.6	-6 ± 6.2	－8土 7.1	$+6 \pm 7.4$	－5 ± 9.5	-15 ± 10 ．	6 ± 14.3
11.5	-1 ± 5.0	＋ 3 ± 5.4	－ 2 ± 5.9	-8 ± 6.3	－2 ${ }^{2} 8.9$	8 ± 7.6	${ }^{6} \pm 10.1$	-5 ± 11.	－15 ± 15.5
12.5	－2 ± 5.7	＋1 1 6．3	＋2土 ${ }^{2} 5$	-6 ± 7.9	$+3 \pm 10.1$	－ 4 ± 8.1	-11 ± 9.	-10 ± 12.2	
13.5	$+7 \pm 6.3$	$+11 \pm 7.8$	－13 $+5 \times 11.1$	-1 ± 0.3	$\begin{array}{r} +2 \pm 12.1 \\ -14 \pm 12.7 \end{array}$	$\begin{aligned} & -14 \pm 11.6 \\ & -12+16.8 \end{aligned}$	－31 +15.9	$+18 \pm 16.6$ $-5+24$	$+9 \pm 22.6$
14．5．．．．．．．	$\begin{array}{r} +5 \pm 10.2 \\ -1 \pm 14.2 \end{array}$	＋1	$+5 \pm 11.1$ -32 ± 20.6	$\begin{array}{r} +2 \pm 13.6 \\ -8 \pm 18.4 \end{array}$	$\begin{array}{r} 14 \pm 12.7 \\ +2 \pm 21.3 \end{array}$	-12 ± 16.8		$24.1 .$	
verage	$+2.3 \pm 1.6$	$\pm 0.8 \pm 1.7$							

It appears，therefore，that the result is not quite certain，since the error is great as compared to the average difference．Since for later－born children the errors of the average are very great，I have not carried out the calculation．For first－born girls I obtain the following results：

Stutures of Toronto girls，in millimeters．

$\begin{gathered} \text { Age } \\ \text { years } \end{gathered}$	Average statures．	Differences botween average staturu and stature of－								
		First－ born．	Second－ born．	Third－ born．	Fourth－ born．	Fifth－ born．	Sixth． born．	Seventh born．	$\begin{aligned} & \text { Eighth- } \\ & \text { born. } \end{aligned}$	Ninth born．
6.5	1，104（597）	3 （125）	7 （120）	（11）	－ 3 （67）	5 （53）	＋ 1 （31）	－13（31）	（17）	－20（12）
7.5	1，160（759）	3 （169）	－3（150）	硅12	＋3（95）	－ 5 （69）	－ 3 （38）	－ 3 （39）	（21）	＋13（10）
8.5	1，207（834）	14 （177）	－5（141）	$2(12$	－$\quad \stackrel{2}{0}(101)$	－ 0 （77）	3 （46）	＋3（47）	（22）	
9.5 10.5	1， 20093 （822	1 （185）	－1（141）	$3(130)$	（97）	5 ${ }^{5} 882$	58）	－ 478 （48）	7 （25）	－ 26 （25）
11.5	1，361（876	6 （203）	＋3（158）	10（135）	0（114）	4 （91）	$2(62)$	＋2 2 （49）	8 （23）	＋ 5 （24）
12.5	$1.419(824)$	$6(117)$	$\left\lvert\, \begin{gathered} -1(100) \\ -7 \\ -7 \end{gathered}\right.$	$4(143)$	$-1(107$	$-10(73)$	$\begin{array}{\|l\|l\|} -4 & 4 \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} +6 \\ \hline 1 \\ 1 \end{gathered}(4)\right.$	－14（37）	$-21(33)$
13.5 14.5 1.5	$\begin{aligned} & 1,480(605) \\ & 1,533 \\ & 1 \end{aligned}$	$\begin{array}{r} 9(139) \\ -4(94) \end{array}$	$\left\lvert\, \begin{array}{cc} -7 & (130) \\ -9 & (93) \end{array}\right.$	$\begin{aligned} & 0(99) \\ & 3 \end{aligned}$	$\begin{aligned} & 7(88) \\ & 8 \\ & \hline 40 \end{aligned}$	－ $515(78)$	$\left.\begin{array}{\|c} +8 \\ -12 \\ -125 \end{array}\right)$	$+1(29)$ $+5(22)$	＋ 3 （22）	$\begin{aligned} & +18(19) \\ & -12 \\ & (14) \end{aligned}$
15.5	1，560（247	＋8（62）	$\left[\begin{array}{ll} -0 & (935 \\ -4 & 45 \end{array}\right]$	5 （34）	$\begin{gathered} 8 \\ 1 \\ 10 \end{gathered}(99)$	＋ 0 （28）	－30（16）	＋ 6 （11）	＋32（12）	
10.5 ．．	1，567（123）	＋ 4 （35）	－8（28）	3 （15）	16 （18）					

I have calculated the mean errors of the differences for first－born children only．
Differences（in millimeters）between the average statures of girls and the statures of first－born girls，and their mean errois．

Age．	Differ－ once．	Menn error．	Ago．	Differ． once．	Mean error．
0.5	$+3$	± 4.7	13.5	＋9	± 6.7
7.5	$+3$	± 4.5	14.5	$\begin{array}{r}\text { a } \\ +\quad 4 \\ \hline\end{array}$	± 7.2
8.5	＋14	± 4.6	15.5	－ 8	± 8.3
10.5	± 1	± 5.1			± 10.3
11.5	＋ 8	± 5.1	Averago	＋5．3	± 1.9
12.5	＋ 0	± 0.1			

This result is much more certain than that obtained by means of the measure－ ments of boys．When we combine both we flical that the difference of stature between the average of all the children and the average of the first－born ohildren is in favor of the latter．The amount is 3.6 min ．，with a mean error of $\pm 1.2 \mathrm{~mm}$ ． It is therefore certain that first－born children are somewhat talier than later－born children，but the amount of the difference is not defnitely known．
It is of interest to investigate the constitution of families．I have done so by recording for each age the number of children，according to the order of their birth．

Classification of Toronto boys according to age and order of birth．

Age in years．	Order of birth．															
	1st．	2 d.	3d．	4th．	5th．	6th．	7th．	8tn．	9th．	10th	11th．	12th	13th．	14th．	15th	17 th ．
4.5	17	23	26	15	7	7	5	3	1					1		
5.5	59	86	74	49	36	20	17	14	8	3	i	2	1	1		
6.5	128	147	108	85	67	36	31	23	18	9	7		3	1		
7.5	201	188	119	94	4	58	37	28	17	9	4	3	3	3		
8.5	216	188	1159	111	${ }_{87}^{79}$	${ }_{71}^{64}$	64	35 36	21	19	5	${ }^{6}$	1	1		
10.5	213	145	140	112	82	75	44	34	19	10	7	3	2		9	
11.5	177	156	125	109	86	71	39	28	16	11	6	4	3	1		1
12.5	173	141	129	80	48	64	54	32	19	10	5	5		1		
13.5	158	120	84	80	45	49	25	23	12	9	4	3	2	1		
14.5	$\begin{array}{r}86 \\ \hline 8 \\ \hline 8\end{array}$	76 23 23	7	4	$\stackrel{52}{20}$	${ }^{28}$	18	${ }_{7}^{13}$	9 3	$\stackrel{2}{2}$	$\stackrel{2}{3}$	i				
16.5	8	10	8	3	2	8	8	？		1	1	1	1			
Casas	1，728	1，458	1，203	931	675	551	395	270	188	109	51	31	18	10	2	1
Per cent of the whole number	22.7	19.1	15.8	12.2	8.9	7.2	5.2	3.7	2.2	1.4	0.7	0.4	0.2	0.1		

Total number of cases，7，608．
Classification of Toronto girls according to age and order of birth．

Age in years．	Order of birth．																	
	䓪	※	家	＋	5	先	${ }_{6}$	＋	官	$\begin{aligned} & \dot{4} \\ & \text { İ } \end{aligned}$	咅	茞		$\begin{array}{\|l\|l\|l\|l\|} \hline \text { 品 } \end{array}$	$\begin{aligned} & \text { 폄 } \\ & \text { 品 } \end{aligned}$	守	空	萝
4.5.	：2	19	19	9	12													
5.5	74	86	77	61	25	22	12	16	10				1					1
6.5	125	120	87	67	553	31	81	17	12	10	3							
7.5 8.5	${ }_{177}^{168}$	141	${ }_{125}^{112}$	105	${ }_{78}^{78}$	48	39 47	${ }_{21}^{21}$	$\stackrel{10}{12}$	17	5		1	1	\cdots			
9.5	222	147	110	98	82	58	48	27	25	9	9							
10.5	185	141	130	97	60	58	36	25	16	15	10	7	1					
11.5	203	158	135	114	91	62	49	23	24	15	6							
12.5	157	160	148	107	73.	51	4	37	33	11			1	1	1			
13．6	139	130	09	88	78	45	29	22	19	16	7							
14.5	44	93	82	40	49	35	32	12	14	4								
15．5．．．．．．．．．	62 35	45	34 15	189	${ }_{6}^{28}$	16 3	11 10	${ }_{1}^{9}$	5 1	3 1					1			
Cases	1，664	1，424	1，182	827	683	470	395	232	192	117			11		3	1	1	
Per cent of the whole number．	22.5	10.2	18.0	12.5	0.4	6.3	5.3	3.1	2.6	1.6	0.9	0.4	0.1	0.1				

Total number of cases，7，411．
Total number of children examined，arranged according to order of birth．

From these data we can obtain an insight into the constitution of families in Toronto．The difference between the number of first and second born children shows the number of mothers having one ohild only；the difference between the second and third born children gives the number of mothers who have two ohil－
dren, etc. In this manner the following table has been oltained, showing the per cent of mothers having one child, two children, etc.

(:) Number of aildren.	$\left\|\begin{array}{c} \text { Percent } \\ \text { of } \\ \text { mothers. } \end{array}\right\|$	Mcan crror.	Number of children.	$\left\|\begin{array}{c} \text { Per cent } \\ \text { of } \\ \text { mothers. } \end{array}\right\|$	$\begin{aligned} & \text { Mean } \\ & \text { cr'ror. } \end{aligned}$
1.	15.1	± 0.6	10.	3.2	± 0.3
2.	14.6	$\pm .6$		1.7	$\pm .2$
4	15.5	$\pm .6$. 9	$\pm .2$
5.	10.2	$\pm .5$	14.	.4	$\pm .1$
6.	6.8	$\pm .5$. 1	
7	8.2	$\pm .5$	16.	.1	
$8 .$.	4.5 3.9	$\pm .4$ $\pm .3$	17.	. 0

It is of interest to compare the number of children according to the order of their birth in various cities. I have tabulated for this purpose a number of children in Oakland, Cal., according to the order of their birth, and found the following result:

| Oakland, |
| :--- | :--- | ---: | ---: |
| Cal. |

- It appears from this tabis that families in Toronto are much larger than those in Oakland, Cal. There are 26.4 per cent of first-born childrenin Oakland as compared to 22.0 per cent of first-born children in Toronto, while fifth and later born children form only 22 per cent of the total population in Oakland, and in Toronto they form 30 per cent. This indicates that the size of the families is considerably smaller in Oakland than in Toronto. It is difficult to judge what the social causes of this phenomenon may be. The general conditions of life and the nationalities composing the population certainly have Ω great influence upon the size of families. In order to investigate this question, I have tabulated the Toronto girls according to their order of birth and nationality. The results of this tabulation are given in the following table:

Nationality (in per cent) of grandparents of Toronto girls.

Ordor of birth.	English.	Scotch.	lrish.	Cana	dian.
First-born	2,628 (39.06)	1,112 (16.5\%)	1,014 (23.0\%)		(12.47)
Second-bor	2, 411 (41.0\%)	8888 (15.17)	1,307 (23.88)	.88) 670	(11.47)
Fourth-born	1, 1,684	${ }_{670} 815$ (17.5\%)	1,145 (23.57)		$\left(\begin{array}{l}10.58) \\ 8.06)\end{array}\right.$
Fifth-born	1,304 (40.3\%)	474 (16. 6%)	694 (24.38)	.36) 180	(0.3.6)
Sixth-born	879 (44.07)	343 (17.5\%)	470 (24.3x)	.37 10	5.37)
Seventh-bor	814 (49.0\%)	2156 (15.7\%)	334 (20.58)	.5\%)	(5.07)
Eighth-born	453 (48.3\%)	149 (15.0\%)			(3.75)
Ninth-born.	334				(5.47)
Tenth-born.	240 (48.47)		(8) $\log _{8}^{2 \times 2}$. 78) 18	$3.68)$ 2.15) S.
Twelfth and la	127 (43.2\%)	51 (17.4\%)	57 (10.4\%)	.4\%)	(0.07)
Order of birth.	American.	German.	French.	Miscollaneous.	Total.
First-born	234 (3.5\%)	140 (2.0\%)	30 (0.4\%)	157 (2.38)	6,753
Second-bor	194 (3.38)	143 (2.4\%)	22 (0. 3 x)	143 (2.48)	5,878
Third-born	144 (3.0x)	138 (2.88)	18 (0.8x)	123 (2.5\%)	4,883
Fourth-born					3,8818
Fifth-born	02 (2.28)	51 (1.88)	12 (0.4\%)	03 (2.28)	2,800
Sixth-born.	57 54 (8.38) (8.38)	45 48 48 (2.88)	5 6 (0.38) (0.4\%	(65) (2.88)	1,004
Eighth-born	24 (2.68)	5 (0.5x)		21 (2.08)	1,033
Ninth-born	27 (3.48)	17 (2.20)	\% 0.3 \%	24 (3.18)	783
Tenth-born	15 (3.08)	8 (1.08)	$2(0.48)$	15 (3.0x)	493
Elevonth-born	9 (3.2\%)	4 (1.47)	2 (0.7x)	12 (4.38)	280
Twelfth and later b	6 (1.7\%)	8 (2.7\%)	4 (1.4x)	13 (4.48)	204

Whe mately by com childre

Ord
First bo
Second
Third br
Fourth Sixth av

To

That is miscell the ord the dis dren, 3 childre grandp among There grand descen the En all the

This
first-bo differe blood materi say the intluen

When we group these results so as to equalize the number of cases approximately, treating the three first-born children separately, forming the fourth group by combining the fourth and fifth born children, and including all the later-born children in one group, we find the following results:

Nationality (in per eent) of grandmarents of Toronlo girls.

Order of birth.	Eng-	Scotch.	Irish.	Cana- dian.	Ameri- can.	German.	French.	Miscelitneous.	Cases.
First born	39.0	16.5	23.9	12.4	3.5	2.0	0.4	2.3	6, 203
Second born	41.0	15.1	23. 8	11.4	3.3	2.4	0. 6	2.4	5, $5 \% 8$
Third born -............	40.8	16. 7	23.5	10.5	3.0	2.8	0.9	2.5	4,883
Fourth and fifth worn.	44.4	$1 \% .1$	23. 6	7.3	2.7	2.0	0.4	$2 \cdot 4$	6, \%98
Sixth and later worn..	47.3	16.4	础3.0	5.1	3.0	2.1	0.3	2.7	6,358
Total	43.5	16.4	23.6	9.3	3.1	2.3	0.5	2.5	30, 6330

That is to say, the percentage of Scotch, Irish, American, German, French. and miscellaneous grandparents remains the same for all the children, no matter what the order of their birth may be. There is, however, a fundanental difference in the distribution of English and Canadian children. Among the first-born eliildren, 39 per cent of the grandparents are of English birth. Among the later-lorn children, 47 per cent are of English birth. This indieates that in families whose grandparents are of English birth we find a greater number of ehildren than among the other nationalities. The reverse is the ease among the Canadians. There is among the later-born children a deeided decrease in the number of grandparents of Canadian birth. This indieates that the families of Canadian descent are small. It is very peculiar that these differences are found only among. the English and Canadians, and that there are no differencesin distribution among all the other nationalities.
This table is of importance also as showing that the difference in stature between first-born children and later-born ehildren ean not be ascribed to the influence of differences in nationality. The change of proportion of English and Canadian blood in the grand total is so slight that we can not possibly assume that it will materially modify the average stature of the people. We may therefore safely say that the difference in stature between first-born and later-born children is not influenced by complications resulting from the influence of nationality.

[^0]: 1 A contimeter is nearly 0.4 Inch.
 ${ }^{9}$ Grundzilge der Theorte der Statistik, p, 188.

[^1]: 1 oxpressed theso views flrst in Selence, Vol. XX., p. 3ill, December: :3, 180 A.

[^2]: 1 Figures in parentheses denote approximate values.
 2 "The Growth of United States Naval Cadets" (Proc. U. S. Naval Instituto. Vol. XXI, No. 2, whole No. 74).

[^3]: "The Growth of United States Naval Cadets" (Proc. U.S. Naval Institute, Vol. XXI, No. 2, whole No. 74).
 ${ }^{2}$ Thie following theory was first published in "sclence," Vol. XIX, 1802, May 6, p. 250; May 20), p. 281.

[^4]: 1 Twenty-socond Aunual Report of the State Board of Health of Massachusette, pp. 470 f.
 ${ }^{2}$ Tramsactions of the Acadeiny of Science of St. Louis, Vol. VI, No. 12, 1804, pp. 350 fr .

[^5]: Statu

